WorldWideScience

Sample records for non-laminated coralline sponge

  1. Extracting growth rates from the non-laminated coralline sponge Astrosclera willeyana using "bomb" radiocarbon

    Energy Technology Data Exchange (ETDEWEB)

    Fallon, S; Guilderson, T

    2004-06-30

    Coralline sponges have the potential to fill in gaps in our understanding of subsurface oceanographic variability. However, one disadvantage they have compared to hermatypic reef building coral proxies is that they do not have annual density bands and need to be radiometrically dated for an age determination. To elucidate growth rate variability we have measured radiocarbon in 1 mm increments from Astrosclera willeyana sponges collected off the Central and Northern Great Barrier Reef (GBR) and from Truk in the Caroline Islands and compared these radiocarbon profiles to independently dated coral radiocarbon records. Growth rates of the GBR sponges average 1.2 {+-} 0.3 and 1.0 {+-} 0.3 mm yr{sup -1}, north and central respectively but can vary by a factor of two. The growth rate of the Truk sponge averages 1.2 {+-} 0.1 mm yr{sup -1}. These growth rates are significantly faster to those measured for other GBR Astrosclera willeyana sponges (0.2 mm yr{sup -1}) by Calcein staining (Woerheide 1988).

  2. Interpreting environmental signals from the coralline sponge Astrosclera willeyana

    Energy Technology Data Exchange (ETDEWEB)

    Fallon, S J; McCulloch, M T; Guilderson, T P

    2004-06-30

    Coralline sponges (sclerosponges) have been proposed as a new source for paleo subsurface temperature reconstructions by utilizing methods developed for reef-building corals. However unlike corals, coralline sponges do not have density variations making age determination difficult. In this study we examined multiple elemental rations (B, Mg, Sr, Ba, U) in the coralline sponge Astrosclera willeyana. We also measured skeletal density profiles along the outer ''living'' edge of the sponges and this data indicates significant thickening of skeletal material over intervals of 2-3 mm or 2-3 years. This suggests that any skeletal recovered environmental record from Astrosclera willeyana is an integration of signals over a 2-3 year period. Sponge Sr/Ca seemed to hold the most promise as a recorder of water temperature and we compared Sr/Ca from 2 sponges in the Great Barrier Reef and one from Truk in Micronesia to their respective sea surface temperature record. The correlations were not that strong ({approx} r=-0.5) but they were significant. It appears that the signal smoothing due to thickening or perhaps even some biologic control on Sr skeletal partitioning limits the use of Sr/Ca as an indicator of water temperature in Astrosclera willeyana.

  3. Microbial diversity in the coralline sponge Vaceletia crypta.

    Science.gov (United States)

    Karlińska-Batres, Klementyna; Wörheide, Gert

    2013-05-01

    Coralline sponges of the genus Vaceletia are regarded as 'living fossils', the only recent members of the so-called 'sphinctozoan-type' sponges that contributed to reef-building during the Palaeozoic and Mesozoic eras. Vaceletia species were thought to be extinct until the discovery of Vaceletia crypta in the 1970s. Here, we used molecular methods to provide first insights into the microbial diversity of these coralline sponges. Both denaturing gradient gel electrophoresis (DGGE) analyses of 19 Vaceletia specimens and the analysis of 427 clones from a bacterial 16S rRNA gene clone library of a specimen of V. crypta from the Great Barrier Reef (Australia) revealed high diversity and a complex composition with a relatively uniform phylogenetic distribution. Only a single archaeal 16S rRNA phylotype was recovered. The most abundant bacteria were the Chloroflexi (35 %). Of the microbial community, 58 % consisted of the Gammaproteobacteria, Gemmatimonadetes, Actinobacteria, Nitrospira, Deltaproteobacteria, Deferribacteres and Acidobacteria, with nearly equal representation. Less abundant members of the microbial community belonged to the Alphaproteobacteria (3 %), as well as to the Poribacteria, Betaproteobacteria, Cyanobacteria, Spirochaetes, Bacteroidetes, Deinococcus-Thermus and Archaea (all together 4 %). Of the established 96 OTUs, 88 % were closely related to other sponge-derived sequences and thereof 71 OTUs fell into sponge- or sponge-coral specific clusters, which underscores that the "living fossil" coralline sponge Vaceletia shares features of its microbial community with other sponges. The DGGE cluster analysis indicated distinct microbial communities in the different growth forms (solitary and colonial) of Vaceletia species.

  4. Crustose coralline algae and a cnidarian neuropeptide trigger larval settlement in two coral reef sponges

    National Research Council Canada - National Science Library

    Whalan, Steve; Webster, Nicole S; Negri, Andrew P

    2012-01-01

    ... of scleractinian coral larvae. Methanol extracts of the crustose coralline algae (CCA), Porolithon onkodes, corresponding to a range of concentrations, were used to determine the settlement responses of sponge larvae...

  5. Crustose coralline algae and a cnidarian neuropeptide trigger larval settlement in two coral reef sponges.

    Directory of Open Access Journals (Sweden)

    Steve Whalan

    Full Text Available In sessile marine invertebrates, larval settlement is fundamental to population maintenance and persistence. Cues contributing to the settlement choices and metamorphosis of larvae have important implications for the success of individuals and populations, but cues mediating larval settlement for many marine invertebrates are largely unknown. This study assessed larval settlement in two common Great Barrier Reef sponges, Coscinoderma matthewsi and Rhopaloeides odorabile, to cues that enhance settlement and metamorphosis in various species of scleractinian coral larvae. Methanol extracts of the crustose coralline algae (CCA, Porolithon onkodes, corresponding to a range of concentrations, were used to determine the settlement responses of sponge larvae. Cnidarian neuropeptides (GLW-amide neuropeptides were also tested as a settlement cue. Settlement in both sponge species was approximately two-fold higher in response to live chips of CCA and optimum concentrations of CCA extract compared to 0.2 µm filtered sea water controls. Metamorphosis also increased when larvae were exposed to GLW-amide neuropeptides; R. odorabile mean metamorphosis reached 42.0±5.8% compared to 16.0±2.4% in seawater controls and in C. matthewsi mean metamorphosis reached 68.3±5.4% compared to 36.7±3.3% in seawater controls. These results demonstrate the contributing role chemosensory communication plays in the ability of sponge larvae to identify suitable habitat for successful recruitment. It also raises the possibility that larvae from distinct phyla may share signal transduction pathways involved in metamorphosis.

  6. Crustose coralline algae and a cnidarian neuropeptide trigger larval settlement in two coral reef sponges.

    Science.gov (United States)

    Whalan, Steve; Webster, Nicole S; Negri, Andrew P

    2012-01-01

    In sessile marine invertebrates, larval settlement is fundamental to population maintenance and persistence. Cues contributing to the settlement choices and metamorphosis of larvae have important implications for the success of individuals and populations, but cues mediating larval settlement for many marine invertebrates are largely unknown. This study assessed larval settlement in two common Great Barrier Reef sponges, Coscinoderma matthewsi and Rhopaloeides odorabile, to cues that enhance settlement and metamorphosis in various species of scleractinian coral larvae. Methanol extracts of the crustose coralline algae (CCA), Porolithon onkodes, corresponding to a range of concentrations, were used to determine the settlement responses of sponge larvae. Cnidarian neuropeptides (GLW-amide neuropeptides) were also tested as a settlement cue. Settlement in both sponge species was approximately two-fold higher in response to live chips of CCA and optimum concentrations of CCA extract compared to 0.2 µm filtered sea water controls. Metamorphosis also increased when larvae were exposed to GLW-amide neuropeptides; R. odorabile mean metamorphosis reached 42.0±5.8% compared to 16.0±2.4% in seawater controls and in C. matthewsi mean metamorphosis reached 68.3±5.4% compared to 36.7±3.3% in seawater controls. These results demonstrate the contributing role chemosensory communication plays in the ability of sponge larvae to identify suitable habitat for successful recruitment. It also raises the possibility that larvae from distinct phyla may share signal transduction pathways involved in metamorphosis.

  7. Anthropogenic and solar forcing in δ13C time pattern of coralline sponges.

    Science.gov (United States)

    Madonia, Paolo; Reitner, Joachim

    2014-01-01

    We present the results of a re-analysis of a previously published carbon isotope data-set related to coralline sponges in the Caribbean Sea. The original interpretation led to the discrimination between a pre-industrial period, with a signal controlled by solar-induced climatic variations, followed by the industrial era, characterized by a progressive δ(13)C negative shift due to the massive anthropogenic carbon emissions. Our re-analysis allowed to extract from the raw isotopic data evidence of a solar forcing still visible during the industrial era, with a particular reference to the 88-year Gleissberg periods. These signals are related to slope changes in both the δ(13)C versus time and the δ(13)C versus carbon emission curves.

  8. Phylogenetic diversity and community structure of the symbionts associated with the coralline sponge Astrosclera willeyana of the Great Barrier Reef.

    Science.gov (United States)

    Karlińska-Batres, Klementyna; Wörheide, Gert

    2013-04-01

    The coralline sponge Astrosclera willeyana, considered to be a living representative of the reef-building stromatoporoids of the Mesozoic and the Paleozoic periods, occurs widely throughout the Indo-Pacific oceans. We aimed to examine, for the first time, the phylogenetic diversity of the microbial symbionts associated with A. willeyana using molecular methods and to investigate the spatial variability in the sponge-derived microbial communities of A. willeyana from diverse sites along the Great Barrier Reef (GBR). Both denaturing gradient gel electrophoresis (DGGE) analyses of 12 Astrosclera specimens and sequencing of a 16S rRNA gene clone library, constructed using a specimen of A. willeyana from the Yonge Reef (380 clones), revealed the presence of a complex microbial community with high diversity. An assessment of the 16S rRNA gene sequences to the particular phylogenetic groups showed domination of the Chloroflexi (42 %), followed by the Gammaproteobacteria (14 %), Actinobacteria (11 %), Acidobacteria (8 %), and the Deferribacteres (7 %). Of the microbes that were identified, a further 15 % belonged to the Deltaproteobacteria, Alphaproteobacteria, and Nitrospirae genera. The minor phylogenetic groups Gemmatimonadetes, Spirochaetes, Cyanobacteria, Poribacteria, and the Archaea composed 3 % of the community. Over 94 % of the sequences obtained from A. willeyana grouped together with other sponge- or coral-derived sequences, and of these, 72 % formed, with nearest relatives, 46 sponge-specific or sponge-coral clusters, highlighting the uniqueness of the microbial consortia in sponges. The DGGE results showed clear divisions according to the geographical origin of the samples, indicating closer relationships between the microbial communities with respect to their geographic origin (northern vs. southern GBR).

  9. Paleoenvironmental reconstruction of a downslope accretion history: From coralgal-coralline sponge rubble to mud mound deposits (Eocene, Ainsa Basin, Spain)

    Science.gov (United States)

    Rodríguez-Martínez, Marta; Reitner, Joachim

    2015-12-01

    In the Lutetian intraslope Ainsa sub-basin, small, sub-spherical, carbonate mud mounds occur associated with hemipelagic marls and mixed gravity flow deposits. The studied mud mounds consist of a mixture of allochthonous, parautochthonous and autochthonous components that show evidences of reworking, bioerosion, and accretion by different fossil assemblages at different growth stages. The crusts of microbial-lithistid sponges played an important role stabilizing the rubble of coralgal-coralline sponges and formed low-relief small benthic patches in a dominant marly soft slope environment. These accidental hard substrates turned into suitable initiation/nucleation sites for automicrite production (dense and peloidal automicrites) on which the small mud mounds dominated by opportunistic epi- and infaunal heterozoan assemblages grew. A detailed microfacies mapping and paleoenvironmental analysis reveals a multi-episodic downslope accretion history starred by demosponges (coralline and lithistid sponges), agariciid corals, calcareous red algae, putative microbial benthic communities and diverse sclerobionts from the upper slope to the middle slope. The analyzed mud mound microfacies are compared with similar fossil assemblages and growth fabrics described in many fossil mud mounds, and with recent deep-water fore reefs and cave environments.

  10. The Skeleton Forming Proteome of an Early Branching Metazoan: A Molecular Survey of the Biomineralization Components Employed by the Coralline Sponge Vaceletia Sp.

    Science.gov (United States)

    Germer, Juliane; Mann, Karlheinz; Wörheide, Gert; Jackson, Daniel John

    2015-01-01

    The ability to construct a mineralized skeleton was a major innovation for the Metazoa during their evolution in the late Precambrian/early Cambrian. Porifera (sponges) hold an informative position for efforts aimed at unraveling the origins of this ability because they are widely regarded to be the earliest branching metazoans, and are among the first multi-cellular animals to display the ability to biomineralize in the fossil record. Very few biomineralization associated proteins have been identified in sponges so far, with no transcriptome or proteome scale surveys yet available. In order to understand what genetic repertoire may have been present in the last common ancestor of the Metazoa (LCAM), and that may have contributed to the evolution of the ability to biocalcify, we have studied the skeletal proteome of the coralline demosponge Vaceletia sp. and compare this to other metazoan biomineralizing proteomes. We bring some spatial resolution to this analysis by dividing Vaceletia's aragonitic calcium carbonate skeleton into "head" and "stalk" regions. With our approach we were able to identify 40 proteins from both the head and stalk regions, with many of these sharing some similarity to previously identified gene products from other organisms. Among these proteins are known biomineralization compounds, such as carbonic anhydrase, spherulin, extracellular matrix proteins and very acidic proteins. This report provides the first proteome scale analysis of a calcified poriferan skeletal proteome, and its composition clearly demonstrates that the LCAM contributed several key enzymes and matrix proteins to its descendants that supported the metazoan ability to biocalcify. However, lineage specific evolution is also likely to have contributed significantly to the ability of disparate metazoan lineages to biocalcify.

  11. The Skeleton Forming Proteome of an Early Branching Metazoan: A Molecular Survey of the Biomineralization Components Employed by the Coralline Sponge Vaceletia Sp.

    Directory of Open Access Journals (Sweden)

    Juliane Germer

    Full Text Available The ability to construct a mineralized skeleton was a major innovation for the Metazoa during their evolution in the late Precambrian/early Cambrian. Porifera (sponges hold an informative position for efforts aimed at unraveling the origins of this ability because they are widely regarded to be the earliest branching metazoans, and are among the first multi-cellular animals to display the ability to biomineralize in the fossil record. Very few biomineralization associated proteins have been identified in sponges so far, with no transcriptome or proteome scale surveys yet available. In order to understand what genetic repertoire may have been present in the last common ancestor of the Metazoa (LCAM, and that may have contributed to the evolution of the ability to biocalcify, we have studied the skeletal proteome of the coralline demosponge Vaceletia sp. and compare this to other metazoan biomineralizing proteomes. We bring some spatial resolution to this analysis by dividing Vaceletia's aragonitic calcium carbonate skeleton into "head" and "stalk" regions. With our approach we were able to identify 40 proteins from both the head and stalk regions, with many of these sharing some similarity to previously identified gene products from other organisms. Among these proteins are known biomineralization compounds, such as carbonic anhydrase, spherulin, extracellular matrix proteins and very acidic proteins. This report provides the first proteome scale analysis of a calcified poriferan skeletal proteome, and its composition clearly demonstrates that the LCAM contributed several key enzymes and matrix proteins to its descendants that supported the metazoan ability to biocalcify. However, lineage specific evolution is also likely to have contributed significantly to the ability of disparate metazoan lineages to biocalcify.

  12. Miocene Coralline algae

    Energy Technology Data Exchange (ETDEWEB)

    Bosence, D.W.J.

    1988-01-01

    The coralline algae (Order Corallinales) were sedimentologically and ecologically important during the Miocene, a period when they were particularly abundant. The many poorly described and illustrated species and the lack of quantitative data in coralline thalli make specific determinations particularly difficult, but some species are well known and widespread in the Tethyan area. The sedimentologic importance of the Miocene coralline algae is reflected in the abundance of in-situ coralline buildups, rhodoliths, and coralline debris facies at Malta and Spain; similar sequences are known throughout the Tethyan Miocene. In-situ buildups vary from leafy crustose biostromes to walled reefs with dense coralline crusts and branches. Growth forms are apparently related to hydraulic energy. Rhodoliths vary from leafy, crustose, and open-branched forms in muddy sediments to dense, crustose, and radial-branching forms in coarse grainstones. Rhodolith form and internal structure correlate closely with hydraulic energy. Coralline genera are conservative and, as such, are useful in paleoenvironmental analysis. Of particular interest are the restricted depth ranges of recent coralline genera. More research is needed on the sedimentology, paleoecology, and systematics of the Cenozoic corallines, as they have particular value in paleoenvironmental analysis.

  13. Sponge-rhodolith interactions in a subtropical estuarine system

    Science.gov (United States)

    Ávila, Enrique; Riosmena-Rodríguez, Rafael; Hinojosa-Arango, Gustavo

    2013-06-01

    The interactions between sponges and red macroalgae have been widely documented in tropical and subtropical environments worldwide, and many of them have been documented as mutualistic associations. Sponges, however, have also been frequently described as part of the associated fauna of rhodolith habitats (aggregations of free-living non-geniculated coralline macroalgae). Nonetheless, the types of interaction they establish as well as the role of sponges in these habitats remain unknown. In this study, the associations between sponges and rhodoliths were investigated in an estuarine ecosystem of the Mexican Pacific based on qualitative and quantitative data. A total of 13 sponge species were identified in five newly discovered rhodolith beds dominated by the non-geniculate coralline macroalga Lithophyllum margaritae. The sponge assemblages were strongly restricted to rhodolith habitats. The best predictor of sponge abundance (from 5.1 to 51.7 ind m-2) and species richness (from 2.6 to 6.1 sponge species m-2) was the rhodolith density rather than other population descriptors assessed (e.g., average size, branch density and sphericity). The identified sponges included a variety of forms: massive (46 %), encrusting (23 %), excavating (15 %), cushion-shape (8 %) and digitate (8 %). Moreover, more than 50 % of sponge species recorded (mainly massive and encrusting forms) were frequently found overgrowing and binding rhodoliths. Halichondria cf. semitubulosa and Mycale cecilia were the most common binding agents; these species bind an average of 3.1 and 6.6 rhodoliths per sponge individual, respectively. These findings reveal the importance of rhodoliths as habitat forming species, since these seaweed beds notably increased the substrate complexity in soft bottom environments. In addition, the relatively high abundance of sponges and their capability to bind rhodoliths suggest that these associated organisms could have an important contribution to rhodolith bed stability.

  14. Coralline hydroxyapatite in complex acetabular reconstruction.

    Science.gov (United States)

    Wasielewski, Ray C; Sheridan, Kate C; Lubbers, Melissa A

    2008-04-01

    This retrospective study examined whether a coralline hydroxyapatite bone graft substitute adequately repaired bone defects during complex acetabular reconstructions. Seventeen patients who underwent acetabular revision using Pro Osteon 500 were assessed to determine whether any cups required re-revision, whether bone had incorporated into the coralline hydroxyapatite grafts, and whether the coralline hydroxyapatite grafts resorbed with time. At latest follow-up, no cups required re-revision, but 1 had failed. Radiographic evidence of bone incorporation was observed in every coralline hydroxyapatite graft. Graft resorption was not observed.

  15. Bioerosion of gastropod shells: with emphasis on effects of coralline algal cover and shell microstructure

    Science.gov (United States)

    Smyth, Miriam J.

    1989-12-01

    Organisms boring into fifty nine species of gastropod shells on reefs around Guam were the bryozoan Penetrantia clionoides; the acrothoracian barnacles Cryptophialus coronorphorus, Cryptophialus zulloi and Lithoglyptis mitis; the foraminifer Cymbaloporella tabellaeformis, the polydorid Polydora sp. and seven species of clionid sponge. Evidence that crustose coralline algae interfere with settlement of larvae of acrothoracian barnacles, clionid sponges, and boring polychaetes came from two sources: (1) low intensity of boring in limpet shells, a potentially penetrable substrate that remains largely free of borings by virtue of becoming fully covered with coralline algae at a young age and (2) the extremely low levels of boring in the algal ridge, a massive area of carbonate almost entirely covered by a layer of living crustose corallines. There was a strong negative correlation between microstructural hardness and infestation by acrothoracian barnacles and no correlation in the case of the other borers. It is suggested that this points to a mechanical rather than a chemical method of boring by the barnacles. The periostracum, a layer of organic material reputedly a natural inhibitor of boring organisms, was bored by acrothoracican barnacles and by the bryozoan. The intensity of acrothoracican borings is shown to have no correlation with the length of the gastropod shell.

  16. Responses of mesenchymal stem cell to chitosan-coralline composites microstructured using coralline as gas forming agent.

    Science.gov (United States)

    Gravel, Mylène; Gross, Talia; Vago, Razi; Tabrizian, Maryam

    2006-03-01

    Macroporous composites made of coralline:chitosan with new microstructural features were studied for their scaffolding potential in in vitro bone regeneration. By using different ratios of natural coralline powder, as in situ gas forming agent and reinforcing phase, followed by freeze-drying, scaffolds with controlled porosity and pore structure were prepared and cultured with mesenchymal stem cells (MSCs). Their supportive activity of cellular attachment, proliferation and differentiation were assessed through cell morphology studies, DNA content, alkaline phosphatase (ALP) activity and osteocalcin (OC) release. The coralline scaffolds showed by far the highest evaluation of cell number and ALP activity over all the other chitosan-based scaffolds. They were the only material on which the OC protein was released throughout the study. When used as a component of the chitosan composite scaffolds, these coralline's favourable properties seemed to improve the overall performance of the chitosan. Distinct cell morphology and osteoblastic phenotype expression were observed depending on the coralline-to-chitosan ratios composing the scaffolds. The coralline-chitosan composite scaffolds containing high coralline ratios generally showed higher total cell number, ALP activity and OC protein expression comparing to chitosan scaffolds. The results of this study strongly suggest that coralline:chitosan composite, especially those having a high coralline content, may enhance adhesion, proliferation and osteogenic differentiation of MSCs in comparison with pure chitosan. Coralline:chitosan composites could therefore be used as attractive scaffolds for developing new strategies for in vitro tissue engineering.

  17. Medullary Sponge Kidney

    Science.gov (United States)

    ... Sponge Kidney? Complications of medullary sponge kidney include hematuria, or blood in the urine kidney stones urinary ... both kidneys. Complications of medullary sponge kidney include hematuria, or blood in the urine kidney stones urinary ...

  18. Cultivation of marine sponges

    Institute of Scientific and Technical Information of China (English)

    QU Yi; ZHANG Wei; LI Hua; YU Xingju; JIN Meifang

    2005-01-01

    Sponges are the most primitive of multicellular animals, and are major pharmaceutical sources of marine secondary metabolites. A wide variety of new compounds have been isolated from sponges. In order to produce sufficient amounts of the compounds of the needed, it is necessary to obtain large amount of sponges.The production of sponge biomass has become a focus of marine biotechnology.

  19. ABOUT SPONGE FARMING

    Directory of Open Access Journals (Sweden)

    Marijana Pećarević

    2005-04-01

    Full Text Available Sponges are the simplest multicellular animals. Farming of sponges is facilitated by their asexual reproduction and great ability of regeneration. Farming of filter-feeding sponges is environment friendly, and it can positively influence on environmental impact of other aquaculture activities. Natural populations of sponges in Mediterranean Sea are endangered by inappropriate overfishing. Farming of sponges is possible solution for regeneration and protection of natural populations.

  20. Coral cavity sponges depend on reef-derived food resources: stable isotope and fatty acid constraints.

    Science.gov (United States)

    van Duyl, Fleur C; Moodley, Leon; Nieuwland, Gerard; van Ijzerloo, Lennart; van Soest, Rob W M; Houtekamer, Marco; Meesters, Erik H; Middelburg, Jack J

    2011-01-01

    The diet of cavity sponges on the narrow fringing reefs of Curaçao, Caribbean was studied. The origin and resources of the bulk food of these sponges, i.e., dissolved organic matter (DOM), were identified using stable carbon and nitrogen isotopes and fatty acid biomarkers. We found that phytoplankton and its derived DOM from the adjacent open sea and from reef overlying water is not the main source of food for most of the sponges examined nor is bacterioplankton. Interestingly, dual stable isotope signatures (δ(13)Corg, δ(15)Norg) and fatty acid biomarkers appoint coral mucus and organic matter derived from crustose coralline algae (CCA) as probable food sources for encrusting sponges. Mucus-derived DOM may contribute up to 66% to the diet of examined sponges based on results of dual isotope mixing model analysis. The contribution of CCA (as purported representative for benthic algae) was smaller with values up to 31%. Together, mucus- and CCA-derived substrates contributed for 48-73% to the diet of sponges. The presence of the exogenous fatty acid 20:4ω6 in sponges, which is abundant in coral mucus of Madracis mirabilis and in CCA, highlights these reef-derived resources as sources of nutrition for DOM feeding cavity sponges. The relatively high concentrations of exogenous 20:4ω6 in all sponges examined supports our hypothesis that the bulk of the food of the cavity sponge community is reef-derived. Our results imply that cavity sponges play an important role in conserving food and energy produced within the reef.

  1. Marine sponges as pharmacy

    NARCIS (Netherlands)

    Sipkema, D.; Franssen, M.C.R.; Osinga, R.; Tramper, J.; Wijffels, R.H.

    2005-01-01

    Marine sponges have been considered as a gold mine during the past 50 years, with respect to the diversity of their secondary metabolites. The biological effects of new metabolites from sponges have been reported in hundreds of scientific papers, and they are reviewed here. Sponges have the

  2. Cultivation of Marine Sponges.

    Science.gov (United States)

    Osinga; Tramper; Wijffels

    1999-11-01

    There is increasing interest in biotechnological production of marine sponge biomass owing to the discovery of many commercially important secondary metabolites in this group of animals. In this article, different approaches to producing sponge biomass are reviewed, and several factors that possibly influence culture success are evaluated. In situ sponge aquacultures, based on old methods for producing commercial bath sponges, are still the easiest and least expensive way to obtain sponge biomass in bulk. However, success of cultivation with this method strongly depends on the unpredictable and often suboptimal natural environment. Hence, a better-defined production system would be desirable. Some progress has been made with culturing sponges in semicontrolled systems, but these still use unfiltered natural seawater. Cultivation of sponges under completely controlled conditions has remained a problem. When designing an in vitro cultivation method, it is important to determine both qualitatively and quantitatively the nutritional demands of the species that is to be cultured. An adequate supply of food seems to be the key to successful sponge culture. Recently, some progress has been made with sponge cell cultures. The advantage of cell cultures is that they are completely controlled and can easily be manipulated for optimal production of the target metabolites. However, this technique is still in its infancy: a continuous cell line has yet to be established. Axenic cultures of sponge aggregates (primmorphs) may provide an alternative to cell culture. Some sponge metabolites are, in fact, produced by endosymbiotic bacteria or algae that live in the sponge tissue. Only a few of these endosymbionts have been cultivated so far. The biotechnology for the production of sponge metabolites needs further development. Research efforts should be continued to enable commercial exploitation of this valuable natural resource in the near future.

  3. Calculating the global contribution of coralline algae to carbon burial

    Directory of Open Access Journals (Sweden)

    L. H. van der Heijden

    2015-05-01

    Full Text Available The ongoing increase in anthropogenic carbon dioxide (CO2 emissions is changing the global marine environment and is causing warming and acidification of the oceans. Reduction of CO2 to a sustainable level is required to avoid further marine change. Many studies investigate the potential of marine carbon sinks (e.g. seagrass to mitigate anthropogenic emissions, however, information on storage by coralline algae and the beds they create is scant. Calcifying photosynthetic organisms, including coralline algae, can act as a CO2 sink via photosynthesis and CaCO3 dissolution and act as a CO2 source during respiration and CaCO3 production on short-term time scales. Long-term carbon storage potential might come from the accumulation of coralline algae deposits over geological time scales. Here, the carbon storage potential of coralline algae is assessed using meta-analysis of their global organic and inorganic carbon production and the processes involved in this metabolism. Organic and inorganic production were estimated at 330 g C m−2 yr−1 and 880 g CaCO3 m−2 yr−1 respectively giving global organic/inorganic C production of 0.7/1.8 × 109 t C yr−1. Calcium carbonate production by free-living/crustose coralline algae (CCA corresponded to a sediment accretion of 70/450 mm kyr−1. Using this potential carbon storage by coralline algae, the global production of free-living algae/CCA was 0.4/1.2 × 109 t C yr−1 suggesting a total potential carbon sink of 1.6 × 109 t C yr−1. Coralline algae therefore have production rates similar to mangroves, saltmarshes and seagrasses representing an as yet unquantified but significant carbon store, however, further empirical investigations are needed to determine the dynamics and stability of that store.

  4. Comparison between the sponge fauna living outside and inside the coralligenous bioconstruction. A quantitative approach

    Directory of Open Access Journals (Sweden)

    B. CALCINAI

    2015-06-01

    Full Text Available Coralligenous habitat results from a multi-stratified accumulation of crustose coralline algae and animal builders in a dynamic equilibrium with disruptive agents. The result is a complex architecture crossed by crevices and holes. Due to this three-dimensional structure, coralligenous may host a rich and diversified fauna, more abundant than any other Mediterranean habitat. Unfortunately, very few data are available about the cryptic fauna that lives inside the conglomerate. As already reported for coral reefs, the cryptic fauna plays an important role in the exchange of material and energy between water column and benthic assemblages. Here we compare the sponge community present inside and outside the coralligenous framework of Portofino Promontory (Ligurian Sea at different depths (15 and 30 meters not only in terms of taxonomic diversity but for the first time also in term of biomass. Sponges present on the surface of each block were collected, weighed and identified; after blocks dissolution in HCl, target cryptic sponges were separated from other organisms, weighed, and identified. We recorded a total of 62 sponge species. The average number of sponge taxa occurring outside the coralligenous accretions is lower than the number of taxa identified inside. This pattern is confirmed also regarding sponge biomass. These results underlines that studies focused on coralligenous functioning should take in account the important contribution of cryptic fauna, as recently evidenced also for tropical reef habitats.

  5. Comparison between the sponge fauna living outside and inside the coralligenous bioconstruction. A quantitative approach

    Directory of Open Access Journals (Sweden)

    B. CALCINAI

    2015-07-01

    Full Text Available Coralligenous habitat results from a multi-stratified accumulation of crustose coralline algae and animal builders in a dynamic equilibrium with disruptive agents. The result is a complex architecture crossed by crevices and holes. Due to this three-dimensional structure, coralligenous may host a rich and diversified fauna, more abundant than any other Mediterranean habitat. Unfortunately, very few data are available about the cryptic fauna that lives inside the conglomerate. As already reported for coral reefs, the cryptic fauna plays an important role in the exchange of material and energy between water column and benthic assemblages. Here we compare the sponge community present inside and outside the coralligenous framework of Portofino Promontory (Ligurian Sea at different depths (15 and 30 meters not only in terms of taxonomic diversity but for the first time also in term of biomass. Sponges present on the surface of each block were collected, weighed and identified; after blocks dissolution in HCl, target cryptic sponges were separated from other organisms, weighed, and identified. We recorded a total of 62 sponge species. The average number of sponge taxa occurring outside the coralligenous accretions is lower than the number of taxa identified inside. This pattern is confirmed also regarding sponge biomass. These results underlines that studies focused on coralligenous functioning should take in account the important contribution of cryptic fauna, as recently evidenced also for tropical reef habitats.

  6. Convergence of joint mechanics in independently evolving, articulated coralline algae.

    Science.gov (United States)

    Janot, Kyra; Martone, Patrick T

    2016-02-01

    Flexible joints are a key innovation in the evolution of upright coralline algae. These structures have evolved in parallel at least three separate times, allowing the otherwise rigid, calcified thalli of upright corallines to achieve flexibility when subjected to hydrodynamic stress. As all bending occurs at the joints, stress is amplified, which necessitates that joints be made of material that is both extensible and strong. Data presented here indicate that coralline joints are in fact often stronger and more extensible, as well as tougher, than fleshy seaweed tissues. Corallinoids are particularly strong and tough, which is largely due to the presence of secondary cell walls that strengthen the joint tissue without adding bulk to the joint itself. Cell wall thickness is shown to be a large contributing factor to strength across all groups, with the exception of the corallinoid Cheilosporum sagittatum, which likely possesses distinct chemical composition in its walls to increase strength beyond that of all other species tested.

  7. Pathobiomes Differ between Two Diseases Affecting Reef Building Coralline Algae

    Directory of Open Access Journals (Sweden)

    Anne-Leila Meistertzheim

    2017-09-01

    Full Text Available Crustose coralline algae (CCA are major benthic calcifiers that play crucial roles in coral reef ecosystems. Two diseases affecting CCA have recently been investigated: coralline white band syndrome (CWBS and coralline white patch disease (CWPD. These diseases can trigger major losses in CCA cover on tropical coral reefs, but their causative agents remain unknown. Here, we provide data from the first investigation of the bacterial communities associated with healthy and diseased CCA tissues. We show that Neogoniolithon mamillare diseased tissues had distinct microbial communities compared to healthy tissues and demonstrate that CWBS and CWPD were associated with different pathobiomes, indicating that they had different disease causations. CWBS tissues were composed of opportunistic bacteria, and the origin of the disease was undetermined. In contrast, a vibrio related to Vibrio tubiashii characterized the CWPD pathobiome, suggesting that it could be a putative disease agent and supporting the case of a temperature dependent disease associated with global warming.

  8. Cultivation of marine sponges

    NARCIS (Netherlands)

    Osinga, R.; Tramper, J.; Wijffels, R.H.

    1999-01-01

    There is increasing interest in biotechnological production of marine sponge biomass owing to the discovery of many commercially important secondary metabolites in this group of animals. In this article, different approaches to producing sponge biomass are reviewed, and several factors that possibly

  9. Sponge cell culture

    NARCIS (Netherlands)

    Schippers, K.J.

    2013-01-01

    Marine sponges are a rich source of bioactive compounds with pharmaceutical potential and are the most prolific source of newly discovered bioactive compounds with more than 7,000 novel molecules discovered in 40 years. Despite its enormous potential, only a few sponge-derived bioactive compounds ha

  10. The vaginal contraceptive sponge.

    Science.gov (United States)

    Edelman, D A

    1984-06-01

    The vaginal contraceptive sponge, approved on April 1, 1983 by the US Food Administration (FDA) for sale in the US as a single use, disposable, over-the-counter contraceptive, is made of polyurethane and designed to be biocompatible with the vaginal environment. The sponge is available in a single size, is round, and about 5.5 cm in diameter and 2.5 cm thick. An indentation on 1 side helps to ensure the sponge's correct placement against the cervix. A polyester retrieval loop attached to the sponge facilitates removal. Postcoital tests of the sponge without the spermicide indicated that it was ineffective in preventing sperm from entering the cervical canal. Before insertion, the contraceptive sponge is moistened with tap water to activate the spermicide and is inserted into the vagina with the indentation placed against the cervis. The sponge has been designed to provide continuous protection against pregnancy for at least 24 hours after insertion. Following a successful phase ii clinical trail of the sponge, in 1979 comparative phase iii clinical trials were initiated by Family Health International. The following trials were conducted: sponge versus the diaphragm (arcing-spring) used with a spermicide (nonoxynol-9) at 13 clinics in the US (1439 subjects) and at 2 clinics in Canada and the UK (502 subjects); sponge versus a foaming spermicidal (menfegol) suppository at 5 clinics in Yugoslavia, Taiwan, and Bangladesh (1386) subjects); and sponge versus spermicidal (nonoxynol-9) foam at 2 clinics in Israel and Thailand (366 subjects). In all trials the contraceptive methods were raondomly assigned. Clinics were required to follow up subjects for 1 year. Only the US study has been completed. In the comparative trials of the sponge and diaphragm (both US based and overseas) the pregnancy rates were significantly higher for the sponge. In the comparative trials of the sponge and foaming suppositories or spermicidal foam there were no significant differences between the

  11. Freshwater sponges of Suriname

    NARCIS (Netherlands)

    Ezcurra de Drago, Inés

    1975-01-01

    This paper is the first contribution to the knowledge of the freshwater sponges of Suriname. Four species have been identified up till now: Metania spinata (Carter, 1881), Trochospongilla paulula (Bowerbank, 1863), Radiospongilla crateriformis (Potts, 1882), and Drulia uruguayensis Bonetto & Ezcurra

  12. Crustose coralline algae can suppress macroalgal growth and recruitment on Hawaiian coral reefs

    OpenAIRE

    Vermeij, M.J.A.; Dailer, M.L.; Smith, C M

    2011-01-01

    Crustose coralline algae are important components of tropical reef communities because they promote successful settlement by corals and contribute to solidification of the reef framework. We show experimentally that crustose coralline algae are also capable of suppressing the growth and recruitment potential of an abundant Hawaiian reef macroalga, Ulva fasciata. When mixed communities of crustose coralline algae were absent, relative growth rates of U. fasciata increased by 54.6%. When experi...

  13. Red coralline algae assessed as marine pH proxies using 11B MAS NMR

    OpenAIRE

    M. Cusack; Kamenos, N. A.; Rollion-Bard, C.; Tricot, G

    2015-01-01

    Reconstructing pH from biogenic carbonates using boron isotopic compositions relies on the assumption that only borate, and no boric acid, is present. Red coralline algae are frequently used in palaeoenvironmental reconstruction due to their widespread distribution and regular banding frequency. Prior to undertaking pH reconstructions using red coralline algae we tested the boron composition of the red coralline alga Lithothamnion glaciale using high field NMR. In bulk analysed samples, thirt...

  14. Sponge cell culture? A molecular identification method for sponge cells

    NARCIS (Netherlands)

    Sipkema, D.; Heilig, G.H.J.; Akkermans, A.D.L.; Osinga, R.; Tramper, J.; Wijffels, R.H.

    2003-01-01

    Dissociated sponge cells are easily confused with unicellular organisms. This has been an obstacle in the development of sponge-cell lines. We developed a molecular detection method to identify cells of the sponge Dysidea avara in dissociated cell cultures. The 18S ribosomal RNA gene from a Dysidea

  15. Decreased abundance of crustose coralline algae due to ocean acidification

    Science.gov (United States)

    Kuffner, Ilsa B.; Andersson, Andreas J; Jokiel, Paul L.; Rodgers, Ku'ulei S.; Mackenzie, Fred T.

    2008-01-01

    Owing to anthropogenic emissions, atmospheric concentrations of carbon dioxide could almost double between 2006 and 2100 according to business-as-usual carbon dioxide emission scenarios1. Because the ocean absorbs carbon dioxide from the atmosphere2, 3, 4, increasing atmospheric carbon dioxide concentrations will lead to increasing dissolved inorganic carbon and carbon dioxide in surface ocean waters, and hence acidification and lower carbonate saturation states2, 5. As a consequence, it has been suggested that marine calcifying organisms, for example corals, coralline algae, molluscs and foraminifera, will have difficulties producing their skeletons and shells at current rates6, 7, with potentially severe implications for marine ecosystems, including coral reefs6, 8, 9, 10, 11. Here we report a seven-week experiment exploring the effects of ocean acidification on crustose coralline algae, a cosmopolitan group of calcifying algae that is ecologically important in most shallow-water habitats12, 13, 14. Six outdoor mesocosms were continuously supplied with sea water from the adjacent reef and manipulated to simulate conditions of either ambient or elevated seawater carbon dioxide concentrations. The recruitment rate and growth of crustose coralline algae were severely inhibited in the elevated carbon dioxide mesocosms. Our findings suggest that ocean acidification due to human activities could cause significant change to benthic community structure in shallow-warm-water carbonate ecosystems.

  16. Decreased abundance of crustose coralline algae due to ocean acidification

    Science.gov (United States)

    Kuffner, Ilsa B.; Andersson, Andreas J.; Jokiel, Paul L.; Rodgers, Ku`Ulei S.; MacKenzie, Fred T.

    2008-02-01

    Owing to anthropogenic emissions, atmospheric concentrations of carbon dioxide could almost double between 2006 and 2100 according to business-as-usual carbon dioxide emission scenarios. Because the ocean absorbs carbon dioxide from the atmosphere, increasing atmospheric carbon dioxide concentrations will lead to increasing dissolved inorganic carbon and carbon dioxide in surface ocean waters, and hence acidification and lower carbonate saturation states. As a consequence, it has been suggested that marine calcifying organisms, for example corals, coralline algae, molluscs and foraminifera, will have difficulties producing their skeletons and shells at current rates, with potentially severe implications for marine ecosystems, including coral reefs. Here we report a seven-week experiment exploring the effects of ocean acidification on crustose coralline algae, a cosmopolitan group of calcifying algae that is ecologically important in most shallow-water habitats. Six outdoor mesocosms were continuously supplied with sea water from the adjacent reef and manipulated to simulate conditions of either ambient or elevated seawater carbon dioxide concentrations. The recruitment rate and growth of crustose coralline algae were severely inhibited in the elevated carbon dioxide mesocosms. Our findings suggest that ocean acidification due to human activities could cause significant change to benthic community structure in shallow-warm-water carbonate ecosystems.

  17. Coralline red algae as high-resolution climate recorders

    Science.gov (United States)

    Halfar, J.; Steneck, R. S.; Joachimski, M.; Kronz, A.; Wanamaker, A. D., Jr.

    2008-06-01

    Most high-resolution, proxy-based paleoclimate research hasconcentrated on tropical oceans, while mid- and high-latitudemarine regions have received less attention, despite their importancein the global climate system. At present, sclerochronologicalanalyses of bivalve mollusks supply the bulk of annual- to subannual-resolutionextratropical marine climate data, even though interpretationis complicated by a slowdown of growth with increasing shellage. Hence, in order to address the need for additional high-resolutionproxy climate data from extratropical regions, we conductedthe first year-long in situ field calibration of the corallinered alga Clathromorphum compactum in the Gulf of Maine, UnitedStates. Coralline red algae are widely distributed in coastalregions worldwide, and individual calcified plants can livecontinuously for several centuries in temperate and subarcticoceans. Stable oxygen isotopes extracted at subannual resolutionfrom growth increments of monitored specimens of C. compactumrelate well to in situ-measured sea-surface temperaturesduring the May to December calcification period, highlightingthe suitability of coralline red algae as an extratropical climatearchive. Furthermore, there is a strong correlation betweena 30 yr 18O record of C. compactum and an instrumental sea-surfacetemperature record (r = -0.58, p = 0.0008) and a proxyreconstruction derived from the bivalve Arctica islandica collectedin the central Gulf of Maine (r = 0.54, p = 0.002).

  18. Growth and metabolism of sponges

    NARCIS (Netherlands)

    Koopmans, M.

    2009-01-01

    Sponges (phylum Porifera) are multi cellular filter-feeding invertebrate animals living attached to a substratum in mostly marine but also in freshwater habitats. The interest in sponges has increased rapidly since the discovery of potential new pharmaceutical compounds produced by many sponges. An

  19. Crustose coralline algae can suppress macroalgal growth and recruitment on Hawaiian coral reefs

    NARCIS (Netherlands)

    Vermeij, M.J.A.; Dailer, M.L.; Smith, C.M.

    2011-01-01

    Crustose coralline algae are important components of tropical reef communities because they promote successful settlement by corals and contribute to solidification of the reef framework. We show experimentally that crustose coralline algae are also capable of suppressing the growth and recruitment

  20. The research of degradability of a novel biodegradable coralline hydroxyapatite after implanted into rabbit.

    Science.gov (United States)

    Ning, Yuan; Wei, Tian; Defu, Chen; Yonggang, Xing; Da, He; Dafu, Chen; Lei, Sun; Zhizhong, Gao

    2009-03-01

    To examine the biodegradability and bone healing effect of a novel biodegradable coralline hydroxyapatite after implanting into the proximal tibia of rabbit. Seventy New Zealand white rabbits were enrolled, bone defects about 10 x 5 x 3 mm(3) of bilateral proximal tibias were prepared by drilling, then coralline hydroxyapatite and iliac crest bone were grafted into bilateral bone defects, respectively. Each time five rabbits were sacrificed at 1, 2, 3, 4, 6, 8, 10, 12, 20, 24, 32, 36, 40, and 60 weeks after surgery. Then a series of examination were carried out, including eye view, roentgenographically, and nondecalcification histological examination. Eye view and roentgenographical examination indicate that all the defects grafted with coralline hydroxyapatite exhibited bone fusion, similar to the iliac crest autograft. The bone density of the graft site decreases with time on the X-ray film. Nondecalcification histological examination results are as followed: In the early time on the sections, the coralline hydroxyapatite looks like interlinked trabecula. Few lymphocytes infiltrate around the trabecula. With time extending, coralline hydroxyapatite looks like thin line or thin circle remnant. The degradation sites are filled with renascence bone. Medulla cavity can be seen in the degradation sites. After grafted in body, coralline hydroxyapatite exhibits little local and general abnormal reaction. It conducts good bone fusion of fracture. Coralline hydroxyapatite can be degraded after grafted into body, which is good for remodeling of bone healing. Hence coralline hydroxyapatite is an ideal bone graft substitute of autograft.

  1. Crustose coralline algae can suppress macroalgal growth and recruitment on Hawaiian coral reefs

    NARCIS (Netherlands)

    Vermeij, M.J.A.; Dailer, M.L.; Smith, C.M.

    2011-01-01

    Crustose coralline algae are important components of tropical reef communities because they promote successful settlement by corals and contribute to solidification of the reef framework. We show experimentally that crustose coralline algae are also capable of suppressing the growth and recruitment

  2. Red coralline algae assessed as marine pH proxies using 11B MAS NMR

    Science.gov (United States)

    Cusack, M.; Kamenos, N. A.; Rollion-Bard, C.; Tricot, G.

    2015-02-01

    Reconstructing pH from biogenic carbonates using boron isotopic compositions relies on the assumption that only borate, and no boric acid, is present. Red coralline algae are frequently used in palaeoenvironmental reconstruction due to their widespread distribution and regular banding frequency. Prior to undertaking pH reconstructions using red coralline algae we tested the boron composition of the red coralline alga Lithothamnion glaciale using high field NMR. In bulk analysed samples, thirty percent of boron was present as boric acid. We suggest that prior to reconstructing pH using coralline algae 1) species-specific boron compositions and 2) within-skeleton special distributions of boron are determined for multiple species. This will enable site selective boron analyses to be conducted validating coralline algae as palaeo-pH proxies based on boron isotopic compositions.

  3. Red coralline algae assessed as marine pH proxies using 11B MAS NMR.

    Science.gov (United States)

    Cusack, M; Kamenos, N A; Rollion-Bard, C; Tricot, G

    2015-02-02

    Reconstructing pH from biogenic carbonates using boron isotopic compositions relies on the assumption that only borate, and no boric acid, is present. Red coralline algae are frequently used in palaeoenvironmental reconstruction due to their widespread distribution and regular banding frequency. Prior to undertaking pH reconstructions using red coralline algae we tested the boron composition of the red coralline alga Lithothamnion glaciale using high field NMR. In bulk analysed samples, thirty percent of boron was present as boric acid. We suggest that prior to reconstructing pH using coralline algae 1) species-specific boron compositions and 2) within-skeleton special distributions of boron are determined for multiple species. This will enable site selective boron analyses to be conducted validating coralline algae as palaeo-pH proxies based on boron isotopic compositions.

  4. Global conservation status of sponges.

    Science.gov (United States)

    Bell, James J; McGrath, Emily; Biggerstaff, Andrew; Bates, Tracey; Cárdenas, César A; Bennett, Holly

    2015-02-01

    Sponges are important for maintaining ecosystem function and integrity of marine and freshwater benthic communities worldwide. Despite this, there has been no assessment of their current global conservation status. We assessed their status, accounting for the distribution of research effort; patterns of temporal variation in sponge populations and assemblages; the number of sponges on threatened species lists; and the impact of environmental pressures. Sponge research effort has been variable; marine sponges in the northeastern Atlantic and Mediterranean and freshwater sponges in Europe and North America have received the most attention. Although sponge abundance has increased in some locations since 1990, these were typically on coral reefs, in response to declines in other benthic organisms, and restricted to a few species. Few data were available on temporal trends in freshwater sponge abundance. Despite over 8500 described sponge species, only 20 are on threatened species lists, and all are marine species from the northeastern Atlantic and Mediterranean. Of the 202 studies identified, the effects of temperature, suspended sediment, substratum loss, and microbial pathogens have been studied the most intensively for marine sponges, although responses appear to be variable. There were 20 studies examining environmental impacts on freshwater sponges, and most of these were on temperature and heavy metal contamination. We found that most sponges do not appear to be threatened globally. However, little information is available for most species and more data are needed on the impacts of anthropogenic-related pressures. This is a critical information gap in understanding sponge conservation status. © 2015 Society for Conservation Biology.

  5. Ocean acidification weakens the structural integrity of coralline algae.

    Science.gov (United States)

    Ragazzola, Federica; Foster, Laura C; Form, Armin; Anderson, Philip S L; Hansteen, Thor H; Fietzke, Jan

    2012-09-01

    The uptake of anthropogenic emission of carbon dioxide is resulting in a lowering of the carbonate saturation state and a drop in ocean pH. Understanding how marine calcifying organisms such as coralline algae may acclimatize to ocean acidification is important to understand their survival over the coming century. We present the first long-term perturbation experiment on the cold-water coralline algae, which are important marine calcifiers in the benthic ecosystems particularly at the higher latitudes. Lithothamnion glaciale, after three months incubation, continued to calcify even in undersaturated conditions with a significant trend towards lower growth rates with increasing pCO2 . However, the major changes in the ultra-structure occur by 589 μatm (i.e. in saturated waters). Finite element models of the algae grown at these heightened levels show an increase in the total strain energy of nearly an order of magnitude and an uneven distribution of the stress inside the skeleton when subjected to similar loads as algae grown at ambient levels. This weakening of the structure is likely to reduce the ability of the alga to resist boring by predators and wave energy with severe consequences to the benthic community structure in the immediate future (50 years).

  6. Indefatigable: an erect coralline alga is highly resistant to fatigue.

    Science.gov (United States)

    Denny, Mark; Mach, Katharine; Tepler, Sarah; Martone, Patrick

    2013-10-15

    Intertidal organisms are subjected to intense hydrodynamic forces as waves break on the shore. These repeated insults can cause a plant or animal's structural materials to fatigue and fail, even though no single force would be sufficient to break the organism. Indeed, the survivorship and maximum size of at least one species of seaweed is set by the accumulated effects of small forces rather than the catastrophic imposition of a single lethal force. One might suppose that fatigue would be especially potent in articulated coralline algae, in which the strain of the entire structure is concentrated in localized joints, the genicula. However, previous studies of joint morphology suggest an alternative hypothesis. Each geniculum is composed of a single tier of cells, which are attached at their ends to the calcified segments of the plant (the intergenicula) but have minimal connection to each other along their lengths. This lack of neighborly attachment potentially allows the weak interfaces between cells to act as 'crack stoppers', inhibiting the growth of fatigue cracks. We tested this possibility by repeatedly loading fronds of Calliarthron cheilosporioides, a coralline alga common on wave-washed shores in California. When repeatedly loaded to 50-80% of its breaking strength, C. cheilosporioides commonly survives more than a million stress cycles, with a record of 51 million. We show how this extraordinary fatigue resistance interacts with the distribution of wave-induced water velocities to set the limits to size in this species.

  7. Are anti-fouling effects in coralline algae species specific?

    Directory of Open Access Journals (Sweden)

    Alexandre Bigio Villas Bôas

    2004-03-01

    Full Text Available The crustose coralline algae are susceptible to be covered by other algae, which in turn can be affected by anti-fouling effects. In this study the hypothesis tested was that these algae can inhibit the growth of epiphytes in a species specific way. In the laboratory, propagules of Sargassum furcatum and Ulva fasciata were liberated and cultivated on pieces of coralline algae and slide covers (controls and their survival and growth were compared. Spongites and Hydrolithon significantly inhibited the growth of U. fasciata but not Sargassum. In the field, pieces of three species of live and dead coralline algae and their copies in epoxy putty discs were fixed on the rock. After one month epiphytic algae were identified and their dry mass quantified. Lithophyllum did not affect the epiphyte growth. In contrast Spongites and an unidentified coralline significantly inhibited the growth of Enteromorpha spp., Ulva fasciata and Hincksia mitchelliae. Colpomenia sinuosa was absent on all living crusts, but present on controls. Results show that the epiphyte-host relation depends on the species that are interacting. The sloughing of superficial cells of coralline crusts points to the possible action of physical anti-fouling effect, though a chemical one is not rejected.As algas calcárias crostosas são susceptíveis ao recobrimento por outras algas, entretanto, estas podem ser afetadas por efeitos anti-incrustantes. Neste estudo foi testada a hipótese de que estas algas possam inibir o crescimento somente de algumas espécies de epífitas. No laboratório, propágulos de Sargassum furcatum e Ulva fasciata foram liberados e cultivados sobre pedaços de algas calcárias e lamínulas de microscopia (controle e as suas sobrevivência e crescimento comparadas. Spongites e Hydrolithon inibiram significativamente o crescimento de U. fasciata, mas não de Sargassum. No campo, pedaços de três espécies de algas calcárias vivas, mortas e cópias destas em

  8. Supplementation of autogenous bone graft with coralline hydroxyapatite in posterior spine fusion for idiopathic adolescent scoliosis.

    Science.gov (United States)

    Mashoof, A Allen; Siddiqui, Saqib A; Otero, Marilyn; Tucci, James J

    2002-10-01

    Twenty-seven consecutive patients with adolescent idiopathic scoliosis underwent posterior spinal fusion with pediatric Texas Scottish Rite Hospital instrumentation. Coralline hydroxyapatite (Interpore, Irvine, Calif) was mixed with limited autograft from posterior iliac crest (an approximate 70/30 ratio of coralline hydroxyapatite to autograft). Patient evaluation was based on clinical and radiographic findings. On initial radiographic evaluation, a "snowstorm" appearance consistent with the exoskeleton of the coralline hydroxyapatite was observed. After two years, the fusion mass had a "marble-like" appearance with distinct decreased visibility of the disk spaces in the fusion mass. This latter stage of "marbilization correlated with solid fusion clinically. All patients achieved solid fusion at an average follow-up of 27 months. Coralline hydroxyapatite is safe, biocompatible, and effective in augmenting autogenous bone graft in the treatment of idiopathic adolescent scoliosis with posterior spinal fusion. In addition to decreased donor site morbidity, this may be invaluable in cases where there is insufficient autograft available.

  9. Antimicrobial activity of Serratia sp isolated from the coralline red algae Amphiroa anceps

    Digital Repository Service at National Institute of Oceanography (India)

    Karthick, P.; Mohanraju, R.; Murthy, K.N.; Ramesh, Ch.; Mohandass, C.; Rajasabapathy, R.; Vellai, K.S.

    Bacterial isolates (6 nos) were obtained from the coralline red algae Amphiroa anceps Crude extract of these isolated were tested for antimicrobial activity against 20 different human pathogenic bacterial and fungal strains Among this crude extract...

  10. 21 CFR 886.4790 - Ophthalmic sponge.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ophthalmic sponge. 886.4790 Section 886.4790 Food... DEVICES OPHTHALMIC DEVICES Surgical Devices § 886.4790 Ophthalmic sponge. (a) Identification. An ophthalmic sponge is a device that is an absorbant sponge, pad, or spear made of folded gauze,...

  11. Coralline Algae from the Neoegne and Pleistocene Sequence of Mersa Alam, Red Sea, Egypt.

    OpenAIRE

    Khalifa, H; Boukhary, M. A.

    1982-01-01

    Ten speciecs of family Corallinaceae (Coralline Algae) are herein recorded and described for the first time from the stratigraphic sequence of Mersa Alam, Red Sea, Egypt. Of these, Amphiroa knolli, Jania johnsoni and Archaeolithothamnium alamensis are described as new. The studied sequence is subdivided according to its coralline algae and larger foraminiferal content into three biozones; which are from top to bottom: 3. Amphiroa knolli Zone, 2. Amphiroa prefragilissima Zone and 1. Borelis...

  12. REPRODUCTION OF THE ARTICULATED CORALLINE AMPHIROA EPHEDRAEA(1).

    Science.gov (United States)

    Johansen, H W

    1968-12-01

    Developmental events in the formation of reproductive structures in tetrasporangial, male, and female plants of Amphiroa ephedraea from South Africa were studied. An early step in the formation of a conceptacle is the elongation of a stratum of cortical cells, the cavity cells, to form a dome surmounted by an a cellular cap. Atrophy of the cavity cells to form a conceptacular cavity accompanies the subsequent development of reproductive structures. Tetrasporangial conceptacles differ from sexual conceptacles in that the reproductive cells develop in a peripheral ring and in the fact that the tissue lateral to these cells does not overgrow the fertile area. Finally, a comparison of some of the features of reproduction in A. ephedraea is made zuith. comparable features in other corallines.

  13. Mesenchymal stem cell ingrowth and differentiation on coralline hydroxyapatite scaffolds

    DEFF Research Database (Denmark)

    Mygind, Tina; Stiehler, Maik; Baatrup, Anette

    2007-01-01

    Culture of osteogenic cells on a porous scaffold could offer a new solution to bone grafting using autologous human mesenchymal stem cells (hMSC) from the patient. We compared coralline hydroxyapatite scaffolds with pore sizes of 200 and 500 microm for expansion and differentiation of hMSCs. We......MSC in a particular direction. We found that dynamic spinner flask cultivation of hMSC/scaffold constructs resulted in increased proliferation, differentiation and distribution of cells in scaffolds. Therefore, spinner flask cultivation is an easy-to-use inexpensive system for cultivating hMSCs on small...... cultivated the hMSC statically or in spinner flasks for 1, 7, 14 and 21 days and found that the 200-microm pore scaffolds exhibited a faster rate of osteogenic differentiation than did the 500-microm pore scaffolds as shown by an alkaline phosphatase activity assay and real-time reverse transcriptase...

  14. Overview of coralline red algal crusts and rhodolith beds (Corallinales, Rhodophyta) and their possible ecological importance in Greenland

    DEFF Research Database (Denmark)

    Jørgensbye, Helle; Halfar, Jochen

    2016-01-01

    Coralline red algae are a globally distributed and abundant group of shallow marine benthic calcifiers. They can form important ecosystems that provide a three-dimensional habitat to a large variety of marine organisms. While the study of coralline red algae has traditionally been focused on warm......-water habitats, numerous recent reports have now described widespread coralline red algal ecosystems from high-latitude regions, particularly in the Northern Hemisphere. In fact, it is becoming increasingly evident that coralline red algae are likely the dominant marine calcifying organisms on the seafloor...... of the Arctic and subarctic photic zone. This article gives a first overview of the distribution of coralline red algal crusts and rhodolith (free-living coralline red algal nodules) grounds in Greenland and the first report of rhodoliths in East Greenland. Museum data and recent sampling information have been...

  15. Developing a Forward Model of Encrusting Coralline Algae

    Science.gov (United States)

    Ng, J.; Williams, B.; Thompson, D. M.; Halfar, J.

    2014-12-01

    Climate proxy data has traditionally been interpreted through inverse models, which extract physical climate variables from proxy variables. This approach assumes stationarity of the proxy-climate relationship, typically reduces climate signal to a single variable, and requires extensive observational records. In contrast, forward models reverse the relationship, simulating proxy variables from physical climate variables for comparison to observed proxy variables. Since this approach accounts for multiple climate variables and avoids stationarity issues, forward models have been developed for several climate proxies, including tree ring width and oxygen stable isotopes (δ18O) of corals. Here we develop a basic forward model for the climate archive coralline alga Clathromorphum sp.This long-lived alga grows in mid-to-high latitude regions and forms a solid calcite skeleton with annual growth bands similar to those of trees and tropical corals. Sub-annually resolved δ18O in annual growth bands (δ18Ospec) provide a record of local environmental and climatic factors, notably sea surface temperature (SST) and sea water oxygen stable isotopes (δ18Osw). We model Clathromorphum δ18Ospec in the Aleutian islands from gridded SST and δ18Osw of the growing season from 1960 to 2004. The strongest climate signal is observed in July, likely due to suppressed growth in other months. Initial results suggest no influence of growth rate on the fractionation of oxygen isotopes and indicate that δ18Ospec anomalies are significantly correlated with summer SST anomalies. We run this forward model with observed SST and δ18Osw and compare the resulting simulated δ18Ospec with that measured in live-collected specimens. This foundational model may be adapted to other regions and modified to include other variables influencing coralline isotope records, such as light availability and ice coverage.

  16. Coralline algae as a globally significant pool of marine dimethylated sulfur

    Science.gov (United States)

    Burdett, Heidi L.; Hatton, Angela D.; Kamenos, Nicholas A.

    2015-10-01

    Marine algae are key sources of the biogenic sulfur compound dimethylsulphoniopropionate (DMSP), a vital component of the marine sulfur cycle. Autotrophic ecosystem engineers such as red coralline algae support highly diverse and biogeochemically active ecosystems and are known to be high DMSP producers, but their importance in the global marine sulfur cycle has not yet been appreciated. Using a global sampling approach, we show that red coralline algae are a globally significant pool of DMSP in the oceans, estimated to be ~110 × 1012 moles worldwide during the summer months. Latitude was a major driver of observed regional-scale variations, with peaks in polar and tropical climate regimes, reflecting the varied cellular functions for DMSP (e.g., as a cryoprotectant and antioxidant). A temperate coralline algal bed was investigated in more detail to also identify local-scale temporal variations. Here, water column DMSP was driven by water temperature, and to a lesser extent, cloud cover; two factors which are also vital in controlling coralline algal growth. This study demonstrates that coralline algae harbor a large pool of dimethylated sulfur, thereby playing a significant role in both the sulfur and carbon marine biogeochemical cycles. However, coralline algal habitats are severely threatened by projected climate change; a loss of this habitat may thus detrimentally impact oceanic sulfur and carbon biogeochemical cycling.

  17. The Upper Eocene crustose coralline algal pavement in the Colli Berici, north-eastern Italy

    Directory of Open Access Journals (Sweden)

    Davide Bassi

    2005-10-01

    Full Text Available A crustose coralline algal pavement, identified in Upper Eocene (Priabonian shallow water, middleramp carbonates in north-eastern Italy (Colli Berici, Southern Alps, represents a rare example of this facies.The crustose pavement consists of a coralline crust bindstone with a wackestone-packstone matrix, and is characterised by the dominance of crustose coralline thalli composed primarily of melobesioids (Lithothamnion and Mesophyllum and mastophoroids (Spongites, Lithoporella, Neogoniolithon. In places the coralline bindstone can be seen to develop from isolated encrusting-to-foliose thalli which bifurcate and join to form an open framework interbedded with matrix debris from crusts. Various forms of rhodoliths occur commonly within this facies. The largest discoidal rhodoliths (up to 12 cm of large diameter show an inner arrangement consisting of loosely packed laminar (encrusting-to-foliose coralline thalli with a high percentage of constructional voids (50-63%. Accessory components are represented by larger hyaline perforated foraminifera such as nummulitids and orthophragminids. This facies formed in a ramp palaeoenvironment characterised by relatively low hydrodynamic energy and low rates of sedimentation. Channelised structures present within the facies were formed by return currents which swept the middle ramp creating such distal structures. Further toward the distal middle-ramp the return currents decreased in energy and discharged nutrients allowing the mesotrophic crustose coralline algal pavement to develop.

  18. Retained surgical sponge: An enigma

    Directory of Open Access Journals (Sweden)

    Gurjit Singh

    2013-01-01

    Full Text Available Retained surgical sponge in the body following a surgery is called "gossypiboma". A 27-year-old female who had undergone lower segment cesarean section 4 months earlier was admitted with complaints of pain abdomen with a palpable mass in left iliac fossa. X-ray, ultrasonography, and CT scan findings were suggestive of retained surgical sponge. Surgical sponge was removed following laparotomy. Surgeons must be aware of the risk factors that lead to gossypiboma, and measures should be taken to prevent it. Besides increasing morbidity and possible mortality, it may result in libel suit for compensation.

  19. Phylomineralogy of the coralline red algae: correlation of skeletal mineralogy with molecular phylogeny.

    Science.gov (United States)

    Smith, A M; Sutherland, J E; Kregting, L; Farr, T J; Winter, D J

    2012-09-01

    The coralline algae in the orders Corallinales and Sporolithales (subclass Corallinophycidae), with their high degree of mineralogical variability, pose a challenge to projections regarding mineralogy and response to ocean acidification. Here we relate skeletal carbonate mineralogy to a well-established phylogenetic framework and draw inferences about the effects of future changes in sea-water chemistry on these calcified red algae. A collection of 191 coralline algal specimens from New Zealand, representing 13 genera and 28 species, included members of three families: Corallinaceae, Hapalidiaceae, and Sporolithaceae. While most skeletal specimens were entirely calcitic (range: 73-100 wt.% calcite, mean 97 wt.% calcite, std dev=5, n=172), a considerable number contained at least some aragonite. Mg in calcite ranged from 10.5 to 16.4 wt.% MgCO(3), with a mean of 13.1 wt.% MgCO(3) (std dev=1.1, n=172). The genera Mesophyllum and Lithophyllum were especially variable. Growth habit, too, was related to mineralogy: geniculate coralline algae do not generally contain any aragonite. Mg content varied among coralline families: the Corallinaceae had the highest Mg content, followed by the Sporolithaceae and the Hapalidiaceae. Despite the significant differences among families, variation and overlap prevent the use of carbonate mineralogy as a taxonomic character in the coralline algae. Latitude (as a proxy for water temperature) had only a slight relationship to Mg content in coralline algae, contrary to trends observed in other biomineralising taxa. Temperate magnesium calcites, like those produced by coralline algae, are particularly vulnerable to ocean acidification. Changes in biomineralisation or species distribution may occur over the next few decades, particularly to species producing high-Mg calcite, as pH and CO(2) dynamics change in coastal temperate oceans.

  20. Coralline algal structure is more sensitive to rate, rather than the magnitude, of ocean acidification.

    Science.gov (United States)

    Kamenos, Nicholas A; Burdett, Heidi L; Aloisio, Elena; Findlay, Helen S; Martin, Sophie; Longbone, Charlotte; Dunn, Jonathan; Widdicombe, Stephen; Calosi, Piero

    2013-12-01

    Marine pCO2 enrichment via ocean acidification (OA), upwelling and release from carbon capture and storage (CCS) facilities is projected to have devastating impacts on marine biomineralisers and the services they provide. However, empirical studies using stable endpoint pCO2 concentrations find species exhibit variable biological and geochemical responses rather than the expected negative patterns. In addition, the carbonate chemistry of many marine systems is now being observed to be more variable than previously thought. To underpin more robust projections of future OA impacts on marine biomineralisers and their role in ecosystem service provision, we investigate coralline algal responses to realistically variable scenarios of marine pCO2 enrichment. Coralline algae are important in ecosystem function; providing habitats and nursery areas, hosting high biodiversity, stabilizing reef structures and contributing to the carbon cycle. Red coralline marine algae were exposed for 80 days to one of three pH treatments: (i) current pH (control); (ii) low pH (7.7) representing OA change; and (iii) an abrupt drop to low pH (7.7) representing the higher rates of pH change observed at natural vent systems, in areas of upwelling and during CCS releases. We demonstrate that red coralline algae respond differently to the rate and the magnitude of pH change induced by pCO2 enrichment. At low pH, coralline algae survived by increasing their calcification rates. However, when the change to low pH occurred at a fast rate we detected, using Raman spectroscopy, weaknesses in the calcite skeleton, with evidence of dissolution and molecular positional disorder. This suggests that, while coralline algae will continue to calcify, they may be structurally weakened, putting at risk the ecosystem services they provide. Notwithstanding evolutionary adaptation, the ability of coralline algae to cope with OA may thus be determined primarily by the rate, rather than magnitude, at which pCO2

  1. Reviews and syntheses: Calculating the global contribution of coralline algae to total carbon burial

    Science.gov (United States)

    van der Heijden, L. H.; Kamenos, N. A.

    2015-11-01

    The ongoing increase in anthropogenic carbon dioxide (CO2) emissions is changing the global marine environment and is causing warming and acidification of the oceans. Reduction of CO2 to a sustainable level is required to avoid further marine change. Many studies investigate the potential of marine carbon sinks (e.g. seagrass) to mitigate anthropogenic emissions, however, information on storage by coralline algae and the beds they create is scant. Calcifying photosynthetic organisms, including coralline algae, can act as a CO2 sink via photosynthesis and CaCO3 dissolution and act as a CO2 source during respiration and CaCO3 production on short-term timescales. Long-term carbon storage potential might come from the accumulation of coralline algae deposits over geological timescales. Here, the carbon storage potential of coralline algae is assessed using meta-analysis of their global organic and inorganic carbon production and the processes involved in this metabolism. Net organic and inorganic production were estimated at 330 g C m-2 yr-1 and 900 g CaCO3 m-2 yr-1 respectively giving global organic/inorganic C production of 0.7/1.8 × 109 t C yr-1. Calcium carbonate production by free-living/crustose coralline algae (CCA) corresponded to a sediment accretion of 70/450 mm kyr-1. Using this potential carbon storage for coralline algae, the global production of free-living algae/CCA was 0.4/1.2 × 109 t C yr-1 suggesting a total potential carbon sink of 1.6 × 109 tonnes per year. Coralline algae therefore have production rates similar to mangroves, salt marshes and seagrasses representing an as yet unquantified but significant carbon store, however, further empirical investigations are needed to determine the dynamics and stability of that store.

  2. Gossypiboma—Retained Surgical Sponge

    Directory of Open Access Journals (Sweden)

    Hung-Shun Sun

    2007-11-01

    Full Text Available Intra-abdominal retained surgical sponge is an uncommon surgical error. Herein, we report a 92-year-old woman who was brought to the emergency room for acute urinary retention. She had a history of vaginal hysterectomy for uterine prolapse 18 years previously, performed at our hospital. Retained surgical sponge in the pelvic cavity was suspected by abdominal computed tomography. The surgical gauze was removed by laparotomy excision and the final diagnosis was gossypiboma.

  3. Coralline algal physiology is more adversely affected by elevated temperature than reduced pH.

    Science.gov (United States)

    Vásquez-Elizondo, Román Manuel; Enríquez, Susana

    2016-01-07

    In this study we analyzed the physiological responses of coralline algae to ocean acidification (OA) and global warming, by exposing algal thalli of three species with contrasting photobiology and growth-form to reduced pH and elevated temperature. The analysis aimed to discern between direct and combined effects, while elucidating the role of light and photosynthesis inhibition in this response. We demonstrate the high sensitivity of coralline algae to photodamage under elevated temperature and its severe consequences on thallus photosynthesis and calcification rates. Moderate levels of light-stress, however, were maintained under reduced pH, resulting in no impact on algal photosynthesis, although moderate adverse effects on calcification rates were still observed. Accordingly, our results support the conclusion that global warming is a stronger threat to algal performance than OA, in particular in highly illuminated habitats such as coral reefs. We provide in this study a quantitative physiological model for the estimation of the impact of thermal-stress on coralline carbonate production, useful to foresee the impact of global warming on coralline contribution to reef carbon budgets, reef cementation, coral recruitment and the maintenance of reef biodiversity. This model, however, cannot yet account for the moderate physiological impact of low pH on coralline calcification.

  4. Coralline algae (Rhodophyta) in a changing world: integrating ecological, physiological, and geochemical responses to global change.

    Science.gov (United States)

    McCoy, Sophie J; Kamenos, Nicholas A

    2015-02-01

    Coralline algae are globally distributed benthic primary producers that secrete calcium carbonate skeletons. In the context of ocean acidification, they have received much recent attention due to the potential vulnerability of their high-Mg calcite skeletons and their many important ecological roles. Herein, we summarize what is known about coralline algal ecology and physiology, providing context to understand their responses to global climate change. We review the impacts of these changes, including ocean acidification, rising temperatures, and pollution, on coralline algal growth and calcification. We also assess the ongoing use of coralline algae as marine climate proxies via calibration of skeletal morphology and geochemistry to environmental conditions. Finally, we indicate critical gaps in our understanding of coralline algal calcification and physiology and highlight key areas for future research. These include analytical areas that recently have become more accessible, such as resolving phylogenetic relationships at all taxonomic ranks, elucidating the genes regulating algal photosynthesis and calcification, and calibrating skeletal geochemical metrics, as well as research directions that are broadly applicable to global change ecology, such as the importance of community-scale and long-term experiments in stress response.

  5. CHIHARAEA AND YAMADAIA (CORALLINALES, RHODOPHYTA) REPRESENT REDUCED AND RECENTLY DERIVED ARTICULATED CORALLINE MORPHOLOGIES(1).

    Science.gov (United States)

    Martone, Patrick T; Lindstrom, Sandra C; Miller, Kathy Ann; Gabrielson, Paul W

    2012-08-01

    Phycologists have hypothesized that the diminutive fronds produced by species in the genera Chiharaea and Yamadaia, which are composed of comparatively few genicula and intergenicula, represent morphological intermediates in the evolution of articulated corallines from crustose ancestors. We test this "intermediate frond hypothesis" by comparing rbcL sequences from the generitype species Chiharaea bodegensis and Yamadaia melobesioides to sequences from other coralline genera. We demonstrate that Chiharaea includes two other NE Pacific species, Arthrocardia silvae and Yamadaia americana. Chiharaea species are characterized morphologically by inflated intergenicula and axial conceptacles with apical or acentric pores. Although relationships among the three species are unresolved, Chiharaea bodegensis, C. americana comb. nov., and C. silvae comb. nov. are distinguished from one another by DNA sequences, morphology, habitat, and biogeography. Chiharaea occurs together with Alatocladia, Bossiella, Calliarthron, and Serraticardia macmillanii in a strongly supported clade of nearly endemic north Pacific articulated coralline genera and species that have evolved relatively recently compared to other articulated corallines. In contrast, NW Pacific Yamadaia melobesioides belongs in a clade with Corallina officinalis, the generitype species of Corallina, and therefore we reduce Yamadia to a synonym of Corallina and propose Corallina melobesioides comb. nov. We reject the 'intermediate frond hypothesis' and conclude that Chiharaea and Yamadaia are recently derived taxa that evolved from articulated coralline ancestors and represent a reduction in the number of genicula and intergenicula.

  6. INTERACTIONS BETWEEN OCEAN ACIDIFICATION AND WARMING ON THE MORTALITY AND DISSOLUTION OF CORALLINE ALGAE(1).

    Science.gov (United States)

    Diaz-Pulido, Guillermo; Anthony, Kenneth R N; Kline, David I; Dove, Sophie; Hoegh-Guldberg, Ove

    2012-02-01

    Coralline algae are among the most sensitive calcifying organisms to ocean acidification as a result of increased atmospheric carbon dioxide (pCO2 ). Little is known, however, about the combined impacts of increased pCO2 , ocean acidification, and sea surface temperature on tissue mortality and skeletal dissolution of coralline algae. To address this issue, we conducted factorial manipulative experiments of elevated CO2 and temperature and examined the consequences on tissue survival and skeletal dissolution of the crustose coralline alga (CCA) Porolithon (=Hydrolithon) onkodes (Heydr.) Foslie (Corallinaceae, Rhodophyta) on the southern Great Barrier Reef (GBR), Australia. We observed that warming amplified the negative effects of high pCO2 on the health of the algae: rates of advanced partial mortality of CCA increased from ocean acidification under warm conditions, suggesting that previous experiments focused on ocean acidification alone have underestimated the impact of future conditions on coralline algae. Given the central role that coralline algae play within coral reefs, these conclusions have serious ramifications for the integrity of coral-reef ecosystems.

  7. Mesenchymal stem cell ingrowth and differentiation on coralline hydroxyapatite scaffolds.

    Science.gov (United States)

    Mygind, Tina; Stiehler, Maik; Baatrup, Anette; Li, Haisheng; Zou, Xuenong; Flyvbjerg, Allan; Kassem, Moustapha; Bünger, Cody

    2007-02-01

    Culture of osteogenic cells on a porous scaffold could offer a new solution to bone grafting using autologous human mesenchymal stem cells (hMSC) from the patient. We compared coralline hydroxyapatite scaffolds with pore sizes of 200 and 500 microm for expansion and differentiation of hMSCs. We cultivated the hMSC statically or in spinner flasks for 1, 7, 14 and 21 days and found that the 200-microm pore scaffolds exhibited a faster rate of osteogenic differentiation than did the 500-microm pore scaffolds as shown by an alkaline phosphatase activity assay and real-time reverse transcriptase polymerase chain reaction for 10 osteogenic markers. The 500-microm scaffolds had increased proliferation rates and accommodated a higher number of cells (shown by DNA content, scanning electron microscopy and fluorescence microscopy). Thus the porosity of a 3D microporous biomaterial may be used to steer hMSC in a particular direction. We found that dynamic spinner flask cultivation of hMSC/scaffold constructs resulted in increased proliferation, differentiation and distribution of cells in scaffolds. Therefore, spinner flask cultivation is an easy-to-use inexpensive system for cultivating hMSCs on small to intermediate size 3D scaffolds.

  8. Unveiling privacy: advances in microtomography of coralline algae.

    Science.gov (United States)

    Torrano-Silva, Beatriz N; Ferreira, Simone Gomes; Oliveira, Mariana C

    2015-05-01

    Marine calcareous algae are widespread in oceans of the world and known for their calcified cell walls and the generation of rhodolith beds that turn sandy bottoms into a complex structured ecosystem with high biodiversity. Rhodoliths are unattached, branching, crustose benthic marine red algae; they provide habitat for a rich variety of marine invertebrates. The resultant excavation is relevant to sediment production, while is common that the fragments or the whole specimens result in vast fossil deposits formed by rich material that can be "mined" for biological and geological data. Accordingly, microtomography (μCT) may enable a detailed investigation of biological and geological signatures preserved within the rhodolith structure in a non-destructive approach that is especially relevant when analyzing herbaria collections or rare samples. Therefore, we prepared coralline algae samples and submitted them to a range of capabilities provided by the SkyScan1176 micro-CT scanner, including reconstruction, virtual slicing, and pinpointing biological and geological signatures. To this end, polychaetes and mollusk shells, or their excavations, coral nucleation, sediment deposits and conceptacles were all observed. Although a similar technique has been applied previously to samples of living rhodoliths in Brazil, we show, for the first time, its successful application to fossil rhodoliths. We also provide a detailed working protocol and discuss the advantages and limitations of the microtomography within the rhodoliths.

  9. Chemical mediation of coral larval settlement by crustose coralline algae.

    Science.gov (United States)

    Tebben, J; Motti, C A; Siboni, Nahshon; Tapiolas, D M; Negri, A P; Schupp, P J; Kitamura, Makoto; Hatta, Masayuki; Steinberg, P D; Harder, T

    2015-06-04

    The majority of marine invertebrates produce dispersive larvae which, in order to complete their life cycles, must attach and metamorphose into benthic forms. This process, collectively referred to as settlement, is often guided by habitat-specific cues. While the sources of such cues are well known, the links between their biological activity, chemical identity, presence and quantification in situ are largely missing. Previous work on coral larval settlement in vitro has shown widespread induction by crustose coralline algae (CCA) and in particular their associated bacteria. However, we found that bacterial biofilms on CCA did not initiate ecologically realistic settlement responses in larvae of 11 hard coral species from Australia, Guam, Singapore and Japan. We instead found that algal chemical cues induce identical behavioral responses of larvae as per live CCA. We identified two classes of CCA cell wall-associated compounds--glycoglycerolipids and polysaccharides--as the main constituents of settlement inducing fractions. These algae-derived fractions induce settlement and metamorphosis at equivalent concentrations as present in CCA, both in small scale laboratory assays and under flow-through conditions, suggesting their ability to act in an ecologically relevant fashion to steer larval settlement of corals. Both compound classes were readily detected in natural samples.

  10. Multi-centennial reconstruction of Aleutian climate from coralline algae

    Science.gov (United States)

    Williams, B.; Halfar, J.; DeLong, K. L.; Smith, E.; Steneck, R.; Lebednik, P.; Jacob, D. E.; Fietzke, J.; Moore, K.

    2015-12-01

    Long-lived encrusting coralline algae yield robust reconstructions of mid-to-high latitude environmental change from their annually-banded high-magnesium calcite skeleton. The magnesium to calcium ratio measured in their skeleton reflects ambient seawater temperature at the time of formation. Thus, reconstructions from these algae are important to understanding the role of natural modes of climate variability versus that of external carbon dioxide in controlling climate in data sparse regions such as the northern North Pacific Ocean/southern Bering Sea. Here, we reconstruct regional seawater temperature from the skeletons of nine algae specimens from two islands in the Aleutian Archipelago. We find that seawater temperature increased ~1.4°C degrees over the past 350 years. The detrended seawater reconstruction correlates with storminess because storms moving across the North Pacific Ocean bring warmer water to the archipelago. Comparison of the algal seawater temperature reconstruction with instrumental and terrestrial proxy reconstructions reveals that atmospheric teleconnections to North America via the North Pacific storm tracks are not robust before the 20th century. This indicates that North Pacific climate processes inferred from the instrumental records should be cautiously extrapolated when describing earlier non-analogous climates or future climate change.

  11. Coralline algae are global palaeothermometers with bi-weekly resolution

    Science.gov (United States)

    Kamenos, N. A.; Cusack, M.; Moore, P. G.

    2008-02-01

    High resolution palaeoclimate data are required for the Holocene to resolve differences recorded by current proxies. The pole to pole distribution of rhodoliths (coralline algae) with their annual and sub-annual calcite bands make these attractive candidates for such a role. These bands contain climate information in the form of elemental traces. In situ temperature (IST) was recorded at two rhodolith beds for 1.5 years. The concentrations of MgCO 3 and SrCO 3 (mol %) deposited in Lithothamion glaciale and Phymatolithon calcareum over this 18- month period were determined using electron and ion microprobes. Highly significant linear relationships exist between Mg, Sr and IST as well as sea surface temperature. Calibration between Mg concentration and IST was used to obtain a 2-year temperature profile from a subfossil rhodolith thallus indicating half the seasonal peak-to-peak temperature amplitude earlier during the Holocene than the present day. Both slow-growing species (rhodoliths make them unique globally distributed palaeothermometers which may help refine regional climate histories during the Holocene.

  12. Stiffness compatibility of coralline hydroxyapatite bone substitute under dynamic loading

    Institute of Scientific and Technical Information of China (English)

    REN ChaoFeng; HOU ZhenDe; ZHAO Wei

    2009-01-01

    When hydroxyapatite bone substitutes are implanted in human bodies, bone tissues will grow into their porous structure, which will reinforce their strength and stiffness. The concept of mechanical com-patibility of bone substitutes implies that their mechanical properties are similar to the bone tissues around, as if they were part of the bone. The mechanical compatibility of bone substitutes includes both static and dynamic behavior, due to the mechanical properties of bone depending on the strain rate. In this study, split Hopkinson pressure bar technique (SHPB) was employed to determine the dy-namic mechanical properties of coralline hydroxyapatite, bones with and bones without organic com-ponents, and their dynamic stress-strain curves of the three materials were obtained. The mechanical effects of collagens in bone were assessed, by comparing the difference between the Young's moduli of the three materials. As the implanted bone substitute becomes a part of bone, it can be regarded as an inclusion composite. The effective modulus of the composite was also evaluated in order to estimate its mechanical compatibility on stiffness. The evaluated result shows that the suitable porosity of HA is0.8, which is in favor of both static and dynamic stiffness compatibility.

  13. Stiffness compatibility of coralline hydroxyapatite bone substitute under dynamic loading

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    When hydroxyapatite bone substitutes are implanted in human bodies,bone tissues will grow into their porous structure,which will reinforce their strength and stiffness.The concept of mechanical com-patibility of bone substitutes implies that their mechanical properties are similar to the bone tissues around,as if they were part of the bone.The mechanical compatibility of bone substitutes includes both static and dynamic behavior,due to the mechanical properties of bone depending on the strain rate.In this study,split Hopkinson pressure bar technique(SHPB) was employed to determine the dy-namic mechanical properties of coralline hydroxyapatite,bones with and bones without organic com-ponents,and their dynamic stress-strain curves of the three materials were obtained.The mechanical effects of collagens in bone were assessed,by comparing the difference between the Young’s moduli of the three materials.As the implanted bone substitute becomes a part of bone,it can be regarded as an inclusion composite.The effective modulus of the composite was also evaluated in order to estimate its mechanical compatibility on stiffness.The evaluated result shows that the suitable porosity of HA is 0.8,which is in favor of both static and dynamic stiffness compatibility.

  14. Crouching shells, hidden sponges: Unusual Late Ordovician cavities containing sponges

    Science.gov (United States)

    Park, Jino; Lee, Jeong-Hyun; Hong, Jongsun; Choh, Suk-Joo; Lee, Dong-Chan; Lee, Dong-Jin

    2017-01-01

    Marine cavities harbouring cryptic organisms have been ubiquitous throughout the Phanerozoic. However, our knowledge of early cryptic communities is as yet insufficient, and how metazoans began to utilize such habitats remains unknown. In this study, we document demosponge remains within intraskeletal cavities embedded in the micritic succession of a shallow carbonate platform in the Upper Ordovician (Katian) Xiazhen Formation of South China. Molluscs (gastropods, bivalves, and nautiloids) and corals (the solitary rugosan Tryplasma and colonial agetolitids) within the succession commonly contain patches of "spicular" demosponge remains (11%; n = 45/415), mainly occupying intraskeletal spaces with areas of 1-30 mm2 in thin-section. Sponge occurrence varies according to sedimentary facies: within lime mudstone facies, sponges commonly occur both inside and outside intraskeletal cavities, suggesting that sponges would have inhabited and become preserved within any available space in this environment. In contrast, when other sessile organisms co-occur in wackestone to packstone facies, there are fewer sponge occurrences both inside and outside cavities, possibly due to competition in open habitats and/or their poorer preservation in such environments. Overall, this result suggests that sponges would have exploited cryptic habitats by normal expansion of the open-surface biota. In addition, compared with coeval reef and hardground crypts, the Xiazhen intraskeletal cryptic biota is monotonous in composition, suggesting "decoupled" occupation of cryptic habitats in different environments.

  15. Martian 'Kitchen Sponge'

    Science.gov (United States)

    2000-01-01

    This picture is illuminated by sunlight from the upper left. It shows a tiny 1 kilometer by 1 kilometer (0.62 x 0.62 mile) area of the martian north polar residual ice cap as it appears in summertime.The surface looks somewhat like that of a kitchen sponge--it is flat on top and has many closely-spaced pits of no more than 2 meters (5.5 ft) depth. The upper, flat surface in this image has a medium-gray tone, while the pit interiors are darker gray. Each pit is generally 10 to 20 meters (33-66 feet) across. The pits probably form as water ice sublimes--going directly from solid to vapor--during the martian northern summer seasons. The pits probably develop over thousands of years. This texture is very different from what is seen in the south polar cap, where considerably larger and more circular depressions are found to resemble slices of swiss cheese rather than a kitchen sponge.This picture was taken by the Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) during northern summer on March 8, 1999. It was one of the very last 'calibration' images taken before the start of the Mapping Phase of the MGS mission, and its goal was to determine whether the MOC was properly focused. The crisp appearance of the edges of the pits confirmed that the instrument was focused and ready for its 1-Mars Year mapping mission. The scene is located near 86.9oN, 207.5oW, and has a resolution of about 1.4 meters (4 ft, 7 in) per pixel.Malin Space Science Systems and the California Institute of Technology built the MOC using spare hardware from the Mars Observer mission. MSSS operates the camera from its facilities in San Diego, CA. The Jet Propulsion Laboratory's Mars Surveyor Operations Project operates the Mars Global Surveyor spacecraft with its industrial partner, Lockheed Martin Astronautics, from facilities in Pasadena, CA and Denver, CO.

  16. Effect of fluorogesterone acetate impregnated intravaginal sponges ...

    African Journals Online (AJOL)

    Effect of fluorogesterone acetate impregnated intravaginal sponges 1 on vaginal bacterial flora of ewes. ... The bacterial flora of the vagina of ten ewes was determined at sponge removal and two days later before insertion of ... Article Metrics.

  17. Medullary sponge kidney.

    Science.gov (United States)

    Gambaro, Giovanni; Danza, Francesco M; Fabris, Antonia

    2013-07-01

    After it was first described in 1939, medullary sponge kidney (MSK) received relatively little attention. This was because it was believed to have a low prevalence and because it was considered a benign condition. Studies in recent years have been changing these convictions however, hence the present review. Insight has been obtained on the genetic basis of this disease, supporting the hypothesis that MSK is due to a disruption at the 'ureteric bud-metanephric mesenchyme' interface. This explains why so many tubular defects coexist in this disease, and particularly a distal tubular acidification defect of which the highly prevalent metabolic bone disease is one very important consequence. In addition to the typical clinical phenotype of recurrent stone disease, other clinical profiles have now been recognized, that is, an indolent, almost asymptomatic MSK, and a rare form characterized by intractable, excruciating pain. Findings suggest the need for a more comprehensive clinical characterization of MSK patients. The genetic grounds for the condition warrant further investigation, and reliable methods are needed to diagnose MSK.

  18. Novel actinobacteria from marine sponges.

    Science.gov (United States)

    Montalvo, Naomi F; Mohamed, Naglaa M; Enticknap, Julie J; Hill, Russell T

    2005-01-01

    Actinobacteria exclusively within the sub-class Acidimicrobidae were shown by 16S rDNA community analysis to be major components of the bacterial community associated with two sponge species in the genus Xestospongia. Four groups of Actinobacteria were identified in Xestospongia spp., with three of these four groups being found in both Xestospongia muta from Key Largo, Florida and Xestospongia testudinaria from Manado, Indonesia. This suggests that these groups are true symbionts in these sponges and may play a common role in both the Pacific and Atlantic sponge species. The fourth group was found only in X. testudinaria and was a novel assemblage distantly related to any previously sequenced actinobacterial clones. The only actinobacteria that were obtained in initial culturing attempts were Gordonia, Micrococcus and Brachybacterium spp., none of which were represented in the clone libraries. The closest cultured actinobacteria to all the Acidimicrobidae clones from Xestospongia spp. are 'Microthrix parvicella' and Acidimicrobium spp. Xestospongia spp. can now be targeted as source material from which to culture novel Acidimicrobidae to investigate their potential as producers of bioactive compounds. Isolation of sponge-associated Acidimicrobidae will also make it possible to elucidate their role as sponge symbionts.

  19. DEMONSTRATION BULLETIN: FORAGER™ SPONGE TECHNOLOGY - DYNAPHORE, INC.

    Science.gov (United States)

    The Forager™ Sponge is an open-celled cellulose sponge incorporating an amine-containing chelating polymer that has selective affinity for dissolved heavy metals in both cationic and anionic states. The Forager™ Sponge technology can be utilized to remove and concentrate heavy me...

  20. Coralline algae elevate pH at the site of calcification under ocean acidification.

    Science.gov (United States)

    Cornwall, Christopher E; Comeau, Steeve; McCulloch, Malcolm T

    2017-10-01

    Coralline algae provide important ecosystem services but are susceptible to the impacts of ocean acidification. However, the mechanisms are uncertain, and the magnitude is species specific. Here, we assess whether species-specific responses to ocean acidification of coralline algae are related to differences in pH at the site of calcification within the calcifying fluid/medium (pHcf ) using δ(11) B as a proxy. Declines in δ(11) B for all three species are consistent with shifts in δ(11) B expected if B(OH)4(-) was incorporated during precipitation. In particular, the δ(11) B ratio in Amphiroa anceps was too low to allow for reasonable pHcf values if B(OH)3 rather than B(OH)4(-) was directly incorporated from the calcifying fluid. This points towards δ(11) B being a reliable proxy for pHcf for coralline algal calcite and that if B(OH)3 is present in detectable proportions, it can be attributed to secondary postincorporation transformation of B(OH)4(-) . We thus show that pHcf is elevated during calcification and that the extent is species specific. The net calcification of two species of coralline algae (Sporolithon durum, and Amphiroa anceps) declined under elevated CO2 , as did their pHcf . Neogoniolithon sp. had the highest pHcf , and most constant calcification rates, with the decrease in pHcf being ¼ that of seawater pH in the treatments, demonstrating a control of coralline algae on carbonate chemistry at their site of calcification. The discovery that coralline algae upregulate pHcf under ocean acidification is physiologically important and should be included in future models involving calcification. © 2017 John Wiley & Sons Ltd.

  1. Changes in Species Interactions Among Coralline Algae Suggest Ecological Response to Ocean Acidification

    Science.gov (United States)

    McCoy, S. J.; Pfister, C. A.

    2011-12-01

    Our changing climate has entrained a host of known and unknown changes to the ocean environment. Among these, coastal water chemistry is changing at a greater rate than ever before, and will drive coastal pH lower than has been experienced by any modern organism. Although much assessment of ocean acidification is focused on single-species responses, ocean acidification is likely to change species interactions. It is therefore important to assess the potential for biological response on both the species and community levels to such changes, particularly where coastal records document rapid pH decline. We have examined the ecological response of a guild of crustose coralline algae from the northeastern Pacific through field studies at Tatoosh Island, Washington over the last 30 years. Documented competitive networks among crustose coralline algae and the important role that their grazers play in mediating competitive interactions are based on different growth strategies of coralline algae. Because changes in ocean carbon chemistry will affect calcium carbonate skeletal production in both coralline algae and their grazers, future species membership and diversity in the coastal community will be a function of changing interaction strength. Thus, changes in observed species interaction strengths among coralline species and between corallines and their grazers are used as indicators of change in ecosystem function. Experiments replicating those previously done by R.T Paine at Tatoosh Island, Washington (1981-1999) indicate marked changes in frequency and intensity of interactions within this competitive network over the last 30 years. These results are discussed within the context of ocean acidification and seawater chemistry trends from Tatoosh Island, Washington.

  2. Effects of Aging Time and Sintering Temperatures on Thermal, Structural and Morphological Properties of Coralline Hydroxyapatite

    Directory of Open Access Journals (Sweden)

    MANINDER SINGH MEHTA

    2016-02-01

    Full Text Available Biphasic Calcium Phosphate bioceramics belong to a group of bone substitute biomaterials comprised of an intimate mixture of Hydroxyapatite (HAP and β-Tricalcium Phosphates. In the present work, Coralline Hydroxyapatite was synthesized using wet precipitation method. Powder particles were aged for 24 and 48 hours at 5. X-Ray Diffraction, Fourier Transform Infrared and Thermogravimetric spectroscopic techniques were used. Biphasic Calcium Phosphate was identified as the chief structural constitution of the synthetic powders. Weight fraction of Hydroxyapatite increased with the rise of sintering temperature. Aging time of 24 hours yielded maximum amount of hydroxyapatite, thus confirming optimum aging time for the synthesis of Coralline Hydroxyapatite.

  3. Bacteria associated with an encrusting sponge (Terpios hoshinota) and the corals partially covered by the sponge.

    Science.gov (United States)

    Tang, Sen-Lin; Hong, Mei-Jhu; Liao, Ming-Hui; Jane, Wann-Neng; Chiang, Pei-Wen; Chen, Chung-Bin; Chen, Chaolun A

    2011-05-01

    Terpios hoshinota, a dark encrusting sponge, is known to be a competitor for space in coral reef environments, and facilitates the death of corals. Although numerous cyanobacteria have been detected in the sponge, little is known of the sponge-associated bacterial community. This study examined the sponge-associated bacterial community and the difference between the bacterial communities in the sponge and the coral partially covered by the sponge by analysis of 16S rRNA gene sequences of samples isolated from the sponge covering the corals Favia complanata, Isopora palifera, Millepora sp., Montipora efflorescens and Porites lutea. The sponge-associated bacterial community was mainly (61-98%) composed of cyanobacteria, with approximately 15% of these alphaproteobacteria and gammaproteobacteria, although the proportions varied in different sponge samples. The dominant cyanobacteria group was an isolated group closely related to Prochloron sp. The comparison of the bacterial communities isolated from sponge-free and the sponge-covered P. lutea showed that covering by the sponge caused changes in the coral-associated bacterial communities, with the presence of bacteria similar to those detected in black-band disease, suggesting the sponge might benefit from the presence of bacteria associated with unhealthy coral, particularly in the parts of the coral closest to the margin of the sponge.

  4. Genomic insights into the marine sponge microbiome.

    Science.gov (United States)

    Hentschel, Ute; Piel, Jörn; Degnan, Sandie M; Taylor, Michael W

    2012-09-01

    Marine sponges (phylum Porifera) often contain dense and diverse microbial communities, which can constitute up to 35% of the sponge biomass. The genome of one sponge, Amphimedon queenslandica, was recently sequenced, and this has provided new insights into the origins of animal evolution. Complementary efforts to sequence the genomes of uncultivated sponge symbionts have yielded the first glimpse of how these intimate partnerships are formed. The remarkable microbial and chemical diversity of the sponge-microorganism association, coupled with its postulated antiquity, makes sponges important model systems for the study of metazoan host-microorganism interactions, and their evolution, as well as for enabling access to biotechnologically important symbiont-derived natural products. In this Review, we discuss our current understanding of the interactions between marine sponges and their microbial symbiotic consortia, and highlight recent insights into these relationships from genomic studies.

  5. Articulated coralline algae of the genus Amphiroa are highly effective natural inducers of settlement in the tropical abalone Haliotis asinina.

    Science.gov (United States)

    Williams, Elizabeth A; Craigie, Alina; Yeates, Alice; Degnan, Sandie M

    2008-08-01

    The initiation of metamorphosis in marine invertebrates is strongly linked to the environment. Planktonic larvae typically are induced to settle and metamorphose by external cues such as coralline algae (Corallinaceae, Rhodophyta). Although coralline algae are globally abundant, invertebrate larvae of many taxa settle in response to a very limited suite of species. This specificity impacts population structure, as only locations with the appropriate coralline species can attract new recruits. Abalone (Gastropoda, Haliotidae) are among those taxa in which closely related species are known to respond to different coralline algae. Here we identify highly inductive natural cues of the tropical abalone Haliotis asinina. In contrast to reports for other abalone, the greatest proportion of H. asinina larvae are induced to settle and metamorphose (92.8% to 100% metamorphosis by 48 h postinduction) by articulated corallines of the genus Amphiroa. Comparison with field distribution data for different corallines suggests larvae are likely to be settling on the seaward side of the reef crest. We then compare the response of six different H. asinina larval families to five different coralline species to demonstrate that induction by the best inductive cue (Amphiroa spp.) effectively extinguishes substantial intraspecific variation in the timing of settlement.

  6. Sponge Hybridomas: Applications and Implications

    NARCIS (Netherlands)

    Pomponi, S.A.; Jevitt, A.; Patel, J.; Diaz, M.C.

    2013-01-01

    Many sponge-derived natural products with applications to human health have been discovered over the past three decades. In vitro production has been proposed as one biological alternative to ensure adequate supply of marine natural products for preclinical and clinical development of drugs. Althoug

  7. First discovery of dolomite and magnesite in living coralline algae and its geobiological implications

    Directory of Open Access Journals (Sweden)

    M. C. Nash

    2011-11-01

    Full Text Available Dolomite is a magnesium-rich carbonate mineral abundant in fossil carbonate reef platforms but surprisingly rare in modern sedimentary environments, a conundrum known as the "Dolomite Problem". Marine sedimentary dolomite has been interpreted to form by an unconfirmed, post-depositional diagenetic process, despite minimal experimental success at replicating this. Here we show that dolomite, accompanied by magnesite, forms within living crustose coralline alga, Hydrolithon onkodes, a prolific global tropical reef species. Chemical micro-analysis of the coralline skeleton reveals that not only are the cell walls calcitised, but that cell spaces are typically filled with magnesite, rimmed by dolomite, or both. Mineralogy was confirmed by X-ray Diffraction. Thus there are at least three mineral phases present (magnesium calcite, dolomite and magnesite rather than one or two (magnesium calcite and brucite as previously thought. Our results are consistent with dolomite occurrences in coralline algae rich environments in fossil reefs of the last 60 million years. We reveal that the standard method of removing organic material prior to Xray Diffraction analysis can result in a decrease in the most obvious dolomite and magnesite diffraction patterns and this may explain why the abundant protodolomite and magnesite discovered in this study has not previously been recognized. This discovery of dolomite in living coralline algae extends the range of palaeo-environments for which biologically initiated dolomite can be considered a possible source of primary dolomite.

  8. Response of High Latitude Coralline Algae to pCO2 and Thermal Stress

    Science.gov (United States)

    Garlick-Ott, K.; Williams, B.; Chan, P. T. W.; Westfield, I. T.; Rasher, D.; Ries, J. B.; Adey, W.; Halfar, J.

    2016-12-01

    The impacts of recent and future anthropogenic increases in atmospheric pCO2 causing ocean acidification and temperature on high-latitude oceans, and the marine organisms that inhabit them, are varied and poorly understood. The ecologically important crustose coralline alga Clathromorphum compactum may be particularly vulnerable to ocean acidification due to the relatively high solubility of its high Mg-calcite skeleton . This species of coralline algae is abundant throughout coastal mid-to-high latitude areas of the northern hemisphere, and calcifies annually-banded skeletons with longevities of up to 650 years. Here we used micro-computed tomography (micro-CT) to evaluate the impact of decreasing seawater pH and increasing temperature on skeletal density of algal specimens cultured in a fully crossed pCO2 (280, 400, 700, 2800 µatm) and temperature (6.5, 8.7, 12.4 °C) laboratory experiment. To examine the natural variability in coralline algal skeletal density, additional long-lived wild C. compactum specimens were collected along a latitudinal transect extending from the Gulf of Maine to the Canadian Arctic Archipelago. Density time series generated from the wild specimens spans the past several decades to century, and were used to evaluate other environmental parameters that may influence the skeletal density of coralline algae. This research will evaluate the resiliency of this alga to future environmental change.

  9. The first cyanobacterial infection of crustose coralline algae discovered on the reefs of Pohnpei, Micronesia

    Science.gov (United States)

    Aeby, Greta S.; Work, Thierry M.; Hughen, Konrad A.

    2014-01-01

    Crustose coralline algae (CCA) can cover substantial areas on living reef benthos (Adey et al. 1982, Keats et al. 1997), are important to reef integrity by acting to cement reefs together (Littler and Littler 1984), and serve as recruitment sites for coral larvae (Lasker and Kim 1996, Harrington et al. 2004, Price 2010).

  10. First discovery of dolomite and magnesite in living coralline algae and its geobiological implications

    Science.gov (United States)

    Nash, M. C.; Troitzsch, U.; Opdyke, B. N.; Trafford, J. M.; Russell, B. D.; Kline, D. I.

    2011-11-01

    Dolomite is a magnesium-rich carbonate mineral abundant in fossil carbonate reef platforms but surprisingly rare in modern sedimentary environments, a conundrum known as the "Dolomite Problem". Marine sedimentary dolomite has been interpreted to form by an unconfirmed, post-depositional diagenetic process, despite minimal experimental success at replicating this. Here we show that dolomite, accompanied by magnesite, forms within living crustose coralline alga, Hydrolithon onkodes, a prolific global tropical reef species. Chemical micro-analysis of the coralline skeleton reveals that not only are the cell walls calcitised, but that cell spaces are typically filled with magnesite, rimmed by dolomite, or both. Mineralogy was confirmed by X-ray Diffraction. Thus there are at least three mineral phases present (magnesium calcite, dolomite and magnesite) rather than one or two (magnesium calcite and brucite) as previously thought. Our results are consistent with dolomite occurrences in coralline algae rich environments in fossil reefs of the last 60 million years. We reveal that the standard method of removing organic material prior to Xray Diffraction analysis can result in a decrease in the most obvious dolomite and magnesite diffraction patterns and this may explain why the abundant protodolomite and magnesite discovered in this study has not previously been recognized. This discovery of dolomite in living coralline algae extends the range of palaeo-environments for which biologically initiated dolomite can be considered a possible source of primary dolomite.

  11. Coralline algal structure is more sensitive to rate, rather than the magnitude, of ocean acidification

    Science.gov (United States)

    Kamenos, Nicholas A; Burdett, Heidi L; Aloisio, Elena; Findlay, Helen S; Martin, Sophie; Longbone, Charlotte; Dunn, Jonathan; Widdicombe, Stephen; Calosi, Piero

    2013-01-01

    Marine pCO2 enrichment via ocean acidification (OA), upwelling and release from carbon capture and storage (CCS) facilities is projected to have devastating impacts on marine biomineralisers and the services they provide. However, empirical studies using stable endpoint pCO2 concentrations find species exhibit variable biological and geochemical responses rather than the expected negative patterns. In addition, the carbonate chemistry of many marine systems is now being observed to be more variable than previously thought. To underpin more robust projections of future OA impacts on marine biomineralisers and their role in ecosystem service provision, we investigate coralline algal responses to realistically variable scenarios of marine pCO2 enrichment. Coralline algae are important in ecosystem function; providing habitats and nursery areas, hosting high biodiversity, stabilizing reef structures and contributing to the carbon cycle. Red coralline marine algae were exposed for 80 days to one of three pH treatments: (i) current pH (control); (ii) low pH (7.7) representing OA change; and (iii) an abrupt drop to low pH (7.7) representing the higher rates of pH change observed at natural vent systems, in areas of upwelling and during CCS releases. We demonstrate that red coralline algae respond differently to the rate and the magnitude of pH change induced by pCO2 enrichment. At low pH, coralline algae survived by increasing their calcification rates. However, when the change to low pH occurred at a fast rate we detected, using Raman spectroscopy, weaknesses in the calcite skeleton, with evidence of dissolution and molecular positional disorder. This suggests that, while coralline algae will continue to calcify, they may be structurally weakened, putting at risk the ecosystem services they provide. Notwithstanding evolutionary adaptation, the ability of coralline algae to cope with OA may thus be determined primarily by the rate, rather than magnitude, at which pCO2

  12. Global diversity of sponges (Porifera.

    Directory of Open Access Journals (Sweden)

    Rob W M Van Soest

    Full Text Available With the completion of a single unified classification, the Systema Porifera (SP and subsequent development of an online species database, the World Porifera Database (WPD, we are now equipped to provide a first comprehensive picture of the global biodiversity of the Porifera. An introductory overview of the four classes of the Porifera is followed by a description of the structure of our main source of data for this paper, the WPD. From this we extracted numbers of all 'known' sponges to date: the number of valid Recent sponges is established at 8,553, with the vast majority, 83%, belonging to the class Demospongiae. We also mapped for the first time the species richness of a comprehensive set of marine ecoregions of the world, data also extracted from the WPD. Perhaps not surprisingly, these distributions appear to show a strong bias towards collection and taxonomy efforts. Only when species richness is accumulated into large marine realms does a pattern emerge that is also recognized in many other marine animal groups: high numbers in tropical regions, lesser numbers in the colder parts of the world oceans. Preliminary similarity analysis of a matrix of species and marine ecoregions extracted from the WPD failed to yield a consistent hierarchical pattern of ecoregions into marine provinces. Global sponge diversity information is mostly generated in regional projects and resources: results obtained demonstrate that regional approaches to analytical biogeography are at present more likely to achieve insights into the biogeographic history of sponges than a global perspective, which appears currently too ambitious. We also review information on invasive sponges that might well have some influence on distribution patterns of the future.

  13. Global diversity of sponges (Porifera).

    Science.gov (United States)

    Van Soest, Rob W M; Boury-Esnault, Nicole; Vacelet, Jean; Dohrmann, Martin; Erpenbeck, Dirk; De Voogd, Nicole J; Santodomingo, Nadiezhda; Vanhoorne, Bart; Kelly, Michelle; Hooper, John N A

    2012-01-01

    With the completion of a single unified classification, the Systema Porifera (SP) and subsequent development of an online species database, the World Porifera Database (WPD), we are now equipped to provide a first comprehensive picture of the global biodiversity of the Porifera. An introductory overview of the four classes of the Porifera is followed by a description of the structure of our main source of data for this paper, the WPD. From this we extracted numbers of all 'known' sponges to date: the number of valid Recent sponges is established at 8,553, with the vast majority, 83%, belonging to the class Demospongiae. We also mapped for the first time the species richness of a comprehensive set of marine ecoregions of the world, data also extracted from the WPD. Perhaps not surprisingly, these distributions appear to show a strong bias towards collection and taxonomy efforts. Only when species richness is accumulated into large marine realms does a pattern emerge that is also recognized in many other marine animal groups: high numbers in tropical regions, lesser numbers in the colder parts of the world oceans. Preliminary similarity analysis of a matrix of species and marine ecoregions extracted from the WPD failed to yield a consistent hierarchical pattern of ecoregions into marine provinces. Global sponge diversity information is mostly generated in regional projects and resources: results obtained demonstrate that regional approaches to analytical biogeography are at present more likely to achieve insights into the biogeographic history of sponges than a global perspective, which appears currently too ambitious. We also review information on invasive sponges that might well have some influence on distribution patterns of the future.

  14. Acclimatization of the crustose coralline alga Porolithon onkodes to variable pCO₂.

    Science.gov (United States)

    Johnson, Maggie D; Moriarty, Vincent W; Carpenter, Robert C

    2014-01-01

    Ocean acidification (OA) has important implications for the persistence of coral reef ecosystems, due to potentially negative effects on biomineralization. Many coral reefs are dynamic with respect to carbonate chemistry, and experience fluctuations in pCO₂ that exceed OA projections for the near future. To understand the influence of dynamic pCO₂ on an important reef calcifier, we tested the response of the crustose coralline alga Porolithon onkodes to oscillating pCO₂. Individuals were exposed to ambient (400 µatm), high (660 µatm), or variable pCO₂ (oscillating between 400/660 µatm) treatments for 14 days. To explore the potential for coralline acclimatization, we collected individuals from low and high pCO₂ variability sites (upstream and downstream respectively) on a back reef characterized by unidirectional water flow in Moorea, French Polynesia. We quantified the effects of treatment on algal calcification by measuring the change in buoyant weight, and on algal metabolism by conducting sealed incubations to measure rates of photosynthesis and respiration. Net photosynthesis was higher in the ambient treatment than the variable treatment, regardless of habitat origin, and there was no effect on respiration or gross photosynthesis. Exposure to high pCO₂ decreased P. onkodes calcification by >70%, regardless of the original habitat. In the variable treatment, corallines from the high variability habitat calcified 42% more than corallines from the low variability habitat. The significance of the original habitat for the coralline calcification response to variable, high pCO₂ indicates that individuals existing in dynamic pCO₂ habitats may be acclimatized to OA within the scope of in situ variability. These results highlight the importance of accounting for natural pCO₂ variability in OA manipulations, and provide insight into the potential for plasticity in habitat and species-specific responses to changing ocean chemistry.

  15. Acclimatization of the Crustose Coralline Alga Porolithon onkodes to Variable pCO2

    Science.gov (United States)

    Johnson, Maggie D.; Moriarty, Vincent W.; Carpenter, Robert C.

    2014-01-01

    Ocean acidification (OA) has important implications for the persistence of coral reef ecosystems, due to potentially negative effects on biomineralization. Many coral reefs are dynamic with respect to carbonate chemistry, and experience fluctuations in pCO2 that exceed OA projections for the near future. To understand the influence of dynamic pCO2 on an important reef calcifier, we tested the response of the crustose coralline alga Porolithon onkodes to oscillating pCO2. Individuals were exposed to ambient (400 µatm), high (660 µatm), or variable pCO2 (oscillating between 400/660 µatm) treatments for 14 days. To explore the potential for coralline acclimatization, we collected individuals from low and high pCO2 variability sites (upstream and downstream respectively) on a back reef characterized by unidirectional water flow in Moorea, French Polynesia. We quantified the effects of treatment on algal calcification by measuring the change in buoyant weight, and on algal metabolism by conducting sealed incubations to measure rates of photosynthesis and respiration. Net photosynthesis was higher in the ambient treatment than the variable treatment, regardless of habitat origin, and there was no effect on respiration or gross photosynthesis. Exposure to high pCO2 decreased P. onkodes calcification by >70%, regardless of the original habitat. In the variable treatment, corallines from the high variability habitat calcified 42% more than corallines from the low variability habitat. The significance of the original habitat for the coralline calcification response to variable, high pCO2 indicates that individuals existing in dynamic pCO2 habitats may be acclimatized to OA within the scope of in situ variability. These results highlight the importance of accounting for natural pCO2 variability in OA manipulations, and provide insight into the potential for plasticity in habitat and species-specific responses to changing ocean chemistry. PMID:24505305

  16. Acclimatization of the crustose coralline alga Porolithon onkodes to variable pCO₂.

    Directory of Open Access Journals (Sweden)

    Maggie D Johnson

    Full Text Available Ocean acidification (OA has important implications for the persistence of coral reef ecosystems, due to potentially negative effects on biomineralization. Many coral reefs are dynamic with respect to carbonate chemistry, and experience fluctuations in pCO₂ that exceed OA projections for the near future. To understand the influence of dynamic pCO₂ on an important reef calcifier, we tested the response of the crustose coralline alga Porolithon onkodes to oscillating pCO₂. Individuals were exposed to ambient (400 µatm, high (660 µatm, or variable pCO₂ (oscillating between 400/660 µatm treatments for 14 days. To explore the potential for coralline acclimatization, we collected individuals from low and high pCO₂ variability sites (upstream and downstream respectively on a back reef characterized by unidirectional water flow in Moorea, French Polynesia. We quantified the effects of treatment on algal calcification by measuring the change in buoyant weight, and on algal metabolism by conducting sealed incubations to measure rates of photosynthesis and respiration. Net photosynthesis was higher in the ambient treatment than the variable treatment, regardless of habitat origin, and there was no effect on respiration or gross photosynthesis. Exposure to high pCO₂ decreased P. onkodes calcification by >70%, regardless of the original habitat. In the variable treatment, corallines from the high variability habitat calcified 42% more than corallines from the low variability habitat. The significance of the original habitat for the coralline calcification response to variable, high pCO₂ indicates that individuals existing in dynamic pCO₂ habitats may be acclimatized to OA within the scope of in situ variability. These results highlight the importance of accounting for natural pCO₂ variability in OA manipulations, and provide insight into the potential for plasticity in habitat and species-specific responses to changing ocean chemistry.

  17. Steroids from marine sponges Suberites vestigium and Chrotella australiensis

    Digital Repository Service at National Institute of Oceanography (India)

    Mishra, P.D.; Wahidullah, S.; DeSouza, L.; Kamat, S.Y.

    The sponges Suberites vestigium and Chrotella australiensis have been examined for steriods. Both the sponges contain C sub(27-29) mono and diunsaturated sterols, in addition sponge C. australiensis contains cholest-4-ene-3-one and 24-ethyl cholest...

  18. NON-GENICULATE CORALLINE ALGAE (CORALLINALES, RHODOPHYTA FROM THE LOWER OLIGOCENE OF POLJŠICA PRI PODNARTU (NORTHERN SLOVENIA

    Directory of Open Access Journals (Sweden)

    LUKA GALE

    2009-03-01

    Full Text Available Despite their increasing importance in sedimentology and palaeoecology, non-geniculate coralline algae remain virtually overlooked in Slovenia. Though these plants are present or even abundant in the Cretaceous and Cainozoic strata, they have never been studied in detail with notable exception of corallines from the Lower Oligocene beds in the area of Gornji Grad. Poljšica pri Podnartu is another locality where Lower Oligocene beds are exposed, considered as equivalent to the former. The studied profile consists of pebbly limestone, mudstone, sandstone and limestone. Limestones contain abundant non-geniculate coralline algae. Nine species from six genera of these corallines have been identified: Lithoporella melobesioides (Foslie Foslie, 1909, Neogoniolithon contii (Mastrorilli Quaranta et al., 2007, Spongites sp., Lithothamnion sp. 1, Lithothamnion sp. 2, Mesophyllum sp. 1, Mesophyllum sp. 2, Mesophyllum sp. 3 and Sporolithon sp. Some of these species are described from Slovenia for the first time. 

  19. Phylogenetic position of sponges in early metazoan evolution and bionic applications of siliceous sponge spicules

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Sponges are the oldest and the simplest but not primitive multicellular animals. They represent the earliest evolutionary metazoan phylum still extant. It was a long and painful scientific process to position the most enigmatic and mysterious metazoan, the Porifera, into their correct phylogenetic place among the eukaryotes in general and multicellular animals in particular. As living fossils, sponges provide the best evidence for the early evolution of Metazoa. More recently, interest has been focused on the bionic applications of sponges' siliceous spicules, after the discovery of their unique structure and high fiber performance. In this review, the emergence of sponges, evolutionary novelties found in sponges, and the phylogenetic position of sponges in early metazoan evolution are highlighted. In addition, the pre-sent state of knowledge on silicatein-mediated "biosilica" formation in marine sponges, including the involvement of other molecules in silica metabolism and their potential application in nanobiotechnol-ogy and medicine, is given.

  20. [Bioactive compounds from marine sponges and cell culture of marine sponges].

    Science.gov (United States)

    Zhang, Xiao-Ying; Zhao, Quan-Yu; Xue, Song; Zhang, Wei

    2002-01-01

    Presented a survey of bioactive compounds discovered from marine sponges in the recent five years, including the classes, distribution and their potential pharmaceutical uses. In particular, the compounds with antitumor, antivirus and antibacteria activity were discussed with their originating marine sponge species. Whereas the "Supply Problems" were identified to hinder the clinical tests and commercial applications of most of the sponge bioactive compounds. In vitro cell culture of marine sponges is one of the most promising approaches to solve this problem. The state-of-the art of marine sponge cell culture and the challenging areas were discussed. A brief summary of the R&D status was also given on the bioactive compounds from marine sponges in Chinese oceans. It is crucial to invest more efforts on studying marine sponges and their bioactive compounds in our country in order to develop new marine drugs of independent intellectual property.

  1. Negative effects of ocean acidification on two crustose coralline species using genetically homogeneous samples.

    Science.gov (United States)

    Kato, Aki; Hikami, Mana; Kumagai, Naoki H; Suzuki, Atsushi; Nojiri, Yukihiro; Sakai, Kazuhiko

    2014-03-01

    We evaluated acidification effects on two crustose coralline algal species common to Pacific coral reefs, Lithophyllum kotschyanum and Hydrolithon samoense. We used genetically homogeneous samples of both species to eliminate misidentification of species. The growth rates and percent calcification of the walls of the epithallial cells (thallus surface cells) of both species decreased with increasing pCO₂. However, elevated pCO₂ more strongly inhibited the growth of L. kotschyanum versus H. samoense. The trend of decreasing percent calcification of the cell wall did not differ between these species, although intercellular calcification of the epithallial cells in L. kotschyanum was apparently reduced at elevated pCO₂, a result that might indicate that there are differences in the solubility or density of the calcite skeletons of these two species. These results can provide knowledge fundamental to future studies of the physiological and genetic mechanisms that underlie the response of crustose coralline algae to environmental stresses.

  2. First discovery of dolomite and magnesite in living coralline algae and its geobiological implications

    OpenAIRE

    M. C. Nash; Troitzsch, U; B. N. Opdyke; Trafford, J. M.; Russell, B. D.; Kline, D. I.

    2011-01-01

    Dolomite is a magnesium-rich carbonate mineral abundant in fossil carbonate reef platforms but surprisingly rare in modern sedimentary environments, a conundrum known as the "Dolomite Problem". Marine sedimentary dolomite has been interpreted to form by an unconfirmed, post-depositional diagenetic process, despite minimal experimental success at replicating this. Here we show that dolomite, accompanied by magnesite, forms within living crustose coralline alga, Hydrolithon onkodes<...

  3. Refuges from ocean acidification: determining tolerances of coralline algae to naturally low-pH water

    Science.gov (United States)

    Cooper, H.; Paytan, A.; Potts, D. C.

    2014-12-01

    Anthropogenic carbon dioxide dissolving into the world's oceans is causing a profound and rapid shift in ocean chemistry referred to as ocean acidification (OA) that causes carbonate structures to dissolve more readily in seawater with negative effects for organisms relying on calcified skeletons or shells (e.g. corals, mollusks, coralline algae). Crustose coralline algae (CCA) are ubiquitous and essential on coral reefs, providing both ecological and structural benefits to the reefs. However, CCA are adversely affected by low pH water, with severe reductions in recruitment, survival, growth and productivity. The ability of different species of CCA to adapt to low pH waters was tested using a system of natural submarine springs (called "ojos") near Puerto Morelos on the Yucatan Peninsula, Mexico. These ojos continuously discharge groundwater that is close to seawater salinity but more acidic (pH 6.70-7.30) and under saturated (0.3 Ω to 0.97 Ω) than the ambient seawater (pH 8.03, 3.60 Ω ). Both corals and coralline algae grow in the water from these springs, suggesting that some calcifying species differ in their tolerance to low pH waters. Corallines were sampled along a pH gradient at five springs in December 2013 using underwater transects. Differences in percent cover, species abundance and diversity of CCA by pH levels will be discussed. This work utilizes a unique natural laboratory for studying properties of calcifying biota along pH gradients and provides insight into the ability of CCA to tolerate or adapt to future conditions.

  4. The extraordinary joint material of an articulated coralline alga. I. Mechanical characterization of a key adaptation.

    Science.gov (United States)

    Denny, Mark W; King, Felicia A

    2016-06-15

    Flexibility is key to survival for seaweeds exposed to the extreme hydrodynamic environment of wave-washed rocky shores. This poses a problem for coralline algae, whose calcified cell walls make them rigid. Through the course of evolution, erect coralline algae have solved this problem by incorporating joints (genicula) into their morphology, allowing their fronds to be as flexible as those of uncalcified seaweeds. To provide the flexibility required by this structural innovation, the joint material of Calliarthron cheilosporioides, a representative articulated coralline alga, relies on an extraordinary tissue that is stronger, more extensible and more fatigue resistant than the tissue of other algal fronds. Here, we report on experiments that reveal the viscoelastic properties of this material. On the one hand, its compliance is independent of the rate of deformation across a wide range of deformation rates, a characteristic of elastic solids. This deformation rate independence allows joints to maintain their flexibility when loaded by the unpredictable - and often rapidly imposed - hydrodynamic force of breaking waves. On the other hand, the genicular material has viscous characteristics that similarly augment its function. The genicular material dissipates much of the energy absorbed as a joint is deformed during cyclic wave loading, which potentially reduces the chance of failure by fatigue, and the material accrues a limited amount of deformation through time. This limited creep increases the flexibility of the joints while preventing them from gradually stretching to the point of failure. These new findings provide the basis for understanding how the microscale architecture of genicular cell walls results in the adaptive mechanical properties of coralline algal joints.

  5. Dynamic photoinhibition exhibited by red coralline algae in the red sea

    Science.gov (United States)

    2014-01-01

    Background Red coralline algae are critical components of tropical reef systems, and their success and development is, at least in part, dependent on photosynthesis. However, natural variability in the photosynthetic characteristics of red coralline algae is poorly understood. This study investigated diurnal variability in encrusting Porolithon sp. and free-living Lithophyllum kotschyanum. Measured parameters included: photosynthetic characteristics, pigment composition, thallus reflectance and intracellular concentrations of dimethylsulphoniopropionate (DMSP), an algal antioxidant that is derived from methionine, an indirect product of photosynthesis. L. kotschyanum thalli were characterised by a bleached topside and a pigmented underside. Results Minimum saturation intensity and intracellular DMSP concentrations in Porolithon sp. were characterised by significant diurnal patterns in response to the high-light regime. A smaller diurnal pattern in minimum saturation intensity in the topside of L. kotschyanum was also evident. The overall reflectance of the topside of L. kotschyanum also exhibited a diurnal pattern, becoming increasingly reflective with increasing ambient irradiance. The underside of L. kotschyanum, which is shaded from ambient light exposure, exhibited a much smaller diurnal variability. Conclusions This study highlights a number of dynamic photoinhibition strategies adopted by coralline algae, enabling them to tolerate, rather than be inhibited by, the naturally high irradiance of tropical reef systems; a factor that may become more important in the future under global change projections. In this context, this research has significant implications for tropical reef management planning and conservation monitoring, which, if natural variability is not taken into account, may become flawed. The information provided by this research may be used to inform future investigations into the contribution of coralline algae to reef accretion, ecosystem

  6. Coral reef fish assemblages of coralline and granitic habitats of Curieuse Marine National Park

    OpenAIRE

    Pittman, S.J.

    1997-01-01

    Curieuse Marine National Park encompasses a diverse range of shallow water marine and brackish habitats including coralline fringing reefs, granitic boulder reefs, deep patch reefs, algal flats, seagrass meadows, intertidal rocky shore, sandy beach and mangrove habitat. Many of these shallow water habitats support an abundance of varied marine life, which in turn supports a burgeoning interest from tourist divers and snorkellers. Curieuse Marine National Park includes Curieuse Island and t...

  7. Generation of miRNA sponge constructs

    NARCIS (Netherlands)

    Kluiver, Joost; Slezak-Prochazka, Izabella; Smigielska-Czepiel, Katarzyna; Halsema, Nancy; Kroesen, Bart-Jan; van den Berg, Anke

    2012-01-01

    MicroRNA (miRNA) sponges are RNA molecules with repeated miRNA antisense sequences that can sequester miRNAs from their endogenous targets and thus serve as a decoy. Stably expressed miRNA sponges are especially valuable for long-term loss-of-function studies and can be used in vitro and in vivo. We

  8. Renal acidification defects in medullary sponge kidney

    DEFF Research Database (Denmark)

    Osther, P J; Hansen, A B; Røhl, H F

    1988-01-01

    Thirteen patients with medullary sponge kidney underwent a short ammonium chloride loading test to investigate their renal acidification capacity. All but 1 presented with a history of recurrent renal calculi and showed bilateral widespread renal medullary calcification on X-ray examination. Nine...... of renal calculi in medullary sponge kidney, have considerable therapeutic implications....

  9. Biodiversity, zoogeography and affinity of Orissa sponges

    Digital Repository Service at National Institute of Oceanography (India)

    Thomas, P.A.; Sree, A.; Bapuji, M.; Rao, K.M.; Murthy, K.S.R.

    , Orissa (India), Bay of Bengal was reported by us earlier between the isobaths of 25 and 35 m. A number of sedentary organisms were collected and taxonomy of 54 sponges was reported earlier. The present paper reports a new collection of 16 sponge species...

  10. Preparation, characterization, and in vitro release of gentamicin from coralline hydroxyapatite-alginate composite microspheres.

    Science.gov (United States)

    Sivakumar, M; Rao, K Panduranga

    2003-05-01

    In this work, composite microspheres were prepared from bioactive ceramics such as coralline hydroxyapatite [Ca(10)(PO(4))(6)(OH)(2)] granules, a biodegradable polymer, sodium alginate, and an antibiotic, gentamicin. Previously, we have shown a gentamicin release from coralline hydroxyapatite granules-chitosan composite microspheres. In the present investigation, we attempted to prepare composite microspheres containing coralline hydroxyapatite granules and sodium alginate by the dispersion polymerization technique with gentamicin incorporated by absorption method. The crystal structure of the composite microspheres was analyzed using X-ray powder diffractometer. Fourier transform infrared spectra clearly indicated the presence of per-acid of sodium alginate, phosphate, and hydroxyl groups in the composite microspheres. Scanning electron micrographs and optical micrographs showed that the composite microspheres were spherical in shape and porous in nature. The particle size of composite microspheres was analyzed, and the average size was found to be 15 microns. The thermal behavior of composite microspheres was studied using thermogravimetric analysis and differential scanning calorimetric analysis. The cumulative in vitro release profile of gentamicin from composite microspheres showed near zero order patterns.

  11. Size, strength and allometry of joints in the articulated coralline Calliarthron.

    Science.gov (United States)

    Martone, Patrick T

    2006-05-01

    Articulated coralline algae (Corallinales, Rhodophyta) dominate low-intertidal, wave-exposed habitats around the world, yet the mechanics of this diverse group of organisms has been almost completely unexplored. In contrast to fleshy seaweeds, articulated corallines consist of calcified segments (intergenicula) separated by uncalcified joints (genicula). This jointed construction makes calcified fronds as flexible as fleshy seaweeds, allowing them to ;go with the flow' when struck by breaking waves. In addition to functioning as joints, genicula act as breakage points along articulated fronds. Here, I describe the allometric scaling of geniculum size, breaking force and tissue strength along articulated fronds in two species of Calliarthron. Genicular material is much stronger than tissue from fleshy macroalgae. Moreover, as fronds grow, genicula get bigger and their tissue strengthens, two processes that help them resist breakage. Within individual fronds, larger branches, which presumably experience greater drag force, are supported by bigger, stronger genicula. However, frond growth greatly outpaces genicular strengthening. As a result, Calliarthron fronds most likely break at their bases when critically stressed by incoming waves. Shedding fronds probably reduces the drag force that threatens to dislodge coralline crusts and may constitute a reproductive strategy.

  12. Colonisation processes and the role of coralline algae in rocky shore community dynamics

    Science.gov (United States)

    Asnaghi, Valentina; Thrush, Simon F.; Hewitt, Judi E.; Mangialajo, Luisa; Cattaneo-Vietti, Riccardo; Chiantore, Mariachiara

    2015-01-01

    Recovery from disturbance is an important attribute of community dynamics. Temperate rocky shores will experience increases in both the type and intensity of impacts under future expected global change. To gauge the community response to these potential changes in the disturbance regime it is important to assess space occupancy and the temporal dynamics of key species over the recovery process. We experimentally disturbed replicated 1 m2 plots in the lower intertidal at 5 sites along the Ligurian rocky coast (North-western Mediterranean) and assessed early succession processes over 18 months. To identify colonisation processes and role of key species in affecting species richness on recovery trajectories, we monitored species composition at the cm-scale along fixed transects within the plots. Our results highlighted the role of a limited number of taxa in driving the recovery of species richness across sites, despite site variation in community composition. Settlement of new propagules and overgrowth were the principal pathway of space occupancy. We detected an important role for coralline algae, particularly the articulated Corallina elongata, in promoting the colonisation of a diverse range of colonists. The present study highlights the important role played by calcifying coralline macroalgae as substrate providers for later colonists, favouring recovery of biodiversity after disturbance. This pivotal role may be compromised in a future scenario of elevated cumulative disturbance, where ocean acidification will likely depress the role of coralline algae in recovery, leading to a general loss in biodiversity and community complexity.

  13. The bacterial biota on crustose (nonarticulated) coralline algae from Tasmanian waters.

    Science.gov (United States)

    Lewis, T E; Garland, C D; McMeekin, T A

    1985-09-01

    The bacterial biota associated with the cuticle surface of healthy benthic samples of crustose nonarticulated coralline algae from the east coast of Tasmania (Australia) was examined by bacteriological cultivation and electron microscopy. In 32 samples studied, the viable count on Zobell's marine agar (supplemented with vitamins) was 3.3×10(6) bacteria g(-1) wet wt. (range 2.9×10(4)-2.7×10(7)). Of 732 strains isolated from 16 out of 32 samples and identified to genus level,Moraxella was the predominant genus (66%). In contrast,Moraxella comprised only 11% of 217 strains isolated from benthic seawater samples collected at the same time as coralline algae. In 22 out of 32 algal samples examined by scanning electron microscopy, the total count was 1.6 × 10(7) bacteria g(-1) wet wt. (range 5.1× 10(6)-3.8×107); the major morphotype was cocco-bacilli (80%). Several environmental factors did not significantly influence the viable count or generic distribution, or the total count or morphotypic distribution of bacteria on the cuticle. These factors included geographical site, season, storage of samples in aquarium conditions, and the presence or absence of abalone from shells that the coralline algae encrusted. The microbiota, consisting mostly of the nonmotile bacterial genusMoraxella, appeared to be highly adapted to its calcerous plant host.

  14. Cell culture from sponges: pluripotency and immortality.

    Science.gov (United States)

    de Caralt, Sònia; Uriz, María J; Wijffels, René H

    2007-10-01

    Sponges are a source of compounds with potential pharmaceutical applications. In this article, methods of sponge cell culture for production of these bioactive compounds are reviewed, and new approaches for overcoming the problem of metabolite supply are examined. The use of embryos is proposed as a new source of sponge material for cell culture. Stem cells are present in high amounts in embryos and are more versatile and resistant to infections than adult cells. Additionally, genetic engineering and cellular research on apoptotic mechanisms are promising new fields that might help to improve cell survival in sponge-cell lines. We propose that one topic for future research should be how to reduce apoptosis, which appears to be very high in sponge cell cultures.

  15. Bacterial community profiles in low microbial abundance sponges

    KAUST Repository

    Giles, Emily

    2012-09-04

    It has long been recognized that sponges differ in the abundance of associated microorganisms, and they are therefore termed either \\'low microbial abundance\\' (LMA) or \\'high microbial abundance\\' (HMA) sponges. Many previous studies concentrated on the dense microbial communities in HMA sponges, whereas little is known about microorganisms in LMA sponges. Here, two LMA sponges from the Red Sea, two from the Caribbean and one from the South Pacific were investigated. With up to only five bacterial phyla per sponge, all LMA sponges showed lower phylum-level diversity than typical HMA sponges. Interestingly, each LMA sponge was dominated by a large clade within either Cyanobacteria or different classes of Proteobacteria. The overall similarity of bacterial communities among LMA sponges determined by operational taxonomic unit and UniFrac analysis was low. Also the number of sponge-specific clusters, which indicate bacteria specifically associated with sponges and which are numerous in HMA sponges, was low. A biogeographical or host-dependent distribution pattern was not observed. In conclusion, bacterial community profiles of LMA sponges are clearly different from profiles of HMA sponges and, remarkably, each LMA sponge seems to harbour its own unique bacterial community. © 2012 Federation of European Microbiological Societies.

  16. Biological characterisation of Haliclona (?gellius) sp.: sponge and associated microorganisms.

    NARCIS (Netherlands)

    Sipkema, D.; Holmes, B.; Nichols, S.A.; Blanch, H.W.

    2009-01-01

    We have characterised the northern Pacific undescribed sponge Haliclona (?gellius) sp. based on rDNA of the sponge and its associated microorganisms. The sponge is closely related to Amphimedon queenslandica from the Great Barrier Reef as the near-complete 18S rDNA sequences of both sponges were ide

  17. 21 CFR 880.2740 - Surgical sponge scale.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Surgical sponge scale. 880.2740 Section 880.2740... Devices § 880.2740 Surgical sponge scale. (a) Identification. A surgical sponge scale is a nonelectrically powered device used to weigh surgical sponges that have been used to absorb blood during surgery so...

  18. Bacterial community profiles in low microbial abundance sponges.

    Science.gov (United States)

    Giles, Emily C; Kamke, Janine; Moitinho-Silva, Lucas; Taylor, Michael W; Hentschel, Ute; Ravasi, Timothy; Schmitt, Susanne

    2013-01-01

    It has long been recognized that sponges differ in the abundance of associated microorganisms, and they are therefore termed either 'low microbial abundance' (LMA) or 'high microbial abundance' (HMA) sponges. Many previous studies concentrated on the dense microbial communities in HMA sponges, whereas little is known about microorganisms in LMA sponges. Here, two LMA sponges from the Red Sea, two from the Caribbean and one from the South Pacific were investigated. With up to only five bacterial phyla per sponge, all LMA sponges showed lower phylum-level diversity than typical HMA sponges. Interestingly, each LMA sponge was dominated by a large clade within either Cyanobacteria or different classes of Proteobacteria. The overall similarity of bacterial communities among LMA sponges determined by operational taxonomic unit and UniFrac analysis was low. Also the number of sponge-specific clusters, which indicate bacteria specifically associated with sponges and which are numerous in HMA sponges, was low. A biogeographical or host-dependent distribution pattern was not observed. In conclusion, bacterial community profiles of LMA sponges are clearly different from profiles of HMA sponges and, remarkably, each LMA sponge seems to harbour its own unique bacterial community.

  19. Middle Miocene coralline algal facies from the NW Transylvanian Basin (Romania)

    Science.gov (United States)

    Chelaru, Ramona; Bucur, Ioan I.; Sǎsǎran, Emanoil; Bǎlc, Ramona; Tǎmas, Tudor

    2016-04-01

    The current study focus on the coralline algae from the Middle Miocene limestones in NW Transylvania to provide an outline for their systematics and palaeoecology. The investigated samples were collected from three carbonate outcrops: Vǎlenii Șomcutei, Ciolt 1 and Ciolt 2, named after the respective localities situated in the vicinity of the Țicǎu-Preluca Mountains (NW Romania). The microfacies analysis suggest shallowing upward tendency in middle to proximal shelf environments. The coralline algae are present in the carbonate successions as detritus, branches, crusts and rhodoliths. The Vǎlenii Șomcutei section shows a depositional model where large and spheroidal rhodoliths develop in high energy conditions, most probably generated by storm waves. The sections from the Ciolt area are distinguished by the presence of green algae in association with the encrusting and geniculate coralline specimens. The identified species belong to Ord. Corallinales (Hydrolithon, Spongites, Lithophyllum, Jania), Hapalidales (Lithothamnion and Mesophyllum) and Sporolithales (Sporolithon). In the taxonomic identification of coralline red algae we used as many diagnostic features as possible, known from the description of present - day species, such as: shape of epithallial cells and roof morphology for melobesioids; presence/absence of a layer of elongated cells below sporangial compartments and number of cells in paraphyses for sporolithoids. The identified coralline algal assemblages are discussed according to different paleoenvironmental conditions (paleo-depth, hydrodynamic energy) and then compared with similar fossil assemblages and recent analogs like modern maërl and rhodolith pavements. The study of the calcareous nannoplankton assemblages from the Vǎlenii Șomcutei section [1] and the presence of previously dated tuffite intercalations of Dej Tuff [2] in the two sections near the Ciolt village confirm the Badenian age (NN5) of these deposits. [1] Chelaru R., S

  20. Re-deposited rhodoliths in the Middle Miocene hemipelagic deposits of Vitulano (Southern Apennines, Italy): Coralline assemblage characterization and related trace fossils

    Science.gov (United States)

    Checconi, Alessio; Bassi, Davide; Carannante, Gabriele; Monaco, Paolo

    2010-03-01

    An integrated analysis of rhodolith assemblages and associated trace fossils (borings) found in hemipelagic Middle Miocene Orbulina marls (Vitulano area, Taburno-Camposauro area, Southern Apennines, Italy) has revealed that both the biodiversity of the constituent components and taphonomic signatures represent important aspects which allow a detailed palaeoecological and palaeoenvironmental interpretation. On the basis of shape, inner arrangement, growth forms and taxonomic coralline algal composition, two rhodolith growth stages were distinguished: (1) nucleation and growth of the rhodoliths, and (2) a final growth stage before burial. Nucleation is characterized by melobesioids and subordinately mastophoroids, with rare sporolithaceans and lithophylloids. The rhodolith growth (main increase in size) is represented by abundant melobesioids and rare to common mastophoroids; very rare sporolithaceans are also present. The final growth stage is dominated by melobesioids with rare mastophoroids and very rare sporolithaceans. Each rhodolith growth stage is characterized by a distinct suite of inner arrangement and growth form successions. Well diversified ichnocoenoeses ( Gastrochaenolites, Trypanites, Meandropolydora and/or Caulostrepsis, Entobia, Uniglobites, micro-borings) related to bivalves, sponges, polychaetes, barnacles, algae, fungi, and bacteria are distinguished in the inner/intermediate rhodolith growth stage, while mainly algal, fungal and bacterial micro-borings are present in the outer final growth stage. Rhodolith growth stages and associated ichnocoenoeses indicate significant change in the depositional setting during the rhodolith growth. In the Vitulano area, the Middle Miocene rhodolith assemblages formed in a shallow-water open-shelf carbonate platform, were susceptible to exportation from their production area and then to sedimentation down to deeper-water hemipelagic settings, where the rhodoliths shortly kept growth and were finally buried. Such

  1. Bacterial community profiles in low microbial abundance sponges

    OpenAIRE

    Giles, Emily C; Kamke, Janine; Moitinho-Silva, Lucas; Taylor, Michael W.; Hentschel, Ute; Ravasi, Timothy; Schmitt, Susanne

    2013-01-01

    It has long been recognized that sponges differ in the abundance of associated microorganisms, and they are therefore termed either 'low microbial abundance' (LMA) or 'high microbial abundance' (HMA) sponges. Many previous studies concentrated on the dense microbial communities in HMA sponges, whereas little is known about microorganisms in LMA sponges. Here, two LMA sponges from the Red Sea, two from the Caribbean and one from the South Pacific were investigated. With up to only five bacteri...

  2. Aragonite infill in overgrown conceptacles of coralline Lithothamnion spp. (Hapalidiaceae, Hapalidiales, Rhodophyta): new insights in biomineralization and phylomineralogy.

    Science.gov (United States)

    Krayesky-Self, Sherry; Richards, Joseph L; Rahmatian, Mansour; Fredericq, Suzanne

    2016-04-01

    New empirical and quantitative data in the study of calcium carbonate biomineralization and an expanded coralline psbA framework for phylomineralogy are provided for crustose coralline red algae. Scanning electron microscopy (SEM) and energy dispersive spectrometry (SEM-EDS) pinpointed the exact location of calcium carbonate crystals within overgrown reproductive conceptacles in rhodolith-forming Lithothamnion species from the Gulf of Mexico and Pacific Panama. SEM-EDS and X-ray diffraction (XRD) analysis confirmed the elemental composition of these calcium carbonate crystals to be aragonite. After spore release, reproductive conceptacles apparently became overgrown by new vegetative growth, a strategy that may aid in sealing the empty conceptacle chamber, hence influencing the chemistry of the microenvironment and in turn promoting aragonite crystal growth. The possible relevance of various types of calcium carbonate polymorphs present in the complex internal structure and skeleton of crustose corallines is discussed. This is the first study to link SEM, SEM-EDS, XRD, Microtomography and X-ray microscopy data of aragonite infill in coralline algae with phylomineralogy. The study contributes to the growing body of literature characterizing and speculating about how the relative abundances of carbonate biominerals in corallines may vary in response to changes in atmospheric pCO2 , ocean acidification, and global warming.

  3. Carbonaceous preservation of Cambrian hexactinellid sponge spicules.

    Science.gov (United States)

    Harvey, Thomas H P

    2010-12-23

    Early fossil sponges offer a direct window onto the evolutionary emergence of animals, but insights are limited by the paucity of characters preserved in the conventional fossil record. Here, a new preservational mode for sponge spicules is reported from the lower Cambrian Forteau Formation (Newfoundland, Canada), prompting a re-examination of proposed homologies and sponge inter-relationships. The spicules occur as wholly carbonaceous films, and are interpreted as the remains of robust organic spicule sheaths. Comparable sheaths are restricted among living taxa to calcarean sponges, although the symmetries of the fossil spicules are characteristic of hexactinellid sponges. A similar extinct character combination has been documented in the Burgess Shale fossil Eiffelia. Interpreting the shared characters as homologous implies complex patterns of spicule evolution, but an alternative interpretation as convergent autapomorphies is more parsimonious. In light of the mutually exclusive distributions of these same characters among the crown groups, this result suggests that sponges exhibited an early episode of disparity expansion followed by comparatively constrained evolution, a pattern shared with many other metazoans but obscured by the conventional fossil record of sponges.

  4. Misleading morphologies and the importance of sequencing type specimens for resolving coralline taxonomy (Corallinales, Rhodophyta): Pachyarthron cretaceum is Corallina officinalis.

    Science.gov (United States)

    Hind, Katharine R; Gabrielson, Paul W; Lindstrom, Sandra C; Martone, Patrick T

    2014-08-01

    Coralline red algae play a key role in the ecology of near shore marine ecosystems and are increasingly being used to study the effects of climate change in the marine environment. Corallines are very difficult to identify to species, and even to genus, using morpho-anatomy, likely complicating studies of their ecology, physiology, and biodiversity. We sequenced a 296 base pair fragment of chloroplast DNA from a 187-year-old isolectotype specimen of Pachyarthron cretaceum, a morphologically distinct geniculate species, to demonstrate that coralline morphology is often misleading and that species names can only be applied unequivocally by comparing DNA sequences from type material with sequences from field-collected specimens. Our results indicate that Pachyarthron cretaceum is synonymous with Corallina officinalis.

  5. Use of natural coralline biomaterials as reinforcing and gas-forming agent for developing novel hybrid biomatrices: microarchitectural and mechanical studies.

    Science.gov (United States)

    Gravel, Mylène; Vago, Razi; Tabrizian, Maryam

    2006-03-01

    This paper describes the first attempt in fabrication of three-dimensional macroporous composites of chitosan and natural coralline material with pore sizes of 300-400 microm, exceeding the upper pore size limit of 250 microm obtained with freeze-dried chitosan-based scaffolds. Natural coral particulates of less than 20 microm, which is mainly composed of calcium carbonate (CaCO3), was simultaneously used as reinforcing phase and gas-forming agent to obtain a structure with large pores and improved mechanical and biological properties. The reaction between the coralline material and the acidic chitosan polymer solvent, which produced carbon dioxide, was rapidly stopped by the subsequent thermally induced phase separation technique, leaving coralline particulates in the polymeric structure. Scaffolds containing five different proportions of coralline material (0, 25, 50, 75, and 100 wt%) were investigated. The coralline-chitosan weight ratio was studied for its effects on the physical properties of the scaffolds. The relation between scaffold microarchitecture and mechanical properties was assessed with scanning electron microscope (SEM), along with micro-CT imaging and compression testing. The scaffolds were used in bone marrow cell culturing experiments to assess the effect of composition on cell behavior through cell-material interaction and morphological observation by SEM. Higher coralline concentration increased the pore wall thickness and favored large pore formation. Varying the coralline particulate to chitosan polymer ratio from 0 to 75 wt% increased the average pore size from 80 microm to 400 microm while the porosity decreased from 91% to 78%. The compressive modulus was improved proportionally with the coralline content, and the 75 wt% composites had a significantly higher modulus than other chitosan-based scaffold groups. More cells were observed on scaffolds with higher coralline content. The cell culture experiments indicated that the scaffolds

  6. AFSC/ABL: Salisbury Sound sponge recovery

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In 1995, an area of the seafloor near Salisbury Sound was trawled to identify immediate effects on large, erect sponges and sea whips. Video transects were made in...

  7. New terpenoids from two Indonesian marine sponges

    NARCIS (Netherlands)

    Salmoun, M.; Breakman, J.C.; Dewelle, J.; Darro, F.; Kiss, R.; de Voogd, N.J.; van Soest, R.W.M.

    2007-01-01

    A C16 norsesterterpenoid (euplectellodiol, 1) and a norditerpenoid (2) have been isolated from the marine sponges Mycale euplectelloides and Diacarnus megaspinorhabdosa, respectively. Their structures have been determined by spectroscopic methods. Compounds 1 and 2 are new natural products.

  8. Sponges of the Guyana Shelf.

    Science.gov (United States)

    VAN Soest, Rob W M

    2017-01-12

    Sponges collected on the Guyana Shelf, predominantly in Suriname offshore waters, by Dutch HMS 'Snellius' O.C.P.S. 1966, HMS 'Luymes' O.C.P.S. II 1969, and HMS 'Luymes' Guyana Shelf 1970 expeditions are described in this study. Sponges were obtained by trawling, dredging or grabbing on sandy, muddy, shelly, and fossil reef bottoms at 88 stations between 19 and 681 m depth. A total of 351 samples were identified to species level, each consisting of one or more specimens of a given species from each individual station (together comprising 547 individuals and fragments). The collection yielded 119 species together belonging to all sponge classes, but in large majority are Demospongiae. All species are identified to species level, occasionally tentatively, and all are described and illustrated. A new subgenus is proposed, Tedania (Stylotedania) subgen. nov. and a previously synonymized genus, Tylosigma Topsent, 1894 is revived. Thirtysix species were found to be new to science, excluding the first Central West Atlantic record of the genus Halicnemia, not named at the species level because of lack of sufficient material. The new species erected are, in alphabetical order: Amphoriscus ancora sp. nov., Biemna rhabdotylostylota sp. nov., Callyspongia (Callyspongia) scutica sp. nov., Chelonaplysilla americana sp. nov., Cladocroce guyanensis sp. nov., Clathria (Axosuberites) riosae sp. nov., Clathria (Clathria) gomezae sp. nov., Clathria (Microciona) snelliusae sp. nov., Clathria (Thalysias) complanata sp. nov., Clathria (Thalysias) zeai sp. nov., Coelosphaera (Coelosphaera) lissodendoryxoides sp. nov., Craniella crustocorticata sp. nov., Diplastrella spirastrelloides sp. nov., Epipolasis tubulata sp. nov., Erylus rhabdocoronatus sp. nov., Erylus surinamensis sp. nov., Geodia pocillum sp. nov., Geodia sulcata sp. nov., Hemiasterella camelus sp. nov., Hymedesmia (Stylopus) alcoladoi sp. nov., Hymenancora cristoboi sp. nov., Penares sineastra sp. nov., Hymerhabdia kobluki sp

  9. Histopathology of crustose coralline algae affected by white band and white patch diseases.

    Science.gov (United States)

    Quéré, Gaëlle; Meistertzheim, Anne-Leila; Steneck, Robert S; Nugues, Maggy M

    2015-01-01

    Crustose coralline algae (CCA) are major benthic calcifiers that play crucial roles in marine ecosystems, particularly coral reefs. Over the past two decades, epizootics have been reported for several CCA species on coral reefs worldwide. However, their causes remain often unknown in part because few studies have investigated CCA pathologies at a microscopic scale. We studied the cellular changes associated with two syndromes: Coralline White Band Syndrome (CWBS) and Coralline White Patch Disease (CWPD) from samples collected in Curaçao, southern Caribbean. Healthy-looking tissue of diseased CCA did not differ from healthy tissue of healthy CCA. In diseased tissues of both pathologies, the three characteristic cell layers of CCA revealed cells completely depleted of protoplasmic content, but presenting an intact cell wall. In addition, CWBS showed a transition area between healthy and diseased tissues consisting of cells partially deprived of protoplasmic material, most likely corresponding to the white band characterizing the disease at the macroscopic level. This transition area was absent in CWPD. Regrowth at the lesion boundary were sometimes observed in both syndromes. Tissues of both healthy and diseased CCA were colonised by diverse boring organisms. Fungal infections associated with the diseased cells were not seen. However, other bioeroders were more abundant in diseased vs healthy CCA and in diseased vs healthy-looking tissues of diseased CCA. Although their role in the pathogenesis is unclear, this suggests that disease increases CCA susceptibility to bioerosion. Further investigations using an integrated approach are needed to carry out the complete diagnosis of these diseases.

  10. Histopathology of crustose coralline algae affected by white band and white patch diseases

    Directory of Open Access Journals (Sweden)

    Gaëlle Quéré

    2015-06-01

    Full Text Available Crustose coralline algae (CCA are major benthic calcifiers that play crucial roles in marine ecosystems, particularly coral reefs. Over the past two decades, epizootics have been reported for several CCA species on coral reefs worldwide. However, their causes remain often unknown in part because few studies have investigated CCA pathologies at a microscopic scale. We studied the cellular changes associated with two syndromes: Coralline White Band Syndrome (CWBS and Coralline White Patch Disease (CWPD from samples collected in Curaçao, southern Caribbean. Healthy-looking tissue of diseased CCA did not differ from healthy tissue of healthy CCA. In diseased tissues of both pathologies, the three characteristic cell layers of CCA revealed cells completely depleted of protoplasmic content, but presenting an intact cell wall. In addition, CWBS showed a transition area between healthy and diseased tissues consisting of cells partially deprived of protoplasmic material, most likely corresponding to the white band characterizing the disease at the macroscopic level. This transition area was absent in CWPD. Regrowth at the lesion boundary were sometimes observed in both syndromes. Tissues of both healthy and diseased CCA were colonised by diverse boring organisms. Fungal infections associated with the diseased cells were not seen. However, other bioeroders were more abundant in diseased vs healthy CCA and in diseased vs healthy-looking tissues of diseased CCA. Although their role in the pathogenesis is unclear, this suggests that disease increases CCA susceptibility to bioerosion. Further investigations using an integrated approach are needed to carry out the complete diagnosis of these diseases.

  11. Methods for monitoring corals and crustose coralline algae to quantify in-situ calcification rates

    Science.gov (United States)

    Morrison, Jennifer M.; Kuffner, Ilsa B.; Hickey, T. Don

    2013-01-01

    The potential effect of global climate change on calcifying marine organisms, such as scleractinian (reef-building) corals, is becoming increasingly evident. Understanding the process of coral calcification and establishing baseline calcification rates are necessary to detect future changes in growth resulting from climate change or other stressors. Here we describe the methods used to establish a network of calcification-monitoring stations along the outer Florida Keys Reef Tract in 2009. In addition to detailing the initial setup and periodic monitoring of calcification stations, we discuss the utility and success of our design and offer suggestions for future deployments. Stations were designed such that whole coral colonies were securely attached to fixed apparati (n = 10 at each site) on the seafloor but also could be easily removed and reattached as needed for periodic weighing. Corals were weighed every 6 months, using the buoyant weight technique, to determine calcification rates in situ. Sites were visited in May and November to obtain winter and summer rates, respectively, and identify seasonal patterns in calcification. Calcification rates of the crustose coralline algal community also were measured by affixing commercially available plastic tiles, deployed vertically, at each station. Colonization by invertebrates and fleshy algae on the tiles was low, indicating relative specificity for the crustose coralline algal community. We also describe a new, nonlethal technique for sampling the corals, used following the completion of the monitoring period, in which two slabs were obtained from the center of each colony. Sampled corals were reattached to the seafloor, and most corals had completely recovered within 6 months. The station design and sampling methods described herein provide an effective approach to assessing coral and crustose coralline algal calcification rates across time and space, offering the ability to quantify the potential effects of

  12. Turf algal epiphytes metabolically induce local pH increase, with implications for underlying coralline algae under ocean acidification

    DEFF Research Database (Denmark)

    Short, J.A.; Pedersen, Ole; Kendrick, G.A.

    2015-01-01

    The presence of epiphytic turf algae may modify the effects of ocean acidification on coralline algal calcification rates by altering seawater chemistry within the diffusive boundary layer (DBL) above coralline algal crusts. We used microelectrodes to measure the effects of turf algal epiphytes...... was more pronounced under elevated CO2. We suggest that increases in seawater CO2 under ocean acidification conditions may drive an increase in the abundance of epiphytic turf algae, consequently modifying the chemistry within the DBL. Thus, the effect of epiphytic turf algae on microscale pH is striking...

  13. Luminaolide, a novel metamorphosis-enhancing macrodiolide for scleractinian coral larvae from crustose coralline algae.

    Science.gov (United States)

    Kitamura, Makoto; Schupp, Peter J; Nakano, Yoshikatsu; Uemura, Daisuke

    2009-11-25

    A new metamorphosis-enhancing macrodiolide, luminaolide (1), was isolated from the crustose coralline algae (CCA) Hydrolithon reinboldii. Its structure was determined by spectroscopic analysis. A fraction (1.30 mug/mL) eluted with 80% aqueous MeOH by ODS gel column chromatography of the same CCA extract induced larval metamorphosis (25.9 +/- 7.4%) against Leptastrea purpurea, and its metamorphosis-inducing activity was further enhanced to 92.6 +/- 2.9% with the addition of 1 (25.6 ng/mL).

  14. Impact of high CO2 on the geochemistry of the coralline algae Lithothamnion glaciale

    Science.gov (United States)

    Ragazzola, F.; Foster, L. C.; Jones, C. J.; Scott, T. B.; Fietzke, J.; Kilburn, M. R.; Schmidt, D. N.

    2016-02-01

    Coralline algae are a significant component of the benthic ecosystem. Their ability to withstand physical stresses in high energy environments relies on their skeletal structure which is composed of high Mg-calcite. High Mg-calcite is, however, the most soluble form of calcium carbonate and therefore potentially vulnerable to the change in carbonate chemistry resulting from the absorption of anthropogenic CO2 by the ocean. We examine the geochemistry of the cold water coralline alga Lithothamnion glaciale grown under predicted future (year 2050) high pCO2 (589 μatm) using Electron microprobe and NanoSIMS analysis. In the natural and control material, higher Mg calcite forms clear concentric bands around the algal cells. As expected, summer growth has a higher Mg content compared to the winter growth. In contrast, under elevated CO2 no banding of Mg is recognisable and overall Mg concentrations are lower. This reduction in Mg in the carbonate undermines the accuracy of the Mg/Ca ratio as proxy for past temperatures in time intervals with significantly different carbonate chemistry. Fundamentally, the loss of Mg in the calcite may reduce elasticity thereby changing the structural properties, which may affect the ability of L. glaciale to efficiently function as a habitat former in the future ocean.

  15. First freshwater coralline alga and the role of local features in a major biome transition

    Science.gov (United States)

    Žuljević, A.; Kaleb, S.; Peña, V.; Despalatović, M.; Cvitković, I.; de Clerck, O.; Le Gall, L.; Falace, A.; Vita, F.; Braga, Juan C.; Antolić, B.

    2016-01-01

    Coralline red algae are significant components of sea bottom and up to now considered as exclusively marine species. Here we present the first coralline alga from a freshwater environment, found in the Cetina River (Adriatic Sea watershed). The alga is fully adapted to freshwater, as attested by reproductive structures, sporelings, and an inability to survive brackish conditions. Morphological and molecular phylogenetic analyses reveal the species belongs to Pneophyllum and is described as P. cetinaensis sp. nov. The marine-freshwater transition most probably occurred during the last glaciation. The brackish-water ancestor was preadapted to osmotic stress and rapid changes in water salinity and temperature. The particular characteristics of the karst Cetina River, such as hard water enriched with dissolved calcium carbonate and a pH similar to the marine environment, favoured colonization of the river by a marine species. The upstream advance and dispersal is facilitated by exceptionally pronounced zoochory by freshwater gastropods. Pneophyllum cetinaensis defies the paradigm of Corallinales as an exclusively marine group.

  16. Morphology of sol-gel derived nano-coated coralline hydroxyapatite.

    Science.gov (United States)

    Ben-Nissan, B; Milev, A; Vago, R

    2004-09-01

    Current bone graft materials are mainly produced from coralline hydroxyapatite (HAp). Due to the nature of the conversion process, commercial coralline HAp has retained coral or CaCO(3,) and the structure possesses nanopores within the inter-pore trabeculae, resulting in high dissolution rates. Under certain conditions these features reduce durability and strength and are not utilised where high structural strength is required. To overcome these limitations, a new coral double-conversion technique has been developed. The technique involves a two-stage application route where, in the first stage, complete conversion of coral to pure HAp is achieved. In the second, a new sol-gel-derived HAp nano-coating is directly applied to cover the micro- and nano-pores within the intra-pore material, whilst maintaining the large pores. Biaxial strength was improved two-fold due to this unique double treatment. This application is expected to result in enhanced durability and longevity due to the monophasic hydroxyapatite structure and strength in the physiological environment. It is anticipated that this new material can be applied to load-bearing bone graft applications where high strength requirements are pertinent.

  17. Physiological performance of intertidal coralline algae during a simulated tidal cycle.

    Science.gov (United States)

    Guenther, Rebecca J; Martone, Patrick T

    2014-04-01

    Intertidal macroalgae endure light, desiccation, and temperature variation associated with sub-merged and emerged conditions on a daily basis. Physiological stresses exist over the course of the entire tidal cycle, and physiological differences in response to these stresses likely contribute to spatial separation of species along the shore. For example, marine species that have a high stress tolerance can live higher on the shore and are able to recover when the tide returns, whereas species with a lower stress tolerance may be relegated to living lower on the shore or in tidepools, where low tide stresses are buffered. In this study, we monitored the physiological responses of the tidepool coralline Calliarthron tuberculosum (Postels and Ruprecht) E.Y. Dawson and the nontidepool coralline Corallina vancouveriensis Yendo during simulated tidal conditions to identify differences in physiology that might underlie differences in habitat. During high tide, Corallina was more photosynthetically active than Calliarthron as light levels increased. During low tide, Corallina continued to out-perform Calliarthron when submerged in warming tidepools, but photosynthesis abruptly halted for both species when emerged in air. Surprisingly, pigment composition did not differ, suggesting that light harvesting does not account for this difference. Additionally, Corallina was more effective at resisting desiccation by retaining water in its branches. When the tide returned, only Corallina recovered from combined temperature and desiccation stresses associated with emergence. This study broadens our understanding of intertidal algal physiology and provides a new perspective on the physiological and morphological underpinnings of habitat partitioning.

  18. Vertical differences in species turnover and diversity of amphipod assemblages associated with coralline mats

    Science.gov (United States)

    Bueno, M.; Tanaka, M. O.; Flores, A. A. V.; Leite, F. P. P.

    2016-11-01

    Environmental gradients are common in rocky shore habitats and may determine species spatial distributions at different scales. In this study, we tested whether environmental filtering affects amphipod assemblages inhabiting coralline algal mats at different vertical heights in southeastern Brazil. Samples obtained from the upper and lower zones of the infralittoral fringe were used to estimate mat descriptors (algal mass, sediment retention, organic matter contents, grain size and sediment sorting) and describe amphipod assemblages (abundance, species richness and diversity indices). Coralline algal mats and amphipod assemblages were similar between intertidal zones in several aspects. However, a more variable retention of sediment (positively related to algal mass), together with the accumulation of larger grains lower on the shore, likely provide higher habitat heterogeneity that hosts generally more diverse (both α- and β-diversity, as well as higher species turnover) amphipod assemblages in the lower intertidal zone. Poorer assemblages in the upper intertidal zone are dominated by omnivores, while carnivorous species are more often found in richer assemblages in the lower intertidal zone, as predicted by traditional niche theory.

  19. Impact of high CO2 on the geochemistry of the coralline algae Lithothamnion glaciale.

    Science.gov (United States)

    Ragazzola, F; Foster, L C; Jones, C J; Scott, T B; Fietzke, J; Kilburn, M R; Schmidt, D N

    2016-01-01

    Coralline algae are a significant component of the benthic ecosystem. Their ability to withstand physical stresses in high energy environments relies on their skeletal structure which is composed of high Mg-calcite. High Mg-calcite is, however, the most soluble form of calcium carbonate and therefore potentially vulnerable to the change in carbonate chemistry resulting from the absorption of anthropogenic CO2 by the ocean. We examine the geochemistry of the cold water coralline alga Lithothamnion glaciale grown under predicted future (year 2050) high pCO2 (589 μatm) using Electron microprobe and NanoSIMS analysis. In the natural and control material, higher Mg calcite forms clear concentric bands around the algal cells. As expected, summer growth has a higher Mg content compared to the winter growth. In contrast, under elevated CO2 no banding of Mg is recognisable and overall Mg concentrations are lower. This reduction in Mg in the carbonate undermines the accuracy of the Mg/Ca ratio as proxy for past temperatures in time intervals with significantly different carbonate chemistry. Fundamentally, the loss of Mg in the calcite may reduce elasticity thereby changing the structural properties, which may affect the ability of L. glaciale to efficiently function as a habitat former in the future ocean.

  20. Antagonistic activity of marine sponges associated Actinobacteria

    Institute of Scientific and Technical Information of China (English)

    Selvakumar Dharmaraj; Dhevendaran Kandasamy

    2016-01-01

    Objective: To focus on the isolation and preliminary characterization of marine sponges associated Actinobacteria particularly Streptomyces species and also their antagonistic activities against bacterial and fungal pathogens. Methods: The sponges were collected from Kovalam and Vizhinjam port of south-west coast of Kerala, India. Isolation of strains was carried out from sponge extracts using international Streptomyces project media. For preliminary identification of the strains, morphological (mycelial colouration, soluble pigments, melanoid pigmentation, spore morphology), nutritional uptake (carbon utilisation, amonoacids influence, sodium chloride tolerance), physiological (pH, temperature) and chemotaxonomical characterization were done. Antimicrobial studies were also carried out for the selected strains. Results: With the help of the spicule structures, the collected marine sponges were identified as Callyspongia diffusa, Mycale mytilorum, Tedania anhelans and Dysidea fragilis. Nearly 94 strains were primarily isolated from these sponges and further they were sub-cultured using international Streptomyces project media. The strains exhibited different mycelial colouration (aerial and substrate), soluble and melanoid pigmentations. The strains possessed three types of sporophore morphology namely rectus flexibilis, spiral and retinaculiaperti. Among the 94 isolates, seven exhibited antibacterial and antifungal activities with maximal zone of inhibition of 30 mm. The nutritional, physiological and chemotaxonomical characteristic study helped in the conventional identification of the seven strains and they all suggest that the strains to be grouped under the genus Streptomyces. Conclusions: The present study clearly helps in the preliminary identification of the isolates associated with marine sponges. Antagonistic activities prove the production of antimicrobial metabolites against the pathogens. Marine sponges associated Streptomyces are universally well

  1. Antagonistic activity of marine sponges associated Actinobacteria

    Directory of Open Access Journals (Sweden)

    Selvakumar Dharmaraj

    2016-06-01

    Full Text Available Objective: To focus on the isolation and preliminary characterization of marine sponges associated Actinobacteria particularly Streptomyces species and also their antagonistic activities against bacterial and fungal pathogens. Methods: The sponges were collected from Kovalam and Vizhinjam port of south-west coast of Kerala, India. Isolation of strains was carried out from sponge extracts using international Streptomyces project media. For preliminary identification of the strains, morphological (mycelial colouration, soluble pigments, melanoid pigmentation, spore morphology, nutritional uptake (carbon utilisation, amonoacids influence, sodium chloride tolerance, physiological (pH, temperature and chemotaxonomical characterization were done. Antimicrobial studies were also carried out for the selected strains. Results: With the help of the spicule structures, the collected marine sponges were identified as Callyspongia diffusa, Mycale mytilorum, Tedania anhelans and Dysidea fragilis. Nearly 94 strains were primarily isolated from these sponges and further they were sub-cultured using international Streptomyces project media. The strains exhibited different mycelial colouration (aerial and substrate, soluble and melanoid pigmentations. The strains possessed three types of sporophore morphology namely rectus flexibilis, spiral and retinaculiaperti. Among the 94 isolates, seven exhibited antibacterial and antifungal activities with maximal zone of inhibition of 30 mm. The nutritional, physiological and chemotaxonomical characteristic study helped in the conventional identification of the seven strains and they all suggest that the strains to be grouped under the genus Streptomyces. Conclusions: The present study clearly helps in the preliminary identification of the isolates associated with marine sponges. Antagonistic activities prove the production of antimicrobial metabolites against the pathogens. Marine sponges associated Streptomyces are

  2. Environmental shaping of sponge associated archaeal communities.

    Directory of Open Access Journals (Sweden)

    Aline S Turque

    Full Text Available BACKGROUND: Archaea are ubiquitous symbionts of marine sponges but their ecological roles and the influence of environmental factors on these associations are still poorly understood. METHODOLOGY/PRINCIPAL FINDINGS: We compared the diversity and composition of archaea associated with seawater and with the sponges Hymeniacidon heliophila, Paraleucilla magna and Petromica citrina in two distinct environments: Guanabara Bay, a highly impacted estuary in Rio de Janeiro, Brazil, and the nearby Cagarras Archipelago. For this we used metagenomic analyses of 16S rRNA and ammonia monooxygenase (amoA gene libraries. Hymeniacidon heliophila was more abundant inside the bay, while P. magna was more abundant outside and P. citrina was only recorded at the Cagarras Archipelago. Principal Component Analysis plots (PCA generated using pairwise unweighted UniFrac distances showed that the archaeal community structure of inner bay seawater and sponges was different from that of coastal Cagarras Archipelago. Rarefaction analyses showed that inner bay archaeaoplankton were more diverse than those from the Cagarras Archipelago. Only members of Crenarchaeota were found in sponge libraries, while in seawater both Crenarchaeota and Euryarchaeota were observed. Although most amoA archaeal genes detected in this study seem to be novel, some clones were affiliated to known ammonia oxidizers such as Nitrosopumilus maritimus and Cenarchaeum symbiosum. CONCLUSION/SIGNIFICANCE: The composition and diversity of archaeal communities associated with pollution-tolerant sponge species can change in a range of few kilometers, probably influenced by eutrophication. The presence of archaeal amoA genes in Porifera suggests that Archaea are involved in the nitrogen cycle within the sponge holobiont, possibly increasing its resistance to anthropogenic impacts. The higher diversity of Crenarchaeota in the polluted area suggests that some marine sponges are able to change the composition

  3. Colonization and growth of crustose coralline algae (Corallinales, Rhodophyta on the Rocas Atoll

    Directory of Open Access Journals (Sweden)

    Alexandre Bigio Villas Bôas

    2005-12-01

    Full Text Available Crustose coralline algae play a fundamental role in reef construction all over the world. The aims fo this study were to identify and estimate the abundance of the dominant crustose coralline algae in shallow reef habitats, measuring their colonization, growth rates and productivity. Crusts sampled from different habitats were collected on leeward and windward reefs. Discs made of epoxy putty were fixed on the reef surface to follow coralline colonization and discs containing the dominant coralline algae were fixed on different habitats to measure the crusts' marginal growth. The primary production experiments followed the clear and dark bottle method for dissolved oxygen reading. Porolithon pachydermum was confirmed as the dominant crustose coralline alga on the Rocas Atoll. The non-cryptic flat form of P. pachydermum showed a faster growth rate on the leeward than on the windward reef. This form also had a faster growth rate on the reef crest (0.05 mm.day-1 than on the reef flat (0.01 mm.day-1. The cryptic protuberant form showed a trend, though not significant, towards a faster growth rate on the reef crest and in tidal pools than on the reef flat. Colonization was, in general, very slow as compared to that presented by other reef studies. P. pachydermum was a productive crust both in non-cryptic and cryptic habitats.As algas calcárias incrustantes exercem um papel fundamental na construção de recifes ao redor do mundo. Neste trabalho os objetivos foram: identificar e estimar a abundância da alga calcária incrustante dominante nas partes rasas do recife, verificando suas taxas de colonização, crescimento e produtividade. Crostas de diferentes habitats foram estudadas em locais a barlavento e sotavento. Discos feitos com massa epóxi foram fixados na superfície do recife para acompanhar a colonização das algas calcárias e discos contendo a alga calcária dominante foram fixados em diferentes habitats para medir o crescimento de suas

  4. Screening of marine sponge-associated bacteria from ...

    African Journals Online (AJOL)

    Screening of marine sponge-associated bacteria from Echinodictyum gorgonoides and its bioactivity. ... The sponge Echinodictyum gorgonoides associated bacterial strain MB2 was tested for its action against various human ... Article Metrics.

  5. Oestrus induction using fluorogestone acetate sponges and equine ...

    African Journals Online (AJOL)

    Oestrus induction using fluorogestone acetate sponges and equine chorionic gonadotrophin in Red Sokoto goats. ... acetate sponge) alone or in combination with equine chorionic gonadotrophin (eCG) on oestrus response in ... Article Metrics.

  6. Retained sponge after abdominal surgery: experience from a third ...

    African Journals Online (AJOL)

    Retained sponge after abdominal surgery: experience from a third world country. ... Abstract. Background: Retained abdominal sponge after surgery is a quite rare condition which can have heavy medico-legal consequences; ... Article Metrics.

  7. Stimulatory activity of four green freshwater sponges on aquatic ...

    African Journals Online (AJOL)

    Stimulatory activity of four green freshwater sponges on aquatic mycotal communities. ... The influence of the four species of green sponges (Ephydatia muelleri, Heteromeyenia stepanowii, Spongilla fluviatilis, and Spongilla ... Article Metrics.

  8. Sponge beta diversity in the Spermonde Archipelago, SW Sulawesi, Indonesia

    NARCIS (Netherlands)

    Voogd, de N.J.; Cleary, D.F.R.; Hoeksema, B.W.; Noor, A.; Soest, van R.W.M.

    2006-01-01

    Sponge assemblages were investigated in the Spermonde Archipelago, southwestern Sulawesi, Indonesia. In this study spatial patterns of sponge similarity among sites were significantly related to remotely sensed environmental variables, the degree of human settlement and depth, but not to the

  9. Potential and limitations of finite element modelling in assessing structural integrity of coralline algae under future global change

    Science.gov (United States)

    Melbourne, L. A.; Griffin, J.; Schmidt, D. N.; Rayfield, E. J.

    2015-10-01

    Coralline algae are important habitat formers found on all rocky shores. While the impact of future ocean acidification on the physiological performance of the species has been well studied, little research has focused on potential changes in structural integrity in response to climate change. A previous study using 2-D Finite Element Analysis (FEA) suggested increased vulnerability to fracture (by wave action or boring) in algae grown under high CO2 conditions. To assess how realistically 2-D simplified models represent structural performance, a series of increasingly biologically accurate 3-D FE models that represent different aspects of coralline algal growth were developed. Simplified geometric 3-D models of the genus Lithothamnion were compared to models created from computed tomography (CT) scan data of the same genus. The biologically accurate model and the simplified geometric model representing individual cells had similar average stresses and stress distributions, emphasising the importance of the cell walls in dissipating the stress throughout the structure. In contrast models without the accurate representation of the cell geometry resulted in larger stress and strain results. Our more complex 3-D model reiterated the potential of climate change to diminish the structural integrity of the organism. This suggests that under future environmental conditions the weakening of the coralline algal skeleton along with increased external pressures (wave and bioerosion) may negatively influence the ability for coralline algae to maintain a habitat able to sustain high levels of biodiversity.

  10. Field study of growth and calcification rates of three species of articulated coralline algae in British Columbia, Canada.

    Science.gov (United States)

    Fisher, K; Martone, P T

    2014-04-01

    Ocean acidification caused by rising atmospheric CO₂ is predicted to negatively impact growth and calcification rates of coralline algae. Decreases in coralline abundance may have cascading effects on marine ecosystems and on carbon sequestration worldwide. In this study, we measured growth and calcification rates of three common species of articulated coralline algae (Bossiella plumosa, Calliarthron tuberculosum, and Corallina vancouveriensis) at an intertidal field site in British Columbia. Linear growth rates measured in the field were slow, although Bossiella grew significantly faster (0.22 cm mon⁻¹) than Calliarthron and Corallina (0.17 and 0.15 cm mon⁻¹, respectively). Growth rates in the field were generally slower than growth rates in the laboratory, suggesting that data generated in the laboratory may not be representative of natural field conditions. Growth rates did not decrease as fronds approached their maximum observed size, suggesting that maximum frond size might be determined not by intrinsic factors but by external factors such as wave-induced drag forces. Using growth data, we estimate that the largest observed Bossiella frond (20 cm²) and Calliarthron frond (40 cm²) were about 4- and 11-years-old, respectively, and had deposited approximately 1 and 6 g CaCO₃ in that time. Given the great abundance of coralline algae along the coast of British Columbia, deposition rates of CaCO₃ are expected to play a significant but poorly characterized role in carbon sequestration.

  11. Biomineralization of dolomite and magnesite discovered in tropical coralline algae: a biological solution to the geological dolomite problem

    Science.gov (United States)

    Nash, M. C.; Troitzsch, U.; Opdyke, B. N.; Trafford, J. M.; Russell, B. D.; Kline, D. I.

    2011-06-01

    Dolomite is a magnesium-rich carbonate mineral abundant in fossil carbonate reef platforms but surprisingly rare in modern sedimentary environments, a conundrum known as the ''Dolomite Problem". Marine sedimentary dolomite has been interpreted to form by an unconfirmed, post-depositional diagenetic process, despite minimal experimental success at replicating this. Here we show that dolomite, accompanied by magnesite, forms within living crustose coralline alga, Hydrolithon onkodes, a prolific global tropical reef species. Chemical micro-analysis of the coralline skeleton reveals that not only are the cell walls calcitised, but that cell spaces are typically filled with magnesite, rimmed by dolomite, or both. Mineralogy was confirmed by X-ray diffraction. Thus there are at least three mineral phases present (magnesium calcite, dolomite and magnesite) rather than one or two (magnesium calcite and brucite) as previously thought. Our results are consistent with dolomite occurrences in coralline algae rich environments in fossil reefs. Instead of a theory of post-depositional dolomitisation, we present evidence revealing biomineralization that can account for the massive formations seen in the geologic record. Additionally, our findings imply that previously unrecognized dolomite and magnesite have formed throughout the Holocene. This discovery together with the scale of coralline algae dominance in past shallow carbonate environments raises the possibility that environmental factors driving this biological dolomitisation process have influenced the global marine magnesium/calcium cycle. Perhaps, most importantly, we reveal that what has been considered a geological process can be a biological process, having many implications for both disciplines.

  12. Property Assessment of Sponge Cake Added with Egg Replacer

    OpenAIRE

    Yaqiang He; Linlin Wang; Qian Lu

    2015-01-01

    Chicken egg which is always used in sponge cake production is likely to deteriorate during storage or transportation. This weakness prevents the wide use of chicken egg in sponge cake making. In order to solve this problem, egg replacer has been developed. In this study, effect of egg replacer on the property of sponge cake was analyzed. The result indicated egg replacer could improve the yield rate and specific volume of sponge cake. However, high content of egg replacer would negatively imp...

  13. Substrate as driver of sponge distributions in mangrove ecosystems

    NARCIS (Netherlands)

    Hunting, E.R.; Franken, O.; Knopperts, F.; Kraak, M.H.S.; Vargas, R.; Rölling, W.F.M.; van der Geest, H.G.

    2013-01-01

    Caribbean mangrove-associated sponge communities are very distinct from sponge communities living on nearby reefs, but the mechanisms that underlie this distinction remain uncertain. This study aimed to elucidate the relative importance of substrate and habitat in determining the ability of sponges

  14. 16 CFR 501.6 - Cellulose sponges, irregular dimensions.

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Cellulose sponges, irregular dimensions. 501... REQUIREMENTS AND PROHIBITIONS UNDER PART 500 § 501.6 Cellulose sponges, irregular dimensions. Variety packages of cellulose sponges of irregular dimensions, are exempted from the requirements of § 500.25 of...

  15. Carbon conversion and metabolic rate in two marine sponges

    NARCIS (Netherlands)

    Koopmans, M.; Van Rijswijk, P.; Martens, D.; Egorova-Zachernyuk, T.A.; Middelburg, J.J.; Wijffels, R.H.

    2011-01-01

    The carbon metabolism of two marine sponges, Haliclona oculata and Dysidea avara, has been studied using a 13C isotope pulse-chase approach. The sponges were fed 13C-labeled diatoms (Skeletonema costatum) for 8 h and they took up between 75 and 85%. At different times, sponges were sampled for total

  16. Middle ear packing materials: comparison between absorbable hemostatic gelatine sponge and sugarcane biopolymer sponge in rats

    Directory of Open Access Journals (Sweden)

    Débora Lopes Bunzen

    2014-06-01

    Full Text Available INTRODUCTION: Several biomaterials can be used in ear surgery to pack the middle ear or support the graft. The absorbable gelatin sponge is the most widely used, but it may produce fibrosis and impair ventilation of the middle ear. OBJECTIVE: This experimental study aimed to investigate the inflammatory effects of the sugarcane biopolymer sponge (BP in the rat middle ear compared with absorbable gelatin sponge (AGS. MATERIALS AND METHODS: Prospective experimental study design. Thirty adult female Wistar rats were allocated to receive the BP sponge into the right ear and AGS into the left ear. Animals were randomly killed at 4 and 12 weeks post-procedure. Qualitative histological assessments were performed to evaluate the inflammatory reaction in the tympanic bullae. RESULTS: The BP sponge caused inflammation more intense and persistent than AGS. The BP was not absorbed during the experiment. Fibrosis was observed only in the ears with AGS. There were thickening of the mucosa and neoangiogenesis in the group of AGS. CONCLUSION: Despite inflammation, the BP sponge produced less fibrosis and neoangiogenesis compared to AGS. The sponge BP appeared to be a non-absorbable biomaterial in the middle ear.

  17. Biosynthesis of Silver Nanoparticles Using Marine Sponge

    Directory of Open Access Journals (Sweden)

    Mahta Rezazaeh Hamed

    2015-12-01

    Full Text Available Biosynthesis of silver nanoparticles using marine sponge extract Haliclona was carried out. Marine sponges' extracts are responsible for the reduction of silver nitrate solution. Silver nanoparticles synthesized using fresh and dry marine sponge. Experimental factors including, time duration, pH, temperature were optimized. Silver nanoparticles were characterized by UV-Visible spectrophotometry. The sizes of synthesis silver nanoparticles were 27-46 nm and confirmed by scanning electron microscopy (SEM. X-ray diffraction (XRD crystallography indicated the silver nanoparticles crystalline nature. Fourier transform infrared spectroscopy (FT-IR was revealed the functional groups of extract of Haliclona, which are capable of reduction of silver nanoparticles. This method is a cost-effective, eco-friendly and nontoxic procedure..

  18. Diversity and abundance of photosynthetic sponges in temperate Western Australia

    Directory of Open Access Journals (Sweden)

    Brümmer Franz

    2009-02-01

    Full Text Available Abstract Background Photosynthetic sponges are important components of reef ecosystems around the world, but are poorly understood. It is often assumed that temperate regions have low diversity and abundance of photosynthetic sponges, but to date no studies have investigated this question. The aim of this study was to compare the percentages of photosynthetic sponges in temperate Western Australia (WA with previously published data on tropical regions, and to determine the abundance and diversity of these associations in a range of temperate environments. Results We sampled sponges on 5 m belt transects to determine the percentage of photosynthetic sponges and identified at least one representative of each group of symbionts using 16S rDNA sequencing together with microscopy techniques. Our results demonstrate that photosynthetic sponges are abundant in temperate WA, with an average of 63% of sponge individuals hosting high levels of photosynthetic symbionts and 11% with low to medium levels. These percentages of photosynthetic sponges are comparable to those found on tropical reefs and may have important implications for ecosystem function on temperate reefs in other areas of the world. A diverse range of symbionts sometimes occurred within a small geographic area, including the three "big" cyanobacterial clades, Oscillatoria spongeliae, "Candidatus Synechococcus spongiarum" and Synechocystis species, and it appears that these clades all occur in a wide range of sponges. Additionally, spongin-permeating red algae occurred in at least 7 sponge species. This study provides the first investigation of the molecular phylogeny of rhodophyte symbionts in sponges. Conclusion Photosynthetic sponges are abundant and diverse in temperate WA, with comparable percentages of photosynthetic to non-photosynthetic sponges to tropical zones. It appears that there are three common generalist clades of cyanobacterial symbionts of sponges which occur in a wide

  19. Calcification Rates of Crustose Coralline Algae derived from Calcification Accretion Units (CAUs) deployed across U.S. Pacific Reefs since 2010 (NCEI Accession 0137093)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Laboratory experiments reveal calcification rates of crustose coralline algae are strongly correlated to seawater aragonite saturation state. Predictions of reduced...

  20. Polycyclic Guanidine Alkaloids from Poecilosclerida Marine Sponges.

    Science.gov (United States)

    Sfecci, Estelle; Lacour, Thierry; Amade, Philippe; Mehiri, Mohamed

    2016-04-09

    Sessile marine sponges provide an abundance of unique and diversified scaffolds. In particular, marine guanidine alkaloids display a very wide range of biological applications. A large number of cyclic guanidine alkaloids, including crambines, crambescins, crambescidins, batzelladines or netamins have been isolated from Poecilosclerida marine sponges. In this review, we will explore the chemodiversity of tri- and pentacyclic guanidine alkaloids. NMR and MS data tools will also be provided, and an overview of the wide range of bioactivities of crambescidins and batzelladines derivatives will be given.

  1. Method for analyzing solvent extracted sponge core

    Energy Technology Data Exchange (ETDEWEB)

    Ellington, W.E.; Calkin, C.L.

    1988-11-22

    For use in solvent extracted sponge core measurements of the oil saturation of earth formations, a method is described for quantifying the volume of oil in the fluids resulting from such extraction. The method consists of: (a) separating the solvent/oil mixture from the water in the extracted fluids, (b) distilling at least a portion of the solvent from the solvent/oil mixture substantially without co-distillation or loss of the light hydrocarbons in the mixture, (c) determining the volume contribution of the solvent remaining in the mixture, and (d) determining the volume of oil removed from the sponge by substracting the determined remaining solvent volume.

  2. Historical comparisons reveal altered competitive interactions in a guild of crustose coralline algae.

    Science.gov (United States)

    McCoy, S J; Pfister, C A

    2014-04-01

    As the ocean environment changes over time, a paucity of long-term data sets and historical comparisons limits the exploration of community dynamics over time in natural systems. Here, we used a long-term experimental data set to present evidence for a reversal of competitive dominance within a group of crustose coralline algae (CCA) from the 1980s to present time in the northeast Pacific Ocean. CCA are cosmopolitan species distributed globally, and dominant space holders in intertidal and subtidal systems. Competition experiments showed a markedly lower competitive ability of the previous competitively dominant species and a decreased response of competitive dynamics to grazer presence. Competitive networks obtained from survey data showed concordance between the 1980s and 2013, yet also revealed reductions in interaction strengths across the assemblage. We discuss the potential role of environmental change, including ocean acidification, in altered ecological dynamics in this system.

  3. Coralline algae disease reduces survival and settlement success of coral planulae in laboratory experiments

    Science.gov (United States)

    Quéré, Gaëlle; Nugues, Maggy M.

    2015-09-01

    Disease outbreaks have been involved in the deterioration of coral reefs worldwide and have been particularly striking among crustose coralline algae (CCA). Although CCA represent important cues for coral settlement, the impact of CCA diseases on the survival and settlement of coral planulae is unknown. Exposing coral larvae to healthy, diseased, and recently dead crusts from three important CCA species, we show a negative effect of disease in the inductive CCA species Hydrolithon boergesenii on larval survivorship of Orbicella faveolata and settlement of O. faveolata and Diploria labyrinthiformis on the CCA surface. No effect was found with the less inductive CCA species Neogoniolithon mamillare and Paragoniolithon accretum. Additionally, a majority of planulae that settled on top of diseased H. boergesenii crusts were on healthy rather than diseased/dying tissue. Our experiments suggest that CCA diseases have the potential to reduce the survivorship and settlement of coral planulae on coral reefs.

  4. Eukaryotic Life Inhabits Rhodolith-forming Coralline Algae (Hapalidiales, Rhodophyta), Remarkable Marine Benthic Microhabitats

    Science.gov (United States)

    Krayesky-Self, Sherry; Schmidt, William E.; Phung, Delena; Henry, Caroline; Sauvage, Thomas; Camacho, Olga; Felgenhauer, Bruce E.; Fredericq, Suzanne

    2017-04-01

    Rhodoliths are benthic calcium carbonate nodules accreted by crustose coralline red algae which recently have been identified as useful indicators of biomineral changes resulting from global climate change and ocean acidification. This study highlights the discovery that the interior of rhodoliths are marine biodiversity hotspots that function as seedbanks and temporary reservoirs of previously unknown stages in the life history of ecologically important dinoflagellate and haptophyte microalgae. Whereas the studied rhodoliths originated from offshore deep bank pinnacles in the northwestern Gulf of Mexico, the present study opens the door to assess the universality of endolithic stages among bloom-forming microalgae spanning different phyla, some of public health concerns (Prorocentrum) in marine ecosystems worldwide.

  5. Property Assessment of Sponge Cake Added with Egg Replacer

    Directory of Open Access Journals (Sweden)

    Yaqiang He

    2015-08-01

    Full Text Available Chicken egg which is always used in sponge cake production is likely to deteriorate during storage or transportation. This weakness prevents the wide use of chicken egg in sponge cake making. In order to solve this problem, egg replacer has been developed. In this study, effect of egg replacer on the property of sponge cake was analyzed. The result indicated egg replacer could improve the yield rate and specific volume of sponge cake. However, high content of egg replacer would negatively impact the internal structure and sensory property of sponge cake. Based on the result of this research, optimum content of egg replacer in sponge cake is 3.6 g. In the industrial production of sponge cake, different types of wheat flour and additives would be used. The optimum content of egg replacer may be different from the result of this research. Therefore, in the industrial production, the optimum content of egg replacer should be determined based on experiment.

  6. Distribution, abundance and diversity of crustose coralline algae on the Great Barrier Reef

    Science.gov (United States)

    Dean, Angela J.; Steneck, Robert S.; Tager, Danika; Pandolfi, John M.

    2015-06-01

    The Great Barrier Reef (GBR) is the world's largest coral reef ecosystem. Crustose coralline algae (CCA) are important contributors to reef calcium carbonate and can facilitate coral recruitment. Despite the importance of CCA, little is known about species-level distribution, abundance, and diversity, and how these vary across the continental shelf and key habitat zones within the GBR. We quantified CCA species distributions using line transects ( n = 127) at 17 sites in the northern and central regions of the GBR, distributed among inner-, mid-, and outer-shelf regions. At each site, we identified CCA along replicate transects in three habitat zones: reef flat, reef crest, and reef slope. Taxonomically, CCA species are challenging to identify (especially in the field), and there is considerable disagreement in approach. We used published, anatomically based taxonomic schemes for consistent identification. We identified 30 CCA species among 12 genera; the most abundant species were Porolithon onkodes, Paragoniolithon conicum (sensu Adey), Neogoniolithon fosliei, and Hydrolithon reinboldii. Significant cross-shelf differences were observed in CCA community structure and CCA abundance, with inner-shelf reefs exhibiting lower CCA abundance than outer-shelf reefs. Shelf position, habitat zone, latitude, depth, and the interaction of shelf position and habitat were all significantly associated with variation in composition of CCA communities. Collectively, shelf position, habitat, and their interaction contributed to 22.6 % of the variation in coralline communities. Compared to mid- and outer-shelf sites, inner-shelf sites exhibited lower relative abundances of N. fosliei and Lithophyllum species. Reef crest habitats exhibited greater abundance of N. fosliei than reef flat and reef slope habitats. Reef slope habitats exhibited lower abundance of P. onkodes, but greater abundance of Neogoniolithon clavycymosum than reef crest and reef slope habitats. These findings

  7. Crustose coralline algal diseases in the U.S.-Affiliated Pacific Islands

    Science.gov (United States)

    Vargas-Ángel, Bernardo

    2010-12-01

    Despite the critical role of crustose coralline algae (CCA) in coral reef formation, maintenance, and ecology, little is known about coralline algal disease abundance, distribution, etiology, or the potential implications of declining CCA flora. This paper presents the first quantitative study of CCA disease on U.S. Pacific coral reefs, based on Rapid Ecological Assessments conducted at 337 discrete sites, at 42 different U.S.-Affiliated Pacific Islands and Atolls, within 5 major geographical regions: main Hawaiian Islands, Northwestern Hawaiian Islands, American Samoa, the Pacific Remote Island Areas (PRIA), and Guam and the Commonwealth of the Northern Mariana Islands (CNMI). Five major disease categories were enumerated, and a disease occurrence index was estimated, based on case counts relative to percent CCA cover. CCA disease occurrence exhibited considerable spatial variability both between and within islands/atolls, with some regions being disproportionately affected by disease. No diseases were observed at remote Johnston and Wake Atolls, or the main Hawaiian Islands. Diseases were rare in the Northwestern Hawaiian Islands and the Northern Mariana Islands; occasional to common around the PRIA, and common to abundant in American Samoa, Guam, and the Southern Mariana Islands. Pacific-wide, disease occurrence was statistically associated with CCA percent cover and sea surface temperatures (SSTs) but not with human population density; nonetheless, disease occurrence and population density were statistically correlated for those islands containing disease. Although Pacific-wide, the occurrence of disease was low, with no active outbreaks detected in any region, hot spots of disease were detected around Guam, the southern CNMI, American Samoa, and the PRIA. The high levels of spatial and temporal variability in disease occurrence herein underscore the patchy nature and fluctuating distribution dynamics of these afflictions. Also, the widespread dispersal

  8. Freshening of the Alaska Coastal Current recorded by coralline algal Ba/Ca ratios

    Science.gov (United States)

    Chan, Phoebe; Halfar, Jochen; Williams, Branwen; Hetzinger, Steffen; Steneck, Robert; Zack, Thomas; Jacob, Dorrit E.

    2011-03-01

    Arctic Ocean freshening can exert a controlling influence on global climate, triggering strong feedbacks on ocean-atmospheric processes and affecting the global cycling of the world's oceans. Glacier-fed ocean currents such as the Alaska Coastal Current are important sources of freshwater for the Bering Sea shelf, and may also influence the Arctic Ocean freshwater budget. Instrumental data indicate a multiyear freshening episode of the Alaska Coastal Current in the early 21st century. It is uncertain whether this freshening is part of natural multidecadal climate variability or a unique feature of anthropogenically induced warming. In order to answer this, a better understanding of past variations in the Alaska Coastal Current is needed. However, continuous long-term high-resolution observations of the Alaska Coastal Current have only been available for the last 2 decades. In this study, specimens of the long-lived crustose coralline alga Clathromorphum nereostratum were collected within the pathway of the Alaska Coastal Current and utilized as archives of past temperature and salinity. Results indicate that coralline algal Mg/Ca ratios provide a 60 year record of sea surface temperatures and track changes of the Pacific Decadal Oscillation, a pattern of decadal-to-multidecadal ocean-atmosphere climate variability centered over the North Pacific. Algal Ba/Ca ratios (used as indicators of coastal freshwater runoff) are inversely correlated to instrumentally measured Alaska Coastal Current salinity and record the period of freshening from 2001 to 2006. Similar multiyear freshening events are not evident in the earlier portion of the 60 year Ba/Ca record. This suggests that the 21st century freshening of the Alaska Coastal Current is a unique feature related to increasing glacial melt and precipitation on mainland Alaska.

  9. Same, same but different: symbiotic bacterial associations in GBR sponges

    Directory of Open Access Journals (Sweden)

    Nicole S Webster

    2013-01-01

    Full Text Available Symbioses in marine sponges involve diverse consortia of microorganisms that contribute to the health and ecology of their hosts. The microbial communities of 13 taxonomically diverse Great Barrier Reef (GBR sponge species were assessed by DGGE and 16S rRNA gene sequencing to determine intra and inter species variation in bacterial symbiont composition. Microbial profiling revealed communities that were largely conserved within different individuals of each species with intra species similarity ranging from 65-100%. 16S rRNA gene sequencing revealed that the communities were dominated by Proteobacteria, Chloroflexi, Acidobacteria, Actinobacteria, Nitrospira and Cyanobacteria. Sponge-associated microbes were also highly host-specific with no operational taxonomic units (OTUs common to all species and the most ubiquitous OTU found in only 5 of the 13 sponge species. In total, 91% of the OTUs were restricted to a single sponge species. However, GBR sponge microbes were more closely related to other sponge-derived bacteria than they were to environmental communities with sequences falling within 50 of the 173 previously defined sponge-(or sponge-coral specific sequence clusters. These sequence clusters spanned the Acidobacteria, Actinobacteria, Proteobacteria, Bacteroidetes, Chloroflexi, Cyanobacteria, Gemmatimonadetes, Nitrospira and the Planctomycetes-Verrucomicrobia-Chlamydiae superphylum. The number of sequences assigned to these sponge-specific clusters across all species ranged from 0% to 92%. No relationship between host phylogeny and symbiont communities were observed across the different sponge orders, although the highest level of similarity was detected in two closely related Xestospongia species. This study identifies the core microbial inhabitants in a range of GBR sponges thereby providing the basis for future studies on sponge symbiotic function and research aiming to predict how sponge holobionts will respond to environmental

  10. Wool fibril sponges with perspective biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Patrucco, A., E-mail: a.patrucco@bi.ismac.cnr.it [CNR-ISMAC, Italian National Research Council, Institute for Macromolecular Studies, Corso G. Pella 16, 13900, Biella (Italy); Cristofaro, F., E-mail: francesco.cristofaro01@universitadipavia.it [Department of Molecular Medicine, INSTM UdR of Pavia, University of Pavia, Viale Taramelli 3/B, 27100, Pavia (Italy); Centre for Health Technologies (CHT), University of Pavia, Via Ferrata 1, 27100, Pavia (Italy); Simionati, M., E-mail: m.simionati@bi.ismac.cnr.it [CNR-ISMAC, Italian National Research Council, Institute for Macromolecular Studies, Corso G. Pella 16, 13900, Biella (Italy); Zoccola, M., E-mail: m.zoccola@bi.ismac.cnr.it [CNR-ISMAC, Italian National Research Council, Institute for Macromolecular Studies, Corso G. Pella 16, 13900, Biella (Italy); Bruni, G., E-mail: giovanna.bruni@unipv.it [Department of Chemistry, — Physical-Chemistry Section, University of Pavia, Viale Taramelli 16, 27100, Pavia (Italy); Fassina, L., E-mail: lorenzo.fassina@unipv.it [Centre for Health Technologies (CHT), University of Pavia, Via Ferrata 1, 27100, Pavia (Italy); Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Via Ferrata 1, 27100, Pavia (Italy); Visai, L., E-mail: livia.visai@unipv.it [Department of Molecular Medicine, INSTM UdR of Pavia, University of Pavia, Viale Taramelli 3/B, 27100, Pavia (Italy); Centre for Health Technologies (CHT), University of Pavia, Via Ferrata 1, 27100, Pavia (Italy); Department of Occupational Medicine, Toxicology and Environmental Risks, S. Maugeri Foundation, IRCCS, Via S. Boezio, 28, 27100, Pavia (Italy); Magenes, G., E-mail: giovanni.magenes@unipv.it [Centre for Health Technologies (CHT), University of Pavia, Via Ferrata 1, 27100, Pavia (Italy); Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Via Ferrata 1, 27100, Pavia (Italy); and others

    2016-04-01

    Sheep's wool was used as a natural source to prepare keratin microfibril sponges for scaffolding, by disruption of the histological structure of the fibres through mild alkali treatment, followed by ultrasonication, casting and salt-leaching. The wool sponges showed highly interconnected porosity (93%) and contain intrinsic sites of cellular recognition that mimic the extracellular matrix (ECM). They displayed good thermal and water stability due to the conversion of disulphide cystine bonds into shorter monosulphide lanthionine intermolecular bonds, but significantly swelled in water, because of the high hydrophilicity and porosity, with a volume increasing up to 38%. Nevertheless, sponges were stable in water without structural changes, with a neutral pH in aqueous media, and showed excellent resilience to repeated compression stresses. According to in vitro biocompatibility assays, wool fibril sponges showed a good cell adhesion and proliferation as proved by MTT, FDA assays and SEM observations. The unique structure of the cortical cell network made by wool keratin proteins with controlled-size macro-porosity suitable for cell guesting, and nutrient feeding, provides an excellent scaffold for future tissue engineering applications. - Highlights: • Scaffolds were prepared from wool exploiting the fibres' histology structure. • The scaffold showed high interconnected micro- and macro-porosity. • The microscopic structure is very similar to the extracellular bone matrix. • Scaffolds reversibly swell in water with high resilience to repeated compression. • Composites were cytocompatible and supported the growth of SAOS-2 cell line.

  11. The life and death of sponge cells

    NARCIS (Netherlands)

    Sipkema, D.; Snijders, A.P.L.; Schroën, C.G.P.H.; Osinga, R.; Wijffels, R.H.

    2004-01-01

    Cell viability is an essential touchstone in the study of the effect of medium components on cell physiology. We developed a flow-cytometric assay to determine sponge-cell viability, based on the combined use of fluorescein diacetate (FDA) and propidium iodide (PI). Cell fluorescence measurements ba

  12. Lipid contents of the sponge Haliclona sp.

    Digital Repository Service at National Institute of Oceanography (India)

    Parameswaran, P.S.; Das, B.; Kamat, S.Y.

    Several fatty acids, sterols, batyl alcohol and its analogs and an N-acylated sphingosine (ceramide) have been isolated from the lipid fraction of the extract of the sponge Haliclona sp. The major sterol is found to be cholesterol (54%), followed...

  13. Wool fibril sponges with perspective biomedical applications.

    Science.gov (United States)

    Patrucco, A; Cristofaro, F; Simionati, M; Zoccola, M; Bruni, G; Fassina, L; Visai, L; Magenes, G; Mossotti, R; Montarsolo, A; Tonin, C

    2016-04-01

    Sheep's wool was used as a natural source to prepare keratin microfibril sponges for scaffolding, by disruption of the histological structure of the fibres through mild alkali treatment, followed by ultrasonication, casting and salt-leaching. The wool sponges showed highly interconnected porosity (93%) and contain intrinsic sites of cellular recognition that mimic the extracellular matrix (ECM). They displayed good thermal and water stability due to the conversion of disulphide cystine bonds into shorter monosulphide lanthionine intermolecular bonds, but significantly swelled in water, because of the high hydrophilicity and porosity, with a volume increasing up to 38%. Nevertheless, sponges were stable in water without structural changes, with a neutral pH in aqueous media, and showed excellent resilience to repeated compression stresses. According to in vitro biocompatibility assays, wool fibril sponges showed a good cell adhesion and proliferation as proved by MTT, FDA assays and SEM observations. The unique structure of the cortical cell network made by wool keratin proteins with controlled-size macro-porosity suitable for cell guesting, and nutrient feeding, provides an excellent scaffold for future tissue engineering applications.

  14. Calcareous sponges of the Netherlands (Porifera, Calcarea)

    NARCIS (Netherlands)

    Koolwijk, van Th.

    1982-01-01

    The taxonomy of calcareous sponges occurring in the Netherlands is reviewed, using field observations of live individuals, microscopical examination of individual skeletons and study of the breeding cycle. This led to the conclusion that a new species had to be erected and other species reidentified

  15. Mr. Spong. Verdediging en bewijs in moordzaken

    NARCIS (Netherlands)

    Kwakman, N.J.M.

    2013-01-01

    Mij was gevraagd als ‘moderator’ op te treden en de aftrap van de avond te geven met een korte inleiding waarin de presentatie van Spong over zijn boek 'De Breuk' in een wat breder perspectief werd geplaatst. Hier de - op een enkel detail verduidelijkte - tekst van de inleiding, aangevuld met (links

  16. A new cyclostellettamine from sponge Amphimedon compressa

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A new compound, 8,8'-dienecyclostellettamine, was isolated from the marine sponge Amphimedon compressa. Its structure was elucidated by spectroscopic methods including 1D and 2D NMR, UV, IR, ESI-MS, MALDI-MS techniques. It is probably an important precursor of the manzamine alkoids, and also showed vigorous antibacterial activities.

  17. Oxygen consumption by a coral reef sponge.

    Science.gov (United States)

    Hadas, Eran; Ilan, Micha; Shpigel, Muki

    2008-07-01

    Oxygen consumption of the Red Sea coral reef sponge Negombata magnifica was measured using both incubation and steady-state methods. The latter method was found to be the more reliable because sponge activity remained stable over time. Oxygen consumption rate was measured during three levels of sponge activity: full activity, reduced activity and basal activity (starved). It was found that the active oxygen consumption rate of N. magnifica averaged 37.3+/-4.6 nmol O2 min(-1) g(-1) wet mass, which is within the upper range reported for other tropical marine sponges. Fully active N. magnifica individuals consumed an average of 41.8+/-3.2 nmol O2 min(-1) g(-1) wet mass. The mean basal respiration rate was 20.2+/-1.2 nmol O2 min(-1) g(-1) wet mass, which is 51.6+/-2.5% of the active respiration rate. Therefore, the oxygen used for water pumping was calculated to be at most 10.6+/-1.8 nmol O2 min(-1) g(-1) wet mass, which is 25.1+/-3.6% of the total respiration. Combined oxygen used for maintenance and water pumping activity was calculated to be 30.8 nmol O2 min(-1) g(-1) wet mass, which is approximately 74% of the sponge's total oxygen requirement. The remaining oxygen is directed to other physiological activities, mainly the energy requirement of growth. These findings suggest that only a relatively minor amount of energy is potentially available for growth, and thus might be a factor in controlling the growth rate of N. magnifica in oligotrophic coral reefs.

  18. Antiviral Lead Compounds from Marine Sponges

    Directory of Open Access Journals (Sweden)

    Kenneth P. Minneman

    2010-10-01

    Full Text Available Marine sponges are currently one of the richest sources of pharmacologically active compounds found in the marine environment. These bioactive molecules are often secondary metabolites, whose main function is to enable and/or modulate cellular communication and defense. They are usually produced by functional enzyme clusters in sponges and/or their associated symbiotic microorganisms. Natural product lead compounds from sponges have often been found to be promising pharmaceutical agents. Several of them have successfully been approved as antiviral agents for clinical use or have been advanced to the late stages of clinical trials. Most of these drugs are used for the treatment of human immunodeficiency virus (HIV and herpes simplex virus (HSV. The most important antiviral lead of marine origin reported thus far is nucleoside Ara-A (vidarabine isolated from sponge Tethya crypta. It inhibits viral DNA polymerase and DNA synthesis of herpes, vaccinica and varicella zoster viruses. However due to the discovery of new types of viruses and emergence of drug resistant strains, it is necessary to develop new antiviral lead compounds continuously. Several sponge derived antiviral lead compounds which are hopedto be developed as future drugs are discussed in this review. Supply problems are usually the major bottleneck to the development of these compounds as drugs during clinical trials. However advances in the field of metagenomics and high throughput microbial cultivation has raised the possibility that these techniques could lead to the cost-effective large scale production of such compounds. Perspectives on biotechnological methods with respect to marine drug development are also discussed.

  19. Antiviral lead compounds from marine sponges

    KAUST Repository

    Sagar, Sunil

    2010-10-11

    Marine sponges are currently one of the richest sources of pharmacologically active compounds found in the marine environment. These bioactive molecules are often secondary metabolites, whose main function is to enable and/or modulate cellular communication and defense. They are usually produced by functional enzyme clusters in sponges and/or their associated symbiotic microorganisms. Natural product lead compounds from sponges have often been found to be promising pharmaceutical agents. Several of them have successfully been approved as antiviral agents for clinical use or have been advanced to the late stages of clinical trials. Most of these drugs are used for the treatment of human immunodeficiency virus (HIV) and herpes simplex virus (HSV). The most important antiviral lead of marine origin reported thus far is nucleoside Ara-A (vidarabine) isolated from sponge Tethya crypta. It inhibits viral DNA polymerase and DNA synthesis of herpes, vaccinica and varicella zoster viruses. However due to the discovery of new types of viruses and emergence of drug resistant strains, it is necessary to develop new antiviral lead compounds continuously. Several sponge derived antiviral lead compounds which are hopedto be developed as future drugs are discussed in this review. Supply problems are usually the major bottleneck to the development of these compounds as drugs during clinical trials. However advances in the field of metagenomics and high throughput microbial cultivation has raised the possibility that these techniques could lead to the cost-effective large scale production of such compounds. Perspectives on biotechnological methods with respect to marine drug development are also discussed. 2010 by the authors; licensee MDPI.

  20. Biocalcification processes in three coralline sponges from the Lizard Island Section (Great Barrier Reef, Australia): The Stromatoporoid Astrosclera, the Chaetetid Spirastrella (Acanthochaetetes) and the Sphinctozoid Vaceletia (Demospongiae)

    OpenAIRE

    Wörheide, Gert; Reitner, Joachim; Gautret, Pascale

    1996-01-01

    The main biocalcification events in the phylogenetically distinct taxa Astrosc/era, S. (Acanthochaetetes) and Vace/ etia are described. Each taxon constructs its secondary calcareous skeleton in its own highly specialized way and provides therefore insight in the biocalcification processes of ancient reef constructors like stromatoporoids, chaetetids, and sphinctozoans.

  1. Habitat preference of Zoantharia genera depends on host sponge morphology

    Directory of Open Access Journals (Sweden)

    Alberto Acosta

    2010-08-01

    Full Text Available Studies about sponge-zoanthid symbioses have been focused on understanding the specificity of the association, rather thantesting what are the characteristics that make the host suitable to be colonized. For the first time it is investigated whether the ZoanthariaParazoanthus and Epizoanthus preference is related to the host sponge morphology (shape and mechanical resistance. Materials andmethods. Sponges were categorized according to their shape and mechanical resistance. The presence/absence of zoanthids was recordedin 1,068 sponges at San Andres Island, and their habitat preference was evaluated using indices and confidence intervals. Results. 85Parazoanthus colonies (78% of the total associations and 24 Epizoanthus colonies (22% were associated to sponges (10.2% in total.Parazoanthus uses branched and compressible sponges although prefers encrusting and fragile sponges, while Epizoanthus showes theopposite pattern, it can inhabit encrusting and fragile sponges but prefers branched and compressible sponges. Conclusion. These resultsindicated that sponge morphology is an important trait in zoanthid habitat selection. On the other hand, the similarity in the habitat used byzoanthids suggests the possibility of inter-generic competition if common resources are limited in time and space, while the differentialhabitat preference allows the competitive coexistence of both genera.

  2. Preparation and characteristics of gelatin sponges crosslinked by microbial transglutaminase

    Directory of Open Access Journals (Sweden)

    Haiyan Long

    2017-08-01

    Full Text Available Microbial transglutaminase (mTG was used as a crosslinking agent in the preparation of gelatin sponges. The physical properties of the materials were evaluated by measuring their material porosity, water absorption, and elastic modulus. The stability of the sponges were assessed via hydrolysis and enzymolysis. To study the material degradation in vivo, subcutaneous implantations of sponges were performed on rats for 1–3 months, and the implanted sponges were analyzed. To evaluate the cell compatibility of the mTG crosslinked gelatin sponges (mTG sponges, adipose-derived stromal stem cells were cultured and inoculated into the scaffold. Cell proliferation and viability were measured using alamarBlue assay and LIVE/DEAD fluorescence staining, respectively. Cell adhesion on the sponges was observed by scanning electron microscopy (SEM. Results show that mTG sponges have uniform pore size, high porosity and water absorption, and good mechanical properties. In subcutaneous implantation, the material was partially degraded in the first month and completely absorbed in the third month. Cell experiments showed evident cell proliferation and high viability. Results also showed that the cells grew vigorously and adhered tightly to the sponge. In conclusion, mTG sponge has good biocompatibility and can be used in tissue engineering and regenerative medicine.

  3. Biomineralization of dolomite and magnesite discovered in tropical coralline algae: a biological solution to the geological dolomite problem

    Directory of Open Access Journals (Sweden)

    M. C. Nash

    2011-06-01

    Full Text Available Dolomite is a magnesium-rich carbonate mineral abundant in fossil carbonate reef platforms but surprisingly rare in modern sedimentary environments, a conundrum known as the ''Dolomite Problem". Marine sedimentary dolomite has been interpreted to form by an unconfirmed, post-depositional diagenetic process, despite minimal experimental success at replicating this. Here we show that dolomite, accompanied by magnesite, forms within living crustose coralline alga, Hydrolithon onkodes, a prolific global tropical reef species. Chemical micro-analysis of the coralline skeleton reveals that not only are the cell walls calcitised, but that cell spaces are typically filled with magnesite, rimmed by dolomite, or both. Mineralogy was confirmed by X-ray diffraction. Thus there are at least three mineral phases present (magnesium calcite, dolomite and magnesite rather than one or two (magnesium calcite and brucite as previously thought. Our results are consistent with dolomite occurrences in coralline algae rich environments in fossil reefs. Instead of a theory of post-depositional dolomitisation, we present evidence revealing biomineralization that can account for the massive formations seen in the geologic record. Additionally, our findings imply that previously unrecognized dolomite and magnesite have formed throughout the Holocene. This discovery together with the scale of coralline algae dominance in past shallow carbonate environments raises the possibility that environmental factors driving this biological dolomitisation process have influenced the global marine magnesium/calcium cycle. Perhaps, most importantly, we reveal that what has been considered a geological process can be a biological process, having many implications for both disciplines.

  4. Succession of crustose coralline red algae (Rhodophyta) on coralgal reefs exposed to physical disturbance in the southwest Atlantic

    Science.gov (United States)

    Mariath, Rodrigo; Rodriguez, Rafael Riosmena; Figueiredo, Marcia A. O.

    2013-12-01

    Biological and physical disturbances create the conditions for species succession in any biological ecosystem. In particular, coral reefs are susceptible to this process because of the complexity of their ecological relationships. In the southwest Atlantic, nearshore reefs are mostly coated by a thin layer of coralline crusts rather than stony corals. However, little is known about the succession of crustose coralline algae. We studied this process by means of a series of experimental and control discs exposed to physical disturbance. Our results showed that the dominant species in natural conditions, Pneophyllum conicum, had early recruits and later became dominant on the discs, replicating the community structure of the actual reef. This species had mature reproductive structures and available spores from the beginning of the colonization experiments. Thicker crusts of Porolithon pachydermum and Peyssonnelia sp. were found on the discs after 112 days, and significantly increased their cover over the succeeding months; and after 1 year, P. conicum was less abundant. Physical disturbance increased crust recruitment and the low-light environment created by sediments. The data demonstrated coexistence among crustose coralline species and a tolerance to physical disturbance, which seemed to favor the thinner crusts of P. conicum over thick-crust species during succession. The succession pattern observed in this subtropical Brazilian coral reef differs from that described for shallow tropical reef communities.

  5. Larval settlement of the common Australian sea urchin Heliocidaris erythrogramma in response to bacteria from the surface of coralline algae.

    Science.gov (United States)

    Huggett, Megan J; Williamson, Jane E; de Nys, Rocky; Kjelleberg, Staffan; Steinberg, Peter D

    2006-10-01

    Bacterial biofilms are increasingly seen as important for the successful settlement of marine invertebrate larvae. Here we tested the effects of biofilms on settlement of the sea urchin Heliocidaris erythrogramma. Larvae settled on many surfaces including various algal species, rocks, sand and shells. Settlement was reduced by autoclaving rocks and algae, and by treatment of algae with antibiotics. These results, and molecular and culture-based analyses, suggested that the bacterial community on plants was important for settlement. To test this, approximately 250 strains of bacteria were isolated from coralline algae, and larvae were exposed to single-strain biofilms. Many induced rates of settlement comparable to coralline algae. The genus Pseudoalteromonas dominated these highly inductive strains, with representatives from Vibrio, Shewanella, Photobacterium and Pseudomonas also responsible for a high settlement response. The settlement response to different bacteria was species specific, as low inducers were also dominated by species in the genera Pseudoalteromonas and Vibrio. We also, for the first time, assessed settlement of larvae in response to characterised, monospecific biofilms in the field. Larvae metamorphosed in higher numbers on an inducing biofilm, Pseudoalteromonas luteoviolacea, than on either a low-inducing biofilm, Pseudoalteromonas rubra, or an unfilmed control. We conclude that the bacterial community on the surface of coralline algae is important as a settlement cue for H. erythrogramma larvae. This study is also an example of the emerging integration of molecular microbiology and more traditional marine eukaryote ecology.

  6. To bend a coralline: effect of joint morphology on flexibility and stress amplification in an articulated calcified seaweed.

    Science.gov (United States)

    Martone, Patrick T; Denny, Mark W

    2008-11-01

    Previous studies have demonstrated that fleshy seaweeds resist wave-induced drag forces in part by being flexible. Flexibility allows fronds to 'go with the flow', reconfiguring into streamlined shapes and reducing frond area projected into flow. This paradigm extends even to articulated coralline algae, which produce calcified fronds that are flexible only because they have distinct joints (genicula). The evolution of flexibility through genicula was a major event that allowed articulated coralline algae to grow elaborate erect fronds in wave-exposed habitats. Here we describe the mechanics of genicula in the articulated coralline Calliarthron and demonstrate how segmentation affects bending performance and amplifies bending stresses within genicula. A numerical model successfully predicted deflections of articulated fronds by assuming genicula to be assemblages of cables connecting adjacent calcified segments (intergenicula). By varying the dimensions of genicula in the model, we predicted the optimal genicular morphology that maximizes flexibility while minimizing stress amplification. Morphological dimensions of genicula most prone to bending stresses (i.e. genicula near the base of fronds) match model predictions.

  7. Mineralogical response of the Mediterranean crustose coralline alga Lithophyllum cabiochae to near-future ocean acidification and warming

    Science.gov (United States)

    Nash, Merinda C.; Martin, Sophie; Gattuso, Jean-Pierre

    2016-11-01

    Red calcareous coralline algae are thought to be among the organisms most vulnerable to ocean acidification due to the high solubility of their magnesium calcite skeleton. Although skeletal mineralogy is proposed to change as CO2 and temperature continue to rise, there is currently very little information available on the response of coralline algal carbonate mineralogy to near-future changes in pCO2 and temperature. Here we present results from a 1-year controlled laboratory experiment to test mineralogical responses to pCO2 and temperature in the Mediterranean crustose coralline alga (CCA) Lithophyllum cabiochae. Our results show that Mg incorporation is mainly constrained by temperature (+1 mol % MgCO3 for an increase of 3 °C), and there was no response to pCO2. This suggests that L. cabiochae thalli have the ability to buffer their calcifying medium against ocean acidification, thereby enabling them to continue to deposit magnesium calcite with a significant mol % MgCO3 under elevated pCO2. Analyses of CCA dissolution chips showed a decrease in Mg content after 1 year for all treatments, but this was affected neither by pCO2 nor by temperature. Our findings suggest that biological processes exert a strong control on calcification on magnesium calcite and that CCA may be more resilient under rising CO2 than previously thought. However, previously demonstrated increased skeletal dissolution with ocean acidification will still have major consequences for the stability and maintenance of Mediterranean coralligenous habitats.

  8. First evidence of chitin in calcified coralline algae: new insights into the calcification process of Clathromorphum compactum

    Science.gov (United States)

    Rahman, M. Azizur; Halfar, Jochen

    2014-08-01

    Interest in calcifying coralline algae has been increasing over the past years due to the discovery of extensive coralline algal dominated ecosystems in Arctic and Subarctic latitudes, their projected sensitivity to ocean acidification and their utility as palaeoenvironmental proxies. Thus, it is crucial to obtain a detailed understanding of their calcification process. We here extracted calcified skeletal organic matrix components including soluble and insoluble fractions from the widely-distributed Subarctic and Arctic coralline alga Clathromorphum compactum. The lyophilized skeletal organic matrix fractions showed comparatively high concentrations of soluble and insoluble organic matrices comprising 0.9% and 4.5% of skeletal weight, respectively. This is significantly higher than in other skeletal marine calcifiers. Attenuated Total Reflection-Fourier Transform Infrared Spectroscopy (ATR-FTIR) and X-Ray Diffraction (XRD) results indicate that chitin is present in the skeletal organic matrices of C. compactum. This polymer exhibits similar hierarchical structural organizations with collagen present in the matrix and serves as a template for nucleation and controls the location and orientation of mineral phases. Chitin contributes to significantly increasing skeletal strength, making C. compactum highly adapted for living in a shallow high-latitude benthic environment. Furthermore, chitin containing polysaccharides can increase resistance of calcifiers to negative effects of ocean acidification.

  9. Three dimensional MOF-sponge for fast dynamic adsorption.

    Science.gov (United States)

    Li, Huizeng; Li, Mingzhu; Li, Wenbo; Yang, Qiang; Li, Yanan; Gu, Zhenkun; Song, Yanlin

    2017-02-22

    Nowadays, environmental pollution is a big problem. Metal organic frameworks (MOFs) provide a novel strategy for exhaust gases adsorption and toxic pollutants removal. We proposed a facile and versatile method to prepare a highly efficient three dimensional MOF-sponge by coating MOF crystals on polyurethane sponge surface, mimicking the porous structure of the marine animal, sponge. Owing to combination of the spatial structure of the commercial sponge and the excellent adsorption capacity of MOF coatings, the MOF-sponge possessed good permeability and high dynamic adsorption capacity. Dynamic adsorption ability of the prepared Cu3(BTC)2-sponge was demonstrated by flowing gas-mixtures of NH3/N2 and an aquatic solution of Rhodamine B through it, with a capacity of 101.6 mg g(-1) and 8.8 mg g(-1) for NH3 and Rhodamine B, respectively.

  10. Composition of the lipophilic extract from the sponge Suberites domuncula

    Directory of Open Access Journals (Sweden)

    SIMEON POPOV

    2003-05-01

    Full Text Available The composition of the lipophylic extract from the sponge Suberites domuncula was investigated. Lipids and their fatty acids, as well as volatile compounds and sterols were identified. Stanols are the main class of steroids in the investigated sponge. A high concentration of unsaturated long chain fatty acids (C26–C28 was identified. The presence of branched and odd fatty acids indicates associated bacteria in the sponge.

  11. Deep phylogeny and evolution of sponges (phylum Porifera).

    Science.gov (United States)

    Wörheide, G; Dohrmann, M; Erpenbeck, D; Larroux, C; Maldonado, M; Voigt, O; Borchiellini, C; Lavrov, D V

    2012-01-01

    Sponges (phylum Porifera) are a diverse taxon of benthic aquatic animals of great ecological, commercial, and biopharmaceutical importance. They are arguably the earliest-branching metazoan taxon, and therefore, they have great significance in the reconstruction of early metazoan evolution. Yet, the phylogeny and systematics of sponges are to some extent still unresolved, and there is an on-going debate about the exact branching pattern of their main clades and their relationships to the other non-bilaterian animals. Here, we review the current state of the deep phylogeny of sponges. Several studies have suggested that sponges are paraphyletic. However, based on recent phylogenomic analyses, we suggest that the phylum Porifera could well be monophyletic, in accordance with cladistic analyses based on morphology. This finding has many implications for the evolutionary interpretation of early animal traits and sponge development. We further review the contribution that mitochondrial genes and genomes have made to sponge phylogenetics and explore the current state of the molecular phylogenies of the four main sponge lineages (Classes), that is, Demospongiae, Hexactinellida, Calcarea, and Homoscleromorpha, in detail. While classical systematic systems are largely congruent with molecular phylogenies in the class Hexactinellida and in certain parts of Demospongiae and Homoscleromorpha, the high degree of incongruence in the class Calcarea still represents a challenge. We highlight future areas of research to fill existing gaps in our knowledge. By reviewing sponge development in an evolutionary and phylogenetic context, we support previous suggestions that sponge larvae share traits and complexity with eumetazoans and that the simple sedentary adult lifestyle of sponges probably reflects some degree of secondary simplification. In summary, while deep sponge phylogenetics has made many advances in the past years, considerable efforts are still required to achieve a

  12. The Effectiveness of Vaginal Contraceptive Sponge

    Institute of Scientific and Technical Information of China (English)

    金毓翠; 丁家佩; 董吟秋; 董炳麟; 许雪芬

    1994-01-01

    The vaginal contraceptive sponge is made of polyurethane containing 1 g of nonoxynot-9, The gross cumulative twelve month life table pregnancy rate of 352 cases using vaginal contraceptive sponge was 5.7/ 100 women and the method pregnancy rate was 2. 3/ 100 women. The gross cumulative continuation rate per 100 women was 74. Only 2 patients (1,0/ 100 women) suffering from vaginitis and itching of vulva no longer wished to continue in the stud). Over the course of the study no significant changes were observed in any of the laboratory parameters such as vagina & cervix smear etc. that had been monitored. This modality associated with few side effects and its effectiveness rate and also indicated a protection from the risk of acquring of sex-transmitted diseases.

  13. Bacteria from marine sponges: A source of new drugs.

    Science.gov (United States)

    Bibi, Fehmida; Faheem, Muhammad; Azhar, Esam I; Yasir, Muhammad; Alvi, Sana Akhter; Kamal, Mohammad A; Ullah, Ikram; Nasser, Muhammad I

    2016-10-12

    Sponges are rich source of bioactive natural products synthesized by the symbiotic bacteria belonging to different phyla. Due to a competition for space and nutrients the marine bacteria associated with sponges could produce more antibiotic substances. To explore the proactive potential of marine microbes extensive research has been done. These bioactive metabolites have some unique properties that are pharmaceutically important. To date, majority of these metabolites have been identified from marine invertebrates of which sponges predominate. Sponges harbor abundant and diverse microorganisms, which are the sources of a range of marine bioactive metabolites. From sponges and their associated microorganisms, approximately 5,300 different natural compounds are known. Current research on sponge-microbe interaction and their active metabolites has become a focal point for many researchers. Various active metabolites derived from sponges are now known to be produced by their symbiotic microflora. In this review, we attempt to report the latest studies regarding capability of bacteria from sponges as producers of bioactive metabolite. Moreover, these sponge associated bacteria are an important source of different enzymes of industrial significance. In present review, we will address some novel approaches for discovering marine metabolites from bacteria that have the greatest potential to be used in clinical treatments.

  14. Diversity of Bacterial Photosymbionts in Lubomirskiidae Sponges from Lake Baikal

    National Research Council Canada - National Science Library

    Nina V. Kulakova; Natalia N. Denikina; Sergei I. Belikov

    2014-01-01

    ... of bacterial phototrophs associated with four species of Lubomirskiidae in Lake Baikal. The phylogeny inferred from both genes showed three main clusters of Synechococcus associated with Baikalian sponges...

  15. Sponging of Cellular Proteins by Viral RNAs

    OpenAIRE

    Charley, Phillida A.; Wilusz, Jeffrey

    2014-01-01

    Viral RNAs accumulate to high levels during infection and interact with a variety of cellular factors including miRNAs and RNA-binding proteins. Although many of these interactions exist to directly modulate replication, translation and decay of viral transcripts, evidence is emerging that abundant viral RNAs may in certain cases serve as a sponge to sequester host non coding RNAs and proteins. By effectively reducing the ability of cellular RNA binding proteins to regulate host cell gene exp...

  16. Hydrophobic sponge structure-based triboelectric nanogenerator.

    Science.gov (United States)

    Lee, Keun Young; Chun, Jinsung; Lee, Ju-Hyuck; Kim, Kyeong Nam; Kang, Na-Ri; Kim, Ju-Young; Kim, Myung Hwa; Shin, Kyung-Sik; Gupta, Manoj Kumar; Baik, Jeong Min; Kim, Sang-Woo

    2014-08-06

    Hydrophobic sponge structure-based triboelectric nanogenerators using an inverse opal structured film for sustainable energy harvesting over a wide range of humid atmosphere have been successfully demonstrated. The output voltage and current density reach a record value of 130 V and 0.10 mA cm(-2) , respectively, giving over 10-fold power enhancement, compared with the flat film-based triboelectric nanogenerator. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Polyketides from the marine sponge Plakortis angulospiculatus

    Energy Technology Data Exchange (ETDEWEB)

    Epifanio, Rosangela de A.; Pinheiro, Leandro S.; Alves, Natalia C. [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil). Inst. de Quimica. Dept. de Quimica Organica]. E-mail: rosangela@rmn.uff.br

    2005-11-15

    Organic extracts of the marine sponge Plakortis angulospiculatus were studied from two different collections from Pernambuco State, Brazil. Bioautography with opportunistic marine pathogens, with results from the brine shrimp lethality assay, were used to guide the purification of the known furanylidenic methyl ester 1 and two new derivatives 2 and 3. The structures were elucidated by spectroscopic methods and by selective reduction of 3 into 2. (author)

  18. Two Furanosesterterpenoids from the Sponge Luffariella variabilis

    Directory of Open Access Journals (Sweden)

    Peni Ahmadi

    2017-08-01

    Full Text Available Two new sesterterpenoids, 1 and 2, were isolated from the sponge Luffariella variabilis. Their planar structures were characterized with spectroscopic analyses. The sole chiral center of compound 1 was elucidated as 12R by comparing observed and calculated optical rotation values. The configurations of compound 2 were determined by NMR and electronic circular dichroism (ECD studies. Furthermore, compound 2 showed cytotoxicity at IC50 1.0 µM against NBT-T2 cells.

  19. The pathology of sponge orange band disease affecting the Caribbean barrel sponge Xestospongia muta.

    Science.gov (United States)

    Angermeier, Hilde; Kamke, Janine; Abdelmohsen, Usama R; Krohne, Georg; Pawlik, Joseph R; Lindquist, Niels L; Hentschel, Ute

    2011-02-01

    The aim of this study was to examine sponge orange band (SOB) disease affecting the prominent Caribbean sponge Xestospongia muta. Scanning and transmission electron microscopy revealed that SOB is accompanied by the massive destruction of the pinacoderm. Chlorophyll a content and the main secondary metabolites, tetrahydrofurans, characteristic of X. muta, were significantly lower in bleached than in healthy tissues. Denaturing gradient gel electrophoresis using cyanobacteria-specific 16S rRNA gene primers revealed a distinct shift from the Synechococcus/Prochlorococcus clade of sponge symbionts towards several clades of unspecific cyanobacteria, including lineages associated with coral disease (i.e. Leptolyngbya sp.). Underwater infection experiments were conducted by transplanting bleached cores into healthy individuals, but revealed no signs of SOB development. This study provided no evidence for the involvement of a specific microbial pathogen as an etiologic agent of disease; hence, the cause of SOB disease in X. muta remains unidentified.

  20. Optimization of biodegradable sponges as controlled release drug matrices. I. Effect of moisture level on chitosan sponge mechanical properties.

    Science.gov (United States)

    Foda, Nagwa H; El-laithy, Hanan M; Tadros, Mina I

    2004-04-01

    Cross-linked chitosan sponges as controlled release drug carrier systems were developed. Tramadol hydrochloride, a centrally acting analgesic, was used as a model drug. The sponges were prepared by freeze-drying 1.25% and 2.5% (w/w) high and low M.wt. chitosan solutions, respectively, using glutaraldehyde as a cross-linking agent. The hardness of the prepared sponges was a function of glutaraldehyde concentration and volume where the optimum concentration that offered accepted sponge consistency was 5%. Below or above 5%, very soft or very hard and brittle sponges were obtained, respectively. The determined drug content in the prepared sponges was uniform and did not deviate markedly from the calculated amount. Scanning electron microscopy (SEM) was used to characterize the internal structures of the sponges. The SEM photos revealed that cross-linked high M.wt. chitosan sponges have larger size surface pores that form connections (channels) with the interior of the sponge than cross-linked low M.wt. ones. Moreover, crystals of the incorporated Tramadol hydrochloride were detected on the lamellae and within pores in both chitosan sponges. Differences in pore size and dissolution medium uptake capacity were crucial factors for the more delayed drug release from cross-linked low M.wt. chitosan sponges over high M.wt. ones at pH 7.4. Kinetic analysis of the release data using linear regression followed the Higuchi diffusion model over 12 hours. Setting storage conditions at room temperature under 80-92% relative humidity resulted in soft, elastic, and compressible sponges.

  1. Greenhouse conditions induce mineralogical changes and dolomite accumulation in coralline algae on tropical reefs.

    Science.gov (United States)

    Diaz-Pulido, Guillermo; Nash, Merinda C; Anthony, Kenneth R N; Bender, Dorothea; Opdyke, Bradley N; Reyes-Nivia, Catalina; Troitzsch, Ulrike

    2014-01-01

    Human-induced ocean acidification and warming alter seawater carbonate chemistry reducing the calcification of reef-building crustose coralline algae (CCA), which has implications for reef stability. However, due to the presence of multiple carbonate minerals with different solubilities in seawater, the algal mineralogical responses to changes in carbonate chemistry are poorly understood. Here we demonstrate a 200% increase in dolomite concentration in living CCA under greenhouse conditions of high pCO2 (1,225 μatm) and warming (30 °C). Aragonite, in contrast, increases with lower pCO2 (296 μatm) and low temperature (28 °C). Mineral changes in the surface pigmented skeleton are minor and dolomite and aragonite formation largely occurs in the white crust beneath. Dissolution of high-Mg-calcite and particularly the erosive activities of endolithic algae living inside skeletons play key roles in concentrating dolomite in greenhouse treatments. As oceans acidify and warm in the future, the relative abundance of dolomite in CCA will increase.

  2. Coralline algal barium as indicator for 20th century northwestern North Atlantic surface ocean freshwater variability.

    Science.gov (United States)

    Hetzinger, S; Halfar, J; Zack, T; Mecking, J V; Kunz, B E; Jacob, D E; Adey, W H

    2013-01-01

    During the past decades climate and freshwater dynamics in the northwestern North Atlantic have undergone major changes. Large-scale freshening episodes, related to polar freshwater pulses, have had a strong influence on ocean variability in this climatically important region. However, little is known about variability before 1950, mainly due to the lack of long-term high-resolution marine proxy archives. Here we present the first multidecadal-length records of annually resolved Ba/Ca variations from Northwest Atlantic coralline algae. We observe positive relationships between algal Ba/Ca ratios from two Newfoundland sites and salinity observations back to 1950. Both records capture episodical multi-year freshening events during the 20th century. Variability in algal Ba/Ca is sensitive to freshwater-induced changes in upper ocean stratification, which affect the transport of cold, Ba-enriched deep waters onto the shelf (highly stratified equals less Ba/Ca). Algal Ba/Ca ratios therefore may serve as a new resource for reconstructing past surface ocean freshwater changes.

  3. Crustose coralline algal species host distinct bacterial assemblages on their surfaces.

    Science.gov (United States)

    Sneed, Jennifer M; Ritson-Williams, Raphael; Paul, Valerie J

    2015-11-01

    Crustose coralline algae (CCA) are important components of many marine ecosystems. They aid in reef accretion and stabilization, create habitat for other organisms, contribute to carbon sequestration and are important settlement substrata for a number of marine invertebrates. Despite their ecological importance, little is known about the bacterial communities associated with CCA or whether differences in bacterial assemblages may have ecological implications. This study examined the bacterial communities on four different species of CCA collected in Belize using bacterial tag-encoded FLX amplicon pyrosequencing of the V1-V3 region of the 16S rDNA. CCA were dominated by Alphaproteobacteria, Gammaproteobacteria and Actinomycetes. At the operational taxonomic unit (OTU) level, each CCA species had a unique bacterial community that was significantly different from all other CCA species. Hydrolithon boergesenii and Titanoderma prototypum, CCA species that facilitate larval settlement in multiple corals, had higher abundances of OTUs related to bacteria that inhibit the growth and/or biofilm formation of coral pathogens. Fewer coral larvae settle on the surfaces of Paragoniolithon solubile and Porolithon pachydermum. These CCA species had higher abundances of OTUs related to known coral pathogens and cyanobacteria. Coral larvae may be able to use the observed differences in bacterial community composition on CCA species to assess the suitability of these substrata for settlement and selectively settle on CCA species that contain beneficial bacteria.

  4. Assessing threats from coral and crustose coralline algae disease on the reefs of New Caledonia

    Science.gov (United States)

    Aeby, Greta S.; Tribollet, Aline; Lasne, Gregory; Work, Thierry M.

    2015-01-01

    The present study reports the results of the first quantitative survey of lesions on coral and crustose coralline algae (CCA) on reefs in the lagoon of New Caledonia. Surveys on inshore and offshore reefs were conducted at 13 sites in 2010, with 12 sites resurveyed in 2013. Thirty coral diseases affecting 15 coral genera were found, with low overall disease prevalence (<1%). This study extends the known distribution of growth anomalies to the coral genera Platygyraand Hydnophora, endolithic hypermycosis to Platygyra, Leptoria and Goniastrea and extends the geographic range of three CCA diseases. We found the first trematode infection in Porites outside of Hawaii. Disease prevalence differed among coral genera, with Porites having more lesions, and Acropora and Montipora fewer lesions, than expected on the basis of field abundance. Inshore reefs had a lower coral-colony density, species diversity and reduced CCA cover than did the offshore reefs. Disease prevalence was significantly higher on inshore reefs in 2013 than in 2010, but did not change on offshore reefs. The potential ecological impact of individual coral diseases was assessed using an integrative-scoring and relative-ranking scheme based on average frequency of occurrence, prevalence and estimated degree of virulence. The top-five ranked diseases were all tissue-loss diseases.

  5. Phenotypic plasticity of coralline algae in a High CO2 world.

    Science.gov (United States)

    Ragazzola, Federica; Foster, Laura C; Form, Armin U; Büscher, Janina; Hansteen, Thor H; Fietzke, Jan

    2013-09-01

    It is important to understand how marine calcifying organisms may acclimatize to ocean acidification to assess their survival over the coming century. We cultured the cold water coralline algae, Lithothamnion glaciale, under elevated pCO2 (408, 566, 770, and 1024 μatm) for 10 months. The results show that the cell (inter and intra) wall thickness is maintained, but there is a reduction in growth rate (linear extension) at all elevated pCO2. Furthermore a decrease in Mg content at the two highest CO2 treatments was observed. Comparison between our data and that at 3 months from the same long-term experiment shows that the acclimation differs over time since at 3 months, the samples cultured under high pCO2 showed a reduction in the cell (inter and intra) wall thickness but a maintained growth rate. This suggests a reallocation of the energy budget between 3 and 10 months and highlights the high degree plasticity that is present. This might provide a selective advantage in future high CO2 world.

  6. Greenhouse conditions induce mineralogical changes and dolomite accumulation in coralline algae on tropical reefs

    Science.gov (United States)

    Diaz-Pulido, Guillermo; Nash, Merinda C.; Anthony, Kenneth R. N.; Bender, Dorothea; Opdyke, Bradley N.; Reyes-Nivia, Catalina; Troitzsch, Ulrike

    2014-02-01

    Human-induced ocean acidification and warming alter seawater carbonate chemistry reducing the calcification of reef-building crustose coralline algae (CCA), which has implications for reef stability. However, due to the presence of multiple carbonate minerals with different solubilities in seawater, the algal mineralogical responses to changes in carbonate chemistry are poorly understood. Here we demonstrate a 200% increase in dolomite concentration in living CCA under greenhouse conditions of high pCO2 (1,225 μatm) and warming (30 °C). Aragonite, in contrast, increases with lower pCO2 (296 μatm) and low temperature (28 °C). Mineral changes in the surface pigmented skeleton are minor and dolomite and aragonite formation largely occurs in the white crust beneath. Dissolution of high-Mg-calcite and particularly the erosive activities of endolithic algae living inside skeletons play key roles in concentrating dolomite in greenhouse treatments. As oceans acidify and warm in the future, the relative abundance of dolomite in CCA will increase.

  7. Coralline hydroxyapatite is a suitable bone graft substitute in an intra-articular goat defect model.

    Science.gov (United States)

    Koëter, S; Tigchelaar, S J; Farla, P; Driessen, L; van Kampen, A; Buma, P

    2009-07-01

    Intra-articular defects can be filled with an autologous bone graft taken from the iliac crest. This can be indicated after trauma or following correcting osteotomy. Patients may encounter donor site morbidity after this procedure. In this in vivo study, we studied if coralline hydroxyapatite (CHA) is a suitable material to replace autologous bone graft to fill a defect in the femoral trochlea of goats. CHA did not evoke any negative reaction in the synovium, and the articular cartilage was comparable to controls. In the bone graft group, we found scattered areas of (enchondral formed) bone. Most bone graft had been resorbed or remodeled, and the scarce remnants were incorporated into new bone. Resorption of CHA was limited or absent and most CHA was surrounded by new bone. In areas with fragmented CHA, close to the joint surface, numerous giant cells were found. The study shows that in this animal model, CHA inserted in a defect that directly communicates with the joint space incorporates into bone. This study did not show any negative effects of CHA in a joint environment.

  8. Skeletal trade-offs in coralline algae in response to ocean acidification

    Science.gov (United States)

    McCoy, S. J.; Ragazzola, F.

    2014-08-01

    Ocean acidification is changing the marine environment, with potentially serious consequences for many organisms. Much of our understanding of ocean acidification effects comes from laboratory experiments, which demonstrate physiological responses over relatively short timescales. Observational studies and, more recently, experimental studies in natural systems suggest that ocean acidification will alter the structure of seaweed communities. Here, we provide a mechanistic understanding of altered competitive dynamics among a group of seaweeds, the crustose coralline algae (CCA). We compare CCA from historical experiments (1981-1997) with specimens from recent, identical experiments (2012) to describe morphological changes over this time period, which coincides with acidification of seawater in the Northeastern Pacific. Traditionally thick species decreased in thickness by a factor of 2.0-2.3, but did not experience a change in internal skeletal metrics. In contrast, traditionally thin species remained approximately the same thickness but reduced their total carbonate tissue by making thinner inter-filament cell walls. These changes represent alternative mechanisms for the reduction of calcium carbonate production in CCA and suggest energetic trade-offs related to the cost of building and maintaining a calcium carbonate skeleton as pH declines. Our classification of stress response by morphological type may be generalizable to CCA at other sites, as well as to other calcifying organisms with species-specific differences in morphological types.

  9. Coralline alga reveals first marine record of subarctic North Pacific climate change

    Science.gov (United States)

    Halfar, J.; Steneck, R.; Schone, B.; Moore, G.W.K.; Joachimski, M.; Kronz, A.; Fietzke, J.; Estes, James

    2007-01-01

    While recent changes in subarctic North Pacific climate had dramatic effects on ecosystems and fishery yields, past climate dynamics and teleconnection patterns are poorly understood due to the absence of century-long high-resolution marine records. We present the first 117-year long annually resolved marine climate history from the western Bering Sea/Aleutian Island region using information contained in the calcitic skeleton of the long-lived crustose coralline red alga Clathromorphum nereostratum, a previously unused climate archive. The skeletal ??18O-time series indicates significant warming and/or freshening of surface waters after the middle of the 20th century. Furthermore, the time series is spatiotemporally correlated with Pacific Decadal Oscillation (PDO) and tropical El Nio??-Southern Oscillation (ENSO) indices. Even though the western Bering Sea/Aleutian Island region is believed to be outside the area of significant marine response to ENSO, we propose that an ENSO signal is transmitted via the Alaskan Stream from the Eastern North Pacific, a region of known ENSO teleconnections. Copyright 2007 by the American Geophysical Union.

  10. In situ changes of tropical crustose coralline algae along carbon dioxide gradients

    Science.gov (United States)

    Fabricius, K. E.; Kluibenschedl, A.; Harrington, L.; Noonan, S.; de'Ath, G.

    2015-04-01

    Crustose coralline algae (CCA) fulfill important ecosystem functions in coral reefs, including reef framework stabilization and induction of larval settlement. To investigate in situ the effects of high carbon dioxide on CCA communities, we deployed settlement tiles at three tropical volcanic CO2 seeps in Papua New Guinea along gradients spanning from 8.1 to 7.4 pH. After 5 and 13 months deployment, there was a steep transition from CCA presence to absence around pH 7.8 (660 μatm pCO2): 98% of tiles had CCA at pH > 7.8, whereas only 20% of tiles had CCA at pH <= 7.8. As pH declined from 8.0 to 7.8, the least and most sensitive CCA species lost 43% and 85% of cover, respectively. Communities on upward facing surfaces exposed to high light and high grazing pressure showed less steep losses than those on shaded surfaces with low grazing. Direct CO2 effects on early life stages were the main mechanisms determining CCA cover, rather than competitive interactions with other benthic groups. Importantly, declines were steepest at near-ambient pH, suggesting that CCA may have already declined in abundance due to the recent seawater pH decline of 0.1 units, and that future severe losses are likely with increasing ocean acidification.

  11. Trace elemental imaging of coralline hydroxyapatite by laser-ablation inductively coupled plasma-mass spectroscopy.

    Science.gov (United States)

    Chou, J; Austin, C; Doble, P; Ben-Nissan, B; Milthorpe, B

    2014-07-01

    The determination of trace element concentrations, as well as their distribution in different biomaterials aimed for clinical applications, is a challenging task in both the areas of biological and materials research. In this research, LA-ICP-MS was employed for image mapping of the trace element distribution in a hydrothermally converted coralline hydroxyapatite material aimed for tissue-scaffolding applications. Quantification using synthetic matrix-matched standards was successfully applied for the determination and distribution of elements of interest, Sr and Mg, that influences the mechanical and biological properties of hydroxyapatite-based bone graft materials. The results showed that the instrument can successfully analyse trace elements and a relatively good image can be produced that identifies their distribution. The LA-ICP-MS method can provide an easy and effective tool, in the field of biomaterials with respect to distribution of trace elements, to better understand tissue-implant interactions, and will open up a new window for in vitro and in vivo analysis and imaging of different tissues and structures.

  12. Global dominance of coralline red-algal facies: A response to Miocene oceanographic events

    Science.gov (United States)

    Halfar, Jochen; Mutti, Maria

    2005-06-01

    Rhodoliths (free-living coralline red algae) can thrive under a wide range of temperatures, reduced light, and increased nutrient levels, and often form a distinct so-called rhodalgal lithofacies that is an important component of Cenozoic shallow-water carbonates. Global distributions illustrate that from the late-early to early-late Miocene (Burdigalian early Tortonian), rhodalgal facies reached peak abundances and commonly replaced coral-reef environments, accompanied by a decline in other carbonate-producing phototrophs. We argue that the dominance of red algae over coral reefs was triggered in the Burdigalian by enhanced trophic resources associated with a global increase in productivity, as evidenced by a long-term shift toward higher carbon isotope values. Rhodalgal lithofacies expanded further in the middle Miocene when strengthened thermal gradients associated with the establishment of the East Antarctic Ice Sheet led to enhanced upwelling while climate change generated increased weathering rates, introducing land-derived nutrients into the oceans. Globally cooler temperatures following a climatic optimum in the early-middle Miocene contributed to sustain the dominance of red algae and prevented the recovery of coral reefs. The global shift in nearshore shallow-water carbonate producers to groups tolerant of higher levels of trophic resources provides further evidence for increased nutrient levels during that time interval and shows the sensitivity of shallow-water carbonate facies as indicators of past oceanographic conditions.

  13. Indirect consequences of fishing: reduction of coralline algae suppresses juvenile coral abundance

    Science.gov (United States)

    O'Leary, J. K.; Potts, D. C.; Braga, J. C.; McClanahan, T. R.

    2012-06-01

    Removing predatory fishes has effects that cascade through ecosystems via interactions between species and functional groups. In Kenyan reef lagoons, fishing-induced trophic cascades produce sea urchin-dominated grazing communities that greatly reduce the overall cover of crustose coralline algae (CCA). Certain species of CCA enhance coral recruitment by chemically inducing coral settlement. If sea urchin grazing reduces cover of settlement-inducing CCA, coral recruitment and hence juvenile coral abundance may also decline on fished reefs. To determine whether fishing-induced changes in CCA influence coral recruitment and abundance, we compared (1) CCA taxonomic compositions and (2) taxon-specific associations between CCA and juvenile corals under three fisheries management systems: closed, gear-restricted, and open-access. On fished reefs (gear-restricted and open-access), abundances of two species of settlement-inducing CCA, Hydrolithon reinboldii and H. onkodes, were half those on closed reefs. On both closed and fished reefs, juveniles of four common coral families (Poritidae, Pocilloporidae, Agariciidae, and Faviidae) were more abundant on Hydrolithon than on any other settlement substrate. Coral densities were positively correlated with Hydrolithon spp. cover and were significantly lower on fished than on closed reefs, suggesting that fishing indirectly reduces coral recruitment or juvenile success over large spatial scales via reduction in settlement-inducing CCA. Therefore, managing reefs for higher cover of settlement-inducing CCA may enhance coral recruitment or juvenile survival and help to maintain the ecological and structural stability of reefs.

  14. Environmental factors associated with the spatial distribution of crustose coralline algae on the Great Barrier Reef

    Science.gov (United States)

    Fabricius, K.; De'ath, G.

    2001-05-01

    Crustose coralline algae (CCA) fulfill two key functional roles in coral reef ecosystems: they contribute significantly to reef calcification, and they induce larval settlement of many benthic organisms. Percentage cover of CCA, and environmental conditions, were visually estimated on 144 reefs of the Great Barrier Reef between 10 and 24° latitude S. Reefs were located across the shelf and ranged from turbid near-shore reefs close to rivers to clean-water reefs hundreds of kilometers from coastal influences. On each reef, two sites were surveyed between 0.5 and 18 m depth. Strong cross-shelf trends occurred in cover of CCA, amount of sediment deposited, water clarity, and slope angle. Relative distance across the shelf and sedimentation jointly explained 84% of variation in CCA cover. Three regions running parallel to the shore were identified, with a mean CCA cover of 20% cover on the outer half of the shelf, with a narrow transition region between the two. Within each region, the cover of CCA was unrelated to distance across the shelf, but was related to the sedimentary environment, being relatively higher on reefs with low sediment deposits. On the inner third of the shelf, the most sediment-exposed reefs were unsuitable habitats for CCA. The inverse relationship between CCA and sediment has implications for the recruitment of CCA-specialised organisms, and for rates of reef calcification.

  15. Synergistic effects of diuron and sedimentation on photosynthesis and survival of crustose coralline algae.

    Science.gov (United States)

    Harrington, Lindsay; Fabricius, Katharina; Eaglesham, Geoff; Negri, Andrew

    2005-01-01

    Effects of short-term exposure to sedimentation and diuron, separately and in combination, on the photophysiology and survival of crustose coralline algae (CCA) were examined in controlled time-course experiments, using pulse-amplitude modulation (PAM) chlorophyll fluorometry. These experiments indicated that the effects of sediments and diuron, when applied in isolation, were often reversible, with recovery time dependent upon sediment type and diuron concentration. Exposure to fine ( or =2.9 microg L(-1). Fine estuarine sediments in combination with 0.79 microg L(-1) dissolved diuron, caused yields (Delta F/F(m')) to drop by 60% compared with controls after 24 h. The combined exposure to sediments and diuron also retarded recovery, thus Delta F/F(m') values were still only 60% of the controls after 9 days recovery in clean seawater. Mortality of CCA was observed in some fragments treated with combinations of sediment and diuron. Our results suggest that sediment deposition and exposure to diuron can negatively affect the photosynthetic activity of CCA, with sedimentation stress being significantly enhanced by the presence of trace concentrations of diuron.

  16. Dolomite-rich coralline algae in reefs resist dissolution in acidified conditions

    Science.gov (United States)

    Nash, M. C.; Opdyke, B. N.; Troitzsch, U.; Russell, B. D.; Adey, W. H.; Kato, A.; Diaz-Pulido, G.; Brent, C.; Gardner, M.; Prichard, J.; Kline, D. I.

    2013-03-01

    Coral reef ecosystems develop best in high-flow environments but their fragile frameworks are also vulnerable to high wave energy. Wave-resistant algal rims, predominantly made up of the crustose coralline algae (CCA) Porolithon onkodes and P. pachydermum, are therefore critical structural elements for the survival of many shallow coral reefs. Concerns are growing about the susceptibility of CCA to ocean acidification because CCA Mg-calcite skeletons are more susceptible to dissolution under low pH conditions than coral aragonite skeletons. However, the recent discovery of dolomite (Mg0.5Ca0.5(CO3)), a stable carbonate, in P. onkodes cells necessitates a reappraisal of the impacts of ocean acidification on these CCA. Here we show, using a dissolution experiment, that dried dolomite-rich CCA have 6-10 times lower rates of dissolution than predominantly Mg-calcite CCA in both high-CO2 (~ 700ppm) and control (~ 380ppm) environments, respectively. We reveal this stabilizing mechanism to be a combination of reduced porosity due to dolomite infilling and selective dissolution of other carbonate minerals. Physical break-up proceeds by dissolution of Mg-calcite walls until the dolomitized cell eventually drops out intact. Dolomite-rich CCA frameworks are common in shallow coral reefs globally and our results suggest that it is likely that they will continue to provide protection and stability for coral reef frameworks as CO2 rises.

  17. Crustose coralline algae increased framework and diversity on ancient coral reefs.

    Science.gov (United States)

    Weiss, Anna; Martindale, Rowan C

    2017-01-01

    Crustose coralline algae (CCA) are key producers of carbonate sediment on reefs today. Despite their importance in modern reef ecosystems, the long-term relationship of CCA with reef development has not been quantitatively assessed in the fossil record. This study includes data from 128 Cenozoic coral reefs collected from the Paleobiology Database, the Paleoreefs Database, as well as the original literature and assesses the correlation of CCA abundance with taxonomic diversity (both corals and reef dwellers) and framework of fossil coral reefs. Chi-squared tests show reef type is significantly correlated with CCA abundance and post-hoc tests indicate higher involvement of CCA is associated with stronger reef structure. Additionally, general linear models show coral reefs with higher amounts of CCA had a higher diversity of reef-dwelling organisms. These data have important implications for paleoecology as they demonstrate that CCA increased building capacity, structural integrity, and diversity of ancient coral reefs. The analyses presented here demonstrate that the function of CCA on modern coral reefs is similar to their function on Cenozoic reefs; thus, studies of ancient coral reef collapse are even more meaningful as modern analogues.

  18. Phylogenetically and Spatially Close Marine Sponges Harbour Divergent Bacterial Communities

    Science.gov (United States)

    Hardoim, Cristiane C. P.; Esteves, Ana I. S.; Pires, Francisco R.; Gonçalves, Jorge M. S.; Cox, Cymon J.; Xavier, Joana R.; Costa, Rodrigo

    2012-01-01

    Recent studies have unravelled the diversity of sponge-associated bacteria that may play essential roles in sponge health and metabolism. Nevertheless, our understanding of this microbiota remains limited to a few host species found in restricted geographical localities, and the extent to which the sponge host determines the composition of its own microbiome remains a matter of debate. We address bacterial abundance and diversity of two temperate marine sponges belonging to the Irciniidae family - Sarcotragus spinosulus and Ircinia variabilis – in the Northeast Atlantic. Epifluorescence microscopy revealed that S. spinosulus hosted significantly more prokaryotic cells than I. variabilis and that prokaryotic abundance in both species was about 4 orders of magnitude higher than in seawater. Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) profiles of S. spinosulus and I. variabilis differed markedly from each other – with higher number of ribotypes observed in S. spinosulus – and from those of seawater. Four PCR-DGGE bands, two specific to S. spinosulus, one specific to I. variabilis, and one present in both sponge species, affiliated with an uncultured sponge-specific phylogenetic cluster in the order Acidimicrobiales (Actinobacteria). Two PCR-DGGE bands present exclusively in S. spinosulus fingerprints affiliated with one sponge-specific phylogenetic cluster in the phylum Chloroflexi and with sponge-derived sequences in the order Chromatiales (Gammaproteobacteria), respectively. One Alphaproteobacteria band specific to S. spinosulus was placed in an uncultured sponge-specific phylogenetic cluster with a close relationship to the genus Rhodovulum. Our results confirm the hypothesized host-specific composition of bacterial communities between phylogenetically and spatially close sponge species in the Irciniidae family, with S. spinosulus displaying higher bacterial community diversity and distinctiveness than I. variabilis. These

  19. Phylogenetically and spatially close marine sponges harbour divergent bacterial communities.

    Directory of Open Access Journals (Sweden)

    Cristiane C P Hardoim

    Full Text Available Recent studies have unravelled the diversity of sponge-associated bacteria that may play essential roles in sponge health and metabolism. Nevertheless, our understanding of this microbiota remains limited to a few host species found in restricted geographical localities, and the extent to which the sponge host determines the composition of its own microbiome remains a matter of debate. We address bacterial abundance and diversity of two temperate marine sponges belonging to the Irciniidae family--Sarcotragus spinosulus and Ircinia variabilis--in the Northeast Atlantic. Epifluorescence microscopy revealed that S. spinosulus hosted significantly more prokaryotic cells than I. variabilis and that prokaryotic abundance in both species was about 4 orders of magnitude higher than in seawater. Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE profiles of S. spinosulus and I. variabilis differed markedly from each other--with higher number of ribotypes observed in S. spinosulus--and from those of seawater. Four PCR-DGGE bands, two specific to S. spinosulus, one specific to I. variabilis, and one present in both sponge species, affiliated with an uncultured sponge-specific phylogenetic cluster in the order Acidimicrobiales (Actinobacteria. Two PCR-DGGE bands present exclusively in S. spinosulus fingerprints affiliated with one sponge-specific phylogenetic cluster in the phylum Chloroflexi and with sponge-derived sequences in the order Chromatiales (Gammaproteobacteria, respectively. One Alphaproteobacteria band specific to S. spinosulus was placed in an uncultured sponge-specific phylogenetic cluster with a close relationship to the genus Rhodovulum. Our results confirm the hypothesized host-specific composition of bacterial communities between phylogenetically and spatially close sponge species in the Irciniidae family, with S. spinosulus displaying higher bacterial community diversity and distinctiveness than I. variabilis

  20. Two distinct microbial communities revealed in the sponge Cinachyrella

    Directory of Open Access Journals (Sweden)

    Marie Laure Cuvelier

    2014-11-01

    Full Text Available Marine sponges are vital components of benthic and coral reef ecosystems, providing shelter and nutrition for many organisms. In addition, sponges act as an essential carbon and nutrient link between the pelagic and benthic environment by filtering large quantities of seawater. Many sponge species harbor a diverse microbial community (including Archaea, Bacteria and Eukaryotes, which can constitute up to 50% of the sponge biomass. Sponges of the genus Cinachyrella are common in Caribbean and Floridian reefs and their archaeal and bacterial microbiomes were explored here using 16S rDNA tag pyrosequencing. Cinachyrella specimens and seawater samples were collected from the same South Florida reef at two different times of year. In total, 639 OTUs (12 archaeal and 627 bacterial belonging to 2 archaeal and 21 bacterial phyla were detected in the sponges. Based on their microbiomes, the six sponge samples formed two distinct groups, namely sponge group 1 (SG1 with low diversity (Shannon-Weiner index: 3.73 ± 0.22 and SG2 with higher diversity (Shannon-Weiner index: 5.95 ± 0.25. Hosts’ 28S rDNA sequences further confirmed that the sponge specimens were composed of two taxa closely related to Cinachyrella kuekenthalli. Both sponge groups were dominated by Proteobacteria, but Alphaproteobacteria were significantly more abundant in SG1. SG2 harbored many bacterial phyla (>1% of sequences present in low abundance or below detection limits (<0.07% in SG1 including: Acidobacteria, Chloroflexi, Gemmatimonadetes, Nitrospirae, PAUC34f, Poribacteria and Verrucomicrobia. Furthermore, SG1 and SG2 only had 95 OTUs in common, representing 30.5% and 22.4% of SG1 and SG2’s total OTUs, respectively. These results suggest that the sponge host may exert a pivotal influence on the nature and structure of the microbial community and may only be marginally affected by external environment parameters.

  1. Different fibrovascularization rate between coralline hydroxyapatite and high density porous polyethylene (Medpore) measured by 99mTc-MDP bone scintigraphy 6 months after intraorbital implantation.

    Science.gov (United States)

    Pan, M-H; Wu, Y-W; Yen, R-F; Tzen, K-Y; Liao, S-L; Kao, C-H

    2003-12-01

    Many materials and types of implant have been used to achieve a cosmetic effect and prosthesis motility in the anophthalmic socket. Hydroxyapatite remains the implant material of choice for producing the most natural prosthesis motility while porous polyethylene shows promising characteristics as another useful material. The aim of this study was to compare the fibrovascular ingrowth rates of orbital implants between coralline hydroxyapatite and high density porous polyethylene (Medpore). The fibrovascularization rate is determined by bone imaging using 99mTc methylene diphosphonate (99mTc-MDP) 6 months after implantation. Our study included 29 patients with coralline, and nine patients with Medpore implants. Our results showed that groups with coralline implants appearing to achieve complete fibrovascularization at a much more rapid rate than those with Medpore. The differences in rate were statistically significant.

  2. Sponge interactions with spatial competitors in the Spermonde Archipelago

    NARCIS (Netherlands)

    Voogd, de N.J.; Becking, L.E.; Hoeksema, B.W.; Noor, A.; Soest, van R.W.M.

    2003-01-01

    This study describes the in situ effects of four bioactive sponges on their neighbours at three different locations and two depths in the Spermonde Archipelago, SW Sulawesi, Indonesia. The natural rates of interaction between the sponge species and eight possible competitive invertebrate groups were

  3. Recovery of Previously Uncultured Bacterial Genera from Three Mediterranean Sponges

    NARCIS (Netherlands)

    Versluis, Dennis; McPherson, Kyle; Passel, van Mark W.J.; Smidt, Hauke; Sipkema, Detmer

    2017-01-01

    Sponges often harbour a dense and diverse microbial community. Presently, a large discrepancy exists between the cultivable bacterial fraction from sponges and the community in its natural environment. Here, we aimed to acquire additional insights into cultivability of (previously uncultured)

  4. Sponge beta diversity in the Spermonde Archipelago, SW Sulawesi, Indonesia

    NARCIS (Netherlands)

    Voogd, de N.J.; Cleary, D.F.R.; Hoeksema, B.W.; Noor, A.; Soest, van R.W.M.

    2006-01-01

    Sponge assemblages were investigated in the Spermonde Archipelago, southwestern Sulawesi, Indonesia. In this study spatial patterns of sponge similarity among sites were significantly related to remotely sensed environmental variables, the degree of human settlement and depth, but not to the distanc

  5. Bioprospecting sponge-associated microbes for antimicrobial compounds

    NARCIS (Netherlands)

    Indraningrat, Anak Agung Gede; Smidt, Hauke; Sipkema, Detmer

    2016-01-01

    Sponges are the most prolific marine organisms with respect to their arsenal of bioactive compounds including antimicrobials. However, the majority of these substances are probably not produced by the sponge itself, but rather by bacteria or fungi that are associated with their host. This review

  6. Mangrove-sponge associations: a possible role for tannins

    NARCIS (Netherlands)

    Hunting, E.R.; van der Geest, H.G.; Krieg, A.J.; van Mierlo, M.B.L.; van Soest, R.W.M.

    2010-01-01

    A positive correlation between sponge coverage and tannin concentrations in prop roots of Rhizophora mangle L. has previously been reported. However, the ecological role of tannins within the mangrove sponge association remains speculative. This study investigated whether tannins play a role in spon

  7. Bioprospecting sponge-associated microbes for antimicrobial compounds

    NARCIS (Netherlands)

    Indraningrat, Anak Agung Gede; Smidt, Hauke; Sipkema, Detmer

    2016-01-01

    Sponges are the most prolific marine organisms with respect to their arsenal of bioactive compounds including antimicrobials. However, the majority of these substances are probably not produced by the sponge itself, but rather by bacteria or fungi that are associated with their host. This review

  8. Keratin sponge/hydrogel part 1. fabrication and characterization

    Science.gov (United States)

    Keratin sponge/hydrogel products formed by either the oxidation or reduction of U.S. domestic fine- or coarse-grade wool exhibited distinctively different topologies and molecular weights of 6- 8 kDa and 40-60 kDa, each with unique macro-porous structure and microstructural behaviors. The sponge/ ...

  9. Characterization of cellulose based sponges for wound dressings

    NARCIS (Netherlands)

    Gustaite, S.; Kazlauske, J.; Bobokalonov, J.; Perni, S.; Dutschk, Victoria; Liesiene, J.; Prokopovich, P.

    2015-01-01

    Cellulose based sponges were developed by freeze-drying of regenerated cellulose gels and characterizedas a potential wound dressing. Morphological characteristics were analyzed by means of micro-computedtomography. The results showed that the porosity of the sponges reached 75%, the pores were

  10. Sponge interactions with spatial competitors in the Spermonde Archipelago

    NARCIS (Netherlands)

    Voogd, de N.J.; Becking, L.E.; Hoeksema, B.W.; Noor, A.; Soest, van R.W.M.

    2003-01-01

    This study describes the in situ effects of four bioactive sponges on their neighbours at three different locations and two depths in the Spermonde Archipelago, SW Sulawesi, Indonesia. The natural rates of interaction between the sponge species and eight possible competitive invertebrate groups were

  11. DYNAPHORE, INC. FORAGER™ SPONGE TECHNOLOGY - INNOVATIVE TECHNOLOGY EVALUATION REPORT

    Science.gov (United States)

    The Forager™ Sponge is an open-celled cellulose sponge incorporating an amine-containing chelating polymer that selectively absorbs dissolved heavy metals from aqueous waste streams. The Developer states that the technology can be utilized to remove and concentrate heavy metals f...

  12. Characterization of cellulose based sponges for wound dressings

    NARCIS (Netherlands)

    Gustaite, S.; Kazlauske, J.; Bobokalonov, J.; Perni, S.; Dutschk, V.; Liesiene, J.; Prokopovich, P.

    2015-01-01

    Cellulose based sponges were developed by freeze-drying of regenerated cellulose gels and characterizedas a potential wound dressing. Morphological characteristics were analyzed by means of micro-computedtomography. The results showed that the porosity of the sponges reached 75%, the pores were inte

  13. Deep-sea sponge grounds: Reservoirs of biodiversity

    NARCIS (Netherlands)

    Hogg, M.M.; Tendal, O.S.; Conway, K.W.; Pomponi, S.A.; van Soest, R.W.M.; Gutt, J.; Krautter, M.; Roberts, J.M.

    2010-01-01

    This report draws together scientific understanding of deep-water sponge grounds alongside the threats they face and ways in which they can be conserved. Beginning with a summary of research approaches, sponge biology and biodiversity, the report also gives up-to-date case studies of particular deep

  14. Cultivation of sponge larvae: settlement, survival, and growth of juveniles

    NARCIS (Netherlands)

    Caralt, de S.; Otjens, H.; Uriz, M.J.; Wijffels, R.H.

    2007-01-01

    The aim of this study was to culture sponge juveniles from larvae. Starting from larvae we expected to enhance the survival and growth, and to decrease the variation in these parameters during the sponge cultures. First, settlement success, morphological changes during metamorphosis, and survival of

  15. Cultivation of sponge larvae: settlement, survival, and growth of juveniles

    NARCIS (Netherlands)

    Caralt, de S.; Otjens, H.; Uriz, M.J.; Wijffels, R.H.

    2007-01-01

    The aim of this study was to culture sponge juveniles from larvae. Starting from larvae we expected to enhance the survival and growth, and to decrease the variation in these parameters during the sponge cultures. First, settlement success, morphological changes during metamorphosis, and survival of

  16. Cultivation of Sponges, Sponge Cells and Symbionts: Achievements and Future Prospects

    NARCIS (Netherlands)

    Schippers, K.J.; Sipkema, D.; Osinga, R.; Smidt, H.; Pomponi, S.A.; Martens, D.E.; Wijffels, R.H.

    2012-01-01

    Marine sponges are a rich source of bioactive compounds with pharmaceutical potential. Since biological production is one option to supply materials for early drug development, the main challenge is to establish generic techniques for small-scale production of marine organisms. We analysed the state

  17. Diversity of Bacterial Photosymbionts in Lubomirskiidae Sponges from Lake Baikal

    Directory of Open Access Journals (Sweden)

    Nina V. Kulakova

    2014-01-01

    Full Text Available Sponges are permanent benthos residents which establish complex associations with a variety of microorganisms that raise interest in the nature of sponge-symbionts interactions. A molecular approach, based on the identification of the 16S rRNA and ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit genes, was applied to investigate diversity and phylogeny of bacterial phototrophs associated with four species of Lubomirskiidae in Lake Baikal. The phylogeny inferred from both genes showed three main clusters of Synechococcus associated with Baikalian sponges. One of the clusters belonged to the cosmopolitan Synechococcus rubescens group and the two other were not related to any of the assigned phylogenetic groups but placed as sister clusters to S. rubescens. These results expanded the understanding of freshwater sponge-associated photoautotroph diversity and suggested that the three phylogenetic groups of Synechococcus are common photosynthetic symbionts in Lubomirskiidae sponges.

  18. Direct Oil Recovery from Saturated Carbon Nanotube Sponges.

    Science.gov (United States)

    Li, Xiying; Xue, Yahui; Zou, Mingchu; Zhang, Dongxiao; Cao, Anyuan; Duan, Huiling

    2016-05-18

    Oil adsorption by porous materials is a major strategy for water purification and industrial spill cleanup; it is of great interest if the adsorbed oil can be safely recovered from those porous media. Here, direct oil recovery from fully saturated bulk carbon nanotube (CNT) sponges by displacing oil with water in controlled manner is shown. Surfactant-assisted electrocapillary imbibition is adopted to drive aqueous electrolyte into the sponge and extrude organic oil out continuously at low potentials (up to -1.2 V). More than 95 wt % of oil adsorbed within the sponge can be recovered, via a single electrocapillary process. Recovery of different oils with a wide range of viscosities is demonstrated, and the remaining CNT sponge can be reused with similar recovery capacity. A direct and efficient method is provided to recover oil from CNT sponges by water imbibition, which has many potential environmental and energy applications.

  19. Oxygen dynamics and transport in the Mediterranean sponge Aplysina aerophoba

    DEFF Research Database (Denmark)

    Hoffmann, F.; Røy, Hans; Bayer, K.

    2008-01-01

    The Mediterranean sponge Aplysina aerophoba kept in aquaria or cultivation tanks can stop pumping for several hours or even days. To investigate changes in the chemical microenvironments, we measured oxygen profiles over the surface and into the tissue of pumping and non-pumping A. aerophoba...... specimens with Clark-type oxygen microelectrodes (tip diameters 18-30 μm). Total oxygen consumption rates of whole sponges were measured in closed chambers. These rates were used to back-calculate the oxygen distribution in a finite-element model. Combining direct measurements with calculations of diffusive...... flux and modeling revealed that the tissue of non-pumping sponges turns anoxic within 15 min, with the exception of a 1 mm surface layer where oxygen intrudes due to molecular diffusion over the sponge surface. Molecular diffusion is the only transport mechanism for oxygen into non-pumping sponges...

  20. Advancement into the Arctic region for bioactive sponge secondary metabolites.

    Science.gov (United States)

    Abbas, Samuel; Kelly, Michelle; Bowling, John; Sims, James; Waters, Amanda; Hamann, Mark

    2011-01-01

    Porifera have long been a reservoir for the discovery of bioactive compounds and drug discovery. Most research in the area has focused on sponges from tropical and temperate waters, but more recently the focus has shifted to the less accessible colder waters of the Antarctic and, to a lesser extent, the Arctic. The Antarctic region in particular has been a more popular location for natural products discovery and has provided promising candidates for drug development. This article reviews groups of bioactive compounds that have been isolated and reported from the southern reaches of the Arctic Circle, surveys the known sponge diversity present in the Arctic waters, and details a recent sponge collection by our group in the Aleutian Islands, Alaska. The collection has yielded previously undescribed sponge species along with primary activity against opportunistic infectious diseases, malaria, and HCV. The discovery of new sponge species and bioactive crude extracts gives optimism for the isolation of new bioactive compounds from a relatively unexplored source.

  1. Spatiotemporal and species-specific patterns of diseases affecting crustose coralline algae in Curaçao

    Science.gov (United States)

    Quéré, G.; Steneck, R. S.; Nugues, M. M.

    2015-03-01

    Distribution and abundance of coral diseases have been well documented, but only a few studies considered diseases affecting crustose coralline algae (CCA), particularly at the species level. We investigated the spatiotemporal dynamics of diseases affecting CCA along the south coast of Curaçao, southern Caribbean. Two syndromes were detected: the Coralline White Band Syndrome (CWBS) previously described and the Coralline White Patch Disease (CWPD) reported here for the first time. Diseases were present at all six study sites, and our results did not reveal a relationship between disease occurrence and human influence. Both diseases were more prevalent on the shallower reef flat than on the deeper reef slope, and during the warm/rainy season than during the cold/dry season. The patterns observed were consistent with a positive link between temperature and disease occurrence. Reef flat communities were dominated by Neogoniolithon mamillare and Paragoniolithon solubile, whereas deeper habitats were dominated by Hydrolithon boergesenii. Diseases affected all the species encountered, and no preferable host was detected. There was a significant relationship between both disease occurrences and CCA cover. Monitoring of affected patches revealed that 90 % of lesions in CWBS increased in size, whereas 88 % of CWPD lesions regenerated over time. CWBS linear progression rate did not vary between seasons or species and ranged from 0.15 to 0.36 cm month-1, which is in the same order of magnitude as rates previously documented. We conclude that diseases have the potential to cause major loss in CCA cover, particularly in shallow waters. As CCA play a key role in reef ecosystems, our study suggests that the emergence of diseases affecting these algae may pose a real threat to coral reef ecosystems. The levels of disease reported here will provide a much-needed local baseline allowing future comparisons.

  2. Seasonal Variation of Fatty Acids and Stable Carbon Isotopes in Sponges as Indicators for Nutrition: Biomarkers in Sponges Identified

    NARCIS (Netherlands)

    Koopmans, M.; van Rijswijk, P.; Boschker, H.T.S.; Houtekamer, M.; Martens, D.; Wijffels, R.H.

    2015-01-01

    To get a better understanding of sponge feeding biology and efficiencies, the fatty acid (FA) composition and 13C natural abundance of sponges and of suspended particulate matter (SPM) from surrounding seawater was studied in different seasons at three locations. Haliclona oculata and Haliclona xena

  3. Recovery of the commercial sponges in the central and southeastern Aegean Sea (NE Mediterranean after an outbreak of sponge disease

    Directory of Open Access Journals (Sweden)

    J. CASTRITSI-CATHARIOS

    2011-01-01

    Full Text Available The distribution and biometry of commercial sponges (Porifera in coastal areas of the central and southeastern Aegean Sea was investigated to estimate the recovery progress of the populations eight years after the first appearance of sponge disease. Signs of the disease were detected only in 1.6% of the harvested sponges. Multivariate analysis on the percentage abundance of sponges showed two distinct groups among the sixteen fishing grounds studied: the eight deep (50-110 m and the eight shallow ones (<40 m. The group from the deep depths consisted of Spongia officinalis adriatica, S. agaricina and S. zimocca. The infralittoral zone was characterized by the presence of Hippospongia communis, S. officinalis adriatica and S. officinalis mollissima. These bath sponges showed an enhanced abundance in the eastern Cretan Sea (S. Aegean Sea. In addition, their dimensions, particularly height, increased with increasing depth. It is indicated that the hydrographic conditions prevailing in the eastern Cretan Sea affected the repopulating processes of sponge banks. In each species, the biometric characteristics of the experimental specimens were similar to those of the sponges found in the market and harvested at respective depths prior to the appearance of sponge disease.

  4. The sponge pump: the role of current induced flow in the design of the sponge body plan.

    Directory of Open Access Journals (Sweden)

    Sally P Leys

    Full Text Available Sponges are suspension feeders that use flagellated collar-cells (choanocytes to actively filter a volume of water equivalent to many times their body volume each hour. Flow through sponges is thought to be enhanced by ambient current, which induces a pressure gradient across the sponge wall, but the underlying mechanism is still unknown. Studies of sponge filtration have estimated the energetic cost of pumping to be 0.75 with the ambient current velocity. During short bursts of high ambient current the sponges filtered two-thirds of the total volume of water they processed daily. Our model indicates that the head loss across the sponge collar filter is 10 times higher than previously estimated. The difference is due to the resistance created by a fine protein mesh that lines the collar, which demosponges also have, but was so far overlooked. Applying our model to the in situ measurements indicates that even modest pumping rates require an energetic expenditure of at least 28% of the total in situ respiration. We suggest that due to the high cost of pumping, current-induced flow is highly beneficial but may occur only in thin walled sponges living in high flow environments. Our results call for a new look at the mechanisms underlying current-induced flow and for reevaluation of the cost of biological pumping and its evolutionary role, especially in sponges.

  5. Recovery of the commercial sponges in the central and southeastern Aegean Sea (NE Mediterranean after an outbreak of sponge disease

    Directory of Open Access Journals (Sweden)

    J. CASTRITSI-CATHARIOS

    2012-12-01

    Full Text Available The distribution and biometry of commercial sponges (Porifera in coastal areas of the central and southeastern Aegean Sea was investigated to estimate the recovery progress of the populations eight years after the first appearance of sponge disease. Signs of the disease were detected only in 1.6% of the harvested sponges. Multivariate analysis on the percentage abundance of sponges showed two distinct groups among the sixteen fishing grounds studied: the eight deep (50-110 m and the eight shallow ones (<40 m. The group from the deep depths consisted of Spongia officinalis adriatica, S. agaricina and S. zimocca. The infralittoral zone was characterized by the presence of Hippospongia communis, S. officinalis adriatica and S. officinalis mollissima. These bath sponges showed an enhanced abundance in the eastern Cretan Sea (S. Aegean Sea. In addition, their dimensions, particularly height, increased with increasing depth. It is indicated that the hydrographic conditions prevailing in the eastern Cretan Sea affected the repopulating processes of sponge banks. In each species, the biometric characteristics of the experimental specimens were similar to those of the sponges found in the market and harvested at respective depths prior to the appearance of sponge disease.

  6. 21 CFR 878.4014 - Nonresorbable gauze/sponge for external use.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Nonresorbable gauze/sponge for external use. 878... Nonresorbable gauze/sponge for external use. (a) Identification. A nonresorbable gauze/sponge for external use... include a nonresorbable gauze/sponge for external use that contains added drugs such as...

  7. Light Absorption in Coralline Algae (Rhodophyta: A Morphological and Functional Approach to Understanding Species Distribution in a Coral Reef Lagoon

    Directory of Open Access Journals (Sweden)

    Román M. Vásquez-Elizondo

    2017-09-01

    Full Text Available Red coralline algae are a cosmopolitan group with the ability to precipitate CaCO3 within the walls of their vegetative cells. The resultant carbonate structure is key for explaining their ecological success, as it provides protection against herbivores and resistance to water motion. However, its potential contribution to enhance thallus light absorption efficiency through multiple light scattering on algal skeleton, similar to the effect documented for scleractinian corals, has not been yet investigated. Here, we initiate this analysis, characterizing thallus optical properties of three coralline species, which differed in pigment content and thallus mass area (TMA, gDW m−2. The three species, the rhodolith Neogoniolithon sp., the crustose coralline alga (CCA, Lithothamnion sp., and the articulated alga Amphiroa tribulus, represent the more distinctive coralline growth-forms and are able to colonize contrasting light environments in Caribbean coral reefs. The thicker thalli of the rhodoliths were the most efficient light collectors, as evidenced by their higher pigment absorption efficiency (a*Chla; m2 mgChla−1 and photosynthetic rates per unit area. This could explain rhodolith success in oligotrophic, highly illuminated reef environments. In contrast, the thinner thalli of the CCA, a low-light specialist, showed the highest metabolic rates normalized to mass and the highest light absorption efficiencies per unit mass (a*M; m2 gdw−1. Therefore, the ecological success of the CCA in cryptic habitats within the reef cannot be explained only by its low-light physiology, but also by its capacity to reduce the structural costs of their thalli, and thus of its new growth. Lastly, the ecological success of Amphiroa tribulus, which displayed intermediate values for the efficiency of light absorption, metabolic rates and TMA, was explained by its ability to construct the largest light collectors (algal canopies thanks to the presence of flexible

  8. Silica Synthesis by Sponges: Unanticipated Molecular Mechanism

    Science.gov (United States)

    Morse, D. E.; Weaver, J. C.

    2001-12-01

    Oceanic diatoms, sponges and other organisms synthesize gigatons per year of silica from silicic acid, ultimately obtained from the weathering of rock. This biogenic silica exhibits a remarkable diversity of structures, many of which reveal a precision of nanoarchitectural control that exceeds the capabilities of human engineering. In contrast to the conditions of anthropogenic and industrial manufacture, the biological synthesis of silica occurs under mild physiological conditions of low temperatures and pressures and near-neutral pH. In addition to the differentiation between biological and abiotic processes governing silica formation, the biomolecular mechanisms controlling synthesis of these materials may offer insights for the development of new, environmentally benign routes for synthesis of nanostructurally controlled silicas and high-performance polysiloxane composites. We found that the needle-like silica spicules made by the marine sponge, Tethya aurantia, each contain an occluded axial filament of protein composed predominantly of repeating assemblies of three similar subunits we named "silicateins." To our surprise, analysis of the purified protein subunits and the cloned silicatein DNAs revealed that the silicateins are highly homologous to a family of hydrolytic enzymes. As predicted from this finding, we discovered that the silicatein filaments are more than simple, passive templates; they actively catalyze and spatially direct polycondensation to form silica, (as well as the phenyl- and methyl-silsesquioxane) from the corresponding silicon alkoxides at neutral pH and low temperature. Catalytic activity also is exhibited by the silicatein subunits obtained by disaggregation of the protein filaments and those produced from recombinant DNA templates cloned in bacteria. This catalytic activity accelerates the rate-limiting hydrolysis of the silicon alkoxide precursors. Genetic engineering, used to produce variants of the silicatein molecule with

  9. Crustose coralline algae and associated microbial biofilms deter seaweed settlement on coral reefs

    Science.gov (United States)

    Gomez-Lemos, Luis A.; Diaz-Pulido, Guillermo

    2017-06-01

    Crustose coralline algae (CCA), a group of calcifying red algae found commonly in benthic marine ecosystems worldwide, perform essential ecological functions on coral reefs, including creating benthic substrate, stabilizing the reef structure and inducing coral settlement. An important feature of CCA is the ability to keep their surfaces free of epiphytic algae, thereby reducing algal overgrowth and allowing them access to light. However, the mechanisms by which CCA prevent settlement of opportunistic seaweeds (fleshy macroalgae) are not fully understood, nor is whether these mechanisms vary among CCA species. In our study based on the Great Barrier Reef, we demonstrate that three common CCA species ( Titanoderma pustulatum, Porolithon onkodes and Neogoniolithon sp.) have a remarkable ability to deter settlement of seaweed spores. We provide experimental evidence that the CCA use allelopathy and microbial inhibition against the settlement of spores of the brown seaweed Padina boergesenii. Methanol extracts of allelopathic compounds from T. pustulatum, Po. onkodes and Neogoniolithon sp. significantly reduced the settlement of Pa. boergesenii spores by 4.3 times, 3.0 and 3.8 times, respectively. Further, we found that microbial biofilms, while having a lower inhibitory effect than allelopathic compounds, also reduced seaweed settlement of Pa. boergesenii. Our study demonstrates that allelopathy and microbial inhibition, in addition to epithallial tissue sloughing, are mechanisms employed by CCA to prevent the settlement of epiphytic algae. Understanding the mechanisms by which CCA avoid seaweed overgrowth contributes to our understanding of the dynamics of seaweed proliferations on reefs and to the ecological knowledge of this important group of reef-building organisms.

  10. Fluorescence of coral larvae predicts their settlement response to crustose coralline algae and reflects stress.

    Science.gov (United States)

    Kenkel, C D; Traylor, M R; Wiedenmann, J; Salih, A; Matz, M V

    2011-09-07

    Multi-coloured homologues of the green fluorescent protein generate some of the most striking visual phenomena in the ocean. Despite their natural prominence in reef-building corals and widespread use in biotechnology, their biological role remains obscure. Here, we experimented with larvae of Acropora millepora to determine what can be learned about a coral larva or recruit from its fluorescent colour. We performed 12 crosses between seven A. millepora colonies representing differing fluorescence phenotypes, the larvae of which were exposed to a natural settlement cue (crustose coralline algae) and heat-light stress. Parental effects explained 18 per cent of variation in colour and 47 per cent of variation in settlement. The colour of the larval family emerged as a predictor of the settlement success: redder families were significantly less responsive to the provided settlement cue (p = 0.006). This relationship was owing to a correlation between parental effects on settlement and colour (r(2) = 0.587, p = 0.045). We also observed pronounced (16%) decline in settlement rate, as well as subtle (2%), but a statistically significant decrease in red fluorescence, as a consequence of heat-light stress exposure. Variation in settlement propensity in A. millepora is largely owing to additive genetic effects, and is thought to reflect variation in dispersal potential. Our results suggest an optical signature to discriminate between long- and short-range dispersing genotypes, as well as to evaluate stress. Further research in this direction may lead to the development of field applications to trace changes in coral life history and physiology caused by global warming.

  11. BIODIVERSITY OF CORALLINE ALGAE IN THE NORTHEASTERN ATLANTIC INCLUDING CORALLINA CAESPITOSA SP. NOV. (CORALLINOIDEAE, RHODOPHYTA)(1).

    Science.gov (United States)

    Walker, Rachel H; Brodie, Juliet; Russell, Stephen; Irvine, Linda M; Orfanidis, Sotiris

    2009-02-01

    The Corallinoideae (Corallinaceae) is represented in the northeastern Atlantic by Corallina officinalis L.; Corallina elongata J. Ellis et Sol.; Haliptilon squamatum (L.) H. W. Johans., L. M. Irvine et A. M. Webster; and Jania rubens (L.) J. V. Lamour. The delimitation of these geniculate coralline red algae is based primarily on morphological characters. Molecular analysis based on cox1 and 18S rRNA gene phylogenies supported the division of the Corallinoideae into the tribes Janieae and Corallineae. Within the Janieae, a sequence difference of 46-48 bp (8.6%-8.9%) between specimens of H. squamatum and J. rubens in the cox1 phylogeny leads us to conclude that they are congeneric. J. rubens var. rubens and J. rubens var. corniculata (L.) Yendo clustered together in both phylogenies, suggesting that for those genes, there was no genetic basis for the morphological variation. Within the Corallineae, it appears that in some regions, the name C. elongata has been misapplied. C. officinalis samples formed two clusters that differed by 45-54 bp (8.4%-10.0%), indicating species-level divergence, and morphological differences were sufficient to define two species. One of these clusters was consistent with the morphology of the type specimen of C. officinalis (LINN 1293.9). The other species cluster is therefore described here as Corallina caespitosa sp. nov. This study has demonstrated that there is a clear need for a revision of the genus Corallina to determine the extent of "pseudocryptic" diversity in this group of red algae.

  12. Backfill for iliac-crest donor sites: a prospective, randomized study of coralline hydroxyapatite.

    Science.gov (United States)

    Bojescul, John A; Polly, David W; Kuklo, Timothy R; Allen, Thomas W; Wieand, Kay E

    2005-08-01

    We report on a prospective randomized study of coralline hydroxyapatite (CH) used as backfill for iliac-crest donor sites. Autogenous iliac-crest bone graft is routinely harvested for spinal fusion. Donor-site morbidity is underappreciated; the presumption is that donor sites regenerate. In this study, we assessed the biological viability of the backfill CH (Pro OsteonTM Implant 500 Hydroxyapatite Bone Void Filler; Interpore, Irvine, Calif) and compared donor-site morbidity after harvest. Twelve patients (11 men, 1 woman) were enrolled: 5 in the backfill group and 7 in the no-backfill group. As part of routine evaluations done preoperatively and 6 weeks, 3 months, 6 months, and 1 year postoperatively, plain radiographs and computed tomography (CT) scans were used to assess bone ingrowth, and technetium bone scans were used to assess biological activity. Postoperative pain analysis was also done. Ten patients (9 men, 1 woman) completed the study. Of the 4 completers in the backfill group, 3 (75%) showed bony ingrowth on plain radiographs and CT scans at 1 year; the fourth patient showed bony ingrowth only on plain radiographs. All 4 patients showed biological activity on bone scans and reported mild pain to no pain. Of the 6 completers in the no-backfill group, 1 (17%) showed bony ingrowth on plain radiographs and CT scans. No patient showed biological activity on bone scans at 1 year. CH aids in iliac-crest healing after bone-graft harvesting by acting as a biological osteoconductive matrix. Postoperative pain at the bone-graft site is potentially reduced. More studies of larger numbers of patients are needed to assess the true long-term benefits of this material in a clinical setting.

  13. Synergistic effects of diuron and sedimentation on photosynthesis and survival of crustose coralline algae

    Energy Technology Data Exchange (ETDEWEB)

    Harrington, Lindsay [Australian Institute of Marine Science, Townsville, QLD 4810 (Australia) and James Cook University, Townsville, QLD 4811 (Australia)]. E-mail: l.harrington@aims.gov.au; Fabricius, Katharina [Australian Institute of Marine Science, Townsville, QLD 4810 (Australia)]. E-mail: k.fabricius@aims.gov.au; Eaglesham, Geoff [Queensland Health Scientific Services, 39 Kessels Road, Coopers Plains 4108 (Australia); Negri, Andrew [Australian Institute of Marine Science, Townsville, QLD 4810 (Australia)

    2005-07-01

    Effects of short-term exposure to sedimentation and diuron, separately and in combination, on the photophysiology and survival of crustose coralline algae (CCA) were examined in controlled time-course experiments, using pulse-amplitude modulation (PAM) chlorophyll fluorometry. These experiments indicated that the effects of sediments and diuron, when applied in isolation, were often reversible, with recovery time dependant upon sediment type and diuron concentration. Exposure to fine (<63 {mu}m grain size), nutrient-rich estuarine sediments reduced effective quantum yields ({delta}F/F {sub m'}) of photosystem II in CCA species more than exposure to the same amount of fine (<63 {mu}m grain size) calcareous sediments. Significant inhibition of photosynthesis ({delta}F/F {sub m'}) was also observed at diuron concentrations 2.9 {mu}g L{sup -1}. Fine estuarine sediments in combination with 0.79 {mu}g L{sup -1} dissolved diuron, caused yields ({delta}F/F {sub m'}) to drop by 60% compared with controls after 24 h. The combined exposure to sediments and diuron also retarded recovery, thus {delta}F/F {sub m'} values were still only 60% of the controls after 9 days recovery in clean seawater. Mortality of CCA was observed in some fragments treated with combinations of sediment and diuron. Our results suggest that sediment deposition and exposure to diuron can negatively affect the photosynthetic activity of CCA, with sedimentation stress being significantly enhanced by the presence of trace concentrations of diuron.

  14. Effects of ocean acidification on population dynamics and community structure of crustose coralline algae.

    Science.gov (United States)

    Ordoñez, Alexandra; Doropoulos, Christopher; Diaz-Pulido, Guillermo

    2014-06-01

    Calcification and growth of crustose coralline algae (CCA) are affected by elevated seawater pCO2 and associated changes in carbonate chemistry. However, the effects of ocean acidification (OA) on population and community-level responses of CCA have barely been investigated. We explored changes in community structure and population dynamics (size structure and reproduction) of CCA in response to OA. Recruited from an experimental flow-through system, CCA settled onto the walls of plastic aquaria and developed under exposure to one of three pCO2 treatments (control [present day, 389±6 ppm CO2], medium [753±11 ppm], and high [1267±19 ppm]). Elevated pCO2 reduced total CCA abundance and affected community structure, in particular the density of the dominant species Pneophyllum sp. and Porolithon onkodes. Meanwhile, the relative abundance of P. onkodes declined from 24% under control CO2 to 8.3% in high CO2 (65% change), while the relative abundance of Pneophyllum sp. remained constant. Population size structure of P. onkodes differed significantly across treatments, with fewer larger individuals under high CO2. In contrast, the population size structure and number of reproductive structures (conceptacles) per crust of Pneophyllum sp. was similar across treatments. The difference in the magnitude of the response of species abundance and population size structure between species may have the potential to induce species composition changes in the future. These results demonstrate that the impacts of OA on key coral reef builders go beyond declines in calcification and growth, and suggest important changes to aspects of population dynamics and community ecology.

  15. Characterization of a biodegradable coralline hydroxyapatite/calcium carbonate composite and its clinical implementation.

    Science.gov (United States)

    Fu, Kun; Xu, Qingguo; Czernuszka, Jan; Triffitt, James T; Xia, Zhidao

    2013-12-01

    A partially converted, biodegradable coralline hydroxyapatite/calcium carbonate (CHACC) composite comprising a coral calcium carbonate scaffold enveloped by a thin layer of hydroxyapatite was used in the present study. The CHACC was characterized using powder x-ray diffraction, scanning electron microscopy and energy dispersive x-ray spectroscopy. The ability of the CHACC to promote conductive osteogenesis was assessed in vitro using human mesenchymal stem cells (hMSCs) and in vivo using an immunodeficient mouse model. The clinical performance of CHACC as a bone substitute to fill voids caused by excision of bone tumours was also observed in 16 patients. The CHACC was found to consist of two overlapping layers both morphologically and chemically. Hydroxyapatite formed a thin layer of nanocrystals on the surface and a thick rough crystal layer of around 30 µm in thickness enveloping the rock-like core calcium carbonate exoskeletal architecture. hMSCs cultured on CHACC in osteogenic medium demonstrated significant osteogenic differentiation. After subcutaneous implantation of CHACC incorporating osteogenically differentiated hMSCs and an anti-resorptive agent, risedronate, into an immunodeficient mouse model, bone formation was observed on the surface of the implants. Clinical application of CHACC alone in 16 patients for bone augmentation after tumour removal showed that after implantation, visible callus formation was observed at one month and clinical bone healing achieved at four months. The majority of the implanted CHACC was degraded in 18-24 months. In conclusion, CHACC appears to be an excellent biodegradable bone graft material. It biointegrates with the host, is osteoconductive, biodegradable and can be an attractive alternative to autogenous grafts.

  16. Histological and radiographic evaluations of demineralized bone matrix and coralline hydroxyapatite in the rabbit tibia.

    Science.gov (United States)

    Zhukauskas, Rasa; Dodds, Robert A; Hartill, Caroline; Arola, Travis; Cobb, Ronald R; Fox, Casey

    2010-03-01

    Complex fractures resulting in bone loss or impaired fracture healing remain problematic in trauma and orthopedic surgeries. Many bone graft substitutes have been developed and are commercially available. These products differ in their osteoconductive and osteoinductive properties. Differential enhancement of these properties may optimize the performance of these products for various orthopedic and craniofacial applications. The use of bone graft substitutes offers the ability to lessen the possible morbidity of the harvest site in autografts. The objective of the present study was to compare the ability of two bone graft substitutes, BioSet RT, an allograft demineralized bone matrix formulation, and ProOsteon 500R, a coralline hydroxyapatite, in a rabbit critical tibial defect model. BioSet RT and ProOsteon 500R were implanted into a unicortical proximal metaphyseal tibial defect and evaluated for new bone formation. Samples were analyzed radiographically and histologically at 1 day, 6 weeks, 12 weeks, and 24 weeks post surgery. Both materials were biocompatible and demonstrated significant bone growth and remodeling. At 12 weeks, the BioSet RT implanted sites demonstrated significantly more defect closure and bone remodeling as determined by radiographic analyses with 10 out of 14 defects being completely healed versus 1 out of 14 being completely healed in the ProOsteon 500R implanted sites. At 24 weeks, both materials demonstrated complete closure of the defect as determined histologically. There were no statistical differences in radiographic scores between the two implanted materials. However, there was an observable trend that the BioSet RT material generated higher histological and radiographic scores, although not statistically significant. This study provides evidence that both BioSet RT and ProOsteon 500R are biocompatible and able to induce new bone formation as measured in this rabbit model. In addition, this in vivo study demonstrates the ability of

  17. Coralline algae in a naturally acidified ecosystem persist by maintaining control of skeletal mineralogy and size

    Science.gov (United States)

    Perna, G.; Gambi, M. C.; Micheli, F.; Kroeker, K. J.

    2016-01-01

    To understand the effects of ocean acidification (OA) on marine calcifiers, the trade-offs among different sublethal responses within individual species and the emergent effects of these trade-offs must be determined in an ecosystem setting. Crustose coralline algae (CCA) provide a model to test the ecological consequences of such sublethal effects as they are important in ecosystem functioning, service provision, carbon cycling and use dissolved inorganic carbon to calcify and photosynthesize. Settlement tiles were placed in ambient pH, low pH and extremely low pH conditions for 14 months at a natural CO2 vent. The size, magnesium (Mg) content and molecular-scale skeletal disorder of CCA patches were assessed at 3.5, 6.5 and 14 months from tile deployment. Despite reductions in their abundance in low pH, the largest CCA from ambient and low pH zones were of similar sizes and had similar Mg content and skeletal disorder. This suggests that the most resilient CCA in low pH did not trade-off skeletal structure to maintain growth. CCA that settled in the extremely low pH, however, were significantly smaller and exhibited altered skeletal mineralogy (high Mg calcite to gypsum (hydrated calcium sulfate)), although at present it is unclear if these mineralogical changes offered any fitness benefits in extreme low pH. This field assessment of biological effects of OA provides endpoint information needed to generate an ecosystem relevant understanding of calcifying system persistence. PMID:27733544

  18. Growth and high-resolution paleoenvironmental signals of rhodoliths (coralline red algae): A new biogenic archive

    Science.gov (United States)

    Halfar, Jochen; Zack, Thomas; Kronz, Andreas; Zachos, James C.

    2000-09-01

    We investigated rhodoliths (coralline red algae) from a subtropical locality in the Gulf of California (Lithothamnium crassiusculum) and a subarctic locality in Newfoundland (Lithothamnium glaciale) for their potential as paleoenvironmental archives using microanalytical geochemical techniques to measure variations in δ18O, Mg, and Ca. Rhodoliths are potentially well suited as recorders of shallow water paleoenvironmental signals because they (1) have worldwide distribution from the tropics to polar regions, (2) are long lived from decades to centuries, and (3) display well-developed growth bands. Our results indicate that rhodolith growth bands preserve ultrahigh-resolution records of paleoceanographic-paleoclimatic change and likely constitute an important new archive for reconstructing the paleoenvironmental history of littoral-neritic areas in which these algae are found. The δ18O content of individually sampled rhodolith growth bands ranges from -2.4 to -4.6‰ in L. crassiusculum and from -3.2 to -0.3‰ in L. glaciale. In both cases, the range of δ18O values suggests a slightly lower amplitude of variation in sea surface temperature than that actually measured in the ocean at the two study sites. Both L. crassiusculum and L. glaciale show a negative offset from isotopic equilibrium. Electron microprobe analysis of magnesium and calcium in growth bands reveals cyclic variations with values ranging between 7.7-18.5 mol % MgCO3 in L. glaciale and 13.2-22.5 mol % MgCO3 in L. crassiusculum. In addition, electron microprobe element maps highlight individual growth bands, provide a powerful approach to study rhodolith formation, and indicate that the specimens we analyzed have vertical growth rates of 250-450 μm/yr.

  19. Coralline algae in a naturally acidified ecosystem persist by maintaining control of skeletal mineralogy and size.

    Science.gov (United States)

    Kamenos, N A; Perna, G; Gambi, M C; Micheli, F; Kroeker, K J

    2016-10-12

    To understand the effects of ocean acidification (OA) on marine calcifiers, the trade-offs among different sublethal responses within individual species and the emergent effects of these trade-offs must be determined in an ecosystem setting. Crustose coralline algae (CCA) provide a model to test the ecological consequences of such sublethal effects as they are important in ecosystem functioning, service provision, carbon cycling and use dissolved inorganic carbon to calcify and photosynthesize. Settlement tiles were placed in ambient pH, low pH and extremely low pH conditions for 14 months at a natural CO2 vent. The size, magnesium (Mg) content and molecular-scale skeletal disorder of CCA patches were assessed at 3.5, 6.5 and 14 months from tile deployment. Despite reductions in their abundance in low pH, the largest CCA from ambient and low pH zones were of similar sizes and had similar Mg content and skeletal disorder. This suggests that the most resilient CCA in low pH did not trade-off skeletal structure to maintain growth. CCA that settled in the extremely low pH, however, were significantly smaller and exhibited altered skeletal mineralogy (high Mg calcite to gypsum (hydrated calcium sulfate)), although at present it is unclear if these mineralogical changes offered any fitness benefits in extreme low pH. This field assessment of biological effects of OA provides endpoint information needed to generate an ecosystem relevant understanding of calcifying system persistence. © 2016 The Authors.

  20. Chitosan-Alginate Sponge: Preparation and Application in Curcumin Delivery for Dermal Wound Healing in Rat

    Directory of Open Access Journals (Sweden)

    Mei Dai

    2009-01-01

    Full Text Available A biodegradable sponge, composed of chitosan (CS and sodium alginate (SA, was successfully obtained in this work. The sponge was ethereal and pliable. The chemical structure and morphology of the sponges was characterized by FTIR and SEM. The swelling ability, in vitro drug release and degradation behaviors, and an in vivo animal test were employed to confirm the applicability of this sponge as a wound dressing material. As the chitosan content in the sponge decreased, the swelling ability decreased. All types of the sponges exhibited biodegradable properties. The release of curcumin from the sponges could be controlled by the crosslinking degree. Curcumin could be released from the sponges in an extended period for up to 20 days. An in vivo animal test using SD rat showed that sponge had better effect than cotton gauze, and adding curcumin into the sponge enhanced the therapeutic healing effect.

  1. Sterols from the Madagascar Sponge Fascaplysinopsis sp.

    Directory of Open Access Journals (Sweden)

    Yoel Kashman

    2010-12-01

    Full Text Available The sponge Fascaplysinopsis sp. (order Dictyoceratida, Family Thorectidae from the west coast of Madagascar (Indian Ocean is a particularly rich source of bioactive nitrogenous macrolides. The previous studies on this organism led to the suggestion that the latter should originate from associated microsymbionts. In order to evaluate the influence of microsymbionts on lipid content, 10 samples of Fascaplysinopsis sp. were investigated for their sterol composition. Contrary to the secondary metabolites, the sterol patterns established were qualitatively and quantitatively stable: 14 sterols with different unsaturated nuclei, D5, D7 and D5,7, were identified; the last ones being the main sterols of the investigated sponges. The chemotaxonomic significance of these results for the order Dictyoceratida is also discussed in the context of the literature. The conjugated diene system in D5,7 sterols is known to be unstable and easily photo-oxidized during storage and/or experiments to produce 5a,8a-epidioxy sterols. However, in this study, no 5a,8a-epidioxysterols (or only trace amounts were observed. Thus, it was supposed that photo-oxidation was avoided thanks to the natural antioxidants detected in Fascaplysinopsis sp. by both the DPPH and b-caroten bleaching assays.

  2. Sterols from the Madagascar sponge Fascaplysinopsis sp.

    Science.gov (United States)

    Aknin, Maurice; Gros, Emmanuelle; Vacelet, Jean; Kashman, Yoel; Gauvin-Bialecki, Anne

    2010-12-17

    The sponge Fascaplysinopsis sp. (order Dictyoceratida, Family Thorectidae) from the west coast of Madagascar (Indian Ocean) is a particularly rich source of bioactive nitrogenous macrolides. The previous studies on this organism led to the suggestion that the latter should originate from associated microsymbionts. In order to evaluate the influence of microsymbionts on lipid content, 10 samples of Fascaplysinopsis sp. were investigated for their sterol composition. Contrary to the secondary metabolites, the sterol patterns established were qualitatively and quantitatively stable: 14 sterols with different unsaturated nuclei, Δ(5), Δ(7) and Δ(5,7), were identified; the last ones being the main sterols of the investigated sponges. The chemotaxonomic significance of these results for the order Dictyoceratida is also discussed in the context of the literature. The conjugated diene system in Δ(5,7) sterols is known to be unstable and easily photo-oxidized during storage and/or experiments to produce 5α,8α-epidioxy sterols. However, in this study, no 5α,8α-epidioxysterols (or only trace amounts) were observed. Thus, it was supposed that photo-oxidation was avoided thanks to the natural antioxidants detected in Fascaplysinopsis sp. by both the DPPH and β-caroten bleaching assays.

  3. Mesoscale elastic properties of marine sponge spicules.

    Science.gov (United States)

    Zhang, Yaqi; Reed, Bryan W; Chung, Frank R; Koski, Kristie J

    2016-01-01

    Marine sponge spicules are silicate fibers with an unusual combination of fracture toughness and optical light propagation properties due to their micro- and nano-scale hierarchical structure. We present optical measurements of the elastic properties of Tethya aurantia and Euplectella aspergillum marine sponge spicules using non-invasive Brillouin and Raman laser light scattering, thus probing the hierarchical structure on two very different scales. On the scale of single bonds, as probed by Raman scattering, the spicules resemble a combination of pure silica and mixed organic content. On the mesoscopic scale probed by Brillouin scattering, we show that while some properties (Young's moduli, shear moduli, one of the anisotropic Poisson ratios and refractive index) are nearly the same as those of artificial optical fiber, other properties (uniaxial moduli, bulk modulus and a distinctive anisotropic Poisson ratio) are significantly smaller. Thus this natural composite of largely isotropic materials yields anisotropic elastic properties on the mesoscale. We show that the spicules' optical waveguide properties lead to pronounced spontaneous Brillouin backscattering, a process related to the stimulated Brillouin backscattering process well known in artificial glass fibers. These measurements provide a clearer picture of the interplay of flexibility, strength, and material microstructure for future functional biomimicry.

  4. The sterols of calcareous sponges (Calcarea, Porifera).

    Science.gov (United States)

    Hagemann, Andrea; Voigt, Oliver; Wörheide, Gert; Thiel, Volker

    2008-11-01

    Sponges are sessile suspension-feeding organisms whose internal phylogenetic relationships are still the subject of intense debate. Sterols may have the potential to be used as independent markers to test phylogenetic hypotheses. Twenty representative specimens of calcareous sponges (class Calcarea, phylum Porifera) with a broad coverage within both subclasses Calcinea and Calcaronea were analysed for their sterol content. Two major pseudohomologous series were found, accompanied by some additional sterols. The first series encompassing conventional C(27) to C(29)Delta(5,7,22) sterols represented the major sterols, with ergosterol (ergosta-5,7,22-trien-3beta-ol, C(28)Delta(5,7,22)) being most prominent in many species. The second series consisted of unusual C(27) to C(29)Delta(5,7,9(11),22) sterols. Cholesterol occurred sporadically, mostly in trace amounts. The sterol patterns did not resolve intraclass phylogenetic relationships, namely the distinction between the subclasses, Calcinea and Calcaronea. This pointed towards major calcarean lipid traits being established prior to the separation of subclasses. Furthermore, calcarean sterol patterns clearly differ from those found in Hexactinellida, whereas partial overlap occurred with some Demospongiae. Hence, sterols only partly reflect the phylogenetic separation of Calcarea from both of the other poriferan classes that was proposed by recent molecular work and fatty acid analyses.

  5. Origin of Metazoa: Sponges as Living Fossils

    Science.gov (United States)

    Müller, Werner E. G.

    1998-01-01

    , which code for proteins. The analyses of their deduced amino acid sequences allowed a molecular biological approach to solve the problem of monophyly of Metazoa. Molecules of the extracellular matrix/basal lamina, with the integrin receptor, fibronectin, and galectin as prominent examples, cell-surface receptors (tyrosine kinase receptor), elements of sensory systems (crystallin, metabotropic glutamate receptor), and homologs/modules of an immune system (immunoglobulin like molecules, scavenger receptor cysteine-rich, and short consensus repeats, rhesus system) classify the Porifera as true Metazoa. As living fossils, provided with simple, primordial molecules allowing cell-cell and cell-matrix adhesion as well as processes of signal transduction as known in a more complex manner from higher Metazoa, they also show peculiarities not known in other metazoan phyla. Tissues of sponges are rich in telomerase activity, suggesting a high plasticity in the determination of cell lineages. It is concluded that molecular biological studies with sponges as model will not only help to understand the evolution of Protoctista to Metazoa but also the complex, hierarchial regulatory network of cells in higher Metazoa.

  6. Marine sponges and their microbial symbionts: love and other relationships.

    Science.gov (United States)

    Webster, Nicole S; Taylor, Michael W

    2012-02-01

    Many marine sponges harbour dense and diverse microbial communities of considerable ecological and biotechnological importance. While the past decade has seen tremendous advances in our understanding of the phylogenetic diversity of sponge-associated microorganisms (more than 25 bacterial phyla have now been reported from sponges), it is only in the past 3-4 years that the in situ activity and function of these microbes has become a major research focus. Already the rewards of this new emphasis are evident, with genomics and experimental approaches yielding novel insights into symbiont function. Key steps in the nitrogen cycle [denitrification, anaerobic ammonium oxidation (Anammox)] have recently been demonstrated in sponges for the first time, with diverse bacteria - including the sponge-associated candidate phylum 'Poribacteria'- being implicated in these processes. In this minireview we examine recent major developments in the microbiology of sponges, and identify several research areas (e.g. biology of viruses in sponges, effects of environmental stress) that we believe are deserving of increased attention. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.

  7. Ankyrin-repeat proteins from sponge symbionts modulate amoebal phagocytosis.

    Science.gov (United States)

    Nguyen, Mary T H D; Liu, Michael; Thomas, Torsten

    2014-03-01

    Bacteria-eukaryote symbiosis occurs in all stages of evolution, from simple amoebae to mammals, and from facultative to obligate associations. Sponges are ancient metazoans that form intimate symbiotic interactions with complex communities of bacteria. The basic nutritional requirements of the sponge are in part satisfied by the phagocytosis of bacterial food particles from the surrounding water. How bacterial symbionts, which are permanently associated with the sponge, survive in the presence of phagocytic cells is largely unknown. Here, we present the discovery of a genomic fragment from an uncultured gamma-proteobacterial sponge symbiont that encodes for four proteins, whose closest known relatives are found in a sponge genome. Through recombinant approaches, we show that these four eukaryotic-like, ankyrin-repeat proteins (ARP) when expressed in Eschericha coli can modulate phagocytosis of amoebal cells and lead to accumulation of bacteria in the phagosome. Mechanistically, two ARPs appear to interfere with phagosome development in a similar way to reduced vacuole acidification, by blocking the fusion of the early phagosome with the lysosome and its digestive enzymes. Our results show that ARP from sponge symbionts can function to interfere with phagocytosis, and we postulate that this might be one mechanism by which symbionts can escape digestion in a sponge host.

  8. Bioprospecting Sponge-Associated Microbes for Antimicrobial Compounds.

    Science.gov (United States)

    Indraningrat, Anak Agung Gede; Smidt, Hauke; Sipkema, Detmer

    2016-05-02

    Sponges are the most prolific marine organisms with respect to their arsenal of bioactive compounds including antimicrobials. However, the majority of these substances are probably not produced by the sponge itself, but rather by bacteria or fungi that are associated with their host. This review for the first time provides a comprehensive overview of antimicrobial compounds that are known to be produced by sponge-associated microbes. We discuss the current state-of-the-art by grouping the bioactive compounds produced by sponge-associated microorganisms in four categories: antiviral, antibacterial, antifungal and antiprotozoal compounds. Based on in vitro activity tests, identified targets of potent antimicrobial substances derived from sponge-associated microbes include: human immunodeficiency virus 1 (HIV-1) (2-undecyl-4-quinolone, sorbicillactone A and chartarutine B); influenza A (H1N1) virus (truncateol M); nosocomial Gram positive bacteria (thiopeptide YM-266183, YM-266184, mayamycin and kocurin); Escherichia coli (sydonic acid), Chlamydia trachomatis (naphthacene glycoside SF2446A2); Plasmodium spp. (manzamine A and quinolone 1); Leishmania donovani (manzamine A and valinomycin); Trypanosoma brucei (valinomycin and staurosporine); Candida albicans and dermatophytic fungi (saadamycin, 5,7-dimethoxy-4-p-methoxylphenylcoumarin and YM-202204). Thirty-five bacterial and 12 fungal genera associated with sponges that produce antimicrobials were identified, with Streptomyces, Pseudovibrio, Bacillus, Aspergillus and Penicillium as the prominent producers of antimicrobial compounds. Furthemore culture-independent approaches to more comprehensively exploit the genetic richness of antimicrobial compound-producing pathways from sponge-associated bacteria are addressed.

  9. Globally intertwined evolutionary history of giant barrel sponges

    Science.gov (United States)

    Swierts, Thomas; Peijnenburg, Katja T. C. A.; de Leeuw, Christiaan A.; Breeuwer, Johannes A. J.; Cleary, Daniel F. R.; de Voogd, Nicole J.

    2017-09-01

    Three species of giant barrel sponge are currently recognized in two distinct geographic regions, the tropical Atlantic and the Indo-Pacific. In this study, we used molecular techniques to study populations of giant barrel sponges across the globe and assessed whether the genetic structure of these populations agreed with current taxonomic consensus or, in contrast, whether there was evidence of cryptic species. Using molecular data, we assessed whether giant barrel sponges in each oceanic realm represented separate monophyletic lineages. Giant barrel sponges from 17 coral reef systems across the globe were sequenced for mitochondrial (partial CO1 and ATP6 genes) and nuclear (ATPsβ intron) DNA markers. In total, we obtained 395 combined sequences of the mitochondrial CO1 and ATP6 markers, which resulted in 17 different haplotypes. We compared a phylogenetic tree constructed from 285 alleles of the nuclear intron ATPsβ to the 17 mitochondrial haplotypes. Congruent patterns between mitochondrial and nuclear gene trees of giant barrel sponges provided evidence for the existence of multiple reproductively isolated species, particularly where they occurred in sympatry. The species complexes in the tropical Atlantic and the Indo-Pacific, however, do not form separate monophyletic lineages. This rules out the scenario that one species of giant barrel sponge developed into separate species complexes following geographic separation and instead suggests that multiple species of giant barrel sponges already existed prior to the physical separation of the Indo-Pacific and tropical Atlantic.

  10. Release of vancomycin from multilayer coated absorbent gelatin sponges.

    Science.gov (United States)

    Shukla, Anita; Fang, Jean C; Puranam, Sravanthi; Hammond, Paula T

    2012-01-10

    Wounds have the potential to become infected during any surgical procedure. Gelatin sponges that are commonly used to absorb blood during invasive surgeries would benefit tremendously if they released antibiotics. In this work, we have examined coating a commercial gelatin sponge with degradable polymer multilayer films containing vancomycin. The effect of the film on sponge absorption capabilities and the effect of the sponge on drug release kinetics were both examined. Application of vancomycin containing layer-by-layer assembled films to this highly porous substrate greatly increased drug loading up to approximately 880% compared to a flat substrate. Vancomycin drug release was extended out to 6 days compared to 2 days for film coated flat substrates. Additionally, the absorbent properties of the gelatin sponge were actually enhanced by up to 170% due to the presence of the vancomycin film coating. A comparison of film coated sponges with sponges soaked directly in vancomycin demonstrated the ability of the multilayer films to control drug release. Film released vancomycin was also found to remain highly therapeutic with unchanged antimicrobial properties compared to the neat drug, demonstrated by quantifying vancomycin activity against Staphylococcus aureus in vitro.

  11. Preliminary assessment of sponge biodiversity on Saba Bank, Netherlands Antilles.

    Directory of Open Access Journals (Sweden)

    Robert W Thacker

    Full Text Available BACKGROUND: Saba Bank Atoll, Netherlands Antilles, is one of the three largest atolls on Earth and provides habitat for an extensive coral reef community. To improve our knowledge of this vast marine resource, a survey of biodiversity at Saba Bank included a multi-disciplinary team that sampled fishes, mollusks, crustaceans, macroalgae, and sponges. METHODOLOGY/PRINCIPAL FINDINGS: A single member of the dive team conducted surveys of sponge biodiversity during eight dives at six locations, at depths ranging from 15 to 30 m. This preliminary assessment documented the presence of 45 species pooled across multiple locations. Rarefaction analysis estimated that only 48 to 84% of species diversity was sampled by this limited effort, clearly indicating a need for additional surveys. An analysis of historical collections from Saba and Saba Bank revealed an additional 36 species, yielding a total of 81 sponge species recorded from this area. CONCLUSIONS/SIGNIFICANCE: This observed species composition is similar to that found on widespread Caribbean reefs, indicating that the sponge fauna of Saba Bank is broadly representative of the Caribbean as a whole. A robust population of the giant barrel sponge, Xestospongia muta, appeared healthy with none of the signs of disease or bleaching reported from other Caribbean reefs; however, more recent reports of anchor chain damage to these sponges suggests that human activities can have dramatic impacts on these communities. Opportunities to protect this extremely large habitat should be pursued, as Saba Bank may serve as a significant reservoir of sponge species diversity.

  12. First report on chitinous holdfast in sponges (Porifera).

    Science.gov (United States)

    Ehrlich, Hermann; Kaluzhnaya, Oksana V; Tsurkan, Mikhail V; Ereskovsky, Alexander; Tabachnick, Konstantin R; Ilan, Micha; Stelling, Allison; Galli, Roberta; Petrova, Olga V; Nekipelov, Serguei V; Sivkov, Victor N; Vyalikh, Denis; Born, René; Behm, Thomas; Ehrlich, Andre; Chernogor, Lubov I; Belikov, Sergei; Janussen, Dorte; Bazhenov, Vasilii V; Wörheide, Gert

    2013-07-07

    A holdfast is a root- or basal plate-like structure of principal importance that anchors aquatic sessile organisms, including sponges, to hard substrates. There is to date little information about the nature and origin of sponges' holdfasts in both marine and freshwater environments. This work, to our knowledge, demonstrates for the first time that chitin is an important structural component within holdfasts of the endemic freshwater demosponge Lubomirskia baicalensis. Using a variety of techniques (near-edge X-ray absorption fine structure, Raman, electrospray ionization mas spectrometry, Morgan-Elson assay and Calcofluor White staining), we show that chitin from the sponge holdfast is much closer to α-chitin than to β-chitin. Most of the three-dimensional fibrous skeleton of this sponge consists of spicule-containing proteinaceous spongin. Intriguingly, the chitinous holdfast is not spongin-based, and is ontogenetically the oldest part of the sponge body. Sequencing revealed the presence of four previously undescribed genes encoding chitin synthases in the L. baicalensis sponge. This discovery of chitin within freshwater sponge holdfasts highlights the novel and specific functions of this biopolymer within these ancient sessile invertebrates.

  13. Ocean acidification reduces induction of coral settlement by crustose coralline algae.

    Science.gov (United States)

    Webster, Nicole S; Uthicke, Sven; Botté, Emanuelle S; Flores, Florita; Negri, Andrew P

    2013-01-01

    Crustose coralline algae (CCA) are a critical component of coral reefs as they accrete carbonate for reef structure and act as settlement substrata for many invertebrates including corals. CCA host a diversity of microorganisms that can also play a role in coral settlement and metamorphosis processes. Although the sensitivity of CCA to ocean acidification (OA) is well established, the response of their associated microbial communities to reduced pH and increased CO2 was previously not known. Here we investigate the sensitivity of CCA-associated microbial biofilms to OA and determine whether or not OA adversely affects the ability of CCA to induce coral larval metamorphosis. We experimentally exposed the CCA Hydrolithon onkodes to four pH/pCO2 conditions consistent with current IPCC predictions for the next few centuries (pH: 8.1, 7.9, 7.7, 7.5, pCO2 : 464, 822, 1187, 1638 μatm). Settlement and metamorphosis of coral larvae was reduced on CCA pre-exposed to pH 7.7 (pCO2  = 1187 μatm) and below over a 6-week period. Additional experiments demonstrated that low pH treatments did not directly affect the ability of larvae to settle, but instead most likely altered the biochemistry of the CCA or its microbial associates. Detailed microbial community analysis of the CCA revealed diverse bacterial assemblages that altered significantly between pH 8.1 (pCO2  = 464 μatm) and pH 7.9 (pCO2  = 822 μatm) with this trend continuing at lower pH/higher pCO2 treatments. The shift in microbial community composition primarily comprised changes in the abundance of the dominant microbes between the different pH treatments and the appearance of new (but rare) microbes at pH 7.5. Microbial shifts and the concomitant reduced ability of CCA to induce coral settlement under OA conditions projected to occur by 2100 is a significant concern for the development, maintenance and recovery of reefs globally.

  14. Sea-surface temperature reconstruction from trace elements variations of tropical coralline red algae

    Science.gov (United States)

    Darrenougue, Nicolas; De Deckker, Patrick; Eggins, Stephen; Payri, Claude

    2014-06-01

    We used laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS) to obtain high-resolution variations of the Mg/Ca, Sr/Ca and Li/Ca composition of free-living forms (i.e. rhodoliths) of the coralline red algal species Sporolithon durum in order to test their potential to archive seawater temperature information. A monitoring experiment was conducted based on alizarin red S (ARS) staining of rhodoliths specimens collected in various locations across a ˜1 km2 rhodolith bed in the vicinity of Nouméa, New Caledonia, where in situ temperature (IST) variations were recorded for 22 months between November 2009 and August 2011. A >45-year comparison of Mg and trace elements with sea-surface temperature (SST) was established from the analysis of 5 different branches belonging to three of the largest (7.4-8.5 cm in diameter) rhodolith specimens observed at the site. Consistent mean Mg/Ca, Sr/Ca and Li/Ca concentrations and seasonal patterns are found for the rhodoliths' last living years (2009-2011) across 43 branches and for the full 1963-2008 period across the 5 branches. Average elemental concentrations (Mg/Ca: 0.31 ± 0.04 mol/mol; Sr/Ca: 3.5 ± 0.4 mmol/mol and Li/Ca: 0.08 ± 0.02 mmol/mol) fall within range of those found in the literature. Individual element variations show good reproducibility between records and Mg/Ca, Sr/Ca and Li/Ca co-vary systematically. Combined records of Mg/Ca, Sr/Ca and Li/Ca are highly correlated with the IST monthly pattern for the 2009-2011 period (0.82 < r < 0.91; p < 0.001) and with local variations of monthly SST for the 1963-2008 period (0.65 < r < 0.85; p < 0.001), with Mg/Ca systematically being the best fit to monthly seawater temperature variations. Inter-annual Mg/Ca anomalies show significant correlation with the Oceanic Nino Index (ONI), indicating that S. durum rhodoliths also have the capacity to record the regional climate pattern in the tropical Pacific. Finally, consistent variations between the combined Mg

  15. Flow perfusion culture of human mesenchymal stem cells on coralline hydroxyapatite scaffolds with various pore sizes.

    Science.gov (United States)

    Bjerre, Lea; Bünger, Cody; Baatrup, Anette; Kassem, Moustapha; Mygind, Tina

    2011-06-01

    Bone grafts are widely used in orthopaedic reconstructive surgery, but harvesting of autologous grafts is limited due to donor site complications. Bone tissue engineering is a possible alternative source for substitutes, and to date, mainly small scaffold sizes have been evaluated. The aim of this study was to obtain a clinically relevant substitute size using a direct perfusion culture system. Human bone marrowderived mesenchymal stem cells were seeded on coralline hydroxyapatite scaffolds with 200 μm or 500 μm pores, and resulting constructs were cultured in a perfusion bioreactor or in static culture for up to 21 days and analysed for cell distribution and osteogenic differentiation using histological stainings, alkaline phosphatase activity assay, and real-time RT-PCR on bone markers. We found that the number of cells was higher during static culture at most time points and that the final number of cells was higher in 500 μm constructs as compared with 200 μm constructs. Alkaline phosphatase enzyme activity assays and real time RT-PCR on seven osteogenic markers showed that differentiation occurred primarily and earlier in statically cultured constructs with 200 μm pores compared with 500 μm ones. Adhesion and proliferation of the cells was seen on both scaffold sizes, but the vitality and morphology of cells changed unfavorably during perfusion culture. In contrast to previous studies using spinner flask that show increased cellularity and osteogenic properties of cells when cultured dynamically, the perfusion culture in our study did not enhance the osteogenic properties of cell/scaffold constructs. The statically cultured constructs showed increasing cell numbers and abundant osteogenic differentiation probably because of weak initial cell adhesion due to the surface morphology of scaffolds. Our conclusion is that the specific scaffold surface microstructure and culturing system flow dynamics has a great impact on cell distribution and proliferation

  16. Trophic cascades result in large-scale coralline algae loss through differential grazer effects.

    Science.gov (United States)

    O'Leary, Jennifer K; McClanahan, Timothy R

    2010-12-01

    Removal of predators can have strong indirect effects on primary producers through trophic cascades. Crustose coralline algae (CCA) are major primary producers worldwide that may be influenced by predator removal through changes in grazer composition and biomass. CCA have been most widely studied in Caribbean and temperate reefs, where cover increases with increasing grazer biomass due to removal of competitive fleshy algae. However, each of these systems has one dominant grazer type, herbivorous fishes or sea urchins, which may not be functionally equivalent. Where fishes and sea urchins co-occur, fishing can result in a phase shift in the grazing community with subsequent effects on CCA and other substrata. Kenyan reefs have herbivorous fishes and sea urchins, providing an opportunity to determine the relative impacts of each grazer type and evaluate potential human-induced trophic cascades. We hypothesized that fish benefit CCA, abundant sea urchins erode CCA, and that fishing indirectly reduces CCA cover by removing sea urchin predators. We used closures and fished reefs as a large-scale, long-term natural experiment to assess how fishing and resultant changes in communities affect CCA abundance. We used a short-term caging experiment to directly test the effects of grazing on CCA. CCA cover declined with increasing fish and sea urchin abundance, but the negative impact of sea urchin grazing was much stronger than that of fishes. Abundant sea urchins reduced the CCA growth rate to almost zero and prevented CCA accumulation. A warming event (El Niño Southern Oscillation, ENSO) occurred during the 18-year study and had a strong but short-term positive effect on CCA cover. However, the effect of the ENSO on CCA was lower in magnitude than the effect of sea urchin grazing. We compare our results with worldwide literature on bioerosion by fishes and sea urchins. Grazer influence depends on whether benefits of fleshy algae removal outweigh costs of grazer

  17. Fossil and modern sponge fauna of southern Australia and adjacent regions compared: interpretation, evolutionary and biogeographic significance of the late Eocene ‘soft’ sponges

    NARCIS (Netherlands)

    Łukowiak, M.

    2016-01-01

    The late Eocene ‘soft’ sponge fauna of southern Australia is reconstructed based on disassociated spicules and is used to interpret the paleoecology and environmental context of shallow marine communities in this region. The reconstructed sponge association was compared with coeval sponge

  18. Fossil and modern sponge fauna of southern Australia and adjacent regions compared: interpretation, evolutionary and biogeographic significance of the late Eocene ‘soft’ sponges

    NARCIS (Netherlands)

    Łukowiak, M.

    2016-01-01

    The late Eocene ‘soft’ sponge fauna of southern Australia is reconstructed based on disassociated spicules and is used to interpret the paleoecology and environmental context of shallow marine communities in this region. The reconstructed sponge association was compared with coeval sponge assemblage

  19. Comparative study of texture of normal and energy reduced sponge cakes.

    Science.gov (United States)

    Baeva, M R; Panchev, I N; Terzieva, V V

    2000-08-01

    The complete sucrose elimination and its replacement by microencapsulated aspartame (Nutra Sweet) and bulking agents (sorbitol, wheat starch and wheat germ) on the physical and textural sensory characteristics of two diabetic sponge cakes against a control sponge cake was studied. Mathematical and statistical methods were used and regression models worked out, describing the physical and textural characteristics of the three sponge cakes and their values were optimized. The effect on the porosity, springiness, volume and shrinkage of sponge takes was substantial and depended on the amount of the added ingredients. The diabetic sponge cake containing wheat germ showed the least physical and sensory deviations against the control sponge cake. The energy value of the diabetic sponge cakes against the control one was reduced with 25% for the ordinary sponge cake without sucrose and with 29% for sponge cake without sucrose containing wheat germ.

  20. New bromotyrosine alkaloids from the marine sponge Psammaplysilla purpurea

    Digital Repository Service at National Institute of Oceanography (India)

    Tilvi, S.; Rodrigues, C; Naik, C; Parameswaran, P.S.; Wahidullah, S.

    Seven new bromotyrosine alkaloids Purpurealidin A, B, C, D, F, G, H and the known compounds Purealidin Q, Purpurealidin E, 16-Debromoaplysamine-4 and Purpuramine I have been isolated from the marine sponge Psammaplysilla purpurea. Their structure...

  1. Primmorphs from seven marine sponges : formation and structure

    NARCIS (Netherlands)

    Sipkema, D.; Wielink, van R.; Lammeren, van A.A.M.; Tramper, J.; Osinga, R.; Wijffels, R.H.

    2003-01-01

    Primmorphs were obtained from seven different marine sponges: Stylissa massa, Suberites domuncula, Pseudosuberites aff. andrewsi, Geodia cydonium, Axinella polypoides, Halichondria panicea and Haliclona oculata. The formation process and the ultra structure of primmorphs were studied. A positive

  2. Stimulatory activity of four green freshwater sponges on aquatic ...

    African Journals Online (AJOL)

    SMG

    The distribution of plant and animal hydrobionts in water ecosystems of a ... plant hydrobionts. During the lakes ..... Poland by Batko (1977) as a parasite in mycelium of. Nellymyces .... Systema Porifera: a guide to the classification of Sponges.

  3. Protonated Melamine Sponge for Effective Oil/Water Separation

    Science.gov (United States)

    Wang, Chih-Feng; Huang, Hsiang-Ching; Chen, Liang-Ting

    2015-09-01

    In this study, we fabricated a superhydrophilic and underwater superoleophobic protonated melamine sponge for effective separation of water-rich immiscible oil/water mixtures with extremely high separation efficiency. This protonated melamine sponge exhibited excellent antifouling properties and could be used to separate oil/water mixtures continuously for up to 12 h without any increase in the oil content in filtrate. Moreover, our compressed protonated melamine sponge could separate both surfactant-free and -stabilized oil-in-water emulsions with high separation efficiencies. The high performance of this protonated melamine sponge and its efficient, energy- and cost-effective preparation suggest that it has great potential for use in practical applications.

  4. An Acetylenic Alkaloid from the Calcareous Sponge Leucetta sp.

    OpenAIRE

    Nicole J de Voogd; Idam Hermawan; Junichi Tanaka

    2011-01-01

    A new acetylenic alkaloid was isolated from the sponge Leucetta sp. The structure was established by analyzing spectroscopic data. The alkaloid showed cytotoxicity IC50 2.5 mg/mL against NBT-T2 cells.

  5. A New Sponge, Antho (Acarnia seogwipoensis (Poecilosclerida: Microcionidae from Korea

    Directory of Open Access Journals (Sweden)

    Kim, Hyung June

    2015-07-01

    Full Text Available A new marine sponge, Antho (Acarnia seogwipoensis n. sp., of the family Microcionidae, was collected from Seogwipo-si, Jeju-do, Korea, about 100 m in depth using a gill net on 1969. The genus Antho Gray, 1867 including Demospongiae, Poecilosclerida, Microcionidae, is a large group of sponges. About 100 species in Antho were reported from worldwide. The genus Antho contains five subgenera: Antho, Acarnia, Isopenectya, Jia, and Plocamia. Among them, about 30 species in Acarnia were described in world sponge. A new sponge's body shape is branching, size up to 124 mm wide, 213 mm high, 3-8 mm thick in branch and 7-9 mm thick in stalk. Antho (Acarnia seogwipoensis n. sp. is similar to A. (A. novizelanicum Ridley and Duncan, 1881 based on their spicules type and skeletal structure, but differs in the spicules dimension and growth form. This new species is branched growth form and have three kinds of toxa.

  6. [Sponge cell reaggregation: mechanisms and dynamics of the process].

    Science.gov (United States)

    Lavrov, A I; Kosevich, I A

    2014-01-01

    Sponges (Porifera) are lower metazoans whose organization is characterized by a high plasticity of anatomical and cellular structures. One of the manifestations of this plasticity is the ability of sponge cells to reaggregate after dissociation of tissues. This review brings together the available data on the reaggregation of sponge cells that have been obtained to date since the beginning of the 20th century. It considers the behavior of dissociated cells in suspension, the mechanisms and factors involved in reaggregation, and the rate and stages of this process in different representatives of this phylum. In addition, this review provides information about the histological structure of multicellular aggregates formed during reaggregation of cells and the regenerative morphogenetic processes leading to the formation of normal sponges from these multicellular aggregates.

  7. Cultivation of Marine Sponges: From Sea to Cell

    NARCIS (Netherlands)

    Sipkema, D.

    2004-01-01

    Marine sponges are one of the richest natural sources of secondary metabolites with a potential pharmaceutical application. A plethora of chemical compounds, with widely varying carbon skeletons, possessing among other anticancer, antiviral, antibiotic, antiinflammatory and antimalaria activity has

  8. Cultivation of Marine Sponges: From Sea to Cell

    NARCIS (Netherlands)

    Sipkema, D.

    2004-01-01

    Marine sponges are one of the richest natural sources of secondary metabolites with a potential pharmaceutical application. A plethora of chemical compounds, with widely varying carbon skeletons, possessing among other anticancer, antiviral, antibiotic, antiinflammatory and antimalaria activity has

  9. Articles : A New Sesterterpene from the Korean Sarcotragus sp. Sponge

    National Research Council Canada - National Science Library

    Jung Kyun Woo; ; Ju Eun Jeon; Bo Ra Kim; Chung J Sim; Dong Chan Oh; Ki Bong Oh; Jong Heon Shin

    2015-01-01

    .... sponge collected from Chuja Island, Korea. On the basis of the combined spectroscopic analyses, the structure of this compound was determined to be a linear norsesterterpene containing a leucine-derived γ-lactam moiety...

  10. Anti-bacterial compounds from the sponge Haliclona sp.

    Digital Repository Service at National Institute of Oceanography (India)

    Parameswaran, P.S.; Kamat, S.Y.; Chandramohan, D.; Nair, S.; Das, B.

    The crude methanolic extract of the sponge Haliclona sp., collected off Gujarat coast exhibited promising anti-viral (in vitro, 75%) and anti-bacterial properties Partitioning of the extract between various organic solvents, monitored by bioassay...

  11. Autophagy-modulating aminosteroids isolated from the sponge Cliona celata

    NARCIS (Netherlands)

    R.A. Keyzers; J. Daoust; M.T. Davies-Coleman; R. van Soest; A. Balgi; E. Donohue; M. Roberge; R.J. Andersen

    2008-01-01

    Clionamines A−D (1−4), new aminosteroids that modulate autophagy, have been isolated from South African specimens of the sponge Cliona celata. Clionamine D (4) has an unprecedented spiro bislactone side chain.

  12. Primmorphs from seven marine sponges : formation and structure

    NARCIS (Netherlands)

    Sipkema, D.; Wielink, van R.; Lammeren, van A.A.M.; Tramper, J.; Osinga, R.; Wijffels, R.H.

    2003-01-01

    Primmorphs were obtained from seven different marine sponges: Stylissa massa, Suberites domuncula, Pseudosuberites aff. andrewsi, Geodia cydonium, Axinella polypoides, Halichondria panicea and Haliclona oculata. The formation process and the ultra structure of primmorphs were studied. A positive cor

  13. Emerging Sponge Models of Animal-Microbe Symbioses

    Science.gov (United States)

    Pita, Lucia; Fraune, Sebastian; Hentschel, Ute

    2016-01-01

    Sponges have a significant impact on marine benthic communities, they are of biotechnological interest owing to their production of bioactive natural compounds, and they promise to provide insights into conserved mechanisms of host–microbe interactions in basal metazoans. The natural variability of sponge-microbe associations across species and environments provides a meaningful ecological and evolutionary framework to investigate animal-microbial symbiosis through experimentation in the field and also in aquaria. In addition, next-generation sequencing technologies have shed light on the genomic repertoire of the sponge host and revealed metabolic capacities and symbiotic lifestyle features of their microbiota. However, our understanding of symbiotic mechanisms is still in its infancy. Here, we discuss the potential and limitations of the sponge-microbe symbiosis as emerging models for animal-associated microbiota. PMID:28066403

  14. Functional Insights into Sponge Microbiology by Single Cell Genomics

    KAUST Repository

    Hentschel, Ute

    2011-04-09

    Marine Sponges (Porifera) are known to harbor enormous amounts of microorganisms with members belonging to at least 30 different bacterial phyla including several candidate phyla and both archaeal lineages. Here, we applied single cell genomics to the mic

  15. Medullary sponge kidney and isolated hemihyperplasia

    Directory of Open Access Journals (Sweden)

    P S Priyamvada

    2014-01-01

    Full Text Available The term hemihyperplasia refers to an enlargement of body parts beyond the normal asymmetry. Hemihyperplasia can be isolated or associated with various well-described malformation syndromes. Medullary sponge kidney (MSK has been described with isolated and syndromic hemihyperplasia; the actual prevalence is not known The hemi hypertrophy can be so subtle that it may be easily overlooked. MSK need not be limited to the side of hemihyperplasia - most often it is bilateral. Around 33 cases has been reported from different parts of the world of which 15 cases are isolated hemi hyperplasia (IHH, the remaining occurring in the context of various malformation syndromes So far only one case has been reported from India. We report a case of IHH involving right side of the body, recurrent renal stones, incomplete distal renal tubular acidosis hypercalciuria and imaging showing bilateral MSKs.

  16. Transabdominal Migration of Retained Surgical Sponge

    Directory of Open Access Journals (Sweden)

    Ali Guner

    2012-01-01

    Full Text Available Retained surgical sponge (RSS is a rare surgical complication. The RSSs are mostly located intra-abdominally but they can also be left in the thorax, spine, extremity, cranium, and breast. RSS is often difficult to diagnose because of the nonspecific clinical symptoms and radiologic findings. Clinically, RSS may present as an exudative reaction in the early postoperative period or may also cause an aseptic fibrous tissue response. A foreign body may remain asymptomatically silent for a long time, and it may later present with obstruction, fistulization, or mass formation. In this report, we present a case in which an RSS has migrated through the abdominal wall and caused an anterior abdominal wall abscess.

  17. Transabdominal migration of retained surgical sponge.

    Science.gov (United States)

    Guner, Ali; Hos, Gultekin; Kahraman, Izzettin; Kece, Can

    2012-01-01

    Retained surgical sponge (RSS) is a rare surgical complication. The RSSs are mostly located intra-abdominally but they can also be left in the thorax, spine, extremity, cranium, and breast. RSS is often difficult to diagnose because of the nonspecific clinical symptoms and radiologic findings. Clinically, RSS may present as an exudative reaction in the early postoperative period or may also cause an aseptic fibrous tissue response. A foreign body may remain asymptomatically silent for a long time, and it may later present with obstruction, fistulization, or mass formation. In this report, we present a case in which an RSS has migrated through the abdominal wall and caused an anterior abdominal wall abscess.

  18. New hexactinellid sponges from deep Mediterranean canyons.

    Science.gov (United States)

    Boury-Esnault, Nicole; Vacelet, Jean; Dubois, Maude; Goujard, Adrien; Fourt, Maïa; Pérez, Thierry; Chevaldonné, Pierre

    2017-02-21

    During the exploration of the NW Mediterranean deep-sea canyons (MedSeaCan and CorSeaCan cruises), several hexactinellid sponges were observed and collected by ROV and manned submersible. Two of them appeared to be new species of Farrea and Tretodictyum. The genus Farrea had so far been reported with doubt from the Mediterranean and was listed as "taxa inquirenda" for two undescribed species. We here provide a proper description for the specimens encountered and sampled. The genus Tretodictyum had been recorded several times in the Mediterranean and in the near Atlantic as T. tubulosum Schulze, 1866, again with doubt, since the type locality is the Japan Sea. We here confirm that the Mediterranean specimens are a distinct new species which we describe. We also provide18S rDNA sequences of the two new species and include them in a phylogenetic tree of related hexactinellids.

  19. Investigators unable to substantiate suspected link between sponge, TSS.

    Science.gov (United States)

    1983-12-01

    Federal investigators have failed to substantiate a suspected link between the contraceptive sponge and toxic shock syndrome (TSS). In September the US Food and Drug Administration (FDA) reported the case of a woman who inserted the contraceptive sponge last July 17 and removed itthe following day. About 6 hours later she noted the sudden onset of a fever of 104 degrees Farenheit, nausea, redness, shaking chills, and an inflamed vagina. Cultures from the sponge revealed S. aureus and S. epidemis. There was initial concern that the case may have represented early TSS. A toxin produced by certain strains of S. aureus is thought to cause TSS. The syndrome includes a fever greater than 102 degrees, rash, blood pressure less than 90mmHG, peelin g skin on the palms and soles 1-2 weeks after onset, and involvement of 3 or more of the following organ systems: gastrointestinal, muscular, mucous membrane, renal, hepatic, hematologic,or central nervous system. FDA medical Officers Dr. William J. McCann told "Contraceptive Technology Update" (CTU) that the reported case failed to fill the Centers for Disease Control criteriaof the diagnosis of TSS. Because the woman has been treated with antibiotics early in the course of her disease, McCann said he could not entirely exclude the possibility that she might have developed TSS if she had gone untreated. He added that the possibility was "remote". Dr. Gail Bolan, CDC epidemiologist, told CTU that "antibiotics do not seem to affect the outcome of the original episode" of TSS cases. She commented that milder forms of TSS might exist that may not meet CDC's strict case definition. Without a specific test, there is no way to separate milder TSS cases from viral or other diseases that may appear similar. According to Deborah Gaynor, the sponge's package insert states that clinical trials were not large enough to assess the risk of TSS. The sponge is not recommended for use during menstration. Gaynor cites a variety of reasons why the

  20. Preparation and characterization of sponge film made from feathers

    Energy Technology Data Exchange (ETDEWEB)

    Zhuang, Yuan; Wu, Xiaoqian [College of Environmental Science and Engineering, Donghua University, Shanghai 201620 (China); Cao, Zhangjun [College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620 (China); Zhao, Xiaoxiang; Zhou, Meihua [College of Environmental Science and Engineering, Donghua University, Shanghai 201620 (China); Gao, Pin, E-mail: gaopin@mail.dhu.edu.cn [College of Environmental Science and Engineering, Donghua University, Shanghai 201620 (China)

    2013-12-01

    Feather wastes generated from poultry farms will pose a problem for disposal, but they are sustainable resources of keratin. Reduction is one of the commonly used methods to obtain soluble keratin from feather. However, the residues generated during feather reduction reaction were rarely investigated. In this study, the residues were transformed into a porous and flexible sponge film by freeze-drying without pretreatment or addition of cross-linking agents. Glycerol was used to alter the physical and chemical characteristics of the sponge film. The film was characterized with a fiber strong stretch instrument, a Fourier transform infrared spectrophotometer, scanning electron microscopy, an elemental analyzer, a differential scanning calorimeter and an automatic air permeability apparatus. Tensile strength and melting point of the sponge film with the optimum glycerol content were 6.2 MPa and 170 °C respectively. Due to air permeability of 368 mm/s, the film can potentially be used in medicine, biology, textile, environmental technology, and so on. It is ecologically friendly and will produce additional benefits from the renewable materials. The film was utilized as adsorbents to remove Cr(VI) from aqueous solutions and as a filtering material for air pollution. Its maximum Cr(VI) uptake capacity was about 148.8 mg/g and the removal rate of PM{sub 10} was 98.3%. - Graphical abstract: The reduction residues were made into a smooth, elastic, porous and flexible sponge film through freeze drying, no pretreatment and no cross-linking agent added. - Highlights: • The residue from feather waste reduction was turned into a sponge film. • A glycerol content of 5% produced a sponge with the optimum characteristics. • The sponge was uniform, stable up to 160 °C, and had an air permeability of 368 mm/s. • Feather-derived sponge film has potential applications in medicine and technology.

  1. A new Triassic sponge from the Antimonio terrane, Sonora, Mexico

    Science.gov (United States)

    Senowbari-Daryan, Baba; Stanley, George D.; Gonzalez-Leon, Carlos

    2001-10-01

    A new Upper Triassic (Norian) chambered sponge, Fanthalamia glomerata n. sp., from the Antimonio Formation (Antimonio terrane) of northwestern Sonora, Mexico, is described. Recrystallized limestone containing the new sponge, together with other marine invertebrates, is interpreted to represent tropical, shallow-water carbonate settings characterized by local biostromal and biohermal buildups. The new species increases understanding of the ancient depositional environment and paleobiogeography of the Antimonio Formation.

  2. Soft Collagen-Gelatine Sponges by Convection Drying

    Directory of Open Access Journals (Sweden)

    Michael Meyer

    2015-02-01

    Full Text Available This study showed that thermally labile fibrillar collagen could be processed continuously in combination with gelatine as foaming additive by convection drying. The procedure led to stable sponges with similar structural and physical properties as found for freeze-dried collagen samples. The fibrillar collagen remained native, while gelatine acted as foaming additive. The absorbency of the sponges was improved by opening the surface with abrasives. A use as medical device with hemostyptic properties would be possible.

  3. Genomics of "Candidatus Synechococcus spongiarium", a Cyanobacterial Sponge Symbiont

    Energy Technology Data Exchange (ETDEWEB)

    Slaby, Beate M. [Univ. of Wuerzburg (Germany); Copeland, Alex [Lawrence Berkeley National Lab. (LBNL), Walnut Creek, CA (United States). Dept. of Energy Joint Genome Inst.; Woyke, Tanja [Lawrence Berkeley National Lab. (LBNL), Walnut Creek, CA (United States). Dept. of Energy Joint Genome Inst.; Hentschel, Ute [Univ. of Wuerzburg (Germany)

    2014-03-21

    Marine sponges (Porifera): ancient metazoans of ecological importance, that produce bioactive secondary metabolites and interact with various microorganisms including cyanobacteria1: Marine Synechococcus spp.: cyanobacteria, important contributors to the global carbon cycle and major primary producers in the oceans2 Ca. S. spongiarum: an ecotype of this genus, widespread and abundant symbiont of various marine sponges around the world3, e.g. Aplysina aerophoba

  4. Usage of infinitesimals in the Menger's Sponge model of porosity

    OpenAIRE

    Vita, M. C.; Bartolo, S.; C. Fallico; Veltri, M.

    2011-01-01

    The present work concerns the calculation of the infinitesimal porosity by using the Menger's Sponge model. This computation is based on the grossone theory considering the pore volume estimation for the Menger's Sponge and afterwards the classical definition of the porosity, given by the ratio between the volume of voids and the total volume (voids plus solid phase). The aim is to investigate the different solutions given by the standard characterization of the porosity and the grossone theo...

  5. The Shallow Water Marine Sponges (Porifera of Cebu, Philippines

    Directory of Open Access Journals (Sweden)

    Ma. Belinda Longakit

    2005-12-01

    Full Text Available Thirty-three (33 species of marine sponge were identified in this study. Four were identified as possiblynew to science; a short description of these species is given here. In addition, one species has potentialfor bath sponge culture. Percent similarity of species is low between stations suggesting a highly diversesponge assemblage around the island. Clustering of the stations appears to be related to distancebetween stations.

  6. Preparation and properties of polyvinyl acetal sponge modified by chitosan

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The polyvinyl acetal sponge modified by chitosan was prepared by adding chitosan/polyvinyl alcohol (PVA) solution during the acetalation reaction of PVA and formaldehyde.The effect of vesicant and chitosan to the pore morphology,water absorption ratio,water absorption rate,expansion time and mechanical properties were studied.The polyvinyl acetal sponge modified by chitosan was used as a hemostatic packing material for the injured rabbit nasal tissue.The hemostatic effect and the healing effect of the modified sponge on the nasal mucosa after nasal surgery were studied.The results indicated that the polyvinyl acetal sponge modified by chitosan has an interconnected pore structure and the wall between large pores also has small pores.The chitosan adhered on the inner surface of the pores.The increased content of vesicant led to an increase in pore diameter,in the water absorption ratio and in expansion time.However,there was only a small change in the water absorption rate and a decrease in tensile strength and compression strength were noted.With an increase in chitosan content,the pore diameter and interconnection of the sponge was reduced.Water absorption ratio,expansion time and water absorption rate decreased,but tensile strength and compression strength improved.Observation of the rabbit nasal tissue after surgical operation suggested that polyvinyl acetal sponge modified by chitosan has an anti-inflammatory,hemostatic and antiadherent characteristic and could promote the healing and functional recovery of rabbit nasal mucosa.

  7. High-performance nanostructured supercapacitors on a sponge

    KAUST Repository

    Chen, Wei

    2011-12-14

    A simple and scalable method has been developed to fabricate nanostructured MnO 2-carbon nanotube (CNT)-sponge hybrid electrodes. A novel supercapacitor, henceforth referred to as "sponge supercapacitor", has been fabricated using these hybrid electrodes with remarkable performance. A specific capacitance of 1230 F/g (based on the mass of MnO 2) can be reached. Capacitors based on CNT-sponge substrates (without MnO 2) can be operated even under a high scan rate of 200 V/s, and they exhibit outstanding cycle performance with only 2% degradation after 100000 cycles under a scan rate of 10 V/s. The MnO 2-CNT-sponge supercapacitors show only 4% of degradation after 10000 cycles at a charge-discharge specific current of 5 A/g. The specific power and energy of the MnO 2-CNT-sponge supercapacitors are high with values of 63 kW/kg and 31 Wh/kg, respectively. The attractive performances exhibited by these sponge supercapacitors make them potentially promising candidates for future energy storage systems. © 2011 American Chemical Society.

  8. Deposition of shallow water sponges in response to seasonal changes

    Science.gov (United States)

    Ávila, Enrique; Carballo, José Luis; Vega, Cristina; Camacho, Leonardo; Barrón-Álvarez, José J.; Padilla-Verdín, Claudia; Yáñez-Chávez, Benjamín

    2011-08-01

    Removal of organisms from the subtidal zone plays an important role in shaping benthic communities in shallow bays. The main objective of this research was to quantify the biomass of sponges washed up on the beach at Mazatlan Bay (Mexico, eastern Pacific Ocean), and to determine its relationship with local weather and oceanographic conditions. To know whether this process has a significant effect on the sponge populations, changes in abundance of the species washed into the beach were also quantified in adjoining sublittoral areas. The sponges that were washed ashore were mainly branching ( Mycale ramulosa), massive ( Haliclona caerulea) and cushion-shaped ( Callyspongia californica) species. Species with high content of spongin in their structure (e.g. Hyattella intestinalis) were common in the subtidal zone but were rarely found on the beach. Encrusting species were never found. Four-year data of sponge deposition on the beach showed that the total annual sponge biomass ranged from 30 to 60 g DW m - 2 with an inter-annual range from 0.1 to 17.3 g DW m - 2 . The highest deposition of sponges was during the spring-summer transition (from April to July), which was associated with a change in wind direction (from NW to WSW). This change also matched with low tides and a high resuspension of bottom sediments, suggesting a high-energy environment during this transition. The increase in sponge biomass washed on the beach coincided with a decrease in the density of adjacent sponge populations. A multiple regression analysis showed that 68.48% of the variation on sponge biomass on the beach could be statistically explained using a combination of environmental factors (wind speed, sediment resuspension and tides). Thus, seasonal changes in wind direction combined with the effect of low tides and sediment resuspension could serve to predict fragmentation/detachment events of benthic organisms in shallow sublittoral areas worldwide. This study also provides insights to

  9. A coralline algal-associated bacterium, pseudoalteromonas strain J010, yields five new korormicins and a bromopyrrole.

    Science.gov (United States)

    Tebben, Jan; Motti, Cherie; Tapiolas, Dianne; Thomas-Hall, Peter; Harder, Tilmann

    2014-05-13

    The ethanol extract of Pseudoalteromonas strain J010, isolated from the surface of the crustose coralline alga Neogoniolithon fosliei, yielded thirteen natural products. These included a new bromopyrrole, 4'-((3,4,5-tribromo-1H-pyrrol-2-yl) methyl)phenol (1) and five new korormicins G-K (2-6). Also isolated was the known inducer of coral larval metamorphosis, tetrabromopyrrole (TBP), five known korormicins (A-E, previously named 1, 1a-c and 3) and bromoalterochromide A (BAC-A). Structures of the new compounds were elucidated through interpretation of spectra obtained after extensive NMR and MS investigations and comparison with literature values. The antibacterial, antifungal and antiprotozoal potential of 1-6, TBP and BAC-A was assessed. Compounds 1-6 showed antibacterial activity while BAC-A exhibited antiprotozoal properties against Tetrahymena pyriformis. TBP was found to have broad-spectrum activity against all bacteria, the protozoan and the fungus Candida albicans.

  10. Recognising macrophyte-vegetated environments in the rock record: a new criterion using 'hooked' forms of crustose coralline red algae

    Science.gov (United States)

    Beavington-Penney, Simon J.; Paul Wright, V.; Woelkerling, Wm. J.

    2004-04-01

    The role of macrophytes (such as seagrasses) in influencing deposition in shallow marine environments has long been understood. They affect sediment textures such that they do not reflect ambient hydrodynamic conditions, and so the recognition of ancient vegetated environments is important for accurate palaeoenvironmental analysis. However, there is little direct fossil evidence of such plants in the rock record, and so the presence of former macrophyte cover generally has to be inferred from indirect evidence based on the characteristics of modern macrophyte-vegetated environments. We present a new criterion for the recognition of vegetated environments in the rock record, based upon a distinctive 'hooked' form of crustose coralline red algae that is definitively indicative of growth on seagrasses (and also on other macrophytes with similarly flattened blades), and has been recognised from both modern (Inhaca Island, Mozambique) and fossil (the Eocene of Oman) seagrass beds.

  11. Pyrosequencing reveals highly diverse and species-specific microbial communities in sponges from the Red Sea

    KAUST Repository

    Lee, Onon

    2010-11-18

    Marine sponges are associated with a remarkable array of microorganisms. Using a tag pyrosequencing technology, this study was the first to investigate in depth the microbial communities associated with three Red Sea sponges, Hyrtios erectus, Stylissa carteri and Xestospongia testudinaria. We revealed highly diverse sponge-associated bacterial communities with up to 1000 microbial operational taxonomic units (OTUs) and richness estimates of up to 2000 species. Altogether, 26 bacterial phyla were detected from the Red Sea sponges, 11 of which were absent from the surrounding sea water and 4 were recorded in sponges for the first time. Up to 100 OTUs with richness estimates of up to 300 archaeal species were revealed from a single sponge species. This is by far the highest archaeal diversity ever recorded for sponges. A non-negligible proportion of unclassified reads was observed in sponges. Our results demonstrated that the sponge-associated microbial communities remained highly consistent in the same sponge species from different locations, although they varied at different degrees among different sponge species. A significant proportion of the tag sequences from the sponges could be assigned to one of the sponge-specific clusters previously defined. In addition, the sponge-associated microbial communities were consistently divergent from those present in the surrounding sea water. Our results suggest that the Red Sea sponges possess highly sponge-specific or even sponge-species-specific microbial communities that are resistant to environmental disturbance, and much of their microbial diversity remains to be explored. © 2011 International Society for Microbial Ecology All rights reserved.

  12. Habitat characteristics influence macrofaunal communities in coralline turf more than mesoscale coastal upwelling on the coast of Northern Chile

    Science.gov (United States)

    Kelaher, Brendan P.; Carlos Castilla, Juan

    2005-04-01

    Rocky shore communities are often influenced by near-shore coastal upwelling. For macrofauna in algal turf, these effects may be caused directly by well-studied bottom-up mechanisms or indirectly via changes in habitat structure provided by algal turf associated high nutrient loads. Here, we investigated possible interactions between upwelling and habitat structure by sampling diverse faunal assemblages in coralline algal turf on seven rocky intertidal shores in northern Chile, ranging from El Cobre [23°17'1″S, 70°31'40″W] to La Lobería [23°03'40″S, 70°33'14″W]. Some of these shores were located adjacent to strong upwelling centers, while others were in areas rarely affected. On each shore, we sampled four (2 × 2 m) sites separated by 15-50 m. In each site, we collected three replicate cores (80 mm in diameter) from which we measured macrofauna greater than 850 μm, biomass of sediment and epiphytes, frond density and average frond length. We used mean water temperature and its variation at 1-1.5 m water depth (below Extreme Low Water Spring, ELWS) to represent local upwelling intensity because long-term data have shown that these variables make excellent indicators for this region. In total, we found 94 macrofaunal taxa in coralline turf, which is almost three times higher than has previously been reported in Chile. Although macrofaunal assemblages varied significantly among shores, there were no patterns to suggest mesoscale variation in upwelling intensity affected either faunal assemblages or local habitat characteristics. In contrast, multivariate and univariate correlations highlighted sediment and frond density as strong determinants of community structure. We therefore conclude that traditionally studied habitat characteristics, such as structural complexity and habitat heterogeneity, have greater influence on faunal assemblages in mat-like habitats on rocky shores than environmental variables associated with mesoscale coastal upwelling.

  13. Multi-specimen and multi-site calibration of Aleutian coralline algal Mg/Ca to sea surface temperature

    Science.gov (United States)

    Williams, B.; Halfar, J.; DeLong, K. L.; Hetzinger, S.; Steneck, R. S.; Jacob, D. E.

    2014-08-01

    Higher latitude oceanic and climatic reconstructions are needed to distinguish natural climate variability from anthropogenic warming in regions projected to experience significant increases in temperature during this century. Clathromorphum nereostratum is a long-lived coralline alga abundant along the Aleutian archipelago that records seasonal to centennial fluctuations in seawater temperatures in its high-Mg calcite skeleton. Thus, C. nereostratum is an important proxy archive to reconstruct past seawater temperature variability in this data-poor subarctic region. Here, we measured magnesium to calcium ratios (Mg/Ca) by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) along the growth axis in six live-collected specimens from three islands in the Aleutian archipelago to assess Mg/Ca reproducibility and to calibrate algal Mg/Ca against modern gridded sea surface temperature (SST) data products. The master Mg/Ca-SST transfer function, determined by averaging the algal Mg/Ca-SST from each island (n = 6), resulted in a reconstruction error of ±0.45 °C, a 31-46% reduction in error compared to the reconstruction error for a single alga. The master algal-SST record interpolated to monthly and annual resolution significantly varied with gridded SST data products (r2 = 0.98, p coralline algal Mg/Ca-derived SST reconstructions record absolute changes in past SST variability in the Aleutian archipelago. The transfer functions developed here can be applied to Mg/Ca records generated from long-lived specimens of C. nereostratum to reconstruct northern North Pacific and Bering Sea SST variability for the past several hundred years.

  14. A multilocus species delimitation reveals a striking number of species of coralline algae forming Maerl in the OSPAR maritime area.

    Directory of Open Access Journals (Sweden)

    Cristina Pardo

    Full Text Available Maerl beds are sensitive biogenic habitats built by an accumulation of loose-lying, non-geniculate coralline algae. While these habitats are considered hot-spots of marine biodiversity, the number and distribution of maerl-forming species is uncertain because homoplasy and plasticity of morphological characters are common. As a result, species discrimination based on morphological features is notoriously challenging, making these coralline algae the ideal candidates for a DNA barcoding study. Here, mitochondrial (COI-5P DNA barcode fragment and plastidial (psbA gene sequence data were used in a two-step approach to delimit species in 224 collections of maerl sampled from Svalbard (78°96'N to the Canary Islands (28°64'N that represented 10 morphospecies from four genera and two families. First, the COI-5P dataset was analyzed with two methods based on distinct criteria (ABGD and GMYC to delineate 16 primary species hypotheses (PSHs arranged into four major lineages. Second, chloroplast (psbA sequence data served to consolidate these PSHs into 13 secondary species hypotheses (SSHs that showed biologically plausible ranges. Using several lines of evidence (e.g. morphological characters, known species distributions, sequences from type and topotype material, six SSHs were assigned to available species names that included the geographically widespread Phymatolithon calcareum, Lithothamnion corallioides, and L. glaciale; possible identities of other SSHs are discussed. Concordance between SSHs and morphospecies was minimal, highlighting the convenience of DNA barcoding for an accurate identification of maerl specimens. Our survey indicated that a majority of maerl forming species have small distribution ranges and revealed a gradual replacement of species with latitude.

  15. Drowned coralline algal dominated deposits off Lanai, Hawaii; carbonate accretion and vertical tectonics over the last 30 ka

    Science.gov (United States)

    Webster, Jody M.; Clague, David A.; Braga, Juan Carlos; Spalding, Heather; Renema, Willem; Kelley, Christopher; Applegate, Bruce; Smith, John R.; Paull, Charles K.; Moore, James G.; Potts, Donald

    2006-01-01

    We present detailed bathymetry, remotely operated vehicle (ROV) and submersible observations, and sedimentary and radiocarbon age data from carbonate deposits recovered from two submerged terraces at − 150 m (T1) and − 230 m (T2) off Lanai, Hawaii. The tops of the terraces are veneered by relatively thin (coralline algal nodule, coralgal nodule, Halimeda and a derived oolitic facies deposited in intermediate (30–60 m) to deep fore-reef slope settings (60–120 m). The data are used to develop a sedimentary facies model that is consistent with eustatic sea-level variations over the last 30 ka. Both nodule facies on T1 and T2 initiated growth 30–29 ka following a fall in sea level of ∼50 m and increase in bottom currents during the transition from Marine Isotope Stage 3 to 2. The nodules accreted slowly throughout the Last Glacial Maximum when sea-level was relatively stable. Drowning occurred during the early deglaciation (17–16 ka) and was marked by the complete drowning of coralline algal nodules facies on T2 and incipient drowning of coralgal facies on T1. Abrupt sea-level rise during the middle deglaciation, perhaps associated with global meltwater pulse 1A (14–15 ka), finally drowned the coralgal facies on T1, which in turn was overlain by a deep-water Halimeda facies or an oolitic facies derived from upslope. Our data indicates that Lanai has experienced relatively little vertical tectonic movement over the last 30 ka. Using paleobathymetric data derived from the sedimentary facies, age vs. depth relationships, and published sea-level curves, we estimate that Lanai could be either slowly uplifting or subsiding, but at rates <0.1 m/kyr (uplift) or <0.4 m/kyr (subsidence) over this 30 kyr period.

  16. A multilocus species delimitation reveals a striking number of species of coralline algae forming Maerl in the OSPAR maritime area.

    Science.gov (United States)

    Pardo, Cristina; Lopez, Lua; Peña, Viviana; Hernández-Kantún, Jazmin; Le Gall, Line; Bárbara, Ignacio; Barreiro, Rodolfo

    2014-01-01

    Maerl beds are sensitive biogenic habitats built by an accumulation of loose-lying, non-geniculate coralline algae. While these habitats are considered hot-spots of marine biodiversity, the number and distribution of maerl-forming species is uncertain because homoplasy and plasticity of morphological characters are common. As a result, species discrimination based on morphological features is notoriously challenging, making these coralline algae the ideal candidates for a DNA barcoding study. Here, mitochondrial (COI-5P DNA barcode fragment) and plastidial (psbA gene) sequence data were used in a two-step approach to delimit species in 224 collections of maerl sampled from Svalbard (78°96'N) to the Canary Islands (28°64'N) that represented 10 morphospecies from four genera and two families. First, the COI-5P dataset was analyzed with two methods based on distinct criteria (ABGD and GMYC) to delineate 16 primary species hypotheses (PSHs) arranged into four major lineages. Second, chloroplast (psbA) sequence data served to consolidate these PSHs into 13 secondary species hypotheses (SSHs) that showed biologically plausible ranges. Using several lines of evidence (e.g. morphological characters, known species distributions, sequences from type and topotype material), six SSHs were assigned to available species names that included the geographically widespread Phymatolithon calcareum, Lithothamnion corallioides, and L. glaciale; possible identities of other SSHs are discussed. Concordance between SSHs and morphospecies was minimal, highlighting the convenience of DNA barcoding for an accurate identification of maerl specimens. Our survey indicated that a majority of maerl forming species have small distribution ranges and revealed a gradual replacement of species with latitude.

  17. Diffusion boundary layers ameliorate the negative effects of ocean acidification on the temperate coralline macroalga Arthrocardia corymbosa.

    Directory of Open Access Journals (Sweden)

    Christopher E Cornwall

    Full Text Available Anthropogenically-modulated reductions in pH, termed ocean acidification, could pose a major threat to the physiological performance, stocks, and biodiversity of calcifiers and may devalue their ecosystem services. Recent debate has focussed on the need to develop approaches to arrest the potential negative impacts of ocean acidification on ecosystems dominated by calcareous organisms. In this study, we demonstrate the role of a discrete (i.e. diffusion boundary layer (DBL, formed at the surface of some calcifying species under slow flows, in buffering them from the corrosive effects of low pH seawater. The coralline macroalga Arthrocardia corymbosa was grown in a multifactorial experiment with two mean pH levels (8.05 'ambient' and 7.65 a worst case 'ocean acidification' scenario projected for 2100, each with two levels of seawater flow (fast and slow, i.e. DBL thin or thick. Coralline algae grown under slow flows with thick DBLs (i.e., unstirred with regular replenishment of seawater to their surface maintained net growth and calcification at pH 7.65 whereas those in higher flows with thin DBLs had net dissolution. Growth under ambient seawater pH (8.05 was not significantly different in thin and thick DBL treatments. No other measured diagnostic (recruit sizes and numbers, photosynthetic metrics, %C, %N, %MgCO3 responded to the effects of reduced seawater pH. Thus, flow conditions that promote the formation of thick DBLs, may enhance the subsistence of calcifiers by creating localised hydrodynamic conditions where metabolic activity ameliorates the negative impacts of ocean acidification.

  18. The extraordinary joint material of an articulated coralline alga. II. Modeling the structural basis of its mechanical properties.

    Science.gov (United States)

    Denny, Mark W; King, Felicia A

    2016-06-15

    By incorporating joints into their otherwise rigid fronds, erect coralline algae have evolved to be as flexible as other seaweeds, which allows them to thrive - and even dominate space - on wave-washed shores around the globe. However, to provide the required flexibility, the joint tissue of Calliarthron cheilosporioides, a representative articulated coralline alga, relies on an extraordinary tissue that is stronger, more extensible and more fatigue resistant than that of other algae. Here, we used the results from recent experiments to parameterize a conceptual model that links the microscale architecture of cell walls to the adaptive mechanical properties of joint tissue. Our analysis suggests that the theory of discontinuous fiber-wound composite materials (with cellulose fibrils as the fibers and galactan gel as the matrix) can explain key aspects of the material's mechanics. In particular, its adaptive viscoelastic behavior can be characterized by two, widely separated time constants. We speculate that the short time constant (∼14 s) results from the viscous response of the matrix to the change in cell-wall shape as a joint is stretched, a response that allows the material both to remain flexible and to dissipate energy as a frond is lashed by waves. We propose that the long time constant (∼35 h), is governed by the shearing of the matrix between cellulose fibrils. The resulting high apparent viscosity ensures that joints avoid accumulating lethal deformation in the course of a frond's lifetime. Our synthesis of experimental measurements allows us to draw a chain of mechanistic inference from molecules to cell walls to fronds and community ecology.

  19. Diffusion boundary layers ameliorate the negative effects of ocean acidification on the temperate coralline macroalga Arthrocardia corymbosa.

    Science.gov (United States)

    Cornwall, Christopher E; Boyd, Philip W; McGraw, Christina M; Hepburn, Christopher D; Pilditch, Conrad A; Morris, Jaz N; Smith, Abigail M; Hurd, Catriona L

    2014-01-01

    Anthropogenically-modulated reductions in pH, termed ocean acidification, could pose a major threat to the physiological performance, stocks, and biodiversity of calcifiers and may devalue their ecosystem services. Recent debate has focussed on the need to develop approaches to arrest the potential negative impacts of ocean acidification on ecosystems dominated by calcareous organisms. In this study, we demonstrate the role of a discrete (i.e. diffusion) boundary layer (DBL), formed at the surface of some calcifying species under slow flows, in buffering them from the corrosive effects of low pH seawater. The coralline macroalga Arthrocardia corymbosa was grown in a multifactorial experiment with two mean pH levels (8.05 'ambient' and 7.65 a worst case 'ocean acidification' scenario projected for 2100), each with two levels of seawater flow (fast and slow, i.e. DBL thin or thick). Coralline algae grown under slow flows with thick DBLs (i.e., unstirred with regular replenishment of seawater to their surface) maintained net growth and calcification at pH 7.65 whereas those in higher flows with thin DBLs had net dissolution. Growth under ambient seawater pH (8.05) was not significantly different in thin and thick DBL treatments. No other measured diagnostic (recruit sizes and numbers, photosynthetic metrics, %C, %N, %MgCO3) responded to the effects of reduced seawater pH. Thus, flow conditions that promote the formation of thick DBLs, may enhance the subsistence of calcifiers by creating localised hydrodynamic conditions where metabolic activity ameliorates the negative impacts of ocean acidification.

  20. Polar coralline algal CaCO3-production rates correspond to intensity and duration of the solar radiation

    Directory of Open Access Journals (Sweden)

    S. Teichert

    2013-08-01

    Full Text Available In this study we present a comparative quantification of CaCO3 production rates by rhodolith-forming coralline red algal communities situated in high polar latitudes and assess which environmental parameters control these productions rates. The present rhodoliths act as ecosystem engineers and their carbonate skeletons provide an important ecological niche to a variety of benthic organisms. The settings are distributed along the coasts of the Svalbard archipelago, being Floskjeret (78°18' N in Isfjorden, Krossfjorden (79°08' N at the eastern coast of Haakon VII Land, Mosselbukta (79°53' N at the eastern coast of Mosselhalvøya, and Nordkappbukta (80°31' N at the northern coast of Nordaustlandet. All sites feature Arctic climate and strong seasonality. The algal CaCO3 production rates were calculated from fuchsine stained annual growth increments exhibited by the rhodoliths and range from 100.9 g (CaCO3 m−2 yr−1 at Nordkappbukta to 200.3 g (CaCO3 m−2 yr−1 at Floskjeret. The rates correlate to various environmental parameters with geographical latitude being the most significant (negative correlation, R2 = 0.95, p R2 = 0.93, p R2 = 0.87, p = 0.07, and the annual mean temperature (positive correlation, R2 = 0.48, p < 0.05. This points out sufficient light incidence to be the main control of the growth of the examined coralline red algal rhodolith communities, while temperature is less important. Thus, the ongoing global change with its rising temperatures will most likely result in impaired conditions for the algal, because the concomitant increased global runoff will decrease water transparency and hence light incidence at the four offshore sites. Regarding the aforementioned role of the rhodoliths as ecosystem engineers, the impact on the associated organisms will presumably also be negative.

  1. Rhodolith holobionts in a changing ocean: Ocean Acidification effects on the free-living coralline algae and their associated microbiota

    Science.gov (United States)

    Cavalcanti, G.

    2016-02-01

    Rhodoliths, free-living coralline algae (Rhodophyta, Corallinales), form extensive beds worldwide distributed, ecologically important for the functioning of marine environments. Rhodolith beds are large carbon sinks, but the growth of the Rhodolith holobiont might be affected by changes in ocean carbonate chemistry, predicted to occur in the near future. The term holobiont refers to any organism and all of its associated symbiotic microbes (parasites, mutualists, synergists and amensals), including endobionts and epibionts that perform diverse ecological roles. A holobiont occupies and adapts to an ecological niche, and is able to employ strategies unavailable in any one species alone when challenged by environmental perturbations. The impact of increasing acidification of oceans on Rhodolith holobiont growth might be due to dissolution of their calcium carbonated skeleton, effects over photosynthetic rates, as well as changes in their associated microbial community, herein investigated through physiological assays (photosynthesis) and metagenomics (WGS Illumina sequencing). We used a mesocosm experimental system to assess potential effects of OA on dead and live rhodoliths following a 5 week exposure to increased pCO2. Integrating both taxonomical and functional diversity from multiple players (Eukarya, Bacteria and Archaea) in the acidification context, we have demonstrated that the Rhodolith holobiont harbor an impressive stable microbiome, whereas high pCO2 affect the seawater microbes. Our study has extended the comprehension of physiological relationships within Rhodolith holobiont by including the microbial component in the response of this coralline algae to higher pCO2 levels, and endorsed previous works that indicated a parabolic photosynthetic response to pH and pCO2. The outcomes of this research are an increased understanding of microbes associated with Rhodoliths and additional hints on how the holobiont might thrive in face to global climate changes.

  2. The role of sponge-bacteria interactions: the sponge Aplysilla rosea challenged by its associated bacterium Streptomyces ACT-52A in a controlled aquarium system.

    Science.gov (United States)

    Mehbub, Mohammad F; Tanner, Jason E; Barnett, Stephen J; Franco, Christopher M M; Zhang, Wei

    2016-12-01

    Sponge-associated bacteria play a critical role in sponge biology, metabolism and ecology, but how they interact with their host sponges and the role of these interactions are poorly understood. This study investigated the role of the interaction between the sponge Aplysilla rosea and its associated actinobacterium, Streptomyces ACT-52A, in modifying sponge microbial diversity, metabolite profile and bioactivity. A recently developed experimental approach that exposes sponges to bacteria of interest in a controlled aquarium system was improved by including the capture and analysis of secreted metabolites by the addition of an absorbent resin in the seawater. In a series of controlled aquaria, A. rosea was exposed to Streptomyces ACT-52A at 10(6) cfu/ml and monitored for up to 360 h. Shifts in microbial communities associated with the sponges occurred within 24 to 48 h after bacterial exposure and continued until 360 h, as revealed by TRFLP. The metabolite profiles of sponge tissues also changed substantially as the microbial community shifted. Control sponges (without added bacteria) and Streptomyces ACT-52A-exposed sponges released different metabolites into the seawater that was captured by the resin. The antibacterial activity of compounds collected from the seawater increased at 96 and 360 h of exposure for the treated sponges compared to the control group due to new compounds being produced and released. Increased antibacterial activity of metabolites from treated sponge tissue was observed only at 360 h, whereas that of control sponge tissue remained unchanged. The results demonstrate that the interaction between sponges and their associated bacteria plays an important role in regulating secondary metabolite production.

  3. Sterol and genomic analyses validate the sponge biomarker hypothesis.

    Science.gov (United States)

    Gold, David A; Grabenstatter, Jonathan; de Mendoza, Alex; Riesgo, Ana; Ruiz-Trillo, Iñaki; Summons, Roger E

    2016-03-01

    Molecular fossils (or biomarkers) are key to unraveling the deep history of eukaryotes, especially in the absence of traditional fossils. In this regard, the sterane 24-isopropylcholestane has been proposed as a molecular fossil for sponges, and could represent the oldest evidence for animal life. The sterane is found in rocks ∼650-540 million y old, and its sterol precursor (24-isopropylcholesterol, or 24-ipc) is synthesized today by certain sea sponges. However, 24-ipc is also produced in trace amounts by distantly related pelagophyte algae, whereas only a few close relatives of sponges have been assayed for sterols. In this study, we analyzed the sterol and gene repertoires of four taxa (Salpingoeca rosetta, Capsaspora owczarzaki, Sphaeroforma arctica, and Creolimax fragrantissima), which collectively represent the major living animal outgroups. We discovered that all four taxa lack C30 sterols, including 24-ipc. By building phylogenetic trees for key enzymes in 24-ipc biosynthesis, we identified a candidate gene (carbon-24/28 sterol methyltransferase, or SMT) responsible for 24-ipc production. Our results suggest that pelagophytes and sponges independently evolved C30 sterol biosynthesis through clade-specific SMT duplications. Using a molecular clock approach, we demonstrate that the relevant sponge SMT duplication event overlapped with the appearance of 24-isopropylcholestanes in the Neoproterozoic, but that the algal SMT duplication event occurred later in the Phanerozoic. Subsequently, pelagophyte algae and their relatives are an unlikely alternative to sponges as a source of Neoproterozoic 24-isopropylcholestanes, consistent with growing evidence that sponges evolved long before the Cambrian explosion ∼542 million y ago.

  4. Antibacterial and antibiotic potentiating activities of tropical marine sponge extracts.

    Science.gov (United States)

    Beesoo, Rima; Bhagooli, Ranjeet; Neergheen-Bhujun, Vidushi S; Li, Wen-Wu; Kagansky, Alexander; Bahorun, Theeshan

    2017-06-01

    Increasing prevalence of antibiotic resistance has led research to focus on discovering new antimicrobial agents derived from the marine biome. Although ample studies have investigated sponges for their bioactive metabolites with promising prospects in drug discovery, the potentiating effects of sponge extracts on antibiotics still remains to be expounded. The present study aimed to investigate the antibacterial capacity of seven tropical sponges collected from Mauritian waters and their modulatory effect in association with three conventional antibiotics namely chloramphenicol, ampicillin and tetracycline. Disc diffusion assay was used to determine the inhibition zone diameter (IZD) of the sponge total crude extracts (CE), hexane (HF), ethyl acetate (EAF) and aqueous (AF) fractions against nine standard bacterial isolates whereas broth microdilution method was used to determine their minimum inhibitory concentrations (MICs), minimum bactericidal concentrations (MBCs) and antibiotic potentiating activity of the most active sponge extract. MIC values of the sponge extracts ranged from 0.039 to 1.25mg/mL. Extracts from Neopetrosia exigua rich in beta-sitosterol and cholesterol displayed the widest activity spectrum against the 9 tested bacterial isolates whilst the best antibacterial profile was observed by its EAF particularly against Staphylococcus aureus and Bacillus cereus with MIC and MBC values of 0.039mg/mL and 0.078mg/mL, respectively. The greatest antibiotic potentiating effect was obtained with the EAF of N. exigua (MIC/2) and ampicillin combination against S. aureus. These findings suggest that the antibacterial properties of the tested marine sponge extracts may provide an alternative and complementary strategy to manage bacterial infections. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Barrier Methods of Birth Control: Spermicide, Condom, Sponge, Diaphragm, and Cervical Cap

    Science.gov (United States)

    ... Birth Control: Spermicide, Condom, Sponge, Diaphragm, and Cervical Cap Home For Patients Search FAQs Barrier Methods of ... Birth Control: Spermicide, Condom, Sponge, Diaphragm, and Cervical Cap Contraception What are barrier methods of birth control? ...

  6. Antibacterial activity of the sponge Ircinia ramosa: Importance of its surface-associated bacteria

    Digital Repository Service at National Institute of Oceanography (India)

    Thakur, N.L.; Anil, A.C.

    Variations in the antibacterial activity of the sponge Ircinia ramosa were evaluated during two collection periods (January and May) against vicinity fouling bacteria (VFB) and sponge surface-associated bacteria (SAB). The density of fouling...

  7. A Superamphiphobic Sponge with Mechanical Durability and a Self-Cleaning Effect

    Science.gov (United States)

    Kim, Daewon; Im, Hwon; Kwak, Moo Jin; Byun, Eunkyoung; Im, Sung Gap; Choi, Yang-Kyu

    2016-07-01

    A robust superamphiphobic sponge (SA-sponge) is proposed by using a single initiated chemical vapor deposition (i-CVD) process. Poly(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluorodecyl methacrylate) (PFDMA) is deposited on a commercial sponge by the polymerization of fluoroalkyl acrylates during the i-CVD process. This PFDMA is conformally coated onto both the exterior and interior of the sponge structure by a single step of the i-CVD process at nearly room temperature. Due to the inherent porous structure of the sponge and the hydrophobic property of the fluorine-based PFDMA, the demonstrated SA-sponge shows not only superhydrophobicity but also superoleophobicity. Furthermore, the fabricated SA-sponge is robust with regard to physical and chemical damage. The fabricated SA-sponge can be utilized for multi-purpose applications such as gas-permeable liquid separators.

  8. Barrier Methods of Birth Control: Spermicide, Condom, Sponge, Diaphragm, and Cervical Cap

    Science.gov (United States)

    ... Advocacy For Patients About ACOG Barrier Methods of Birth Control: Spermicide, Condom, Sponge, Diaphragm, and Cervical Cap Home ... FAQ022, May 2016 PDF Format Barrier Methods of Birth Control: Spermicide, Condom, Sponge, Diaphragm, and Cervical Cap Contraception ...

  9. Archaea appear to dominate the microbiome of Inflatella pellicula deep sea sponges.

    Directory of Open Access Journals (Sweden)

    Stephen A Jackson

    Full Text Available Microbes associated with marine sponges play significant roles in host physiology. Remarkable levels of microbial diversity have been observed in sponges worldwide through both culture-dependent and culture-independent studies. Most studies have focused on the structure of the bacterial communities in sponges and have involved sponges sampled from shallow waters. Here, we used pyrosequencing of 16S rRNA genes to compare the bacterial and archaeal communities associated with two individuals of the marine sponge Inflatella pellicula from the deep-sea, sampled from a depth of 2,900 m, a depth which far exceeds any previous sequence-based report of sponge-associated microbial communities. Sponge-microbial communities were also compared to the microbial community in the surrounding seawater. Sponge-associated microbial communities were dominated by archaeal sequencing reads with a single archaeal OTU, comprising ~60% and ~72% of sequences, being observed from Inflatella pellicula. Archaeal sequencing reads were less abundant in seawater (~11% of sequences. Sponge-associated microbial communities were less diverse and less even than any other sponge-microbial community investigated to date with just 210 and 273 OTUs (97% sequence identity identified in sponges, with 4 and 6 dominant OTUs comprising ~88% and ~89% of sequences, respectively. Members of the candidate phyla, SAR406, NC10 and ZB3 are reported here from sponges for the first time, increasing the number of bacterial phyla or candidate divisions associated with sponges to 43. A minor cohort from both sponge samples (~0.2% and ~0.3% of sequences were not classified to phylum level. A single OTU, common to both sponge individuals, dominates these unclassified reads and shares sequence homology with a sponge associated clone which itself has no known close relative and may represent a novel taxon.

  10. Contact sponge water absorption test implemented for in situ measures

    Science.gov (United States)

    Gaggero, Laura; Scrivano, Simona

    2016-04-01

    The contact sponge method is a non-destructive in-situ methodology used to estimate a water uptake coefficient. The procedure, unlike other in-situ measurement was proven to be directly comparable to the water uptake laboratory measurements, and was registered as UNI 11432:2011. The UNI Normal procedure requires to use a sponge with known density, soaked in water, weighed, placed on the material for 1 minute (UNI 11432, 2011; Pardini & Tiano, 2004), then weighed again. Difficulties arise in operating on test samples or on materials with porosity varied for decay. While carrying on the test, fluctuations in the bearing of the environmental parameters were negligible, but not the pressure applied to the surface, that induced the release of different water amounts towards the material. For this reason we designed a metal piece of the same diameter of the plate carrying the sponge, to be screwed at the tip of a pocket penetrometer. With this instrument the sponge was kept in contact with the surface for 1 minute applying two different loads, at first pushed with 0.3 kg/cm2 in order to press the sponge, but not its holder, against the surface. Then, a load of 1.1 kg/ cm2 was applied, still avoiding deviating the load to the sponge holder. We applied both the current and our implemented method to determine the water absorption by contact sponge on 5 fresh rock types (4 limestones: Fine - and Coarse grained Pietra di Vicenza, Rosso Verona, Breccia Aurora, and the silicoclastic Macigno sandstone). The results show that 1) the current methodology imply manual skill and experience to produce a coherent set of data; the variable involved are in fact not only the imposed pressure but also the compression mechanics. 2) The control on the applied pressure allowed reproducible measurements. Moreover, 3) the use of a thicker sponge enabled to apply the method even on rougher surfaces, as the device holding the sponge is not in contact with the tested object. Finally, 4) the

  11. The Microbiome and Occurrence of Methanotrophy in Carnivorous Sponges

    Science.gov (United States)

    Hestetun, Jon T.; Dahle, Håkon; Jørgensen, Steffen L.; Olsen, Bernt R.; Rapp, Hans T.

    2016-01-01

    As shown by recent studies, filter-feeding sponges are known to host a wide variety of microorganisms. However, the microbial community of the non-filtering carnivorous sponges (Porifera, Cladorhizidae) has been the subject of less scrutiny. Here, we present the results from a comparative study of the methanotrophic carnivorous sponge Cladorhiza methanophila from a mud volcano-rich area at the Barbados Accretionary Prism, and five carnivorous species from the Jan Mayen Vent Field (JMVF) at the Arctic Mid-Ocean Ridge. Results from 16S rRNA microbiome data indicate the presence of a diverse assemblage of associated microorganisms in carnivorous sponges mainly from the Gamma- and Alphaproteobacteria, Flavobacteriaceae, and Thaumarchaeota. While the abundance of particular groups varied throughout the dataset, we found interesting similarities to previous microbiome results from non-carnivorous deep sea sponges, suggesting that the carnivorous sponges share characteristics of a previously hypothesized putative deep-sea sponge microbial community. Chemolithoautotrophic symbiosis was confirmed for C. methanophila through a microbial community with a high abundance of Methylococcales and very light isotopic δ13C and δ15N ratios (-60 to -66‰/3.5 to 5.2‰) compared to the other cladorhizid species (-22 to -24‰/8.5 to 10.5‰). We provide evidence for the presence of putative sulfur-oxidizing Gammaproteobacteria in the arctic cladorhizids; however, δ13C and δ15N signatures did not provide evidence for significant chemoautotrophic symbiosis in this case, and the slightly higher abundance of cladorhizids at the JMVF site compared to the nearby deep sea likely stem from an increased abundance of prey rather than a more direct vent association. The phylogenetic position of C. methanophila in relation to other carnivorous sponges was established using a three-gene phylogenetic analysis, and it was found to be closely related to other non-methanotrophic Cladorhiza species

  12. Sponge-like structures for application in photovoltaics.

    Science.gov (United States)

    Perlich, Jan; Kaune, Gunar; Memesa, Mine; Gutmann, Jochen S; Müller-Buschbaum, Peter

    2009-05-13

    Large surface areas at an interface between two different materials are desired in many research fields where the interaction between these materials significantly affects the performance of the physical system. This behaviour is illustrated on sponge-like structures, which assign for such a high surface area, and demonstrate the development from bulk material to thin films and a variety of applications. The focus is on sponge-like nanostructures consisting of a network of aggregated titania nanoparticles applied in hybrid structures for photovoltaics. Examples based on a sol-gel process for the preparation of titania nanostructures in thin films, mimicking the sponge morphology, are shown. In general, titania films are widely used in photovoltaics, contributing to a large surface area available for interfacial reactions, e.g. charge carrier transfer routes. Interpenetrating networks with dimensions matching exciton diffusion lengths in the polymer component of a hybrid organic-inorganic photovoltaic structure are highly desirable. To characterize the fabricated morphology, atomic force microscopy and field-emission scanning electron microscopy are employed in real space. The advanced scattering technique of grazing-incidence small-angle X-ray scattering complements the characterization in reciprocal space. From the obtained results, the sponge-like morphology is verified, a physical description of the morphology with statistical relevance is constructed and the successful complete filling of the network is shown. According to this description, the presented sponge-like titania nanostructures are well suited for use in hybrid organic-inorganic solar cells.

  13. High energy density supercapacitors using macroporous kitchen sponges

    KAUST Repository

    Chen, Wei

    2012-01-01

    Macroporous, low-cost and recyclable kitchen sponges are explored as effective electrode platforms for supercapacitor devices. A simple and scalable process has been developed to fabricate MnO 2-carbon nanotube (CNT)-sponge supercapacitor electrodes using ordinary kitchen sponges. Two organic electrolytes (1 M of tetraethylammonium tetrafluoroborate (Et 4NBF 4) in propylene carbonate (PC), 1 M of LiClO 4 in PC) are utilized with the sponge-based electrodes to improve the energy density of the symmetrical supercapacitors. Compared to aqueous electrolyte (1 M of Na 2SO 4 in H 2O), the energy density of supercapacitors tripled in Et 4NBF 4 electrolyte, and further increased by six times in LiClO 4 electrolyte. The long-term cycling performance in different electrolytes was examined and the morphology changes of the electrode materials were also studied. The good electrochemical performance in both aqueous and organic electrolytes indicates that the MnO 2-CNT-sponge is a promising low-cost electrode for energy storage systems. © 2012 The Royal Society of Chemistry.

  14. Ultralight, scalable, and high-temperature–resilient ceramic nanofiber sponges

    Science.gov (United States)

    Wang, Haolun; Zhang, Xuan; Wang, Ning; Li, Yan; Feng, Xue; Huang, Ya; Zhao, Chunsong; Liu, Zhenglian; Fang, Minghao; Ou, Gang; Gao, Huajian; Li, Xiaoyan; Wu, Hui

    2017-01-01

    Ultralight and resilient porous nanostructures have been fabricated in various material forms, including carbon, polymers, and metals. However, the development of ultralight and high-temperature resilient structures still remains extremely challenging. Ceramics exhibit good mechanical and chemical stability at high temperatures, but their brittleness and sensitivity to flaws significantly complicate the fabrication of resilient porous ceramic nanostructures. We report the manufacturing of large-scale, lightweight, high-temperature resilient, three-dimensional sponges based on a variety of oxide ceramic (for example, TiO2, ZrO2, yttria-stabilized ZrO2, and BaTiO3) nanofibers through an efficient solution blow-spinning process. The ceramic sponges consist of numerous tangled ceramic nanofibers, with densities varying from 8 to 40 mg/cm3. In situ uniaxial compression in a scanning electron microscope showed that the TiO2 nanofiber sponge exhibits high energy absorption (for example, dissipation of up to 29.6 mJ/cm3 in energy density at 50% strain) and recovers rapidly after compression in excess of 20% strain at both room temperature and 400°C. The sponge exhibits excellent resilience with residual strains of only ~1% at 800°C after 10 cycles of 10% compression strain and maintains good recoverability after compression at ~1300°C. We show that ceramic nanofiber sponges can serve multiple functions, such as elasticity-dependent electrical resistance, photocatalytic activity, and thermal insulation. PMID:28630915

  15. Effect of collagen sponge and fibrin glue on bone repair

    Directory of Open Access Journals (Sweden)

    Thiago de Santana SANTOS

    2015-12-01

    Full Text Available ABSTRACT The ability of hemostatic agents to promote bone repair has been investigated using in vitro and in vivo models but, up to now, the results are inconclusive. Objective In this context, the aim of this study was to compare the potential of bone repair of collagen sponge with fibrin glue in a rat calvarial defect model. Material and Methods Defects of 5 mm in diameter were created in rat calvariae and treated with either collagen sponge or fibrin glue; untreated defects were used as control. At 4 and 8 weeks, histological analysis and micro-CT-based histomorphometry were carried out and data were compared by two-way ANOVA followed by Student-Newman-Keuls test when appropriated (p≤0.05. Results Three-dimensional reconstructions showed increased bone formation in defects treated with either collagen sponge or fibrin glue compared with untreated defects, which was confirmed by the histological analysis. Morphometric parameters indicated the progression of bone formation from 4 to 8 weeks. Additionally, fibrin glue displayed slightly higher bone formation rate when compared with collagen sponge. Conclusion Our results have shown the benefits of using collagen sponge and fibrin glue to promote new bone formation in rat calvarial bone defects, the latter being discreetly more advantageous.

  16. The Characterization of Fish (Tilapia Collagen Sponge as a Biomaterial

    Directory of Open Access Journals (Sweden)

    Kohei Yamamoto

    2015-01-01

    Full Text Available For scaffold manufacturing, the utility of bioactive natural organic materials derived from marine products is useful and indispensable as an alternative to bovine collagen. The weakest feature of fish collagen for scaffold application is its low degeneration temperature (Td, indicating poor stability of fish collagen in mammals in vivo. We have focused on the tropical fish tilapia as a candidate for generating a clinical scaffold. The aim of this study was to confirm the Td of tilapia type I atelocollagen (TAC for biomedical application. Furthermore, the physical and structural properties were investigated and evaluated as a scaffold on a sponge form. Different concentrations {0.5%, 1.0%, and 2.0% (v/v} of TAC solution were analyzed. Differential scanning calorimetry showed that the Td of TAC was 35-36°C. The scanning electron microscopy results indicated that the pore size (90–160 μm of TAC sponges is acceptable for cell proliferation. The tensile strength of porous sponges was in the range of 0.01–0.07 MPa. These findings indicate that the TAC sponge prepared from tilapia is one of candidates as a scaffold. The 1.0% (v/v concentration of TAC solution is especially recommended to be advantageous for preparing and handling the solution and for sponge formation.

  17. Microbiological Safety of Kitchen Sponges Used in Food Establishments

    Directory of Open Access Journals (Sweden)

    Tesfaye Wolde

    2016-01-01

    Full Text Available Kitchen sponges are among the possible sources of contaminants in food establishments. The main purpose of the current study was, therefore, to assess the microbiological safety of sponges as it has been used in selected food establishments of Jimma town. Accordingly, the microbiological safety of a total of 201 kitchen sponges randomly collected from food establishments was evaluated against the total counts of aerobic mesophilic bacteria (AMB, Enterobacteriaceae, coliforms, and yeast and molds. The mean counts of aerobic mesophilic bacteria ranged from 7.43 to 12.44 log CFU/mm3. The isolated genera were dominated by Pseudomonas (16.9%, Bacillus (11.1%, Micrococcus (10.6%, Streptococcus (7.8%, and Lactobacillus (6% excluding the unidentified Gram positive rods (4.9% and Gram negative rods (9.9%. The high microbial counts (aerobic mesophilic bacteria, coliforms, Enterobacteriaceae, and yeast and molds reveal the existence of poor kitchen sponge sanitization practice. Awareness creation training on basic hygienic practices to food handlers and periodic change of kitchen sponges are recommended.

  18. Immunotoxicity of washing soda in a freshwater sponge of India.

    Science.gov (United States)

    Mukherjee, Soumalya; Ray, Mitali; Ray, Sajal

    2015-03-01

    The natural habitat of sponge, Eunapius carteri faces an ecotoxicological threat of contamination by washing soda, a common household cleaning agent of India. Washing soda is chemically known as sodium carbonate and is reported to be toxic to aquatic organisms. Domestic effluent, drain water and various human activities in ponds and lakes have been identified as the major routes of washing soda contamination of water. Phagocytosis and generation of cytotoxic molecules are important immunological responses offered by the cells of sponges against environmental toxins and pathogens. Present study involves estimation of phagocytic response and generation of cytotoxic molecules like superoxide anion, nitric oxide and phenoloxidase in E. carteri under the environmentally realistic concentrations of washing soda. Sodium carbonate exposure resulted in a significant decrease in the phagocytic response of sponge cells under 4, 8, 16 mg/l of the toxin for 96h and all experimental concentrations of the toxin for 192h. Washing soda exposure yielded an initial increase in the generation of the superoxide anion and nitric oxide followed by a significant decrease in generation of these cytotoxic agents. Sponge cell generated a high degree of phenoloxidase activity under the experimental exposure of 2, 4, 8, 16 mg/l of sodium carbonate for 96 and 192 h. Washing soda induced alteration of phagocytic and cytotoxic responses of E. carteri was indicative to an undesirable shift in their immune status leading to the possible crises of survival and propagation of sponges in their natural habitat.

  19. Advancement into the Arctic Region for Bioactive Sponge Secondary Metabolites

    Directory of Open Access Journals (Sweden)

    Mark Hamann

    2011-11-01

    Full Text Available Porifera have long been a reservoir for the discovery of bioactive compounds and drug discovery. Most research in the area has focused on sponges from tropical and temperate waters, but more recently the focus has shifted to the less accessible colder waters of the Antarctic and, to a lesser extent, the Arctic. The Antarctic region in particular has been a more popular location for natural products discovery and has provided promising candidates for drug development. This article reviews groups of bioactive compounds that have been isolated and reported from the southern reaches of the Arctic Circle, surveys the known sponge diversity present in the Arctic waters, and details a recent sponge collection by our group in the Aleutian Islands, Alaska. The collection has yielded previously undescribed sponge species along with primary activity against opportunistic infectious diseases, malaria, and HCV. The discovery of new sponge species and bioactive crude extracts gives optimism for the isolation of new bioactive compounds from a relatively unexplored source.

  20. Microbiological Safety of Kitchen Sponges Used in Food Establishments.

    Science.gov (United States)

    Wolde, Tesfaye; Bacha, Ketema

    2016-01-01

    Kitchen sponges are among the possible sources of contaminants in food establishments. The main purpose of the current study was, therefore, to assess the microbiological safety of sponges as it has been used in selected food establishments of Jimma town. Accordingly, the microbiological safety of a total of 201 kitchen sponges randomly collected from food establishments was evaluated against the total counts of aerobic mesophilic bacteria (AMB), Enterobacteriaceae, coliforms, and yeast and molds. The mean counts of aerobic mesophilic bacteria ranged from 7.43 to 12.44 log CFU/mm(3). The isolated genera were dominated by Pseudomonas (16.9%), Bacillus (11.1%), Micrococcus (10.6%), Streptococcus (7.8%), and Lactobacillus (6%) excluding the unidentified Gram positive rods (4.9%) and Gram negative rods (9.9%). The high microbial counts (aerobic mesophilic bacteria, coliforms, Enterobacteriaceae, and yeast and molds) reveal the existence of poor kitchen sponge sanitization practice. Awareness creation training on basic hygienic practices to food handlers and periodic change of kitchen sponges are recommended.

  1. Lower Oligocene non-geniculate coralline red algal (Corallinales, Rhodophyta assemblage from Poljšica pri Podnartu (Upper Carniola, Slovenia

    Directory of Open Access Journals (Sweden)

    Luka Gale

    2008-12-01

    Full Text Available The Lower Oligocene Gornji Grad beds from Polj{ica pri Podnartu consist of marly limestone, mudstone, several layers of limestones and two layers of sandstones, and were deposited on a mixed carbonate-siliciclastic ramp.Especially the limestones contain rich fossil fauna and non-geniculate coralline red algae. These were systematicallycollected from four horizons and researched in thin sections under an optical microscope. Genera Lithoporella,Neogoniolithon, Spongites, Lithothamnion, Mesophyllum and Spongites were recognized. Surface area for each genus was calculated and the differences in the coralline assemblages in the four horizons were analysed. Thecorallines originate from two source areas: sandy-muddy bottom of a shallow marine environment, and small coral bioherms with its encrusters.

  2. Degradation of mangrove-derived organic matter in mangrove associated sponges

    NARCIS (Netherlands)

    Hunting, E.R.; de Goeij, J.M.; Asselman, M.; van Soest, R.W.M.; van der Geest, H.G.

    2010-01-01

    Sponge communities found in Caribbean mangroves are typical to this habitat: partly endemic and very distinct from sponge communities on nearby reefs. A trade-off between resistance to competitors and predators appears to influence success of individual sponge species in mangrove habitats. We specul

  3. Diversity of the candidate phylum Poribacteria in the marine sponge Aplysina fulva

    Science.gov (United States)

    Hardoim, C.C.P.; Cox, C.J.; Peixoto, R.S.; Rosado, A.S.; Costa, R.; van Elsas, J.D.

    2013-01-01

    Poribacterial clone libraries constructed for Aplysina fulva sponge specimens were analysed with respect to diversity and phylogeny. Results imply the coexistence of several, prevalently “intra-specific” poribacterial genotypes in a single sponge host, and suggest quantitative analysis as a desirable approach in studies of the diversity and distribution of poribacterial cohorts in marine sponges. PMID:24159324

  4. Rapid Generation of MicroRNA Sponges for MicroRNA Inhibition

    NARCIS (Netherlands)

    Kluiver, Joost; Gibcus, Johan H.; Hettinga, Chris; Adema, Annelies; Richter, Mareike K. S.; Halsema, Nancy; Slezak-Prochazka, Izabella; Ding, Ye; Kroesen, Bart-Jan; van den Berg, Anke

    2012-01-01

    MicroRNA (miRNA) sponges are transcripts with repeated miRNA antisense sequences that can sequester miRNAs from endogenous targets. MiRNA sponges are valuable tools for miRNA loss-of-function studies both in vitro and in vivo. We developed a fast and flexible method to generate miRNA sponges and tes

  5. Rapid Generation of MicroRNA Sponges for MicroRNA Inhibition

    NARCIS (Netherlands)

    Kluiver, Joost; Gibcus, Johan H.; Hettinga, Chris; Adema, Annelies; Richter, Mareike K. S.; Halsema, Nancy; Slezak-Prochazka, Izabella; Ding, Ye; Kroesen, Bart-Jan; van den Berg, Anke

    2012-01-01

    MicroRNA (miRNA) sponges are transcripts with repeated miRNA antisense sequences that can sequester miRNAs from endogenous targets. MiRNA sponges are valuable tools for miRNA loss-of-function studies both in vitro and in vivo. We developed a fast and flexible method to generate miRNA sponges and

  6. 21 CFR 529.1003 - Flurogestone acetate-impregnated vaginal sponge.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Flurogestone acetate-impregnated vaginal sponge... § 529.1003 Flurogestone acetate-impregnated vaginal sponge. (a) Specifications. Each vaginal sponge... ewes during their normal breeding season. (2) Limitations. Using applicator provided, insert...

  7. Ecological characteristics contribute to sponge distribution and tool use in bottlenose dolphins Tursiops sp.

    NARCIS (Netherlands)

    Tyne, Julian A.; Loneragan, Neil R.; Kopps, Anna M.; Allen, Simon J.; Kruetzen, Michael; Bejder, Lars

    2012-01-01

    In Shark Bay, Western Australia, bottlenose dolphins Tursiops sp. carry conical sponges Echinodictyum mesenterinum on their rostra in the only documented cetacean foraging behaviour using a tool ('sponging'). In this study, we examined the influence of various ecological factors on live sponge distr

  8. Ecological characteristics contribute to sponge distribution and tool use in bottlenose dolphins Tursiops sp.

    NARCIS (Netherlands)

    Tyne, Julian A.; Loneragan, Neil R.; Kopps, Anna M.; Allen, Simon J.; Kruetzen, Michael; Bejder, Lars

    2012-01-01

    In Shark Bay, Western Australia, bottlenose dolphins Tursiops sp. carry conical sponges Echinodictyum mesenterinum on their rostra in the only documented cetacean foraging behaviour using a tool ('sponging'). In this study, we examined the influence of various ecological factors on live sponge distr

  9. The coralline red alga Lithophyllum kotschyanum f. affine as proxy of climate variability in the Yemen coast, Gulf of Aden (NW Indian Ocean)

    Science.gov (United States)

    Caragnano, A.; Basso, D.; Jacob, D. E.; Storz, D.; Rodondi, G.; Benzoni, F.; Dutrieux, E.

    2014-01-01

    Recent investigations have shown the potential of red coralline algae as paleoclimatic archive. A previously unexplored subfamily of coralline algae, the Lithophylloideae, was investigated from the Gulf of Aden (Balhaf, Yemen). Seasonal changes in Mg/Ca, Li/Ca and Ba/Ca composition of Lithophyllum kotschyanum f. affine were investigated by Laser Ablation-Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS). For the first time in coralline algae, the Li/Ca composition was analyzed and showed a highly significant and positive correlation with Mg/Ca and SST. Monthly algal Mg/Ca and Li/Ca variations indicate a positive correlation with sea surface temperature (SST), and sea surface salinity (SSS), although low growth rates decrease the resolution of the algal record. Albeit no or weak positive correlation between monthly algal Ba/Ca and local SST was found, fluctuations in Ba/Ca suggest the seasonal influence of nutrient-rich deep waters introduced by upwelling, and record an increase of sedimentation at the sampling site likely due to an intensified land use in the area. The Mg/Ca age model shows an average algal extension rate of 1.15 mm yr-1, and reveals multiple intra-annual banding (previously unreported in the genus Lithophyllum) together with carposporangia formation in late February-early March, when temperature begins to increase. The concentration of MgCO3 in the thallus of L. kotschyanum f. affine is 20 mol% (1 SE), confirming that within the genus, the species sampled in warmer regions contain higher mol% MgCO3. The concentrations of LiCO3 and BaCO3 are 8 μmol% (0.7 SE) and 0.5 μmol% (0.03 SE), respectively. Despite the limitations from low-growth rate and species-specific vital effect, coralline algae confirm their utility in climate and oceanographic reconstruction.

  10. Coastal dunes with high content of rhodolith (coralline red algae) bioclasts: Pleistocene formations on Maio and São Nicolau in the Cape Verde archipelago

    Science.gov (United States)

    Johnson, Markes E.; Baarli, B. Gudveig; da Silva, Carlos M.; Cachão, Mário; Ramalho, Ricardo S.; Ledesma-Vázquez, Jorge; Mayoral, Eduardo J.; Santos, Ana

    2013-03-01

    Rhodoliths are spherical growths (coralline red algae) that contribute bioclasts to coastal dunes in the Gulf of California (Mexico) and the Canary Islands (North Atlantic). Pleistocene dunes on Maio and São Nicolau islands in the Cape Verde archipelago were studied to quantify rhodolith contribution relative to other sources. Near Pilão Cão on Maio, a transverse dune at Lomba Greija covers 0.3 km2, exposing stoss slopes that dip 8°-10° NE and leeward slip faces that dip 28°-32° SW and SE. Point counts on thin-section samples show that basalt and other non-carbonate materials account for 5%, on average, whereas fine matrix and voided space (dissolved grains) account for 67%. Among remaining identifiable bioclasts (coralline red algae, mollusks, corals, foraminifera, and echinoderms), rhodolith grains with an average diameter of 0.5 mm account for 74%. Near Carriçal at Covoadinha de Chacina on the SE coast of São Nicolau, the stoss slope dips 8° SE for 70-80 m on narrow longitudinal dunes. Point counts on a thin-section sample taken 2.5 m above basement rock, reveal that basalt and other non-carbonate materials account for 10%, on average, whereas fine matrix and voided spaces account for 60%. Among identifiable bioclasts from the remainder (coralline red algae, mollusks, echinoderms, and bryozoa), rhodolith grains ranging in size from 0.5 to 1 mm account for 96%. Potential enrichment from coralline red algae may be overlooked in coastal dunes, because content normally is described as dominated by mollusk shells, the tests from abundant foraminifera, and/or ooids.

  11. Sponge bioerosion on changing reefs: ocean warming poses physiological constraints to the success of a photosymbiotic excavating sponge.

    Science.gov (United States)

    Achlatis, Michelle; van der Zande, Rene M; Schönberg, Christine H L; Fang, James K H; Hoegh-Guldberg, Ove; Dove, Sophie

    2017-09-06

    Excavating sponges are prominent bioeroders on coral reefs that in comparison to other benthic organisms may suffer less or may even benefit from warmer, more acidic and more eutrophic waters. Here, the photosymbiotic excavating sponge Cliona orientalis from the Great Barrier Reef was subjected to a prolonged simulation of both global and local environmental change: future seawater temperature, partial pressure of carbon dioxide (as for 2100 summer conditions under "business-as-usual" emissions), and diet supplementation with particulate organics. The individual and combined effects of the three factors on the bioerosion rates, metabolic oxygen and carbon flux, biomass change and survival of the sponge were monitored over the height of summer. Diet supplementation accelerated bioerosion rates. Acidification alone did not have a strong effect on total bioerosion or survival rates, yet it co-occurred with reduced heterotrophy. Warming above 30 °C (+2.7 °C above the local maximum monthly mean) caused extensive bleaching, lower bioerosion, and prevailing mortality, overriding the other factors and suggesting a strong metabolic dependence of the sponge on its resident symbionts. The growth, bioerosion capacity and likelihood of survival of C. orientalis and similar photosymbiotic excavating sponges could be substantially reduced rather than increased on end-of-the-century reefs under "business-as-usual" emission profiles.

  12. Coralline hydroxyapatite granules inferior to morselized allograft around uncemented porous Ti implants: unchanged fixation by addition of concentrated autologous bone marrow aspirate.

    Science.gov (United States)

    Baas, Jorgen; Svaneby, Dea; Jensen, Thomas Bo; Elmengaard, Brian; Bechtold, Joan; Soballe, Kjeld

    2011-10-01

    We compared early fixation of titanium implants grafted with impacted allograft bone or coralline hydroxyapatite (HA) granules (Pro Osteon 200) with and without the addition of concentrated bone marrow cells (BMC). Autologous bone marrow aspirate was centrifuged to increase the BMC concentration. Four nonloaded cylindrical, porous coated titanium implants with a circumferential gap of 2.3 mm were inserted in the proximal humeri of eight dogs. Coralline HA granules +/- BMC were impacted around the two implants on one side, and allograft +/- BMC was impacted around the contra lateral implants. Observation time was 4 weeks. The implants surrounded by allograft bone had a three-fold better fixation than the HA-grafted implants. The concentration of BMC after centrifugation was increased with a factor 2.1. The addition of BMC to either of the bone graft materials had no statistically significant effects on implant fixation. The allografted implants were well osseointegrated, whereas the HA-grafted implants were largely encapsulated in fibrous tissue. The addition of concentrated autologous BMCs to the graft material had no effect on implant fixation. The HA-grafted implants were poorly anchored compared with allografted implants, suggesting that coralline HA granules should be considered a bone graft extender rather than a bone graft substitute.

  13. Succession and growth rates of encrusting crustose coralline algae (Rhodophyta, Cryptonemiales) in the upper fore-reef environment off Ishigaki Island, Ryukyu Islands

    Science.gov (United States)

    Matsuda, Shinya

    1989-01-01

    Observations were made on the succession and growth rates of crustose coralline algae growing in situ on artificial substrata in a shallow fore-reef environment on Ishigaki Island, Ryukyu Islands. Succession in well-illuminated environments manifests itself as a gradual replacement of species having very thin thalli by those having larger and thicker thalli. The species Porolithon onkodes, Paragoniolithon conicum and Lithophyllum insipidum achieved dominance by competitive interactions of overgrowing margins. The thicker species recruit quickly (within the first few months), but because of their slow growth rate do not displace the pioneer species that have very thin thalli until after the latter begin to die. Regardless of seasonal temperature fluctuations, which exceed 10 °C, the coralline algal succession is the same for each season. The maximum lateral growth rates of the major species range between 2.9 and 3.9 mm/month. Vertical growth rates of Porolithon onkodes, the thickest species, are the most rapid (more than 2 mm/year at maximum) relative to those of other species. Accretion rates of entire coralline algal cover on ungrazed substrata range from 1.0 to 1.2 mm/year (not allowing any lag time for recruitment), whereas those of grazed substrata are lower. These results are consistent with species which are ecological equivalents and live in similar environments on Caribbean reefs.

  14. Bioactive natural products from Papua New Guinea marine sponges.

    Science.gov (United States)

    Noro, Jeffery C; Kalaitzis, John A; Neilan, Brett A

    2012-10-01

    The discovery of novel natural products for drug development relies heavily upon a rich biodiversity, of which the marine environment is an obvious example. Marine natural product research has spawned several drugs and many other candidates, some of which are the focus of current clinical trials. The sponge megadiversity of Papua New Guinea is a rich but underexplored source of bioactive natural products. Here, we review some of the many natural products derived from PNG sponges with an emphasis on those with interesting biological activity and, therefore, drug potential. Many bioactive natural products discussed here appear to be derived from non-ribosomal peptide and polyketide biosynthesis pathways, strongly suggesting a microbial origin of these compounds. With this in mind, we also explore the notion of sponge-symbiont biosynthesis of these bioactive compounds and present examples to support the working hypothesis.

  15. In situ natural product discovery via an artificial marine sponge.

    Directory of Open Access Journals (Sweden)

    James J La Clair

    Full Text Available There is continuing international interest in exploring and developing the therapeutic potential of marine-derived small molecules. Balancing the strategies for ocean based sampling of source organisms versus the potential to endanger fragile ecosystems poses a substantial challenge. In order to mitigate such environmental impacts, we have developed a deployable artificial sponge. This report provides details on its design followed by evidence that it faithfully recapitulates traditional natural product collection protocols. Retrieving this artificial sponge from a tropical ecosystem after deployment for 320 hours afforded three actin-targeting jasplakinolide depsipeptides that had been discovered two decades earlier using traditional sponge specimen collection and isolation procedures. The successful outcome achieved here could reinvigorate marine natural products research, by producing new environmentally innocuous sources of natural products and providing a means to probe the true biosynthetic origins of complex marine-derived scaffolds.

  16. Controlled iodine release from polyurethane sponges for water decontamination.

    Science.gov (United States)

    Aviv, Oren; Laout, Natalia; Ratner, Stanislav; Harik, Oshrat; Kunduru, Konda Reddy; Domb, Abraham J

    2013-12-28

    Iodinated polyurethane (IPU) sponges were prepared by immersing sponges in aqueous/organic solutions of iodine or exposing sponges to iodine vapors. Iodine was readily adsorbed into the polymers up to 100% (w/w). The adsorption of iodine on the surface was characterized by XPS and SEM analyses. The iodine loaded IPU sponges were coated with ethylene vinyl acetate (EVA), in order to release iodine in a controlled rate for water decontamination combined with active carbon cartridge, which adsorbs the iodine residues after the microbial inactivation. The EVA coated IPU were incorporated in a water purifier and tested for iodine release to water and for microbial inactivation efficiency according to WQA certification program against P231/EPA for 250l, using 25l a day with flow rate of 6-8min/1l. The antimicrobial activity was also studied against Escherichia coli and MS2 phage. Bacterial results exceeded the minimal requirement for bacterial removal of 6log reduction throughout the entire lifespan. At any testing point, no bacteria was detected in the outlet achieving more than 7.1 to more than 8log reduction as calculated upon the inlet concentration. Virus surrogate, MS2, reduction results varied from 4.11log reduction under tap water, and 5.11log reduction under basic water (pH9) to 1.32 for acidic water (pH5). Controlled and stable iodine release was observed with the EVA coated IPU sponges and was effective in deactivating the bacteria and virus present in the contaminated water and thus, these iodinated PU systems could be used in water purification to provide safe drinking water. These sponges may find applications as disinfectants in medicine.

  17. Diversity and distribution patterns in high southern latitude sponges.

    Directory of Open Access Journals (Sweden)

    Rachel V Downey

    Full Text Available Sponges play a key role in Antarctic marine benthic community structure and dynamics and are often a dominant component of many Southern Ocean benthic communities. Understanding the drivers of sponge distribution in Antarctica enables us to understand many of general benthic biodiversity patterns in the region. The sponges of the Antarctic and neighbouring oceanographic regions were assessed for species richness and biogeographic patterns using over 8,800 distribution records. Species-rich regions include the Antarctic Peninsula, South Shetland Islands, South Georgia, Eastern Weddell Sea, Kerguelen Plateau, Falkland Islands and north New Zealand. Sampling intensity varied greatly within the study area, with sampling hotspots found at the Antarctic Peninsula, South Georgia, north New Zealand and Tierra del Fuego, with limited sampling in the Bellingshausen and Amundsen seas in the Southern Ocean. In contrast to previous studies we found that eurybathy and circumpolar distributions are important but not dominant characteristics in Antarctic sponges. Overall Antarctic sponge species endemism is ∼43%, with a higher level for the class Hexactinellida (68%. Endemism levels are lower than previous estimates, but still indicate the importance of the Polar Front in isolating the Southern Ocean fauna. Nineteen distinct sponge distribution patterns were found, ranging from regional endemics to cosmopolitan species. A single, distinct Antarctic demosponge fauna is found to encompass all areas within the Polar Front, and the sub-Antarctic regions of the Kerguelen Plateau and Macquarie Island. Biogeographical analyses indicate stronger faunal links between Antarctica and South America, with little evidence of links between Antarctica and South Africa, Southern Australia or New Zealand. We conclude that the biogeographic and species distribution patterns observed are largely driven by the Antarctic Circumpolar Current and the timing of past continent

  18. Quinolizidines alkaloids: Petrosin and xestospongins from the sponge Oceanapia sp.

    Indian Academy of Sciences (India)

    Keisham Sarjit Singh; Babulal Das; Chandrakant G Naik

    2011-09-01

    A bisquinolizidine alkaloid, petrosin (1) and a series of bis-1-oxaquinolizidine, xestospongins (2-9), were obtained from the ethyl acetate extract of the sponge Oceanapia sp. Petrosin was obtained along with xestospongin- C, D, E, F, G, H, I and J having di-hetroatom rings, from the ethyl acetate extract of the sponge. The compounds exhibited moderate to high activities against some microorganisms and clinical isolates. The structures of the alkaloids were elucidated by NMR and ESIMS spectroscopic data. The structure of petrosin was confirmed by an X-ray diffraction study.

  19. Paleoclimate and evolution: emergence of sponges during the neoproterozoic.

    Science.gov (United States)

    Müller, Werner E G; Wang, Xiaohong; Schröder, Heinz C

    2009-01-01

    In the last 15 years, we had to cope with many technological and conceptual obstacles. The major hindrance was the view that sponges are primitive and exist separated from the other metazoan organisms. After answering these problems, the painful scientific process to position the most enigmatic metazoan phylum, the Porifera, into the correct phylogenetic place among the eukaryotes in general and the multicellular animals in particular came to an end. The well-studied taxon Porifera (sponges) was first grouped to the animal-plants or plant-animals, then to the Zoophyta or Mesozoa, and finally to the Parazoa. Only by the application of molecular biological techniques was it possible to place the Porifera monophyletically with the other metazoan phyla, justifying a unification of all multicellular animals to only one kingdom, the Metazoa. The first strong support came from the discovery that cell-cell and cell-matrix adhesion molecules, that were cloned from sponges (mainly the demosponges Suberites domuncula and Geodia cydonium) and that were subsequently expressed, share high DNA sequence and protein function similarity with the corresponding molecules of other metazoans. Together with the molecular biological studies and with the use of the cell culture technologies (primmorphs), which allowed an insight into the stem cell system of these simple organisms, it was possible to stethoscope back in the paleontological history of animals. These studies confirmed the view that the sponges evolved between two epochal ice times, 710-680 Ma (Sturtian glaciation) and 605-585 Ma (Varanger-Marinoan ice age), a period which allowed evolution to proceed but resulted also in a mass extinction of most animal taxa, with the exception of the Porifera. These animals could develop in the aqueous milieu which was rich in silica, due also to their ability to live in a symbiosis with unicellular organisms (prokaryotic and also eukaryotic). Those organisms provided the sponges with the

  20. Bioactive Natural Products of Marine Sponges from the Genus Hyrtios

    Directory of Open Access Journals (Sweden)

    Nourhan Hisham Shady

    2017-05-01

    Full Text Available Marine sponges are known as a rich source for novel bioactive compounds with valuable pharmacological potential. One of the most predominant sponge genera is Hyrtios, reported to have various species such as Hyrtios erectus, Hyrtios reticulatus, Hyrtios gumminae, Hyrtios communis, and Hyrtios tubulatus and a number of undescribed species. Members of the genus Hyrtios are a rich source of natural products with diverse and valuable biological activities, represented by different chemical classes including alkaloids, sesterterpenes and sesquiterpenes. This review covers the literature until June 2016, providing a complete survey of all compounds isolated from the genus Hyrtios with their corresponding biological activities whenever applicable.

  1. Distribution and Abundance of Archaea in South China Sea Sponge Holoxea sp. and the Presence of Ammonia-Oxidizing Archaea in Sponge Cells

    Directory of Open Access Journals (Sweden)

    Fang Liu

    2011-01-01

    Full Text Available Compared with bacterial symbionts, little is known about archaea in sponges especially about their spatial distribution and abundance. Understanding the distribution and abundance of ammonia-oxidizing archaea will help greatly in elucidating the potential function of symbionts in nitrogen cycling in sponges. In this study, gene libraries of 16S rRNA gene and ammonia monooxygenase subunit A (amoA genes and quantitative real-time PCR were used to study the spatial distribution and abundance of archaea in the South China Sea sponge Holoxea sp. As a result, Holoxea sp. specific AOA, mainly group C1a (marine group I: Crenarchaeota were identified. The presence of ammonia-oxidizing crenarchaea was observed for the first time within sponge cells. This study suggested a close relationship between sponge host and its archaeal symbionts as well as the archaeal potential contribution to sponge host in the ammonia-oxidizing process of nitrification.

  2. Upper Triassic (Norian-Rhaetian new thalamid sponges from northern Calabria (southern Italy

    Directory of Open Access Journals (Sweden)

    Baba Senowbari-Daryan

    2003-09-01

    Full Text Available Two new “sphinctozoan” sponges, Calabrisiphonella labyrinthica nov. gen., nov. sp. and Calabrispongia globosa nov. gen., nov. sp., are described from reef boulders derived from Triassic dolomites (“Dolomia principale“ of the Argentino valley in Northern Calabria (Southern Italy. Calabrisiphonella is an Amblysiphonella-type sponge characterized by having a complicated canal system (labyrinth-like within the chamber walls. The structure of Calabrispongia is similar to some Paleozoic or Jurassic "Stromatoporoidea“, which are attributed to the sponges. The systemtic position of both sponges, described here, is discussed. The age of the sponge-bearing reefs represented in the boulders is Norian-Rhaetian.

  3. Rheological Properties and Oxidative Stability of Baked Sponge Cake Using Silky Fowl Egg

    OpenAIRE

    Toshiyuki Toyosaki; Yasuhide Sakane

    2013-01-01

    Baked sponge cakes using silky fowl egg and those using hen eggs were prepared, respectively. The rheological properties, lipid peroxidation and water content of the baked sponge cakes using silky fowl egg compared with those of the cakes using hen egg. The height of the baked sponge cake using silky fowl egg became higher than that of the sponge cake using hen egg. The baked sponge cake using silky fowl egg showed hardly change in hardness and adhesion of the cake for 10 days at room tempera...

  4. Sponge fossil assemblage from the Early Cambrian Hetang Formation in southern Anhui

    Institute of Scientific and Technical Information of China (English)

    CHEN Zhe; HU Jie; ZHOU Chuanming; XIAO Shuhai; YUAN Xunlai

    2004-01-01

    Abundant well-preserved large articulated sponge fossils and isolated spicules have been reported from the Early Cambrian Hetang Formation, southern Anhui Province. This unique epifaunal fossil assemblage dominated by articulated sponge fossils is called the Xidi Sponge Fauna.The sponge fauna lived in a quiet oxygenic environment below the storm wave base. Bloom of phytoplankton and rapid sedimentation rate resulted in the deposition of the black shales. Sufficient food supply, lack of other competitors,abundant ecological niches, and demand for oxygen during early Cambrian were in favor of the diversification and evolution of large sponges in the Early Cambrian.

  5. Multi-Centennial Record of North Atlantic Freshwater Variability since the Little Ice Age Archived in Coralline Algal Ba/Ca

    Science.gov (United States)

    Chan, P. T. W.; Halfar, J.; Adey, W.; Zack, T.

    2014-12-01

    Declining Arctic sea-ice cover in recent decades has driven large-scale freshwater transport into the North Atlantic, possibly influencing the strength of the Meridional Overturning Circulation and even global climate. However, due to the lack of long-term oceanographic observations, little is known about the natural freshwater variability of the Northwestern Atlantic. Crustose coralline algae Clathromorphum compactum are extremely long-lived shallow marine calcareous plants that are abundant along the subarctic eastern Canadian coastline. They are particularly well-suited as recorders of paleoclimate signals due to the formation of annual growth increments, allowing for the precise calendar dating and geochemical sampling of hard tissue. Here, we provide the first annually-resolved multi-centennial record of coralline algal Ba/Ca from Labrador, Canada, as a proxy for North Atlantic freshwater variability extending well into the Little Ice Age (LIA) (1665 AD). Barium-to-calcium ratios (Ba/Ca) from coralline algae have previously been used as an indicator of freshwater runoff. This is because barium-rich clay sediments are transported by terrestrial runoff into coastal waters, and barium is released from the clay minerals upon encountering more alkaline elements present in seawater. We observe higher algal barium concentrations during the LIA, followed by a steady decline to recent times. In addition, coralline algal Ba/Ca shows significant positive relationships to Hudson Strait runoff, as well as Canadian Arctic and North Atlantic sea-ice extent. This suggests that more riverine Ba is transported from the Hudson Strait into the Labrador Sea during periods of increased sea-ice cover. Multiyear sea-ice can block incoming solar radiation thereby diminishing the effects of nutrient scavenging by phytoplankton, resulting in a more conservative transport of Ba into northern Labrador. However as sea-ice continues to thin, more sunlight is able to penetrate through the

  6. Mg fractionation in crustose coralline algae: Geochemical, biological, and sedimentological implications of secular variation in the Mg/Ca ratio of seawater

    Science.gov (United States)

    Ries, Justin B.

    2006-02-01

    The Mg/Ca ratio of seawater has varied significantly throughout the Phanerozoic Eon, primarily as a function of the rate of ocean crust production. Specimens of the crustose coralline alga Neogoniolithon sp. were grown in artificial seawaters encompassing the range of Mg/Ca ratios shown to have existed throughout the Phanerozoic. Significantly, the coralline algae's skeletal Mg/Ca ratio varied in lockstep with the Mg/Ca ratio of the artificial seawater. Specimens grown in seawater treatments formulated with identical Mg/Ca ratios but differing absolute concentrations of Mg and Ca exhibited no significant differences in skeletal Mg/Ca ratios, thereby emphasizing the importance of the ambient Mg/Ca ratio, and not the absolute concentration of Mg, in determining the Mg/Ca ratio of coralline algal calcite. Specimens grown in seawater of the lowest molar Mg/Ca ratio ( mMg/Ca = 1.0) actually changed their skeletal mineralogy from high-Mg (skeletal mMg/Ca > 0.04) to low-Mg calcite (skeletal mMg/Ca algae, which exhibit morphologies and modes of calcification comparable to Neogoniolithon sp., would have produced low-Mg calcite from the middle Cambrian to middle Mississippian and during the middle to Late Cretaceous, when oceanic mMg/Ca approached unity. By influencing the original Mg content of carbonate facies in which these algae have been ubiquitous, this condition has significant implications for the geochemistry and diagenesis of algal limestones throughout most of the Phanerozoic. The crustose coralline algae's precipitation of high-Mg calcite from seawater that favors the abiotic precipitation of aragonite indicates that these algae dictate the precipitation of the calcitic polymorph of CaCO 3. However, the algae's nearly abiotic pattern of Mg fractionation in their skeletal calcite suggests that their biomineralogical control is limited to polymorph specification and is generally ineffectual in the regulation of skeletal Mg incorporation. Therefore, the Mg/Ca ratio

  7. First evidence of the presence of chitin in skeletons of marine sponges. Part II. Glass sponges (Hexactinellida: Porifera).

    Science.gov (United States)

    Ehrlich, Hermann; Krautter, Manfred; Hanke, Thomas; Simon, Paul; Knieb, Christiane; Heinemann, Sascha; Worch, Hartmut

    2007-07-15

    Sponges (Porifera) are presently gaining increased scientific attention because of their secondary metabolites and specific skeleton structures. In contrast to demosponges, whose skeletons are formed from biopolymer spongin, glass sponges (hexactinellids) possess silica-organic composites as the main natural material for their skeletal fibres. Chitin has a crystalline structure and it constitutes a network of organized fibres. This structure confers rigidity and resistance to organisms that contain it, including monocellular (yeast, amoeba, diatoms) and multicellular (higher fungi, arthropods, nematodes, molluscs) organisms. In contrast to different marine invertebrates whose exoskeletons are built of chitin, this polysaccharide has not been found previously as an endogenous biopolymer within glass sponges (Hexactinellida). We hypothesized that glass sponges, which are considered to be the most basal lineage of multicellular animals, must possess chitin. Here, we present a detailed study of the structural and physico-chemical properties of skeletal fragments of the glass sponge Farrea occa. We show that these fibres have a layered design with specific compositional variations in the chitin/silica composite. We applied an effective approach for the demineralization of glass sponge skeletal formations based on an etching procedure using alkali solutions. The results show unambiguously that alpha-chitin is an essential component of the skeletal structures of Hexactinellida. This is the first report of a silica-chitin's composite biomaterial found in nature. From this perspective, the view that silica-chitin scaffolds may be key templates for skeleton formation also in ancestral unicellular organisms, rather than silica-protein composites, emerges as a viable alternative hypothesis.

  8. Fabrication and mechanical characterization of a polyvinyl alcohol sponge for tissue engineering applications.

    Science.gov (United States)

    Karimi, A; Navidbakhsh, M; Faghihi, S

    2014-05-01

    Polyvinyl alcohol (PVA) sponges are widely used for clinical applications, including ophthalmic surgical treatments, wound healing and tissue engineering. There is, however, a lack of sufficient data on the mechanical properties of PVA sponges. In this study, a biomechanical method is used to characterize the elastic modulus, maximum stress and strain as well as the swelling ratio of a fabricated PVA sponge (P-sponge) and it is compared with two commercially available PVA sponges (CENEFOM and EYETEC). The results indicate that the elastic modulus of the P-sponge is 5.32% and 13.45% lower than that of the CENEFOM and EYETEC sponges, while it bears 4.11% more and 10.37% less stress compared to the CENEFOM and EYETEC sponges, respectively. The P-sponge shows a maximum strain of 32% more than the EYETEC sponge as well as a 26.78% higher swelling ratio, which is a significantly higher absorbency compared to the CENEFOM. It is believed that the results of this study would help for a better understanding of the extension, rupture and swelling mechanism of PVA sponges, which could lead to crucial improvement in the design and application of PVA-based materials in ophthalmic and plastic surgeries as well as wound healing and tissue engineering.

  9. Polar coralline algal CaCO3-production rates correspond to intensity and duration of the solar radiation

    Science.gov (United States)

    Teichert, S.; Freiwald, A.

    2014-02-01

    In this study we present a comparative quantification of CaCO3 production rates by rhodolith-forming coralline red algal communities situated in high polar latitudes and assess which environmental parameters control these production rates. The present rhodoliths act as ecosystem engineers, and their carbonate skeletons provide an important ecological niche to a variety of benthic organisms. The settings are distributed along the coasts of the Svalbard archipelago, being Floskjeret (78°18' N) in Isfjorden, Krossfjorden (79°08' N) at the eastern coast of Haakon VII Land, Mosselbukta (79°53' N) at the eastern coast of Mosselhalvøya, and Nordkappbukta (80°31' N) at the northern coast of Nordaustlandet. All sites feature Arctic climate and strong seasonality. The algal CaCO3 production rates were calculated from fuchsine-stained, presumably annual growth increments exhibited by the rhodoliths and range from 100.9 g (CaCO3) m-2 yr-1 at Nordkappbukta to 200.3 g (CaCO3) m-2 yr-1 at Floskjeret. The rates correlate to various environmental parameters with geographical latitude being the most significant (negative correlation, R2 = 0.95, p = 0.0070), followed by the duration of the polar night (negative correlation, R2 = 0.93, p = 0.0220), the duration of the sea ice cover (negative correlation, R2 = 0.87, p = 0.0657), and the annual mean temperature (positive correlation, R2 = 0.48, p = 0.0301). This points out sufficient light incidence to be the main control of the growth of the examined coralline red algal rhodolith communities, while temperature is less important. Thus, the ongoing global change with its rising temperatures will most likely result in impaired conditions for the algae, because the concomitant increased global runoff will decrease water transparency and hence light incidence at the four offshore sites. Regarding the aforementioned role of the rhodoliths as ecosystem engineers, the impact on the associated organisms will presumably also be negative.

  10. Optimization of preparation process and characterization of carboxymethyl chitosan/sodium alginate hemostatic sponge

    Science.gov (United States)

    Hu, Z.; Ouyang, Q. Q.; Cheng, Y.; Hong, P. Z.; Liao, M. N.; Chen, F. J.; Li, S. D.

    2017-06-01

    Composite hemostatic sponge was prepared by vacuum freeze-drying using carboxymethyl chitosan and sodium alginate as the main materials and CaCl2 as a crosslinking agent. On the basis of single factor experiments, an orthogonal experiment was carried out to optimize the preparation process of hemostatic sponge. The appearance, water absorption, porosity ratio, and in vitro hemostasis of the sponge were evaluated. The optimum conditions to prepare hemostatic sponge were obtained as follows: mass ratio of sodium alginate to carboxymethyl chitosan 4: 1, mass fraction of CaCl2 2%, and crosslinking temperature 30°C. The hemostatic sponge prepared under such conditions was off-white and porous. Its water absorption and porosity ratio were 3050% and 67.23%, respectively. Meanwhile, the hemostatic sponges had significant in vitro procoagulant activity. Therefore, the hemostatic sponge is expected to be developed as a novel medical material.

  11. Identification and Characteristics of Lactic Acid Bacteria Isolated from Sour Dough Sponges.

    Science.gov (United States)

    Okada, S; Ishikawa, M; Yoshida, I; Uchimura, T; Ohara, N; Kozaki, M

    1992-01-01

    Lactic acid bacteria in four samples of sour dough sponges were studied quantitatively and qualitatively. In each sponge, there were one or two species of the genus Lactobacillus: L. reuteri and L. curvatus in San Francisco sour dough sponge, L. brevis and L. hilgardii in panettone sour dough sponge produced in Italy, L. sanfrancisco from a rye sour dough sponge produced in Germany, and L. casei and L. curvatus from a rye sour dough sponge produced in Switzerland. For all isolates except the L. reuteri strains oleic acid, a component of the Tween 80 added to the medium, was essential for growth. It was of interest that lactobacilli requiring oleic acid were the predominant flora of lactic acid bacteria in the microbial environment of sour dough sponges.

  12. Seasonal growth rate of the sponge Haliclona oculata (Demospongiae: Haplosclerida).

    Science.gov (United States)

    Koopmans, Marieke; Wijffels, René H

    2008-01-01

    The interest in sponges has increased rapidly since the discovery of potential new pharmaceutical compounds produced by many sponges. A good method to produce these compounds by using aquaculture of sponges is not yet available, because there is insufficient knowledge about the nutritional needs of sponges. To gain more insight in the nutritional needs for growth, we studied the growth rate of Haliclona oculata in its natural environment and monitored environmental parameters in parallel. A stereo photogrammetry approach was used for measuring growth rates. Stereo pictures were taken and used to measure volumetric changes monthly during 1 year. Volumetric growth rate of Haliclona oculata showed a seasonal trend with the highest average specific growth rate measured in May: 0.012 +/- 0.004 day(-1). In our study a strong positive correlation (p rate with temperature, algal biomass (measured as chlorophyll a), and carbon and nitrogen content in suspended particulate matter. A negative correlation (p rate with salinity, ammonium, nitrate, nitrite, and phosphate. No correlation was found with dissolved organic carbon, suggesting that Haliclona oculata is more dependent on particulate organic carbon.

  13. Superoxide dismutase in the marine sponge Cliona celata

    NARCIS (Netherlands)

    Marques, D.; Esteves, A.I.; Almeida, M.; Xavier, J.; Humanes, M.

    2008-01-01

    The aim of this work is to investigate the activity of the antioxidant enzyme superoxide dismutase in the cosmopolitan sponge Cliona celata (Grant, 1826), since this enzyme has been described as a useful biomarker for marine pollution in other marine invertebrates. The quantification of the catalyti

  14. Patterns of chemical diversity in the Mediterranean sponge Spongia lamella.

    Science.gov (United States)

    Noyer, Charlotte; Thomas, Olivier P; Becerro, Mikel A

    2011-01-01

    The intra-specific diversity in secondary metabolites can provide crucial information for understanding species ecology and evolution but has received limited attention in marine chemical ecology. The complex nature of diversity is partially responsible for the lack of studies, which often target a narrow number of major compounds. Here, we investigated the intra-specific chemical diversity of the Mediterranean sponge Spongia lamella. The chemical profiles of seven populations spreading over 1200 km in the Western Mediterranean were obtained by a straightforward SPE-HPLC-DAD-ELSD process whereas the identity of compounds was assessed by comparison between HPLC-MS spectra and literature data. Chemical diversity calculated by richness and Shannon indexes differed significantly between sponge populations but not at a larger regional scale. We used factor analysis, analysis of variance, and regression analysis to examine the chemical variability of this sponge at local and regional scales, to establish general patterns of variation in chemical diversity. The abundance of some metabolites varied significantly between sponge populations. Despite these significant differences between populations, we found a clear pattern of increasing chemical dissimilarity with increasing geographic distance. Additional large spatial scale studies on the chemical diversity of marine organisms will validate the universality or exclusivity of this pattern.

  15. Patterns of chemical diversity in the Mediterranean sponge Spongia lamella.

    Directory of Open Access Journals (Sweden)

    Charlotte Noyer

    Full Text Available The intra-specific diversity in secondary metabolites can provide crucial information for understanding species ecology and evolution but has received limited attention in marine chemical ecology. The complex nature of diversity is partially responsible for the lack of studies, which often target a narrow number of major compounds. Here, we investigated the intra-specific chemical diversity of the Mediterranean sponge Spongia lamella. The chemical profiles of seven populations spreading over 1200 km in the Western Mediterranean were obtained by a straightforward SPE-HPLC-DAD-ELSD process whereas the identity of compounds was assessed by comparison between HPLC-MS spectra and literature data. Chemical diversity calculated by richness and Shannon indexes differed significantly between sponge populations but not at a larger regional scale. We used factor analysis, analysis of variance, and regression analysis to examine the chemical variability of this sponge at local and regional scales, to establish general patterns of variation in chemical diversity. The abundance of some metabolites varied significantly between sponge populations. Despite these significant differences between populations, we found a clear pattern of increasing chemical dissimilarity with increasing geographic distance. Additional large spatial scale studies on the chemical diversity of marine organisms will validate the universality or exclusivity of this pattern.

  16. Galactosylated cellulosic sponge for multi-well drug safety testing.

    Science.gov (United States)

    Nugraha, Bramasta; Hong, Xin; Mo, Xuejun; Tan, Looling; Zhang, Wenxia; Chan, Po-Mak; Kang, Chiang Huen; Wang, Yan; Beng, Lu Thong; Sun, Wanxin; Choudhury, Deepak; Robens, Jeffrey M; McMillian, Michael; Silva, Jose; Dallas, Shannon; Tan, Choon-Hong; Yue, Zhilian; Yu, Hanry

    2011-10-01

    Hepatocyte spheroids can maintain mature differentiated functions, but collide to form bulkier structures when in extended culture. When the spheroid diameter exceeds 200 μm, cells in the inner core experience hypoxia and limited access to nutrients and drugs. Here we report the development of a thin galactosylated cellulosic sponge to culture hepatocytes in multi-well plates as 3D spheroids, and constrain them within a macroporous scaffold network to maintain spheroid size and prevent detachment. The hydrogel-based soft sponge conjugated with galactose provided suitable mechanical and chemical cues to support rapid formation of hepatocyte spheroids with a mature hepatocyte phenotype. The spheroids tethered in the sponge showed excellent maintenance of 3D cell morphology, cell-cell interaction, polarity, metabolic and transporter function and/or expression. For example, cytochrome P450 (CYP1A2, CYP2B2 and CYP3A2) activities were significantly elevated in spheroids exposed to β-naphthoflavone, phenobarbital, or pregnenolone-16α-carbonitrile, respectively. The sponge also exhibits minimal drug absorption compared to other commercially available scaffolds. As the cell seeding and culture protocols are similar to various high-throughput 2D cell-based assays, this platform is readily scalable and provides an alternative to current hepatocyte platforms used in drug safety testing applications.

  17. Superoxide dismutase in the marine sponge Cliona celata

    NARCIS (Netherlands)

    Marques, D.; Esteves, A.I.; Almeida, M.; Xavier, J.; Humanes, M.

    2008-01-01

    The aim of this work is to investigate the activity of the antioxidant enzyme superoxide dismutase in the cosmopolitan sponge Cliona celata (Grant, 1826), since this enzyme has been described as a useful biomarker for marine pollution in other marine invertebrates. The quantification of the

  18. Symbiotic Fungus of Marine Sponge Axinella sp. Producing Antibacterial Agent

    Science.gov (United States)

    Trianto, A.; Widyaningsih, S.; Radjasa, OK; Pribadi, R.

    2017-02-01

    The emerging of multidrug resistance pathogenic bacteria cause the treatment of the diseaseshave become ineffective. There for, invention of a new drug with novel mode of action is an essential for curing the disease caused by an MDR pathogen. Marine fungi is prolific source of bioactive compound that has not been well explored. This study aim to obtain the marine sponges-associated fungus that producing anti-MDR bacteria substaces. We collected the sponge from Riung water, NTT, Indonesia. The fungus was isolated with affixed method, followed with purification with streak method. The overlay and disk diffusion agar methods were applied for bioactivity test for the isolate and the extract, respectively. Molecular analysis was employed for identification of the isolate. The sponge was identified based on morphological and spicular analysis. The ovelay test showed that the isolate KN15-3 active against the MDR Staphylococcus aureus and Eschericia coli. The extract of the cultured KN15-3 was also inhibited the S. aureus and E. coli with inhibition zone 2.95 mm and 4.13 mm, respectively. Based on the molecular analysis, the fungus was identified as Aspergillus sydowii. While the sponge was identified as Axinella sp.

  19. Animals of the Sea: Coelenterates, Protozoa, and Sponges.

    Science.gov (United States)

    Awkerman, Gary L.

    These three units are designed for use with standard science curricula. These publications, relating to animals of the sea, are: Protozoa, Sponges, and Coelenterates. Included are teacher guides, student activities, and demonstrations designed to impart ocean science understanding to high school students. Objectives to be attained from the unit on…

  20. Minor sterols from the sponge Ircinia ramosa (Killer)

    Digital Repository Service at National Institute of Oceanography (India)

    Parameswaran, P.S.; Naik, C.G.; Das, B.; Kamat, S.Y.

    Three sterols, isolated from the lipid fraction of the sponge Ircinia ramosa were characterised as cholest-5-en-3 beta-ol-7-one (7-oxo cholesterol, 1), cholest 5-23-dien-b beta ol-7-one (7-oxo demosterol, 2) and 24E-ethyl cholest-5-en-3 beta -ol-7...

  1. Carbohydrate self-recognition mediates marine sponge cellular adhesion

    NARCIS (Netherlands)

    Vliegenthart, J.F.G.; Haseley, S.R.; Vermeer, H.J.; Kamerling, J.P.

    2001-01-01

    Sponges (Porifera), the simplest and earliest multicellular organisms, are thought to have evolved from their unicellular ancestors about 1 billion years ago by developing cell-recognition and adhesion mechanisms to discriminate against 'non-self.' Consequently, they are used as models for investiga

  2. Tactile device utilizing a single magnetorheological sponge: experimental investigation

    Science.gov (United States)

    Kim, Soomin; Kim, Pyunghwa; Choi, Seung-Hyun; Oh, Jong-Seok; Choi, Seung-Bok

    2015-04-01

    In the field of medicine, several new areas have been currently introduced such as robot-assisted surgery. However, the major drawback of these systems is that there is no tactile communication between doctors and surgical sites. When the tactile system is brought up, telemedicine including telerobotic surgery can be enhanced much more than now. In this study, a new tactile device is designed using a single magnetorhological (MR) sponge cell to realize the sensation of human organs. MR fluids and an open celled polyurethane foam are used to propose the MR sponge cell. The viscous and elastic sensational behaviors of human organs are realized by the MR sponge cell. Before developing the tactile device, tactile sensation according to touch of human fingers are quantified in advance. The finger is then treated as a reduced beam bundle model (BBM) in which the fingertip is comprised of an elastic beam virtually. Under the reduced BBM, when people want to sense an object, the fingertip is investigated by pushing and sliding. Accordingly, while several magnitudes of magnetic fields are applied to the tactile device, normal and tangential reaction forces and bending moment are measured by 6-axis force/torque sensor instead of the fingertip. These measured data are used to compare with soft tissues. It is demonstrated that the proposed MR sponge cell can realize any part of the organ based on the obtained data.

  3. Significance of starch properties and quantity on sponge cake volume

    Science.gov (United States)

    We evaluated the qualitative and quantitative effects of wheat starch on sponge cake (SC) baking quality. Twenty wheat flours, including soft white and club wheat of normal, partial waxy and waxy endosperm, and hard wheat, were tested for amylose content, pasting properties, and SC baking quality. S...

  4. Comparative bioaccumulation kinetics of trace elements in Mediterranean marine sponges.

    Science.gov (United States)

    Genta-Jouve, Grégory; Cachet, Nadja; Oberhänsli, François; Noyer, Charlotte; Teyssié, Jean-Louis; Thomas, Olivier P; Lacoue-Labarthe, Thomas

    2012-09-01

    While marine organisms such as bivalves, seagrasses and macroalgae are commonly used as biomonitors for the environment pollution assessment, widely distributed sponges received little attention as potential helpful species for monitoring programmes. In this study, the trace element and radionuclide bioaccumulation and retention capacities of some marine sponges were estimated in a species-comparative study using radiotracers technique. Six Mediterranean species were exposed to background dissolved concentrations of (110m)Ag, (241)Am, (109)Cd, (60)Co, (134)Cs, (54)Mn, (75)Se and (65)Zn allowing the assessment of the uptake and depuration kinetics for selected elements. Globally, massive demosponges Agelas oroides, Chondrosia reniformis and Ircinia variabilis displayed higher concentration factor (CF) than the erectile ones (Acanthella acuta, Cymbaxinella damicornis, Cymbaxinella verrucosa) at the end of exposure, suggesting that the morphology is a key factor in the metal bioaccumulation efficiency. Considering this observation, two exceptions were noted: (1) A. acuta reached the highest CF for (110m)Ag and strongly retained the accumulated metal without significant Ag loss when placed in depuration conditions and (2) C. reniformis did not accumulate Se as much as A. oroides and I. variabilis. These results suggest that peculiar metal uptake properties in sponges could be driven by specific metabolites or contrasting biosilification processes between species, respectively. This study demonstrated that sponges could be considered as valuable candidate for biomonitoring metal contamination but also that there is a need to experimentally highlight metal-dependant characteristic among species.

  5. Endosymbiotic calcifying bacteria across sponge species and oceans

    Science.gov (United States)

    Garate, Leire; Sureda, Jan; Agell, Gemma; Uriz, Maria J.

    2017-01-01

    From an evolutionary point of view, sponges are ideal targets to study marine symbioses as they are the most ancient living metazoans and harbour highly diverse microbial communities. A recently discovered association between the sponge Hemimycale columella and an intracellular bacterium that generates large amounts of calcite spherules has prompted speculation on the possible role of intracellular bacteria in the evolution of the skeleton in early animals. To gain insight into this purportedly ancestral symbiosis, we investigated the presence of symbiotic bacteria in Mediterranean and Caribbean sponges. We found four new calcibacteria OTUs belonging to the SAR116 in two orders (Poecilosclerida and Clionaida) and three families of Demospongiae, two additional OTUs in cnidarians and one more in seawater (at 98.5% similarity). Using a calcibacteria targeted probe and CARD-FISH, we also found calcibacteria in Spirophorida and Suberitida and proved that the calcifying bacteria accumulated at the sponge periphery, forming a skeletal cortex, analogous to that of siliceous microscleres in other demosponges. Bacteria-mediated skeletonization is spread in a range of phylogenetically distant species and thus the purported implication of bacteria in skeleton formation and evolution of early animals gains relevance. PMID:28262822

  6. Dinoflagellates associated with freshwater sponges from the ancient lake baikal.

    Science.gov (United States)

    Annenkova, Natalia V; Lavrov, Dennis V; Belikov, Sergey I

    2011-04-01

    Dinoflagellates are a diverse group of protists that are common in both marine and freshwater environments. While the biology of marine dinoflagellates has been the focus of several recent studies, their freshwater relatives remain little-investigated. In the present study we explore the diversity of dinoflagellates in Lake Baikal by identifying and analyzing dinoflagellate sequences for 18S rDNA and ITS-2 from total DNA extracted from three species of endemic Baikalian sponges (Baikalospongia intermedia,Baikalospongia rectaand Lubomirskia incrustans). Phylogenetic analyses of these sequences revealed extensive dinoflagellate diversity in Lake Baikal. We found two groups of sequences clustering within the order Suessiales, known for its symbiotic relationships with various invertebrates. Thus they may be regarded as potential symbionts of Baikalian sponges. In addition,Gyrodinium helveticum, representatives from the genus Gymnodinium, dinoflagellates close to the family Pfiesteriaceae, and a few dinoflagellates without definite affiliation were detected. No pronounced difference in the distribution of dinoflagellates among the studied sponges was found, except for the absence of the Piscinoodinium-like dinoflagellates inL. incrustans. To the best of our knowledge, this is the first study of the diversity of dinoflagellates in freshwater sponges, the first systematic investigation of dinoflagellate molecular diversity in Lake Baikal and the first finding of members of the order Suessiales as symbionts of freshwater invertebrates.

  7. Occurrence of a taurine derivative in an antarctic glass sponge.

    Science.gov (United States)

    Carbone, Marianna; Núñez-Pons, Laura; Ciavatta, M Letizia; Castelluccio, Francesco; Avila, Conxita; Gavagnin, Margherita

    2014-04-01

    The n-butanol extract of an Antarctic hexactinellid sponge, Anoxycalyx (Scolymastra) joubini, was found to contain a taurine-conjugated anthranilic acid, never reported so far either as a natural product or by synthesis. The compound was inactive against human cancer cells in an in vitro growth inhibitory test, and also showed no antibacterial activity.

  8. Sponge diversity and community composition in Irish bathyal coral reefs

    NARCIS (Netherlands)

    Soest, van R.W.M; Cleary, D.F.R.; Kluijver, de M.J.; Lavaleye, M.S.S.; Maier, C.; Duy, van F.C.

    2007-01-01

    Sponge diversity and community composition in bathyal cold water coral reefs (CWRs) were examined at 500-900 m depth on the southeastern slopes of Rockall Bank and the northwestern slope of Porcupine Bank, to the west of Ireland in 2004 and 2005 with boxcores. A total of 104 boxcore samples, supplem

  9. Keratin sponge/hydrogel II, active agent delivery

    Science.gov (United States)

    Keratin sponge/hydrogels from oxidation and reduction hydrolysis of fine and coarse wool fibers were formed to behave as cationic hydrogels to swell and release active agents in the specific region of the gastro-intestinal (GI) tract. Their porous, interpenetrating networks (IPN) were effective for...

  10. Perplexing distribution of 3-alkylpyridines in haplosclerid sponges.

    NARCIS (Netherlands)

    Becking, L.E.; Nakao, Y.; de Voogd, N.J.; van Soest, R.W.M.; Fusetani, N.; Matsunaga, S.; Custódio, M.R,; Hajdu Custódio, M.R; Muricy, Lôbo-Hajdu G

    2007-01-01

    Abstract: In this study we reviewed the natural product literature for the distribution of 3-alkylpyridines among sponge taxa. In parallel, we traced selected 3-alkylpyridines, amphitoxins, in three haplosclerid genera (Amphimedon, Callyspongia, Haliclona) in order to establish the utility of such c

  11. SITE TECHNOLOGY CAPSULE: DYNAPHORE, INC., FORAGER™ SPONGE TECHNOLOGY

    Science.gov (United States)

    The Forager™ Sponge is a volume reduction technology in which heavy metal contaminants from an aqueous medium are selectively concentrated into a smaller volume for facilitated disposal. The technology treats contaminated groundwater, surface waters, and process waters by absorbi...

  12. Sponge microbiota are a reservoir of functional antibiotic resistance genes

    Directory of Open Access Journals (Sweden)

    Dennis Versluis

    2016-11-01

    Full Text Available Wide application of antibiotics has contributed to the evolution of multi-drug resistant human pathogens, resulting in poorer treatment outcomes for infections. In the marine environment, seawater samples have been investigated as a resistance reservoir; however, no studies have methodically examined sponges as a reservoir of antibiotic resistance. Sponges could be important in this respect because they often contain diverse microbial communities that have the capacity to produce bioactive metabolites. Here, we applied functional metagenomics to study the presence and diversity of functional resistance genes in the sponges Aplysina aerophoba, Petrosia ficiformis and Corticium candelabrum. We obtained 37 insert sequences facilitating resistance to D-cycloserine (n=6, gentamicin (n=1, amikacin (n=7, trimethoprim (n=17, chloramphenicol (n=1, rifampicin (n=2 and ampicillin (n=3. Fifteen of 37 inserts harboured resistance genes that shared <90% amino acid identity with known gene products, whereas on 13 inserts no resistance gene could be identified with high confidence, in which case we predicted resistance to be mainly mediated by antibiotic efflux. One marine-specific ampicillin-resistance-conferring β-lactamase was identified in the genus Pseudovibrio with 41% global amino acid identity to the closest β-lactamase with demonstrated functionality, and subsequently classified into a new family termed PSV. Taken together, our results show that sponge microbiota host diverse and novel resistance genes that may be harnessed by phylogenetically distinct bacteria.

  13. A New Isomalabaricane Triterpenoid from Sponge Jaspis sp.

    Institute of Scientific and Technical Information of China (English)

    Sheng An TANG; Zhi Wei DENG; Jun LI; Hong Zheng FU; Yue Hu PEI; Si ZHANG; Wen Han LIN

    2005-01-01

    From the marine sponge Jaspis sp., a new isomalabaricane triterpenoid 22, 23-dihydrostellettin D (1) was isolated, and its structure was established on the basis of IR, MS and extensive 2D NMR spectroscopic analysis. It is a unique skeleton compound rarely obtained from Chinese marine organisms.

  14. Two Phaeophytin Type Analogues from Marine Sponge Dysidea sp

    Institute of Scientific and Technical Information of China (English)

    Peng Fei JIN; Zhi Wei DENG; Yue Hu PEI; Wen Han LIN

    2005-01-01

    A new compound named 13b (S)-hydroxy-17c-ethoxypheaophorbide a (2) together with a known compound 17c-ethoxypheaophorbide a (1) were isolated from marine sponge Dysidea sp.collected in South China sea. The structures were elucidated by spectroscopic analysis as well as comparison with those reported in literatures.

  15. Potential of sponges and microalgae for marine biotechnology

    NARCIS (Netherlands)

    Wijffels, R.H.

    2008-01-01

    Marine organisms can be used to produce several novel products that have applications in new medical technologies, in food and feed ingredients and as biofuels. In this paper two examples are described: the development of marine drugs from sponges and the use of microalgae to produce bulk chemicals

  16. Cultivation of marine sponges for metabolite production: applications for biotechnology?

    NARCIS (Netherlands)

    Osinga, R.; Tramper, J.; Wijffels, R.H.

    1998-01-01

    The world's oceans harbour a large diversity of living organisms. As tropical rainforests have been searched for natural drugs, these marine organisms are being screened for useful products, and a number have been found in marine sponges. These are often produced only in trace amounts, and so a

  17. Potential of sponges and microalgae for marine biotechnology

    NARCIS (Netherlands)

    Wijffels, R.H.

    2008-01-01

    Marine organisms can be used to produce several novel products that have applications in new medical technologies, in food and feed ingredients and as biofuels. In this paper two examples are described: the development of marine drugs from sponges and the use of microalgae to produce bulk chemicals

  18. An Acetylenic Alkaloid from the Calcareous Sponge Leucetta sp.

    Directory of Open Access Journals (Sweden)

    Nicole J. de Voogd

    2011-03-01

    Full Text Available A new acetylenic alkaloid was isolated from the sponge Leucetta sp. The structure was established by analyzing spectroscopic data. The alkaloid showed cytotoxicity IC50 2.5 mg/mL against NBT-T2 cells.

  19. New Scalarane Sesterterpenoids from the Formosan Sponge Ircinia felix

    Directory of Open Access Journals (Sweden)

    Ya-Yuan Lai

    2015-07-01

    Full Text Available Five new scalarane sesterterpenoids, felixins A–E (1–5, were isolated from the Formosan sponge Ircinia felix. The structures of scalaranes 1–5 were elucidated on the basis of spectroscopic analysis. Cytotoxicity of scalaranes 1–5 against the proliferation of a limited panel of tumor cell lines was evaluated.

  20. Secondary Metabolites from the Marine Sponge Genus Phyllospongia

    Science.gov (United States)

    Zhang, Huawei; Dong, Menglian; Wang, Hong; Crews, Phillip

    2017-01-01

    Phyllospongia, one of the most common marine sponges in tropical and subtropical oceans, has been shown to be a prolific producer of natural products with a broad spectrum of biological activities. This review for the first time provides a comprehensive overview of secondary metabolites produced by Phyllospongia spp. over the 37 years from 1980 to 2016. PMID:28067826

  1. Endosymbiotic calcifying bacteria across sponge species and oceans

    Science.gov (United States)

    Garate, Leire; Sureda, Jan; Agell, Gemma; Uriz, Maria J.

    2017-03-01

    From an evolutionary point of view, sponges are ideal targets to study marine symbioses as they are the most ancient living metazoans and harbour highly diverse microbial communities. A recently discovered association between the sponge Hemimycale columella and an intracellular bacterium that generates large amounts of calcite spherules has prompted speculation on the possible role of intracellular bacteria in the evolution of the skeleton in early animals. To gain insight into this purportedly ancestral symbiosis, we investigated the presence of symbiotic bacteria in Mediterranean and Caribbean sponges. We found four new calcibacteria OTUs belonging to the SAR116 in two orders (Poecilosclerida and Clionaida) and three families of Demospongiae, two additional OTUs in cnidarians and one more in seawater (at 98.5% similarity). Using a calcibacteria targeted probe and CARD-FISH, we also found calcibacteria in Spirophorida and Suberitida and proved that the calcifying bacteria accumulated at the sponge periphery, forming a skeletal cortex, analogous to that of siliceous microscleres in other demosponges. Bacteria-mediated skeletonization is spread in a range of phylogenetically distant species and thus the purported implication of bacteria in skeleton formation and evolution of early animals gains relevance.

  2. A tactile sensor using a conductive graphene-sponge composite

    Science.gov (United States)

    Chun, Sungwoo; Hong, Ahyoung; Choi, Yeonhoi; Ha, Chunho; Park, Wanjun

    2016-04-01

    For sensors that emulate human tactile perception, we suggest a simple method for fabricating a highly sensitive force sensor using a conductive polyurethane sponge where graphene flakes are self-assembled into the porous structure of the sponge. The complete sensor device shows a sensitive and reliable detection response for a broad range of pressure and dynamic pressure that correspond to human tactile perception. Sensitivity of the sensor to detect vibration is also confirmed with vertical actuations due to slipping over micro-scale ridge structures attached on the sensors. Based on the sensor's ability to detect both pressure and vibration, the sensor can be utilized as a flexible tactile sensor.For sensors that emulate human tactile perception, we suggest a simple method for fabricating a highly sensitive force sensor using a conductive polyurethane sponge where graphene flakes are self-assembled into the porous structure of the sponge. The complete sensor device shows a sensitive and reliable detection response for a broad range of pressure and dynamic pressure that correspond to human tactile perception. Sensitivity of the sensor to detect vibration is also confirmed with vertical actuations due to slipping over micro-scale ridge structures attached on the sensors. Based on the sensor's ability to detect both pressure and vibration, the sensor can be utilized as a flexible tactile sensor. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr00774k

  3. Biomechanical and radiographic comparison of demineralized bone matrix, and a coralline hydroxyapatite in a rabbit spinal fusion model.

    Science.gov (United States)

    Dodds, Robert A; York-Ely, Amanda M; Zhukauskas, Rasa; Arola, Travis; Howell, John; Hartill, Caroline; Cobb, Ronald R; Fox, Casey

    2010-09-01

    The use of bone grafts is an essential component in spinal fusion. Autologous bone has been shown to result in long-term stable arthrodesis between spinal motion segments. However, autograft can be associated with significant morbidity and a limited supply. Alternatives, such as allogeneic demineralized bone matrix (DBM), are a potential source and supplement to autograft bone. The current study compares the ability of a DBM product (BioSet RT) and a coralline hydroxyapatite (Pro Osteon 500R), for inducing spinal fusion in a rabbit model. BioSet RT, alone or in combination with autograft, and Pro Osteon 500R were implanted in the posterior lateral inter-transverse process region of the rabbit spine. The spines were evaluated at 18 weeks for fusion of the L4-L5 transverse processes using a total of 33 skeletally mature male rabbits; 4 naïve animals were also included in the study. Samples were evaluated radiographically, histologically, by palpation, and through mechanical strength testing. Radiographical, histological, and palpation measurements demonstrated the ability of BioSet RT to induce new bone formation and bridging fusion comparable to autograft. This material performed well alone or in combination with autograft material. Despite significantly higher biomechanical testing results, minimal bone formation and fusion was recorded for the Pro Osteon 500R-treated group. This in vivo study demonstrates the ability of BioSet RT to induce new bone formation, and there was a clear relationship between bridging bone and mechanical strength.

  4. Relative roles of endolithic algae and carbonate chemistry variability in the skeletal dissolution of crustose coralline algae

    Science.gov (United States)

    Reyes-Nivia, C.; Diaz-Pulido, G.; Dove, S.

    2014-09-01

    The susceptibility of crustose coralline algae (CCA) skeletons to dissolution is predicted to increase as oceans warm and acidify. Skeletal dissolution is caused by bioerosion from endolithic microorganisms and by chemical processes associated with undersaturation of carbonate minerals in seawater. Yet, the relative contribution of algal microborers and seawater carbonate chemistry to the dissolution of organisms that cement reefs under projected pCO2 and temperature (pCO2-T) scenarios have not been quantified. We exposed CCA skeletons (Porolithon onkodes) to four pCO2-T treatments (pre-industrial, present-day, SRES-B1 "reduced" pCO2, and SRES-A1FI "business-as-usual" pCO2 emission scenarios) under natural light cycles vs. constant dark conditions for 8 weeks. Dissolution rates of skeletons without photo-endoliths were dramatically higher (200%) than those colonized by endolithic algae across all pCO2-T scenarios. This suggests that daytime photosynthesis by microborers counteract dissolution by reduced saturation states resulting in lower net erosion rates over day-night cycles. Regardless of the presence or absence of phototrophic microborers, skeletal dissolution increased significantly under the spring A1FI "business-as-usual" scenario, confirming the CCA sensitivity to future oceans. Projected ocean acidity and temperature may significantly disturb the stability of reef frameworks cemented by CCA, but surficial substrates harbouring photosynthetic microborers will be less impacted than those without algal endoliths.

  5. To break a coralline: mechanical constraints on the size and survival of a wave-swept seaweed.

    Science.gov (United States)

    Martone, Patrick T; Denny, Mark W

    2008-11-01

    Previous studies have hypothesized that wave-induced drag forces may constrain the size of intertidal organisms by dislodging or breaking organisms that exceed some critical dimension. In this study, we explored constraints on the size of the articulated coralline alga Calliarthron, which thrives in wave-exposed intertidal habitats. Its ability to survive depends critically upon its segmented morphology (calcified segments separated by flexible joints or ;genicula'), which allows otherwise rigid fronds to bend and thereby reduce drag. However, bending also amplifies stress within genicula near the base of fronds. We quantified breakage of genicula in bending by applying known forces to fronds until they broke. Using a mathematical model, we demonstrate the mitigating effect of neighboring fronds on breakage and show that fronds growing within dense populations are no more likely to break in bending than in tension, suggesting that genicular morphology approaches an engineering optimum, possibly reflecting adaptation to hydrodynamic stress. We measured drag in a re-circulating water flume (0.23-3.6 m s(-1)) and a gravity-accelerated water flume, which generates jets of water that mimic the impact of breaking waves (6-10 m s(-1)). We used frond Reynolds number to extrapolate drag coefficients in the field and to predict water velocities necessary to break fronds of given sizes. Laboratory data successfully predicted frond sizes found in the field, suggesting that, although Calliarthron is well adapted to resist breakage, wave forces may ultimately limit the size of intertidal fronds.

  6. Development and characterization of a novel bioresorbable and bioactive biomaterial based on polyvinyl acetate, calcium carbonate and coralline hydroxyapatite

    Directory of Open Access Journals (Sweden)

    Javier Aragón

    2011-03-01

    Full Text Available Coralina® HAP-200 (coralline hydroxyapatite obtained by hydrothermal treatment of marine corals and POVIAC® (polymeric matrix based on PVAc, commercial trade marks were mixed with a natural product from the Cuban sea costs, i.e. calcium carbonate from Porites Porites coral, to obtain a novel bioactive composite with potential use as bone restoration material. The samples were characterized by physical-chemical (FTIR, XRD, SEM, EDS and mechanical studies. It was shown that there is no chemical interaction between the inorganic filler and the polymer matrix, each conserving the original properties of the raw materials. The studied formulation had a compressive strength similar to that reported for trabecular bone. Scanning electron microscopy examination revealed that the addition of CaCO3 induces a change on the morphologic structure of the composite obtained after 30 days of SBF immersion. These composites generate novel biomaterials capable of promoting the deposition of a new phase, a Ca-P layer due to the bioactivity of a Ca2+ precursors.

  7. Relative roles of endolithic algae and carbonate chemistry variability in the skeletal dissolution of crustose coralline algae

    Directory of Open Access Journals (Sweden)

    C. Reyes-Nivia

    2014-02-01

    Full Text Available The susceptibility of crustose coralline algae (CCA skeletons to dissolution is predicted to increase as oceans warm and acidify. Skeletal dissolution is caused by bioerosion from endolithic microorganisms and by chemical processes associated with undersaturation of carbonate minerals in seawater. Yet, the relative contribution of algal microborers and seawater carbonate chemistry to the dissolution of organisms that cement reefs under projected CO2 and temperature (CO2-T scenarios have not been quantified. We exposed CCA skeletons (Porolithon onkodes to four CO2-T treatments (pre-industrial, present-day, SRES-B1 reduced CO2 emission scenario, SRES-A1FI business-as-usual CO2 emission scenario under natural light cycles vs. constant dark conditions for 8 weeks. Dissolution rates of skeletons without photo-endoliths were dramatically higher (200% than those colonized by endolithic algae across all CO2-T scenarios. This suggests that daytime photosynthesis by microborers counteract dissolution by reduced saturation states resulting in lower net erosion rates over day-night cycles. Regardless of the presence or absence of phototrophic microborers, skeletal dissolution increased significantly under the spring A1FI "business-as-usual" scenario, confirming the CCA sensitivity to future oceans. Projected ocean acidity and temperature may significantly disturb the stability of reef frameworks cemented by CCA, but surficial substrates harboring photosynthetic microborers will be less impacted than those without algal endoliths.

  8. Arctic sea-ice decline archived by multicentury annual-resolution record from crustose coralline algal proxy.

    Science.gov (United States)

    Halfar, Jochen; Adey, Walter H; Kronz, Andreas; Hetzinger, Steffen; Edinger, Evan; Fitzhugh, William W

    2013-12-03

    Northern Hemisphere sea ice has been declining sharply over the past decades and 2012 exhibited the lowest Arctic summer sea-ice cover in historic times. Whereas ongoing changes are closely monitored through satellite observations, we have only limited data of past Arctic sea-ice cover derived from short historical records, indirect terrestrial proxies, and low-resolution marine sediment cores. A multicentury time series from extremely long-lived annual increment-forming crustose coralline algal buildups now provides the first high-resolution in situ marine proxy for sea-ice cover. Growth and Mg/Ca ratios of these Arctic-wide occurring calcified algae are sensitive to changes in both temperature and solar radiation. Growth sharply declines with increasing sea-ice blockage of light from the benthic algal habitat. The 646-y multisite record from the Canadian Arctic indicates that during the Little Ice Age, sea ice was extensive but highly variable on subdecadal time scales and coincided with an expansion of ice-dependent Thule/Labrador Inuit sea mammal hunters in the region. The past 150 y instead have been characterized by sea ice exhibiting multidecadal variability with a long-term decline distinctly steeper than at any time since the 14th century.

  9. Mg/Ca ratios in coralline algae record northwest Atlantic temperature variations and North Atlantic Oscillation relationships

    Science.gov (United States)

    Gamboa, G.; Halfar, J.; Hetzinger, S.; Adey, W.; Zack, T.; Kunz, B.; Jacob, D. E.

    2010-12-01

    Climate variability in the North Atlantic has been linked in part to the North Atlantic Oscillation (NAO). The NAO influences marine ecosystems in the northwestern Atlantic and transport variability of the cold Labrador Current. Understanding historic patterns of NAO variability requires long-term and high-resolution climate records that are not available from instrumental data. Here we present the first century-scale proxy record of sea surface temperature (SST) variability from the Newfoundland shelf, a region from which other annual-resolution shallow marine proxies are unavailable. The 116 year record was obtained from three sites along the eastern Newfoundland shelf using laser ablation inductively coupled mass spectrometry-determined Mg/Ca ratios in the crustose coralline alga Clathromorphum compactum. The alga is characterized by a high Mg-calcite skeleton exhibiting annual growth increments and a century-scale lifespan. Results indicate positive correlations between interannual variations in Mg/Ca ratios and both station-based and gridded instrumental SST. In addition, the record shows high spatial correlations to SST across the Newfoundland shelf and the Gulf of St. Lawrence. Before 1950 the Mg/Ca proxy record reveals significant departures from gridded temperature records. While the Newfoundland shelf is generally considered a region of negative correlations to the NAO, the algal time series as well as a recent modeling study suggest a variable negative relationship with the NAO which is strongest after ˜1960 and before the mid-1930s.

  10. Effects of reduced salinity on the photosynthetic characteristics and intracellular DMSP concentrations of the red coralline alga, Lithothamnion glaciale.

    Science.gov (United States)

    Burdett, Heidi L; Hatton, Angela D; Kamenos, Nicholas A

    Mid- to high-latitude fjordic coastal environments experience naturally variable salinity regimes. Climate projections suggest that freshwater input into the coastal ocean will increase in the future, exposing coastal organisms to further periods of reduced salinity. This study investigated the effect of low salinity on Lithothamnion glaciale, a red coralline alga found in mid- to high-latitude fjordic regions, during a 21-day experiment. Specific measurements included: the intracellular concentration of dimethylsulphoniopropionate (DMSP, an algal secondary metabolite and major precursor to the climatically active gas dimethylsulphide), pigment composition and photosynthetic characteristics. No significant difference in intracellular DMSP concentrations was observed between treatments, suggesting that the primary function for DMSP in L. glaciale is not as a compatible solute, perhaps favouring an antioxidant role . Photosynthetic parameters (including pigment composition) exhibited a mixed response, suggesting some degree of photosynthetic resilience to reduced salinity. This study provides evidence of intracellular mechanisms adopted by L. glaciale in response to reduced salinity. This has significant implications for the survival of L. glaciale under a projected freshening scenario and provides organism-level detail to ecosystem-level projected changes should lower-salinity conditions become more frequent and more intense in the future.

  11. Sonochemically assisted synthesis and application of hollow spheres, hollow prism, and coralline-like ZnO nanophotocatalyst

    Science.gov (United States)

    Kowsari, E.

    2011-08-01

    Nanosheet-based microspheres of ZnO with hierarchical structures, hollow prism, and coralline-like ZnO nanostructures were successfully prepared by ultrasonic irradiation in acidic ionic liquids (AILs). The hollow spherical is made up of many thin petals, the thickness of which is only about 90 nm. In the presence of AIL2, the one prepared at a frequency of 40 kHz is a mixture of nanofibers with diameters ranging from less than 30 nm to about 100 nm. ZnO nanostructure (with AIL1) reveals lozenge-shape hollow prism structures. The products were hollow prism structure covered with some nanometric-size nanoparticles. The average size of the nanoparticles is in the range of 40-80 nm. It is found that the ultrasonic irradiation time, ultrasonic frequency, and the AILs influence the growth mechanism and optical properties of ZnO nanostructures. Producing Zno nanostructures by different traditional methods (e.g., hydrothermal method) requires basic media. These methods are not economical and environmentally friendly in many industrial processes. In so doing, a critical problem has been the point that, normally, a high concentration of base causes reactor metal corrosion. This is a simple and low-cost method, which can be expected to be applied in industry in the future. Also, importantly, the structures synthesized in this experiment can indicate a new way to construct nanodevices by self-organization in one step.

  12. Multicentennial record of Labrador Sea primary productivity and sea-ice variability archived in coralline algal barium

    Science.gov (United States)

    Chan, P.; Halfar, J.; Adey, W.; Hetzinger, S.; Zack, T.; Moore, G. W. K.; Wortmann, U. G.; Williams, B.; Hou, A.

    2017-06-01

    Accelerated warming and melting of Arctic sea-ice has been associated with significant increases in phytoplankton productivity in recent years. Here, utilizing a multiproxy approach, we reconstruct an annually resolved record of Labrador Sea productivity related to sea-ice variability in Labrador, Canada that extends well into the Little Ice Age (LIA; 1646 AD). Barium-to-calcium ratios (Ba/Ca) and carbon isotopes (δ13C) measured in long-lived coralline algae demonstrate significant correlations to both observational and proxy records of sea-ice variability, and show persistent patterns of co-variability broadly consistent with the timing and phasing of the Atlantic Multidecadal Oscillation (AMO). Results indicate reduced productivity in the Subarctic Northwest Atlantic associated with AMO cool phases during the LIA, followed by a step-wise increase from 1910 to present levels--unprecedented in the last 363 years. Increasing phytoplankton productivity is expected to fundamentally alter marine ecosystems as warming and freshening is projected to intensify over the coming century.

  13. Magnetic graphene sponge for the removal of methylene blue

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Baowei; Zhang, Xiaoliang; Xie, Jingru; Wu, Ruihan; Liu, Xiaoyang; Li, Hongliang; Chen, Fang; Yang, Hua; Ming, Zhu; Yang, Sheng-Tao, E-mail: yangst@pku.edu.cn

    2015-10-01

    Graphical abstract: - Highlights: • Magnetic graphene sponge is prepared for dye removal in aqueous solution. • Magnetic graphene sponge has an adsorption capacity of 526 mg/g for methylene blue. • Adsorption behaviors of methylene blue on magnetic graphene sponge are investigated. • Magnetic graphene sponge could be partially regenerated by washing with acidic ethanol. - Abstract: Magnetic carbon nanomaterials have been widely adopted as adsorbents in water treatment, but the low adsorption capacities largely limit their practical applications. In this study, magnetic graphene sponge (Fe{sub 3}O{sub 4}-GS) was prepared by lyophilization for the adsorption of dye pollutant. The incorporation of Fe{sub 3}O{sub 4} enabled the magnetic separation of Fe{sub 3}O{sub 4}-GS after the adsorption of methylene blue (MB). The adsorption capacity of Fe{sub 3}O{sub 4}-GS for MB was 526 mg/g, much higher than those of the magnetic carbon nanoadsorbents in the literature. The adsorption kinetics of MB on Fe{sub 3}O{sub 4}-GS was moderately fast, which could be analyzed by the pseudo-second-order model and intraparticle diffusion model. The thermodynamics study revealed that the adsorption was driven by the increased randomness on the interface. The pH and ionic strength had meaningful influences on the adsorption capacity of Fe{sub 3}O{sub 4}-GS. The facile regeneration of Fe{sub 3}O{sub 4}-GS would definitely reduce its operating cost. The implications to the environmental applications of magnetic carbon nanoadsorbents are discussed.

  14. Dragon exploration system on marine sponge compounds interactions.

    Science.gov (United States)

    Sagar, Sunil; Kaur, Mandeep; Radovanovic, Aleksandar; Bajic, Vladimir B

    2013-02-16

    Natural products are considered a rich source of new chemical structures that may lead to the therapeutic agents in all major disease areas. About 50% of the drugs introduced in the market in the last 20 years were natural products/derivatives or natural products mimics, which clearly shows the influence of natural products in drug discovery. In an effort to further support the research in this field, we have developed an integrative knowledge base on Marine Sponge Compounds Interactions (Dragon Exploration System on Marine Sponge Compounds Interactions - DESMSCI) as a web resource. This knowledge base provides information about the associations of the sponge compounds with different biological concepts such as human genes or proteins, diseases, as well as pathways, based on the literature information available in PubMed and information deposited in several other databases. As such, DESMSCI is aimed as a research support resource for problems on the utilization of marine sponge compounds. DESMSCI allows visualization of relationships between different chemical compounds and biological concepts through textual and tabular views, graphs and relational networks. In addition, DESMSCI has built in hypotheses discovery module that generates potentially new/interesting associations among different biomedical concepts. We also present a case study derived from the hypotheses generated by DESMSCI which provides a possible novel mode of action for variolins in Alzheimer's disease. DESMSCI is the first publicly available (http://www.cbrc.kaust.edu.sa/desmsci) comprehensive resource where users can explore information, compiled by text- and data-mining approaches, on biological and chemical data related to sponge compounds.

  15. Sponge bioerosion accelerated by ocean acidification across species and latitudes?

    Science.gov (United States)

    Wisshak, M.; Schönberg, C. H. L.; Form, A.; Freiwald, A.

    2014-06-01

    In many marine biogeographic realms, bioeroding sponges dominate the internal bioerosion of calcareous substrates such as mollusc beds and coral reef framework. They biochemically dissolve part of the carbonate and liberate so-called sponge chips, a process that is expected to be facilitated and accelerated in a more acidic environment inherent to the present global change. The bioerosion capacity of the demosponge Cliona celata Grant, 1826 in subfossil oyster shells was assessed via alkalinity anomaly technique based on 4 days of experimental exposure to three different levels of carbon dioxide partial pressure ( pCO2) at ambient temperature in the cold-temperate waters of Helgoland Island, North Sea. The rate of chemical bioerosion at present-day pCO2 was quantified with 0.08-0.1 kg m-2 year-1. Chemical bioerosion was positively correlated with increasing pCO2, with rates more than doubling at carbon dioxide levels predicted for the end of the twenty-first century, clearly confirming that C. celata bioerosion can be expected to be enhanced with progressing ocean acidification (OA). Together with previously published experimental evidence, the present results suggest that OA accelerates sponge bioerosion (1) across latitudes and biogeographic areas, (2) independent of sponge growth form, and (3) for species with or without photosymbionts alike. A general increase in sponge bioerosion with advancing OA can be expected to have a significant impact on global carbonate (re)cycling and may result in widespread negative effects, e.g. on the stability of wild and farmed shellfish populations, as well as calcareous framework builders in tropical and cold-water coral reef ecosystems.

  16. Sponge-microbe associations survive high nutrients and temperatures.

    Directory of Open Access Journals (Sweden)

    Rachel Simister

    Full Text Available Coral reefs are under considerable pressure from global stressors such as elevated sea surface temperature and ocean acidification, as well as local factors including eutrophication and poor water quality. Marine sponges are diverse, abundant and ecologically important components of coral reefs in both coastal and offshore environments. Due to their exceptionally high filtration rates, sponges also form a crucial coupling point between benthic and pelagic habitats. Sponges harbor extensive microbial communities, with many microbial phylotypes found exclusively in sponges and thought to contribute to the health and survival of their hosts. Manipulative experiments were undertaken to ascertain the impact of elevated nutrients and seawater temperature on health and microbial community dynamics in the Great Barrier Reef sponge Rhopaloeides odorabile. R. odorabile exposed to elevated nutrient levels including 10 µmol/L total nitrogen at 31°C appeared visually similar to those maintained under ambient seawater conditions after 7 days. The symbiotic microbial community, analyzed by 16S rRNA gene pyrotag sequencing, was highly conserved for the duration of the experiment at both phylum and operational taxonomic unit (OTU (97% sequence similarity levels with 19 bacterial phyla and 1743 OTUs identified across all samples. Additionally, elevated nutrients and temperatures did not alter the archaeal associations in R. odorabile, with sequencing of 16S rRNA gene libraries revealing similar Thaumarchaeota diversity and denaturing gradient gel electrophoresis (DGGE revealing consistent amoA gene patterns, across all experimental treatments. A conserved eukaryotic community was also identified across all nutrient and temperature treatments by DGGE. The highly stable microbial associations indicate that R. odorabile symbionts are capable of withstanding short-term exposure to elevated nutrient concentrations and sub-lethal temperatures.

  17. Coral mucus fuels the sponge loop in warm- and cold-water coral reef ecosystems.

    Science.gov (United States)

    Rix, Laura; de Goeij, Jasper M; Mueller, Christina E; Struck, Ulrich; Middelburg, Jack J; van Duyl, Fleur C; Al-Horani, Fuad A; Wild, Christian; Naumann, Malik S; van Oevelen, Dick

    2016-01-07

    Shallow warm-water and deep-sea cold-water corals engineer the coral reef framework and fertilize reef communities by releasing coral mucus, a source of reef dissolved organic matter (DOM). By transforming DOM into particulate detritus, sponges play a key role in transferring the energy and nutrients in DOM to higher trophic levels on Caribbean reefs via the so-called sponge loop. Coral mucus may be a major DOM source for the sponge loop, but mucus uptake by sponges has not been demonstrated. Here we used laboratory stable isotope tracer experiments to show the transfer of coral mucus into the bulk tissue and phospholipid fatty acids of the warm-water sponge Mycale fistulifera and cold-water sponge Hymedesmia coriacea, demonstrating a direct trophic link between corals and reef sponges. Furthermore, 21-40% of the mucus carbon and 32-39% of the nitrogen assimilated by the sponges was subsequently released as detritus, confirming a sponge loop on Red Sea warm-water and north Atlantic cold-water coral reefs. The presence of a sponge loop in two vastly different reef environments suggests it is a ubiquitous feature of reef ecosystems contributing to the high biogeochemical cycling that may enable coral reefs to thrive in nutrient-limited (warm-water) and energy-limited (cold-water) environments.

  18. Rapid generation of microRNA sponges for microRNA inhibition.

    Directory of Open Access Journals (Sweden)

    Joost Kluiver

    Full Text Available MicroRNA (miRNA sponges are transcripts with repeated miRNA antisense sequences that can sequester miRNAs from endogenous targets. MiRNA sponges are valuable tools for miRNA loss-of-function studies both in vitro and in vivo. We developed a fast and flexible method to generate miRNA sponges and tested their efficiency in various assays. Using a single directional ligation reaction we generated sponges with 10 or more miRNA binding sites. Luciferase and AGO2-immuno precipitation (IP assays confirmed effective binding of the miRNAs to the sponges. Using a GFP competition assay we showed that miR-19 sponges with central mismatches in the miRNA binding sites are efficient miRNA inhibitors while sponges with perfect antisense binding sites are not. Quantification of miRNA sponge levels suggests that this is at least in part due to degradation of the perfect antisense sponge transcripts. Finally, we provide evidence that combined inhibition of miRNAs of the miR-17∼92 cluster results in a more effective growth inhibition as compared to inhibition of individual miRNAs. In conclusion, we describe and validate a method to rapidly generate miRNA sponges for miRNA loss-of-function studies.

  19. Culturable heterotrophic bacteria from the marine sponge Dendrilla nigra: isolation and phylogenetic diversity of actinobacteria

    Science.gov (United States)

    Selvin, Joseph; Gandhimathi, R.; Kiran, G. Seghal; Priya, S. Shanmugha; Ravji, T. Rajeetha; Hema, T. A.

    2009-09-01

    Culturable heterotrophic bacterial composition of marine sponge Dendrilla nigra was analysed using different enrichments. Five media compositions including without enrichment (control), enriched with sponge extract, with growth regulator (antibiotics), with autoinducers, and complete enrichment containing sponge extract, antibiotics, and autoinducers were developed. DNA hybridization assay was performed to explore host specific bacteria and ecotypes of culturable sponge-associated bacteria. Enrichment with selective inducers (AHLs and sponge extract) and regulators (antibiotics) considerably enhanced the cultivation potential of sponge-associated bacteria. It was found that Marinobacter (MSI032), Micromonospora (MSI033), Streptomyces (MSI051), and Pseudomonas (MSI057) were sponge-associated obligate symbionts. The present findings envisaged that “ Micromonospora-Saccharomonospora-Streptomyces” group was the major culturable actinobacteria in the marine sponge D. nigra. The DNA hybridization assay was a reliable method for the analysis of culturable bacterial community in marine sponges. Based on the culturable community structure, the sponge-associated bacteria can be grouped (ecotypes) as general symbionts, specific symbionts, habitat flora, and antagonists.

  20. Could some coral reefs become sponge reefs as our climate changes?

    Science.gov (United States)

    Bell, James J; Davy, Simon K; Jones, Timothy; Taylor, Michael W; Webster, Nicole S

    2013-09-01

    Coral reefs across the world have been seriously degraded and have a bleak future in response to predicted global warming and ocean acidification (OA). However, this is not the first time that biocalcifying organisms, including corals, have faced the threat of extinction. The end-Triassic mass extinction (200 million years ago) was the most severe biotic crisis experienced by modern marine invertebrates, which selected against biocalcifiers; this was followed by the proliferation of another invertebrate group, sponges. The duration of this sponge-dominated period far surpasses that of alternative stable-ecosystem or phase-shift states reported on modern day coral reefs and, as such, a shift to sponge-dominated reefs warrants serious consideration as one future trajectory of coral reefs. We hypothesise that some coral reefs of today may become sponge reefs in the future, as sponges and corals respond differently to changing ocean chemistry and environmental conditions. To support this hypothesis, we discuss: (i) the presence of sponge reefs in the geological record; (ii) reported shifts from coral- to sponge-dominated systems; and (iii) direct and indirect responses of the sponge holobiont and its constituent parts (host and symbionts) to changes in temperature and pH. Based on this evidence, we propose that sponges may be one group to benefit from projected climate change and ocean acidification scenarios, and that increased sponge abundance represents a possible future trajectory for some coral reefs, which would have important implications for overall reef functioning. © 2013 John Wiley & Sons Ltd.

  1. Sponge exhalent seawater contains a unique chemical profile of dissolved organic matter

    Directory of Open Access Journals (Sweden)

    Cara L. Fiore

    2017-01-01

    Full Text Available Sponges are efficient filter feeders, removing significant portions of particulate and dissolved organic matter (POM, DOM from the water column. While the assimilation and respiration of POM and DOM by sponges and their abundant microbial symbiont communities have received much attention, there is virtually no information on the impact of sponge holobiont metabolism on the composition of DOM at a molecular-level. We applied untargeted and targeted metabolomics techniques to characterize DOM in seawater samples prior to entering the sponge (inhalant reef water, in samples exiting the sponge (exhalent seawater, and in samples collected just outside the reef area (off reef seawater. Samples were collected from two sponge species, Ircinia campana and Spheciospongia vesparium, on a near-shore hard bottom reef in the Florida Keys. Metabolic profiles generated from untargeted metabolomics analysis indicated that many more compounds were enhanced in the exhalent samples than in the inhalant samples. Targeted metabolomics analysis revealed differences in diversity and concentration of metabolites between exhalent and off reef seawater. For example, most of the nucleosides were enriched in the exhalent seawater, while the aromatic amino acids, caffeine and the nucleoside xanthosine were elevated in the off reef water samples. Although the metabolic profile of the exhalent seawater was unique, the impact of sponge metabolism on the overall reef DOM profile was spatially limited in our study. There were also no significant differences in the metabolic profiles of exhalent water between the two sponge species, potentially indicating that there is a characteristic DOM profile in the exhalent seawater of Caribbean sponges. Additional work is needed to determine whether the impact of sponge DOM is greater in habitats with higher sponge cover and diversity. This work provides the first insight into the molecular-level impact of sponge holobiont metabolism on

  2. Culture-independent nested PCR method reveals high diversity of actinobacteria associated with the marine sponges Hymeniacidon perleve and Sponge sp.

    Science.gov (United States)

    Xin, Yanjuan; Huang, Jianyu; Deng, Maicun; Zhang, Wei

    2008-11-01

    A culture-independent nested polymerase chain reaction (PCR) technique was used to investigate the diversity of actinobacteria communities associated with the sponges Hymeniacidon perleve and Sponge sp. The phylogenetic affiliation of sponge-derived actinobacteria was then assessed by 16S rRNA sequencing of cloned DNA fragments. A total of 196 positive clones were screened by restriction fragment length polymorphism (RFLP) analysis; 48 unique operational taxonomic units (OTUs) were selected for sequencing. Rarefaction analysis indicated that the clone libraries represented 93% and 94% of the total estimated diversity for the two species, respectively. Phylogenetic analysis of sequence data revealed representatives of various phylogenetic divisions, which were related to the following ten actinobacterial genera: Acidimicrobium, Corynebacterium, Propionibacterium, Actinomyces, Micrococcus, Microbacterium, Streptomyces, Mycobacterium, Cellulosimicrobium, Sporichthya, and unidentified actinobacterial clones. A sponge-specific, previously uncultured actinobacteria community grouped within the subclass Acidimicrobidae was discovered from both H. perleve and Sponge sp. Sequences belonging to Acidimicrobium in the H. perleve and the Sponge sp. clone libraries represented 33% and 24% of the clones, respectively. In the Sponge sp. clone library Mycobacterium dominated, accounting for 70% of all clones. The presence of Acidimicrobium and mycobacteria within two sponges can lay the groundwork for attempts to culture these interesting bacteria for industrial applications.

  3. Metabolic profiles of prokaryotic and eukaryotic communities in deep-sea sponge Neamphius huxleyi [corrected]. indicated by metagenomics.

    Science.gov (United States)

    Li, Zhi-Yong; Wang, Yue-Zhu; He, Li-Ming; Zheng, Hua-Jun

    2014-01-27

    The whole metabolism of a sponge holobiont and the respective contributions of prokaryotic and eukaryotic symbionts and their associations with the sponge host remain largely unclear. Meanwhile, compared with shallow water sponges, deep-sea sponges are rarely understood. Here we report the metagenomic exploration of deep-sea sponge Neamphius huxleyi [corrected] . at the whole community level. Metagenomic data showed phylogenetically diverse prokaryotes and eukaryotes in Neamphius huxleyi [corrected]. MEGAN and gene enrichment analyses indicated different metabolic potentials of prokaryotic symbionts from eukaryotic symbionts, especially in nitrogen and carbon metabolisms, and their molecular interactions with the sponge host. These results supported the hypothesis that prokaryotic and eukaryotic symbionts have different ecological roles and relationships with sponge host. Moreover, vigorous denitrification, and CO2 fixation by chemoautotrophic prokaryotes were suggested for this deep-sea sponge. The study provided novel insights into the respective potentials of prokaryotic and eukaryotic symbionts and their associations with deep-sea sponge Neamphius huxleyi [corrected].

  4. Metabolic profiles of prokaryotic and eukaryotic communities in deep-sea sponge Lamellomorpha sp. indicated by metagenomics

    Science.gov (United States)

    Li, Zhi-Yong; Wang, Yue-Zhu; He, Li-Ming; Zheng, Hua-Jun

    2014-01-01

    The whole metabolism of a sponge holobiont and the respective contributions of prokaryotic and eukaryotic symbionts and their associations with the sponge host remain largely unclear. Meanwhile, compared with shallow water sponges, deep-sea sponges are rarely understood. Here we report the metagenomic exploration of deep-sea sponge Lamellomorpha sp. at the whole community level. Metagenomic data showed phylogenetically diverse prokaryotes and eukaryotes in Lamellomorpha sp.. MEGAN and gene enrichment analyses indicated different metabolic potentials of prokaryotic symbionts from eukaryotic symbionts, especially in nitrogen and carbon metabolisms, and their molecular interactions with the sponge host. These results supported the hypothesis that prokaryotic and eukaryotic symbionts have different ecological roles and relationships with sponge host. Moreover, vigorous denitrification, and CO2 fixation by chemoautotrophic prokaryotes were suggested for this deep-sea sponge. The study provided novel insights into the respective potentials of prokaryotic and eukaryotic symbionts and their associations with deep-sea sponge Lamellomorpha sp..

  5. Relationships between host phylogeny, host type and bacterial community diversity in cold-water coral reef sponges.

    Directory of Open Access Journals (Sweden)

    Sandra Schöttner

    Full Text Available Cold-water coral reefs are known to locally enhance the diversity of deep-sea fauna as well as of microbes. Sponges are among the most diverse faunal groups in these ecosystems, and many of them host large abundances of microbes in their tissues. In this study, twelve sponge species from three cold-water coral reefs off Norway were investigated for the relationship between sponge phylogenetic classification (species and family level, as well as sponge type (high versus low microbial abundance, and the diversity of sponge-associated bacterial communities, taking also geographic location and water depth into account. Community analysis by Automated Ribosomal Intergenic Spacer Analysis (ARISA showed that as many as 345 (79% of the 437 different bacterial operational taxonomic units (OTUs detected in the dataset were shared between sponges and sediments, while only 70 (16% appeared purely sponge-associated. Furthermore, changes in bacterial community structure were significantly related to sponge species (63% of explained community variation, sponge family (52% or sponge type (30%, whereas mesoscale geographic distances and water depth showed comparatively small effects (<5% each. In addition, a highly significant, positive relationship between bacterial community dissimilarity and sponge phylogenetic distance was observed within the ancient family of the Geodiidae. Overall, the high diversity of sponges in cold-water coral reefs, combined with the observed sponge-related variation in bacterial community structure, support the idea that sponges represent heterogeneous, yet structured microbial habitats that contribute significantly to enhancing bacterial diversity in deep-sea ecosystems.

  6. Metagenomic Analysis of Genes Encoding Nutrient Cycling Pathways in the Microbiota of Deep-Sea and Shallow-Water Sponges.

    Science.gov (United States)

    Li, Zhiyong; Wang, Yuezhu; Li, Jinlong; Liu, Fang; He, Liming; He, Ying; Wang, Shenyue

    2016-12-01

    Sponges host complex symbiotic communities, but to date, the whole picture of the metabolic potential of sponge microbiota remains unclear, particularly the difference between the shallow-water and deep-sea sponge holobionts. In this study, two completely different sponges, shallow-water sponge Theonella swinhoei from the South China Sea and deep-sea sponge Neamphius huxleyi from the Indian Ocean, were selected to compare their whole symbiotic communities and metabolic potential, particularly in element transformation. Phylogenetically diverse bacteria, archaea, fungi, and algae were detected in both shallow-water sponge T. swinhoei and deep-sea sponge N. huxleyi, and different microbial community structures were indicated between these two sponges. Metagenome-based gene abundance analysis indicated that, though the two sponge microbiota have similar core functions, they showed different potential strategies in detailed metabolic processes, e.g., in the transformation and utilization of carbon, nitrogen, phosphorus, and sulfur by corresponding microbial symbionts. This study provides insight into the putative metabolic potentials of the microbiota associated with the shallow-water and deep-sea sponges at the whole community level, extending our knowledge of the sponge microbiota's functions, the association of sponge- microbes, as well as the adaption of sponge microbiota to the marine environment.

  7. Thermal asymmetry model of single slope single basin solar still with sponge liner

    Directory of Open Access Journals (Sweden)

    Shanmugan Sengottain

    2014-01-01

    Full Text Available An attempt has been made to propose a thermal asymmetry model for single slope basin type solar still with sponge liner of different thickness (3cm, 5cm, and 10cm in the basin. Two different color sponge liners have been used i.e., yellow and black. In the proposed design, a suitable dripping arrangement has been designed and used to pour water drop by drop over the sponge liner instead of sponge liner in stagnant saline water in the basin. The special arrangement overcomes the dryness of the sponge during peak sunny hours. The performance of the system with black color sponge of 3cm thickness shows better result with an output of 5.3 kg/m2 day and the proposed model have used to find the thermal asymmetries during the working hours of the still.

  8. Entotheonella Bacteria as Source of Sponge-Derived Natural Products: Opportunities for Biotechnological Production.

    Science.gov (United States)

    Bhushan, Agneya; Peters, Eike E; Piel, Jörn

    2017-01-01

    Marine sponges belong to the oldest animals existing today. Apart from their role in recycling of carbon and nitrogen in the ocean, they are also an important source of a wide variety of structurally diverse bioactive natural products. Over the past few decades, a multitude of compounds from sponges have been discovered exhibiting diverse, pharmacologically promising activities. However, in many cases the low substance quantities present in the sponge tissue would require the collection of large amounts of sponge material, thus impeding further drug development. Recent research has focused on understanding natural product biosynthesis in sponges and on investigating symbiotic bacteria as possible production sources in order to develop sustainable production systems. This chapter covers research efforts that have taken place over the past few years involving the identification of 'Entotheonella' symbionts responsible for production of sponge compounds, as well as the elucidation of their biosynthetic routes, highlighting future biotechnological applications.

  9. Synthesis of a Novel Highly Oleophilic and Highly Hydrophobic Sponge for Rapid Oil Spill Cleanup.

    Science.gov (United States)

    Khosravi, Maryam; Azizian, Saeid

    2015-11-18

    A highly hydrophobic and highly oleophilic sponge was synthesized by simple vapor-phase deposition followed by polymerization of polypyrrole followed by modification with palmitic acid. The prepared sponge shows high absorption capacity in the field of separation and removal of different oil spills from water surface and was able to emulsify oil/water mixtures. The sponge can be compressed repeatedly without collapsing. Therefore, absorbed oils can be readily collected by simple mechanical squeezing of the sponge. The prepared hydrophobic sponge can collect oil from water in both static and turbulent conditions. The proposed method is simple and low cost for the manufacture of highly oleophilic and highly hydrophobic sponges, which can be successfully used for effective oil-spill cleanup and water filtration.

  10. Similar sponge-associated bacteria can be acquired via both vertical and horizontal transmission

    DEFF Research Database (Denmark)

    Sipkema, Detmer; de Caralt, Sònia; Morillo, Jose A

    2015-01-01

    Marine sponges host diverse communities of microorganisms that are often vertically transmitted from mother to oocyte or embryo. Horizontal transmission has often been proposed to co-occur in marine sponges, but the mechanism is poorly understood. To assess the impact of the mode of transmission...... on the microbial assemblages of sponges, we analysed the microbiota in sympatric sponges that have previously been reported to acquire bacteria via either vertical (Corticium candelabrum and Crambe crambe) or horizontal transmission (Petrosia ficiformis). The comparative study was performed by PCR......-DGGE and pyrosequencing of barcoded PCR-amplified 16S rRNA gene fragments. We found that P. ficiformis and C. candelabrum each harbor their own species-specific bacteria, but they are similar to other high-microbial-abundance sponges, while the low-microbial-abundance sponge C. crambe hosts microbiota of a very different...

  11. Graphene/polyaniline composite sponge of three-dimensional porous network structure as supercapacitor electrode

    Science.gov (United States)

    Jiu-Xing, Jiang; Xu-Zhi, Zhang; Zhen-Hua, Wang; Jian-Jun, Xu

    2016-04-01

    As a supercapacitor electrode, the graphene/polyaniline (PANI) composite sponge with a three-dimensional (3D) porous network structure is synthesized by a simple three-step method. The three steps include an in situ polymerization, freeze-drying and reduction by hydrazine vapor. The prepared sponge has a large specific surface area and porous network structure, so it is in favor of spreading the electrolyte ion and increasing the charge transfer efficiency of the system. The process of preparation is simple, easy to operate and low cost. The composite sponge shows better electrochemical performance than the pure individual graphene sponge while PANI cannot keep the shape of a sponge. Such a composite sponge exhibits specific capacitances of 487 F·g-1 at 2 mV/s compared to pristine PANI of 397 F·g-1. Project supported by the Natural Science Foundation from Harbin University of Science and Technology and Harbin Institute of Technology.

  12. Sponge spicules in phosphorites of the Early Cambrian Gezhongwu Formation, Zhijin, Guizhou

    Institute of Scientific and Technical Information of China (English)

    YANG Ruidong; QIAN Yi; ZHANG Jie; ZHANG Weihua; JIANG Lijun; GAO Hui

    2004-01-01

    Phosphorites occurring at the bottom of the Cambrian system contain abundant small shelly fossils, which are the product of the first episode of life explosion in the Cambrian. It was previously reported that the small shelly fossils are dominated by hyolithids, olivooids, zhijinitids, conodontomorphs, yubelichitids, camenitids and algae, with minor amounts of sponge fossils. Large amounts of sponge spicules, diverse in form, have been found for the first time in the Gezhongwu Formation phosphorites at Shixing, Zhijin County, Guizhou Province, of which such spicules as diaxon-triactins, diaxon-tetractins, pentaxon-pentactins and hexon-hexactins account for 30%. These spicules constitute the sponge clastic phosphorites made up of sponge clastics. Meanwhile, it is also expected that the radiation and diversity of sponge animals started as early as in the earliest Early Cambrian. Habit and burying environment of sponge animal are discussed in the paper.

  13. Preliminary discussion on “Internet +” sponge city modular construction system

    Science.gov (United States)

    Yang, Jinhui; Kang, Sijun; Luo, Weizu; Dai, Yanghong; Yang, Bing

    2017-08-01

    To promote the construction of ecological civilization and the process of urbanization in China, in 2013, the government propose to build an innovative rainwater system, which is characterized by nature accumulation, natural penetration and natural purification——low impact development of rainwater. This article Summarizes the research status of sponge city. It can be help the sponge city to become intelli-gent and modular creatively by adding the intelligent concept of “internet+” and the modular concept into the sponge city. This article first introduces the “internet+” concept of sponge city, and then discussed the application of the “internet+” and modular concept in sponge city from the three stage of construction, management and performance evaluation, in order to provide some reference and revelation for the development of modular of “internet+” sponge city.

  14. A hybrid sponge of poly(DL-lactic-Co-glycolic acid), collagen and apatite

    Energy Technology Data Exchange (ETDEWEB)

    Chen, G. [National Inst. for Advanced Interdisciplinary Research, Tsukuba, Ibaraki (Japan). 3D Tissue Engineering Group; Ushida, T.; Tateishi, T. [National Inst. for Advanced Interdisciplinary Research, Tsukuba, Ibaraki (Japan). 3D Tissue Engineering Group; Tokyo Univ. (Japan). Tissue Engineering Lab.

    2001-07-01

    Biodegradable poly(DL-lactic-co-glycolic acid), collagen and apatite have been hybridized to prepare a three-dimensional porous scaffold for hard tissue engineering. Collagen microsponges were first nested in the pores of a PLGA sponge to prepare PLGA-collagen sponge. And then the surfaces of collagen microsponges were deposited with apatite particulates by alternate immersion of PLGA-collagen sponge in CaCl{sub 2} and Na{sub 2}HPO{sub 4} aqueous solutions to prepare the PLGA-collagen-apatite hybrid sponge. Observation of the hybrid sponge by scanning electron microscopy showed that collagen microsponges with interconnected pore structures were formed in the pores of PLGA sponge and that the pore surfaces were also covered with collagen. The deposited apatite particulates were flake-like and became denser and grew larger with repeated alternate immersion cycles. Energy-dispersive spectroscopy analysis and X-ray diffraction demonstrated that the deposited particulates were hydroxyapatite. (orig.)

  15. Microbial Communities and Bioactive Compounds in Marine Sponges of the Family Irciniidae—A Review

    OpenAIRE

    Hardoim, Cristiane C. P.; Rodrigo Costa

    2014-01-01

    Marine sponges harbour complex microbial communities of ecological and biotechnological importance. Here, we propose the application of the widespread sponge family Irciniidae as an appropriate model in microbiology and biochemistry research. Half a gram of one Irciniidae specimen hosts hundreds of bacterial species—the vast majority of which are difficult to cultivate—and dozens of fungal and archaeal species. The structure of these symbiont assemblages is shaped by the sponge host and is ...

  16. Temporal changes in the diazotrophic bacterial communities associated with Caribbean sponges Ircinia stroblina and Mycale laxissima

    OpenAIRE

    Fan eZhang; Jan eVicente; Russell T. Hill

    2014-01-01

    Sponges that harbor microalgal or cyanobacterial symbionts may benefit from photosynthetically derived carbohydrates, which are rich in carbon but devoid of nitrogen, and may therefore encounter nitrogen limitation. Diazotrophic communities associated with two Caribbean sponges, Ircinia strobilina and Mycale laxissima were studied in a time series during which three individuals of each sponge were collected in four time points (5:00 AM, 12:00 noon, 5:00 PM, 10:00 PM). nifH genes were succes...

  17. Microbial Communities and Bioactive Compounds in Marine Sponges of the Family Irciniidae—A Review

    OpenAIRE

    Hardoim, Cristiane C. P.; Rodrigo Costa

    2014-01-01

    Marine sponges harbour complex microbial communities of ecological and biotechnological importance. Here, we propose the application of the widespread sponge family Irciniidae as an appropriate model in microbiology and biochemistry research. Half a gram of one Irciniidae specimen hosts hundreds of bacterial species—the vast majority of which are difficult to cultivate—and dozens of fungal and archaeal species. The structure of these symbiont assemblages is shaped by the sponge host and is ...

  18. Intermittent hypoxia and prolonged suboxia measured in situ in a marine sponge

    Directory of Open Access Journals (Sweden)

    Adi Lavy

    2016-12-01

    Full Text Available High Microbial Abundance (HMA sponges constitute a guild of suspension-feeding sponges that host vast populations of symbiotic microbes. These symbionts mediate a complex series of biogeochemical transformations that fuel the holobiont’s metabolism. Although sponges are aerobic animals, suboxic and anaerobic bacteria are known to reside within their bodies. However, little is known about the chemical characteristics of the sponge environment in which they occur and almost no data are available regarding the dissolved oxygen (DO dynamics inside the holobiont in its natural habitat. In this study we examined the oxygen dynamics in situ in the HMA sponge Theonella swinhoei. A submersed data-logging system equipped with micro-sensors was used to continuously record DO concentrations inside the sponge body and in its outflowing water for up to 48 hours. Actively pumping sponges exhibited high DO removal rates punctuated with short bursts of extreme DO uptake (>90 µmol DO Lpumped-1, never before observed in sponges. Such a high DO removal rate indicates the consumption of a considerable amount of reduced matter, far exceeding the available sources in the surrounding water of the oligotrophic coral-reef ecosystem inhabited by this sponge. The inner body of the sponge remained suboxic throughout the experiments, with short events of further rapid DO concentration decline. Moreover, DO concentrations measured in the body and in the outflowing water were found to be uncorrelated. Our findings support a previous hypothesis of bacterial symbiont farming by the sponge as a potential source for acquiring reduced material. Moreover, this suggests a complex and highly localized control of the holobiont’s metabolism, probably associated with the microbial community’s metabolism. Our results indicate that temporal micro-environments exist in the sponge at alternating locations, providing suitable conditions for the activity of its anaerobic microbial

  19. Nile tilapia skin collagen sponge modified with chemical cross-linkers as a biomedical hemostatic material.

    Science.gov (United States)

    Sun, Leilei; Li, Bafang; Jiang, Dandan; Hou, Hu

    2017-07-26

    Nile tilapia skin collagen sponges were fabricated by freeze-drying technology and modified with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide in the presence of N-hydroxysuccinimide (EDC/NHS), genipin+PBS, genipin+ethanol, tea polyphenol (TP), nordihydroguaiaretic acid (NDGA) and diphenyl phosphoryl azide (DPPA). Physicochemical and biological properties, micromorphology and compatibility before and after modification were investigated to evaluate collagen sponge as a hemostatic biomedical material. The mechanical property of collagen sponges strengthened after cross-linking. The elongation at break of cross-linked collagen sponges decreased except for EDC/NHS, which was close to that of non-crosslinked. The collagen sponge cross-linked with EDC/NHS exhibited the highest hygroscopicity in comparison with other cross-linkers. The resistance to collagenase biodegradation of collagen sponges after cross-linking strengthened significantly except for NDGA. Collagen sponges cross-linked with EDC/NHS, TP and NDGA maintained high porosity (97-98%), similar to non-crosslinked (98.42%). Collagen sponges could shorten the blood coagulation time. From the variations of the FTIR spectrum pattern and SEM, DPPA could change the secondary structure of collagen and destroy the spongy structure of collagen sponge, which was not suitable for the cross-linking of collagen sponge. Whereas, EDC/NHS was recognized as a perfect cross-linker owing to its excellent properties and porous microstructure. All fabricated collagen sponges were recognized to be biocompatible by the hemolysis assay in vitro. Therefore, collagen sponge modified with EDC/NHS could be used as a perfect biomedical hemostatic material. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. A direct CO2 control system for ocean acidification experiments: testing effects on the coralline red algae Phymatolithon lusitanicum

    Directory of Open Access Journals (Sweden)

    Laura Sordo

    2016-09-01

    Full Text Available Most ocean acidification (OA experimental systems rely on pH as an indirect way to control CO2. However, accurate pH measurements are difficult to obtain and shifts in temperature and/or salinity alter the relationship between pH and pCO2. Here we describe a system in which the target pCO2 is controlled via direct analysis of pCO2 in seawater. This direct type of control accommodates potential temperature and salinity shifts, as the target variable is directly measured instead of being estimated. Water in a header tank is permanently re-circulated through an air-water equilibrator. The equilibrated air is then routed to an infrared gas analyzer (IRGA that measures pCO2 and conveys this value to a Proportional-Integral-Derivative (PID controller. The controller commands a solenoid valve that opens and closes the CO2 flush that is bubbled into the header tank. This low-cost control system allows the maintenance of stabilized levels of pCO2 for extended periods of time ensuring accurate experimental conditions. This system was used to study the long term effect of OA on the coralline red algae Phymatolithon lusitanicum. We found that after 11 months of high CO2 exposure, photosynthesis increased with CO2 as opposed to respiration, which was positively affected by temperature. Results showed that this system is adequate to run long-term OA experiments and can be easily adapted to test other relevant variables simultaneously with CO2, such as temperature, irradiance and nutrients.

  1. Elevated seawater temperature causes a microbial shift on crustose coralline algae with implications for the recruitment of coral larvae.

    Science.gov (United States)

    Webster, Nicole S; Soo, Rochelle; Cobb, Rose; Negri, Andrew P

    2011-04-01

    Crustose coralline algae (CCA) are key reef-building primary producers that are known to induce the metamorphosis and recruitment of many species of coral larvae. Reef biofilms (particularly microorganisms associated with CCA) are also important as settlement cues for a variety of marine invertebrates, including corals. If rising sea surface temperatures (SSTs) affect CCA and/or their associated biofilms, this may in turn affect recruitment on coral reefs. Herein, we report that the CCA Neogoniolithon fosliei, and its associated microbial communities do not tolerate SSTs of 32 °C, only 2-4 °C above the mean maximum annual SST. After 7 days at 32 °C, the CCA exhibited clear signs of stress, including bleaching, a reduction in maximum quantum yield (F(v)/F(m)) and a large shift in microbial community structure. This shift at 32 °C involved an increase in Bacteroidetes and a reduction in Alphaproteobacteria, including the loss of the primary strain (with high-sequence similarity to a described coral symbiont). A recovery in F(v)/F(m) was observed in CCA exposed to 31 °C following 7 days of recovery (at 27 °C); however, CCA exposed to 32 °C did not recover during this time as evidenced by the rapid growth of endolithic green algae. A 50% reduction in the ability of N. fosliei to induce coral larval metamorphosis at 32 °C accompanied the changes in microbiology, pigmentation and photophysiology of the CCA. This is the first experimental evidence to demonstrate how thermal stress influences microbial associations on CCA with subsequent downstream impacts on coral recruitment, which is critical for reef regeneration and recovery from climate-related mortality events.

  2. Adaptation to local thermal regimes by crustose coralline algae does not affect rates of recruitment in coral larvae

    Science.gov (United States)

    Siboni, Nachshon; Abrego, David; Evenhuis, Christian; Logan, Murray; Motti, Cherie A.

    2015-12-01

    Crustose coralline algae (CCA) are well known for their ability to induce settlement in coral larvae. While their wide distribution spans reefs that differ substantially in temperature regimes, the extent of local adaptation to these regimes and the impact they have on CCA inductive ability are unknown. CCA Porolithon onkodes from Heron (southern) and Lizard (northern) islands on Australia's Great Barrier Reef (separated by 1181 km) were experimentally exposed to acute or prolonged thermal stress events and their thermal tolerance and recruitment capacity determined. A sudden onset bleaching model was developed to determine the health status of CCA based on the rate of change in the CCA live surface area (LSA). The interaction between location and temperature was significant ( F (2,119) = 6.74, p = 0.0017), indicating that thermally driven local adaptation had occurred. The southern population remained healthy after prolonged exposure to 28 °C and exhibited growth compared to the northern population ( p = 0.022), with its optimum temperature determined to be slightly below 28 °C. As expected, at the higher temperatures (30 and 32 °C) the Lizard Island population performed better that those from Heron Island, with an optimum temperature of 30 °C. Lizard Island CCA displayed the lowest bleaching rates at 30 °C, while levels consistently increased with temperature in their southern counterparts. The ability of those CCA deemed thermally tolerant (based on LSA) to induce Acropora millepora larval settlement was then assessed. While spatial differences influenced the health and bleaching levels of P. onkodes during prolonged and acute thermal exposure, thermally tolerant fragments, regardless of location, induced similar rates of coral larval settlement. This confirmed that recent thermal history does not influence the ability of CCA to induce settlement of A. millepora larvae.

  3. A direct CO2 control system for ocean acidification experiments: testing effects on the coralline red algae Phymatolithon lusitanicum

    Science.gov (United States)

    Santos, Rui; Reis, Joao; Shulika, Alona

    2016-01-01

    Most ocean acidification (OA) experimental systems rely on pH as an indirect way to control CO2. However, accurate pH measurements are difficult to obtain and shifts in temperature and/or salinity alter the relationship between pH and pCO2. Here we describe a system in which the target pCO2 is controlled via direct analysis of pCO2 in seawater. This direct type of control accommodates potential temperature and salinity shifts, as the target variable is directly measured instead of being estimated. Water in a header tank is permanently re-circulated through an air-water equilibrator. The equilibrated air is then routed to an infrared gas analyzer (IRGA) that measures pCO2 and conveys this value to a Proportional-Integral-Derivative (PID) controller. The controller commands a solenoid valve that opens and closes the CO2 flush that is bubbled into the header tank. This low-cost control system allows the maintenance of stabilized levels of pCO2 for extended periods of time ensuring accurate experimental conditions. This system was used to study the long term effect of OA on the coralline red algae Phymatolithon lusitanicum. We found that after 11 months of high CO2 exposure, photosynthesis increased with CO2 as opposed to respiration, which was positively affected by temperature. Results showed that this system is adequate to run long-term OA experiments and can be easily adapted to test other relevant variables simultaneously with CO2, such as temperature, irradiance and nutrients. PMID:27703853

  4. Medullary Sponge Kidney and Testicular Dysgenesis Syndrome: A Rare Association

    Directory of Open Access Journals (Sweden)

    Stefano Masciovecchio

    2014-01-01

    Full Text Available The medullary sponge kidney is also known as Lenarduzzi’s kidney or Cacchi and Ricci’s disease from the first Italian authors who described its main features. A review of the scientific literature underlines particular rarity of the association of MSK with developmental abnormalities of the lower urinary tract and genital tract such as hypospadias and bilateral cryptorchidism. The work presented is the only one in the scientific literature that shows the association between the medullary sponge kidney and the testicular dysgenesis syndrome. A question still remains unanswered: are the MSK and TDS completely independent malformation syndromes occurring, in this case, simultaneously for a rare event or are they different phenotypic expressions of a common malformative mechanism? In the future we hope that these questions will be clarified.

  5. A first exploration of genome size diversity in sponges.

    Science.gov (United States)

    Jeffery, Nicholas W; Jardine, Catherine B; Gregory, T Ryan

    2013-08-01

    The phyla known as early-branching lineages of animals have become the subject of increasing interest from the perspectives of genomics and evolutionary biology. Unfortunately, data on even the most fundamental properties of their genomes, such as genome size, remain very scarce. In this study, genome size estimates are reported for 75 species of sponges (phylum Porifera) representing 33 families and 12 orders, marking the first large survey of genome size diversity for an early-branching phylum. Sponge genome sizes averaged around 0.2 pg but exhibited a 17-fold range overall (0.04-0.63 pg). In addition, the results of comparisons of two methods of genome size quantification (flow cytometry and Feulgen image analysis densitometry) are presented, thereby facilitating future work on these animals. Some particularly promising avenues for future investigation are highlighted.

  6. Designing a Clean Label Sponge Cake with Reduced Fat Content.

    Science.gov (United States)

    Eslava-Zomeño, Cristina; Quiles, Amparo; Hernando, Isabel

    2016-10-01

    The fat in a sponge cake formulation was partially replaced (0%, 30%, 50%, and 70%) with OptiSol™5300.This natural functional ingredient derived from flax seeds, rich in fiber and alpha-linoleic acid, provides a natural substitute for guar and xanthan gums, avoiding E-numbers on labels. The structure and some physicochemical properties of the formulations were examined, sensory analysis was conducted and changes in starch digestibility due to adding this ingredient were determined. Increasing quantities of OptiSol™5300 gave harder cakes, with less weight loss during baking, without affecting the final cake height. There were no significant differences (P > 0.05) in texture, flavor and overall acceptance between the control and the 30% substitution cake, nor in the rapidly digestible starch values. Consequently, replacing up to 30% of the fat with OptiSol™5300 gives a new product with health benefits and a clean label that resembles the full-fat sponge cake.

  7. Usage of infinitesimals in the Menger's Sponge model of porosity

    CERN Document Server

    Vita, M C; Fallico, C; Veltri, M; 10.1016/j.amc.2011.06.013

    2011-01-01

    The present work concerns the calculation of the infinitesimal porosity by using the Menger's Sponge model. This computation is based on the grossone theory considering the pore volume estimation for the Menger's Sponge and afterwards the classical definition of the porosity, given by the ratio between the volume of voids and the total volume (voids plus solid phase). The aim is to investigate the different solutions given by the standard characterization of the porosity and the grossone theory without the direct estimation of the fractal dimension. Once the utility of this procedure had been clarified, the focus moves to possible practical applications in which infinitesimal parts can play a fundamental role. The discussion on this matter still remains open.

  8. Behavior of Zirconium Sponge Formation in the Kroll Process

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Yong-Ik; Sohn, Ho-Sang [Kyungpook National University, Daegu (Korea, Republic of); Jung, Jae-Young [Research Institute of Industrial Science and Technology(RIST), Pohang (Korea, Republic of)

    2014-04-15

    The Kroll process of magnesium reduction of titanium tetrachloride is used for mass production of zirconium sponges. This study is conducted in a laboratory-scale reactor in order to develop a better understanding of the zirconium sponge formation mechanism in the Kroll reactor with respect to the reaction degrees and reaction time. The MgCl{sub 2} produced during the initial stage of the reaction does not sink into the molten magnesium, but remains on the surface of the molten magnesium. As a result, ZrCl{sub 4} feed reacts with the Mg exposed on the edge of the molten MgCl{sub 2} in the crucible. Therefore, the Zr particles produced at the later reaction stage descend into the molten magnesium at the crucible wall.

  9. Sponge Microbiota are a Reservoir of Functional Antibiotic Resistance Genes

    DEFF Research Database (Denmark)

    Versluis, Dennis; de Evgrafov, Mari Cristina Rodriguez; Sommer, Morten Otto Alexander

    2016-01-01

    Wide application of antibiotics has contributed to the evolution of multi-drug resistant human pathogens, resulting in poorer treatment outcomes for infections. In the marine environment, seawater samples have been investigated as a resistance reservoir; however, no studies have methodically...... examined sponges as a reservoir of antibiotic resistance. Sponges could be important in this respect because they often contain diverse microbial communities that have the capacity to produce bioactive metabolites. Here, we applied functional metagenomics to study the presence and diversity of functional......). Fifteen of 37 inserts harbored resistance genes that shared resistance gene could be identified with high confidence, in which case we predicted resistance to be mainly mediated by antibiotic efflux. One marine-specific ampicillin-resistance...

  10. Transmural Migration of a Retained Sponge Through the Rectum: A Case Report

    Directory of Open Access Journals (Sweden)

    Orhan Veli Özkan

    2011-03-01

    Full Text Available Retained surgical sponge in the abdomen following abdominal and pelvic surgery is an uncommon condition. Here we present a case of retained surgical sponge with unusual presenting symptoms. A 27-year old female patient presented to our department with a foreign body localized in the anal region. She had a past history of a myomectomy 1 year earlier. Clinical examination and radiographic workout revealaed a sponge migrating towards the rectum. The sponge was removed under visual guidance of rectoscopy without laparotomy. The patient was discharged without complications.

  11. Curcumin-Loaded Chitosan/Gelatin Composite Sponge for Wound Healing Application

    Directory of Open Access Journals (Sweden)

    Van Cuong Nguyen

    2013-01-01

    Full Text Available Three composite sponges were made with 10% of curcumin and by using polymers, namely, chitosan and gelatin with various ratios. The chemical structure and morphology were evaluated by FTIR and SEM. These sponges were evaluated for water absorption capacity, antibacterial activity, in vitro drug release, and in vivo wound healing studies by excision wound model using rabbits. The in vivo study presented a greater wound closure in wounds treated with curcumin-composite sponge than those with composite sponge without curcumin and untreated group. These obtained results showed that combination of curcumin, chitosan and gelatin could improve the wound healing activity in comparison to chitosan, and gelatin without curcumin.

  12. Drivers of epibenthic megafaunal composition in the sponge grounds of the Sackville Spur, northwest Atlantic

    Science.gov (United States)

    Beazley, Lindsay; Kenchington, Ellen; Yashayaev, Igor; Murillo, Francisco Javier

    2015-04-01

    Deep-water sponges are considered ecosystem engineers, and the presence of large aggregations of these organisms, commonly referred to as sponge grounds, is associated with enhanced biodiversity and abundance of epibenthic fauna compared to non-sponge habitat. However, the degree and magnitude to which the presence of these sponge grounds elicits large changes in composition of the associated megafaunal community remains unknown. Here we identify the external drivers of epibenthic megafaunal community composition and explore the patterns and magnitude of compositional change in the megafaunal community within the sponge grounds of the Sackville Spur, northwest Atlantic. Epibenthic megafauna were quantified from five image transects collected on the Sackville Spur in 2009 between 1080 and 1723 m depth. Using Gradient Forest Modelling we found that the abundance of structure-forming sponges was the most important variable for predicting compositional patterns in the Sackville Spur megafaunal community, followed by depth, range in bottom current speed, in situ salinity, and longitude. Along the gradient in structure-forming sponge abundance, the largest turnover in megafaunal community composition occurred when the sponges reached 15 individuals m-2. Examination of the regional hydrographic conditions suggests that the dense sponge grounds of the Sackville Spur are associated with a warm, salty water mass that occurs between ~1300 and 1800 m.

  13. Comparisons of the fungal and protistan communities among different marine sponge holobionts by pyrosequencing.

    Science.gov (United States)

    He, Liming; Liu, Fang; Karuppiah, Valliappan; Ren, Yi; Li, Zhiyong

    2014-05-01

    To date, the knowledge of eukaryotic communities associated with sponges remains limited compared with prokaryotic communities. In a manner similar to prokaryotes, it could be hypothesized that sponge holobionts have phylogenetically diverse eukaryotic symbionts, and the eukaryotic community structures in different sponge holobionts were probably different. In order to test this hypothesis, the communities of eukaryota associated with 11 species of South China Sea sponges were compared with the V4 region of 18S ribosomal ribonucleic acid gene using 454 pyrosequencing. Consequently, 135 and 721 unique operational taxonomic units (OTUs) of fungi and protists were obtained at 97 % sequence similarity, respectively. These sequences were assigned to 2 phyla of fungi (Ascomycota and Basidiomycota) and 9 phyla of protists including 5 algal phyla (Chlorophyta, Haptophyta, Streptophyta, Rhodophyta, and Stramenopiles) and 4 protozoal phyla (Alveolata, Cercozoa, Haplosporidia, and Radiolaria) including 47 orders (12 fungi, 35 protists). Entorrhizales of fungi and 18 orders of protists were detected in marine sponges for the first time. Particularly, Tilletiales of fungi and Chlorocystidales of protists were detected for the first time in marine habitats. Though Ascomycota, Alveolata, and Radiolaria were detected in all the 11 sponge species, sponge holobionts have different fungi and protistan communities according to OTU comparison and principal component analysis at the order level. This study provided the first insights into the fungal and protistan communities associated with different marine sponge holobionts using pyrosequencing, thus further extending the knowledge on sponge-associated eukaryotic diversity.

  14. In vitro antibacterial and antifungal activities of twelve sponges collected from the Anambas Islands, Indonesia

    Directory of Open Access Journals (Sweden)

    Masteria Yunovilsa Putra

    2016-09-01

    Full Text Available Objective: To evaluate antimicrobial activities in methanolic extracts of twelve sponges collected from the Anambas Islands, Indonesia. Methods: The antibacterial activity of methanolic extracts was tested against two Grampositive bacteria, viz. Bacillus subtilis (ATCC 6633 and Staphylococcus aureus (ATCC 25923, and two Gram-negative bacteria, viz. Eschericia coli (ATCC 25922 and Vibrio anguillarum (ATCC 19264 using the disk diffusion assay. The antifungal activity was similarly tested against Candida albicans (ATCC 10231 and Aspergillus niger (ATCC 16404. The minimum inhibitory concentrations of promising sponges extracts were determined by the microdilution technique. Results: All the sponge species in this study showed antimicrobial activities against at least one of the test strains. Antibacterial activities were observed in 66.7% of the sponges extracts, while 30.0% of the extracts exhibited antifungal activities. Among them, the extracts of the sponges Stylissa massa and Axinyssa sp. were the most active against four tested bacteria and the yeast Candida albicans. The sponge Theonella swinhoei and two species of Xestospongia also displayed significant activities against two fungal pathogens Candida albicans and Aspergillus niger. Conclusions: Antimicrobial activities were demonstrated in extracts from various marine sponges collected from the Anambas Islands, Indonesia. The most promising sponges among them were Stylissa massa and Axinyssa sp. This is the first report of antimicrobial activity in extracts of marine sponges from the Indonesian Anambas Islands.

  15. Bubble template fabrication of chitosan/poly(vinyl alcohol) sponges for wound dressing applications.

    Science.gov (United States)

    Chen, Changfeng; Liu, Li; Huang, Tao; Wang, Qiong; Fang, Yue'e

    2013-11-01

    The present investigation involves the synthesis of chitosan based composite sponges in view of their applications in wound dressing, antibacterial and haemostatic. A facile CO2 bubbles template freeze-drying method was developed for the fabrication of macroporous chitosan-poly(vinyl alcohol) (PVA) composite sponges with a typical porosity of 50% and pore size of 100-300 μm. Effects of the content of cross-linking agent and PVA on morphology, mechanical properties, water uptake and moisture permeability were examined. The macroporous chitosan/PVA composite sponges exhibited an enhanced water absorption capacity over those reported microporous chitosan sponges prepared using traditional free-drying methods. Improved strength and flexibility of the chitosan sponges were observed with the presence of PVA. Further, the antibacterial and haemostatic activities have been also demonstrated. The chitosan/PVA composite sponges showed higher haemostatic activity than pure chitosan sponges and solutions. Erythrocytes cells bind first to the surface of chitosan polymer in the sponges and then promote the binding with other cells in the solution. The chitosan/PVA sponges of high liquid absorbing, appropriate moisture permeability, antimicrobial property and unique haemostatic behavior can be used for wound dressing applications.

  16. Glycosides from Marine Sponges (Porifera, Demospongiae: Structures, Taxonomical Distribution, Biological Activities and Biological Roles

    Directory of Open Access Journals (Sweden)

    Valentin A. Stonik

    2012-08-01

    Full Text Available Literature data about glycosides from sponges (Porifera, Demospongiae are reviewed. Structural diversity, biological activities, taxonomic distribution and biological functions of these natural products are discussed.

  17. Glycosides from marine sponges (Porifera, Demospongiae): structures, taxonomical distribution, biological activities and biological roles.

    Science.gov (United States)

    Kalinin, Vladimir I; Ivanchina, Natalia V; Krasokhin, Vladimir B; Makarieva, Tatyana N; Stonik, Valentin A

    2012-08-01

    Literature data about glycosides from sponges (Porifera, Demospongiae) are reviewed. Structural diversity, biological activities, taxonomic distribution and biological functions of these natural products are discussed.

  18. New Alkaloids from the Mediterranean Sponge Hamigera hamigera

    Directory of Open Access Journals (Sweden)

    Wafaa Hassan

    2004-08-01

    Full Text Available Abstract: The Mediterranean sponge Hamigera hamigera (family Anchinoideae was studied since its total extract showed deterrent activity in a fish feeding assay. Eight compounds were isolated from the biologically active fractions and four of these proved to be new natural products, hamigeroxalamic acid (1, hamigeramine (2, hamigeramide (3 and hamiguanosinol (5. The structures of the new compounds were elucidated by 1D and 2D NMR spectroscopy and mass spectrometry .

  19. Bromopyrrole Alkaloids from Okinawan Marine Sponges Agelas spp.

    Science.gov (United States)

    Tanaka, Naonobu; Kusama, Taishi; Kashiwada, Yoshiki; Kobayashi, Jun'ichi

    2016-01-01

    In our continuing study for structurally and biogenetically interesting natural products from marine organisms, Okinawan marine sponges Agelas spp. were investigated, resulting in the isolation of 18 unique alkaloids including five dimeric bromopyrrole alkaloids (1-5), ten monomeric bromopyrrole alkaloids (6-15), and three conjugates of monomeric bromopyrrole alkaloid and hydroxykynurenine (16-18). In this mini-review, the isolation, structure elucidation, and antimicrobial activities of these alkaloids are summarized.

  20. Marine Bifunctional Sphingolipids from the Sponge Oceanapia ramsayi

    Directory of Open Access Journals (Sweden)

    Emile M. Gaydou

    2008-04-01

    Full Text Available During the course of our continuing studies on marine natural lipid products,two known sphingolipids have been isolated for the first time from a specimen of themarine sponge Oceanapia ramsayi collected at Itampolo on the west coast of Madagascarin the Indian Ocean. The structures were elucidated using NMR data and by comparisonwith literature data. The occurrence of these sphingolipids within other Oceanapia spp. isdiscussed.

  1. Contrasting biological features in morphologically cryptic Mediterranean sponges

    Directory of Open Access Journals (Sweden)

    Leire Garate

    2017-06-01

    Full Text Available Sponges are key organisms in the marine benthos where they play essential roles in ecological processes such as creating new niches, competition for resources, and organic matter recycling. Despite the increasing number of taxonomical studies, many sponge species remain hidden, whether unnoticed or cryptic. The occurrence of cryptic species may confound ecological studies by underestimating biodiversity. In this study, we monitored photographically growth, fusions, fissions, and survival of two morphologically cryptic species Hemimycale mediterranea Uriz, Garate & Agell, 2017 and H. columella (Bowerbank, 1874. Additionally, we characterized the main environmental factors of the corresponding species habitats, trying to ascertain whether some abiotic factors were correlated with the distribution of these species. Sponge monitoring was performed monthly. Seawater samples were collected the same monitoring days in the vicinity of the target sponges. Results showed contrasting growth and survival patterns for each species: H. mediterranea totally disappeared after larval release while 64% of individuals of H. columella survived the entire two years we monitored. The species also differed in the number of fissions and fusions. These events were evenly distributed throughout the year in the H. mediterranea population but concentrated in cold months in H. columella. No measured environmental factor correlated with H. mediterranea growth rates, while temperature and dissolved organic nitrogen were negatively correlated with H. columella growth rates. The strong differences in depth distribution, survival, growth, fusions, and fissions found between these two cryptic species, highlights the importance of untangling cryptic species before ecological studies are performed in particular when these species share geographical distribution.

  2. Understanding Zika virus pathogenesis: an interview with Catherine Spong.

    Science.gov (United States)

    Spong, Catherine Y

    2016-06-06

    A recent outbreak of Zika virus has been linked to fetal abnormalities in pregnant women who have been infected. The scientific community is working toward understanding Zika virus pathogenesis to better manage affected women and children. In an interview with Dr. Catherine Spong, we discuss the aims and challenges of a forthcoming longitudinal study of a cohort of pregnant women in areas of current active Zika virus transmission.

  3. Advancement into the Arctic Region for Bioactive Sponge Secondary Metabolites

    OpenAIRE

    Mark Hamann; Amanda Waters; James Sims; John Bowling; Michelle Kelly; Samuel Abbas

    2011-01-01

    Porifera have long been a reservoir for the discovery of bioactive compounds and drug discovery. Most research in the area has focused on sponges from tropical and temperate waters, but more recently the focus has shifted to the less accessible colder waters of the Antarctic and, to a lesser extent, the Arctic. The Antarctic region in particular has been a more popular location for natural products discovery and has provided promising candidates for drug development. This article reviews grou...

  4. Phylogeny and evolution of glass sponges (porifera, hexactinellida).

    Science.gov (United States)

    Dohrmann, Martin; Janussen, Dorte; Reitner, Joachim; Collins, Allen G; Worheide, Gert

    2008-06-01

    Reconstructing the phylogeny of sponges (Porifera) is one of the remaining challenges to resolve the metazoan Tree of Life and is a prerequisite for understanding early animal evolution. Molecular phylogenetic analyses for two of the three extant classes of the phylum, Demospongiae and Calcarea, are largely incongruent with traditional classifications, most likely because of a paucity of informative morphological characters and high levels of homoplasy. For the third class, Hexactinellida (glass sponges)--predominantly deep-sea inhabitants with unusual morphology and biology--we present the first molecular phylogeny, along with a cladistic analysis of morphological characters. We collected 18S, 28S, and mitochondrial 16S ribosomal DNA sequences of 34 glass sponge species from 27 genera, 9 families, and 3 orders and conducted partitioned Bayesian analyses using RNA secondary structure-specific substitution models (paired-sites models) for stem regions. Bayes factor comparisons of different paired-sites models against each other and conventional (independent-sites) models revealed a significantly better fit of the former but, contrary to previous predictions, the least parameter-rich of the tested paired-sites models provided the best fit to our data. In contrast to Demospongiae and Calcarea, our rDNA phylogeny agrees well with the traditional classification and a previously proposed phylogenetic system, which we ascribe to a more informative morphology in Hexactinellida. We find high support for a close relationship of glass sponges and Demospongiae sensu stricto, though the latter may be paraphyletic with respect to Hexactinellida. Homoscleromorpha appears to be the sister group of Calcarea. Contrary to most previous findings from rDNA, we recover Porifera as monophyletic, although support for this clade is low under paired-sites models.

  5. Cytotoxic Natural Products from Marine Sponge-Derived Microorganisms

    Directory of Open Access Journals (Sweden)

    Huawei Zhang

    2017-03-01

    Full Text Available A growing body of evidence indicates that marine sponge-derived microbes possess the potential ability to make prolific natural products with therapeutic effects. This review for the first time provides a comprehensive overview of new cytotoxic agents from these marine microbes over the last 62 years from 1955 to 2016, which are assorted into seven types: terpenes, alkaloids, peptides, aromatics, lactones, steroids, and miscellaneous compounds.

  6. Secondary metabolites from three Florida sponges with antidepressant activity.

    Science.gov (United States)

    Kochanowska, Anna J; Rao, Karumanchi V; Childress, Suzanne; El-Alfy, Abir; Matsumoto, Rae R; Kelly, Michelle; Stewart, Gina S; Sufka, Kenneth J; Hamann, Mark T

    2008-02-01

    Brominated indole alkaloids are a common class of metabolites reported from sponges of the order Verongida. Herein we report the isolation, structure determination, and activity of metabolites from three Florida sponges, namely, Verongula rigida (order Verongida, family Aplysinidae), Smenospongia aurea, and S. cerebriformis (order Dictyoceratida, family Thorectidae). All three species were investigated chemically, revealing similarities in secondary metabolites. Brominated compounds, as well as sesquiterpene quinones and hydroquinones, were identified from both V. rigida and S. aurea despite their apparent taxonomic differences at the ordinal level. Similar metabolites found in these distinct sponge species of two different genera provide evidence for a microbial origin of the metabolites. Isolated compounds were evaluated in the Porsolt forced swim test (FST) and the chick anxiety-depression continuum model. Among the isolated compounds, 5,6-dibromo- N,N-dimethyltryptamine ( 1) exhibited significant antidepressant-like action in the rodent FST model, while 5-bromo- N,N-dimethyltryptamine ( 2) caused significant reduction of locomotor activity indicative of a potential sedative action. The current study provides ample evidence that marine natural products with the diversity of brominated marine alkaloids will provide potential leads for antidepressant and anxiolytic drugs.

  7. Facile fabrication of egg white macroporous sponges for tissue regeneration.

    Science.gov (United States)

    Jalili-Firoozinezhad, Sasan; Rajabi-Zeleti, Sareh; Mohammadi, Parvaneh; Gaudiello, Emanuele; Bonakdar, Shahin; Solati-Hashjin, Mehran; Marsano, Anna; Aghdami, Nasser; Scherberich, Arnaud; Baharvand, Hossein; Martin, Ivan

    2015-10-28

    The availability of 3D sponges combining proper biochemical, biophysical, and biomechanical properties with enhanced capacity of in vivo engraftment and vascularization is crucial in regenerative medicine. A simple process is developed to generate macroporous scaffolds with a well-defined architecture of interconnected pores from chicken egg white (EW), a material with protein- and growth factor-binding features which has not yet been employed in regenerative medicine. The physicomechanical properties and degradation rates of the scaffold are finely tuned by using varying concentrations of the cross-linker, 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride, without alteration of the biochemical traits. In vitro, EW scaffolds supported active metabolism, proliferation, and migration of human dermal fibroblasts, thereby generating uniform cellular constructs. In vivo, subcutaneous implantation in mice reveals negligible immune reaction and efficient cell and tissue ingrowth. Angiogenesis into EW scaffolds is enhanced as compared to standard collagen type I sponges used as reference material, likely due to significantly higher adsorption of the proangiogenic factor vascular endothelial growth factor. In summary, a material is presented derived by facile processing of a highly abundant natural product. Due to the efficient subcutaneous engraftment capacity, the sponges can find utilization for soft tissue regeneration.

  8. Natural RNA circles function as efficient microRNA sponges

    DEFF Research Database (Denmark)

    Hansen, Thomas Birkballe; Jensen, Trine I; Clausen, Bettina Hjelm

    2013-01-01

    MicroRNAs (miRNAs) are important post-transcriptional regulators of gene expression that act by direct base pairing to target sites within untranslated regions of messenger RNAs. Recently, miRNA activity has been shown to be affected by the presence of miRNA sponge transcripts, the so......-called competing endogenous RNA in humans and target mimicry in plants. We previously identified a highly expressed circular RNA (circRNA) in human and mouse brain. Here we show that this circRNA acts as a miR-7 sponge; we term this circular transcript ciRS-7 (circular RNA sponge for miR-7). ciRS-7 contains more...... than 70 selectively conserved miRNA target sites, and it is highly and widely associated with Argonaute (AGO) proteins in a miR-7-dependent manner. Although the circRNA is completely resistant to miRNA-mediated target destabilization, it strongly suppresses miR-7 activity, resulting in increased levels...

  9. Sponge-supported synthesis of colloidal selenium nanospheres

    Science.gov (United States)

    Ahmed, Snober; Brockgreitens, John; Xu, Ke; Abbas, Abdennour

    2016-11-01

    With increasing biomedical and engineering applications of selenium nanospheres (SeNS), new efficient methods are needed for the synthesis and long-term preservation of these nanomaterials. Currently, SeNS are mostly produced through the biosynthesis route using microorganisms or by using wet chemical reduction, both of which have several limitations in terms of nanoparticle size, yield, production time and long-term stability of the nanoparticles. Here, we introduce a novel approach for rapid synthesis and long-term preservation of SeNS on a solid microporous support by combining a mild hydrothermal process with chemical reduction. By using a natural sponge as a solid three-dimensional matrix for nanoparticle growth, we have synthesized highly monodisperse spherical nanoparticles with a wide size range (10-1000 nm) and extremely high yield in a relatively short period of time (1 h). Additionally, the synthesized SeNS can be stored and retrieved whenever needed by simply washing the sponge in water. Keeping the nanospheres in the support offers remarkable long-term stability as particles left on the sponge preserve their morphological and colloidal characteristics even after eight months of storage. Furthermore, this work reveals that SeNS can be used for efficient mercury capture from contaminated waters with a record-breaking mercury removal capacity of 1900 mg g-1.

  10. Retained surgical sponges: what the practicing clinician should know.

    Science.gov (United States)

    Sakorafas, George H; Sampanis, Dimitrios; Lappas, Christos; Papantoni, Eva; Christodoulou, Spyros; Mastoraki, Aikaterini; Safioleas, Michael

    2010-11-01

    Retained surgical sponges (RSS) are an avoidable complication following surgical operations. RSS can elicit either an early exudative-type reaction or a late aseptic fibrous tissue reaction. They may remain asymptomatic for long time; when present, symptomatology varies substantially and includes septic complications (abscess formation, peritonitis) or fibrous reaction resulting in adhesion formation or fistulation into adjacent hollow organs or externally. Plain radiograph may be useful for the diagnosis; however, computed tomography is the method of choice to establish correct diagnosis preoperatively. Removal of RSS is always indicated to prevent further complications. This is usually accomplished by open surgery; rarely, endoscopic or laparoscopic removal may be successful. Prevention is of key importance to avoid not only morbidity and even mortality but also medicolegal consequences. Preventive measures include careful counting, use of sponges marked with a radiopaque marker, avoidance of use of small sponges during abdominal procedures, careful examination of the abdomen by the operating surgeon before closure, radiograph in the operating theater (either routinely or selectively), and recently, usage of barcode and radiofrequency identification technology.

  11. Crystallographic orientation and concentric layers in spicules of calcareous sponges.

    Science.gov (United States)

    Rossi, André Linhares; Ribeiro, Bárbara; Lemos, Moara; Werckmann, Jacques; Borojevic, Radovan; Fromont, Jane; Klautau, Michelle; Farina, Marcos

    2016-11-01

    In this work, the crystallography of calcareous sponges (Porifera) spicules and the organization pattern of the concentric layers present in their inner structure were investigated in 10 species of the subclass Calcaronea and three species of the subclass Calcinea. Polished spicules had specific concentric patterns that varied depending on the plane in which the spicules were sectioned. A 3D model of the concentric layers was created to interpret these patterns and the biomineralization process of the triactine spicules. The morphology of the spicules was compared with the crystallographic orientation of the calcite crystals by analyzing the Kikuchi diffraction patterns using a scanning electron microscope. Triactine spicules from the subclass Calcinea had actines (rays) elongated in the 〈210〉 direction, which is perpendicular to the c-axis. The scale spicules of the hypercalcified species Murrayona phanolepis presented the c-axis perpendicular to the plane of the scale, which is in accordance with the crystallography of all other Calcinea. The triactine spicules of the calcaronean species had approximately the same crystallographic orientation with the unpaired actine elongated in the ∼[211] direction. Only one Calcaronea species, whose triactine was regular, had a different orientation. Three different crystallographic orientations were found in diactines. Spicules with different morphologies, dimensions and positions in the sponge body had similar crystallographic directions suggesting that the crystallographic orientation of spicules in calcareous sponges is conserved through evolution. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Phenotypic plasticity in the Caribbean sponge Callyspongia vaginalis (Porifera: Haplosclerida

    Directory of Open Access Journals (Sweden)

    Susanna López-Legentil

    2010-08-01

    Full Text Available Sponge morphological plasticity has been a long-standing source of taxonomic difficulty. In the Caribbean, several morphotypes of the sponge Callyspongia vaginalis have been observed. To determine the taxonomic status of three of these morphotypes and their relationship with the congeneric species C. plicifera and C. fallax, we compared the spicule composition, spongin fiber skeleton and sequenced fragments of the mitochondrial genes 16S and COI and nuclear genes 28S and 18S ribosomal RNA. Phylogenetic analyses with ribosomal markers 18S and 28S rRNA confirmed the position of our sequences within the Callyspongiidae. None of the genetic markers provided evidence for consistent differentiation among the three morphotypes of C. vaginalis and C. fallax, and only C. plicifera stood as a distinct species. The 16S mtDNA gene was the most variable molecular marker for this group, presenting a nucleotide variability (π = 0.024 higher than that reported for COI. Unlike recent studies for other sponge genera, our results indicate that species in the genus Callyspongia maintain a high degree of phenotypic plasticity, and that morphological characteristics may not reflect reproductive boundaries in C. vaginalis.

  13. Sterol Ring System Oxidation Pattern in Marine Sponges

    Directory of Open Access Journals (Sweden)

    S. Ramakrishna Rao

    2005-06-01

    Full Text Available Abstract: The marine sponges (Porifera are a unique group of sedentary organisms from which several novel natural products are reported, many of which have useful biological activities. In producing unusual sterols, they occupy a preeminent position among the various groups of organisms. The polar sterols of sponges reported as at the end of the year 2002 number about 250; their ring structure changing a hundred times. The oxidation pattern in the sterol ring system, from the point of view of biogenesis seems to be mainly of four types. Each sponge species is able to produce sterols fitting into one of the four main biogenetic pathways viz., (i 3β-hydroxy-Δ5-sterol pathway, (ii 3β-hydroxy-Δ7-sterol pathway, (iii 3β-hydroxy-Δ5,7-sterol pathway, and (iv 3α-hydroxy sterol pathway.

  14. Morphology of the crustose coralline alga Pseudolithophyllum muricatum (Corallinales, Rhodophyta) responds to 30 years of ocean acidification in the Northeast Pacific.

    Science.gov (United States)

    McCoy, Sophie J

    2013-10-01

    As the process of ocean acidification alters seawater carbon chemistry, physiological processes such as skeletal accretion are expected to become more difficult for calcifying organisms. The crustose coralline red algae (Corallinales, Rhodophyta) form an important guild of calcifying primary producers in the temperate Northeast Pacific. The morphology of important ecological traits, namely, skeletal density and thallus thickness near the growing edge, was evaluated in Pseudolithophyllum muricatum (Foslie) Steneck & R.T. Paine, the competitively dominant alga within this guild. P. muricatum shows a morphological response to increased ocean acidification in the temperate Northeast Pacific. Comparing historical (1981-1997) and modern (2012) samples from the field, crust thickness near the growing edge was approximately half as thick in modern samples compared with historical samples, while crust calcite density showed no significant change between the two sample groups. Morphological changes at the growing edge have important consequences for mediating competitive interactions within this guild of algae, and may affect the role of crustose coralline algal beds as hosts to infaunal communities and facilitators of recruitment in many invertebrate and macroalgal species.

  15. Temporal variation in macroinvertebrates associated with intertidal sponge Ircinia fusca (Carter 1880) from Ratnagiri, West coast, India.

    Digital Repository Service at National Institute of Oceanography (India)

    Sivadas, S.K.; Redij, A.G.S.; Sagare, P.; Thakur, N.L.; Ingole, B.S.

    Temporal variation of macrofauna associated with a marine sponge, Ircinia fusca was studied from a tropical rocky shore along the West coast of India. Triplicate sponge samples (~100 g) were collected from January to December 2010 from Bhagwati...

  16. PRIMARY CHARACTERIZATION OF SPONGE ASSOCIATED BACTERIA OF MARINE SPONGES- HALICHONDRIA GLABRATA, CLIONA LOBATA, SPIRASTRELLA PACHYSPIRA AND THEIR ANTIMICROBIAL PROPERTIES

    Directory of Open Access Journals (Sweden)

    Maushmi Kumar

    2014-10-01

    Full Text Available Marine sponge associated bacterias have been recognized as an important and untapped resource for novel bioactive compounds. In the present study four strains of microorganisms were isolated from three different varieties of marine sponge viz. Halichondria glabrata, Cliona lobata and Spirastrella pachyspira. They showed broad spectrum antimicrobial activity against both Gram positive and Gram negative indicator organisms. From the biochemical tests and cetrimide agar test, it was concluded that the Strain B isolated from Cliona lobata is a Pseudomonas species. Strain A (gram negative culture product isolated from Halichondria glabrata showed the antibiotic activity against Gram positive (B. subtillis and Gram negative (S. typhi, P. vulgaris, E.coli organisms. The minimum inhibitory concentration for showing antibacterial activity on all the standard strain was found to be 40 µL of culture broth supernatant. This strain was further identified by ABIS software based on biochemical tests and confirmation of the strain was done after 16S r RNA gene sequencing. The strain showed close similarity with E. coli and Enterobacteria strains and most of the uncultured bacterium from different hosts, which confirmed its nature of being it a symbiont from sponge Halichondria glabrata with antimicrobial activity.

  17. Estimates of particulate organic carbon flowing from the pelagic environment to the benthos through sponge assemblages.

    Science.gov (United States)

    Perea-Blázquez, Alejandra; Davy, Simon K; Bell, James J

    2012-01-01

    Despite the importance of trophic interactions between organisms, and the relationship between primary production and benthic diversity, there have been few studies that have quantified the carbon flow from pelagic to benthic environments as a result of the assemblage level activity of suspension-feeding organisms. In this study, we examine the feeding activity of seven common sponge species from the Taputeranga marine reserve on the south coast of Wellington in New Zealand. We analysed the diet composition, feeding efficiency, pumping rates, and the number of food particles (specifically picoplanktonic prokaryotic cells) retained by sponges. We used this information, combined with abundance estimates of the sponges and estimations of the total amount of food available to sponges in a known volume of water (89,821 m(3)), to estimate: (1) particulate organic carbon (POC) fluxes through sponges as a result of their suspension-feeding activities on picoplankton; and (2) the proportion of the available POC from picoplankton that sponges consume. The most POC acquired by the sponges was from non-photosynthetic bacterial cells (ranging from 0.09 to 4.69 g C d(-1) with varying sponge percentage cover from 0.5 to 5%), followed by Prochlorococcus (0.07 to 3.47 g C d(-1)) and then Synechococcus (0.05 to 2.34 g C d(-1)) cells. Depending on sponge abundance, the amount of POC that sponges consumed as a proportion of the total POC available was 0.2-12.1% for Bac, 0.4-21.3% for Prochlo, and 0.3-15.8% for Synecho. The flux of POC for the whole sponge assemblage, based on the consumption of prokaryotic picoplankton, ranged from 0.07-3.50 g C m(2) d(-1). This study is the first to estimate the contribution of a sponge assemblage (rather than focusing on individual sponge species) to POC flow from three groups of picoplankton in a temperate rocky reef through the feeding activity of sponges and demonstrates the importance of sponges to energy flow in rocky reef environments.

  18. Inter- and Intraspecific Variations of Bacterial Communities Associated with Marine Sponges from San Juan Island, Washington

    KAUST Repository

    Lee, O. O.

    2009-04-10

    This study attempted to assess whether conspecific or congeneric sponges around San Juan Island, Washington, harbor specific bacterial communities. We used a combination of culture-independent DNA fingerprinting techniques (terminal restriction fragment length polymorphism and denaturing gradient gel electrophoresis [DGGE]) and culture-dependent approaches. The results indicated that the bacterial communities in the water column consisted of more diverse bacterial ribotypes than and were drastically different from those associated with the sponges. High levels of similarity in sponge-associated bacterial communities were found only in Myxilla incrustans and Haliclona rufescens, while the bacterial communities in Halichondria panicea varied substantially among sites. Certain terminal restriction fragments or DGGE bands were consistently obtained for different individuals of M. incrustans and H. rufescens collected from different sites, suggesting that there are stable or even specific associations of certain bacteria in these two sponges. However, no specific bacterial associations were found for H. panicea or for any one sponge genus. Sequencing of nine DGGE bands resulted in recovery of seven sequences that best matched the sequences of uncultured Proteobacteria. Three of these sequences fell into the sponge-specific sequence clusters previously suggested. An uncultured alphaproteobacterium and a culturable Bacillus sp. were found exclusively in all M. incrustans sponges, while an uncultured gammaproteobacterium was unique to H. rufescens. In contrast, the cultivation approach indicated that sponges contained a large proportion of Firmicutes, especially Bacillus, and revealed large variations in the culturable bacterial communities associated with congeneric and conspecific sponges. This study revealed sponge species-specific but not genus- or site-specific associations between sponges and bacterial communities and emphasized the importance of using a combination

  19. Preparation of Chitosan-Based Hemostatic Sponges by Supercritical Fluid Technology

    Directory of Open Access Journals (Sweden)

    Hu-Fan Song

    2014-03-01

    Full Text Available Using ammonium bicarbonate (AB particles as a porogen, chitosan (CS-based hemostatic porous sponges were prepared in supercritical carbon dioxide due to its low viscosity, small surface tension, and good compatibility with organic solvent. Fourier transform infrared spectroscopy (FTIR spectra demonstrated that the chemical compositions of CS and poly-(methyl vinyl ether-co-maleic anhydride (PVM/MA were not altered during the phase inversion process. The morphology and structure of the sponge after the supercritical fluid (SCF process were observed by scanning electron microscopy (SEM. The resulting hemostatic sponges showed a relatively high porosity (about 80% with a controllable pore size ranging from 0.1 to 200 µm. The concentration of PVM/MA had no significant influence on the porosity of the sponges. Comparative experiments on biological assessment and hemostatic effect between the resulting sponges and Avitene® were also carried out. With the incorporation of PVM/MA into the CS-based sponges, the water absorption rate of the sponges increased significantly, and the CS-PVM/MA sponges showed a similar water absorption rate (about 90% to that of Avitene®. The results of the whole blood clotting experiment and animal experiment also demonstrated that the clotting ability of the CS-PVM/MA sponges was similar to that of Avitene®. All these results elementarily verified that the sponges prepared in this study were suitable for hemostasis and demonstrated the feasibility of using SCF-assisted phase inversion technology to produce hemostatic porous sponges.

  20. Biodiversity of Macrofauna Associated with Sponges across Ecological Gradients in the Central Red Sea

    KAUST Repository

    Kandler, Nora

    2015-12-01

    Between 33 and 91 percent of marine species are currently undescribed, with the majority occurring in tropical and offshore environments. Sponges act as important microhabitats and promote biodiversity by harboring a wide variety of macrofauna and microbiota, but little is known about the relationships between the sponges and their symbionts. This study uses DNA barcoding to examine the macrofaunal communities associated with sponges of the central Saudi Arabian Red Sea, a drastically understudied ecosystem with high biodiversity and endemism. In total, 185 epifaunal and infaunal operational taxonomic units (OTUs) were distinguished from the 1399 successfully-sequenced macrofauna individuals from 129 sponges representing seven sponge species, one of which (Stylissa carteri) was intensively studied. A significant difference was found in the macrofaunal community composition of Stylissa carteri along a cross-shelf gradient using relative OTU abundance (Bray-Curtis diversity index). The abundance of S. carteri also follows a cross-shelf gradient, increasing with proximity to shore. The difference in macrofaunal communities of several species of sponges at one location was found to be significant as well, using OTU presence (binary Jaccard diversity index). Four of the seven sponge species collected were dominated by a single annelid OTU, each unique to one sponge species. A fifth was dominated by four arthropod OTUs, all species-specific as well. Region-based diversity differences may be attributed to environmental factors such as reef morphology, water flow, and sedimentation, whereas species-based differences may be caused by sponge morphology, microbial abundances, and chemical defenses. As climate change and ocean acidification continue to modify coral reef ecosystems, understanding the ecology of sponges and their role as microhabitats may become more important. This thesis also includes a supplemental document in the form of a spreadsheet showing the number of

  1. Indirect effects of overfishing on Caribbean reefs: sponges overgrow reef-building corals.

    Science.gov (United States)

    Loh, Tse-Lynn; McMurray, Steven E; Henkel, Timothy P; Vicente, Jan; Pawlik, Joseph R

    2015-01-01

    Consumer-mediated indirect effects at the community level are difficult to demonstrate empirically. Here, we show an explicit indirect effect of overfishing on competition between sponges and reef-building corals from surveys of 69 sites across the Caribbean. Leveraging the large-scale, long-term removal of sponge predators, we selected overfished sites where intensive methods, primarily fish-trapping, have been employed for decades or more, and compared them to sites in remote or marine protected areas (MPAs) with variable levels of enforcement. Sponge-eating fishes (angelfishes and parrotfishes) were counted at each site, and the benthos surveyed, with coral colonies scored for interaction with sponges. Overfished sites had >3 fold more overgrowth of corals by sponges, and mean coral contact with sponges was 25.6%, compared with 12.0% at less-fished sites. Greater contact with corals by sponges at overfished sites was mostly by sponge species palatable to sponge predators. Palatable species have faster rates of growth or reproduction than defended sponge species, which instead make metabolically expensive chemical defenses. These results validate the top-down conceptual model of sponge community ecology for Caribbean reefs, as well as provide an unambiguous justification for MPAs to protect threatened reef-building corals. An unanticipated outcome of the benthic survey component of this study was that overfished sites had lower mean macroalgal cover (23.1% vs. 38.1% for less-fished sites), a result that is contrary to prevailing assumptions about seaweed control by herbivorous fishes. Because we did not quantify herbivores for this study, we interpret this result with caution, but suggest that additional large-scale studies comparing intensively overfished and MPA sites are warranted to examine the relative impacts of herbivorous fishes and urchins on Caribbean reefs.

  2. Indirect effects of overfishing on Caribbean reefs: sponges overgrow reef-building corals

    Directory of Open Access Journals (Sweden)

    Tse-Lynn Loh

    2015-04-01

    Full Text Available Consumer-mediated indirect effects at the community level are difficult to demonstrate empirically. Here, we show an explicit indirect effect of overfishing on competition between sponges and reef-building corals from surveys of 69 sites across the Caribbean. Leveraging the large-scale, long-term removal of sponge predators, we selected overfished sites where intensive methods, primarily fish-trapping, have been employed for decades or more, and compared them to sites in remote or marine protected areas (MPAs with variable levels of enforcement. Sponge-eating fishes (angelfishes and parrotfishes were counted at each site, and the benthos surveyed, with coral colonies scored for interaction with sponges. Overfished sites had >3 fold more overgrowth of corals by sponges, and mean coral contact with sponges was 25.6%, compared with 12.0% at less-fished sites. Greater contact with corals by sponges at overfished sites was mostly by sponge species palatable to sponge predators. Palatable species have faster rates of growth or reproduction than defended sponge species, which instead make metabolically expensive chemical defenses. These results validate the top-down conceptual model of sponge community ecology for Caribbean reefs, as well as provide an unambiguous justification for MPAs to protect threatened reef-building corals.An unanticipated outcome of the benthic survey component of this study was that overfished sites had lower mean macroalgal cover (23.1% vs. 38.1% for less-fished sites, a result that is contrary to prevailing assumptions about seaweed control by herbivorous fishes. Because we did not quantify herbivores for this study, we interpret this result with caution, but suggest that additional large-scale studies comparing intensively overfished and MPA sites are warranted to examine the relative impacts of herbivorous fishes and urchins on Caribbean reefs.

  3. First documentation of tidal-channel sponge biostromes (upper Pleistocene, southeastern Florida)

    Science.gov (United States)

    Cunningham, K.J.; Rigby, J.K.; Wacker, M.A.; Curran, H.A.

    2007-01-01

    Sponges are not a common principal component of Cenozoic reefs and are more typically dominant in deep-water and/or cold-water localities. Here we report the discovery of extensive upper Pleistocene shallow-marine, tropical sponge biostromes from the Mami Limestone of southeastern Florida built by a new ceractinomorph demosponge. These upright, barrel- to vase-shaped sponges occur in monospecific aggregations constructed within the tidal channels of an oolitic tidal-bar belt similar to modern examples on the Great Bahama Bank. The biostromes appear to have a ribbon-like geometry, with densely spaced sponges populating a paleochannel along a 3.5 km extent in the most lengthy biostrome. These are very large (as high as 2 m and 1.8 m in diameter), particularly well-preserved calcified sponges with walls as hard as concrete. Quartz grains are the most common particles agglutinated in the structure of the sponge walls. Where exposed, sediment fill between the sponges is commonly a highly burrowed or cross-bedded ooid-bearing grainstone and, locally, quartz sand. It is postulated that the dense, localized distribution of these particular sponges was due to a slight edge over competitors for food or energy supply and space in a stressed environment of tidal-influenced salinity and nutrient changes, strong currents, and frequently shifting submarine sand dunes. To our knowledge, this represents the first documentation of sponge biostromes composed of very large upright sponges within high-energy tidal channels between ooid shoals. The remarkably well-preserved accumulations provide an alternative example of sponge reefs for comparative paleoenvironmental studies. ?? 2007 The Geological Society of America.

  4. Host-specificity among abundant and rare taxa in the sponge microbiome.

    Science.gov (United States)

    Reveillaud, Julie; Maignien, Loïs; Murat Eren, A; Huber, Julie A; Apprill, Amy; Sogin, Mitchell L; Vanreusel, Ann

    2014-06-01

    Microbial communities have a key role in the physiology of the sponge host, and it is therefore essential to understand the stability and specificity of sponge-symbiont associations. Host-specific bacterial associations spanning large geographic distance are widely acknowledged in sponges. However, the full spectrum of specificity remains unclear. In particular, it is not known whether closely related sponges host similar or very different microbiota over wide bathymetric and geographic gradients, and whether specific associations extend to the rare members of the sponge microbiome. Using the ultra-deep Illumina sequencing technology, we conducted a comparison of sponge bacterial communities in seven closely related Hexadella species with a well-resolved host phylogeny, as well as of a distantly related sponge Mycale. These samples spanned unprecedentedly large bathymetric (15-960 m) gradients and varying European locations. In addition, this study included a bacterial community analysis of the local background seawater for both Mycale and the widespread deep-sea taxa Hexadella cf. dedritifera. We observed a striking diversity of microbes associated with the sponges, spanning 47 bacterial phyla. The data did not reveal any Hexadella microbiota co-speciation pattern, but confirmed sponge-specific and species-specific host-bacteria associations, even within extremely low abundant taxa. Oligotyping analysis also revealed differential enrichment preferences of closely related Nitrospira members in closely related sponges species. Overall, these results demonstrate highly diverse, remarkably specific and stable sponge-bacteria associations that extend to members of the rare biosphere at a very fine phylogenetic scale, over significant geographic and bathymetric gradients.

  5. Inter- and Intraspecific Variations of Bacterial Communities Associated with Marine Sponges from San Juan Island, Washington▿

    Science.gov (United States)

    Lee, On On; Wong, Yue Him; Qian, Pei-Yuan

    2009-01-01

    This study attempted to assess whether conspecific or congeneric sponges around San Juan Island, Washington, harbor specific bacterial communities. We used a combination of culture-independent DNA fingerprinting techniques (terminal restriction fragment length polymorphism and denaturing gradient gel electrophoresis [DGGE]) and culture-dependent approaches. The results indicated that the bacterial communities in the water column consisted of more diverse bacterial ribotypes than and were drastically different from those associated with the sponges. High levels of similarity in sponge-associated bacterial communities were found only in Myxilla incrustans and Haliclona rufescens, while the bacterial communities in Halichondria panicea varied substantially among sites. Certain terminal restriction fragments or DGGE bands were consistently obtained for different individuals of M. incrustans and H. rufescens collected from different sites, suggesting that there are stable or even specific associations of certain bacteria in these two sponges. However, no specific bacterial associations were found for H. panicea or for any one sponge genus. Sequencing of nine DGGE bands resulted in recovery of seven sequences that best matched the sequences of uncultured Proteobacteria. Three of these sequences fell into the sponge-specific sequence clusters previously suggested. An uncultured alphaproteobacterium and a culturable Bacillus sp. were found exclusively in all M. incrustans sponges, while an uncultured gammaproteobacterium was unique to H. rufescens. In contrast, the cultivation approach indicated that sponges contained a large proportion of Firmicutes, especially Bacillus, and revealed large variations in the culturable bacterial communities associated with congeneric and conspecific sponges. This study revealed sponge species-specific but not genus- or site-specific associations between sponges and bacterial communities and emphasized the importance of using a combination

  6. Non-laminate Microstructures in Monoclinic-I Martensite

    CERN Document Server

    Chenchiah, Isaac Vikram

    2012-01-01

    We study the symmetrised rank-one convex hull of monoclinic-I martensite (a twelve-variant material) in the context of geometrically-linear elasticity. We show that this hull is strictly larger than the symmetrised lamination convex hull by constructing sets of T3s, which are (non-trivial) symmetrised rank-one convex hulls of 3-tuples of pairwise incompatible strains. Moreover we construct a five-dimensional continuum of T3s and show that its intersection with the boundary of the symmetrised rank-one convex hull is four-dimensional. Along the way we show that there is another kind of monoclinic-I martensite with qualitatively different semi-convex hulls which, so far as we know, has not been experimentally observed. Our strategy is to combine understanding of the algebraic structure of symmetrised rank-one convex cones with knowledge of the faceting structure of the convex polytope formed by the strains.

  7. Non-Laminate Microstructures in Monoclinic-I Martensite

    Science.gov (United States)

    Chenchiah, Isaac Vikram; Schlömerkemper, Anja

    2013-01-01

    We study the symmetrised rank-one convex hull of monoclinic-I martensite (a twelve-variant material) in the context of geometrically-linear elasticity. We construct sets of T 3s, which are (non-trivial) symmetrised rank-one convex hulls of three-tuples of pairwise incompatible strains. In addition, we construct a fivedimensional continuum of T 3s and show that its intersection with the boundary of the symmetrised rank-one convex hull is four-dimensional.We also show that there is another kind of monoclinic-I martensite with qualitatively different semi-convex hulls which, as far as we know, has not been experimentally observed. Our strategy is to combine understanding of the algebraic structure of symmetrised rank-one convex cones with knowledge of the faceting structure of the convex polytope formed by the strains.

  8. Cell kinetics during regeneration in the sponge Halisarca caerulea: how local is the response to tissue damage?

    NARCIS (Netherlands)

    Alexander, B.E.; Achlatis, M.; Osinga, R.; Geest, van der H.G.; Cleutjens, J.P.M.; Schutte, B.; Goeij, de J.M.

    2015-01-01

    Sponges have a remarkable capacity to rapidly regenerate in response to wound infliction. In addition, sponges rapidly renew their filter systems (choanocytes) to maintain a healthy population of cells. This study describes the cell kinetics of choanocytes in the encrusting reef sponge Halisarca cae

  9. Sponge species composition, abundance, and cover in marine lakes and coastal mangroves in Berau, Indonesia

    NARCIS (Netherlands)

    Becking, L.E.; Cleary, D.F.R.; Voogd, de N.J.

    2013-01-01

    We compared the species composition, abundance, and cover of sponges in 2 marine lakes (Kakaban Lake and Haji Buang Lake) and adjacent coastal mangroves on the islands of Kakaban and Maratua in the Berau region of Indonesia. We recorded a total of 115 sponge species, 33 of which were restricted to

  10. Multiple approaches to enhance the cultivability of bacteria associated with the marine sponge Haliclona (gellius) sp

    NARCIS (Netherlands)

    Sipkema, D.; Schippers, K.J.; Maalcke, W.J.; Yang, Y.; Salim, S.; Blanch, H.W.

    2011-01-01

    Three methods were examined to cultivate bacteria associated with the marine sponge Haliclona (gellius) sp.: agar plate cultures, liquid cultures, and floating filter cultures. A variety of oligotrophic media were employed, including media with aqueous and organic sponge extracts, bacterial signal m

  11. Root-derived organic matter confines sponge community composition in mangrove ecosystems

    NARCIS (Netherlands)

    Hunting, E.R.; Ubels, S.M.; Kraak, M.H.S.; van der Geest, H.G.

    2013-01-01

    Introduction Caribbean mangrove-associated sponge communities are very distinct from sponge communities living on nearby reefs, but the mechanisms that underlie this distinction remain uncertain. It has been hypothesized that dissolved organic matter (DOM) leaching from mangrove roots and the abilit

  12. Experience Using Kaolin-Impregnated Sponge to Minimize Perioperative Bleeding in Norwood Operation.

    Science.gov (United States)

    Shinkawa, Takeshi; Holloway, Jessica; Tang, Xinyu; Gossett, Jeffrey M; Imamura, Michiaki

    2017-07-01

    A kaolin-impregnated hemostatic sponge (QuikClot) is reported to reduce intraoperative blood loss in trauma and noncardiac surgery. The purpose of this study was to assess if this sponge was effective for hemostasis during Norwood operation. We conducted a retrospective review of patients undergoing Norwood operation in infancy between 2011 and 2016 at our institution. Of 31 identified Norwood operations, a kaolin-impregnated sponge was used intraoperatively in 15 (48%) patients. The preoperative profiles and cardiopulmonary bypass status were similar between the operations with or without kaolin-impregnated sponge. The comparison on each operative outcome between operations with or without kaolin-impregnated sponge showed that the intraoperative platelets, cryoprecipitate, and factor VII dosage were significantly less in the operations with kaolin-impregnated sponge (55 mL, 10 mL, 0 µg/kg vs 72 mL, 15 mL, 45 µg/kg; P = .03, .021, .019), as well as the incidence of perioperative bleeding complications (second cardiopulmonary bypass for hemostasis or postoperative mediastinal exploration, 0% vs 31%, P = .043). A logistic regression model showed that the nonuse of kaolin-impregnated sponge and longer aortic cross clamp time were associated with perioperative bleeding complication in univariable model ( P = .02 and .005). Use of kaolin-impregnated hemostatic sponge was associated with reduced blood product use and perioperative bleeding complications in Norwood operation at a single institution.

  13. Coral cavity sponges depend on reef-derived food resources: stable isotope and fatty acid constraints

    NARCIS (Netherlands)

    van Duyl, F.C.; Moodley, L.; Nieuwland, G.; van IJzerloo, L.; van Soest, R.W.M.; Houtekamer, M.; Meesters, E.H.; Middelburg, J.J.

    2011-01-01

    The diet of cavity sponges on the narrow fringing reefs of Curaçao, Caribbean was studied. The origin and resources of the bulk food of these sponges, i.e., dissolved organic matter (DOM), were identified using stable carbon and nitrogen isotopes and fatty acid biomarkers. We found that phytoplankto

  14. Coral cavity sponges depend on reef-derived food resources: stable isotope and fatty acid constraints

    NARCIS (Netherlands)

    van Duyl, F.C.; Moodley, L.; Nieuwland, G.; van Ijzerloo, L.; van Soest, R.W.M.; Houtekamer, M.; Meesters, E.H.; Middelburg, J.J.

    2011-01-01

    The diet of cavity sponges on the narrow fringing reefs of Cura double dagger ao, Caribbean was studied. The origin and resources of the bulk food of these sponges, i.e., dissolved organic matter (DOM), were identified using stable carbon and nitrogen isotopes and fatty acid biomarkers. We found tha

  15. Coral cavity sponges depend on reef-derived food resources: stable isotope and fatty acid constraints

    NARCIS (Netherlands)

    Duyl, F.C. van; Moodley, L.; Nieuwland, G.; IJzerloo, L. van; Soest, R.W.M. van; Houtekamer, M.; Meesters, E.H.; Middelburg, J.J.

    2011-01-01

    The diet of cavity sponges on the narrow fringing reefs of Curac¸ao, Caribbean was studied. The origin and resources of the bulk food of these sponges, i.e., dissolved organic matter (DOM), were identified using stable carbon and nitrogen isotopes and fatty acid biomarkers. We found that phytoplankt

  16. Diversity of bacteria in the marine sponge Aplysina fulva in Brazilian coastal waters

    NARCIS (Netherlands)

    Hardoim, C.C.P.; Costa, R.; Araujo, F. V.; Hajdu, E.; Peixoto, R.; Lins, U.; Rosado, A. S.; van Elsas, J. D.

    2009-01-01

    Microorganisms can account for up to 60% of the fresh weight of marine sponges. Marine sponges have been hypothesized to serve as accumulation spots of particular microbial communities, but it is unknown to what extent these communities are directed by the organism or the site or occur randomly. To

  17. Host-specific microbial communities in three sympatric North Sea sponges

    NARCIS (Netherlands)

    Naim, M.A.; Morillo, J.A.; Sørensen, S.J.; Waleed, A.A.; Smidt, H.; Sipkema, D.

    2014-01-01

    The establishment of next-generation technology sequencing has deepened our knowledge of marine sponge-associated microbiota with the identification of at least 32 phyla of Bacteria and Archaea from a large number of sponge species. In this study, we assessed the diversity of the microbial

  18. Evidence for selective bacterial community structuring in the freshwater sponge Ephydatia fluviatilis

    NARCIS (Netherlands)

    Costa, Rodrigo; Keller-Costa, Tina; Gomes, Newton C. M.; Nunes da Rocha, Ulisses; van Overbeek, Leo; van Elsas, Jan Dirk

    To understand the functioning of sponges, knowledge of the structure of their associated microbial communities is necessary. However, our perception of sponge-associated microbiomes remains mainly restricted to marine ecosystems. Here, we report on the molecular diversity and composition of bacteria

  19. Evidence for selective bacterial community structuring in the freshwater sponge Ephydatia fluviatilis.

    NARCIS (Netherlands)

    Costa, R.; Keller-Costa, T.; Gomes, N.C.M.; Nunes da Rocha, U.; Overbeek, van L.S.; Elsas, J.D.

    2013-01-01

    To understand the functioning of sponges, knowledge of the structure of their associated microbial communities is necessary. However, our perception of sponge-associated microbiomes remains mainly restricted to marine ecosystems. Here, we report on the molecular diversity and composition of bacteria

  20. Sponge-associated bacteria of Lakshadweep coral reefs, India: resource for extracellular hydrolytic enzymes

    Digital Repository Service at National Institute of Oceanography (India)

    Feby, A.; Nair, S.

    % of the sponge-associated bacteria expressed multiple enzymatic activities (greater than equal to 4) with variation in the percentage of expression of individ-ual enzymes. More than 65% of the culturable het-erotrophic bacteria associated with sponges were...