WorldWideScience

Sample records for non-invasive iron measurements

  1. Non-invasive detection of iron deficiency by fluorescence measurement of erythrocyte zinc protoporphyrin in the lip.

    Science.gov (United States)

    Hennig, Georg; Homann, Christian; Teksan, Ilknur; Hasbargen, Uwe; Hasmüller, Stephan; Holdt, Lesca M; Khaled, Nadia; Sroka, Ronald; Stauch, Thomas; Stepp, Herbert; Vogeser, Michael; Brittenham, Gary M

    2016-02-17

    Worldwide, more individuals have iron deficiency than any other health problem. Most of those affected are unaware of their lack of iron, in part because detection of iron deficiency has required a blood sample. Here we report a non-invasive method to optically measure an established indicator of iron status, red blood cell zinc protoporphyrin, in the microcirculation of the lower lip. An optical fibre probe is used to illuminate the lip and acquire fluorescence emission spectra in ∼1 min. Dual-wavelength excitation with spectral fitting is used to distinguish the faint zinc protoporphyrin fluorescence from the much greater tissue background fluorescence, providing immediate results. In 56 women, 35 of whom were iron-deficient, the sensitivity and specificity of optical non-invasive detection of iron deficiency were 97% and 90%, respectively. This fluorescence method potentially provides a rapid, easy to use means for point-of-care screening for iron deficiency in resource-limited settings lacking laboratory infrastructure.

  2. Non-invasive measurement and imaging of tissue iron oxide nanoparticle concentrations in vivo using proton relaxometry

    International Nuclear Information System (INIS)

    St Pierre, T G; Clark, P R; Chua-anusorn, W; Fleming, A; Pardoe, H; Jeffrey, G P; Olynyk, J K; Pootrakul, P; Jones, S; Moroz, P

    2005-01-01

    Magnetic nanoparticles and microparticles can be found in biological tissues for a variety of reasons including pathological deposition of biogenic particles, administration of synthetic particles for scientific or clinical reasons, and the inclusion of biogenic magnetic particles for the sensing of the geomagnetic field. In applied magnetic fields, the magnetisation of tissue protons can be manipulated with radiofrequency radiation such that the macroscopic magnetisation of the protons precesses freely in the plane perpendicular to the applied static field. The presence of magnetic particles within tissue enhances the rate of dephasing of proton precession with higher concentrations of particles resulting in higher dephasing rates. Magnetic resonance imaging instruments can be used to measure and image the rate of decay of spin echo recoverable proton transverse magnetisation (R 2 ) within tissues enabling the measurement and imaging of magnetic particle concentrations with the aid of suitable calibration curves. Applications include the non-invasive measurement of liver iron concentrations in iron-overload disorders and measurement and imaging of magnetic particle concentrations used in magnetic hyperthermia therapy. Future applications may include the tracking of magnetically labelled drugs or biomolecules and the measurement of fibrotic liver damage

  3. Invasive v. non-invasive blood pressure measurements the ...

    African Journals Online (AJOL)

    A reasonable correlation exists between invasive and noninvasive methods of measuring systemic blood pressure. However, there are frequent individual differences between these methods and these variations have often caused the validity of the non-invasive measurement to be questioned. The hypothesis that certain ...

  4. Non-invasive measurement of adrenocortical activity in a ...

    African Journals Online (AJOL)

    Measuring physiological stress reactions through the quantification of plasma cortisol often involves physical restraint, which acts as a stressor itself. Here, we present the validation of a non-invasive method for assessing adrenocortical activity as an indicator of stress in the bat-eared fox (Otocyon megalotis). By conducting ...

  5. NIR photoacoustic spectroscopy for non-invasive glucose measurement.

    Science.gov (United States)

    Pai, Praful P; Kumar Sanki, Pradyut; De, Arijit; Banerjee, Swapna

    2015-08-01

    The use of near infra red (NIR) photoacoustic spectroscopy (PAS) for continuous non-invasive glucose measurement is outlined in the paper. A photoacoustic (PA) measurement apparatus was constructed and PA measurements were made on glucose solutions at multiple NIR excitation wavelengths. A variety of time and frequency domain features, including amplitude and area based features, were extracted from the PA measurements. These features were observed to be proportional to the glucose concentration of the sample. PA measurements from samples of whole blood at different glucose concentrations showed similar results. Subsequently, in vivo PA measurements made on a cohort of 30 volunteers were calibrated using a quadratic fit, and the results were compared to reference glucose concentrations made using a regular blood glucose meter. A comparison of 196 measurement pairs of predicted and reference glucose concentrations using a Clarke Error Grid gave a point distribution of 87.24% and 12.76% over zones A and B of the grid, with no measurement pairs falling in unacceptable zones C-E of the error grid. The predicted measurements had a mean absolute difference (MAD) of 12.57 ± 13.90 mg/dl and a mean absolute relative difference (MARD) of 9.61% ± 10.55%. This is an improvement over previous results obtained using PAS and other non-invasive techniques, validating the potential of PAS for continuous noninvasive glucose monitoring.

  6. Non-invasive clinical measurements of bone mineral

    International Nuclear Information System (INIS)

    Mazess, R.B.

    1982-01-01

    Non-invasive methods are now available for measurement of both compact and trabecular bone on both the appendicular and axial skeleton. Radiogrammetry and photodensitometry both are subject to large errors in areas of heavy tissue cover but precise measurements can be made on the hand bones. Single-photon absorptiometry with 125 I provides a more accurate and precise measure of appendicular compact bone, which is particularly useful for screening of metabolic bone disease and for monitoring renal osteodystrophy. Dual-photon absorptiometry with 153 Gd provides a measurement of the femoral neck and of the lumbar spine and hence is the most diagnostically sensitive measurement method. It is also the most sensitive for monitoring bone changes

  7. Non-invasive measurement of pressure gradients using ultrasound

    DEFF Research Database (Denmark)

    Olesen, Jacob Bjerring; Traberg, Marie Sand; Pihl, Michael Johannes

    2013-01-01

    A non-invasive method for estimating 2-D pressure gradients from ultrasound vector velocity data is presented. The method relies on in-plane vector velocity fields acquired using the Transverse Oscillation method. The pressure gradients are estimated by applying the Navier-Stokes equations...

  8. Non-invasive in vivo measurement of macular carotenoids

    Science.gov (United States)

    Lambert, James L. (Inventor); Borchert, Mark S. (Inventor)

    2009-01-01

    A non-invasive in vivo method for assessing macular carotenoids includes performing Optical Coherence Tomography (OCT) on a retina of a subject. A spatial representation of carotenoid levels in the macula based on data from the OCT of the retina can be generated.

  9. Development and application of the condom catheter method for non-invasive measurement of bladder pressure

    NARCIS (Netherlands)

    R. van Mastrigt (Ron); J.J.M. Pel (Johan); J.W.N.C. Huang Foen Chung (John); P.A. de Zeeuw (Sandra)

    2009-01-01

    textabstractObjectives: A non-invasive method to measure the bladder pressure in males using a condom catheter has been developed. The measurement technique, its validation and limitations, a diagnostic nomogram to non-invasively diagnose bladder outlet obstruction (BOO), and results of large-scale

  10. Imaging iron in skin and liver: Non-invasive tools for hemochromatosis therapy

    Science.gov (United States)

    Pinheiro, T.; Fleming, R.; Gonçalves, A.; Neres, M.; Alves, L. C.; Silva, J. N.; Filipe, P.; Silva, R.

    2009-06-01

    Hemochromatosis is a hereditary disease that causes an inappropriate intestinal absorption of Fe resulting in its accumulation in multiple organs, such as liver, heart and skin. Fe metabolism indicators in the circulation do not provide reliable indication of organ overload as they can be influenced by other clinical conditions. Assessing metabolism organs such as liver requires invasive procedures which is not adequate to patient's serial observations. Our aim was establishing cross sectional and longitudinal information on the amount of Fe that deposited in skin and liver during a life period, how iron is cleared out by therapy intervention and study the relationship of these changes between the two organs using non-invasive methods. Results on skin Fe deposition were evaluated by nuclear microscopy techniques and liver Fe concentrations determined by quantitative magnetic resonance imaging. Skin and liver Fe concentrations were correlated. Though Fe deposits in the two organs were differently associated with blood Fe metabolism conventional markers. Fe serial variations in skin and liver highlighted the value of assessing Fe organ deposits for estimating hemochromatosis evolution and therapy efficacy.

  11. Development and application of the condom catheter method for non-invasive measurement of bladder pressure

    Directory of Open Access Journals (Sweden)

    R van Mastrigt

    2009-01-01

    Full Text Available Objectives: A non-invasive method to measure the bladder pressure in males using a condom catheter has been developed. The measurement technique, its validation and limitations, a diagnostic nomogram to non-invasively diagnose bladder outlet obstruction (BOO, and results of large-scale application are discussed. Methods: Modified incontinence condoms are attached to the penis. During voiding the flow of urine is mechanically interrupted. The subsequent maximum pressure in the condom reflects the isovolumetric bladder pressure. The method was validated in a group of 46 patients with lower urinary tract symptoms who were simultaneously studied invasively and non-invasively. Subsequently it was applied in a non-invasive epidemiological study in 1020 healthy males. Results: The reproducibility of the measured isovolumetric bladder pressure is comparable to that of conventional pressure-flow parameters. The measured pressure can be used to diagnose bladder outlet obstruction with a diagnostic accuracy (Area Under receiver operator characteristic curve of 0.98, which compares most favorably with the area under the curve of 0.79 of Q max in the same population. During condom catheter measurements, both the involuntary interruption of voiding and the forced diuresis increase post-void residual volume. This increase does not affect the accuracy of the pressure measurements. Conclusions: We conclude that in males bladder pressure can successfully be measured non-invasively using the condom catheter method. By combining the measured volumetric bladder pressure with a separately measured free flow rate, BOO can non-invasively and accurately be diagnosed.

  12. Non-invasive fluid density and viscosity measurement

    Science.gov (United States)

    Sinha, Dipen N [Los Alamos, NM

    2012-05-01

    The noninvasively measurement of the density and viscosity of static or flowing fluids in a section of pipe such that the pipe performs as the sensing apparatus, is described. Measurement of a suitable structural vibration resonance frequency of the pipe and the width of this resonance permits the density and viscosity to be determined, respectively. The viscosity may also be measured by monitoring the decay in time of a vibration resonance in the pipe.

  13. A reliable, non-invasive measurement tool for anisotropy in normal skin and scar tissue

    NARCIS (Netherlands)

    Verhaegen, Pauline D. H. M.; Res, Evelien M.; van Engelen, Arna; Middelkoop, Esther; van Zuijlen, Paul P. M.

    2010-01-01

    Anisotropy of the skin varies depending on different locations and pathological conditions. Currently, no reliable non-invasive measurement tool is available for tissue anisotropy. The Reviscometer is an anisotropy measurement tool that measures the resonance running time (RRT) of a shock wave. This

  14. Non-invasive continuous core temperature measurement by zero heat flux

    NARCIS (Netherlands)

    Teunissen, L.P.J.; Klewer, J.; Haan, A. de; Koning, J.J. de; Daanen, H.A.M.

    2011-01-01

    Reliable continuous core temperature measurement is of major importance for monitoring patients. The zero heat flux method (ZHF) can potentially fulfil the requirements of non-invasiveness, reliability and short delay time that current measurement methods lack. The purpose of this study was to

  15. Measuring core body temperature with a non-invasive sensor.

    Science.gov (United States)

    Mazgaoker, Savyon; Ketko, Itay; Yanovich, Ran; Heled, Yuval; Epstein, Yoram

    2017-05-01

    In various occupations, workers may be exposed to extreme environmental conditions and physical activities. Under these conditions the ability to follow the workers' body temperature may protect them from overheating that may lead to heat related injuries. The "Dräger" Double Sensor (DS) is a novel device for assessing body-core temperature (T c ). The purpose of this study was to evaluate the accuracy of the DS in measuring T c under heat stress. Seventeen male participants performed a three stage protocol: 30min rest in a thermal comfort environment (20-22°C, 50% relative humidity), followed by an exposure to a hot environment of 40°C, 40% relative humidity -30min at rest and 60min of exercise (walking on a treadmill at 5km/h and 2% elevation). Simultaneously temperatures measured by the DS (T DS ) and by rectal temperature (T re ) (YSI-401 thermistor) were recorded and then compared. During the three stages of the study the average temperature obtained by the DS was within±0.3°C of rectal measurement. The correlation between T DS and T re was significantly better during the heat exposures phases than during resting under comfort conditions. These preliminary results are promising for potential use of the DS by workers under field conditions and especially under environmental heat stress or when dressed in protective garments. For this goal, further investigations are required to validate the accuracy of the DS under various levels of heat stress, clothing and working levels. Copyright © 2017. Published by Elsevier Ltd.

  16. A feasible method for non-invasive measurement of pulmonary vascular resistance in pulmonary arterial hypertension: Combined use of transthoracic Doppler-echocardiography and cardiac magnetic resonance. Non-invasive estimation of pulmonary vascular resistance

    Directory of Open Access Journals (Sweden)

    Yan Chaowu

    2015-12-01

    Translational perspective: In PAH, the non-invasive measurement of PVR is very important in clinical practice. Up to now, however, the widely accepted non-invasive method is still unavailable. Since TTE can estimate (MPAP–PCWP reliably and CMR is the best image modality for the measurement of CO, the combined use of two modalities has the potential to determine PVR non-invasively. In this research, the integrated non-invasive method showed good diagnostic accuracy and repeatability compared with RHC. Therefore, it might be a feasible method for non-invasive measurement of PVR in patients with PAH.

  17. Non-invasive blood pressure measurement in ferrets (Mustela putorius furo) using high definition oscillometry

    NARCIS (Netherlands)

    van Zeeland, Y. R.A.; Wilde, A.; Bosman, I.H.; Uilenreef, J. J.; Egner, B.I.; Schoemaker, N. J.

    2017-01-01

    This study was conducted to validate the use of high definition oscillometry (HDO) for non-invasive blood pressure (NIBP) measurements in ferrets and to establish reference ranges for NIBP in minimally sedated, healthy, young adult ferrets (170 mmHg) conditions. Although HDO correlated well with

  18. Raman spectroscopy technology to monitor the carotenoids in skin of thalassemia patients: a novel non-invasive tool relating oxidative stress with iron burden

    Directory of Open Access Journals (Sweden)

    Anna Perrone

    2014-09-01

    Full Text Available In this work we approach the relationship between redox state and iron overload by noninvasive instrumental techniques. Intracardiac, liver iron and liver fibrosis have been monitored in transfusion-dependent thalassemia patients by magnetic resonance imaging and hepatic transient elastography examinations. These measurements have been matched with a non-invasive, and yet unexplored in clinical practice, evaluation of body’s oxidative stress through measurement of antioxidant carotenoids in skin, by a spectroscopic method based on Raman technology (RRS. The global body’s antioxidant status results from a balance between the level of antioxidants in cells and body fluids, including blood, and pro-oxidant species endogenously produced or coming from external sources. On this basis, the level of skin carotenoids can be considered a biomarker of the entire antioxidant status. In our work the use of RRS method provided information on the redox state of thalassemia patients, which was correlated with the iron status of the patients. Due to the highly adverse effects of accumulated iron, the novel, simple, non-invasive RRS to monitor dermal carotenoids with high compliance of the patients may be a useful tool for the management of thalassemia patients.

  19. Non-invasive blood pressure measurement in ferrets (Mustela putorius furo) using high definition oscillometry

    OpenAIRE

    van Zeeland, Y. R.A.; Wilde, A.; Bosman, I.H.; Uilenreef, J. J.; Egner, B.I.; Schoemaker, N. J.

    2017-01-01

    This study was conducted to validate the use of high definition oscillometry (HDO) for non-invasive blood pressure (NIBP) measurements in ferrets and to establish reference ranges for NIBP in minimally sedated, healthy, young adult ferrets (170 mmHg) conditions. Although HDO correlated well with DABP (r > 0.90), it showed significant proportional bias, whereby HDO generally underestimated DABP with hyper- and normotensive conditions, and overestimated DABP with hypotensive conditions. Measure...

  20. An Investigation of Pulse Transit Time as a Non-Invasive Blood Pressure Measurement Method

    International Nuclear Information System (INIS)

    McCarthy, B M; O'Flynn, B; Mathewson, A

    2011-01-01

    The objective of this paper is to examine the Pulse Transit Method (PTT) as a non-invasive means to track Blood Pressure over a short period of time. PTT was measured as the time it takes for an ECG R-wave to propagate to the finger, where it is detected by a photoplethysmograph sensor. The PTT method is ideal for continuous 24-hour Blood Pressure Measurement (BPM) since it is both cuff-less and non-invasive and therefore comfortable and unobtrusive for the patient. Other techniques, such as the oscillometric method, have shown to be accurate and reliable but require a cuff for operation, making them unsuitable for long term monitoring. Although a relatively new technique, the PTT method has shown to be able to accurately track blood pressure changes over short periods of time, after which re-calibration is necessary. The purpose of this study is to determine the accuracy of the method.

  1. An Investigation of Pulse Transit Time as a Non-Invasive Blood Pressure Measurement Method

    Energy Technology Data Exchange (ETDEWEB)

    McCarthy, B M; O' Flynn, B; Mathewson, A, E-mail: brian.mccarthy@tyndall.ie [Tyndall National Institute, UCC, Lee Maltings, Prospect Row, Cork (Ireland)

    2011-08-17

    The objective of this paper is to examine the Pulse Transit Method (PTT) as a non-invasive means to track Blood Pressure over a short period of time. PTT was measured as the time it takes for an ECG R-wave to propagate to the finger, where it is detected by a photoplethysmograph sensor. The PTT method is ideal for continuous 24-hour Blood Pressure Measurement (BPM) since it is both cuff-less and non-invasive and therefore comfortable and unobtrusive for the patient. Other techniques, such as the oscillometric method, have shown to be accurate and reliable but require a cuff for operation, making them unsuitable for long term monitoring. Although a relatively new technique, the PTT method has shown to be able to accurately track blood pressure changes over short periods of time, after which re-calibration is necessary. The purpose of this study is to determine the accuracy of the method.

  2. Comparing the Validity of Non-Invasive Methods in Measuring Thoracic Kyphosis and Lumbar Lordosis

    Directory of Open Access Journals (Sweden)

    Mohammad Yousefi

    2012-04-01

    Full Text Available Background: the purpose of this article is to study the validity of each of the non-invasive methods (flexible ruler, spinal mouse, and processing the image versus the one through-Ray radiation (the basic method and comparing them with each other.Materials and Methods: for evaluating the validity of each of these non-invasive methods, the thoracic Kyphosis and lumber Lordosis angle of 20 students of Birjand University (age mean and standard deviation: 26±2, weight: 72±2.5 kg, height: 169±5.5 cm through fours methods of flexible ruler, spinal mouse, and image processing and X-ray.Results: the results indicated that the validity of the methods including flexible ruler, spinal mouse, and image processing in measuring the thoracic Kyphosis and lumber Lordosis angle respectively have an adherence of 0.81, 0.87, 0.73, 0.76, 0.83, 0.89 (p>0.05. As a result, regarding the gained validity against the golden method of X-ray, it could be stated that the three mentioned non-invasive methods have adequate validity. In addition, the one-way analysis of variance test indicated that there existed a meaningful relationship between the three methods of measuring the thoracic Kyphosis and lumber Lordosis, and with respect to the Tukey’s test result, the image processing method is the most precise one.Conclusion as a result, this method could be used along with other non-invasive methods as a valid measuring method.

  3. Toenail as Non-invasive Biomarker in Metal Toxicity Measurement of Welding Fumes Exposure - A Review

    Science.gov (United States)

    Bakri, S. F. Z.; Hariri, A.; Ma'arop, N. F.; Hussin, N. S. A. W.

    2017-01-01

    Workers are exposed to a variety of heavy metal pollutants that are released into the environment as a consequence of workplace activities. This chemical pollutants are incorporated into the human by varies of routes entry and can then be stored and distributed in different tissues, consequently have a potential to lead an adverse health effects and/or diseases. As to minimize the impact, a control measures should be taken to avoid these effects and human biological marker is a very effective tool in the assessment of occupational exposure and potential related risk as the results is normally accurate and reproducible. Toenail is the ideal matrix for most common heavy metals due to its reliability and practicality compared to other biological samples as well as it is a non-invasive and this appears as a huge advantage of toenail as a biomarker. This paper reviews studies that measure the heavy metals concentration in toenail as non-invasive matrix which later may adapt in the investigation of metal fume emitted from welding process. The development of new methodology and modern analytical techniques has allowed the use of toenail as non-invasive approach. The presence of a heavy metal in this matrix reflects an exposure but the correlations between heavy metal levels in the toenail must be established to ensure that these levels are related to the total body burden. These findings suggest that further studies on interactions of these heavy metals in metal fumes utilizing toenail biomarker endpoints are highly warranted especially among welders.

  4. Non-invasive measurements of tissue hemodynamics with hybrid diffuse optical methods

    Science.gov (United States)

    Durduran, Turgut

    Diffuse optical techniques were used to measure hemodynamics of tissues non-invasively. Spectroscopy and tomography of the brain, muscle and implanted tumors were carried out in animal models and humans. Two qualitatively different methods, diffuse optical tomography and diffuse correlation tomography, were hybridized permitting simultaneous measurement of total hemoglobin concentration, blood oxygen saturation and blood flow. This combination of information was processed further to derive estimates of oxygen metabolism (e.g. CMRO 2) in tissue. The diffuse correlation measurements of blood flow were demonstrated in human tissues, for the first time, demonstrating continous, non-invasive imaging of oxygen metabolism in large tissue volumes several centimeters below the tissue surface. The bulk of these investigations focussed on cerebral hemodynamics. Extensive validation of this methodology was carried out in in vivo rat brain models. Three dimensional images of deep tissue hemodynamics in middle cerebral artery occlusion and cortical spreading depression (CSD) were obtained. CSD hemodynamics were found to depend strongly on partial pressure of carbon dioxide. The technique was then adapted for measurement of human brain. All optical spectroscopic measurements of CMRO2 during functional activation were obtained through intact human skull non-invasively. Finally, a high spatio-temporal resolution measurement of cerebral blood flow due to somatosensory cortex activation following electrical forepaw stimulation in rats was carried out with laser speckle flowmetry. New analysis methods were introduced for laser speckle flowmetry. In other organs, deep tissue hemodynamics were measured on human calf muscle during exercise and cuff-ischemia and were shown to have some clinical utility for peripheral vascular disease. In mice tumor models, the measured hemodynamics were shown to be predictive of photodynamic therapy efficacy, again suggesting promise of clinical utility

  5. Non-invasive temperature measurements by neutron diffraction in aero-engine components

    International Nuclear Information System (INIS)

    Holden, T.M.; Root, J.H.; Tennant, D.C.; Leggett, D.

    1995-01-01

    A requirement exists in the aeronautical industry for measuring temperature non-invasively in critical components, such as the turbine disc in an operating engine. Neutron diffraction, unique among nuclear techniques, offers the possibility of measuring both temperature and strain within an operating engine by virtue of the high penetration of neutrons through industrial materials. Static diffraction experiments on Waspaloy and Ti6Al4V showed, by comparison with thermocouples, that both the diffraction peak position and the peak intensity can measure the temperature to within ±6 K at 800 K

  6. Intercomparison of techniques for the non-invasive measurement of bone mass

    International Nuclear Information System (INIS)

    Cohn, S.H.

    1981-01-01

    A variety of methods are presently available for the non-invasive measurement of bone mass of both normal individuals and patients with metabolic disorders. Chief among these methods are radiographic techniques such as radiogrammetry, photon absorptiometry, computer tomography, Compton scattering and neutron activation analysis. In this review, the salient features of the bone measurement techniques are discussed along with their accuracy and precision. The advantages and disadvantages of the various techniques for measuring bone mass are summarized. Where possible, intercomparisons are made of the various techniques

  7. Measurement of low temperature plasma properties using non-invasive impedance measurements

    Science.gov (United States)

    Gillman, Eric; Amatucci, Bill; Tejero, Erik; Blackwell, David

    2017-10-01

    A plasma discharge can be modeled electrically as a combination of capacitors, resistors, and inductors. The plasma, much like an RLC circuit, will have resonances at particular frequencies. The location in frequency space of these resonances provides information about the plasma parameters. These resonances can be detected using impedance measurements, where the AC impedance of the plasma is measured by sweeping the frequency of an AC voltage applied to a sensor and determining the magnitude and phase of the measured current. In this work, an electrode used to sustain a glow discharge is also used as an impedance probe. The novelty of this method is that insertion of a physical probe, which can introduce perturbation and/or contamination, is not necessary. This non-invasive impedance probe method is used to measure the plasma discharge density in various regimes of plasma operation. Experimental results are compared to the basic circuit model results. The potential applications of this diagnostic method and regimes over which this measurement method is valid will be discussed.

  8. Prediction of human core body temperature using non-invasive measurement methods

    Science.gov (United States)

    Niedermann, Reto; Wyss, Eva; Annaheim, Simon; Psikuta, Agnes; Davey, Sarah; Rossi, René Michel

    2014-01-01

    The measurement of core body temperature is an efficient method for monitoring heat stress amongst workers in hot conditions. However, invasive measurement of core body temperature (e.g. rectal, intestinal, oesophageal temperature) is impractical for such applications. Therefore, the aim of this study was to define relevant non-invasive measures to predict core body temperature under various conditions. We conducted two human subject studies with different experimental protocols, different environmental temperatures (10 °C, 30 °C) and different subjects. In both studies the same non-invasive measurement methods (skin temperature, skin heat flux, heart rate) were applied. A principle component analysis was conducted to extract independent factors, which were then used in a linear regression model. We identified six parameters (three skin temperatures, two skin heat fluxes and heart rate), which were included for the calculation of two factors. The predictive value of these factors for core body temperature was evaluated by a multiple regression analysis. The calculated root mean square deviation (rmsd) was in the range from 0.28 °C to 0.34 °C for all environmental conditions. These errors are similar to previous models using non-invasive measures to predict core body temperature. The results from this study illustrate that multiple physiological parameters (e.g. skin temperature and skin heat fluxes) are needed to predict core body temperature. In addition, the physiological measurements chosen in this study and the algorithm defined in this work are potentially applicable as real-time core body temperature monitoring to assess health risk in broad range of working conditions.

  9. Prediction of human core body temperature using non-invasive measurement methods.

    Science.gov (United States)

    Niedermann, Reto; Wyss, Eva; Annaheim, Simon; Psikuta, Agnes; Davey, Sarah; Rossi, René Michel

    2014-01-01

    The measurement of core body temperature is an efficient method for monitoring heat stress amongst workers in hot conditions. However, invasive measurement of core body temperature (e.g. rectal, intestinal, oesophageal temperature) is impractical for such applications. Therefore, the aim of this study was to define relevant non-invasive measures to predict core body temperature under various conditions. We conducted two human subject studies with different experimental protocols, different environmental temperatures (10 °C, 30 °C) and different subjects. In both studies the same non-invasive measurement methods (skin temperature, skin heat flux, heart rate) were applied. A principle component analysis was conducted to extract independent factors, which were then used in a linear regression model. We identified six parameters (three skin temperatures, two skin heat fluxes and heart rate), which were included for the calculation of two factors. The predictive value of these factors for core body temperature was evaluated by a multiple regression analysis. The calculated root mean square deviation (rmsd) was in the range from 0.28 °C to 0.34 °C for all environmental conditions. These errors are similar to previous models using non-invasive measures to predict core body temperature. The results from this study illustrate that multiple physiological parameters (e.g. skin temperature and skin heat fluxes) are needed to predict core body temperature. In addition, the physiological measurements chosen in this study and the algorithm defined in this work are potentially applicable as real-time core body temperature monitoring to assess health risk in broad range of working conditions.

  10. Differential Mueller matrix polarimetry technique for non-invasive measurement of glucose concentration on human fingertip.

    Science.gov (United States)

    Phan, Quoc-Hung; Lo, Yu-Lung

    2017-06-26

    A differential Mueller matrix polarimetry technique is proposed for obtaining non-invasive (NI) measurements of the glucose concentration on the human fingertip. The feasibility of the proposed method is demonstrated by detecting the optical rotation angle and depolarization index of tissue phantom samples containing de-ionized water (DI), glucose solutions with concentrations ranging from 0~500 mg/dL and 2% lipofundin. The results show that the extracted optical rotation angle increases linearly with an increasing glucose concentration, while the depolarization index decreases. The practical applicability of the proposed method is demonstrated by measuring the optical rotation angle and depolarization index properties of the human fingertips of healthy volunteers.

  11. Accuracy of non-invasive blood pressure measurements in obese patients.

    Science.gov (United States)

    Arnold, Abigail; McNaughton, Amanda

    2018-01-11

    This article describes an evidence-based literature review, comparing upper arm and forearm blood pressure measurements using non-invasive devices on obese patients. The focus on blood pressure monitoring was in response to regularly witnessing inappropriately applied blood pressure cuffs on obese patient's upper arms in practice. An inaccurately obtained blood pressure measurement can result in the misdiagnosis and treatment of hypertension. As the prevalence of obesity grows worldwide, healthcare settings need to ensure they have the necessary equipment and trained staff to accurately measure obese patients' blood pressure. The aim of this review was to identify whether a forearm measurement provided a suitable alternative to upper arm measurements. The article discusses the development and execution of a search strategy, as well as the critical appraisal of a selected article. The results of the review demonstrated that forearm blood pressure measurements in obese patients do not replace upper arm blood pressure measurements taken with an appropriate cuff. It is recommended that further research is undertaken in order to identify suitable alternatives for obtaining an accurate non-invasive blood pressure measurement in obese patients.

  12. Non-invasive plant growth measurements for detection of blue-light dose response of stem elongation in Chrysanthemum morifolium

    DEFF Research Database (Denmark)

    Kjær, Katrine Heinsvig

    2012-01-01

    . In the present study a non-invasive plant growth sensor (PlantEye, Phenospex B.V, Heerlen, NL) was tested in analysing changes in diurnal stem elongation patterns and plant height in response to the spectral quality of the light environment. Plants were grown in four different LED supplemental lighting...... treatments with 0%, 12.5%, 18.5% and 22.5% blue light under greenhouse conditions in winter (18 h day/4 h night). The non-invasive measurements were carried out automatically every four hour with three repetitions, and supported by manual measurements of plant height every third day. A strong linear relation...... between the non-invasive measurements and manual measurements of plant height was achieved, and a blue-light dose-response showing a decrease in plant height in relation to an increase in blue light was demonstrated. However, the non-invasive plant growth sensor was not able to distinguish between diurnal...

  13. Non-invasive measurements of granular flows by magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Nakagawa, M.; Altobelli, S.A.; Caprihan, A.; Fukushima, E.; Jeong, E.K.

    1993-01-20

    Magnetic Resonance Imaging (MRI) was used to measure granular-flow in a partially filled, steadily rotating, long, horizontal cylinder. This non-invasive technique can yield statistically averaged two-dimensional concentrations and velocity profiles anywhere in the flow of suitable granular materials. First, rigid body motion of a cylinder fill with granular material was studied to confirm the validity of this method. Then, the density variation of the flowing layer where particles collide and dilate, and the depth of the flowing layer and the flow velocity profile were obtained as a function of the cylinder rotation rate.

  14. Research on the multiple linear regression in non-invasive blood glucose measurement.

    Science.gov (United States)

    Zhu, Jianming; Chen, Zhencheng

    2015-01-01

    A non-invasive blood glucose measurement sensor and the data process algorithm based on the metabolic energy conservation (MEC) method are presented in this paper. The physiological parameters of human fingertip can be measured by various sensing modalities, and blood glucose value can be evaluated with the physiological parameters by the multiple linear regression analysis. Five methods such as enter, remove, forward, backward and stepwise in multiple linear regression were compared, and the backward method had the best performance. The best correlation coefficient was 0.876 with the standard error of the estimate 0.534, and the significance was 0.012 (sig. regression equation was valid. The Clarke error grid analysis was performed to compare the MEC method with the hexokinase method, using 200 data points. The correlation coefficient R was 0.867 and all of the points were located in Zone A and Zone B, which shows the MEC method provides a feasible and valid way for non-invasive blood glucose measurement.

  15. Non-invasive measurement of cardiac output by Finometer in patients with cirrhosis

    DEFF Research Database (Denmark)

    Kaltoft, N; Hobolth, L; Møller, S

    2010-01-01

    The Finometer measures haemodynamic parameters including cardiac output (CO) using non-invasive volume-clamp techniques. The aim of this study was to determine the accuracy of the Finometer in hyperdynamic cirrhotic patients using an invasive indicator dilution technique as control. CO was measured...... in twenty-three patients referred for invasive measurements of the hepatic venous pressure gradient on suspicion of cirrhosis. Invasive measurements of CO were performed using indicator dilution technique (CO(I)) and simultaneous measurements of CO were recorded with the Finometer (CO(F)). In six patients......, measurements of CO were performed with invasive technique and the Finometer both before and after beta-blockade using 80 mg of propranolol and the changes in CO (DeltaCO(I) and DeltaCO(F) respectively) were calculated to evaluate the Finometers ability to detect relative changes in CO. Mean CO(I) was 6.1 +/- 1...

  16. Reactivity of dogs' brain oscillations to visual stimuli measured with non-invasive electroencephalography.

    Directory of Open Access Journals (Sweden)

    Miiamaaria V Kujala

    Full Text Available Studying cognition of domestic dogs has gone through a renaissance within the last decades. However, although the behavioral studies of dogs are beginning to be common in the field of animal cognition, the neural events underlying cognition remain unknown. Here, we employed a non-invasive electroencephalography, with adhesive electrodes attached to the top of the skin, to measure brain activity of from 8 domestic dogs (Canis familiaris while they stayed still to observe photos of dog and human faces. Spontaneous oscillatory activity of the dogs, peaking in the sensors over the parieto-occipital cortex, was suppressed statistically significantly during visual task compared with resting activity at the frequency of 15-30 Hz. Moreover, a stimulus-induced low-frequency (~2-6 Hz suppression locked to the stimulus onset was evident at the frontal sensors, possibly reflecting a motor rhythm guiding the exploratory eye movements. The results suggest task-related reactivity of the macroscopic oscillatory activity in the dog brain. To our knowledge, the study is the first to reveal non-invasively measured reactivity of brain electrophysiological oscillations in healthy dogs, and it has been based purely on positive operant conditional training, without the need for movement restriction or medication.

  17. Anaphylaxis Imaging: Non-Invasive Measurement of Surface Body Temperature and Physical Activity in Small Animals.

    Directory of Open Access Journals (Sweden)

    Krisztina Manzano-Szalai

    Full Text Available In highly sensitized patients, the encounter with a specific allergen from food, insect stings or medications may rapidly induce systemic anaphylaxis with potentially lethal symptoms. Countless animal models of anaphylaxis, most often in BALB/c mice, were established to understand the pathophysiology and to prove the safety of different treatments. The most common symptoms during anaphylactic shock are drop of body temperature and reduced physical activity. To refine, improve and objectify the currently applied manual monitoring methods, we developed an imaging method for the automated, non-invasive measurement of the whole-body surface temperature and, at the same time, of the horizontal and vertical movement activity of small animals. We tested the anaphylaxis imaging in three in vivo allergy mouse models for i milk allergy, ii peanut allergy and iii egg allergy. These proof-of-principle experiments suggest that the imaging technology represents a reliable non-invasive method for the objective monitoring of small animals during anaphylaxis over time. We propose that the method will be useful for monitoring diseases associated with both, changes in body temperature and in physical behaviour.

  18. Modeling of a Non-invasive Electromagnetic Sensor for the Measurement Glycaemia

    Directory of Open Access Journals (Sweden)

    A. Rouane

    2011-06-01

    Full Text Available In this paper, we present the modeling of a non-invasive electromagnetic sensor for the measurement glycaemia. The model is based on a bio-impedance measurement. First, we optimized the dimensions of the sensor’s parameters that can influence on measurement. Second, we investigated the influence of the dielectric parameters on the conductivity and its impact on the measurement of glycaemia. Results from this study demonstrate that the variation of the sensor impedance depends on the resistance and the inductance, which depend on the conductivity. The sensitivity of the output and input signal ratio strongly depends on the conductivity of the medium under investigation. Maximum conductivity at the resonance frequency was demonstrated.

  19. Non-invasive Measurement of Pressure Gradients in Pulsatile Flow using Ultrasound

    DEFF Research Database (Denmark)

    Olesen, Jacob Bjerring; Traberg, Marie Sand; Pihl, Michael Johannes

    2013-01-01

    This paper demonstrates how pressure gradients in a pulsatile flow environment can be measured non-invasively using ultrasound. The proposed method relies on vector velocity fields acquired from ultrasound data. 2-D flow data are acquired at 18-23 frames/sec using the Transverse Oscillation...... approach. Pressure gradients are calculated from the measured velocity fields using the Navier-Stokes equation. Velocity fields are measured during constant and pulsating flow on a carotid bifurcation phantom and on a common carotid artery in-vivo. Scanning is performed with a 5 MHz BK8670 linear...... transducer using a BK Medical 2202 UltraView Pro Focus scanner. The calculated pressure gradients are validated through a finite element simulation of the constant flow model. The geometry of the flow simulation model is reproduced using MRI data, thereby providing identical flow domains in measurement...

  20. Non-invasive measurements of exhaled NO and CO associated with methacholine responses in mice

    Directory of Open Access Journals (Sweden)

    Ameredes Bill T

    2008-05-01

    Full Text Available Abstract Background Nitric oxide (NO and carbon monoxide (CO in exhaled breath are considered obtainable biomarkers of physiologic mechanisms. Therefore, obtaining their measures simply, non-invasively, and repeatedly, is of interest, and was the purpose of the current study. Methods Expired NO (ENO and CO (ECO were measured non-invasively using a gas micro-analyzer on several strains of mice (C57Bl6, IL-10-/-, A/J, MKK3-/-, JNK1-/-, NOS-2-/- and NOS-3-/- with and without allergic airway inflammation (AI induced by ovalbumin systemic sensitization and aerosol challenge, compared using independent-sample t-tests between groups, and repeated measures analysis of variance (ANOVA within groups over time of inflammation induction. ENO and ECO were also measured in C57Bl6 and IL-10-/- mice, ages 8–58 weeks old, the relationship of which was determined by regression analysis. S-methionyl-L-thiocitrulline (SMTC, and tin protoporphyrin (SnPP were used to inhibit neuronal/constitutive NOS-1 and heme-oxygenase, respectively, and alter NO and CO production, respectively, as assessed by paired t-tests. Methacholine-associated airway responses (AR were measured by the enhanced pause method, with comparisons by repeated measures ANOVA and post-hoc testing. Results ENO was significantly elevated in naïve IL-10-/- (9–14 ppb and NOS-2-/- (16 ppb mice as compared to others (average: 5–8 ppb, whereas ECO was significantly higher in naïve A/J, NOS-3-/- (3–4 ppm, and MKK3-/- (4–5 ppm mice, as compared to others (average: 2.5 ppm. As compared to C57Bl6 mice, AR of IL-10-/-, JNK1-/-, NOS-2-/-, and NOS-3-/- mice were decreased, whereas they were greater for A/J and MKK3-/- mice. SMTC significantly decreased ENO by ~30%, but did not change AR in NOS-2-/- mice. SnPP reduced ECO in C57Bl6 and IL-10-/- mice, and increased AR in NOS-2-/- mice. ENO decreased as a function of age in IL-10-/- mice, remaining unchanged in C57Bl6 mice. Conclusion These results are

  1. Fast diffuse correlation spectroscopy (DCS) for non-invasive measurement of intracranial pressure (ICP) (Conference Presentation)

    Science.gov (United States)

    Farzam, Parisa; Sutin, Jason; Wu, Kuan-Cheng; Zimmermann, Bernhard B.; Tamborini, Davide; Dubb, Jay; Boas, David A.; Franceschini, Maria Angela

    2017-02-01

    Intracranial pressure (ICP) monitoring has a key role in the management of neurosurgical and neurological injuries. Currently, the standard clinical monitoring of ICP requires an invasive transducer into the parenchymal tissue or the brain ventricle, with possibility of complications such as hemorrhage and infection. A non-invasive method for measuring ICP, would be highly preferable, as it would allow clinicians to promptly monitor ICP during transport and allow for monitoring in a larger number of patients. We have introduced diffuse correlation spectroscopy (DCS) as a non-invasive ICP monitor by fast measurement of pulsatile cerebral blood flow (CBF). The method is similar to Transcranial Doppler ultrasound (TCD), which derives ICP from the amplitude of the pulsatile cerebral blood flow velocity, with respect to the amplitude of the pulsatile arterial blood pressure. We believe DCS measurement is superior indicator of ICP than TCD estimation because DCS directly measures blood flow, not blood flow velocity, and the small cortical vessels measured by DCS are more susceptible to transmural pressure changes than the large vessels. For fast DCS measurements to recover pulsatile CBF we have developed a custom high-power long-coherent laser and a strategy for delivering it to the tissue within ANSI standards. We have also developed a custom FPGA-based correlator board, which facilitates DCS data acquisitions at 50-100 Hz. We have tested the feasibility of measuring pulsatile CBF and deriving ICP in two challenging scenarios: humans and rats. SNR is low in human adults due to large optode distances. It is similarly low in rats because the fast heart rate in this setting requires a high repetition rate.

  2. Non-invasive blood pressure measurement in ferrets (Mustela putorius furo) using high definition oscillometry.

    Science.gov (United States)

    van Zeeland, Y R A; Wilde, A; Bosman, I H; Uilenreef, J J; Egner, B; Schoemaker, N J

    2017-10-01

    This study was conducted to validate the use of high definition oscillometry (HDO) for non-invasive blood pressure (NIBP) measurements in ferrets and to establish reference ranges for NIBP in minimally sedated, healthy, young adult ferrets (170mmHg) conditions. Although HDO correlated well with DABP (r>0.90), it showed significant proportional bias, whereby HDO generally underestimated DABP with hyper- and normotensive conditions, and overestimated DABP with hypotensive conditions. Measurements obtained from the hind limb showed higher bias than those obtained from the tail or forelimb (Pyoung adult ferrets were established at 95-155mmHg (systolic), 69-109mmHg (mean) and 51-87mmHg (diastolic) arterial pressures. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. The importance of optical methods for non-invasive measurements in the skin care industry

    Science.gov (United States)

    Stamatas, Georgios N.

    2010-02-01

    Pharmaceutical and cosmetic industries are concerned with treating skin disease, as well as maintaining and promoting skin health. They are dealing with a unique tissue that defines our body in space. As such, skin provides not only the natural boundary with the environment inhibiting body dehydration as well as penetration of exogenous aggressors to the body, it is also ideally situated for optical measurements. A plurality of spectroscopic and imaging methods is being used to understand skin physiology and pathology and document the effects of topically applied products on the skin. The obvious advantage of such methods over traditional biopsy techniques is the ability to measure the cutaneous tissue in vivo and non-invasively. In this work, we will review such applications of various spectroscopy and imaging methods in skin research that is of interest the cosmetic and pharmaceutical industry. Examples will be given on the importance of optical techniques in acquiring new insights about acne pathogenesis and infant skin development.

  4. Zero-Heat-Flux Thermometry for Non-Invasive Measurement of Core Body Temperature in Pigs.

    Science.gov (United States)

    Guschlbauer, Maria; Maul, Alexandra C; Yan, Xiaowei; Herff, Holger; Annecke, Thorsten; Sterner-Kock, Anja; Böttiger, Bernd W; Schroeder, Daniel C

    2016-01-01

    Hypothermia is a severe, unpleasant side effect during general anesthesia. Thus, temperature surveillance is a prerequisite in general anesthesia settings during experimental surgeries. The gold standard to measure the core body temperature (Tcore) is placement of a Swan-Ganz catheter in the pulmonary artery, which is a highly invasive procedure. Therefore, Tcore is commonly examined in the urine bladder and rectum. However, these procedures are known for their inaccuracy and delayed record of temperatures. Zero-heat-flux (ZHF) thermometry is an alternative, non-invasive method quantifying Tcore in human patients by applying a thermosensoric patch to the lateral forehead. Since the porcine cranial anatomy is different to the human's, the optimal location of the patch remains unclear to date. The aim was to compare three different patch locations of ZHF thermometry in a porcine hypothermia model. Hypothermia (33.0 °C Tcore) was conducted in 11 anesthetized female pigs (26-30 kg). Tcore was measured continuously by an invasive Swan-Ganz catheter in the pulmonary artery (Tpulm). A ZHF thermometry device was mounted on three different defined locations. The smallest average difference between Tpulm and TZHF during stable temperatures was 0.21 ± 0.16 °C at location A, where the patch was placed directly behind the eye. Also during rapidly changing temperatures location A showed the smallest bias with 0.48 ± 0.29 °C. Location A provided the most reliable data for Tcore. Therefore, the ZHF thermometry patch should be placed directly behind the left temporal corner of the eye to provide a non-invasive method for accurate measurement of Tcore in pigs.

  5. Non-Invasive Measurement of Adrenocortical Activity in Blue-Fronted Parrots (Amazona aestiva, Linnaeus, 1758.

    Directory of Open Access Journals (Sweden)

    João C P Ferreira

    Full Text Available Parrots kept in zoos and private households often develop psychological and behavioural disorders. Despite knowing that such disorders have a multifactorial aetiology and that chronic stress is involved, little is known about their development mainly due to a poor understanding of the parrots' physiology and the lack of validated methods to measure stress in these species. In birds, blood corticosterone concentrations provide information about adrenocortical activity. However, blood sampling techniques are difficult, highly invasive and inappropriate to investigate stressful situations and welfare conditions. Thus, a non-invasive method to measure steroid hormones is critically needed. Aiming to perform a physiological validation of a cortisone enzyme immunoassay (EIA to measure glucocorticoid metabolites (GCM in droppings of 24 Blue-fronted parrots (Amazona aestiva, two experiments were designed. During the experiments all droppings were collected at 3-h intervals. Initially, birds were sampled for 24 h (experiment 1 and one week later assigned to four different treatments (experiment 2: Control (undisturbed, Saline (0.2 mL of 0.9% NaCl IM, Dexamethasone (1 mg/kg IM and Adrenocorticotropic hormone (ACTH; 25 IU IM. Treatments (always one week apart were applied to all animals in a cross-over study design. A daily rhythm pattern in GCM excretion was detected but there were no sex differences (first experiment. Saline and dexamethasone treatments had no effect on GCM (not different from control concentrations. Following ACTH injection, GCM concentration increased about 13.1-fold (median at the peak (after 3-9 h, and then dropped to pre-treatment concentrations. By a successful physiological validation, we demonstrated the suitability of the cortisone EIA to non-invasively monitor increased adrenocortical activity, and thus, stress in the Blue-fronted parrot. This method opens up new perspectives for investigating the connection between behavioural

  6. Non-Invasive Measurement of Adrenocortical Activity in Blue-Fronted Parrots (Amazona aestiva, Linnaeus, 1758).

    Science.gov (United States)

    Ferreira, João C P; Fujihara, Caroline J; Fruhvald, Erika; Trevisol, Eduardo; Destro, Flavia C; Teixeira, Carlos R; Pantoja, José C F; Schmidt, Elizabeth M S; Palme, Rupert

    2015-01-01

    Parrots kept in zoos and private households often develop psychological and behavioural disorders. Despite knowing that such disorders have a multifactorial aetiology and that chronic stress is involved, little is known about their development mainly due to a poor understanding of the parrots' physiology and the lack of validated methods to measure stress in these species. In birds, blood corticosterone concentrations provide information about adrenocortical activity. However, blood sampling techniques are difficult, highly invasive and inappropriate to investigate stressful situations and welfare conditions. Thus, a non-invasive method to measure steroid hormones is critically needed. Aiming to perform a physiological validation of a cortisone enzyme immunoassay (EIA) to measure glucocorticoid metabolites (GCM) in droppings of 24 Blue-fronted parrots (Amazona aestiva), two experiments were designed. During the experiments all droppings were collected at 3-h intervals. Initially, birds were sampled for 24 h (experiment 1) and one week later assigned to four different treatments (experiment 2): Control (undisturbed), Saline (0.2 mL of 0.9% NaCl IM), Dexamethasone (1 mg/kg IM) and Adrenocorticotropic hormone (ACTH; 25 IU IM). Treatments (always one week apart) were applied to all animals in a cross-over study design. A daily rhythm pattern in GCM excretion was detected but there were no sex differences (first experiment). Saline and dexamethasone treatments had no effect on GCM (not different from control concentrations). Following ACTH injection, GCM concentration increased about 13.1-fold (median) at the peak (after 3-9 h), and then dropped to pre-treatment concentrations. By a successful physiological validation, we demonstrated the suitability of the cortisone EIA to non-invasively monitor increased adrenocortical activity, and thus, stress in the Blue-fronted parrot. This method opens up new perspectives for investigating the connection between behavioural

  7. Non invasive blood flow measurement in cerebellum detects minimal hepatic encephalopathy earlier than psychometric tests.

    Science.gov (United States)

    Felipo, Vicente; Urios, Amparo; Giménez-Garzó, Carla; Cauli, Omar; Andrés-Costa, Maria-Jesús; González, Olga; Serra, Miguel A; Sánchez-González, Javier; Aliaga, Roberto; Giner-Durán, Remedios; Belloch, Vicente; Montoliu, Carmina

    2014-09-07

    To assess whether non invasive blood flow measurement by arterial spin labeling in several brain regions detects minimal hepatic encephalopathy. Blood flow (BF) was analyzed by arterial spin labeling (ASL) in different brain areas of 14 controls, 24 cirrhotic patients without and 16 cirrhotic patients with minimal hepatic encephalopathy (MHE). Images were collected using a 3 Tesla MR scanner (Achieva 3T-TX, Philips, Netherlands). Pulsed ASL was performed. Patients showing MHE were detected using the battery Psychometric Hepatic Encephalopathy Score (PHES) consisting of five tests. Different cognitive and motor functions were also assessed: alterations in selective attention were evaluated using the Stroop test. Patients and controls also performed visuo-motor and bimanual coordination tests. Several biochemical parameters were measured: serum pro-inflammatory interleukins (IL-6 and IL-18), 3-nitrotyrosine, cGMP and nitrates+nitrites in plasma, and blood ammonia. Bivariate correlations were evaluated. In patients with MHE, BF was increased in cerebellar hemisphere (P = 0.03) and vermis (P = 0.012) and reduced in occipital lobe (P = 0.017). BF in cerebellar hemisphere was also increased in patients without MHE (P = 0.02). Bimanual coordination was impaired in patients without MHE (P = 0.05) and much more in patients with MHE (P battery and with CFF. BF in cerebellar hemisphere correlates with plasma cGMP and nitric oxide (NO) metabolites. BF in vermis cerebellar also correlates with NO metabolites and with 3-nitrotyrosine. IL-18 in plasma correlates with BF in thalamus and occipital lobe. Non invasive BF determination in cerebellum using ASL may detect MHE earlier than the PHES. Altered NO-cGMP pathway seems to be associated to altered BF in cerebellum.

  8. A feasible method for non-invasive measurement of pulmonary vascular resistance in pulmonary arterial hypertension: Combined use of transthoracic Doppler-echocardiography and cardiac magnetic resonance. Non-invasive estimation of pulmonary vascular resistance.

    Science.gov (United States)

    Yan, Chaowu; Xu, Zhongying; Jin, Jinglin; Lv, Jianhua; Liu, Qiong; Zhu, Zhenhui; Pang, Kunjing; Shi, Yisheng; Fang, Wei; Wang, Yang

    2015-12-07

    Transthoracic Doppler-echocardiography (TTE) can estimate mean pulmonary arterial pressure (MPAP) and pulmonary capillary wedge pressure (PCWP) reliably, and cardiac magnetic resonance (CMR) is the best modality for non-invasive measurement of cardiac output (CO). We speculated that the combined use of TTE and CMR could provide a feasible method for non-invasive measurement of pulmonary vascular resistance (PVR) in pulmonary arterial hypertension (PAH). Right heart catheterization (RHC) was undertaken in 77 patients (17M/60F) with PAH, and simultaneous TTE was carried out to evaluate MPAP, PCWP and CO. Within 2 days, CO was measured again with CMR in similar physiological status. Then, PVR was calculated with the integrated non-invasive method: TTE-derived (MPAP-PCWP)/CMR-derived CO and the isolated TTE method: TTE-derived (MPAP-PCWP)/TTE-derived CO, respectively. The PVR calculated with integrated non-invasive method correlated well with RHC-calculated PVR (r = 0.931, 95% confidence interval 0.893 to 0.956). Between the integrated non-invasive PVR and RHC-calculated PVR, the Bland-Altman analysis showed the satisfactory limits of agreement (mean value: - 0.89 ± 2.59). In comparison, the limits of agreement were less satisfactory between TTE-calculated PVR and RHC-calculated PVR (mean value: - 1.80 ± 3.33). Furthermore, there were excellent intra- and inter-observer correlations for the measurements of TTE and CMR ( P  TTE and CMR provides a clinically reliable method to determine PVR non-invasively. In comparison with RHC, the integrated method shows good accuracy and repeatability, which suggests the potential for the evaluation and serial follow-up in patients with PAH. In PAH, the non-invasive measurement of PVR is very important in clinical practice. Up to now, however, the widely accepted non-invasive method is still unavailable. Since TTE can estimate (MPAP-PCWP) reliably and CMR is the best image modality for the measurement of CO, the combined

  9. [PULSE WAVE TRANSIT TIME - ONE MORE ATTEMPT OF NON-INVASIVE CARDIAC OUTPUT MEASUREMENT.

    Science.gov (United States)

    Akselrod, B A; Tolstova, L A; Pshenichniy, T A; Fedulova, S V

    2017-09-01

    Estimated continuous cardiac output (esCCOTM) based on pulse wave transit time is one of alternative non-invasive CO measurement techniques. Randomized study included 23 scheduled patients operated upon due to cardiovascular diseases. Cardiac index (CI) was measured Comparative analyses of esCCO and others CO measurement methods used intraoperative was carried out. In the first group (n = 9) esCCO was compared with transpulmonary thermodilution (PiCCO-plus); in the second group (n = 8) - with pulmonary artery thermodilution; in the third group (n = 6) - with transoesophageal echocardiography (velocity-time integral). In the 1st group direct correlation was found (r = 0,773, p measurements were out of reference interval (more than ? 15%). Blend- Altman method showed the dispersion of results in all groups. 1. Estimated continuous cardiac output measurement technique based on PWTT has a direct correla- tion with prepulmonary thermodilution and transoesophageal echocardiography, medium and high power respectively. 2. esCCO has significant differences with the referential techniques during general anesthesia in cardiac surgery pa- tients. 3. Calibration based on invasive blood pressure and outside cardiac output measurement does not increase the accuracy of measurements. 4. esCCO has a negative diagnostic value and cannot be recommendedfor the cardiac out- put evaluation during cardiac surgery. 5. This method can be useful for analyze general effectiveness of perioperative hemodynamics.

  10. BOLD MRI in sheep fetuses: a non-invasive method for measuring changes in tissue oxygenation.

    Science.gov (United States)

    Sørensen, A; Pedersen, M; Tietze, A; Ottosen, L; Duus, L; Uldbjerg, N

    2009-12-01

    The purpose of this descriptive study was to correlate changes in the blood oxygen level-dependent (BOLD) magnetic resonance imaging (MRI) signal with direct measurements of fetal tissue oxygenation. Seven anesthetized ewes carrying singleton fetuses at 125 days' gestation (term 145 days) underwent BOLD MRI, covering the entire fetus in a multislice approach. The fetuses were subjected to normoxic, hypoxic and hyperoxic conditions by changing the O(2)/N(2)O ratio in the maternal ventilated gas supply. The partial pressure of oxygen (pO2) in the fetal liver was measured using an oxygen-sensitive optode. Maternal arterial blood samples were simultaneously withdrawn for blood gas analysis. These measurements were compared with BOLD MRI signals in the fetal liver, kidney, spleen and brain. We demonstrated a consistent increase in the BOLD MRI signal with increasing tissue pO(2). For the fetal liver, spleen and kidney we observed a clear association between changes in maternal arterial blood pO2 and changes in BOLD MRI signal. Interestingly, we found that the BOLD signal of the fetal brain remained unchanged during hypoxic, normoxic and hyperoxic conditions. This experimental study demonstrated that BOLD MRI is a reliable non-invasive method for measuring changes in tissue oxygenation in fetal sheep. The unchanged signal in the fetal brain during altered maternal oxygen conditions is probably explained by the brain-sparing mechanism. Copyright 2009 ISUOG. Published by John Wiley & Sons, Ltd.

  11. Primary flow and temperature measurements in PWRs using non-invasive techniques

    International Nuclear Information System (INIS)

    Favennec, J.M.; Jossinet, G.; Thomas, P.

    1996-01-01

    PWR primary flow and temperature measurements are classically done with either indirect or invasive techniques. EDF has developed and installed non-invasive innovative techniques on an industrial nuclear power plant (Chooz N4-type PWR). Primary flow-rate is determined by measurement of velocity of primary water in the hot leg: the time fluctuation of γ-ray activity from Nitrogen-designed-16 (produced by neutron activation of 016) is measured outside of the pipe by two specially-designed detectors. The signals from both detectors are then cross-correlated to determine the transit of primary water between the two detectors; primary flow-rate is then deduced. Primary temperature is determined by measurement of sound velocity in hot and cold leg: two pairs of ultrasonic transducers, installed on pipe outer wall, emit pulses periodically, for which the time of flight along the two pipes diameters are determined. The sound velocity thus computed relating sound velocity to temperature and pressure. This paper addresses metrological and technical aspects of the methods. Experience feedback on industrial PWR is also presented. (authors)

  12. Primary flow and temperature measurements in PWRS using non-invasive techniques

    International Nuclear Information System (INIS)

    Favennec, J.M.; Jossinet, G.; Thomas, P.

    1995-08-01

    PWR primary flow and temperature measurements are classically done with either indirect or invasive techniques. EDF has developed and installed non-invasive innovative techniques on an industrial nuclear power plant (Chooz N1 type PWR). Primary flow-rate is determined by measurement of velocity of primary water in the hot leg: the time fluctuation of γ-ray activity from Nitrogen-16 (produced by neutron activation of 016) is measured outside of the pipe by two specially-designed detectors. The signals from both detectors are then cross-correlated to determine the transit time of primary water between the two detectors; primary flow-rate is then deduced Primary temperature is determined by measurement of sound velocity in hot and cold leg: two pairs of ultrasonic transducers, installed on pipe outer wall, emit pulses periodically, for which the time of flight along the two pipes diameters are determined. The sound velocity thus computed (diameter over time of flight) is then converted into temperature, by use of a calibration formula relating sound velocity to temperature and pressure. This paper addresses metrological and technical aspects of the methods. Experience feedback on industrial PWRs is also presented. (author). 4 refs., 13 figs

  13. Whole body protein kinetics measured with a non-invasive method in severely burned children.

    Science.gov (United States)

    Børsheim, Elisabet; Chinkes, David L; McEntire, Serina J; Rodriguez, Nancy R; Herndon, David N; Suman, Oscar E

    2010-11-01

    Persistent and extensive skeletal muscle catabolism is characteristic of severe burns. Whole body protein metabolism, an important component of this process, has not been measured in burned children during the long-term convalescent period. The aim of this study was to measure whole body protein turnover in burned children at discharge (95% healed) and in healthy controls by a non-invasive stable isotope method. Nine burned children (7 boys, 2 girls; 54±14 (S.D.)% total body area burned; 13±4 years; 45±20 kg; 154±14 cm) and 12 healthy children (8 boys, 4 girls; 12±3 years; 54±16 kg; 150±22 cm) were studied. A single oral dose of (15)N-alanine (16 mg/kg) was given, and thereafter urine was collected for 34 h. Whole body protein flux was calculated from labeling of urinary urea nitrogen. Then, protein synthesis was calculated as protein flux minus excretion, and protein breakdown as flux minus intake. At discharge, total protein turnover was 4.53±0.65 (S.E.)g kg body weight(-1) day(-1) in the burned children compared to 3.20±0.22 g kg(-1) day(-1) in controls (P=0.02). Expressed relative to lean body mass (LBM), the rates were 6.12±0.94 vs. 4.60±0.36 g kg LBM(-1) day(-1) in burn vs. healthy (P=0.06). Total protein synthesis was also elevated in burned vs. healthy children, and a tendency for elevated protein breakdown was observed. Total protein turnover is elevated in burned children at discharge compared to age-matched controls, possibly reflecting the continued stress response to severe burn. The oral (15)N-alanine bolus method is a convenient, non-invasive, and no-risk method for measurement of total body protein turnover. Copyright © 2010 Elsevier Ltd and ISBI. All rights reserved.

  14. Non-invasive measurements of soil water content using a pulsed 14 MeV neutron generator

    Science.gov (United States)

    Most current techniques of setting crop irrigation schedules use invasive, labor-intensive soil-water content measurements. We developed a cart-mounted neutron probe capable of non-invasive measurements of volumetric soil moisture contents. The instrument emits neutrons which are captured by hydroge...

  15. Development of biosensors for non-invasive measurements of heart failure biomarkers in saliva

    Science.gov (United States)

    Alcacer, Albert; Streklas, Angelos; Baraket, Abdoullatif; Zine, Nadia; Errachid, Abdelhamid; Bausells, Joan

    2017-06-01

    Biomedical engineering research today is focused on non-invasive techniques for detection of biomarkers related to specific health issues 1. Three metal layer microelectrode (μE) sensors have been implemented to detect specific biomarkers which can be found in human saliva related with heart failure problems 2 such as interleukin and Tumore Necrosis Factor-α (TNF-α), and used as highly sensitive saliva sensors. We designed specialized μEs combining different technologies for multiple measurements aiming to a lab-on-a-chip future integration. Measurements are based to basic principles of Cyclic Voltammetry (CV) and Electrochemical Impedance Spectroscopy (EIS). Thus, certain planar technology was used involving three metal layers of gold, platinum and silver deposited over an oxidized silicon substrate following standard cleanroom procedures of lithography for the definition of μEs, sputtering physical vapor deposition (PVD) for gold, evaporation PVD for silver and platinum, and plasma enhanced chemical vapor deposition (PECVD) for passivation layer of silicon nitride.

  16. Non-invasive continuous finger blood pressure measurement during orthostatic stress compared to intra-arterial pressure

    NARCIS (Netherlands)

    Imholz, B. P.; Settels, J. J.; van der Meiracker, A. H.; Wesseling, K. H.; Wieling, W.

    1990-01-01

    The aim of the study was to evaluate whether invasive blood pressure responses to orthostatic stress can be replaced by non-invasive continuous finger blood pressure responses. DESIGN - Intrabrachial and Finapres blood pressures were simultaneously measured during passive head up tilt and during

  17. Non-invasive perilymphatic pressure measurement in normal hearing subjects using the MMS-10 tympanic displacement analyser

    NARCIS (Netherlands)

    Rosingh, HJ; Wit, HP; Albers, FWJ

    The MMS-10 Tympanic Displacement Analyser (TDA) is a new device to measure the perilymphatic pressure of the human inner ear in a non-invasive way. In this study, the instrument was used in 50 normal hearing subjects (100 ears) in three different conditions: i) sitting upright and supine; ii) in the

  18. Non-invasive tryptophan fluorescence measurements as a novel method of grading cataract

    DEFF Research Database (Denmark)

    Erichsen, Jesper Høiberg; Mensah, Aurore; Kessel, Line

    2017-01-01

    . All cataracts were age-related. Lens material from 16 eyes of 14 patients was included in the study. Cataracts were preoperatively graded in categories 1, 2 and 3. No lenses were category 4. For nuclear cataracts mean values of F-factor were 52.9 (SD 12.2), 61.7 (SD 5.3) and 75.7 (SD 8.......9) for categories 1, 2 and 3 respectively. Linear regression on F-factor as a function of preoperative grading category showed increasing values of F-factor with increasing preoperative grading category, R2 = 0.515. Our experiment showed that preoperative optical grading of cataracts by Scheimpflug imaging may......Development of non-invasive treatments for cataract calls for a sensitive diagnostic assay. We conducted a study to test whether the ratio of folded tryptophan to non-tryptophan fluorescence emission (F-factor) may be used for grading cataracts in human lenses. The F-factor was measured...

  19. Can intracranial pressure be measured non-invasively bedside using a two-depth Doppler-technique?

    Science.gov (United States)

    Koskinen, Lars-Owe D; Malm, Jan; Zakelis, Rolandas; Bartusis, Laimonas; Ragauskas, Arminas; Eklund, Anders

    2017-04-01

    Measurement of intracranial pressure (ICP) is necessary in many neurological and neurosurgical diseases. To avoid lumbar puncture or intracranial ICP probes, non-invasive ICP techniques are becoming popular. A recently developed technology uses two-depth Doppler to compare arterial pulsations in the intra- and extra-cranial segments of the ophthalmic artery for non-invasive estimation of ICP. The aim of this study was to investigate how well non-invasively-measured ICP and invasively-measured cerebrospinal fluid (CSF) pressure correlate. We performed multiple measurements over a wide ICP span in eighteen elderly patients with communicating hydrocephalus. As a reference, an automatic CSF infusion apparatus was connected to the lumbar space. Ringer's solution was used to create elevation to pre-defined ICP levels. Bench tests of the infusion apparatus showed a random error (95 % CI) of less than ±0.9 mmHg and a systematic error of less than ±0.5 mmHg. Reliable Doppler signals were obtained in 13 (72 %) patients. An infusion test could not be performed in one patient. Thus, twelve patients and a total of 61 paired data points were studied. The correlation between invasive and non-invasive ICP measurements was good (R = 0.74), and the 95 % limits of agreements were -1.4 ± 8.8 mmHg. The within-patient correlation varied between 0.47 and 1.00. This non-invasive technique is promising, and these results encourage further development and evaluation before the method can be recommended for use in clinical practice.

  20. Non-invasive tryptophan fluorescence measurements as a novel method of grading cataract.

    Science.gov (United States)

    Erichsen, Jesper Høiberg; Mensah, Aurore; Kessel, Line

    2017-12-01

    Development of non-invasive treatments for cataract calls for a sensitive diagnostic assay. We conducted a study to test whether the ratio of folded tryptophan to non-tryptophan fluorescence emission (F-factor) may be used for grading cataracts in human lenses. The F-factor was measured on aspirated lens material from eyes undergoing femtosecond laser assisted cataract surgery (FLACS) and was compared to a preoperative optical grading of cataract using Scheimpflug imaging. The preoperative optical grading allocated the cataracts to 1 of 4 categories according to the density of the cataract. All cataracts were age-related. Lens material from 16 eyes of 14 patients was included in the study. Cataracts were preoperatively graded in categories 1, 2 and 3. No lenses were category 4. For nuclear cataracts mean values of F-factor were 52.9 (SD 12.2), 61.7 (SD 5.3) and 75.7 (SD 8.9) for categories 1, 2 and 3 respectively. Linear regression on F-factor as a function of preoperative grading category showed increasing values of F-factor with increasing preoperative grading category, R 2  = 0.515. Our experiment showed that preoperative optical grading of cataracts by Scheimpflug imaging may correlate to measures of tryptophan and non-tryptophan fluorescence in human lenses. Based on our results we find that measuring the ratio between tryptophan- and non-tryptophan fluorescence may be a future tool for grading cataracts, but further research is needed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Individualized estimation of human core body temperature using non-invasive measurements.

    Science.gov (United States)

    Laxminarayan, Srinivas; Rakesh, Vineet; Oyama, Tatsuya; Kazman, Josh B; Yanovich, Ran; Ketko, Itay; Epstein, Yoram; Morrison, Shawnda A; Reifman, Jaques

    2018-02-08

    A rising core body temperature (Tc) during strenuous physical activity is a leading indicator of heat-injury risk. Hence, a system that can estimate Tc in real time and provide early warning of an impending temperature rise may enable proactive interventions to reduce the risk of heat injuries. However, real-time field assessment of Tc requires impractical invasive technologies. To address this problem, we developed a mathematical model that describes the relationships between Tc and non-invasive measurements of an individual's physical activity, heart rate, and skin temperature, and two environmental variables (ambient temperature and relative humidity). A Kalman filter adapts the model parameters to each individual and provides real-time personalized Tc estimates. Using data from three distinct studies, comprising 166 subjects who performed treadmill and cycle ergometer tasks under different experimental conditions, we assessed model performance via the root mean squared error (RMSE). The individualized model yielded an overall average RMSE of 0.33{degree sign}C [standard deviation (SD) = 0.18], allowing us to reach the same conclusions in each study as those obtained using the Tc measurements. Furthermore, for 22 unique subjects whose Tc exceeded 38.5{degree sign}C, a potential lower core body temperature limit of clinical relevance, the average RMSE decreased to 0.25{degree sign}C (SD = 0.20). Importantly, these results remained robust in the presence of simulated real-world operational conditions, yielding no more than 16% worse RMSEs when measurements were missing (40%) or laden with added noise. Hence, the individualized model provides a practical means to develop an early warning system for reducing heat-injury risk.

  2. Non-invasive measurement of adrenal response after standardized exercise tests in prepubertal children

    NARCIS (Netherlands)

    Heijsman, Sigrid M.; Koers, Nicoline F.; Bocca, Gianni; van der Veen, Betty S.; Appelhof, Maaike; Kamps, Arvid W. A.

    Objective: To determine the feasibility of non-invasive evaluation of adrenal response in healthy prepubertal children by standardized exercise tests. Methods: On separate occasions, healthy prepubertal children performed a submaximal cycling test, a maximal cycling test, and a 20-m shuttle-run

  3. A preliminary verification of the floating reference measurement method for non-invasive blood glucose sensing

    Science.gov (United States)

    Min, Xiaolin; Liu, Rong; Fu, Bo; Xu, Kexin

    2017-06-01

    In the non-invasive sensing of blood glucose by near-infrared diffuse reflectance spectroscopy, the spectrum is highly susceptible to the unstable and complicated background variations from the human body and the environment. In in vitro analyses, background variations are usually corrected by the spectrum of a standard reference sample that has similar optical properties to the analyte of interest. However, it is hard to find a standard sample for the in vivo measurement. Therefore, the floating reference measurement method is proposed to enable relative measurements in vivo, where the spectra under some special source-detector distance, defined as the floating reference position, are insensitive to the changes in glucose concentration due to the absorption effect and scattering effect. Because the diffuse reflectance signals at the floating reference positions only reflect the information on background variations during the measurement, they can be used as the internal reference. In this paper, the theoretical basis of the floating reference positions in a semi-infinite turbid medium was discussed based on the steady-state diffusion equation and its analytical solutions in a semi-infinite turbid medium (under the extrapolated boundary conditions). Then, Monte-Carlo (MC) simulations and in vitro experiments based on a custom-built continuous-moving spatially resolving double-fiber NIR measurement system, configured with two types of light source, a super luminescent diode (SLD) and a super-continuum laser, were carried out to verify the existence of the floating reference position in 5%, 10% and 20% Intralipid solutions. The results showed that the simulation values of the floating reference positions are close to the theoretical results, with a maximum deviation of approximately 0.3 mm in 1100-1320 nm. Great differences can be observed in 1340-1400 nm because the optical properties of Intralipid in this region don not satisfy the conditions of the steady

  4. Non-invasive measurement using cardiovascular magnetic resonance of changes in pulmonary artery stiffness with exercise.

    Science.gov (United States)

    Forouzan, Omid; Warczytowa, Jared; Wieben, Oliver; François, Christopher J; Chesler, Naomi C

    2015-12-13

    Exercise stress tests are commonly used in clinical settings to monitor the functional state of the heart and vasculature. Large artery stiffness is one measure of arterial function that can be quantified noninvasively during exercise stress. Changes in proximal pulmonary artery stiffness are especially relevant to the progression of pulmonary hypertension (PH), since pulmonary artery (PA) stiffness is the best current predictor of mortality from right ventricular failure. Cardiovascular magnetic resonance (CMR) was used to investigate the effect of exercise stress on PA pulse wave velocity (PWV) and relative area change (RAC), which are both non-invasive measures of PA stiffness, in healthy subjects. All 21 subjects (average age 26 ± 4 years; 13 female and 8 male) used a custom-made MR-compatible stepping device to exercise (two stages of mild-to-moderate exercise of 3-4 min duration each) in a supine position within the confines of the scanner. To measure the cross-sectional area and blood flow velocity in the main PA (MPA), two-dimensional phase-contrast (2D-PC) CMR images were acquired. To measure the reproducibility of metrics, CMR images were analyzed by two independent observers. Inter-observer agreements were calculated using the intraclass correlation and Bland-Altman analysis. From rest to the highest level of exercise, cardiac output increased from 5.9 ± 1.4 L/min to 8.2 ± 1.9 L/min (p exercise stage (from 2.7 ± 1.0 m/s to 3.6 ± 1.4 m/s, p exercise stages. We found good inter-observer agreement for quantification of MPA flow, RAC and PWV. These results demonstrate that metrics of MPA stiffness increase in response to acute moderate exercise in healthy subjects and that CMR exercise stress offers great potential in clinical practice to noninvasively assess vascular function.

  5. Visualisation of axolotl blastema cells and pig endothelial progenitor cells using very small super paramagnetic iron oxide particles in MRI: A technique with applications for non invasive visualisation of regenerative processes

    DEFF Research Database (Denmark)

    Lauridsen, Henrik; Kjær, N.B.; Bek, Maria

    Objectives: Regenerative studies on model animals often require invasive techniques such as tissue sampling and histology for visualisation of regenerative processes. These interactions are avoided using non invasive imaging techniques. The internalisation of very small super paramagnetic iron...

  6. [A non-invasive glucose measurement method based on orthogonal twin-polarized light and its pilot experimental investigation].

    Science.gov (United States)

    Wang, Hong; Wu, Baoming; Liu, Ding

    2010-04-01

    In order to overcome the existing shortcomings of the non-invasive blood glucose polarized light measurement methods of optical heterodyne detection and direct detection, we present in this paper a new orthogonal twin-polarized light (OTPL) non-invasive blood glucose measurement method, which converts the micro-angle rotated by an optical active substance such as glucose to the energy difference of OTPL, amplifies the signals by the high-sensitivity lock-in amplifier made of relevant principle, controls Faraday coil current to compensate the changes in deflection angle caused by blood glucose, and makes use of the linear relationship between blood glucose concentration and Faraday coil current to calculate blood glucose concentration. In our comparative experiment using the data measured by LX-20 automatic biochemical analyzer as a standard, a 0.9777 correlation coefficient is obtained in glucose concentration experiment, and a 0.952 in serum experiment. The result shows that this method has higher detection sensitivity and accuracy and lays a foundation for the development of practical new type of non-invasive blood glucose tester for diabetic patients.

  7. Real-time and non-invasive measurements of cell mechanical behaviour with optical coherence phase microscopy

    Science.gov (United States)

    Gillies, D.; Gamal, W.; Downes, A.; Reinwald, Y.; Yang, Y.; El Haj, A.; Bagnaninchi, P. O.

    2017-02-01

    There is an unmet need in tissue engineering for non-invasive, label-free monitoring of cell mechanical behaviour in their physiological environment. Here, we describe a novel optical coherence phase microscopy (OCPM) set-up which can map relative cell mechanical behaviour in monolayers and 3D systems non-invasively, and in real-time. 3T3 and MCF-7 cells were investigated, with MCF-7 demonstrating an increased response to hydrostatic stimulus indicating MCF-7 being softer than 3T3. Thus, OCPM shows the ability to provide qualitative data on cell mechanical behaviour. Quantitative measurements of 6% agarose beads have been taken with commercial Cell Scale Microsquisher system demonstrating that their mechanical properties are in the same order of magnitude of cells, indicating that this is an appropriate test sample for the novel method described.

  8. Luminescent Tension-Indicating Orthopedic Strain Gauges for Non-Invasive Measurements Through Tissue

    Science.gov (United States)

    Anker, Jeffrey (Inventor); Rogalski, Melissa (Inventor); Anderson, Dakota (Inventor); Heath, Jonathon (Inventor)

    2015-01-01

    Strain gauges that can provide information with regard to the state of implantable devices are described. The strain gauges can exhibit luminescence that is detectable through living tissue, and the detectable luminescent emission can vary according to the strain applied to the gauge. A change in residual strain of the device can signify a loss of mechanical integrity and/or loosening of the implant, and this can be non-invasively detected either by simple visual detection of the luminescent emission or through examination of the emission with a detector such as a spectrometer or a camera.

  9. A Lab-on-a-Chip-Based Non-Invasive Optical Sensor for Measuring Glucose in Saliva

    Directory of Open Access Journals (Sweden)

    Dong Geon Jung

    2017-11-01

    Full Text Available A lab-on-a-chip (LOC-based non-invasive optical sensor for measuring glucose in saliva was fabricated. Existing glucose sensors utilizing blood require acquisition of a blood sample by pricking the finger, which is painful and inconvenient. To overcome these limitations, we propose a non-invasive glucose sensor with LOC, micro-electro-mechanical system and optical measurement technology. The proposed sensor for measuring glucose in saliva involves pretreatment, mixing, and measurement on a single tiny chip. Saliva containing glucose and glucose oxidase for glucose oxidation are injected through Inlets 1 and 2, respectively. Next, H2O2 is produced by the reaction between glucose and glucose oxidase in the pretreatment part. The saliva and generated H2O2 are mixed with a colorizing agent injected through Inlet 3 during the mixing part and the absorbance of the colorized mixture is measured in the measurement part. The absorbance of light increases as a function of glucose concentration at a wavelength of 630 nm. To measure the absorbance of the colorized saliva, a light-emitting diode with a wavelength of 630 nm and a photodiode were used during the measurement part. As a result, the measured output current of the photodiode decreased as glucose concentration in the saliva increased.

  10. High Definition Oscillometry: Non-invasive Blood Pressure Measurement and Pulse Wave Analysis.

    Science.gov (United States)

    Egner, Beate

    2015-01-01

    Non-invasive monitoring of blood pressure has become increasingly important in research. High-Definition Oscillometry (HDO) delivers not only accurate, reproducible and thus reliable blood pressure but also visualises the pulse waves on screen. This allows for on-screen feedback in real time on data validity but even more on additional parameters like systemic vascular resistance (SVR), stroke volume (SV), stroke volume variances (SVV), rhythm and dysrhythmia. Since complex information on drug effects are delivered within a short period of time, almost stress-free and visible in real time, it makes HDO a valuable technology in safety pharmacology and toxicology within a variety of fields like but not limited to cardiovascular, renal or metabolic research.

  11. Application of non-invasive cerebral electrical impedance measurement on brain edema in patients with cerebral infarction.

    Science.gov (United States)

    He, Lan Ying; Wang, Jian; Luo, Yong; Dong, Wei Wei; Liu, Li Xu

    2010-09-01

    To investigate the change of brain edema in patients with cerebral infarction by non-invasive cerebral electrical impedance (CEI) measurements. An invariable secure current at a frequency of 50 kHz and an intensity of 0.1 mA was given into a person's brain. CEI values of the bilateral hemisphere of 200 healthy volunteers and 107 patients with cerebral infarction were measured by non-invasive brain edema monitor. The results of perturbative index (PI) converted from CEI were compared with the volumes of brain edema, which were calculated by an image analysing system according to magnetic resonance imaging or computed tomography. (1) In the healthy volunteers, PI values in the left and right hemisphere were 7.98 +/- 0.95 and 8.02 +/- 0.71 respectively, and there was no significant difference between the two sides (p>0.05). Age, gender and different measuring times did not obviously affect PI values (p>0.05). (2) In the cerebral infarction group, CEI measurements were more sensitive to the volumes of lesion, which were more than 20 ml. The positive ratio of PI was higher when the volumes of infarction were >20 ml (80.0%): the ratio of PI was 75.9% when the volumes of infarction were 20-50 ml and it was 83.3% when the volumes of lesion were more than 50 ml. PI was lower when the volumes were less than 20 ml. (3) PI of the infarction side increased obviously 3-5 days after onset; the difference of two sides was the most significant. There was a positive correlation between PI of the infarction side and volume of infarction. PI may be a sensitive parameter for non-invasive monitoring of the change of brain edema in patients with cerebral infarction. CEI is a valuable method for the early detection of brain edema.

  12. Determination of NIR informative wavebands for transmission non-invasive blood glucose measurement using a Fourier transform spectrometer

    Science.gov (United States)

    Yang, Wenming; Liao, Ningfang; Cheng, Haobo; Li, Yasheng; Bai, Xueqiong; Deng, Chengyang

    2018-03-01

    Non-invasive blood glucose measurement using near infrared (NIR) spectroscopy relies on wavebands that provide reliable information about spectral absorption. In this study, we investigated wavebands which are informative for blood glucose in the NIR shortwave band (900˜1450 nm) and the first overtone band (1450˜1700 nm) through a specially designed NIR Fourier transform spectrometer (FTS), which featured a test fixture (where a sample or subject's finger could be placed) and all-reflective optics, except for a Michelson structure. Different concentrations of glucose solution and seven volunteers who had undergone oral glucose tolerance tests (OGTT) were studied to acquire transmission spectra in the shortwave band and the first overtone band. Characteristic peaks of glucose absorption were identified from the spectra of glucose aqueous solution by second-order derivative processing. The wavebands linked to blood glucose were successfully estimated through spectra of the middle fingertip of OGTT participants by a simple linear regression and correlation coefficient. The light intensity difference showed that glucose absorption in the first overtone band was much more prominent than it was in the shortwave band. The results of the SLR model established from seven OGTTs in total on seven participants enabled a positive estimation of the glucose-linked wavelength. It is suggested that wavebands with prominent characteristic peaks, a high correlation coefficient between blood glucose and light intensity difference and a relatively low standard deviation of predicted values will be the most informative wavebands for transmission non-invasive blood glucose measurement methods. This work provides a guidance for waveband selection for the development of non-invasive NIR blood glucose measurement.

  13. Non-invasive measurement of cardiac output in heart failure patients using a new foreign gas rebreathing technique

    DEFF Research Database (Denmark)

    Gabrielsen, Anders; Videbaek, Regitze; Schou, Morten

    2002-01-01

    Values of effective pulmonary blood flow (Q(EP)) and cardiac output, determined by a non-invasive foreign gas rebreathing method (CO(RB)) using a new infrared photoacoustic gas analysing system, were compared with measurements of cardiac output obtained by the direct Fick (CO(FICK)) and thermodil......Values of effective pulmonary blood flow (Q(EP)) and cardiac output, determined by a non-invasive foreign gas rebreathing method (CO(RB)) using a new infrared photoacoustic gas analysing system, were compared with measurements of cardiac output obtained by the direct Fick (CO...... with significant shunt flow. In the eight patients without significant shunt flow, the agreement between Q(EP) and CO(FICK) was 0.3 +/- 0.9 litre x min(-1). In conclusion, a foreign gas rebreathing method with a new infrared photoacoustic gas analyser provided at least as reliable a measure of cardiac output...... as did thermodilution. In the absence of significant shunt flow, measurement of Q(EP) itself provides a reliable estimate of cardiac output in heart failure patients. The infrared photoacoustic gas analyser markedly facilitates clinical use of the rebreathing method in general, which makes the method...

  14. Non-invasive airway health measurement using synchrotron x-ray microscopy of high refractive index glass microbeads

    Energy Technology Data Exchange (ETDEWEB)

    Donnelley, Martin, E-mail: martin.donnelley@adelaide.edu.au; Farrow, Nigel; Parsons, David [Respiratory & Sleep Medicine, Women’s and Children’s Hospital, North Adelaide, South Australia (Australia); Robinson Research Institute, University of Adelaide, South Australia (Australia); School of Paediatrics and Reproductive Health, University of Adelaide, South Australia (Australia); Morgan, Kaye; Siu, Karen [School of Physics, Monash University, Victoria (Australia)

    2016-01-28

    Cystic fibrosis (CF) is caused by a gene defect that compromises the ability of the mucociliary transit (MCT) system to clear the airways of debris and pathogens. To directly characterise airway health and the effects of treatments we have developed a synchrotron X-ray microscopy method that non-invasively measures the local rate and patterns of MCT behaviour. Although the nasal airways of CF mice exhibit the CF pathophysiology, there is evidence that nasal MCT is not altered in CF mice1. The aim of this experiment was to determine if our non-invasive local airway health assessment method could identify differences in nasal MCT rate between normal and CF mice, information that is potentially lost in bulk MCT measurements. Experiments were performed on the BL20XU beamline at the SPring-8 Synchrotron in Japan. Mice were anaesthetized, a small quantity of micron-sized marker particles were delivered to the nose, and images of the nasal airways were acquired for 15 minutes. The nasal airways were treated with hypertonic saline or mannitol to increase surface hydration and MCT. Custom software was used to locate and track particles and calculate individual and bulk MCT rates. No statistically significant differences in MCT rate were found between normal and CF mouse nasal airways or between treatments. However, we hope that the improved sensitivity provided by this technique will accelerate the ability to identify useful CF lung disease-modifying interventions in small animal models, and enhance the development and efficacy of proposed new therapies.

  15. Oxygen measurements in platelet fluids - a new non-invasive method to detect bacterial contaminations in platelets.

    Science.gov (United States)

    Mueller, M M; Hourfar, M K; Huber, E; Sireis, W; Weichert, W; Seifried, E; Tonn, T; Schmidt, M

    2012-06-01

    The residual risk for bacterial contamination in blood components especially in platelets is one to two orders of magnitude higher than for transfusion relevant viral infections. The majority of all bacterial transmitted fatalities occurred at the end of platelet shelf life. Therefore, the maximum shelf life of platelet concentrates (PC) was reduced to 4 days after blood donation in Germany in 2008. A new continuous non-invasive bacterial detection method was developed by O(2) measurements in the platelet fluids and tested with 10 transfusion relevant bacteria species. The bacterial concentration at the time point of a positive signal of PreSense O(2) ranged between 10(2) and 10(5) CFU mL(-1) . Harmful transfusion-transmitted bacterial infection would have probably been prevented by this novel technology. Only strict anaerobic bacteria strains like Clostridium perfringens were not detected within the study period of 72 h. The described non-invasive bacterial detection method represents a new approach to prevent transmission of bacterial infection in platelets. The method is characterised by the advantage that all investigations can be performed until right up to the time of transfusion, and therefore, reduce the risk for sample errors to a minimum. © 2012 The Authors. Transfusion Medicine © 2012 British Blood Transfusion Society.

  16. Non-invasive measure of respiratory mechanics and conventional respiratory parameters in conscious large animals by high frequency Airwave Oscillometry.

    Science.gov (United States)

    Bassett, Leanne; Troncy, Eric; Robichaud, Annette; Schuessler, Thomas F; Pouliot, Mylène; Ascah, Alexis; Authier, Simon

    2014-01-01

    A number of drugs in clinical trials are discontinued due to potentially life-threatening airway obstruction. As some drugs may not cause changes in core battery parameters such as tidal volume (Vt), respiratory rate (RR) or minute ventilation (MV), including measurements of respiratory mechanics in safety pharmacology studies represents an opportunity for design refinement. The present study aimed to test a novel non-invasive methodology to concomitantly measure respiratory system resistance (Rrs) and conventional respiratory parameters (Vt, RR, MV) in conscious Beagle dogs and cynomolgus monkeys. An Airwave Oscillometry system (tremoFlo; THORASYS Inc., Montreal, Canada) was used to concomitantly assess Rrs and conventional respiratory parameters before and after intravenous treatment with a bronchoactive agent. Respiratory mechanics measurements were performed by applying a short (i.e. 16s) single high frequency (19Hz) waveform at the subject's airway opening via a face mask. During measurements, pressure and flow signals were recorded. After collection of baseline measurements, methacholine was administered intravenously to Beagle dogs (n=6) and cynomolgus monkeys (n=4) at 8 and 68μg/kg, respectively. In dogs, methacholine induced significant increases in Vt, RR and MV while in monkeys, it only augmented RR. A significant increase in Rrs was observed after methacholine administration in both species with mean percentage peak increases from baseline of 88 (53)% for dogs and 28 (16)% for cynomolgus monkeys. Airwave Oscillometry appears to be a promising non-invasive methodology to enable respiratory mechanics measurements in conscious large animals, a valuable refinement in respiratory safety pharmacology. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Effect of postprandial hyperglycaemia in non-invasive measurement of cerebral metabolic rate of glucose in non-diabetic subjects

    Energy Technology Data Exchange (ETDEWEB)

    Tsuchida, Tatsuro; Itoh, Harumi [Department of Radiology, Fukui Medical University, Matsuoka (Japan); Sadato, Norihiro; Nishizawa, Sadahiko; Yonekura, Yoshiharu [Biomedical Imaging Research Center, Fukui Medical University (Japan)

    2002-02-01

    The aim of this study was to determine the effect of postprandial hyperglycaemia (HG) on the non-invasive measurement of cerebral metabolic rate of glucose (CMRGlc). Five patients who had a meal within an hour before a fluorine-18 fluorodeoxyglucose positron emission tomography (FDG-PET) examination were recruited in this study. They underwent intermittent arterial blood sampling (measured input function), and, based on this sampling, CMRGlc was calculated using an autoradiographic method (CMRGlc{sub real}). Simulated input functions were generated based on standardised input function, body surface area and net injected dose of FDG, and simulated CMRGlc (CMRGlc{sub sim}) was also calculated. Percent error of the area under the curve (AUC) between measured (AUC{sub real}) and simulated input function (AUC{sub IFsim}) and percent error between CMRGlc{sub real} and CMRGlc{sub sim} were calculated. These values were compared with those obtained from a previous study conducted under fasting conditions (F). The serum glucose level in the HG group was significantly higher than that in the F group (165{+-}69 vs 100{+-}9 mg/dl, P=0.0007). Percent errors of AUC and CMRGlc in grey matter and white matter in HG were significantly higher than those in F (12.9%{+-}1.3% vs 3.5%{+-}2.2% in AUC, P=0.0015; 18.2%{+-}2.2% vs 2.9%{+-}1.9% in CMRGlc in grey matter, P=0.0028; 24.0%{+-}4.6% vs 3.4%{+-}2.2% in CMRGlc in white matter, P=0.0028). It is concluded that a non-invasive method of measuring CMRGlc should be applied only in non-diabetic subjects under fasting conditions. (orig.)

  18. A novel non invasive measurement of hemodynamic parameters: Comparison of single-chamber ventricular and dual-chamber pacemaker

    Directory of Open Access Journals (Sweden)

    Ingrid M. Pardede

    2008-03-01

    Full Text Available We carried out a cross sectional study to analyze hemodynamic parameters of single-chamber ventricular pacemaker compared with dual-chamber pacemaker by using thoracic electrical bioimpedance monitoring method (Physio Flow™ - a novel simple non-invasive measurement. A total of 48 consecutive outpatients comprised of 27 single chamber pacemaker and 21 dual chamber were analyzed. We measured cardiac parameters: heart rate, stroke volume index, cardiac output index, estimated ejection fraction, end diastolic volume, early diastolic function ratio, thoracic fluid index, and systemic parameters: left cardiac work index and systemic vascular resistance index. Baseline characteristic and pacemaker indication were similar in both groups. Cardiac parameters assessment revealed no significant difference between single-chamber pacemaker and dual-chamber pacemaker in heart rate, stroke volume index, cardiac index, estimated ejection fraction, end-diastolic volume, thoracic fluid index. There was significantly higher early diastolic function ratio in single-chamber pacemaker compared to dual-chamber pacemaker: 92% (10.2-187.7% vs. 100.6% (48.7-403.2%; p=0.006. Systemic parameters assessment revealed significantly higher left cardiac work index in single-chamber group than dual-chamber group 4.9 kg.m/m² (2.8-7.6 kg.m/m² vs. 4.3 kg.m/m² (2.9-7.2 kg.m/m²; p=0.004. There was no significant difference on systemic vascular resistance in single-chamber compared to dual-chamber pacemaker. Single-chamber ventricular pacemaker provides similar stroke volume, cardiac output and left cardiac work, compared to dual-chamber pacemaker. A non-invasive hemodynamic measurement using thoracic electrical bioimpedance is feasible for permanent pacemaker outpatients. (Med J Indones 2008; 17: 25-32Keywords: Permanent pacemaker, single chamber, dual chamber, thoracic electrical bioimpedance, hemodynamic parameter

  19. Research on the best measurement situation between optical probe and tissue surfaces in non-invasive detection

    Science.gov (United States)

    Yu, Xuyao; Liu, Rong; Yu, Hui; Wang, Jiao; Wang, Jun; Xu, Kexin

    2016-11-01

    Near-infrared spectroscopy is often used for the non-invasive detection of composition in the human body, such as that of blood glucose and haemoglobin, due to its high penetration depth into tissues. Although it is feasible to position the optical probe precisely, contact situation between probe and human tissues is a difficult problem to determine because of physiological tremor and mechanical performance of bio-soft tissue. Here, we proposed a novel estimation method for the situation between the optical probe and tissue surfaces based on the dynamic auto-correlation matrix of two-dimensional correlation spectroscopy (2DCOS) and radar chart. The diffuse reflectance spectra from the left palm of 4 healthy volunteers were collected while the optical probe gradually approached and pressed bio-tissues with a custom-design controlling device. 2DCOS in the wavelength with lower absorption (1000-1400 nm) was calculated under the perturbation of relative-distance and contact pressure between the optical probe and tissue surface. The synchronous 2DCOS showed that the surface reflection and diffuse reflectance were greatly affected by the contact conditions in 1100 nm, 1220 nm, and 1300 nm. Then the dynamic auto-correlation matrix of 2DCOS was established for the adjacent spectra, and the significant difference wavelengths were used to build radar charts to determine the critical contact situation visually. Results showed that the maximum variations of dynamic auto-correlation matrix appeared at near 1300 nm, and the relative distance between the probe and tissue corresponding to the critical contact state can be easily observed with radar charts with 0.25 mm uncertainty, which was consistent with the self-feeling of each volunteer. So this method can be applied to exactly determine the optimal measurement status for the non-invasive body composition detection in vivo. It is important for the design of human-machine interface and the accuracy improvement of body

  20. Validation of a new non-invasive blood pressure measurement method on mice via pulse wave propagation time measurement on a cuff

    OpenAIRE

    Nguyen, Xuan P.; Kronemayer, Ralf; Herrmann, Peter; Mejía, Atila; Daw, Zamira; Nguyen, Xuan D.; Kränzlin, Bettina; Gretz, Norbert

    2011-01-01

    In the present article, we describe the validation of a new non-invasive method for measuring blood pressure (BP) which also enables to determine the three BP values: systolic, diastolic and mean value. Our method is based on the pulse transit time (PTT) measurement along an artery directly at the BP cuff. The accuracy of this method was evaluated by comparison with the direct simultaneous measurement of blood pressure from 40 anesthetized female mice. Close correlation ...

  1. Non-invasive measurement of brain glycogen by NMR spectroscopy and its application to the study of brain metabolism

    Science.gov (United States)

    Tesfaye, Nolawit; Seaquist, Elizabeth R.; Öz, Gülin

    2011-01-01

    Glycogen is the reservoir for glucose in the brain. Beyond the general agreement that glycogen serves as an energy source in the central nervous system, its exact role in brain energy metabolism has yet to be elucidated. Experiments performed in cell and tissue culture and animals have shown that glycogen content is affected by several factors including glucose, insulin, neurotransmitters, and neuronal activation. The study of in vivo glycogen metabolism has been hindered by the inability to measure glycogen non-invasively, but in the past several years, the development of a non-invasive localized 13C nuclear magnetic resonance (NMR) spectroscopy method has enabled the study of glycogen metabolism in the conscious human. With this technique, 13C-glucose is administered intravenously and its incorporation into and wash-out from brain glycogen is tracked. One application of this method has been to the study of brain glycogen metabolism in humans during hypoglycemia: data have shown that mobilization of brain glycogen is augmented during hypoglycemia and, after a single episode of hypoglycemia, glycogen synthesis rate is increased, suggesting that glycogen stores rebound to levels greater than baseline. Such studies suggest glycogen may serve as a potential energy reservoir in hypoglycemia and may participate in the brain's adaptation to recurrent hypoglycemia and eventual development of hypoglycemia unawareness. Beyond this focused area of study, 13C NMR spectroscopy has a broad potential for application in the study of brain glycogen metabolism and carries the promise of a better understanding of the role of brain glycogen in diabetes and other conditions. PMID:21732401

  2. Non-invasive and non-intrusive gas flow measurement based on the dynamic thermal characteristics of a pipeline

    Science.gov (United States)

    Fan, Zichuan; Cai, Maolin; Xu, Weiqing

    2012-10-01

    This paper proposes a non-intrusive and non-invasive method for measuring the gas flow rate in pneumatic industry. A heater unit is fixed on the partial circumference of the external wall of a pipeline and emits specific thermal pulses in a predetermined mode. Two sensors attached to the external wall detect the upstream temperature, and the gas flow can be measured according to the relationship between the flow rate and the dynamic thermal characteristics of the pipeline. To determine the preferable relationship, the temperature field model of the measurement system is built. Then, based on the measurement modes and the corresponding simulations, the objective functions for the gas flow specified on different dynamic thermal characteristics are established. Additionally, the minimum measurement time of the method, named reference time scale, is proposed. Further, robustness tests of the measurement method are derived by considering the influences of multiple factors on the objective functions. The experiments confirm that this method does not need to open the pipeline and disturb the flow regime in order to obtain the data; this method also avoids the typical time-consuming and complex operations, resists ambient temperature disturbance and achieves approximately acceptable results.

  3. Non-invasive and non-intrusive gas flow measurement based on the dynamic thermal characteristics of a pipeline

    International Nuclear Information System (INIS)

    Fan, Zichuan; Cai, Maolin; Xu, Weiqing

    2012-01-01

    This paper proposes a non-intrusive and non-invasive method for measuring the gas flow rate in pneumatic industry. A heater unit is fixed on the partial circumference of the external wall of a pipeline and emits specific thermal pulses in a predetermined mode. Two sensors attached to the external wall detect the upstream temperature, and the gas flow can be measured according to the relationship between the flow rate and the dynamic thermal characteristics of the pipeline. To determine the preferable relationship, the temperature field model of the measurement system is built. Then, based on the measurement modes and the corresponding simulations, the objective functions for the gas flow specified on different dynamic thermal characteristics are established. Additionally, the minimum measurement time of the method, named reference time scale, is proposed. Further, robustness tests of the measurement method are derived by considering the influences of multiple factors on the objective functions. The experiments confirm that this method does not need to open the pipeline and disturb the flow regime in order to obtain the data; this method also avoids the typical time-consuming and complex operations, resists ambient temperature disturbance and achieves approximately acceptable results. (paper)

  4. Advanced ultrasonic measurement methodology for non-invasive interrogation and identification of fluids in sealed containers

    Science.gov (United States)

    Tucker, Brian J.; Diaz, Aaron A.; Eckenrode, Brian A.

    2006-03-01

    Government agencies and homeland security related organizations have identified the need to develop and establish a wide range of unprecedented capabilities for providing scientific and technical forensic services to investigations involving hazardous chemical, biological, and radiological materials, including extremely dangerous chemical and biological warfare agents. Pacific Northwest National Laboratory (PNNL) has developed a prototype portable, hand-held, hazardous materials acoustic inspection prototype that provides noninvasive container interrogation and material identification capabilities using nondestructive ultrasonic velocity and attenuation measurements. Due to the wide variety of fluids as well as container sizes and materials encountered in various law enforcement inspection activities, the need for high measurement sensitivity and advanced ultrasonic measurement techniques were identified. The prototype was developed using a versatile electronics platform, advanced ultrasonic wave propagation methods, and advanced signal processing techniques. This paper primarily focuses on the ultrasonic measurement methods and signal processing techniques incorporated into the prototype. High bandwidth ultrasonic transducers combined with an advanced pulse compression technique allowed researchers to 1) obtain high signal-to-noise ratios and 2) obtain accurate and consistent time-of-flight (TOF) measurements through a variety of highly attenuative containers and fluid media. Results of work conducted in the laboratory have demonstrated that the prototype experimental measurement technique also provided information regarding container properties, which will be utilized in future container-independent measurements of hidden liquids.

  5. Non-invasive measurement of calcium and phosphorus in human body by NAA technique

    International Nuclear Information System (INIS)

    Wang Haiying; Luo Xianqing; Huang Hanqiao

    1995-01-01

    A system of measuring calcium and phosphorus in human legs has been developed by the use of partial-body neutron activation analysis and partial-body counting technique. The results are compared for the normals and osteoporotic patients

  6. Development of TAP, a non-invasive test for qualitative and quantitative measurements of biomarkers from the skin surface.

    Science.gov (United States)

    Orro, Kadri; Smirnova, Olga; Arshavskaja, Jelena; Salk, Kristiina; Meikas, Anne; Pihelgas, Susan; Rumvolt, Reet; Kingo, Külli; Kazarjan, Aram; Neuman, Toomas; Spee, Pieter

    2014-01-01

    The skin proteome contains valuable information on skin condition, but also on how skin may evolve in time and may respond to treatments. Despite the potential of measuring regulatory-, effector- and structural proteins in the skin for biomarker applications in clinical dermatology and skin care, convenient diagnostic tools are lacking. The aim of the present study was to develop a highly versatile and non-invasive diagnostic tool for multiplex measurements of protein biomarkers from the surface of skin. The Transdermal Analyses Patch (TAP) is a novel molecular diagnostic tool that has been developed to capture biomarkers directly from skin, which are quantitatively analyzed in spot-ELISA assays. Optimisation of protocols for TAP production and biomarker analyses makes TAP measurements highly specific and reproducible. In measurements of interleukin-1α (IL-1α), IL-1 receptor antagonist (IL-1RA) and human β-defensin (hBD-1) from healthy skin, TAP appears far more sensitive than skin lavage-based methods using ELISA. No side-effects were observed using TAP on human skin. TAP is a practical and valuable new skin diagnostic tool for measuring protein-based biomarkers from skin, which is convenient to use for operators, with minimal burden for patients.

  7. Development and validation of a measure of informed choice for women undergoing non-invasive prenatal testing for aneuploidy.

    Science.gov (United States)

    Lewis, Celine; Hill, Melissa; Skirton, Heather; Chitty, Lyn S

    2016-06-01

    Non-invasive prenatal testing (NIPT) using cell-free DNA for aneuploidy is a highly accurate screening test; however, concerns exist around the potential for routinisation of testing. The multidimensional measure of informed choice (MMIC) is a quantitative instrument developed to assess informed choice for Down syndrome screening (DSS). We have validated a modified MMIC for NIPT and measured informed choice among women offered NIPT in a public health service. The measure was distributed to women recruited across eight maternity units in the United Kingdom who had accepted DSS. Construct validity was assessed by simultaneously conducting qualitative interviews. Five hundred and eighty-five questionnaires were completed and 45 interviews conducted after blood-draw (or equivalent for those that declined NIPT). The measure demonstrated good internal consistency and internal validity. Results indicate the vast majority of women (89%) made an informed choice; 95% were judged to have good knowledge, 88% had a positive attitude and 92% had deliberated. Of the 11% judged to have made an uninformed choice, 55% had not deliberated, 41% had insufficient knowledge, and 19% had a negative attitude. Ethnicity (OR=2.78, P=0.003) and accepting NIPT (OR=16.05, P=0.021) were found to be significant predictors of informed choice. The high rate of informed choice is likely to reflect the importance placed on the provision of pre-test counselling in this study. It will be vital to ensure that this is maintained once NIPT is offered in routine clinical practice.

  8. Accuracy of non-invasive breath methane measurements using Fourier Transformed Infrared methods on individual cows

    DEFF Research Database (Denmark)

    Lassen, Jan; Løvendahl, Peter; Madsen, J

    2012-01-01

    Individual methane (CH4) production was recorded repeatedly on 93 dairy cows during milking in an automatic milking system (AMS), with the aim of estimating individual cow differences in CH4 production. Methane and CO2 were measured with a portable air sampler and analyzer unit based on Fourier...

  9. Test of PPV and kVp magnitudes using a non invasive voltage test aiming an improvement on the measurement acquisition

    International Nuclear Information System (INIS)

    Lucena, Rodrigo F. de; Dias, Daniel M.; Franciscatto, Priscila C.; Correa, Eduardo de L.; Vivolo, Vitor; Potiens, Maria da Penha A.

    2009-01-01

    In this work the measurements of PPV (Practical Peak Voltage) and kVp (Peak Voltage) were studied obtained by use of voltage non invasive, under different conditions, viewing an improvement on the acquisition measurements at the Instrument Calibration Laboratory of the IPEN, Sao Paulo, Brazil, for the implantation of the radiation quality required for the required calibrations for X radiation instruments

  10. Non-invasive measurement of peritoneal dialysate volume by the X-ray CT

    Energy Technology Data Exchange (ETDEWEB)

    Horiuchi, Takashi; Ohta, Y.; Tada, Yoko; Dohi, Takezumi (Tokyo Univ. (Japan). Faculty of Engineering); Azuma, N.; Matsugane, Takao; Sakurai, Hiroyuki; Mizumura, Hiroyuki; Suzuki, Mitsuru

    1991-02-01

    Graphical reconstruction of serial image data of the X-ray CT on three dialysis patients was studied to measure intraperitoneal dialysate volume. Volume estimation with a surface reconstructed model showed within 16% error while 36% error with a voxel model. However, total calculation time including data acquisition was 15 times faster with a voxel model. These results are indicative of higher relevance in clinical use of a voxel model when much clearer contour between water and tissues is obtained by improvement of software as well as the CT apparatus. (author).

  11. Non-invasive perilymphatic pressure measurement in normal hearing subjects using the MMS-10 tympanic displacement analyser.

    Science.gov (United States)

    Rosingh, H J; Wit, H P; Albers, F W

    1996-05-01

    The MMS-10 Tympanic Displacement Analyser (TDA) is a new device to measure the perilymphatic pressure of the human inner ear in a non-invasive way. In this study, the instrument was used in 50 normal hearing subjects (100 ears) in three different conditions: i) sitting upright and supine; ii) in the morning and afternoon; iii) before and after physical exertion. The perilymphatic pressure in supine position was significantly higher than that in upright-sitting position. The measured perilymphatic pressure did not alter during the day, indicating the absence of diurnal variation. Also, the perilymphatic pressure did not change significantly following physical exertion. Our study showed the well known large inter-individual differences in the measurement variables. Nevertheless, the correlation of the test results within one subject and one ear was high. The TDA is an appropriate device for the follow-up perilymphatic and cerebrospinal fluid pressure alternations in subjects and patients with disorders of the inner ear and cerebro-spinal fluid pressure, provided they have a normal middle ear function.

  12. A Quantum Gas Jet for Non-Invasive Beam Profile Measurement

    CERN Document Server

    Holzer, EB; Lefevre, T; Tzoganis, V; Welsch, C; Zhang, H

    2014-01-01

    A novel instrument for accelerator beam diagnostics is being developed by using De Broglie-wave focusing to create an ultra-thin neutral gas jet. Scanning the gas jet across a particle beam while measuring the interaction products, the beam profile can be measured. Such a jet scanner will provide an invaluable diagnostic tool in beams which are too intense for the use of wire scanners, such as the proposed CLIC Drive Beam. In order to create a sufficiently thin jet, a focusing element working on the de Broglie wavelength of the Helium atom has been designed. Following the principles of the Photon Sieve, we have constructed an Atomic Sieve consisting of 5230 nano-holes etched into a thin film of silicon nitride. When a quasi-monochromatic Helium jet is incident on the sieve, an interference pattern with a single central maximum is created. The stream of Helium atoms passing through this central maximum is much narrower than a conventional gas jet. The first experiences with this device are presented here, alon...

  13. Non-invasive techniques for measuring body composition: state of the art and future prospects

    Energy Technology Data Exchange (ETDEWEB)

    Cohn, S.H.

    1985-01-01

    In the past 20 years, in vivo analysis of body elements by neutron activation has become an important tool in medical research. In particular, it provides a much needed means to make quantitative assessments of body composition of human beings in vivo. The data are useful both for basic physiological understanding and for diagnosis and management of a variety of diseases and disorders. This paper traces the development of the in vivo neutron activation technique from basic systems to the present state of the art facilities. A scan of some of the numerous clinical applications that have been made with this technique, reveals the broad potentialities of in vivo neutron activation. The paper also considers alternative routes of future development and raises some of the questions now faced in making the techniques more widely available to both medical practitioners and medical investigators. In vivo neutron activation has opened a new era of both clinical diagnosis and therapy evaluation, and investigation into the modelling of body composition. The techniques are new, but it is already clear that considerable strides can be made in increasing accuracy and precision, increasing the number of elements susceptible to measurement, and reducing the dose required for the measurement. 18 refs., 7 figs.

  14. Investigation of Glucose Non-Invasive Measurement Based on NIR Laser

    Directory of Open Access Journals (Sweden)

    Yingna Zheng

    2006-10-01

    Full Text Available Near-infrared (NIR diffuse reflectance spectroscopy represents a feasible and promising approach to the noninvasive prediction of blood glucose concentration. This paper experimentally studied and proposed a novel method to develop a stand-alone measurement system, in which laser beams at several particular wavelengths are collimated and illuminated a sample with low-energy NIR by an optical fibre probe, and the diffused reflectance from the sample is collected by a detector. The experimental scheme of the measurement system has been demonstrated to be reasonable and suitable for detecting the change of diffuse reflected absorbance from phantoms and finger tissue. The experimental results have presented the good correlation between the diffuse reflected absorbance and glucose concentration at several particular wavelengths. The spectra lines are perfectly separate from each other at different glucose concentration in vitro. Obvious differences exist in the diffuse reflected absorbance for different glucose concentration. According to the testing standard of the Oral Glucose Tolerance Test (OGTT, the dynamic changes, which the diffuse reflected absorbance from tissue is accompanied with the change of the glucose concentration, have been explored by taking a certain amount oral glucose solution. The results have presented that the sensing system proposed is already able to sense the glucose change from fingertip tissue though the overlapping spectra are encountered. Also, the temperature effect of the sample on the diffuse reflected absorbance of the glucose has been taken into consideration.

  15. Non-invasive techniques for measuring body composition: state of the art and future prospects

    International Nuclear Information System (INIS)

    Cohn, S.H.

    1985-01-01

    In the past 20 years, in vivo analysis of body elements by neutron activation has become an important tool in medical research. In particular, it provides a much needed means to make quantitative assessments of body composition of human beings in vivo. The data are useful both for basic physiological understanding and for diagnosis and management of a variety of diseases and disorders. This paper traces the development of the in vivo neutron activation technique from basic systems to the present state of the art facilities. A scan of some of the numerous clinical applications that have been made with this technique, reveals the broad potentialities of in vivo neutron activation. The paper also considers alternative routes of future development and raises some of the questions now faced in making the techniques more widely available to both medical practitioners and medical investigators. In vivo neutron activation has opened a new era of both clinical diagnosis and therapy evaluation, and investigation into the modelling of body composition. The techniques are new, but it is already clear that considerable strides can be made in increasing accuracy and precision, increasing the number of elements susceptible to measurement, and reducing the dose required for the measurement. 18 refs., 7 figs

  16. Non-invasive assessment of adrenocortical activity as a measure of stress in giraffe (Giraffa camelopardalis).

    Science.gov (United States)

    Bashaw, Meredith J; Sicks, Florian; Palme, Rupert; Schwarzenberger, Franz; Tordiffe, Adrian S W; Ganswindt, Andre

    2016-10-18

    Numbers of giraffes are declining rapidly in their native habitat. As giraffe research and conservation efforts increase, the demand for more complete measures of the impact of conservation interventions and the effects of captive environments on animal health and welfare have risen. We compared the ability of six different enzyme immunoassays to quantify changes in fecal glucocorticoid metabolites (FGM) resulting from three sources: adrenocorticotropic hormone stimulation test, transport, and time of day that samples were collected. Two male giraffes underwent ACTH injections; all six assays detected FGM increases following injection for Giraffe 1, while only three assays detected FGM increases following injection for Giraffe 2. Consistent with other ruminant species, the two 11-oxoetiocholanolone assays (one for 11,17-dioxoandrostanes and the other for 3α,11-oxo metabolites) measured the most pronounced and prolonged elevation of FGM, while an assay for 3β,11β-diol detected peaks of smaller magnitude and duration. Both of the 11-oxoetiocholanolone assays detected significant FGM increases after transport in Giraffes 3-7, and preliminary data suggest FGM detected by the assay for 11,17-dioxoandrostanes may differ across time of day. We conclude the assay for 11,17-dioxoandrostanes is the most sensitive assay tested for FGM in giraffes and the assay for FGM with a 5β-3α-ol-11-one structure is also effective. 11-oxoetiocholanolone enzyme immunoassays have now been demonstrated to be successful in a wide variety of ruminant species, providing indirect evidence that 5β-reduction may be a common metabolic pathway for glucocorticoids in ruminants. As FGM peaks were detected in at least some giraffes using all assays tested, giraffes appear to excrete a wide variety of different FGM. The assays validated here will provide a valuable tool for research on the health, welfare, and conservation of giraffes.

  17. Determination of antioxidant efficacy of cosmetic formulations by non-invasive measurements.

    Science.gov (United States)

    Vertuani, S; Ziosi, P; Solaroli, N; Buzzoni, V; Carli, M; Lucchi, E; Valgimigli, L; Baratto, G; Manfredini, S

    2003-08-01

    Antioxidants have been proposed, over the last decade, as functional ingredients for anti aging preparations and to prevent and modulate oxidative skin damages. Up to date, beside the photo-induced oxidative skin damages model, none in vivo protocols have shown sufficient reproducibility for the validation of the antioxidant claim for a cosmetic finished product. To this aim, we have recently anticipated a new in vivo protocol based on a microinflammatory model, driven by reactive oxygen species. In the present study our model was validated by comparison with four different instrumental methods. The effects of a pre-treatment of two different formulations based on antioxidant functional ingredients, were investigated on forearm skin of 15 healthy volunteers, and compared to a cosmetic base and control area. The instruments considered in the study were Chromameter (CR-300 Minolta), Tewameter TM 210 (Courage-khazaka, Cologne, Germany), Laser Doppler Perfusion Imager (PIM1.0 Lisca Development AB, Sweden), in comparison to DermAnalyzer(R), an easy to use software program developed by us, using the CIE L*a*b* color space parameters. The comparative measurements showed that the antioxidant formulations tested were all able to reduce, in different but statistically significant extent, the intensity of skin redness, and of cutaneous blood flow, when compared to control area (P < 0.0001). The methyl nicotinate (MN) based microinflammatory model, in conjunction with objective measure- ments, resulted an effective tool for in vivo assessment of oxidative skin injuries. In view of the high level of repeatability, short time of answer and simplicity, the procedure by us developed, is proposed as a possible protocol for the evaluation of in vivo efficacy of antioxidant functional ingredients in cosmetic formulations.

  18. Non-invasive microstructure and morphology investigation of the mouse lung: qualitative description and quantitative measurement.

    Directory of Open Access Journals (Sweden)

    Lu Zhang

    Full Text Available BACKGROUND: Early detection of lung cancer is known to improve the chances of successful treatment. However, lungs are soft tissues with complex three-dimensional configuration. Conventional X-ray imaging is based purely on absorption resulting in very low contrast when imaging soft tissues without contrast agents. It is difficult to obtain adequate information of lung lesions from conventional X-ray imaging. METHODS: In this study, a recently emerged imaging technique, in-line X-ray phase contrast imaging (IL-XPCI was used. This powerful technique enabled high-resolution investigations of soft tissues without contrast agents. We applied IL-XPCI to observe the lungs in an intact mouse for the purpose of defining quantitatively the micro-structures in lung. FINDINGS: The three-dimensional model of the lung was successfully established, which provided an excellent view of lung airways. We highlighted the use of IL-XPCI in the visualization and assessment of alveoli which had rarely been studied in three dimensions (3D. The precise view of individual alveolus was achieved. The morphological parameters, such as diameter and alveolar surface area were measured. These parameters were of great importance in the diagnosis of diseases related to alveolus and alveolar scar. CONCLUSION: Our results indicated that IL-XPCI had the ability to represent complex anatomical structures in lung. This offered a new perspective on the diagnosis of respiratory disease and may guide future work in the study of respiratory mechanism on the alveoli level.

  19. Measurement of Anterior–Posterior Diameter of Ivc By Ultrasonography: a Non Invasive Method for Estimation of Central Venous Pressure.

    Directory of Open Access Journals (Sweden)

    N Nouri-Majalan

    2007-04-01

    Full Text Available Introduction:The assessment of intravascular volume in severely traumatized patients or patients admitted in ICU is very essential. At present the accurate method for estimating the intravascular volume requirement is by measuring the CVP which is an invasive method. The measurement of IVC diameter by ultrasound has been suggested as an easily available and simple method for measuring the intravascular volume status. The purpose of this study was to compare the results of IVC diameter measurement by ultrasonography and CVP measurement for calculating the intravascular volume in ICU admitted patients. Methods: This was a descriptive and prospective study including 50 patients admitted in ICU with a central venous catheter placed for any reason whatsoever and no signs of increased right atrial pressure. CVP was measured in supine position by CVP manometer. The anterior- posterior IVC diameter was assessed by ultrasonography during inspiration and expiration. Data analysis was performed by SPSS and evaluated statistically with Pearsons regression and linear correlation test. Results: The mean CVP at inspiration and during expiration was 11.35+ 5.53, 12.20 + 5.65 cmH2O, respectively. The mean of inspiratory and expiratory IVC diameter was 7.71 + 3.5 , 11.37 + 3.28 mm, respectively. There was significant correlation between CVP and IVC diameter both during inspiration (r= 0.64 , p-value= 0.001 and expiration (r=0.495 , p-value=0.001 Conclusion: The result of this study suggests that IVC diameter measurement by ultrasound can be used as a reliable and non- invasive method for estimating the intravascular volume.

  20. Non-Invasive Assessment of Hepatic Fibrosis by Elastic Measurement of Liver Using Magnetic Resonance Tagging Images

    Directory of Open Access Journals (Sweden)

    Xuejun Zhang

    2018-03-01

    Full Text Available To date, the measurement of the stiffness of liver requires a special vibrational tool that limits its application in many hospitals. In this study, we developed a novel method for automatically assessing the elasticity of the liver without any use of contrast agents or mechanical devices. By calculating the non-rigid deformation of the liver from magnetic resonance (MR tagging images, the stiffness was quantified as the displacement of grids on the liver image during a forced exhalation cycle. Our methods include two major processes: (1 quantification of the non-rigid deformation as the bending energy (BE based on the thin-plate spline method in the spatial domain and (2 calculation of the difference in the power spectrum from the tagging images, by using fast Fourier transform in the frequency domain. By considering 34 cases (17 normal and 17 abnormal liver cases, a remarkable difference between the two groups was found by both methods. The elasticity of the liver was finally analyzed by combining the bending energy and power spectral features obtained through MR tagging images. The result showed that only one abnormal case was misclassified in our dataset, which implied our method for non-invasive assessment of liver fibrosis has the potential to reduce the traditional liver biopsy.

  1. Does obesity affect the non-invasive measurement of cardiac output performed by electrical cardiometry in children and adolescents?

    Science.gov (United States)

    Altamirano-Diaz, Luis; Welisch, Eva; Rauch, Ralf; Miller, Michael; Park, Teresa Sohee; Norozi, Kambiz

    2018-02-01

    Electrical cardiometry (EC) is a non-invasive and inexpensive method for hemodynamic assessment and monitoring. However, its feasibility for widespread clinical use, especially for the obese population, has yet to be determined. In this study, we evaluated the agreement and reliability of EC compared to transthoracic Doppler echocardiography (TTE) in normal, overweight, and obese children and adolescents. We measured stroke volume (SV) and cardiac output (CO) of 131 participants using EC and TTE simultaneously. We further divided these participants according to BMI percentiles for subanalyses: 95% obese (n = 83). Due to small sample size of the overweight group, we combined overweight and obese groups (OW+OB) with no significant change in results (SV and CO) before and after combining groups. There were strong correlations between EC and TTE measurements of SV (r = 0.869 and r = 0.846; p < 0.0001) and CO (r = 0.831 and r = 0.815; p < 0.0001) in normal and OW+OB groups, respectively. Bias and percentage error for CO measurements were 0.240 and 29.7%, and 0.042 and 29.5% in the normal and OW+OB groups, respectively. Indexed values for SV were lower in the OW+OB group than in the normal weight group when measured by EC (p < 0.0001) but no differences were seen when measured by TTE (p = 0.096). In all weight groups, there were strong correlations and good agreement between EC and TTE. However, EC may underestimate hemodynamic measurements in obese participants due to fat tissue.

  2. Real-time monitoring and measurement of wax deposition in pipelines via non-invasive electrical capacitance tomography

    Science.gov (United States)

    Lock Sow Mei, Irene; Ismail, Idris; Shafquet, Areeba; Abdullah, Bawadi

    2016-02-01

    Tomographic analysis of the behavior of waxy crude oil in pipelines is important to permit appropriate corrective actions to be taken to remediate the wax deposit layer before pipelines are entirely plugged. In this study, a non-invasive/non-intrusive electrical capacitance tomography (ECT) system has been applied to provide real-time visualization of the formation of paraffin waxes and to measure the amount of wax fraction from the Malay Basin waxy crude oil sample under the static condition. Analogous expressions to estimate the wax fraction of the waxy crude oil across the temperatures range of 30-50 °C was obtained by using Otsu’s and Kuo’s threshold algorithms. Otsu’s method suggested that the wax fraction can be estimated by the correlation coefficient β =0.0459{{T}3}-5.3535{{T}2}+200.36T-2353.7 while Kuo’s method provides a similar correlation with β =0.0741{{T}3}-8.4915{{T}2}+314.96T-3721.2 . These correlations show good agreements with the results which are obtained from the conventional weighting method. This study suggested that Kuo’s threshold algorithm is more promising when integrated into the ECT system compared to Otsu’s algorithm because the former provides higher accuracy wax fraction measurement results below the wax appearance temperature for waxy crude oil. This study is significant because it serves as a preliminary investigation for the application of ECT in the oil and gas industry for online measurement and detection of wax fraction without causing disturbance to the process flow.

  3. Central tendency measure and wavelet transform combined in the non-invasive analysis of atrial fibrillation recordings

    Directory of Open Access Journals (Sweden)

    Alcaraz Raúl

    2012-08-01

    Full Text Available Abstract Background Atrial fibrillation (AF is the most common supraventricular arrhythmia in the clinical practice, being the subject of intensive research. Methods The present work introduces two different Wavelet Transform (WT applications to electrocardiogram (ECG recordings of patients in AF. The first one predicts spontaneous termination of paroxysmal AF (PAF, whereas the second one deals with the prediction of electrical cardioversion (ECV outcome in persistent AF patients. In both cases, the central tendency measure (CTM from the first differences scatter plot was applied to the AF wavelet decomposition. In this way, the wavelet coefficients vector CTM associated to the AF frequency scale was used to assess how atrial fibrillatory (f waves variability can be related to AF events. Results Structural changes into the f waves can be assessed by combining WT and CTM to reflect atrial activity organization variation. This fact can be used to predict organization-related events in AF. To this respect, results in the prediction of PAF termination regarding sensitivity, specificity and accuracy were 100%, 91.67% and 96%, respectively. On the other hand, for ECV outcome prediction, 82.93% sensitivity, 90.91% specificity and 85.71% accuracy were obtained. Hence, CTM has reached the highest diagnostic ability as a single predictor published to date. Conclusions Results suggest that CTM can be considered as a promising tool to characterize non-invasive AF signals. In this sense, therapeutic interventions for the treatment of paroxysmal and persistent AF patients could be improved, thus, avoiding useless procedures and minimizing risks.

  4. Anisotropy of human muscle via non invasive impedance measurements. Frequency dependence of the impedance changes during isometric contractions

    Science.gov (United States)

    Kashuri, Hektor

    In this thesis we present non invasive muscle impedance measurements using rotatable probes extending the work done by Aaron et al. (1997) by measuring not only the real part of the impedance but the imaginary part as well. The results reveal orientations of underlying muscle fibers via minima in resistance and reactance versus angle curves, suggesting this method as potentially useful for studying muscle properties in clinical and physiological research. Calculations of the current distribution for a slab of material with anisotropic conductivity show that the current distribution depends strongly on the separation of two current electrodes and as well as on its conducting anisotropy. Forearm muscle impedance measurements at 50 kHz done by Shiffman et al. (2003) had shown that both resistance (R) and reactance (X) increase during isometric contraction. We have extended these measurements in the 3 to 100 kHz range and we found that resistance (R) and reactance (X) both increase and their changes increased or decreased at frequency dependent rates. Analysis based on circuit models of changes in R and X during the short contraction pulses showed that the extra cellular fluid resistance increased by 3.9 +/- 1.4 %, while the capacitance increased by 5.6 +/- 2 %. For long contraction pulses at very low frequencies: (1) there was practically no change in R during contraction, which implies that these changes are due to cellular membrane or intracellular effects with the extra cellular water component not participating, and (2) in post contraction stage there were no morphological changes which means that drifts in R can only be due to physiological changes. Following Shiffman et al. (2003) we measured impedance changes of R and X during a triangular shaped pulse of force generated via isometric forearm muscle contraction at 50 kHz. We measured these changes in 3-100 kHz frequency range for a stair case pulse of forces and the results showed that they are frequency

  5. Systematic comparison of non-invasive measures for the assessment of atrial fibrillation complexity: a step forward towards standardization of atrial fibrillation electrogram analysis.

    Science.gov (United States)

    Bonizzi, Pietro; Zeemering, Stef; Karel, Joël M H; Di Marco, Luigi Y; Uldry, Laurent; Van Zaen, Jérôme; Vesin, Jean-Marc; Schotten, Ulrich

    2015-02-01

    To present a comparison of electrocardiogram-based non-invasive measures of atrial fibrillation (AF) substrate complexity computed on invasive animal recordings to discriminate between short-term and long-term AF. The final objective is the selection of an optimal sub-set of measures for AF complexity assessment. High-density epicardial direct contact mapping recordings (234 leads) were acquired from the right and the left atria of 17 goats in which AF was induced for 3 weeks (short-term AF group, N = 10) and 6 months (long-term AF group, N = 7). Several non-invasive measures of AF organization proposed in the literature in the last decade were investigated to assess their power in discriminating between the short-term and long-term group. The best performing measures were identified, which when combined attained a correct classification rate of 100%. Their ability to predict standard invasive AF complexity measures was also tested, showing an average R(2) of 0.73 ± 0.04. An optimal set of measures of the AF substrate complexity was identified out of the set of non-invasive measures analysed in this study. These measures may contribute to improve patient-tailored diagnosis and therapy of sustained AF. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2014. For permissions please email: journals.permissions@oup.com.

  6. Improved diagnostic value of a TCD-based non-invasive ICP measurement method compared with the sonographic ONSD method for detecting elevated intracranial pressure.

    Science.gov (United States)

    Ragauskas, Arminas; Bartusis, Laimonas; Piper, Ian; Zakelis, Rolandas; Matijosaitis, Vaidas; Petrikonis, Kestutis; Rastenyte, Daiva

    2014-07-01

    To compare the diagnostic reliability of optic nerve sheath diameter (ONSD) ultrasonography with a transcranial Doppler (TCD)-based absolute intracranial pressure (ICP) value measurement method for detection of elevated ICP in neurological patients. The ONSD method has been only tested previously on neurosurgical patients. A prospective clinical study of a non-invasive ICP estimation method based on ONSD correlation with ICP and an absolute ICP value measurement method based on a two-depth TCD technology has recruited 108 neurological patients. Ninety-two of these patients have been enrolled in the final analysis of the diagnostic reliability of ONSD ultrasonography and 85 patients using the absolute ICP value measurement method. All non-invasive ICP measurements were compared with 'Gold Standard' invasive cerebrospinal fluid (CSF) pressure measurements obtained by lumbar puncture. Receiver-operating characteristic (ROC) analysis has been used to investigate the diagnostic value of these two methods. The diagnostic sensitivity, specificity, and the area under the ROC curve (AUC) of the ONSD method for detecting elevated intracranial pressure (ICP >14·7 mmHg) were calculated using a cutoff point of ONSD at 5·0 mm and found to be 37·0%, 58·5%, and 0·57, respectively. The diagnostic sensitivity, specificity, and AUC for the non-invasive absolute ICP measurement method were calculated at the same ICP cutoff point of 14·7 mmHg and were determined to be 68·0%, 84·3%, and 0·87, respectively. The non-invasive ICP measurement method based on two-depth TCD technology has a better diagnostic reliability on neurological patients than the ONSD method when expressed by the sensitivity and specificity for detecting elevated ICP >14·7 mmHg.

  7. Non-invasive monitoring of adrenocortical activity in captive African Penguin (Spheniscus demersus) by measuring faecal glucocorticoid metabolites.

    Science.gov (United States)

    Ozella, L; Anfossi, L; Di Nardo, F; Pessani, D

    2015-12-01

    Measurement of faecal glucocorticoid metabolites (FGMs) has become a useful and widely-accepted method for the non-invasive evaluation of stress in vertebrates. In this study we assessed the adrenocortical activity of five captive African Penguins (Spheniscus demersus) by means of FGM evaluation following a biological stressor, i.e. capture and immobilization. In addition, we detected individual differences in secretion of FGMs during a stage of the normal biological cycle of penguins, namely the breeding period, without any external or induced causes of stress. Our results showed that FGM concentrations peaked 5.5-8h after the induced stress in all birds, and significantly decreased within 30 h. As predictable, the highest peak of FGMs (6591 ng/g) was reached by the youngest penguin, which was at its first experience with the stressor. This peak was 1.8-2.7-fold higher compared to those of the other animals habituated to the stimulus. For the breeding period, our results revealed that the increase in FGMs compared to ordinary levels, and the peaks of FGMs, varied widely depending on the age and mainly on the reproductive state of the animal. The bird which showed the lowest peak (2518 ng/g) was an old male that was not in a reproductive state at the time of the study. Higher FGM increases and peaks were reached by the two birds which were brooding (male: 5552%, 96,631 ng/g; female: 1438%, 22,846 ng/g) and by the youngest bird (1582%, 39,700 ng/g). The impact of the reproductive state on FGM levels was unexpected compared to that produced by the induced stress. The EIA used in this study to measure FGM levels proved to be a reliable tool for assessing individual and biologically-relevant changes in FGM concentrations in African Penguin. Moreover, this method allowed detection of physiological stress during the breeding period, and identification of individual differences in relation to the reproductive status. The increase in FGM levels as a response to capture and

  8. Gingival blood flow under total combs by functional pressure evaluated with laser-Doppler flowmetry, a non-invasive method of blood flow measurement

    International Nuclear Information System (INIS)

    Hengl, St.

    1996-09-01

    Gingival blood flow under total-combs by functional pressure evaluated with Laser-Doppler Flowmetry, a non-invasive method of blood flow measurement. Microcirculation of gum's capillary system can be measured non-invasive by Laser-Doppler-Flowmetry (LDF). Circulation, defined by the number of floating erythrocytes per unit of time, is measured by a fibro-optical Laser-Doppler-Flowmetry. The task was to examine, if there is any change of gum's circulation during strain and relief. Circulation on defined measurepoints, divided on the four quadrants, was determined among maximal strain and subsequent relief, on one probationer (complete denture bearer). Before every measure session systemic pressure was taken. LDF-value was taken on top of jaw-comb, in doing so, to get reproducible result and a satisfying fixation of the probe, there was made an artificial limb of the upper and lower comb. In the upper comb a dynamometer-box, which determined minimal and maximal comb pressure, was integrated. The received results of the LDF-measurement, expressed as perfusion units (PU) were lower under applied pressure than by pressure points more distant. Hyperemia, resulting during relief, seemed the more intense, the less perfusion was before. This new, non-invasive kind of circulation measurement seems to be quite predestined to be used for gingival diagnostic under artificial limb in the future. (author)

  9. Non-invasive measurements of leaf epidermal transmittance of UV radiation using chlorophyll fluorescence: field and laboratory studies

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, P.W. [Southwest Texas State Univ.. Dept. of Biology, San Marcos, TX (United States); Searles, P.S.; Ryel, R.J.; Caldwell, M.M. [Utah State Univ., Dept. of Rangeland Resources and the Ecology Center, Logan, UT (United States); Ballare, C.L. [IFEVA, Univ. de Buenos Aires, Dept. de Ecologia, Facultad de Agronomia, Buenos Aires, (Argentina)

    2000-07-01

    Ratios of chlorophyll fluorescence induced by ultraviolet (UV) and bluegreen (BG) radiation [F(UV)/F(BG)] were determined with a Xe-PAM fluorometer to test the utility of this technique as a means of non-intrusively assessing changes in the pigmentation and optical properties of leaves exposed to varying UV exposures under laboratory and field conditions. For plants of Vicia faba and Brassica campestris, grown under controlled-environmental conditions, F(UV-B)/F(BG) was negatively correlated with whole-leaf UV-B-absorbing pigment concentrations. Fluorescence ratios of V.faba were similar to, and positively correlated with (r{sup 2} = 0.77 [UV-B]; 0.85 [UV-A]), direct measurements of epidermal transmittance made with an integrating sphere. Leaves of 2 of 4 cultivars of field-grown Glycine max exposed to near-ambient solar UV-B at a mid-latitude site (Buenos Aires, Argentina, 34 degrees S) showed significantly lower abaxial F(UV-B)/F(BG) values (i.e., lower UV-B epidermal transmittance) than those exposed to attenuated UV-B, but solar UV-B reduction had a minimal effect on F(UV-B)/F(BG) in plants growing at a high-latitude site (Tierra del Fuego, Argentina, 55 degrees S). Similarly, the exotic Taraxacum officinale did not show significant changes in F(UV-B)/F(BG) when exposed to very high supplemental UV-B (biologically effective UV-B = 14-15 kJ m{sup -2} day{sup -1}) in the field in Tierra del Fuego, whereas a native species, Gunnera magellanica, showed significant increases in F(UV-B)/F(BG) relative to those receiving ambient UV-B. These anomalous fluorescence changes were associated with increases in BG-absorbing pigments (anthocyanins), but not UV-B-absorbing pigments. These results indicate that non-invasive estimates of epidermal transmittance of UV radiation using chlorophyll fluorescence can detect changes in pigmentation and leaf optical properties induced by UV-B radiation under both field and laboratory conditions. However, this technique may be of limited

  10. Validity of inner canthus temperature recorded by infrared thermography as a non-invasive surrogate measure for core temperature at rest, during exercise and recovery.

    Science.gov (United States)

    Fernandes, Alex Andrade; Moreira, Danilo Gomes; Brito, Ciro José; da Silva, Cristiano Diniz; Sillero-Quintana, Manuel; Pimenta, Eduardo Mendonça; Bach, Aaron J E; Garcia, Emerson Silami; Bouzas Marins, João Carlos

    2016-12-01

    Research into obtaining a fast, valid, reliable and non-invasive measure of core temperature is of interest in many disciplinary fields. Occupational and sports medicine research has attempted to determine a non-invasive proxy for core temperature particularly when access to participants is limited and thermal safety is of a concern due to protective encapsulating clothing, hot ambient environments and/or high endogenous heat production during athletic competition. This investigation aimed to determine the validity of inner canthus of the eye temperature (T EC ) as an alternate non-invasive measure of intestinal core temperature (T C ) during rest, exercise and post-exercise conditions. Twelve physically active males rested for 30min prior to exercise, performed 60min of aerobic exercise at 60% V̇O 2max and passively recovered a further 60min post-exercise. T EC and T C were measured at 5min intervals during each condition. Mean differences between T EC and T C were 0.61°C during pre-exercise, -1.78°C during exercise and -1.00°C during post-exercise. The reliability between the methods was low in the pre-exercise (ICC=0.49 [-0.09 to 0.82]), exercise (ICC=-0.14 [-0.65 to 0.44]) and post-exercise (ICC=-0.25 [-0.70 to 0.35]) conditions. In conclusion, poor agreement was observed between the T EC values measured through IRT and T C measured through a gastrointestinal telemetry pill. Therefore, T EC is not a valid substitute measurement to gastrointestinal telemetry pill in sports and exercise science settings. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Aging-related changes in swallowing, and in the coordination of swallowing and respiration determined by novel non-invasive measurement techniques.

    Science.gov (United States)

    Wang, Chin-Man; Chen, Ji-Yih; Chuang, Chiung-Cheng; Tseng, Wen-Chun; Wong, Alice M K; Pei, Yu-Cheng

    2015-06-01

    Previous studies have shown that the process of swallowing changes with aging, a phenomenon known as presbyphagia. These subtle and subclinical age-related changes make older adults more vulnerable to dysphagia during disease insults. However, there are limited studies of the swallowing process in older adults, because measurements are typically invasive or require exposure to X-rays. In the present study, we used integrated non-invasive measurements to determine aging-related changes of swallowing, and in the coordination of swallowing and respiration for a population of healthy participants. The non-invasive system provided measurements of larynx movement with piezoelectric sensors, submental muscle activity with surface electromyography and respiration-swallowing coordination by measurement of nasal airflow. We recruited 112 healthy participants from the community, 35 in a young-age group (age 20-30 years), 38 in a middle-age group (age 31-50 years) and 39 in an old-age group (age 51-70 years). The oropharyngeal swallowing parameters of the old-age group had delayed onset latency and longer swallowing apnea duration relative to the other groups, and these differences were greater for larger boluses. The middle- and old-age groups had less expiratory-expiratory respiratory phase pattern than the young-age group. The probability of piecemeal deglutition was highest in the old-age group and lowest in the young-age group. These results show that the phases of oropharyngeal swallowing and the coordination of swallowing with respiration gradually change with aging. We used integrated non-invasive measurements to document age-related changes in swallowing, and in the coordination of swallowing and respiration in healthy adults. © 2014 The Authors. Geriatrics & Gerontology International published by Wiley Publishing Asia Pty Ltd on behalf of Japan Geriatrics Society.

  12. Note: A non-invasive electronic measurement technique to measure the embedded four resistive elements in a Wheatstone bridge sensor

    Science.gov (United States)

    Ravelo Arias, S. I.; Ramírez Muñoz, D.; Cardoso, S.; Ferreira, R.; Freitas, P.

    2015-06-01

    The work shows a measurement technique to obtain the correct value of the four elements in a resistive Wheatstone bridge without the need to separate the physical connections existing between them. Two electronic solutions are presented, based on a source-and-measure unit and using discrete electronic components. The proposed technique brings the possibility to know the mismatching or the tolerance between the bridge resistive elements and then to pass or reject it in terms of its related common-mode rejection. Experimental results were taken in various Wheatstone resistive bridges (discrete and magnetoresistive integrated bridges) validating the proposed measurement technique specially when the bridge is micro-fabricated and there is no physical way to separate one resistive element from the others.

  13. Note: A non-invasive electronic measurement technique to measure the embedded four resistive elements in a Wheatstone bridge sensor

    Energy Technology Data Exchange (ETDEWEB)

    Ravelo Arias, S. I.; Ramírez Muñoz, D. [Department of Electronic Engineering, University of Valencia, Avda. de la Universitat, s/n, 46100-Burjassot (Spain); Cardoso, S. [INESC Microsystems and Nanotechnologies (INESC-MN) and Institute for Nanosciences and Nanotechnologies, R. Alves Redol 9, Lisbon 1000-029 (Portugal); Ferreira, R. [INL-International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, Braga 4715-31 (Portugal); Freitas, P. [INESC Microsystems and Nanotechnologies (INESC-MN) and Institute for Nanosciences and Nanotechnologies, R. Alves Redol 9, Lisbon 1000-029 (Portugal); INL-International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, Braga 4715-31 (Portugal)

    2015-06-15

    The work shows a measurement technique to obtain the correct value of the four elements in a resistive Wheatstone bridge without the need to separate the physical connections existing between them. Two electronic solutions are presented, based on a source-and-measure unit and using discrete electronic components. The proposed technique brings the possibility to know the mismatching or the tolerance between the bridge resistive elements and then to pass or reject it in terms of its related common-mode rejection. Experimental results were taken in various Wheatstone resistive bridges (discrete and magnetoresistive integrated bridges) validating the proposed measurement technique specially when the bridge is micro-fabricated and there is no physical way to separate one resistive element from the others.

  14. Non-invasive measurements of granular flows by magnetic resonance imaging. Technical progress report for the quarter ending December 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Nakagawa, M.; Altobelli, S.A.; Caprihan, A.; Fukushima, E.; Jeong, E.K.

    1993-01-20

    Magnetic Resonance Imaging (MRI) was used to measure granular-flow in a partially filled, steadily rotating, long, horizontal cylinder. This non-invasive technique can yield statistically averaged two-dimensional concentrations and velocity profiles anywhere in the flow of suitable granular materials. First, rigid body motion of a cylinder fill with granular material was studied to confirm the validity of this method. Then, the density variation of the flowing layer where particles collide and dilate, and the depth of the flowing layer and the flow velocity profile were obtained as a function of the cylinder rotation rate.

  15. A modified device for continuous non-invasive blood pressure measurements in humans under hyperbaric and/or oxygen-enriched conditions.

    Science.gov (United States)

    van der Bel, René; Sliggers, Bart C; van Houwelingen, Marc J; van Lieshout, Johannes J; Halliwill, John R; van Hulst, Robert A; Krediet, C T Paul

    2016-03-01

    It would be desirable to safely and continuously measure blood pressure noninvasively under hyperbaric and/or hyperoxic conditions, in order to explore haemodynamic responses in humans under these conditions. A systematic analysis according to 'failure mode and effects analysis' principles of a commercially available beat-by-beat non-invasive blood pressure monitoring device was performed using specifications provided by the manufacturer. Possible failure modes related to pressure resistance and fire hazard in hyperbaric and oxygen-enriched environments were identified and the device modified accordingly to mitigate these risks. The modified device was compared to an unaltered device in five healthy volunteers under normobaric conditions. Measurements were then performed under hyperbaric conditions (243 kPa) in five healthy subjects. Modifications required included: 1) replacement of the carbon brush motorized pump by pressurized air connected through a balanced pressure valve; 2) modification of the 12V power supply connection in the multiplace hyperbaric chamber, and 3) replacement of gas-filled electrolytic capacitors by solid equivalents. There was concurrence between measurements under normobaric conditions, with no significant differences in blood pressure. Measurements under pressure were achieved without problems and matched intermittent measurement of brachial arterial pressure. The modified system provides safe, stable, continuous non-invasive blood pressure trends under both normobaric and hyperbaric conditions.

  16. Non-invasive measurements of hemoglobin + myoglobin, their oxygenation and NIR light pathlength in heart in vivo by diffuse reflectance spectroscopy

    Science.gov (United States)

    Gussakovsky, Eugene; Jilkina, Olga; Yang, Yanmin; Kupriyanov, Valery

    2009-02-01

    The existing non-invasive optical methods of the hemoglobin (Hb) and myoglobin (Mb) estimation in cardiac tissues imply knowledge of the light pathlength (L) when various modifications of Lambert-Beer law for either spectrophotometry or light diffuse reflectance is applied. For Hb and/or Mb quantification in tissue, a few invasive (biochemical) approaches were applied. For L (differential pathlength factor; DPF) determination in tissue, special optical methods were used. No approaches have been proposed to simultaneously and non-invasively determine Hb/Mb and L in cardiac or other muscle tissues. In the present study, the first derivative of the NIR diffuse reflectance spectrum is shown to be effective in simultaneous determination of Hb+Mb concentration (in mM) and L (in mm) in cardiac tissue in vivo. The results showed that measured in a few minutes in a normal pig heart in vivo the total Hb+Mb concentration was 0.9-1.2 mM of heme, tissue oxygen saturation parameter (OSP) was approximately 65%, and DPF at 700-965 nm was of 2.7-2.8. At the experimental ischemia, total [Hb+Mb] decreased by 25%, OSP reduced to zero, while DPF did not change. These results correlated with the previously published. The method may be applied during open-heart surgery, heart studies ex vivo or to any muscle tissue to continuously and non-invasively monitor the [Hb+Mb] content and oxygenation as well as L, which may reflect the changes in tissue structure.

  17. Fluorescence spectroscopy for non-invasive measurement of mechanical stiffness after photo-crosslinking of rabbit cornea

    Science.gov (United States)

    Williams, Maura; Lewis, William; Ortega-Martinez, Antonio; Franco, Walfre

    2017-02-01

    Background and Objectives: Keratoconus is a disease characterized by progressive steepening and thinning of the cornea, altering visual acuity and sometimes potentiating the need for corneal transplant if the disease progresses.1-3 Corneal crosslinking, a procedure that uses topical riboflavin and UV light to increase the stiffness of the cornea through the creation of collagen crosslinks was recently approved by the FDA for use in the U.S. The objective of the present study was to investigate whether endogenous collagen fluorescence changes following treatment can be correlated to alterations in the stiffness of the cornea, thereby guiding treatment parameters. Study Design and Results: 78 ex-vivo rabbit eyes divided into three groups: riboflavin solution plus UV irradiation, dextran solution plus UV irradiation, and riboflavin solution only. An additional group of eyes received no treatment. The epithelium was removed from each sample and topical riboflavin was applied. Eyes were irradiated with a 365 nm black ray UV lamp for various treatment times, ranging from half the clinical treatment time to three times the length. Mechanical testing was performed to determine the force/displacement relationship for the various treatment times. Fluorescence spectral changes following treatment corresponded with changes in stiffness. In particular, a decrease in the value of fluorescence intensity at 290/340 nm excitation/emission wavelengths corresponded to an increase in corneal stiffness following treatment. It may be possible to use fluorescence spectral changes of endogenous corneal crosslinks to evaluate mechanical stiffness changes non-invasively.

  18. [Comparison of continuous cardiac output measurement methods: non-invasive estimated CCO using pulse wave transit time and CCO using thermodilution].

    Science.gov (United States)

    Tsutsui, Masato; Yamada, Takashige; Sugo, Yoshihiro; Sato, Tetsufumi; Akazawa, Toshimasa; Sato, Nobukazu; Yamashita, Koichi; Ishihara, Hironori; Kazama, Tomiei; Takeda, Junzo

    2012-09-01

    esCCO (estimated continuous cardiac output, Nihon Kohden, esCCO) is a new cardiac output measurement system which uses pulse wave transit time to calculate cardiac output continuously and non-invasively. One of the most commonly used methods to monitor cardiac output is continuous cardiac output CCO (Edwards Lifesciences) which has an accuracy equivalent to that of thermodilution method. We compared esCCO to CCO in 67 operating room patients and 128 intensive care unit patients. CCO and esCCO were measured simultaneously in patients with a pulmonary artery catheter inserted after admission to the operating room or intensive care unit. CCO and esCCO showed a high correlation with a correlation coefficient of 0.84 in 496 total data points, and 95% limits of agreement between these two methods were -2.49 to 2.35 l x min(-1). This result suggests that esCCO could be used to measure cardiac output accurately and non-invasively in different cases.

  19. Non-invasive ventilation for cystic fibrosis.

    Science.gov (United States)

    Moran, Fidelma; Bradley, Judy M; Piper, Amanda J

    2017-02-20

    other domains. One single intervention trial had a low risk of bias for the randomisation procedure with the remaining trials judged to have an unclear risk of bias. Most trials had a low risk of bias with regard to incomplete outcome data and selective reporting.Six trials (151 participants) evaluated non-invasive ventilation for airway clearance compared with an alternative chest physiotherapy method such as the active cycle of breathing techniques or positive expiratory pressure. Three trials used nasal masks, one used a nasal mask or mouthpiece and one trial used a face mask and in one trial it is unclear. Three of the trials reported on one of the review's primary outcome measures (quality of life). Results for the reviews secondary outcomes showed that airway clearance may be easier with non-invasive ventilation and people with cystic fibrosis may prefer it. We were unable to find any evidence that non-invasive ventilation increases sputum expectoration, but it did improve some lung function parameters.Three trials (27 participants) evaluated non-invasive ventilation for overnight ventilatory support compared to oxygen or room air using nasal masks (two trials) and nasal masks or full face masks (one trial). Trials reported on two of the review's primary outcomes (quality of life and symptoms of sleep-disordered breathing). Results for the reviews secondary outcome measures showed that they measured lung function, gas exchange, adherence to treatment and preference, and nocturnal transcutaneous carbon dioxide. Due to the small numbers of participants and statistical issues, there were discrepancies in the results between the RevMan and the original trial analyses. No clear differences were found between non-invasive ventilation compared with oxygen or room air except for exercise performance, which significantly improved with non-invasive ventilation compared to room air over six weeks.One trial (13 participants) evaluated non-invasive ventilation on exercise

  20. Non-invasive Measurement of Thermal Diffusivity Using High-Intensity Focused Ultrasound and Through-Transmission Ultrasonic Imaging.

    Science.gov (United States)

    Yeshurun, Lilach; Azhari, Haim

    2016-01-01

    Thermal diffusivity at the site ablated by high-intensity focused ultrasound (HIFU) plays an important role in the final therapeutic outcome, as it influences the temperature's spatial and temporal distribution. Moreover, as tissue thermal diffusivity is different in tumors as compared with normal tissue, it could also potentially be used as a new source of imaging contrast. The aim of this study was to examine the feasibility of combining through-transmission ultrasonic imaging and HIFU to estimate thermal diffusivity non-invasively. The concept was initially evaluated using a computer simulation. Then it was experimentally tested on phantoms made of agar and ex vivo porcine fat. A computerized imaging system combined with a HIFU system was used to heat the phantoms to temperatures below 42°C to avoid irreversible damage. Through-transmission scanning provided the time-of-flight values in a region of interest during its cooling process. The time-of-flight values were consequently converted into mean values of speed of sound. Using the speed-of-sound profiles along with the developed model, we estimated the changes in temperature profiles over time. These changes in temperature profiles were then used to calculate the corresponding thermal diffusivity of the studied specimen. Thermal diffusivity for porcine fat was found to be lower by one order of magnitude than that obtained for agar (0.313×10(-7)m(2)/s vs. 4.83×10(-7)m(2)/s, respectively, p ultrasound thermal diffusivity mapping is feasible. The suggested method may particularly be suitable for breast scanning. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  1. A non-invasive and rapid seed vigor biosensor based on quantitative measurement of superoxide generated by aleurone cell in intact seeds.

    Science.gov (United States)

    Liu, Xuejun; Gao, Caiji; Xing, Da

    2009-02-15

    Superoxide generated during the early imbibition is an excellent marker for evaluating seed vigor. In this paper, a new principle biosensor for non-invasive detection of seed vigor based on quantitative measurement of superoxide via selective probe 2-methyl-6-(p-methoxyphenyl)-3,7-dihydroimidazo [1,2alpha] pyrazin-3-one (MCLA)-mediated chemiluminescence (CL) was developed. The biosensor, which used a compact single-photon counting module (SPCM) to collect the CL signal, could evaluate seed vigor in vivo. Benefiting from the high CL efficiency of MCLA reacting with superoxide and high sensitivity of the SPCM technique, the trace superoxide generated by dry seeds under storage state can be detected to achieve rapid and non-invasive determination of the seed vigor. In comparison with the traditional methods for fast measuring seed vigor based on measurement of physiological and biochemical properties, our proposed technique has significant advantages such as low cost, simplicity, convenient operation and short time consuming. To demonstrate the utility of the system, it was applied to evaluate MCLA-mediated CL of three different plant species wheat (Ze Yu No. 2), maize (Tai Gu No. 1 and 2) and rice (Jing Dao No. 21) seeds with different degrees of aging. The experimental results suggested that there was an excellent positive correlation between the seed vigor assessment from quantitative TTC-test and the detection based on MCLA-mediated CL of superoxide measurement. The new principle of seed vigor measurement is a challenge and breakthrough to conventional method of seed vigor determination and may be a potential technique of the next generation seed vigor detection.

  2. "Cognitive activity" monitored by non-invasive measurement of cerebral blood flow velocity and its application to the investigation of cerebral dominance.

    Science.gov (United States)

    Markus, H S; Boland, M

    1992-12-01

    We have developed a method of non-invasively detecting language lateralisation by measuring the increase in middle cerebral artery blood flow velocity occurring during a word association task, using transcranial Doppler ultrasonography. All exclusively right handed subjects (N = 12) showed a relative increase in left sided flow velocity during the task; mean rise was 4.04% on the left, and -0.03% on the right (p 5%) in left, compared with right, hemisphere flow velocity, and three showing only small differences between left and right sides, possibly reflecting bilateral language representation. This technique offers potential not only in studying patterns of cerebral dominance, but also in studying cognitive responses to other stimuli.

  3. Cortical Matrix Mineral Density Measured Non-invasively in Pre- and Postmenopausal Women and a Woman with Vitamin D Dependent Rickets.

    Science.gov (United States)

    Chiang, Cherie Y; Zebaze, Roger; Wang, Xiao-Fang; Ghasem-Zadeh, Ali; Zajac, Jeffrey D; Seeman, Ego

    2018-02-28

    Reduced bone mineral density (BMD) may be due to reduced mineralized bone matrix volume, incomplete secondary mineralization or reduced primary mineralization. As bone biopsy is invasive, we hypothesized that non-invasive image acquisition at high resolution can accurately quantify matrix mineral density (MMD). Quantification of MMD was confined to voxels attenuation photons above 80% of that produced by fully mineralized bone matrix because attenuation at this level is due to variation in mineralization not porosity. To assess accuracy, 9 cadaveric distal radii were imaged at a voxel size of 82 microns using high resolution peripheral quantitative computed tomography (HR-pQCT, XtremeCT, Scanco Medical AG, Switzerland) and compared with VivaCT 40 (µCT) at 19 microns voxel size. Associations between MMD and porosity were studied in 94 heathy vitamin D replete pre-menopausal, 77 post-menopausal women, and in a 27 year-old woman with vitamin-D Dependent Rickets (VDDR). Microstructure and MMD were quantified using StrAx (StraxCorp, Melbourne, Australia). MMD measured by HR-pQCT and µCT correlated (R = 0.87; p woman with VDDR, MMD was 5.6 SD lower, and porosity was 5.6 SD higher, than the respective trait means in premenopausal women. BMD was reduced (Z scores femoral neck - 4.3 SD, lumbar spine - 3.8 SD). Low radiation HR-pQCT may facilitate non-invasive quantification of bone's MMD and microstructure in health, disease and during treatment. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  4. A rapid and non-invasive method for measuring the peak positive pressure of HIFU fields by a laser beam.

    Science.gov (United States)

    Wang, Hua; Zeng, Deping; Chen, Ziguang; Yang, Zengtao

    2017-04-12

    Based on the acousto-optic interaction, we propose a laser deflection method for rapidly, non-invasively and quantitatively measuring the peak positive pressure of HIFU fields. In the characterization of HIFU fields, the effect of nonlinear propagation is considered. The relation between the laser deflection length and the peak positive pressure is derived. Then the laser deflection method is assessed by comparing it with the hydrophone method. The experimental results show that the peak positive pressure measured by laser deflection method is little higher than that obtained by the hydrophone, confirming that they are in reasonable agreement. Considering that the peak pressure measured by hydrophones is always underestimated, the laser deflection method is assumed to be more accurate than the hydrophone method due to the absence of the errors in hydrophone spatial-averaging measurement and the influence of waveform distortion on hydrophone corrections. Moreover, noting that the Lorentz formula still remains applicable to high-pressure environments, the laser deflection method exhibits a great potential for measuring HIFU field under high-pressure amplitude. Additionally, the laser deflection method provides a rapid way for measuring the peak positive pressure, without the scan time, which is required by the hydrophones.

  5. Non invasive wearable sensor for indirect glucometry.

    Science.gov (United States)

    Zilberstein, Gleb; Zilberstein, Roman; Maor, Uriel; Righetti, Pier Giorgio

    2018-04-02

    A non-invasive mini-sensor for blood glucose concentration assessment has been developed. The monitoring is performed by gently pressing a wrist or fingertip onto the chemochromic mixture coating a thin glass or polymer film positioned on the back panel of a smart watch with PPG/HRM (photoplethysmographic/heart rate monitoring sensor). The various chemochromic components measure the absolute values of the following metabolites present in the sweat: acetone, acetone beta-hydroxybutirate, aceto acetate, water, carbon dioxide, lactate anion, pyruvic acid, Na and K salts. Taken together, all these parameters give information about blood glucose concentration, calculated via multivariate analysis based on neural network algorithms built into the sensor. The Clarke Error Grid shows an excellent correlation between data measured by the standard invasive glucose analyser and the present non-invasive sensor, with all points aligned along a 45 degree diagonal and contained almost exclusively in sector A. Graphs measuring glucose levels five times a day (prior, during and after breakfast and prior, during and after lunch), for different individuals (male and female) show a good correlation between the two curves of conventional, invasive meters vs. the non-invasive sensor, with an error of ±15%. This novel, non-invasive sensor for indirect glucometry is fully miniaturized, easy to use and operate and could represent a valid alternative in clinical settings and for individual, personal users, to current, invasive tools. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  6. A reversible, non-invasive method for airway resistance measurements and bronchoalveolar lavage fluid sampling in mice.

    Science.gov (United States)

    Polikepahad, Sumanth; Barranco, Wade T; Porter, Paul; Anderson, Bruce; Kheradmand, Farrah; Corry, David B

    2010-04-13

    Airway hyperreactivity (AHR) measurements and bronchoalveolar lavage (BAL) fluid sampling are essential to experimental asthma models, but repeated procedures to obtain such measurements in the same animal are generally not feasible. Here, we demonstrate protocols for obtaining from mice repeated measurements of AHR and bronchoalveolar lavage fluid samples. Mice were challenged intranasally seven times over 14 days with a potent allergen or sham treated. Prior to the initial challenge, and within 24 hours following each intranasal challenge, the same animals were anesthetized, orally intubated and mechanically ventilated. AHR, assessed by comparing dose response curves of respiratory system resistance (RRS) induced by increasing intravenous doses of acetylcholine (Ach) chloride between sham and allergen-challenged animals, were determined. Afterwards, and via the same intubation, the left lung was lavaged so that differential enumeration of airway cells could be performed. These studies reveal that repeated measurements of AHR and BAL fluid collection are possible from the same animals and that maximal airway hyperresponsiveness and airway eosinophilia are achieved within 7-10 days of initiating allergen challenge. This novel technique significantly reduces the number of mice required for longitudinal experimentation and is applicable to diverse rodent species, disease models and airway physiology instruments.

  7. Non-invasive measurement of stroke volume and left ventricular ejection fraction. Radionuclide cardiography compared with left ventricular cardioangiography

    DEFF Research Database (Denmark)

    Kelbaek, H; Svendsen, Jesper Hastrup; Aldershvile, J

    2011-01-01

    The stroke volume (SV) was determined by first passage radionuclide cardiography and the left ventricular ejection fraction (LVEF) by multigated radionuclide cardiography in 20 patients with ischemic heart disease. The results were evaluated against those obtained by the invasive dye dilution...... or thermodilution and left ventricular cardioangiographic techniques. In a paired comparison the mean difference between the invasive and radionuclide SV was -1 ml (SED 3.1) with a correlation coefficient of 0.83 (p less than 0.01). Radionuclide LVEF values also correlated well with cardioangiographic measurements......, r = 0.93 (p less than 0.001). LVEF determined by multigated radionuclide cardiography was, however, significantly lower than when measured by cardioangiography, the mean difference being 6 per cent (p less than 0.001). These findings suggest that radionuclide determinations of SV and LVEF...

  8. Ultra-low power sensor for autonomous non-invasive voltage measurement in IoT solutions for energy efficiency

    Science.gov (United States)

    Villani, Clemente; Balsamo, Domenico; Brunelli, Davide; Benini, Luca

    2015-05-01

    Monitoring current and voltage waveforms is fundamental to assess the power consumption of a system and to improve its energy efficiency. In this paper we present a smart meter for power consumption which does not need any electrical contact with the load or its conductors, and which can measure both current and voltage. Power metering becomes easier and safer and it is also self-sustainable because an energy harvesting module based on inductive coupling powers the entire device from the output of the current sensor. A low cost 32-bit wireless CPU architecture is used for data filtering and processing, while a wireless transceiver sends data via the IEEE 802.15.4 standard. We describe in detail the innovative contact-less voltage measurement system, which is based on capacitive coupling and on an algorithm that exploits two pre-processing channels. The system self-calibrates to perform precise measurements regardless the cable type. Experimental results demonstrate accuracy in comparison with commercial high-cost instruments, showing negligible deviations.

  9. Usefulness of Non-Invasive Measurement Tool on Performance Evaluation of Inverter Type X-ray Unit

    International Nuclear Information System (INIS)

    Kang, Se Sik; Kim, Chang Soo; Ko, Sung Jin

    2008-01-01

    As the demand of a simple and precise method increases to evaluate the performance of the inverter type x-ray unit, we evaluated the usefulness of the recently-introduced X-ray Multi-Function Test Device (moldel : Xi (unfors)-prestige). We compared the performance of X-ray Multi-Function Test Device (XMFTD) which is non-inveasive type device with the performance of Dynalyzer III that has been most widely used inveasive type measure device. X-ray output dose was increased a little in the XMFTD, but both devices were below the performance evaluation standard, 0.002 in the output reproducibility. Linearity of XMFTD were below 0.1 which means that Dynalyzer III showed more excellency in linearity. As the the accuracy of exposure factor, 1.8 and 2 tube voltage, 2.01 and 2.3 tube current were measured. The exposure time was also measured by 0.01 sec ±10%. Both devices were within the acceptance of performance evaluation standard. We proved the usefulness of X-ray Multi-Function Test Device (model: Xi (unfors)-prestige) to evaluated the performance on reproductibility and linearity of X-ray output and accuracy of exposure factor of inverter type unit.

  10. The influence of external factors on the accuracy of non-invasive measuring of oxygen in blood

    Directory of Open Access Journals (Sweden)

    Y. M. Snizhko

    2016-05-01

    Full Text Available In this paper we investigated a pulse oximetry-based method for mobile devices. This method obtains bio-signals related to blood pulsation in transparent parts of body. The most widely accepted field for use of this method is hospital care. In these cases a pulse oximeter is the best solution for the monitoring of emergency patients. A promising field for pulse oximetry is physical exercise. It only requires simple clips such as ear-clips, finger-clips, headbands etc. However this method presents some difficulties: weak signal, noise ratio, motion artefacts, low perfusion. We used a MAX30100 Oximeter and Heart Rate Sensor integrated circuit to obtain signals of blood pulse waves from red and infrared light emission diodes (LED. This device measures the oxygen saturation of a person’s blood by placing an LED and a photodetector against the thin skin of a person’s body, such as a fingertip, wrist or earlobe. The MAX30100 is a 14-pin surface mount integrated circuit that contains sensors for measuring a person’s heart rate. It can also indirectly determine the oxygen saturation of a person’s blood. The MAX30100 provides a complete pulse oximetry and heart rate measurement solution for medical monitors and wearable fitness devices. As each LED emits light into a person’s finger, the integrated photodetector measures variations in light caused by changes in blood volume. An integrated 16-bit analog to digital converter (ADC with programmable sample rate converts the photodetector output to a digital value. The MAX30100 filters out ambient light that can interfere with an accurate reading. Data are read through a serial I2C interface to computer for further processing. The LED current can be programmed from 0 to 50 mA with proper supply voltage. The LED pulse width can be programmed from 200 µs to 1.6 ms to optimize measurement accuracy and power consumption based on use cases. The SpO2 algorithm is relatively insensitive to the wavelength

  11. Non-invasive microelectrode potassium flux measurements as a potential tool for early recognition of virus-host compatibility in plants.

    Science.gov (United States)

    Shabala, Sergey; Babourina, Olga; Rengel, Zed; Nemchinov, Lev G

    2010-09-01

    Diseases caused by plant viruses are widespread, resulting in severe economic losses worldwide. Understanding the cellular basis of defense responses and developing efficient diagnostic tools for early recognition of host specificity to viral infection is, therefore, of great importance. In this work, non-invasive ion selective microelectrodes (the MIFE technique) were used to measure net ion fluxes in mesophyll tissue of host (potato, tomato, tobacco) and non-host (sugar beet and periwinkle) plants in response to infection with Potato virus X (PVX). These results were complemented by FLIM (Fluorescence Lifetime Imaging) measurements of PVX-induced changes in intracellular Ca(2+) concentrations. Our results demonstrate that, unlike in other plant-pathogen interactions, Ca(2+) signaling appears to be non-essential in recognition of the early stages of viral infection. Instead, we observed significant changes in K(+) fluxes as early as 10 min after inoculation. Results of pharmacological experiments and membrane potential measurements pointed out that a significant part of these fluxes may be mediated by depolarization-activated outward-rectifying K(+) channels. This may suggest that viral infections trigger a different mechanism of plant defense signaling as compared to signals derived from other microbial pathogens; hence, altered Ca(2+) fluxes across the plasma membrane may not be a prerequisite for all elicitor-activated defense reactions. Clearly pronounced host specificity in K(+) flux responses suggests that the MIFE technique can be effectively used as a screening tool for the early diagnostics of virus-host compatibility.

  12. Comparison of multiple non-invasive methods of measuring cardiac output during pregnancy reveals marked heterogeneity in the magnitude of cardiac output change between women.

    Science.gov (United States)

    Petersen, John W; Liu, Jing; Chi, Yueh-Yun; Lingis, Melissa; Williams, R Stan; Rhoton-Vlasak, Alice; Segal, Mark S; Conrad, Kirk P

    2017-04-01

    Various non-invasive methods are available to measure cardiac output (CO) during pregnancy. We compared serial measures of CO using various methods to determine which provided the least variability. Ten patients with spontaneous pregnancy had estimation of CO at baseline prior to becoming pregnant and at the end of the first and third trimesters. Echocardiographic data were used to estimate CO using the Teichholz method, Simpson's biplane method, and the Doppler determined velocity time integral (VTI) method. In addition, a Bioz Dx device was used to estimate CO by impedance cardiography. CO estimated with the VTI method had the lowest beat-to-beat variability. CO estimated with the VTI method was higher than CO estimated with the 2D-Teichholz method and Simpson's method. The percent change in CO during pregnancy was similar for all echo methods (VTI, Teichholz, and Simpson's biplane). Baseline CO determined with impedance cardiography was higher than CO determined with the VTI method. However, change in CO during pregnancy was significantly lower when measured with impedance cardiography. There was marked heterogeneity in the degree of rise in CO during the first trimester (-3 to 55%). The wide variation in the gestational rise in CO was unexpected, and at least in part secondary to variable increase in heart rate. We recommend the use of the Doppler determined VTI method for the estimation of CO in pregnancy. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  13. Investigation on how to choose measurement sites for non-invasive near-infrared blood glucose sensing

    Science.gov (United States)

    Jiang, Jingying; Zou, Da; Min, Xiaolin; Ma, Zhenhe; Xu, Kexin

    2012-03-01

    With the changing of human diet and the future of an aging society, the number of diabetic patients is growing rapidly and steadily. The major therapeutic method to that disease is monitoring the blood glucose concentration frequently to adjust the dose of the drugs and insulin. In order to avoid the painful finger prick, we choose the ear lobe as a measurement site with finger as a reference. Firstly, we compare the blood glucose concentration results of ear lobe and finger during an oral glucose tolerance test, the results showed a good correlation of the two sites. Secondly, the three-layered skin structure of finger and ear lobe has been studied by using optical coherence tomography (OCT) technique. The result shows that the thickness of each layer at ear lobe is thinner. Finally, the difference between reflectance spectra of finger and ear lobe is compared due to the diverse skin thickness. The results still show a higher absorbance value for ear lobe. In conclusion, the ear lobe is an ideal measurement site for noninvasive blood glucose sensing.

  14. Comparison of ASL and DCE MRI for the non-invasive measurement of renal blood flow: quantification and reproducibility

    International Nuclear Information System (INIS)

    Cutajar, Marica; Hales, Patrick W.; Clark, Christopher A.; Gordon, Isky; Thomas, David L.; Banks, T.

    2014-01-01

    To investigate the reproducibility of arterial spin labelling (ASL) and dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) and quantitatively compare these techniques for the measurement of renal blood flow (RBF). Sixteen healthy volunteers were examined on two different occasions. ASL was performed using a multi-TI FAIR labelling scheme with a segmented 3D-GRASE imaging module. DCE MRI was performed using a 3D-FLASH pulse sequence. A Bland-Altman analysis was used to assess repeatability of each technique, and determine the degree of correspondence between the two methods. The overall mean cortical renal blood flow (RBF) of the ASL group was 263 ± 41 ml min -1 [100 ml tissue] -1 , and using DCE MRI was 287 ± 70 ml min -1 [100 ml tissue] -1 . The group coefficient of variation (CV g ) was 18 % for ASL and 28 % for DCE-MRI. Repeatability studies showed that ASL was more reproducible than DCE with CV g s of 16 % and 25 % for ASL and DCE respectively. Bland-Altman analysis comparing the two techniques showed a good agreement. The repeated measures analysis shows that the ASL technique has better reproducibility than DCE-MRI. Difference analysis shows no significant difference between the RBF values of the two techniques. (orig.)

  15. Non-invasive objective and contemporary methods for measuring ocular surface inflammation in soft contact lens wearers - A review.

    Science.gov (United States)

    Chao, Cecilia; Richdale, Kathryn; Jalbert, Isabelle; Doung, Kim; Gokhale, Moneisha

    2017-10-01

    Contact lens wear is one of the primary risk factors for the development of ocular surface inflammatory events. The purpose of this review is to examine and summarize existing knowledge on the mechanisms of contact lens related ocular surface inflammation and the evidence for the effectiveness of current objective methods to measure ocular surface inflammation. Contact lens wear is postulated to trigger an inflammatory response on the ocular surface due to mechanical, chemical, hypoxic stress, or by the introduction of microbes and their toxins. Apart from the traditional signs of inflammation, such as swelling, oedema, redness and heat, on the ocular surface, other methods to measure ocular surface inflammation in sub-clinical levels include tear inflammatory mediator concentrations, conjunctival cell morphology, and corneal epithelial dendritic cell density and morphology. Tear inflammatory mediator concentrations are up- or down-regulated during contact lens wear, with or without the presence of associated inflammatory events. There is higher conjunctival cell metaplasia observed with contact lens wear, but changes in goblet cell density are inconclusive. Dendritic cell density is seen to increase soon after initiating soft contact lens wear. The long term effects of contact lens wear on dendritic cell migration in the cornea and conjunctiva, including the lid wiper area, require further investigation. Currently patient factors, such as age, smoking, systemic diseases and genetic profile are being studied. A better understanding of these mechanisms may facilitate the development of new management options and strategies to minimize ocular surface inflammation related to contact lens wear. Copyright © 2017 British Contact Lens Association. Published by Elsevier Ltd. All rights reserved.

  16. A tunable fiber-optic LED illumination system for non-invasive measurements of the characteristics of a transparent fiber

    Science.gov (United States)

    Świrniak, Grzegorz; Głomb, Grzegorz

    2017-06-01

    This study reports an application of a fiber-optic LED-based illumination system to solve an inverse problem in optical measurements of characteristics of a single-mode fiber. The illumination system has the advantages of low temporal coherence, high intensity, collimation, and thermal stability of the emission spectrum. The inverse analysis is investigated to predict the values of the diameter and refractive index of a single-mode fiber and applies to the far field scattering pattern in the vicinity of a polychromatic rainbow. As the inversion possibility depends considerably on the properties of the incident radiation, a detailed discussion is provided on both the specification of the illumination system as well as preliminary characteristics of the produced radiation. The illumination system uses a direct coupling between a thermally-stabilized LED junction and a plastic optical fiber, which transmits light to an optical collimator. A numerical study of fiber-to-LED coupling efficiency helps to understand the influence of lateral and longitudinal misalignments on the output power.

  17. Non-invasive measurement of carbon monoxide burden in Guatemalan children and adults following wood-fired temazcal (sauna-bath) use.

    Science.gov (United States)

    Lam, Nick; Nicas, Mark; Ruiz-Mercado, Ilse; Thompson, Lisa M; Romero, Carolina; Smith, Kirk R

    2011-08-01

    The use of wood-fired steam baths, or temazcales, is a potentially dangerous source of CO exposure in Guatemalan Highland communities where adults and children use them regularly for bathing, relaxation, and healing purposes. Physical characteristics of children predispose them to absorb CO faster than adults, placing them at greater exposure and health risks. Efforts to quantify temazcal exposures across all age groups, however, have been hampered by the limitations in exposure measurement methods. In this pilot study we measured COHb levels in children and adults following use of the temazcal using three field-based, non-invasive CO measurement methods: CO-oximetry, exhaled breath, and by estimation of COHb using micro-environmental concentrations and time diaries. We then performed a brief comparison of methods. Average CO concentrations measured during temazcal use were 661 ± 503 ppm, approximately 10 times the 15 min WHO guideline. Average COHb levels for all participants ranged from 12-14% (max of 30%, min 2%), depending on the method. COHb levels measured in children were not significantly different from adults despite the fact that they spent 66% less time exposed. COHb measured by CO-oximetry and exhaled breath had good agreement, but precision of the former was affected substantially by random instrument error. The version of the field CO-oximeter device used in this pilot could be useful in screening for acute CO exposure events in children but may lack the precision for monitoring the burden from less extreme, but more day-to-day CO exposures (e.g. indoor solid fuel use). In urban settings, health effects in children and adults have been associated with chronic exposure to ambient CO concentrations much lower than measured in this study. Future research should focus on reducing exposure from temazcales through culturally appropriate modifications to their design and practices, and targeted efforts to educate communities on the health risks they pose

  18. Non-invasive in vivo measurement of cardiac output in C57BL/6 mice using high frequency transthoracic ultrasound: evaluation of gender and body weight effects.

    Science.gov (United States)

    Domínguez, Elisabet; Ruberte, Jesús; Ríos, José; Novellas, Rosa; Del Alamo, Maria Montserrat Rivera; Navarro, Marc; Espada, Yvonne

    2014-10-01

    Even though mice are being increasingly used as models for human cardiovascular diseases, non-invasive monitoring of cardiovascular parameters such as cardiac output (CO) in this species is challenging. In most cases, the effects of gender and body weight (BW) on these parameters have not been studied. The objective of this study was to provide normal reference values for CO in C57BL/6 mice, and to describe possible gender and/or BW associated differences between them. We used 30-MHz transthoracic Doppler ultrasound to measure hemodynamic parameters in the ascending aorta [heart rate (HR), stroke volume (SV), stroke index (SI), CO, and cardiac index (CI)] in ten anesthetized mice of either sex. No differences were found for HR, SV, and CO. Both SI and CI were statistically lower in males. However, after normalization for BW, these differences disappeared. These results suggest that if comparisons of cardiovascular parameters are to be made between male and female mice, values should be standardized for BW.

  19. Techniques for Non-Invasive Monitoring of Arterial Blood Pressure

    Directory of Open Access Journals (Sweden)

    Agnes S. Meidert

    2018-01-01

    Full Text Available Since both, hypotension and hypertension, can potentially impair the function of vital organs such as heart, brain, or kidneys, monitoring of arterial blood pressure (BP is a mainstay of hemodynamic monitoring in acutely or critically ill patients. Arterial BP can either be obtained invasively via an arterial catheter or non-invasively. Non-invasive BP measurement provides either intermittent or continuous readings. Most commonly, an occluding upper arm cuff is used for intermittent non-invasive monitoring. BP values are then obtained either manually (by auscultation of Korotkoff sounds or palpation or automatically (e.g., by oscillometry. For continuous non-invasive BP monitoring, the volume clamp method or arterial applanation tonometry can be used. Both techniques enable the arterial waveform and BP values to be obtained continuously. This article describes the different techniques for non-invasive BP measurement, their advantages and limitations, and their clinical applicability.

  20. Non-invasive hemoglobin monitoring.

    Science.gov (United States)

    Joseph, Bellal; Haider, Ansab; Rhee, Peter

    2016-09-01

    Technology has transformed the practice of medicine and surgery in particular over the last several decades. This change in practice has allowed diagnostic and therapeutic tests to be performed less invasively. Hemoglobin monitoring remains one of the most commonly performed diagnostic tests in the United States. Recently, non-invasive hemoglobin monitoring technology has gained popularity. The aim of this article is to review the principles of how this technology works, pros and cons, and the implications of non-invasive hemoglobin technology particularly in trauma surgery. Copyright © 2015 IJS Publishing Group Ltd. Published by Elsevier Ltd. All rights reserved.

  1. Reproducibility of a non-invasive ultrasonic technique of tendon force measurement, determined in vitro in equine superficial digital flexor tendons.

    Science.gov (United States)

    Crevier-Denoix, Nathalie; Ravary-Plumioën, Bérangère; Evrard, Delphine; Pourcelot, Philippe

    2009-09-18

    A non-invasive ultrasonic (US) technique of tendon force measurement has been recently developed. It is based on the relationship demonstrated between the speed of sound (SOS) in a tendon and the traction force applied to it. The objectives of the present study were to evaluate the variability of this non-linear relationship among 7 equine superficial digital flexor (SDF) tendons, and the reproducibility of SOS measurements in these tendons over successive loading cycles and tests. Seven SDF tendons were equipped with an US probe (1MHz), secured in contact with the skin overlying the tendon metacarpal part. The tendons were submitted to a traction test consisting in 5 cycles of loading/unloading between 50 and 4050N. Four tendons out of the 7 were submitted to 5 additional cycles up to 5550N. The SOS-tendon force relationships appeared similar in shape, although large differences in SOS levels were observed among the tendons. Reproducibility between cycles was evaluated from the root mean square of the standard deviations (RMS-SD) of SOS values observed every 100N, and of force values every 2m/s. Reproducibility of SOS measurements revealed high between successive cycles: above 500N the RMS-SD was less than 2% of the corresponding traction force. Reproducibility between tests was lower, partly due to the experimental set-up; above 500N the difference between the two tests stayed nevertheless below 15% of the corresponding mean traction force. The reproducibility of the US technique here demonstrated in vitro has now to be confirmed in vivo.

  2. Belowground plant development measured with magnetic resonance imaging (MRI): exploiting the potential for non-invasive trait quantification using sugar beet as a proxy

    Science.gov (United States)

    Metzner, Ralf; van Dusschoten, Dagmar; Bühler, Jonas; Schurr, Ulrich; Jahnke, Siegfried

    2014-01-01

    Both structural and functional properties of belowground plant organs are critical for the development and yield of plants but, compared to the shoot, much more difficult to observe due to soil opacity. Many processes concerning the belowground plant performance are not fully understood, in particular spatial and temporal dynamics and their interrelation with environmental factors. We used Magnetic Resonance Imaging (MRI) as a noninvasive method to evaluate which traits can be measured when a complex plant organ is monitored in-vivo while growing in the soil. We chose sugar beet (Beta vulgaris ssp. vulgaris) as a model system. The beet consists mainly of root tissues, is rather complex regarding tissue structure and responses to environmental factors, and thereby a good object to test the applicability of MRI for 3D phenotyping approaches. Over a time period of up to 3 months, traits such as beet morphology or anatomy were followed in the soil and the effect of differently sized pots on beet fresh weight calculated from MRI data was studied. There was a clear positive correlation between the pot size and the increase in fresh weight of a sugar beet over time. Since knowledge of the development of internal beet structures with several concentric cambia, vascular and parenchyma rings is still limited, we consecutively acquired 3D volumetric images on individual plants using the MRI contrast parameter T2 to map the development of rings at the tissue level. This demonstrates that MRI provides versatile protocols to non-invasively measure plant traits in the soil. It opens new avenues to investigate belowground plant performance under adverse environmental conditions such as drought, nutrient shortage, or soil compaction to seek for traits of belowground organs making plants more resilient to stress. PMID:25278947

  3. Belowground plant development measured with magnetic resonance imaging (MRI: exploiting the potential for non-invasive trait quantification using sugar beet as a proxy

    Directory of Open Access Journals (Sweden)

    Ralf eMetzner

    2014-09-01

    Full Text Available Both structural and functional properties of belowground plant organs are critical for the development and yield of plants but, compared to the shoot, much more difficult to observe due to soil opacity. Many processes concerning the belowground plant performance are not fully understood, in particular spatial and temporal dynamics and their interrelation with environmental factors. We used Magnetic Resonance Imaging (MRI as a noninvasive method to evaluate which traits can be measured when a complex plant organ is monitored in-vivo while growing in the soil. We chose sugar beet (Beta vulgaris ssp. vulgaris as a model system. The beet consists mainly of root tissues, is rather complex regarding tissue structure and responses to environmental factors, and thereby a good object to test the applicability of MRI for 3D phenotyping approaches. Over a time period of up to 3 months, traits such as beet morphology or anatomy were followed in the soil and the effect of differently sized pots on beet fresh weight calculated from MRI data was studied. There was a clear positive correlation between the pot size and the increase in fresh weight of a sugar beet over time. Since knowledge of the development of internal beet structures with several concentric cambia, vascular and parenchyma rings is still limited, we consecutively acquired 3D volumetric images on individual plants using the MRI contrast parameter T2 to map the development of rings at the tissue level. This demonstrates that MRI provides versatile protocols to non-invasively measure plant traits in the soil. It opens new avenues to investigate belowground plant performance under adverse environmental conditions such as drought, nutrient shortage or soil compaction to seek for traits of belowground organs making plants more resilient to stress.

  4. Non-invasive assessment of vasospasm following aneurysmal SAH using C-arm FDCT parenchymal blood volume measurement in the neuro-interventional suite: Technical feasibility

    Science.gov (United States)

    Downer, Jonathan; Corkill, Rufus; Byrne, James V

    2015-01-01

    Introduction Cerebral vasospasm is the leading cause of morbidity and mortality in patients with aneurysmal subarachnoid haemorrhage (SAH) surviving the initial ictus. Commonly used techniques for vasospasm assessment are digital subtraction angiography and transcranial Doppler sonography. These techniques can reliably identify only the major vessel spasm and fail to estimate its haemodynamic significance. To overcome these issues and to enable comprehensive non-invasive assessment of vasospasm inside the interventional suite, a novel protocol involving measurement of parenchymal blood volume (PBV) using C-arm flat detector computed tomography (FDCT) was implemented. Materials and methods Patients from the neuro-intensive treatment unit (ITU) with suspected vasospasm following aneurysmal SAH were scanned with a biplane C-arm angiography system using an intravenous contrast injection protocol. The PBV maps were generated using prototype software. Contemporaneous clinically indicated MR scan including the diffusion- and perfusion-weighted sequences was performed. C-arm PBV maps were compared against the MR perfusion maps. Results Distribution of haemodynamic impairment on C-arm PBV maps closely matched the pattern of abnormality on MR perfusion maps. On visual comparison between the two techniques, the extent of abnormality indicated PBV to be both cerebral blood flow and cerebral blood volume weighted. Conclusion C-arm FDCT PBV measurements allow an objective assessment of the severity and localisation of cerebral hypoperfusion resulting from vasospasm. The technique has proved feasible and useful in very sick patients after aneurysmal SAH. The promise shown in this early study indicates that it deserves further evaluation both for post-SAH vasospasm and in other relevant clinical settings. PMID:26017197

  5. Non-invasive mechanical ventilation

    African Journals Online (AJOL)

    Nicky

    failure may benefit from a trial of NIV. Increased work of breathing, as noted by use of accessory breathing. SAJCC. 10. July 2005, V ol. 21, No. 1. University of Manitoba and Manitoba Institute of Child Health, Winnipeg, Canada. B Louise Giles, MD, FRCPC. Non-invasive ventilation (NIV) is a modality of providing airway and ...

  6. Non-invasive tissue Doppler imaging pulmonary capillary wedge pressure measurement improves NT-proBNP prognostic value in heart failure.

    Science.gov (United States)

    Berni, Andrea; Cappelli, Francesco; Bitossi, Luca; Cecioni, Ilaria; Cappelli, Brunello; Toncelli, Loira; Galanti, Giorgio; Poggesi, Loredana

    2009-04-01

    The aim of the present study was to investigate whether the improvement of pulmonary capillary wedge pressure (PCWP) non-invasively assessed with tissue Doppler imaging is able to predict prognosis and cardiac-related mortality in patients with heart failure (HF), as previously demonstrated for NT-proBNP. We prospectively studied 23 patients (74 +/- 10 y; 17 M, 6 F) with acute HF. NT-proBNP and PCWP were measured at admission and discharge. NT-proBNP concentrations were determined by a chemiluminescent immunoassay kit. PCWP was assessed using the ratio of transmitral E velocity to the early diastolic mitral annulus velocity (E'), with the formula PCWP = 1.9 + 1.24 (E/E'). Patients were divided in two groups according to the clinical end-point based on cardiac death and hospital readmission for HF. After a mean follow-up of 230 days, 10 patients reached the end-point (group A), while 13 patients resulted event-free (group B). In group B, NT-proBNP values significantly decreased (3816 +/- 7424 vs. 6799 +/- 10537 pg/mL, P values was able to identify the majority of patients (77%) with an event-free survival at follow-up, whereas 70% of patients who reached the end-point had discordant changes in NT-proBNP and PCWP (chi2 = 5.06, P < 0.05). The combination of a biochemical marker such as NT-proBNP and a new indicator of LV filling pressure (E/E') allows to estimate the prognostic impact of standard medical therapy even in a small group of HF patients.

  7. Non-Invasive Prenatal Testing

    OpenAIRE

    Ekici, Cemal

    2015-01-01

    The rate of newborns with trisomy 21 (Down syndrome) who have been referred to our pediatric newborn clinic is very high. This shows that prenatal screening in the region is not carried out well. Prenatal diagnosis and screening methods include invasive prenatal diagnosis methods (amniocentesis, chorionic villus sampling (CVS), and cordocentesis) and non-invasive prenatal diagnosis (NIPT) which cell free fetal DNA (cffDNA) screening of maternal blood samples. After the discovery of the signs ...

  8. Non-Invasive Prenatal Testing

    OpenAIRE

    McGillivray, Barbara C.

    1988-01-01

    The rate of newborns with trisomy 21 (Down syndrome) who have been referred to our pediatric newborn clinic is very high. This shows that prenatal screening in the region is not carried out well. Prenatal diagnosis and screening methods include invasive prenatal diagnosis methods (amniocentesis, chorionic villus sampling (CVS), and cordocentesis) and non-invasive prenatal diagnosis (NIPT) which cell free fetal DNA (cffDNA) screening of maternal blood samples. After the discovery of the signs ...

  9. Non-invasive neural stimulation

    Science.gov (United States)

    Tyler, William J.; Sanguinetti, Joseph L.; Fini, Maria; Hool, Nicholas

    2017-05-01

    Neurotechnologies for non-invasively interfacing with neural circuits have been evolving from those capable of sensing neural activity to those capable of restoring and enhancing human brain function. Generally referred to as non-invasive neural stimulation (NINS) methods, these neuromodulation approaches rely on electrical, magnetic, photonic, and acoustic or ultrasonic energy to influence nervous system activity, brain function, and behavior. Evidence that has been surmounting for decades shows that advanced neural engineering of NINS technologies will indeed transform the way humans treat diseases, interact with information, communicate, and learn. The physics underlying the ability of various NINS methods to modulate nervous system activity can be quite different from one another depending on the energy modality used as we briefly discuss. For members of commercial and defense industry sectors that have not traditionally engaged in neuroscience research and development, the science, engineering and technology required to advance NINS methods beyond the state-of-the-art presents tremendous opportunities. Within the past few years alone there have been large increases in global investments made by federal agencies, foundations, private investors and multinational corporations to develop advanced applications of NINS technologies. Driven by these efforts NINS methods and devices have recently been introduced to mass markets via the consumer electronics industry. Further, NINS continues to be explored in a growing number of defense applications focused on enhancing human dimensions. The present paper provides a brief introduction to the field of non-invasive neural stimulation by highlighting some of the more common methods in use or under current development today.

  10. Neutron spectrometry measurements in iron

    International Nuclear Information System (INIS)

    Perlini, G.; Acerbis, S.; Carter, M.

    1988-01-01

    A compact structure was prepared for use in making measurements of neutron penetration in iron which could serve as reference data and as a check for computer codes. About 30 iron plates were put together giving a useful overall length of 130 cm. At various depths along the central axis of the iron block, measurements were made with liquid scintillator spectrometers and proton recoil proportional counters. The energy band explored was between 14 KeV and 10 MeV. Here we report the original spectra of the impulses and the neutron spectra found by the NE213 code based on the differential method and by unfolding with the SPEC4 code for liquid scintillation counters and proton recoil spectrometers, respectively. 12 figs., 60 tabs., 6 refs

  11. measurements of iron status and survival in african iron overload

    African Journals Online (AJOL)

    Introduction. Dietary iron overload is common in southern. Africa and there is a misconception that the condition is benign. 'Early descriptions of the condition relied on autopsy studies, and the use of indirect measurements of iron status to diagnose this form of iron overload has not been clarified. Methods. The study ...

  12. Benefits of non invasive ventilation.

    Science.gov (United States)

    Millar, D; Kirpalani, H

    2004-10-01

    Mechanical ventilation of the newborn infant has increased neonatal survival. However, this increased survival has come at the expense of increased morbidity, in the form of bronchopulmonary dysplasia, and at the cost of an expensive technology. Continuous positive airway pressure (CPAP) is accepted as conferring clinical benefit in supporting the recently extubated preterm infant and in the management of apnea of prematurity. Attention is now being drawn to physiologic and clinical evidence to support CPAP use, with or without early surfactant, as a primary treatment of hyaline membrane disease. The purpose of this review is to explore these proposed benefits of non invasive ventilation and place them in the context of current clinical evidence.

  13. Comparison of high-definition oscillometry -- a non-invasive technology for arterial blood pressure measurement -- with a direct invasive method using radio-telemetry in awake healthy cats.

    Science.gov (United States)

    Martel, Eric; Egner, Beate; Brown, Scott A; King, Jonathan N; Laveissiere, Arnaud; Champeroux, Pascal; Richard, Serge

    2013-12-01

    This study compared indirect blood pressure measurements using a non-invasive method, high-definition oscillometry (HDO), with direct measurements using a radio-telemetry device in awake cats. Paired measurements partitioned to five sub-ranges were collected in six cats using both methods. The results were analysed for assessment of correlation and agreement between the two methods, taking into account all pressure ranges, and with data separated in three sub-groups, low, normal and high ranges of systolic (SBP) and diastolic (DBP) blood pressure. SBP data displayed a mean correlation coefficient of 0.92 ± 0.02 that was reduced for low SBP. The agreement level evaluated from the whole data set was high and slightly reduced for low SBP values. The mean correlation coefficient of DBP was lower than for SBP (ie, 0.81 ± 0.02). The bias for DBP between the two methods was 22.3 ± 1.6 mmHg, suggesting that HDO produced lower values than telemetry. These results suggest that HDO met the validation criteria defined by the American College of Veterinary Internal Medicine consensus panel and provided a faithful measurement of SBP in conscious cats. For DBP, results suggest that HDO tended to underestimate DBP. This finding is clearly inconsistent with the good agreement reported in dogs, but is similar to outcomes achieved in marmosets and cynomolgus monkeys, suggesting that this is not related to HDO but is species related. The data support that the HDO is the first and only validated non-invasive blood pressure device and, as such, it is the only non-invasive reference technique that should be used in future validation studies.

  14. Measurement of iron absorption from meals contaminated with iron

    International Nuclear Information System (INIS)

    Hallberg, L.; Bjoern-Rasmussen, E.

    1981-01-01

    A method is described to measure in vitro the extent of isotopic exchange between the native nonheme food iron and added inorganic reduction to radioiron tracer. The food is digested with pepsin and trypsin in the presence of radioiron. The exchangeability of food iron is calculated from the specific activity in the food and in an extract of bathophenantroline in isoamyl alcohol obtained after digesting this food. The precision and accuracy of the method is illustrated by two kinds of studies, those in which different amounts of contamination iron are added to a meal and those evaluating contamination iron in natural meals. The present method will make it possible to measure validly iron absorption from meals contaminated with unknown amounts of iron of unknown exchangeability with the extrinsic radioiron tracer

  15. Enhancing motor performance improvement by personalizing non-invasive cortical stimulation with concurrent functional near-infrared spectroscopy and multi-modal motor measurements

    Science.gov (United States)

    Khan, Bilal; Hodics, Timea; Hervey, Nathan; Kondraske, George; Stowe, Ann; Alexandrakis, George

    2015-03-01

    Transcranial direct current stimulation (tDCS) is a non-invasive cortical stimulation technique that can facilitate task specific plasticity that can improve motor performance. Current tDCS interventions uniformly apply a chosen electrode montage to a subject population without personalizing electrode placement for optimal motor gains. We propose a novel perturbation tDCS (ptDCS) paradigm for determining a personalized electrode montage in which tDCS intervention yields maximal motor performance improvements during stimulation. PtDCS was applied to ten healthy adults and five stroke patients with upper hemiparesis as they performed an isometric wrist flexion task with their non-dominant arm. Simultaneous recordings of torque applied to a stationary handle, muscle activity by electromyography (EMG), and cortical activity by functional near-infrared spectroscopy (fNIRS) during ptDCS helped interpret how cortical activity perturbations by any given electrode montage related to changes in muscle activity and task performance quantified by a Reaction Time (RT) X Error product. PtDCS enabled quantifying the effect on task performance of 20 different electrode pair montages placed over the sensorimotor cortex. Interestingly, the electrode montage maximizing performance in all healthy adults did not match any of the ones being explored in current literature as a means of improving the motor performance of stroke patients. Furthermore, the optimal montage was found to be different in each stroke patient and the resulting motor gains were very significant during stimulation. This study supports the notion that task-specific ptDCS optimization can lend itself to personalizing the rehabilitation of patients with brain injury.

  16. Non-invasive markers of atherosclerosis and their correlation with ...

    African Journals Online (AJOL)

    McRoy

    2014-07-26

    Jul 26, 2014 ... [11,12]. Today, non-invasive methods are on the forefront for accurate assessment of atherosclerosis. cIMT and markers of vascular dysfunction in peripheral circulation (measured by oscillometric methods) namely, pulse wave velocity (PWV), arterial stiffness index. (ASI) and ankle brachial index (ABI) can.

  17. The influence of the pre-hospital application of non-invasive measurements of carboxyhemoglobin in the practice of emergency medical services in multiple and mass casualty incidents (MCI – A case report

    Directory of Open Access Journals (Sweden)

    Robert Gałązkowski

    2014-04-01

    Full Text Available In 2013 a fire broke out in the Nursing Home (NH in the Henryszew village 5 km away from the district hospital in Żyrardów. At the time of the incident 52 residents and 16 staff members were present in the building. Due to a large number of casualties, the occurrence was classified as a potentially mass casualty incident (MCI. Troops of the State Fire Brigade, Paramedic Rescue Squads, choppers of the Helicopter Emergency Medical Service, the Police, and the NH staff took part in the rescue operation. The priority was given to the evacuation of the NH residents carried out by the NH staff and firefighters, extinguishing the fire, as well as to primary and secondary survey triage. Due to the pre-accident health state of the victims, the latter posed a considerable difficulty. A decisive role was played by the need to conduct non-invasive measurements of carboxyhemoglobin in all the casualties, which then made it possible to adequately diagnose the patients and implement proper procedures. The rescue operation was correctly followed although it proved to be a serious logistical and technical undertaking for the participating emergency services. The residents were not found to be suffering from carbon monoxide poisoning, therefore 46 of the residents safely returned to the building. The fact that all the Paramedic Rescue Squads were equipped with medical triage sets and were able to conduct non-invasive measurements of carboxyhemoglobin made it possible to introduce effective procedures in the cases of suspected carbon monoxide poisoning and abandon costly and complicated organisational procedures when they proved to be unnecessary. Med Pr 2014;65(2:289–295

  18. Non-invasive cardiac output monitoring in neonates using bioreactance: a comparison with echocardiography.

    LENUS (Irish Health Repository)

    Weisz, Dany E

    2012-01-01

    Non-invasive cardiac output monitoring is a potentially useful clinical tool in the neonatal setting. Our aim was to evaluate a new method of non-invasive continuous cardiac output (CO) measurement (NICOM™) based on the principle of bioreactance in neonates.

  19. 49 CFR 192.489 - Remedial measures: Cast iron and ductile iron pipelines.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Remedial measures: Cast iron and ductile iron... for Corrosion Control § 192.489 Remedial measures: Cast iron and ductile iron pipelines. (a) General graphitization. Each segment of cast iron or ductile iron pipe on which general graphitization is found to a...

  20. Assessment of the respiratory metabolism in the skin from transcutaneous measurements of pO2 and pCO2: potential for non-invasive monitoring of response to tuberculin skin testing.

    Science.gov (United States)

    Abbot, N C; Spence, V A; Swanson-Beck, J; Carnochan, F M; Gibbs, J H; Lowe, J G

    1990-03-01

    A method is described for non-invasive transcutaneous (tc) measurement of tissue respiratory gas tensions in the skin on the forearm for study of delayed hypersensitivity reactions in man. Steady state values for tcpO2 and tcpCO2 were measured, and the skin respiratory rate (oxygen consumption) and the tissue pH were estimated from the changes in tcpO2 and tcpCO2 observed after interruption of the arterial circulation by cuff occlusion for 4 minutes. The extent of within-experiment and between subject variation in the steady-state measurements was not great (coefficient of variation 10%): tcpCO2.ss (steady state) was higher in men and tcpO2.ss was higher in women, but the extent of these sex differences was also small. Reference ranges have been established for tc measurements and calculated indices of tissue respiration in the undisturbed forearm skin of normal volunteers, against which the changes induced by tuberculin testing can be assessed. Severe changes, indicative of profound hypoxia and acidosis, are seen in intense delayed hypersensitivity reactions. Similar, but less severe changes were seen at the site of skin tests on BCG-vaccinated subjects who were 'negative' by conventional criteria of measurement of dermal induration and they became greatly exaggerated after successful re-vaccination. Intradermal injection of saline did not induce hypoxia or local acidosis. These new methods are very sensitive indicators of the tissue response in the DHS reaction.

  1. Infrared spectroscopic analysis of human interstitial fluid in vitro and in vivo using FT-IR spectroscopy and pulsed quantum cascade lasers (QCL): Establishing a new approach to non invasive glucose measurement.

    Science.gov (United States)

    Pleitez, Miguel; von Lilienfeld-Toal, Hermann; Mäntele, Werner

    2012-01-01

    Interstitial fluid, i.e. the liquid present in the outermost layer of living cells of the skin between the Stratum corneum and the Stratum spinosum, was analyzed by Fourier transform infrared spectroscopy and by infrared spectroscopy using pulsed quantum cascade infrared lasers with photoacoustic detection. IR spectra of simulated interstitial fluid samples and of real samples from volunteers in the 850-1800cm(-1) range revealed that the major components of interstitial fluid are albumin and glucose within the physiological range, with only traces of sodium lactate if at all. The IR absorbance of glucose in interstitial fluid in vivo was probed in healthy volunteers using a setup with quantum cascade lasers and photoacoustic detection previously described. A variation of blood glucose between approx. 80mg/dl and 250mg/dl in the volunteers was obtained using the standard oral glucose tolerance test (OGT). At two IR wavelengths, 1054cm(-1) and 1084cm(-1), a reasonable correlation between the photoacoustic signal from the skin and the blood glucose value as determined by conventional glucose test sticks using blood from the finger tip was obtained. The infrared photoacoustic glucose signal (PAGS) may serve as the key for a non-invasive glucose measurement, since the glucose content in interstitial fluid closely follows blood glucose in the time course and in the level (a delay of some minutes and a level of approx. 80-90% of the glucose level in blood). Interstitial fluid is present in skin layers at a depth of only 15-50μm and is thus within the reach of mid-IR energy in an absorbance measurement. A non-invasive glucose measurement for diabetes patients based on mid-infrared quantum cascade lasers and photoacoustic detection could replace the conventional measurement using enzymatic test stripes and a drop of blood from the finger tip, thus reducing pain and being a cost-efficient alternative for millions of diabetes patients. Copyright © 2011 Elsevier B.V. All

  2. Cardiac vagal tone, a non-invasive measure of parasympathetic tone, is a clinically relevant tool in Type 1 diabetes mellitus

    DEFF Research Database (Denmark)

    Brock, C; Jessen, N; Brock, B

    2017-01-01

    AIMS: To compare a novel index of parasympathetic tone, cardiac vagal tone, with established autonomic variables and to test the hypotheses that (1) cardiac vagal tone would be associated with established time and frequency domain measures of heart rate and (2) cardiac vagal tone would be lower i...... identification of people with Type 1 diabetes who should undergo formal autonomic function testing....

  3. A modified device for continuous non-invasive blood pressure measurements in humans under hyperbaric and/or oxygen-enriched conditions

    NARCIS (Netherlands)

    van der Bel, René; Sliggers, Bart C.; van Houwelingen, Marc J.; van Lieshout, Johannes J.; Halliwill, John R.; van Hulst, Robert A.; Krediet, C. T. Paul

    2016-01-01

    It would be desirable to safely and continuously measure blood pressure noninvasively under hyperbaric and/or hyperoxic conditions, in order to explore haemodynamic responses in humans under these conditions. A systematic analysis according to 'failure mode and effects analysis' principles of a

  4. Power spectral estimation of high-harmonics in echoes of wall resonances to improve resolution in non-invasive measurements of wall mechanical properties in rubber tube and ex-vivo artery.

    Science.gov (United States)

    Bazan, I; Ramos, A; Balay, G; Negreira, C

    2018-07-01

    The aim of this work is to develop a new type of ultrasonic analysis of the mechanical properties of an arterial wall with improved resolution, and to confirm its feasibility under laboratory conditions. it is expected that this would facilitate a non-invasive path for accurate predictive diagnosis that enables an early detection & therapy of vascular pathologies. In particular, the objective is to detect and quantify the small elasticity changes (in Young's modulus E) of arterial walls, which precede pathology. A submicron axial resolution is required for this analysis, as the periodic widening of the wall (under oscillatory arterial pressure) varies between ±10 and 20 μm. This high resolution represents less than 1% of the parietal thickness (e.g., estimate the modulus E of the arterial walls, which achieves the requisite resolution. It calculates the power spectral evolution associated with the temporal dynamics in higher harmonics of the wall internal resonance f 0 . This was attained via the implementation of an autoregressive parametric algorithm that accurately detects parietal echo-dynamics during a heartbeat. Thus, it was possible to measure the punctual elasticity of the wall, with a higher resolution (> an order of magnitude) compared to conventional approaches. The resolution of a typical ultrasonic image is limited to several hundred microns, and thus, such small changes are undetected. The proposed procedure provides a non-invasive and direct measure of elasticity by doing an estimation of changes in the Nf 0 harmonics and wall thickness with a resolution of 0.1%, for first time. The results obtained by using the classic temporal cross-correlation method (TCC) were compared to those obtained with the new procedure. The latter allowed the evaluation of alterations in the elastic properties of arterial walls that are 30 times smaller than those being detectable with TCC; in fact, the depth resolution of the TCC approach is limited to ≈20

  5. Early diagnosis of asthma in young children by using non-invasive biomarkers of airway inflammation and early lung function measurements: study protocol of a case-control study

    Science.gov (United States)

    van de Kant, Kim DG; Klaassen, Ester MM; Jöbsis, Quirijn; Nijhuis, Annedien J; van Schayck, Onno CP; Dompeling, Edward

    2009-01-01

    Background Asthma is the most common chronic disease in childhood, characterized by chronic airway inflammation. There are problems with the diagnosis of asthma in young children since the majority of the children with recurrent asthma-like symptoms is symptom free at 6 years, and does not have asthma. With the conventional diagnostic tools it is not possible to differentiate between preschool children with transient symptoms and children with asthma. The analysis of biomarkers of airway inflammation in exhaled breath is a non-invasive and promising technique to diagnose asthma and monitor inflammation in young children. Moreover, relatively new lung function tests (airway resistance using the interrupter technique) have become available for young children. The primary objective of the ADEM study (Asthma DEtection and Monitoring study), is to develop a non-invasive instrument for an early asthma diagnosis in young children, using exhaled inflammatory markers and early lung function measurements. In addition, aetiological factors, including gene polymorphisms and gene expression profiles, in relation to the development of asthma are studied. Methods/design A prospective case-control study is started in 200 children with recurrent respiratory symptoms and 50 control subjects without respiratory symptoms. At 6 years, a definite diagnosis of asthma is made (primary outcome measure) on basis of lung function assessments and current respiratory symptoms ('golden standard'). From inclusion until the definite asthma diagnosis, repeated measurements of lung function tests and inflammatory markers in exhaled breath (condensate), blood and faeces are performed. The study is registered and ethically approved. Discussion This article describes the study protocol of the ADEM study. The new diagnostic techniques applied in this study could make an early diagnosis of asthma possible. An early and reliable asthma diagnosis at 2–3 years will have consequences for the management of

  6. Test of PPV and kVp magnitudes using a non invasive voltage test aiming an improvement on the measurement acquisition; Testes das grandezas PPV e kVp utilizando um medidor de tensao nao invasivo visando um aperfeicoamento na aquisicao de medidas

    Energy Technology Data Exchange (ETDEWEB)

    Lucena, Rodrigo F. de; Dias, Daniel M.; Franciscatto, Priscila C.; Correa, Eduardo de L.; Vivolo, Vitor; Potiens, Maria da Penha A., E-mail: rodrigoifusp@yahoo.com.b, E-mail: dmdias@ipen.b, E-mail: pfranciscatto@yahoo.com.b, E-mail: edu1905@gmail.co, E-mail: vivolo@ipen.b, E-mail: mppalbu@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2009-07-01

    In this work the measurements of PPV (Practical Peak Voltage) and kVp (Peak Voltage) were studied obtained by use of voltage non invasive, under different conditions, viewing an improvement on the acquisition measurements at the Instrument Calibration Laboratory of the IPEN, Sao Paulo, Brazil, for the implantation of the radiation quality required for the required calibrations for X radiation instruments

  7. Changes of biophysical properties of the skin measured by non-invasive techniques after Q-switched Nd-YAG laser therapy in patients with nevus of Ota.

    Science.gov (United States)

    Kim, S D; Kim, S W; Huh, C H; Suh, D H; Eun, H C

    2001-11-01

    The aim of the study was to objectify the effect of a Q-switched Nd-YAG laser on Ota's nevus in view of barrier function, surface contour changes, dermal blood flow, surface color changes and sebum production rate. Fifteen Korean patients with nevus of Ota (between 14 and 54 years of age) were enrolled. All the patients were treated by Q-switched Nd-YAG laser and followed up for 12 weeks. A reflectance spectrophotometer, a colorimeter, laser Doppler flowmetry, a Tewameter, a Corneometer and a Sebumeter were used to make measurements. Pvalues of less than 0.05 were regarded as statistically significant. In skin reflectance measurements, L* values declined for 4 weeks and increased at 12 weeks, indicating that the brightness of the lesions improved. a* values showed a significant increase at 2 and 4 weeks. On the contrary, b* values decreased at 2 weeks. Transepidermal water loss and dermal blood flux showed identical patterns, showing increases at 2 weeks. The water holding capacity decreased at 2 and 4 weeks, and thereafter showed a delayed recovery. Casual sebum production increased at 4, 8 and 12 weeks. The loss of skin roughness was observed at 4 weeks, recovering at 12 weeks, although statistically insignificant. Reflex spectrophotometry did not reflect the changing properties of the skin. Our data suggest a useful model for evaluating physiologic skin changes after laser surgery in patients with nevus of Ota.

  8. Endocrine correlates of musth in free-ranging Asian elephants (Elephas maximus determined by non-invasive faecal steroid hormone metabolite measurements.

    Directory of Open Access Journals (Sweden)

    Ratna Ghosal

    Full Text Available The occurrence of musth, a period of elevated levels of androgens and heightened sexual activity, has been well documented for the male Asian elephant (Elephas maximus. However, the relationship between androgen-dependent musth and adrenocortical function in this species is unclear. The current study is the first assessment of testicular and adrenocortical function in free-ranging male Asian elephants by measuring levels of testosterone (androgen and cortisol (glucocorticoid--a physiological indicator of stress metabolites in faeces. During musth, males expectedly showed significant elevation in faecal testosterone metabolite levels. Interestingly, glucocorticoid metabolite concentrations remained unchanged between musth and non-musth periods. This observation is contrary to that observed with wild and captive African elephant bulls and captive Asian bull elephants. Our results show that musth may not necessarily represent a stressful condition in free-ranging male Asian elephants.

  9. Novel non-invasive distribution measurement of texture profile analysis (TPA) in salmon fillet by using visible and near infrared hyperspectral imaging.

    Science.gov (United States)

    Wu, Di; Sun, Da-Wen; He, Yong

    2014-02-15

    This study developed a pushbroom visible and near-infrared hyperspectral imaging system in the wavelength range of 400-1758 nm to determine the spatial distribution of texture profile analysis (TPA) parameters of salmon fillets. Six TPA parameters (hardness, adhesiveness, chewiness, springiness, cohesiveness, and gumminess) were analysed. Five spectral features (mean, standard deviation, skew, energy, and entropy) and 22 image texture features obtained from graylevel co-occurrence matrix (GLCM) were extracted from hyperspectral images. Quantitative models were established with the extracted spectral and image texture signatures of samples based on partial least squares regression (PLSR). The results indicated that spectral features had better ability to predict TPA parameters of salmon samples than image texture features, and Spectral Set I (400-1000 nm) performed better than Spectral II (967-1634 nm). On the basis of the wavelengths selected by regression coefficients of PLSR models, instrumental optimal wavelengths (IOW) and predictive optimal wavelengths (POW) were further chosen to reduce the high dimensionality of the hyperspectral image data. Our results show that hyperspectral imaging holds promise as a reliable and rapid alternative to traditional universal testing machines for measuring the spatial distribution of TPA parameters. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. PET-measured heterogeneity in longitudinal myocardial blood flow in response to sympathetic and pharmacologic stress as a non-invasive probe of epicardial vasomotor dysfunction

    International Nuclear Information System (INIS)

    Schindler, Thomas H.; Facta, Alvaro D.; Prior, John O.; Campisi, Roxana; Inubushi, Masayuki; Kreissl, Michael C.; Zhang, Xiao-Li; Sayre, James; Dahlbom, Magnus; Schelbert, Heinrich R.

    2006-01-01

    We investigated whether a myocardial perfusion gradient during pharmacologically induced hyperemia also occurred during sympathetic stimulation with cold pressor testing (CPT), which commonly induces a paradoxical coronary vasoconstriction in individuals with coronary risk factors. Myocardial blood flow (MBF) was measured in absolute units (ml/g/min) with 13 N-ammonia and PET at rest, during CPT, and during pharmacologic vasodilation in 59 participants with coronary risk factors (''at risk'') and in 43 healthy individuals (controls). MBF was assessed globally as mean MBF, and in the mid and mid-distal myocardium of the left ventricle (LV). A decrease in MBF from mid to mid-distal LV myocardium was defined as MBF difference indicative of a perfusion gradient. The change in mean MBF to CPT (ΔMBF) in the at-risk group was significantly reduced compared with controls (0.05±0.19 vs 0.31±0.20 ml/g/min, p<0.0001), whereas mean MBF during pharmacologic vasodilation in the at-risk group tended to be lower than in controls (1.72±0.71 vs 2.00±0.64 ml/g/min, p=NS). Absolute MBFs during CPT and pharmacologic vasodilation were significantly lower in the mid-distal than in the mid LV myocardium, resulting in a significant MBF difference in the at-risk group (0.15±0.06 and 0.27±0.12 ml/g/min, p<0.0001) that was not observed in controls (0.007±0.05 and 0.014±0.10 ml/g/min, p=NS). In the at-risk group there was a significant correlation between the difference of mid to mid-distal MBF during CPT and that during pharmacologic vasodilation (r=0.43, p<0.004), suggesting functional alterations of epicardial vessels as the predominant cause for the observed MBF difference. The relative decrease in MBF from the mid to the mid-distal left-ventricular myocardium suggests an intracoronary pressure decline during CPT and pharmacologic vasodilation, which is likely to reflect an impairment of flow-mediated epicardial vasomotor function. (orig.)

  11. Non-invasive imaging of microcirculation: a technology review

    OpenAIRE

    Sturesson, Christian; Nilsson,Jan; Eriksson,Sam

    2014-01-01

    Sam Eriksson,1,2 Jan Nilsson,1,2 Christian Sturesson1,2 1Department of Surgery, Clinical Sciences Lund, Lund University, 2Skåne University Hospital, Lund, Sweden Abstract: Microcirculation plays a crucial role in physiological processes of tissue oxygenation and nutritional exchange. Measurement of microcirculation can be applied on many organs in various pathologies. In this paper we aim to review the technique of non-invasive methods for imaging of the microcirculation. Methods c...

  12. Magnetic resonance assessment of iron overload by separate measurement of tissue ferritin and hemosiderin iron.

    Science.gov (United States)

    Wu, Ed X; Kim, Daniel; Tosti, Christina L; Tang, Haiying; Jensen, Jens H; Cheung, Jerry S; Feng, Li; Au, Wing-Yan; Ha, Shau-Yin; Sheth, Sujit S; Brown, Truman R; Brittenham, Gary M

    2010-08-01

    With transfusional iron overload, almost all the excess iron is sequestered intracellularly as rapidly mobilizable, dispersed, soluble ferritin iron, and as aggregated, insoluble hemosiderin iron for long-term storage. Established magnetic resonance imaging (MRI) indicators of tissue iron (R(2), R(2)*) are principally influenced by hemosiderin iron and change slowly, even with intensive iron chelation. Intracellular ferritin iron is evidently in equilibrium with the low-molecular-weight cytosolic iron pool that can change rapidly with iron chelation. We have developed a new MRI method to separately measure ferritin and hemosiderin iron, based on the non-monoexponential signal decay induced by aggregated iron in multiple-spin-echo sequences. We have initially validated the method in agarose phantoms and in human liver explants and shown the feasibility of its application in patients with thalassemia major. Measurement of tissue ferritin iron is a promising new means to rapidly evaluate the effectiveness of iron-chelating regimens.

  13. Discordant non-invasive prenatal testing (NIPT)

    DEFF Research Database (Denmark)

    Hartwig, Tanja Schlaikjaer; Ambye, Louise; Sørensen, Steen

    2017-01-01

    With a high sensitivity and specificity, non-invasive prenatal testing (NIPT) is an incomparable screening test for fetal aneuploidy. However, the method is rather newly introduced, and experiences with discordant results are few. We did a systematic review of literature reporting details of false...... suggest a systematic recording of discordant NIPT results, as well as a quality assurance by external quality control and accreditation. © 2017 John Wiley & Sons, Ltd....

  14. Non-invasive techniques for determining musculoskeleton body composition

    International Nuclear Information System (INIS)

    Cohn, S.H.

    1984-01-01

    In vivo neutron activation analysis, combined with gamma spectrometry, has ushered in a new era of clinical diagnosis and evaluation of therapies, as well as investigation into and modelling of body composition in both normal individuals and patients suffering from various diseases and dysfunctions. Body composition studies have provided baseline data on such vital constituents as nitrogen, potassium and calcium. The non-invasive measurement techniques are particularly suitable for study of the musculo-skeletal changes in body composition. Of particular relevance here is the measurement of calcium loss in astronauts during prolonged space flights

  15. Non-invasive acoustic-based monitoring of uranium in solution and H/D ratio

    Energy Technology Data Exchange (ETDEWEB)

    Pantea, Cristian [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Beedle, Christopher Craig [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Sinha, Dipen N. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lakis, Rollin Evan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-08-01

    The primary objective of this project is to adapt existing non-invasive acoustic techniques (Swept-Frequency Acoustic Interferometry and Gaussian-pulse acoustic technique) for the purpose of demonstrating the ability to quantify U or H/D ratios in solution. Furthermore, a successful demonstration will provide an easily implemented, low cost, and non-invasive method for remote and unattended uranium mass measurements for International Atomic Energy Agency (IAEA).

  16. Non-invasive respiratory monitoring in paediatric intensive care unit.

    Directory of Open Access Journals (Sweden)

    Nadkarni U

    2000-04-01

    Full Text Available Monitoring respiratory function is important in a Paediatrics Intensive Care Unit (PICU, as majority of patients have cardio-respiratory problems. Non-invasive monitoring is convenient, accurate, and has minimal complications. Along with clinical monitoring, oxygen saturation using pulse oximetry, transcutaneous oxygenation (PtcO2 and transcutaneous PCO2 (PtcCO2 using transcutaneous monitors and end-tidal CO2 using capnography are important and routine measurements done in most PICUs. Considering the financial and maintenance constraints pulse oximetry with end tidal CO2 monitoring can be considered as most feasible.

  17. Non-invasive assessment of gastric activity

    International Nuclear Information System (INIS)

    Smallwood, R.H.; Brown, B.H.

    1983-01-01

    There have been many suggestions for the routine clinical use of the electro-enterogram, but with the exception of the reported usage in the USSR no significant penetration into medical practice has been reported elsewhere. Amongst the many suggestions have been the possible application of electrical stimulation via surface electrodes to overcome post-operative inhibition of intestinal electrical activity, which can be recorded via surface electrodes. Gastric emptying studies have shown that duodenal ulceration is associated with changes in the rate and pattern of emptying of solid meals. Identifiable patterns in the electro-gastrogram following a metal might have diagnostic application. There is some evidence of correlations of electrical activity and pathology in the large intestine. In the colon diverticular disease has been shown to change the frequency content of the slow wave electrical activity and there is some evidence that this might be recorded from surface electrodes. A major obstacle to progress remains the inability to relate non-invasive recordings to intestinal motility. The best hope may be the use of direct and yet non-invasive methods of obtaining motility and in this context real-time ultrasound imaging is probably the most promising technique. The electro-gastrogram has certainly been shown to allow recording of gastric slow wave activity and there is a reasonable hope that further methods of analysis will allow inferential information on motility to be obtained. The following section makes brief mention of these techniques

  18. Infrared thermography: A non-invasive window into thermal physiology.

    Science.gov (United States)

    Tattersall, Glenn J

    2016-12-01

    Infrared thermography is a non-invasive technique that measures mid to long-wave infrared radiation emanating from all objects and converts this to temperature. As an imaging technique, the value of modern infrared thermography is its ability to produce a digitized image or high speed video rendering a thermal map of the scene in false colour. Since temperature is an important environmental parameter influencing animal physiology and metabolic heat production an energetically expensive process, measuring temperature and energy exchange in animals is critical to understanding physiology, especially under field conditions. As a non-contact approach, infrared thermography provides a non-invasive complement to physiological data gathering. One caveat, however, is that only surface temperatures are measured, which guides much research to those thermal events occurring at the skin and insulating regions of the body. As an imaging technique, infrared thermal imaging is also subject to certain uncertainties that require physical modelling, which is typically done via built-in software approaches. Infrared thermal imaging has enabled different insights into the comparative physiology of phenomena ranging from thermogenesis, peripheral blood flow adjustments, evaporative cooling, and to respiratory physiology. In this review, I provide background and guidelines for the use of thermal imaging, primarily aimed at field physiologists and biologists interested in thermal biology. I also discuss some of the better known approaches and discoveries revealed from using thermal imaging with the objective of encouraging more quantitative assessment. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Muon momentum measurement in magnetized iron spectrometers

    International Nuclear Information System (INIS)

    Voss, R.; Zupancic, C.

    1984-01-01

    Measuring the momentum of high-energy muons with a magnetized iron spectrometer is a conventional technique employed by numerous experiments and may appear to be an old-fashioned subject. In the TeV regime, multiple scattering errors become small compared to measurement errors achieveable with large-surface particle detectors, and there are indications that new physical effects influencing the resolution properties of a muon spectrometer may become important. (orig./HSI)

  20. Comparison of different models for non-invasive FFR estimation

    Science.gov (United States)

    Mirramezani, Mehran; Shadden, Shawn

    2017-11-01

    Coronary artery disease is a leading cause of death worldwide. Fractional flow reserve (FFR), derived from invasively measuring the pressure drop across a stenosis, is considered the gold standard to diagnose disease severity and need for treatment. Non-invasive estimation of FFR has gained recent attention for its potential to reduce patient risk and procedural cost versus invasive FFR measurement. Non-invasive FFR can be obtained by using image-based computational fluid dynamics to simulate blood flow and pressure in a patient-specific coronary model. However, 3D simulations require extensive effort for model construction and numerical computation, which limits their routine use. In this study we compare (ordered by increasing computational cost/complexity): reduced-order algebraic models of pressure drop across a stenosis; 1D, 2D (multiring) and 3D CFD models; as well as 3D FSI for the computation of FFR in idealized and patient-specific stenosis geometries. We demonstrate the ability of an appropriate reduced order algebraic model to closely predict FFR when compared to FFR from a full 3D simulation. This work was supported by the NIH, Grant No. R01-HL103419.

  1. Clinical evaluation of non-invasive perfusion-weighted MRI

    International Nuclear Information System (INIS)

    Takasu, Miyuki

    2000-01-01

    A spin labeling method to measure cerebral blood flow without a contrast medium was developed and applied clinically to obtain a non-invasive perfusion-weighted image. The purpose of this study is to compare the non-invasive perfusion-weighted image using FAIR with the well-established PWI using a bolus injection of Gd-DTPA. Of 41 lesions which revealed decreased perfusion, 13 were shown to be low signal intensity areas on FAIR. Therefore, detection rate of FAIR for hypoperfusion was 32%. Of 8 lesions which revealed increased perfusion, 7 demonstrated high intensity on FAIR. Therefore, detection rate of FAIR for hyperperfusion was 88%. Seven lesions were found to have a mean pixel value of zero on PWI. Of these lesions, 5 lesions could be detected as high signal intensity area on FAIR. The rCBV- and rCBF index ratios of hypoperfused lesions detected on FAIR were significantly lower than those of lesions which were not detected on FAIR (p=0.007, p=0.01). As concerns the lesions detected of FAIR, there were positive correlation between rCBV- or rCBF index ratio and FAIR signal ratio (rCBV ratio: ρ=0.873, p=0.0002, rCBF index ratio: ρ=0.858, p=0.0003). FAIR is valuable clinical tool to detect perfusion abnormality semi-quantitatively without contrast medium, although it showed relatively low detection rate for hypoperfused lesions. (author)

  2. Non-invasive imaging of microcirculation: a technology review.

    Science.gov (United States)

    Eriksson, Sam; Nilsson, Jan; Sturesson, Christian

    2014-01-01

    Microcirculation plays a crucial role in physiological processes of tissue oxygenation and nutritional exchange. Measurement of microcirculation can be applied on many organs in various pathologies. In this paper we aim to review the technique of non-invasive methods for imaging of the microcirculation. Methods covered are: videomicroscopy techniques, laser Doppler perfusion imaging, and laser speckle contrast imaging. Videomicroscopy techniques, such as orthogonal polarization spectral imaging and sidestream dark-field imaging, provide a plentitude of information and offer direct visualization of the microcirculation but have the major drawback that they may give pressure artifacts. Both laser Doppler perfusion imaging and laser speckle contrast imaging allow non-contact measurements but have the disadvantage of their sensitivity to motion artifacts and that they are confined to relative measurement comparisons. Ideal would be a non-contact videomicroscopy method with fully automatic analysis software.

  3. Non-invasive brain stimulation in neglect rehabilitation: An update.

    Directory of Open Access Journals (Sweden)

    René Martin Müri

    2013-06-01

    Full Text Available Here, we review the effects of non-invasive brain stimulation (NIBS such as transcranial magnetic stimulation (TMS or transcranial direct current stimulation (tDCS in the rehabilitation of neglect. We found 12 studies including 172 patients (10 TMS studies and 2 tDCS studies fulfilling our search criteria. Activity of daily living (ADL measures such as the Barthel Index or more specifically for neglect, the Catherine Bergego Scale were the outcome measure in 3 studies. Five studies were randomized controlled trials with a follow-up time after intervention of up to 6 weeks. One TMS study fulfilled criteria for Class I and one for Class III evidence.The studies are heterogeneous concerning their methodology, outcome measures, and stimulation parameters making firm comparisons and conclusions difficult. Overall, there are however promising results for theta burst stimulation, suggesting that TMS is a powerful add-on therapy in the rehabilitation of neglect patients.

  4. NON-INVASIVE INVERSE PROBLEM IN CIVIL ENGINEERING

    Directory of Open Access Journals (Sweden)

    Jan Havelka

    2017-11-01

    Full Text Available In this contribution we focus on recovery of spatial distribution of material parameters utilizing only non-invasive boundary measurements. Such methods has gained its importance as imaging techniques in medicine, geophysics or archaeology. We apply similar principles for non-stationary heat transfer in civil engineering. In oppose to standard technique which rely on external loading devices, we assume the natural fluctuation of temperature throughout day and night can provide sufficient information to recover the underlying material parameters. The inverse problem was solved by a modified regularised Gauss-Newton iterative scheme and the underlying forward problem is solved with a finite element space-time discretisation. We show a successful reconstruction of material parameters on a synthetic example with real measurements. The virtual experiment also reveals the insensitivity to practical precision of sensor measurements.

  5. [Argentine consensus of non-invasive ventilation].

    Science.gov (United States)

    Diez, Ana R; Abbona, Horacio; Ferrero, Gerardo; Figueroa Casas, Juan C; De Vega, Marcelino; Lisanti, Raul; Lopez, Ana M; Menga, Guillermo; Montiel, Guillermo C; Perez Chada, Daniel; Raimondi, Alejandro C; Raimondi, Guillermo A; Uribe Echevarria, María Elisa; Vázquez, Walter D

    2005-01-01

    Non-invasive ventilation (NIV) is nowadays increasingly used. The significant decrease in tracheal intubation related complications makes it particularly attractive in patients with moderately acute respiratory failure (ARF) who still have some degree of respiratory autonomy. It has also been used to support patients with chronic respiratory failure. However, final outcomes are variable according to the conditions which determined its application. This Consensus was performed in order to review the evidence supporting the use of positive pressure NIV. The patho-physiological background of NIV and the equipment required technology are described. Available evidence clearly suggests benefits of NIV in acute exacerbation of chronic obstructive pulmonary disease (COPD) and in cardiogenic pulmonary edema (Recommendation A). When considering ARF in the setting of acute respiratory distress syndrome results are uncertain, unless dealing with immunosupressed patients (Recommendation B). Positive results are also shown in weaning of mechanical ventilation (MV), particularly regarding acute exacerbation of COPD patients (Recommendation A). An improved quality of life in chronic respiratory failure and a longer survival in restrictive disorders has also been shown (Recommendation B) while its benefit in stable COPD patients is still controversial (Recommendation C). NIV should be performed according to pre-established standards. A revision of NIV related complications is performed and the cost-benefit comparison with invasive MV is also considered.

  6. Non-invasive diagnostic methods in dentistry

    Science.gov (United States)

    Todea, Carmen

    2016-03-01

    The paper, will present the most important non-invasive methods for diagnostic, in different fields of dentistry. Moreover, the laser-based methods will be emphasis. In orthodontics, 3D laser scanners are increasingly being used to establish database for normative population and cross-sectional growth changes but also to asses clinical outcomes in orthognatic surgical and non-surgical treatments. In prevention the main methods for diagnostic of demineralization and caries detection in early stages are represented by laser fluorescence - Quantitative Light Florescence (QLF); DiagnoDent-system-655nm; FOTI-Fiberoptic transillumination; DIFOTI-Digital Imaging Fiberoptic transillumination; and Optical Coherence Tomography (OCT). In odontology, Laser Doppler Flowmetry (LDF) is a noninvasive real time method used for determining the tooth vitality by monitoring the pulp microcirculation in traumatized teeth, fractured teeth, and teeth undergoing different conservative treatments. In periodontology, recently study shows the ability of LDF to evaluate the health of gingival tissue in periodontal tissue diseases but also after different periodontal treatments.

  7. Innovative instrumentation for VVERs based in non-invasive techniques

    International Nuclear Information System (INIS)

    Jeanneau, H.; Favennec, J.M.; Tournu, E.; Germain, J.L.

    2000-01-01

    Nuclear power plants such as VVERs can greatly benefit from innovative instrumentation to improve plant safety and efficiency. In recent years innovative instrumentation has been developed for PWRs with the aim of providing additional measurements of physical parameters on the primary and secondary circuits: the addition of new instrumentation is made possible by using non-invasive techniques such as ultrasonics and radiation detection. These innovations can be adapted for upgrading VVERs presently in operation and also in future VVERs. The following innovative instrumentation for the control, monitoring or testing at VVERs is described: 1. instrumentation for more accurate primary side direct measurements (for a better monitoring of the primary circuit); 2. instrumentation to monitor radioactivity leaks (for a safer plant); 3. instrumentation-related systems to improve the plant efficiency (for a cheaper kWh)

  8. Non-invasive physical treatments for chronic/recurrent headache.

    NARCIS (Netherlands)

    Bronfort, G.; Nilsson, N.; Haas, M.; Evans, R.; Goldsmith, C. H.; Assendelft, W. J.; Bouter, L. M.

    2004-01-01

    BACKGROUND: Non-invasive physical treatments are often used to treat common types of chronic/recurrent headache. OBJECTIVES: To quantify and compare the magnitude of short- and long-term effects of non-invasive physical treatments for chronic/recurrent headaches. SEARCH STRATEGY: We searched the

  9. Non-invasive physical treatments for chronic/recurrent headache

    NARCIS (Netherlands)

    Brønfort, Gert; Haas, Mitchell; Evans, Roni L.; Goldsmith, Charles H.; Assendelft, Willem J.J.; Bouter, Lex M.

    2014-01-01

    Background: Non-invasive physical treatments are often used to treat common types of chronic/recurrent headache. Objectives: To quantify and compare the magnitude of short- and long-term effects of non-invasive physical treatments for chronic/recurrent headaches. Search methods: We searched the

  10. British Thoracic Society Quality Standards for acute non-invasive ventilation in adults

    Science.gov (United States)

    Davies, Michael; Allen, Martin; Bentley, Andrew; Bourke, Stephen C; Creagh-Brown, Ben; D’Oliveiro, Rachel; Glossop, Alastair; Gray, Alasdair; Jacobs, Phillip; Mahadeva, Ravi; Moses, Rachael; Setchfield, Ian

    2018-01-01

    Introduction The purpose of the quality standards document is to provide healthcare professionals, commissioners, service providers and patients with a guide to standards of care that should be met for the provision of acute non-invasive ventilation in adults together with measurable markers of good practice. Methods Development of British Thoracic Society (BTS) Quality Standards follows the BTS process of quality standard production based on the National Institute for Health and Care Excellence process manual for the development of quality standards. Results 6 quality statements have been developed, each describing a standard of care for the provision of acute non-invasive ventilation in the UK, together with measurable markers of good practice. Conclusion BTS Quality Standards for acute non-invasive ventilation in adults form a key part of the range of supporting materials that the Society produces to assist in the dissemination and implementation of guideline’s recommendations. PMID:29636979

  11. Non-Invasive Acoustic-Based Monitoring of Heavy Water and Uranium Process Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Pantea, Cristian [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Sinha, Dipen N. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lakis, Rollin Evan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Beedle, Christopher Craig [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Davis, Eric Sean [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-10-20

    This presentation includes slides on Project Goals; Heavy Water Production Monitoring: A New Challenge for the IAEA; Noninvasive Measurements in SFAI Cell; Large Scatter in Literature Values; Large Scatter in Literature Values; Highest Precision Sound Speed Data Available: New Standard in H/D; ~400 pts of data; Noninvasive Measurements in SFAI Cell; New funding from NA241 SGTech; Uranium Solution Monitoring: Inspired by IAEA Challenge in Kazakhstan; Non-Invasive Acoustic-Based Monitoring of Uranium in Solutions; Non-Invasive Acoustic-Based Monitoring of Uranium in Solutions; and finally a summary.

  12. Calibration voltage test of non invasive meter for radiodiagnostic on equipment of constant potential X-ray

    International Nuclear Information System (INIS)

    Ramos, Manoel M.O.; Peixoto, J. Guilherme P.; Pereira, Marco A.G.S.

    2009-01-01

    This work evaluates the utilization of the non invasive voltage meter PTW Diavolt Universal in industrial X ray equipment of constant potential. With the performed measurements, the conclusion is that conclusion is possible, once his use limits are identified

  13. Proposed Application of Fast Fourier Transform in Near Infra Red Based Non Invasive Blood Glucose Monitoring System

    Science.gov (United States)

    Jenie, R. P.; Iskandar, J.; Kurniawan, A.; Rustami, E.; Syafutra, H.; Nurdin, N. M.; Handoyo, T.; Prabowo, J.; Febryarto, R.; Rahayu, M. S. K.; Damayanthi, E.; Rimbawan; Sukandar, D.; Suryana, Y.; Irzaman; Alatas, H.

    2017-03-01

    Worldwide emergence of glycaemic status related health disorders, such as diabetes and metabolic syndrome, is growing in alarming rate. The objective was to propose new methods for non invasive blood glucose level measurement system, based on implementation of Fast Fourier Transform methods. This was an initial-lab-scale-research. Data on non invasive blood glucose measurement are referred from Scopus, Medline, and Google Scholar, from 2011 until 2016, and was used as design references, combined with in house verification. System was developed in modular fashion, based on aforementioned compiled references. Several preliminary tests to understand relationship between LED and photo-diode responses have been done. Several references were used as non invasive blood glucose measurement tools design basis. Solution is developed in modular fashion. we have proven different sensor responses to water and glucose. Human test for non invasive blood glucose level measurement system is needed.

  14. Non-invasive Blood Glucose Quantification Using a Hybrid Sensor

    Directory of Open Access Journals (Sweden)

    Sundararajan JAYAPAL

    2009-02-01

    Full Text Available Diabetes Mellitus is a group of metabolic diseases characterized by high blood sugar (glucose levels which result from defects in insulin secretion. It is very important for the diabetics and normal people to have a correct blood glucose level. The HbA1c test is the most preferred test by renowned doctors for glucose quantification. But this test is an invasive one. At present, there are many available techniques for this purpose but these are mostly invasive or minimally non-invasive and most of these are under research. Among the different methods available, the photo acoustic (PA methods provide a reliable solution since the acoustical energy loss is much less compared to the optical or other techniques. Here a novel framework is presented for blood glucose level measurement using a combination of the HbA1c test and a PA method to get an absolutely consistent and precise, non-invasive technique. The setup uses a pulsed laser diode with pulse duration of 5-15 ns and at a repetition rate of 10 Hz as the source. The detector setup is based on the piezoelectric detection. It consists of a ring detector that includes two double ring sensors that are attached to the ring shaped module that can be worn around the finger. The major aim is to detect the photo acoustic signals from the glycated hemoglobin with the least possible error. The proposed monitoring system is designed with extreme consideration to precision and compatibility with the other computing devices. The results obtained in this research have been studied and analyzed by comparing these with those of in-vitro techniques like the HPLC. The comparison has been plotted and it shows a least error. The results also show a positive drive for using this concept as a basis for future extension in quantifying the other blood components.

  15. Non-invasive reproductive and stress endocrinology in amphibian conservation physiology

    Science.gov (United States)

    Narayan, E. J.

    2013-01-01

    Non-invasive endocrinology utilizes non-invasive biological samples (such as faeces, urine, hair, aquatic media, and saliva) for the quantification of hormones in wildlife. Urinary-based enzyme immunoassay (EIA) and radio-immunoassay have enabled the rapid quantification of reproductive and stress hormones in amphibians (Anura: Amphibia). With minimal disturbance, these methods can be used to assess the ovarian and testicular endocrine functions as well as physiological stress in captive and free-living populations. Non-invasive endocrine monitoring has therefore greatly advanced our knowledge of the functioning of the stress endocrine system (the hypothalamo–pituitary–interrenal axis) and the reproductive endocrine system (the hypothalamo–pituitary–gonadal axis) in the amphibian physiological stress response, reproductive ecology, health and welfare, and survival. Biological (physiological) validation is necessary for obtaining the excretory lag time of hormone metabolites. Urinary-based EIA for the major reproductive hormones, estradiol and progesterone in females and testosterone in males, can be used to track the reproductive hormone profiles in relationship to reproductive behaviour and environmental data in free-living anurans. Urinary-based corticosterone metabolite EIA can be used to assess the sublethal impacts of biological stressors (such as invasive species and pathogenic diseases) as well as anthropogenic induced environmental stressors (e.g. extreme temperatures) on free-living populations. Non-invasive endocrine methods can also assist in the diagnosis of success or failure of captive breeding programmes by measuring the longitudinal patterns of changes in reproductive hormones and corticosterone within captive anurans and comparing the endocrine profiles with health records and reproductive behaviour. This review paper focuses on the reproductive and the stress endocrinology of anurans and demonstrates the uses of non-invasive endocrinology

  16. Emerging technologies for non-invasive quantification of physiological oxygen transport in plants.

    Science.gov (United States)

    Chaturvedi, P; Taguchi, M; Burrs, S L; Hauser, B A; Salim, W W A W; Claussen, J C; McLamore, E S

    2013-09-01

    Oxygen plays a critical role in plant metabolism, stress response/signaling, and adaptation to environmental changes (Lambers and Colmer, Plant Soil 274:7-15, 2005; Pitzschke et al., Antioxid Redox Signal 8:1757-1764, 2006; Van Breusegem et al., Plant Sci 161:405-414, 2001). Reactive oxygen species (ROS), by-products of various metabolic pathways in which oxygen is a key molecule, are produced during adaptation responses to environmental stress. While much is known about plant adaptation to stress (e.g., detoxifying enzymes, antioxidant production), the link between ROS metabolism, O2 transport, and stress response mechanisms is unknown. Thus, non-invasive technologies for measuring O2 are critical for understanding the link between physiological O2 transport and ROS signaling. New non-invasive technologies allow real-time measurement of O2 at the single cell and even organelle levels. This review briefly summarizes currently available (i.e., mainstream) technologies for measuring O2 and then introduces emerging technologies for measuring O2. Advanced techniques that provide the ability to non-invasively (i.e., non-destructively) measure O2 are highlighted. In the near future, these non-invasive sensors will facilitate novel experimentation that will allow plant physiologists to ask new hypothesis-driven research questions aimed at improving our understanding of physiological O2 transport.

  17. Nuclear resonance scattering measurement of human iron stores

    Energy Technology Data Exchange (ETDEWEB)

    Wielopolski, L.; Ancona, R.C.; Mossey, R.T.; Vaswani, A.N.; Cohn, S.H.

    1985-07-01

    Hepatic iron stores were measured noninvasively in 31 patients (thalassemia, hemodialysis, hemosiderosis, refractory anemia) with suspected iron overload, employing a nuclear resonance scattering (NRS) technique. The thalassemia patients were undergoing desferrioxamine chelation therapy during the NRS measurements. The hemodialysis patients were measured before chelation therapy. Iron levels measured by NRS were in general agreement with those determined in liver biopsies by atomic absorption spectroscopy. In addition, NRS measurements from the thorax of some of these patients suggest that this method may also prove useful for clinical assessment of cardiac iron.

  18. SQUID biosusceptometry in the measurement of hepatic iron

    Energy Technology Data Exchange (ETDEWEB)

    Sheth, Sujit [Department of Pediatrics, Columbia University College of Physicians and Surgeons, Harkness Pavilion, Room HP570, 180 Fort Washington Avenue, NY 10032, New York (United States)

    2003-06-01

    Individuals with primary or secondary abnormalities of iron metabolism, such as hereditary hemochromatosis and transfusional iron loading, may develop potentially lethal systemic iron overload. Over time, this excess iron is progressively deposited in the liver, heart, pancreas, and other organs, resulting in cirrhosis, heart disease, diabetes and other disorders. Unless treated, death usually results from cardiac failure. The amount of iron in the liver is the best indicator of the amount of iron in the whole body. At present, the only sure way to measure the amount of iron in the liver is to remove a sample of the liver by biopsy. Iron stored in the liver can be magnetized to a small degree when placed in a magnetic field. The amount of magnetization is measured by our instrument, called a superconducting quantum interference device (SQUID) susceptometer. In patients with iron overload, our previous studies have shown that magnetic measurements of liver iron in patients with iron overload are quantitatively equivalent to biochemical determinations on tissue obtained by biopsy. The safety, ease, rapidity, and comfort of magnetic measurements make frequent, serial studies technically feasible and practically acceptable to patients. (orig.)

  19. Non-invasive monitoring of pharmacokinetics and pharmacodynamics for pharmacological drug profiling in children and adolescents

    NARCIS (Netherlands)

    Schrier, Lenneke

    2015-01-01

    This thesis describes the potential role of non-invasive measurement of pharmacokinetics (pk) and pharmacodynamics (pd) in the research and development of central nervous system (cns) stimulants or depressants for children and adolescents. First, we evaluated the feasibility of using saliva as an

  20. blood pressure influence of the the Invasive v. non-invasive

    African Journals Online (AJOL)

    1991-02-02

    Feb 2, 1991 ... thesis that large differences between the invasive and non- invasive measurements could be predicted by an .... Washington, USA) and the resultant pressure trace and digital systolic, mean and diastolic pressures as well as the ..... Publishing, 1978; 49-82. 8. Ladin Z, Trautman E, Teplick R. Contribution of ...

  1. The relation between invasive and non-invasive tear break-up time ...

    African Journals Online (AJOL)

    Tear stability normal to Nigerians with consideration of gender and age has not been reported. Tear stability in young adults was measured using invasive and non-invasive tear break-up time (TBUT and NIBUT). Forty –five subjects aged 20 to 30 years were selected from among the students of University of. Benin, Edo ...

  2. Non-invasive method of field imaging in parallel plate waveguides

    DEFF Research Database (Denmark)

    Iwaszczuk, Krzysztof; Andryieuski, Andrei; Lavrinenko, Andrei

    2011-01-01

    We present a new non-invasive air-photonic-based method of terahertz (THz) field imaging inside a parallel plate waveguide. The method is based on THz field-enhanced second harmonic generation of the fundamental laser beam in an external electric field. We also demonstrate the direct measurements...

  3. Modern non-invasive mechanical ventilation turns 25.

    Science.gov (United States)

    Díaz Lobato, Salvador; Mayoralas Alises, Sagrario

    2013-11-01

    The history of non-invasive mechanical ventilation goes back more than 100 years, but it was not until 1987 when what we could call "modern" non-invasive mechanical ventilation was developed. The description of Delaubier and Rideau of a patient with Duchenne's disease who had been effectively ventilated through a nasal mask marked the start of a new era in the history of non-invasive mechanical ventilation. Over these last 25years, we have witnessed exponential growth in its use, field of activity and technological advances on an exciting fast-paced track. We believe that it is time to review the main milestones that have marked the development of non-invasive mechanical ventilation to date, while paying homage to this therapeutic method that has contributed so much to the advancement of respiratory medicine in the last 25years. Copyright © 2012 SEPAR. Published by Elsevier Espana. All rights reserved.

  4. Whole-body iron-59 retention measurements for estimating the iron status of piglets

    International Nuclear Information System (INIS)

    Pfau, A.; Rudolphi, K.; Heinrich, H.C.; Gabbe, E.E.

    1976-01-01

    A large-volume, 4π whole-body liquid scintillation detector was used to determine 59 Fe absorption in 173 one-to-six-weeks-old piglets with normal and depleted iron stores. Values of intestinal absorption from a 10 μmole (corresponds to 0.558 mg) 59 Fe 2+ test dose were compared with levels of haemoglobin, haematocrit, and serum iron as well as with stainable diffuse iron of bone marrow reticuloendothelial cells, and the dose relationship of intestinal iron absorption from 59 Fe-labelled FeSO 4 and methaemoglobin was measured. The investigations indicated that neither blood parameters, cytochemical gradings nor absorption levels from the 59 Fe test dose alone were sufficient to describe quantitatively the various stages of iron deficiency in piglets. A synopsis of all parameters appeared to be necessary for defining normal iron status and prelatent, latent and manifest iron deficiency. Piglets fed on sows' milk only developed manifest iron deficiency within the first three weeks of age. After an access to soil and/or creep feed from the eighth day of age, or intramuscular injections of 200 mg Fe as iron-dextran at three days of age, or injections of 200 or 400 mg Fe combined with access to creep feed, stages of manifest, latent or prelatent iron deficiency could be observed. For an iron-dextran dose of 800 mg Fe injected in amounts of 400 mg Fe at 3 and 10 days of age, a normal iron status was obtained in three-week-old piglets. The iron dose relationship indicated that 20 mg Fe administered orally as FeSO 4 or 40 mg Fe as methaemoglobin-Fe daily should cover the iron requirement of piglets for the first three weeks of life, whereas a three-week total of iron given orally in a single dose would lead to unphysiological or fatal conditions in nursing pigs. (author)

  5. Non-invasive system for monitoring of the manufacturing equipment

    Science.gov (United States)

    Mazăre, A. G.; Belu, N.; Ionescu, L. M.; Rachieru, N.; Misztal, A.

    2017-08-01

    The automotive industry is one of the most important industries in the world that concerns the economy and the world culture. High demand has resulted in increasing of the pressure on the production lines. In conclusion, it is required more careful in monitoring of the production equipment not only for maintenance but also for staff safety and to increase the quality of production. In this paper, we propose a solution for non-invasive monitoring of the industrial equipment operation by measuring the current consumption on energy supply lines. Thus, it is determined the utilization schedule of the equipment and operation mode. Based on these measurements, it’s built an activity report for that equipment, available to the quality management and maintenance team. The solution consists of the current measuring equipment, with self-harvesting capabilities and radio transceiver, and an embedded system which run a server. The current measuring equipment will transmit data about consumption of each energy supply network line where is placed the industrial equipment. So, we have an internal measuring radio network. The embedded system will collect data for the equipment and put in a local data base and it will provide via an intranet application. The entire system not requires any supplementary energy supply and interventions in the factory infrastructure. It is experimented in a company from the automotive industries.

  6. Tissue Damage Characterization Using Non-invasive Optical Modalities

    Science.gov (United States)

    Diaz, David

    The ability to determine the degree of cutaneous and subcutaneous tissue damage is essential for proper wound assessment and a significant factor for determining patient treatment and morbidity. Accurate characterization of tissue damage is critical for a number of medical applications including surgical removal of nonviable tissue, severity assessment of subcutaneous ulcers, and depth assessment of visually open wounds. The main objective of this research was to develop a non-invasive method for identifying the extent of tissue damage underneath intact skin that is not apparent upon visual examination. This work investigated the relationship between tissue optical properties, blood flow, and tissue viability by testing the hypotheses that (a) changes in tissue oxygenation and/or microcirculatory blood flow measurable by Diffuse Near Infrared Spectroscopy (DNIRS) and Diffuse Correlation Spectroscopy (DCS) differ between healthy and damaged tissue and (b) the magnitude of those changes differs for different degrees of tissue damage. This was accomplished by developing and validating a procedure for measuring microcirculatory blood flow and tissue oxygenation dynamics at multiple depths (up to 1 centimeter) using non-invasive DCS and DNIRS technologies. Due to the lack of pressure ulcer animal models that are compatible with our optical systems, a proof of concept was conducted in a porcine burn model prior to conducting clinical trials in order to assess the efficacy of the system in-vivo. A reduction in total hemoglobin was observed for superficial (5%) and deep burns (35%) along with a statistically significant difference between the optical properties of superficial and deep burns (p injury observed in histological stains. After proof of concept in animals, a human study was conducted and optical data was collected from 20 healthy subjects and 8 patients at risk of developing pressure ulcers. Blood flow index (BFI) values from the sacral region of patients were

  7. Non-invasive monitoring of endocrine status in laboratory primates: methods, guidelines and applications

    Science.gov (United States)

    Heistermann, M.

    2010-11-01

    During the past three decades, non-invasive methods for assessing physiological, in particular endocrine, status have revolutionized almost all areas of primatology, including behavioural ecology, reproductive biology, stress research, conservation and last but not least management of primates in captivity where the technology plays an integral role in assisting the husbandry, breeding and welfare of many species. Non-invasive endocrine methods make use of the fact that hormones circulating in blood are secreted into saliva or deposited in hair and are eliminated from the body via urinary and faecal excretion. The choice of which matrix to use for hormonal assessment depends on a range of factors, including the type of information required, the measurement techniques involved, species differences in hormone metabolism and route of excretion and the practicality of sample collection. However, although sample collection is usually relatively easy, analysing hormones from these non-invasively collected samples is not as easy as many people think, particularly not when dealing with a new species. In this respect, the importance of a careful validation of each technique is essential in order to generate meaningful and accurate results. This paper aims to provide an overview of the available non-invasive endocrine-based methodologies, their relative merits and their potential areas of application for assessing endocrine status in primates, with special reference to captive environments. In addition, general information is given about the most important aspects and caveats researchers have to be aware of when using these methodologies.

  8. Photoionization sensors for non-invasive medical diagnostics

    Science.gov (United States)

    Mustafaev, Aleksandr; Rastvorova, Iuliia; Khobnya, Kristina; Podenko, Sofia

    2016-09-01

    The analysis of biomarkers can help to identify the significant number of diseases: lung cancer, tuberculosis, diabetes, high levels of stress, psychosomatic disorders etc. To implement continuous monitoring of the state of human health, compact VUV photoionization detector with current-voltage measurement is designed by Saint-Petersburg Mining University Plasma Research Group. This sensor is based on the patented method of stabilization of electric parameters - CES (Collisional Electron Spectroscopy). During the operation at atmospheric pressure VUV photoionization sensor measures the energy of electrons, produced in the ionization with the resonance photons, whose wavelength situated in the vacuum ultraviolet (VUV). A special software was developed to obtain the second-order derivative of the I-U characteristics, taken by the VUV sensor, to construct the energy spectra of the characteristic electrons. VUV photoionization detector has an unique set of parameters: small size (10*10*1 mm), low cost, wide range of recognizable molecules, as well as accuracy, sufficient for using this instrument for the medical purposes. This device can be used for non-invasive medical diagnostics without compromising the quality of life, for control of environment and human life. Work supported by Foundation for Assistance to Small Innovative Enterprises in Science and Technology.

  9. Reducing proactive aggression through non-invasive brain stimulation.

    Science.gov (United States)

    Dambacher, Franziska; Schuhmann, Teresa; Lobbestael, Jill; Arntz, Arnoud; Brugman, Suzanne; Sack, Alexander T

    2015-10-01

    Aggressive behavior poses a threat to human collaboration and social safety. It is of utmost importance to identify the functional mechanisms underlying aggression and to develop potential interventions capable of reducing dysfunctional aggressive behavior already at a brain level. We here experimentally shifted fronto-cortical asymmetry to manipulate the underlying motivational emotional states in both male and female participants while assessing the behavioral effects on proactive and reactive aggression. Thirty-two healthy volunteers received either anodal transcranial direct current stimulation to increase neural activity within right dorsolateral prefrontal cortex, or sham stimulation. Aggressive behavior was measured with the Taylor Aggression Paradigm. We revealed a general gender effect, showing that men displayed more behavioral aggression than women. After the induction of right fronto-hemispheric dominance, proactive aggression was reduced in men. This study demonstrates that non-invasive brain stimulation can reduce aggression in men. This is a relevant and promising step to better understand how cortical brain states connect to impulsive actions and to examine the causal role of the prefrontal cortex in aggression. Ultimately, such findings could help to examine whether the brain can be a direct target for potential supportive interventions in clinical settings dealing with overly aggressive patients and/or violent offenders. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  10. Reducing proactive aggression through non-invasive brain stimulation

    Science.gov (United States)

    Schuhmann, Teresa; Lobbestael, Jill; Arntz, Arnoud; Brugman, Suzanne; Sack, Alexander T.

    2015-01-01

    Aggressive behavior poses a threat to human collaboration and social safety. It is of utmost importance to identify the functional mechanisms underlying aggression and to develop potential interventions capable of reducing dysfunctional aggressive behavior already at a brain level. We here experimentally shifted fronto-cortical asymmetry to manipulate the underlying motivational emotional states in both male and female participants while assessing the behavioral effects on proactive and reactive aggression. Thirty-two healthy volunteers received either anodal transcranial direct current stimulation to increase neural activity within right dorsolateral prefrontal cortex, or sham stimulation. Aggressive behavior was measured with the Taylor Aggression Paradigm. We revealed a general gender effect, showing that men displayed more behavioral aggression than women. After the induction of right fronto-hemispheric dominance, proactive aggression was reduced in men. This study demonstrates that non-invasive brain stimulation can reduce aggression in men. This is a relevant and promising step to better understand how cortical brain states connect to impulsive actions and to examine the causal role of the prefrontal cortex in aggression. Ultimately, such findings could help to examine whether the brain can be a direct target for potential supportive interventions in clinical settings dealing with overly aggressive patients and/or violent offenders. PMID:25680991

  11. Application of optical non-invasive methods in skin physiology

    Science.gov (United States)

    Lademann, J.; Patzelt, A.; Darvin, M.; Richter, H.; Antoniou, C.; Sterry, W.; Koch, S.

    2008-05-01

    In the present paper the application of optical non-invasive methods in dermatology and cosmetology is discussed. Laser scanning microscopy (LSM) and optical coherent tomography (OCT) are the most promising methods for this application. Using these methods, the analysis of different skin parameters like dryness and oiliness of the skin, the barrier function and the structure of furrows and wrinkles are discussed. Additionally the homogeneity of distribution of topically applied creams, as well as their penetration into the skin were investigated. It is shown that these methods are highly valuable in dermatology for diagnostic and therapy control and for basic research, for instance in the field of structure analysis of hair follicles and sweat glands. The vertical images of the tissue produced by OCT can be easily compared with histological sections. Unfortunately, the resolution of the OCT technique is not high enough to carry out measurements on a cellular level, as is possible by LSM. LSM has the advantage that it can be used for the investigation of penetration and storage processes of topically applied substances, if these substances have fluorescent properties or if they are fluorescent-labelled.

  12. Application of optical non-invasive methods in skin physiology

    International Nuclear Information System (INIS)

    Lademann, J; Patzelt, A; Darvin, M; Richter, H; Sterry, W; Antoniou, C; Koch, S

    2008-01-01

    In the present paper the application of optical non-invasive methods in dermatology and cosmetology is discussed. Laser scanning microscopy (LSM) and optical coherent tomography (OCT) are the most promising methods for this application. Using these methods, the analysis of different skin parameters like dryness and oiliness of the skin, the barrier function and the structure of furrows and wrinkles are discussed. Additionally the homogeneity of distribution of topically applied creams, as well as their penetration into the skin were investigated. It is shown that these methods are highly valuable in dermatology for diagnostic and therapy control and for basic research, for instance in the field of structure analysis of hair follicles and sweat glands. The vertical images of the tissue produced by OCT can be easily compared with histological sections. Unfortunately, the resolution of the OCT technique is not high enough to carry out measurements on a cellular level, as is possible by LSM. LSM has the advantage that it can be used for the investigation of penetration and storage processes of topically applied substances, if these substances have fluorescent properties or if they are fluorescent-labelled

  13. Effective radiation doses associated with non-invasive versus invasive assessment of coronary anatomy and physiology.

    Science.gov (United States)

    Toth, G G; Ntalianis, A; Ntarladimas, Y; de Booij, M; De Winter, O; Barbato, E; Pilet, B; Van Mieghem, C; Wijns, W; De Bruyne, B

    2015-06-01

    To compare the effective radiation dose (ERD) needed to obtain information on coronary anatomy and physiology by a non-invasive versus an invasive diagnostic strategy. Knowledge of anatomy and physiology is needed for management of patients with coronary artery disease (CAD). There is, however, a growing concern about detrimental long-term effects of radiation associated with diagnostic procedures. In a total of 671 patients with suspected CAD, we compared the ERD needed to obtain anatomical and physiological information through a non-invasive strategy or an invasive strategy. The non-invasive strategy consisted of coronary computed tomography angiography (CCTA) and single photon emission computed tomography (SPECT). The invasive strategy included coronary angiography (CA) and fractional flow reserve (FFR) measurement. In 464 patients, the data were acquired in Period 2009 and in 207 the data were acquired in Period 2011 (after each period, the CCTA- and the CA-equipment had been upgraded). For the Period 2009 total ERD of the non-invasive approach was significantly larger compared to the invasive approach (28.45 ± 5.37 mSv versus 15.79 ± 7.95 mSv, respectively; P < 0.0001). For Period 2011, despite the significant decrease in ERD for both groups (P<0.0001 for both), the ERD remained higher for the non-invasive approach compared to the invasive approach (16.67 ± 10.45 mSv vs. 10.36 ± 5.87 mSv, respectively; P < 0.0001). Simulation of various diagnostic scenarios showed cumulative radiation dose is the lowest when a first positive test is followed by an invasive strategy. To obtain anatomic and physiologic information in patients with suspected CAD, the combination of CA and FFR is associated with lower ERD than the combination of CCTA and SPECT. © 2014 Wiley Periodicals, Inc.

  14. The Role of Caffeine in Non-Invasive Respiratory Support

    Science.gov (United States)

    Dobson, Nicole R.; Patel, Ravi Mangal

    2016-01-01

    Caffeine is one of the most commonly prescribed medications in preterm neonates and is widely used to treat or prevent apnea of prematurity. Caffeine therapy is safe, effectively decreases apnea and improves short- and long-term outcomes in preterm infants. In this review, we summarize the role of caffeine therapy for preterm infants receiving non-invasive respiratory support. We highlight caffeine’s beneficial effects on reducing bronchopulmonary dysplasia and focus on the role of caffeine in facilitating the transition from invasive to non-invasive respiratory support, reducing the duration of respiratory support and the potential for decreasing failure of non-invasive respiratory support. We review the multiple mechanisms of action of caffeine, including its effect on apnea, respiratory mechanics and lung inflammation. As caffeine is already widely used, we summarize recent data that may guide clinicians in optimizing the use of caffeine therapy, with a review of the timing of initiation, dose and duration of therapy. PMID:27837758

  15. Non-invasive method of determination of thermoelectric materials figure of merit

    Directory of Open Access Journals (Sweden)

    Ashcheulov А. А.

    2009-04-01

    Full Text Available Thermoelectric effects arising in a sample placed in a measuring oscillating loop have been studied. It has been shown that asymmetric character of flowing current results in a volumetric bundle of induced Foucault currents and regions of Peltier heat release by thermoelectric sample which leads to increasing of irreversible heat losses recorded by measuring oscillating loop. The presence of this effect has caused the emergence of ingenious non-invasive method for recording of thermoelectric materials figure of merit.

  16. Non-invasive brain stimulation in early rehabilitation after stroke.

    Science.gov (United States)

    Blesneag, A V; Popa, L; Stan, A D

    2015-01-01

    The new tendency in rehabilitation involves non-invasive tools that, if applied early after stroke, promote neurorecovery. Repetitive transcranial magnetic stimulation and transcranial direct current stimulation may correct the disruption of cortical excitability and effectively contribute to the restoration of movement and speech. The present paper analyses the results of non-invasive brain stimulation (NIBS) trials, highlighting different aspects related to the repetitive transcranial magnetic stimulation frequency, transcranial direct current stimulation polarity, the period and stimulation places in acute and subacute ischemic strokes. The risk of adverse events, the association with motor or language recovery specific training, and the cumulative positive effect evaluation are also discussed.

  17. Non-invasive brain stimulation techniques for chronic pain.

    Science.gov (United States)

    O'Connell, Neil E; Wand, Benedict M; Marston, Louise; Spencer, Sally; Desouza, Lorraine H

    2014-04-11

    This is an updated version of the original Cochrane review published in 2010, Issue 9. Non-invasive brain stimulation techniques aim to induce an electrical stimulation of the brain in an attempt to reduce chronic pain by directly altering brain activity. They include repetitive transcranial magnetic stimulation (rTMS), cranial electrotherapy stimulation (CES), transcranial direct current stimulation (tDCS) and reduced impedance non-invasive cortical electrostimulation (RINCE). To evaluate the efficacy of non-invasive brain stimulation techniques in chronic pain. We searched CENTRAL (2013, Issue 6), MEDLINE, EMBASE, CINAHL, PsycINFO, LILACS and clinical trials registers. The original search for the review was run in November 2009 and searched all databases from their inception. To identify studies for inclusion in this update we searched from 2009 to July 2013. Randomised and quasi-randomised studies of rTMS, CES, tDCS or RINCE if they employed a sham stimulation control group, recruited patients over the age of 18 with pain of three months duration or more and measured pain as a primary outcome. Two authors independently extracted and verified data. Where possible we entered data into meta-analyses. We excluded studies judged as being at high risk of bias from the analysis. We used the GRADE system to summarise the quality of evidence for core comparisons. We included an additional 23 trials (involving 773 participants randomised) in this update, making a total of 56 trials in the review (involving 1710 participants randomised). This update included a total of 30 rTMS studies, 11 CES, 14 tDCS and one study of RINCE(the original review included 19 rTMS, eight CES and six tDCS studies). We judged only three studies as being at low risk of bias across all criteria.Meta-analysis of studies of rTMS (involving 528 participants) demonstrated significant heterogeneity. Pre-specified subgroup analyses suggest that low-frequency stimulation is ineffective (low

  18. Non-invasive management of organic impotence

    African Journals Online (AJOL)

    Outcome measure: Efficacy of ErecAid. .<. Results: Six of 8 diabetics and 6 of 11 non-diabetics reported successful intercourse, while 16 of the participants would recommend the device to others. Some difficulty with the device was experienced by 11 and only 9 described an increase in self-esteem. Conclusion: Although ...

  19. Non-Invasive Nanodiagnostics of Cancer (NINOC)

    Science.gov (United States)

    2008-04-01

    combines low angle light scattering with UV, viscometry, and refrective index measurements and operates on-line in continuous-flow mode. BI-200SM...differential refractive index increment, dn/dc); Zetasizer Nano ZS (Malvern); SpectraMax 5M multi-detection microplate reader (Molecular Devices...characteristics of block copolymers Block copolymera Molecular weight Polydispersity index PEO 7500-b-PMA 15500 PEO(170)-b-PMA(180) 23,000 1.45 PEO

  20. The use of non-invasive instruments in characterizing human facial and abdominal skin.

    Science.gov (United States)

    Bailey, Steven H; Oni, Georgette; Brown, Spencer A; Kashefi, Natalie; Cheriyan, Salim; Maxted, Michael; Stewart, Collin; Jones, Caroline; Maluso, Patrick; Kenkel, Ashley M; Kenkel, Matthew M; Hoopman, John; Barton, Fritz; Kenkel, Jeffrey M

    2012-02-01

    The skin is highly variable. This variation, although helpful for function, causes inconsistencies when assessed using subjective scales. The purpose of this study is to measure differences in skin on the face and abdomen using non-invasive, objective devices as a method to eliminate subjective error and help reduce intra- and inter-observer variability in clinical analysis. Eighty-eight subjects between the ages of 18 and 61 were enrolled in this study. These subjects varied in age, ethnicity, and Fitzpatrick score. Facial analysis was performed by clinical evaluation and utilizing non-invasive objective devices which included the DermaScan C 20 MHz HFUS (Cyberderm, Broomall, PA), Tru Vu (Johnson and Johnson), BTC 2000 (SRLI Technologies, Nashville, TN), Derma Unit SSC3 (CK Electronic, Köln, Germany), and the Chromometer. Non-invasive devices were shown to be consistent and accurate through repeated measurement at each of the anatomical points with error rates of less than 5%. Chromometer measurements were able to categorize patients into Fitzpatrick level. DermaScan measurements demonstrated decreasing skin thicknesses associated with increasing age, smoking, and female gender. Derma Unit SSC 3 showed gender and sun exposure related differences in sebum concentration, pH, and moisture content. The Derma Unit SSC 3 sebum concentration also showed correlation with Tru Vu readings for clogged pores and bacterial activity. The skin assessment scales that are in use today are often prone to variability and inaccuracy due to their subjectivity. Use of the described objective non-invasive facial analysis method provides an accurate, objective analysis of human skin which can be used to measure changes pre- and post-operatively, or even screen patients prior to procedure to identify non-responders or those prone to adverse events. Utilization of these devices introduces a foundation on which a strong evidence-based approach to aesthetic medicine can be built. Copyright

  1. Validation of non-invasive haemodynamic methods in patients with liver disease

    DEFF Research Database (Denmark)

    Brittain, Jane M; Busk, Troels M; Møller, Søren

    2018-01-01

    Patients with advanced cirrhosis often present a hyperdynamic circulation characterized by a decrease in systolic and diastolic blood pressure (SBP and DBP), and an increase in heart rate (HR) and cardiac output (CO). Accurate assessment of the altered circulation can be performed invasively......; however, due to the disadvantages of this approach, non-invasive methods are warranted. The purpose of this study was to compare continuous non-invasive measurements of haemodynamic variables by the Finometer and the Task Force Monitor with simultaneous invasive measurements. In 25 patients with cirrhosis......, respectively; and CO: 0·1 ± 1·6 and -1·0 ± 2·0 L min(-1) , respectively. The study demonstrates that the overall performances of the Finometer and the Task Force Monitor in estimating absolute values of SBP, DBP, HR and CO in patients with cirrhosis are not equivalent to the gold standard, but may have...

  2. Non-invasive blood glucose monitor based on spectroscopy using a smartphone.

    Science.gov (United States)

    Dantu, Vishnu; Vempati, Jagannadh; Srivilliputhur, Srinivasan

    2014-01-01

    Development of a novel method for non-invasive measurement of blood glucose concentration using smartphone is discussed. Our research work has three major contributions to society and science. First, we modified and extended the Beer-Lambert's law in physics to accommodate for multiple wavelengths. This extension can aid researchers who wish to perform optical spectroscopy. Second, we successfully developed a creative and non-invasive way for diabetic patients to measure glucose levels via a smartphone. Researchers and chemists can now use their smartphones to determine the absorbance and, therefore, concentration of a chemical. Third, we created an inexpensive way to perform optical spectroscopy by using a smartphone. Monitoring blood glucose using a smartphone application that simply uses equipment already available on smartphones will improve the lives of diabetic patients who can continuously check their blood glucose levels while avoiding the current inconvenient, unhygienic, and costly invasive glucose meters.

  3. Report on Non-invasive acoustic monitoring of D2O concentration Oct 31 2017

    Energy Technology Data Exchange (ETDEWEB)

    Pantea, Cristian [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Sinha, Dipen N. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lakis, Rollin Evan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Beedle, Christopher Craig [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Davis, Eric Sean [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-11-06

    There is an urgent need for real-time monitoring of the hydrogen /deuterium ratio (H/D) for heavy water production monitoring. Based upon published literature, sound speed is sensitive to the deuterium content of heavy water and can be measured using existing acoustic methods to determine the deuterium concentration in heavy water solutions. We plan to adapt existing non-invasive acoustic techniques (Swept-Frequency Acoustic Interferometry and Gaussian-pulse acoustic technique) for the purpose of quantifying H/D ratios in solution. A successful demonstration will provide an easily implemented, low cost, and non-invasive method for remote and unattended H/D ratio measurements with a resolution of less than 0.2% vol.

  4. Cell-baswd non-invasive prenatal testing

    DEFF Research Database (Denmark)

    Uldbjerg, Niels; Singh, Ripudaman; Christensen, Rikke

    CONTROL ID: 2520273 ABSTRACT FINAL ID: OC06.03 TITLE: Cell based Non-invasive Prenatal Testing (NIPT) AUTHORS (FIRST NAME, LAST NAME): Niels Uldbjerg2, Ripudaman Singh4, Rikke Christensen3, Palle Schelde4, Ida Vogel1, Else Marie Vestergaard3, Lotte Hatt4, Steen Kølvrå4 INSTITUTIONS (ALL): 1...

  5. Non-invasive terahertz field imaging inside parallel plate waveguides

    DEFF Research Database (Denmark)

    Iwaszczuk, Krzysztof; Andryieuski, Andrei; Lavrinenko, Andrei

    2011-01-01

    We present a non-invasive broadband air photonic method of imaging of the electric field of THz pulses propagating inside a tapered parallel plate waveguide. The method is based on field-enhanced second harmonic generation of the fundamental laser beam in an external electric field. We apply...

  6. A comparison of non-invasive versus invasive methods of ...

    African Journals Online (AJOL)

    Puneet Khanna

    for Hb estimation from the laboratory [total haemoglobin mass (tHb)] and arterial blood gas (ABG) machine (aHb), using ... A comparison of non-invasive versus invasive methods of haemoglobin estimation in patients undergoing intracranial surgery. 161 .... making decisions for blood transfusions based on these results.

  7. Non-invasive mechanical ventilation | Giles | Southern African ...

    African Journals Online (AJOL)

    Non-invasive ventilation (NIV) is a modality of providing airway and pulmonary support in both acute and chronic diseases of the lung. The method of mechanical ventilation without the use of an endotracheal tube was developed over a century ago, but its utility has only been explored recently with advances in technology.

  8. Non-invasive diagnosis and management of ectopic pregnancy

    NARCIS (Netherlands)

    van Mello, N.M.

    2013-01-01

    The work presented in this thesis begins with a focus on non-invasive diagnostic methods for ectopic pregnancy. The heterogeneity found in studies on diagnostic tests for ectopic pregnancy has led to an international recommendation on uniform definitions of early pregnancy complications. Hereafter,

  9. Eyeblink Conditioning: A Non-Invasive Biomarker for Neurodevelopmental Disorders

    Science.gov (United States)

    Reeb-Sutherland, Bethany C.; Fox, Nathan A.

    2015-01-01

    Eyeblink conditioning (EBC) is a classical conditioning paradigm typically used to study the underlying neural processes of learning and memory. EBC has a well-defined neural circuitry, is non-invasive, and can be employed in human infants shortly after birth making it an ideal tool to use in both developing and special populations. In addition,…

  10. Largest recorded non-invasive true intrathoracic desmoid tumour ...

    African Journals Online (AJOL)

    Largest recorded non-invasive true intrathoracic desmoid tumour. G R Alexander. Abstract. Intrathoracic desmoid tumours are rare soft-tissue neoplasms arising from fascial or musculo-aponeurotic structures, accounting for less than 0.03% of all neoplasms. Most cases in fact represent intrathoracic extension of chest wall ...

  11. Plasma Atrial Natriuretic Peptide as a non-invasive biochemical ...

    African Journals Online (AJOL)

    Plasma Atrial Natriuretic Peptide as a non-invasive biochemical marker of dyspnoea in congestive heart failure patients. ... University of Mauritius Research Journal ... score assessed by a 10 graded visual analogue scale in the control group (mean score = 1) and an increased from 1.6 to 6.4 in the heart failure patients.

  12. Endometrial biomarkers for the non-invasive diagnosis of endometriosis

    NARCIS (Netherlands)

    Gupta, Devashana; Hull, M. Louise; Fraser, Ian; Miller, Laura; Bossuyt, Patrick M. M.; Johnson, Neil; Nisenblat, Vicki

    2016-01-01

    About 10% of reproductive-aged women suffer from endometriosis, which is a costly, chronic disease that causes pelvic pain and subfertility. Laparoscopy is the gold standard diagnostic test for endometriosis, but it is expensive and carries surgical risks. Currently, there are no non-invasive tests

  13. Imaging modalities for the non-invasive diagnosis of endometriosis

    NARCIS (Netherlands)

    Nisenblat, Vicki; Bossuyt, Patrick M. M.; Farquhar, Cindy; Johnson, Neil; Hull, M. Louise

    2016-01-01

    About 10% of women of reproductive age suffer from endometriosis. Endometriosis is a costly chronic disease that causes pelvic pain and subfertility. Laparoscopy, the gold standard diagnostic test for endometriosis, is expensive and carries surgical risks. Currently, no non-invasive tests that can

  14. Blood biomarkers for the non-invasive diagnosis of endometriosis

    NARCIS (Netherlands)

    Nisenblat, Vicki; Bossuyt, Patrick M. M.; Shaikh, Rabia; Farquhar, Cindy; Jordan, Vanessa; Scheffers, Carola S.; Mol, Ben Willem J.; Johnson, Neil; Hull, M. Louise

    2016-01-01

    Background About 10% of reproductive-aged women suffer from endometriosis, a costly chronic disease causing pelvic pain and subfertility. Laparoscopy is the gold standard diagnostic test for endometriosis, but is expensive and carries surgical risks. Currently, there are no non-invasive or minimally

  15. Urinary biomarkers for the non-invasive diagnosis of endometriosis

    NARCIS (Netherlands)

    Liu, Emily; Nisenblat, Vicki; Farquhar, Cindy; Fraser, Ian; Bossuyt, Patrick M. M.; Johnson, Neil; Hull, M. Louise

    2015-01-01

    About 10% of reproductive-aged women suffer from endometriosis which is a costly chronic disease that causes pelvic pain and subfertility. Laparoscopy is the 'gold standard' diagnostic test for endometriosis, but it is expensive and carries surgical risks. Currently, there are no simple non-invasive

  16. Blood biomarkers for the non-invasive diagnosis of endometriosis

    NARCIS (Netherlands)

    Nisenblat, Vicki; Bossuyt, Patrick M. M.; Shaikh, Rabia; Farquhar, Cindy; Jordan, Vanessa; Scheffers, Carola S.; Mol, Ben Willem J.; Johnson, Neil; Hull, M. Louise

    2016-01-01

    About 10% of reproductive-aged women suffer from endometriosis, a costly chronic disease causing pelvic pain and subfertility. Laparoscopy is the gold standard diagnostic test for endometriosis, but is expensive and carries surgical risks. Currently, there are no non-invasive or minimally invasive

  17. Non-invasive technology to determine the haemoglobin level of ...

    African Journals Online (AJOL)

    Background: Predonation haemoglobin (Hb) check has been done traditionally by the copper sulphate (CuSO4), or the haemocue haemoglobinometer methods. Both of these require a fingerprick of the donor to obtain capillary blood samples. It is thought that a non-invasive, but accurate method of Hb check will reduce ...

  18. Non-invasive markers of atherosclerosis and their correlation with ...

    African Journals Online (AJOL)

    Aim : To investigate the relationship between non-invasive oscillometric methods that assesses subclinical atherosclerosis, and Framingham Risk Score (FRS), an independent predictor of CVD, in patients with type 2 DM, and age-matched hypertensive and healthy controls. Methods: The four study groups consisted of ...

  19. Potential diagnostic consequences of applying non-invasive prenatal testing

    DEFF Research Database (Denmark)

    Petersen, O B; Vogel, I; Ekelund, C

    2014-01-01

    OBJECTIVES: Targeted non-invasive prenatal testing (NIPT) tests for trisomies 21, 18 and 13 and sex chromosome aneuploidies and could be an alternative to traditional karyotyping. The aim of this study was to determine the risk of missing other abnormal karyotypes of probable phenotypic...

  20. On iron radionuclide interactions and in situ measurement of iron corrosion products

    International Nuclear Information System (INIS)

    Puranen, A.; Jonsson, M.; Cui, D.; Scheidegger, A.M.; Wersin, P.; Spahiu, K.

    2005-01-01

    Full text of publication follows: In performance assessments of hard rock repositories, it is conservatively assumed that waste canisters are breached and that the spent fuel will get into contact with groundwater after 1000 years. When the canister eventually fails to protect HLW from groundwater, dissolved radionuclides from HLW will react with iron canister materials. The reactivity will depend on the conditions in solution and at the iron-water interface. To improve our understanding on the redox chemistry at near field conditions, batch experiments are conducted by contacting polished iron foils with a synthetic groundwater solution containing 10 mM NaCl, 2 mM NaHCO 3 and 5 ppm Se(IV), Se(VI), Tc(VII) and U(VI) in a glove box filled with Ar + 0.03% CO 2 gas mixture. The reaction rates are measured by analysing Se, Tc and U concentrations by ICP-MS. Iron corrosion products formed during the reaction(s) is monitored in-situ by a Layer Raman spectrometer through an optical window. The corrosion potential of the iron foil as well as the Eh and pH values of the bulk solution are recorded continuously during the experiment. The reacted iron foil is embedded with EPOXY resin, and the cross section will be analysed by SEM-EDS and XAS. The preliminary experimental results shows that with the formation of iron green rust FeII 4 FeIII 2 (OH) 12 CO 3 on iron foil, the rates of redox reactions between iron and the negatively charged radionuclides species are increased. The observation is explained by the fact that radionuclide anionic species can be first adsorbed then reduced on the positively charged outer surface of iron green rust. The positive charge is a result of the electrical balance of the negative charges of carbonate contained between the layered iron hydroxides in the green rust. Reduced forms of radionuclides are identified in the iron corrosion products. The results suggest that the formation of iron green rust as a corrosion product on the surface of iron

  1. Non-invasive parameters as predictors of high risk of variceal bleeding in cirrhotic patients

    Directory of Open Access Journals (Sweden)

    María Andrea Peñaloza-Posada

    2014-10-01

    Conclusions: The presence of large esophageal varices is the most important predictive risk factor for the occurrence of VB, independently of the class of Child-Pugh. Additionally, the portal vein diameter ≥ 13 mm is a non-invasive parameter related to high risk of VB. Therefore, these factors could be used as predictors of high risk of VB when the measure of HPVG is not available.

  2. Comparison of invasive and non-invasive blood pressure monitoring during clinical anaesthesia in dogs.

    Science.gov (United States)

    MacFarlane, Paul D; Grint, Nicola; Dugdale, Alexandra

    2010-03-01

    Monitoring blood pressure during anaesthesia is widely recommended in man and animals. The accuracy of any device used to measure blood pressure is an important consideration when selecting monitoring equipment, the ANSI/AAMI SP10 standard is widely cited in this respect in recent veterinary publications. Blood pressure was monitored using invasive and non-invasive techniques during clinical anaesthesia in 19 dogs. The results were compared using Bland-Altman analysis. The bias (and limits of agreement) between invasive and non-invasive measurement was 7.1 mmHg (+/-34.7) for systolic blood pressure, -1.8 mmHg (+/-27.4) for mean blood pressure and 6.9 mmHg (+/-27.5) for diastolic blood pressure. In a clinical setting the bias between invasive and non-invasive measurement techniques was similar or smaller than laboratory reports, however the limits of agreement were considerably wider suggesting that care should be exercised when interpreting NIBP values.

  3. Non-invasive genetic monitoring of wild central chimpanzees.

    Directory of Open Access Journals (Sweden)

    Mimi Arandjelovic

    Full Text Available BACKGROUND: An assessment of population size and structure is an important first step in devising conservation and management plans for endangered species. Many threatened animals are elusive, rare and live in habitats that prohibit directly counting individuals. For example, a well-founded estimate of the number of great apes currently living in the wild is lacking. Developing methods to obtain accurate population estimates for these species is a priority for their conservation management. Genotyping non-invasively collected faecal samples is an effective way of evaluating a species' population size without disruption, and can also reveal details concerning population structure. METHODOLOGY/PRINCIPAL FINDINGS: We opportunistically collected wild chimpanzee faecal samples for genetic capture-recapture analyses over a four-year period in a 132 km(2 area of Loango National Park, Gabon. Of the 444 samples, 46% yielded sufficient quantities of DNA for genotyping analysis and the consequent identification of 121 individuals. Using genetic capture-recapture, we estimate that 283 chimpanzees (range: 208-316 inhabited the research area between February 2005 and July 2008. Since chimpanzee males are patrilocal and territorial, we genotyped samples from males using variable Y-chromosome microsatellite markers and could infer that seven chimpanzee groups are present in the area. Genetic information, in combination with field data, also suggested the occurrence of repeated cases of intergroup violence and a probable group extinction. CONCLUSIONS/SIGNIFICANCE: The poor amplification success rate resulted in a limited number of recaptures and hence only moderate precision (38%, measured as the entire width of the 95% confidence interval, but this was still similar to the best results obtained using intensive nest count surveys of apes (40% to 63%. Genetic capture-recapture methods applied to apes can provide a considerable amount of novel information on

  4. Case report: Non-invasive neurally adjusted ventilatory assist in a newborn with unilateral diaphragmatic paralysis.

    Science.gov (United States)

    Roosens, Sander; Derriks, Frank; Cools, Filip

    2016-11-01

    Diaphragmatic paralysis is a rare cause of respiratory distress in the newborn. In this paper, a patient with unilateral phrenic nerve injury after traumatic delivery is presented. The child inadequately responded to standard respiratory supportive measures. Non-invasive neurally adjusted ventilatory assist (NIV-NAVA®), providing an optimally synchronized respiratory support proportional to the effort of the patient, resulted in prompt clinical and biological improvement of the patient's respiratory condition. NAVA is a relatively new mode of ventilation in neonatal care. In this case of unilateral diaphragmatic paralysis, it provided an alternative strategy of non-invasive respiratory support avoiding prolonged mechanical ventilation. Pediatr Pulmonol. 2016;51:E37-E39. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  5. Non-invasive bleaching of the human lens by femtosecond laser photolysis

    DEFF Research Database (Denmark)

    Kessel, L.; Eskildsen, Lars; Poel, Mike van der

    2010-01-01

    were susceptible to photobleaching by a non-invasive procedure and whether this would lead to optical rejuvenation of the lens. Methodology/Principal Findings: Nine human donor lenses were treated with an 800 nm infra-red femtosecond pulsed laser in a treatment zone measuring 1 x 1 x 0.52 mm. After...... laser treatment the age-induced yellow discoloration of the lens was markedly reduced and the transmission of light was increased corresponding to an optical rejuvenation of 3 to 7 years. Conclusions/Significance: The results demonstrate that the age-induced yellowing of the human lens can be bleached...... by a non-invasive procedure based on femtosecond laser photolysis. Cataract is a disease associated with old age. At the current technological stage, lens aging is delayed but with a treatment covering the entire lens volume complete optical rejuvenation is expected. Thus, femtosecond photolysis has...

  6. Comparison between invasive blood pressure and a non-invasive blood pressure monitor in anesthetized sheep.

    Science.gov (United States)

    Almeida, Daniel; Barletta, Michele; Mathews, Lindsey; Graham, Lynelle; Quandt, Jane

    2014-12-01

    Monitoring blood pressure under general anesthesia in animals is important to prevent hypotension and poor tissue perfusion. Thirteen sheep were enrolled to evaluate the accuracy of the petMAP, a portable non-invasive blood pressure (NIBP) monitor. Animals were anesthetized with midazolam, fentanyl, ketamine, propofol and maintained with isoflurane in oxygen for ovariectomy. Invasive and non-invasive (petMAP) blood pressure measurements were recorded simultaneously every 5 minutes. Agreement between IBP and NIBP was assessed by evaluation of bias and 95% limits of agreement (LOA) using the Bland-Altman method and correlation coefficient. None of the measurements met the criteria for good agreement between invasive and non-invasive readings established by the Association for the Advancement of Medical Instrumentation. Systolic blood pressure readings obtained at the left thoracic limb site and mean blood pressure at the right pelvic limb site met the bias and LOA criteria established by the American College of Veterinary Internal Medicine. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Non-invasive prediction of hematocrit levels by portable visible and near-infrared spectrophotometer.

    Science.gov (United States)

    Sakudo, Akikazu; Kato, Yukiko Hakariya; Kuratsune, Hirohiko; Ikuta, Kazuyoshi

    2009-10-01

    After blood donation, in some individuals having polycythemia, dehydration causes anemia. Although the hematocrit (Ht) level is closely related to anemia, the current method of measuring Ht is performed after blood drawing. Furthermore, the monitoring of Ht levels contributes to a healthy life. Therefore, a non-invasive test for Ht is warranted for the safe donation of blood and good quality of life. A non-invasive procedure for the prediction of hematocrit levels was developed on the basis of a chemometric analysis of visible and near-infrared (Vis-NIR) spectra of the thumbs using portable spectrophotometer. Transmittance spectra in the 600- to 1100-nm region from thumbs of Japanese volunteers were subjected to a partial least squares regression (PLSR) analysis and leave-out cross-validation to develop chemometric models for predicting Ht levels. Ht levels of masked samples predicted by this model from Vis-NIR spectra provided a coefficient of determination in prediction of 0.6349 with a standard error of prediction of 3.704% and a detection limit in prediction of 17.14%, indicating that the model is applicable for normal and abnormal value in Ht level. These results suggest portable Vis-NIR spectrophotometer to have potential for the non-invasive measurement of Ht levels with a combination of PLSR analysis.

  8. Non-invasive nuclear device for communicating pressure inside a body to the exterior thereof

    International Nuclear Information System (INIS)

    Fleischmann, L.W.; Meyer, G.A.; Hittman, F.; Lyon, W.C.; Hayes, W.H. Jr.

    1979-01-01

    The need for a non-invasive technique for measuring the pressure in body cavities of animals or humans is recognized as highly desirable for continuous or intermittent monitoring of body conditions. The non-invasive nuclear device of the present invention is fully implantable and is fully capable of communicating pressure inside a body to the exterior to allow readout non-invasively. In its preferred form, the invention includes a housing for subcutaneous implantation with the radioactive source. An urging means such as a bellows is provided in the housing interior. The fluid pressure from a fluid pressure sensing device within the body is transmitted to the housing interior by means of a pressure-limiting fluid through a conduit. This causes the radioactive source to move against the force out of the initial or repose shielded relationship causing a proportional increase in pressure in the body portion being monitored. The radioactive output from the radioactive source corresponds to the magnitude of the pressure within the body. The housing may be securely mounted on a supporting portion of the body and the mounting serves as a radiation shield for the body. (JTA)

  9. The Book of Kells: A non-invasive MOLAB investigation by complementary spectroscopic techniques

    Science.gov (United States)

    Doherty, B.; Daveri, A.; Clementi, C.; Romani, A.; Bioletti, S.; Brunetti, B.; Sgamellotti, A.; Miliani, C.

    2013-11-01

    This paper highlights the efficacy of non-invasive portable spectroscopy for assessing the execution technique and constituent materials in one of the most important medieval manuscripts, the Book of Kells. An aimed campaign of in situ measurements by the MObile LABoratory (MOLAB) has analyzed its elemental composition and vibrational and electronic molecular properties. The ample analytical toolbox has afforded complementary diagnostic information of the pigment palette permitting the characterization of both inorganic and organic materials as pigments and dyes in the white, purple, blue, red, orange, green and black areas. In particular, the novel widespread use of calcinated gypsum (anhydrite) as both a white pigment and in correlation to the organic dyes in this manuscript has been noted. The non-invasive identification of the organic dye orchil is significant considering its rare non invasive detection in medieval manuscripts. Finally the occurrence of particular alterations of the organic black areas giving rise to calcium carboxylate and calcium oxalate has been specifically highlighted. Importantly, this work elaborates complex aspects of the employed painting materials which have given rise to numerous significant points of interest for a more elaborate understanding of this Irish treasure.

  10. Retinal functional imager (RFI): non-invasive functional imaging of the retina.

    Science.gov (United States)

    Ganekal, S

    2013-01-01

    Retinal functional imager (RFI) is a unique non-invasive functional imaging system with novel capabilities for visualizing the retina. The objective of this review was to show the utility of non-invasive functional imaging in various disorders. Electronic literature search was carried out using the websites www.pubmed.gov and www.google.com. The search words were retinal functional imager and non-invasive retinal imaging used in combination. The articles published or translated into English were studied. The RFI directly measures hemodynamic parameters such as retinal blood-flow velocity, oximetric state, metabolic responses to photic activation and generates capillary perfusion maps (CPM) that provides retinal vasculature detail similar to flourescein angiography. All of these parameters stand in a direct relationship to the function and therefore the health of the retina, and are known to be degraded in the course of retinal diseases. Detecting changes in retinal function aid early diagnosis and treatment as functional changes often precede structural changes in many retinal disorders. © NEPjOPH.

  11. Skin Rejuvenation with Non-Invasive Pulsed Electric Fields

    Science.gov (United States)

    Golberg, Alexander; Khan, Saiqa; Belov, Vasily; Quinn, Kyle P.; Albadawi, Hassan; Felix Broelsch, G.; Watkins, Michael T.; Georgakoudi, Irene; Papisov, Mikhail; Mihm Jr., Martin C.; Austen Jr., William G.; Yarmush, Martin L.

    2015-01-01

    Degenerative skin diseases affect one third of individuals over the age of sixty. Current therapies use various physical and chemical methods to rejuvenate skin; but since the therapies affect many tissue components including cells and extracellular matrix, they may also induce significant side effects, such as scarring. Here we report on a new, non-invasive, non-thermal technique to rejuvenate skin with pulsed electric fields. The fields destroy cells while simultaneously completely preserving the extracellular matrix architecture and releasing multiple growth factors locally that induce new cells and tissue growth. We have identified the specific pulsed electric field parameters in rats that lead to prominent proliferation of the epidermis, formation of microvasculature, and secretion of new collagen at treated areas without scarring. Our results suggest that pulsed electric fields can improve skin function and thus can potentially serve as a novel non-invasive skin therapy for multiple degenerative skin diseases. PMID:25965851

  12. Non invasive ventilation as an additional tool for exercise training.

    Science.gov (United States)

    Ambrosino, Nicolino; Cigni, Paolo

    2015-01-01

    Recently, there has been increasing interest in the use of non invasive ventilation (NIV) to increase exercise capacity. In individuals with COPD, NIV during exercise reduces dyspnoea and increases exercise tolerance. Different modalities of mechanical ventilation have been used non-invasively as a tool to increase exercise tolerance in COPD, heart failure and lung and thoracic restrictive diseases. Inspiratory support provides symptomatic benefit by unloading the ventilatory muscles, whereas Continuous Positive Airway Pressure (CPAP) counterbalances the intrinsic positive end-expiratory pressure in COPD patients. Severe stable COPD patients undergoing home nocturnal NIV and daytime exercise training showed some benefits. Furthermore, it has been reported that in chronic hypercapnic COPD under long-term ventilatory support, NIV can also be administered during walking. Despite these results, the role of NIV as a routine component of pulmonary rehabilitation is still to be defined.

  13. Status and perspectives of non invasive cell tracking

    International Nuclear Information System (INIS)

    Kiessling, F.; Semmler, W.

    2005-01-01

    The interaction of different cells is an important regulator in the development of many diseases, including cancer. Some cells are recruited directly from the local tissue environment, others reach the pathological focus via the circulation. Using non-invasive cell tracking methods, the distribution and migration of labeled cells can be studied in experimental animal models, and the role of these cells on the pathogenesis of disease can thus be elucidated. Scintigraphy and SPECT, and especially MRI and optical imaging, are frequently used for this purpose. Studies are mostly performed with macrophages and granulocytes (inflammatory cells), which accumulate in nephritis, encephalitis, and tumors. At present, the understanding of progenitor cell migration and differentiation is gaining increasing interest in neurological disorders (for example Parkinson's disease) and in cardiac diseases (for example myocardial infarction). Non-invasive cell tracking is already established in basic research; in the future, a clinical application of cell tracking is foreseeable in the framework of cell therapy. (orig.)

  14. New trend in non-invasive prenatal diagnosis.

    Science.gov (United States)

    Ferrari, M; Carrera, P; Lampasona, V; Galbiati, S

    2015-12-07

    The presence of fetal DNA in maternal plasma represents a source of genetic material which can be obtained non-invasively. To date, the translation of noninvasive prenatal diagnosis from research into clinical practice has been rather fragmented, and despite the advances in improving the analytical sensitivity of methods, distinguishing between fetal and maternal sequences remains very challenging. Thus, the field of noninvasive prenatal diagnosis of genetic diseases has yet to attain a routine application in clinical diagnostics. On the contrary, fetal sex determination in pregnancies at high risk of sex-linked disorders, tests for fetal RHD genotyping and non-invasive assessment of chromosomal aneuploidies are now available worldwide. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Fractional flow reserve derived from coronary CT angiography in stable coronary disease: a new standard in non-invasive testing?

    Energy Technology Data Exchange (ETDEWEB)

    Noergaard, B.L.; Jensen, J.M. [Aarhus University Hospital Skejby, Department of Cardiology B, Aarhus N (Denmark); Leipsic, J. [St. Paul' s Hospital, Department Radiology, Vancouver, British Columbia (Canada)

    2015-08-15

    Fractional flow reserve (FFR) measured during invasive coronary angiography is the gold standard for lesion-specific decisions on coronary revascularization in patients with stable coronary artery disease (CAD). Current guidelines recommend non-invasive functional or anatomic testing as a gatekeeper to the catheterization laboratory. However, the ''holy grail'' in non-invasive testing of CAD is to establish a single test that quantifies both coronary lesion severity and the associated ischemia. Most evidence to date of such a test is based on the addition of computational analysis of FFR to the anatomic information obtained from standard-acquired coronary CTA data sets at rest (FFR{sub CT}). This review summarizes the clinical evidence for the use of FFR{sub CT} in stable CAD in context to the diagnostic performance of other non-invasive testing modalities. (orig.)

  16. Fractional flow reserve derived from coronary CT angiography in stable coronary disease: a new standard in non-invasive testing?

    International Nuclear Information System (INIS)

    Noergaard, B.L.; Jensen, J.M.; Leipsic, J.

    2015-01-01

    Fractional flow reserve (FFR) measured during invasive coronary angiography is the gold standard for lesion-specific decisions on coronary revascularization in patients with stable coronary artery disease (CAD). Current guidelines recommend non-invasive functional or anatomic testing as a gatekeeper to the catheterization laboratory. However, the ''holy grail'' in non-invasive testing of CAD is to establish a single test that quantifies both coronary lesion severity and the associated ischemia. Most evidence to date of such a test is based on the addition of computational analysis of FFR to the anatomic information obtained from standard-acquired coronary CTA data sets at rest (FFR CT ). This review summarizes the clinical evidence for the use of FFR CT in stable CAD in context to the diagnostic performance of other non-invasive testing modalities. (orig.)

  17. [Non-invasive home mechanical ventilation in the COPD patient].

    Science.gov (United States)

    González Rodríguez, C I; Jiménez Bermejo, F; Rubio, T; Godia, S; Salinas, U

    2005-01-01

    The potential benefits of non-invasive mechanical breathing in clinically stable COPD patients are still not well known, nor have they been sufficiently studied. We evaluate whether non-invasive mechanical ventilation is beneficial to these patients. A cross sectional study was carried out evaluating the application of non-invasive home mechanical ventilation (BIPAP), during the nocturnal rest in 23 COPD patients, who presented hypercapnia in basal arterial gasometry during clinical stability. Clinical, gasometric and spirometric evaluations were carried out 3, 6 and 12 months after initiating this therapy. Similarly, an evaluation was made of the number of admissions due to worsening of the underlying respiratory pathology during one year. Results. The patients included in the study had an average age of 68.83 years. Sixty point nine percent (60.9%) presented a severe degree of COPD. Sixty-nine point six percent (69.6%) of the total sample had previously received continuous oxygenotherapy at home; 75% of them presented severe or very severe COPD. During the period of time of the study a fall was recorded in the number of hospital admissions due to worsening (0.61+/-0.15 annual admissions on average) with respect to the period of time prior to the non-invasive mechanical ventilation (1.07+/-0.16 admissions on average), with greater benefits obtained by those who had previously shown a higher number of admissions and those with associated comorbidity. A reduction was also appreciated in the arterial pressure of carbon dioxide (PaCO2) in the majority of cases, principally those who at the start of the study presented a PaCO2>63.32 mm of Hg; this improvement was appreciated from the first three months of treatment.

  18. Applicability of non-invasively collected matrices for human biomonitoring

    Directory of Open Access Journals (Sweden)

    Nickmilder Marc

    2009-03-01

    Full Text Available Abstract With its inclusion under Action 3 in the Environment and Health Action Plan 2004–2010 of the European Commission, human biomonitoring is currently receiving an increasing amount of attention from the scientific community as a tool to better quantify human exposure to, and health effects of, environmental stressors. Despite the policy support, however, there are still several issues that restrict the routine application of human biomonitoring data in environmental health impact assessment. One of the main issues is the obvious need to routinely collect human samples for large-scale surveys. Particularly the collection of invasive samples from susceptible populations may suffer from ethical and practical limitations. Children, pregnant women, elderly, or chronically-ill people are among those that would benefit the most from non-invasive, repeated or routine sampling. Therefore, the use of non-invasively collected matrices for human biomonitoring should be promoted as an ethically appropriate, cost-efficient and toxicologically relevant alternative for many biomarkers that are currently determined in invasively collected matrices. This review illustrates that several non-invasively collected matrices are widely used that can be an valuable addition to, or alternative for, invasively collected matrices such as peripheral blood sampling. Moreover, a well-informed choice of matrix can provide an added value for human biomonitoring, as different non-invasively collected matrices can offer opportunities to study additional aspects of exposure to and effects from environmental contaminants, such as repeated sampling, historical overview of exposure, mother-child transfer of substances, or monitoring of substances with short biological half-lives.

  19. Current methods of non-invasive ventilatory support for neonates.

    Science.gov (United States)

    Mahmoud, Ramadan A; Roehr, Charles Christoph; Schmalisch, Gerd

    2011-09-01

    Non-invasive ventilatory support can reduce the adverse effects associated with intubation and mechanical ventilation, such as bronchopulmonary dysplasia, sepsis, and trauma to the upper airways. In the last 4 decades, nasal continuous positive airway pressure (CPAP) has been used to wean preterm infants off mechanical ventilation and, more recently, as a primary mode of respiratory support for preterm infants with respiratory insufficiency. Moreover, new methods of respiratory support have been developed, and the devices used to provide non-invasive ventilation (NIV) have improved technically. Use of NIV is increasing, and a variety of equipment is available in different clinical settings. There is evidence that NIV improves gas exchange and reduces extubation failure after mechanical ventilation in infants. However, more research is needed to identify the most suitable devices for particular conditions; the NIV settings that should be used; and whether to employ synchronized or non-synchronized NIV. Furthermore, the optimal treatment strategy and the best time for initiation of NIV remain to be identified. This article provides an overview of the use of non-invasive ventilation (NIV) in newborn infants, and the clinical applications of NIV. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Benefits of Manometer in Non-Invasive Ventilatory Support.

    Science.gov (United States)

    Lacerda, Rodrigo Silva; de Lima, Fernando Cesar Anastácio; Bastos, Leonardo Pereira; Fardin Vinco, Anderson; Schneider, Felipe Britto Azevedo; Luduvico Coelho, Yves; Fernandes, Heitor Gomes Costa; Bacalhau, João Marcus Ramos; Bermudes, Igor Matheus Simonelli; da Silva, Claudinei Ferreira; da Silva, Luiza Paterlini; Pezato, Rogério

    2017-12-01

    Introduction Effective ventilation during cardiopulmonary resuscitation (CPR) is essential to reduce morbidity and mortality rates in cardiac arrest. Hyperventilation during CPR reduces the efficiency of compressions and coronary perfusion. Problem How could ventilation in CPR be optimized? The objective of this study was to evaluate non-invasive ventilator support using different devices. The study compares the regularity and intensity of non-invasive ventilation during simulated, conventional CPR and ventilatory support using three distinct ventilation devices: a standard manual resuscitator, with and without airway pressure manometer, and an automatic transport ventilator. Student's t-test was used to evaluate statistical differences between groups. P values manometer when compared with the manual resuscitator with manometer support (MS) group or automatic ventilator (AV) group. The study recommends for ventilatory support the use of a manual resuscitator equipped with MS or AVs, due to the risk of reduction in coronary perfusion pressure and iatrogenic thoracic injury during hyperventilation found using manual resuscitator without manometer. Lacerda RS , de Lima FCA , Bastos LP , Vinco AF , Schneider FBA , Coelho YL , Fernandes HGC , Bacalhau JMR , Bermudes IMS , da Silva CF , da Silva LP , Pezato R . Benefits of manometer in non-invasive ventilatory support. Prehosp Disaster Med. 2017;32(6):615-620.

  1. Precision analysis of a multi-slice ultrasound sensor for non-invasive 3D kinematic analysis of knee joints.

    Science.gov (United States)

    Masum, Md Abdullah; Lambert, Andrew J; Pickering, Mark R; Scarvell, J M; Smith, P N

    2012-01-01

    Currently the standard clinical practice for measuring the motion of bones in a knee joint with sufficient precision involves implanting tantalum beads into the bones to act as fiducial markers prior to imaging using X-ray equipment. This procedure is invasive in nature and exposure to ionizing radiation imposes a cancer risk and the patient's movements are confined to a narrow field of view. In this paper, an ultrasound based system for non-invasive kinematic evaluation of knee joints is proposed. The results of an initial analysis show that this system can provide the precision required for non-invasive motion analysis while the patient performs normal physical activities.

  2. [Non-invasive determination of cardiac output by continuous wave Doppler in air rescue service].

    Science.gov (United States)

    Knobloch, K; Hubrich, V; Rohmann, P; Lüpkemann, M; Phillips, R; Gerich, T; Krettek, C

    2005-12-01

    Determination of cardiac output (CO) enables to assess the hemodynamic situation as well as to administer optimal catecholamine therapy especially in critically compromised patients with hemodynamic instability. Invasive determination of CO is possible via a Swan-Ganz-catheter with its associated risk of implantation in the hospital. Using the Doppler technique, we evaluated the feasibility of the USCOM-system for non-invasive CO determination in preclinical emergency medicine in air rescue service. In 32 patients (17 months to 92-years-old) cardiac output was determined non-invasively (USCOM) at the scene and during the helicopter transport at Christoph 4, based at Hannover Medical School. Simultaneously, blood pressure, ECG and oxygen saturation were determined. Non-invasive CO was assessed by a suprasternal access aiming at the aorta ascendens. 19 patients were unconscious due to cardial and non-cardial reasons, and 13 were conscious (sepsis, status epilepticus, anaphylactic reaction). 7 patients were hemodynamically unstable. In three patients the monitor was used during interhospital transfer by helicopter. Non-invasively determined CO via the USCOM system was 4.8 +/- 0.7 l/min with a cardiac index of 2.4 +/- 0.3 l/m (2). Highest CO values were determined in a patient with sepsis and during a grand-mal-status in epilepsy (CO 8.2 l/min). All examinations were done by the same emergency physician of the emergency helicopter Christoph 4 immediately after arrival at the scene. The examination took on average 25 seconds. During the helicopter transport, several consecutive CO measurements were performed to assess volume and catecholamine therapy with increase of stroke volume after volume load with colloidal fluids. Using the USCOM system it is possible to determine the beat-to-beat cardiac output in air rescue service non-invasively. The emergency physician gains additional crucial hemodynamic information to diagnose and treat adequately by administration of

  3. Faecal pancreatic elastase - 1 a non invasive measure of exocrine ...

    African Journals Online (AJOL)

    Objectives:- The major objective of this work was to establish the assay of faecal pancreatic elastase-1 in spot stool samples as an exocrine pancreatic function test at ... An ELISA technique which recognizes human pancreatic elastase-1 from spot stool samples was employed for the test and read photometrically at 405nm.

  4. Non-invasive ventilation of the preterm infant.

    Science.gov (United States)

    Bancalari, Eduardo; Claure, Nelson

    2008-12-01

    Non-invasive ventilation (NIV) is increasingly being used in preterm infants with the purpose of reducing the risk of adverse pulmonary outcome associated with invasive mechanical ventilation. This review analyzes the evidence from physiologic and clinical studies on the use of NIV in the preterm infant. Physiologic data indicate advantages of NIV with regard to ventilation, gas exchange, breathing effort and thoraco-abdominal distortion. Data from clinical trials have consistently shown facilitation of weaning from mechanical ventilation and potential benefits in infants with RDS and apnoea. Long term improvements in respiratory outcome have also been reported but need to be confirmed in larger trials.

  5. Non-invasive Optical Biosensor for Probing Cell Signaling

    Directory of Open Access Journals (Sweden)

    Ye Fang

    2007-10-01

    Full Text Available Cell signaling mediated through a cellular target is encoded by spatial andtemporal dynamics of downstream signaling networks. The coupling of temporal dynamicswith spatial gradients of signaling activities guides cellular responses upon stimulation.Monitoring the integration of cell signaling in real time, if realized, would provide a newdimension for understanding cell biology and physiology. Optical biosensors includingresonant waveguide grating (RWG biosensor manifest a physiologically relevant andintegrated cellular response related to dynamic redistribution of cellular matters, thusproviding a non-invasive means for cell signaling study. This paper reviews recentprogresses in biosensor instrumentation, and theoretical considerations and potentialapplications of optical biosensors for whole cell sensing.

  6. Non-invasive analysis of rat ovarian angiogenesis by MRI.

    Science.gov (United States)

    Tempel-Brami, Catherine; Neeman, Michal

    2002-02-22

    Magnetic resonance imaging (MRI) was employed for non-invasive analysis of vascular remodeling during follicular maturation in the PMSG/hCG rat ovary model. Changes in water diffusion and in perfusion led us to suggest that hypoxic stress may be a component in the regulation of angiogenesis in the growing follicle. However, in contrast with solid tumors of similar size, the spatial and temporal pattern of expression of vascular endothelial growth factor (VEGF), did not match the angiogenic response. The mismatch could be explained by the role of hyaluronan as a high molecular weight suppressor of angiogenesis maintaining an avascular follicular antrum.

  7. Iron

    Science.gov (United States)

    Iron is a mineral that our bodies need for many functions. For example, iron is part of hemoglobin, a protein which carries ... It helps our muscles store and use oxygen. Iron is also part of many other proteins and ...

  8. Studies of X-ray tube aging by non-invasive methods

    International Nuclear Information System (INIS)

    Bottaro, Marcio.

    2007-01-01

    The objective of the present work was the evaluation of an x ray tube aging with an anode made of tungsten, used in radio diagnostic. Workloads were applied, in accordance with Brazilian workload distribution, and periodic measurements of quantities related to the radiation quality of the beam were performed. For the purpose of this work, a single phase, full bridge clinical system was employed. For the long term x ray tube characteristics evaluation related to the applied workload, it was necessary to measure parameters that could quantitatively represent the tube aging, with special attention to the anode roughening. For the indirect measurement of tube aging, four parameters were chosen, some of them normally applied in x ray diagnostic quality control: first and second half value layers (HVL), focal spot dimensions, non invasive measurement of Practical Peak Voltage (PPV) and x ray spectroscopy. These parameters were measured before any workload and after each workload intervals. To assure confidence of the results reproducibility conditions were stated to each evaluated parameter. The uncertainties involved in all measurement processes were calculated to evaluate the real contributions of x ray tube aging effects on non invasive parameters. Within all evaluated parameters, the most sensitive to long term workload were the mean energy obtained from spectroscopy and half value layers. A model related to these parameters was applied and estimates of x ray tube aging rate for different acceleration voltages and anodic currents were calculated. (author)

  9. Estimating Trabecular Bone Mechanical Properties From Non-Invasive Imaging

    Science.gov (United States)

    Hogan, Harry A.; Webster, Laurie

    1997-01-01

    An important component in developing countermeasures for maintaining musculoskeletal integrity during long-term space flight is an effective and meaningful method of monitoring skeletal condition. Magnetic resonance imaging (MRI) is an attractive non-invasive approach because it avoids the exposure to radiation associated with X-ray based imaging and also provides measures related to bone microstructure rather than just density. The purpose of the research for the 1996 Summer Faculty Fellowship period was to extend the usefulness of the MRI data to estimate the mechanical properties of trabecular bone. The main mechanical properties of interest are the elastic modulus and ultimate strength. Correlations are being investigated between these and fractal analysis parameters, MRI relaxation times, apparent densities, and bone mineral densities. Bone specimens from both human and equine donors have been studied initially to ensure high-quality MR images. Specimens were prepared and scanned from human proximal tibia bones as well as the equine distal radius. The quality of the images from the human bone appeared compromised due to freezing artifact, so only equine bone was included in subsequent procedures since these specimens could be acquired and imaged fresh before being frozen. MRI scans were made spanning a 3.6 cm length on each of 5 equine distal radius specimens. The images were then sent to Dr. Raj Acharya of the State University of New York at Buffalo for fractal analysis. Each piece was cut into 3 slabs approximately 1.2 cm thick and high-resolution contact radiographs were made to provide images for comparing fractal analysis with MR images. Dual energy X-ray absorptiometry (DEXA) scans were also made of each slab for subsequent bone mineral density determination. Slabs were cut into cubes for mechanical using a slow-speed diamond blade wafering saw (Buehler Isomet). The dimensions and wet weights of each cube specimen were measured and recorded. Wet weights

  10. Non-invasive electrocardiogram detection of in vivo zebrafish embryos using electric potential sensors

    Science.gov (United States)

    Rendon-Morales, E.; Prance, R. J.; Prance, H.; Aviles-Espinosa, R.

    2015-11-01

    In this letter, we report the continuous detection of the cardiac electrical activity in embryonic zebrafish using a non-invasive approach. We present a portable and cost-effective platform based on the electric potential sensing technology, to monitor in vivo electrocardiogram activity from the zebrafish heart. This proof of principle demonstration shows how electrocardiogram measurements from the embryonic zebrafish may become accessible by using electric field detection. We present preliminary results using the prototype, which enables the acquisition of electrophysiological signals from in vivo 3 and 5 days-post-fertilization zebrafish embryos. The recorded waveforms show electrocardiogram traces including detailed features such as QRS complex, P and T waves.

  11. Non-invasive estimation of firmness in apple fruit using VIS/NIR spectroscopy

    DEFF Research Database (Denmark)

    Martínez, M.; Wulfsohn, Dvora-Laio; Toldam-Andersen, Torben Bo

    2012-01-01

    Better and steady fruit quality evaluation at harvest is a major challenge for commercial growers of apples in Denmark. Those fruits not meeting the requirements for the fresh market traditionally go to the juice concentrate industry where low cost products are obtained. Special fruit qualities...... as for eating apples. Invasive and non-invasive measurements of firmness, on the shaded and exposed side of the fruits were carried out for three Danish apple cultivars of known commercial usage. Resulting data determined wavelengths between 415 to 715 nm to be predictive for firmness. A PLS model for all three...

  12. Non-invasive estimation of firmness in apple using VIS/NIR spectroscopy

    DEFF Research Database (Denmark)

    Martinez Vega, Mabel Virginia; Wulfsohn, Dvora-Laio; Toldam-Andersen, Torben Bo

    2012-01-01

    Better and steady fruit quality evaluation at harvest is a major challenge for commercial growers of apples in Denmark. Those fruits not meeting the requirements for the fresh market traditionally go to the juice concentrate industry where low cost products are obtained. Special fruit qualities...... as for eating apples. Invasive and non-invasive measurements of firmness, on the shaded and exposed side of the fruits were carried out for three Danish apple cultivars of known commercial usage. Resulting data determined wavelengths between 415 to 715 nm to be predictive for firmness. A PLS model for all three...

  13. CARDIAC TRANSPLANT REJECTION AND NON-INVASIVE COMON CAROTID ARTERY WALL FUNCTIONAL INDICES

    Directory of Open Access Journals (Sweden)

    A. O. Shevchenko

    2015-01-01

    Full Text Available Allograft rejection would entail an increase in certain blood biomarkers and active substances derived from activated inflammatory cells which could influence entire vascular endothelial function and deteriorate arterial wall stiffness. We propose that carotid wall functional indices measured with non-invasive ultrasound could we valuable markers of the subclinical cardiac allograft rejection. Aim. Our goal was to analyze the clinical utility of functional common carotid wall (CCW variables measured with high-resolution Doppler ultrasound as a non-invasive screening tool for allograft rejection in cardiac transplant patients (pts. Methods. One hundred and seventy one pts included 93 cardiac recipients, 30 dilated cardiomyopathy waiting list pts, and 48 stable coronary artery disease (SCAD pts without decompensated heart failure were included. Along with resistive index (Ri, pulsative index (Pi, and CCW intima-media thickness (IMT, CCW rigidity index (iRIG was estimated using empirical equation. Non-invasive evaluation was performed in cardiac transplant recipients prior the endomyo- cardial biopsy. Results. Neither of Ri, Pi, or CCW IMT were different in studied subgroups. iRIG was signifi- cantly lower in SCAD pts when compared to the dilated cardiomyopathy subgroup. The later had similar values with cardiac transplant recipients without rejection. Antibody-mediated and cellular rejection were found in 22 (23.7% and 17 (18.3% cardiac recipients, respectively. Mean iRIG in pts without rejection was significantly lower in comparison to antibody-mediated rejection and cell-mediated (5514.7 ± 2404.0 vs 11856.1 ± 6643.5 and 16071.9 ± 10029.1 cm/sec2, respectively, p = 0.001. Area under ROC for iRIG was 0.90 ± 0.03 units2. Analysis showed that iRIG values above estimated treshold 7172 cm/sec2 suggested relative risk of any type of rejection 17.7 (95%CI = 6.3–49.9 sensitivity 80.5%, specificity – 81.1%, negative predictive value – 84

  14. Non-Invasive Renal Perfusion Imaging Using Arterial Spin Labeling MRI: Challenges and Opportunities

    Directory of Open Access Journals (Sweden)

    Fabio Nery

    2018-01-01

    Full Text Available Tissue perfusion allows for delivery of oxygen and nutrients to tissues, and in the kidneys is also a key determinant of glomerular filtration. Quantification of regional renal perfusion provides a potential window into renal (patho physiology. However, non-invasive, practical, and robust methods to measure renal perfusion remain elusive, particularly in the clinic. Arterial spin labeling (ASL, a magnetic resonance imaging (MRI technique, is arguably the only available method with potential to meet all these needs. Recent developments suggest its viability for clinical application. This review addresses several of these developments and discusses remaining challenges with the emphasis on renal imaging in human subjects.

  15. Transport and Non-Invasive Position Detection of Electron Beams from Laser-Plasma Accelerators

    International Nuclear Information System (INIS)

    Osterhoff, Jens; Sokollik, Thomas; Nakamura, Kei; Bakeman, Michael; Weingartner, R.; Gonsalves, Anthony; Shiraishi, Satomi; Lin, Chen; vanTilborg, Jeroen; Geddes, Cameron; Schroeder, Carl; Esarey, Eric; Toth, Csaba; DeSantis, Stefano; Byrd, John; Gruner, F.; Leemans, Wim

    2011-01-01

    The controlled imaging and transport of ultra-relativistic electrons from laser-plasma accelerators is of crucial importance to further use of these beams, e.g. in high peak-brightness light sources. We present our plans to realize beam transport with miniature permanent quadrupole magnets from the electron source through our THUNDER undulator. Simulation results demonstrate the importance of beam imaging by investigating the generated XUV-photon flux. In addition, first experimental findings of utilizing cavity-based monitors for non-invasive beam-position measurements in a noisy electromagnetic laser-plasma environment are discussed.

  16. Sleep-related breathing disorders and non-invasive ventilation

    Directory of Open Access Journals (Sweden)

    Agata Lax

    2015-05-01

    Full Text Available Non-invasive mechanical ventilation (NPPV was originally used in patients with acute respiratory impairment or exacerbations of chronic respiratory diseases, as an alternative to the endotracheal tube. Over the last thirty years NPPV has been also used at night in patients with stable chronic lung disease such as obstructive sleep apnea, the overlap syndrome (chronic obstructive pulmonary disease and obstructive sleep apnea, neuromuscular disorders, obesity-hypoventilation syndrome, and in other conditions such as sleep disorders associated with congestive heart failure (Cheyne-Stokes respiration. In this no-systematic review we discuss the different types of NPPV, the specific conditions in which they can be used and the indications, recommendations and evidence supporting the efficacy of NPPV. Optimizing patient acceptance and adherence to non-invasive ventilation treatment is challenging. The treatment of sleep-related disorders is a life-threatening condition. The optimal level of treatment should be determined in a sleep laboratory. Side effects directly affecting the patient’s adherence to treatment are known. The most common are nasopharyngeal symptoms including increased congestion and rhinorrhea; these effects are related to reduced humidity of inspired gas. Humidification of delivered gas may improve these symptoms.

  17. Use of Doppler ultrasound for non-invasive urodynamic diagnosis

    Directory of Open Access Journals (Sweden)

    Hideo Ozawa

    2009-01-01

    Full Text Available Objectives: A totally non-invasive transperineal urodynamic technique using Doppler ultrasonography has been developed. Methods: Since normal urine does not have blood cells, urine was thought not to produce the Doppler effects. However, basic studies confirmed that the decrease of pressure at high velocity (Bernouilli effect caused dissolved gas to form microbubbles, which are detected by Doppler ultrasonography. Subjects sat and the probe was advanced via remote control to achieve gentle contact with the perineal skin. The digital uroflow data signals and the color Doppler ultrasound video images were processed on a personal computer. The flow-velocity curves from two sites; the distal prostatic urethra just above the external sphincter (V1 and the sphincteric urethra (V2 were plotted against time. The parameters of both the pressure-flow studies and the Doppler ultrasound urodynamic studies were compared in men who had various degrees of obstruction. Results: Functional cross-sectional area at prostatic urethra (A1, calculated by Q max /V1, was lower in the group of bladder outlet obstruction (BOO vs. control group. Velocity ratio (VR, which was calculated by V1/V2, was the parameter having the best correlation with BOO index, though A1 had a similar correlation. This method is viable to diagnose the degree of BOO. Conclusions: The development of non-invasive Doppler ultrasound videourodynamics (Doppler UDS will dramatically expand the information on voiding function.

  18. Non-invasive diagnosis of liver fibrosis and cirrhosis

    Science.gov (United States)

    Lurie, Yoav; Webb, Muriel; Cytter-Kuint, Ruth; Shteingart, Shimon; Lederkremer, Gerardo Z

    2015-01-01

    The evaluation and follow up of liver fibrosis and cirrhosis have been traditionally performed by liver biopsy. However, during the last 20 years, it has become evident that this “gold-standard” is imperfect; even according to its proponents, it is only “the best” among available methods. Attempts at uncovering non-invasive diagnostic tools have yielded multiple scores, formulae, and imaging modalities. All are better tolerated, safer, more acceptable to the patient, and can be repeated essentially as often as required. Most are much less expensive than liver biopsy. Consequently, their use is growing, and in some countries the number of biopsies performed, at least for routine evaluation of hepatitis B and C, has declined sharply. However, the accuracy and diagnostic value of most, if not all, of these methods remains controversial. In this review for the practicing physician, we analyze established and novel biomarkers and physical techniques. We may be witnessing in recent years the beginning of the end of the first phase for the development of non-invasive markers. Early evidence suggests that they might be at least as good as liver biopsy. Novel experimental markers and imaging techniques could produce a dramatic change in diagnosis in the near future. PMID:26556987

  19. Non-invasive diagnostic imaging of colorectal liver metastases.

    Science.gov (United States)

    Mainenti, Pier Paolo; Romano, Federica; Pizzuti, Laura; Segreto, Sabrina; Storto, Giovanni; Mannelli, Lorenzo; Imbriaco, Massimo; Camera, Luigi; Maurea, Simone

    2015-07-28

    Colorectal cancer is one of the few malignant tumors in which synchronous or metachronous liver metastases [colorectal liver metastases (CRLMs)] may be treated with surgery. It has been demonstrated that resection of CRLMs improves the long-term prognosis. On the other hand, patients with un-resectable CRLMs may benefit from chemotherapy alone or in addition to liver-directed therapies. The choice of the most appropriate therapeutic management of CRLMs depends mostly on the diagnostic imaging. Nowadays, multiple non-invasive imaging modalities are available and those have a pivotal role in the workup of patients with CRLMs. Although extensive research has been performed with regards to the diagnostic performance of ultrasonography, computed tomography, positron emission tomography and magnetic resonance for the detection of CRLMs, the optimal imaging strategies for staging and follow up are still to be established. This largely due to the progressive technological and pharmacological advances which are constantly improving the accuracy of each imaging modality. This review describes the non-invasive imaging approaches of CRLMs reporting the technical features, the clinical indications, the advantages and the potential limitations of each modality, as well as including some information on the development of new imaging modalities, the role of new contrast media and the feasibility of using parametric image analysis as diagnostic marker of presence of CRLMs.

  20. Non-invasive Respiratory Support in Blunt Chest Injury

    Directory of Open Access Journals (Sweden)

    T. V. Lobus

    2006-01-01

    Full Text Available Objective. To optimize the results of treatment in patients with acute respiratory failure (ARF due to lung contusion, by using the methods of non-invasive mask respiratory support. Materials and methods. The study covered 31 patients with severe blunt chest injury, multiple costal fractures, and hypoxemic ARF. The patients underwent assisted ventilation (AV in the CPAP+PSV mode through a facial or nasal mask. Physiological parameters were recorded during non-invasive mask ventilation (NIMV in the stepwise fashion. A control group comprised 25 patients with the similar severity of injury and ARF who were given conventional AV.Results. In 67.7% of the study group patients, NIMV was effective in improving oxygenation and external respiration, without exerting negative hemodynamic effects. Endotracheal intubation and AV could be avoided in these patients. Comparison of the study and control groups revealed a significant reduction in the incidence of secondary pneumonias in the NIMV group and in the duration of treatment. Mask ventilation could decrease mortality from 44% in the control group to 9.7% in the NIMV group.Conclusion. NIMV applied to patients with hypoxemic ARF in the presence of lung contusion improves pulmonary function and, in the bulk of patients, allows endotracheal intubation and AV and consequently their associated complications. When mask ventilation is employed, management of patients becomes shorter and simpler and mortality rates substantially decrease. 

  1. Evolving strategies for liver fibrosis staging: Non-invasive assessment.

    Science.gov (United States)

    Stasi, Cristina; Milani, Stefano

    2017-01-14

    Transient elastography and the acoustic radiation force impulse techniques may play a pivotal role in the study of liver fibrosis. Some studies have shown that elastography can detect both the progression and regression of fibrosis. Similarly, research results have been analysed and direct and indirect serum markers of hepatic fibrosis have shown high diagnostic accuracy for advanced fibrosis/cirrhosis. The prognosis of different stages of cirrhosis is well established and various staging systems have been proposed, largely based on clinical data. However, it is still unknown if either non-invasive markers of liver fibrosis or elastography may contribute to a more accurate staging of liver cirrhosis, in terms of prognosis and fibrosis regression after effective therapy. In fact, not enough studies have shown both the fibrosis regression in different cirrhosis stages and the point beyond which the prognosis does not change - even in the event of fibrosis regression. Therefore, future studies are needed to validate non-invasive methods in predicting the different phases of liver cirrhosis.

  2. Non-invasive physical treatments for chronic/recurrent headache.

    Science.gov (United States)

    Bronfort, G; Nilsson, N; Haas, M; Evans, R; Goldsmith, C H; Assendelft, W J J; Bouter, L M

    2004-01-01

    Non-invasive physical treatments are often used to treat common types of chronic/recurrent headache. To quantify and compare the magnitude of short- and long-term effects of non-invasive physical treatments for chronic/recurrent headaches. We searched the following databases from their inception to November 2002: MEDLINE, EMBASE, BIOSIS, CINAHL, Science Citation Index, Dissertation Abstracts, CENTRAL, and the Specialised Register of the Cochrane Pain, Palliative Care and Supportive Care review group. Selected complementary medicine reference systems were searched as well. We also performed citation tracking and hand searching of potentially relevant journals. We included randomized and quasi-randomized controlled trials comparing non-invasive physical treatments for chronic/recurrent headaches to any type of control. Two independent reviewers abstracted trial information and scored trials for methodological quality. Outcomes data were standardized into percentage point and effect size scores wherever possible. The strength of the evidence of effectiveness was assessed using pre-specified rules. Twenty-two studies with a total of 2628 patients (age 12 to 78 years) met the inclusion criteria. Five types of headache were studied: migraine, tension-type, cervicogenic, a mix of migraine and tension-type, and post-traumatic headache. Ten studies had methodological quality scores of 50 or more (out of a possible 100 points), but many limitations were identified. We were unable to pool data because of study heterogeneity. For the prophylactic treatment of migraine headache, there is evidence that spinal manipulation may be an effective treatment option with a short-term effect similar to that of a commonly used, effective drug (amitriptyline). Other possible treatment options with weaker evidence of effectiveness are pulsating electromagnetic fields and a combination of transcutaneous electrical nerve stimulation [TENS] and electrical neurotransmitter modulation. For the

  3. In-line non-invasive turbidimetry as a tool to ensure content uniformity in the betamethasone filling process.

    Science.gov (United States)

    Muzzio, Cristian R; Tomé, Martín A; Díaz, Rodolfo J; Otero, Germán C Fernández; Campiutti, Pablo C; Cuevas, Héctor L; Dini, Nicolás G

    2015-09-30

    The filling process of liquid suspensions is a difficult operation,mainly due to drug settling. Small variations during the process may lead to serious deviations in the API content uniformity of the finished product, particularly if the drug settles fast. Real-time non-invasive monitoring of liquid suspensions is a useful approach to ensure an acceptable API content in the finished product. The aim of this study was to develop a method based on non-invasive turbidity measurements for in-line determinations of betamethasone content uniformity during the filling process of injections. Owing to the constructive features of the developed system, the determinations were performed in a non-destructive and non-invasive way, thus allowing the analysis of the whole batch and minimizing the risk of contaminating the product. The results obtained by the method proposed in this study demonstrated that non-invasive turbidimetry is a powerful tool for continuous monitoring of the filling process of betamethasone injections, within the Quality by Design framework (FDA, 2009). Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Non-invasive therapy for the prevention of moist desquamation following β-radiation exposure

    International Nuclear Information System (INIS)

    Ma, L.; Wilcock, S.; Rezvani, M.; Hsia, C.

    2003-01-01

    Full text: In an environment of potential nuclear mishap, effective therapies are lacking for radiation-induced skin burns. In this report we describe an effective, non-invasive therapy for post acute radiation exposure based on skin compression. A pig skin model of β-radiation-induced moist desquamation (MD) was employed in this study. Exposure to 30 Gy was used to induce skin lesions involving >80% MD in prescribed test sites on flank skin of female Large White pigs (n 18 per flank). The animals' left flank was placed under pressure from the weight of the pig's own body for 3 hours, immediately following radiation exposure. The right flank served as control, and was not subject to compression following irradiation. Percentage differences in MD were measured between sites on both flanks based on the the area of the test site containing 50% MD (severe) as determined by clinical assessment using blinded observers. The incidence of MD was significantly higher on the uncompressed right flank as compared to the compressed left flank (p < 0.005). A 61% and 45% reduction of MD was observed in both total and severe MD, respectively, during the 8-week study period. Radiation-induced MD was significantly reduced by immediate, mild skin compression (approx. 1.5 psi) for 3 hours immediately following exposure. This observation suggests that skin lesion development from radiation-induced oxidative damage cascades may be modulated non-invasively. Understanding the mechanism(s) at work and developing devices based on this non-invasive therapeutic principle may provide a novel treatment for consequent skin injury in radiation oncology, cosmetic and therapeutic UV, laser, glycolic and derm abrasion procedures

  5. Non-invasive Monitoring of Intracranial Pressure Using Transcranial Doppler Ultrasonography: Is It Possible?

    Science.gov (United States)

    Cardim, Danilo; Robba, C; Bohdanowicz, M; Donnelly, J; Cabella, B; Liu, X; Cabeleira, M; Smielewski, P; Schmidt, B; Czosnyka, M

    2016-12-01

    Although intracranial pressure (ICP) is essential to guide management of patients suffering from acute brain diseases, this signal is often neglected outside the neurocritical care environment. This is mainly attributed to the intrinsic risks of the available invasive techniques, which have prevented ICP monitoring in many conditions affecting the intracranial homeostasis, from mild traumatic brain injury to liver encephalopathy. In such scenario, methods for non-invasive monitoring of ICP (nICP) could improve clinical management of these conditions. A review of the literature was performed on PUBMED using the search keywords 'Transcranial Doppler non-invasive intracranial pressure.' Transcranial Doppler (TCD) is a technique primarily aimed at assessing the cerebrovascular dynamics through the cerebral blood flow velocity (FV). Its applicability for nICP assessment emerged from observation that some TCD-derived parameters change during increase of ICP, such as the shape of FV pulse waveform or pulsatility index. Methods were grouped as: based on TCD pulsatility index; aimed at non-invasive estimation of cerebral perfusion pressure and model-based methods. Published studies present with different accuracies, with prediction abilities (AUCs) for detection of ICP ≥20 mmHg ranging from 0.62 to 0.92. This discrepancy could result from inconsistent assessment measures and application in different conditions, from traumatic brain injury to hydrocephalus and stroke. Most of the reports stress a potential advantage of TCD as it provides the possibility to monitor changes of ICP in time. Overall accuracy for TCD-based methods ranges around ±12 mmHg, with a great potential of tracing dynamical changes of ICP in time, particularly those of vasogenic nature.

  6. A non-invasive method of quantifying pancreatic volume in mice using micro-MRI.

    Science.gov (United States)

    Paredes, Jose L; Orabi, Abrahim I; Ahmad, Taimur; Benbourenane, Iman; Tobita, Kimimasa; Tadros, Sameh; Bae, Kyongtae T; Husain, Sohail Z

    2014-01-01

    In experimental models of pancreatic growth and recovery, changes in pancreatic size are assessed by euthanizing a large cohort of animals at varying time points and measuring organ mass. However, to ascertain this information in clinical practice, patients with pancreatic disorders routinely undergo non-invasive cross-sectional imaging of the pancreas using magnetic resonance imaging (MRI) or computed tomography (CT). The aim of the current study was to develop a thin-sliced, optimized sequence protocol using a high field MRI to accurately calculate pancreatic volumes in the most common experimental animal, the mouse. Using a 7 Telsa Bruker micro-MRI system, we performed abdominal imaging in whole-fixed mice in three standard planes: axial, sagittal, and coronal. The contour of the pancreas was traced using Vitrea software and then transformed into a 3-dimensional (3D) reconstruction, from which volumetric measurements were calculated. Images were optimized using heart perfusion-fixation, T1 sequence analysis, and 0.2 to 0.4 mm thick slices. As proof of principle, increases in pancreatic volume among mice of different ages correlated tightly with increasing body weight. In summary, this is the first study to measure pancreatic volumes in mice, using a high field 7 Tesla micro-MRI and a thin-sliced, optimized sequence protocol. We anticipate that micro-MRI will improve the ability to non-invasively quantify changes in pancreatic size and will dramatically reduce the number of animals required to serially assess pancreatic growth and recovery.

  7. In vivo non-invasive multiphoton tomography of human skin

    Science.gov (United States)

    König, Karsten; Riemann, Iris; Ehlers, Alexander; Le Harzic, Ronan

    2005-10-01

    High resolution non-invasive 3D imaging devices are required to detect pathogenic microorganisms such as Anthrax spores, bacteria, viruses, fungi and chemical agents entering biological tissues such as the epidermis. Due to the low light penetration depth and the biodamage potential, ultraviolet light sources can not be employed to realize intratissue imaging of bio- and chemohazards. We report on the novel near infrared laser technology multiphoton tomography and the high resolution 4D imaging tool DermaInspect for non-invasive detection of intratissue agents and their influence on cellular metabolism based on multiphoton autofluorescence imaging (MAI) and second harmonic generation (SHG). Femtosecond laser pulses in the spectral range of 750 nm to 850 nm have been used to image in vivo human skin with subcellular spatial and picosecond temporal resolution. The non-linear induced autofluorescence of both, skin tissues and microorganisms, originates mainly from naturally endogenous fluorophores/protein structures like NAD(P)H, flavins, keratin, collagen, elastin, porphyrins and melanin. Bacteria emit in the blue/green spectral range due to NAD(P)H and flavoproteins and, in certain cases, in the red spectral range due to the biosynthesis of Zn-porphyrins, coproporphyrin and protoporphyrin. Collagen and exogenous non-centrosymmetric molecules can be detected by SHG signals. The system DermaInspect consists of a wavelength-tunable compact 80/90 MHz Ti:sapphire laser, a scan module with galvo scan mirrors, piezo-driven objective, fast photon detector and time-resolved single photon counting unit. It can be used to perform optical sectioning and 3D autofluorescence lifetime imaging (τ-mapping) with 1 μm spatial resolution and 270 ps temporal resolution. The parameter fluorescence lifetime depends on the type of fluorophore and its microenvironment and can be used to distinguish bio- and chemohazards from cellular background and to gain information for pathogen

  8. Nanomaterials for miRNA delivery and non-invasive imaging in cardiovascular regeneration

    Science.gov (United States)

    Gomes, Renata Sofia Mota

    The development of noninvasive platforms to assess cell fate after transplantation is of utmost importance in the context of Regenerative Medicine. Magnetic Resonance Imaging (MRI) is a powerful non-invasive imaging platform, heavily relying on the use of contrast agents, mostly nanoparticles (NPs). Gadolinium (Gd) and Superparamagnetic Iron Oxide (SPIO) NPs are contrast agents in clinical use, however these agents may cause liver toxicity, give rise to image artifacts in MRI, and typically have not been used as a drug delivery system. In this work, we developed a novel NP formulation containing fluorine to overcome the previous limitations. The NPs are based on poly(lactic-co-glycolic acid) (PLGA) which is a biocompatible and versatile polymer approved for human use . PLGA NPs containing fluorine were developed to label and track cells overtime and as vectors for microRNA (miR) delivery, which improves cell survival in hypoxic conditions. Herein we show that the fluorine-based NPs are a reliable approach to track non-invasively cells with clinical relevance (endothelial cells and cord-blood derived mononuclear cells) and simultaneously control the intracellular delivery of pro-survival and pro-angiogenic miRs. Also systems for in vitro and in vivo imaging via MRI of fluorine are developed and here explained. Furthermore in vivo studies are performed which show the therapeutic uses of such system. Additionally we also address the optimization of protocols for stem cell culture which may enhance proliferation and promote pluripotency in cardiac stem cells (CSCs) so as we can fully explore the potential of these cells in vivo using out novel theranostic NPs platform. We are the first authors developing and relating these novel developments.

  9. Non-invasive epigenetic detection of fetal trisomy 21 in first trimester maternal plasma.

    Directory of Open Access Journals (Sweden)

    Ji Hyae Lim

    Full Text Available BACKGROUND: Down syndrome (DS is the most common known aneuploidy, caused by an extra copy of all or part of chromosome 21. Fetal-specific epigenetic markers have been investigated for non-invasive prenatal detection of fetal DS. The phosphodiesterases gene, PDE9A, located on chromosome 21q22.3, is completely methylated in blood (M-PDE9A and unmethylated in the placenta (U-PDE9A. Therefore, we estimated the accuracy of non-invasive fetal DS detection during the first trimester of pregnancy using this tissue-specific epigenetic characteristic of PDE9A. METHODOLOGY/PRINCIPAL FINDINGS: A nested, case-control study was conducted using maternal plasma samples collected from 108 pregnant women carrying 18 DS and 90 normal fetuses (each case was matched with 5 controls according to gestational weeks at blood sampling. All pregnancies were singletons at or before 12 weeks of gestation between October 2008 and May 2009. The maternal plasma levels of M-PDE9A and U-PDE9A were measured by quantitative methylation-specific polymerase chain reaction. M-PDE9A and U-PDE9A levels were obtained in all samples and did not differ between male and female fetuses. M-PDE9A levels did not differ between the DS cases and controls (1854.3 vs 2004.5 copies/mL; P = 0.928. U-PDE9A levels were significantly elevated in women with DS fetuses compared with controls (356.8 vs 194.7 copies/mL, P<0.001. The sensitivities of U-PDE9A level and the unmethylation index of PDE9A for non-invasive fetal DS detection were 77.8% and 83.3%, respectively, with a 5% false-positive rate. In the risk assessment for fetal DS, the adjusted odds ratios of U-PDE9A level and UI were 46.2 [95% confidence interval: 7.8-151.6] and 63.7 [95% confidence interval: 23.2-206.7], respectively. CONCLUSIONS: Our findings suggest that U-PDE9A level and the unmethylation index of PDE9A may be useful biomarkers for non-invasive fetal DS detection during the first trimester of pregnancy, regardless of fetal

  10. Non-invasive index of liver fibrosis induced by alcohol, thioacetamide and schistosomal infection in mice

    Directory of Open Access Journals (Sweden)

    El-Beltagy Doha M

    2010-06-01

    Full Text Available Abstract Background Non invasive approaches will likely be increasing utilized to assess liver fibrosis. This work provides a new non invasive index to predict liver fibrosis induced in mice. Methods Fibrosis was generated by thioacetamide (TAA, chronic intake of ethanol, or infection with S. mansoni in 240 mice. Both progression and regression of fibrosis (after treatment with silymarin and/or praziquantel were monitored. The following methods were employed: (i The METAVIR system was utilized to grade and stage liver inflammation and fibosis; (ii Determination of hepatic hydroxyproline and collagen; and (iii Derivation of a new hepatic fibrosis index from the induced changes, and its prospective validation in a group of 70 mice. Results The index is composed of 4 serum variable including total proteins, γ-GT, bilirubin and reduced glutathione (GSH, measured in diseased, treated and normal mice. These parameters were highly correlated with both the histological stage and the grade. They were combined in a logarithmic formula, which non-invasively scores the severity of liver fibrosis through a range (0 to 2, starting with healthy liver (corresponding to stage 0 to advanced fibrosis (corresponding stage 3.Receiver operating characteristic curves (ROC for the accuracy of the index to predict the histological stages demonstrated that the areas under the curve (AUC were 0.954, 0.979 and 0.99 for index values corresponding to histological stages 1, 2 and 3, respectively. Also, the index was correlated with stage and grade, (0.947 and 0.859, respectively. The cut off values that cover the range between stages 0-1, 1-2 and 2-3 are 0.4, 1.12 and 1.79, respectively. The results in the validation group confirmed the accuracy of the test. The AUROC was 0.869 and there was good correlation with the stage of fibrosis and grade of inflammation. Conclusion The index fulfils the basic criteria of non-invasive marker of liver fibrosis since it is liver

  11. The effects of non-invasive respiratory support on oropharyngeal temperature and humidity: a neonatal manikin study.

    Science.gov (United States)

    Roberts, Calum T; Kortekaas, Rebecca; Dawson, Jennifer A; Manley, Brett J; Owen, Louise S; Davis, Peter G

    2016-05-01

    Heating and humidification of inspired gases is routine during neonatal non-invasive respiratory support. However, little is known about the temperature and humidity delivered to the upper airway. The International Standards Organization (ISO) specifies that for all patients with an artificial airway humidifiers should deliver ≥33 g/m(3) absolute humidity (AH). We assessed the oropharyngeal temperature and humidity during different non-invasive support modes in a neonatal manikin study. Six different modes of non-invasive respiratory support were applied at clinically relevant settings to a neonatal manikin, placed in a warmed and humidified neonatal incubator. Oropharyngeal temperature and relative humidity (RH) were assessed using a thermohygrometer. AH was subsequently calculated. Measured temperature and RH varied between devices. Bubble and ventilator continuous positive airway pressure (CPAP) produced temperatures >34°C and AH >38 g/m(3). Variable flow CPAP resulted in lower levels of AH than bubble or ventilator CPAP, and AH decreased with higher gas flow. High-flow (HF) therapy delivered by Optiflow Junior produced higher AH with higher gas flow, whereas with Vapotherm HF the converse was true. Different non-invasive devices deliver inspiratory gases of variable temperature and humidity. Most AH levels were above the ISO recommendation; however, with some HF and variable flow CPAP devices at higher gas flow this was not achieved. Clinicians should be aware of differences in the efficacy of heating and humidification when choosing modes of non-invasive respiratory support. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  12. Doppler ultrasonography combined with transient elastography improves the non-invasive assessment of fibrosis in patients with chronic liver diseases.

    Science.gov (United States)

    Alempijevic, Tamara; Zec, Simon; Nikolic, Vladimir; Veljkovic, Aleksandar; Stojanovic, Zoran; Matovic, Vera; Milosavljevic, Tomica

    2017-01-31

    Accurate clinical assessment of liver fibrosis is essential and the aim of our study was to compare and combine hemodynamic Doppler ultrasonography, liver stiffness by transient elastography, and non-invasive serum biomarkers with the degree of fibrosis confirmed by liver biopsy, and thereby to determine the value of combining non-invasive method in the prediction significant liver fibrosis. We included 102 patients with chronic liver disease of various etiology. Each patient was evaluated using Doppler ultrasonography measurements of the velocity and flow pattern at portal trunk, hepatic and splenic artery, serum fibrosis biomarkers, and transient elastography. These parameters were then input into a multilayer perceptron artificial neural network with two hidden layers, and used to create models for predicting significant fibrosis. According to METAVIR score, clinically significant fibrosis (≥F2) was detected in 57.8% of patients. A model based only on Doppler parameters (hepatic artery diameter, hepatic artery systolic and diastolic velocity, splenic artery systolic velocity and splenic artery Resistance Index), predicted significant liver fibrosis with a sensitivity and specificity of75.0% and 60.0%. The addition of unrelated non-invasive tests improved the diagnostic accuracy of Doppler examination. The best model for prediction of significant fibrosis was obtained by combining Doppler parameters, non-invasive markers (APRI, ASPRI, and FIB-4) and transient elastography, with a sensitivity and specificity of 88.9% and 100%. Doppler parameters alone predict the presence of ≥F2 fibrosis with fair accuracy. Better prediction rates are achieved by combining Doppler variables with non-invasive markers and liver stiffness by transient elastography.

  13. A non-invasive technique for age at death determination

    DEFF Research Database (Denmark)

    Lynnerup, N; Thomsen, I; Frohlich, B

    1990-01-01

    Several methods for age at death determination of human skeletal remains have been developed. These methods have, especially in combination, proved to be useful in making individual identification of skeletal material in forensic cases. This study is based on the known correlation between actual...... by identification of one of the five phases. An exact age determination of a single individual was not possible, but could be approximated to within 20 years. In forensic cases, however, where the removal of soft tissue is not always possible, this method can contribute to the final age determination when used...... age and structural changes in trabecular bone tissue. Using X-rays taken from live individuals, it provides a useful non-invasive ageing technique for the forensic examiner. An initial pilot study defined five phases of age-related changes in the trabecular tissue of the proximal end of the femur...

  14. Non-Invasive in vivo Imaging in Small Animal Research

    Directory of Open Access Journals (Sweden)

    V. Koo

    2006-01-01

    Full Text Available Non-invasive real time in vivo molecular imaging in small animal models has become the essential bridge between in vitro data and their translation into clinical applications. The tremendous development and technological progress, such as tumour modelling, monitoring of tumour growth and detection of metastasis, has facilitated translational drug development. This has added to our knowledge on carcinogenesis. The modalities that are commonly used include Magnetic Resonance Imaging (MRI, Computed Tomography (CT, Positron Emission Tomography (PET, bioluminescence imaging, fluorescence imaging and multi-modality imaging systems. The ability to obtain multiple images longitudinally provides reliable information whilst reducing animal numbers. As yet there is no one modality that is ideal for all experimental studies. This review outlines the instrumentation available together with corresponding applications reported in the literature with particular emphasis on cancer research. Advantages and limitations to current imaging technology are discussed and the issues concerning small animal care during imaging are highlighted.

  15. A non-invasive technique for age at death determination

    DEFF Research Database (Denmark)

    Lynnerup, N; Thomsen, I; Frohlich, B

    1990-01-01

    age and structural changes in trabecular bone tissue. Using X-rays taken from live individuals, it provides a useful non-invasive ageing technique for the forensic examiner. An initial pilot study defined five phases of age-related changes in the trabecular tissue of the proximal end of the femur...... by identification of one of the five phases. An exact age determination of a single individual was not possible, but could be approximated to within 20 years. In forensic cases, however, where the removal of soft tissue is not always possible, this method can contribute to the final age determination when used...... in conjunction with other well-known methods, and thereby strengthen the final age estimate....

  16. Therapeutic Use of Non-invasive Brain Stimulation in Dystonia

    Directory of Open Access Journals (Sweden)

    Angelo Quartarone

    2017-07-01

    Full Text Available Repetitive transcranial magnetic stimulation (rTMS and transcranial direct current stimulation (tDCS are non-invasive methods for stimulating cortical neurons that have been increasingly used in the neurology realm and in the neurosciences applied to movement disorders. In addition, these tools have the potential to be delivered as clinically therapeutic approach. Despite several studies support this hypothesis, there are several limitations related to the extreme variability of the stimulation protocols, clinical enrolment and variability of rTMS and tDCS after effects that make clinical interpretation very difficult. Aim of the present study will be to critically discuss the state of art therapeutically applications of rTMS and tDCS in dystonia.

  17. Therapeutic Use of Non-invasive Brain Stimulation in Dystonia.

    Science.gov (United States)

    Quartarone, Angelo; Rizzo, Vincenzo; Terranova, Carmen; Cacciola, Alberto; Milardi, Demetrio; Calamuneri, Alessandro; Chillemi, Gaetana; Girlanda, Paolo

    2017-01-01

    Repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS) are non-invasive methods for stimulating cortical neurons that have been increasingly used in the neurology realm and in the neurosciences applied to movement disorders. In addition, these tools have the potential to be delivered as clinically therapeutic approach. Despite several studies support this hypothesis, there are several limitations related to the extreme variability of the stimulation protocols, clinical enrolment and variability of rTMS and tDCS after effects that make clinical interpretation very difficult. Aim of the present study will be to critically discuss the state of art therapeutically applications of rTMS and tDCS in dystonia.

  18. The potential of non-invasive ventilation to decrease BPD.

    Science.gov (United States)

    Bhandari, Vineet

    2013-04-01

    Bronchopulmonary dysplasia (BPD), the most common chronic lung disease in infancy, has serious long-term pulmonary and neurodevelopmental consequences right up to adulthood, and is associated with significant healthcare costs. BPD is a multifactorial disease, with genetic and environmental factors interacting to culminate in the characteristic clinical and pathological phenotype. Among the environmental factors, invasive endotracheal tube ventilation is considered a critical contributing factor to the pathogenesis of BPD. Since BPD currently has no specific preventive or effective therapy, considerable interest has focused on the use of non-invasive ventilation as a means to potentially decrease the incidence of BPD. This article reviews the progress made in the last 5 years in the use of nasal continuous positive airways pressure (NCPAP) and nasal intermittent positive pressure ventilation (NIPPV) as it pertains to impacting on BPD rates. Research efforts are summarized, and some guidelines are suggested for clinical use of these techniques in neonates. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Non-invasive beamforming add-on module

    KAUST Repository

    Bader, Ahmed

    2017-02-23

    An embodiment of a non-invasive beamforming add-on apparatus couples to an existing antenna port and rectifies the beam azimuth in the upstream and downstream directions. The apparatus comprises input circuitry that is configured to receive one or more signals from a neighboring node of the linear wireless sensor network; first amplifier circuitry configured to adjust an amplitude of a respective received signal in accordance with a weighting coefficient and invoke a desired phase to a carrier frequency of the received signal thereby forming a first amplified signal; and second amplifier circuitry configured to adjust a gain of the first amplified signal towards upstream and downstream neighbors of the linear wireless sensor in the linear wireless sensor network.

  20. Non invasive sensing technologies for cultural heritage management and fruition

    Science.gov (United States)

    Soldovieri, Francesco; Masini, Nicola

    2016-04-01

    The relevance of the information produced by science and technology for the knowledge of the cultural heritage depends on the quality of the feedback and, consequently, on the "cultural" distance between scientists and end-users. In particular, the solution to this problem mainly resides in the capability of end-users' capability to assess and transform the knowledge produced by diagnostics with regard to: information on both cultural objects and sites (decay patterns, vulnerability, presence of buried archaeological remains); decision making (management plan, conservation project, and excavation plan). From our experience in the field of the cultural heritage and namely the conservation, of monuments, there is a significant gap of information between technologists (geophysicists/physicists/engineers) and end-users (conservators/historians/architects). This cultural gap is due to the difficulty to interpret "indirect data" produced by non invasive diagnostics (i.e. radargrams/thermal images/seismic tomography etc..) in order to provide information useful to improve the historical knowledge (e.g. the chronology of the different phases of a building), to characterise the state of conservation (e.g. detection of cracks in the masonry) and to monitor in time cultural heritage artifacts and sites. The possible answer to this difficulty is in the set-up of a knowledge chain regarding the following steps: - Integrated application of novel and robust data processing methods; - Augmented reality as a tool for making easier the interpretation of non invasive - investigations for the analysis of decay pathologies of masonry and architectural surfaces; - The comparison between direct data (carrots, visual inspection) and results from non-invasive tests, including geophysics, aims to improve the interpretation and the rendering of the monuments and even of the archaeological landscapes; - The use of specimens or test beds for the detection of archaeological features and

  1. Non-invasive examination of multiple sclerosis patients

    International Nuclear Information System (INIS)

    Weerd, A.W. de.

    1981-01-01

    Multiple sclerosis is characterized by a wide range of symptoms and, in many cases, by a highly erratic course. As a result diagnosis is often a problem. Two non-invasive examinations, Computer Tomography (CT scan) and the Evoked Response test (ER), are the subjects of this study which, according to available literature, both can play a role in the establishment of the diagnosis of multiple sclerosis. Clinical trials have been performed and both methods demonstrated abnormalities of the central nervous system which were not suspected on clinical grounds; as a result both methods of examination can contribute to the early establishment of the diagnosis of multiple sclerosis. In addition the diagnosis can be determined with greater certainty when the findings of the CT-scan and the evoked response test are taken into consideration. (Auth.)

  2. Non-invasive assessment of skeletal muscle activity

    Science.gov (United States)

    Merletti, Roberto; Orizio, Claudio; di Prampero, Pietro E.; Tesch, Per

    2005-10-01

    After the first 3 years (2002-2005), the MAP project has made available: - systems fo electrodes, signal conditioning and digital processing for multichannel simultaneously-detected EMG and MMG as well as for simultaneous electrical stimulation and EMG detection with artifact cancellation. - innovative non-invasive techniques for the extraction of individual motor unit action potentials (MUAPS) and individual motor and MMG contributions from the surface EMG interference signal and the MMG signal. - processing techniques for extractions of indicators of progressive fatigue from the electrically-elicited (M-wave) EMG signal. - techniques for the analysis of dynamic multichannel EMG during cyclic or explosive exercise (in collaboration with project EXER/MAP-MED-027).

  3. [Non-invasive prenatal testing: challenges for future implementation].

    Science.gov (United States)

    Henneman, Lidewij; Page-Chrisiaens, G C M L Lieve; Oepkes, Dick

    2015-01-01

    The non-invasive prenatal test (NIPT) is an accurate and safe test in which blood from the pregnant woman is used to investigate if the unborn child possibly has trisomy 21 (Down's syndrome), trisomy 18 (Edwards' syndrome) or trisomy 13 (Patau syndrome). Since April 2014 the NIPT has been available in the Netherlands as part of the TRIDENT implementation project for those in whom the first trimester combined test showed an elevated risk (> 1:200) of trisomy, or on medical indication, as an alternative to chorionic villous sampling or amniocentesis. Since the introduction of the NIPT the use of these invasive tests, which are associated with a risk of miscarriage, has fallen steeply. The NIPT may replace the combined test. Also the number of conditions that is tested for can be increased. Modification of current prenatal screening will require extensive discussion, but whatever the modification, careful counseling remains essential to facilitate pregnant women's autonomous reproductive decision making.

  4. Specificity of unenhanced CT for non-invasive diagnosis of hepatic steatosis: implications for the investigation of the natural history of incidental steatosis

    Energy Technology Data Exchange (ETDEWEB)

    Pickhardt, Perry J.; Hahn, Luke [University of Wisconsin School of Medicine and Public Health, Department of Radiology, Madison, WI (United States); Park, Seong Ho [University of Ulsan College of Medicine, Asan Medical Center, Department of Radiology and Research Institute of Radiology, Seoul (Korea, Republic of); Lee, Sung-Gyu [University of Ulsan College of Medicine, Asan Medical Center, Division of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, Seoul (Korea, Republic of); Bae, Kyongtae T. [University of Pittsburgh, Department of Radiology, Pittsburgh, PA (United States); Yu, Eun Sil [University of Ulsan College of Medicine, Asan Medical Center, Department of Pathology, Seoul (Korea, Republic of)

    2012-05-15

    To determine a highly specific liver attenuation threshold at unenhanced CT for biopsy-proven moderate to severe hepatic steatosis ({>=}30% at histology). 315 asymptomatic adults (mean age {+-} SD, 31.5 {+-} 10.1 years; 207 men, 108 women) underwent same-day unenhanced liver CT and ultrasound-guided liver biopsy. Blinded to biopsy results, CT liver attenuation was measured using standard region-of-interest methodology. Multiple linear regression analysis was used to assess the relationship of CT liver attenuation with patient age, gender, BMI, CT system, and hepatic fat and iron content. Thirty-nine subjects had moderate to severe steatosis and 276 had mild or no steatosis. A liver attenuation threshold of 48 HU was 100% specific (276/276) for moderate to severe steatosis, with no false-positives. Sensitivity, PPV and NPV at this HU threshold was 53.8%, 100% and 93.9%. Hepatic fat content was the overwhelming determinant of liver attenuation values, but CT system (P < 0.001), and hepatic iron (P = 0.035) also had a statistically significant independent association. Unenhanced CT liver attenuation alone is highly specific for moderate to severe hepatic steatosis, allowing for confident non-invasive identification of large retrospective/prospective cohorts for natural history evaluation of incidental non-alcoholic fatty liver disease. Low sensitivity, however, precludes effective population screening at this threshold. (orig.)

  5. [Evolution of non-invasive ventilation in acute bronchiolitis].

    Science.gov (United States)

    Toledo del Castillo, B; Fernández Lafever, S N; López Sanguos, C; Díaz-Chirón Sánchez, L; Sánchez da Silva, M; López-Herce Cid, J

    2015-08-01

    The aim of the study was to analyse the evolution, over a12-year period, of the use of non-invasive (NIV) and invasive ventilation (IV) in children admitted to a Paediatric Intensive Care Unit (PICU) due to acute bronchiolitis. A retrospective observational study was performed including all children who were admitted to the PICU requiring NIV or IV between 2001 and 2012. Demographic characteristics, ventilation assistance and clinical outcome were analysed. A comparison was made between the first six years and the last 6 years of the study. A total of 196 children were included; 30.1% of the subjects required IV and 93.3% required NIV. The median duration of IV was 9.5 days and NIV duration was 3 days. The median PICU length of stay was 7 days, and 2% of the patients died. The use of NIV increased from 79.4% in first period to 100% in the second period (P<.0001) and IV use decreased from 46% in first period to 22.6% in the last 6 years (P<.0001). Continuous positive airway pressure and nasopharyngeal tube were the most frequently used modality and interface, although the use of bi-level non-invasive ventilation (P<.001) and of nasal cannulas significantly increased (P<.0001) in the second period, and the PICU length of stay was shorter (P=.011). The increasing use of NIV in bronchiolitis in our PICU during the last 12 years was associated with a decrease in the use of IV and length of stay in the PICU. Copyright © 2014 Asociación Española de Pediatría. Published by Elsevier España, S.L.U. All rights reserved.

  6. Non-Invasive Prediction of Histologic Chorioamnionitis in Women with Preterm Premature Rupture of Membranes.

    Science.gov (United States)

    Kim, Su Ah; Park, Kyo Hoon; Lee, Seung Mi

    2016-03-01

    To develop a model based on non-invasive clinical and ultrasonographic parameters for predicting the likelihood of subsequent histologic chorioamnionitis in women with preterm premature rupture of membranes (PPROM) and to determine whether the inclusion of invasive test results improves the predictive value of the model. This retrospective cohort study included 146 consecutive women presenting with PPROM (20-33 weeks). Transvaginal ultrasonographic assessment of cervical length was performed. Maternal serum C-reactive protein (CRP) levels and white blood cell (WBC) counts were measured after amniocentesis. Amniotic fluid (AF) obtained by amniocentesis was cultured, and interleukin-6 (IL-6) levels and WBC counts were determined. The primary outcome measure was histologic chorioamnionitis. Risk scores based on serum CRP concentrations and gestational age (model 1) were calculated for each patient. The model was shown to have adequate goodness of fit and an area under the receiver operating characteristic curve (AUC) of 0.742. When including AF test results (e.g., AF IL-6 levels) in model 1, serum CRP concentrations were found to be insignificant, and thus, were excluded from model 2, comprising AF IL-6 levels and gestational age. No significant difference in AUC was found between models 1 and 2. For women with PPROM, the newly developed model incorporating non-invasive parameters (serum CRP and gestational age) was moderately predictive of histologic chorioamnionitis. The inclusion of invasive test results added no predictive information to the model in this setting.

  7. Efficacy of iron supplementation may be misinterpreted using conventional measures of iron status in iron-depleted, nonanemic women undergoing aerobic exercise training.

    Science.gov (United States)

    Pompano, Laura M; Haas, Jere D

    2017-12-01

    Background: Despite its known detrimental effects, iron deficiency remains the most common micronutrient deficiency in the world. Many interventions that aim to improve iron status involve physically active populations. Intense aerobic exercise training negatively affects iron status; however, the impact of regular moderate aerobic exercise on the effectiveness of iron supplementation remains unclear. Objective: This study aimed to determine whether aerobic training modifies the assessment of the effectiveness of iron supplementation in improving conventional iron status measures. Design: Seventy-two iron-depleted, nonanemic Chinese women [serum ferritin (sFer) 110 g/L] were included in an 8-wk, partially blinded, randomized controlled trial with a 2 × 2 factorial design including iron supplements (42 mg elemental Fe/d) or placebo and aerobic training (five 25-min sessions/wk at 75-85% of maximum heart rate) or no training. Linear mixed models were used to evaluate the relation between supplement type, training, and changes in iron status over time, measured by sFer, hemoglobin, soluble transferrin receptor (sTfR), and estimated total body iron. Results: After treatment, both the iron-supplemented trained and untrained groups showed significantly improved sFer, sTfR, and body iron values compared with either of the placebo groups. Similarly, trained participants had significantly higher aerobic fitness measures than untrained participants. Training modified the sFer response to supplementation (training by supplement interaction, P = 0.07), with the iron-supplemented trained group having significantly lower sFer than the iron-supplemented untrained group at week 8 (mean ± SD: 31.8 ± 13.5 and 47.6 ± 15.7 μg/L, respectively; P = 0.042), whereas there was no significant difference between the placebo trained and untrained groups (21.3 ± 12.2 and 20.3 ± 7.0 μg/L, respectively; P = 1.00). Conclusions: Regular aerobic training reduces the apparent effectiveness

  8. Iron

    DEFF Research Database (Denmark)

    Hansen, Jakob Bondo; Moen, I W; Mandrup-Poulsen, T

    2014-01-01

    The interest in the role of ferrous iron in diabetes pathophysiology has been revived by recent evidence of iron as an important determinant of pancreatic islet inflammation and as a biomarker of diabetes risk and mortality. The iron metabolism in the β-cell is complex. Excess free iron is toxic......, but at the same time, iron is required for normal β-cell function and thereby glucose homeostasis. In the pathogenesis of diabetes, iron generates reactive oxygen species (ROS) by participating in the Fenton chemistry, which can induce oxidative damage and apoptosis. The aim of this review is to present...... and discuss recent evidence, suggesting that iron is a key pathogenic factor in both type 1 and type 2 diabetes with a focus on inflammatory pathways. Pro-inflammatory cytokine-induced β-cell death is not fully understood, but may include iron-induced ROS formation resulting in dedifferentiation by activation...

  9. Targets and probes for non-invasive imaging of β-cells

    Energy Technology Data Exchange (ETDEWEB)

    Jodal, Andreas; Behe, Martin [Paul Scherrer Institut, Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Villigen (Switzerland); Schibli, Roger [Paul Scherrer Institut, Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Villigen (Switzerland); ETH Zurich, Department of Chemistry and Applied Biosciences, Zurich (Switzerland)

    2017-04-15

    β-cells, located in the islets of the pancreas, are responsible for production and secretion of insulin and play a crucial role in blood sugar regulation. Pathologic β-cells often cause serious medical conditions affecting blood glucose level, which severely impact life quality and are life-threatening if untreated. With 347 million patients, diabetes is one of the most prevalent diseases, and will continue to be one of the largest socioeconomic challenges in the future. The diagnosis still relies mainly on indirect methods like blood sugar measurements. A non-invasive diagnostic imaging modality would allow direct evaluation of β-cell mass and would be a huge step towards personalized medicine. Hyperinsulinism is another serious condition caused by β-cells that excessively secrete insulin, like for instance β-cell hyperplasia and insulinomas. Treatment options with drugs are normally not curative, whereas curative procedures usually consist of the resection of affected regions for which, however, an exact localization of the foci is necessary. In this review, we describe potential tracers under development for targeting β-cells with focus on radiotracers for PET and SPECT imaging, which allow the non-invasive visualization of β-cells. We discuss either the advantages or limitations for the various tracers and modalities. This article concludes with an outlook on future developments and discuss the potential of new imaging probes including dual probes that utilize functionalities for both a radioactive and optical moiety as well as for theranostic applications. (orig.)

  10. Targets and probes for non-invasive imaging of β-cells

    International Nuclear Information System (INIS)

    Jodal, Andreas; Behe, Martin; Schibli, Roger

    2017-01-01

    β-cells, located in the islets of the pancreas, are responsible for production and secretion of insulin and play a crucial role in blood sugar regulation. Pathologic β-cells often cause serious medical conditions affecting blood glucose level, which severely impact life quality and are life-threatening if untreated. With 347 million patients, diabetes is one of the most prevalent diseases, and will continue to be one of the largest socioeconomic challenges in the future. The diagnosis still relies mainly on indirect methods like blood sugar measurements. A non-invasive diagnostic imaging modality would allow direct evaluation of β-cell mass and would be a huge step towards personalized medicine. Hyperinsulinism is another serious condition caused by β-cells that excessively secrete insulin, like for instance β-cell hyperplasia and insulinomas. Treatment options with drugs are normally not curative, whereas curative procedures usually consist of the resection of affected regions for which, however, an exact localization of the foci is necessary. In this review, we describe potential tracers under development for targeting β-cells with focus on radiotracers for PET and SPECT imaging, which allow the non-invasive visualization of β-cells. We discuss either the advantages or limitations for the various tracers and modalities. This article concludes with an outlook on future developments and discuss the potential of new imaging probes including dual probes that utilize functionalities for both a radioactive and optical moiety as well as for theranostic applications. (orig.)

  11. Non-invasive optical detection of HBV based on serum surface-enhanced Raman spectroscopy

    Science.gov (United States)

    Zheng, Zuci; Wang, Qiwen; Weng, Cuncheng; Lin, Xueliang; Lin, Yao; Feng, Shangyuan

    2016-10-01

    An optical method of surface-enhanced Raman spectroscopy (SERS) was developed for non-invasive detection of hepatitis B surface virus (HBV). Hepatitis B virus surface antigen (HBsAg) is an established serological marker that is routinely used for the diagnosis of acute or chronic hepatitis B virus(HBV) infection. Utilizing SERS to analyze blood serum for detecting HBV has not been reported in previous literature. SERS measurements were performed on two groups of serum samples: one group for 50 HBV patients and the other group for 50 healthy volunteers. Blood serum samples are collected from healthy control subjects and patients diagnosed with HBV. Furthermore, principal components analysis (PCA) combined with linear discriminant analysis (LDA) were employed to differentiate HBV patients from healthy volunteer and achieved sensitivity of 80.0% and specificity of 74.0%. This exploratory work demonstrates that SERS serum analysis combined with PCA-LDA has tremendous potential for the non-invasive detection of HBV.

  12. In vivo Microscopic Photoacoustic Spectroscopy for Non-Invasive Glucose Monitoring Invulnerable to Skin Secretion Products.

    Science.gov (United States)

    Sim, Joo Yong; Ahn, Chang-Geun; Jeong, Eun-Ju; Kim, Bong Kyu

    2018-01-18

    Photoacoustic spectroscopy has been shown to be a promising tool for non-invasive blood glucose monitoring. However, the repeatability of such a method is susceptible to changes in skin condition, which is dependent on hand washing and drying due to the high absorption of infrared excitation light to the skin secretion products or water. In this paper, we present a method to meet the challenges of mid-infrared photoacoustic spectroscopy for non-invasive glucose monitoring. By obtaining the microscopic spatial information of skin during the spectroscopy measurement, the skin region where the infrared spectra is insensitive to skin condition can be locally selected, which enables reliable prediction of the blood glucose level from the photoacoustic spectroscopy signals. Our raster-scan imaging showed that the skin condition for in vivo spectroscopic glucose monitoring had significant inhomogeneities and large variability in the probing area where the signal was acquired. However, the selective localization of the probing led to a reduction in the effects of variability due to the skin secretion product. Looking forward, this technology has broader applications not only in continuous glucose monitoring for diabetic patient care, but in forensic science, the diagnosis of malfunctioning sweat pores, and the discrimination of tumors extracted via biopsy.

  13. Exhaled breath condensate pH and hydrogen peroxide as non-invasive markers for asthma

    International Nuclear Information System (INIS)

    Al-Obaidy, Amina H.; Al-Samarai, Abdul-Gahni M.

    2007-01-01

    Objective was to estimate the predictive value of exhaled breath condensate (EBC) hydrogen peroxide (H2O2) concentration and pH as non-invasive markers in asthma. Fifty patients with unstable, steroid naive atopic asthma were included in this study, 25 with persistent asthma. Asthma diagnosis was according to the National Heart Lung and Blood Institute guidelines for the diagnosis and management of asthma. Forced expiratory volume in one second (FEV1) was measured by computerized spirometry. The EBC H2O2 assay was carried out using the colorimetric assay. The study was conducted from January to December 2005 in the Asthma and Allergy Center, Tikrit, Iraq. The EBC H2O2 concentration was higher in the asthmatic group (0.91mol) as compared with the control (0.23 mol). There was inverse correlation between EBC H2O2 concentration and FEV1 predicted percent for asthmatic patients. The mean EBC pH was lower in the asthmatic than the control group. There was a positive correlation between EBC pH and FEV 1 predicted percent for asthmatic patients. There was an inverse correlation between EBC H2O2 concentration and pH for all asthmatic patients, intermittent, and persistent asthmatic group. Exhaled breath condensate hydrogen peroxide concentration and pH was a good non-invasive marker for asthma, whether it was with a persistent or intermittent course. (author)

  14. Potential of non-invasive esophagus cancer detection based on urine surface-enhanced Raman spectroscopy

    Science.gov (United States)

    Huang, Shaohua; Wang, Lan; Chen, Weisheng; Feng, Shangyuan; Lin, Juqiang; Huang, Zufang; Chen, Guannan; Li, Buhong; Chen, Rong

    2014-11-01

    Non-invasive esophagus cancer detection based on urine surface-enhanced Raman spectroscopy (SERS) analysis was presented. Urine SERS spectra were measured on esophagus cancer patients (n = 56) and healthy volunteers (n = 36) for control analysis. Tentative assignments of the urine SERS spectra indicated some interesting esophagus cancer-specific biomolecular changes, including a decrease in the relative content of urea and an increase in the percentage of uric acid in the urine of esophagus cancer patients compared to that of healthy subjects. Principal component analysis (PCA) combined with linear discriminant analysis (LDA) was employed to analyze and differentiate the SERS spectra between normal and esophagus cancer urine. The diagnostic algorithms utilizing a multivariate analysis method achieved a diagnostic sensitivity of 89.3% and specificity of 83.3% for separating esophagus cancer samples from normal urine samples. These results from the explorative work suggested that silver nano particle-based urine SERS analysis coupled with PCA-LDA multivariate analysis has potential for non-invasive detection of esophagus cancer.

  15. A Non-invasive Prenatal Diagnosis Method: Free Fetal DNA in Maternal Plasma

    Directory of Open Access Journals (Sweden)

    Ebru Dundar Yenilmez

    2013-06-01

    Full Text Available Prenatal diagnosis for genetic diseases nowadays is still carried out by invasive procedures such as chorionic villus sampling, amniocentesis or cordocentesis. These techniques, however, accompanied with risk of fetal losses. Non-invasive prenatal diagnosis tests based on the analysis of fetal DNA in maternal plasma have potential to be a safer alternative to invasive methods. Non-invasive prenatal diagnosis has been a long-standing research theme in prenatal medicine. The discovery of cell-free fetal nucleic acids in maternal plasma in 1997 has opened new possibilities for noninvasive prenatal diagnosis. The measurement and detection of fetal DNA in maternal plasma and serum has led to clinical applications for the identification of fetal aneuploidies, pre-eclamptic pregnancies, noninvasive diagnosis of fetal Rhesus D genotype and some single gene disorders. The detection of fetal DNA sequences is a reality and could reduce the risk of invasive techniques for certain fetal disorders in the near future. [Archives Medical Review Journal 2013; 22(3.000: 317-334

  16. Development of a Portable Non-Invasive Swallowing and Respiration Assessment Device

    Directory of Open Access Journals (Sweden)

    Wann-Yun Shieh

    2015-05-01

    Full Text Available Dysphagia is a condition that happens when a person cannot smoothly swallow food from the mouth to the stomach. It causes malnourishment in patients, or can even cause death due to aspiration pneumonia. Recently, more and more researchers have focused their attention on the importance of swallowing and respiration coordination, and the use of non-invasive assessment systems has become a hot research trend. In this study, we aimed to integrate the timing and pattern monitoring of respiration and swallowing by using a portable and non-invasive approach which can be applied at the bedside in hospitals or institutions, or in a home environment. In this approach, we use a force sensing resistor (FSR to detect the motions of the thyroid cartilage in the pharyngeal phase. We also use the surface electromyography (sEMG to detect the contraction of the submental muscle in the oral phase, and a nasal cannula to detect nasal airflow for respiration monitoring during the swallowing process. All signals are received and processed for swallowing event recognition. A total of 19 volunteers participated in the testing and over 57 measurements were made. The results show that the proposed approach can effectively distinguish the swallowing function in people of different ages and genders.

  17. Urinary Cell-Free DNA Quantification as Non-Invasive Biomarker in Patients with Bladder Cancer.

    Science.gov (United States)

    Brisuda, Antonin; Pazourkova, Eva; Soukup, Viktor; Horinek, Ales; Hrbáček, Jan; Capoun, Otakar; Svobodova, Iveta; Pospisilova, Sarka; Korabecna, Marie; Mares, Jaroslav; Hanuš, Tomáš; Babjuk, Marek

    2016-01-01

    Concentration of urinary cell-free DNA (ucfDNA) belongs to potential bladder cancer markers, but the reported results are inconsistent due to the use of various non-standardised methodologies. The aim of the study was to standardise the methodology for ucfDNA quantification as a potential non-invasive tumour biomarker. In total, 66 patients and 34 controls were enrolled into the study. Volumes of each urine portion (V) were recorded and ucfDNA concentrations (c) were measured using real-time PCR. Total amounts (TA) of ucfDNA were calculated and compared between patients and controls. Diagnostic accuracy of the TA of ucfDNA was determined. The calculation of TA of ucfDNA in the second urine portion was the most appropriate approach to ucfDNA quantification, as there was logarithmic dependence between the volume and the concentration of a urine portion (p = 0.0001). Using this methodology, we were able to discriminate between bladder cancer patients and subjects without bladder tumours (p = 0.0002) with area under the ROC curve of 0.725. Positive and negative predictive value of the test was 90 and 45%, respectively. Quantification of ucf DNA according to our modified method could provide a potential non-invasive biomarker for diagnosis of patients with bladder cancer. © 2015 S. Karger AG, Basel.

  18. Trends in Nanomaterial-Based Non-Invasive Diabetes Sensing Technologies

    Directory of Open Access Journals (Sweden)

    Prashanth Makaram

    2014-04-01

    Full Text Available Blood glucose monitoring is considered the gold standard for diabetes diagnostics and self-monitoring. However, the underlying process is invasive and highly uncomfortable for patients. Furthermore, the process must be completed several times a day to successfully manage the disease, which greatly contributes to the massive need for non-invasive monitoring options. Human serums, such as saliva, sweat, breath, urine and tears, contain traces of glucose and are easily accessible. Therefore, they allow minimal to non-invasive glucose monitoring, making them attractive alternatives to blood measurements. Numerous developments regarding noninvasive glucose detection techniques have taken place over the years, but recently, they have gained recognition as viable alternatives, due to the advent of nanotechnology-based sensors. Such sensors are optimal for testing the amount of glucose in serums other than blood thanks to their enhanced sensitivity and selectivity ranges, in addition to their size and compatibility with electronic circuitry. These nanotechnology approaches are rapidly evolving, and new techniques are constantly emerging. Hence, this manuscript aims to review current and future nanomaterial-based technologies utilizing saliva, sweat, breath and tears as a diagnostic medium for diabetes monitoring.

  19. Simulation based investigation of source-detector configurations for non-invasive fetal pulse oximetry

    Directory of Open Access Journals (Sweden)

    Böttrich Marcel

    2015-09-01

    Full Text Available Transabdominal fetal pulse oximetry is a method to monitor the oxygen supply of the unborn child non-invasively. Due to the measurement setup, the received signal of the detector is composed of photons coding purely maternal and photons coding mixed fetal-maternal information. To analyze the wellbeing of the fetus, the fetal signal is extracted from the mixed component. In this paper we assess source-detector configurations, such that the mixed fetal-maternal components of the acquired signals are maximized. Monte-Carlo method is used to simulate light propagation and photon distribution in tissue. We use a plane layer and a spherical layer geometry to model the abdomen of a pregnant woman. From the simulations we extracted the fluence at the detector side for several source-detector distances and analyzed the ratio of the mixed fluence component to total fluence. Our simulations showed that the power of the mixed component depends on the source-detector distance as expected. Further we were able to visualize hot spot areas in the spherical layer model where the mixed fluence ratio reaches the highest level. The results are of high importance for sensor design considering signal composition and quality for non-invasive fetal pulse oximetry.

  20. Non-invasive spectroscopy of transfusable red blood cells stored inside sealed plastic blood-bags.

    Science.gov (United States)

    Buckley, K; Atkins, C G; Chen, D; Schulze, H G; Devine, D V; Blades, M W; Turner, R F B

    2016-03-07

    After being separated from (donated) whole blood, red blood cells are suspended in specially formulated additive solutions and stored (at 4 °C) in polyvinyl chloride (PVC) blood-bags until they are needed for transfusion. With time, the prepared red cell concentrate (RCC) is known to undergo biochemical changes that lower effectiveness of the transfusion, and thus regulations are in place that limit the storage period to 42 days. At present, RCC is not subjected to analytical testing prior to transfusion. In this study, we use Spatially Offset Raman Spectroscopy (SORS) to probe, non-invasively, the biochemistry of RCC inside sealed blood-bags. The retrieved spectra compare well with conventional Raman spectra (of sampled aliquots) and are dominated by features associated with hemoglobin. In addition to the analytical demonstration that SORS can be used to retrieve RCC spectra from standard clinical blood-bags without breaking the sterility of the system, the data reveal interesting detail about the oxygenation-state of the stored cells themselves, namely that some blood-bags unexpectedly contain measurable amounts of deoxygenated hemoglobin after weeks of storage. The demonstration that chemical information can be obtained non-invasively using spectroscopy will enable new studies of RCC degeneration, and points the way to a Raman-based instrument for quality-control in a blood-bank or hospital setting.

  1. Invasive exotic plants suffer less herbivory than non-invasive exotic plants

    OpenAIRE

    Cappuccino, Naomi; Carpenter, David

    2005-01-01

    We surveyed naturally occurring leaf herbivory in nine invasive and nine non-invasive exotic plant species sampled in natural areas in Ontario, New York and Massachusetts, and found that invasive plants experienced, on average, 96% less leaf damage than non-invasive species. Invasive plants were also more taxonomically isolated than non-invasive plants, belonging to families with 75% fewer native North American genera. However, the relationship between taxonomic isolation at the family level ...

  2. Electrochemical measurement of tritium and hydrogen permeation through iron membranes

    International Nuclear Information System (INIS)

    Hagi, Hideki; Hayashi, Yasunori

    1987-01-01

    Permeation rates of tritium and hydrogen through iron were measured by the electro-chemical method in which an aqueous solution containing 3.7 x 10 12 Bq/m 3 tritium was used as a cathodic electrolyte. Tritium and hydrogen were introduced from one side of a specimen by cathodic polarization with a constant current density, while at the other side of the specimen the permeated tritium and hydrogen were extracted by potentiostatical ionization. Nearly all of the potentiostatic current on the extraction side is produced by the ionization of hydrogen, because the concentration of tritium in the cathodic electrolyte is very small. The amount of permeated hydrogen was obtained by integrating the potentiostatic current, and that of permeated tritium was determined by measuring the radioactivity of the electrolyte sampled from the anodic side. The separation factor for permeation obtained under steady state conditions (the ratio of permeation rates of hydrogen to tritium divided by the ratio of the concentration of hydrogen to tritium in the cathodic electrolyte) is 12 at 288 K. This value is independent of cathodic current density. Diffusion coefficients of tritium (D T ) and hydrogen (D H ) in iron were determined from the tritium and hydrogen permeation by using time lag technique. For annealed iron at 286 K, D T = 9 x 10 -10 m 2 /s and D H = 4 x 10 -9 m 2 /s, and for 9 % cold-worked iron at 284 K, D T = 3 x 10 -10 m 2 /s and D H = 4 x 10 -10 m 2 /s. (author)

  3. Non-Invasive Spectral Phenotyping Methods can Improve and Accelerate Cercospora Disease Scoring in Sugar Beet Breeding

    Directory of Open Access Journals (Sweden)

    Marcus Jansen

    2014-05-01

    Full Text Available Breeding for Cercospora resistant sugar beet cultivars requires field experiments for testing resistance levels of candidate genotypes in conditions that are close to agricultural cultivation. Non-invasive spectral phenotyping methods can support and accelerate resistance rating and thereby speed up breeding process. In a case study, experimental field plots with strongly infected beet genotypes of different resistance levels were measured with two different spectrometers. Vegetation indices were calculated from measured wavelength signature to determine leaf physiological status, e.g., greenness with the Normalized Differenced Vegetation Index (NDVI, leaf water content with the Leaf Water Index (LWI and Cercospora disease severity with the Cercospora Leaf Spot Index (CLSI. Indices values correlated significantly with visually scored disease severity, thus connecting the classical breeders’ scoring approach with advanced non-invasive technology.

  4. Motor phenotype and magnetic resonance measures of basal ganglia iron levels in Parkinson's disease.

    Science.gov (United States)

    Bunzeck, Nico; Singh-Curry, Victoria; Eckart, Cindy; Weiskopf, Nikolaus; Perry, Richard J; Bain, Peter G; Düzel, Emrah; Husain, Masud

    2013-12-01

    In Parkinson's disease the degree of motor impairment can be classified with respect to tremor dominant and akinetic rigid features. While tremor dominance and akinetic rigidity might represent two ends of a continuum rather than discrete entities, it would be important to have non-invasive markers of any biological differences between them in vivo, to assess disease trajectories and response to treatment, as well as providing insights into the underlying mechanisms contributing to heterogeneity within the Parkinson's disease population. Here, we used magnetic resonance imaging to examine whether Parkinson's disease patients exhibit structural changes within the basal ganglia that might relate to motor phenotype. Specifically, we examined volumes of basal ganglia regions, as well as transverse relaxation rate (a putative marker of iron load) and magnetization transfer saturation (considered to index structural integrity) within these regions in 40 individuals. We found decreased volume and reduced magnetization transfer within the substantia nigra in Parkinson's disease patients compared to healthy controls. Importantly, there was a positive correlation between tremulous motor phenotype and transverse relaxation rate (reflecting iron load) within the putamen, caudate and thalamus. Our findings suggest that akinetic rigid and tremor dominant symptoms of Parkinson's disease might be differentiated on the basis of the transverse relaxation rate within specific basal ganglia structures. Moreover, they suggest that iron load within the basal ganglia makes an important contribution to motor phenotype, a key prognostic indicator of disease progression in Parkinson's disease. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Non-invasive tracking of hydrogel degradation using upconversion nanoparticles.

    Science.gov (United States)

    Dong, Yuqing; Jin, Guorui; Ji, Changchun; He, Rongyan; Lin, Min; Zhao, Xin; Li, Ang; Lu, Tian Jian; Xu, Feng

    2017-06-01

    Tracking the distribution and degradation of hydrogels in vivo is important for various applications including tissue engineering and drug delivery. Among various imaging modalities, fluorescence imaging has attracted intensive attention due to their high sensitivity, low cost and easy operation. Particularly, upconversion nanoparticles (UCNPs) that emit visible lights upon near-infrared (NIR) light excitation as tracking probes are promising in deciphering the fate of hydrogels after transplantation. Herein, we reported a facile and non-invasive in vivo hydrogel tracking method using UCNPs, where the degradation of hydrogels was determined using the decrease in fluorescence intensity from the UCNPs encapsulated in the hydrogels. We found that the change in the fluorescence intensity from the UCNPs was well consistent with that of the fluorescein isothiocyanate (FITC) covalently conjugated to hydrogels and also with the weight change of the hydrogels, suggesting the accuracy of the UCNPs in tracking the degradation of hydrogels. Furthermore, the in vivo fluorescence signals were only observed from the UCNPs instead of FITC after implantation for 7days due to the deep tissue penetration of UCNPs, demonstrating the capability of UCNPs in longitudinal, consecutive and non-invasive monitoring the in vivo degradation of hydrogels without causing any damage to the major organs (heart, lung, liver and kidney) of model rats. This study thus paves the way for monitoring the in vivo behaviors of biomimetic materials via deep tissue imaging with great clinical translation potentials. Long-term noninvasive in vivo tracking of the distribution and degradation of biodegradable hydrogels using fluorescent probes is important in tissue regeneration and drug delivery. Unlike the widely used fluorescent dyes and quantum dots (QDs) that suffer from photobleaching and undesired toxicity, upconversion nanoparticles (UCNPs) with high stability, deep tissue penetration as tracking probes

  6. Measuring iron in the brain using quantitative susceptibility mapping and X-ray fluorescence imaging.

    Science.gov (United States)

    Zheng, Weili; Nichol, Helen; Liu, Saifeng; Cheng, Yu-Chung N; Haacke, E Mark

    2013-09-01

    Measuring iron content in the brain has important implications for a number of neurodegenerative diseases. Quantitative susceptibility mapping (QSM), derived from magnetic resonance images, has been used to measure total iron content in vivo and in post mortem brain. In this paper, we show how magnetic susceptibility from QSM correlates with total iron content measured by X-ray fluorescence (XRF) imaging and by inductively coupled plasma mass spectrometry (ICPMS). The relationship between susceptibility and ferritin iron was estimated at 1.10±0.08 ppb susceptibility per μg iron/g wet tissue, similar to that of iron in fixed (frozen/thawed) cadaveric brain and previously published data from unfixed brains. We conclude that magnetic susceptibility can provide a direct and reliable quantitative measurement of iron content and that it can be used clinically at least in regions with high iron content. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Non-Invasive In Vivo Characterization of Breast Tumors Using Photon Migration Spectroscopy

    Directory of Open Access Journals (Sweden)

    Bruce J. Tromberg

    2000-01-01

    Full Text Available Frequency-domain photon migration (FDPM is a noninvasive optical technique that utilizes intensity-modulated, near-infrared (NIR light to quantitatively measure optical properties in thick tissues. Optical properties (absorption, μa, and scattering, μs′, parameters derived from FDPM measurements can be used to construct low-resolution (0.5 to 1 cm functional images of tissue hemoglobin (total, oxy-, and deoxyforms, oxygen saturation, blood volume fraction, water content, fat content and cellular structure. Unlike conventional NIR transillumination, FDPM enables quantitative analysis of tissue absorption and scattering parameters in a single non-invasive measurement. The unique functional information provided by FDPM makes it well-suited to characterizing tumors in thick tissues. In order to test the sensitivity of FDPM for cancer diagnosis, we have initiated clinical studies to quantitatively determine normal and malignant breast tissue optical and physiological properties in human subjects. Measurements are performed using a non-invasive, multi-wavelength, diode-laser FDPM device optimized for clinical studies. Results show that ductal carcinomas (invasive and in situ and benign fibroadenomas exhibit 1.25 to 3-fold higher absorption than normal breast tissue. Within this group, absorption is greatest for measurements obtained from sites of invasive cancer. Optical scattering is approximately 20% greater in pre-menopausal versus post-menopausal subjects due to differences in gland/cell proliferation and collagen/fat content. Spatial variations in tissue scattering reveal the loss of differentiation associated with breast disease progression. Overall, the metabolic demands of hormonal stimulation and tumor growth are detectable using photon migration techniques. Measurements provide quantitative optical property values that reflect changes in tissue perfusion, oxygen consumption, and cell/matrix development.

  8. Validity of Hydration Non-Invasive Indices during the Weightcutting and Official Weigh-In for Olympic Combat Sports

    OpenAIRE

    Fernández-Elías, Valentín E.; Martínez-Abellán, Alberto; López-Gullón, José María; Morán-Navarro, Ricardo; Pallarés, Jesús G.; De la Cruz-Sánchez, Ernesto; Mora-Rodriguez, Ricardo

    2014-01-01

    BACKGROUND: In Olympic combat sports, weight cutting is a common practice aimed to take advantage of competing in weight divisions below the athlete's normal weight. Fluid and food restriction in combination with dehydration (sauna and/or exercise induced profuse sweating) are common weight cut methods. However, the resultant hypohydration could adversely affect health and performance outcomes. PURPOSE: The aim of this study is to determine which of the routinely used non-invasive measures of...

  9. Non-invasive ventilation in the weaning process.

    Science.gov (United States)

    Ferrer, M

    2008-06-01

    Patients with chronic airflow obstruction and difficulty in weaning from mechanical ventilation are at increased risk for intubation-associated complications and mortality because of prolonged invasive mechanical ventilation. Non-invasive ventilation (NIV) may avert most of the pathophysiologic mechanisms associated with weaning failure in these patients. Several randomised controlled trials have shown that the use of NIV in order to advance extubation in difficult patients can result in reduced periods of endotracheal intubation, complication rates and survival. The published data with the outcome as a primary variable are nearly exclusively from patients who had pre-existing lung disease. In addition, the patients were hemodynamically stable, with a normal level of consciousness, no fever and a preserved cough reflex. The use of NIV in the management of respiratory failure after extubation did not show clinical benefits, although clinical trials included a small proportion of chronic respiratory patients. In contrast, NIV immediately after extubation is effective in avoiding respiratory failure after extubation in patients at risk for this complication, particularly those with chronic respiratory disorders and hypercapnic respiratory failure.

  10. Non-invasive prenatal screening for trisomy 21: Consumers' perspectives.

    Science.gov (United States)

    Higuchi, Emily C; Sheldon, Jane P; Zikmund-Fisher, Brian J; Yashar, Beverly M

    2016-02-01

    Non-invasive prenatal screening (NIPS) has the potential to dramatically increase the prenatal detection rate of Down syndrome because of improvements in safety and accuracy over existing tests. There is concern that NIPS could lead to more negative attitudes towards Down syndrome and less support for individuals with Down syndrome. To assess the impact of NIPS on support for prenatal testing, decision-making about testing, and beliefs or attitudes about Down syndrome, we performed an Internet-based experiment using adults (N = 1,789) recruited through Amazon Mechanical Turk. Participants were randomly assigned to read a mock news article about NIPS, a mock news article about amniocentesis, or no article. The content in the two articles varied only in their descriptions of the test characteristics. Participants then answered questions about their support for testing, hypothetical testing decision, and beliefs and attitudes about Down syndrome. Reading the mock NIPS news article predicted increased hypothetical test uptake. In addition, the NIPS article group also agreed more strongly that pregnant women, in general, should utilize prenatal testing. We also found that the more strongly participants supported prenatal testing for pregnant women, the less favorable their attitudes towards individuals with Down syndrome; providing some evidence that NIPS may indirectly result in more negative perceptions of individuals with this diagnosis. © 2015 Wiley Periodicals, Inc.

  11. Non-invasive anesthesia for children undergoing proton radiation therapy

    International Nuclear Information System (INIS)

    Owusu-Agyemang, Pascal; Grosshans, David; Arunkumar, Radha; Rebello, Elizabeth; Popovich, Shannon; Zavala, Acsa; Williams, Cynthia; Ruiz, Javier; Hernandez, Mike; Mahajan, Anita; Porche, Vivian

    2014-01-01

    Background: Proton therapy is a newer modality of radiotherapy during which anesthesiologists face specific challenges related to the setup and duration of treatment sessions. Purpose: Describe our anesthesia practice for children treated in a standalone proton therapy center, and report on complications encountered during anesthesia. Materials and methods: A retrospective review of anesthetic records for patients ⩽18 years of age treated with proton therapy at our institution between January 2006 and April 2013 was performed. Results: A total of 9328 anesthetics were administered to 340 children with a median age of 3.6 years (range, 0.4–14.2). The median daily anesthesia time was 47 min (range, 15–79). The average time between start of anesthesia to the start of radiotherapy was 7.2 min (range, 1–83 min). All patients received Total Intravenous Anesthesia (TIVA) with spontaneous ventilation, with 96.7% receiving supplemental oxygen by non-invasive methods. None required daily endotracheal intubation. Two episodes of bradycardia, and one episode each of; seizure, laryngospasm and bronchospasm were identified for a cumulative incidence of 0.05%. Conclusions: In this large series of children undergoing proton therapy at a freestanding center, TIVA without daily endotracheal intubation provided a safe, efficient, and less invasive option of anesthetic care

  12. Alteration of Political Belief by Non-invasive Brain Stimulation.

    Science.gov (United States)

    Chawke, Caroline; Kanai, Ryota

    2015-01-01

    People generally have imperfect introspective access to the mechanisms underlying their political beliefs, yet can confidently communicate the reasoning that goes into their decision making process. An innate desire for certainty and security in ones beliefs may play an important and somewhat automatic role in motivating the maintenance or rejection of partisan support. The aim of the current study was to clarify the role of the DLPFC in the alteration of political beliefs. Recent neuroimaging studies have focused on the association between the DLPFC (a region involved in the regulation of cognitive conflict and error feedback processing) and reduced affiliation with opposing political candidates. As such, this study used a method of non-invasive brain simulation (tRNS) to enhance activity of the bilateral DLPFC during the incorporation of political campaign information. These findings indicate a crucial role for this region in political belief formation. However, enhanced activation of DLPFC does not necessarily result in the specific rejection of political beliefs. In contrast to the hypothesis the results appear to indicate a significant increase in conservative values regardless of participant's initial political orientation and the political campaign advertisement they were exposed to.

  13. Epilepsy surgery in children and non-invasive evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Hashizume, Kiyotaka; Sawamura, Atsushi; Yoshida, Katsunari; Tsuda, Hiroshige; Tanaka, Tatsuya [Asahikawa Medical Coll., Hokkaido (Japan); Tanaka, Shigeya

    2001-04-01

    The technique of EEG recording using subdural and depth electrodes has became established, and such invasive EEG is available for epilepsy surgery. However, a non-invasive procedure is required for evaluation of surgical indication for epilepsy patients, particular for children. We analyzed the relationship between the results of presurgical evaluation and seizure outcome, and investigated the role of invasive EEG in epilepsy surgery for children. Over the past decade, 22 children under 16 years of age have been admitted to our hospital for evaluation of surgical indication. High-resolution MR imaging, MR spectroscopy, video-EEG monitoring, and ictal and interictal SPECT were used for presurgical evaluation. Organic lesions were found on MR images from 19 patients. Invasive EEG was recorded in only one patient with occipital epilepsy, who had no lesion. Surgical indication was determined in 17 children, and 6 temporal lobe and 11 extratemporal lobe resections were performed under intraoperative electrocorticogram monitoring. The surgical outcome was excellent in 14 patients who had Engel's class I or II. Surgical complications occurred in two children who had visual field defects. The results showed that a good surgical outcome could be obtained using an intraoperative electrocorticogram, without presurgical invasive EEG, for localization-related epilepsy in children. The role of invasive EEG should be reevaluated in such children. (author)

  14. Use of the ODD-luciferase transgene for the non-invasive imaging of spontaneous tumors in mice.

    Directory of Open Access Journals (Sweden)

    Scott J Goldman

    2011-03-01

    Full Text Available In humans, imaging of tumors provides rapid, accurate assessment of tumor growth and location. In laboratory animals, however, the imaging of spontaneously occurring tumors continues to pose many technical and logistical problems. Recently a mouse model was generated in which a chimeric protein consisting of HIF-1α oxygen-dependent degradation domain (ODD fused to luciferase was ubiquitously expressed in all tissues. Hypoxic stress leads to the accumulation of ODD-luciferase in the tissues of this mouse model which can be identified by non-invasive bioluminescence measurement. Since solid tumors often contain hypoxic regions, we performed proof-of-principle experiments testing whether this transgenic mouse model may be used as a universal platform for non-invasive imaging analysis of spontaneous solid tumors.ODD-luciferase transgenic mice were bred with MMTV-neu/beclin1+/- mice. Upon injection of luciferin, bioluminescent background of normal tissues in the transgenic mice and bioluminescent signals from spontaneously mammary carcinomas were measured non-invasively with an IVIS Spectrum imaging station. Tumor volumes were measured manually and the histology of tumor tissues was analyzed.Our results show that spontaneous mammary tumors in ODD-luciferase transgenic mice generate substantial bioluminescent signals, which are clearly discernable from background tissue luminescence. Moreover, we demonstrate a strong quantitative correlation between the bioluminescent tumor contour and the volume of palpable tumors. We further demonstrate that shrinkage of the volume of spontaneous tumors in response to chemotherapeutic treatment can be determined quantitatively using this system. Finally, we show that the growth and development of spontaneous tumors can be monitored longitudinally over several weeks. Thus, our results suggest that this model could potentially provide a practical, reliable, and cost-effective non-invasive quantitative method for

  15. Non-invasive Self-Care Anemia Detection during Pregnancy Using a Smartphone Camera

    Science.gov (United States)

    Anggraeni, M. D.; Fatoni, A.

    2017-02-01

    Indonesian maternal mortality rate is the highest in South East Asia. Postpartum hemorrhage is the major causes of maternal mortality in Indonesia. Anemia during pregnancy contributes significantly to postpartum hemorrhage. Early detection of anemia during pregnancy may save mothers from maternal death. This research aim to develop a non-invasive self-care anemia detection based on the palpebral color observation and using a smartphone camera. The color intensity (Red, Green, and Blue) was then measured using a Colorgrab software (Loomatix) and analyzed compared to the hemoglobin concentration of the samples, measured using standard Spectrophotometer method. The result showed that the red color intensity had a high correlation (R2=0.814) with a linear regression of y=14.486x + 50.228. This preliminary study may be used as anemia early detection which more objective compared to visual assessment usually performed.

  16. Non-invasive blood glucose monitoring with Raman spectroscopy: prospects for device miniaturization

    International Nuclear Information System (INIS)

    Wróbel, M.S.

    2016-01-01

    The number of patients with diabetes has reached over 350 million, and still continues to increase. The need for regular blood glucose monitoring sparks the interest in the development of modern detection technologies. One of those methods, which allows for noninvasive measurements, is Raman spectroscopy. The ability of infrared light to penetrate deep into tissues allows for obtaining measurements through the skin without its perforation. This paper presents the limitations and possibilities of non-invasive blood glucose monitoring with Raman spectroscopy. Especially focusing on the possibilities for device miniaturization. Such device incorporates a Raman spectrometer, a fiber-optical probe, and a computing device (microcontroller, smartphone, etc.) which calculates the glucose concentration using specialized algorithms. Simplification of device design, as well as turbidity correction technique and a new proposed method of synchronized detection are described

  17. Non Invasive Sensors for Monitoring the Efficiency of AC Electrical Rotating Machines

    Directory of Open Access Journals (Sweden)

    Thierry Jacq

    2010-08-01

    Full Text Available This paper presents a non invasive method for estimating the energy efficiency of induction motors used in industrial applications. This method is innovative because it is only based on the measurement of the external field emitted by the motor. The paper describes the sensors used, how they should be placed around the machine in order to decouple the external field components generated by both the air gap flux and the winding end-windings. The study emphasizes the influence of the eddy currents flowing in the yoke frame on the sensor position. A method to estimate the torque from the external field use is proposed. The measurements are transmitted by a wireless module (Zig-Bee and they are centralized and stored on a PC computer.

  18. Investigation of opportunities of the optical non-invasive diagnostics method for the blood sugar control

    Science.gov (United States)

    Lastovskaia, Elena A.; Gorbunova, Elena V.; Chertov, Aleksandr N.; Korotaev, Valery V.

    2015-03-01

    The relevance of noninvasive method for determining the blood sugar is caused by necessity of regular monitoring of glucose levels in diabetic patients blood. Traditional invasive method is painful, because it requires a finger pricking. Despite the active studies in the field of non-invasive medical diagnostics, to date the painless and inexpensive instrument for blood sugar control for personal use doesn't exist. It's possible to measure the concentration of glucose in the blood with help of spectrophotometry method. It consists of registering and analyzing the spectral characteristics of the radiation which missed, reflected or absorbed by the object. The authors proposed a measuring scheme for studying the spectral characteristics of the radiation, missed by earlobe. Ultra-violet, visible and near infrared spectral ranges are considered. The paper presents the description of construction and working principles of the proposed special retaining clip and results of experiment with real patient.

  19. Application of heat-resistant non invasive acoustic transducers for coolant control in the NPP pipelines

    International Nuclear Information System (INIS)

    Melnikov, V.; Nigmatulin, B.

    1997-01-01

    The use of ultrasonic waves enables remote testing of the coolant flow, detection of solid and gaseous occlusions and measuring of the water velocity and level. Analysis of the acoustic noise makes it possible to detect coolant leaks and diagnose the state and operation of the rotating mechanisms and bearings. Results are given of the research in the development of highly reliable waveguide-type non-invasive acoustic transducers with a long service life. Examples are given of the use of transducers in various fields of nuclear technology: detection of gas in coolant, indication of the coolant level, control of pipe filling and drainage, measurement of liquid film velocity at the pipe inner surface. (M.D.)

  20. A field test study of our non-invasive thermal image analyzer for deceptive detection

    Science.gov (United States)

    Sumriddetchkajorn, Sarun; Somboonkaew, Armote; Sodsong, Tawee; Promduang, Itthipol; Sumriddetchkajorn, Niti

    2007-07-01

    We have developed a non-invasive thermal image analyzer for deceptive detection (TAD2) where the far-infrared data around the periorbital and nostril areas are simultaneously analyzed. Measured change in maximum skin temperature around two periorbital regions is converted to a relative blood flow velocity. A respiration pattern is also simultaneously determined via the ratio of the measured maximum and minimum temperatures in the nostril area. In addition, our TAD2 employs a simple normalized cross correlation scheme to independently track locations of the two periorbital and nostril areas. Our field case study from 7 subjects in two real crime scenes and with the use of our baseline classification criteria shows two-fold improvement in classification rate compared to our analysis using either the periorbital or nostril area alone.

  1. Real-time detection of nocturnal hypoglycemic episodes using a novel non-invasive hypoglycemia monitor.

    Science.gov (United States)

    Nguyen, Hung T; Ghevondian, Nejhdeh; Jones, Timothy W

    2009-01-01

    Hypoglycemia or low blood glucose is a common and serious side effect of insulin therapy in patients with diabetes. Hypoglycemia is unpleasant and can result in unconsciousness, seizures and even death. HypoMon is a realtime non-invasive monitor that measures relevant physiological parameters continuously to provide detection of hypoglycemic episodes in Type 1 diabetes mellitus patients (T1DM). Based on heart rate and corrected QT interval of the ECG signal, we have continued to develop effective algorithms for early detection of nocturnal hypoglycemia. From a clinical study of 24 children with T1DM, associated with natural occurrence of hypoglycemic episodes at night, their heart rates increased (1.021+/-0.264 vs. 1.068+/-0.314, PBayesian neural network which was derived from the training set with the highest log evidence, the estimated blood glucose profiles produced a significant correlation (P<0.02) against measured values in the test set.

  2. Bioavailable iron in typical Thai meals: Comparative studies between radioactive in vitro and in vivo food iron absorption measurements

    International Nuclear Information System (INIS)

    Sritongkul, N.

    1989-03-01

    Presently available in vivo methods for assessing iron absorption in human subjects, although physiologically acceptable and accurate, are not practical for screening large numbers of food and diet samples. A simple in vitro method for determining the amount of iron available for absorption was therefore investigated. It is based on the common pool concept of food iron absorption using radioactive Fe-59 as a marker of the iron present in the bioavailable iron pool. The ionizable iron was measured after an initial peptic digestion by using pepsin/HCl at pH 1.35 followed by an increase of the pH to 6.0 to simulate duodenal alkalinity. The method was proved to be simple, reproducible and applicable either to single food items or whole meals of varying composition. It is able to detect known enhancers or inhibitors of food iron absorption. The percent ionizable iron among 5 different meals with the inclusion of inhibitor or enhancer was shown to correlate closely with the percentage of iron absorbed in human subjects (r=0.9197, p<0.001). A high correlation between the in vivo and in vitro methods was also observed when the results were expressed as absorption ratios and ionizable ratios (r=0.9192, p<0.001). The method is expected to be useful for improving diet composition to increase the iron availability of some typical meals in developing countries, including those which are known to contain considerable amounts of inhibitors of iron absorption. 39 refs, 1 fig., 13 tabs

  3. Imaging modalities for the non-invasive diagnosis of endometriosis.

    Science.gov (United States)

    Nisenblat, Vicki; Bossuyt, Patrick M M; Farquhar, Cindy; Johnson, Neil; Hull, M Louise

    2016-02-26

    About 10% of women of reproductive age suffer from endometriosis. Endometriosis is a costly chronic disease that causes pelvic pain and subfertility. Laparoscopy, the gold standard diagnostic test for endometriosis, is expensive and carries surgical risks. Currently, no non-invasive tests that can be used to accurately diagnose endometriosis are available in clinical practice. This is the first review of diagnostic test accuracy of imaging tests for endometriosis that uses Cochrane methods to provide an update on the rapidly expanding literature in this field. • To provide estimates of the diagnostic accuracy of imaging modalities for the diagnosis of pelvic endometriosis, ovarian endometriosis and deeply infiltrating endometriosis (DIE) versus surgical diagnosis as a reference standard.• To describe performance of imaging tests for mapping of deep endometriotic lesions in the pelvis at specific anatomical sites.Imaging tests were evaluated as replacement tests for diagnostic surgery and as triage tests that would assist decision making regarding diagnostic surgery for endometriosis. We searched the following databases to 20 April 2015: MEDLINE, CENTRAL, EMBASE, CINAHL, PsycINFO, Web of Science, LILACS, OAIster, TRIP, ClinicalTrials.gov, MEDION, DARE, and PubMed. Searches were not restricted to a particular study design or language nor to specific publication dates. The search strategy incorporated words in the title, abstracts, text words across the record and medical subject headings (MeSH). We considered published peer-reviewed cross-sectional studies and randomised controlled trials of any size that included prospectively recruited women of reproductive age suspected of having one or more of the following target conditions: endometrioma, pelvic endometriosis, DIE or endometriotic lesions at specific intrapelvic anatomical locations. We included studies that compared the diagnostic test accuracy of one or more imaging modalities versus findings of surgical

  4. Non-invasive assessment of hepatic fat accumulation in chronic hepatitis C by 1H magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Krssak, Martin; Hofer, Harald; Wrba, Fritz; Meyerspeer, Martin; Brehm, Attila; Lohninger, Alfred; Steindl-Munda, Petra; Moser, Ewald; Ferenci, Peter; Roden, Michael

    2010-01-01

    Background: Liver biopsy is the standard method for diagnosis of hepatic steatosis, but is invasive and carries some risk of morbidity. Aims and methods: Quantification of hepatocellular lipid content (HCL) with non-invasive single voxel 1 H magnetic resonance spectroscopy (MRS) at 3 T was compared with histological grading and biochemical analysis of liver biopsies in 29 patients with chronic hepatitis C. Body mass index, indices of insulin resistance (homeostasis model assessment index, HOMA-IR), serum lipids and serum liver transaminases were also quantified. Results: HCL as assessed by 1 H MRS linearly correlated (r = 0.70, p 1 H MRS (r = 0.63, p 1 H MRS is a valid and useful method for quantification of HCL content in patients with chronic hepatitis C and can be easily applied to non-invasively monitoring of steatosis during repeated follow-up measurements in a clinical setting.

  5. Advanced signal processing theory and implementation for sonar, radar, and non-invasive medical diagnostic systems

    CERN Document Server

    Stergiopoulos, Stergios

    2009-01-01

    Integrates topics of signal processing from sonar, radar, and medical system technologies by identifying their concept similarities. This book covers non-invasive medical diagnostic system applications, including intracranial ultrasound, a technology that attempts to address non-invasive detection on brain injuries and stroke.

  6. Markers for the non-invasive diagnosis of mesothelioma: a systematic review

    NARCIS (Netherlands)

    van der Bij, S.; Schaake, E.; Koffijberg, H.; Burgers, J. A.; de Mol, B. A. J. M.; Moons, K. G. M.

    2011-01-01

    BACKGROUND: Numerous markers have been evaluated to facilitate the non-invasive diagnostic work-up of mesothelioma. The purpose of this study was to conduct a structured review of the diagnostic performance of non-invasive marker tests for the detection of mesothelioma in patients with suspected

  7. Markers for the non-invasive diagnosis of mesothelioma : A systematic review

    NARCIS (Netherlands)

    van der Bij, S.; Schaake, E.; Koffijberg, H.; Burgers, J. A.; De Mol, B. A J M; Moons, K.G.M.

    2011-01-01

    Background: Numerous markers have been evaluated to facilitate the non-invasive diagnostic work-up of mesothelioma. The purpose of this study was to conduct a structured review of the diagnostic performance of non-invasive marker tests for the detection of mesothelioma in patients with suspected

  8. Processing of fetal heart rate through non-invasive adaptive system based on recursive least squares algorithm

    Science.gov (United States)

    Fajkus, Marcel; Nedoma, Jan; Martinek, Radek; Vasinek, Vladimir

    2017-10-01

    In this article, we describe an innovative non-invasive method of Fetal Phonocardiography (fPCG) using fiber-optic sensors and adaptive algorithm for the measurement of fetal heart rate (fHR). Conventional PCG is based on a noninvasive scanning of acoustic signals by means of a microphone placed on the thorax. As for fPCG, the microphone is placed on the maternal abdomen. Our solution is based on patent pending non-invasive scanning of acoustic signals by means of a fiber-optic interferometer. Fiber-optic sensors are resistant to technical artifacts such as electromagnetic interferences (EMI), thus they can be used in situations where it is impossible to use conventional EFM methods, e.g. during Magnetic Resonance Imaging (MRI) examination or in case of delivery in water. The adaptive evaluation system is based on Recursive least squares (RLS) algorithm. Based on real measurements provided on five volunteers with their written consent, we created a simplified dynamic signal model of a distribution of heartbeat sounds (HS) through the human body. Our created model allows us to verification of the proposed adaptive system RLS algorithm. The functionality of the proposed non-invasive adaptive system was verified by objective parameters such as Sensitivity (S+) and Signal to Noise Ratio (SNR).

  9. Non-invasive monitoring of in vivo hydrogel degradation and cartilage regeneration by multiparametric MR imaging

    Science.gov (United States)

    Chen, Zelong; Yan, Chenggong; Yan, Shina; Liu, Qin; Hou, Meirong; Xu, Yikai; Guo, Rui

    2018-01-01

    Numerous biodegradable hydrogels for cartilage regeneration have been widely used in the field of tissue engineering. However, to non-invasively monitor hydrogel degradation and efficiently evaluate cartilage restoration in situ is still challenging. Methods: A ultrasmall superparamagnetic iron oxide (USPIO)-labeled cellulose nanocrystal (CNC)/silk fibroin (SF)-blended hydrogel system was developed to monitor hydrogel degradation during cartilage regeneration. The physicochemical characterization and biocompatibility of the hydrogel were evaluated in vitro. The in vivo hydrogel degradation and cartilage regeneration of different implants were assessed using multiparametric magnetic resonance imaging (MRI) and further confirmed by histological analysis in a rabbit cartilage defect model for 3 months. Results: USPIO-labeled hydrogels showed sufficient MR contrast enhancement and retained stability without loss of the relaxation rate. Neither the mechanical properties of the hydrogels nor the proliferation of bone-marrow mesenchymal stem cells (BMSCs) were affected by USPIO labeling in vitro. CNC/SF hydrogels with BMSCs degraded more quickly than the acellular hydrogels as reflected by the MR relaxation rate trends in vivo. The morphology of neocartilage was noninvasively visualized by the three-dimensional water-selective cartilage MRI scan sequence, and the cartilage repair was further demonstrated by macroscopic and histological observations. Conclusion: This USPIO-labeled CNC/SF hydrogel system provides a new perspective on image-guided tissue engineering for cartilage regeneration. PMID:29464005

  10. Non-invasive determination of absolute lung resistivity in adults using electrical impedance tomography

    International Nuclear Information System (INIS)

    Zhang, Jie; Patterson, Robert

    2010-01-01

    Lung resistivity is a physiological parameter that describes the electrical characteristics of the lungs. Lung composition changes due to changes in the lung tissues, fluid and air volume. Various diseases that can cause a change in lung composition may be monitored by measuring lung resistivity. Currently, there is no accepted non-invasive method to measure lung resistivity. In this study, we presented a method and framework to non-invasively determine lung resistivity using electrical impedance tomography (EIT). By comparing actual measurements from subjects with data from a 3D human thorax model, an EIT image can be reconstructed to show a resistivity difference between the model and the subject. By adjusting the lung resistivity in the model, the resistivity difference in the lung regions can be reduced to near zero. This resistivity value then is the estimation of the lung resistivity of the subject. Using the proposed method, the lung resistivities of four normal adult males (43 ± 13 years, 78 ± 10 kg) in the supine position at air volumes starting at functional residual capacity (FRC—end expiration) and increasing in 0.5 l steps to 1.5 l were studied. The averaged lung resistivity changes 12.59%, from 1406 Ω cm to 1583 Ω cm, following the inspiration of 1.5 l air from FRC. The coefficients of variation (CV) of precision for the four subjects are less than 10%. The experiment was repeated five times at each air volume on a subject to test the reproducibility. The CVs are less than 3%. The results show that it is feasible to determine absolute lung resistivity using an EIT-based method

  11. A non-invasive method of quantifying pancreatic volume in mice using micro-MRI.

    Directory of Open Access Journals (Sweden)

    Jose L Paredes

    Full Text Available In experimental models of pancreatic growth and recovery, changes in pancreatic size are assessed by euthanizing a large cohort of animals at varying time points and measuring organ mass. However, to ascertain this information in clinical practice, patients with pancreatic disorders routinely undergo non-invasive cross-sectional imaging of the pancreas using magnetic resonance imaging (MRI or computed tomography (CT. The aim of the current study was to develop a thin-sliced, optimized sequence protocol using a high field MRI to accurately calculate pancreatic volumes in the most common experimental animal, the mouse. Using a 7 Telsa Bruker micro-MRI system, we performed abdominal imaging in whole-fixed mice in three standard planes: axial, sagittal, and coronal. The contour of the pancreas was traced using Vitrea software and then transformed into a 3-dimensional (3D reconstruction, from which volumetric measurements were calculated. Images were optimized using heart perfusion-fixation, T1 sequence analysis, and 0.2 to 0.4 mm thick slices. As proof of principle, increases in pancreatic volume among mice of different ages correlated tightly with increasing body weight. In summary, this is the first study to measure pancreatic volumes in mice, using a high field 7 Tesla micro-MRI and a thin-sliced, optimized sequence protocol. We anticipate that micro-MRI will improve the ability to non-invasively quantify changes in pancreatic size and will dramatically reduce the number of animals required to serially assess pancreatic growth and recovery.

  12. A nonadhesive solid-gel electrode for a non-invasive brain–machine interface

    Directory of Open Access Journals (Sweden)

    Shigeru eToyama

    2012-07-01

    Full Text Available A non-invasive brain–machine interface (BMI or brain-computer interface (BCI is a technology for helping individuals with disabilities and utilizes neurophysiological signals from the brain to control external machines or computers without requiring surgery. However, when applying EEG methodology, users must place EEG electrodes on the scalp each time, and the development of easy-to-use electrodes for clinical use is required. In this study, we developed a conductive nonadhesive solid-gel electrode for practical non-invasive BMIs. We performed basic material testing, including examining the volume resistivity, viscoelasticity, and moisture-retention properties of the solid gel. Then, we compared the performance of the solid gel, a conventional paste, and an in-house metal pin-based electrode using impedance measurements and P300-BMI testing. The solid gel was observed to be conductive (volume resistivity 13.2 Ωcm and soft (complex modulus 105.4 kPa, and it remained wet for a prolonged period (>10 hours in a dry environment. Impedance measurements revealed that the impedance of the solid-gel-based and conventional paste-based electrodes was superior to that of the pin-based electrode. The EEG measurement suggested that the signals obtained with the solid-gel electrode were comparable to those with the conventional paste-based electrode. Moreover, the P300-BMI study suggested that systems using the solid-gel or pin-based electrodes were effective. One of the advantages of the solid gel is that it does not require cleaning after use, whereas the conventional paste adheres to the hair, which requires washing. Furthermore, the solid-gel electrode was not painful compared with a metal-pin electrode. Taken together, the results suggest that the solid-gel electrode worked well for practical BMIs and could be useful for bedridden patients such as those with amyotrophic lateral sclerosis.

  13. Non-invasive estimation of bound and mobile platinum compounds in the kidneys

    International Nuclear Information System (INIS)

    Brechner, R.; Wolf, W.; Dahalan, R.; D'Argenio, D.Z.; Butler, T.A.; Knapp, F.F.

    1985-01-01

    Nephrotoxicity remains the key limitation in the use of cisplatin. Although several strategies are in use to limit this serious side effect, none is fully satisfactory. Classical pharmacokinetic studies of cisplatin have been based on blood and urine samples. As nephrotoxicity plays a significant role in the design of the therapeutic strategy, the kidneys should be considered as a separate state in any model formulated for ultimate control purposes. Previous studies of organ pharmacokinetics have relied on population measurements. The authors have developed an organ compartmental model from individual animal data obtained non-invasively. The eight-compartment model used to represent the distribution of cisplatin considers free and bound platinum in plasma, platinum in the erythrocytes, mobile and bound platinum in the kidneys, mobile and bound platinum in the tissues and platinum in the urine. Data were collected from experiments with female rats under anaesthesia after intravenous administration of 195 Ptsup(m)-cisplatin, from both arterial and bladder samples, and from multiple frames obtained with an Anger camera interfaced to a microcomputer. The model was estimated from individual data obtained after injection of a bolus of cisplatin (six animals). In general, the estimated model captured the kinetics of the data. The developed model was validated by using it to predict data obtained from forcing the system with a different input function, an intravenous infusion of half an hour's duration (three animals). The results of this work show that it is possible to study non-invasively the kinetics in organs not readily accessible to direct measurements in an individual, rather than relying on invasive measurements performed on a population. This study was documented by analysing the distribution of cisplatin as an eight-compartment model that included the kidneys as two separate states (mobile and bound). (author)

  14. Current status of non-invasive prenatal testing in Japan.

    Science.gov (United States)

    Samura, Osamu; Sekizawa, Akihiko; Suzumori, Nobuhiro; Sasaki, Aiko; Wada, Seiji; Hamanoue, Haruka; Hirahara, Fumiki; Sawai, Hideaki; Nakamura, Hiroaki; Yamada, Takahiro; Miura, Kiyonori; Masuzaki, Hideaki; Nakayama, Setsuko; Okai, Takashi; Kamei, Yoshimasa; Namba, Akira; Murotsuki, Jun; Tanemoto, Tomohiro; Fukushima, Akimune; Haino, Kazufumi; Tairaku, Shinya; Matsubara, Keiichi; Maeda, Kazuhisa; Kaji, Takashi; Ogawa, Masanobu; Osada, Hisao; Nishizawa, Haruki; Okamoto, Yoko; Kanagawa, Takeshi; Kakigano, Aiko; Kitagawa, Michihiro; Ogawa, Masaki; Izumi, Shunichiro; Katagiri, Yukiko; Takeshita, Naoki; Kasai, Yasuyo; Naruse, Katsuhiko; Neki, Reiko; Masuyama, Hisashi; Hyodo, Maki; Kawano, Yukie; Ohba, Takashi; Ichizuka, Kiyotake; Kido, Yasuhiro; Fukao, Toshiyuki; Miharu, Norio; Nagamatsu, Takeshi; Watanabe, Atsushi; Hamajima, Naoki; Hirose, Masaya; Sanui, Ayako; Shirato, Nahoko; Yotsumoto, Junko; Nishiyama, Miyuki; Hirose, Tatsuko; Sago, Haruhiko

    2017-08-01

    The purpose of this study was to report the 3-year experience of a nationwide demonstration project to introduce non-invasive prenatal testing (NIPT) of maternal plasma for aneuploidy, and review the current status of NIPT in Japan. Tests were conducted to detect aneuploidy in high-risk pregnant women, and adequate genetic counseling was provided. The clinical data, test results, and pregnancy outcomes were recorded. We discuss the problems of NIPT on the basis of published reports and meta-analyses. From April 2013 to March 2016, 30 613 tests were conducted at 55 medical sites participating in a multicenter clinical study. Among the 30 613 women tested, 554 were positive (1.81%) and 30 021 were negative (98.1%) for aneuploidy. Of the 289, 128, and 44 women who tested positive for trisomies 21, 18, and 13, respectively, and underwent definitive testing, 279 (96.5%), 106 (82.8%), and 28 (63.6%) were determined to have a true-positive result. For the 13 481 women with negative result and whose progress could be traced, two had a false-negative result (0.02%). The tests were performed on the condition that a standard level of genetic counseling be provided at hospitals. Here, we report on the 3-year nationwide experience with NIPT in Japan. It is important to establish a genetic counseling system to enable women to make informed decisions regarding prenatal testing. Moreover, a welfare system is warranted to support women who decide to give birth to and raise children with chromosomal diseases. © 2017 Japan Society of Obstetrics and Gynecology.

  15. Non-invasive mechanic ventilation in treating acute respiratory failure

    Directory of Open Access Journals (Sweden)

    Federico Lari

    2009-12-01

    Full Text Available Non invasive ventilation (NIV in acute respiratory failure (ARF improve clinical parameters, arterial blood gases, decrease mortality and endo tracheal intubation (ETI rate also outside the intensive care units (ICUs. Objective of this study is to verify applicability of NIV in a general non respiratory medical ward. We enrolled 68 consecutive patients (Pts with Hypoxemic or Hyper capnic ARF: acute cardiogenic pulmonary edema (ACPE, exacerbation of chronic obstructive pulmonary disease (COPD, Pneu - monia, acute lung injury / acute respiratory distress syndrome (ALI/ARDS. NIV treatment was CPAP or PSV + PEEP. 12 Pts (18,5% met primary endpoint (NIV failure: 11 Pts (17% needed ETI (5ALI/ARDS p < 0,0001, 6COPD 16,6%, 1 Patient (1,5% died (Pneumonia. No Pts with ACPE failed (p = 0,0027. Secondary endpoints: significant improvement in Respiratory Rate (RR, Kelly Score, pH, PaCO2, PaO2 vs baseline. Median duration of treatment: 16:06 hours: COPD 18:54, ACPE 4:15. Mean length of hospitalisation: 8.66 days. No patients discontinued NIV, no side effects. Results are consistent with literature. Hypoxemic ARF related to ALI/ARDS and pneumonia show worst outcome: it is not advisable to manage these conditions with NIV outside the ICU. NIV for ARF due to COPD and ACPE is feasible, safe and effective in a general medical ward if selection of Pts, staff’s training and monitoring are appropriate. This should encourage the diffusion of NIV in this specific setting. According to strong evidences in literature, NIV should be considered a first line and standard treatment in these clinical conditions irrespective of the setting.

  16. Rejuvenecimiento periorbitario no invasivo Non-invasive periorbital rejuvenation

    Directory of Open Access Journals (Sweden)

    J. L. Muñóz del Olmo

    2008-03-01

    Full Text Available Cirujanos plásticos y médicos estéticos se esfuerzan por lograr resultados satisfactorios y estéticos que mejoren o suavicen el paso del tiempo a nivel facial, con un especial interés o énfasis en el área periorbitaria. Un gran número de pacientes consultan para mejorar esta zona, pero por diferentes motivos desean que los procedimientos que se les realicen sean poco invasivos y con resultados rápidos, permitiéndoles así incorporarse lo antes posible a sus actividades cotidianas. Es fundamental el conocimiento de las proporciones faciales y periorbitarias para lograr resultados naturales. El objetivo de la técnica que proponemos es lograr una bioestimulación local de la piel, restaurar los volúmenes y reducir las arrugas de expresión o dinámicas, consiguiendo así una apariencia relajada y juvenil en el paciente.Plastic surgeons and aesthetic doctors are making an effort to reach positive aesthetic results. Their aim is to soften the effects of age on facial features stressing in the periorbital area. Many patients come to improve their facial image on this area, but they are asking for non-invasive and fast procedures to keep on their daily life. It is indispensable the knowledge of facial and periorbital proportions to achieve a more natural effect. The aim of the technique exposed is to achieve a local bioestimulation on skin, to restore volumes and to reduce expression and dynamical wrinkles. The expected result is a relaxing, youthful appearance.

  17. Non-invasive Estimation of Pressure Gradients in Pulsatile Flow using Ultrasound

    DEFF Research Database (Denmark)

    Olesen, Jacob Bjerring; Villagómez Hoyos, Carlos Armando; Traberg, Marie Sand

    2014-01-01

    of pressure gradients are calculated using the Navier-Stokes equations. Flow data are acquired to a depth of 3 cm using directional synthetic aperture flow imaging on a linear array transducer producing 1500 image frames of velocity estimates per second. Scans of a carotid bifurcation phantom with a 70......% constriction are performed using an experimental scanner. The performance of the presented estimator is evaluated by comparing its results to a numerical simulation model, which geometry is reconstructed from MRI data. The study showed pressure gradients varying from 0 kPa/m to 4.5 kPa/m with a maximum bias...... and standard deviation of 10% and 13%, respectively, relative to peak estimated gradient. The paper concludes that maps of pressure gradients can be measured non-invasively using ultrasound with a precision of more than 85%...

  18. Non-invasive characterisation of SIX Japanese hand-guards (tsuba)

    Science.gov (United States)

    Barzagli, Elisa; Grazzi, Francesco; Civita, Francesco; Scherillo, Antonella; Pietropaolo, Antonino; Festa, Giulia; Zoppi, Marco

    2013-12-01

    In this work we present a systematic study of Japanese sword hand-guards ( tsuba) carried out by means of non-invasive techniques using neutrons. Several tsuba from different periods, belonging to the Japanese Section of the Stibbert Museum, were analysed using an innovative approach to characterise the bulk of the samples, coupling two neutron techniques, namely Time of Flight Neutron Diffraction (ToF-ND) and Nuclear Resonance Capture Analysis (NRCA). The measurements were carried out on the same instrument: the INES beam-line at the ISIS spallation pulsed neutron source (UK). NRCA analysis allows identifying the elements present in the sample gauge volume, while neutron diffraction is exploited to quantify the phase distribution and other micro-structural parameters of the metal specimen. The results show that all samples are made of high-quality metal, either steel or copper alloy, with noticeable changes in composition and working techniques, depending on the place and time of manufacturing.

  19. Analysis of non-invasive FBG sensor for monitoring patient vital signs during MRI

    Science.gov (United States)

    Nedoma, Jan; Fajkus, Marcel; Martinek, Radek; Vasinek, Vladimir

    2017-10-01

    This article focuses on the analysis and verification of a non-invasive fiber Bragg grating (FBG) sensor used for the monitoring of a patient`s heart rate (HR) and respiratory rate (RR) in a magnetic resonance environment (MRI). Measuring heart and respiratory rate were carried out on a group of five volunteers with their written consent during MRI examinations. The type of the scanner used in the experiment was GE Signa HDxt 1.5T. The benefit of this article lies in the design of a sensor in the form of a sensor pad. The sensor is placed beneath a patient`s body lying supine. The purpose is to increase and improve the patient`s safety as well as to help doctors to predict panic and hyperventilation attacks of patients during MRI examinations. Provided Bland-Altman statistical analysis demonstrates the heart and respiratory rate detection with a satisfactory accuracy for all five volunteers.

  20. Feasibility of optical diffraction radiation for a non-invasive low-emittance beam diagnostics

    CERN Document Server

    Urakawa, J; Kubo, K; Kuroda, S; Terunuma, N; Kuriki, M; Okugi, T; Naito, T; Araki, S; Potylitsin, A P; Naumenko, G A; Karataev, P; Potylitsyna, N A; Vnukov, I; Hirose, T; Hamatsu, R; Muto, T; Ikezawa, M; Shibata, Y

    2001-01-01

    A 'proof-of-principle' experiment on the optical diffraction radiation (ODR) as a single-pulse beam profile monitor is planned using an electron beam extracted from the KEK-ATF damping ring. The main goals of this experiment are the following: (i) To measure the yield and the angular distributions of the optical diffraction radiation from a large-size target at different wavelengths, impact parameters and beam characteristics for a comparison with analogous characteristics of optical transition radiation from a foil with identical optical parameters and for a verification of the model assumption (perfectly conducting semi-infinite target). (ii) To investigate the ODR angular distributions from a tilted target with a slit for observing the interference effects. (iii) To compare the results obtained by simulations based on classical approaches, taking into account the optical characteristics of the equipment and the beam parameters. (iv) To estimate the prospects of using ODR as a new non-invasive tool for ultr...

  1. Continuous non-invasive blood glucose monitoring by spectral image differencing method

    Science.gov (United States)

    Huang, Hao; Liao, Ningfang; Cheng, Haobo; Liang, Jing

    2018-01-01

    Currently, the use of implantable enzyme electrode sensor is the main method for continuous blood glucose monitoring. But the effect of electrochemical reactions and the significant drift caused by bioelectricity in body will reduce the accuracy of the glucose measurements. So the enzyme-based glucose sensors need to be calibrated several times each day by the finger-prick blood corrections. This increases the patient's pain. In this paper, we proposed a method for continuous Non-invasive blood glucose monitoring by spectral image differencing method in the near infrared band. The method uses a high-precision CCD detector to switch the filter in a very short period of time, obtains the spectral images. And then by using the morphological method to obtain the spectral image differences, the dynamic change of blood sugar is reflected in the image difference data. Through the experiment proved that this method can be used to monitor blood glucose dynamically to a certain extent.

  2. Characteristics of a new non-invasive X-ray output analyzer

    International Nuclear Information System (INIS)

    Shinohara, Fuminori; Ishikawa, Mitsuo; Miyazaki, Shigeru

    2002-01-01

    The X-ray systems study group used the Victoreen NERO mAx model 8000, a new non-invasive X-ray output analyzer, to measure the tube voltage, tube voltage waveform, tube current, and irradiation time for conditions corresponding to general radiography and mammography. The measurement results were then compared with those obtained using a conventional invasive measuring instrument. The peak values of the tube voltage measured by the NERO mAx and the invasive measuring instrument were compared. The NERO mAx had a good measurement error range of -1.2 to +0.9 kV. For tube current measurement by the NERO mAx, the maximum error for general radiography conditions was +11 mA and that for mammography conditions was +6 mA. For irradiation time measurement, the value for general radiography conditions was slightly greater and the value for mammography conditions was slightly less than the corresponding values obtained by the invasive measuring instrument. If radiation quality is changed during measurement of the characteristics, measurement values change. Since the NERO mAx incorporates two types of X-ray detectors, it shows good measurement reproducibility. The NERO mAx has been shown to have suitable characteristics for use as a measuring instrument for constancy tests. In the future, constancy tests should be used to quantitatively control the factors determining clinical image quality. (author)

  3. A review of non-invasive imaging methods and applications in contaminant hydrogeology research.

    Science.gov (United States)

    Werth, Charles J; Zhang, Changyong; Brusseau, Mark L; Oostrom, Mart; Baumann, Thomas

    2010-04-01

    Contaminant hydrogeological processes occurring in porous media are typically not amenable to direct observation. As a result, indirect measurements (e.g., contaminant breakthrough at a fixed location) are often used to infer processes occurring at different scales, locations, or times. To overcome this limitation, non-invasive imaging methods are increasingly being used in contaminant hydrogeology research. Four of the most common methods, and the subjects of this review, are optical imaging using UV or visible light, dual-energy gamma radiation, X-ray microtomography, and magnetic resonance imaging (MRI). Non-invasive imaging techniques have provided valuable insights into a variety of complex systems and processes, including porous media characterization, multiphase fluid distribution, fluid flow, solute transport and mixing, colloidal transport and deposition, and reactions. In this paper we review the theory underlying these methods, applications of these methods to contaminant hydrogeology research, and methods' advantages and disadvantages. As expected, there is no perfect method or tool for non-invasive imaging. However, optical methods generally present the least expensive and easiest options for imaging fluid distribution, solute and fluid flow, colloid transport, and reactions in artificial two-dimensional (2D) porous media. Gamma radiation methods present the best opportunity for characterization of fluid distributions in 2D at the Darcy scale. X-ray methods present the highest resolution and flexibility for three-dimensional (3D) natural porous media characterization, and 3D characterization of fluid distributions in natural porous media. And MRI presents the best option for 3D characterization of fluid distribution, fluid flow, colloid transport, and reaction in artificial porous media. Obvious deficiencies ripe for method development are the ability to image transient processes such as fluid flow and colloid transport in natural porous media in three

  4. Non-invasive assessment of liver fibrosis: Between prediction/prevention of outcomes and cost-effectiveness.

    Science.gov (United States)

    Stasi, Cristina; Milani, Stefano

    2016-01-28

    The assessment of the fibrotic evolution of chronic hepatitis has always been a challenge for the clinical hepatologist. Over the past decade, various non-invasive methods have been proposed to detect the presence of fibrosis, including the elastometric measure of stiffness, panels of clinical and biochemical parameters, and combinations of both methods. The aim of this review is to analyse the most recent data on non-invasive techniques for the evaluation of hepatic fibrosis with particular attention to cost-effectiveness. We searched for relevant studies published in English using the PubMed database from 2009 to the present. A large number of studies have suggested that elastography and serum markers are useful techniques for diagnosing severe fibrosis and cirrhosis and for excluding significant fibrosis in hepatitis C virus patients. In addition, hepatic stiffness may also help to prognosticate treatment response to antiviral therapy. It has also been shown that magnetic resonance elastography has a high accuracy for staging and differentiating liver fibrosis. Finally, studies have shown that non-invasive methods are becoming increasingly precise in either positively identifying or excluding liver fibrosis, thus reducing the need for liver biopsy. However, both serum markers and transient elastography still have "grey area" values of lower accuracy. In this case, liver biopsy is still required to properly assess liver fibrosis. Recently, the guidelines produced by the World Health Organization have suggested that the AST-to-platelet ratio index or FIB-4 test could be utilised for the evaluation of liver fibrosis rather than other, more expensive non-invasive tests, such as elastography or FibroTest.

  5. Rapid, serial, non-invasive assessment of drug efficacy in mice with autoluminescent Mycobacterium ulcerans infection.

    Science.gov (United States)

    Zhang, Tianyu; Li, Si-Yang; Converse, Paul J; Grosset, Jacques H; Nuermberger, Eric L

    2013-01-01

    Buruli ulcer (BU) caused by Mycobacterium ulcerans is the world's third most common mycobacterial infection. There is no vaccine against BU and surgery is needed for patients with large ulcers. Although recent experience indicates combination chemotherapy with streptomycin and rifampin improves cure rates, the utility of this regimen is limited by the 2-month duration of therapy, potential toxicity and required parenteral administration of streptomycin, and drug-drug interactions caused by rifampin. Discovery and development of drugs for BU is greatly hampered by the slow growth rate of M. ulcerans, requiring up to 3 months of incubation on solid media to produce colonies. Surrogate markers for evaluating antimicrobial activity in real-time which can be measured serially and non-invasively in infected footpads of live mice would accelerate pre-clinical evaluation of new drugs to treat BU. Previously, we developed bioluminescent M. ulcerans strains, demonstrating proof of concept for measuring luminescence as a surrogate marker for viable M. ulcerans in vitro and in vivo. However, the requirement of exogenous substrate limited the utility of such strains, especially for in vivo experiments. For this study, we engineered M. ulcerans strains that express the entire luxCDABE operon and therefore are autoluminescent due to endogenous substrate production. The selected reporter strain displayed a growth rate and virulence similar to the wild-type parent strain and enabled rapid, real-time monitoring of in vitro and in vivo drug activity, including serial, non-invasive assessments in live mice, producing results which correlated closely with colony-forming unit (CFU) counts for a panel of drugs with various mechanisms of action. Our results indicate that autoluminescent reporter strains of M. ulcerans are exceptional tools for pre-clinical evaluation of new drugs to treat BU due to their potential to drastically reduce the time, effort, animals, compound, and costs

  6. Rapid, serial, non-invasive assessment of drug efficacy in mice with autoluminescent Mycobacterium ulcerans infection.

    Directory of Open Access Journals (Sweden)

    Tianyu Zhang

    Full Text Available Buruli ulcer (BU caused by Mycobacterium ulcerans is the world's third most common mycobacterial infection. There is no vaccine against BU and surgery is needed for patients with large ulcers. Although recent experience indicates combination chemotherapy with streptomycin and rifampin improves cure rates, the utility of this regimen is limited by the 2-month duration of therapy, potential toxicity and required parenteral administration of streptomycin, and drug-drug interactions caused by rifampin. Discovery and development of drugs for BU is greatly hampered by the slow growth rate of M. ulcerans, requiring up to 3 months of incubation on solid media to produce colonies. Surrogate markers for evaluating antimicrobial activity in real-time which can be measured serially and non-invasively in infected footpads of live mice would accelerate pre-clinical evaluation of new drugs to treat BU. Previously, we developed bioluminescent M. ulcerans strains, demonstrating proof of concept for measuring luminescence as a surrogate marker for viable M. ulcerans in vitro and in vivo. However, the requirement of exogenous substrate limited the utility of such strains, especially for in vivo experiments.For this study, we engineered M. ulcerans strains that express the entire luxCDABE operon and therefore are autoluminescent due to endogenous substrate production. The selected reporter strain displayed a growth rate and virulence similar to the wild-type parent strain and enabled rapid, real-time monitoring of in vitro and in vivo drug activity, including serial, non-invasive assessments in live mice, producing results which correlated closely with colony-forming unit (CFU counts for a panel of drugs with various mechanisms of action.Our results indicate that autoluminescent reporter strains of M. ulcerans are exceptional tools for pre-clinical evaluation of new drugs to treat BU due to their potential to drastically reduce the time, effort, animals, compound

  7. Fecal lipocalin 2, a sensitive and broadly dynamic non-invasive biomarker for intestinal inflammation.

    Science.gov (United States)

    Chassaing, Benoit; Srinivasan, Gayathri; Delgado, Maria A; Young, Andrew N; Gewirtz, Andrew T; Vijay-Kumar, Matam

    2012-01-01

    Inflammation has classically been defined histopathologically, especially by the presence of immune cell infiltrates. However, more recent studies suggest a role for "low-grade" inflammation in a variety of disorders ranging from metabolic syndrome to cancer, which is defined by modest elevations in pro-inflammatory gene expression. Consequently, there is a need for cost-effective, non-invasive biomarkers that, ideally, would have the sensitivity to detect low-grade inflammation and have a dynamic range broad enough to reflect classic robust intestinal inflammation. Herein, we report that, for assessment of intestinal inflammation, fecal lipocalin 2 (Lcn-2), measured by ELISA, serves this purpose. Specifically, using a well-characterized mouse model of DSS colitis, we observed that fecal Lcn-2 and intestinal expression of pro-inflammatory cytokines (IL-1β, CXCL1, TNFα) are modestly but significantly induced by very low concentrations of DSS (0.25 and 0.5%), and become markedly elevated at higher concentrations of DSS (1.0 and 4.0%). As expected, careful histopathologic analysis noted only modest immune infiltrates at low DSS concentration and robust colitis at higher DSS concentrations. In accordance, increased levels of the neutrophil product myeloperoxidase (MPO) was only detected in mice given 1.0 and 4.0% DSS. In addition, fecal Lcn-2 marks the severity of spontaneous colitis development in IL-10 deficient mice. Unlike histopathology, MPO, and q-RT-PCR, the assay of fecal Lcn-2 requires only a stool sample, permits measurement over time, and can detect inflammation as early as 1 day following DSS administration. Thus, assay of fecal Lcn-2 by ELISA can function as a non-invasive, sensitive, dynamic, stable and cost-effective means to monitor intestinal inflammation in mice.

  8. FT-NIR spectroscopy for non-invasive identification of natural polymers and resins in easel paintings.

    Science.gov (United States)

    Vagnini, M; Miliani, C; Cartechini, L; Rocchi, P; Brunetti, B G; Sgamellotti, A

    2009-12-01

    In the present study, the analytical strengths and limitations of near-infrared (NIR) spectroscopy to non-invasively characterize organic components in painting materials have been investigated. In spite of the increased amount of information available today from advanced modern analytical instrumentations dedicated to cultural heritage, the non-invasive identification of materials belonging to the wide class of organic compounds historically used in paintings is still a challenging task. Near-infrared spectroscopy offers several attractive features that make this technique particularly suitable to this purpose. In fact, it is non-invasive, allows for non-contact measurements in reflectance mode, gives molecular information on complex macromolecules, and can be performed on-site by means of portable devices. First-derivative transformation of reflectance spectroscopic data has been applied to provide a simple and fast way to deduce more information from NIR spectra. This approach has allowed spectral features to be identified that can be useful to distinguish different compounds belonging to the classes of lipids, proteins, and resins. To this purpose, at first, a spectral database of pure standard has been collected. Our analytical approach was then successfully validated on pictorial models reproducing the typical stratigraphy of an easel painting. As final step, the study of a real painting has been attempted and a drying oil, animal glue, and a terpenic natural resin, as well as an earth pigment were clearly identified, as cross-validated by GC-MS analysis.

  9. A data mining methodology for predicting early stage Parkinson's disease using non-invasive, high-dimensional gait sensor data.

    Science.gov (United States)

    Tucker, Conrad; Han, Yixiang; Nembhard, Harriet Black; Lewis, Mechelle; Lee, Wang-Chien; Sterling, Nicholas W; Huang, Xuemei

    2015-01-01

    Parkinson's disease (PD) is the second most common neurological disorder after Alzheimer's disease. Key clinical features of PD are motor-related and are typically assessed by healthcare providers based on qualitative visual inspection of a patient's movement/gait/posture. More advanced diagnostic techniques such as computed tomography scans that measure brain function, can be cost prohibitive and may expose patients to radiation and other harmful effects. To mitigate these challenges, and open a pathway to remote patient-physician assessment, the authors of this work propose a data mining driven methodology that uses low cost, non-invasive sensors to model and predict the presence (or lack therefore) of PD movement abnormalities and model clinical subtypes. The study presented here evaluates the discriminative ability of non-invasive hardware and data mining algorithms to classify PD cases and controls. A 10-fold cross validation approach is used to compare several data mining algorithms in order to determine that which provides the most consistent results when varying the subject gait data. Next, the predictive accuracy of the data mining model is quantified by testing it against unseen data captured from a test pool of subjects. The proposed methodology demonstrates the feasibility of using non-invasive, low cost, hardware and data mining models to monitor the progression of gait features outside of the traditional healthcare facility, which may ultimately lead to earlier diagnosis of emerging neurological diseases.

  10. Non-invasive characterization of biogenic gas dynamics in peatlands using the ground penetrating radar (GPR) method

    Science.gov (United States)

    Comas, X.; Slater, L. D.; Reeve, A. S.; Glaser, P. H.; Nolan, J. T.; Parsekian, A.

    2009-12-01

    Several applications of ground penetrating radar (GPR) as a non-invasive technology for investigating carbon cycling in northern peatlands are presented here. The GPR method has been proved as an effective approach for investigating biogenic gas dynamics over a wide range of spatial scales. Unlike other commonly applied techniques used in peatland science, GPR can be employed entirely non-invasively from the surface, and therefore can provide information on the vertical distribution of biogenic gases within the peat structure without disruption to the in situ gas regime. Several applications of the GPR method in peatlands research are presented here and include: (1) imaging of laterally continuous woody layers that may act as confining layers for free phase gas (FPG) accumulation as proposed by others; (2) surface and cross-hole measurements to estimate one-dimensional vertical profiles of variable FPG content and confirm accumulation of FPG below confining layers; (3) non-invasive time-lapse monitoring of FPG production and emissions from a peat column and use of reflection amplitudes to show that, in addition to travel times, amplitude analysis can also yield insights into changes in FPG production and emissions (e.g. via ebullition) from peat soils. We conclude with some further recommendations for future applications of GPR in northern peatlands.

  11. A pilot study using laser-based technique for non-invasive diagnostics of hypertensive conditions in mice

    Science.gov (United States)

    Litvinova, Karina S.; Ahmad, Shakil; Wang, Keqing; Rafailov, Ilya E.; Sokolovski, Sergei G.; Zhang, Lin; Rafailov, Edik U.; Ahmed, Asif

    2016-02-01

    Endothelial dysfunction is directly linked to preeclampsia, a maternal hypertensive condition that is life threating for both the mother and the baby. Epidemiological studies show that women with a history of pre-eclampsia have an elevated risk for cardiovascular disease. Here we report a new non-invasive diagnostic test for preeclampsia in mice that allows us to non-invasively assess the condition of the animals during the experiment and treatment in established models of preeclampsia. A laser-based multifunctional diagnostics system (LAKK-M) was chosen to carry out non-invasive analysis of multiple parameters. The device was used to simultaneously record the microcirculatory blood flow and oxygen saturation, as well as fluorescence levels of endogenous fluorophores. Preliminary experiments were conducted on adenoviral (Ad-)- mediated overexpression of sFlt-1 (Ad-sFlt-1) to mimic preeclampsialike symptoms in mice. The recorded data displayed the ability of the LAKK-M diagnostics device to detect significant differences in perfusion measurements between the control and Ad-sFlt-1 treatment. Preliminary results provide a potential avenue to employ these diagnostics technology to monitor and aid in maintaining control of live animal conditions throughout the experiment and treatment.

  12. Calibration voltage test of non invasive meter for radiodiagnostic on equipment of constant potential X-ray; Teste de calibracao de medidor nao invasivo de tensao para radiodiagnostico em equipamentos de raios X de potencial constante

    Energy Technology Data Exchange (ETDEWEB)

    Ramos, Manoel M.O.; Peixoto, J. Guilherme P., E-mail: mmoramos@ird.gov.b [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil); Pereira, Marco A.G.S., E-mail: guedes@iee.usp.b [Universidade de Sao Paulo (IEE/USP), SP (Brazil). Inst. de Eletrotecnica e Energia; Lopes, Ricardo T., E-mail: ricardo@lin.ufrj.b [Coordenacao dos Programas de Pos-Graduacao de Engenharia (COPPE/UFRJ), RJ (Brazil)

    2009-07-01

    This work evaluates the utilization of the non invasive voltage meter PTW Diavolt Universal in industrial X ray equipment of constant potential. With the performed measurements, the conclusion is that conclusion is possible, once his use limits are identified

  13. Changes in iron measures over menopause and associations with insulin resistance.

    Science.gov (United States)

    Kim, Catherine; Nan, Bin; Kong, Shengchun; Harlow, Siobhan

    2012-08-01

    No longitudinal studies have examined how iron measures change over menopause. Our objectives were to examine iron measures in individual women at premenopause and at postmenopause and, secondarily, to determine if any changes contributed to insulin resistance. In a subset of participants (n=70) in a longitudinal study of menopause, we measured ferritin, transferrin, and soluble transferrin receptor (sTfR) once in the premenopause and once in the postmenopause. We also examined associations between menopausal status and change in iron markers after adjustment for age at menopause, race/ethnicity, and waist circumference. In linear regression models, we examined associations between premenopause iron measures and changes in iron markers over menopause with homeostasis model assessment of insulin resistance (HOMA-IR) changes over menopause, before and after adjustment for age at menopause, race/ethnicity, changes in waist circumference, C-reactive protein (CRP), and sex hormone-binding globulin (SHBG) levels. Women had lower ferritin (pmenopause (changes in sTfR:ferritin β=13.6, 95% CI 0.93-26.3) were associated with larger increases in HOMA-IR. From premenopause to postmenopause, women on average have increases in measures of iron stores. Women who had the greatest changes in iron over menopause (lower measures of premenopausal iron and greater increases in iron measures over the menopause) had the strongest associations between changes in iron and changes in insulin resistance.

  14. Randomized non-invasive sham-controlled pilot trial of electroacupuncture for postpartum depression.

    Science.gov (United States)

    Chung, Ka-Fai; Yeung, Wing-Fai; Zhang, Zhang-Jin; Yung, Kam-Ping; Man, Sui-Cheung; Lee, Chin-Peng; Lam, Siu-Keung; Leung, Tsin-Wah; Leung, Kwok-Yin; Ziea, Eric Tat-Chi; Taam Wong, Vivian

    2012-12-15

    Postpartum depression affects 10-15% of mothers. Although acupuncture was efficacious for major depressive disorder in pregnancy and in women outside the perinatal period, there has been no randomized controlled study on the feasibility, tolerability, and efficacy of acupuncture for postpartum depression. This was a randomized, subject- and assessor-blind, parallel-group, sham-controlled trial. Twenty women within six months postpartum with DSM-IV-diagnosed major depressive disorder of mild severity, defined as a 17-item Hamilton Depression Rating Scale (HDRS(17)) score of 12 to 19, were randomly assigned to either electroacupuncture or non-invasive sham acupuncture two sessions weekly for four weeks. There was significant reduction in HDRS(17) score from baseline to 4-week posttreatment in both groups, with an effect size 1.4 and 1.8 for electroacupuncture and sham acupuncture, respectively. Improvement was observed as early as two weeks after commencing acupuncture. The response and remission rate in the electroacupuncture group at 4-week posttreatment was 33% and 44%, respectively; for the sham acupuncture group, it was 60% and 50%, respectively. There was no significant between-group difference in all outcome measures, including the HDRS(17), Edinburgh Postnatal Depression Scale, Hospital Anxiety and Depression Scale, Clinical Global Impression, and Sheehan Disability Scale. Treatment credibility, success of blinding, and adverse events were similar between groups. Small sample size and high attrition rate. No waiting list observation group. Both electroacupuncture and non-invasive sham acupuncture were effective for postpartum depression. Further studies utilizing larger sample size, better recruitment strategies, and home-based acupuncture treatment are warranted. Pilot Study on the Use of Acupuncture for Postpartum Depression; ClinicalTrials.gov Registration #NCT01178008; URL - http://clinicaltrials.gov/ct2/show/NCT01178008?term=postpartum+acupuncture&rank=1

  15. Diagnosis of vulvar lesions by non-invasive optical analysis: a pilot study.

    Science.gov (United States)

    Vlastos, Anne-Therese; Charvet, Igor; Dellacasa, Ilaria; Capanna, Federica; Pelte, Marie-Françoise; Thueler, Philippe; Saint-Ghislain, Michel; Depeursinge, Christian; Meda, Paolo

    2009-07-22

    A procedure that could allow an early in vivo and non-invasive detection of vulvar lesions would be extremely useful. We tested an innovative optical method (Optiprobe), which uses a harmless, visible light source for the in vivo, on-line detection of minimal alterations in the structure of vulvar epithelium. A group of 3 female volunteers without gynecological symptoms were first screened to evaluate optical properties of normal vulvar tissue. Next, a group of 16 patients undergoing gynecological examination for vulvar lesions was evaluated by the Optiprobe at suspected sites before these sites were biopsied for histological analysis. Adjacent, non-involved sites were also measured to provide internal controls. Histological analysis of the biopsies identified one case that did not show obvious alterations, 4 cases of high-grade vulvar intraepithelial neoplasia (VIN), 5 cases of vulvitis, and 6 cases of lichen sclerosis (LS).The optical properties of the VIN cases were significantly different from those of controls, due to a decrease in the absorption spectra and an increase in the scattering spectra. In contrast, a significant increase in the absorption spectra and a decrease in the scattering spectra were observed in the cases of vulvitis. In the LS cases, the absorption spectra were as in controls, whereas the scattering spectra were significantly decreased. We conclude that the Optiprobe provides a useful tool for a rapid and non-invasive detection of vulvar alterations. The method should contribute to reduce the number of biopsies and to facilitate the long-term follow-up of vulvar lesions.

  16. Diagnosis of vulvar lesions by non-invasive optical analysis: a pilot study

    Directory of Open Access Journals (Sweden)

    Paolo Meda

    2009-07-01

    Full Text Available A procedure that could allow an early in vivo and non-invasive detection of vulvar lesions would be extremely useful. We tested an innovative optical method (Optiprobe, which uses a harmless, visible light source for the in vivo, on-line detection of minimal alterations in the structure of vulvar epithelium. A group of 3 female volunteers without gynecological symptoms were first screened to evaluate optical properties of normal vulvar tissue. Next, a group of 16 patients undergoing gynecological examination for vulvar lesions was evaluated by the Optiprobe at suspected sites before these sites were biopsied for histological analysis. Adjacent, non-involved sites were also measured to provide internal controls. Histological analysis of the biopsies identified one case that did not show obvious alterations, 4 cases of high-grade vulvar intraepithelial neoplasia (VIN, 5 cases of vulvitis, and 6 cases of lichen sclerosis (LS. The optical properties of the VIN cases were significantly different from those of controls, due to a decrease in the absorption spectra and an increase in the scattering spectra. In contrast, a significant increase in the absorption spectra and a decrease in the scattering spectra were observed in the cases of vulvitis. In the LS cases, the absorption spectra were as in controls, whereas the scattering spectra were significantly decreased. We conclude that the Optiprobe provides a useful tool for a rapid and non-invasive detection of vulvar alterations. The method should contribute to reduce the number of biopsies and to facilitate the long-term follow-up of vulvar lesions.

  17. Non-invasive monitoring of chewing and swallowing for objective quantification of ingestive behavior

    International Nuclear Information System (INIS)

    Sazonov, Edward; Schuckers, Stephanie; Lopez-Meyer, Paulo; Makeyev, Oleksandr; Sazonova, Nadezhda; Melanson, Edward L; Neuman, Michael

    2008-01-01

    A methodology of studying of ingestive behavior by non-invasive monitoring of swallowing (deglutition) and chewing (mastication) has been developed. The target application for the developed methodology is to study the behavioral patterns of food consumption and producing volumetric and weight estimates of energy intake. Monitoring is non-invasive based on detecting swallowing by a sound sensor located over laryngopharynx or by a bone-conduction microphone and detecting chewing through a below-the-ear strain sensor. Proposed sensors may be implemented in a wearable monitoring device, thus enabling monitoring of ingestive behavior in free-living individuals. In this paper, the goals in the development of this methodology are two-fold. First, a system comprising sensors, related hardware and software for multi-modal data capture is designed for data collection in a controlled environment. Second, a protocol is developed for manual scoring of chewing and swallowing for use as a gold standard. The multi-modal data capture was tested by measuring chewing and swallowing in 21 volunteers during periods of food intake and quiet sitting (no food intake). Video footage and sensor signals were manually scored by trained raters. Inter-rater reliability study for three raters conducted on the sample set of five subjects resulted in high average intra-class correlation coefficients of 0.996 for bites, 0.988 for chews and 0.98 for swallows. The collected sensor signals and the resulting manual scores will be used in future research as a gold standard for further assessment of sensor design, development of automatic pattern recognition routines and study of the relationship between swallowing/chewing and ingestive behavior

  18. Non-invasive monitoring of chewing and swallowing for objective quantification of ingestive behavior.

    Science.gov (United States)

    Sazonov, Edward; Schuckers, Stephanie; Lopez-Meyer, Paulo; Makeyev, Oleksandr; Sazonova, Nadezhda; Melanson, Edward L; Neuman, Michael

    2008-05-01

    A methodology of studying of ingestive behavior by non-invasive monitoring of swallowing (deglutition) and chewing (mastication) has been developed. The target application for the developed methodology is to study the behavioral patterns of food consumption and producing volumetric and weight estimates of energy intake. Monitoring is non-invasive based on detecting swallowing by a sound sensor located over laryngopharynx or by a bone-conduction microphone and detecting chewing through a below-the-ear strain sensor. Proposed sensors may be implemented in a wearable monitoring device, thus enabling monitoring of ingestive behavior in free-living individuals. In this paper, the goals in the development of this methodology are two-fold. First, a system comprising sensors, related hardware and software for multi-modal data capture is designed for data collection in a controlled environment. Second, a protocol is developed for manual scoring of chewing and swallowing for use as a gold standard. The multi-modal data capture was tested by measuring chewing and swallowing in 21 volunteers during periods of food intake and quiet sitting (no food intake). Video footage and sensor signals were manually scored by trained raters. Inter-rater reliability study for three raters conducted on the sample set of five subjects resulted in high average intra-class correlation coefficients of 0.996 for bites, 0.988 for chews and 0.98 for swallows. The collected sensor signals and the resulting manual scores will be used in future research as a gold standard for further assessment of sensor design, development of automatic pattern recognition routines and study of the relationship between swallowing/chewing and ingestive behavior.

  19. Non-invasive brain stimulation of motor cortex induces embodiment when integrated with virtual reality feedback.

    Science.gov (United States)

    Bassolino, M; Franza, M; Bello Ruiz, J; Pinardi, M; Schmidlin, T; Stephan, M A; Solcà, M; Serino, A; Blanke, O

    2018-04-01

    Previous evidence highlighted the multisensory-motor origin of embodiment - that is, the experience of having a body and of being in control of it - and the possibility of experimentally manipulating it. For instance, an illusory feeling of embodiment towards a fake hand can be triggered by providing synchronous visuo-tactile stimulation to the hand of participants and to a fake hand or by asking participants to move their hand and observe a fake hand moving accordingly (rubber hand illusion). Here, we tested whether it is possible to manipulate embodiment not through stimulation of the participant's hand, but by directly tapping into the brain's hand representation via non-invasive brain stimulation. To this aim, we combined transcranial magnetic stimulation (TMS), to activate the hand corticospinal representation, with virtual reality (VR), to provide matching (as contrasted to non-matching) visual feedback, mimicking involuntary hand movements evoked by TMS. We show that the illusory embodiment occurred when TMS pulses were temporally matched with VR feedback, but not when TMS was administered outside primary motor cortex, (over the vertex) or when stimulating motor cortex at a lower intensity (that did not activate peripheral muscles). Behavioural (questionnaires) and neurophysiological (motor-evoked-potentials, TMS-evoked-movements) measures further indicated that embodiment was not explained by stimulation per se, but depended on the temporal coherence between TMS-induced activation of hand corticospinal representation and the virtual bodily feedback. This reveals that non-invasive brain stimulation may replace the application of external tactile hand cues and motor components related to volition, planning and anticipation. © 2018 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  20. Non-invasive ventilation in acute respiratory failure in children

    Directory of Open Access Journals (Sweden)

    Clara Abadesso

    2012-04-01

    Full Text Available The aim of this paper is to assess the clinical efficacy of non-invasive ventilation (NIV in avoiding endotracheal intubation (ETI, to demonstrate clinical and gasometric improvement and to identify predictive risk factors associated with NIV failure. An observational prospective clinical study was carried out. Included Patients with acute respiratory disease (ARD treated with NIV, from November 2006 to January 2010 in a Pediatric Intensive Care Unit (PICU. NIV was used in 151 patients with acute respiratory failure (ARF. Patients were divided in two groups: NIV success and NIV failure, if ETI was required. Mean age was 7.2±20.3 months (median: 1 min: 0,3 max.: 156. Main diagnoses were bronchiolitis in 102 (67.5%, and pneumonia in 44 (29% patients. There was a significant improvement in respiratory rate (RR, heart rate (HR, pH, and pCO2 at 2, 6, 12 and 24 hours after NIV onset (P<0.05 in both groups. Improvement in pulse oximetric saturation/ fraction of inspired oxygen (SpO2/FiO2 was verified at 2, 4, 6, 12 and 24 hours after NIV onset in the success group (P<0.001. In the failure group, significant SpO2/FiO2 improvement was only observed in the first 4 hours. NIV failure occurred in 34 patients (22.5%. Risk factors for NIV failure were apnea, prematurity, pneumonia, and bacterial co-infection (P<0.05. Independent risk factors for NIV failure were apneia (P<0.001; odds ratio 15.8; 95% confidence interval: 3.42-71.4 and pneumonia (P<0.001, odds ratio 31.25; 95% confidence interval: 8.33-111.11. There were no major complications related with NIV. In conclusion this study demonstrates the efficacy of NIV as a form of respiratory support for children and infants with ARF, preventing clinical deterioration and avoiding ETI in most of the patients. Risk factors for failure were related with immaturity and severe infection.

  1. Iron

    Science.gov (United States)

    ... Share: Search the ODS website Submit Search NIH Office of Dietary Supplements Consumer Datos en español Health ... eating a variety of foods, including the following: Lean meat, seafood, and poultry. Iron-fortified breakfast cereals ...

  2. Diagnostic relevance of radioiron-absorption-measurements and immunoradiometric serum-ferritin-assay in the evaluation of iron stores

    International Nuclear Information System (INIS)

    Heinrich, H.C.

    1978-01-01

    Negative iron balance and enhanced iron demand respectively causes deficient iron stores (prelatent iron deficiency) with increased iron absorption, later on decrease of serum iron and increase of transferrin (latent Fe deficiency) and at least iron deficient anemia (manifest iron deficiency). In prelatend iron deficiency diagnostic 59 Fe 2+ absorption is increased and the RES cells do not show storage iron cytochemically. In latent iron deficiency in addition serum iron, transferrin iron saturation and serum ferritin is decreased and hypochromic mikrocytic anemia completes the signs of manifest iron deficiency. Besides rare cases of primary hemochromatosis and marked hyperdasia of ineffective erythropoiesis in homocygotic beta-thalassemia, hereditary non-spherocytic hemolytic anemia caused by pyruvate kinase deficiency and some sideroblastic anemias increased 59 Fe 2+ absorption is a reliable measure of exhausted iron stores. In these exceptional cases differential diagnosis between sideroachrestic and siderosensitive iron deficiency anemia can be made by measurement of serum iron and serum ferritin respectively. The etiology of iron deficiency is to be cleared by measurement of 59 Fe absorption from 59 Fe 2+ and 59 Fe-marked meat with consecutive estimation of whole body 59 Fe elimination. Shortly after completion or during oral iron therapy serum ferritin concentration is not suitable to evaluate the content of iron stores. (orig.) [de

  3. 49 CFR 192.487 - Remedial measures: Distribution lines other than cast iron or ductile iron lines.

    Science.gov (United States)

    2010-10-01

    ... cast iron or ductile iron lines. 192.487 Section 192.487 Transportation Other Regulations Relating to... iron or ductile iron lines. (a) General corrosion. Except for cast iron or ductile iron pipe, each... the purpose of this paragraph. (b) Localized corrosion pitting. Except for cast iron or ductile iron...

  4. Electrochemical measurement of tritium and hydrogen permeation through iron membranes

    International Nuclear Information System (INIS)

    Hagi, Hideki; Hayashi, Yasunori

    1988-01-01

    Permeation rates of tritium and hydrogen through iron were measured by the electrochemical method in which an aqueous solution containing 3.7 x 10 12 Bq/m 3 tritium was used as a cathodic electrolyte. Tritium and hydrogen were introduced from one side of a specimen by cathodic polarization with a constant current density, while at the other side of the specimen the permeated tritium and hydrogen were extracted by potentiostatical ionization. Nearly all of the potentiostatic current of the extraction side stands for the ionization of hydrogen, because the concentration of tritium in the cathodic electrolyte is very small. The amount of permeated hydrogen was obtained by integrating the anodic current, and that of tritium was determined by measuring the radioactivity of the electrolyte sampled from the extraction side. The separation factor for permeation obtained under steady state conditions (the ratio of permeation rates of hydrogen to tritium divided by the ratio of the concentration of hydrogen to tritium in the charging electrolyte) is 12 at 288 K. This value is independent of cathodic current density. Diffusion coefficients of tritium (D T ) and hydrogen (D H ) in iron were determined from the time lag of tritium and hydrogen permeation. For annealed specimens at 286 K, D T = 9 x 10 -10 m 2 /s and D H = 4 x 10 -9 m 2 /s, and for 9% cold-worked specimens at 284 K, D T = 3 x 10 -10 m 2 /s and D H = 4 x 10 -10 m 2 /s. (author)

  5. Endometrial biomarkers for the non-invasive diagnosis of endometriosis.

    Science.gov (United States)

    Gupta, Devashana; Hull, M Louise; Fraser, Ian; Miller, Laura; Bossuyt, Patrick M M; Johnson, Neil; Nisenblat, Vicki

    2016-04-20

    About 10% of reproductive-aged women suffer from endometriosis, which is a costly, chronic disease that causes pelvic pain and subfertility. Laparoscopy is the gold standard diagnostic test for endometriosis, but it is expensive and carries surgical risks. Currently, there are no non-invasive tests available in clinical practice that accurately diagnose endometriosis. This is the first diagnostic test accuracy review of endometrial biomarkers for endometriosis that utilises Cochrane methodologies, providing an update on the rapidly expanding literature in this field. To determine the diagnostic accuracy of the endometrial biomarkers for pelvic endometriosis, using a surgical diagnosis as the reference standard. We evaluated the tests as replacement tests for diagnostic surgery and as triage tests to inform decisions to undertake surgery for endometriosis. We did not restrict the searches to particular study designs, language or publication dates. To identify trials, we searched the following databases: CENTRAL (2015, July), MEDLINE (inception to May 2015), EMBASE (inception to May 2015), CINAHL (inception to April 2015), PsycINFO (inception to April 2015), Web of Science (inception to April 2015), LILACS (inception to April 2015), OAIster (inception to April 2015), TRIP (inception to April 2015) and ClinicalTrials.gov (inception to April 2015). We searched DARE and PubMed databases up to April 2015 to identify reviews and guidelines as sources of references to potentially relevant studies. We also performed searches for papers recently published and not yet indexed in the major databases. The search strategies incorporated words in the title, abstract, text words across the record and the medical subject headings (MeSH). We considered published peer-reviewed, randomised controlled or cross-sectional studies of any size that included prospectively collected samples from any population of reproductive-aged women suspected of having one or more of the following target

  6. Non-invasive assessment of in-vitro embryo quality to improve transfer success

    DEFF Research Database (Denmark)

    Højbøge, Tina Rødgaard; Heegaard, Peter M. H.; Callesen, Henrik

    2015-01-01

    embryos before the transfer to a recipient still remains challenging. Presently, the predominant non-invasive technique for selecting viable embryos is based on morphology, where parameters such as rates of cleavage and blastocyst formation as well as developmental kinetics are evaluated mostly...... subjectively. The simple morphological approach is, however, inadequate for the prediction of embryo quality, and several studies have focused on developing new non-invasive methods using molecular approaches based particularly on proteomics, metabolomics and most recently small non-coding RNA, including micro......RNA. This review outlines the potential of several non-invasive in-vitro methods based on analysis of spent embryo culture medium....

  7. Non-invasive cell tracking of SPIO labeled cells in an intrinsic regenerative environment: the axolotl limb

    DEFF Research Database (Denmark)

    Lauridsen, Henrik; Foldager, Casper; Hansen, Line

    2017-01-01

    Non-invasive methods to track the progress of stem cell therapies are important in the development of future regenerative therapies. Super-paramagnetic iron oxide particles (SPIOs) have previously been applied to track cells using magnetic resonance imaging (MRI) in vivo in non-regenerative animal...... models. In this study we test for the first time the feasibility of tracking SPIO labeled cells in an intrinsic regenerative environment, the regenerating limb of the axolotl, and investigate the homing of stem cell like blastema cells to the regenerative zone. Viability and labeling success of labeled...... axolotl blastema cells was tested in vitro using cell culture and histology. SPIO labeling was performed in situ by intramuscular injections and mapped using MRI. Enhanced permeability and retention (EPR) effect was evaluated in the blastema, liver, heart, kidney and a back muscle. Finally, SPIO...

  8. Spirometer Non-Invasive dengan Sensor Piezoelektrik untuk Deteksi Kesehatan Paru-Paru

    Directory of Open Access Journals (Sweden)

    KEMALASARI KEMALASARI

    2017-07-01

    Full Text Available ABSTRAKPolusi udara dapat mempengaruhi kesehatan paru-paru. Umumnya pengukuran fungsi paru menggunakan spirometer, dilakukan di rumah sakit dan membutuhkan waktu yang lama untuk mengetahui hasilnya. Untuk mengatasi masalah ini, dirancang Spirometer non-invasive yang portable dengan menggunakan sensor piezoelektrik yang diletakkan di dada. Perubahan tekanan yang diukur oleh sensor piezoelektrik adalah 10 – 80 mV, sehingga diperlukan rangkaian amplifier, filter, clamper, mikrokontroler AVR ATMega 32 sebagai pengolah data I/O dan LCD grafik untuk menampilkan hasil ukur serta SD card untuk menyimpan data. Alat ini mengukur  kapasitas vital paru-paru, respirasi rate, dan jika hasil ukur kapasitas vital paru-paru kurang  dari 80 % dari nilai prediksi kapasitas paru-paru maka kondisi paru-paru dideteksi tidak sehat.  Hasil dari pengujian menunjukkan bahwa persentase nilai keberhasilan alat adalah 95,70 %, hasil pengukuran dan deteksi kondisi paru-paru dapat langsung diketahui dari tampilan di LCD grafik, data hasil pengukuran bisa disimpan dan alat berukuran kecil sehingga portable, mudah digunakan oleh siapapun dan dimanapun dengan nyaman.Kata kunci: Spirometer, Piezoelektrik, Mikrokontroler, Kapasitas Paru-Paru, LCD Grafik.ABSTRACTAir pollution can be affected the health of the lungs. Generally the measurement of lungs function use a spirometry, performed  in the hospital and takes a long time to know the results. To overcome this problem, a portable non-invasive Spirometry is designed using a piezoelectric sensors placed on the chest. The changes of pressure is measured by the piezoelectric sensor are 10 - 80 mV, so it needs a amplifier circuit, filter, clamper, ATMega 32 AVR microcontroller as I/O data processor and LCD graph to display result of measurement and SD card for save the data. This instrument measure lungs vital capacity, respiration rate, and if the measured of lungs vital capacity is less than 80 % of the predicted of lung

  9. Non-invasive Estimation of Pressure Changes using 2-D Vector Velocity Ultrasound: An Experimental Study with In-Vivo Examples

    DEFF Research Database (Denmark)

    Olesen, Jacob Bjerring; Villagómez Hoyos, Carlos Armando; Møller, Niclas Dechau

    2018-01-01

    A non-invasive method for estimating intravascular pressure changes using 2-D vector velocity is presented. The method was first validated on computational fluid dynamics (CFD) data, and with catheter measurements on phantoms. Hereafter, the method was tested in-vivo at the carotid bifurcation...

  10. Progress towards non-invasive diagnosis and follow-up of celiac disease in children : a prospective multicentre study to the usefulness of plasma I-FABP

    NARCIS (Netherlands)

    Adriaanse, Marlou P. M.; Mubarak, A; Riedl, R G; Ten Kate, F J W; Damoiseaux, J G M C; Buurman, Wim A.; Houwen, R H J; Vreugdenhil, A C E

    2017-01-01

    This prospective study investigates whether measurement of plasma intestinal-fatty acid binding protein (I-FABP), a sensitive marker for small intestinal epithelial damage, improves non-invasive diagnosing of celiac disease (CD), and whether I-FABP levels are useful to evaluate mucosal healing in

  11. Combining non-invasive transcranial brain stimulation with neuroimaging and electrophysiology: Current approaches and future perspectives

    DEFF Research Database (Denmark)

    Bergmann, Til Ole; Karabanov, Anke; Hartwigsen, Gesa

    2016-01-01

    Non-invasive transcranial brain stimulation (NTBS) techniques such as transcranial magnetic stimulation (TMS) and transcranial current stimulation (TCS) are important tools in human systems and cognitive neuroscience because they are able to reveal the relevance of certain brain structures...

  12. Non-Invasive Monitoring for Optimization of Therapeutic Drug Delivery by Biodegradable Fiber to Prostate Tumor

    National Research Council Canada - National Science Library

    Gu, Yueqing

    2005-01-01

    .... Furthermore, non-invasive and real-time monitoring of dynamic response and chronic changes of the tumors to therapeutic interventions will help researchers better understand the therapeutic process...

  13. Cytokeratin 18 as a non invasive marker in diagnosis of NASH and ...

    African Journals Online (AJOL)

    Cytokeratin 18 as a non invasive marker in diagnosis of NASH and its usefulness in correlation with disease severity in Egyptian patients. MM Maher, WA Ibrahim, SA Saleh, L Shash, HA Gabal, M Tarif, M Gamal ...

  14. Non invasive spontaneous dual ventilation in critically ill patients with chronic obstructive pulmonary disease

    Directory of Open Access Journals (Sweden)

    Khaled Hussein

    2016-01-01

    Conclusion: Non invasive spontaneous dual ventilation using intelligent volume assured pressure support (iVAPS is characterized by stable alveolar ventilation with lower and variable inspiratory pressure and earlier improvement of respiratory acidosis when compared with conventional pressure support.

  15. The valve of CT in diagnosing the invasive and non-invasive thymoma

    International Nuclear Information System (INIS)

    Tang Wenyan; Jiang Kuiming; Song Ting; Lin Wenjian; Chen Zhanhang

    2009-01-01

    Objective: To Study CT features of thymoma and its value in differentiating the invasive from non-invasive thymoma. Methods: CT findings of 17 cases with thymoma (11 non-invasive and 6 invasive) confirmed by surgery and pathology were analyzed retrospectively. Results: 11 cases were non-invasive thymoma. On CT, the tumors were round or oval in 6 cases, lobulate in 4 cases, and irregular in 1 case. The lesions showed homogeneous density and mild enhancement in 9 cases. 10 of them showed complete capsules without invasion. The mass-cardiovascular interface was: convex type in 5 cases, flat type in 3 cases and concave type in 2 cases. 6 cases were invasive thymoma, tumors were irregular and heterogeneous in 5 cases. Significant and inhomogeneous enhancement on post contrast CT was found. Conclusion: The CT features of thymoma was specific, and CT is of great value in differentiating the invasive from non-invasive thymoma. (authors)

  16. Development of Dynamic Ellipsometry for Measurements or Iron Conductivity at Earth's Core Conditions.

    Energy Technology Data Exchange (ETDEWEB)

    Grant, Sean Campbell [Univ. of Texas, Austin, TX (United States); Ao, Tommy [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Davis, Jean-Paul [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Dolan, Daniel H. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Seagle, Christopher T. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lin, Jung-Fu [Univ. of Texas, Austin, TX (United States); Bernstein, Aaron [Univ. of Texas, Austin, TX (United States)

    2017-03-01

    The CHEDS researchers are engaged in a collaborative research project to study the properties of iron and iron alloys under Earth’s core conditions. The Earth’s core, inner and outer, is composed primarily of iron, thus studying iron and iron alloys at high pressure and temperature conditions will give the best estimate of its properties. Also, comparing studies of iron alloys with known properties of the core can constrain the potential light element compositions found within the core, such as fitting sound speeds and densities of iron alloys to established inner- Earth models. One of the lesser established properties of the core is the thermal conductivity, where current estimates vary by a factor of three. Therefore, one of the primary goals of this collaboration is to make relevant measurements to elucidate this conductivity.

  17. Non-invasive ventilation in the postoperative period: Is there a role?

    OpenAIRE

    Mathai, Ashu S

    2011-01-01

    Non-invasive positive pressure ventilation or non-invasive ventilation (NIV) has emerged as a simpler and safer alternative to invasive mechanical ventilation in patients developing acute postoperative respiratory failure. The benefits of NIV as compared to intubation and mechanical ventilation include lower complications, shorter duration of hospital stay, reduced morbidity, lesser cost of treatment and even reduced mortality rates. However, its use may not be uniformly applicable in all pat...

  18. Development of non-invasive ventilation treatment practice for patients with chronic obstructive pulmonary disease

    DEFF Research Database (Denmark)

    Christensen, Helle M; Titlestad, Ingrid L; Huniche, Lotte

    2017-01-01

    and identifying end-stage chronic obstructive pulmonary disease posed difficulties and caused doubts concerning initiation and continuation of non-invasive ventilation as life-sustaining treatment. Health professionals expressed a need for knowledge of patients' perspectives and attitude towards non...... experienced fear and 14 discomfort during treatment. The co-researcher group described health professionals' perspectives and analysed treatment practice based on data from patients' perspectives developing new management strategies in clinical practice with non-invasive ventilation. Conclusion...

  19. Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves

    DEFF Research Database (Denmark)

    Rossini, P M; Burke, D; Chen, R

    2015-01-01

    These guidelines provide an up-date of previous IFCN report on "Non-invasive electrical and magnetic stimulation of the brain, spinal cord and roots: basic principles and procedures for routine clinical application" (Rossini et al., 1994). A new Committee, composed of international experts, some...... theoretical, physiological and practical aspects of non-invasive stimulation of brain, spinal cord, nerve roots and peripheral nerves in the light of more updated knowledge, and include some recent extensions and developments....

  20. Development and Experimental Validation of a Dry Non-Invasive Multi-Channel Mouse Scalp EEG Sensor through Visual Evoked Potential Recordings

    Directory of Open Access Journals (Sweden)

    Donghyeon Kim

    2017-02-01

    Full Text Available In this paper, we introduce a dry non-invasive multi-channel sensor for measuring brainwaves on the scalps of mice. The research on laboratory animals provide insights to various practical applications involving human beings and other animals such as working animals, pets, and livestock. An experimental framework targeting the laboratory animals has the potential to lead to successful translational research when it closely resembles the environment of real applications. To serve scalp electroencephalography (EEG research environments for the laboratory mice, the dry non-invasive scalp EEG sensor with sixteen electrodes is proposed to measure brainwaves over the entire brain area without any surgical procedures. We validated the proposed sensor system with visual evoked potential (VEP experiments elicited by flash stimulations. The VEP responses obtained from experiments are compared with the existing literature, and analyzed in temporal and spatial perspectives. We further interpret the experimental results using time-frequency distribution (TFD and distance measurements. The developed sensor guarantees stable operations for in vivo experiments in a non-invasive manner without surgical procedures, therefore exhibiting a high potential to strengthen longitudinal experimental studies and reliable translational research exploiting non-invasive paradigms.

  1. Development and Experimental Validation of a Dry Non-Invasive Multi-Channel Mouse Scalp EEG Sensor through Visual Evoked Potential Recordings.

    Science.gov (United States)

    Kim, Donghyeon; Yeon, Chanmi; Kim, Kiseon

    2017-02-09

    In this paper, we introduce a dry non-invasive multi-channel sensor for measuring brainwaves on the scalps of mice. The research on laboratory animals provide insights to various practical applications involving human beings and other animals such as working animals, pets, and livestock. An experimental framework targeting the laboratory animals has the potential to lead to successful translational research when it closely resembles the environment of real applications. To serve scalp electroencephalography (EEG) research environments for the laboratory mice, the dry non-invasive scalp EEG sensor with sixteen electrodes is proposed to measure brainwaves over the entire brain area without any surgical procedures. We validated the proposed sensor system with visual evoked potential (VEP) experiments elicited by flash stimulations. The VEP responses obtained from experiments are compared with the existing literature, and analyzed in temporal and spatial perspectives. We further interpret the experimental results using time-frequency distribution (TFD) and distance measurements. The developed sensor guarantees stable operations for in vivo experiments in a non-invasive manner without surgical procedures, therefore exhibiting a high potential to strengthen longitudinal experimental studies and reliable translational research exploiting non-invasive paradigms.

  2. Intracranial Pressure Monitoring: Invasive versus Non-Invasive Methods—A Review

    Science.gov (United States)

    Raboel, P. H.; Bartek, J.; Andresen, M.; Bellander, B. M.; Romner, B.

    2012-01-01

    Monitoring of intracranial pressure (ICP) has been used for decades in the fields of neurosurgery and neurology. There are multiple techniques: invasive as well as noninvasive. This paper aims to provide an overview of the advantages and disadvantages of the most common and well-known methods as well as assess whether noninvasive techniques (transcranial Doppler, tympanic membrane displacement, optic nerve sheath diameter, CT scan/MRI and fundoscopy) can be used as reliable alternatives to the invasive techniques (ventriculostomy and microtransducers). Ventriculostomy is considered the gold standard in terms of accurate measurement of pressure, although microtransducers generally are just as accurate. Both invasive techniques are associated with a minor risk of complications such as hemorrhage and infection. Furthermore, zero drift is a problem with selected microtransducers. The non-invasive techniques are without the invasive methods' risk of complication, but fail to measure ICP accurately enough to be used as routine alternatives to invasive measurement. We conclude that invasive measurement is currently the only option for accurate measurement of ICP. PMID:22720148

  3. Influence of dietary iron source on measures of iron status among female runners.

    Science.gov (United States)

    Snyder, A C; Dvorak, L L; Roepke, J B

    1989-02-01

    The purpose of the present investigation was to determine whether female runners who consume a modified vegetarian diet are predisposed to iron deficiency. Two groups of female runners who were matched for age, weight, aerobic capacity, miles run per week, and number of pregnancies were obtained for this study. One group (N = 9) regularly consumed a modified vegetarian diet (MV, less than 100 g red meat.wk-1), while the other group (N = 9) consumed a diet which included red meat (RM). Serum ferritin values were significantly (P less than 0.05) lower for the MV group (X +/- SE, 7.4 +/- 1.4 ng.100 ml-1) than for the RM group (19.8 +/- 4.2 ng.100 ml-1). Total iron binding capacity (TIBC) of the serum was also significantly different between the two groups of subjects (MV, 366.5 +/- 12.2 micrograms.100 ml-1; RM, 327.2 +/- 9.6 micrograms.100 ml-1). While dietary iron intake was comparable for the two groups (MV, 14.7 +/- 2.0 mg.d-1; RM, 14.0 +/- 2.2 mg.d-1, the bioavailability of the dietary iron was significantly different (MV, 0.66 +/- 0.08 mg.d-1; RM, 0.91 +/- 0.10 mg.d-1). As the presence of heme iron (from meat, fish, and poultry) increases the bioavailability of dietary iron, the results of the present investigation suggest that vegetarian athletes have altered iron status due to the form in which their dietary iron is consumed.

  4. 5th German cardiodiagnostic meeting 2013 with the 6th Leipzig Symposium on non-invasive cardiovascular imaging. Challenges and limit of the non-invasive cardiac imaging

    International Nuclear Information System (INIS)

    2013-01-01

    The proceedings on the German cardiodiagnostic meeting 2013 together with the 6th Leipzig Symposium on non-invasive cardiovascular imaging include abstracts concerning the following topics: Imaging in the rhythmology; adults with congenital cardiac defects; cardiac myopathies - myocarditis; cardiac valves (before and after transcutaneous valve replacement); coronary heart diseases; technical developments.

  5. Integration of non-invasive functional assessments with anatomical risk stratification in complex coronary artery disease: the non-invasive functional SYNTAX score.

    Science.gov (United States)

    Collet, Carlos; Onuma, Yoshinobu; Miyazaki, Yosuke; Morel, Marie-Angèle; Serruys, Patrick W

    2017-04-01

    Since the early days of coronary angiography, the extension and severity of coronary artery disease (CAD) have been used for risk stratification. The SYNTAX score objectively characterizes CAD in patients with multivessel disease. Furthermore, recalculating the SYNTAX score by the incorporation of the functional component coronary stenosis (i.e., FFR) increases the discrimination for the risk of adverse events. The calculation of the SYNTAX score derived from non-invasive modalities such as coronary computed tomography angiography (CTA) has emerged as a mean to obtain the SYNTAX score before invasive cardiac catheterization. Likewise, the computation of the non-invasive fractional flow reserve CT (FFR CT ) allows for the calculation of the non-invasive functional SYNTAX score. Ultimately, the combination of anatomical and functional evaluations with clinical factors further refines the identification of patients at risk and provides a recommendation for the Heart Team regarding the treatment strategy (i.e., PCI or CABG) based on the predicted 4-year mortality. The purpose of this review is to describe the integration of a novel non-invasive functional coronary assessment with the angiographic risk score in patients with multivessel CAD.

  6. Assessment of knee alignment with varus and valgus force through the range of flexion with non-invasive navigation.

    Science.gov (United States)

    Henderson, F; Alho, R; Riches, P; Picard, F

    2017-08-01

    In image-free total knee arthroplasty (TKA) navigation, infra-red markers are attached to bony landmarks to provide kinematic data intra-operatively, with the aim of improving the precision of implant placement. In non-invasive navigation, infra-red markers are attached to the skin surface, with recent evidence suggesting that this can give repeatable measurements of lower limb mechanical alignment. The aim of our study was to evaluate the use of a non-invasive navigation system in the assessment of mechanical alignment with applied coronal force through the range of flexion. A previously validated non-invasive system (Physiopilot™) was tested on 23 volunteers with healthy knees. Two users performed two registrations of the software workflow on each participant's right and left knees. A force was manually applied to the end-point of varus and valgus knee laxity and the measured change in mechanical alignment was recorded. Force was applied with the knee positioned in increments of flexion from 0 to 90°. In keeping with previous studies, satisfactory values of coefficient of repeatability (CR) of 1.55 and 1.33 were found for intra-observer repeatability in measurement of supine mechanical femoro-tibial angle (MFTA) in extension, with a good inter-observer correlation of intraclass correlation coefficient (ICC) .72. However, when flexion was introduced, intra-observer and inter-observer reliability fell out with acceptable limits. Therefore, the trial did not support use of the Physiopilot™ system as a measure of MFTA when flexion is introduced. It was felt that learning-curve, soft tissue artefacts and lack of force standardisation equipment may have accounted for significant levels of error, with further studies required to address these issues.

  7. Non-invasive mechanical ventilation in hematology patients: let's agree on several things first.

    Science.gov (United States)

    Schnell, David; Lemiale, Virginie; Azoulay, Élie

    2012-11-19

    Acute respiratory failure is a dreaded and life-threatening event that represents the main reason for ICU admission. Respiratory events occur in up to 50% of hematology patients, including one-half of those admitted to the ICU. Mortality from acute respiratory failure in hematology patients depends on the patient's general status, acute respiratory failure etiology, need for mechanical ventilation and associated organ dysfunction. Non-invasive mechanical ventilation is clearly beneficial for chronic obstructive pulmonary disease exacerbation and cardiogenic pulmonary edema. These benefits are based mainly on the avoidance of invasive mechanical ventilation complications. Non-invasive mechanical has also been recommended in hematology patients with acute respiratory failure but its real benefits remain unclear in these settings. There is growing concern about the safety of non-invasive mechanical ventilation to treat hypoxemic acute respiratory failure overall, but also in hematology patients. Prophylactic non-invasive mechanical ventilation in patients with acute respiratory failure but not respiratory distress seems to be effective in hematology patients with a reduced rate of intubation. However, curative non-invasive mechanical ventilation should be restricted to those patients with isolated respiratory failure, with fast improvement of respiratory distress under non-invasive mechanical ventilation, and with rapid switch to intubation to avoid deleterious delays in optimal invasive mechanical ventilation.

  8. Fiber-based hybrid probe for non-invasive cerebral monitoring in neonatology

    Science.gov (United States)

    Rehberger, Matthias; Giovannella, Martina; Pagliazzi, Marco; Weigel, Udo; Durduran, Turgut; Contini, Davide; Spinelli, Lorenzo; Pifferi, Antonio; Torricelli, Alessandro; Schmitt, Robert

    2015-07-01

    Improved cerebral monitoring systems are needed to prevent preterm infants from long-term cognitive and motor restrictions. Combining advanced near-infrared diffuse spectroscopy measurement technologies, time-resolved spectroscopy (TRS) and diffuse correlation spectroscopy (DCS) will introduce novel indicators of cerebral oxygen metabolism and blood flow for neonatology. For non-invasive sensing a fiber-optical probe is used to send and receive light from the infant head. In this study we introduce a new fiber-based hybrid probe that is designed for volume production. The probe supports TRS and DCS measurements in a cross geometry, thus both technologies gain information on the same region inside the tissue. The probe is highly miniaturized to perform cerebral measurements on heads of extreme preterm infants down to head diameters of 6cm. Considerations concerning probe production focus on a reproducible accuracy in shape and precise optical alignment. In this way deviations in measurement data within a series of probes should be minimized. In addition to that, requirements for clinical use like robustness and hygiene are considered. An additional soft-touching sleeve made of FDA compatible silicone allows for a flexible attachment with respect to the individual anatomy of each patient. We present the technical concept of the hybrid probe and corresponding manufacturing methods. A prototype of the probe is shown and tested on tissue phantoms as well as in vivo to verify its operational reliability.

  9. Non-invasive energy spread monitoring for the JLAB experimental program via synchrotron light interferometers

    International Nuclear Information System (INIS)

    The hypernuclear physics program at Jefferson Lab [JLAB] requires a tight upper limit on the RMS beam energy spread of σ E /E -5 . The energy spread is determined by measuring the beam width at a dispersive location (D∼4m) in the transport line to the experimental halls. Ignoring the intrinsic beam size, this low energy spread corresponds to an upper bound on the beam width of σ beam <120μm. Such small beam sizes cannot be measured using direct imaging of the synchrotron light due to diffraction limitations. Using interferometry of the synchrotron light the resolution of the optical system can be made very high. The non-invasive nature of this measurement is also very advantageous as it allows continuous energy spread monitoring. Two synchrotron light interferometers have been built and installed at Jefferson Lab, one each in the Hall-A and Hall-C transport lines. The two devices operate over a beam current range from 10 to 120μA and have a spatial resolution better than 10μm. The structure of the interferometer, the experience gained during its installation, beam measurements and energy spread stability are presented

  10. Chemical Sensor Platform for Non-Invasive Monitoring of Activity and Dehydration

    Directory of Open Access Journals (Sweden)

    Dmitry Solovei

    2015-01-01

    Full Text Available A non-invasive solution for monitoring of the activity and dehydration of organisms is proposed in the work. For this purpose, a wireless standalone chemical sensor platform using two separate measurement techniques has been developed. The first approach for activity monitoring is based on humidity measurement. Our solution uses new humidity sensor based on a nanostructured TiO2 surface for sweat rate monitoring. The second technique is based on monitoring of potassium concentration in urine. High level of potassium concentration denotes clear occurrence of dehydration. Furthermore, a Wireless Body Area Network (WBAN was developed for this sensor platform to manage data transfer among devices and the internet. The WBAN coordinator controls the sensor devices and collects and stores the measured data. The collected data is particular to individuals and can be shared with physicians, emergency systems or athletes’ coaches. Long-time monitoring of activity and potassium concentration in urine can help maintain the appropriate water intake of elderly people or athletes and to send warning signals in the case of near dehydration. The created sensor system was calibrated and tested in laboratory and real conditions as well. The measurement results are discussed.

  11. Design of non-invasive glucose meter using near-infrared technique.

    Science.gov (United States)

    Saleh, Gameel; Alkaabi, Fatimah; Al-Hajhouj, Noor; Al-Towailib, Fatimah; Al-Hamza, Safa

    2018-03-02

    Diabetics need to keep track of their blood glucose level and measure it regularly to determine their insulin dose intake and to ensure that glucose level is always within the normal range. In this article, a system that enables the measurement of blood glucose level non-invasively is designed. This article uses a near infra-red (NIR) transmittance spectroscopy, without drawing blood, puncturing the skin, or causing pain. It involves a light source and light detector circuits positioned on a certain region of the body. The attenuated received infra-red signal by the detector is a measure of the blood glucose level of that region. Data are collected from the receiving circuit and sent to a microcontroller using CoolTerm application, then exporting it to Excel Sheet, in which mean values and graphs are obtained. The performance of the circuit with and without Filtering is examined. A downward pattern was noticed, as the glucose concentration in the solution increased, the voltage output decreased, meaning that a less intensity light was detected by the receiving circuit. An improvement in the accuracy of measurements by 17% was achieved, when a notch filter is implemented to cut the voltage components corresponding to the power line noisy signals.

  12. Urinary biomarkers for the non-invasive diagnosis of endometriosis.

    Science.gov (United States)

    Liu, Emily; Nisenblat, Vicki; Farquhar, Cindy; Fraser, Ian; Bossuyt, Patrick M M; Johnson, Neil; Hull, M Louise

    2015-12-23

    About 10% of reproductive-aged women suffer from endometriosis which is a costly chronic disease that causes pelvic pain and subfertility. Laparoscopy is the 'gold standard' diagnostic test for endometriosis, but it is expensive and carries surgical risks. Currently, there are no simple non-invasive or minimally-invasive tests available in clinical practice that accurately diagnoses endometriosis. 1. To provide summary estimates of the diagnostic accuracy of urinary biomarkers for the diagnosis of pelvic endometriosis compared to surgical diagnosis as a reference standard.2. To assess the diagnostic utility of biomarkers that could differentiate ovarian endometrioma from other ovarian masses.Urinary biomarkers were evaluated as replacement tests for surgical diagnosis and as triage tests to inform decisions to undertake surgery for endometriosis. The searches were not restricted to particular study design, language or publication dates. We searched the following databases to 20 April - 31 July 2015: CENTRAL, MEDLINE, EMBASE, CINAHL, PsycINFO, Web of Science, LILACS, OAIster, TRIP and ClinicalTrials.gov (trial register). MEDION, DARE, and PubMed were also searched to identify reviews and guidelines as reference sources of potentially relevant studies. Recently published papers not yet indexed in the major databases were also sought. The search strategy incorporated words in the title, abstract, text words across the record and the medical subject headings (MeSH) and was modified for each database. Published peer-reviewed, randomised controlled or cross-sectional studies of any size were considered, which included prospectively collected samples from any population of reproductive-aged women suspected of having one or more of the following target conditions: ovarian, peritoneal or deep infiltrating endometriosis (DIE). We included studies comparing the diagnostic test accuracy of one or more urinary biomarkers with surgical visualisation of endometriotic lesions. Two

  13. Measurements of Sound Velocity of Laser-Irradiated Iron Foils Relevant to Earth Core Condition

    International Nuclear Information System (INIS)

    Shigemori, K.; Ichinose, D.; Otani, K.; Shiota, T.; Sakaiya, T.; Azechi, H.; Irifune, T.

    2006-01-01

    We have developed a novel method to measure sound velocity of laser-irradiated iron foils by side-on x-ray radiograph technique. Iron foils were irradiated with two-stepped laser pulse to reach the earth's core condition. We obtained not only the sound velocity but also temperature, pressure, shock velocity, compressibility, and particle velocity of the laser-irradiated iron. The experimental results are in good agreements with previous experimental results and with one-dimensional simulation results

  14. Establishment of an X radiation equipment quality control programme using non invasive meters

    International Nuclear Information System (INIS)

    Lucena, Rodrigo Ferreira de

    2010-01-01

    The objective of this work was to study the behavior of the mainly X ray equipment calibration laboratory of IPEN, operated in the range from 25 kV to 150 kV using a PTW non invasive meter, model Diavolt TM , and an ORTEC spectrometry system, model NOMAD-PLUS 92X, for the establishment of a quality control programme. The Diavolt meter was used for measurements of air kerma, peak voltage and practical peak voltage. The measurements were made varying parameters such as electrical current, X radiation quality for radiation diagnostic, angulations of the meter and its distance in relation to the focal spot of the X ray tube. The results were compared with data found in the literature. Several spectra were generated with the spectrometer system with the purpose of determine the peak voltage in function of the nominal voltage and to characterize the radiation qualities for radiation diagnostic previously determined. The established quality control programme enables the management of the appropriate functioning of the measurement instruments (ionization chambers, voltage and current meter and spectrometer) as well as of the X radiation system. This work also has proposed a time interval to run each one of the tests. (author)

  15. A non-invasive acoustic and vibration analysis technique for evaluation of hip joint conditions.

    Science.gov (United States)

    Glaser, Diana; Komistek, Richard D; Cates, Harold E; Mahfouz, Mohamed R

    2010-02-10

    The performance evaluation of THA outcome is difficult and surgeons often use invasive methods to investigate effectiveness. A non-invasive acoustic and vibration analysis technique has recently been developed for more-in-depth evaluation of in vivo hip conditions. Gait kinematics, corresponding vibration and sound measurement of five THA subjects were analyzed post-operatively using video-fluoroscopy, sound and accelerometer measurements while walking on a treadmill. The sound sensor and a pair of tri-axial accelerometers, externally attached to the pelvic and femoral bone prominences, detected frequencies that are propagated through the femoral head and acetabular cup interactions. A data acquisition system was used to amplify the signal and filter out noise generated by undesired frequencies. In vivo kinematics and femoral head sliding quantified using video fluoroscopy were correlated to the sound and acceleration measurements. Distinct variations between the different subjects were identified. A correlation of sound and acceleration impulses with separation has been achieved. Although, in vivo sounds are quite variable in nature and all correlated well with the visual images. This is the first study to document and correlate visual and audible effects of THA under in-vivo conditions. This study has shown that the development of the acoustic and vibration technique provides a practical method and generates new possibilities for a better understanding of THA performance. Copyright 2009 Elsevier Ltd. All rights reserved.

  16. Hydrogel-based electrochemical sensor for non-invasive and continuous glucose monitoring

    Science.gov (United States)

    Park, Habeen; Lee, Ji-Young; Kim, Dong-Chul; Koh, Younggook; Cha, Junhoe

    2017-07-01

    Monitoring blood glucose level of diabetic patients is crucial in diabetes care from life threating complications. Selfmonitoring blood glucose (SMBG) that involves finger prick to draw blood samples into the measurement system is a widely-used method of routine measurement of blood glucose levels to date. SMBG includes, however, unavoidable pain problems resulting from the repetitive measurements. We hereby present a hydrogel-based electrochemical (H-EC) sensor to monitor the glucose level, non-invasively. Glucose oxidase (GOx) was immobilized in the disc-type hydroxyethyl methacrylate (HEMA) based hydrogel and kept intact in the hydrogel. Fast electron transfer mediated by Prussian blue (PB, hexacyanoferrate) generated efficient signal amplifications to facilitate the detection of the extracted glucose from the interstitial fluid. The linear response and the selectivity against glucose of the H-EC sensor were validated by chronoamperometry. For the practical use, the outcomes from the correlation of the extracted glucose concentration and the blood glucose value by on-body extraction, as well as the validation of the hydrogel-based electrochemical (H-EC) device, were applied to the on-body glucose monitoring.

  17. Studies of particle drying using non-invasive Raman spectrometry and particle size analysis.

    Science.gov (United States)

    Hamilton, Peter; Littlejohn, David; Nordon, Alison; Sefcik, Jan; Slavin, Paul; Dallin, Paul; Andrews, John

    2011-05-21

    The evaporation of methanol from needle-shaped particles of cellobiose octaacetate (COA) has been studied directly in a jacketed vacuum drier using in situ measurements by Raman spectrometry. A design of experiments (DoE) approach was used to investigate the effects of three parameters (method of agitation, % solvent loss on drying and jacket temperature), with the intention of minimising the drying time and extent of particle attrition. Drying curves based on Raman signals for methanol and COA in the spectra of the wet particles indicated the end of drying and revealed three stages in the drying process that could be used to monitor the progress of solvent removal in real time. Off-line particle size measurements based on laser diffraction were made to obtain information on the extent of attrition, to compare with the trends revealed by the Raman drying curves. The study demonstrated that non-invasive Raman spectrometry can be used to study the progress of drying during agitation of particles in a vacuum drier, allowing optimisation of operating conditions to minimise attrition and reduce drying times. Although a correlation between particle size and off-line Raman measurements of COA was demonstrated, it was not possible to derive equivalent information from the in situ Raman spectra owing to the greater effects of particle motion or bulk density variations of the particles in the drier.

  18. Non-invasive objective devices for monitoring the inflammatory, proliferative and remodelling phases of cutaneous wound healing and skin scarring.

    Science.gov (United States)

    Ud-Din, Sara; Bayat, Ardeshir

    2016-08-01

    Objective evaluation of cutaneous wounds through the use of non-invasive devices is important for diagnosis, monitoring treatment response and can lead to the development of improved theranostic strategies. The need for objective monitoring of wound healing and scar formation is evident as this enables accurate diagnosis, evaluation and prognosis for clinicians and allows for the standardisation and validation of methodology for researchers. Therefore, this review provides an overview of the current application of non-invasive objective technologies for the assessment of wound healing through the different phases of repair. We propose that cutaneous healing parameters can be split into three core domains: anatomical, mechanical and physiological. These categories can be further subdivided with respect to specific phases of healing. There is no single instrument, which can measure all the parameters of healing simultaneously; thus, it is important to choose the correct device for the particular healing characteristics being monitored. However, multiprobe systems, which include a number of devices connected to one main unit, are useful as they enable multiple measurements of different parameters. Many of the devices have not been validated against histological examination. Additionally, some of the instruments have not been evaluated in all wound or scar types and may not be useful throughout all phases of cutaneous wound healing. In conclusion, non-invasive objective devices are useful in the assessment of cutaneous wound healing, as these tools can link the treatment and diagnosis by evaluating response to treatment and thus could aid as a marker for healing and scar maturation. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Non-invasive characterization and quality assurance of silicon micro-strip detectors using pulsed infrared laser

    Science.gov (United States)

    Ghosh, P.

    2016-01-01

    The Compressed Baryonic Matter (CBM) experiment at FAIR is composed of 8 tracking stations consisting of roughly 1300 double sided silicon micro-strip detectors of 3 different dimensions. For the quality assurance of prototype micro-strip detectors a non-invasive detector charaterization is developed. The test system is using a pulsed infrared laser for charge injection and characterization, called Laser Test System (LTS). The system is aimed to develop a set of characterization procedures which are non-invasive (non-destructive) in nature and could be used for quality assurances of several silicon micro-strip detectors in an efficient, reliable and reproducible way. The procedures developed (as reported here) uses the LTS to scan sensors with a pulsed infra-red laser driven by step motor to determine the charge sharing in-between strips and to measure qualitative uniformity of the sensor response over the whole active area. The prototype detector modules which are tested with the LTS so far have 1024 strips with a pitch of 58 μm on each side. They are read-out using a self-triggering prototype read-out electronic ASIC called n-XYTER. The LTS is designed to measure sensor response in an automatized procedure at several thousand positions across the sensor with focused infra-red laser light (spot size ≈ 12 μm, wavelength = 1060 nm). The pulse with a duration of ≈ 10 ns and power ≈ 5 mW of the laser pulse is selected such, that the absorption of the laser light in the 300 μm thick silicon sensor produces ≈ 24000 electrons, which is similar to the charge created by minimum ionizing particles (MIP) in these sensors. The laser scans different prototype sensors and various non-invasive techniques to determine characteristics of the detector modules for the quality assurance is reported.

  20. A novel LabVIEW-based multi-channel non-invasive abdominal maternal-fetal electrocardiogram signal generator.

    Science.gov (United States)

    Martinek, Radek; Kelnar, Michal; Koudelka, Petr; Vanus, Jan; Bilik, Petr; Janku, Petr; Nazeran, Homer; Zidek, Jan

    2016-02-01

    This paper describes the design, construction, and testing of a multi-channel fetal electrocardiogram (fECG) signal generator based on LabVIEW. Special attention is paid to the fetal heart development in relation to the fetus' anatomy, physiology, and pathology. The non-invasive signal generator enables many parameters to be set, including fetal heart rate (FHR), maternal heart rate (MHR), gestational age (GA), fECG interferences (biological and technical artifacts), as well as other fECG signal characteristics. Furthermore, based on the change in the FHR and in the T wave-to-QRS complex ratio (T/QRS), the generator enables manifestations of hypoxic states (hypoxemia, hypoxia, and asphyxia) to be monitored while complying with clinical recommendations for classifications in cardiotocography (CTG) and fECG ST segment analysis (STAN). The generator can also produce synthetic signals with defined properties for 6 input leads (4 abdominal and 2 thoracic). Such signals are well suited to the testing of new and existing methods of fECG processing and are effective in suppressing maternal ECG while non-invasively monitoring abdominal fECG. They may also contribute to the development of a new diagnostic method, which may be referred to as non-invasive trans-abdominal CTG +  STAN. The functional prototype is based on virtual instrumentation using the LabVIEW developmental environment and its associated data acquisition measurement cards (DAQmx). The generator also makes it possible to create synthetic signals and measure actual fetal and maternal ECGs by means of bioelectrodes.

  1. Gingival crevicular blood: As a non-invasive screening tool for diabetes mellitus in dental clinics

    Directory of Open Access Journals (Sweden)

    Neema Shetty

    2013-01-01

    Full Text Available Background: A high number of patients with periodontitis may have undiagnosed diabetes. Self-monitoring devices provide a simple method for rapid monitoring of the glucose level in the blood by utilizing a blood sample from the finger, but this method requires a needle puncture to obtain blood. It is possible that gingival crevicular blood (GCB from routine periodontal probing may be a source of blood for glucose measurements. Aim: To establish whether GCB can be used as a non-invasive diagnostic aid in screening for diabetes mellitus during routine periodontal examination. Materials and Methods: The study involved 50 diabetics and 50 non-diabetics, with an age range of 26-66 years. Both diabetic and non-diabetic patients had moderate to severe gingivitis with at least one tooth in the maxillary anterior region showing bleeding upon probing. The Gingival Index and Oral Hygiene Index-Simplified were recorded. Blood oozing from the gingival sulcus/pocket following periodontal pocket probing was collected using a capillary tube and transferred to the test stick of a glucose self-monitoring device (Accu-Chek, Roche Diagnostic, Germany in patients with comparable gingival and oral hygiene status. This value was compared with the peripheral fingerstick blood glucose (PFBG value, which was obtained by pricking the finger tip at the same visit. Statistical analysis was performed using Pearson′s correlation coefficient. Result: There was no statistically significant difference between the gingival crevicular blood glucose (GCBG values and the PFBG values in both the diabetic (P = 0.129, NS and the non-diabetic (P = 0.503, NS groups. Karl Pearson′s product-moment correlation coefficient was calculated, which showed a positive correlation between the two measurements in the diabetic (r = 0.943 as well as the non-diabetic (r = 0.926 groups. Conclusion: The results suggest that GCB can be used as a non-invasive diagnostic aid in screening for diabetes

  2. Blood biomarkers for the non-invasive diagnosis of endometriosis.

    Science.gov (United States)

    Nisenblat, Vicki; Bossuyt, Patrick M M; Shaikh, Rabia; Farquhar, Cindy; Jordan, Vanessa; Scheffers, Carola S; Mol, Ben Willem J; Johnson, Neil; Hull, M Louise

    2016-05-01

    About 10% of reproductive-aged women suffer from endometriosis, a costly chronic disease causing pelvic pain and subfertility. Laparoscopy is the gold standard diagnostic test for endometriosis, but is expensive and carries surgical risks. Currently, there are no non-invasive or minimally invasive tests available in clinical practice to accurately diagnose endometriosis. Although other reviews have assessed the ability of blood tests to diagnose endometriosis, this is the first review to use Cochrane methods, providing an update on the rapidly expanding literature in this field. To evaluate blood biomarkers as replacement tests for diagnostic surgery and as triage tests to inform decisions on surgery for endometriosis. Specific objectives include:1. To provide summary estimates of the diagnostic accuracy of blood biomarkers for the diagnosis of peritoneal, ovarian and deep infiltrating pelvic endometriosis, compared to surgical diagnosis as a reference standard.2. To assess the diagnostic utility of biomarkers that could differentiate ovarian endometrioma from other ovarian masses. We did not restrict the searches to particular study designs, language or publication dates. We searched CENTRAL to July 2015, MEDLINE and EMBASE to May 2015, as well as these databases to 20 April 2015: CINAHL, PsycINFO, Web of Science, LILACS, OAIster, TRIP, ClinicalTrials.gov, DARE and PubMed. We considered published, peer-reviewed, randomised controlled or cross-sectional studies of any size, including prospectively collected samples from any population of reproductive-aged women suspected of having one or more of the following target conditions: ovarian, peritoneal or deep infiltrating endometriosis (DIE). We included studies comparing the diagnostic test accuracy of one or more blood biomarkers with the findings of surgical visualisation of endometriotic lesions. Two authors independently collected and performed a quality assessment of data from each study. For each diagnostic test

  3. Dynamics of the brain: Mathematical models and non-invasive experimental studies

    Science.gov (United States)

    Toronov, V.; Myllylä, T.; Kiviniemi, V.; Tuchin, V. V.

    2013-10-01

    Dynamics is an essential aspect of the brain function. In this article we review theoretical models of neural and haemodynamic processes in the human brain and experimental non-invasive techniques developed to study brain functions and to measure dynamic characteristics, such as neurodynamics, neurovascular coupling, haemodynamic changes due to brain activity and autoregulation, and cerebral metabolic rate of oxygen. We focus on emerging theoretical biophysical models and experimental functional neuroimaging results, obtained mostly by functional magnetic resonance imaging (fMRI) and near-infrared spectroscopy (NIRS). We also included our current results on the effects of blood pressure variations on cerebral haemodynamics and simultaneous measurements of fast processes in the brain by near-infrared spectroscopy and a very novel functional MRI technique called magnetic resonance encephalography. Based on a rapid progress in theoretical and experimental techniques and due to the growing computational capacities and combined use of rapidly improving and emerging neuroimaging techniques we anticipate during next decade great achievements in the overall knowledge of the human brain.

  4. Dielectric properties of MSWI bottom ash for non-invasive monitoring of moisture.

    Science.gov (United States)

    Ilyas, Aamir; Persson, Magnus; van Praagh, Martijn

    2013-08-01

    The dielectric procperties of MSWI bottom ash as a function of volumetric water content (VWC) are reported in this paper. The objective was to aid the development of microwave based non-invasive emission monitoring and control system for various bottom ash applications. The dielectric measurements were made, on a 1.5-year-old bottom ash, with an electrical network analyzer in microwave range (300 MHz-1.5 GHz). The VWC of the samples ranged between 0.05 and 0.40 m(3) m(-3). The relationship between the dielectric permittivity and the VWC was modeled with an empirical model and a physically based Birchak model (BM). The results showed that a linear relationship existed between the permittivity and the VWC at higher water contents (>0.25 m(3) m(-3)). However, at lower water contents (bottom ash. The permittivity measurement, with the current method, was not affected by high salt concentrations (10 and 20 dS/m). The empirical model, as compared to BM, provided the best fit between the actual and the predicted water content. The root mean square error (RMSE) values were 0.008-0.010 and 0.06-0.09 m(3) m(-3) for the empirical and the Birchak model, respectively.

  5. A Microwave Ring-Resonator Sensor for Non-Invasive Assessment of Meat Aging

    Science.gov (United States)

    Jilani, Muhammad Taha; Wen, Wong Peng; Cheong, Lee Yen; ur Rehman, Muhammad Zaka

    2016-01-01

    The assessment of moisture loss from meat during the aging period is a critical issue for the meat industry. In this article, a non-invasive microwave ring-resonator sensor is presented to evaluate the moisture content, or more precisely water holding capacity (WHC) of broiler meat over a four-week period. The developed sensor has shown significant changes in its resonance frequency and return loss due to reduction in WHC in the studied duration. The obtained results are also confirmed by physical measurements. Further, these results are evaluated using the Fricke model, which provides a good fit for electric circuit components in biological tissue. Significant changes were observed in membrane integrity, where the corresponding capacitance decreases 30% in the early aging (0D-7D) period. Similarly, the losses associated with intracellular and extracellular fluids exhibit changed up to 42% and 53%, respectively. Ultimately, empirical polynomial models are developed to predict the electrical component values for a better understanding of aging effects. The measured and calculated values are found to be in good agreement. PMID:26805828

  6. Non-Invasive Fiber-Optic Biomedical Sensor for Basic Vital Sign Monitoring

    Directory of Open Access Journals (Sweden)

    Jan Nedoma

    2017-01-01

    Full Text Available This article focuses on the functionality verification of a novel non-invasive fibre-optic sensor monitoring basic vital signs such as Respiratory Rate (RR, Heart Rate (HR and Body Temperature (BT. The integration of three sensors in one unit is a unique solution patented by our research team. The integrated sensor is based on two Fiber Bragg Gratings (FBGs encapsulated inside an inert polymer (non-reactive to human skin called PolyDiMethylSiloxane (PDMS. The PDMS is beginning to find widespread applications in the biomedical field due to its desirable properties, especially its immunity to ElectroMagnetic Interference (EMI. The integrated sensor's functionality was verified by carrying out a series of laboratory experiments in 10 volunteer subjects after giving them a written informed consent. The Bland-Altman statistical analysis produced satisfactory accuracy for the respiratory and heart rate measurements and their respective reference signals in all test subjects. A total relative error of 0.31% was determined for body temperature measurements. The main contribution of this article is a proof-of-concept of a novel noninvasive fiber-optic sensor which could be used for basic vital sign monitoring. This sensor offers a potential to enhance and improve the comfort level of patients in hospitals and clinics and can even be considered for use in Magnetic Resonance Imaging (MRI environments.

  7. A Microwave Ring-Resonator Sensor for Non-Invasive Assessment of Meat Aging

    Directory of Open Access Journals (Sweden)

    Muhammad Taha Jilnai

    2016-01-01

    Full Text Available The assessment of moisture loss from meat during the aging period is a critical issue for the meat industry. In this article, a non-invasive microwave ring-resonator sensor is presented to evaluate the moisture content, or more precisely water holding capacity (WHC of broiler meat over a four-week period. The developed sensor has shown significant changes in its resonance frequency and return loss due to reduction in WHC in the studied duration. The obtained results are also confirmed by physical measurements. Further, these results are evaluated using the Fricke model, which provides a good fit for electric circuit components in biological tissue. Significant changes were observed in membrane integrity, where the corresponding capacitance decreases 30% in the early aging (0D-7D period. Similarly, the losses associated with intracellular and extracellular fluids exhibit changed up to 42% and 53%, respectively. Ultimately, empirical polynomial models are developed to predict the electrical component values for a better understanding of aging effects. The measured and calculated values are found to be in good agreement.

  8. Applied strategy for options of invasive and non-invasive sensors and instruments

    Science.gov (United States)

    Yan, Zhang; Xin, Liu; Scopesi, Fabio; Serra, Giovanni; Sun, Jinwei; Rolfe, Peter

    2008-10-01

    A diverse range of sensors and instruments is available for use in the critical care of acutely ill patients and it is not always straightforward to decide which technologies should be used. Clinicians have their own priorities for the physiological variables that they consider need to be monitored in order to provide optimum medical care. Alongside this, consideration must be given to the choice of available technologies. This choice may be influenced by performance criteria, cost, and ease of use. It is also necessary to consider the physical status of the patients, the measurement instruments and any potential risks for the patients so as to provide the best measurement scheme. This paper explores the use of decision support tools that may be used in critical care situations. The care of ill newborn babies requiring mechanical ventilation is considered as a case study. The choice of invasive and non-invasive techniques for blood gas and pH assessment is evaluated and decision trees and hierarchical clustering are considered as possible decision support methodologies.

  9. Non-invasive Differentiation of Kidney Stone Types using X-ray Dark-Field Radiography

    Science.gov (United States)

    Scherer, Kai; Braig, Eva; Willer, Konstantin; Willner, Marian; Fingerle, Alexander A.; Chabior, Michael; Herzen, Julia; Eiber, Matthias; Haller, Bernhard; Straub, Michael; Schneider, Heike; Rummeny, Ernst J.; Noël, Peter B.; Pfeiffer, Franz

    2015-01-01

    Treatment of renal calculi is highly dependent on the chemical composition of the stone in question, which is difficult to determine using standard imaging techniques. The objective of this study is to evaluate the potential of scatter-sensitive X-ray dark-field radiography to differentiate between the most common types of kidney stones in clinical practice. Here, we examine the absorption-to-scattering ratio of 118 extracted kidney stones with a laboratory Talbot-Lau Interferometer. Depending on their chemical composition, microscopic growth structure and morphology the various types of kidney stones show strongly varying, partially opposite contrasts in absorption and dark-field imaging. By assessing the microscopic calculi morphology with high resolution micro-computed tomography measurements, we illustrate the dependence of dark-field signal strength on the respective stone type. Finally, we utilize X-ray dark-field radiography as a non-invasive, highly sensitive (100%) and specific (97%) tool for the differentiation of calcium oxalate, uric acid and mixed types of stones, while additionally improving the detectability of radio-lucent calculi. We prove clinical feasibility of the here proposed method by accurately classifying renal stones, embedded within a fresh pig kidney, using dose-compatible measurements and a quick and simple visual inspection. PMID:25873414

  10. Non-invasive estimation of coral tentacle material properties using underwater PIV data

    Science.gov (United States)

    Staples, Anne; Asher, Shai; Shavit, Uri

    2016-11-01

    With corals worldwide currently undergoing a third global bleaching event, understanding a detailed picture of local coral colony flow transport processes is more crucial than ever. Many coral species invest energy in extending flexible organs such as tentacles, that extrude from the coral's soft tissue surface and are used in either a passive or active manner for feeding, competitor sensing and even egg release. The significant role of these organs in transport and mixing processes is just beginning to be understood. For example, Xeniidea's rhythmic pulsation of its tentacles has recently been shown to intensify mixing and enhance photosynthesis (Kremien et al., 2013). A critical part of modeling these tentacle-induced flows is obtaining measurements of the tentacles' material properties. Obtaining such measurements, however, is challenging, since the tentacle is expected to have significantly different material properties than a harvested specimen. Here, we demonstrate a non-invasive, in situ approach for estimating these material properties forFavia favus tentacles using underwater particle image velocimetry (PIV) data and tentacle-tracking data, along with structural dynamics models of the tentacles. In this data, 2.7x2 [cm2] 1392x1024 pixel images were collected at a rate of 5 Hz 7mm above the crest of two separate Favia Favuscolonies in Eilat, Israel. Using the data and models, we are able to estimate the Young's modulus for the tentacles, which is found to be a function of the wave frequency. Partial funding by the Fulbright and Israel Science Foundations.

  11. Insights into atherosclerosis from invasive and non-invasive imaging studies: Should we treat subclinical atherosclerosis?

    Science.gov (United States)

    Santos, Raul D; Nasir, Khurram

    2009-08-01

    Although atherosclerosis is associated with the elderly, young adults with hypercholesterolemia and other cardiovascular risk factors may have subclinical atherosclerotic disease. In many cases, when two or more risk factors are present, conventional risk assessment using the Framingham score, that was not designed to detect atherosclerotic plaques, may significantly underestimate the extent of atherosclerosis. Several non-invasive imaging technologies now make it possible to identify subclinical atherosclerosis before symptoms appear or major vascular events occur. These include B-mode ultrasound to measure carotid intima-media thickness, computed tomography to measure coronary artery calcification, and high-resolution magnetic resonance imaging to evaluate plaque size and composition. On the basis of available evidence, assessment of subclinical atherosclerosis should be considered in persons judged to be at intermediate risk by Framingham score, because test results may influence risk stratification and, consequently, the intensity of therapeutic intervention. Patients with significant subclinical atherosclerosis are at high risk and, like other high-risk individuals, should receive treatment designed to achieve aggressive low-density lipoprotein cholesterol targets. Clinical studies show that statin therapy may delay atherosclerosis progression and that intensive therapy with rosuvastatin may actually reverse the atherosclerotic process.

  12. A Wide-Band Electromagnetic Impedance Profiling System forNon-Invasive Subsurface Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Tseng, Hung-Wen; Lee, Ki Ha; Becker, Alex

    2004-12-17

    A non-invasive, wide-band electromagnetic (EM) impedance difference system for shallow subsurface electrical structure characterization in environmental and engineering problems has been developed at the Lawrence Berkeley National Laboratory (LBNL). Electrical parameters of interest are electrical conductivity and dielectric permittivity that are deduced from the impedance difference data. The prototype system includes a magnetic loop transmitter, which operates between 0.1 MHz and 100 MHz, an electrical dipole antenna for observing the electric field, and a loop antenna for measuring the magnetic field.All antennas are mounted on a cart made of non-metallic material for easy movement of the whole array for profiling. Surface EM impedance difference is obtained by taking the difference of the ratios of the electric fields to the magnetic fields at selected frequencies at two different levels. Numerical simulations will be presented to verify this new approach. A set of the impedance difference data acquired at the University of California's Richmond Field Station compares reasonably well with simulation results based on a model obtained with the resistivity method and in situ TDR (time domain reflectometry)measurements.

  13. Non-invasive pre-clinical MR imaging of prostate tumor hypoxia for radiation therapy prognosis

    Directory of Open Access Journals (Sweden)

    Derek White

    2014-03-01

    Full Text Available Purpose: To investigate the usefulness of Oxygen-Enhanced Magnetic Resonance Imaging (OE-MRI changes in signal intensity related to oxygen challenge for predicting tumor response to radiation therapy.Methods: Dynamic MR signal changes were acquired using Varian 4.7T small animal MR scanner prior to image-guided radiation therapy (IGRT of small (n = 6 and large subcutaneous (n = 5 prostate tumors in adult male rats. An interleaved blood-oxygen level dependent (BOLD and tissue-oxygen level dependent (TOLD data acquisition or (IBT was performed using a baseline of medical air as positive control and using medical oxygen as a breathing challenge. BOLD used a 2-D multi-slice spoiled gradient-echo with multi-echo sequence. TOLD used a 2-D multi-slice spoiled gradient-echo sequence. Voxel changes in signal intensity were determined by a correlation coefficient mapping technique. Irradiation technique planned consisted of 1F × 15 Gy AP/PA or 2F × 7.5 Gy AP/PA to the gross tumor volume (GTV. Tumor growth measurements were recorded over time to assess the response to IGRT.Results: BOLD and TOLD signals variously illustrated positive or negative impulse responses in the tumor ROI due to inhaling medical oxygen. Correlation coefficient mapping demonstrated heterogeneity in tumors after inhaling medical oxygen. BOLD and TOLD signals exhibited increased changes in signal intensities after the first fraction of dose. Multi-fractionation had minimum effect until the second fraction of dose was applied. Tumor growth delays were observed when inhaling medical oxygen during IGRT.Conclusion: OE-MRI is a non-invasive imaging modality that can provide insight to the oxygen status of tumors. Observed increase percent changes in BOLD and TOLD signal intensities after the first fraction of dose suggest tumors experienced reoxygenation. OE-MRI could be used for predicting tumor response to IGRT when using medical oxygen for increasing GTV radiosensitivity, suggesting

  14. Exploring microstructure and surface features of Chinese coins using non-invasive approaches

    International Nuclear Information System (INIS)

    Xie, Ruishi; Li, Yuanli; Guo, Baogang; Hu, Hailong; Jiang, Linhai

    2015-01-01

    Highlights: • The microstructure and surface features of Chinese coins were systematically explored. • The application of non-invasive techniques enables unambiguous explorations of the component, morphology, microstructure and physical properties of the coins. • This work provides a new insight into exploration of surface properties of precious metal objects, metallic artefacts as well as monuments without causing any damage to them. - Abstract: Despite the apparent significance of Chinese coins, the knowledge about the surface properties of the coins is still largely unknown. To date, most analytical techniques (e.g., cross-section analysis, inductively coupled plasma-mass spectrometry, thermal analysis) require the partial or total destruction of the investigated sample, which is fatal to precious objects (e.g., artefacts and monuments). Herein, we systematically investigate the surface of a series of one yuan Chinese coins to disclose their chemical composition, morphology, and microstructure features using non-invasive techniques. Investigations were performed with scanning electron microscopy, coupled with energy dispersive X-ray spectroscopy, and X-ray diffraction. The application of these approaches enables unambiguous explorations of the component, morphology, microstructure and physical properties of the samples without destroying them. The identification of the coins was achieved in light of the name of issuing authority and floral pattern. The morphology observations of the samples display that these coins possess mostly homogeneous surfaces; hence such a finding allows the formulation of a possible minting technology. Besides, the energy dispersive X-ray spectroscopy has proved of great role in exploring these coins, mainly because of its detectability to easily probe the presence of certain minor elements, which is critical in understanding surface finishing technologies, and production processes. The findings manifest that the coins were made

  15. The role of non-invasive biomarkers in detecting acute respiratory effects of traffic-related air pollution.

    Science.gov (United States)

    Scarpa, M C; Kulkarni, N; Maestrelli, P

    2014-09-01

    The role of non-invasive methods in the investigation of acute effects of traffic-related air pollution is not clearly established. We evaluated the usefulness of non-invasive biomarkers in detecting acute air pollution effects according to the age of participants, the disease status, their sensitivity compared with lung function tests and their specificity for a type of pollutant. Search terms lead to 535 titles, among them 128 had potentially relevant abstracts. Sixtynine full papers were reviewed, while 59 articles were excluded as they did not meet the selection criteria. Methods used to assess short-term effects of air pollution included analysis of nasal lavage (NAL) for the upper airways, and induced sputum (IS), exhaled breath condensate (EBC) and exhaled nitric oxide (FeNO) for central and lower airways. There is strong evidence that FeNO evaluation is useful independently from subject age, while IS analysis is suitable almost for adults. Biomarker changes are generally observed upon pollutant exposure irrespective of the disease status of the participants. None of the biomarkers identified are specific for a type of pollutant exposure. Based on experimental exposure studies, there is moderate evidence that IS analysis is more sensitive than lung function tests, whereas this is not the case for biomarkers obtained by NAL or EBC. Cells and some cytokines (IL-6, IL-8 and myeloperoxidase) have been measured both in the upper respiratory tract (NAL) and in the lower airways (IS). Overall, the response to traffic exposure seems different in the two compartments. In conclusion, this survey of current literature displays the complexity of this research field, highlights the significance of short-term studies on traffic pollution and gives important tips when planning studies to detect acute respiratory effects of air pollution in a non-invasive way. © 2014 John Wiley & Sons Ltd.

  16. Measuring marine iron(III) complexes by CLE-AdSV

    NARCIS (Netherlands)

    Town, R.M.; Leeuwen, van H.P.

    2005-01-01

    Iron(iii) speciation data, as determined by competitive ligand exchange?adsorptive stripping voltammetry (CLE-AdSV), is reconsidered in the light of the kinetic features of the measurement. The very large stability constants reported for iron(iii) in marine ecosystems are shown to be possibly due to

  17. Reply to Comments on Measuring marine iron(III) complexes by CLE-AdSV

    NARCIS (Netherlands)

    Town, R.M.; Leeuwen, van H.P.

    2005-01-01

    The interpretation of CLE-AdSV based iron(iii) speciation data for marine waters has been called into question in light of the kinetic features of the measurement. The implications of the re-think may have consequences for understanding iron biogeochemistry and its impact on ecosystem functioning.

  18. Measurement of the thermopower anisotropy in iron arsenide

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, T., E-mail: fujii@crc.u-tokyo.ac.jp [Cryogenic Research Center, the University of Tokyo, 2-11-16 Yayoi, Bunkyo, Tokyo 113-0032 (Japan); Shirachi, T. [Department of Applied Physics, the University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656 (Japan); Asamitsu, A. [Cryogenic Research Center, the University of Tokyo, 2-11-16 Yayoi, Bunkyo, Tokyo 113-0032 (Japan); Department of Applied Physics, the University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656 (Japan); Ashikaga Institute of Technology, 268-1 Omae, Ashikaga, Tochigi 326-8558 (Japan)

    2016-11-15

    Highlights: • In this study, in order to investigate the origin of the in-plane anisotropy, the in-plane anisotropy of the thermopower was measured for the detwined single crystals of BFe{sub 2}As{sub 2}. And, we found no anisotropy in the thermopower above T{sub AFO}, although there is a large anisotropy in the resistivity. This result gives evidence that the anisotropy in the resistivity arise from the anisotropy of the scattering time, and the energy dependence of the scattering time can be considered negligible. In the case of iron pnictides, the proposed orbital ordering more likely results in an anisotropy of electronic structure below T{sub AFO}, whereas the spin-nematic ordering leads to an anisotropy of electron scattering above T{sub AFO}. Therefore, our results suggest that nematicity above T{sub AFO} results from anisotropic magnetic scattering. - Abstract: We investigated the in-plane anisotropy of the thermopower and electrical resistivity on detwinned single crystals of BaFe{sub 2}As{sub 2}. The in-plane anisotropy of the resistivity was clearly observed far above the magnetostructural transition temperature T{sub AFO}. While, the thermopower showed the in-plane anisotropy only below T{sub AFO}. These results are associated with the different origin of the anisotropy above and below T{sub AFO}. Since the thermopower does not depend on the scattering time, the anisotropy of the resistivity above T{sub AFO} is considered to be due to the anisotropic scattering. On the other hand, the anisotropy in the thermopower below T{sub AFO} is ascribed to the reconstructed Fermi surface.

  19. Preliminary methods for wearable neuro-vascular assessment with non-invasive, active sensing.

    Science.gov (United States)

    Carek, Andrew M; Töreyin, Hakan; Hersek, Sinan; Inan, Omer T

    2015-01-01

    In this study, a non-invasive and active sensing scheme that is ultimately aimed to be integrated in a wearable system for neuro-vascular health assessment is presented with preliminary results. With this system, vascular tone is modulated by local heating and cooling of the palm, and the resulting changes in local hemodynamics are monitored via impedance plethysmography (IPG) and photoplethysmography (PPG) sensors interfaced with custom analog electronics. Proof-of-concept measurements were conducted on three subjects using hot packs/ice bags to modulate the palmar skin temperature. From ensemble averaged and smoothed versions of pulsatile IPG and PPG signals, the effects of local changes in skin temperature on a series of parameters associated with neuro-vascular mechanisms (heart rate, blood volume, blood flow rate, blood volume pulse inflection point area ratio, and local pulse transit time) have been observed. The promising experimental results suggest that, with different active temperature modulation schemes (consisting of heating/cooling cycles covering different temperature ranges at different rates), it would be possible to enhance the depth and specificity of the information associated with neuro-vascular health by using biosensors that can fit inside a wearable device (such as a sleeve). This study sets the foundation for future studies on designing and testing such a wearable neuro-vascular health assessment system employing active sensing.

  20. The effect of mouth leak and humidification during nasal non-invasive ventilation.

    Science.gov (United States)

    Tuggey, Justin M; Delmastro, Monica; Elliott, Mark W

    2007-09-01

    Poor mask fit and mouth leak are associated with nasal symptoms and poor sleep quality in patients receiving domiciliary non-invasive ventilation (NIV) through a nasal mask. Normal subjects receiving continuous positive airways pressure demonstrate increased nasal resistance following periods of mouth leak. This study explores the effect of mouth leak during pressure-targeted nasal NIV, and whether this results in increased nasal resistance and consequently a reduction in effective ventilatory support. A randomised crossover study of 16 normal subjects was performed on separate days. Comparison was made of the effect of 5 min of mouth leak during daytime nasal NIV with and without heated humidification. Expired tidal volume (V(T)), nasal resistance (R(N)), and patient comfort were measured. Mean change (Delta) in V(T) and R(N) were significantly less following mouth leak with heated humidification compared to the without (DeltaV(T) -36+/-65 ml vs. -88+/-50 ml, phumidification (5.3+/-0.4 vs. 6.2+/-0.4, phumidification. In normal subjects, heated humidification during nasal NIV attenuates the adverse effects of mouth leak on effective tidal volume, nasal resistance and improves overall comfort. Heated humidification should be considered as part of an approach to patients who are troubled with nasal symptoms, once leak has been minimised.

  1. Cursor control by Kalman filter with a non-invasive body-machine interface

    Science.gov (United States)

    Seáñez-González, Ismael; Mussa-Ivaldi, Ferdinando A.

    2014-10-01

    Objective. We describe a novel human-machine interface for the control of a two-dimensional (2D) computer cursor using four inertial measurement units (IMUs) placed on the user’s upper-body. Approach. A calibration paradigm where human subjects follow a cursor with their body as if they were controlling it with their shoulders generates a map between shoulder motions and cursor kinematics. This map is used in a Kalman filter to estimate the desired cursor coordinates from upper-body motions. We compared cursor control performance in a centre-out reaching task performed by subjects using different amounts of information from the IMUs to control the 2D cursor. Main results. Our results indicate that taking advantage of the redundancy of the signals from the IMUs improved overall performance. Our work also demonstrates the potential of non-invasive IMU-based body-machine interface systems as an alternative or complement to brain-machine interfaces for accomplishing cursor control in 2D space. Significance. The present study may serve as a platform for people with high-tetraplegia to control assistive devices such as powered wheelchairs using a joystick.

  2. Combining non-invasive transcranial brain stimulation with neuroimaging and electrophysiology: Current approaches and future perspectives.

    Science.gov (United States)

    Bergmann, Til Ole; Karabanov, Anke; Hartwigsen, Gesa; Thielscher, Axel; Siebner, Hartwig Roman

    2016-10-15

    Non-invasive transcranial brain stimulation (NTBS) techniques such as transcranial magnetic stimulation (TMS) and transcranial current stimulation (TCS) are important tools in human systems and cognitive neuroscience because they are able to reveal the relevance of certain brain structures or neuronal activity patterns for a given brain function. It is nowadays feasible to combine NTBS, either consecutively or concurrently, with a variety of neuroimaging and electrophysiological techniques. Here we discuss what kind of information can be gained from combined approaches, which often are technically demanding. We argue that the benefit from this combination is twofold. Firstly, neuroimaging and electrophysiology can inform subsequent NTBS, providing the required information to optimize where, when, and how to stimulate the brain. Information can be achieved both before and during the NTBS experiment, requiring consecutive and concurrent applications, respectively. Secondly, neuroimaging and electrophysiology can provide the readout for neural changes induced by NTBS. Again, using either concurrent or consecutive applications, both "online" NTBS effects immediately following the stimulation and "offline" NTBS effects outlasting plasticity-inducing NTBS protocols can be assessed. Finally, both strategies can be combined to close the loop between measuring and modulating brain activity by means of closed-loop brain state-dependent NTBS. In this paper, we will provide a conceptual framework, emphasizing principal strategies and highlighting promising future directions to exploit the benefits of combining NTBS with neuroimaging or electrophysiology. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Saliva as a non-invasive diagnostic tool for inflammation and insulin-resistance.

    Science.gov (United States)

    Desai, Gauri S; Mathews, Suresh T

    2014-12-15

    Saliva has been progressively studied as a non-invasive and relatively stress-free diagnostic alternative to blood. Currently, saliva testing is used for clinical assessment of hormonal perturbations, detection of HIV antibodies, DNA analysis, alcohol screening, and drug testing. Recently, there has been increasing interest in evaluating the diagnostic potential of saliva in obesity, inflammation, and insulin-resistance. Current literature has demonstrated elevated levels of inflammatory biomarkers including C-reactive protein, tumor necrosis factor-α, interleukin-6, and interferon-γ in saliva of obese/overweight children and adults. Salivary antioxidant status has also been studied as a measure of oxidative stress in individuals with type 2 diabetes. Further, several studies have demonstrated correlations of salivary markers of stress and insulin resistance including cortisol, insulin, adiponectin, and resistin with serum concentrations. These findings suggest the potential diagnostic value of saliva in health screening and risk stratification studies, particularly in the pediatric population, with implications for inflammatory, metabolic and cardiovascular conditions. However, additional studies are required to standardize saliva collection and storage procedures, validate analytical techniques for biomarker detection, and establish reference ranges for routine clinical use. The purpose of this review is to summarize and evaluate recent advancements in using saliva as a diagnostic tool for inflammation and insulin-resistance.

  4. Non-invasive biomedical research and diagnostics enabled by innovative compact lasers

    Science.gov (United States)

    Litvinova, Karina S.; Rafailov, Ilya E.; Dunaev, Andrey V.; Sokolovski, Sergei G.; Rafailov, Edik U.

    2017-11-01

    For over half a century, laser technology has undergone a technological revolution. These technologies, particularly semiconductor lasers, are employed in a myriad of fields. Optical medical diagnostics, one of the emerging areas of laser application, are on the forefront of application around the world. Optical methods of non- or minimally invasive bio-tissue investigation offer significant advantages over alternative methods, including rapid real-time measurement, non-invasiveness and high resolution (guaranteeing the safety of a patient). These advantages demonstrate the growing success of such techniques. In this review, we will outline the recent status of laser technology applied in the biomedical field, focusing on the various available approaches, particularly utilising compact semiconductor lasers. We will further consider the advancement and integration of several complimentary biophotonic techniques into single multimodal devices, the potential impact of such devices and their future applications. Based on our own studies, we will also cover the simultaneous collection of physiological data with the aid a multifunctional diagnostics system, concentrating on the optimisation of the new technology towards a clinical application. Such data is invaluable for developing algorithms capable of delivering consistent, reliable and meaningful diagnostic information, which can ultimately be employed for the early diagnosis of disease conditions in individuals from around the world.

  5. Non-invasive single-cell biomechanical analysis using live-imaging datasets.

    Science.gov (United States)

    Pearson, Yanthe E; Lund, Amanda W; Lin, Alex W H; Ng, Chee P; Alsuwaidi, Aysha; Azzeh, Sara; Gater, Deborah L; Teo, Jeremy C M

    2016-09-01

    The physiological state of a cell is governed by a multitude of processes and can be described by a combination of mechanical, spatial and temporal properties. Quantifying cell dynamics at multiple scales is essential for comprehensive studies of cellular function, and remains a challenge for traditional end-point assays. We introduce an efficient, non-invasive computational tool that takes time-lapse images as input to automatically detect, segment and analyze unlabeled live cells; the program then outputs kinematic cellular shape and migration parameters, while simultaneously measuring cellular stiffness and viscosity. We demonstrate the capabilities of the program by testing it on human mesenchymal stem cells (huMSCs) induced to differentiate towards the osteoblastic (huOB) lineage, and T-lymphocyte cells (T cells) of naïve and stimulated phenotypes. The program detected relative cellular stiffness differences in huMSCs and huOBs that were comparable to those obtained with studies that utilize atomic force microscopy; it further distinguished naïve from stimulated T cells, based on characteristics necessary to invoke an immune response. In summary, we introduce an integrated tool to decipher spatiotemporal and intracellular dynamics of cells, providing a new and alternative approach for cell characterization. © 2016. Published by The Company of Biologists Ltd.

  6. A Non-Invasive Multichannel Hybrid Fiber-Optic Sensor System for Vital Sign Monitoring

    Directory of Open Access Journals (Sweden)

    Marcel Fajkus

    2017-01-01

    Full Text Available In this article, we briefly describe the design, construction, and functional verification of a hybrid multichannel fiber-optic sensor system for basic vital sign monitoring. This sensor uses a novel non-invasive measurement probe based on the fiber Bragg grating (FBG. The probe is composed of two FBGs encapsulated inside a polydimethylsiloxane polymer (PDMS. The PDMS is non-reactive to human skin and resistant to electromagnetic waves, UV absorption, and radiation. We emphasize the construction of the probe to be specifically used for basic vital sign monitoring such as body temperature, respiratory rate and heart rate. The proposed sensor system can continuously process incoming signals from up to 128 individuals. We first present the overall design of this novel multichannel sensor and then elaborate on how it has the potential to simplify vital sign monitoring and consequently improve the comfort level of patients in long-term health care facilities, hospitals and clinics. The reference ECG signal was acquired with the use of standard gel electrodes fixed to the monitored person's chest using a real-time monitoring system for ECG signals with virtual instrumentation. The outcomes of these experiments have unambiguously proved the functionality of the sensor system and will be used to inform our future research in this fast developing and emerging field.

  7. Blood plasma surface-enhanced Raman spectroscopy for non-invasive optical detection of cervical cancer.

    Science.gov (United States)

    Feng, Shangyuan; Lin, Duo; Lin, Juqiang; Li, Buhong; Huang, Zufang; Chen, Guannan; Zhang, Wei; Wang, Lan; Pan, Jianji; Chen, Rong; Zeng, Haishan

    2013-07-21

    Based on blood plasma surface-enhanced Raman spectroscopy (SERS) analysis, a simple and label-free blood test for non-invasive cervical cancer detection is presented in this paper. SERS measurements were performed on blood plasma samples from 60 cervical cancer patients and 50 healthy volunteers. Both the empirical approach and multivariate statistical techniques, including principal component analysis (PCA) and linear discriminant analysis (LDA), were employed to analyze and differentiate the obtained blood plasma SERS spectra. The empirical diagnostic algorithm based on the integration area of the SERS spectral bands (1310-1430 and 1560-1700 cm(-1)) achieved a diagnostic sensitivity of 70% and 83.3%, and a specificity of 76% and 78%, respectively, whereas the diagnostic algorithms based on PCA-LDA yielded a better diagnostic sensitivity of 96.7% and a specificity of 92% for separating cancerous samples from normal samples. This exploratory work demonstrates that a silver nanoparticle based SERS plasma analysis technique in conjunction with PCA-LDA has potential for improving cervical cancer detection and screening.

  8. Non-invasive quantification of collagen turnover in renal transplant recipients.

    Directory of Open Access Journals (Sweden)

    Elisabeth G D Stribos

    Full Text Available Kidney allograft failure due to chronic injury/rejection remains the main cause of graft loss in renal transplant recipients (RTR. Here, we investigated whether specific biomarkers of extracellular matrix (ECM turnover are associated with allograft function and chronic kidney disease (CKD stage in RTR. Seventy-eight patients who attended the University Medical Center Groningen for a routine check-up after kidney transplantation were enrolled in the study. Plasma and/or 24h-urine samples were collected and specific matrix-metalloproteinase-generated neo-epitope fragments of collagens were measured by enzyme-linked immunosorbent assay. Our results demonstrated that urinary levels of C3M, a marker for collagen type III degradation, correlated with estimated glomerular filtration rate (eGFR; r = 0.58, p<0.0001, with lower levels detected in the urine of patients with advanced CKD. In addition, plasma levels of Pro-C6, a marker for collagen type VI formation, significantly increased with disease progression and correlated with eGFR (r = -0.72, p<0.0001. Conversely, plasma C3M and urinary Pro-C6 levels showed no correlation with renal function. We identified two neo-epitope biomarkers of tissue turnover associated with ECM remodeling and fibrosis that can stratify patients by CKD stage. This is as promising first step towards non-invasive monitoring of ECM turnover in the kidneys.

  9. Towards novel compact laser sources for non-invasive diagnostics and treatment

    Science.gov (United States)

    Rafailov, Edik U.; Litvinova, Karina S.; Sokolovski, Sergei G.

    2015-08-01

    An important field of application of lasers is biomedical optics. Here, they offer great utility for diagnosis, therapy and surgery. For the development of novel methods of laser-based biomedical diagnostics careful study of light propagation in biological tissues is necessary to enhance our understanding of the optical measurements undertaken, increase research and development capacity and the diagnostic reliability of optical technologies. Ultimately, fulfilling these requirements will increase uptake in clinical applications of laser based diagnostics and therapeutics. To address these challenges informative biomarkers relevant to the biological and physiological function or disease state of the organism must be selected. These indicators are the results of the analysis of tissues and cells, such as blood. For non-invasive diagnostics peripheral blood, cells and tissue can potentially provide comprehensive information on the condition of the human organism. A detailed study of the light scattering and absorption characteristics can quickly detect physiological and morphological changes in the cells due to thermal, chemical, antibiotic treatments, etc [1-5]. The selection of a laser source to study the structure of biological particles also benefits from the fact that gross pathological changes are not induced and diagnostics make effective use of the monochromatic directional coherence properties of laser radiation.

  10. Investigation of the feasibility of non-invasive optical sensors for the quantitative assessment of dehydration.

    Science.gov (United States)

    Visser, Cobus; Kieser, Eduard; Dellimore, Kiran; van den Heever, Dawie; Smith, Johan

    2017-10-01

    This study explores the feasibility of prospectively assessing infant dehydration using four non-invasive, optical sensors based on the quantitative and objective measurement of various clinical markers of dehydration. The sensors were investigated to objectively and unobtrusively assess the hydration state of an infant based on the quantification of capillary refill time (CRT), skin recoil time (SRT), skin temperature profile (STP) and skin tissue hydration by means of infrared spectrometry (ISP). To evaluate the performance of the sensors a clinical study was conducted on a cohort of 10 infants (aged 6-36 months) with acute gastroenteritis. High sensitivity and specificity were exhibited by the sensors, in particular the STP and SRT sensors, when combined into a fusion regression model (sensitivity: 0.90, specificity: 0.78). The SRT and STP sensors and the fusion model all outperformed the commonly used "gold standard" clinical dehydration scales including the Gorelick scale (sensitivity: 0.56, specificity: 0.56), CDS scale (sensitivity: 1.0, specificity: 0.2) and WHO scale (sensitivity: 0.13, specificity: 0.79). These results suggest that objective and quantitative assessment of infant dehydration may be possible using the sensors investigated. However, further evaluation of the sensors on a larger sample population is needed before deploying them in a clinical setting. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.

  11. Non-invasive detection of periodontal disease using diffuse reflectance spectroscopy: a clinical study

    Science.gov (United States)

    Prasanth, Chandra Sekhar; Betsy, Joseph; Subhash, Narayanan; Jayanthi, Jayaraj L.; Prasanthila, Janam

    2012-03-01

    In clinical diagnostic procedures, gingival inflammation is considered as the initial stage of periodontal breakdown. This is often detected clinically by bleeding on probing as it is an objective measure of inflammation. Since conventional diagnostic procedures have several inherent drawbacks, development of novel non-invasive diagnostic techniques assumes significance. This clinical study was carried out in 15 healthy volunteers and 25 patients to demonstrate the applicability of diffuse reflectance (DR) spectroscopy for quantification and discrimination of various stages of inflammatory conditions in periodontal disease. The DR spectra of diseased lesions recorded using a point monitoring system consisting of a tungsten halogen lamp and a fiber-optic spectrometer showed oxygenated hemoglobin absorption dips at 545 and 575 nm. Mean DR spectra on normalization shows marked differences between healthy and different stages of gingival inflammation. Among the various DR intensity ratios investigated, involving oxy Hb absorption peaks, the R620/R575 ratio was found to be a good parameter of gingival inflammation. In order to screen the entire diseased area and its surroundings instantaneously, DR images were recorded with an EMCCD camera at 620 and 575 nm. We have observed that using the DR image intensity ratio R620/R575 mild inflammatory tissues could be discriminated from healthy with a sensitivity of 92% and specificity of 93%, and from moderate with a sensitivity of 83% and specificity of 96%. The sensitivity and specificity obtained between moderate and severe inflammation are 82% and 76% respectively.

  12. Ultrasound imaging of propagation of myocardial contraction for non-invasive identification of myocardial ischemia

    Science.gov (United States)

    Matsuno, Yuya; Taki, Hirofumi; Yamamoto, Hiroaki; Hirano, Michinori; Morosawa, Susumu; Shimokawa, Hiroaki; Kanai, Hiroshi

    2017-07-01

    Non-invasive identification of ischemic regions is important for diagnosis and treatment of myocardial infarction. In the present study, ultrasound measurement was applied to the interventricular septum of three open-chest swine hearts. The properties of the myocardial contraction response of the septum were compared between normal and acute ischemic conditions, where the acute ischemic condition of the septum originated from direct avascularization of the left anterior descending (LAD) coronary artery. The result showed that the contraction response propagated from the basal side to the apical side along the septum. The estimated propagation velocities in the normal and acute ischemic conditions were 3.6 and 1.9 m/s, respectively. This finding indicates that acute ischemia which occurred 5 s after the avascularization of the LAD promptly suppressed the propagation velocity through the ventricular septum to about half the normal velocity. It was suggested that the myocardial ischemic region could be identified using the difference in the propagation velocity of the myocardial response to contraction.

  13. Invasive Insects Differ from Non-Invasive in Their Thermal Requirements.

    Directory of Open Access Journals (Sweden)

    Vojtěch Jarošík

    Full Text Available We tested whether two basic thermal requirements for insect development, lower developmental thresholds, i.e. temperatures at which development ceases, and sums of effective temperatures, i.e. numbers of day degrees above the lower developmental thresholds necessary to complete development, differ among insect species that proved to be successful invaders in regions outside their native range and those that did not. Focusing on species traits underlying invasiveness that are related to temperature provides insights into the mechanisms of insect invasions. The screening of thermal requirements thus could improve risk-assessment schemes by incorporating these traits in predictions of potentially invasive insect species. We compared 100 pairs of taxonomically-related species originating from the same continent, one invasive and the other not reported as invasive. Invasive species have higher lower developmental thresholds than those never recorded outside their native ranges. Invasive species also have a lower sum of effective temperatures, though not significantly. However, the differences between invasive and non-invasive species in the two physiological measures were significantly inversely correlated. This result suggests that many species are currently prevented from invading by low temperatures in some parts of the world. Those species that will overcome current climatic constraints in regions outside their native distribution due to climate change could become even more serious future invaders than present-day species, due to their potentially faster development.

  14. Contemporary artists' spinel pigments: Non-invasive characterization by means of electronic spectroscopy.

    Science.gov (United States)

    Angelin, Eva Mariasole; Bacci, Mauro; Bartolozzi, Giovanni; Cantisani, Emma; Picollo, Marcello

    2017-02-15

    The identification of artistic materials represents a fundamental step in supporting the conservation of cultural heritage objects. The importance of their appropriate characterization is particularly relevant in modern-contemporary art, since they could be affected by the occurrence of rapid changes in chemical formulation over time. This paper focuses on an investigation of a series of contemporary blue-green commercial acrylic paints constituted of spinel pigments, using non-invasive spectroscopic techniques. The spectroscopic and color measurements obtained make it possible to characterize the acrylic paints under investigation and to compare the results obtained with those reported in the literature and in spectral databases. To be more precise, the proposed UV-vis-NIR reflectance spectroscopic technique was sensitive enough to characterize the acrylic paints according to their d-d ligand field and the charge transfer (CT) electronic transitions involved in the spinel structures. In addition, an overview of this class of inorganic pigments is also given. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Hybrid model of arm for analysis of regional blood oxygenation in non-invasive optical diagnostics

    Science.gov (United States)

    Nowocień, Sylwester; Mroczka, Janusz

    2017-06-01

    The paper presents a new comprehensive approach to modeling and analysis of processes occurring during the blood flow in the arm's small vessels as well as non-invasive measurement method of mixed venous oxygen saturation. During the work, a meta-analysis of available physiological data was performed and based on its result a hybrid model of forearm vascular tree was proposed. The model, in its structure, takes into account a classical nonlinear hydro-electric analogy in conjunction with light-tissue interaction. Several geometries of arm vascular tree obtained from magnetic resonance angiography (MRA) image were analyzed which allowed to proposed the structure of electrical analog network. Proposed model allows to simulate the behavior of forearm blood flow from the vascular tree mechanics point of view, as well as effects of the impact of cuff and vessel wall mechanics on the recorded photoplethysmographic signals. In particular, it allows to analyze the reaction and anatomical effects in small vessels and microcirculation caused by occlusive maneuver in selected techniques, what was of particular interest to authors and motivation to undertake research in this area. Preliminary studies using proposed model showed that inappropriate selection of occlusion maneuver parameters (e.g. occlusion time, cuff pressure etc.), cause dangerous turbulence of blood flow in the venous section of the vascular tree.

  16. Evaluation of non-invasive prenatal testing (NIPT) for aneuploidy in an NHS setting: a reliable accurate prenatal non-invasive diagnosis (RAPID) protocol.

    OpenAIRE

    Hill, M.; Wright, D.; Daley, R.; Lewis, C.; McKay, F.; Mason, S.; Lench, N.; Howarth, A.; Boustred, C.; Lo, K.; Plagnol, V.; Spencer, K.; Fisher, J.; Kroese, M.; Morris, S.

    2014-01-01

    Background Non-invasive prenatal testing (NIPT) for aneuploidies is now available through commercial companies in many countries, including through private practice in the United Kingdom (UK). Thorough evaluation of service delivery requirements are needed to facilitate NIPT being offered more widely within state funded healthcare systems such as the UK’s National Health Service (NHS). Successful implementation will require the development of laboratory standards, consideration of stakeholder...

  17. Magnetization measurements and XMCD studies on ion irradiated iron oxide and core-shell iron/iron-oxide nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Maninder; Qiang, You; Jiang, Weilin; Pearce, Carolyn; McCloy, John S.

    2014-12-02

    Magnetite (Fe3O4) and core-shell iron/iron-oxide (Fe/Fe3O4) nanomaterials prepared by a cluster deposition system were irradiated with 5.5 MeV Si2+ ions and the structures determined by x-ray diffraction as consisting of 100% magnetite and 36/64 wt% Fe/FeO, respectively. However, x-ray magnetic circular dichroism (XMCD) indicates similar surfaces in the two samples, slightly oxidized and so having more Fe3+ than the expected magnetite structure, with XMCD intensity much lower for the irradiated core-shell samples indicating weaker magnetism. X-ray absorption spectroscopy (XAS) data lack the signature for FeO, but the irradiated core-shell system consists of Fe-cores with ~13 nm of separating oxide crystallite, so it is likely that FeO exists deeper than the probe depth of the XAS (~5 nm). Exchange bias (Hex) for both samples becomes increasingly negative as temperature is lowered, but the irradiated Fe3O4 sample shows greater sensitivity of cooling field on Hex. Loop asymmetries and Hex sensitivities of the irradiated Fe3O4 sample are due to interfaces and interactions between grains which were not present in samples before irradiation as well as surface oxidation. Asymmetries in the hysteresis curves of the irradiated core/shell sample are related to the reversal mechanism of the antiferromagnetic FeO and possibly some near surface oxidation.

  18. A non-invasive technique for the evaluation of peripheral circulatory functions in female subjects with Raynaud's phenomenon.

    Science.gov (United States)

    Mirbod, Seyed Mohammad; Sugiura, Haruo

    2017-06-08

    Japanese women now account for 43 percent of the labor force. A number of them are involved in construction, agricultural and forestry jobs. The aim of this study was to establish a non-invasive technique for the evaluation of peripheral circulatory functions in women with Raynaud's phenomenon (RP) and introduce a specific method for the assessment of vascular disturbances in females exposed to hand-transmitted vibration. The subjects of this study were 10 women with primary RP, 7 women with progressive systemic sclerosis (PSS) secondary to RP, and 17 females who were included as the control group. The evaluation of peripheral circulatory functions in all subjects was based on the values of finger blood flow (FBF) and finger skin temperature (FST) measured before, during and following a 5-min recovery period after the hand was immersed in cold water (5°C, 1 min). The measured values of FBF and FST of the primary RP group before and after the immersion test were significantly (p<0.01) lower compared to those of the control group. The technique applied in this study could be used as a non-invasive and tolerable technique to determine the digital circulatory functions in female subjects with RP.

  19. Urinary gonadotrophins: a useful non-invasive marker of activation of the hypothalamic pituitary-gonadal axis

    Directory of Open Access Journals (Sweden)

    McNeilly Jane D

    2012-05-01

    Full Text Available Abstract Background Non-invasive screening investigations are rarely used for assessing the activation and progression of the hypothalamic-pituitary gonadal axis through puberty. This study aimed to establish a normal range for urinary gonadotrophins in children progressing through puberty. Methods Urine samples were collected from 161 healthy school children (76 boys, 85 girls aged 4–19 yrs. Height and weight were converted to standard deviation score. Pubertal status, classified by Tanner staging, was determined by self-assessment. Urinary gonadotrophins were measured by chemiluminescent microparticle immunoassay. Results were grouped according to pubertal status (pre-pubertal or pubertal. Results Of the 161 children, 50 were pre-pubertal (28 boys; 22 girls and 111 were pubertal (48 boys; 63 girls. Overall, urinary gonadotrophins concentrations increased with pubertal maturation. All pre-pubertal children had a low urinary LH:Creatinine ratio. LH:Creatinine ratios were significantly higher in pubertal compared to pre-pubertal boys (pp = 0.006. However, LH:FSH ratios were a more consistent discriminant between pre-pubertal and pubertal states in both sexes (Boys 0.45 pubertal vs 0.1 pre-pubertal; girls 0.23 pubertal vs 0.06 pre-pubertal. Conclusion Urinary gonadotrophins analyses could be used as non-invasive integrated measurement of pubertal status which reflects clinical/physical status.

  20. Intraspecies differenes in phenotypic plasticity: Invasive versus non-invasive populations of Ceratophyllum demersum

    DEFF Research Database (Denmark)

    Hyldgaard, Benita; Brix, Hans

    2012-01-01

    High phenotypic plasticity has been hypothesized to affect the invasiveness of plants, as high plasticity may enlarge the breath of environments in which the plants can survive and reproduce. Here we compare the phenotypic plasticity of invasive and non-invasive populations of the same species...... in response to growth temperature. Populations of the submerged macrophyte Ceratophyllum demersum from New Zealand, where the species is introduced and invasive, and from Denmark, where the species is native and non-invasive, were grown in a common garden setup at temperatures of 12, 18, 25 and 35 ◦C. We...... hypothesized that the phenotypic plasticity in fitness-related traits like growth and photosynthesis were higher in the invasive than in the non-invasive population. The invasive population acclimated to elevated temperatures through increased rates of photosynthesis (range: Pamb: 8–452 mol O2 g−1 DM h−1...

  1. Non-Invasive Radiofrequency-Induced Targeted Hyperthermia for the Treatment of Hepatocellular Carcinoma

    Directory of Open Access Journals (Sweden)

    Mustafa Raoof

    2011-01-01

    Full Text Available Targeted biological therapies for hepatocellular cancer have shown minimal improvements in median survival. Multiple pathways to oncogenesis leading to rapid development of resistance to such therapies is a concern. Non-invasive radiofrequency field-induced targeted hyperthermia using nanoparticles is a radical departure from conventional modalities. In this paper we underscore the need for innovative strategies for the treatment of hepatocellular cancer, describe the central paradigm of targeted hyperthermia using non-invasive electromagnetic energy, review the process of characterization and modification of nanoparticles for the task, and summarize data from cell-based and animal-based models of hepatocellular cancer treated with non-invasive RF energy. Finally, future strategies and challenges in bringing this modality from bench to clinic are discussed.

  2. Non-invasive spectroscopic techniques in the diagnosis of non-melanoma skin cancer

    Science.gov (United States)

    Drakaki, E.; Sianoudis, IA; Zois, EN; Makropoulou, M.; Serafetinides, AA; Dessinioti, C.; Stefanaki, E.; Stratigos, AJ; Antoniou, C.; Katsambas, A.; Christofidou, E.

    2017-11-01

    The number of non-melanoma skin cancers is increasing worldwide and has become an important health and economic issue. Early detection and treatment of skin cancer can significantly improve patient outcome. Therefore there is an increase in the demand for proper management and effective non-invasive diagnostic modalities in order to avoid relapses or unnecessary treatments. Although the gold standard of diagnosis for non-melanoma skin cancers is biopsy followed by histopathology evaluation, optical non-invasive diagnostic tools have obtained increased attention. Emerging non-invasive or minimal invasive techniques with possible application in the diagnosis of non-melanoma skin cancers include high-definition optical coherence tomography, fluorescence spectroscopy, oblique incidence diffuse reflectance spectrometry among others spectroscopic techniques. Our findings establish how those spectrometric techniques can be used to more rapidly and easily diagnose skin cancer in an accurate and automated manner in the clinic.

  3. Recent research findings on non-invasive diagnosis of liver fibrosis

    Directory of Open Access Journals (Sweden)

    WU Qiong

    2015-02-01

    Full Text Available Early diagnosis of liver fibrosis and dynamic monitoring of relevant changes have great implications for the treatment and prognosis improvement of chronic liver diseases. So far, liver biopsy remains the “golden standard” for the diagnosis and staging of liver fibrosis. However, due to its inherent limitations, a great effort has been made to develop more accurate non-invasive diagnostic methods, including serum fibrosis markers and mathematical models, ultrasound, contrast-enhanced ultrasonography, ultrasonic elastography, computed tomography, magnetic resonance imaging, and nuclear medicine. The advantages and disadvantages of relevant methods are discussed. Furthermore, proper selection of the non-invasive diagnostic methods for clinical application and the means for mutual verification are analyzed. As for the future direction, it is expected to employ the above methods for combined analysis and comprehensive assessment, in order to enhance the clinical value of non-invasive liver fibrosis diagnosis.

  4. A preliminary study for non-invasive quantification of manganese in human hand bones.

    Science.gov (United States)

    Aslam; Pejović-Milić, A; Chettle, D R; McNeill, F E; Pysklywec, M W; Oudyk, J

    2008-10-07

    Manganese (Mn) is a nutrient essential for regulating neurological and skeletal functions in the human body, but it is also toxic when humans are excessively exposed to Mn. Blood (or serum/plasma) and other body fluids reflect only the most recent exposure and rapidly return to within normal ranges, even when there has been a temporary excursion in response to exposure. In this context, we have been developing a non-invasive measurement of Mn stored in bone, using in vivo neutron activation analysis. Following feasibility studies, a first pilot study, using neutron activation analysis to measure Mn in the bones of the hand of ten healthy male human subjects, was conducted with the approval of the concerned research ethics boards. The participants of this study had no known history of exposure to Mn. Two volunteers were excluded from this study due to technical problems with their measurements. The inverse variance weighted mean value of Mn/Ca for the participants of this study is 0.12+/-0.68 microg Mn/g Ca which is comparable within uncertainties with the estimated range of 0.16-0.78 microg Mn/g Ca and mean value of 0.63+/-0.30 microg Mn/g Ca derived from cadaver data. It is recommended to investigate the use of the diagnostic technique for in vivo measurements of workers exposed occupationally to excessive amounts of Mn who could develop many-fold increased levels of Mn in bones as demonstrated through various animal studies. The technique needs further development to improve the precision of in vivo measurements in the non-exposed population.

  5. NOTE: A preliminary study for non-invasive quantification of manganese in human hand bones

    Science.gov (United States)

    Aslam; Pejović-Milić, A.; Chettle, D. R.; McNeill, F. E.; Pysklywec, M. W.; Oudyk, J.

    2008-10-01

    Manganese (Mn) is a nutrient essential for regulating neurological and skeletal functions in the human body, but it is also toxic when humans are excessively exposed to Mn. Blood (or serum/plasma) and other body fluids reflect only the most recent exposure and rapidly return to within normal ranges, even when there has been a temporary excursion in response to exposure. In this context, we have been developing a non-invasive measurement of Mn stored in bone, using in vivo neutron activation analysis. Following feasibility studies, a first pilot study, using neutron activation analysis to measure Mn in the bones of the hand of ten healthy male human subjects, was conducted with the approval of the concerned research ethics boards. The participants of this study had no known history of exposure to Mn. Two volunteers were excluded from this study due to technical problems with their measurements. The inverse variance weighted mean value of Mn/Ca for the participants of this study is 0.12 ± 0.68 µg Mn/g Ca which is comparable within uncertainties with the estimated range of 0.16 0.78 µg Mn/g Ca and mean value of 0.63 ± 0.30 µg Mn/g Ca derived from cadaver data. It is recommended to investigate the use of the diagnostic technique for in vivo measurements of workers exposed occupationally to excessive amounts of Mn who could develop many-fold increased levels of Mn in bones as demonstrated through various animal studies. The technique needs further development to improve the precision of in vivo measurements in the non-exposed population.

  6. Iron overload detection in rats by means of a susceptometer operating at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Marinelli, M; Gianesin, B [Department of Physics, University of Genoa, Via Dodecaneso 33, 16146 Genoa (Italy); Avignolo, C; Parodi, S [Department of Oncology, Biology and Genetics, Largo R Benzi 10, 16132 (Italy); Minganti, V [Department of Chemistry and Pharmaceutical and Alimentary Technology, Via Brigata Salerno 13, 16147 Genoa (Italy)

    2008-12-07

    Biosusceptometry is a non-invasive procedure for determination of iron overload in a human body; it is essentially an assessment of the diamagnetic (water) and paramagnetic (iron) properties of tissues. We measured in vivo iron overload in the liver region of 12 rats by a room temperature susceptometer. The rats had been injected with sub-toxic doses of iron dextran. A quantitative relationship has been observed between the measurements and the number of treatments. The assessment of iron overload requires evaluating the magnetic signal corresponding to the same rat ideally without the overload. This background value was extrapolated on the basis of the signal measured in control rats versus body weight (R{sup 2} = 0.73). The mean iron overload values for the treated rats, obtained after each iron injection, were significantly different from the means of the corresponding control rats (p < 0.01). The in vivo measurements have been complemented by chemical analysis on excised livers and other organs (R{sup 2} = 0.89). The magnetic moment of iron atoms in liver tissues was measured to be 3.6 Bohr magneton. Evaluation of the background signal is the limit to the measure; the error corresponds to about 30 mg (1 SD) of iron while the instrument sensitivity is more than a factor of 10 better.

  7. Highly sensitive, non-invasive detection of colorectal cancer mutations using single molecule, third generation sequencing

    Directory of Open Access Journals (Sweden)

    Giancarlo Russo

    2015-12-01

    We present the first study that applies the high read accuracy and depth of single molecule, real time, circular consensus sequencing (SMRT-CCS to the detection of mutations in stool DNA in order to provide a non-invasive, sensitive and accurate test for CRC. In stool DNA isolated from patients diagnosed with adenocarcinoma, we are able to detect mutations at frequencies below 0.5% with no false positives. This approach establishes a foundation for a non-invasive, highly sensitive assay to screen the population for CRC and the early stage adenomas that lead to CRC.

  8. Non-invasive Morphological and Elemental Analysis of Ivory Plate for Artworks\

    Czech Academy of Sciences Publication Activity Database

    Tihlaříková, Eva; Neděla, Vilém; Hradilová, J.; Hradil, David

    2017-01-01

    Roč. 23, S1 (2017), s. 1832-1833 ISSN 1431-9276 R&D Projects: GA MŠk(CZ) LO1212; GA MŠk ED0017/01/01; GA ČR(CZ) GA17-25687S Institutional support: RVO:68081731 ; RVO:61388980 Keywords : ESEM * EDS * non-invasive morphological analysis * non-invasive elemental analysis Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering; CA - Inorganic Chemistry (UACH-T) OBOR OECD: Microbiology; Inorganic and nuclear chemistry (UACH-T) Impact factor: 1.891, year: 2016

  9. Evaluation of four non-invasive methods for examination and characterization of pressure ulcers

    DEFF Research Database (Denmark)

    Andersen, E.S.; Karlsmark, T.

    2008-01-01

    , we here report on usability of four non-invasive techniques for evaluation of pressure ulcers. Methods: Fifteen pressure ulcers in stage 0-IV were examined using four different non-invasive techniques [redness index, skin temperature, skin elasticity (i.e. retraction time), and ultrasound scanning...... at all pressure ulcers, but none at the reference points. The skin retraction time was often higher at the location of a pressure ulcer than at the reference location. We found no correlation between the stage of the ulcers and temperature, redness index, subepidermal layer thickness, or retraction time...

  10. Non-invasive monitoring of the degradation of organic contaminants: A laboratory investigation

    Science.gov (United States)

    Fernandez, Perrine M.; Bloem, Esther; Philippe, Romain; Binley, Andrew; French, Helen K.

    2016-04-01

    Degradation of organic chemicals under various fluid saturation conditions is a process highly relevant to the protection of groundwater quality. Redox potential drives the degradation of organic compounds; its variation affects the water chemistry, gas release and also the geo-electrical signature. This study explores how non-invasive measurements sensitive to geo-electrical properties provides quantitative information about the in-situ redox conditions. Our laboratory experiment focuses on the degradation of de-icing chemicals commonly used, for example, in Norwegian airports. The experiment was conducted in a number of (1.0x0.5x0.4 m) sand boxes. Two ends of each box was contaminated with propylene glycol, an aircraft deicing fluid. Each source was placed near the water table under static hydraulic conditions. At one side of the tank, a conductor linking the contamination zone, near the water table and the unsaturated zone with a low water content, was placed to improve the degradation by facilitating the electron exchange. At the other side, degradation occurred under natural conditions. Each box was equipped with 288 electrodes, distributed on six faces to perform 3D resistivity measurements. In addition, self-potential measurements were taken from electrodes on the sand surface. Four observation wells were installed above and below the water table to provide more information on the degradation processes. Moreover, measurements of carbon dioxide on the surface were performed as higher concentrations were expected where the pollutant degraded. We would like to present and discuss a selection of the preliminary results of 3D electrical resistivity and self-potential techniques from our laboratory setup.

  11. STEMI vs NSTEACS management trends in non-invasive hospital

    Directory of Open Access Journals (Sweden)

    Abdulhalim Jamal Kinsara

    2016-07-01

    Conclusion: NSTEACS patients in western province of KSA present at an older age are mostly males and have higher prevalence of hypertension and hyperlipidemia compared with STEMI patients. It is therefore important to identify patients with high-risk profile and put implement measures to reduce these factors.

  12. plasma atrial natriuretic peptide as a non-invasive biochemical

    African Journals Online (AJOL)

    cistvr

    SCIENCE AND TECHNOLOGY - Research Journal - Volume 3 - 1999. University of Mauritius, Réduit, ... Plasma Atrial Natriuretic Peptide (ANP) levels on exercise were measured in 10 male patients suffering from congestive heart failure and 10 male subjects not presenting with any cardiac problems. A standardised 12min ...

  13. Millimeter-Wave Transmittance and Reflectance Measurement on Pure and Diluted Carbonyl Iron

    Science.gov (United States)

    Korolev, Konstantin; Chen, Shu; Li, Zijing; Afsar, Mohammed

    2010-03-01

    Transmittance and reflectance measurements on highly absorbing carbonyl iron materials over a broad millimeter-wave frequency range have been performed. Frequency dependence of the complex dielectric permittivity of carbonyl iron diluted composite and pure powdered materials have been determined in the millimeter waves for the first time. The measurements have been employed using a free-space quasi-optical millimeter-wave spectrometer equipped with a set of high power backward wave oscillators as sources of coherent radiation, tunable in the range from 30 -- 120 GHz. Significant transmission zone of the millimeter-wave radiation at frequency around 60 GHz has been observed in transmittance spectra for the carbonyl iron materials.

  14. State-of-the-Art Methods for Skeletal Muscle Glycogen Analysis in Athletes—The Need for Novel Non-Invasive Techniques

    Science.gov (United States)

    Greene, Jacob; Louis, Julien; Korostynska, Olga; Mason, Alex

    2017-01-01

    Muscle glycogen levels have a profound impact on an athlete’s sporting performance, thus measurement is vital. Carbohydrate manipulation is a fundamental component in an athlete’s lifestyle and is a critical part of elite performance, since it can provide necessary training adaptations. This paper provides a critical review of the current invasive and non-invasive methods for measuring skeletal muscle glycogen levels. These include the gold standard muscle biopsy, histochemical analysis, magnetic resonance spectroscopy, and musculoskeletal high frequency ultrasound, as well as pursuing future application of electromagnetic sensors in the pursuit of portable non-invasive quantification of muscle glycogen. This paper will be of interest to researchers who wish to understand the current and most appropriate techniques in measuring skeletal muscle glycogen. This will have applications both in the lab and in the field by improving the accuracy of research protocols and following the physiological adaptations to exercise. PMID:28241495

  15. State-of-the-Art Methods for Skeletal Muscle Glycogen Analysis in Athletes-The Need for Novel Non-Invasive Techniques.

    Science.gov (United States)

    Greene, Jacob; Louis, Julien; Korostynska, Olga; Mason, Alex

    2017-02-23

    Muscle glycogen levels have a profound impact on an athlete's sporting performance, thus measurement is vital. Carbohydrate manipulation is a fundamental component in an athlete's lifestyle and is a critical part of elite performance, since it can provide necessary training adaptations. This paper provides a critical review of the current invasive and non-invasive methods for measuring skeletal muscle glycogen levels. These include the gold standard muscle biopsy, histochemical analysis, magnetic resonance spectroscopy, and musculoskeletal high frequency ultrasound, as well as pursuing future application of electromagnetic sensors in the pursuit of portable non-invasive quantification of muscle glycogen. This paper will be of interest to researchers who wish to understand the current and most appropriate techniques in measuring skeletal muscle glycogen. This will have applications both in the lab and in the field by improving the accuracy of research protocols and following the physiological adaptations to exercise.

  16. Raman spectroscopy in biomedicine – non-invasive in vitro analysis of cells and extracellular matrix components in tissues

    Science.gov (United States)

    Brauchle, Eva; Schenke-Layland, Katja

    2013-01-01

    Raman spectroscopy is an established laser-based technology for the quality assurance of pharmaceutical products. Over the past few years, Raman spectroscopy has become a powerful diagnostic tool in the life sciences. Raman spectra allow assessment of the overall molecular constitution of biological samples, based on specific signals from proteins, nucleic acids, lipids, carbohydrates, and inorganic crystals. Measurements are non-invasive and do not require sample processing, making Raman spectroscopy a reliable and robust method with numerous applications in biomedicine. Moreover, Raman spectroscopy allows the highly sensitive discrimination of bacteria. Rama spectra retain information on continuous metabolic processes and kinetics such as lipid storage and recombinant protein production. Raman spectra are specific for each cell type and provide additional information on cell viability, differentiation status, and tumorigenicity. In tissues, Raman spectroscopy can detect major extracellular matrix components and their secondary structures. Furthermore, the non-invasive characterization of healthy and pathological tissues as well as quality control and process monitoring of in vitro-engineered matrix is possible. This review provides comprehensive insight to the current progress in expanding the applicability of Raman spectroscopy for the characterization of living cells and tissues, and serves as a good reference point for those starting in the field. PMID:23161832

  17. A non-invasive online photoionization spectrometer for FLASH2

    Science.gov (United States)

    Braune, Markus; Brenner, Günter; Dziarzhytski, Siarhei; Juranić, Pavle; Sorokin, Andrey; Tiedtke, Kai

    2016-01-01

    The stochastic nature of the self-amplified spontaneous emission (SASE) process of free-electron lasers (FELs) effects pulse-to-pulse fluctuations of the radiation properties, such as the photon energy, which are determinative for processes of photon–matter interactions. Hence, SASE FEL sources pose a great challenge for scientific investigations, since experimenters need to obtain precise real-time feedback of these properties for each individual photon bunch for interpretation of the experimental data. Furthermore, any device developed to deliver the according information should not significantly interfere with or degrade the FEL beam. Regarding the spectral properties, a device for online monitoring of FEL wavelengths has been developed for FLASH2, which is based on photoionization of gaseous targets and the measurements of the corresponding electron and ion time-of-flight spectra. This paper presents experimental studies and cross-calibration measurements demonstrating the viability of this online photoionization spectrometer. PMID:26698040

  18. An Online Non-Invasive Condition Monitoring Method for Stepping Motor CRDM in HTGR

    Directory of Open Access Journals (Sweden)

    S. Bakhri

    2016-12-01

    Full Text Available Control Rod Drive Mechanism (CRDM based on stepping motor is one of the components applied in High Temperature Gas Coold Reactor (HTGR to control the reactivity as well as to maintain the safety of reactor. The stepping motor requires a unique condition monitoring to avoid any failures especially due to the specific environments of CRDM in HTGR such as the allowable of high temperature, high radiation and the location of stepper motor inside a pressure shell. This research aims to demonstrate an online non-invasive condition monitoring method without direct access to the CRDM of HTGR based on voltage and stator current measurements. A simple stepping motor CRDM simulator is employed. The online condition monitoring is carried out by direct pattern matching of the output signals of logic generator block and the output signals of motor driver. The online method utilizes signature patterns of voltage and stator current signals of the healthy motor as a baseline for healthy motor. In addition, the method is applied to detect high-resistance problem on the connector between the motor driver block and the stepper motor to show the effectiveness and the applicability of this method. The online condition monitoring system demonstrates a capability to identify a minimum detectable simulated high-resistance for about 2.9% which decreases the measured stator current and motor’s torque for around 5.1% and 3.3%, respectively. The paper also points out signatures of healthy motor, including mutual inductions of the motor’s winding in voltage and current measurement which can be used as the fault symptom indicators for online monitoring purposes.

  19. Coloured ornamental traits could be effective and non-invasive indicators of pollution exposure for wildlife.

    Science.gov (United States)

    Lifshitz, Natalia; St Clair, Colleen Cassady

    2016-01-01

    Growth in human populations causes habitat degradation for other species, which is usually gauged by physical changes to landscapes. Corresponding habitat degradation to air and water is also common, but its effects on individuals can be difficult to detect until they result in the decline or disappearance of populations. More proactive measures of pollution usually combine abiotic samples of soil, water or air with invasive sampling of expendable species, but this approach sometimes creates ethical dilemmas and has limited application for threatened species. Here, we describe the potential to measure the effects of pollution on many species of birds and fish by using ornamental traits that are expressed as coloured skin, feathers and scales. As products of sexual selection, these traits are sensitive to environmental conditions, thereby providing honest information about the condition of their bearers as ready-made biomarkers. We review the documented effects of several classes of pollutants, including pharmaceuticals, pesticides, industry-related compounds and metals, on two classes of colour pigments, namely melanins and carotenoids. We find that several pollutants impede the expression of both carotenoids and brown melanin, while enhancing traits coloured by black melanin. We also review some of the current limitations of using ornamental colour as an indicator of pollution exposure, suggest avenues for future research and speculate about how advances in robotics and remote imagery will soon make it possible to measure these traits remotely and in a non-invasive manner. Wider awareness of this potential by conservation managers could foster the development of suitable model species and comparative metrics and lay a foundation for pollution monitoring that is more generalizable and biologically relevant than existing standards.

  20. A new method for non-invasive estimation of human muscle fiber type composition.

    Directory of Open Access Journals (Sweden)

    Audrey Baguet

    Full Text Available BACKGROUND: It has been established that excellence in sports with short and long exercise duration requires a high proportion of fast-twitch (FT or type-II fibers and slow-twitch (ST or type-I fibers, respectively. Until today, the muscle biopsy method is still accepted as gold standard to measure muscle fiber type composition. Because of its invasive nature and high sampling variance, it would be useful to develop a non-invasive alternative. METHODOLOGY: Eighty-three control subjects, 15 talented young track-and-field athletes, 51 elite athletes and 14 ex-athletes volunteered to participate in the current study. The carnosine content of all 163 subjects was measured in the gastrocnemius muscle by proton magnetic resonance spectroscopy ((1H-MRS. Muscle biopsies for fiber typing were taken from 12 untrained males. PRINCIPAL FINDINGS: A significant positive correlation was found between muscle carnosine, measured by (1H-MRS, and percentage area occupied by type II fibers. Explosive athletes had ∼30% higher carnosine levels compared to a reference population, whereas it was ∼20% lower than normal in typical endurance athletes. Similar results were found in young talents and ex-athletes. When active elite runners were ranked according to their best running distance, a negative sigmoidal curve was found between logarithm of running distance and muscle carnosine. CONCLUSIONS: Muscle carnosine content shows a good reflection of the disciplines of elite track-and-field athletes and is able to distinguish between individual track running distances. The differences between endurance and sprint muscle types is also observed in young talents and former athletes, suggesting this characteristic is genetically determined and can be applied in early talent identification. This quick method provides a valid alternative for the muscle biopsy method. In addition, this technique may also contribute to the diagnosis and monitoring of many conditions and

  1. Non-invasive multiparametric qBOLD approach for robust mapping of the oxygen extraction fraction.

    Science.gov (United States)

    Domsch, Sebastian; Mie, Moritz B; Wenz, Frederik; Schad, Lothar R

    2014-09-01

    The quantitative blood oxygenation level-dependent (qBOLD) method has not become clinically established yet because long acquisition times are necessary to achieve an acceptable certainty of the parameter estimates. In this work, a non-invasive multiparametric (nimp) qBOLD approach based on a simple analytical model is proposed to facilitate robust oxygen extraction fraction (OEF) mapping within clinically acceptable acquisition times by using separate measurements. The protocol consisted of a gradient-echo sampled spin-echo sequence (GESSE), a T2-weighted Carr-Purcell-Meiboom-Gill (CPMG) sequence, and a T2(*)-weighted multi-slice multi-echo gradient echo (MMGE) sequence. The GESSE acquisition time was less than 5 minutes and the extra measurement time for CPMG/MMGE was below 2 minutes each. The proposed nimp-qBOLD approach was validated in healthy subjects (N = 5) and one patient. The proposed nimp-qBOLD approach facilitated more robust OEF mapping with significantly reduced inter- and intra-subject variability compared to the standard qBOLD method. Thereby, an average OEF in all subjects of 27±2% in white matter (WM) and 29±2% in gray matter (GM) using the nimp-qBOLD method was more stable compared to 41±10% (WM) and 46±10% (GM) with standard qBOLD. Moreover, the spatial variance in the image slice (i.e. standard deviation divided by mean) was on average reduced from 35% to 25%. In addition, the preliminary results of the patient are encouraging. The proposed nimp-qBOLD technique provides a promising tool for robust OEF mapping within clinically acceptable acquisition times and could therefore provide an important contribution for analyzing tumors or monitoring the success of radio and chemo therapies. Copyright © 2014. Published by Elsevier GmbH.

  2. TH-C-17A-11: Hyperthermia-Driven Immunotherapy Using Non-Invasive Radiowaves

    Energy Technology Data Exchange (ETDEWEB)

    Serda, R; Savage, D; Corr, S; Curley, S [Baylor College of Medicine, Houston, TX (United States)

    2014-06-15

    Purpose: The sad truth is that cancer is blamed for the death of nearly one in four people in the US. Immunotherapy offers hope for stimulating cancer immunity leading to targeted killing of cancer cells and a preventative measure for cancer recurrence. Unfortunately, the clinical efficacy of immunotherapy has not yet been established, however novel approaches are being developed, including combining immunotherapy with traditional chemotherapy, radiotherapy or thermal therapy. Therapeutics such as radiofrequency (RF) ablation and select chemotherapeutics induce mild anticancer immune responses. This project seeks to enhance the immune responses stimulated by these agents by co-delivery of nanoparticle-based chemotherapeutics and immune modulators in the presence of RF induced hyperthermia. Methods: A 4T1 mouse model of breast cancer is used to test the ability of RF waves to enhance accumulation of nanoparticles in tumor tissue by increasing blood flow and extravation of nanoparticles from hyperpermeable vessels. Images of particle and cell trafficking in the tumor are captured using an integrated RF and confocal imaging system, and tumor growth is monitored by tumor bioluminescence and caliper measurements. Results: Here we demonstrate enhanced intratumoral blood flow induced by non-invasive RF waves and an increase in nanoparticle accumulation in the tumor. IL-12 is shown to have powerful anti-tumor effects leading to tumor regression and the release of Th1-biased cytokines. Doxorubicin nanoparticles combined with adjuvant nanoparticles exhibited superior antitumor effects to single agent therapy. Conclusion: RF therapy combined with nanotherapeutics is a promising approach to enhance the delivery of therapeutics to the tumor and to stimulate a tumor microenvironment that supports the development of cancer-specific immune responses. This research was supported by the National Institute of Health grant numbers U54 CA143837 and U54 CA151668, and the Kanzius

  3. Invasive versus Non Invasive Methods Applied to Mummy Research: Will This Controversy Ever Be Solved?

    Science.gov (United States)

    Moissidou, Despina; Day, Jasmine; Shin, Dong Hoon; Bianucci, Raffaella

    2015-01-01

    Advances in the application of non invasive techniques to mummified remains have shed new light on past diseases. The virtual inspection of a corpse, which has almost completely replaced classical autopsy, has proven to be important especially when dealing with valuable museum specimens. In spite of some very rewarding results, there are still many open questions. Non invasive techniques provide information on hard and soft tissue pathologies and allow information to be gleaned concerning mummification practices (e.g., ancient Egyptian artificial mummification). Nevertheless, there are other fields of mummy studies in which the results provided by non invasive techniques are not always self-explanatory. Reliance exclusively upon virtual diagnoses can sometimes lead to inconclusive and misleading interpretations. On the other hand, several types of investigation (e.g., histology, paleomicrobiology, and biochemistry), although minimally invasive, require direct contact with the bodies and, for this reason, are often avoided, particularly by museum curators. Here we present an overview of the non invasive and invasive techniques currently used in mummy studies and propose an approach that might solve these conflicts.

  4. Non-invasive positive pressure ventilation (NIPPV) in stable patients with chronic obstructive pulmonary disease (COPD)

    NARCIS (Netherlands)

    Wijkstra, PJ

    2003-01-01

    While non-invasive positive pressure ventilation (NIPPV) has become an accepted management approach for patients with acute hypercapnia, it remains unclear whether it can also be beneficial in stable chronic obstructive pulmonary disease (COPD) patients with chronic respiratory failure. Randomised

  5. Non.Invasive Ventilation for Adult Acute Respiratory Failure. Part II.

    Science.gov (United States)

    Duke, G J; Bersten, A D

    1999-06-01

    To discuss the clinical indications and complications of non-invasive ventilation. A review of articles published in peer-reviewed journals from 1966 to 1998 and identified through a MEDLINE search on non-invasive ventilation. Non-invasive ventilation (NIV) has been used in patients with respiratory failure caused by cardiogenic pulmonary oedema, acute respiratory distress syndrome, acute asthma and chronic obstructive pulmonary disease. However, in patients with acute respiratory failure, it appears that acute cardiogenic pulmonary oedema and acute respiratory failure associated with Pneumocystis carinii pneumonia are the only disorders in which significant benefits have been associated with the use of the NIV mode of CPAP. The potential clinical benefit of CPAP in acute asthma and blunt chest trauma remains unclear. Pressure support ventilation is beneficial in patients with hypercapnic acute respiratory failure (ARF) secondary to respiratory muscle insufficiency, high inspiratory work loads, or reduced alveolar ventilation. It appears also to be associated with an improved outcome in COPD patients with hypercapnic ARF. Non-invasive ventilation using the modes of CPAP, PSV, BiPAP and NIPPV should be considered in patients with respiratory disorders who remain in acute respiratory failure despite conventional therapy, before considering invasive mechanical ventilation.

  6. Nocturnal non-invasive ventilation in addition to rehabilitation in hypercapnic patients with COPD

    NARCIS (Netherlands)

    Duiverman, M.L.; Wempe, J.B.; Bladder, G.; Jansen, D.F.; Kerstjens, H.A.M.; Zijlstra, J.G.; Wijkstra, P.J.

    2008-01-01

    Background: Long-term non-invasive positive pressure ventilation (NIPPV) might improve the outcomes of pulmonary rehabilitation in patients with chronic obstructive pulmonary disease (COPD) with chronic respiratory failure. A study was undertaken to investigate whether nocturnal NIPPV in addition to

  7. Domiciliary Non-invasive Ventilation in COPD : An International Survey of Indications and Practices

    NARCIS (Netherlands)

    Crimi, Claudia; Noto, Alberto; Princi, Pietro; Cuvelier, Antoine; Masa, Juan F.; Simonds, Anita; Elliott, Mark W.; Wijkstra, Peter; Windisch, Wolfram; Nava, Stefano

    2016-01-01

    Despite the fact that metanalyses and clinical guidelines do not recommend the routine use of domiciliary non-invasive ventilation (NIV) for patients diagnosed with severe stable Chronic Obstructive Pulmonary Disease (COPD) and with chronic respiratory failure, it is common practice in some

  8. Evaluation of non-invasive trunk sprays and trunk-injected emamectic benzoate

    Science.gov (United States)

    Deborah G. McCullough; D.L. Cappaert; T.M. Poland; A.C. Anulewicz; P. Lewis; J. Molongoski

    2008-01-01

    In 2007, we continued to evaluate two neo-nicotinoid insecticides, imidacloprid and dinotefuron, applied as non-invasive trunk sprays to control emerald ash borer (EAB), Agrilus planipennis Fairmaire. Neo-nicotinoid products are widely used to protect landscape ash trees because they are relatively safe for humans and non-target species. These...

  9. Ultraweak photon emission as a non-invasive health assessment: A systematic review

    NARCIS (Netherlands)

    Ives, J.A.; Wijk, E.P.A. van; Bat, N.; Crawford, C.; Walter, A.; Jonas, W.B.; Wijk, R. van; Greef, J. van der

    2014-01-01

    We conducted a systematic review (SR) of the peer reviewed scientific literature on ultraweak photon emissions (UPE) from humans. The question was: Can ultraweak photon emissions from humans be used as a non-invasive health assessment? A systematic search was conducted across eight relevant

  10. Non-invasive imaging of kupffer cell status using radiolabelled mannosylated albumin

    NARCIS (Netherlands)

    Mahajan, V.; Hartimath, S.; Comley, R.; Stefan-Gueldner, M.; Roth, A.; Poelstra, K.; Reker-Smit, C.; Kamps, J.; Dierckx, R.; de Vries, Erik

    2014-01-01

    Background and Aims: Kupffer cells are responsible for maintaining liver homeostasis and have a vital role in chronic hepatotoxicity and various liver diseases. Positron Imaging Tomography (PET) is a non-invasive imaging technique that allows quantification and visualization of biochemical processes

  11. Comparative anatomy of invasive and non-invasive species in the ...

    African Journals Online (AJOL)

    The foliar and stem micromorphological study of the invasive and non-invasive species were undertaken using Light Microscope (LM). The occurrence of vessels in the pillar of the abundant sclerenchyma tissues are important component of the skeletal system in the invasive species. The prominent tiles of parenchymatous ...

  12. Trial by Dutch Laboratories for Evaluation of Non-Invasive Prenatal Testing. Part II - Women's Perspectives

    NARCIS (Netherlands)

    van Schendel, Rachel V; Page-Christiaens, Lieve; Beulen, Lean; Bilardo, Catia M; de Boer, Marjon A; Coumans, Audrey B C; Faas, Brigitte H; van Langen, Irene M; Lichtenbelt, Klaske D; van Maarle, Merel C; Macville, Merryn V E; Oepkes, Dick; Pajkrt, Eva; Henneman, Lidewij

    2016-01-01

    OBJECTIVE: To evaluate preferences and decision-making amongst high-risk pregnant women offered a choice between Non-Invasive Prenatal Testing (NIPT), invasive testing or no further testing. METHODS: Nationwide implementation study (TRIDENT) offering NIPT as contingent screening test for women at

  13. Trial by Dutch Laboratories for Evaluation of Non-Invasive Prenatal Testing. : Part II - Women's Perspectives

    NARCIS (Netherlands)

    van Schendel, Rachel V; Page-Christiaens, Lieve; Beulen, Lean; Bilardo, Catia M; de Boer, Marjon A; Coumans, Audrey B C; Faas, Brigitte H; van Langen, Irene M; Lichtenbelt, Klaske D; van Maarle, Merel C; Macville, Merryn V E; Oepkes, Dick; Pajkrt, Eva; Henneman, Lidewij

    2016-01-01

    OBJECTIVE: To evaluate preferences and decision-making amongst high-risk pregnant women offered a choice between Non-Invasive Prenatal Testing (NIPT), invasive testing or no further testing. METHODS: Nationwide implementation study (TRIDENT) offering NIPT as contingent screening test for women at

  14. Non-invasive prenatal detection for trisomy 2 : What women want and are willing to pay

    NARCIS (Netherlands)

    Verweij, E.J.; Oepkes, D.; de Vries, M.; van den Akker, M.E.; van den Akker, E.S.; de Boer, M.A.

    2013-01-01

    Objective To investigate the attitude among pregnant women regarding non-invasive prenatal testing (NIPT) for detecting trisomy 21 (T21) and to quantify their willingness to pay for NIPT. Methods A questionnaire was administered to pregnant women who received counselling for first-trimester

  15. Application of quantum dot nanoparticles for potential non-invasive bio-imaging of mammalian spermatozoa

    Science.gov (United States)

    Various obstacles are encountered by mammalian spermatozoa during their journey through the female genital tract, and only few or none will reach the site of fertilization. Currently, there are limited technical approaches for non-invasive investigation of spermatozoa migration after insemination. A...

  16. EAPD interim seminar and workshop in Brussels May 9 2015 Non-invasive caries treatment

    NARCIS (Netherlands)

    van Loveren, C.; van Palenstein Helderman, W.

    2016-01-01

    Aim This was to collect information for the 9th European Academy of Paediatric Dentistry Interim Seminar and Workshops to discuss the state of art on non-invasive caries therapy to be used if possible to formulate clinical guidelines by European experts in paediatric dentistry Methods Based on

  17. Reflectance confocal microscopy: non-invasive distinction between actinic keratosis and squamous cell carcinoma

    NARCIS (Netherlands)

    Peppelman, M.; Nguyen, K.P.; Hoogedoorn, L.; Erp, P.E.J. van; Gerritsen, M.J.P.

    2015-01-01

    BACKGROUND: Early recognition of squamous cell carcinoma (SCC) is difficult. Non-invasive reflectance confocal microscopic (RCM) imaging of the skin is a promising diagnostic technique. Although several RCM features for SCC and AK have been described, it is not determined whether RCM has the ability

  18. Non-invasive prenatal testing for sub-saharan Africa: Tailoring ...

    African Journals Online (AJOL)

    BACKGROUND Non-invasive prenatal testing (NIPT) for cell-free foetal (cff) RHD genotyping has clinical value to guide pregnancy management for alloimmunised RhD-negative pregnant women and guide antenatal anti-D prophylaxis needs for all D-negative women to prevent alloimmunisation. This assay assumes there ...

  19. Modelling obstructive sleep apnea susceptibility using non-invasive inflammatory biomarkers

    Directory of Open Access Journals (Sweden)

    Lucy Abd El Mabood Suliman

    2017-10-01

    Conclusion: OSA patients have increased level of HS-CRP, ESR, and Exhaled FENO which confirm association of inflammation in OSA. These simple inflammatory markers may be used also as simple non invasive predictors to diagnose OSA. Moreover, the HS-CRP may be used as a useful parameter to predict OSA severity.

  20. Non-drug Non-invasive Treatment in the Management of Low Back ...

    African Journals Online (AJOL)

    ... of functional independence and quality of life. Aim: The main purpose of this study was to assess the results of non-drug non-invasive treatment in the management of LBP. Subjects and Methods: This was prospective study conducted in the Department of Orthopedics in M. M. Medical College, Mullana, Ambala, Haryana, ...