Sample records for non-invasive genetic monitoring

  1. Non-invasive hemoglobin monitoring. (United States)

    Joseph, Bellal; Haider, Ansab; Rhee, Peter


    Technology has transformed the practice of medicine and surgery in particular over the last several decades. This change in practice has allowed diagnostic and therapeutic tests to be performed less invasively. Hemoglobin monitoring remains one of the most commonly performed diagnostic tests in the United States. Recently, non-invasive hemoglobin monitoring technology has gained popularity. The aim of this article is to review the principles of how this technology works, pros and cons, and the implications of non-invasive hemoglobin technology particularly in trauma surgery.

  2. Non-invasive brainstem monitoring: the ocular microtremor. (United States)

    Robertson, James; Timmons, Shelly


    The ocular microtremor (OMT) is mediated by the oculomotor area of the brainstem and is altered in several pathologic states, including traumatic brain injury, general anesthesia, brain death, coma, Parkinsonism and multiple sclerosis. The EYETECT tremor monitor is a non-invasive means of measuring the frequency and amplitude of this microscopic tremor. It has been clinically tested in these clinical scenarios and has been found to be a reliable means of detecting the depth of anesthesia, and has been useful in predicting outcome in coma and traumatic brain injury patients and in confirming brain death. This paper reviews the scientific literature on the EYETECT OMT monitor, describes the underlying physiology and discusses the potential for future works and clinical use of this innovative technology.

  3. Non-invasive system for monitoring of the manufacturing equipment (United States)

    Mazăre, A. G.; Belu, N.; Ionescu, L. M.; Rachieru, N.; Misztal, A.


    The automotive industry is one of the most important industries in the world that concerns the economy and the world culture. High demand has resulted in increasing of the pressure on the production lines. In conclusion, it is required more careful in monitoring of the production equipment not only for maintenance but also for staff safety and to increase the quality of production. In this paper, we propose a solution for non-invasive monitoring of the industrial equipment operation by measuring the current consumption on energy supply lines. Thus, it is determined the utilization schedule of the equipment and operation mode. Based on these measurements, it’s built an activity report for that equipment, available to the quality management and maintenance team. The solution consists of the current measuring equipment, with self-harvesting capabilities and radio transceiver, and an embedded system which run a server. The current measuring equipment will transmit data about consumption of each energy supply network line where is placed the industrial equipment. So, we have an internal measuring radio network. The embedded system will collect data for the equipment and put in a local data base and it will provide via an intranet application. The entire system not requires any supplementary energy supply and interventions in the factory infrastructure. It is experimented in a company from the automotive industries.

  4. [Non-invasive Genetic Prenatal Testing - A Serious Challenge for Society as a Whole]. (United States)

    Zerres, K


    Non-invasive genetic prenatal tests nowadays allow a highly reliable identification of pregnancies with foetal aneuploidies. Due to the general availability of these tests for all pregnant women, non-invasive genetic prenatal testing raises many ethical questions whieh can only be answered by a debate focused on society as a whole.

  5. Non-invasive cardiac output monitoring in neonates using bioreactance: a comparison with echocardiography.

    LENUS (Irish Health Repository)

    Weisz, Dany E


    Non-invasive cardiac output monitoring is a potentially useful clinical tool in the neonatal setting. Our aim was to evaluate a new method of non-invasive continuous cardiac output (CO) measurement (NICOM™) based on the principle of bioreactance in neonates.

  6. Non-Invasive Continuous Respiratory Monitoring on General Hospital Wards : A Systematic Review

    NARCIS (Netherlands)

    van Loon, Kim|info:eu-repo/dai/nl/341748501; van Zaane, Bas|info:eu-repo/dai/nl/311475361; Bosch, Els J; Kalkman, Cor J|info:eu-repo/dai/nl/078251818; Peelen, Linda M|info:eu-repo/dai/nl/314038426


    BACKGROUND: Failure to recognize acute deterioration in hospitalized patients may contribute to cardiopulmonary arrest, unscheduled intensive care unit admission and increased mortality. PURPOSE: In this systematic review we aimed to determine whether continuous non-invasive respiratory monitoring i

  7. Deconstructing autofluorescence: non-invasive detection and monitoring of biochemistry in cells and tissues (Conference Presentation) (United States)

    Goldys, Ewa M.; Gosnell, Martin E.; Anwer, Ayad G.; Cassano, Juan C.; Sue, Carolyn M.; Mahbub, Saabah B.; Pernichery, Sandeep M.; Inglis, David W.; Adhikary, Partho P.; Jazayeri, Jalal A.; Cahill, Michael A.; Saad, Sonia; Pollock, Carol; Sutton-Mcdowall, Melanie L.; Thompson, Jeremy G.


    Automated and unbiased methods of non-invasive cell monitoring able to deal with complex biological heterogeneity are fundamentally important for biology and medicine. Label-free cell imaging provides information about endogenous fluorescent metabolites, enzymes and cofactors in cells. However extracting high content information from imaging of native fluorescence has been hitherto impossible. Here, we quantitatively characterise cell populations in different tissue types, live or fixed, by using novel image processing and a simple multispectral upgrade of a wide-field fluorescence microscope. Multispectral intrinsic fluorescence imaging was applied to patient olfactory neurosphere-derived cells, cell model of a human metabolic disease MELAS (mitochondrial myopathy, encephalomyopathy, lactic acidosis, stroke-like syndrome). By using an endogenous source of contrast, subtle metabolic variations have been detected between living cells in their full morphological context which made it possible to distinguish healthy from diseased cells before and after therapy. Cellular maps of native fluorophores, flavins, bound and free NADH and retinoids unveiled subtle metabolic signatures and helped uncover significant cell subpopulations, in particular a subpopulation with compromised mitochondrial function. The versatility of our method is further illustrated by detecting genetic mutations in cancer, non-invasive monitoring of CD90 expression, label-free tracking of stem cell differentiation, identifying stem cell subpopulations with varying functional characteristics, tissue diagnostics in diabetes, and assessing the condition of preimplantation embryos. Our optimal discrimination approach enables statistical hypothesis testing and intuitive visualisations where previously undetectable differences become clearly apparent.

  8. Neurophotonics: non-invasive optical techniques for monitoring brain functions (United States)

    Torricelli, Alessandro; Contini, Davide; Mora, Alberto Dalla; Pifferi, Antonio; Re, Rebecca; Zucchelli, Lucia; Caffini, Matteo; Farina, Andrea; Spinelli, Lorenzo


    Summary The aim of this review is to present the state of the art of neurophotonics, a recently founded discipline lying at the interface between optics and neuroscience. While neurophotonics also includes invasive techniques for animal studies, in this review we focus only on the non-invasive methods that use near infrared light to probe functional activity in the brain, namely the fast optical signal, diffuse correlation spectroscopy, and functional near infrared spectroscopy methods. We also present an overview of the physical principles of light propagation in biological tissues, and of the main physiological sources of signal. Finally, we discuss the open issues in models, instrumentation, data analysis and clinical approaches. PMID:25764252

  9. Non-invasive monitoring of peripheral perfusion: an exploration of non-invasive peripheral perfusion monitoring for applications in research & healthcare


    Blaxter, Laurence


    The need for real-time, prognostic perfusion data has been widely recognised in clinical practice and academia. Perfusion, the volumetric blood low to tissue, is an important tool for haemodynamic monitoring, since perfusion adequacy is vital to tissue health. Perfusion can serve as both a diagnostic indicator and a fundamental research tool. However, lack of a low cost, easily applied, and non-invasive sensor technology capable of measuring peripheral perfusion in absolute volumetric units i...

  10. Non-invasive physiological wearable sensor real time monitoring


    Alharbi, Samah


    This project presents the implementation of reflectance Photoplethysmography (PPG) and thermo-chip sensor-¬based wireless architecture for a human health monitoring system. The thermo-¬‐chip sensor is used to continuously monitor the body temperature, while the reflectance PPG sensor is used to measure the heart rate by an optical technique that senses the blood volume change in the tissues and vessels. The sensors outputs are then given to the signal conditioning circuit used to filter the n...

  11. Ability of non-invasive intermittent blood pressure monitoring and a continuous non-invasive arterial pressure monitor (CNAP™) to provide new readings in each 1-min interval during elective caesarean section under spinal anaesthesia. (United States)

    McCarthy, T; Telec, N; Dennis, A; Griffiths, J; Buettner, A


    We compared the ability of automated non-invasive intermittent oscillometric blood pressure monitoring with a new device, CNAP(TM) (continuous non-invasive arterial pressure) to provide a new blood pressure reading in each 1-min interval between spinal anaesthesia and delivery during caesarean section. We also compared the accuracy of continuous non-invasive arterial pressure readings with non-invasive blood pressure measurements before spinal anaesthesia. Fifty-nine women participated. The non-invasive and continuous non-invasive monitors displayed new blood pressure readings in a mean of 82% (11%) and 83% (13%) (p = 0.97) of the one-minute intervals between spinal anaesthesia and delivery, respectively. Continuous non-invasive arterial pressure was more likely to fail on two or more consecutive minutes (p=0.001). From the pre-spinal readings, the mean bias, defined as non-invasive-continuous non-invasive arterial pressure, and limits of agreement (±2SD mean bias) for systolic, diastolic and mean blood pressure respectively were +1.3 (±26.0), -2.9 (±21.8) and +2.6 (±20.4) mmHg. The new monitor has disadvantages compared with conventional non-invasive intermittent blood pressure monitoring. Anaesthesia © 2012 The Association of Anaesthetists of Great Britain and Ireland.

  12. A Non-Invasive Genetic Survey of Otters (Lutra lutra in an Urban Environment: A Pilot Study with Citizen Scientists

    Directory of Open Access Journals (Sweden)

    Shane White


    Full Text Available Acquiring reliable estimates for an elusive species' distribution and population size can be problematic. For cryptic species such as the Eurasian otter (Lutra lutra, traditional monitoring approaches rely heavily on identifying field signs that may under or overestimate population sizes. Increasingly, non-invasive genetic sampling is effectively applied to assess the abundance and population structure of otters by genotyping faeces (spraints. Here we present the results of a non-invasive survey conducted in Cork City, Ireland, which aimed to estimate otter population size, sex ratio and genetic diversity. We incorporated a citizen science approach by training members of the public in spraint collection, thus increasing our search effort and sample detection rate. From October 2011 to May 2012, 199 spraints were collected and 187 (94% were genetically identified as otter. Of these positive otter samples, 13 spraints (7% yielded genetic information identifying 11 individuals (5 female and 6 male using nine microsatellite loci. The results indicate that the urban environment does not prevent otters from using the area and we consider the implications based upon contemporary knowledge on otter spatial behaviour. This study demonstrates that non-invasive survey techniques combined with a citizen science approach can effectively reveal otter population parameters and increase urban otter awareness within the community.


    Directory of Open Access Journals (Sweden)

    Hanns-Christian Gunga


    Full Text Available Accurate measurement of the core body temperature (cbt is fundamental to the study of human temperature regulation. As standard sites for the placement of cbt measurement sensors have been used: the rectum, the bladder, the esophagus, the nasopharynx and the acoustic meatus. Nevertheless those measurement sites exhibit limited applicability under field conditions, in rescue operations or during peri- and postoperative long-term core temperature monitoring. There is, indeed, a high demand for a reliable, non-invasive, easy to handle telemetric device. But the ideal non-invasive measurement of core temperature has to meet requirements such as i a convenient measurement site, ii no bias through environmental conditions, and iii a high sensitivity of the sensor regarding time shift and absolute temperature value. Recently, together with the Draegerwerke AG we have developed a new heat flux measurement device (so-called "Double Sensor" as a non-invasive cbt sensor aiming to meet the requirements described above. Four recent studies in humans will be summarized and discussed to show the applicability of this new non-invasive method to monitor core temperature under different environmental and clinical settings on Earth and in space.

  14. Non-invasive monitoring of living cell culture by lensless digital holography imaging

    Institute of Scientific and Technical Information of China (English)

    Yunxin Wang; Dayong Wang; Jie Zhao; Yishu Yang; Xiangqian Xiao; Huakun Cui


    @@ A non-invasive detection method for the status analysis of cell culture is presented based on digital holography technology.Lensless Fourier transform digital holography (LFTDH) configuration is developed for living cell imaging without prestaining.Complex amplitude information is reconstructed by a single inverse fast Fourier transform, and the phase aberration is corrected through the two-step phase subtraction method.The image segmentation is then applied to the automatic evaluation of confluency.Finally,the cervical cancer cell TZMbl is employed for experimental validation, and the results demonstrate that LFTDH imaging with the corresponding image post-processing can provide an automatic and non-invasive approach for monitoring living cell culture.%A non-invasive detection method for the status analysis of cell culture is presented based on digital holography technology. Lensless Fourier transform digital holography (LFTDH) configuration is developed for living cell imaging without prestaining. Complex amplitude information is reconstructed by a single inverse fast Fourier transform, and the phase aberration is corrected through the two-step phase subtraction method. The image segmentation is then applied to the automatic evaluation of confluency. Finally,the cervical cancer cell TZMbl is employed for experimental validation, and the results demonstrate that LFTDH imaging with the corresponding image post-processing can provide an automatic and non-invasive approach for monitoring living cell culture.



    Saini Vipin; Nair Anroop; Goel Ankit


    Therapeutic drug monitoring (TDM) is highly required for drugs possessing narrow therapeutic index as a slight variation in the therapeutic range could result in no or low clinical efficiency or causes significant side effects or high risk of toxicity. In recent days, reverse iontophoresis technique has been attempted for the non invasive drug monitoring. Typically, it applies a low electric current through a pair of skin electrodes to promote the transport of both charged and neutral molecul...

  16. Non-invasive monitoring and control in silicon photonics by CMOS integrated electronics

    CERN Document Server

    Grillanda, Stefano; Morichetti, Francesco; Ciccarella, Pietro; Annoni, Andrea; Ferrari, Giorgio; Strain, Michael; Sorel, Marc; Sampietro, Marco; Melloni, Andrea


    As photonics breaks away from today's device level toward large scale of integration and complex systems-on-a-chip, concepts like monitoring, control and stabilization of photonic integrated circuits emerge as new paradigms. Here, we show non-invasive monitoring and feedback control of high quality factor silicon photonics resonators assisted by a transparent light detector directly integrated inside the cavity. Control operations are entirely managed by a CMOS microelectronic circuit, hosting many parallel electronic read-out channels, that is bridged to the silicon photonics chip. Advanced functionalities, such as wavelength tuning, locking, labeling and swapping are demonstrated. The non-invasive nature of the transparent monitor and the scalability of the CMOS read-out system offer a viable solution for the control of arbitrarily reconfigurable photonic integrated circuits aggregating many components on a single chip.

  17. Monitoring high-risk patients: minimally invasive and non-invasive possibilities. (United States)

    Renner, Jochen; Grünewald, Matthias; Bein, Berthold


    Over the past decades, there has been considerable progress in the field of less invasive haemodynamic monitoring technologies. Substantial evidence has accumulated, which supports the continuous measurement and optimization of flow-based variables such as stroke volume, that is, cardiac output, in order to prevent occult hypoperfusion and consequently to improve patients' outcome in the perioperative setting. However, there is a striking gap between the developments in haemodynamic monitoring and the increasing evidence to implement defined treatment protocols based on the measured variables, and daily clinical routine. Recent trials have shown that perioperative morbidity and mortality is higher than anticipated. This emphasizes the need for the anaesthesia community to address this issue and promotes the implementation of proven concepts into clinical practice in order to improve patients' outcome, especially in high-risk patients. The advances in minimally invasive and non-invasive monitoring techniques can be seen as a driving force in this respect, as the degree of invasiveness of any monitoring tool determines the frequency of its application, especially in the operating room (OR). From this point of view, we are very confident that some of these minimally invasive and non-invasive haemodynamic monitoring technologies will become an inherent part of our monitoring armamentarium in the OR and in the intensive care unit (ICU).

  18. Non invasive methods for genetic analysis applied to ecological and behavioral studies in Latino-America

    Directory of Open Access Journals (Sweden)

    Susana González


    Full Text Available Documenting the presence and abundance of the neotropical mammals is the first step for understanding their population ecology, behavior and genetic dynamics in designing conservation plans. The combination of field research with molecular genetics techniques are new tools that provide valuable biological information avoiding the disturbance in the ecosystems, trying to minimize the human impact in the process to gather biological information. The objective of this paper is to review the available non invasive sampling techniques that have been used in Neotropical mammal studies to apply to determine the presence and abundance, population structure, sex ratio, taxonomic diagnostic using mitochondrial markers, and assessing genetic variability using nuclear markers. There are a wide range of non invasive sampling techniques used to determine the species identification that inhabit an area such as searching for tracks, feces, and carcasses. Other useful equipment is the camera traps that can generate an image bank that can be valuable to assess species presence and abundance by morphology. With recent advances in molecular biology, it is now possible to use the trace amounts of DNA in feces and amplify it to analyze the species diversity in an area, and the genetic variability at intraspecific level. This is particularly helpful in cases of sympatric and cryptic species in which morphology failed to diagnose the taxonomic status of several species of brocket deer of the genus Mazama.

  19. Peripartum cardiomyopathy: postpartum decompensation and use of non-invasive cardiac output monitoring. (United States)

    Lorello, G; Cubillos, J; McDonald, M; Balki, M


    The utility of a non-invasive cardiac output monitor (NICOM™) in guiding the peripartum management and identification of postpartum complications in a patient with severe peripartum cardiomyopathy is reported. A 31-year-old nulliparous woman at 35 weeks of gestation presented with a three-week history of worsening dyspnea and progressive functional deterioration. A transthoracic echocardiogram showed severe left ventricular systolic dysfunction with an ejection fraction peripartum cardiomyopathy. We suggest that use of NICOM™ be extended into the postpartum period to detect signs of cardiac decompensation in such patients.

  20. Limitations of stroke volume estimation by non-invasive blood pressure monitoring in hypergravity.

    Directory of Open Access Journals (Sweden)

    Olivier Manen

    Full Text Available Altitude and gravity changes during aeromedical evacuations induce exacerbated cardiovascular responses in unstable patients. Non-invasive cardiac output monitoring is difficult to perform in this environment with limited access to the patient. We evaluated the feasibility and accuracy of stroke volume estimation by finger photoplethysmography (SVp in hypergravity.Finger arterial blood pressure (ABP waveforms were recorded continuously in ten healthy subjects before, during and after exposure to +Gz accelerations in a human centrifuge. The protocol consisted of a 2-min and 8-min exposure up to +4 Gz. SVp was computed from ABP using Liljestrand, systolic area, and Windkessel algorithms, and compared with reference values measured by echocardiography (SVe before and after the centrifuge runs.The ABP signal could be used in 83.3% of cases. After calibration with echocardiography, SVp changes did not differ from SVe and values were linearly correlated (p<0.001. The three algorithms gave comparable SVp. Reproducibility between SVp and SVe was the best with the systolic area algorithm (limits of agreement -20.5 and +38.3 ml.Non-invasive ABP photoplethysmographic monitoring is an interesting technique to estimate relative stroke volume changes in moderate and sustained hypergravity. This method may aid physicians for aeronautic patient monitoring.

  1. Continuous Non-Invasive Arterial Pressure Technique Improves Patient Monitoring during Interventional Endoscopy

    Directory of Open Access Journals (Sweden)

    Sylvia Siebig, Felix Rockmann, Karl Sabel, Ina Zuber-Jerger, Christine Dierkes, Tanja Brünnler, Christian E. Wrede


    Full Text Available Introduction: Close monitoring of arterial blood pressure (BP is a central part of cardiovascular surveillance of patients at risk for hypotension. Therefore, patients undergoing diagnostic and therapeutic procedures with the use of sedating agents are monitored by discontinuous non-invasive BP measurement (NIBP. Continuous non-invasive BP monitoring based on vascular unloading technique (CNAP®, CN Systems, Graz may improve patient safety in those settings. We investigated if this new technique improved monitoring of patients undergoing interventional endoscopy. Methods: 40 patients undergoing interventional endoscopy between April and December 2007 were prospectively studied with CNAP® in addition to standard monitoring (NIBP, ECG and oxygen saturation. All monitoring values were extracted from the surveillance network at one-second intervals, and clinical parameters were documented. The variance of CNAP® values were calculated for every interval between two NIBP measurements. Results: 2660 minutes of monitoring were recorded (mean 60.1±34.4 min/patient. All patients were analgosedated with midazolam and pethidine, and 24/40 had propofol infusion (mean 90.9±70.3 mg. The mean arterial pressure for CNAP® was 102.4±21.2 mmHg and 106.8±24.8 mmHg for NIBP. Based on the first NIBP value in an interval between two NIBP measurements, BP values determined by CNAP® showed a maximum increase of 30.8±21.7% and a maximum decrease of 22.4±28.3% (mean of all intervals. Discussion: Conventional intermittent blood pressure monitoring of patients receiving sedating agents failed to detect fast changes in BP. The new technique CNAP® improved the detection of rapid BP changes, and may contribute to a better patient safety for those undergoing interventional procedures.

  2. Non-invasive blood glucose monitoring with Raman spectroscopy: prospects for device miniaturization (United States)

    Wróbel, M. S.


    The number of patients with diabetes has reached over 350 million, and still continues to increase. The need for regular blood glucose monitoring sparks the interest in the development of modern detection technologies. One of those methods, which allows for noninvasive measurements, is Raman spectroscopy. The ability of infrared light to penetrate deep into tissues allows for obtaining measurements through the skin without its perforation. This paper presents the limitations and possibilities of non-invasive blood glucose monitoring with Raman spectroscopy. Especially focusing on the possibilities for device miniaturization. Such device incorporates a Raman spectrometer, a fiber-optical probe, and a computing device (microcontroller, smartphone, etc.) which calculates the glucose concentration using specialized algorithms. Simplification of device design, as well as turbidity correction technique and a new proposed method of synchronized detection are described.

  3. Gas dynamics considerations in a non-invasive profile monitor for charged particle beams

    CERN Document Server

    Tzoganis, Vasilis; Welsch, Carsten P


    A non-invasive, gas jet-based, beam profile monitor has been developed in the QUASAR Group at the Cockcroft Institute, UK. This allows on-line measurement of the 2-dimensional transverse profile of particle beams with negligible disturbance to either primary beam or accelerator vacuum. The monitor is suitable for use with beams across a wide range of energies and intensities. In this setup a nozzle-skimmer system shapes a thin supersonic gas jet into a curtain. However, the small dimensions of the gas inlet nozzle and subsequent skimmers were shown to be the cause of many operational problems. In this paper, the dynamics of gas jet formation transport and shaping is discussed before an image-processing based alignment technique is introduced. Furthermore, experimental results obtained with a 5 keV electron beam are discussed and the effects of gas stagnation pressure on the acquired beam are presented.

  4. Non-invasive monitoring for living cell culture with lensless Fourier transform digital holography microscopy (United States)

    Wang, Yunxin; Wang, Dayong; Zhao, Jie; Li, Yan; Meng, Puhui; Wan, Yuhong; Jiang, Zhuqing


    The number of cells is commonly employed to describe the cell viability and the status of cell culture in a certain extent. An automatic and non-invasive detecting method for the status analysis of cell culture is developed based on digital holography microscopy (DHM) technology. Digital holographic imaging can retrieve quantitative information of object wavefront by the numerical reconstruction from a single digital hologram recorded by a detector such as CCD or CMOS camera, which is especially suitable for the morphology detection of the transparent or semi-transparent cells. In this contribution, the lensless Fourier transform (LFT) based holography configuration is designed for cell imaging without prestaining, and the amplitude and phase of living cells can be reconstructed by digital reconstruction and phase unwrapped algorithms. Then the image filtering and segmentation are combined for the automatic evaluation of the level of confluency. In imaging experiments, the culture status of the cervical cancer cell TZMbl is detected, and the results demonstrate that digital holography microscopy provides a feasible non-invasive method for monitoring the living cell culture.

  5. Modelling, verification, and calibration of a photoacoustics based continuous non-invasive blood glucose monitoring system. (United States)

    Pai, Praful P; Sanki, Pradyut K; Sarangi, Satyabrata; Banerjee, Swapna


    This paper examines the use of photoacoustic spectroscopy (PAS) at an excitation wavelength of 905 nm for making continuous non-invasive blood glucose measurements. The theoretical background of the measurement technique is verified through simulation. An apparatus is fabricated for performing photoacoustic measurements in vitro on glucose solutions and in vivo on human subjects. The amplitude of the photoacoustic signals measured from glucose solutions is observed to increase with the solution concentration, while photoacoustic amplitude obtained from in vivo measurements follows the blood glucose concentration of the subjects, indicating a direct proportionality between the two quantities. A linear calibration method is applied separately on measurements obtained from each individual in order to estimate the blood glucose concentration. The estimated glucose values are compared to reference glucose concentrations measured using a standard glucose meter. A plot of 196 measurement pairs taken over 30 normal subjects on a Clarke error grid gives a point distribution of 82.65% and 17.35% over zones A and B of the grid with a mean absolute relative deviation (MARD) of 11.78% and a mean absolute difference (MAD) of 15.27 mg/dl (0.85 mmol/l). The results obtained are better than or comparable to those obtained using photoacoustic spectroscopy based methods or other non-invasive measurement techniques available. The accuracy levels obtained are also comparable to commercially available continuous glucose monitoring systems.

  6. Optimal Non-Invasive Fault Classification Model for Packaged Ceramic Tile Quality Monitoring Using MMW Imaging (United States)

    Agarwal, Smriti; Singh, Dharmendra


    Millimeter wave (MMW) frequency has emerged as an efficient tool for different stand-off imaging applications. In this paper, we have dealt with a novel MMW imaging application, i.e., non-invasive packaged goods quality estimation for industrial quality monitoring applications. An active MMW imaging radar operating at 60 GHz has been ingeniously designed for concealed fault estimation. Ceramic tiles covered with commonly used packaging cardboard were used as concealed targets for undercover fault classification. A comparison of computer vision-based state-of-the-art feature extraction techniques, viz, discrete Fourier transform (DFT), wavelet transform (WT), principal component analysis (PCA), gray level co-occurrence texture (GLCM), and histogram of oriented gradient (HOG) has been done with respect to their efficient and differentiable feature vector generation capability for undercover target fault classification. An extensive number of experiments were performed with different ceramic tile fault configurations, viz., vertical crack, horizontal crack, random crack, diagonal crack along with the non-faulty tiles. Further, an independent algorithm validation was done demonstrating classification accuracy: 80, 86.67, 73.33, and 93.33 % for DFT, WT, PCA, GLCM, and HOG feature-based artificial neural network (ANN) classifier models, respectively. Classification results show good capability for HOG feature extraction technique towards non-destructive quality inspection with appreciably low false alarm as compared to other techniques. Thereby, a robust and optimal image feature-based neural network classification model has been proposed for non-invasive, automatic fault monitoring for a financially and commercially competent industrial growth.

  7. A Non-Invasive Multichannel Hybrid Fiber-Optic Sensor System for Vital Sign Monitoring

    Directory of Open Access Journals (Sweden)

    Marcel Fajkus


    Full Text Available In this article, we briefly describe the design, construction, and functional verification of a hybrid multichannel fiber-optic sensor system for basic vital sign monitoring. This sensor uses a novel non-invasive measurement probe based on the fiber Bragg grating (FBG. The probe is composed of two FBGs encapsulated inside a polydimethylsiloxane polymer (PDMS. The PDMS is non-reactive to human skin and resistant to electromagnetic waves, UV absorption, and radiation. We emphasize the construction of the probe to be specifically used for basic vital sign monitoring such as body temperature, respiratory rate and heart rate. The proposed sensor system can continuously process incoming signals from up to 128 individuals. We first present the overall design of this novel multichannel sensor and then elaborate on how it has the potential to simplify vital sign monitoring and consequently improve the comfort level of patients in long-term health care facilities, hospitals and clinics. The reference ECG signal was acquired with the use of standard gel electrodes fixed to the monitored person's chest using a real-time monitoring system for ECG signals with virtual instrumentation. The outcomes of these experiments have unambiguously proved the functionality of the sensor system and will be used to inform our future research in this fast developing and emerging field.

  8. A Non-Invasive Multichannel Hybrid Fiber-Optic Sensor System for Vital Sign Monitoring (United States)

    Fajkus, Marcel; Nedoma, Jan; Martinek, Radek; Vasinek, Vladimir; Nazeran, Homer; Siska, Petr


    In this article, we briefly describe the design, construction, and functional verification of a hybrid multichannel fiber-optic sensor system for basic vital sign monitoring. This sensor uses a novel non-invasive measurement probe based on the fiber Bragg grating (FBG). The probe is composed of two FBGs encapsulated inside a polydimethylsiloxane polymer (PDMS). The PDMS is non-reactive to human skin and resistant to electromagnetic waves, UV absorption, and radiation. We emphasize the construction of the probe to be specifically used for basic vital sign monitoring such as body temperature, respiratory rate and heart rate. The proposed sensor system can continuously process incoming signals from up to 128 individuals. We first present the overall design of this novel multichannel sensor and then elaborate on how it has the potential to simplify vital sign monitoring and consequently improve the comfort level of patients in long-term health care facilities, hospitals and clinics. The reference ECG signal was acquired with the use of standard gel electrodes fixed to the monitored person’s chest using a real-time monitoring system for ECG signals with virtual instrumentation. The outcomes of these experiments have unambiguously proved the functionality of the sensor system and will be used to inform our future research in this fast developing and emerging field. PMID:28075341

  9. Chemical Sensor Platform for Non-Invasive Monitoring of Activity and Dehydration

    Directory of Open Access Journals (Sweden)

    Dmitry Solovei


    Full Text Available A non-invasive solution for monitoring of the activity and dehydration of organisms is proposed in the work. For this purpose, a wireless standalone chemical sensor platform using two separate measurement techniques has been developed. The first approach for activity monitoring is based on humidity measurement. Our solution uses new humidity sensor based on a nanostructured TiO2 surface for sweat rate monitoring. The second technique is based on monitoring of potassium concentration in urine. High level of potassium concentration denotes clear occurrence of dehydration. Furthermore, a Wireless Body Area Network (WBAN was developed for this sensor platform to manage data transfer among devices and the internet. The WBAN coordinator controls the sensor devices and collects and stores the measured data. The collected data is particular to individuals and can be shared with physicians, emergency systems or athletes’ coaches. Long-time monitoring of activity and potassium concentration in urine can help maintain the appropriate water intake of elderly people or athletes and to send warning signals in the case of near dehydration. The created sensor system was calibrated and tested in laboratory and real conditions as well. The measurement results are discussed.

  10. Wireless non-invasive continuous respiratory monitoring with FMCW radar: a clinical validation study. (United States)

    van Loon, K; Breteler, M J M; van Wolfwinkel, L; Rheineck Leyssius, A T; Kossen, S; Kalkman, C J; van Zaane, B; Peelen, L M


    Altered respiratory rate is one of the first symptoms of medical conditions that require timely intervention, e.g., sepsis or opioid-induced respiratory depression. To facilitate continuous respiratory rate monitoring on general hospital wards a contactless, non-invasive, prototype monitor was developed using frequency modulated continuous wave radar. We aimed to study whether radar can reliably measure respiratory rate in postoperative patients. In a diagnostic cross-sectional study patients were monitored with the radar and the reference monitor (pneumotachograph during mechanical ventilation and capnography during spontaneous breathing). Eight patients were included; yielding 796 min of observation time during mechanical ventilation and 521 min during spontaneous breathing. After elimination of movement artifacts the bias and 95 % limits of agreement for mechanical ventilation and spontaneous breathing were -0.12 (-1.76 to 1.51) and -0.59 (-5.82 to 4.63) breaths per minute respectively. The radar was able to accurately measure respiratory rate in mechanically ventilated patients, but the accuracy decreased during spontaneous breathing.

  11. Combining non-invasive techniques for delimitation and monitoring of chlorinated solvents in groundwater (United States)

    Sparrenbom, Charlotte; Åkesson, Sofia; Hagerberg, David; Dahlin, Torleif; Holmstrand, Henry; Johansson, Sara


    Large numbers of polluted areas cause leakage of hazardous pollutants into our groundwater. Remediated actions are needed in a vast number of areas to prevent degradation of the quality of our water resources. As excavation of polluted masses is problematic as it often moves the pollutants from one site to another (in best case off site treatment is carried out), in-situ remediation and monitoring thereof needs further development. In general, we need to further develop and improve how we retrieve information on the status of the underground system. This is needed to avoid costly and hazardous shipments associated with excavations and to avoid unnecessary exposure when handling polluted masses. Easier, cheaper, more comprehensive and nondestructive monitoring techniques are needed for evaluation of remediation degree, degradation status of the contaminants and the remaining groundwater contaminant plume. We investigate the possibility to combine two investigation techniques, which are invasive to a very low degree and can give a very good visualization and evaluation of pollutant status underground and changes therein in time. The two methods we have combined are Direct Current resistivity and time-domain Induced Polarization tomography (DCIP) and Compound Specific Isotope Analysis (CSIA) and their use within the context of DNAPL contaminated sites. DCIP is a non-invasive and non-destructive geoelectrical measurement method with emerging new techniques for 4D mapping for promising visualization of underground hydrogeochemical structures and spatial distribution of contaminants. The strength of CSIA is that inherent degradation-relatable isotopic information of contaminant molecules remains unaffected as opposed to the commonly used concentration-based studies. Our aim is to evaluate the possibilities of gas sampling on the ground surface for this technique to become non-invasive and usable without interfering ground conditions.Drillings together with soil and

  12. Epidermal tattoo potentiometric sodium sensors with wireless signal transduction for continuous non-invasive sweat monitoring. (United States)

    Bandodkar, Amay J; Molinnus, Denise; Mirza, Omar; Guinovart, Tomás; Windmiller, Joshua R; Valdés-Ramírez, Gabriela; Andrade, Francisco J; Schöning, Michael J; Wang, Joseph


    This article describes the fabrication, characterization and application of an epidermal temporary-transfer tattoo-based potentiometric sensor, coupled with a miniaturized wearable wireless transceiver, for real-time monitoring of sodium in the human perspiration. Sodium excreted during perspiration is an excellent marker for electrolyte imbalance and provides valuable information regarding an individual's physical and mental wellbeing. The realization of the new skin-worn non-invasive tattoo-like sensing device has been realized by amalgamating several state-of-the-art thick film, laser printing, solid-state potentiometry, fluidics and wireless technologies. The resulting tattoo-based potentiometric sodium sensor displays a rapid near-Nernstian response with negligible carryover effects, and good resiliency against various mechanical deformations experienced by the human epidermis. On-body testing of the tattoo sensor coupled to a wireless transceiver during exercise activity demonstrated its ability to continuously monitor sweat sodium dynamics. The real-time sweat sodium concentration was transmitted wirelessly via a body-worn transceiver from the sodium tattoo sensor to a notebook while the subjects perspired on a stationary cycle. The favorable analytical performance along with the wearable nature of the wireless transceiver makes the new epidermal potentiometric sensing system attractive for continuous monitoring the sodium dynamics in human perspiration during diverse activities relevant to the healthcare, fitness, military, healthcare and skin-care domains.

  13. Hydrogel-based electrochemical sensor for non-invasive and continuous glucose monitoring (United States)

    Park, Habeen; Lee, Ji-Young; Kim, Dong-Chul; Koh, Younggook; Cha, Junhoe


    Monitoring blood glucose level of diabetic patients is crucial in diabetes care from life threating complications. Selfmonitoring blood glucose (SMBG) that involves finger prick to draw blood samples into the measurement system is a widely-used method of routine measurement of blood glucose levels to date. SMBG includes, however, unavoidable pain problems resulting from the repetitive measurements. We hereby present a hydrogel-based electrochemical (H-EC) sensor to monitor the glucose level, non-invasively. Glucose oxidase (GOx) was immobilized in the disc-type hydroxyethyl methacrylate (HEMA) based hydrogel and kept intact in the hydrogel. Fast electron transfer mediated by Prussian blue (PB, hexacyanoferrate) generated efficient signal amplifications to facilitate the detection of the extracted glucose from the interstitial fluid. The linear response and the selectivity against glucose of the H-EC sensor were validated by chronoamperometry. For the practical use, the outcomes from the correlation of the extracted glucose concentration and the blood glucose value by on-body extraction, as well as the validation of the hydrogel-based electrochemical (H-EC) device, were applied to the on-body glucose monitoring.

  14. Non-invasive monitoring of hemodynamic changes in orthotropic brain tumor (United States)

    Kashyap, Dheerendra; Sharma, Vikrant; Liu, Hanli


    Radio surgical interventions such as Gamma Knife and Cyberknife have become attractive as therapeutic interventions. However, one of the drawbacks of cyberknife is radionecrosis, which is caused by excessive radiation to surrounding normal tissues. Radionecrosis occurs in about 10-15% of cases and could have adverse effects leading to death. Currently available imaging techniques have failed to reliably distinguish radionecrosis from tumor growth. Development of imaging techniques that could provide distinction between tumor growth and radionecrosis would give us ability to monitor effects of radiation therapy non-invasively. This paper investigates the use of near infrared spectroscopy (NIRS) as a new technique to monitor the growth of brain tumors. Brain tumors (9L glioma cell line) were implanted in right caudate nucleus of rats (250-300 gms, Male Fisher C) through a guide screw. A new algorithm was developed, which used broadband steady-state reflectance measurements made using a single source-detector pair, to quantify absolute concentrations of hemoglobin derivatives and reduced scattering coefficients. Preliminary results from the brain tumors indicated decreases in oxygen saturation, oxygenated hemoglobin concentrations and increases in deoxygenated hemoglobin concentrations with tumor growth. The study demonstrates that NIRS technology could provide an efficient, noninvasive means of monitoring vascular oxygenation dynamics of brain tumors and further facilitate investigations of efficacy of tumor treatments.

  15. Landfills as critical infrastructures: analysis of observational datasets after 12 years of non-invasive monitoring (United States)

    Scozzari, Andrea; Raco, Brunella; Battaglini, Raffaele


    This work presents the results of more than ten years of observations, performed on a regular basis, on a municipal solid waste disposal located in Italy. Observational data are generated by the combination of non-invasive techniques, involving the direct measurement of biogas release to the atmosphere and thermal infrared imaging. In fact, part of the generated biogas tends to escape from the landfill surface even when collecting systems are installed and properly working. Thus, methodologies for estimating the behaviour of a landfill system by means of direct and/or indirect measurement systems have been developed in the last decades. It is nowadays known that these infrastructures produce more than 20% of the total anthropogenic methane released to the atmosphere, justifying the need for a systematic and efficient monitoring of such infrastructures. During the last 12 years, observational data regarding a solid waste disposal site located in Tuscany (Italy) have been collected on a regular basis. The collected datasets consist in direct measurements of gas flux with the accumulation chamber method, combined with the detection of thermal anomalies by infrared radiometry. This work discusses the evolution of the estimated performance of the landfill system, its trends, the benefits and the critical aspects of such relatively long-term monitoring activity.

  16. Validation of non-invasive arterial pressure monitoring during carotid endarterectomy. (United States)

    Heusdens, J F; Lof, S; Pennekamp, C W A; Specken-Welleweerd, J C; de Borst, G J; van Klei, W A; van Wolfswinkel, L; Immink, R V


    Patients undergoing carotid endarterectomy require strict arterial blood pressure (BP) control to maintain adequate cerebral perfusion. In this study we tested whether non-invasive beat-to-beat Nexfin finger BP (BPfin) can replace invasive beat-to-beat radial artery BP (BPrad) in this setting. In 25 consecutive patients (median age 71 yr) scheduled for carotid endarterectomy and receiving general anaesthesia, BPfin and BPrad were monitored simultaneously and ipsilaterally during the 30-min period surrounding carotid artery cross-clamping. Validation was guided by the standard set by the Association for the Advancement of Medical Instrumentation (AAMI), which considers a BP monitor adequate when bias (precision) is <5 (8) mm Hg, respectively. BPfin vs BPrad bias (precision) was -3.3 (10.8), 6.1 (5.7) and 3.5 (5.2) mm Hg for systolic, diastolic, and mean BP, respectively. One subject was excluded due to a poor quality BP curve. In another subject, mean BPfin overestimated mean BPrad by 13.5 mm Hg. Mean BPfin could be considered as an alternative for mean BPrad during a carotid endarterectomy, based on the AAMI criteria. In 23 of 24 patients, the use of mean BPfin would not lead to decisions to adjust mean BPrad values outside the predefined BP threshold. NCT01451294. © The Author 2016. Published by Oxford University Press on behalf of the British Journal of Anaesthesia. All rights reserved. For Permissions, please email:

  17. Fecal Progestin Extraction and Analysis for Non-invasive Monitoring of Ovarian Cycle in Beef Cows

    Directory of Open Access Journals (Sweden)

    N. Yimer§, Y. Rosnina*, H. Wahid, M.M. Bukar, A. Malik, K.C. Yap, M. Fahmi, P. Ganesamurthi and A.A. Saharee


    Full Text Available The aims of the present study were to determine presence of immunoreactive progestins in feces, correlate fecal progestins with plasma progesterone (P4 concentrations and subsequently assess the role of fecal progestins in monitoring estrous cycle in Kedah Kelantan (KK beef cows. A total of 12 cycling cows were subjected to blood and matched fecal sampling twice a week for 9 weeks. The concentrations of plasma P4 and fecal progestins extracted using a modified technique, were determined by a P4 radioimmunoassay (RIA kit. There was a significant positive correlation between the concentrations of fecal progestins and plasma P4 (r = 0.6, P<0.01, as tested for the whole group except one animal. High performance liquid chromatographic separation of fecal extracts and subsequent radioimmunoassay revealed presence of four immunoreactive progestins against the P4 antibodies. These results imply that the non-invasive measure of fecal progestins using a DSL-3900 RIA kit can be used to monitor the ovarian activity in beef cows.

  18. Two-photon microscopy for non-invasive, quantitative monitoring of stem cell differentiation.

    Directory of Open Access Journals (Sweden)

    William L Rice

    Full Text Available BACKGROUND: The engineering of functional tissues is a complex multi-stage process, the success of which depends on the careful control of culture conditions and ultimately tissue maturation. To enable the efficient optimization of tissue development protocols, techniques suitable for monitoring the effects of added stimuli and induced tissue changes are needed. METHODOLOGY/PRINCIPAL FINDINGS: Here, we present the quantitative use of two-photon excited fluorescence (TPEF and second harmonic generation (SHG as a noninvasive means to monitor the differentiation of human mesenchymal stem cells (hMSCs using entirely endogenous sources of contrast. We demonstrate that the individual fluorescence contribution from the intrinsic cellular fluorophores NAD(PH, flavoproteins and lipofuscin can be extracted from TPEF images and monitored dynamically from the same cell population over time. Using the redox ratio, calculated from the contributions of NAD(PH and flavoproteins, we identify distinct patterns in the evolution of the metabolic activity of hMSCs maintained in either propagation, osteogenic or adipogenic differentiation media. The differentiation of these cells is mirrored by changes in cell morphology apparent in high resolution TPEF images and by the detection of collagen production via SHG imaging. Finally, we find dramatic increases in lipofuscin levels in hMSCs maintained at 20% oxygen vs. those in 5% oxygen, establishing the use of this chromophore as a potential biomarker for oxidative stress. CONCLUSIONS/SIGNIFICANCE: In this study we demonstrate that it is possible to monitor the metabolic activity, morphology, ECM production and oxidative stress of hMSCs in a non-invasive manner. This is accomplished using generally available multiphoton microscopy equipment and simple data analysis techniques, such that the method can widely adopted by laboratories with a diversity of comparable equipment. This method therefore represents a powerful tool

  19. An Online Non-Invasive Condition Monitoring Method for Stepping Motor CRDM in HTGR

    Directory of Open Access Journals (Sweden)

    S. Bakhri


    Full Text Available Control Rod Drive Mechanism (CRDM based on stepping motor is one of the components applied in High Temperature Gas Coold Reactor (HTGR to control the reactivity as well as to maintain the safety of reactor. The stepping motor requires a unique condition monitoring to avoid any failures especially due to the specific environments of CRDM in HTGR such as the allowable of high temperature, high radiation and the location of stepper motor inside a pressure shell. This research aims to demonstrate an online non-invasive condition monitoring method without direct access to the CRDM of HTGR based on voltage and stator current measurements. A simple stepping motor CRDM simulator is employed. The online condition monitoring is carried out by direct pattern matching of the output signals of logic generator block and the output signals of motor driver. The online method utilizes signature patterns of voltage and stator current signals of the healthy motor as a baseline for healthy motor. In addition, the method is applied to detect high-resistance problem on the connector between the motor driver block and the stepper motor to show the effectiveness and the applicability of this method. The online condition monitoring system demonstrates a capability to identify a minimum detectable simulated high-resistance for about 2.9% which decreases the measured stator current and motor’s torque for around 5.1% and 3.3%, respectively. The paper also points out signatures of healthy motor, including mutual inductions of the motor’s winding in voltage and current measurement which can be used as the fault symptom indicators for online monitoring purposes.

  20. State-of-the-Art Sensor Technology in Spain: Invasive and Non-Invasive Techniques for Monitoring Respiratory Variables

    Directory of Open Access Journals (Sweden)

    Christian Domingo


    Full Text Available The interest in measuring physiological parameters (especially arterial blood gases has grown progressively in parallel to the development of new technologies. Physiological parameters were first measured invasively and at discrete time points; however, it was clearly desirable to measure them continuously and non-invasively. The development of intensive care units promoted the use of ventilators via oral intubation ventilators via oral intubation and mechanical respiratory variables were progressively studied. Later, the knowledge gained in the hospital was applied to out-of-hospital management. In the present paper we review the invasive and non-invasive techniques for monitoring respiratory variables.

  1. Innovative systems for cultural heritage conservation. Millimeter wave application for non-invasive monitoring and treatment of works of art. (United States)

    Bruno, Bisceglia; De Leo, Roberto; Pastore, Anna Pia; von Gratowski, Svetlana; Meriakri, Viatcheslav


    A novel non invasive technique and a suitable apparatus for disinfestation of artworks is introduced. Non destructive and non invasive techniques are often irreplaceable in order to preserve and restore cultural heritage objects in its structure and shape. Although many techniques are available for art and archaeological works the non invasive methods are preferred as they leave the object untouched after treatment. Environmental parameters, such as humidity, can damage culture heritage objects and also results in spring up variety of pests and other micro-organisms. Non-invasive monitoring of these damage and also disinfestation treatments and drying with help of electromagnetic waves are preferred as they keep the object untouched after treatment. Application of millimeter waves for solving this problem is discussed here. Millimeter waves have high spatial resolution and absorption in water as well as in bio-objects that are usually moist and at the same time minimal interaction with dry culture heritage objects by itself. Different phases of the microwaves treatment (MW) of artworks are described, some results are shown and discussed. Many biological forms don't survive over a certain temperature, called lethal temperature which, for most xylophages is about 53-55 degrees C, while for moulds and funguses is between 65 and 70 degrees C. In order to evaluate the management of disinfestation of works of art, incident power, temperature, exposure time were monitored. The monitoring of temperature is essential in order to prevent damages. A computer simulation allows to predict and monitor the heating process.

  2. Long-term pressure monitoring with arterial applanation tonometry : a non-invasive alternative during clinical intervention?

    NARCIS (Netherlands)

    Matthys, Koen S; Kalmar, Alain F; Struys, Michel M R F; Mortier, Eric P; Avolio, Alberto P; Segers, Patrick; Verdonck, Pascal R


    Arterial tonometry is a non-invasive technique for continuous registration of arterial pressure waveforms. This study aims to assess tonometric blood pressure recording (TBP) as an alternative for invasive long-term bedside monitoring. A prospective study was set up where patients undergoing neurosu

  3. A prenatal case with discrepant findings between non-invasive prenatal testing and fetal genetic testings. (United States)

    Pan, Qiong; Sun, Baojuan; Huang, Xiaoli; Jing, Xin; Liu, Hailiang; Jiang, Fuman; Zhou, Jie; Lin, Mengmeng; Yue, Hongni; Hu, Ping; Ning, Ying


    At 17(+4) week, non-invasive prenatal testing (NIPT) results of a 24-years-old mother showed high risk of monosomy X (45, X). Abnormally shaped head and cardiac defects were observed in prenatal ultrasound scan at 19(+3) week. Amniocentesis conducted at 19(+3) week identified karyotype 47, XX, +18, which suggested that the NIPT failed to detect trisomy 18 (T18) in this case. With a further massively parallel sequencing (MPS) of maternal blood, fetal and placental tissues, we found a confined placental mosaicism (CPM) with non-mosaic T18 fetus and multiclonal placenta with high prevalence of 45, X and low level of T18 cells. FISH and SNP-array evidence from the placental tissue confirmed genetic discrepancy between the fetus and placenta. Because the primary source of the fetal cell-free DNA that NIPT assesses is mostly originated from trophoblast cells, the level of T18 placental mosaicism may cause false negative NIPT result in this rare case of double aneuploidy.

  4. Non-invasive acoustic-based monitoring of uranium in solution and H/D ratio

    Energy Technology Data Exchange (ETDEWEB)

    Pantea, Cristian [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Beedle, Christopher Craig [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Sinha, Dipen N. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lakis, Rollin Evan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)


    The primary objective of this project is to adapt existing non-invasive acoustic techniques (Swept-Frequency Acoustic Interferometry and Gaussian-pulse acoustic technique) for the purpose of demonstrating the ability to quantify U or H/D ratios in solution. Furthermore, a successful demonstration will provide an easily implemented, low cost, and non-invasive method for remote and unattended uranium mass measurements for International Atomic Energy Agency (IAEA).

  5. Fiber-based hybrid probe for non-invasive cerebral monitoring in neonatology (United States)

    Rehberger, Matthias; Giovannella, Martina; Pagliazzi, Marco; Weigel, Udo; Durduran, Turgut; Contini, Davide; Spinelli, Lorenzo; Pifferi, Antonio; Torricelli, Alessandro; Schmitt, Robert


    Improved cerebral monitoring systems are needed to prevent preterm infants from long-term cognitive and motor restrictions. Combining advanced near-infrared diffuse spectroscopy measurement technologies, time-resolved spectroscopy (TRS) and diffuse correlation spectroscopy (DCS) will introduce novel indicators of cerebral oxygen metabolism and blood flow for neonatology. For non-invasive sensing a fiber-optical probe is used to send and receive light from the infant head. In this study we introduce a new fiber-based hybrid probe that is designed for volume production. The probe supports TRS and DCS measurements in a cross geometry, thus both technologies gain information on the same region inside the tissue. The probe is highly miniaturized to perform cerebral measurements on heads of extreme preterm infants down to head diameters of 6cm. Considerations concerning probe production focus on a reproducible accuracy in shape and precise optical alignment. In this way deviations in measurement data within a series of probes should be minimized. In addition to that, requirements for clinical use like robustness and hygiene are considered. An additional soft-touching sleeve made of FDA compatible silicone allows for a flexible attachment with respect to the individual anatomy of each patient. We present the technical concept of the hybrid probe and corresponding manufacturing methods. A prototype of the probe is shown and tested on tissue phantoms as well as in vivo to verify its operational reliability.


    Directory of Open Access Journals (Sweden)

    Saini Vipin


    Full Text Available Therapeutic drug monitoring (TDM is highly required for drugs possessing narrow therapeutic index as a slight variation in the therapeutic range could result in no or low clinical efficiency or causes significant side effects or high risk of toxicity. In recent days, reverse iontophoresis technique has been attempted for the non invasive drug monitoring. Typically, it applies a low electric current through a pair of skin electrodes to promote the transport of both charged and neutral molecules. Transdermal iontophoretic extraction of propranolol was carried out and the study involves effect of different solvents having their different pH values on the iontophoretic extraction, effect of different voltages on the iontophoretic extraction, effect of different permeation enhancers on the permeability of propranolol hydrochloride and the effect of stratum corneum removal on the permeability of propranolol. Iontophoretic diffusion was carried out in vitro using full thickness rat skin. The efficient quantity of propranolol was collected at cathode by electromigration. The correlation between the extracted fluxes of propranolol and its subdermal concentration was found to be adequate. The values of extraction fluxes didn’t attain a steady state throughout the experiment. The decrease in the solvent pH doesn’t affect the transdermal extraction of propranolol. The decrease in the voltage causes diminishes in the iontophoretic fluxes. The application of permeation enhancers especially propylene glycol causes significantly increase in the iontophoretic fluxes of propranolol. Thus it is concluded that propranolol hydrochloride can be quantitatively extracted by reverse iontophoresis in varying conditions of subdermal concentration.

  7. Application of non-invasive optical monitoring methodologies to follow and record painting cleaning processes (United States)

    Fontana, R.; Dal Fovo, A.; Striova, J.; Pezzati, L.; Pampaloni, E.; Raffaelli, M.; Barucci, M.


    The cleaning of painted artworks, i.e. the critical operation whereby materials are selectively removed from a painted surface by partial thinning or complete elimination of varnish, is one of the most debated conservation operations, being an irreversible process, which may result in chromatic and morphological variations in the painted surface. Due to ageing, the upper layer is subject to darkening and yellowing because of blanching and fading from ultraviolet exposure, dust deposition, and overpainted layers due, for instance, to restoration interventions. This degradation can either alter the original appearance of painting polychromy or cause mechanical failure of the finishes. To address these adverse conditions, a process of examination and analysis is critical to the definition and interpretation of the varnish layer. When investigating the ageing process of old paintings, it is of great importance to obtain insight into the painting technique as practiced in the past, and the first step in gaining this knowledge is, to a large extent, based on the study of the varnish film. An effective control of the process and objective evaluation of its outcome requires therefore instrumental/analytical support. The present study illustrates the successful application of non-invasive optical techniques—such as colorimetry, multispectral reflectography, laser scanning micro-profilometry, and optical coherence tomography—to the monitoring of an Italian fourteenth-century painting cleaning process. Results presented here confirm that optical techniques play a pivotal role in artwork diagnostics, especially with regard to conservation operations, while also indicating their validity when applied to the monitoring of the cleaning process.

  8. Non-invasive continuous arterial pressure monitoring with Nexfin does not sufficiently replace invasive measurements in critically ill patients. (United States)

    Hohn, A; Defosse, J M; Becker, S; Steffen, C; Wappler, F; Sakka, S G


    In this study, we tested the reliability of a non-invasive finger-cuff-based continuous arterial blood pressure monitoring device (Nexfin, BMEYE, Amsterdam, NL) in critically ill surgical patients. Invasive intra-arterial and non-invasive arterial pressure measurements from 25 patients during a 4-h period were compared at five time points. Correlation and linear regression analysis were used and mean bias, precision [sd of bias] and limits of agreement (LOA) [bias (2.0 sd)] were calculated using the Bland-Altman method. Eight data pairs were excluded because of error message from the non-invasive technique, and thus a total of 117 data pairs were analysed. Overall, correlation between mean arterial pressure (MAP) was r(2)=0.50. Bias, precision, and LOA between invasive and non-invasive MAP were 6 (12) and -18 to +30 mm Hg. In patients requiring norepinephrine (83 data pairs), correlation was r(2)=0.28 and bias, precision, and LOA were 6 (13) and -20 to +32 mm Hg, whereas in patients not receiving norepinephrine (34 data pairs) r(2) was 0.80 and mean bias, precision, and LOA were 6 (11) and -16 to +28 mm Hg. In patients with peripheral oedema (49 data pairs), r(2) was 0.40 and mean bias, precision and LOA were 7 (15) and -23 to +37 mm Hg. In patients without oedema (64 data pairs), r(2) was 0.66 and mean bias, precision, and LOA were 5 (9) and -13 to +23 mm Hg. Non-invasive blood pressure monitoring with Nexfin does not seem to be sufficiently accurate to replace intra-arterial invasive blood pressure measurements in critically ill patients.

  9. Non-invasive monitoring of functionally distinct muscle activations during swallowing. (United States)

    McKeown, Martin J; Torpey, Dana C; Gehm, Wendy C


    Dysphagia is an important consequence of many diseases. As some of the muscles of deglutition tend to be deep to the surface, needle electrodes are typically used, but this limits the number of muscles that can be simultaneously recorded. Since control of swallowing involves central pattern generators (CPGs) which distribute commands to several muscles, monitoring several muscles simultaneously is desirable. Here we describe a novel method, based on computing the independent components (ICs) of the simultaneous sEMG recordings (Muscle Nerve Suppl 9 (2000) 9) to detect the underlying functional muscle activations during swallowing using only surface EMG (sEMG) electrodes. Seven normal subjects repeatedly swallowed liquids of varying consistency while sEMG was recorded from 15 electrodes from the face and throat. Active areas of EMG were excised from the recordings and the ICs of the sEMG were calculated. The ICs demonstrated less swallow-to-swallow variability than the raw sEMG. The ICs, each consisting of a unique temporal waveform and a spatial distribution, provided a means to segregate the complex sequence of muscle activation into rigorously defined separate functional units. The temporal profiles of the ICs and their spatial distribution were consistent with prior needle EMG studies of the cricopharyngeal, superior pharyngeal constrictor, submental and possibly arytenoid muscles. Other components appeared to correspond to EKG artifact contaminating the EMG recordings, laryngeal excursion, tongue movement and activation of the buccal and/or masseter musculature At least two of the components were affected by the consistency of the liquids swallowed. Re-testing one subject a week later demonstrated good intertrial reliability. We propose that the ICs of the sEMG provide a non-invasive means to assess the complex muscle sequence activation of deglutition.

  10. Infrared irradiation of skin for the development of non-invasive health monitoring technologies (United States)

    Abdussamad Abbas, Hisham; Triplett, Gregory


    Infrared radiation was employed to study the optical transmission properties of pigskin and the factors that influence transmission at room temperature. The skin samples from the forehead of piglets were irradiated using an infrared-pulsed source by varying the beam properties such as optical power, power density, duty cycle, as well as sample thickness. Because infrared radiation in select instances can penetrate through thick-fleshy skin more easily than visible radiation, temperature fluctuations observed within the skin samples stemming from exposure-dependent absorption revealed interesting transmission properties and the limits of optical exposure. Pigskin was selected for this study since its structure most closely resembles that of human skin. Furthermore, the pulsed beam technique compared to continuous operation offers more precise control of heat generation within the skin. Through this effort, the correlated pulsed-beam parameters that influence infrared transmission were identified and varied to minimize the internal absorption losses through the dermis layers. The two most significant parameters that reduce absorption losses were frequency and duty cycle of the pulsed beam. Using the Bouger-Beer-Lambert Law, the absorption coefficient from empirical data is approximated, while accepting that the absorption coefficient is neither uniform nor linear. Given that the optical source used in this study was single mode, the infrared spectra obtained from irradiated samples also reveal characteristics of the skin structure. Realization of appropriate sample conditions and exposure parameters that reduce light attenuation within the skin and sample degradation could give way to novel non-invasive measuring techniques for health monitoring purposes.

  11. Validity of transcutaneous PCO2 in monitoring chronic hypoventilation treated with non-invasive ventilation. (United States)

    Aarrestad, Sigurd; Tollefsen, Elin; Kleiven, Anne Louise; Qvarfort, Magnus; Janssens, Jean-Paul; Skjønsberg, Ole Henning


    Non-invasive ventilation (NIV) is an efficient treatment for patients with chronic hypercapnic respiratory failure (CRF), but requires regular monitoring to detect both diurnal and nocturnal residual hypercapnia. The present study was designed to determine 1) whether transcutaneous PCO2 (PtcCO2) is a valid tool for monitoring PaCO2 in this group of patients, and 2) if overnight instrumental drift of the PtcCO2 sensor is clinically significant. Sixty-seven patients with CRF on long term NIV were included. Arterial blood gases (ABG) were sampled from the radial artery during PtcCO2 measurement. PtcCO2 was recorded 2 min after ABG sampling. Instrumental drift was tested by measuring a gas of known CO2 concentration after auto-calibration of the sensor in the evening, and on the following morning. PaCO2 values ranged from 3.97 kPa to 9.0 kPa. Thirty-six (53%) patients were hypercapnic. Correlation between PaCO2 and PtcCO2 was highly significant (r(2) = 0.9, p < 0.0001), Bias (d) and SD of bias (s) were 0.23 kPa and 0.28 kPa respectively, with a minor underestimation of PaCO2. Limits of agreement (d ± 2s) were; -0.32; 0.79 kPa. None of the paired values of PaCO2/PtcCO2 had a difference exceeding 1 kPa. The mean drift of PtcCO2 was 0.14 ± 0.54 kPa/8 h (p = 0.04; 95% CI: 0.01-0.27). With the device tested, in stable patients under NIV-treatment for CRF, PtcCO2 accurately reflects PaCO2. PtcCO2 can be used to monitor CO2 overnight during NIV without any clinically significant drift. TRIAL REGISTRATION N°: NCT01845233. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. A Non-Invasive Ultrasonic Urinary Bladder Internal Pressure Monitoring Technique: Its Theoretical Foundation and Feasibility Test

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Min Joo; Kang, Gwan Suk [Jeju National University, Jeju (Korea, Republic of); Lee, Kang Il [Department of Physics, Kangwon National University, Chuncheon (Korea, Republic of)


    A new approach was proposed in this article, named, a non-invasive ultrasonic method to monitor the urinary bladder internal pressure which can resolve the shortcomings of the existing methods. The proposed method makes use of acoustic cavitation. It is based on a physical phenomenon that an extracorporeal high intensity focused ultrasonic pulse generates bubbles inside the urinary bladder and the dynamic properties of the bubbles are related to the urinary bladder internal pressure. The article presents the theoretical foundation for the proposed technique and verifies its feasibility with preliminary experimental data. The suggested ultrasonic urinary bladder internal pressure monitoring method is non-invasive and can be used any time regardless of sex and age.

  13. Non-invasive monitoring of endocrine status in laboratory primates: methods, guidelines and applications (United States)

    Heistermann, M.


    During the past three decades, non-invasive methods for assessing physiological, in particular endocrine, status have revolutionized almost all areas of primatology, including behavioural ecology, reproductive biology, stress research, conservation and last but not least management of primates in captivity where the technology plays an integral role in assisting the husbandry, breeding and welfare of many species. Non-invasive endocrine methods make use of the fact that hormones circulating in blood are secreted into saliva or deposited in hair and are eliminated from the body via urinary and faecal excretion. The choice of which matrix to use for hormonal assessment depends on a range of factors, including the type of information required, the measurement techniques involved, species differences in hormone metabolism and route of excretion and the practicality of sample collection. However, although sample collection is usually relatively easy, analysing hormones from these non-invasively collected samples is not as easy as many people think, particularly not when dealing with a new species. In this respect, the importance of a careful validation of each technique is essential in order to generate meaningful and accurate results. This paper aims to provide an overview of the available non-invasive endocrine-based methodologies, their relative merits and their potential areas of application for assessing endocrine status in primates, with special reference to captive environments. In addition, general information is given about the most important aspects and caveats researchers have to be aware of when using these methodologies.

  14. Capacitive Sensing for Non-Invasive Breathing and Heart Monitoring in Non-Restrained, Non-Sedated Laboratory Mice


    Carlos González-Sánchez; Juan-Carlos Fraile; Javier Pérez-Turiel; Ellen Damm; Schneider, Jochen G; Heiko Zimmermann; Daniel Schmitt; Ihmig, Frank R.


    Animal testing plays a vital role in biomedical research. Stress reduction is important for improving research results and increasing the welfare and the quality of life of laboratory animals. To estimate stress we believe it is of great importance to develop non-invasive techniques for monitoring physiological signals during the transport of laboratory animals, thereby allowing the gathering of information on the transport conditions, and, eventually, the improvement of these conditions. Her...

  15. Non-Invasive, Non-Contact Heart Monitoring of Hemodialysis Patients with a Micropower Impulse Radar Technique

    Energy Technology Data Exchange (ETDEWEB)

    Chang, J; Levin, N; Poland, D; Welsh, P; Paulsen, C; Trebes, J; Rosenbury, R; Killip, T


    This report summarizes the LLNL LDRD funded portion of a collaborative project to demonstrate and clinically evaluate the micropower impulse radar technology as a means to non-invasively monitor the heart of chronic care patients undergoing hemodialysis. The development is based upon technologies and expertise unique to LLNL. The LLNL LDRD funded portion of this project was used to assist in the definition, design, construction, and evaluation of the prototype.

  16. Non-invasive objective devices for monitoring the inflammatory, proliferative and remodelling phases of cutaneous wound healing and skin scarring. (United States)

    Ud-Din, Sara; Bayat, Ardeshir


    Objective evaluation of cutaneous wounds through the use of non-invasive devices is important for diagnosis, monitoring treatment response and can lead to the development of improved theranostic strategies. The need for objective monitoring of wound healing and scar formation is evident as this enables accurate diagnosis, evaluation and prognosis for clinicians and allows for the standardisation and validation of methodology for researchers. Therefore, this review provides an overview of the current application of non-invasive objective technologies for the assessment of wound healing through the different phases of repair. We propose that cutaneous healing parameters can be split into three core domains: anatomical, mechanical and physiological. These categories can be further subdivided with respect to specific phases of healing. There is no single instrument, which can measure all the parameters of healing simultaneously; thus, it is important to choose the correct device for the particular healing characteristics being monitored. However, multiprobe systems, which include a number of devices connected to one main unit, are useful as they enable multiple measurements of different parameters. Many of the devices have not been validated against histological examination. Additionally, some of the instruments have not been evaluated in all wound or scar types and may not be useful throughout all phases of cutaneous wound healing. In conclusion, non-invasive objective devices are useful in the assessment of cutaneous wound healing, as these tools can link the treatment and diagnosis by evaluating response to treatment and thus could aid as a marker for healing and scar maturation.

  17. Long-term pressure monitoring with arterial applanation tonometry: a non-invasive alternative during clinical intervention? (United States)

    Matthys, Koen S; Kalmar, Alain F; Struys, Michel M R F; Mortier, Eric P; Avolio, Alberto P; Segers, Patrick; Verdonck, Pascal R


    Arterial tonometry is a non-invasive technique for continuous registration of arterial pressure waveforms. This study aims to assess tonometric blood pressure recording (TBP) as an alternative for invasive long-term bedside monitoring. A prospective study was set up where patients undergoing neurosurgical intervention were subjected to both invasive (IBP) and non-invasive (TBP) blood pressure monitoring during the entire procedure. A single-element tonometric pressure transducer was used to better investigate different inherent error sources of TBP measurement. A total of 5.7 hours of combined IBP and TBP were recorded from three patients. Although TBP performed fairly well as an alternative for IBP in steady state scenarios and some short-term variations, it could not detect relevant long-term pressure variations at all times. These findings are discussed in comparison to existing work. Physiological alterations at the site of TBP measurement are highlighted as a potentially important source of artifacts. It is concluded that at this point arterial tonometry remains not enough understood for long-term use during a delicate operative procedure. Physiological changes at the TBP measurement site deserve further investigation before tonometry technology is to be considered as an non-invasive alternative for long-term clinical monitoring.

  18. Rheoencephalography (REG) as a Non-Invasive Monitoring Alternative for the Assessment of Brain Blood Flow (United States)


    bioimpedance (rheoencephalography - REG) measurement as a non-invasive, continuous method for assessing the status of cerebral blood flow (CBF) in combat...Dunster KR, Colditz PB, Ward LC. Noninvasive measurement of cerebral bioimpedance for detection of cerebral edema in the neonatal piglet. Brain Res...REG measurements and DC impedance (Ro) were recorded simultaneously on a portable IBM compatible computer using CODAS (DATAQ, Inc., Akron, OH) data

  19. Non-invasive monitoring of Streptococcus pyogenes vaccine efficacy using biophotonic imaging.

    Directory of Open Access Journals (Sweden)

    Faraz M Alam

    Full Text Available Streptococcus pyogenes infection of the nasopharynx represents a key step in the pathogenic cycle of this organism and a major focus for vaccine development, requiring robust models to facilitate the screening of potentially protective antigens. One antigen that may be an important target for vaccination is the chemokine protease, SpyCEP, which is cell surface-associated and plays a role in pathogenesis. Biophotonic imaging (BPI can non-invasively characterize the spatial location and abundance of bioluminescent bacteria in vivo. We have developed a bioluminescent derivative of a pharyngeal S. pyogenes strain by transformation of an emm75 clinical isolate with the luxABCDE operon. Evaluation of isogenic recombinant strains in vitro and in vivo confirmed that bioluminescence conferred a growth deficit that manifests as a fitness cost during infection. Notwithstanding this, bioluminescence expression permitted non-invasive longitudinal quantitation of S. pyogenes within the murine nasopharynx albeit with a detection limit corresponding to approximately 10(5 bacterial colony forming units (CFU in this region. Vaccination of mice with heat killed streptococci, or with SpyCEP led to a specific IgG response in the serum. BPI demonstrated that both vaccine candidates reduced S. pyogenes bioluminescence emission over the course of nasopharyngeal infection. The work suggests the potential for BPI to be used in the non-invasive longitudinal evaluation of potential S. pyogenes vaccines.

  20. Fur: A non-invasive approach to monitor metal exposure in bats. (United States)

    Hernout, Béatrice V; McClean, Colin J; Arnold, Kathryn E; Walls, Michael; Baxter, Malcolm; Boxall, Alistair B A


    This paper presents a novel assessment of the use of fur as a non-invasive proxy to biomonitor metal contamination in insectivorous bats. Concentrations of metals (cadmium, copper, lead and zinc) were measured using ICP-MS in tissues (kidneys, liver, stomach and stomach content, bones and fur) obtained from 193 Pipistrellus pipistrellus/pygmaeus bats. The bats were collected across a gradient of metal pollution in England and Wales. The utility of small samples of fur as an indicator of metal exposure from the environment was demonstrated with strong relationships obtained between the concentrations of non-essential metals in fur with concentrations in stomach content, kidneys, liver and bones. Stronger relationships were observed for non-essential metals than for essential metals. Fur analyses might therefore be a useful non-invasive proxy for understanding recent, as well as long term and chronic, metal exposure of live animals. The use of fur may provide valuable information on the level of endogenous metal exposure and contamination of bat populations and communities.

  1. Genetic patterns in forest antelope populations in the Udzungwa Mountains, Tanzania, as inferred from non-invasive sampling

    DEFF Research Database (Denmark)

    Bowkett, Andrew E.; Jones, Trevor; Rovero, Francesco


    As for many tropical regions, the evolutionary and demographic status of antelope populations in the Udzungwa Mountains, Tanzania, are poorly resolved. We employed genetic information from 618 faecal samples to assess the status of forest antelope species in terms of their distribution, intraspec...... except the endangered C. spadix. Overall, our results demonstrate the value of non-invasive genetic sampling in studying the distribution and evolution of rarely observed species.......As for many tropical regions, the evolutionary and demographic status of antelope populations in the Udzungwa Mountains, Tanzania, are poorly resolved. We employed genetic information from 618 faecal samples to assess the status of forest antelope species in terms of their distribution......, intraspecific diversity and population subdivision within the Udzungwa landscape. Most species were detected in the majority of forest fragments, except for Philantomba monticola. Phylogenetic analyses were consistent with traditional taxonomy with the exception of Cephalophus harveyi which was paraphyletic...


    DEFF Research Database (Denmark)

    Brooker, M. H.; Berg, Rolf W.


    Vibrational spectroscopy can be used to identify and establish concentrations of many common molecules and complex ions over a wide range of concentrations and conditions. Advances in CCD detection devices, notch-filters, lasers, micro- and fiber-optics have made it possible to use infrared and R......, studied with non-invasive Raman spectroscopy), and finally a discussion of some recent advances in experimental methods that make it possible to use Raman and infrared spectroscopy for on line analyses in some industrial applications.......Vibrational spectroscopy can be used to identify and establish concentrations of many common molecules and complex ions over a wide range of concentrations and conditions. Advances in CCD detection devices, notch-filters, lasers, micro- and fiber-optics have made it possible to use infrared...

  3. Non Invasive Sensors for Monitoring the Efficiency of AC Electrical Rotating Machines

    Directory of Open Access Journals (Sweden)

    Thierry Jacq


    Full Text Available This paper presents a non invasive method for estimating the energy efficiency of induction motors used in industrial applications. This method is innovative because it is only based on the measurement of the external field emitted by the motor. The paper describes the sensors used, how they should be placed around the machine in order to decouple the external field components generated by both the air gap flux and the winding end-windings. The study emphasizes the influence of the eddy currents flowing in the yoke frame on the sensor position. A method to estimate the torque from the external field use is proposed. The measurements are transmitted by a wireless module (Zig-Bee and they are centralized and stored on a PC computer.

  4. Genomic comparison of invasive and rare non-invasive strains reveals Porphyromonas gingivalis genetic polymorphisms

    Directory of Open Access Journals (Sweden)

    Svetlana Dolgilevich


    Full Text Available Porphyromonas gingivalis strains are shown to invade human cells in vitro with different invasion efficiencies, varying by up to three orders of magnitude.We tested the hypothesis that invasion-associated interstrain genomic polymorphisms are present in P. gingivalis and that putative invasion-associated genes can contribute to P. gingivalis invasion.Using an invasive (W83 and the only available non-invasive P. gingivalis strain (AJW4 and whole genome microarrays followed by two separate software tools, we carried out comparative genomic hybridization (CGH analysis.We identified 68 annotated and 51 hypothetical open reading frames (ORFs that are polymorphic between these strains. Among these are surface proteins, lipoproteins, capsular polysaccharide biosynthesis enzymes, regulatory and immunoreactive proteins, integrases, and transposases often with abnormal GC content and clustered on the chromosome. Amplification of selected ORFs was used to validate the approach and the selection. Eleven clinical strains were investigated for the presence of selected ORFs. The putative invasion-associated ORFs were present in 10 of the isolates. The invasion ability of three isogenic mutants, carrying deletions in PG0185, PG0186, and PG0982 was tested. The PG0185 (ragA and PG0186 (ragB mutants had 5.1×103-fold and 3.6×103-fold decreased in vitro invasion ability, respectively.The annotation of divergent ORFs suggests deficiency in multiple genes as a basis for P. gingivalis non-invasive phenotype. Access the supplementary material to this article: Supplement, table (see Supplementary files under Reading Tools online.

  5. Comparison of Non-Invasive Individual Monitoring of the Training and Health of Athletes with Commercially Available Wearable Technologies. (United States)

    Düking, Peter; Hotho, Andreas; Holmberg, Hans-Christer; Fuss, Franz Konstantin; Sperlich, Billy


    Athletes adapt their training daily to optimize performance, as well as avoid fatigue, overtraining and other undesirable effects on their health. To optimize training load, each athlete must take his/her own personal objective and subjective characteristics into consideration and an increasing number of wearable technologies (wearables) provide convenient monitoring of various parameters. Accordingly, it is important to help athletes decide which parameters are of primary interest and which wearables can monitor these parameters most effectively. Here, we discuss the wearable technologies available for non-invasive monitoring of various parameters concerning an athlete's training and health. On the basis of these considerations, we suggest directions for future development. Furthermore, we propose that a combination of several wearables is most effective for accessing all relevant parameters, disturbing the athlete as little as possible, and optimizing performance and promoting health.

  6. Comparison of non-invasive individual monitoring of the training and health of athletes with commercially available wearable technologies

    Directory of Open Access Journals (Sweden)

    Peter eDüking


    Full Text Available Athletes adapt their training daily to optimize performance, as well as avoid fatigue, overtraining and other undesirable effects on their health. To optimize training load, each athlete must take his/her own personal objective and subjective characteristics into consideration and an increasing number of wearable technologies (wearables provide convenient monitoring of various parameters. Accordingly, it is important to help athletes decide which parameters are of primary interest and which wearables can monitor these parameters most effectively. Here, we discuss the wearable technologies available for non-invasive monitoring of various parameters concerning an athlete’s training and health. On the basis of these considerations, we suggest directions for future development. Furthermore, we propose that a combination of several wearables is most effective for accessing all relevant parameters, disturbing the athlete as little as possible, and optimizing performance and promoting health.

  7. Non-invasive monitoring of hormones: a tool to improve reproduction in captive breeding of the Eurasian lynx. (United States)

    Dehnhard, M; Naidenko, S; Frank, A; Braun, B; Göritz, F; Jewgenow, K


    The survival of many critical endangered mammal species is often depending on successful captive breeding programmes which include the future option of reintroduction to the wild. Breeding in captivity also demands the application of modern assisted reproductive techniques to ensure maximal biodiversity, but knowledge on reproductive physiology is often limited. Therefore, non-invasive monitoring of urinary and faecal hormones has become an important tool for reproductive management. To exemplify the importance of non-invasive hormone monitoring, we choose the Eurasian lynx as a model for the world's most endangered felid species, the Iberian lynx. We analysed faecal samples of pregnant and pseudo-pregnant female Eurasian lynxes during a 3-year study period. Compared to pre-mating levels faecal progesterone metabolite profiles revealed a tendency towards higher levels in pregnant and pseudo-pregnant females with no difference between both categories. Oestrogen levels raised in both pregnant and pseudo-pregnant females with a tendency to be more elevated and prolonged in pregnant females. Surprisingly both E2 and P4 metabolites were highly correlated (r(2) =0.8131, p hormone sources during and after pregnancy (corpus luteum, placenta). We hypothesize, that placental steroid analysis in combination with other highly sophisticated analytical techniques, like liquid chromatography mass spectrometry or urinary relaxin analysis may led to analytical options to confirm pregnancy and to differentiate this from pseudo-pregnancy in lynx species.

  8. Feasibility of Using Wideband Microwave System for Non-Invasive Detection and Monitoring of Pulmonary Oedema (United States)

    Rezaeieh, S. Ahdi; Zamani, A.; Bialkowski, K. S.; Mahmoud, A.; Abbosh, A. M.


    Pulmonary oedema is a common manifestation of various fatal diseases that can be caused by cardiac or non-cardiac syndromes. The accumulated fluid has a considerably higher dielectric constant compared to lungs’ tissues, and can thus be detected using microwave techniques. Therefore, a non-invasive microwave system for the early detection of pulmonary oedema is presented. It employs a platform in the form of foam-based bed that contains two linear arrays of wideband antennas covering the band 0.7-1 GHz. The platform is designed such that during the tests, the subject lays on the bed with the back of the torso facing the antenna arrays. The antennas are controlled using a switching network that is connected to a compact network analyzer. A novel frequency-based imaging algorithm is used to process the recorded signals and generate an image of the torso showing any accumulated fluids in the lungs. The system is verified on an artificial torso phantom, and animal organs. As a feasibility study, preclinical tests are conducted on healthy subjects to determinate the type of obtained images, the statistics and threshold levels of their intensity to differentiate between healthy and unhealthy subjects.

  9. Clinical system for non-invasive in situ monitoring of gases in the human paranasal sinuses. (United States)

    Lewander, Märta; Guan, Zuguang; Svanberg, Katarina; Svanberg, Sune; Svensson, Tomas


    We present a portable system for non-invasive, simultaneous sensing of molecular oxygen (O(2)) and water vapor (H(2)O) in the human paranasal cavities. The system is based on high-resolution tunable diode laser spectroscopy (TDLAS) and digital wavelength modulation spectroscopy (dWMS). Since optical interference and non-ideal tuning of the diode lasers render signal processing complex, we focus on Fourier analysis of dWMS signals and procedures for removal of background signals. Clinical data are presented, and exhibit a significant improvement in signal-to-noise with respect to earlier work. The in situ detection limit, in terms of absorption fraction, is about 5x10(-5) for oxygen and 5x10(-4) for water vapor, but varies between patients due to differences in light attenuation. In addition, we discuss the use of water vapor as a reference in quantification of in situ oxygen concentration in detail. In particular, light propagation aspects are investigated by employing photon time-of-flight spectroscopy.

  10. Non-invasive gas monitoring in newborn infants using diode laser absorption spectroscopy: a case study (United States)

    Lundin, Patrik; Svanberg, Emilie K.; Cocola, Lorenzo; Lewander, Märta; Andersson-Engels, Stefan; Jahr, John; Fellman, Vineta; Svanberg, Katarina; Svanberg, Sune


    Non-invasive diode laser spectroscopy was, for the first time, used to assess gas content in the intestines and the lungs of a new-born, 4 kg, baby. Two gases, water vapor and oxygen, were studied with two low-power tunable diode lasers, illuminating the surface skin tissue and detecting the diffusely emerging light a few centimeters away. The light, having penetrated into the tissue, had experienced absorption by gas located in the lungs and in the intestines. Very distinct water vapor signals were obtained from the intestines while imprint from oxygen was lacking, as expected. Detectable, but minor, signals of water vapor were also obtained from the lungs, illuminating the armpit area and detecting below the collar bone. Water vapor signals were seen but again oxygen signals were lacking, now due to the difficulties of penetration of the oxygen probing light into the lungs of this full-term baby. Ultra-sound images were obtained both from the lungs and from the stomach of the baby. Based on dimensions and our experimental findings, we conclude, that for early pre-term babies, also oxygen should be detectable in the lungs, in addition to intestine and lung detection of water vapor. The present paper focuses on the studies of the intestines while the lung studies will be covered in a forthcoming paper.

  11. Capacitive Sensing for Non-Invasive Breathing and Heart Monitoring in Non-Restrained, Non-Sedated Laboratory Mice

    Directory of Open Access Journals (Sweden)

    Carlos González-Sánchez


    Full Text Available Animal testing plays a vital role in biomedical research. Stress reduction is important for improving research results and increasing the welfare and the quality of life of laboratory animals. To estimate stress we believe it is of great importance to develop non-invasive techniques for monitoring physiological signals during the transport of laboratory animals, thereby allowing the gathering of information on the transport conditions, and, eventually, the improvement of these conditions. Here, we study the suitability of commercially available electric potential integrated circuit (EPIC sensors, using both contact and contactless techniques, for monitoring the heart rate and breathing rate of non-restrained, non-sedated laboratory mice. The design has been tested under different scenarios with the aim of checking the plausibility of performing contactless capture of mouse heart activity (ideally with an electrocardiogram. First experimental results are shown.

  12. Online direct-to-consumer messages about non-invasive prenatal genetic testing

    Directory of Open Access Journals (Sweden)

    Ruth M. Farrell


    Full Text Available Non-invasive prenatal testing (NIPT has been integrated into clinical care at a time when patients and healthcare providers increasingly utilize the internet to access health information. This study evaluated online direct-to-consumer information about NIPT produced by commercial laboratories accessible to both patients and healthcare providers. A coding checklist captured areas to describe content and assess concordance with clinical guidelines. We found that the information presented about NIPT is highly variable, both within a single website and broadly across all websites. Variability was noted in how NIPT is characterized, including test characteristics and indications. All laboratories offer NIPT to test for common sex chromosome aneuploidies, although there is a lack of consistency regarding the conditions offered and information provided about each. Although indicated for a subset of women at increased risk of aneuploidy, some laboratories describe the use of NIPT for all pregnant women. A subset of laboratories offers screening for microdeletions, although clinical practice guidelines do not yet recommend for general use for this indication. None of the online materials addressed the ethical issues associated with NIPT. This study highlights the need for clear, consistent, and evidence-based materials to educate patients and healthcare providers about the current and emerging applications of NIPT.

  13. Inertial cavitation to non-invasively trigger and monitor intratumoral release of drug from intravenously delivered liposomes. (United States)

    Graham, Susan M; Carlisle, Robert; Choi, James J; Stevenson, Mark; Shah, Apurva R; Myers, Rachel S; Fisher, Kerry; Peregrino, Miriam-Bazan; Seymour, Len; Coussios, Constantin C


    The encapsulation of cytotoxic drugs within liposomes enhances pharmacokinetics and allows passive accumulation within tumors. However, liposomes designed to achieve good stability during the delivery phase often have compromised activity at the target site. This problem of inefficient and unpredictable drug release is compounded by the present lack of low-cost, non-invasive methods to measure such release. Here we show that focused ultrasound, used at pressures similar to those applied during diagnostic ultrasound scanning, can be utilised to both trigger and monitor release of payload from liposomes. Notably, drug release was influenced by liposome composition and the presence of SonoVue® microbubbles, which provided the nuclei for the initiation of an event known as inertial cavitation. In vitro studies demonstrated that liposomes formulated with a high proportion of 1,2 distearoyl-sn-glycero-3-phosphoethanolamine (DSPE) released up to 30% of payload following ultrasound exposure in the presence of SonoVue®, provided that the exposure created sufficient inertial cavitation events, as characterised by violent bubble collapse and the generation of broadband acoustic emissions. In contrast a 'Doxil'-like liposome formulation gave no such triggered release. In pre-clinical studies, ultrasound was used as a non-invasive, targeted stimulus to trigger a 16-fold increase in the level of payload release within tumors following intravenous delivery. The inertial cavitation events driving this release could be measured remotely in real-time and were a reliable predictor of drug release.

  14. Evaluation of continuous non-invasive arterial pressure monitoring during induction of general anaesthesia in patients undergoing cardiac surgery. (United States)

    Kumar, G Anil; Jagadeesh, A M; Singh, Naveen G; Prasad, S R


    Continuous arterial pressure monitoring is essential in cardiac surgical patients during induction of general anaesthesia (GA). Continuous non-invasive arterial pressure (CNAP) monitoring is fast gaining importance due to complications associated with the invasive arterial monitoring. Recently, a new continuous non-invasive arterial pressure device (CNAP™) has been validated perioperatively in non-cardiac surgeries. The aim of our study is to compare and assess the performance of CNAP during GA with invasive arterial pressure (IAP) in patients undergoing cardiac surgeries. Sixty patients undergoing cardiac surgery were included. Systolic, diastolic, and mean arterial pressure (MAP) data were recorded every minute for 20 min simultaneously for both IAP and CNAP™. Statistical analysis was performed using mountain plot and Bland Altman plots for assessing limits of agreement and bias (accuracy) calculation. Totally 1200 pairs of data were analysed. The CNAP™ systolic, diastolic and MAP bias was 5.98 mm Hg, -3.72 mm Hg, and - 0.02 mm Hg respectively. Percentage within limits of agreement was 96.0%, 95.2% and 95.7% for systolic, diastolic and MAP. The mountain plot showed similar results as the Bland Altman plots. We conclude CNAP™ provides real-time estimates of arterial pressure comparable to IAP during induction of GA for cardiac surgery. We recommend CNAP can be used as an alternative to IAP in situations such as cardiac patients coming for non-cardiac surgeries, cardiac catheterization procedures, positive Allen's test, inability to cannulate radial artery and vascular diseases, where continuous blood pressure monitoring is required.

  15. Quantification of respiratory depression during pre-operative administration of midazolam using a non-invasive respiratory volume monitor. (United States)

    Gonzalez Castro, Luis N; Mehta, Jaideep H; Brayanov, Jordan B; Mullen, Gary J


    Pre-operative administration of benzodiazepines can cause hypoventilation-a decrease in minute ventilation (MV)-commonly referred to as "respiratory compromise or respiratory depression." Respiratory depression can lead to hypercarbia and / or hypoxemia, and may heighten the risk of other respiratory complications. Current anesthesia practice often places patients at risk for respiratory complications even before surgery, as respiratory monitoring is generally postponed until the patient is in the operating room. In the present study we examined and quantified the onset of respiratory depression following the administration of a single dose of midazolam in pre-operative patients, using a non-invasive respiratory volume monitor that reports MV, tidal volume (TV), and respiratory rate (RR). Impedance-based Respiratory Volume Monitor (RVM) data were collected and analyzed from 30 patients prior to undergoing orthopedic or general surgical procedures. All patients received 2.0 mg of midazolam intravenously at least 20 minutes prior to the induction of anesthesia and the effects of midazolam on the patient's respiratory function were analyzed. Within 15 minutes of midazolam administration, we noted a significant decrease in both MV (average decrease of 14.3% ± 5.9%, pmidazolam administration on clinically significant respiratory parameters (MV, TV and RR) using a non-invasive RVM, uncovering that the respiratory depressive effect of benzodiazepines affect primarily TV rather than RR. Such respiratory monitoring data provide the opportunity for individualizing dosing and adjustment of clinical interventions, especially important in elderly patients. With additional respiratory data, clinicians may be able to better identify and quantify respiratory depression, reduce adverse effects, and improve overall patient safety.

  16. Non-invasive monitoring of the degradation of organic contaminants: A laboratory investigation (United States)

    Fernandez, Perrine M.; Bloem, Esther; Philippe, Romain; Binley, Andrew; French, Helen K.


    Degradation of organic chemicals under various fluid saturation conditions is a process highly relevant to the protection of groundwater quality. Redox potential drives the degradation of organic compounds; its variation affects the water chemistry, gas release and also the geo-electrical signature. This study explores how non-invasive measurements sensitive to geo-electrical properties provides quantitative information about the in-situ redox conditions. Our laboratory experiment focuses on the degradation of de-icing chemicals commonly used, for example, in Norwegian airports. The experiment was conducted in a number of (1.0x0.5x0.4 m) sand boxes. Two ends of each box was contaminated with propylene glycol, an aircraft deicing fluid. Each source was placed near the water table under static hydraulic conditions. At one side of the tank, a conductor linking the contamination zone, near the water table and the unsaturated zone with a low water content, was placed to improve the degradation by facilitating the electron exchange. At the other side, degradation occurred under natural conditions. Each box was equipped with 288 electrodes, distributed on six faces to perform 3D resistivity measurements. In addition, self-potential measurements were taken from electrodes on the sand surface. Four observation wells were installed above and below the water table to provide more information on the degradation processes. Moreover, measurements of carbon dioxide on the surface were performed as higher concentrations were expected where the pollutant degraded. We would like to present and discuss a selection of the preliminary results of 3D electrical resistivity and self-potential techniques from our laboratory setup.

  17. Bio-assembled, piezoelectric prawn shell made self-powered wearable sensor for non-invasive physiological signal monitoring (United States)

    Ghosh, Sujoy Kumar; Mandal, Dipankar


    A human interactive self-powered wearable sensor is designed using waste by-product prawn shells. The structural origin of intrinsic piezoelectric characteristics of bio-assembled chitin nanofibers has been investigated. It allows the prawn shell to make a tactile sensor that performs also as a highly durable mechanical energy harvester/nanogenerator. The feasibility and fundamental physics of self-powered consumer electronics even from human perception is highlighted by prawn shells made nanogenerator (PSNG). High fidelity and non-invasive monitoring of vital signs, such as radial artery pulse wave and coughing actions, may lead to the potential use of PSNG for early intervention. It is presumed that PSNG has enormous future aspects in real-time as well as remote health care assessment.

  18. [The peripheral perfusion pressure: a new non-invasive parameter for the circulatory monitoring of patients (author's transl)]. (United States)

    Huch, A; Lübbers, D W; Huch, R


    Heating of a skin area to a temperature of 42 degrees to 44 degrees C produces a certain physiological condition which induces maximal vasodilatation. Detailed experiments have shown that local peripheral vascular resistance of such an area remains constant for several hours. The flow in this area is proportional to the actual perfusion pressure. Relative flow was measured by means of a new type of electrode fixed to the skin like and ECG electrode, and compared with simultaneous intra-arterial blood pressure measruements. The changes in arterial blood pressure were also recorded by the skin electrode. This new parameter is defined as "peripheral perfusion pressure". It is appropiate for non-invasive continuous monitoring of the circulatory system of patients.

  19. On the advance of non-invasive techniques implementation for monitoring moisture distribution in cultural heritage: a case study (United States)

    Inmaculada Martínez Garrido, María; Gómez Heras, Miguel; Fort González, Rafael; Valles Iriso, Javier; José Varas Muriel, María


    This work presents a case study developed in San Juan Bautista church in Talamanca de Jarama (12th -16th Century), which have been selected as an example of a historical church with a complex construction with subsequent combination of architectural styles and building techniques and materials. These materials have a differential behavior under the influence of external climatic conditions and constructive facts. Many decay processes related to humidity are affecting the building's walls and also have influence in the environmental dynamics inside the building. A methodology for monitoring moisture distribution on stone and masonry walls and floors was performed with different non-invasive techniques as thermal imaging, wireless sensor networks (WSN), portable moisture meter, electrical resistivity tomography (ERT) and ground-penetrating radar (GPR), in order to the evaluate the effectiveness of these techniques for the knowledge of moisture distribution inside the walls and the humidity origin. North and south oriented sections, both on walls and floors, were evaluated and also a general inspection in the church was carried out with different non-invasive techniques. This methodology implies different monitoring stages for a complete knowledge of the implication of outdoors and indoors conditions on the moisture distribution. Each technique is evaluated according to its effectiveness in the detection of decay processes and maintenance costs. Research funded by Geomateriales (S2013/MIT-2914) and Deterioration of stone materials in the interior of historic buildings as a result induced variation of its microclimate (CGL2011-27902) projects. The cooperation received from the Complutense University of Madrid's Research Group Alteración y Conservación de los Materiales Pétreos del Patrimonio (ref. 921349), the Laboratory Network in Science and Technology for Heritage Conservation (RedLabPat, CEI Moncloa) and the Diocese of Alcalá is gratefully acknowledged. MI Mart

  20. Recent trends in non-invasive in situ techniques to monitor bacterial colonies in solid (model food

    Directory of Open Access Journals (Sweden)

    Maria eMartinez Lobete


    Full Text Available Planktonic cells typically found in liquid systems, are routinely used for building predictive models or assessing the efficacy of food preserving technologies. However, freely suspended cells often show different susceptibility to environmental hurdles than colony cells in solid matrices. Limited oxygen, water and nutrient availability, metabolite accumulation and physical constraints due to cell immobilization in the matrix, are main factors affecting cell growth. Moreover, intra- and inter-colony interactions, as a consequence of the initial microbial load in solid systems, may affect microbial physiology. Predictive food microbiology approaches are moving towards a more realistic resemblance to food products, performing studies in structured solid systems instead of liquids. Since structured systems promote microbial cells to become immobilized and grow as colonies, it is essential to study the colony behaviour, not only for food safety assurance systems, but also for understanding cell physiology and optimizing food production processes in solid matrices. Traditionally, microbial dynamics in solid systems have been assessed with a macroscopic approach by applying invasive analytical techniques; for instance, viable plate counting, which yield information about overall population. In the last years, this approach is being substituted by more mechanistically-inspired ones at mesoscopic (colony and microscopic (cell levels. Therefore, non-invasive and in-situ monitoring is mandatory for a deeper insight into bacterial colony dynamics. Several methodologies that enable high-throughput data collection have been developed, such as microscopy-based techniques coupled with image analysis and OD–based measurements in microplate readers. This research paper provides an overview of non-invasive in-situ techniques to monitor bacterial colonies in solid (model food and emphasizes their advantages and inconveniences in terms of accuracy, performance

  1. Quantification of respiratory depression during pre-operative administration of midazolam using a non-invasive respiratory volume monitor (United States)

    Gonzalez Castro, Luis N.; Mehta, Jaideep H.; Brayanov, Jordan B.; Mullen, Gary J.


    Background Pre-operative administration of benzodiazepines can cause hypoventilation—a decrease in minute ventilation (MV)—commonly referred to as “respiratory compromise or respiratory depression.” Respiratory depression can lead to hypercarbia and / or hypoxemia, and may heighten the risk of other respiratory complications. Current anesthesia practice often places patients at risk for respiratory complications even before surgery, as respiratory monitoring is generally postponed until the patient is in the operating room. In the present study we examined and quantified the onset of respiratory depression following the administration of a single dose of midazolam in pre-operative patients, using a non-invasive respiratory volume monitor that reports MV, tidal volume (TV), and respiratory rate (RR). Methods Impedance-based Respiratory Volume Monitor (RVM) data were collected and analyzed from 30 patients prior to undergoing orthopedic or general surgical procedures. All patients received 2.0 mg of midazolam intravenously at least 20 minutes prior to the induction of anesthesia and the effects of midazolam on the patient's respiratory function were analyzed. Results Within 15 minutes of midazolam administration, we noted a significant decrease in both MV (average decrease of 14.3% ± 5.9%, pbenzodiazepines affect primarily TV rather than RR. Such respiratory monitoring data provide the opportunity for individualizing dosing and adjustment of clinical interventions, especially important in elderly patients. With additional respiratory data, clinicians may be able to better identify and quantify respiratory depression, reduce adverse effects, and improve overall patient safety. PMID:28235069

  2. High frequency non-invasive (HFNI bio-sensors as a potential tool for marine monitoring and assessments

    Directory of Open Access Journals (Sweden)

    Hector Andrade


    Full Text Available Marine ecosystems all over the globe are facing multiple simultaneous stressors including rapid climatic change and increased resource exploitation, such as fishing, petroleum exploration and shipping. The EU-funded DEVOTES project (DEVelopment Of innovative Tools for understanding marine biodiversity and assessing good Environmental Status aims to better understand the relationships between pressures from human activities and climatic influences and their effects on marine ecosystems. To achieve these goals, it is necessary among others, to test and validate innovative monitoring tools to improve our understanding of ecosystem and biodiversity changes. This paper outlines the application of a high frequency non-invasive (HFNI valvometer as a potential tool for long-term marine monitoring and assessments. The principle of the method is based on the regular gaping behaviour (closing and opening of the valves of bivalve molluscs and the fact that physical or chemical stressors disrupt that gaping reference pattern. Bivalve gaping behaviour is monitored in the natural environment, remotely, continuously over a time period of years, requirements that must be fulfilled if bivalve behaviour is to be a useful biomonitoring tool. Here, we review the literature and highlight potential uses of the HFNI valvometry as a biosensor, to monitor and provide early-warning alerts of changes in water quality, such as global temperature increase, releases of contaminants and toxic algal blooms. Finally, potential relevant applications for monitoring and assessing environmental status of marine waters in the context of the Marine Strategy Framework Directive are identified. Relevant descriptors, Criteria and Indicators of Good Environmental Status that might be monitored using the HFNI valvometer are discussed for monitoring bathing beaches and harbours, petroleum installations and aquaculture sites.

  3. A non-invasive beam profile monitor for charged particle beams

    Energy Technology Data Exchange (ETDEWEB)

    Tzoganis, Vasilis, E-mail: [Cockcroft Institute, Daresbury Sci-Tech, Warrington WA4 4AD (United Kingdom); Department of Physics, University of Liverpool, Liverpool L69 7ZE (United Kingdom); RIKEN Nishina Centre, Hirosawa 2-1, Wako, Saitama 351-0198 (Japan); Welsch, Carsten P. [Cockcroft Institute, Daresbury Sci-Tech, Warrington WA4 4AD (United Kingdom); Department of Physics, University of Liverpool, Liverpool L69 7ZE (United Kingdom)


    Non-interceptive beam profile monitors are highly desirable in almost all particle accelerators. Such techniques are especially valuable in applications where real time monitoring of the beam properties is required while beam preservation and minimal influence on the vacuum are of the greatest importance. This applies to many kinds of accelerators such as high energy machines where the normal diagnostics cannot withstand the beam's power, medical machines where treatment time is valuable and cannot be allocated to diagnostics and also low energy, low intensity accelerators where the beam's properties are difficult to measure. This paper presents the design of a gas-jet based beam profile monitor which was developed and commissioned at the Cockcroft Institute and can operate in a very large background pressure range from 10{sup −7} down to below 10{sup −11} millibars. The functioning principle of the monitor is described and the first experimental results obtained using a 5 keV electron beam are discussed.

  4. Non-Invasive Glucose Monitoring Techniques: A review and current trends

    CERN Document Server

    Poddar, Raju; Shukla, Pratyoosh; Sen, Pratima


    Diabetes mellitus is a complex group of syndromes that have in common a disturbance in the body's use of glucose, resulting in an elevated blood sugar. Once detected, sugar diabetes can be controlled by an appropriate regimen that should include diet therapy, a weight reduction program for those persons who are overweight, a program of exercise and insulin injections or oral drugs to lower blood glucose. Blood glucose monitoring by the patient and the physician is an important aspect in the control of the devastating complications (heart disease, blindness, kidney failure or amputations) due to the disease. Intensive therapy and frequent glucose testing has numerous benefits. With ever improving advances in diagnostic technology, the race for the next generation of bloodless, painless, accurate glucose instruments has begun. In this paper, we reviewed various methods, techniques and approaches successfully demonstrated for measuring or monitoring blood glucose. Invasive, minimally invasive and noninvasive tec...

  5. Extremely high resolution corrosion monitoring of pipelines: retrofittable, non-invasive and real-time

    Energy Technology Data Exchange (ETDEWEB)

    Baltzersen, Oeystein; Tveit, Edd [Sensorlink AS, Trondheim (Norway); Verley, Richard [StatoilHydro ASA, Stockholm (Sweden)


    The Ultramonit unit is a clamp-on tool (removable) that uses an array of sensors to provide online, real-time, reliable and repeatable high accuracy ultrasonic wall thickness measurements and corrosion monitoring at selected locations along the pipeline. The unit can be installed on new or existing pipelines by diver or ROV. The system is based on the well-established ultrasonic pulse-echo method (A-scan). Special processing methods, and the fact that the unit is fixed to the pipeline, enable detection of changes in wall thickness in the micro-meter range. By utilizing this kind of resolution, it is possible to project corrosion rates in hours or days. The tool is used for calibration of corrosion inhibitor programs, verification and calibration of inspection pig data and general corrosion monitoring of new and existing pipelines. (author)

  6. Monitoring soil-vegetation interactions using non-invasive geophysical techniques (United States)

    Perri, M.; Cassiani, G.; Boaga, J.; Rossi, M.; Vignoli, G.; Deiana, R.; Ursino, N.; Putti, M.; Majone, B.; Bellin, A.; Blaschek, M.; Duttmann, R.; Meyer, S.; Ludwig, R.; Soddu, A.; Dietrich, P.; Werban, U.


    The understanding of soil-vegetation-atmosphere interactions is of utmost importance in the solution of a number of hydrological questions and practical issues, including flood control, agricultural best practice, slope stability and impacts of climatic changes. Geophysical time-lapse monitoring can greatly contribute to the understanding of these interactions particularly for its capability to map in space and time the effects of vegetation on soil moisture content. In this work we present the results of two case studies showing the potential of hydro-geophysics in this context. The first example refers to the long term monitoring of the soil static and dynamic characteristics in an experimental site located in Sardinia (Italy). The main objective of this study is to understand the effects of soil - water - plants interactions on soil water balance. A combination of time-lapse electromagnetic induction (EMI) monitoring over wide areas and localized irrigation tests monitored by electrical resistivity tomography (ERT) and TDR soil moisture measurements is here used, in order to achieve quantitative field-scale estimates of moisture content from topsoil layer. Natural gamma-ray emission mapping, texture analysis and laboratory calibration of an electrical constitutive relationship on soil samples complete the dataset. We therefore observed that the growth of vegetation, with the associated below ground allocation of biomass, has a significant impact on the soil moisture dynamics. In particular vegetation extracts a large amount of water from the soil in the hot season, but it also reduces evaporation by shadowing the soil surface. In addition, vegetation enhances the soil wetting process as the root system facilitates water infiltration, thus creating a positive feedback system. The second example regards the time-lapse monitoring of soil moisture content in an apple orchard located in the Alpine region of Northern Italy (Trento). A three-dimensional cross-hole ERT

  7. Non-invasive monitoring of tissue oxygenation during laparoscopic donor nephrectomy

    Directory of Open Access Journals (Sweden)

    Kirk Allan D


    Full Text Available Abstract Background Standard methods for assessment of organ viability during surgery are typically limited to visual cues and tactile feedback in open surgery. However, during laparoscopic surgery, these processes are impaired. This is of particular relevance during laparoscopic renal donation, where the condition of the kidney must be optimized despite considerable manipulation. However, there is no in vivo methodology to monitor renal parenchymal oxygenation during laparoscopic surgery. Methods We have developed a method for the real time, in vivo, whole organ assessment of tissue oxygenation during laparoscopic nephrectomy to convey meaningful biological data to the surgeon during laparoscopic surgery. We apply the 3-CCD (charge coupled device camera to monitor qualitatively renal parenchymal oxygenation with potential real-time video capability. Results We have validated this methodology in a porcine model across a range of hypoxic conditions, and have then applied the method during clinical laparoscopic donor nephrectomies during clinically relevant pneumoperitoneum. 3-CCD image enhancement produces mean region of interest (ROI intensity values that can be directly correlated with blood oxygen saturation measurements (R2 > 0.96. The calculated mean ROI intensity values obtained at the beginning of the laparoscopic nephrectomy do not differ significantly from mean ROI intensity values calculated immediately before kidney removal (p > 0.05. Conclusion Here, using the 3-CCD camera, we qualitatively monitor tissue oxygenation. This means of assessing intraoperative tissue oxygenation may be a useful method to avoid unintended ischemic injury during laparoscopic surgery. Preliminary results indicate that no significant changes in renal oxygenation occur as a result of pneumoperitoneum.

  8. A Wearable Real-Time and Non-Invasive Thoracic Cavity Monitoring System (United States)

    Salman, Safa

    A surgery-free on-body monitoring system is proposed to evaluate the dielectric constant of internal body tissues (especially lung and heart) and effectively determine irregularities in real-time. The proposed surgery-free on-body monitoring system includes a sensor, a post-processing technique, and an automated data collection circuit. Data are automatically collected from the sensor electrodes and then post processed to extract the electrical properties of the underlying biological tissue(s). To demonstrate the imaging concept, planar and wrap-around sensors are devised. These sensors are designed to detect changes in the dielectric constant of inner tissues (lung and heart). The planar sensor focuses on a single organ while the wrap-around sensors allows for imaging of the thoracic cavity's cross section. Moreover, post-processing techniques are proposed to complement sensors for a more complete on-body monitoring system. The idea behind the post-processing technique is to suppress interference from the outer layers (skin, fat, muscle, and bone). The sensors and post-processing techniques yield high signal (from the inner layers) to noise (from the outer layers) ratio. Additionally, data collection circuits are proposed for a more robust and stand-alone system. The circuit design aims to sequentially activate each port of the sensor and portions of the propagating signal are to be received at all passive ports in the form of a voltage at the probes. The voltages are converted to scattering parameters which are then used in the post-processing technique to obtain epsilonr. The concept of wearability is also considered through the use of electrically conductive fibers (E-fibers). These fibers show matching performance to that of copper, especially at low frequencies making them a viable substitute. For the cases considered, the proposed sensors show promising results in recovering the permittivity of deep tissues with a maximum error of 13.5%. These sensors

  9. Non-invasive genetic sampling for molecular sexing and microsatellite genotyping of hyacinth macaw (Anodorhynchus hyacinthinus

    Directory of Open Access Journals (Sweden)

    Flavia T. Presti


    Full Text Available Molted feather sampling is a useful tool for genetic analyses of endangered species, but it is often very laborious due to the low quality and quantity of the DNA obtained. In the present study we show the parts of feathers that resulted in better yield of DNA. In descending order these were: blood clot outside the umbilicus, umbilicus (without blood clot, tip, inner membrane, and small calamus. Compared to DNA extracted from blood samples, DNA extracted from feathers produced microsatellite alleles of poorer quality and had to be processed immediately after extraction. As expected due to the level of DNA degradation, molecular sexing protocols that result in shorter PCR products were more efficient.

  10. Non-invasive genetic sampling for molecular sexing and microsatellite genotyping of hyacinth macaw (Anodorhynchus hyacinthinus) (United States)

    Presti, Flavia T.; Meyer, Janaína; Antas, Paulo T.Z.; Guedes, Neiva M.R.; Miyaki, Cristina Y.


    Molted feather sampling is a useful tool for genetic analyses of endangered species, but it is often very laborious due to the low quality and quantity of the DNA obtained. In the present study we show the parts of feathers that resulted in better yield of DNA. In descending order these were: blood clot outside the umbilicus, umbilicus (without blood clot), tip, inner membrane, and small calamus. Compared to DNA extracted from blood samples, DNA extracted from feathers produced microsatellite alleles of poorer quality and had to be processed immediately after extraction. As expected due to the level of DNA degradation, molecular sexing protocols that result in shorter PCR products were more efficient. PMID:23569419

  11. Remote health monitoring with wearable non-invasive mobile system: The HealthWear project. (United States)

    Paradiso, R; Alonso, A; Cianflone, D; Milsis, A; Vavouras, T; Malliopoulos, C


    This paper focuses on the technical solutions enabling the monitoring of health conditions by means of ECG, HR, oxygen saturation, impedance pneumography and activity patterns. The Healthwear service is based on the Wealthy prototype system. A new design has been made to increase comfort in wearing of the system during daily patient activities. The cloth is connected to a patient portable electronic unit (PPU) that acquires and elaborates the signals from the sensors. The PPU transmits the signal to a central processing site through the use of GPRS wireless technology. This service is applied to three distinct clinical contexts: rehabilitation of cardiac patients, following an acute event; early discharge program in chronic respiration patients; promotion of physical activity in ambulatory stable cardio-respiratory patients.

  12. Wireless sensing system for non-invasive monitoring of attributes of contents in a container (United States)

    Woodard, Stanley E. (Inventor)


    A wireless sensing system monitors the level, temperature, magnetic permeability and electrical dielectric constant of a non-gaseous material in a container. An open-circuit electrical conductor is shaped to form a two-dimensional geometric pattern that can store and transfer electrical and magnetic energy. The conductor resonates in the presence of a time-varying magnetic field to generate a harmonic response. The conductor is mounted in an environmentally-sealed housing. A magnetic field response recorder wirelessly transmits the time-varying magnetic field to power the conductor, and wirelessly detects the harmonic response that is an indication of at least one of level of the material in the container, temperature of the material in the container, magnetic permeability of the material in the container, and dielectric constant of the material in the container.

  13. Remote Patient Monitoring via Non-Invasive Digital Technologies: A Systematic Review (United States)

    Tran, Melody; Angelaccio, Michele; Arcona, Steve


    Abstract Background: We conducted a systematic literature review to identify key trends associated with remote patient monitoring (RPM) via noninvasive digital technologies over the last decade. Materials and Methods: A search was conducted in EMBASE and Ovid MEDLINE. Citations were screened for relevance against predefined selection criteria based on the PICOTS (Population, Intervention, Comparator, Outcomes, Timeframe, and Study Design) format. We included studies published between January 1, 2005 and September 15, 2015 that used RPM via noninvasive digital technology (smartphones/personal digital assistants [PDAs], wearables, biosensors, computerized systems, or multiple components of the formerly mentioned) in evaluating health outcomes compared to standard of care or another technology. Studies were quality appraised according to Critical Appraisal Skills Programme. Results: Of 347 articles identified, 62 met the selection criteria. Most studies were randomized control trials with older adult populations, small sample sizes, and limited follow-up. There was a trend toward multicomponent interventions (n = 26), followed by smartphones/PDAs (n = 12), wearables (n = 11), biosensor devices (n = 7), and computerized systems (n = 6). Another key trend was the monitoring of chronic conditions, including respiratory (23%), weight management (17%), metabolic (18%), and cardiovascular diseases (16%). Although substantial diversity in health-related outcomes was noted, studies predominantly reported positive findings. Conclusions: This review will help decision makers develop a better understanding of the current landscape of peer-reviewed literature, demonstrating the utility of noninvasive RPM in various patient populations. Future research is needed to determine the effectiveness of RPM via noninvasive digital technologies in delivering patient healthcare benefits and the feasibility of large-scale implementation. PMID:27116181

  14. WISE-2005: developing a non-invasive method to monitor cardiovascular deconditioning. (United States)

    Gagné, N; Fischer, D; Greaves, D K; Hughson, R L


    We have determined the gain of the cardiopulmonary baroreflex (CPBR) by measuring the central venous pressure (CVP) by venous catheter and calculating the total peripheral resistance (TPR) from mean arterial pressure (MAP) by Finometer and cardiac output (QD) by Doppler ultrasound. We tested the hypothesis that the BeatScope software of the Finometer, which calculates cardiac stroke volume (SVF) and cardiac output (QF) from the arterial pulse wave, could provide data with which to estimate CVP and TPR. The estimate of QF was linearly related to QD with a correction factor. Further, we found linear relationships between CVP and SVF that allowed us to establish a prediction of CVP from the SVF as the new input to the CPBR. To test the ability of this method to monitor changes in CPBR we are testing the subjects of the WISE-2005 study before and after 50-days of bed rest. We conclude that the TPR can be assessed with the Finometer and without any invasive method to record the CVP.

  15. The Digestive Tract of Cephalopods: Toward Non-invasive In vivo Monitoring of Its Physiology

    Directory of Open Access Journals (Sweden)

    Giovanna Ponte


    Full Text Available Ensuring the health and welfare of animals in research is paramount, and the normal functioning of the digestive tract is essential for both. Here we critically assess non- or minimally-invasive techniques which may be used to assess a cephalopod's digestive tract functionality to inform health monitoring. We focus on: (i predatory response as an indication of appetitive drive; (ii body weight assessment and interpretation of deviations (e.g., digestive gland weight loss is disproportionate to body weight loss in starvation; (iii oro-anal transit time requiring novel, standardized techniques to facilitate comparative studies of species and diets; (iv defecation frequency and analysis of fecal color (diet dependent and composition (parasites, biomarkers, and cytology; (v digestive tract endoscopy, but passage of the esophagus through the brain is a technical challenge; (vi high resolution ultrasound that offers the possibility of imaging the morphology of the digestive tract (e.g., food distribution, indigestible residues, obstruction and recording contractile activity; (vii needle biopsy (with ultrasound guidance as a technique for investigating digestive gland biochemistry and pathology without the death of the animal. These techniques will inform the development of physiologically based assessments of health and the impact of experimental procedures. Although intended for use in the laboratory they are equally applicable to cephalopods in public display and aquaculture.

  16. Non-invasive monitoring of carcinogenesis in N-nitrosodiethylamine induced liver cancer

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ju Hui; Kang, Joo Hyun; Lee, Yong Jin; Lee, Tae Sup; Kim, Kwang Il; Cheon, Gi Jeong; Choi, Chang Woon; Lim, Sang Moo [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Park, Young Seo [Kyungwon University, Seongnam (Korea, Republic of)


    Molecular imaging based on reporter gene expression allows tissue-specific events or processes to be measured using the bioluminescence imaging (BLI) reporter gene expression vector controlled by specific enhancer/promoters. Alpha-fetoprotein (AFP), which is a tumor marker, is a serum glycoprotein that is expressed normally by fetal liver and yolk-sac cells, as well as in trace amounts in the fetal gastrointestinal tract. The serum concentration of AFP decreases rapidly after birth and its expression is repressed in adults. Approximately 80% of HCC patients show an increase in the AFP level. Therefore, AFP has been used for many years as a diagnostic and prognostic serum marker for HCC and transgenic system for AFP was proposed as a valuable tool for elucidation of mechanism of transcriptional regulation during liver development and hepatocarcinogenesis. In this study, firefly luciferase (fLuc) expressing transgenic mice controlled by the AFP enhancer/ promoter (enh/promoter) were produced to screen for the development of AFP-producing liver cancer. These models are expected to be useful for monitoring agents or drugs that modulate the AFP level as well as for measuring the specific signaling events important for liver cancer development

  17. Non-invasive biomarkers for monitoring the fibrogenic process in liver: A short survey

    Institute of Scientific and Technical Information of China (English)

    Axel M Gressner; Chun-Fang Gao; Olav A Gressner


    The clinical course of chronic liver diseases is signifi-cantly dependent on the progression rate and the extent of fibrosis, i.e. the non-structured replacement of necrotic parenchyma by extracellular matrix. Fibrogenesis,i.e. the development of fibrosis can be regarded as an unlimited wound healing process, which is based on matrix (connective tissue) synthesis in activated hepatic stellate cells, fibroblasts (fibrocytes), hepatocytes and biliary epithelial cells, which are converted to matrix-producing (myo-)fibroblasts by a process de-fined as epithelial-mesenchymal transition. Blood (noninvasive) biomarkers of fibrogenesis and fibrosis can be divided into class Ⅱ and class Ⅱ analytes. Class Ⅱ biomarkers are those single tests, which are based on the pathophysiology of fibrosis, whereas class Ⅱ biomarkers are mostly multiparametric algorithms, which have been statistically evaluated with regard to the detection and activity of ongoing fibrosis. Currently available markers fulfil the criteria of ideal clinical-chemical tests only partially, but increased understanding of the complex pathogenesis of fibrosis offers additional ways for pathophysiologically well based serum (plasma) biomarkers.They include TGF-β-driven marker proteins,bone marrow-derived cells (fibrocytes), and cytokines,which govern pro- and anti-fibrotic activities. Proteomic and glycomic approaches of serum are under investigation to set up specific protein or carbohydrate profiles in patients with liver fibrosis. These and other novel parameters will supplement or eventually replace parameters will supplement or eventually replace liver biopsy/histology, high resolution imaging analysis,and elastography for the detection and monitoring of patients at risk of developing liver fibrosis.

  18. Proposed Application of Fast Fourier Transform in Near Infra Red Based Non Invasive Blood Glucose Monitoring System (United States)

    Jenie, R. P.; Iskandar, J.; Kurniawan, A.; Rustami, E.; Syafutra, H.; Nurdin, N. M.; Handoyo, T.; Prabowo, J.; Febryarto, R.; Rahayu, M. S. K.; Damayanthi, E.; Rimbawan; Sukandar, D.; Suryana, Y.; Irzaman; Alatas, H.


    Worldwide emergence of glycaemic status related health disorders, such as diabetes and metabolic syndrome, is growing in alarming rate. The objective was to propose new methods for non invasive blood glucose level measurement system, based on implementation of Fast Fourier Transform methods. This was an initial-lab-scale-research. Data on non invasive blood glucose measurement are referred from Scopus, Medline, and Google Scholar, from 2011 until 2016, and was used as design references, combined with in house verification. System was developed in modular fashion, based on aforementioned compiled references. Several preliminary tests to understand relationship between LED and photo-diode responses have been done. Several references were used as non invasive blood glucose measurement tools design basis. Solution is developed in modular fashion. we have proven different sensor responses to water and glucose. Human test for non invasive blood glucose level measurement system is needed.

  19. Piloting a Non-Invasive Genetic Sampling Method for Evaluating Population-Level Benefits of Wildlife Crossing Structures

    Directory of Open Access Journals (Sweden)

    Michael A. Sawaya


    Full Text Available Intuitively, wildlife crossing structures should enhance the viability of wildlife populations. Previous research has demonstrated that a broad range of species will use crossing structures, however, questions remain as to whether these measures actually provide benefits to populations. To assess this, studies will need to determine the number of individuals using crossings, their sex, and their genetic relationships. Obtaining empirical data demonstrating population-level benefits for some species can be problematic and challenging at best. Molecular techniques now make it possible to identify species, individuals, their sex, and their genetic relatedness from hair samples collected through non-invasive genetic sampling (NGS. We describe efforts to pilot a method to assess potential population-level benefits of wildlife crossing structures. We tested the feasibility of a prototype NGS system designed to sample hair from black bears (Ursus americanus and grizzly bears (U. arctos at two wildlife underpasses. The piloted hair-sampling method did not deter animal use of the trial underpasses and was effective at sampling hair from more than 90% of the bear crossing events at the underpasses. Hair samples were also obtained from non-target carnivore species, including three out of five (60% cougar (Puma concolor crossing events. Individual identification analysis revealed that three female and two male grizzly bears used one wildlife underpass, whereas two female and three male black bears were identified as using the other underpass. Of the 36 hair samples from bears analyzed, five failed, resulting in an 87% extraction success rate, and six more were only identified to species. Overall, 70% of the hair samples from bears collected in the field had sufficient DNA for extraction purposes. Preliminary data from our NGS suggest the technique can be a reliable method to assess the population-level benefits of Banff wildlife crossings. Furthermore, NGS

  20. Continuous non-invasive PCO2 monitoring in weaning patients: Transcutaneous is advantageous over end-tidal PCO2. (United States)

    Schwarz, Sarah B; Windisch, Wolfram; Magnet, Friederike S; Schmoor, Claudia; Karagiannidis, Christian; Callegari, Jens; Huttmann, Sophie E; Storre, Jan H


    Continuous partial pressure of carbon dioxide (PCO2 ) assessment is essential for the success of mechanical ventilation (MV). Non-invasive end-tidal PCO2 (PetCO2 ) and transcutaneous PCO2 (PtcCO2 ) measurements serve as alternatives to the gold standard arterial PCO2 (PaCO2 ) method, but their eligibility in critical care is unclear. The present study therefore performed methodological comparisons of PaCO2 versus PetCO2 and PtcCO2 , respectively, in weaning patients receiving invasive MV via tracheal cannulas. PetCO2 and PtcCO2 were recorded continuously, while PaCO2 was analysed at baseline, and after 30 and 60 min. Using the Bland-Altman analysis, a clinically acceptable range was defined as a mean difference of ±4 mm Hg between PaCO2 and non-invasive strategies. A total of 60 patients (COPD (n = 30) and non-COPD (n = 30)) completed the protocol. Mean PCO2 values were 42.4 ± 8.6 mm Hg (PaCO2 ), 36.5 ± 7.5 mm Hg (PetCO2 ) and 41.7 ± 8.7 mm Hg (PtcCO2 ). Mean differences between PtcCO2 and PaCO2 were -0.7 ± 3.6 mm Hg (95% CI: -1.6/0.3 mm Hg; 95% limits of agreement: -7.8 to 6.4 mm Hg), and between PetCO2 and PaCO2 -5.9 ± 5.3 mm Hg (95% CI: -7.2/-4.5 mm Hg; 95% limits of agreement: -16.2 to 4.5 mm Hg). Underestimation of PaCO2 by PetCO2 was most pronounced in COPD patients. Our data therefore support PtcCO2 as a suitable means for monitoring PCO2 in patients undergoing invasive MV. This is in contrast to PetCO2 , which clearly underestimated PaCO2 , especially in patients with COPD. © 2017 Asian Pacific Society of Respirology.

  1. A new electric method for non-invasive continuous monitoring of stroke volume and ventricular volume-time curves

    Directory of Open Access Journals (Sweden)

    Konings Maurits K


    Full Text Available Abstract Background In this paper a new non-invasive, operator-free, continuous ventricular stroke volume monitoring device (Hemodynamic Cardiac Profiler, HCP is presented, that measures the average stroke volume (SV for each period of 20 seconds, as well as ventricular volume-time curves for each cardiac cycle, using a new electric method (Ventricular Field Recognition with six independent electrode pairs distributed over the frontal thoracic skin. In contrast to existing non-invasive electric methods, our method does not use the algorithms of impedance or bioreactance cardiography. Instead, our method is based on specific 2D spatial patterns on the thoracic skin, representing the distribution, over the thorax, of changes in the applied current field caused by cardiac volume changes during the cardiac cycle. Since total heart volume variation during the cardiac cycle is a poor indicator for ventricular stroke volume, our HCP separates atrial filling effects from ventricular filling effects, and retrieves the volume changes of only the ventricles. Methods ex-vivo experiments on a post-mortem human heart have been performed to measure the effects of increasing the blood volume inside the ventricles in isolation, leaving the atrial volume invariant (which can not be done in-vivo. These effects have been measured as a specific 2D pattern of voltage changes on the thoracic skin. Furthermore, a working prototype of the HCP has been developed that uses these ex-vivo results in an algorithm to decompose voltage changes, that were measured in-vivo by the HCP on the thoracic skin of a human volunteer, into an atrial component and a ventricular component, in almost real-time (with a delay of maximally 39 seconds. The HCP prototype has been tested in-vivo on 7 human volunteers, using G-suit inflation and deflation to provoke stroke volume changes, and LVot Doppler as a reference technique. Results The ex-vivo measurements showed that ventricular filling

  2. Non-invasive imaging of tumors by monitoring autotaxin activity using an enzyme-activated near-infrared fluorogenic substrate.

    Directory of Open Access Journals (Sweden)

    Damian Madan

    Full Text Available Autotaxin (ATX, an autocrine motility factor that is highly upregulated in metastatic cancer, is a lysophospholipase D enzyme that produces the lipid second messenger lysophosphatidic acid (LPA from lysophosphatidylcholine (LPC. Dysregulation of the lysolipid signaling pathway is central to the pathophysiology of numerous cancers, idiopathic pulmonary fibrosis, rheumatoid arthritis, and other inflammatory diseases. Consequently, the ATX/LPA pathway has emerged as an important source of biomarkers and therapeutic targets. Herein we describe development and validation of a fluorogenic analog of LPC (AR-2 that enables visualization of ATX activity in vivo. AR-2 exhibits minimal fluorescence until it is activated by ATX, which substantially increases fluorescence in the near-infrared (NIR region, the optimal spectral window for in vivo imaging. In mice with orthotopic ATX-expressing breast cancer tumors, ATX activated AR-2 fluorescence. Administration of AR-2 to tumor-bearing mice showed high fluorescence in the tumor and low fluorescence in most healthy tissues with tumor fluorescence correlated with ATX levels. Pretreatment of mice with an ATX inhibitor selectively decreased fluorescence in the tumor. Together these data suggest that fluorescence directly correlates with ATX activity and its tissue expression. The data show that AR-2 is a non-invasive and selective tool that enables visualization and quantitation of ATX-expressing tumors and monitoring ATX activity in vivo.

  3. Non-invasive monitoring of cytokine-based regenerative treatment of cartilage by hyperspectral unmixing (Conference Presentation) (United States)

    Mahbub, Saabah B.; Succer, Peter; Gosnell, Martin E.; Anwaer, Ayad G.; Herbert, Benjamin; Vesey, Graham; Goldys, Ewa M.


    Extracting biochemical information from tissue autofluorescence is a promising approach to non-invasively monitor disease treatments at a cellular level, without using any external biomarkers. Our recently developed unsupervised hyperspectral unmixing by Dependent Component Analysis (DECA) provides robust and detailed metabolic information with proper account of intrinsic cellular heterogeneity. Moreover this method is compatible with established methods of fluorescent biomarker labelling. Recently adipose-derived stem cell (ADSC) - based therapies have been introduced for treating different diseases in animals and humans. ADSC have been shown promise in regenerative treatments for osteoarthritis and other bone and joint disorders. One of the mechanism of their action is their anti-inflammatory effects within osteoarthritic joints which aid the regeneration of cartilage. These therapeutic effects are known to be driven by secretions of different cytokines from the ADSCs. We have been using the hyperspectral unmixing techniques to study in-vitro the effects of ADSC-derived cytokine-rich secretions with the cartilage chip in both human and bovine samples. The study of metabolic effects of different cytokine treatment on different cartilage layers makes it possible to compare the merits of those treatments for repairing cartilage.

  4. A practical field extraction method for non-invasive monitoring of hormone activity in the black rhinoceros. (United States)

    Edwards, Katie L; McArthur, Hannah M; Liddicoat, Tim; Walker, Susan L


    Non-invasive hormone analysis is a vital tool in assessing an animal's adrenal and reproductive status, which can be beneficial to in situ and ex situ conservation. However, it can be difficult to employ these techniques when monitoring in situ populations away from controlled laboratory conditions, when electricity is not readily available. A practical method for processing faecal samples in the field, which enables samples to be extracted soon after defaecation and stored in field conditions for prolonged periods prior to hormone analysis, is therefore warranted. This study describes the development of an optimal field extraction method, which includes hand-shaking faecal material in 90% methanol, before loading this extract in a 40% solvent onto HyperSep™ C8 solid-phase extraction cartridges, stored at ambient temperatures. This method was successfully validated for measurement of adrenal and reproductive hormone metabolites in faeces of male and female black rhinoceros (Diceros bicornis) and was rigorously tested in controlled laboratory and simulated field conditions. All the hormones tested demonstrated between 83 and 94% and between 42 and 89% recovery of synthetic and endogenous hormone metabolites, respectively, with high precision of replication. Furthermore, results obtained following the developed optimal field extraction method were highly correlated with the control laboratory method. Cartridges can be stored at ambient (cool, dry or warm, humid) conditions for periods of up to 6 months without degradation, before re-extraction of hormone metabolites for analysis by enzyme immunoassay. The described method has great potential to be applied to monitor faecal reproductive and adrenal hormone metabolites in a wide variety of species and allows samples to be stored in the field for up to 6 months prior to analysis. This provides the opportunity to investigate hormone relationships within in situ populations, where equipment and facilities may

  5. Comparison of non-invasive blood pressure monitoring using modified arterial applanation tonometry with intra-arterial measurement. (United States)

    Harju, Jarkko; Vehkaoja, Antti; Kumpulainen, Pekka; Campadello, Stefano; Lindroos, Ville; Yli-Hankala, Arvi; Oksala, Niku


    Intermittent non-invasive blood pressure measurement with tourniquets is slow, can cause nerve and skin damage, and interferes with other measurements. Invasive measurement cannot be safely used in all conditions. Modified arterial tonometry may be an alternative for fast and continuous measurement. Our aim was to compare arterial tonometry sensor (BPro(®)) with invasive blood pressure measurement to clarify whether it could be utilized in the postoperative setting. 28 patients who underwent elective surgery requiring arterial cannulation were analyzed. Patients were monitored post-operatively for 2 h with standard invasive monitoring and with a study device comprising an arterial tonometry sensor (BPro(®)) added with a three-dimensional accelerometer to investigate the potential impact of movement. Recordings were collected electronically. The results revealed inaccurate readings in method comparison between the devices based on recommendations by Association for the Advancement of Medical Instrumentation (AAMI). On a Bland-Altman plot, the bias and precision between these two methods was 19.8 ± 16.7 (Limits of agreement - 20.1 to 59.6) mmHg, Spearman correlation coefficient r = 0.61. For diastolic pressure, the difference was 4.8 ± 7.7 (LoA - 14.1 to 23.6) mmHg (r = 0.72), and for mean arterial pressure it was 11.18 ± 11.1 (LoA - 12.1 to 34.2) mmHg (r = 0.642). Our study revealed inaccurate agreement (AAMI) between the two methods when measuring systolic and mean blood pressures during post-operative care. The readings for diastolic pressures were inside the limits recommended by AAMI. Movement increased the failure rate significantly (p arterial tonometry is not an appropriate replacement for invasive blood pressure measurement in these patients.

  6. Non-Invasive Genetic Mark-Recapture as a Means to Study Population Sizes and Marking Behaviour of the Elusive Eurasian Otter (Lutra lutra). (United States)

    Lampa, Simone; Mihoub, Jean-Baptiste; Gruber, Bernd; Klenke, Reinhard; Henle, Klaus


    Quantifying population status is a key objective in many ecological studies, but is often difficult to achieve for cryptic or elusive species. Here, non-invasive genetic capture-mark-recapture (CMR) methods have become a very important tool to estimate population parameters, such as population size and sex ratio. The Eurasian otter (Lutra lutra) is such an elusive species of management concern and is increasingly studied using faecal-based genetic sampling. For unbiased sex ratios or population size estimates, the marking behaviour of otters has to be taken into account. Using 2132 otter faeces of a wild otter population in Upper Lusatia (Saxony, Germany) collected over six years (2006-2012), we studied the marking behaviour and applied closed population CMR models accounting for genetic misidentification to estimate population sizes and sex ratios. We detected a sex difference in the marking behaviour of otters with jelly samples being more often defecated by males and placed actively exposed on frequently used marking sites. Since jelly samples are of higher DNA quality, it is important to not only concentrate on this kind of samples or marking sites and to invest in sufficiently high numbers of repetitions of non-jelly samples to ensure an unbiased sex ratio. Furthermore, otters seemed to increase marking intensity due to the handling of their spraints, hence accounting for this behavioural response could be important. We provided the first precise population size estimate with confidence intervals for Upper Lusatia (for 2012: N = 20 ± 2.1, 95% CI = 16-25) and showed that spraint densities are not a reliable index for abundances. We further demonstrated that when minks live in sympatry with otters and have comparably high densities, a non-negligible number of supposed otter samples are actually of mink origin. This could severely bias results of otter monitoring if samples are not genetically identified.

  7. System for monitoring of green roof performance: use of weighing roof segment and non-invasive visualization (United States)

    Jelinkova, Vladmira; Dohnal, Michal; Picek, Tomas; Sacha, Jan


    Understanding the performance of technogenic substrates for green roofs is a significant task in the framework of sustainable urban planning and water/energy management. The potential retention and detention of the anthropogenic, light weight soil systems and their temporal soil structure changes are of major importance. A green roof test segment was built to investigate the benefits of such anthropogenic systems. Adaptable low-cost system allows long-term monitoring of preferred characteristics. Temperature and water balance measurements complemented with meteorological observations and knowledge of physical properties of the substrates provide basis for detailed analysis of thermal and hydrological regime in green roof systems. The first results confirmed the benefits of green roof systems. The reduction of temperature fluctuations as well as rainfall runoff was significant. Depending on numerous factors such substrate material or vegetation cover the test green roof suppressed the roof temperature amplitude for the period analyzed. The ability to completely prevent (light rainfall events) or reduce and delay (medium and heavy rainfall events) the peak runoff was also analyzed. Special attention is being paid to the assessment of soil structural properties related to possible aggregation/disaggregation, root growth, weather conditions and associated structural changes using non-invasive imaging method. X-ray computed microtomography of undisturbed soil samples (taken from experimental segments) is used for description of pore space geometry, evaluation of surface to volume ratio, additionally for description of cracks and macropores as a product of soil flora and fauna activity. The information from computed tomography imaging will be used for numerical modeling of water flow in variable saturated porous media. The research was realized as a part of the University Centre for Energy Efficient Buildings supported by the EU and with financial support from the Czech

  8. The Monitor Practice Programme: is non-invasive management of dental caries in private practice cost-effective? (United States)

    Curtis, B; Warren, E; Pollicino, C; Evans, R W; Schwarz, E; Sbaraini, A


    The objective of this research was to assess the efficacy and cost-effectiveness of a non-invasive approach to dental caries management in private dental practice. Private dental practices from a variety of locations in New South Wales were randomly allocated to either non-invasive management of caries, or continue with usual care. Patients were followed for three years and caries incidence assessed. A patient-level decision analytic model was constructed to assess the cost-effectiveness of the intervention at two years, three years, and hypothetical lifetime. Twenty-two dental practices and 920 patients were recruited. Within the clinical trial there was a significant difference in caries increment favouring non-invasive therapy at both two and three years. Efficacy was independent of age, gender, medical concerns, fluoride history, or previous history of dental caries, in a population of patients attending for treatment in private dental practices, in a variety of locations both urban and rural. Cost per DMFT avoided estimate was A$1287.07 (two years), A$1148.91 (three years) decreasing to A$702.52 in (medium) and A$545.93 (high) risk patients (three years). A joint preventive and non-invasive therapeutic approach appears to be cost-effective in patients at medium and high risk of developing dental caries when compared to the standard care provided by private dental practice. © 2011 Australian Dental Association.

  9. Continuous non-invasive finger arterial pressure monitoring reflects intra-arterial pressure changes in children undergoing cardiac surgery.

    NARCIS (Netherlands)

    Hofhuizen, C.M.; Lemson, J.; Hemelaar, A.E.A.; Settels, J.J.; Schraa, O.; Singh, S.K.; Hoeven, J.G. van der; Scheffer, G.J.


    BACKGROUND: Continuous non-invasive measurement of finger arterial pressure (FAP) is a reliable technology in adults. FAP is measured with an inflatable cuff around the finger and simultaneously converted to a reconstructed brachial artery pressure waveform (reBAP) by the Nexfin device. We assessed

  10. Non-invasive monitoring of osteogenic differentiation on microtissue arrays under physiological conditions using scanning electrochemical microscopy

    NARCIS (Netherlands)

    Sridhar, Adithya; Berg, van den Albert; Le Gac, Séverine


    In this paper, we present a non-invasive assay using scanning electrochemical microscopy (SECM) for detecting osteogenic differentiation at physiological conditions (pH 7.5) on arrays of C2C12 microtissues. Upon exposure to bone morphogenic protein 2 (BMP-2), C2C12 microtissues differentiate and exp

  11. A reliable genetic technique for sex determination of giant panda (Ailuropoda melanoleuca) from non-invasively collected hair samples

    NARCIS (Netherlands)

    Durnin, Matthew E.; Palsboll, Per J.; Ryder, Oliver A.; McCullough, Dale R.


    Extractions from non-invasive hair samples usually yield low amounts of highly degraded DNA. Previously developed mammal molecular sexing methods were not designed with such sub-optimal conditions in mind. We developed a simple and reliable PCR-based sexing method aimed at degraded, low yield DNA ex

  12. Comparison of the non-invasive Nexfin® monitor with conventional methods for the measurement of arterial blood pressure in moderate risk orthopaedic surgery patients. (United States)

    Balzer, Felix; Habicher, Marit; Sander, Michael; Sterr, Julian; Scholz, Stephanie; Feldheiser, Aarne; Müller, Michael; Perka, Carsten; Treskatsch, Sascha


    Continuous invasive arterial blood pressure (IBP) monitoring remains the gold standard for BP measurement, but traditional oscillometric non-invasive intermittent pressure (NIBP) measurement is used in most low-to-moderate risk procedures. This study compared non-invasive continuous arterial BP measurement using a Nexfin® monitor with NIBP and IBP monitors. This was a single-centre, prospective, pilot study in patients scheduled for elective orthopaedic surgery. Systolic BP, diastolic BP and mean arterial blood pressure (MAP) were measured by Nexfin®, IBP and NIBP at five intraoperative time-points. Pearson correlation coefficients, Bland-Altman plots and trending ability of Nexfin® measurements were used as criteria for success in the investigation of measurement reliability. A total of 20 patients were enrolled in the study. For MAP, there was a sufficient correlation between IBP/Nexfin® (Pearson = 0.75), which was better than the correlation between IBP/NIBP (Pearson = 0.70). Bland-Altman analysis of the data showed that compared with IBP, there was a higher percentage error for MAPNIBP (30%) compared with MAPNexfin® (27%). Nexfin® and NIBP underestimated systolic BP; NIBP also underestimated diastolic BP and MAP. Trending ability for MAPNexfin® and MAPNIBP were comparable to IBP. Non-invasive BP measurement with Nexfin® was comparable with IBP and tended to be more precise than NIBP. © The Author(s) 2016.

  13. Non-invasive, in vivo monitoring of neuronal transport impairment in a mouse model of tauopathy using MEMRI


    Bertrand, Anne; Khan, Umer; Hoang, Dung M.; Novikov, Dmitry S.; Krishnamurthy, Pavan; Rajamohamed Sait, Hameetha B.; Little, Benjamin W.; Sigurdsson, Einar M.; Wadghiri, Youssef Z.


    International audience; The impairment of axonal transport by overexpression or hyperphosphorylation of tau is well documented for in vitro conditions; however, only a few studies on this phenomenon have been conducted in vivo, using invasive procedures, and with contradictory results. Here we used the non-invasive, Manganese-Enhanced Magnetic Resonance Imaging technique (MEMRI), to study for the first time a pure model of tauopathy, the JNPL3 transgenic mouse line, which overexpresses a muta...

  14. Non-invasive, in-vivo monitoring of neuronal transport impairment in a mouse model of tauopathy using MEMRI


    Bertrand, Anne; Khan, Umer; Hoang, Dung M.; Novikov, Dmitry S.; Krishnamurthy, Pavan; Rajamohamed Sait, Hameetha B.; Little, Benjamin W.; Sigurdsson, Einar M.; Wadghiri, Youssef Z.


    The impairment of axonal transport by overexpression or hyperphosphorylation of tau is well documented for in vitro conditions; however, only a few studies on this phenomenon have been conducted in vivo, using invasive procedures, and with contradictory results. Here we used the non-invasive, Manganese-Enhanced Magnetic Resonance Imaging technique (MEMRI), to study for the first time a pure model of tauopathy, the JNPL3 transgenic mouse line, which overexpresses a mutated (P301L) form of the ...

  15. Non-invasive in situ plasma monitoring of reactive gases using the floating harmonic method for inductively coupled plasma etching application. (United States)

    Lee, J H; Yoon, Y S; Kim, M J


    The floating harmonic method was developed for in situ plasma diagnostics of allowing real time measurement of electron temperature (Te) and ion flux (Jion) without contamination of the probe from surface modification by reactive species. In this study, this novel non-invasive diagnostic system was studied to characterize inductively coupled plasma of reactive gases monitoring Te and Jion for investigating the optimum plasma etching conditions and controlling of the real-time plasma surface reaction in the range of 200-900 W source power, 10-100 W bias power, and 3-15 mTorr chamber pressure, respectively.

  16. Non-invasive genetic sampling of the Eurasian Otter (Lutra lutra using hairs

    Directory of Open Access Journals (Sweden)

    Heather Anderson


    Full Text Available Abstract
    The material for the genetic characterisation of wild Eurasian otters (Lutra lutra has previously been derived from carcasses and spraints. Hair samples however have proved to be a much more reliable source of DNA than spraints, and offer the opportunity of sampling the living population non-invasively. Until now there has been no research into methods of sampling hairs from wild otters or on the DNA extraction efficiency from these hairs. A hair trap was therefore developed and tested on otters in captivity. The success rate of the trap was 0.71 samples collected per trap night. The suitability of genetic analysis from otter hairs was examined using paired samples of hair and tissue taken from 15 individual otters recovered from road mortalities. DNA was extracted from the tissue samples using a Proteinase K digestion in a PCR compatible buffer. This process had a 100% success rate. Individual root hair segments were treated by Chelex Ionic bead resin treatment and Proteinase K digestion in a PCR compatible buffer. The Chelex method gave a 55% amplification success rate while the Proteinase K method gave a much higher amplification success rate of 87%. The DNA extracts were typed for 9 microsatellites using the latest versions of the primers. Proportions of allelic dropout and false allele detection associated with hair DNA extracts were estimated by comparing the genotypes of hair extracts with the genotypes from tissue. Preliminary attempts to develop a ZFX/Y assay to sex otters identified polymorphisms between ZFX and ZFY sequences, but typing based on restriction digests requires further optimisation. The use of recovered DNA from hair offers a step forward in the study of Eurasian otter populations as its continuing endangered status in many countries creates legal and ethical constraints on capturing animals for marking or radio tracking.
    Campionamento genetico non-invasivo della Lontra (

  17. Real Time Monitoring of Children, and Adults with Mental Disabilities Using a Low-Cost Non-Invasive Electronic Device

    Directory of Open Access Journals (Sweden)

    Carlos Polanco


    Full Text Available There are a growing number of small children—as well as adults—with mental disabilities (including elderly citizens with Alzheimer’s disease or other forms of age-related dementia that are getting lost in rural and urban areas for various reasons. Establishing their location within the first 72 h is crucial because lost people are exposed to all kinds of adverse conditions and in the case of the elderly, this is further aggravated if prescribed medication is needed. Herein we describe a non-invasive, low-cost electronic device that operates constantly, keeping track of time, the geographical location and the identification of the subject using it. The prototype was made using commercial low-cost electronic components. This electronic device shows high connectivity in open and closed areas and identifies the geographical location of a lost subject. We freely provide the software and technical diagrams of the prototypes.

  18. Continuous non-invasive finger arterial pressure monitoring reflects intra-arterial pressure changes in children undergoing cardiac surgery. (United States)

    Hofhuizen, C M; Lemson, J; Hemelaar, A E A; Settels, J J; Schraa, O; Singh, S K; van der Hoeven, J G; Scheffer, G J


    Continuous non-invasive measurement of finger arterial pressure (FAP) is a reliable technology in adults. FAP is measured with an inflatable cuff around the finger and simultaneously converted to a reconstructed brachial artery pressure waveform (reBAP) by the Nexfin™ device. We assessed the adequacy of a prototype device (Nexfin-paediatric), designed for a paediatric population, for detecting rapid arterial pressure changes in children during cardiac surgery. Thirteen anaesthetized children with a median age of 11 months (2 months-7 yr) undergoing congenital cardiac surgery were included in the study. reBAP and intra-arterial pressure (IAP) were recorded simultaneously during the surgical procedure. To assess the accuracy of reBAP in tracking arterial pressure changes, the four largest IAP variations within a 5 min time interval were identified from each procedure. These variations were compared offline with reBAP during a 10 s control period before and a 10 s period after an arterial pressure change had occurred. In 10 out of 13 children, a non-invasive arterial pressure recording could be obtained. Therefore, recordings from these 10 children were eligible for further analysis, resulting in 40 data points. The correlation coefficient between reBAP and IAP in tracking mean arterial pressure (MAP) changes was 0.98. reBAP followed changes in IAP with a mean bias for systolic, diastolic arterial pressure, and MAP of 0.0 mm Hg (sd 5.8), 0.1 (sd 2.8), and 0.19 (sd 2.7), respectively. The prototype device closely follows arterial pressure changes in children. However, in a considerable number of attempts, obtaining a signal was time-consuming or unsuccessful. This technique seems promising but requires further technical development.

  19. The Double Sensor-A non-invasive device to continuously monitor core temperature in humans on earth and in space. (United States)

    Gunga, H-C; Werner, A; Stahn, A; Steinach, M; Schlabs, T; Koralewski, E; Kunz, D; Belavý, D L; Felsenberg, D; Sattler, F; Koch, J


    The objective of our study was to establish whether rectal temperature recordings in humans could be replaced by a non-invasive skin temperature sensor combined with a heat flux sensor (Double Sensor) located at the forehead to monitor core body temperature changes due to circadian rhythms. Rectal and Double Sensor data were collected continuously for 24h in seven men undertaking strict head-down tilt bed-rest. Individual differences between the two techniques varied between -0.72 and +0.55 degrees C. Nonetheless, when temperature data were approximated by cosinor analysis in order to compare circadian rhythm profiles between methods, it was observed that there were no significant differences between mesor, amplitude, and acrophase (P>0.310). It was therefore concluded that the Double Sensor technology is presently not accurate enough for performing single individual core body temperature measurements under resting conditions at normal ambient room temperature. Yet, it seems to be a valid, non-invasive alternative for monitoring circadian rhythm profiles.

  20. Radial artery applanation tonometry for continuous non-invasive arterial pressure monitoring in intensive care unit patients: comparison with invasively assessed radial arterial pressure. (United States)

    Meidert, A S; Huber, W; Müller, J N; Schöfthaler, M; Hapfelmeier, A; Langwieser, N; Wagner, J Y; Eyer, F; Schmid, R M; Saugel, B


    Radial artery applanation tonometry technology can be used for continuous non-invasive measurement of arterial pressure (AP). The purpose of this study was to evaluate this AP monitoring technology in intensive care unit (ICU) patients in comparison with invasive AP monitoring using a radial arterial catheter. In 24 ICU patients (German university hospital), AP values were simultaneously recorded on a beat-to-beat basis using radial artery applanation tonometry (T-Line system; Tensys Medical, San Diego, CA, USA) and a radial arterial catheter (contralateral arm). The primary endpoint of the study was to investigate the accuracy and precision of the non-invasively assessed AP measurements with the Bland-Altman method based on averaged 10 beat AP epochs (n=2993 10 beat epochs). For mean AP (MAP), systolic AP (SAP), and diastolic AP (DAP), we observed a bias (±standard deviation of the bias; 95% limits of agreement; percentage error) of +2 mm Hg (±6; -11 to +15 mm Hg; 15%), -3 mm Hg (±15; -33 to +27 mm Hg; 23%), and +5 mm Hg (±7; -9 to +19 mm Hg; 22%), respectively. In ICU patients, MAP and DAP measurements obtained using radial artery applanation tonometry show clinically acceptable agreement with invasive AP determination with a radial arterial catheter. While the radial artery applanation tonometry technology also allows SAP measurements with high accuracy, its precision for SAP measurements needs to be further improved.

  1. Validation of an enzyme-immunoassay for the non-invasive monitoring of faecal testosterone metabolites in male cheetahs (Acinonyx jubatus). (United States)

    Pribbenow, Susanne; Wachter, Bettina; Ludwig, Carsten; Weigold, Annika; Dehnhard, Martin


    In mammals, the sex hormone testosterone is the major endocrine variable to objectify testicular activity and thus reproductive function in males. Testosterone is involved in the development and function of male reproductive physiology and sex-related behaviour. The development of a reliable androgen enzyme-immunoassay (EIA) to monitor faecal testosterone metabolites (fTM) is a powerful tool to non-invasively assess the gonadal status of males. We validated an epiandrosterone EIA for male cheetahs by performing a testosterone radiometabolism study followed by high-performance liquid chromatography (HPLC) analyses and excluding possible cross-reactivities with androgenic metabolites not derived from testosterone metabolism. The physiological and biological relevance of the epiandrosterone EIA was validated by demonstrating (1) a significant increase in fTM concentrations within one day in response to a testosterone injection, (2) a significant increase in fTM concentrations within one day in response to a gonadotropin-releasing hormone (GnRH) injection, which failed following a placebo injection, and (3) significant differences in fTM concentrations between adult male and adult female cheetahs and between adult and juvenile male cheetahs of a free-ranging population. Finally, we demonstrated stability of fTM concentrations measured in faecal samples exposed to ambient temperatures up to 72h. Our results clearly demonstrate that the epiandrosterone EIA is a reliable non-invasive method to monitor testicular activity in male cheetahs.

  2. Raman spectroscopy technology to monitor the carotenoids in skin of thalassemia patients: a novel non-invasive tool relating oxidative stress with iron burden

    Directory of Open Access Journals (Sweden)

    Anna Perrone


    Full Text Available In this work we approach the relationship between redox state and iron overload by noninvasive instrumental techniques. Intracardiac, liver iron and liver fibrosis have been monitored in transfusion-dependent thalassemia patients by magnetic resonance imaging and hepatic transient elastography examinations. These measurements have been matched with a non-invasive, and yet unexplored in clinical practice, evaluation of body’s oxidative stress through measurement of antioxidant carotenoids in skin, by a spectroscopic method based on Raman technology (RRS. The global body’s antioxidant status results from a balance between the level of antioxidants in cells and body fluids, including blood, and pro-oxidant species endogenously produced or coming from external sources. On this basis, the level of skin carotenoids can be considered a biomarker of the entire antioxidant status. In our work the use of RRS method provided information on the redox state of thalassemia patients, which was correlated with the iron status of the patients. Due to the highly adverse effects of accumulated iron, the novel, simple, non-invasive RRS to monitor dermal carotenoids with high compliance of the patients may be a useful tool for the management of thalassemia patients.

  3. Non-invasive, in-vivo monitoring of neuronal transport impairment in a mouse model of tauopathy using MEMRI (United States)

    Bertrand, Anne; Khan, Umer; Hoang, Dung M.; Novikov, Dmitry S.; Krishnamurthy, Pavan; Rajamohamed Sait, Hameetha B.; Little, Benjamin W.; Sigurdsson, Einar M.; Wadghiri, Youssef Z.


    The impairment of axonal transport by overexpression or hyperphosphorylation of tau is well documented for in vitro conditions; however, only a few studies on this phenomenon have been conducted in vivo, using invasive procedures, and with contradictory results. Here we used the non-invasive, Manganese-Enhanced Magnetic Resonance Imaging technique (MEMRI), to study for the first time a pure model of tauopathy, the JNPL3 transgenic mouse line, which overexpresses a mutated (P301L) form of the human tau protein. We show progressive impairment in neuronal transport as tauopathy advances. These findings are further supported by a significant correlation between the severity of the impairment in neuronal transport assessed by MEMRI, and the degree of abnormal tau assessed by histology. Unlike conventional techniques that focus on axonal transport measurement, MEMRI can provide a global analysis of neuronal transport, i.e. from dendrites to axons and at the macroscopic scale of fiber tracts. Neuronal transport impairment has been shown to be a key pathogenic process in Alzheimer’s disease and numerous other neurodegenerative disorders. Hence, MEMRI provides a promising set of functional biomarkers to be used during preclinical trials to facilitate the selection of new drugs aimed at restoring neuronal transport in neurodegenerative diseases. PMID:22960250

  4. The importance of utilizing 24-h Holter monitoring as a non-invasive method of predicting the mechanism of supraventricular tachycardia. (United States)

    Al Mehairi, M; Al Ghamdi, S A; Dagriri, K; Al Fagih, A


    Despite the emergence of advanced invasive technology in identifying the various types of arrhythmia mechanisms, 24-h ambulatory electrocardiogram monitoring as a non-invasive method remains an invaluable informative tool in delineating such mechanisms. Furthermore, one observational study has supported the utilization of 24-h Holter monitoring in exploring AV Node (AVN) characteristics sufficiently in correlation with invasive studies when limited to patients without Wolf Parkinson White syndrome showing a positive predictive value of 98% in their supraventricular tachycardia (SVT) assessment (Fukuda et al., 2005). We describe in this report suspected tachycardia initiation mechanism in three SVT cases based on 24-h Holter recordings. Premature atrial contraction with subsequent AVN fast pathway conduction block initiated the common type AVN re-entrant tachycardia (AVNRT). Dual AVN physiology was documented during the electrophysiological studies in all three cases and a definitive therapy was achieved by the AVN slow pathway modification.

  5. Non-Invasive Monitoring of Temporal and Spatial Blood Flow during Bone Graft Healing Using Diffuse Correlation Spectroscopy.

    Directory of Open Access Journals (Sweden)

    Songfeng Han

    Full Text Available Vascular infiltration and associated alterations in microvascular blood flow are critical for complete bone graft healing. Therefore, real-time, longitudinal measurement of blood flow has the potential to successfully predict graft healing outcomes. Herein, we non-invasively measure longitudinal blood flow changes in bone autografts and allografts using diffuse correlation spectroscopy in a murine femoral segmental defect model. Blood flow was measured at several positions proximal and distal to the graft site before implantation and every week post-implantation for a total of 9 weeks (autograft n = 7 and allograft n = 10. Measurements of the ipsilateral leg with the graft were compared with those of the intact contralateral control leg. Both autografts and allografts exhibited an initial increase in blood flow followed by a gradual return to baseline levels. Blood flow elevation lasted up to 2 weeks in autografts, but this duration varied from 2 to 6 weeks in allografts depending on the spatial location of the measurement. Intact contralateral control leg blood flow remained at baseline levels throughout the 9 weeks in the autograft group; however, in the allograft group, blood flow followed a similar trend to the graft leg. Blood flow difference between the graft and contralateral legs (ΔrBF, a parameter defined to estimate graft-specific changes, was elevated at 1-2 weeks for the autograft group, and at 2-4 weeks for the allograft group at the proximal and the central locations. However, distal to the graft, the allograft group exhibited significantly greater ΔrBF than the autograft group at 3 weeks post-surgery (p < 0.05. These spatial and temporal differences in blood flow supports established trends of delayed healing in allografts versus autografts.

  6. Real-time monitoring and measurement of wax deposition in pipelines via non-invasive electrical capacitance tomography (United States)

    Lock Sow Mei, Irene; Ismail, Idris; Shafquet, Areeba; Abdullah, Bawadi


    Tomographic analysis of the behavior of waxy crude oil in pipelines is important to permit appropriate corrective actions to be taken to remediate the wax deposit layer before pipelines are entirely plugged. In this study, a non-invasive/non-intrusive electrical capacitance tomography (ECT) system has been applied to provide real-time visualization of the formation of paraffin waxes and to measure the amount of wax fraction from the Malay Basin waxy crude oil sample under the static condition. Analogous expressions to estimate the wax fraction of the waxy crude oil across the temperatures range of 30-50 °C was obtained by using Otsu’s and Kuo’s threshold algorithms. Otsu’s method suggested that the wax fraction can be estimated by the correlation coefficient β =0.0459{{T}3}-5.3535{{T}2}+200.36T-2353.7 while Kuo’s method provides a similar correlation with β =0.0741{{T}3}-8.4915{{T}2}+314.96T-3721.2 . These correlations show good agreements with the results which are obtained from the conventional weighting method. This study suggested that Kuo’s threshold algorithm is more promising when integrated into the ECT system compared to Otsu’s algorithm because the former provides higher accuracy wax fraction measurement results below the wax appearance temperature for waxy crude oil. This study is significant because it serves as a preliminary investigation for the application of ECT in the oil and gas industry for online measurement and detection of wax fraction without causing disturbance to the process flow.

  7. Precision and accuracy of a new device (CNAPTM) for continuous non-invasive arterial pressure monitoring: assessment during general anaesthesia. (United States)

    Jeleazcov, C; Krajinovic, L; Münster, T; Birkholz, T; Fried, R; Schüttler, J; Fechner, J


    Continuous non-invasive arterial pressure measured with CNAP (CNAP) has been shown to be superior to intermittent oscillometric measurements during procedural sedation and spinal anaesthesia. We assessed the performance of CNAP during general anaesthesia by analysis of agreement with invasive measurements of arterial pressure (AP). Eighty-eight patients undergoing elective abdominal surgery, cardio-, or neurosurgery were included in the study. Systolic, diastolic, and mean AP measured by an intra-arterial catheter in the radial artery (IAP) were compared with those obtained by CNAP from the same arm. Data were analysed to determine the precision (i.e. measurement error) and accuracy (i.e. systematic error) of beat-to-beat CNAP values with respect to IAP. Also, we compared the frequency of fast changes in AP (FCAP) and hypotension (IOH) by both methods. CNAP precision of 4.5, 3.1, and 3.2 mm Hg (systolic, diastolic, and mean AP, respectively) was not significantly different from IAP precision, and CNAP accuracy was +6.7, -5.6, and -1.6 mm Hg. The frequency of AP pairs having a difference within the calculated limits of agreement was 81%, 64%, and 76% for systolic, diastolic, and mean AP, respectively. The calculated limits of agreement were +/-17.6, +/-11.4, and +/-12.0 mm, Hg, respectively. CNAP and IAP detected simultaneously to 82.1% FCAP and to 84.6% IOH. CNAP provides real-time estimates of arterial pressure comparable with those generated by an invasive intra-arterial catheter system during general anaesthesia.

  8. Non-invasive optical monitoring of the newborn piglet brain using continuous-wave and frequency-domain spectroscopy (United States)

    Fantini, Sergio; Hueber, Dennis; Franceschini, Maria Angela; Gratton, Enrico; Rosenfeld, Warren; Stubblefield, Phillip G.; Maulik, Dev; Stankovic, Miljan R.


    We have used continuous-wave (CW) and frequency-domain spectroscopy to investigate the optical properties of the newborn piglet brain in vivo and non-invasively. Three anaesthetized, intubated, ventilated and instrumented newborn piglets were placed into a stereotaxic instrument for optimal experimental stability, reproducible probe-to-scalp optical contact and 3D adjustment of the optical probe. By measuring the absolute values of the brain absorption and reduced scattering coefficients at two wavelengths (758 and 830 nm), frequency-domain spectroscopy provided absolute readings (in contrast to the relative readings of CW spectroscopy) of cerebral haemoglobin concentration and saturation during experimentally induced perturbations in cerebral haemodynamics and oxygenation. Such perturbations included a modulation of the inspired oxygen concentration, transient brain asphyxia, carotid artery occlusion and terminal brain asphyxia. The baseline cerebral haemoglobin saturation and concentration, measured with frequency-domain spectroscopy, were about 60% and 42 µM respectively. The cerebral saturation values ranged from a minimum of 17% (during transient brain asphyxia) to a maximum of 80% (during recovery from transient brain asphyxia). To analyse the CW optical data, we have (a) derived a mathematical relationship between the cerebral optical properties and the differential pathlength factor and (b) introduced a method based on the spatial dependence of the detected intensity (dc slope method). The analysis of the cerebral optical signals associated with the arterial pulse and with respiration demonstrates that motion artefacts can significantly affect the intensity recorded from a single optode pair. Motion artefacts can be strongly reduced by combining data from multiple optodes to provide relative readings in the dc slope method. We also report significant biphasic changes (initial decrease and successive increase) in the reduced scattering coefficient measured

  9. Increased DNA amplification success of non-invasive genetic samples by successful removal of inhibitors from faecal samples collected in the field

    DEFF Research Database (Denmark)

    Hebert, Louise; Darden, Safi K.; Pedersen, Bo Vest;


    The use of non-invasive genetic sampling (NGS) is becoming increasingly important in the study of wild animal populations. Obtaining DNA from faecal samples is of particular interest because faeces can be collected without deploying sample capture devices. However, PCR amplification of DNA...... extracted from faeces is problematic because of high concentrations of inhibitors. Here we present a method for increasing the successful application of donor DNA extracted from faecal samples through inhibitor reduction. After standard extraction with a DNA stool kit we used a ‘Concentrated Chelex...... Treatment’ (CCT) that increased the amplification success from 31.7 to 61.4% of loci. Our results suggest that darker supernatant and samples with more precipitate contain more inhibitors than lighter samples and samples with little or no precipitate. We expect the use of this technique to have wide...

  10. BPA genetic monitoring - BPA Genetic Monitoring Project (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Initiated in 1989, this study monitors genetic changes associated with hatchery propagation in multiple Snake River sub-basins for Chinook salmon and steelhead. We...

  11. CNT Enabled Co-braided Smart Fabrics: A New Route for Non-invasive, Highly Sensitive & Large-area Monitoring of Composites (United States)

    Luo, Sida; Wang, Yong; Wang, Guantao; Wang, Kan; Wang, Zhibin; Zhang, Chuck; Wang, Ben; Luo, Yun; Li, Liuhe; Liu, Tao


    The next-generation of hierarchical composites needs to have built-in functionality to continually monitor and diagnose their own health states. This paper includes a novel strategy for in-situ monitoring the processing stages of composites by co-braiding CNT-enabled fiber sensors into the reinforcing fiber fabrics. This would present a tremendous improvement over the present methods that excessively focus on detecting mechanical deformations and cracks. The CNT enabled smart fabrics, fabricated by a cost-effective and scalable method, are highly sensitive to monitor and quantify various events of composite processing including resin infusion, onset of crosslinking, gel time, degree and rate of curing. By varying curing temperature and resin formulation, the clear trends derived from the systematic study confirm the reliability and accuracy of the method, which is further verified by rheological and DSC tests. More importantly, upon wisely configuring the smart fabrics with a scalable sensor network, localized processing information of composites can be achieved in real time. In addition, the smart fabrics that are readily and non-invasively integrated into composites can provide life-long structural health monitoring of the composites, including detection of deformations and cracks.

  12. CNT Enabled Co-braided Smart Fabrics: A New Route for Non-invasive, Highly Sensitive & Large-area Monitoring of Composites (United States)

    Luo, Sida; Wang, Yong; Wang, Guantao; Wang, Kan; Wang, Zhibin; Zhang, Chuck; Wang, Ben; Luo, Yun; Li, Liuhe; Liu, Tao


    The next-generation of hierarchical composites needs to have built-in functionality to continually monitor and diagnose their own health states. This paper includes a novel strategy for in-situ monitoring the processing stages of composites by co-braiding CNT-enabled fiber sensors into the reinforcing fiber fabrics. This would present a tremendous improvement over the present methods that excessively focus on detecting mechanical deformations and cracks. The CNT enabled smart fabrics, fabricated by a cost-effective and scalable method, are highly sensitive to monitor and quantify various events of composite processing including resin infusion, onset of crosslinking, gel time, degree and rate of curing. By varying curing temperature and resin formulation, the clear trends derived from the systematic study confirm the reliability and accuracy of the method, which is further verified by rheological and DSC tests. More importantly, upon wisely configuring the smart fabrics with a scalable sensor network, localized processing information of composites can be achieved in real time. In addition, the smart fabrics that are readily and non-invasively integrated into composites can provide life-long structural health monitoring of the composites, including detection of deformations and cracks. PMID:28272436

  13. Comparison of continuous non-invasive finger arterial pressure monitoring with conventional intermittent automated arm arterial pressure measurement in patients under general anaesthesia. (United States)

    Vos, J J; Poterman, M; Mooyaart, E A Q; Weening, M; Struys, M M R F; Scheeren, T W L; Kalmar, A F


    For a majority of patients undergoing anaesthesia for general surgery, mean arterial pressure (MAP) is only measured intermittently by arm cuff oscillometry (MAPiNIAP). In contrast, the Nexfin(®) device provides continuous non-invasive measurement of MAP (MAPcNIAP) using a finger cuff. We explored the agreement of MAPcNIAP and MAPiNIAP with the gold standard: continuous invasive MAP measurement by placement of a radial artery catheter (MAPinvasive). In a total of 120 patients undergoing elective general surgery and clinically requiring MAPinvasive measurement, MAPiNIAP and MAPcNIAP were measured in a 30 min time period at an arbitrary moment during surgery with stable haemodynamics. MAPiNIAP was measured every 5 min. Data from 112 patients were analysed. Compared with MAPinvasive, modified Bland-Altman analysis revealed a bias (sd) of 2 (9) mm Hg for MAPcNIAP and -2 (12) mm Hg for MAPiNIAP. Percentage errors for MAPcNIAP and MAPiNIAP were 22% and 32%, respectively. In a haemodynamically stable phase in patients undergoing general anaesthesia, the agreement with invasive MAP of continuous non-invasive measurement using a finger cuff was not inferior to the agreement of intermittent arm cuff oscillometry. Continuous measurements using a finger cuff can interchangeably be used as an alternative for intermittent arm cuff oscillometry in haemodynamically stable patients, with the advantage of beat-to-beat haemodynamic monitoring. NCT 01362335 ( © The Author [2014]. Published by Oxford University Press on behalf of the British Journal of Anaesthesia. All rights reserved. For Permissions, please email:

  14. Non-invasive genetic sampling of Southern Mule Deer (Odocoileus hemionus fuliginatus) reveals limited movement across California State Route 67 in San Diego County (United States)

    Mitelberg, Anna; Vandergast, Amy


    —The Southern Mule Deer is a mobile but non-migratory large mammal found throughout southern California and is a covered species in the San Diego Multi-Species Conservation Plan. We assessed deer movement and population connectivity across California State Route 67 and two smaller roads in eastern San Diego County using non-invasive genetic sampling. We collected deer scat pellets between April and November 2015, and genotyped pellets at 15 microsatellites and a sex determination marker. We successfully genotyped 71 unique individuals from throughout the study area and detected nine recapture events. Recaptures were generally found close to original capture locations (within 1.5 km). We did not detect recaptures across roads; however, pedigree analysis detected 21 first order relative pairs, of which approximately 20% were found across State Route 67. Exact tests comparing allele frequencies between groups of individuals in pre-defined geographic clusters detected significant genetic differentiation across State Route 67. In contrast, the assignment-based algorithm of STRUCTURE supported a single genetic cluster across the study area. Our data suggest that State Route 67 may reduce, but does not preclude, movement and gene flow of Southern Mule Deer.

  15. Non-invasive light observer

    CERN Document Server

    Morichetti, Francesco; Carminati, Marco; Ferrari, Giorgio; Sampietro, Marco; Strain, Michael; Sorel, Marc; Melloni, Andrea


    Photonic technologies lack non-invasive monitoring tools to inspect the light inside optical waveguides. This is one of the main barriers to large scale of integration, even though photonic platforms are potentially ready to host several thousands of elements on a single chip. Here, we demonstrate non-invasive light observation in silicon photonics devices by exploiting photon interaction with intra-gap energy states localized at the waveguide surface. Light intensity is measured through a ContactLess Integrated Photonic Probe (CLIPP) that introduces no measurable extra-photon absorption and a phase perturbation as low as 0.2 mrad, comparable to thermal fluctuations of less than 3 mK. Multipoint light monitoring is demonstrated with a sensitivity of -30 dBm and a dynamic range of 40 dB. CLIPP technology is simple, inherently CMOS compatible, and scalable to hundreds of probing points per chip. This concept provides a viable way to real-time conditioning and feedback control of densely-integrated photonic syst...

  16. Using of the surface plasmon resonance cytosensor for real-time and non-invasive monitoring of cellular effects in living C6 cells induced by PMA

    Institute of Scientific and Technical Information of China (English)


    Developing novel instruments and technologies for spatio-temporal and dynamic measurements of the intricate cellular effects involving molecular translocation, signal transduction, and molecular interactions inside living cells is essential for the cell and molecular biology science. For the purpose of monitoring and investigating molecular events in living cells at real-time, the surface plasmon resonance based cytosensor (SBCS) for cell culturing and signal monitoring was established, and on the basis of it, the corresponding technology was also established by monitoring and analyzing SPR responses induced in rat C6 glioma cells by phorbol 12-myristate 13-acetate (PMA). The SPR signals induced by PMA in living C6 cells were significantly different from those groups without cells. These responses were strongly dependent on and saturable to the concentrations of PMA, and could be suppressed by the specific and potent PKC inhibitors, which indicated that the measured signal could be the reflection of the redistribution of intracellular components near the cell membrane triggered by the activation of PKC. This research provides a quantitative and non-invasive technique to study the spatio-temporal characteristics of the cellular effects in living cells at real-time. Furthermore, this technology could also be widely used in the basic research as well as applied realms, such as space effects evaluation, environmental safety assessment, biological weapon detection, cellular and molecular research, and drug screening.

  17. Non-invasive monitoring of reproductive and stress hormones in the endangered red panda (Ailurus fulgens fulgens). (United States)

    Beaulah Budithi, Neema Raja; Kumar, Vinod; Yalla, Suneel Kumar; Rai, Upashna; Umapathy, Govindhaswamy


    The red panda (Ailurus fulgens fulgens) is classified as endangered due to its declining population, habitat fragmentation and poaching. Efforts are being made to breed them in captivity as part of nationwide conservation breeding program. This study aimed to standardize Enzyme immunoassays (EIAs) to monitor reproductive (Progesterone metabolite, Testosterone) and stress hormone (Cortisol) in red panda. For this purpose, we collected 1471 faecal samples from four females and one male over a period of one year from Padmaja Naidu Himalayan Zoological Park, Darjeeling, India. HPLC confirmed the presence of immunoreactive 5α-pregnan-3α-ol-20-one, testosterone and cortisol metabolites in faecal samples. Using 5α-pregnan-3α-ol-20-one EIA, we were able to monitor reproduction and detect pregnancy in one of the females, which successfully conceived and delivered during the study period. We were also able to monitor testosterone and cortisol in faecal samples of the red panda. Faecal testosterone levels were found in higher concentration in breeding season than in non-breeding season. Faecal cortisol concentrations showed a negative relationship with ambient temperature and peaked during winter months in all animals. Standardization of EIAs and faecal hormone monitoring would facilitate red panda conservation breeding programs in India and elsewhere.

  18. [Non-invasive assessment used to evaluate the nasal and oral mucosal cytological status in sociohygienic monitoring]. (United States)

    Beliaeva, N N; Ponomareva, O Iu; Aleksandrova, V P; Olesinov, A A; Budarina, O V; Gasimova, Z M


    By analyzing their own studies and the results of other studies by other investigators, the authors provide evidence that the noninvasive evaluation of the nasal and oral cytological status is one of techniques for assessing the health status and reflects the organism's state varying with environmental pollution, which enables it to be recommended for sociohygienic monitoring.

  19. Polar bear use of a persistent food subsidy: insights from non-invasive genetic sampling in Alaska (United States)

    Peacock, Elizabeth; Herreman, Jason


    Remains of bowhead whales (Balaena mysticetus) harvested by Iñupiat whalers are deposited in bone piles along the coast of Alaska and have become persistent and reliable food sources for polar bears (Ursus maritimus). The importance of bone piles to individuals and the population, the patterns of use, and the number, sex, and age of bears using these resources are poorly understood. We implemented barbed-wire hair snaring to obtain genetic identities from bears using the Point Barrow bone pile in winter 2010–11. Eighty-three percent of genotyped samples produced individual and sex identification. We identified 97 bears from 200 samples. Using genetic mark–recapture techniques, we estimated that 228 bears used the bone pile during November to February, which would represent approximately 15% of the Southern Beaufort Sea polar bear subpopulation, if all bears were from this subpopulation. We found that polar bears of all age and sex classes simultaneously used the bone pile. More males than females used the bone pile, and males predominated in February, likely because 1/3 of adult females would be denning during this period. On average, bears spent 10 days at the bone pile (median  =  5 days); the probability that an individual bear remained at the bone pile from week to week was 63% for females and 45% for males. Most bears in the sample were detected visiting the bone pile once or twice. We found some evidence of matrilineal fidelity to the bone pile, but the group of animals visiting the bone pile did not differ genetically from the Southern Beaufort Sea subpopulation, nor did patterns of relatedness. We demonstrate that bowhead whale bone piles may be an influential food subsidy for polar bears in the Barrow region in autumn and winter for all sex and age classes.

  20. Non-invasive real-time monitoring of vineyard soils, berries and leaves with FT-NIR spectroscopy

    Directory of Open Access Journals (Sweden)

    Lopo Miguel


    Full Text Available Production of high quality wines requires a permanent monitoring during the entire winemaking process. A healthy production, ensured by tailor-made strategies that will lead to consumer's satisfaction is of the utmost importance. The influence of the terroir characteristics on the features of a wine has always been prone to much debate amongst the wine industry. The composition of grapes is the result of the characteristics of each individual terroir. Soil impact on growth of the vineyard, grape variety characteristics and ultimately wine quality is well known. Current strategy for analysing soils (pedology is based on wet chemistry methods, which are often laborious, expensive, time-consuming and may be of limited use. An efficient, high-throughput analytical method for estimating the impact of soil quality, tillage and thinning on the grapes quality is of paramount importance for the wine industry. Near infrared spectroscopy (NIRS is a rapid, non-destructive, inexpensive and accurate analysis technique and its use in soil evaluation for discriminating different types of soil as well as soil constituents is rapidly increasing. Results obtained from direct monitoring of four Portuguese vineyards in different locations (wine appellation regions “Alentejo”, “Dão”, “Douro” and “Vinhos Verdes” using two different portable near-infrared spectrometers are presented. In-situ measurements of soils (at different depths, plant leaves and berries were performed on different stages of the ripening period. Spectral analysis was performed with chemometric methods: PCA and PLS-DA. This monitoring approach revealed to be an excellent tool for the support of a vineyard's micro-zoning process.

  1. Non-Invasive Monitoring of Breast Tumor Oxygenation: A Key to Tumor Therapy Planning and Tumor Prognosis (United States)


    of the (1986). newborn infants as a function of inter optode spacing," Adv. Exp. 24. H. Liu, A. H. Hielscher , F. K. Tittel, S. L. Jacques, and B...infrared monitoring of human skeletal muscle oxygenation during forearm ischemia", J. Appl. Physiol, 64, 2449-2457 (1988). 23 Liu, H., Hielscher , A. H...modification and role in hyperthermia", IEEE Trans. Sonics Ultrasonics , SU-31, 504-526 (1984). 25. Song, C. W., "Effect of local hyperthermia on blood flow and

  2. In vivo non-invasive serial monitoring of FDG-PET progression and regression in a rabbit model of atherosclerosis. (United States)

    Worthley, Stephen G; Zhang, Zhuang Y; Machac, Josef; Helft, Gérard; Tang, Cheuk; Liew, Gary Y H; Zaman, Azfar G; Worthley, Matthew I; Fayad, Zahi A; Buchsbaum, Monte S; Fuster, Valentin; Badimon, Juan J


    We investigated the ability of fluorodeoxyglucose positron emission tomography (FDG PET) imaging to serially monitor macrophage content in a rabbit model of atherosclerosis. Atherosclerosis was induced in rabbits (n = 8) by a combination of atherogenic diet and balloon denudation of the aorta. At the end of nine months, the rabbits were randomized to a further six months of the same atherogenic diet (progression group) or normal diet (regression group). In vivo uptake of FDG by the thoracic aorta was measured using aortic uptake-to-blood radioactivity ratios at the start and end of the randomized period. A significant increase in FDG uptake of the progression group after continued cholesterol feeding (aortic uptake-to-blood radioactivity: 0.57 +/- 0.02 to 0.68 +/- 0.02, P = 0.001), and a corresponding fall in FDG uptake of the regression group after returning to a normal chow diet (aortic uptake-to-blood radioactivity ratios: 0.67 +/- 0.02 to 0.53 +/- 0.02, P < 0.0001). FDG PET can quantify in vivo macrophage content and serially monitor changes in FDG activity in this rabbit model.

  3. Non-invasive ventilation for cystic fibrosis. (United States)

    Moran, Fidelma; Bradley, Judy M; Piper, Amanda J


    Non-invasive ventilation may be a means to temporarily reverse or slow the progression of respiratory failure in cystic fibrosis by providing ventilatory support and avoiding tracheal intubation. Using non-invasive ventilation, in the appropriate situation or individuals, can improve lung mechanics through increasing airflow and gas exchange and decreasing the work of breathing. Non-invasive ventilation thus acts as an external respiratory muscle. This is an update of a previously published review. To compare the effect of non-invasive ventilation versus no non-invasive ventilation in people with cystic fibrosis for airway clearance, during sleep and during exercise. We searched the Cochrane Cystic Fibrosis and Genetic Disorders Group Trials Register comprising references identified from comprehensive electronic database searches, handsearching relevant journals and abstract books of conference proceedings. We searched the reference lists of each trial for additional publications possibly containing other trials.Most recent search: 08 August 2016. Randomised controlled trials comparing a form of pressure preset or volume preset non-invasive ventilation to no non-invasive ventilation used for airway clearance or during sleep or exercise in people with acute or chronic respiratory failure in cystic fibrosis. Three reviewers independently assessed trials for inclusion criteria and methodological quality, and extracted data. Ten trials met the inclusion criteria with a total of 191 participants. Seven trials evaluated single treatment sessions, one evaluated a two-week intervention, one evaluated a six-week intervention and one a three-month intervention. It is only possible to blind trials of airway clearance and overnight ventilatory support to the outcome assessors. In most of the trials we judged there was an unclear risk of bias with regards to blinding due to inadequate descriptions. The six-week trial was the only one judged to have a low risk of bias for all

  4. Evaluation of non-invasive biological samples to monitor Staphylococcus aureus colonization in great apes and lemurs.

    Directory of Open Access Journals (Sweden)

    Frieder Schaumburg

    Full Text Available INTRODUCTION: Reintroduction of endangered animals as part of conservational programs bears the risk of importing human pathogens from the sanctuary to the natural habitat. One bacterial pathogen that serves as a model organism to analyze this transmission is Staphylococcus aureus as it can colonize and infect both humans and animals. The aim of this study was to evaluate the utility of various biological samples to monitor S. aureus colonization in great apes and lemurs. METHODS: Mucosal swabs from wild lemurs (n=25, Kirindy, Madagascar, feces, oral and genital swabs from captive chimpanzees (n=58, Ngamba and Entebbe, Uganda and fruit wadges and feces from wild chimpanzees (n=21, Taï National Parc, Côte d'Ivoire were screened for S. aureus. Antimicrobial resistance and selected virulence factors were tested for each isolate. Sequence based genotyping (spa typing, multilocus sequence typing was applied to assess the population structure of S. aureus. RESULTS: Oro-pharyngeal carriage of S. aureus was high in lemurs (72%, n=18 and captive chimpanzees (69.2%, n=27 and 100%, n=6, respectively. Wild chimpanzees shed S. aureus through feces (43.8, n=7 and fruit wadges (54.5, n=12. Analysis of multiple sampling revealed that two samples are sufficient to detect those animals which shed S. aureus through feces or fruit wadges. Genotyping showed that captive animals are more frequently colonized with human-associated S. aureus lineages. CONCLUSION: Oro-pharyngeal swabs are useful to screen for S. aureus colonization in apes and lemurs before reintroduction. Duplicates of stool and fruit wadges reliably detect S. aureus shedding in wild chimpanzees. We propose to apply these sampling strategies in future reintroduction programs to screen for S. aureus colonization. They may also be useful to monitor S. aureus in wild populations.

  5. Application of Circulating Tumor DNA as a Non-Invasive Tool for Monitoring the Progression of Colorectal Cancer.

    Directory of Open Access Journals (Sweden)

    Jiaolin Zhou

    Full Text Available Liquid biopsy has been proposed to be a promising noninvasive tool to obtain information on tumor progression. Through a clinical observation of a case series of 6 consecutive patients, we aim to determine the value of circulating tumor DNA (ctDNA for monitoring the tumor burden during the treatment of colorectal cancer (CRC.We used capture sequencing of 545 genes to identify somatic alternations in primary tumor tissues of the six CRC patients who underwent radical surgery and in 23 plasma samples collected at serial time points. We compared the mutation patterns and variant allele frequencies (VAFs between the matched tissue and the plasma samples and evaluated the potential advantage of using ctDNA as a better tumor load indicator to detect disease relapse over carcinoembryonic antigen (CEA, cancer antigen (CA 19-9 and imaging studies.We identified low-frequency mutations with a mean VAF of 0.88% (corresponding to a mean tumor burden of 0.20ng/mL in the preoperative plasmas of four patients with locally advanced CRC and a subset of mutations shared by their primary tumors. The tumor loads appeared a sudden decrease upon surgery or other adjuvant treatments and then generally maintained at low levels (0.092ng/mL until disease recurred. ctDNA increased by 13-fold when disease relapsed in one patient while the CEA and CA 19-9 levels remained normal. In this patient, all six somatic mutations identified in the preoperative plasma were detected in the recrudescent plasma again, with five mutations showing allele fraction increase.We described a multi-time-point profile of ctDNA of CRC patients during the course of comprehensive treatment and observed a correlation of ctDNA level with the clinically evaluated tumor progression. This demonstrated a new strategy by analyzing the heterogeneous ctDNA to evaluate and monitor the tumor burden in the treatment and follow-up of CRC patients, with potentially better potency than conventional biomarkers.

  6. Structural health monitoring for bolt loosening via a non-invasive vibro-haptics human-machine cooperative interface (United States)

    Pekedis, Mahmut; Mascerañas, David; Turan, Gursoy; Ercan, Emre; Farrar, Charles R.; Yildiz, Hasan


    For the last two decades, developments in damage detection algorithms have greatly increased the potential for autonomous decisions about structural health. However, we are still struggling to build autonomous tools that can match the ability of a human to detect and localize the quantity of damage in structures. Therefore, there is a growing interest in merging the computational and cognitive concepts to improve the solution of structural health monitoring (SHM). The main object of this research is to apply the human-machine cooperative approach on a tower structure to detect damage. The cooperation approach includes haptic tools to create an appropriate collaboration between SHM sensor networks, statistical compression techniques and humans. Damage simulation in the structure is conducted by releasing some of the bolt loads. Accelerometers are bonded to various locations of the tower members to acquire the dynamic response of the structure. The obtained accelerometer results are encoded in three different ways to represent them as a haptic stimulus for the human subjects. Then, the participants are subjected to each of these stimuli to detect the bolt loosened damage in the tower. Results obtained from the human-machine cooperation demonstrate that the human subjects were able to recognize the damage with an accuracy of 88 ± 20.21% and response time of 5.87 ± 2.33 s. As a result, it is concluded that the currently developed human-machine cooperation SHM may provide a useful framework to interact with abstract entities such as data from a sensor network.

  7. 24 hr non-invasive ambulatory blood pressure and heart rate monitoring in Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Eva eStübner


    Full Text Available Non-motor symptoms are now commonly recognized in Parkinson’s Disease (PD and can include dysautonomia. Impairment of cardiovascular autonomic function can occur at any stage of PD but is typically prevalent in advanced stages or related to (anti-parkinsonian drugs and can result in atypical blood pressure (BP readings and related symptoms such as orthostatic hypotension (OH and supine hypertension. OH is usually diagnosed with a head-up-tilt test (HUT or an (active standing test (also known as Schellong test in the laboratory, but 24 hour Ambulatory Blood Pressure Monitoring (ABPM in a home setting may have several advantages, such as providing an overview of symptoms in daily life alongside pathophysiology as well as assessment of treatment interventions. This, however, is only possible if ABPM is administrated correctly and an autonomic protocol (including a diary is followed. which will be discussed in this review. A 24hr ABPM does not only allow the detection of OH, if it is present, but also the assessment of cardiovascular autonomic dysfunction during and after various daily stimuli, such as postprandial and alcohol dependent hypotension, as well as exercise and drug induced hypotension. Furthermore, information about the circadian rhythm of BP and heart rate (HR can be obtained and establish whether or not a patient has a fall of BP at night (i.e. ‘dipper’ vs. non-‘dipper’. The information about nocturnal BP may also allow the investigation or detection of disorders such as sleep dysfunction, nocturnal movement disorders and obstructive sleep apnea, which are common in PD. Additionally, a 24hr ABPM should be conducted to examine the effectiveness of OH therapy. This review will outline the methodology of 24 hr ABPM in PD, summarize findings of such studies in PD and briefly consider common daily stimuli that might affect 24 Hr ABPM.

  8. Effects of environmental parameters and irrigation on the turgor pressure of banana plants measured using the non-invasive, online monitoring leaf patch clamp pressure probe. (United States)

    Zimmermann, U; Rüger, S; Shapira, O; Westhoff, M; Wegner, L H; Reuss, R; Gessner, P; Zimmermann, G; Israeli, Y; Zhou, A; Schwartz, A; Bamberg, E; Zimmermann, D


    Turgor pressure provides a sensitive indicator for irrigation scheduling. Leaf turgor pressure of Musa acuminate was measured by using the so-called leaf patch clamp pressure probe, i.e. by application of an external, magnetically generated and constantly retained clamp pressure to a leaf patch and determination of the attenuated output pressure P(p) that is highly correlated with the turgor pressure. Real-time recording of P(p) values was made using wireless telemetric transmitters, which send the data to a receiver base station where data are logged and transferred to a GPRS modem linked to an Internet server. Probes functioned over several months under field and laboratory conditions without damage to the leaf patch. Measurements showed that the magnetic-based probe could monitor very sensitively changes in turgor pressure induced by changes in microclimate (temperature, relative humidity, irradiation and wind) and irrigation. Irrigation effects could clearly be distinguished from environmental effects. Interestingly, oscillations in stomatal aperture, which occurred frequently below turgor pressures of 100 kPa towards noon at high transpiration or at high wind speed, were reflected in the P(p) values. The period of pressure oscillations was comparable with the period of oscillations in transpiration and photosynthesis. Multiple probe readings on individual leaves and/or on several leaves over the entire height of the plants further emphasised the great impact of this non-invasive turgor pressure sensor system for elucidating the dynamics of short- and long-distance water transport in higher plants.

  9. Monitoring of potential cytotoxic and inhibitory effects of titanium dioxide using on-line and non-invasive cell-based impedance spectroscopy. (United States)

    Male, Keith B; Hamzeh, Mahsa; Montes, Johnny; Leung, Alfred C W; Luong, John H T


    Titanium dioxide (TiO2) nanoparticles (NPs) with different sizes and structures were probed for plausible cytotoxicity using electric cell-substrate impedance sensing (ECIS), a non-invasive and on-line procedure for continuous monitoring of cytotoxicity. For insect cells (Spodoptera frugiperda Sf9), the ECIS50 values, i.e., the concentration required to achieve 50% inhibition of the response, differed depending on the size and shape of the TiO2 nanostructure. The lowest ECIS50 value (158 ppm) was observed for the needle shaped rutile TiO2 (10 nm×40 nm, 15.5 nm nominal particle size), followed by 211 ppm for P-25 (34.1 nm, 80% anatase and 20% rutile), 302 ppm for MTI5 (5.9 nm, 99% anatase) and 417 ppm for Hombitan LW-S bulk TiO2 (169.5 nm, 99% anatase). Exposure of TiO2 NPs to UV light at 254 nm or 365 nm exhibited no significant effect on the ECIS50 value due to the aggregation of TiO2 NPs with diminishing photocatalytic activities. Chinese hamster lung fibroblast V79 cells, exhibited no significant cytotoxicity/inhibition up to 400 ppm with P25, MTI5 and bulk TiO2. However, a noticeable inhibitory effect was observed (ECIS50 value of 251 ppm) with rutile TiO2 as cell spreading on the electrode surface was prevented.

  10. Dendritic polyglycerolsulfate near infrared fluorescent (NIRF dye conjugate for non-invasively monitoring of inflammation in an allergic asthma mouse model.

    Directory of Open Access Journals (Sweden)

    Stefania Biffi

    Full Text Available BACKGROUND: Non-invasive in vivo imaging strategies are of high demand for longitudinal monitoring of inflammation during disease progression. In this study we present an imaging approach using near infrared fluorescence (NIRF imaging in combination with a polyanionic macromolecular conjugate as a dedicated probe, known to target L- and P-selectin and C3/C5 complement factors. METHODOLOGY/PRINCIPAL FINDINGS: We investigated the suitability of dendritic polyglycerol sulfates (dPGS, conjugated with a hydrophilic version of the indocyanine green label with 6 sulfonate groups (6S-ICG to monitor sites of inflammation using an experimental mouse model of allergic asthma. Accumulation of the NIRF-conjugated dPGS (dPGS-NIRF in the inflamed lungs was analyzed in and ex vivo in comparison with the free NIRF dye using optical imaging. Commercially available smart probes activated by matrix metalloproteinase's (MMP and cathepsins were used as a comparative control. The fluorescence intensity ratio between lung areas of asthmatic and healthy mice was four times higher for the dPGS in comparison to the free dye in vivo at four hrs post intravenous administration. No significant difference in fluorescence intensity between healthy and asthmatic mice was observed 24 hrs post injection for dPGS-NIRF. At this time point ex-vivo scans of asthmatic mice confirmed that the fluorescence within the lungs was reduced to approximately 30% of the intensity observed at 4 hrs post injection. CONCLUSIONS/SIGNIFICANCE: Compared with smart-probes resulting in a high fluorescence level at 24 hrs post injection optical imaging with dPGS-NIRF conjugates is characterized by fast uptake of the probe at inflammatory sites and represents a novel approach to monitor lung inflammation as demonstrated in mice with allergic asthma.

  11. Long-term progression and therapeutic response of visceral metastatic disease non-invasively monitored in mouse urine using beta-human choriogonadotropin secreting tumor cell lines. (United States)

    Francia, Giulio; Emmenegger, Urban; Lee, Christina R; Shaked, Yuval; Folkins, Christopher; Mossoba, Miriam; Medin, Jeffrey A; Man, Shan; Zhu, Zhenping; Witte, Larry; Kerbel, Robert S


    Historically, the use of mouse models of metastatic disease to evaluate anticancer therapies has been hampered because of difficulties in detection and quantification of such lesions without sacrificing the mice, which in turn may also be dictated by institutional or ethical guidelines. Advancements in imaging technologies have begun to change this situation. A new method to non-invasively measure tumor burden, as yet untested to monitor spontaneous metastases, is the use of transplanted tumors expressing secretable human beta-chorionic gonadotropin (beta-hCG) that can be measured in urine. We describe examples of beta-hCG-transfected tumor cell lines for evaluating the effect of different therapies on metastatic disease, which in some cases involved monitoring tumor growth for >100 days. We used beta-hCG-tagged mouse B16 melanoma and erbB-2/Her-2-expressing human breast cancer MDA-MB-231 models, and drug treatments included metronomic low-dose cyclophosphamide chemotherapy with or without a vascular endothelial growth factor receptor 2-targeting antibody (DC101) or trastuzumab, the erbB-2/Her-2-targeting antibody. Both experimental and spontaneous metastasis models were studied; in the latter case, an increase in urine beta-hCG always foreshadowed the development of lung, liver, brain, and kidney metastases. Metastatic disease was unresponsive to DC101 or trastuzumab monotherapy treatment, as assessed by beta-hCG levels. Our results also suggest that beta-hCG levels may be set as an end point for metastasis studies, circumventing guidelines, which have often hampered the use of advanced disease models. Collectively, our data indicates that beta-hCG is an effective noninvasive preclinical marker for the long term monitoring of untreated or treated metastatic disease.

  12. The impact of continuous non-invasive arterial blood pressure monitoring on blood pressure stability during general anaesthesia in orthopaedic patients: A randomised trial. (United States)

    Meidert, Agnes S; Nold, Johanna S; Hornung, Roman; Paulus, Alexander C; Zwißler, Bernhard; Czerner, Stephan


    In patients undergoing general anaesthesia, intraoperative hypotension occurs frequently and is associated with adverse outcomes such as postoperative acute kidney failure, myocardial infarction or stroke. A history of chronic hypertension renders patients more susceptible to a decrease in blood pressure (BP) after induction of general anaesthesia. As a patient's BP is generally monitored intermittently via an upper arm cuff, there may be a delay in the detection of hypotension by the anaesthetist. The current study investigates whether the presence of continuous BP monitoring leads to improved BP stability. Randomised, controlled and single-centre study. A total of 160 orthopaedic patients undergoing general anaesthesia with a history of chronic hypertension. The patients were randomised to either a study group (n = 77) that received continuous non-invasive BP monitoring in addition to oscillometric intermittent monitoring, or a control group (n = 83) whose BP was monitored intermittently only. The interval for oscillometric measurements in both groups was set to 3 min. After induction of general anaesthesia, oscillometric BP values of the two groups were compared for the first hour of the procedure. Anaesthetists were blinded to the purpose of the study. BP stability and hypotensive events. There was no difference in baseline BP between the groups. After adjustment for multiple testing, mean arterial BP in the study group was significantly higher than in the control group at 12 and 15 min. Mean ± SD for study and control group, respectively were: 12 min, 102 ± 24 vs. 90 ± 26 mmHg (P = 0.039) and 15 min, 102 ± 21 vs. 90 ± 23 mmHg (P = 0.023). Hypotensive readings below a mean pressure of 55 mmHg occurred more often in the control group (25 vs. 7, P = 0.047). Continuous monitoring contributes to BP stability in the studied population. NCT02519101.

  13. Real-time, non-invasive monitoring of hydrogel degradation using LiYF4:Yb(3+)/Tm(3+) NIR-to-NIR upconverting nanoparticles. (United States)

    Jalani, Ghulam; Naccache, Rafik; Rosenzweig, Derek H; Lerouge, Sophie; Haglund, Lisbet; Vetrone, Fiorenzo; Cerruti, Marta


    To design a biodegradable hydrogel as cell support, one should know its in vivo degradation rate. A technique commonly used to track gel degradation is fluorescence spectroscopy. However, the fluorescence from conventional fluorophores quickly decays, and the fluorophores are often moderately cytotoxic. Most importantly, they require ultraviolet or visible (UV-Vis) light as the excitation source, which cannot penetrate deeply through biological tissues. Lanthanide-doped upconverting nanoparticles (UCNPs) are exciting alternatives to conventional fluorophores because they can convert near-infrared (NIR) to UV-Vis-NIR light via a sequential multiphoton absorption process referred to as upconversion. NIR light can penetrate up to few cm inside tissues, thus making these UCNPs much better probes than conventional fluorophores for in vivo monitoring. Also, UCNPs have narrow emission bands, high photoluminescence (PL) signal-to-noise ratio, low cytotoxicity and good physical and chemical stability. Here, we show a nanocomposite system consisting of a biodegradable, in situ thermogelling injectable hydrogel made of chitosan and hyaluronic acid encapsulating silica-coated LiYF4:Yb(3+)/Tm(3+) UCNPs. We use these UCNPs as photoluminescent tags to monitor the gel degradation inside live, cultured intervertebral discs (IVDs) over a period of 3 weeks. PL spectroscopy and NIR imaging show that NIR-to-NIR upconversion of LiYF4:Yb(3+)/Tm(3+)@SiO2 UCNPs allows for tracking of the gel degradation in living tissues. Both in vitro and ex vivo release of UCNPs follow a similar trend during the first 5 days; after this time, ex vivo release becomes faster than in vitro, indicating a faster gel degradation ex vivo. Also, the amount of released UCNPs in vitro increases continuously up to 3 weeks, while it plateaus after 15 days inside the IVDs showing a homogenous distribution of UCNPs throughout the IVD tissue. This non-invasive optical method for real time, live tissue imaging holds

  14. Assessment of slow-breathing relaxation technique in acute stressful tasks using a multipurpose non-invasive beat-by-beat cardiovascular monitoring system. (United States)

    Nogawa, Masamichi; Yamakoshi, Takehiro; Ikarashi, Akira; Tanaka, Shinobu; Yamakoshi, Ken-ichi


    Recently, several studies revealed that daily slow-breathing exercise lowered blood pressure and increased baroreflex sensitivity. With this interesting finding, we have been contemplating to design a compact breath-controllable device for relaxation to stress reaction during daily living for home as well as ambulatory use, as a final goal, towards reduction of cognitive hemodynamic disorders, hypertension, and acute stress-induced hemodynamic disorders. The present study thereby describes, as a first step, to design a prototype system combining a compact multipurpose non-invasive beat-by-beat cardiovascular monitor developed previously with a wrist-type vibrator to make a respiration rhythm, and to assess an effect of slow-breathing relaxation on the cardiovascular hemodynamics in response to acute stressful conditions. The cardiovascular hemodynamic monitor can measure beat-by-beat systolic (SBP), mean (MBP) and diastolic (DBP) pressure in a finger based on the volume-compensation method, cardiac output (CO) by the electrical admittance method and the other hemodynamic-related parameters (e.g., total peripheral resistance (TPR=MBP/CO), heart rate (HR), respiratory rate, pulse wave velocity, etc.). The wrist-type vibrator can give various breathing rhythms quietly to a subject using a small vibration motor. The stressful tasks loaded to healthy volunteers (3 males, 23-34 yrs.) in the experiments were cold pressor and arithmetic ones as a representative of daily passive and active coping tasks, respectively, under conditions with (respiratory rate of 6 1/min) and without breath control.. The results showed that the slow-breathing technique could have a significant effect on improvement of the hemodynamic changes following the acute stressful tasks, especially in the passive coping task.

  15. Non-invasive bioluminescence imaging to monitor the immunological control of a plasmablastic lymphoma-like B cell neoplasia after hematopoietic cell transplantation.

    Directory of Open Access Journals (Sweden)

    Martin Chopra

    Full Text Available To promote cancer research and to develop innovative therapies, refined pre-clinical mouse tumor models that mimic the actual disease in humans are of dire need. A number of neoplasms along the B cell lineage are commonly initiated by a translocation recombining c-myc with the immunoglobulin heavy-chain gene locus. The translocation is modeled in the C.129S1-Igha(tm1(MycJanz/J mouse which has been previously engineered to express c-myc under the control of the endogenous IgH promoter. This transgenic mouse exhibits B cell hyperplasia and develops diverse B cell tumors. We have isolated tumor cells from the spleen of a C.129S1-Igha(tm1(MycJanz/J mouse that spontaneously developed a plasmablastic lymphoma-like disease. These cells were cultured, transduced to express eGFP and firefly luciferase, and gave rise to a highly aggressive, transplantable B cell lymphoma cell line, termed IM380. This model bears several advantages over other models as it is genetically induced and mimics the translocation that is detectable in a number of human B cell lymphomas. The growth of the tumor cells, their dissemination, and response to treatment within immunocompetent hosts can be imaged non-invasively in vivo due to their expression of firefly luciferase. IM380 cells are radioresistant in vivo and mice with established tumors can be allogeneically transplanted to analyze graft-versus-tumor effects of transplanted T cells. Allogeneic hematopoietic stem cell transplantation of tumor-bearing mice results in prolonged survival. These traits make the IM380 model very valuable for the study of B cell lymphoma pathophysiology and for the development of innovative cancer therapies.

  16. 18F and 18FDG PET imaging of osteosarcoma to non-invasively monitor in situ changes in cellular proliferation and bone differentiation upon MYC inactivation (United States)

    Arvanitis, Constadina; Bendapudi, Pavan K.; Tseng, Jeffrey R.; Gambhir, Sanjiv Sam; Felsher, Dean W.


    Osteosarcoma is one of the most common pediatric cancers. Accurate imaging of osteosarcoma is important for proper clinical staging of the disease and monitoring of the tumor’s response to therapy. The MYC oncogene has been commonly implicated in the pathogenesis of human osteosarcoma. Previously, we have described a conditional transgenic mouse model of MYC-induced osteosarcoma. These tumors are highly invasive and are frequently associated with pulmonary metastases. In our model, upon MYC inactivation osteosarcomas lose their neoplastic properties, undergo proliferative arrest, and differentiate into mature bone. We reasoned that we could use our model system to develop noninvasive imaging modalities to interrogate the consequences of MYC inactivation on tumor cell biology in situ. We performed positron emission tomography (PET) combining the use of both 18F-fluorodeoxyglucose (18FDG) and 18F-flouride (18F) to detect metabolic activity and bone mineralization/remodeling. We found that upon MYC inactivation, tumors exhibited a slight reduction in uptake of 18FDG and a significant increase in the uptake of 18F along with associated histological changes. Thus, these cells have apparently lost their neoplastic properties based upon both examination of their histology and biologic activity. However, these tumors continue to accumulate 18FDG at levels significantly elevated compared to normal bone. Therefore, PET can be used to distinguish normal bone cells from tumors that have undergone differentiation upon oncogene inactivation. In addition, we found that 18F is a highly sensitive tracer for detection of pulmonary metastasis. Collectively, we conclude that combined modality PET/CT imaging incorporating both 18FDG and 18F is a highly sensitive means to non-invasively measure osteosarcoma growth and the therapeutic response, as well as to detect tumor cells that have undergone differentiation upon oncogene inactivation. PMID:18981708

  17. (18)F and (18)FDG PET imaging of osteosarcoma to non-invasively monitor in situ changes in cellular proliferation and bone differentiation upon MYC inactivation. (United States)

    Arvanitis, Constadina; Bendapudi, Pavan K; Tseng, Jeffrey R; Gambhir, Sanjiv Sam; Felsher, Dean W


    Osteosarcoma is one of the most common pediatric cancers. Accurate imaging of osteosarcoma is important for proper clinical staging of the disease and monitoring of the tumor's response to therapy. The MYC oncogene has been commonly implicated in the pathogenesis of human osteosarcoma. Previously, we have described a conditional transgenic mouse model of MYC-induced osteosarcoma. These tumors are highly invasive and are frequently associated with pulmonary metastases. In our model, upon MYC inactivation osteosarcomas lose their neoplastic properties, undergo proliferative arrest and differentiate into mature bone. We reasoned that we could use our model system to develop noninvasive imaging modalities to interrogate the consequences of MYC inactivation on tumor cell biology in situ. We performed positron emission tomography (PET) combining the use of both (18)F-fluorodeoxyglucose ((18)FDG) and (18)F-flouride ((18)F) to detect metabolic activity and bone mineralization/remodeling. We found that upon MYC inactivation, tumors exhibited a slight reduction in uptake of (18)FDG and a significant increase in the uptake of (18)F along with associated histological changes. Thus, these cells have apparently lost their neoplastic properties based upon both examination of their histology and biologic activity. However, these tumors continue to accumulate (18)FDG at levels significantly elevated compared to normal bone. Therefore, PET can be used to distinguish normal bone cells from tumors that have undergone differentiation upon oncogene inactivation. In addition, we found that (18)F is a highly sensitive tracer for detection of pulmonary metastasis. Collectively, we conclude that combined modality PET/CT imaging incorporating both (18)FDG and (18)F is a highly sensitive means to non-invasively measure osteosarcoma growth and the therapeutic response, as well as to detect tumor cells that have undergone differentiation upon oncogene inactivation.

  18. Non-Invasive Fetal Monitoring: A Maternal Surface ECG Electrode Placement-Based Novel Approach for Optimization of Adaptive Filter Control Parameters Using the LMS and RLS Algorithms. (United States)

    Martinek, Radek; Kahankova, Radana; Nazeran, Homer; Konecny, Jaromir; Jezewski, Janusz; Janku, Petr; Bilik, Petr; Zidek, Jan; Nedoma, Jan; Fajkus, Marcel


    This paper is focused on the design, implementation and verification of a novel method for the optimization of the control parameters (such as step size μ and filter order N) of LMS and RLS adaptive filters used for noninvasive fetal monitoring. The optimization algorithm is driven by considering the ECG electrode positions on the maternal body surface in improving the performance of these adaptive filters. The main criterion for optimal parameter selection was the Signal-to-Noise Ratio (SNR). We conducted experiments using signals supplied by the latest version of our LabVIEW-Based Multi-Channel Non-Invasive Abdominal Maternal-Fetal Electrocardiogram Signal Generator, which provides the flexibility and capability of modeling the principal distribution of maternal/fetal ECGs in the human body. Our novel algorithm enabled us to find the optimal settings of the adaptive filters based on maternal surface ECG electrode placements. The experimental results further confirmed the theoretical assumption that the optimal settings of these adaptive filters are dependent on the ECG electrode positions on the maternal body, and therefore, we were able to achieve far better results than without the use of optimization. These improvements in turn could lead to a more accurate detection of fetal hypoxia. Consequently, our approach could offer the potential to be used in clinical practice to establish recommendations for standard electrode placement and find the optimal adaptive filter settings for extracting high quality fetal ECG signals for further processing. Ultimately, diagnostic-grade fetal ECG signals would ensure the reliable detection of fetal hypoxia.

  19. Comparison of continuous non-invasive finger arterial pressure monitoring with conventional intermittent automated arm arterial pressure measurement in patients under general anaesthesia

    NARCIS (Netherlands)

    Vos, J. J.; Poterman, M.; Mooyaart, E. A. Q.; Weening, M.; Struys, M. M. R. F.; Scheeren, T. W. L.; Kalmar, A. F.

    Background: For a majority of patients undergoing anaesthesia for general surgery, mean arterial pressure (MAP) is only measured intermittently by arm cuff oscillometry (MAP(iNIAP)). In contrast, the Nexfin (R) device provides continuous non-invasive measurement of MAP (MAP(cNIAP)) using a finger

  20. 基于ARM的无创心血管功能检测系统%Non-Invasive Cardiovascular Monitoring System Based on ARM

    Institute of Scientific and Technical Information of China (English)

    赵学玲; 陈小红; 刘瑾; 杜振辉; 徐可欣


    An intelligent non-invasive cardiovascular monitoring device was developed to measure ten important parame-ters on the basis of arterial windkessel model and hemodynamic theory of pulse wave. By using the technology of advanced RISC machines(ARM) based on embedded platform, some defectiveness of the existing commercial systems was overcome,such as computer-attached, clumsy volume, and singularity of cardiovascular parameters measured, etc. Both the hardware and software design were described in detail. Through a preliminary experiment of 30 persons, it is proved that the system keeps good reliability and stability, which can achieve the correlation of 0.95 with the consulted device, and its repeatability error is less than 2.36%. The acquired parameters can be used to better evaluate the cardiovascular state of a person. The sys-tem is expected to be applied to the clinic and home healthcare.%研发了一种智能化的无创心血管参数诊断系统.该系统应用动脉弹性腔模型和血液动力学理论,可以对10个重要的心血管参数进行测量.采用了基于ARM的嵌入式系统技术,克服了目前其他同类仪器体积大、测量参数单一等缺点.详细介绍了系统的硬件构成与软件流程.为了验证系统的性能,该系统在30个人中进行了初步实验.结果证明,该仪器具有良好的准确性和稳定性,与参考仪器测量结果的相关系数可达到0.95,重复性误差最大为2.36%,所获得的参数能较好地评价心血管功能状况,系统可运用于临床诊断和家庭健康监护.

  1. Ultrasonic non invasive techniques for microbiological instrumentation (United States)

    Elvira, L.; Sierra, C.; Galán, B.; Resa, P.


    Non invasive techniques based on ultrasounds have advantageous features to study, characterize and monitor microbiological and enzymatic reactions. These processes may change the sound speed, viscosity or particle distribution size of the medium where they take place, which makes possible their analysis using ultrasonic techniques. In this work, two different systems for the analysis of microbiological liquid media based on ultrasounds are presented. In first place, an industrial application based on an ultrasonic monitoring technique for microbiological growth detection in milk is shown. Such a system may improve the quality control strategies in food production factories, being able to decrease the time required to detect possible contaminations in packed products. Secondly, a study about the growing of the Escherichia coli DH5 α in different conditions is presented. It is shown that the use of ultrasonic non invasive characterization techniques in combination with other conventional measurements like optical density provides complementary information about the metabolism of these bacteria.

  2. Non-invasive in vivo imaging with radiolabelled FIAU for monitoring cancer gene therapy using herpes simplex virus type 1 thymidine kinase and ganciclovir

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Win-Ping; Lai, Wen-Fu [Graduate Institute of Biomedical Materials, Taipei Medical University, Taipei (Taiwan); Yang, Wen K.; Yang, Den-Mei [Institute of Biological Science, Academic Sinica, Taipei (Taiwan); Liu, Ren-Shyan [Department of Nuclear Medicine and National PET Cyclotron Center, Veterans General Hospital, Taipei (Taiwan); Hwang, Jeng-Jong; Wang, Hsin-Ell [Institute of Radiological Science, National Yang-Ming University, 155, Sec. 2, Lih-Nong Street, 112, Pei-tou, Taipei (Taiwan); Fu, Ying-Kai [Institute of Nuclear Energy, Atomic Energy Council, Taoyuan (Taiwan)


    An experimental cancer gene therapy model was employed to develop a non-invasive imaging procedure using radiolabelled 2'-fluoro-2'-deoxy-5-iodo-1-{beta}-d-arabinofuranosyluracil (FIAU) as an enzyme substrate for monitoring retroviral vector-mediated herpes simplex virus type 1 thymidine kinase gene (HSV1-tk) transgene expression. Iodine-131 labelled FIAU was prepared by a no-carrier-added (n.c.a.) synthesis process and lyophilised to give ''hot kits''. The labelling yield was over 95%, with a radiochemical purity of more than 98%. The stability of [{sup 131}I]FIAU in the form of lyophilised powder (the hot kit) was much better than that in the normal saline solution. The shelf life of the final [{sup 131}I]FIAU hot kit product is as long as 4 weeks. Cellular uptake of [{sup 131}I]FIAU after different periods of storage was investigated in vitro with HSV1-tk-retroviral vector transduced NG4TL4-STK and parental non-transduced NG4TL4 murine sarcoma cell lines over an 8-h incubation period. The NG4TL4-STK cells accumulated more radioactivity than NG4TL4 cells in all conditions, and accumulation increased with time up to 8 h. The kinetic profile of the cellular uptake of n.c.a. [{sup 131}I]FIAU formulated from the lyophilised hot kit or from the stock solution was qualitatively similar. For animal model cancer gene therapy studies, FVB/N mice were inoculated subcutaneously with the HSV1-tk(+) and tk(-) sarcoma cells into the flank to produce tumours. Biodistribution studies showed that tumour/blood ratios were 2, 3.5, 8.2 and 386.8 at 1, 4, 8 and 24 h post injection, respectively, for the HSV1-tk(+) tumours, and 0.5, 0.5, 0.7 and 5.4, respectively, for the HSV1-tk(-) tumours. Radiotracer clearance from blood was completed in 24 h and was bi-exponential. A significant difference in radioactivity accumulation was revealed among the HSV1-tk(+) tumours, the tk(-) tumours and other tissues. At 24 h p.i., higher activity retention was observed

  3. Holter monitoring for the screening of cardiac disease in diabetes mellitus: The non-invasive Holter monitoring observation of new cardiac events in diabetics study. (United States)

    Nakao, Yoko M; Ueshima, Kenji; Nohara, Ryuji; Mizunuma, Yoshimi; Segawa, Ikuo; Tanaka-Mizuno, Sachiko; Yasuno, Shinji; Nakao, Kazuwa; Hiramori, Katsuhiko; Kihara, Yasuki


    We investigated the usefulness of Holter monitoring to detect cardiac disease and predict future cardiovascular risk in asymptomatic diabetic patients. This is a multi-centre, prospective study in 406 asymptomatic diabetic patients. They were categorized into three groups based on findings of Holter monitoring. A total of 377 met inclusion criteria and were classified as low (n = 172), moderate (n = 136) and high risk (n = 69). In total, 86 in moderate and 53 in high risk receive further evaluation. In total, 29 in moderate and 25 in high risk were diagnosed as cardiac disease and 12 required additional treatment, including coronary intervention. Over 1.8 years of mean follow-up, 11 (16.5 per 1000 person-years) experienced cardiovascular events. The cumulative incidence in moderate and high risk was higher than that in low risk (p = 0.029 and p = 0.014, respectively). Our study suggests that Holter monitoring may be a useful screening tool to detect cardiac disease and predict future cardiovascular risk in asymptomatic diabetic patients.

  4. Non-Invasive Methods to Monitor Mechanisms of Resistance to Tyrosine Kinase Inhibitors in Non-Small-Cell Lung Cancer: Where Do We Stand? (United States)

    Ulivi, Paola


    The induction of resistance mechanisms represents an important problem for the targeted therapy of patients with non-small-cell lung cancer (NSCLC). The best-known resistance mechanism induced during treatment with epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors (TKIs) is EGFR T790M mutation for which specific drugs are have been developed. However, other molecular alterations have also been reported as induced resistance mechanisms to EGFR-TKIs. Similarly, there is growing evidence of acquired resistance mechanisms to anaplastic lymphoma kinase (ALK)-TKI treatment. A better understanding of these acquired resistance mechanisms is essential in clinical practice as patients could be treated with specific drugs that are active against the induced alterations. The use of free circulating tumor nucleic acids or circulating tumor cells (CTCs) enables resistance mechanisms to be characterized in a non-invasive manner and reduces the need for tumor re-biopsy. This review discusses the main resistance mechanisms to TKIs and provides a comprehensive overview of innovative strategies to evaluate known resistance mechanisms in free circulating nucleic acids or CTCs and potential future orientations for these non-invasive approaches.

  5. BiSpectral Index (BIS monitoring may detect critical hypotension before automated non-invasive blood pressure (NIBP measurement during general anaesthesia; a case report. [v1; ref status: indexed,

    Directory of Open Access Journals (Sweden)

    Matthew M. J. Smith


    Full Text Available A patient undergoing general anaesthesia for neurosurgery exhibited an unexpected sudden decrease in the BiSpectral Index (BIS value to near-zero. This prompted the detection of profound hypotension using non-invasive blood pressure (NIBP measurement and expedited urgent assessment and treatment, with the patient making a full recovery. Widely regarded as a ‘depth of anaesthesia’ monitor, this case demonstrates the potential extra clinical benefit BIS may have in the detection of critical incidents such as anaphylaxis during general anaesthesia.

  6. Non-invasive imaging using reporter genes altering cellular water permeability (United States)

    Mukherjee, Arnab; Wu, Di; Davis, Hunter C.; Shapiro, Mikhail G.


    Non-invasive imaging of gene expression in live, optically opaque animals is important for multiple applications, including monitoring of genetic circuits and tracking of cell-based therapeutics. Magnetic resonance imaging (MRI) could enable such monitoring with high spatiotemporal resolution. However, existing MRI reporter genes based on metalloproteins or chemical exchange probes are limited by their reliance on metals or relatively low sensitivity. Here we introduce a new class of MRI reporters based on the human water channel aquaporin 1. We show that aquaporin overexpression produces contrast in diffusion-weighted MRI by increasing tissue water diffusivity without affecting viability. Low aquaporin levels or mixed populations comprising as few as 10% aquaporin-expressing cells are sufficient to produce MRI contrast. We characterize this new contrast mechanism through experiments and simulations, and demonstrate its utility in vivo by imaging gene expression in tumours. Our results establish an alternative class of sensitive, metal-free reporter genes for non-invasive imaging.

  7. 监护仪无创血压质量检测的评估与推广%Evaluation and Popularization of Non-invasive Blood Pressure quality Detection for Monitors

    Institute of Scientific and Technical Information of China (English)

    方河炎; 刘曼芳; 郑峰


    目的 对监护仪无创血压示值质量进行评估,(设置输出80/50(60) mmhg、100/65(75) mmhg、120/80(93) mmhg、150/100(116) mmhg及200/150(166) mmHg等5组mmhg参数;设定心率80次/min,评估出各个范围的质量状态.方法使用FLUKE BP Pump2无创血压模拟器内置袖带的质量检测方案,随机抽取南方医院15台HP MP20监护仪和15台GE Dash2500监护仪进行质量检测,采用平均差与标准方差进行分析.结果两种监护仪的实际血压值与设定血压值均存在差异.结论利用血压模拟器对监护仪无创血压质量检测,并结合数理统计学知识分析,此方案具有可行性,可推广到呼吸机流量、输液泵流速及除颤/起搏仪的质量检测与评估.%Objective To evaluate quality of non-invasive blood pressure value of monitors, set the output 80/50 (60), 100/65 (75), 120/80 (93), 150/100 (116) and 200/150 (166) and heart rate 80 beats/min, to assess the quality status of each range. Methods To use the FLUKE BP Pump2 non-invasive blood pressure simulator, the built-in cuff quality detection program, randomly select 15 HP MP20 monitors and 15 GE Dash2500 monitor from Nanfang Hospital to carry out quality detection. The mean difference and standard deviation are analyzed. Results The actual blood pressure value and set blood pressure value of the two monitors are different. Conclusion The program which uses a pressure simulator to test quality of non-invasive blood pressure for monitors, and analysis based on the knowledge of mathematical statistics, can be extended to the ventilator flow, infusion pump flow rate and quality detection and evaluation of defibrillator/pacemaker.

  8. A General Approach to the Non-Invasive Imaging of Transgenes Using Cis-Linked Herpes Simplex Virus Thymidine Kinase

    Directory of Open Access Journals (Sweden)

    Juri G. Tjuvajev


    Full Text Available Non-invasive imaging of gene expression opens new prospects for the study of transgenic animals and the implementation of genetically based therapies in patients. We have sought to establish a general paradigm to enable whole body non-invasive imaging of any transgene. We show that the expression and imaging of HSV1-tk (a marker gene can be used to monitor the expression of the LacZ gene (a second gene under the transcriptional control of a single promoter within a bicistronic unit that includes a type II internal ribosomal entry site. In cells bearing a single copy of the vector, the expression of the two genes is proportional and constant, both in vitro and in vivo. We demonstrate that non-invasive imaging of HSV1-tk gene accurately reflects the topology and activity of the other cis-linked transgene.

  9. Non-invasive neural stimulation (United States)

    Tyler, William J.; Sanguinetti, Joseph L.; Fini, Maria; Hool, Nicholas


    Neurotechnologies for non-invasively interfacing with neural circuits have been evolving from those capable of sensing neural activity to those capable of restoring and enhancing human brain function. Generally referred to as non-invasive neural stimulation (NINS) methods, these neuromodulation approaches rely on electrical, magnetic, photonic, and acoustic or ultrasonic energy to influence nervous system activity, brain function, and behavior. Evidence that has been surmounting for decades shows that advanced neural engineering of NINS technologies will indeed transform the way humans treat diseases, interact with information, communicate, and learn. The physics underlying the ability of various NINS methods to modulate nervous system activity can be quite different from one another depending on the energy modality used as we briefly discuss. For members of commercial and defense industry sectors that have not traditionally engaged in neuroscience research and development, the science, engineering and technology required to advance NINS methods beyond the state-of-the-art presents tremendous opportunities. Within the past few years alone there have been large increases in global investments made by federal agencies, foundations, private investors and multinational corporations to develop advanced applications of NINS technologies. Driven by these efforts NINS methods and devices have recently been introduced to mass markets via the consumer electronics industry. Further, NINS continues to be explored in a growing number of defense applications focused on enhancing human dimensions. The present paper provides a brief introduction to the field of non-invasive neural stimulation by highlighting some of the more common methods in use or under current development today.


    Directory of Open Access Journals (Sweden)

    Madhusudan Dey, Sumita Agarwal and Sumedha Sharma


    Full Text Available ABSTRACT: Aneuploidies are one of the important causes of perinatal morbidity and mortality. Initially screening for aneuploidies started with maternal age risk estimation. Later on, serum testing for biochemical markers and ultrasound markers were added. Women detected to be at high risk for aneuploidies were offered invasive testing. Recently, various methods including non-invasive prenatal testing (NIPT by analysis of cell-free fetal DNA (cffDNA in maternal blood has shown promise for highly accurate detection of common fetal autosomal trisomies. Incorporating these new non-invasive technologies into clinical practice will impact the current prenatal screening paradigm for fetal aneuploidy, in which genetic counselling plays an integral role. The advantage of the technique being elimination of risks such as miscarriage associated with invasive diagnostic procedures. But then this new technique has its own set of technical limitations and ethical issues at present and further research is required before implementation. Data was obtained through a literature search via Pubmed and Google as well as detailed search of our library database.

  11. Non-invasive Evaluation for Epilepsy Surgery (United States)

    IWASAKI, Masaki; JIN, Kazutaka; NAKASATO, Nobukazu; TOMINAGA, Teiji


    Epilepsy surgery is aimed to remove the brain tissues that are indispensable for generating patient’s epileptic seizures. There are two purposes in the pre-operative evaluation: localization of the epileptogenic zone and localization of function. Surgery is planned to remove possible epileptogenic zone while preserving functional area. Since no single diagnostic modality is superior to others in identifying and localizing the epileptogenic zone, multiple non-invasive evaluations are performed to estimate the location of the epileptogenic zone after concordance between evaluations. Essential components of non-invasive pre-surgical evaluation of epilepsy include detailed clinical history, long-term video-electroencephalography monitoring, epilepsy-protocol magnetic resonance imaging (MRI), and neuropsychological testing. However, a significant portion of drug-resistant epilepsy is associated with no or subtle MRI lesions or with ambiguous electro-clinical signs. Additional evaluations including fluoro-deoxy glucose positron emission tomography (FDG-PET), magnetoencephalography and ictal single photon emission computed tomography can play critical roles in planning surgery. FDG-PET should be registered on three-dimensional MRI for better detection of focal cortical dysplasia. All diagnostic tools are complementary to each other in defining the epileptogenic zone, so that it is always important to reassess the data based on other results to pick up or confirm subtle abnormalities. PMID:27627857

  12. Accuracy Evaluation of Non-invasive Blood Pressure Monitor in Blood Pressure Measurement of Patients with Atrial Fibrillation%无创血压监护仪在心房纤颤病人血压测量中的准确性评价

    Institute of Scientific and Technical Information of China (English)

    胡文志; 周海波


    目的:探讨无创血压监护仪在心房纤颤病人血压测量中的准确性。方法对60例心房纤颤病人分别采用无创血压监护仪和汞柱台式血压计进行血压监测,对比其测量结果。结果无创血压监护仪和汞柱台式血压计血压测量结果比较,收缩压无显著差异(P>0.05),而舒张压有显著差异(P<0.05)。结论无创血压监护仪在心房纤颤病人血压测量中的准确性较差,值得临床注意。%Objective To investigate the accuracy of non-invasive blood pressure monitor in blood pressure measurement of patients with atrial fibrillation. Methods The blood pressure of 60 patients with atrial fibrillation was measured by using non-invasive blood pressure monitor and mercury sphygmomanometer, respectively. Then the measuring results of blood pressure of non-invasive blood pressure monitor were compared with those of mercury sphygmomanometer. Results There was no signiifcant difference between the measuring results of blood pressure of non-invasive blood pressure and those of mercury sphygmomanometer on systolic pressure (P>0.05) while there were signiifcant differences between the measuring results of blood pressure of non-invasive blood pressure and those of mercury sphygmomanometer on diastolic pressure (P<0.05). Conclusion It is inaccurate to measure the blood pressure of patients with atrial ifbrillation by using non-invasive blood pressure monitor, which should be paid attention to in clinic.

  13. Application of x-ray sensors for in-line and non-invasive monitoring of mass flow rate in continuous tablet manufacturing. (United States)

    Ganesh, Sudarshan; Troscinski, Rachel; Schmall, Nicholas; Lim, Jongmook; Nagy, Zoltan; Reklaitis, Gintaras


    The progress in continuous downstream manufacturing of oral solid doses demands effective real-time process management, with monitoring at its core. This study evaluates the feasibility of using a commercial sensor to measure the mass flow rate of the particulates, a critical process variable in continuous manufacturing. The sensor independently measures x-ray attenuation and cross-correlation velocimetry of particulate flow in real-time. Steady-state flow rates of blends comprised primarily of acetaminophen and microcrystalline-cellulose are monitored using the sensor, with simultaneous weighing scale measurements, in order to calibrate the sensor and investigate the measurement accuracy. The free-fall flow measurement of the powder and granule blends in a conduit is linearly proportional to the x-ray attenuation. Relative standard deviations (RSD) of ∼3-7% for 1 second monitoring are observed and a measurement error of approximately 5% suggest the usability of the sensor for real-time monitoring. The sensor measurement is robust for operational variations in composition, addition of lubricant or glidant and reuse of material for PAT tool calibration. The measurement RSD depends on particulate flow dynamics at the sensor location. This requires experimental evaluation for a given material at the sensor location, in order to capture the flow dynamics of the particulate stream through the sensor. Copyright © 2017. Published by Elsevier Inc.

  14. A Brief Review of Non-invasive Monitoring of Respiratory Condition for Extubated Patients with or at Risk for Obstructive Sleep Apnea after Surgery. (United States)

    Zhang, Xuezheng; Kassem, Mahmoud Attia Mohamed; Zhou, Ying; Shabsigh, Muhammad; Wang, Quanguang; Xu, Xuzhong


    Obstructive sleep apnea (OSA) is one of the important risk factors contributing to postoperative airway complications. OSA alters the respiratory physiology and increases the sensitivity of muscle tone of the upper airway after surgery to residual anesthetic medication. In addition, the prevalence of OSA was reported to be much higher among surgical patients than the general population. Therefore, appropriate monitoring to detect early respiratory impairment in postoperative extubated patients with possible OSA is challenging. Based on the comprehensive clinical observation, several equipment have been used for monitoring the respiratory conditions of OSA patients after surgery, including the continuous pulse oximetry, capnography, photoplethysmography (PPG), and respiratory volume monitor (RVM). To date, there has been no consensus on the most suitable device as a recommended standard of care. In this review, we describe the advantages and disadvantages of some possible monitoring strategies under certain clinical conditions. According to the literature, the continuous pulse oximetry, with its high sensitivity, is still the most widely used device. It is also cost-effective and convenient to use but has low specificity and does not reflect ventilation. Capnography is the most widely used device for detection of hypoventilation, but it may not provide reliable data for extubated patients. Even normal capnography cannot exclude the existence of hypoxia. PPG shows the state of both ventilation and oxygenation, but its sensitivity needs further improvement. RVM provides real-time detection of hypoventilation, quantitative precise demonstration of respiratory rate, tidal volume, and MV for extubated patients, but no reflection of oxygenation. Altogether, the sole use of any of these devices is not ideal for monitoring of extubated patients with or at risk for OSA after surgery. However, we expect that the combined use of continuous pulse oximetry and RVM may be

  15. A Brief Review of Non-invasive Monitoring of Respiratory Condition for Extubated Patients with or at Risk for Obstructive Sleep Apnea after Surgery (United States)

    Zhang, Xuezheng; Kassem, Mahmoud Attia Mohamed; Zhou, Ying; Shabsigh, Muhammad; Wang, Quanguang; Xu, Xuzhong


    Obstructive sleep apnea (OSA) is one of the important risk factors contributing to postoperative airway complications. OSA alters the respiratory physiology and increases the sensitivity of muscle tone of the upper airway after surgery to residual anesthetic medication. In addition, the prevalence of OSA was reported to be much higher among surgical patients than the general population. Therefore, appropriate monitoring to detect early respiratory impairment in postoperative extubated patients with possible OSA is challenging. Based on the comprehensive clinical observation, several equipment have been used for monitoring the respiratory conditions of OSA patients after surgery, including the continuous pulse oximetry, capnography, photoplethysmography (PPG), and respiratory volume monitor (RVM). To date, there has been no consensus on the most suitable device as a recommended standard of care. In this review, we describe the advantages and disadvantages of some possible monitoring strategies under certain clinical conditions. According to the literature, the continuous pulse oximetry, with its high sensitivity, is still the most widely used device. It is also cost-effective and convenient to use but has low specificity and does not reflect ventilation. Capnography is the most widely used device for detection of hypoventilation, but it may not provide reliable data for extubated patients. Even normal capnography cannot exclude the existence of hypoxia. PPG shows the state of both ventilation and oxygenation, but its sensitivity needs further improvement. RVM provides real-time detection of hypoventilation, quantitative precise demonstration of respiratory rate, tidal volume, and MV for extubated patients, but no reflection of oxygenation. Altogether, the sole use of any of these devices is not ideal for monitoring of extubated patients with or at risk for OSA after surgery. However, we expect that the combined use of continuous pulse oximetry and RVM may be

  16. A non-invasive monitoring on European wildcat (Felis silvestris silvestris Schreber, 1777) in Sicily using hair trapping and camera trapping: does it work?



    An hair trapping protocol, with camera trapping surveillance, was carried out on the south-western side of the Etna, inhabited by an abundant population of the European wildcat. We aimed to collect hair for genetic analysis on the base of a field study conducted in Switzerland, where valerian tincture had been used to attract wildcats to rub again wooden sticks and therefore leaving hairs. We placed 18 hair trapping stations, plus one camera trap per scented wooden stick, 1 km away from each ...

  17. Analysis of 2 654 cases of non invasive prenatal genetic test results%2654例无创产前基因检测结果分析

    Institute of Scientific and Technical Information of China (English)

    冯暄; 闫有圣; 胡秀琴; 郝胜菊; 张庆华; 郑雷


    目的:探讨无创产前基因检测在胎儿染色体非整倍体疾病诊断中的临床应用价值。方法选择在该院行胎儿染色体非整倍体无创基因检测的单胎孕妇2654例,对孕妇外周血中游离DNA 进行高通量测序,对检测结果高风险者进行羊膜腔穿刺及胎儿染色体核型分析,对检测结果阴性者进行电话随访。结果2654例孕妇无创基因检测结果高风险29例,包括21‐三体14例,18‐三体6例,47,XXY 5例,45,XO 2例,常染色体异常1例,母体染色体异常1例。对29例高风险孕妇行羊膜腔穿刺羊水细胞染色体核型分析,结果显示21‐三体11例,18‐三体5例,性染色体异常4例。结论无创产前基因检测在诊断胎儿染色体非整倍体异常有较高的特异性和准确性,有较高的临床应用价值,但存在一定的假阳性,应掌握指征。%Objective To explore the clinical value of noninvasive prenatal genetic testing in diagnosis of fetal chromosomal non‐integral disease .Methods A total of 2 654 pregnant women receiving fetal chromosomal aneuploidy noninvasive prenatal genetic testing in the hospital were selected ,high‐throughput sequencing of free DNA in peripheral blood of pregnant women was conduc‐ted ,amniocentesis and fetal karyotyping were carried out among the high risk pregnant women ,the negative pregnant women were followed up by telephone .Results Among 2 654 pregnant women ,29 high risk pregnant women were found by noninvasive prenatal genetic testing ,including 14 cases with trisomy 21 ,6 cases with trisomy 18 ,5 cases with 47 ,XXY ,2 cases with 45 ,XO ,1 cases with abnormal chromosome ,1 cases with maternal chromosome abnormalities .29 cases of high‐risk pregnant women with amniotic fluid cell chromosome karyotype analysis ,the results show that 11 cases with trisomy 21 ,5 cases with trisomy 18 ,4 cases with sex chro‐mosome abnormalities .Conclusion Noninvasive prenatal genetic

  18. A Novel Ideal Radionuclide Imaging System for Non-invasively Cell Monitoring built on Baculovirus Backbone by Introducing Sleeping Beauty Transposon. (United States)

    Lv, Jing; Pan, Yu; Ju, Huijun; Zhou, Jinxin; Cheng, Dengfeng; Shi, Hongcheng; Zhang, Yifan


    Sleeping Beauty (SB) transposon is an attractive tool in stable transgene integration both in vitro and in vivo; and we introduced SB transposon into recombinant sodium-iodide symporter baculovirus system (Bac-NIS system) to facilitate long-term expression of recombinant sodium-iodide symporter. In our study, two hybrid baculovirus systems (Bac-eGFP-SB-NeoR and Bac-NIS-SB-NeoR) were successfully constructed and used to infect U87 glioma cells. After G418 selection screening, the Bac-eGFP-SB-NeoR-U87 cells remained eGFP positive, at the 18(th) and 196(th) day post transfection (96.03 ± 0.21% and 97.43 ± 0.81%), while eGFP positive population declined significantly at 18 days in cells transfected with unmodified baculovirus construct. NIS gene expression by Bac-NIS-SB-NeoR-U87 cells was also maintained for 28 weeks as determined by radioiodine uptake assay, reverse transcription-polymerase chain reaction (RT-PCR) and Western Blot (WB) assay. When transplanted in mice, Bac-NIS-SB-NeoR-U87 cells also expressed NIS gene stably as monitored by SPECT imaging for 43 days until the tumor-bearing mice were sacrificed. Herein, we showed that incorporation of SB in Bac-NIS system (hybrid Bac-NIS-SB-NeoR) can achieve a long-term transgene expression and can improve radionuclide imaging in cell tracking and monitoring in vivo.

  19. Establishing baseline levels of trace elements in blood and skin of bottlenose dolphins in Sarasota Bay, Florida: Implications for non-invasive monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Bryan, Colleen E. [National Institute of Standards and Technology, Hollings Marine Laboratory, 331 Fort Johnson Road, Charleston, South Carolina 29412 (United States); College of Charleston, Grice Marine Laboratory, 205 Fort Johnson Road, Charleston, South Carolina 29412 (United States)], E-mail:; Christopher, Steven J. [National Institute of Standards and Technology, Hollings Marine Laboratory, 331 Fort Johnson Road, Charleston, South Carolina 29412 (United States); Balmer, Brian C.; Wells, Randall S. [Chicago Zoological Society c/o Mote Marine Laboratory, 1600 Ken Thompson Parkway, Sarasota, Florida 34236 (United States)


    Several major unusual mortality events occurring in recent years have increased the level of concern for the health of bottlenose dolphin populations along the United States Atlantic and Gulf of Mexico coasts. Trace element concentrations were examined in a population of free-ranging dolphins in Sarasota Bay, Florida, in order to develop a benchmark for future comparisons within and between populations. Whole blood (n = 51) and skin (n = 40) samples were collected through capture and release health assessment events during 2002-2004. Samples were analyzed for Al, V, Cr, Mn, Cu, Zn, As, Se, Rb, Sr, Mo, Cd, and Pb by inductively coupled plasma mass spectrometry (ICPMS) and Hg via atomic fluorescence spectrometry (AFS). Trace element concentrations (wet mass) in skin were 2 to 45 times greater than blood, except Cu was approximately 1.5 times higher in blood. Statistically strong correlations (p < 0.05) were found for V, As, Se, Rb, Sr, and Hg between blood and skin demonstrating that these tissues can be used as effective non-lethal monitoring tools. The strongest correlation was established for Hg (r = 0.9689) and concentrations in both blood and skin were above the threshold at which detrimental effects are observed in other vertebrate species. Female dolphins had significantly greater Hg concentrations in blood and skin and Pb concentrations in skin, relative to males. Calves exhibited significantly lower V, As, and Hg concentrations in blood and V and Hg concentrations in skin, relative to other age classes. Rubidium and Cu concentrations in skin were greatest in subadults and calves, respectively. In blood, V, Zn, and As concentrations were significantly greater in winter, relative to summer, and the opposite trend was observed for Rb and Sr concentrations. In skin, Cu and Zn concentrations were significantly greater in winter, relative to summer, and the opposite trend was observed for Mn, Rb, Cd, and Pb concentrations. The baseline concentrations and trends

  20. Investigating the potential use of environmental DNA (eDNA for genetic monitoring of marine mammals.

    Directory of Open Access Journals (Sweden)

    Andrew D Foote

    Full Text Available The exploitation of non-invasive samples has been widely used in genetic monitoring of terrestrial species. In aquatic ecosystems, non-invasive samples such as feces, shed hair or skin, are less accessible. However, the use of environmental DNA (eDNA has recently been shown to be an effective tool for genetic monitoring of species presence in freshwater ecosystems. Detecting species in the marine environment using eDNA potentially offers a greater challenge due to the greater dilution, amount of mixing and salinity compared with most freshwater ecosystems. To determine the potential use of eDNA for genetic monitoring we used specific primers that amplify short mitochondrial DNA sequences to detect the presence of a marine mammal, the harbor porpoise, Phocoena phocoena, in a controlled environment and in natural marine locations. The reliability of the genetic detections was investigated by comparing with detections of harbor porpoise echolocation clicks by static acoustic monitoring devices. While we were able to consistently genetically detect the target species under controlled conditions, the results from natural locations were less consistent and detection by eDNA was less successful than acoustic detections. However, at one site we detected long-finned pilot whale, Globicephala melas, a species rarely sighted in the Baltic. Therefore, with optimization aimed towards processing larger volumes of seawater this method has the potential to compliment current visual and acoustic methods of species detection of marine mammals.

  1. Non-invasive imaging to monitor lupus nephritis and neuropsychiatric systemic lupus erythematosus [v1; ref status: indexed,

    Directory of Open Access Journals (Sweden)

    Joshua Thurman


    Full Text Available Systemic lupus erythematosus (SLE is an autoimmune disease that can affect multiple different organs, including the kidneys and central nervous system (CNS. Conventional radiological examinations in SLE patients include volumetric/ anatomical computed tomography (CT, magnetic resonance imaging (MRI and ultrasound (US. The utility of these modalities is limited, however, due to the complexity of the disease. Furthermore, CT and MRI contrast agents are contraindicated in patients with renal impairment. Various radiologic methods are currently being developed to improve disease characterization in patients with SLE beyond simple anatomical endpoints. Physiological non-contrast MRI protocols have been developed to assess tissue oxygenation, glomerular filtration, renal perfusion, interstitial diffusion, and inflammation-driven fibrosis in lupus nephritis (LN patients. For neurological symptoms, vessel size imaging (VSI, an MRI approach utilizing T2-relaxing iron oxide nanoparticles has shown promise as a diagnostic tool. Molecular imaging probes (mostly for MRI and nuclear medicine imaging have also been developed for diagnosing SLE with high sensitivity, and for monitoring disease activity. This paper reviews the challenges in evaluating disease activity in patients with LN and neuropsychiatric systemic lupus erythematosus (NPSLE. We describe novel MRI and positron-emission tomography (PET molecular imaging protocols using targeted iron oxide nanoparticles and radioactive ligands, respectively, for detection of SLE-associated inflammation.

  2. First investigations to refine video-based IR thermography as a non-invasive tool to monitor the body temperature of calves. (United States)

    Hoffmann, G; Schmidt, M; Ammon, C


    In this study, a video-based infrared camera (IRC) was investigated as a tool to monitor the body temperature of calves. Body surface temperatures were measured contactless using videos from an IRC fixed at a certain location in the calf feeder. The body surface temperatures were analysed retrospectively at three larger areas: the head area (in front of the forehead), the body area (behind forehead) and the area of the entire animal. The rectal temperature served as a reference temperature and was measured with a digital thermometer at the corresponding time point. A total of nine calves (Holstein-Friesians, 8 to 35 weeks old) were examined. The average maximum temperatures of the area of the entire animal (mean±SD: 37.66±0.90°C) and the head area (37.64±0.86°C) were always higher than that of the body area (36.75±1.06°C). The temperatures of the head area and of the entire animal were very similar. However, the maximum temperatures as measured using IRC increased with an increase in calf rectal temperature. The maximum temperatures of each video picture for the entire visible body area of the calves appeared to be sufficient to measure the superficial body temperature. The advantage of the video-based IRC over conventional IR single-picture cameras is that more than one picture per animal can be analysed in a short period of time. This technique provides more data for analysis. Thus, this system shows potential as an indicator for continuous temperature measurements in calves.

  3. Continuous blood pressure monitoring via non-invasive radial artery applanation tonometry and invasive arterial catheter demonstrates good agreement in patients undergoing colon carcinoma surgery. (United States)

    Sun, Jing; Chen, Hanjian; Zheng, Jun; Mao, Bin; Zhu, Shengmei; Feng, Jingyi


    Radial artery applanation tonometry (RAAT) has been developed and utilized for continuous arterial pressure monitoring. However, evidence is lacking to clinically verify the RAAT technology and identify appropriate patient groups before routine clinical use. This study aims to evaluate the RAAT technology by comparing systolic blood pressure (SBP), mean blood pressure (MBP) and diastolic blood pressure (DBP) values in patients undergoing colon carcinoma surgery. Blood Pressure (BP) values obtained via RAAT (TL-300, Tensys Medical Inc., San Diego, CA, USA) and conventional arterial catheterization from 30 colon carcinoma surgical patients were collected and compared via Bland-Atman method, linear regression and 4-quadrant plot concordance analysis. For SBPs, MBPs and DBPs, means of the differences (±standard deviation; 95% limits of agreement) were -0.9 (±7.6; -15.7 to 13.9) mmHg, 3.1 (±6.5; -9.6 to 15.8) mmHg and 4.3 (±7.4; -10.3 to 18.8) mmHg, respectively. Linear regression coefficients of determination were 0.8706 for SBPs, 0.8353 for MBPs and 0.6858 for DBPs. Four-quadrant concordance correlation coefficients were 0.8740, 0.8522 and 0.7108 for SBPs, MBPs and DBPs, respectively. A highly selected patient collective undergoing colon carcinoma surgery was studied. BP measurements obtained via the TL-300 had clinically acceptable agreement with that acquired invasively using an arterial catheter. For use in clinical routine, it is necessary to take measures for improvement regarding movement artifacts and dilution of noise. A large sample size of patients under various conditions is also needed to further evaluate the RAAT technology before clinically routine use.

  4. Engraftment and bone mass are enhanced by PTHrP 1-34 in ectopically transplanted vertebrae (vossicle model) and can be non-invasively monitored with bioluminescence and fluorescence imaging. (United States)

    Hildreth, Blake Eason; Williams, Michelle M; Dembek, Katarzyna A; Hernon, Krista M; Rosol, Thomas J; Toribio, Ramiro E


    Evidence exists that parathyroid hormone-related protein (PTHrP) 1-34 may be more anabolic in bone than parathyroid hormone 1-34. While optical imaging is growing in popularity, scant information exists on the relationships between traditional bone imaging and histology and bioluminescence (BLI) and fluorescence (FLI) imaging. We aimed to evaluate the effects of PTHrP 1-34 on bone mass and determine if relationships existed between radiographic and histologic findings in bone and BLI and FLI indices. Vertebrae (vossicles) from mice coexpressing luciferase and green fluorescent protein were implanted subcutaneously into allogenic nude mice. Transplant recipients were treated daily with saline or PTHrP 1-34 for 4 weeks. BLI, FLI, radiography, histology, and µCT of the vossicles were performed over time. PTHrP 1-34 increased bioluminescence the most after 2 weeks, fluorescence at all time points, and decreased the time to peak bioluminescence at 4 weeks (P ≤ 0.027), the latter of which suggesting enhanced engraftment. PTHrP 1-34 maximized vertebral body volume at 4 weeks (P bioluminescence (r = 0.595; P = 0.019); (2) total fluorescence (r = 0.474; P = 0.074); and (3) max fluorescence (r = 0.587; P = 0.021). In conclusion, PTHrP 1-34 enhances engraftment and bone mass, which can be monitored non-invasively by BLI and FLI.

  5. A Non-Invasive Methodology for the Urban Monitoring Based on the Combined Use of InSAR, GBSAR and RAR Sensors: From the Surface Deformations to Single-Building Dynamical Behaviour (United States)

    Montuori, Antonio; Luzi, Guido; Bignami, Christian; Gaudiosi, Iolanda; Stramondo, Salvatore; Crosetto, Michele; Buongiorno, Fabrizia


    In this work, a non-invasive multi-spatial and multi- temporal methodology to monitor urban areas and historic buildings is proposed to characterize environmental and building vulnerability in the context of a seismic/hydrogeological hazard prone area. The proposed approach is based on the combined use of Interferometric Synthetic Aperture Radar (SAR) and ground-based Real Aperture Radar (RAR) sensors. In detail, space-borne X-band COSMO-SkyMed SAR measurements are processed through a multi-temporal DInSAR technique to provide long-term (annual) mean surface displacement velocity maps at regional scale (tens km2). Ku-band Ground-Based SAR (GBSAR) IBIS-L measurement campaigns are performed to retrieve the short-term (monthly) surface displacement map at local scale (hundreds m2) using multi-temporal DInSAR algorithms. Finally, Ku-band GBRAR IBIS-S measurements are performed to estimate the vibration displacements and the natural oscillation frequencies of structures. The proposed methodology is tested and discussed for the historic center of Cosenza town and the ancient structure of Saint Augustine compound.

  6. Validation of non-invasive haemodynamic methods in patients with liver disease

    DEFF Research Database (Denmark)

    Brittain, Jane M; Busk, Troels M; Møller, Søren


    , SBP, DBP and HR were measured non-invasively and by femoral artery catheterization. CO was measured non-invasively and by indicator dilution technique. The non-invasive pressure monitoring was considered acceptable with a bias (accuracy) and a SD (precision) not exceeding 5 and 8 mmHg, respectively......Patients with advanced cirrhosis often present a hyperdynamic circulation characterized by a decrease in systolic and diastolic blood pressure (SBP and DBP), and an increase in heart rate (HR) and cardiac output (CO). Accurate assessment of the altered circulation can be performed invasively......; however, due to the disadvantages of this approach, non-invasive methods are warranted. The purpose of this study was to compare continuous non-invasive measurements of haemodynamic variables by the Finometer and the Task Force Monitor with simultaneous invasive measurements. In 25 patients with cirrhosis...

  7. 连续无创血压监测系统在全身麻醉中的应用%Efficacy of a continuous non -invasive arterial pressure monitor system during general anesthesia

    Institute of Scientific and Technical Information of China (English)

    李晶; 周婷; 田丽平; 徐世元; 张鸿飞


    目的:评价TL_300 tensymeter系统(TL_300)所测的连续无创血压(NIBP)在全身麻醉中的有效性及安全性。方法选择全身麻醉下行择期仰卧位手术的成年患者20例,ASAⅠ~Ⅲ级。麻醉诱导后无菌操作下左侧桡动脉穿刺置入动脉导管进行连续有创血压( IBP)监测,右侧手臂连接TL_300进行NIBP监测,稳定5 min后,同时测量IBP和NIBP,间隔3 min分别记录IBP监测及相应时点NIBP监测的收缩压、舒张压和平均压。术后监测与两种血压监测相关的并发症如肢体缺血、坏死、感觉异常。结果 NIBP监测与IBP监测所测收缩压、舒张压和平均压差值分别为(-0.086±9.59)、(3.203±7.11)、(2.60±6.76) mmHg,两种血压监测方法的收缩压、舒张压和平均压的决定系数分别为0.711、0.565和0.729,P值均小于0.001。所有患者均未发生肢体缺血、坏死、感觉异常。结论与IBP监测相比,NIBP监测在全身麻醉成年手术患者中,可提供连续、无创、准确、安全的血压监测。%Objective To investigate the accuracy, precision and safety of continuous non-invasive blood pres-sure( NIBP) monitoring delivered by TL_300 tensymeter system.Methods Twenty ASA classification of Ⅰ-Ⅲadult patients undergoing elective surgeries in a supine position under general anesthesia were included in the study.A catheter was placed into the left radial artery under local anesthesia before induction, with the TL_300 tensymeter system connected to the right arm.Continuous invasive blood pressure ( IBP) monitoring was derived from the invasive artery catheter while the NIBP was from TL_300 tensymeter system.Systolic, diastolic and mean arterial pressure were recorded every 3 mi-nutes simultaneously for both IBP and NIBP from 5 min after monitoring to the end of surgery.Complications associated with both pressure monitors including limb ischemia, necrosis and paresthesia were recorded

  8. Non-invasive imaging of human embryonic stem cells. (United States)

    Hong, Hao; Yang, Yunan; Zhang, Yin; Cai, Weibo


    Human embryonic stem cells (hESCs) hold tremendous therapeutic potential in a variety of diseases. Over the last decade, non-invasive imaging techniques have proven to be of great value in tracking transplanted hESCs. This review article will briefly summarize the various techniques used for non-invasive imaging of hESCs, which include magnetic resonance imaging (MRI), bioluminescence imaging (BLI), fluorescence, single-photon emission computed tomography (SPECT), positron emission tomography (PET), and multimodality approaches. Although the focus of this review article is primarily on hESCs, the labeling/tracking strategies described here can be readily applied to other (stem) cell types as well. Non-invasive imaging can provide convenient means to monitor hESC survival, proliferation, function, as well as overgrowth (such as teratoma formation), which could not be readily investigated previously. The requirement for hESC tracking techniques depends on the clinical scenario and each imaging technique will have its own niche in preclinical/clinical research. Continued evolvement of non-invasive imaging techniques will undoubtedly contribute to significant advances in understanding stem cell biology and mechanisms of action.

  9. Invasive and non-invasive methods for cardiac output measurement

    Directory of Open Access Journals (Sweden)

    Lavdaniti M.


    Full Text Available The hemodynamic status monitoring of high-risk surgical patients and critically ill patients inIntensive Care Units is one of the main objectives of their therapeutic management. Cardiac output is one of the mostimportant parameters for cardiac function monitoring, providing an estimate of whole body perfusion oxygen deliveryand allowing for an understanding of the causes of high blood pressure. The purpose of the present review is thedescription of cardiac output measurement methods as presented in the international literature. The articles documentthat there are many methods of monitoring the hemodynamic status of patients, both invasive and non-invasive, themost popular of which is thermodilution. The invasive methods are the Fick method and thermodilution, whereasthe non-invasive methods are oeshophaegeal Doppler, transoesophageal echocardiography, lithium dilution, pulsecontour, partial CO2 rebreathing and thoracic electrical bioimpedance. All of them have their advantages and disadvantages,but thermodilution is the golden standard for critical patients, although it does entail many risks. The idealsystem for cardiac output monitoring would be non-invasive, easy to use, reliable and compatible in patients. A numberof research studies have been carried out in clinical care settings, by nurses as well as other health professionals, for thepurpose of finding a method of measurement that would have the least disadvantages. Nevertheless, the thermodilutiontechnique remains the most common approach in use today.

  10. Non-invasive diagnostic methods in dentistry (United States)

    Todea, Carmen


    The paper, will present the most important non-invasive methods for diagnostic, in different fields of dentistry. Moreover, the laser-based methods will be emphasis. In orthodontics, 3D laser scanners are increasingly being used to establish database for normative population and cross-sectional growth changes but also to asses clinical outcomes in orthognatic surgical and non-surgical treatments. In prevention the main methods for diagnostic of demineralization and caries detection in early stages are represented by laser fluorescence - Quantitative Light Florescence (QLF); DiagnoDent-system-655nm; FOTI-Fiberoptic transillumination; DIFOTI-Digital Imaging Fiberoptic transillumination; and Optical Coherence Tomography (OCT). In odontology, Laser Doppler Flowmetry (LDF) is a noninvasive real time method used for determining the tooth vitality by monitoring the pulp microcirculation in traumatized teeth, fractured teeth, and teeth undergoing different conservative treatments. In periodontology, recently study shows the ability of LDF to evaluate the health of gingival tissue in periodontal tissue diseases but also after different periodontal treatments.

  11. Non-invasive sensing for food reassurance. (United States)

    Xiaobo, Zou; Xiaowei, Huang; Povey, Malcolm


    Consumers and governments are increasingly interested in the safety, authenticity and quality of food commodities. This has driven attention towards non-invasive sensing techniques used for rapid analyzing these commodities. This paper provides an overview of the state of the art in, and available alternatives for, food assurance based on non-invasive sensing techniques. The main food quality traits of interest using non-invasive sensing techniques are sensory characteristics, chemical composition, physicochemical properties, health-protecting properties, nutritional characteristics and safety. A wide range of non-invasive sensing techniques, from optical, acoustical, electrical, to nuclear magnetic, X-ray, biosensor, microwave and terahertz, are organized according to physical principle. Some of these techniques are now in a period of transition between experimental and applied utilization and several sensors and instruments are reviewed. With continued innovation and attention to key challenges, such non-invasive sensors and biosensors are expected to open up new exciting avenues in the field of portable and wearable wireless sensing devices and connecting with mobile networks, thus finding considerable use in a wide range of food assurance applications. The need for an appropriate regulatory framework is emphasized which acts to exclude unwanted components in foods and includes needed components, with sensors as part of a reassurance framework supporting regulation and food chain management. The integration of these sensor modalities into a single technological and commercial platform offers an opportunity for a paradigm shift in food reassurance.

  12. Non-invasive monitoring of physiological stress in the Western lowland gorilla (Gorilla gorilla gorilla): validation of a fecal glucocorticoid assay and methods for practical application in the field. (United States)

    Shutt, Kathryn; Setchell, Joanna M; Heistermann, Michael


    variation in FGCMs in samples from wild gorillas. Our study highlights the importance of thorough biological and immunological validation of FGCM assays, and presents validated, practical methods for the application of non-invasive adrenocortical monitoring techniques to field conservation contexts where it is crucially needed.

  13. Cell-baswd non-invasive prenatal testing

    DEFF Research Database (Denmark)

    Uldbjerg, Niels; Singh, Ripudaman; Christensen, Rikke

    CONTROL ID: 2520273 ABSTRACT FINAL ID: OC06.03 TITLE: Cell based Non-invasive Prenatal Testing (NIPT) AUTHORS (FIRST NAME, LAST NAME): Niels Uldbjerg2, Ripudaman Singh4, Rikke Christensen3, Palle Schelde4, Ida Vogel1, Else Marie Vestergaard3, Lotte Hatt4, Steen Kølvrå4 INSTITUTIONS (ALL): 1....... Department of Clinical Genetics, Aarhus University Hospital, Aarhus N, none, Denmark. 2. Obstetrics and Gynecology, Aarhus University Hospital Skejby, Aarhus, Denmark. 3. Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark. 4. Arcedi Biotech Aps, Aarhus, Denmark. ABSTRACT BODY: Objectives: NIPT...

  14. Towards a smart non-invasive fluid loss measurement system. (United States)

    Suryadevara, N K; Mukhopadhyay, S C; Barrack, L


    In this article, a smart wireless sensing non-invasive system for estimating the amount of fluid loss, a person experiences while physical activity is presented. The system measures three external body parameters, Heart Rate, Galvanic Skin Response (GSR, or skin conductance), and Skin Temperature. These three parameters are entered into an empirically derived formula along with the user's body mass index, and estimation for the amount of fluid lost is determined. The core benefit of the developed system is the affluence usage in combining with smart home monitoring systems to care elderly people in ambient assisted living environments as well in automobiles to monitor the body parameters of a motorist.

  15. Applicability of non-invasively collected matrices for human biomonitoring

    Directory of Open Access Journals (Sweden)

    Nickmilder Marc


    Full Text Available Abstract With its inclusion under Action 3 in the Environment and Health Action Plan 2004–2010 of the European Commission, human biomonitoring is currently receiving an increasing amount of attention from the scientific community as a tool to better quantify human exposure to, and health effects of, environmental stressors. Despite the policy support, however, there are still several issues that restrict the routine application of human biomonitoring data in environmental health impact assessment. One of the main issues is the obvious need to routinely collect human samples for large-scale surveys. Particularly the collection of invasive samples from susceptible populations may suffer from ethical and practical limitations. Children, pregnant women, elderly, or chronically-ill people are among those that would benefit the most from non-invasive, repeated or routine sampling. Therefore, the use of non-invasively collected matrices for human biomonitoring should be promoted as an ethically appropriate, cost-efficient and toxicologically relevant alternative for many biomarkers that are currently determined in invasively collected matrices. This review illustrates that several non-invasively collected matrices are widely used that can be an valuable addition to, or alternative for, invasively collected matrices such as peripheral blood sampling. Moreover, a well-informed choice of matrix can provide an added value for human biomonitoring, as different non-invasively collected matrices can offer opportunities to study additional aspects of exposure to and effects from environmental contaminants, such as repeated sampling, historical overview of exposure, mother-child transfer of substances, or monitoring of substances with short biological half-lives.

  16. Non-invasive investigation in patients with inflammatory joint disease

    Institute of Scientific and Technical Information of China (English)

    Elisabetta Dal Pont; Renata DТncá; Antonino Caruso; Giacomo Carlo Sturniolo


    Gut inflammation can occur in 30%-60% of patients with spondyloarthropathies. However, the presence of such gut inflammation is underestimated, only 27% of patients with histological evidence of gut inflammation have intestinal symptoms, but subclinical gut inflammation is documented in two-thirds of patients with inflammatory joint disease. There are common genetic and immunological mechanisms behind concomitant inflammation in the joints and intestinal tract. A number of blood tests, e.g. erythrocyte sedimentation rate, orosomucoid, C-reactive protein, and white cell and platelet counts, are probably the most commonly used laboratory markers of inflammatory disease, however, these tests are difficult to interpret in arthropathies associated with gut inflammation, since any increases in their blood levels might be attributable to either the joint disease or to gut inflammation. Consequently, it would be useful to have a marker capable of separately identifying gut inflammation. Fecal proteins, which are indirect markers of neutrophil migration in the gut wall, and intestinal permeability, seem to be ideal for monitoring intestinal inflammation:they are easy to measure non-invasively and are specific for intestinal disease in the absence of gastrointestinal infections.Alongside the traditional markers for characterizing intestinal inflammation, there are also antibodies, in all probability generated by the immune response to microbial antigens and auto-antigens, which have proved useful in establishing the diagnosis and assessing the severity of the condition, as well as the prognosis and the risk of complications. In short, noninvasive investigations on the gut in patients with rheumatic disease may be useful in clinical practice for a preliminary assessment of patients with suspected intestinal disease.

  17. Non-invasive in vivo imaging of calcium signaling in mice.

    Directory of Open Access Journals (Sweden)

    Kelly L Rogers

    Full Text Available Rapid and transient elevations of Ca(2+ within cellular microdomains play a critical role in the regulation of many signal transduction pathways. Described here is a genetic approach for non-invasive detection of localized Ca(2+ concentration ([Ca(2+] rises in live animals using bioluminescence imaging (BLI. Transgenic mice conditionally expressing the Ca(2+-sensitive bioluminescent reporter GFP-aequorin targeted to the mitochondrial matrix were studied in several experimental paradigms. Rapid [Ca(2+] rises inside the mitochondrial matrix could be readily detected during single-twitch muscle contractions. Whole body patterns of [Ca(2+] were monitored in freely moving mice and during epileptic seizures. Furthermore, variations in mitochondrial [Ca(2+] correlated to behavioral components of the sleep/wake cycle were observed during prolonged whole body recordings of newborn mice. This non-invasive imaging technique opens new avenues for the analysis of Ca(2+ signaling whenever whole body information in freely moving animals is desired, in particular during behavioral and developmental studies.

  18. [Non-invasive assessment of liver fibrosis]. (United States)

    Cohen-Ezra, Oranit; Ben-Ari, Ziv


    Chronic liver diseases represent a major public health problem, accounting for significant morbidity and mortality worldwide. Prognosis and management of chronic liver diseases depend on the amount of liver fibrosis. Liver biopsy has long remained the gold standard for assessment of liver fibrosis. Liver biopsy is an invasive procedure with associated morbidity, it is rarely the cause for mortality, and has a few limitations. During the past two decades, in an attempt to overcome the limitations of liver biopsy, non-invasive methods for the evaluation of liver fibrosis have been developed, mainly in the field of viral hepatitis. This review will focus on different methods available for non-invasive evaluation of liver fibrosis including a biological approach which quantifies serum levels of biomarkers of fibrosis and physical techniques which measure liver stiffness by transient elastography, ultrasound or magnetic resonance based elastography, their accuracy, advantages and disadvantages.

  19. Non-invasive Mapping of Cardiac Arrhythmias. (United States)

    Shah, Ashok; Hocini, Meleze; Haissaguerre, Michel; Jaïs, Pierre


    Since more than 100 years, 12-lead electrocardiography (ECG) is the standard-of-care tool, which involves measuring electrical potentials from limited sites on the body surface to diagnose cardiac disorder, its possible mechanism, and the likely site of origin. Several decades of research has led to the development of a 252-lead ECG and computed tomography (CT) scan-based three-dimensional electro-imaging modality to non-invasively map abnormal cardiac rhythms including fibrillation. These maps provide guidance towards ablative therapy and thereby help advance the management of complex heart rhythm disorders. Here, we describe the clinical experience obtained using non-invasive technique in mapping the electrical disorder and guide the catheter ablation of atrial arrhythmias (premature atrial beat, atrial tachycardia, atrial fibrillation), ventricular arrhythmias (premature ventricular beats), and ventricular pre-excitation (Wolff-Parkinson-White syndrome).

  20. Novel non invasive diagnostic strategies in bladder cancer. (United States)

    Truta, Anamaria; Popon, Tudor Adrian Hodor; Saraci, George; Ghervan, Liviu; Pop, Ioan Victor


    Bladder cancer is one of the most commonly diagnosed malignancies worldwide, derived from the urothelium of the urinary bladder and defined by long asymptomatic and atypical clinical picture. Its complex etiopathogenesis is dependent on numerous risk factors that can be divided into three distinct categories: genetic and molecular abnormalities, chemical or environmental exposure and previous genitourinary disorders and family history of different malignancies. Various genetic polymorphisms and microRNA might represent useful diagnostic or prognostic biomarkers. Genetic and molecular abnormalities - risk factors are represented by miRNA or genetic polymorphisms proved to be part of bladder carcinogenesis such as: genetic mutations of oncogenes TP53, Ras, Rb1 or p21 oncoproteins, cyclin D or genetic polymorhisms of XPD,ERCC1, CYP1B1, NQO1C609T, MDM2SNP309, CHEK2, ERCC6, NRF2, NQO1Pro187Ser polymorphism and microRNA (miR-143, -145, -222, -210, -10b, 576-3p). The aim of our article is to highlight the most recent acquisitions via molecular biomarkers (miRNAs and genetic polymorphisms) involved in bladder cancer in order to provide early diagnosis, precise therapy according to the molecular profile of bladder tumors, as well as to improve clinical outcome, survival rates and life quality of oncological patients. These molecular biomarkers play a key role in bladder carcinogenesis, clinical evolution, prognosis and therapeutic response and explain the molecular mechanisms involved in bladder carcinogenesis; they can also be selected as therapeutic targets in developing novel therapeutic strategies in bladder malignancies. Moreover, the purpose in defining these molecular non invasive biomarkers is also to develop non invasive screening programs in bladder malignancies with the result of decreasing bladder cancer incidence in risk population.

  1. Non-invasive quantification of brain tumor-induced astrogliosis

    Directory of Open Access Journals (Sweden)

    Baird Andrew


    Full Text Available Abstract Background CNS injury including stroke, infection, and tumor growth lead to astrogliosis, a process that involves upregulation of glial fibrillary acidic protein (GFAP in astrocytes. However, the kinetics of astrogliosis that is related to these insults (i.e. tumor is largely unknown. Results Using transgenic mice expressing firefly luciferase under the regulation of the GFAP promoter (GFAP-luc, we developed a model system to monitor astrogliosis upon tumor growth in a rapid, non-invasive manner. A biphasic induction of astrogliosis was observed in our xenograft model in which an early phase of activation of GFAP was associated with inflammatory response followed by a secondary, long-term upregulation of GFAP. These animals reveal GFAP activation with kinetics that is in parallel with tumor growth. Furthermore, a strong correlation between astrogliosis and tumor size was observed. Conclusions Our results suggest that non-invasive, quantitative bioluminescent imaging using GFAP-luc reporter animal is a useful tool to monitor temporal-spatial kinetics of host-mediated astrogliosis that is associated with glioma and metastatic brain tumor growth.

  2. Non-invasive Prenatal Testing: Technologies, Clinical Assays and Implementation Strategies for Women's Healthcare Practitioners. (United States)

    Swanson, Amy; Sehnert, Amy J; Bhatt, Sucheta


    The field of prenatal genetic testing has exploded with new non-invasive technologies and test options in the past several years. It is challenging for women's healthcare providers to keep up with the multitude of publications and provide patients with the most accurate and up-to-date information possible regarding prenatal testing. In this article, we examine the sequencing technologies that provide the framework for non-invasive prenatal testing (NIPT) and review the major North American NIPT clinical validation studies published in 2011 and 2012. This paper also compares and contrasts the commercially available non-invasive prenatal tests in the United States, discusses clinical implementation recommendations from professional societies and highlights considerations for genetic counseling.

  3. Structural health monitoring using genetic fuzzy systems

    CERN Document Server

    Pawar, Prashant M


    The high profile of structural health monitoring (SHM) will add urgency to this detailed treatment of intelligent SHM development and implementation via the evolutionary system, which uses a genetic algorithm to automate the development of the fuzzy system.

  4. Physician liability and non-invasive prenatal testing. (United States)

    Toews, Maeghan; Caulfield, Timothy


    Although non-invasive prenatal testing (NIPT) marks a notable development in the field of prenatal genetic testing, there are some physician liability considerations raised by this technology. As NIPT is still emerging as the standard of care and is just starting to receive provincial funding, the question arises of whether physicians are obligated to disclose the availability of NIPT to eligible patients as part of the physician-patient discussion about prenatal screening and diagnosis. If NIPT is discussed with patients, it is important to disclose the limitations of this technology with respect to its accuracy and the number of disorders that it can detect when compared with invasive diagnostic options. A failure to sufficiently disclose these limitations could leave patients with false assurances about the health of their fetuses and could raise informed consent and liability issues, particularly if a child is born with a disability as a result.

  5. Non-invasive distress evaluation in preterm newborn infants. (United States)

    Manfredi, C; Bocchi, L; Orlandi, S; Calisti, M; Spaccaterra, L; Donzelli, G P


    With the increased survival of very preterm infants, there is a growing concern for their developmental outcomes. Infant cry characteristics reflect the development and possibly the integrity of the central nervous system. In this paper, relationships between fundamental frequency (F(0)) and vocal tract resonance frequencies (F(1)-F(3)) are investigated for a set of preterm newborns, by means of a multi-purpose voice analysis tool (BioVoice), characterised by high-resolution and tracking capabilities. Also, first results about possible distress occurring during cry in preterm newborn infants, as related to the decrease of central blood oxygenation, are presented. To this aim, a recording system (Newborn Recorder) has been developed, that allows synchronised, non-invasive monitoring of blood oxygenation and audio recordings of newborn infant's cry. The method has been applied to preterm newborns at the Intensive Care Unit, A.Meyer Children Hospital, Firenze, Italy.

  6. Non-Invasive in vivo Imaging in Small Animal Research

    Directory of Open Access Journals (Sweden)

    V. Koo


    Full Text Available Non-invasive real time in vivo molecular imaging in small animal models has become the essential bridge between in vitro data and their translation into clinical applications. The tremendous development and technological progress, such as tumour modelling, monitoring of tumour growth and detection of metastasis, has facilitated translational drug development. This has added to our knowledge on carcinogenesis. The modalities that are commonly used include Magnetic Resonance Imaging (MRI, Computed Tomography (CT, Positron Emission Tomography (PET, bioluminescence imaging, fluorescence imaging and multi-modality imaging systems. The ability to obtain multiple images longitudinally provides reliable information whilst reducing animal numbers. As yet there is no one modality that is ideal for all experimental studies. This review outlines the instrumentation available together with corresponding applications reported in the literature with particular emphasis on cancer research. Advantages and limitations to current imaging technology are discussed and the issues concerning small animal care during imaging are highlighted.

  7. Non-invasive continuous core temperature measurement by zero heat flux

    NARCIS (Netherlands)

    Teunissen, L.P.J.; Klewer, J.; Haan, A. de; Koning, J.J. de; Daanen, H.A.M.


    Reliable continuous core temperature measurement is of major importance for monitoring patients. The zero heat flux method (ZHF) can potentially fulfil the requirements of non-invasiveness, reliability and short delay time that current measurement methods lack. The purpose of this study was to deter

  8. Non invasive sensing technologies for cultural heritage management and fruition (United States)

    Soldovieri, Francesco; Masini, Nicola


    The relevance of the information produced by science and technology for the knowledge of the cultural heritage depends on the quality of the feedback and, consequently, on the "cultural" distance between scientists and end-users. In particular, the solution to this problem mainly resides in the capability of end-users' capability to assess and transform the knowledge produced by diagnostics with regard to: information on both cultural objects and sites (decay patterns, vulnerability, presence of buried archaeological remains); decision making (management plan, conservation project, and excavation plan). From our experience in the field of the cultural heritage and namely the conservation, of monuments, there is a significant gap of information between technologists (geophysicists/physicists/engineers) and end-users (conservators/historians/architects). This cultural gap is due to the difficulty to interpret "indirect data" produced by non invasive diagnostics (i.e. radargrams/thermal images/seismic tomography etc..) in order to provide information useful to improve the historical knowledge (e.g. the chronology of the different phases of a building), to characterise the state of conservation (e.g. detection of cracks in the masonry) and to monitor in time cultural heritage artifacts and sites. The possible answer to this difficulty is in the set-up of a knowledge chain regarding the following steps: - Integrated application of novel and robust data processing methods; - Augmented reality as a tool for making easier the interpretation of non invasive - investigations for the analysis of decay pathologies of masonry and architectural surfaces; - The comparison between direct data (carrots, visual inspection) and results from non-invasive tests, including geophysics, aims to improve the interpretation and the rendering of the monuments and even of the archaeological landscapes; - The use of specimens or test beds for the detection of archaeological features and

  9. Non-Invasive MRI and Spectroscopy of mdx Mice Reveal Temporal Changes in Dystrophic Muscle Imaging and in Energy Deficits (United States)

    Heier, Christopher R.; Guerron, Alfredo D.; Korotcov, Alexandru; Lin, Stephen; Gordish-Dressman, Heather; Fricke, Stanley; Sze, Raymond W.; Hoffman, Eric P.; Wang, Paul; Nagaraju, Kanneboyina


    In Duchenne muscular dystrophy (DMD), a genetic disruption of dystrophin protein expression results in repeated muscle injury and chronic inflammation. Magnetic resonance imaging shows promise as a surrogate outcome measure in both DMD and rehabilitation medicine that is capable of predicting clinical benefit years in advance of functional outcome measures. The mdx mouse reproduces the dystrophin deficiency that causes DMD and is routinely used for preclinical drug testing. There is a need to develop sensitive, non-invasive outcome measures in the mdx model that can be readily translatable to human clinical trials. Here we report the use of magnetic resonance imaging and spectroscopy techniques for the non-invasive monitoring of muscle damage in mdx mice. Using these techniques, we studied dystrophic mdx muscle in mice from 6 to 12 weeks of age, examining both the peak disease phase and natural recovery phase of the mdx disease course. T2 and fat-suppressed imaging revealed significant levels of tissue with elevated signal intensity in mdx hindlimb muscles at all ages; spectroscopy revealed a significant deficiency of energy metabolites in 6-week-old mdx mice. As the mdx mice progressed from the peak disease stage to the recovery stage of disease, each of these phenotypes was either eliminated or reduced, and the cross-sectional area of the mdx muscle was significantly increased when compared to that of wild-type mice. Histology indicates that hyper-intense MRI foci correspond to areas of dystrophic lesions containing inflammation as well as regenerating, degenerating and hypertrophied myofibers. Statistical sample size calculations provide several robust measures with the ability to detect intervention effects using small numbers of animals. These data establish a framework for further imaging or preclinical studies, and they support the development of MRI as a sensitive, non-invasive outcome measure for muscular dystrophy. PMID:25390038

  10. 无创产前基因测序在胎儿染色体非整倍体基因检测中的临床应用%The application of non-invasive prenatal genetic sequencing for fetal chromosomal aneuploidy

    Institute of Scientific and Technical Information of China (English)

    翁慧男; 梁嘉颖; 曾伟宏; 汤惠霞; 孙怡; 马将军


    目的:探讨无创产前基因检测技术在胎儿染色体非整倍体疾病诊断中的检出效率及临床应用价值。方法回顾性分析2011年1月到2013年1月在广东省妇幼保健院就诊的孕妇,纳入标准为高龄妊娠,产前筛查高风险、B 超显示胎儿异常等要求无创产前基因检测的孕12周以上的孕妇1865例,通过母体外周血中胎儿游离 DNA,应用无创产前基因检测得出胎儿患染色体非整倍性疾病(21-三体综合征、18-三体综合征、13-三体综合征)的风险率。并对高风险胎儿采取羊水或脐血,再行细胞培养染色体核型分析以确定胎儿染色体核型,对低风险胎儿均随访至出生后。结果实施无创产前基因检测1865例,结果显示为高风险共21例,其中21-三体综合征高风险为14例,18-三体综合征高风险为5例,l3-三体综合征为2例。以羊水或脐血染色体核型分析的结果为金标准进行结果对照,检测出的14例21-三体综合征高风险中,13例确诊为21-三体综合征,另1例拒绝产前诊断,自行引产,无法确诊核型。检测出的5例18-三体综合征高风险经核型分析确诊为18-三体综合征,13-三体综合征无假阳性。所有低风险胎儿出生后的随访中没有发现假阴性。经统计分析胎儿无创产前基因检测21-三体综合征的敏感性为100%,准确性为92.9%。18-三体综合征和13-三体综合征的敏感性及准确性均为100%。结论无创产前胎儿非整倍体基因检测可提高产前诊断效率,其敏感性、准确性与染色体核型分析技术具有高度的一致性,能减少患儿的出生,快捷、安全、较介入性产前诊断易于接受,具有较高的临床实际应用价值。%Objective To explore the efficiency and the clinical application value of non-invasive prenatal genetic testing for fetal chromosomal aneuploidy.Methods A total of 1 865 pregnant women treated in Guangdong Women and Children Hospital from January 201

  11. Non-invasive Blood Glucose Quantification Using a Hybrid Sensor

    Directory of Open Access Journals (Sweden)

    Sundararajan JAYAPAL


    Full Text Available Diabetes Mellitus is a group of metabolic diseases characterized by high blood sugar (glucose levels which result from defects in insulin secretion. It is very important for the diabetics and normal people to have a correct blood glucose level. The HbA1c test is the most preferred test by renowned doctors for glucose quantification. But this test is an invasive one. At present, there are many available techniques for this purpose but these are mostly invasive or minimally non-invasive and most of these are under research. Among the different methods available, the photo acoustic (PA methods provide a reliable solution since the acoustical energy loss is much less compared to the optical or other techniques. Here a novel framework is presented for blood glucose level measurement using a combination of the HbA1c test and a PA method to get an absolutely consistent and precise, non-invasive technique. The setup uses a pulsed laser diode with pulse duration of 5-15 ns and at a repetition rate of 10 Hz as the source. The detector setup is based on the piezoelectric detection. It consists of a ring detector that includes two double ring sensors that are attached to the ring shaped module that can be worn around the finger. The major aim is to detect the photo acoustic signals from the glycated hemoglobin with the least possible error. The proposed monitoring system is designed with extreme consideration to precision and compatibility with the other computing devices. The results obtained in this research have been studied and analyzed by comparing these with those of in-vitro techniques like the HPLC. The comparison has been plotted and it shows a least error. The results also show a positive drive for using this concept as a basis for future extension in quantifying the other blood components.

  12. Mucositis and non-invasive markers of small intestinal function. (United States)

    Tooley, Katie L; Howarth, Gordon S; Butler, Ross N


    Mucositis is a common and debilitating side effect of chemotherapy that manifests due to the inability of chemotherapy agents to discriminate between normal and neoplastic cells. This results in ulcerating lesions lining the gastrointestinal tract. Moreover, the development of efficacious treatments for small intestinal mucositis has been hindered as the pathobiology of mucositis is still not fully understood. The small intestine is an extensive organ which is largely inaccessible by conventional means. Non-invasive biomarkers such as small intestinal permeability, H(2) breath tests, serum citrulline tests and the (13)C-sucrose breath test (SBT) have emerged as potential markers of small intestinal function. The SBT is emerging as the more appropriate biomarker to assess chemotherapy-induced mucositis in cancer patients and animal models, where it measures the decrease in sucrase activity associated with villus blunting and crypt disruption. The SBT has been successfully applied to detect mucositis induced by different classes of chemotherapy agents and has been used successfully to monitor small intestinal function with a range of candidate anti-mucositis treatments. We propose the SBT a superior biomarker of small intestinal function that could be successfully applied in clinical practice for monitoring the development of mucositis in cancer patients undergoing chemotherapy.

  13. Feasibility of non-invasive optical blood-glucose detection using overtone circular dichroism

    CERN Document Server

    Hokr, Brett H; Meng, Zhaokai; Petrov, Georgi I; Yakovlev, Vladislav V


    Diabetes is one of the most debilitating and costly diseases currently plaguing humanity. It is a leading cause of death and dismemberment in the world, and we know how to treat it. Accurate, continuous monitoring and control of blood glucose levels via insulin treatments are widely known to mitigate the majority of detrimental effects caused by the disease. The primary limitation of continuous glucose monitoring is patient non-compliance due to the unpleasant nature of "finger-stick" testing methods. This limitation can be largely, or even completely, removed by non-invasive testing methods. In this report, we demonstrate the vibrational overtone circular dichroism properties of glucose and analyze its use as a method of non-invasive glucose monitoring, capable of assuaging this trillion dollar scourge.

  14. 基于 Ion Proton 半导体测序平台的无创产前基因检测技术的可行性研究%The feasibility study of Ion Proton semiconductor sequencing platform in the non-invasive prenatal genetic diagnosis

    Institute of Scientific and Technical Information of China (English)

    张展; 齐佳会; 刘丽莎; 张琳琳; 贾莉婷; 李莹; 赵小辰; 杜尚珂; 于海洋; 张志英


    Objective To evaluate the feasibility of apply Ion Proton semiconductor sequencing platform in non-invasive prenatal genetic diagnosis .Methods Totally 1 000 pregnant women with a singleton pregnancy of 12-32 weeks gestation were selected from the Third affiliated Hospital of Zhengzhou University from Jan to Dec 2013.Using noninvasive prenatal genetic diagnosis based on Ion Proton semiconductor sequencing platform to study their cffDNA .In parallel, 72 pregnant women received invasive prenatal diagnosis by traditional chromosomal analysis with amniocentesis chorionic villus sampling .Results It′s shown that 18 out of 1 000 (1.8%) pregnant women underwent the noninvasive prenatal genetic testing had a high risk for aneuploid chromosomes , including 7 cases of 21-trisomy, 4 cases of 18-trisomy, 2 cases of 13-trisomy, 4 cases of sex chromosomal abnormality , and 1 case of 15-trisomy.It demonstrated that the rate and accuracy of fetal 21-trisomy, 13-trisomy and 18-trisomy by non-invasive prenatal genetic testing were both 100%without misdiagnosis , the rate of detection for sex chromosomal abnormality was 2/2 with a false positive rate of 1/3.However, the 15-trisomy predicted by the non-invasive prenatal diagnosis in a woman was finally proved to be a false positive .Based on the results by karyotyping (55/55) as well as follow-ups (493/493), the specificity of the non-invasive prenatal diagnosis for detection of 21-trisomy, 18-trisomy and 13-trisomy was 100%.One Ion PITM chip could detect 12 to 15 samples in 1.5 h and the whole process of noninvasive detection could be completed in 1 to 1.5 days.Conclusions The non-invasive prenatal diagnosis by Ion Proton semiconductor sequencing platform could provide fast and accurate detection of fetal aneuploidy .The benchtop high-throughput sequencing platform has laid the foundation for the independent application in clinical settings for fetal aneuploidy detection .%目的:探讨基于Ion Proton半导体测序平台的

  15. International experience of informed consent and genetic counseling on non-invasive prenatal testing applied in Down syndrome prenatal screening%非侵入性产前检测技术知情同意与遗传咨询的国际经验

    Institute of Scientific and Technical Information of China (English)

    明坚; 许艳; 周萍; 黄葭燕; 陈英耀


    This paper summarized the international experience on the implementation of informed consent and genetic counseling when non-invasive prenatal testing(NIPT) applied in Down syndrome prenatal screening. Then its implications for China were discussed and some policy recommendations were put forward,including enhancing the training to the counselors and doctors,clearly defining the content of genetic counseling,and further standardizing the informed consent implementation.%围绕非侵入性产前检测技术(NIPT)应用于唐氏产前筛查的知情同意与遗传咨询实施,总结分析了国际相关经验与研究,并结合我国国情提出了相关政策建议。建议加强相关人员培训,明确知情告知内容,进一步规范知情同意与遗传咨询的操作实施。

  16. A non-invasive approach to monitor chronic lymphocytic leukemia engraftment in a xenograft mouse model using ultra-small superparamagnetic iron oxide-magnetic resonance imaging (USPIO-MRI). (United States)

    Valdora, Francesca; Cutrona, Giovanna; Matis, Serena; Morabito, Fortunato; Massucco, Carlotta; Emionite, Laura; Boccardo, Simona; Basso, Luca; Recchia, Anna Grazia; Salvi, Sandra; Rosa, Francesca; Gentile, Massimo; Ravina, Marco; Pace, Daniele; Castronovo, Angela; Cilli, Michele; Truini, Mauro; Calabrese, Massimo; Neri, Antonino; Neumaier, Carlo Emanuele; Fais, Franco; Baio, Gabriella; Ferrarini, Manlio


    Chronic lymphocytic leukemia (CLL) is the most prevalent leukemia among adults. Despite its indolent nature, CLL remains an incurable disease. Herein we aimed to monitor CLL disease engraftment and, progression/regression in a xenograft CLL mouse model using ultra-small superparamagnetic iron oxide-magnetic resonance imaging (USPIO-MRI). Spleen contrast enhancement, quantified as percentage change in signal intensity upon USPIO administration, demonstrated a difference due to a reduced USPIO uptake, in the spleens of mice injected with CLL cells (NSG-CLL, n=71) compared to controls (NSG-CTR, n=17). These differences were statistically significant both after 2 and 4weeks from CLL cells injection. In addition comparison of mice treated with rituximab with untreated controls for changes in spleen iron uptake confirmed that it is possible to monitor treatment efficacy in this mouse model of CLL using USPIO-enhanced MRI. Further applications could include the preclinical in vivo monitoring of new therapies and the clinical evaluation of CLL patients.

  17. Non-invasive Imaging of Human Embryonic Stem Cells


    Hong, Hao; Yang, Yunan; Zhang, Yin; Cai, Weibo


    Human embryonic stem cells (hESCs) hold tremendous therapeutic potential in a variety of diseases. Over the last decade, non-invasive imaging techniques have proven to be of great value in tracking transplanted hESCs. This review article will briefly summarize the various techniques used for non-invasive imaging of hESCs, which include magnetic resonance imaging (MRI), bioluminescence imaging (BLI), fluorescence, single-photon emission computed tomography (SPECT), positron emission tomography...

  18. Non-invasive prediction of oesophageal varices in cirrhosis

    Institute of Scientific and Technical Information of China (English)

    Sambit Sen; William JH Griffiths


    Non-invasive predictors of varices in cirrhosis would reduce the need for screening endoscopies. Platelet count and spleen size have been shown to be useful parameters, in mixed groups of cirrhotics with different aetiologies. We evaluated this in two homogeneous groups with cirrhosis due to hepatitis C and alcohol.Non-invasive predictors appear promising in the former group, but less so in the latter group.

  19. An optical approach for non-invasive blood clot testing (United States)

    Kalchenko, Vyacheslav; Brill, Alexander; Fine, Ilya; Harmelin, Alon


    Physiological blood coagulation is an essential biological process. Current tests for plasma coagulation (clotting) need to be performed ex vivo and require fresh blood sampling for every test. A recently published work describes a new, noninvasive, in vivo approach to assess blood coagulation status during mechanical occlusion1. For this purpose, we have tested this approach and applied a controlled laser beam to blood micro-vessels of the mouse ear during mechanical occlusion. Standard setup for intravital transillumination videomicroscopy and laser based imaging techniques were used for monitoring the blood clotting process. Temporal mechanical occlusion of blood vessels in the observed area was applied to ensure blood flow cessation. Subsequently, laser irradiation was used to induce vascular micro-injury. Changes in the vessel wall, as well as in the pattern of blood flow, predispose the area to vascular thrombosis, according to the paradigm of Virchow's triad. In our experiments, two elements of Virchow's triad were used to induce the process of clotting in vivo, and to assess it optically. We identified several parameters that can serve as markers of the blood clotting process in vivo. These include changes in light absorption in the area of illumination, as well as changes in the pattern of the red blood cells' micro-movement in the vessels where blood flow is completely arrested. Thus, our results indicate that blood coagulation status can be characterized by non-invasive, in vivo methodologies.

  20. Photoionization sensors for non-invasive medical diagnostics (United States)

    Mustafaev, Aleksandr; Rastvorova, Iuliia; Khobnya, Kristina; Podenko, Sofia


    The analysis of biomarkers can help to identify the significant number of diseases: lung cancer, tuberculosis, diabetes, high levels of stress, psychosomatic disorders etc. To implement continuous monitoring of the state of human health, compact VUV photoionization detector with current-voltage measurement is designed by Saint-Petersburg Mining University Plasma Research Group. This sensor is based on the patented method of stabilization of electric parameters - CES (Collisional Electron Spectroscopy). During the operation at atmospheric pressure VUV photoionization sensor measures the energy of electrons, produced in the ionization with the resonance photons, whose wavelength situated in the vacuum ultraviolet (VUV). A special software was developed to obtain the second-order derivative of the I-U characteristics, taken by the VUV sensor, to construct the energy spectra of the characteristic electrons. VUV photoionization detector has an unique set of parameters: small size (10*10*1 mm), low cost, wide range of recognizable molecules, as well as accuracy, sufficient for using this instrument for the medical purposes. This device can be used for non-invasive medical diagnostics without compromising the quality of life, for control of environment and human life. Work supported by Foundation for Assistance to Small Innovative Enterprises in Science and Technology.

  1. Phase contrast X-ray imaging for the non-invasive detection of airway surfaces and lumen characteristics in mouse models of airway disease

    Energy Technology Data Exchange (ETDEWEB)

    Siu, K.K.W. [School of Physics, Monash University, Victoria 3800 (Australia); Monash Centre for Synchrotron Science, Monash University, Victoria 3800 (Australia)], E-mail:; Morgan, K.S.; Paganin, D.M. [School of Physics, Monash University, Victoria 3800 (Australia); Boucher, R. [CF Research and Treatment Center, University of North Carolina at Chapel Hill (United States); Uesugi, K.; Yagi, N. [SPring-8/JASRI, Hyogo 679-5198 (Japan); Parsons, D.W. [Department of Pulmonary Medicine, Women' s and Children' s Hospital, South Australia 5006 (Australia); Department of Paediatrics, University of Adelaide, South Australia, 5006 (Australia); Women' s and Children' s Health Research Institute, South Australia, 5006 (Australia)


    We seek to establish non-invasive imaging able to detect and measure aspects of the biology and physiology of surface fluids present on airways, in order to develop novel outcome measures able to validate the success of proposed genetic or pharmaceutical therapies for cystic fibrosis (CF) airway disease. Reduction of the thin airway surface liquid (ASL) is thought to be a central pathophysiological process in CF, causing reduced mucociliary clearance that supports ongoing infection and destruction of lung and airways. Current outcome measures in animal models, or humans, are insensitive to the small changes in ASL depth that ought to accompany successful airway therapies. Using phase contrast X-ray imaging (PCXI), we have directly examined the airway surfaces in the nasal airways and tracheas of anaesthetised mice, currently to a resolution of {approx}2 {mu}m. We have also achieved high resolution three-dimensional (3D) imaging of the small airways in mice using phase-contrast enhanced computed tomography (PC-CT) to elucidate the structure-function relationships produced by airway disease. As the resolution of these techniques improves they may permit non-invasive monitoring of changes in ASL depth with therapeutic intervention, and the use of 3D airway and imaging in monitoring of lung health and disease. Phase contrast imaging of airway surfaces has promise for diagnostic and monitoring options in animal models of CF, and the potential for future human airway imaging methodologies is also apparent.

  2. Live cell monitoring of glycine betaine by FRET-based genetically encoded nanosensor. (United States)

    Ahmad, Mohammad; Ameen, Seema; Siddiqi, Tariq Omar; Khan, Parvez; Ahmad, Altaf


    Glycine betaine (GB) is one of the key compatible solutes that accumulate in the cell at exceedingly high level under the conditions of high salinity. It plays a crucial role in the maintenance of osmolarity of the cell without affecting the physiological processes. Analysis of stress-induced physiological conditions in living cells, therefore, requires real-time monitoring of cellular GB level. Glycine Betaine Optical Sensor (GBOS), a genetically-encoded FRET-based nanosensor developed in this study, allows the real-time monitoring of GB levels inside living cells. This nanosensor has been developed by sandwiching GB binding protein (ProX) between the Förster resonance energy transfer (FRET) pair, the cyan fluorescent protein (CFP) and yellow fluorescent protein (YFP). Conformational change in ProX, which was used as sensory domain, reported the change in the level of this compatible solute in in vitro and in vivo conditions. Binding of the GB to the sensory domain fetches close to both the fluorescent moieties that result in the form of increased FRET ratio. So, any change in the concentration of GB is correlated with change in FRET ratio. This sensor also reported the GB cellular dynamics in real-time in Escherichia coli cells after the addition of its precursor, choline. The GBOS was also expressed in yeast and mammalian cells to monitor the intracellular GB. Therefore, the GBOS represents a unique FRET-based nanosensor which allows the non-invasive ratiometric analysis of the GB in living cells.

  3. Non-invasive activation of optogenetic actuators (United States)

    Birkner, Elisabeth; Berglund, Ken; Klein, Marguerita E.; Augustine, George J.; Hochgeschwender, Ute


    The manipulation of genetically targeted neurons with light (optogenetics) continues to provide unprecedented avenues into studying the function of the mammalian brain. However, potential translation into the clinical arena faces a number of significant hurdles, foremost among them the need for insertion of optical fibers into the brain to deliver light to opsins expressed on neuronal membranes. In order to overcome these hardware-related problems, we have developed an alternative strategy for delivering light to opsins which does not involve fiber implants. Rather, the light is produced by a protein, luciferase, which oxidizes intravenously applied substrate, thereby emitting bioluminescence. In proof-ofprinciple studies employing a fusion protein of a light-generating luciferase to a light-sensing opsin (luminopsin), we showed that light emitted by Gaussia luciferase is indeed able to activate channelrhodopsin, allowing modulation of neuronal activity when expressed in cultured neurons. Here we assessed applicability of the concept in vivo in mice expressing luminopsins from viral vectors and from genetically engineered transgenes. The experiments demonstrate that intravenously applied substrate reaches neurons in the brain, causing the luciferase to produce bioluminescence which can be imaged in vivo, and that activation of channelrhodopsin by bioluminescence is sufficient to affect behavior. Further developments of such technology based on combining optogenetics with bioluminescence - i.e. combining lightsensing molecules with biologically produced light through luciferases - should bring optogenetics closer to clinical applications.

  4. Assessment of lung function using a non-invasive oscillating gas-forcing technique. (United States)

    Clifton, Lei; Clifton, David A; Hahn, Clive E W; Farmery, Andrew D


    Conventional methods for monitoring lung function can require complex, or special, gas analysers, and may therefore not be practical in clinical areas such as the intensive care unit (ICU) or operating theatre. The system proposed in this article is a compact and non-invasive system for the measurement and monitoring of lung variables, such as alveolar volume, airway dead space, and pulmonary blood flow. In contrast with conventional methods, the compact apparatus and non-invasive nature of the proposed method could eventually allow it to be used in the ICU, as well as in general clinical settings. We also propose a novel tidal ventilation model using a non-invasive oscillating gas-forcing technique, where both nitrous oxide and oxygen are used as indicator gases. Experimental results are obtained from healthy volunteers, and are compared with those obtained using a conventional continuous ventilation model. Our findings show that the proposed technique can be used to assess lung function, and has several advantages over conventional methods such as compact and portable apparatus, easy usage, and quick estimation of cardiopulmonary variables.

  5. A non-invasive method of qualitative and quantitative measurement of drugs. (United States)

    Westerman, S T; Gilbert, L M


    Methods for quick qualitative and quantitative evaluation of drug intake are needed, especially during emergency situations such as drug overdose and alcohol intoxication. The electronystagmograph was used in an attempt to develop a non-invasive method for identification of drug intake, and to study the effects of alcohol and other drugs on the vestibular system. Results of the study reveal that alcohol, diazepam, opiates, barbiturates, cocaine, marijuana, and hallucinogenic drugs produce a characteristic printout pattern which can be evaluated qualitatively. This method is a practical, non-invasive, objective procedure that provides rapid assessment of quality of drug intake. Its potential uses are extensive, including such possibilities as evaluation of drug intake in emergency drug overdose situations, monitoring anesthesia during surgery, evaluating drug intake in women about to deliver, (as well as the effects on the newborn), and determining whether or not persons who are being tested on a polygraph are under the influence of drugs.

  6. An Investigation of Pulse Transit Time as a Non-Invasive Blood Pressure Measurement Method

    Energy Technology Data Exchange (ETDEWEB)

    McCarthy, B M; O' Flynn, B; Mathewson, A, E-mail: [Tyndall National Institute, UCC, Lee Maltings, Prospect Row, Cork (Ireland)


    The objective of this paper is to examine the Pulse Transit Method (PTT) as a non-invasive means to track Blood Pressure over a short period of time. PTT was measured as the time it takes for an ECG R-wave to propagate to the finger, where it is detected by a photoplethysmograph sensor. The PTT method is ideal for continuous 24-hour Blood Pressure Measurement (BPM) since it is both cuff-less and non-invasive and therefore comfortable and unobtrusive for the patient. Other techniques, such as the oscillometric method, have shown to be accurate and reliable but require a cuff for operation, making them unsuitable for long term monitoring. Although a relatively new technique, the PTT method has shown to be able to accurately track blood pressure changes over short periods of time, after which re-calibration is necessary. The purpose of this study is to determine the accuracy of the method.

  7. Non-invasive blood glucose detection system based on conservation of energy method. (United States)

    Zhang, Yang; Zhu, Jian-Ming; Liang, Yong-Bo; Chen, Hong-Bo; Yin, Shi-Min; Chen, Zhen-Cheng


    The most common method used for minimizing the occurrence of diabetes complications is frequent glucose testing to adjust the insulin dose. However, using blood glucose (BG) meters presents a risk of infection. It is of great importance to develop non-invasive BG detection techniques. To realize high-accuracy, low-cost and continuous glucose monitoring, we have developed a non-invasive BG detection system using a mixed signal processor 430 (MSP430) microcontroller. This method is based on the combination of the conservation-of-energy method with a sensor integration module, which collects physiological parameters, such as the blood oxygen saturation (SPO2), blood flow velocity and heart rate. New methods to detect the basal metabolic rate (BMR) and BV are proposed, which combine the human body heat balance and characteristic signals of photoplethysmography as well dual elastic chambers theory. Four hundred clinical trials on real-time non-invasive BG monitoring under suitable experiment conditions were performed on different individuals, including diabetic patients, senior citizens and healthy adults. A multisensory information fusion model was applied to process these samples. The algorithm (we defined it as DCBPN algorithm) applied in the model combines a decision tree and back propagation neural network, which classifies the physiological and environmental parameters into three categories, and then establishes a corresponding prediction model for the three categories. The DCBPN algorithm provides an accuracy of 88.53% in predicting the BG of new samples. Thus, this system demonstrates a great potential to reliably detect BG values in a non-invasive setting.

  8. Non-Invasive Optical Blood Glucose Measurement

    Directory of Open Access Journals (Sweden)

    Megha C.Pande


    Full Text Available The method for noninvasively blood glucose monitoring system is discussed in this paper. Lot of research work has been done in developing the device which is completely noninvasive to avoid the pros & cons because of frequent pricking. In this paper we are trying to analyze the noninvasive blood glucose measurement study in the near infrared region which is the most suitable region for blood glucose measurement. For this purpose we use a technique which is similar to pulseoximetry based on near infrared spectrometry .An infrared light of particular wavelength is passed through fingertip containing an arterial pulse component are derived,thus minimizing influences of basal components such as resting blood volume,skin, muscle and bone.

  9. Non-invasive mechanic ventilation in treating acute respiratory failure

    Directory of Open Access Journals (Sweden)

    Federico Lari


    Full Text Available Non invasive ventilation (NIV in acute respiratory failure (ARF improve clinical parameters, arterial blood gases, decrease mortality and endo tracheal intubation (ETI rate also outside the intensive care units (ICUs. Objective of this study is to verify applicability of NIV in a general non respiratory medical ward. We enrolled 68 consecutive patients (Pts with Hypoxemic or Hyper capnic ARF: acute cardiogenic pulmonary edema (ACPE, exacerbation of chronic obstructive pulmonary disease (COPD, Pneu - monia, acute lung injury / acute respiratory distress syndrome (ALI/ARDS. NIV treatment was CPAP or PSV + PEEP. 12 Pts (18,5% met primary endpoint (NIV failure: 11 Pts (17% needed ETI (5ALI/ARDS p < 0,0001, 6COPD 16,6%, 1 Patient (1,5% died (Pneumonia. No Pts with ACPE failed (p = 0,0027. Secondary endpoints: significant improvement in Respiratory Rate (RR, Kelly Score, pH, PaCO2, PaO2 vs baseline. Median duration of treatment: 16:06 hours: COPD 18:54, ACPE 4:15. Mean length of hospitalisation: 8.66 days. No patients discontinued NIV, no side effects. Results are consistent with literature. Hypoxemic ARF related to ALI/ARDS and pneumonia show worst outcome: it is not advisable to manage these conditions with NIV outside the ICU. NIV for ARF due to COPD and ACPE is feasible, safe and effective in a general medical ward if selection of Pts, staff’s training and monitoring are appropriate. This should encourage the diffusion of NIV in this specific setting. According to strong evidences in literature, NIV should be considered a first line and standard treatment in these clinical conditions irrespective of the setting.

  10. Portable Non-invasive Sensing Array for Cardiophysiological Monitoring Project (United States)

    National Aeronautics and Space Administration — Through recent manned spacecraft expeditions, it has become clear that there are significant hazardous features that affect the health and vitality of space...

  11. Non-invasive brain stimulation in early rehabilitation after stroke. (United States)

    Blesneag, A V; Popa, L; Stan, A D


    The new tendency in rehabilitation involves non-invasive tools that, if applied early after stroke, promote neurorecovery. Repetitive transcranial magnetic stimulation and transcranial direct current stimulation may correct the disruption of cortical excitability and effectively contribute to the restoration of movement and speech. The present paper analyses the results of non-invasive brain stimulation (NIBS) trials, highlighting different aspects related to the repetitive transcranial magnetic stimulation frequency, transcranial direct current stimulation polarity, the period and stimulation places in acute and subacute ischemic strokes. The risk of adverse events, the association with motor or language recovery specific training, and the cumulative positive effect evaluation are also discussed.

  12. Fetal cells in maternal blood: state of the art for non-invasive prenatal diagnosis. (United States)

    Ho, S S; O'Donoghue, K; Choolani, M


    In Singapore, 1 in 5 pregnancies occur in mothers > 35 years old and genetic diseases, such as thalassaemia, are common. Current methods for the diagnosis of aneuploidy and monogenic disorders require invasive testing by amniocentesis, chorion villus biopsy or fetal blood sampling. These tests carry a procedure-related risk of miscarriage that is unacceptable to many couples. Development of non-invasive methods for obtaining intact fetal cells would allow accurate prenatal diagnosis for aneuploidy and single gene disorders, without the attendant risks associated with invasive testing, and would increase the uptake of prenatal diagnosis by women at risk. Isolation of fetal erythroblasts from maternal blood should allow accurate non-invasive prenatal diagnosis of both aneuploidies and monogenic disorders. Expression of gamma-globin in maternal erythroblasts and the inability to locate fetal erythroblasts reliably in all pregnancies have prevented its clinical application. In the absence of a highly specific fetal cell marker, enrichment, identification and diagnosis--the 3 components of non-invasive prenatal diagnosis--have clearly defined objectives. Since fetal cells are rare in maternal blood, the sole purpose of enrichment is yield--to recover as many fetal cells as possible--even if purity is compromised at this stage. In contrast, the primary goal of identification is specificity; absolute certainty of fetal origin is required at this stage if the ultimate objective of diagnosis, accuracy, is to be achieved. This review summarises the current state of the art of non-invasive prenatal diagnosis using fetal erythroblasts enriched from maternal blood.

  13. Transcriptome Analysis Showed a Differential Signature between Invasive and Non-invasive Corticotrophinomas (United States)

    de Araújo, Leonardo Jose Tadeu; Lerario, Antonio Marcondes; de Castro, Margaret; Martins, Clarissa Silva; Bronstein, Marcello Delano; Machado, Marcio Carlos; Trarbach, Ericka Barbosa; Villares Fragoso, Maria Candida Barisson


    ACTH-dependent hypercortisolism caused by a pituitary adenoma [Cushing’s disease (CD)] is the most common cause of endogenous Cushing’s syndrome. CD is often associated with several morbidities, including hypertension, diabetes, osteoporosis/bone fractures, secondary infections, and increased cardiovascular mortality. While the majority (≈80%) of the corticotrophinomas visible on pituitary magnetic resonance imaging are microadenomas (MICs, hypopituitarism and visual defects. Given the clinical and molecular heterogeneity of corticotrophinomas, the aim of this study was to investigate the pattern of genetic differential expression between MIC and MAC, including the invasiveness grade as a criterion for categorizing these tumors. In this study, were included tumor samples from patients with clinical, laboratorial, radiological, and histopathological diagnosis of hypercortisolism due to an ACTH-producing pituitary adenoma. Differential gene expression was studied using an Affymetrix microarray platform in 12 corticotrophinomas, classified as non-invasive MIC (n = 4) and MAC (n = 5), and invasive MAC (n = 3), according to modified Hardy criteria. Somatic mutations in USP8 were also investigated, but none of the patients exhibited USP8 variants. Differential expression analysis demonstrated that non-invasive MIC and MAC have a similar genetic signature, while invasive MACs exhibited a differential expression profile. Among the genes differentially expressed, we highlighted CCND2, ZNF676, DAPK1, and TIMP2, and their differential expression was validated through quantitative real-time PCR in another cohort of 15 non-invasive and 3 invasive cortocotrophinomas. We also identified potential biological pathways associated with growth and invasiveness, TGF-β and G protein signaling pathways, DNA damage response pathway, and pathways associated with focal adhesion. Our study revealed a differential pattern of genetic signature in a subgroup of MAC

  14. A new method for non-invasive estimation of human muscle fiber type composition.

    Directory of Open Access Journals (Sweden)

    Audrey Baguet

    Full Text Available BACKGROUND: It has been established that excellence in sports with short and long exercise duration requires a high proportion of fast-twitch (FT or type-II fibers and slow-twitch (ST or type-I fibers, respectively. Until today, the muscle biopsy method is still accepted as gold standard to measure muscle fiber type composition. Because of its invasive nature and high sampling variance, it would be useful to develop a non-invasive alternative. METHODOLOGY: Eighty-three control subjects, 15 talented young track-and-field athletes, 51 elite athletes and 14 ex-athletes volunteered to participate in the current study. The carnosine content of all 163 subjects was measured in the gastrocnemius muscle by proton magnetic resonance spectroscopy ((1H-MRS. Muscle biopsies for fiber typing were taken from 12 untrained males. PRINCIPAL FINDINGS: A significant positive correlation was found between muscle carnosine, measured by (1H-MRS, and percentage area occupied by type II fibers. Explosive athletes had ∼30% higher carnosine levels compared to a reference population, whereas it was ∼20% lower than normal in typical endurance athletes. Similar results were found in young talents and ex-athletes. When active elite runners were ranked according to their best running distance, a negative sigmoidal curve was found between logarithm of running distance and muscle carnosine. CONCLUSIONS: Muscle carnosine content shows a good reflection of the disciplines of elite track-and-field athletes and is able to distinguish between individual track running distances. The differences between endurance and sprint muscle types is also observed in young talents and former athletes, suggesting this characteristic is genetically determined and can be applied in early talent identification. This quick method provides a valid alternative for the muscle biopsy method. In addition, this technique may also contribute to the diagnosis and monitoring of many conditions and

  15. Non-invasive prenatal testing for aneuploidy and beyond

    DEFF Research Database (Denmark)

    Dondorp, Wybo; de Wert, Guido; Bombard, Yvonne


    This paper contains a joint ESHG/ASHG position document with recommendations regarding responsible innovation in prenatal screening with non-invasive prenatal testing (NIPT). By virtue of its greater accuracy and safety with respect to prenatal screening for common autosomal aneuploidies, NIPT ha...

  16. Eyeblink Conditioning: A Non-Invasive Biomarker for Neurodevelopmental Disorders (United States)

    Reeb-Sutherland, Bethany C.; Fox, Nathan A.


    Eyeblink conditioning (EBC) is a classical conditioning paradigm typically used to study the underlying neural processes of learning and memory. EBC has a well-defined neural circuitry, is non-invasive, and can be employed in human infants shortly after birth making it an ideal tool to use in both developing and special populations. In addition,…

  17. Non-invasive terahertz field imaging inside parallel plate waveguides

    DEFF Research Database (Denmark)

    Iwaszczuk, Krzysztof; Andryieuski, Andrei; Lavrinenko, Andrei


    We present a non-invasive broadband air photonic method of imaging of the electric field of THz pulses propagating inside a tapered parallel plate waveguide. The method is based on field-enhanced second harmonic generation of the fundamental laser beam in an external electric field. We apply...

  18. Measuring and modulating the brain with non-invasive stimulation

    NARCIS (Netherlands)

    Munneke, M.A.M


    The overall goal of the studies in this thesis was the use of non-invasive brain stimulation for measuring and modulating corticospinal excitability and to study the possibility of therapeutic modulation of excitability in some neurological disorders. Brain modulation to reduce the over-excitability

  19. Non-invasive diagnosis and management of ectopic pregnancy

    NARCIS (Netherlands)

    van Mello, N.M.


    The work presented in this thesis begins with a focus on non-invasive diagnostic methods for ectopic pregnancy. The heterogeneity found in studies on diagnostic tests for ectopic pregnancy has led to an international recommendation on uniform definitions of early pregnancy complications. Hereafter,

  20. Blood biomarkers for the non-invasive diagnosis of endometriosis

    NARCIS (Netherlands)

    Nisenblat, Vicki; Bossuyt, Patrick M. M.; Shaikh, Rabia; Farquhar, Cindy; Jordan, Vanessa; Scheffers, Carola S.; Mol, Ben Willem J.; Johnson, Neil; Hull, M. Louise


    Background About 10% of reproductive-aged women suffer from endometriosis, a costly chronic disease causing pelvic pain and subfertility. Laparoscopy is the gold standard diagnostic test for endometriosis, but is expensive and carries surgical risks. Currently, there are no non-invasive or minimally

  1. Non-invasive in vivo measurement of macular carotenoids (United States)

    Lambert, James L. (Inventor); Borchert, Mark S. (Inventor)


    A non-invasive in vivo method for assessing macular carotenoids includes performing Optical Coherence Tomography (OCT) on a retina of a subject. A spatial representation of carotenoid levels in the macula based on data from the OCT of the retina can be generated.

  2. Potential diagnostic consequences of applying non-invasive prenatal testing

    DEFF Research Database (Denmark)

    Petersen, Olav Bjørn; Vogel, I; Ekelund, C


    OBJECTIVES: Targeted non-invasive prenatal testing (NIPT) tests for trisomies 21, 18 and 13 and sex chromosome aneuploidies and could be an alternative to traditional karyotyping. The aim of this study was to determine the risk of missing other abnormal karyotypes of probable phenotypic...

  3. New developments in non-invasive coronary imaging

    NARCIS (Netherlands)

    Dikkers, Riksta


    Coronary artery disease, and especially ischemic heart disease, is a major concern in Western society. To reduce mortality and morbidity early detection and treatment is important. Ideally, early detection should be non-invasive, fast and cheap. Coronary angiography (CAG) is a reliable technique to

  4. Non-invasive diagnosis and management of ectopic pregnancy

    NARCIS (Netherlands)

    van Mello, N.M.


    The work presented in this thesis begins with a focus on non-invasive diagnostic methods for ectopic pregnancy. The heterogeneity found in studies on diagnostic tests for ectopic pregnancy has led to an international recommendation on uniform definitions of early pregnancy complications. Hereafter,

  5. New developments in non-invasive coronary imaging

    NARCIS (Netherlands)

    Dikkers, Riksta


    Coronary artery disease, and especially ischemic heart disease, is a major concern in Western society. To reduce mortality and morbidity early detection and treatment is important. Ideally, early detection should be non-invasive, fast and cheap. Coronary angiography (CAG) is a reliable technique to

  6. Measuring and modulating the brain with non-invasive stimulation

    NARCIS (Netherlands)

    Munneke, M.A.M


    The overall goal of the studies in this thesis was the use of non-invasive brain stimulation for measuring and modulating corticospinal excitability and to study the possibility of therapeutic modulation of excitability in some neurological disorders. Brain modulation to reduce the over-excitability

  7. Non-invasive assessment of maternal hemodynamics in early pregnancy

    NARCIS (Netherlands)

    van der Graaf, Anne Marijn; Zeeman, Gerda G.; Groen, Henk; Roberts, Claire; Dekker, Gus A.


    Objectives: Non-invasive assessment of maternal hemodynamics in early pregnancy may be promising in evaluating maternal hemodynamic (mal)adaptation to pregnancy. We explored usage of applanation tonometry and Doppler ultrasound for assessment of cardiac output (CO), systemic vascular resistance (SVR

  8. Trends in Nanomaterial-Based Non-Invasive Diabetes Sensing Technologies. (United States)

    Makaram, Prashanth; Owens, Dawn; Aceros, Juan


    Blood glucose monitoring is considered the gold standard for diabetes diagnostics and self-monitoring. However, the underlying process is invasive and highly uncomfortable for patients. Furthermore, the process must be completed several times a day to successfully manage the disease, which greatly contributes to the massive need for non-invasive monitoring options. Human serums, such as saliva, sweat, breath, urine and tears, contain traces of glucose and are easily accessible. Therefore, they allow minimal to non-invasive glucose monitoring, making them attractive alternatives to blood measurements. Numerous developments regarding noninvasive glucose detection techniques have taken place over the years, but recently, they have gained recognition as viable alternatives, due to the advent of nanotechnology-based sensors. Such sensors are optimal for testing the amount of glucose in serums other than blood thanks to their enhanced sensitivity and selectivity ranges, in addition to their size and compatibility with electronic circuitry. These nanotechnology approaches are rapidly evolving, and new techniques are constantly emerging. Hence, this manuscript aims to review current and future nanomaterial-based technologies utilizing saliva, sweat, breath and tears as a diagnostic medium for diabetes monitoring.

  9. Trends in Nanomaterial-Based Non-Invasive Diabetes Sensing Technologies

    Directory of Open Access Journals (Sweden)

    Prashanth Makaram


    Full Text Available Blood glucose monitoring is considered the gold standard for diabetes diagnostics and self-monitoring. However, the underlying process is invasive and highly uncomfortable for patients. Furthermore, the process must be completed several times a day to successfully manage the disease, which greatly contributes to the massive need for non-invasive monitoring options. Human serums, such as saliva, sweat, breath, urine and tears, contain traces of glucose and are easily accessible. Therefore, they allow minimal to non-invasive glucose monitoring, making them attractive alternatives to blood measurements. Numerous developments regarding noninvasive glucose detection techniques have taken place over the years, but recently, they have gained recognition as viable alternatives, due to the advent of nanotechnology-based sensors. Such sensors are optimal for testing the amount of glucose in serums other than blood thanks to their enhanced sensitivity and selectivity ranges, in addition to their size and compatibility with electronic circuitry. These nanotechnology approaches are rapidly evolving, and new techniques are constantly emerging. Hence, this manuscript aims to review current and future nanomaterial-based technologies utilizing saliva, sweat, breath and tears as a diagnostic medium for diabetes monitoring.

  10. Clinical study of non-invasive hemodynamic monitor system in the severe acute pancreatitis combined with pulmonary edema%无创血流动力学监测仪在重症急性胰腺炎合并肺水肿患者中的临床应用

    Institute of Scientific and Technical Information of China (English)

    朱滨; 江勇; 王大明; 刘宁


    目的 研究无创血流动力学监测仪在重症急性胰腺炎(SAP)合并肺水肿患者鉴别诊断中的意义.方法 回顾性分析29例SAP早期液体复苏过程中出现肺水肿患者的临床资料.根据患者出院诊断等分为观察组(非心源性肺水肿)18例和对照组(心源性肺水肿)11例.将两组无创血流动力学监测数据进行比较.结果 对照组心排出量[(3.34±1.09)L/min]、心脏指数[(2.06±0.46)L/(min·m2)]、心脏搏出量[(41.89±13.72)ml]、心搏指数[(25.59±7.32)ml/m2]、加速指数[(59.24±28.41)L/100 s2]、左心室工作指数[(2.09±0.67)(kg·m)/m2]、左心室射血时间[(254.32±27.34)ms]、射血分数(0.37±0.03)和速度指数[(27.11±11.32)L/100 s]较观察组[分别为(4.12±1.06)L/min、(2.64±0.48)L/(min·m2)、(46.21±11.81)ml、(28.87±5.32)ml/m2、(79.43±29.01)L/100 s2、(3.21±0.84)(kg·m)/m2、(281.29±29.11)ms、0.54±0.04、(39.34±12.11)L/100 s]显著降低(P<0.01);射血前期[(116.54±22.37)ms]和收缩时间比(0.48±0.04)较观察组[分别为(95.24±21.41)ms、0.36±0.02]显著增高(P<0.01或<0.05).结论 无创血流动力学监测仪为SAP合并肺水肿患者鉴别诊断提供了较好的依据.%Objective To study the significance of the non-invasive hemodynamic monitor system in the differential diagnosis of severe acute pancreatitis (SAP) combined with pulmonary edema. Methods Twenty-nine cases of SAP during fluid resuscitation treatment combined with pulmonary edema were reviewed and the data of the non-invasive hemodynamic monitor system was analysed and summarized.According to the diagnosis on discharge, 18 patients were enrolled in test group (noncardiogenic pulmonary edema group) and 11 patients were enrolled in control group (cardiogenic pulmonary edema group). The data of two groups were determined and compared. Results In control group, cardiac output [(3.34±1.09) L/min], cardiac index [(2.06 ± 0.46) L/ (min·m2)], stroke volume [(41.89 ± 13.72) ml], stroke

  11. Non-invasive assessment of adrenocortical function in captive Nile crocodiles (Crocodylus niloticus). (United States)

    Ganswindt, Stefanie B; Myburgh, Jan G; Cameron, Elissa Z; Ganswindt, Andre


    The occurrence of stress-inducing factors in captive crocodilians is a concern, since chronic stress can negatively affect animal health and reproduction, and hence production. Monitoring stress in wild crocodiles could also be beneficial for assessing the state of health in populations which are potentially threatened by environmental pollution. In both cases, a non-invasive approach to assess adrenocortical function as a measure of stress would be preferable, as animals are not disturbed during sample collection, and therefore sampling is feedback-free. So far, however, such a non-invasive method has not been established for any crocodilian species. As an initial step, we therefore examined the suitability of two enzyme-immunoassays, detecting faecal glucocorticoid metabolites (FGMs) with a 11β,21-diol-20-one and 5β-3α-ol-11-one structure, respectively, for monitoring stress-related physiological responses in captive Nile crocodiles (Crocodylus niloticus). An adrenocorticotropic hormone (ACTH) challenge was performed on 10 sub-adult crocodiles, resulting in an overall increase in serum corticosterone levels of 272% above the pre-injection levels 5h post-injection. Saline-treated control animals (n=8) showed an overall increase of 156% in serum corticosterone levels 5h post-administration. Faecal samples pre- and post-injection could be obtained from three of the six individually housed crocodiles, resulting in FGM concentrations 136-380% above pre-injection levels, always detected in the first sample collected post-treatment (7-15 days post-injection). FGM concentrations seem comparatively stable at ambient temperatures for up to 72 h post-defaecation. In conclusion, non-invasive hormone monitoring can be used for assessing adrenocortical function in captive Nile crocodiles based on FGM analysis.

  12. Non-invasive optical detection of glucose in cell culture nutrient medium (United States)

    Cote, Gerald L.


    The objective of the proposed research was to begin the development of a non-invasive optical sensor for measuring glucose concentration in the output medium of cell cultures grown in a unique NASA bioreactor referred to as an integrated rotating-wall vessel (IRWV). The input, a bovine serum based nutrient media, has a known glucose concentration. The cells within the bioreactor digest a portion of the glucose. Thus, the non-invasive optical sensor is needed to monitor the decrease in glucose due to cellular consumption since the critical parameters for sustained cellular productivity are glucose and pH. Previous glucose sensing techniques have used chemical reactions to quantify the glucose concentration. Chemical reactions, however, cannot provide for continuous, real time, non-invasive measurement as is required in this application. Our effort while in the fellowship program was focused on the design, optical setup, and testing of one bench top prototype non-invasive optical sensor using a mid-infrared absorption spectroscopy technique. Glucose has a fundamental vibrational absorption peak in the mid-infrared wavelength range at 9.6 micron. Preliminary absorption data using a CO2 laser were collected at this wavelength for water based glucose solutions at different concentrations and one bovine serum based nutrient medium (GTSF) with added glucose. The results showed near linear absorption responses for the glucose-in-water data with resolutions as high at 108 mg/dl and as low as 10 mg/dl. The nutrient medium had a resolution of 291 mg/dl. The variability of the results was due mainly to thermal and polarization drifts of the laser while the decrease in sensitivity to glucose in the nutrient medium was expected due to the increase in the number of confounders present in the nutrient medium. A multispectral approach needs to be used to compensate for these confounders. The CO2 laser used for these studies was wavelength tunable (9.2 to 10.8 micrometers), however

  13. Non-invasive electrocardiogram detection of in vivo zebrafish embryos using electric potential sensors (United States)

    Rendon-Morales, E.; Prance, R. J.; Prance, H.; Aviles-Espinosa, R.


    In this letter, we report the continuous detection of the cardiac electrical activity in embryonic zebrafish using a non-invasive approach. We present a portable and cost-effective platform based on the electric potential sensing technology, to monitor in vivo electrocardiogram activity from the zebrafish heart. This proof of principle demonstration shows how electrocardiogram measurements from the embryonic zebrafish may become accessible by using electric field detection. We present preliminary results using the prototype, which enables the acquisition of electrophysiological signals from in vivo 3 and 5 days-post-fertilization zebrafish embryos. The recorded waveforms show electrocardiogram traces including detailed features such as QRS complex, P and T waves.

  14. Non-Invasive Microwave Sensors for Biomedical Applications: New Design Perspectives

    Directory of Open Access Journals (Sweden)

    S. Costanzo


    Full Text Available The basic operation principles of non-invasive microwave sensors are summarized in this work, with specific emphasis on health-care systems applications. Design criteria to achieve reliable results in terms of biological parameters detection are specifically highlighted. In particular, the importance to adopt accurate frequency models for the complex permittivity (in terms of both dielectric constant as well as loss tangent in the synthesis procedure of the microwave sensor is clearly motivated. Finally, an application example of the outlined new perspectives in the framework of glucose monitoring to face diabete disease is deeply discussed.

  15. Transport and Non-Invasive Position Detection of Electron Beams from Laser-Plasma Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Osterhoff, Jens; Sokollik, Thomas; Nakamura, Kei; Bakeman, Michael; Weingartner, R; Gonsalves, Anthony; Shiraishi, Satomi; Lin, Chen; vanTilborg, Jeroen; Geddes, Cameron; Schroeder, Carl; Esarey, Eric; Toth, Csaba; DeSantis, Stefano; Byrd, John; Gruner, F; Leemans, Wim


    The controlled imaging and transport of ultra-relativistic electrons from laser-plasma accelerators is of crucial importance to further use of these beams, e.g. in high peak-brightness light sources. We present our plans to realize beam transport with miniature permanent quadrupole magnets from the electron source through our THUNDER undulator. Simulation results demonstrate the importance of beam imaging by investigating the generated XUV-photon flux. In addition, first experimental findings of utilizing cavity-based monitors for non-invasive beam-position measurements in a noisy electromagnetic laser-plasma environment are discussed.

  16. Skin Rejuvenation with Non-Invasive Pulsed Electric Fields (United States)

    Golberg, Alexander; Khan, Saiqa; Belov, Vasily; Quinn, Kyle P.; Albadawi, Hassan; Felix Broelsch, G.; Watkins, Michael T.; Georgakoudi, Irene; Papisov, Mikhail; Mihm, Martin C., Jr.; Austen, William G., Jr.; Yarmush, Martin L.


    Degenerative skin diseases affect one third of individuals over the age of sixty. Current therapies use various physical and chemical methods to rejuvenate skin; but since the therapies affect many tissue components including cells and extracellular matrix, they may also induce significant side effects, such as scarring. Here we report on a new, non-invasive, non-thermal technique to rejuvenate skin with pulsed electric fields. The fields destroy cells while simultaneously completely preserving the extracellular matrix architecture and releasing multiple growth factors locally that induce new cells and tissue growth. We have identified the specific pulsed electric field parameters in rats that lead to prominent proliferation of the epidermis, formation of microvasculature, and secretion of new collagen at treated areas without scarring. Our results suggest that pulsed electric fields can improve skin function and thus can potentially serve as a novel non-invasive skin therapy for multiple degenerative skin diseases.

  17. Non-invasive matrices in human biomonitoring: a review. (United States)

    Esteban, Marta; Castaño, Argelia


    Humans and other living organisms are exposed to a variety of chemical pollutants that are released into the environment as a consequence of anthropogenic activities. Environmental pollutants are incorporated into the organism by different routes and can then be stored and distributed in different tissues, which leads to an internal concentration that can induce different alterations, adverse effects and/or diseases. Control measures should be taken to avoid these effects and human biomonitoring is a very useful tool that can contribute to this aim. Human biomonitoring uses different matrices to measure the target chemicals depending on the chemical, the amount of matrix necessary for the analysis and the detection limit (LOD) of the analytical technique. Blood is the ideal matrix for most chemicals due to its contact with the whole organism and its equilibrium with organs and tissues where chemicals are stored. However, it has an important disadvantage of being an invasive matrix. The development of new methodology and modern analytical techniques has allowed the use of other matrices that are less or non-invasive, such as saliva, urine, meconium, nails, hair, and semen or breast milk. The presence of a chemical in these matrices reflects an exposure, but correlations between levels in non-invasive matrices and blood must be established to ensure that these levels are related to the total body burden. The development of new biomarkers that are measurable in these matrices will improve non-invasive biomonitoring. This paper reviews studies that measure Cd, Pb, Hg, polychlorinated biphenyls (PCBs), polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), polycyclic aromatic hydrocarbons (PAHs), polybrominated diphenyl ethers (PBDEs), organochlorine pesticides and phthalates in non-invasive matrices, the most used techniques for measurements and what alternative techniques are available.

  18. Invasive versus non-invasive diagnosis of renal bone disease. (United States)

    Fournier, A; Oprisiu, R; Said, S; Sechet, A; Ghazali, A; Marié, A; el Esper, I; Brazier, M; Achard, J M; Morinière, P


    At present, bone histomorphometry remains the gold standard for the diagnosis of the various types of renal bone disease. In the search for a non-invasive method of diagnosis, biochemical serum markers of bone remodelling, in addition to serum intact parathyroid hormone and aluminium determinations, have been proposed as the most reliable tools and are at present widely used in clinical practice. Their respective diagnostic values, as separate items and in combined analysis, are thoroughly discussed in the present review.

  19. Anaphylaxis Imaging: Non-Invasive Measurement of Surface Body Temperature and Physical Activity in Small Animals.

    Directory of Open Access Journals (Sweden)

    Krisztina Manzano-Szalai

    Full Text Available In highly sensitized patients, the encounter with a specific allergen from food, insect stings or medications may rapidly induce systemic anaphylaxis with potentially lethal symptoms. Countless animal models of anaphylaxis, most often in BALB/c mice, were established to understand the pathophysiology and to prove the safety of different treatments. The most common symptoms during anaphylactic shock are drop of body temperature and reduced physical activity. To refine, improve and objectify the currently applied manual monitoring methods, we developed an imaging method for the automated, non-invasive measurement of the whole-body surface temperature and, at the same time, of the horizontal and vertical movement activity of small animals. We tested the anaphylaxis imaging in three in vivo allergy mouse models for i milk allergy, ii peanut allergy and iii egg allergy. These proof-of-principle experiments suggest that the imaging technology represents a reliable non-invasive method for the objective monitoring of small animals during anaphylaxis over time. We propose that the method will be useful for monitoring diseases associated with both, changes in body temperature and in physical behaviour.

  20. [What non invasive haemodynamic assessment in paediatric intensive care unit in 2009?]. (United States)

    Brissaud, O; Guichoux, J; Villega, F; Orliaguet, G


    The haemodynamic assessment of the patients is a daily activity in paediatric intensive care unit. It completes and is guided by the clinical examination. The will to develop the least invasive possible coverage of the patients is a constant concern. The haemodynamic monitoring, all the more if it is invasive, ceaselessly has to put in balance the profit and the risk of beginning this technique at a fragile patient. In the last three decades, numerous non-invasive haemodynamic tools were developed. The ideal one must be reliable, reproducible, with a time of fast, easily useful answer, with a total harmlessness, cheap and allowing a monitoring continues. Among all the existing tools (oesophageal Doppler ultrasound method, transthoracic echocardiography, NICO, thoracic impedancemetry, plethysmography, sublingual capnography), no one allies all these qualities. We can consider that the transthoracic echocardiography gets closer to most of these objectives. We shall blame it for its cost and for the fact that it is an intermittent monitoring but both in the diagnosis and in the survey, it has no equal among the non-invasive tools of haemodynamic assessment from part the quality and the quantity of the obtained information. The learning of the basic functions (contractility evaluation, cardiac output, cardiac and the vascular filling) useful for the start of a treatment is relatively well-to-do. We shall miss the absence of training in this tool in France in its paediatric and neonatal specificity within the university or interuniversity framework.

  1. Prediction of human core body temperature using non-invasive measurement methods (United States)

    Niedermann, Reto; Wyss, Eva; Annaheim, Simon; Psikuta, Agnes; Davey, Sarah; Rossi, René Michel


    The measurement of core body temperature is an efficient method for monitoring heat stress amongst workers in hot conditions. However, invasive measurement of core body temperature (e.g. rectal, intestinal, oesophageal temperature) is impractical for such applications. Therefore, the aim of this study was to define relevant non-invasive measures to predict core body temperature under various conditions. We conducted two human subject studies with different experimental protocols, different environmental temperatures (10 °C, 30 °C) and different subjects. In both studies the same non-invasive measurement methods (skin temperature, skin heat flux, heart rate) were applied. A principle component analysis was conducted to extract independent factors, which were then used in a linear regression model. We identified six parameters (three skin temperatures, two skin heat fluxes and heart rate), which were included for the calculation of two factors. The predictive value of these factors for core body temperature was evaluated by a multiple regression analysis. The calculated root mean square deviation (rmsd) was in the range from 0.28 °C to 0.34 °C for all environmental conditions. These errors are similar to previous models using non-invasive measures to predict core body temperature. The results from this study illustrate that multiple physiological parameters (e.g. skin temperature and skin heat fluxes) are needed to predict core body temperature. In addition, the physiological measurements chosen in this study and the algorithm defined in this work are potentially applicable as real-time core body temperature monitoring to assess health risk in broad range of working conditions.

  2. Near-Infrared Spectroscopy as a Novel Non-Invasive Tool to Assess Spiny Lobster Nutritional Condition.

    Directory of Open Access Journals (Sweden)

    Cedric J Simon

    Full Text Available Rapid non-invasive monitoring of spiny lobster nutritional condition has considerable application in the established fishery, live market and prospective aquaculture. The aim of this research was to test the feasibility of near-infrared spectroscopy (NIRS as a novel non-invasive tool to assess the nutritional condition of three lobster species. Lobster (n = 92 abdominal muscle dry matter (AMDM and carbon content (AMC correlated significantly with indices of nutritional condition including hepatopancreas dry matter (HPDM; rho = 0.83, 0.78, total lipid content (HPTL; rho = 0.85, 0.87 and haemolymph total protein (TP; rho = 0.89, 0.87 respectively. Abdominal muscle nitrogen content (AMN was a poor correlate of nutritional condition. Models based on FT-NIR scanning of whole lobster tails successfully predicted AMDM, AMN and AMC (RMSECV = 1.41%, 0.35% and 0.91%; R2 = 0.75, 0.65, 0.77, respectively, and to a lower accuracy HPDM, HPTL and TP (RMSECV = 6.22%, 8.37%, 18.4 g l-1; R2 = 0.51, 0.70, 0.83, respectively. NIRS was applied successfully to assess the condition of spiny lobsters non-invasively. This pilot study paves the way for the development of crustacean condition models using portable non-invasive devices in the laboratory or in the field.

  3. Non-Invasive Prenatal Diagnosis of Lethal Skeletal Dysplasia by Targeted Capture Sequencing of Maternal Plasma.

    Directory of Open Access Journals (Sweden)

    Shan Dan

    Full Text Available Since the discovery of cell-free foetal DNA in the plasma of pregnant women, many non-invasive prenatal testing assays have been developed. In the area of skeletal dysplasia diagnosis, some PCR-based non-invasive prenatal testing assays have been developed to facilitate the ultrasound diagnosis of skeletal dysplasias that are caused by de novo mutations. However, skeletal dysplasias are a group of heterogeneous genetic diseases, the PCR-based method is hard to detect multiple gene or loci simultaneously, and the diagnosis rate is highly dependent on the accuracy of the ultrasound diagnosis. In this study, we investigated the feasibility of using targeted capture sequencing to detect foetal de novo pathogenic mutations responsible for skeletal dysplasia.Three families whose foetuses were affected by skeletal dysplasia and two control families whose foetuses were affected by other single gene diseases were included in this study. Sixteen genes related to some common lethal skeletal dysplasias were selected for analysis, and probes were designed to capture the coding regions of these genes. Targeted capture sequencing was performed on the maternal plasma DNA, the maternal genomic DNA, and the paternal genomic DNA. The de novo pathogenic variants in the plasma DNA data were identified using a bioinformatical process developed for low frequency mutation detection and a strict variant interpretation strategy. The causal variants could be specifically identified in the plasma, and the results were identical to those obtained by sequencing amniotic fluid samples. Furthermore, a mean of 97% foetal specific alleles, which are alleles that are not shared by maternal genomic DNA and amniotic fluid DNA, were identified successfully in plasma samples.Our study shows that capture sequencing of maternal plasma DNA can be used to non-invasive detection of de novo pathogenic variants. This method has the potential to be used to facilitate the prenatal diagnosis

  4. Development of a Portable Non-Invasive Swallowing and Respiration Assessment Device

    Directory of Open Access Journals (Sweden)

    Wann-Yun Shieh


    Full Text Available Dysphagia is a condition that happens when a person cannot smoothly swallow food from the mouth to the stomach. It causes malnourishment in patients, or can even cause death due to aspiration pneumonia. Recently, more and more researchers have focused their attention on the importance of swallowing and respiration coordination, and the use of non-invasive assessment systems has become a hot research trend. In this study, we aimed to integrate the timing and pattern monitoring of respiration and swallowing by using a portable and non-invasive approach which can be applied at the bedside in hospitals or institutions, or in a home environment. In this approach, we use a force sensing resistor (FSR to detect the motions of the thyroid cartilage in the pharyngeal phase. We also use the surface electromyography (sEMG to detect the contraction of the submental muscle in the oral phase, and a nasal cannula to detect nasal airflow for respiration monitoring during the swallowing process. All signals are received and processed for swallowing event recognition. A total of 19 volunteers participated in the testing and over 57 measurements were made. The results show that the proposed approach can effectively distinguish the swallowing function in people of different ages and genders.

  5. Development of a portable non-invasive swallowing and respiration assessment device. (United States)

    Shieh, Wann-Yun; Wang, Chin-Man; Chang, Chia-Shuo


    Dysphagia is a condition that happens when a person cannot smoothly swallow food from the mouth to the stomach. It causes malnourishment in patients, or can even cause death due to aspiration pneumonia. Recently, more and more researchers have focused their attention on the importance of swallowing and respiration coordination, and the use of non-invasive assessment systems has become a hot research trend. In this study, we aimed to integrate the timing and pattern monitoring of respiration and swallowing by using a portable and non-invasive approach which can be applied at the bedside in hospitals or institutions, or in a home environment. In this approach, we use a force sensing resistor (FSR) to detect the motions of the thyroid cartilage in the pharyngeal phase. We also use the surface electromyography (sEMG) to detect the contraction of the submental muscle in the oral phase, and a nasal cannula to detect nasal airflow for respiration monitoring during the swallowing process. All signals are received and processed for swallowing event recognition. A total of 19 volunteers participated in the testing and over 57 measurements were made. The results show that the proposed approach can effectively distinguish the swallowing function in people of different ages and genders.

  6. Development of a Portable Non-Invasive Swallowing and Respiration Assessment Device † (United States)

    Shieh, Wann-Yun; Wang, Chin-Man; Chang, Chia-Shuo


    Dysphagia is a condition that happens when a person cannot smoothly swallow food from the mouth to the stomach. It causes malnourishment in patients, or can even cause death due to aspiration pneumonia. Recently, more and more researchers have focused their attention on the importance of swallowing and respiration coordination, and the use of non-invasive assessment systems has become a hot research trend. In this study, we aimed to integrate the timing and pattern monitoring of respiration and swallowing by using a portable and non-invasive approach which can be applied at the bedside in hospitals or institutions, or in a home environment. In this approach, we use a force sensing resistor (FSR) to detect the motions of the thyroid cartilage in the pharyngeal phase. We also use the surface electromyography (sEMG) to detect the contraction of the submental muscle in the oral phase, and a nasal cannula to detect nasal airflow for respiration monitoring during the swallowing process. All signals are received and processed for swallowing event recognition. A total of 19 volunteers participated in the testing and over 57 measurements were made. The results show that the proposed approach can effectively distinguish the swallowing function in people of different ages and genders. PMID:26024414

  7. Evaluation of optical coherence tomography as a non-invasive diagnostic tool in cutaneous wound healing. (United States)

    Kuck, Monika; Strese, Helene; Alawi, Seyed Arash; Meinke, Martina C; Fluhr, Joachim W; Burbach, Guido J; Krah, Martin; Sterry, Wolfram; Lademann, Jürgen


    The monitoring of wound-healing processes is indispensable for the therapeutic effectiveness and improved care of chronic wounds. Histological sections provide the best morphological assessment of wound recovery, but cause further tissue destruction and increase the risk of infection. Therefore, it is reasonable to apply a diagnostic tool that allows a non-invasive and reliable observation of morphological changes in wound healing. Optical coherence tomography (OCT) is an imaging technique for in vivo evaluation of skin diseases with a resolution close to histopathology. The aim of this study was to investigate whether OCT is suited to display the phases of wound healing. For this purpose, six patients with chronic wounds were objectively characterized by OCT during a period of 2 weeks. Comparable results between histological findings and OCT were achieved. OCT allowed the detection of partial loss of the epidermis, vasoconstriction, vasodilatation and epithelialization. Consequently, OCT could be a potential non-invasive diagnostic tool for the characterization and monitoring of cutaneous wound-healing processes over time. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Non-invasive chemically specific measurement of subsurface temperature in biological tissues using surface-enhanced spatially offset Raman spectroscopy. (United States)

    Gardner, Benjamin; Stone, Nicholas; Matousek, Pavel


    Here we demonstrate for the first time the viability of characterising non-invasively the subsurface temperature of SERS nanoparticles embedded within biological tissues using spatially offset Raman spectroscopy (SORS). The proposed analytical method (T-SESORS) is applicable in general to diffusely scattering (turbid) media and features high sensitivity and high chemical selectivity. The method relies on monitoring the Stokes and anti-Stokes bands of SERS nanoparticles in depth using SORS. The approach has been conceptually demonstrated using a SORS variant, transmission Raman spectroscopy (TRS), by measuring subsurface temperatures within a slab of porcine tissue (5 mm thick). Root-mean-square errors (RMSEs) of 0.20 °C were achieved when measuring temperatures over ranges between 25 and 44 °C. This unique capability complements the array of existing, predominantly surface-based, temperature monitoring techniques. It expands on a previously demonstrated SORS temperature monitoring capability by adding extra sensitivity stemming from SERS to low concentration analytes. The technique paves the way for a wide range of applications including subsurface, chemical-specific, non-invasive temperature analysis within turbid translucent media including: the human body, subsurface monitoring of chemical (e.g. catalytic) processes in manufacture quality and process control and research. Additionally, the method opens prospects for control of thermal treatment of cancer in vivo with direct non-invasive feedback on the temperature of mediating plasmonic nanoparticles.

  9. Comparison between invasive and non-invasive blood pressure in young, middle and old age. (United States)

    Liu, Bing; Li, Qiao; Qiu, Peng


    We aimed to compare simultaneous invasive and non-invasive blood pressure (IBP and NIBP) measurements in young, middle and old age using the data from the Multiparameter Intelligent Monitoring in Intensive Care II (MIMIC II) database. In total, 23,679 blood pressure measurements were extracted from 742 patients, divided into three groups of young, middle and old age. IBP-NIBP differences in systolic/diastolic blood pressure (SBP/DBP) were 0.1 ± 16.5 mmHg/11.0 ± 12.2 mmHg in young age, -2.9 ± 19.8 mmHg/6.9 ± 17.5 mmHg in middle age and -3.2 ± 29.3 mmHg/8.5 ± 19.8 mmHg in old age. The mean and standard deviation (SD) of invasive systolic blood pressure (ISBP)-non-invasive systolic blood pressure (NISBP) differences increased from young to middle then to old age, and the SD of invasive diastolic blood pressure (IDBP)-non-invasive diastolic blood pressure (NIDBP) differences also increased with age. In young, middle and old age, the correlation coefficients were 0.86, 0.79 and 0.53, respectively, between ISBP and NISBP, and 0.78, 0.78 and 0.41 between IDBP and NIDBP. In conclusion, IBP showed good correlation with NIBP in each age category. The agreement between IBP and NIBP measurements was influenced by age category.

  10. Suicide genes: monitoring cells in patients with a safety switch


    Eissenberg, Linda G.; Rettig, Michael; Dehdashti, Farrokh; Piwnica-Worms, David; John F. DiPersio


    Clinical trials increasingly incorporate suicide genes either as direct lytic agents for tumors or as safety switches in therapies based on genetically modified cells. Suicide genes can also be used as non-invasive reporters to monitor the biological consequences of administering genetically modified cells to patients and gather information relevant to patient safety. These genes can monitor therapeutic outcomes addressable by early clinical intervention. As an example, our recent clinical tr...

  11. Suicide genes: monitoring cells in patients with a safety switch


    Linda Groppe Eissenberg; Michael eRettig; Farrokh eDehdashti; David ePiwnica-Worms; John F. DiPersio


    Clinical trials increasingly incorporate suicide genes either as direct lytic agents for tumors or as safety switches in therapies based on genetically modified cells. Suicide genes can also be used as non-invasive reporters to monitor the biological consequences of administering genetically modified cells to patients and gather information relevant to patient safety. These genes can monitor therapeutic outcomes addressable by early clinical intervention. As an example, our recent clinical t...

  12. An alternative non-invasive treatment for Peyronie's disease

    Directory of Open Access Journals (Sweden)

    Joaquim A. Claro


    Full Text Available OBJECTIVE: Surgical correction of the deformity and plaque caused by Peyronie's disease has some important disadvantages and extracorporeal shockwave therapy (ESWT emerged as a new promising therapy. We evaluated prospectively the efficacy and safety of the association of high dose vitamin E and ESWT as a non-invasive treatment for the disease. MATERIALS AND METHODS: Twenty-five patients 42 to 68 years old (mean = 54 presenting penile deviation and sexual distress caused by Peyronie's disease were treated in a non-invasive manner. The time of penile deviation ranged from 16 to 52 months (mean = 30. All patients had previous unsuccessful treatment for Peyronie's disease. The angulation's deformity of the penis was assessed by photography at home. The patients received vitamin E (l.200 mg daily during 3 months and underwent 3 to 6 sessions (mean = 3 of ESWT (3,000 to 4,000 shockwaves at a power level of l to 2 at 1-week intervals. RESULTS: From 25 patients treated, 16 (64% reported an improvement in penile angulation, with a mean reduction of 21 degrees (10 to 40. Eight patients reported improvement in their spontaneous erections. Overall, the patients presented only minimal bruising at the site of treatment and skin hematoma. Four patients presented urethral bleeding. The mean angulation after treatment in the control group was 48.67 degrees (30 - 70 and in the study group was 24.42 degrees (0 - 70, statistically significant. CONCLUSION: Considering the common complications and the unsatisfactory outcome of the surgical correction for Peyronie's disease, the association of high dose vitamin E and ESWT represents a good option for a non-invasive, effective and safe treatment of the penile deformity.

  13. Non-invasive pulmonary function test on Morquio patients. (United States)

    Kubaski, Francyne; Tomatsu, Shunji; Patel, Pravin; Shimada, Tsutomu; Xie, Li; Yasuda, Eriko; Mason, Robert; Mackenzie, William G; Theroux, Mary; Bober, Michael B; Oldham, Helen M; Orii, Tadao; Shaffer, Thomas H


    In clinical practice, respiratory function tests are difficult to perform in Morquio syndrome patients due to their characteristic skeletal dysplasia, small body size and lack of cooperation of young patients, where in some cases, conventional spirometry for pulmonary function is too challenging. To establish feasible clinical pulmonary endpoints and determine whether age impacts lung function in Morquio patients non-invasive pulmonary tests and conventional spirometry were evaluated. The non-invasive pulmonary tests: impulse oscillometry system, pneumotachography, and respiratory inductance plethysmography in conjunction with conventional spirometry were evaluated in twenty-two Morquio patients (18 Morquio A and 4 Morquio B) (7 males), ranging from 3 to 40 years of age. Twenty-two patients were compliant with non-invasive tests (100%) with the exception of IOS (81.8%-18 patients). Seventeen patients (77.3%) were compliant with spirometry testing. All subjects had normal vital signs at rest including >95% oxygen saturation, end tidal CO2 (38-44 mmHg), and age-appropriate heart rate (mean=98.3, standard deviation=19) (two patients were deviated). All patients preserved normal values in the impulse oscillometry system, pneumotachography, and respiratory inductance plethysmography, although predicted forced expiratory total (72.8±6.9 SE%) decreased with age and was below normal; phase angle (35.5±16.5°), %rib cage (41.6±12.7%), resonant frequency, and forced expiratory volume in 1 s/forced expiratory volume total (110.0±3.2 SE%) were normal and not significantly impacted by age. The proposed non-invasive pulmonary function tests are able to cover a greater number of patients (young patients and/or wheel-chair bound), thus providing a new diagnostic approach for the assessment of lung function in Morquio syndrome which in many cases may be difficult to evaluate. Morquio patients studied herein demonstrated no clinical or functional signs of restrictive and

  14. PEEP in non invasive ventilatory treatment of worsened BPCO

    Directory of Open Access Journals (Sweden)

    Federico Lari


    Full Text Available Acute respiratory failure due to exacerbation of chronic pulmonary disease is usually treated with bilevel pressure non invasive ventilation. An high inspiratory pressure is used to improve tidal volume, a lower expiratory pressure is used to neutralize end expiratory positive pressure of patient (PEEPi caused by flow limitation and airway trapping. When ventilators for bilevel pressure ventilation are not available, is useful to administer to patient an external low (5cmH2O positive pressure with simple CPAP systems (Continuous Positive Airway Pressure, such as Venturi like flow generator largely available and well known everywhere.

  15. Biomechanics of subcellular structures by non-invasive Brillouin microscopy (United States)

    Antonacci, Giuseppe; Braakman, Sietse


    Cellular biomechanics play a pivotal role in the pathophysiology of several diseases. Unfortunately, current methods to measure biomechanical properties are invasive and mostly limited to the surface of a cell. As a result, the mechanical behaviour of subcellular structures and organelles remains poorly characterised. Here, we show three-dimensional biomechanical images of single cells obtained with non-invasive, non-destructive Brillouin microscopy with an unprecedented spatial resolution. Our results quantify the longitudinal elastic modulus of subcellular structures. In particular, we found the nucleoli to be stiffer than both the nuclear envelope (p biomechanics and its role in pathophysiology.

  16. Fast diffuse correlation spectroscopy (DCS) for non-invasive measurement of intracranial pressure (ICP) (Conference Presentation) (United States)

    Farzam, Parisa; Sutin, Jason; Wu, Kuan-Cheng; Zimmermann, Bernhard B.; Tamborini, Davide; Dubb, Jay; Boas, David A.; Franceschini, Maria Angela


    Intracranial pressure (ICP) monitoring has a key role in the management of neurosurgical and neurological injuries. Currently, the standard clinical monitoring of ICP requires an invasive transducer into the parenchymal tissue or the brain ventricle, with possibility of complications such as hemorrhage and infection. A non-invasive method for measuring ICP, would be highly preferable, as it would allow clinicians to promptly monitor ICP during transport and allow for monitoring in a larger number of patients. We have introduced diffuse correlation spectroscopy (DCS) as a non-invasive ICP monitor by fast measurement of pulsatile cerebral blood flow (CBF). The method is similar to Transcranial Doppler ultrasound (TCD), which derives ICP from the amplitude of the pulsatile cerebral blood flow velocity, with respect to the amplitude of the pulsatile arterial blood pressure. We believe DCS measurement is superior indicator of ICP than TCD estimation because DCS directly measures blood flow, not blood flow velocity, and the small cortical vessels measured by DCS are more susceptible to transmural pressure changes than the large vessels. For fast DCS measurements to recover pulsatile CBF we have developed a custom high-power long-coherent laser and a strategy for delivering it to the tissue within ANSI standards. We have also developed a custom FPGA-based correlator board, which facilitates DCS data acquisitions at 50-100 Hz. We have tested the feasibility of measuring pulsatile CBF and deriving ICP in two challenging scenarios: humans and rats. SNR is low in human adults due to large optode distances. It is similarly low in rats because the fast heart rate in this setting requires a high repetition rate.

  17. Continuous non-invasive measurement of total hemoglobin concentration during major liver resection by pulse co-oximetry

    NARCIS (Netherlands)

    Vos, Jaap Jan; Scheeren, Thomas; Struys, Michel; Hendriks, H.G.D.


    Background and Goal of Study: The Masimo Radical 7 (V7.6.0.1, Masimo Corp, Irvine, USA) pulse co-oximeter® uses multi-wave length spectrophotometric analysis (sensor R2-25) to calculate total hemoglobin concentration (SpHb). SpHb is monitored continuously and non-invasively, which may reveal advanta

  18. Non-invasive index of liver fibrosis induced by alcohol, thioacetamide and schistosomal infection in mice

    Directory of Open Access Journals (Sweden)

    El-Beltagy Doha M


    Full Text Available Abstract Background Non invasive approaches will likely be increasing utilized to assess liver fibrosis. This work provides a new non invasive index to predict liver fibrosis induced in mice. Methods Fibrosis was generated by thioacetamide (TAA, chronic intake of ethanol, or infection with S. mansoni in 240 mice. Both progression and regression of fibrosis (after treatment with silymarin and/or praziquantel were monitored. The following methods were employed: (i The METAVIR system was utilized to grade and stage liver inflammation and fibosis; (ii Determination of hepatic hydroxyproline and collagen; and (iii Derivation of a new hepatic fibrosis index from the induced changes, and its prospective validation in a group of 70 mice. Results The index is composed of 4 serum variable including total proteins, γ-GT, bilirubin and reduced glutathione (GSH, measured in diseased, treated and normal mice. These parameters were highly correlated with both the histological stage and the grade. They were combined in a logarithmic formula, which non-invasively scores the severity of liver fibrosis through a range (0 to 2, starting with healthy liver (corresponding to stage 0 to advanced fibrosis (corresponding stage 3.Receiver operating characteristic curves (ROC for the accuracy of the index to predict the histological stages demonstrated that the areas under the curve (AUC were 0.954, 0.979 and 0.99 for index values corresponding to histological stages 1, 2 and 3, respectively. Also, the index was correlated with stage and grade, (0.947 and 0.859, respectively. The cut off values that cover the range between stages 0-1, 1-2 and 2-3 are 0.4, 1.12 and 1.79, respectively. The results in the validation group confirmed the accuracy of the test. The AUROC was 0.869 and there was good correlation with the stage of fibrosis and grade of inflammation. Conclusion The index fulfils the basic criteria of non-invasive marker of liver fibrosis since it is liver

  19. Non-invasive structural and biomechanical imaging of the developing embryos (Conference Presentation) (United States)

    Zhang, Jitao; Wu, Chen; Raghunathan, Raksha; Larin, Kirill V.; Scarcelli, Giuliano


    Embryos undergo dramatic changes in size, shape, and mechanical properties during development, which is regulated by both genetic and environmental factors. Quantifying mechanical properties of different embryonic tissues may represent good metrics for the embryonic health and proper development. Alternations and structure coupled with biomechanical information may provide a way for early diagnosis and drug treatment of various congenital diseases. Many methods have been developed to determine the mechanical properties of the embryo, such as atomic force microscopy (AFM), ultrasound elastography (UE), and optical coherent elastography (OCE). However, AFM is invasive and time-consuming. While UE and OCE are both non-invasive methods, the spatial resolutions are limited to mm to sub-mm, which is not enough to observe the details inside the embryo. Brillouin microscopy can potentially enable non-invasive measurement of the mechanical properties of a sample by measuring the spectra of acoustically induced light scattering therein. It has fast speed ( 0.1 second per point) and high resolution (sub-micron), and thus has been widely investigated for biomedical application, such as single cell and tissue. In this work, we utilized this technique to characterize the mechanical property of an embryo. A 2D elasticity imaging of the whole body of an E8 embryo was acquired by a Brillouin microscopy, and the stiffness changes between different organs (such as brain, heart, and spine) were shown. The elasticity maps were correlated with structural information provided by OCT.

  20. A Non-invasive Prenatal Diagnosis Method: Free Fetal DNA in Maternal Plasma

    Directory of Open Access Journals (Sweden)

    Ebru Dundar Yenilmez


    Full Text Available Prenatal diagnosis for genetic diseases nowadays is still carried out by invasive procedures such as chorionic villus sampling, amniocentesis or cordocentesis. These techniques, however, accompanied with risk of fetal losses. Non-invasive prenatal diagnosis tests based on the analysis of fetal DNA in maternal plasma have potential to be a safer alternative to invasive methods. Non-invasive prenatal diagnosis has been a long-standing research theme in prenatal medicine. The discovery of cell-free fetal nucleic acids in maternal plasma in 1997 has opened new possibilities for noninvasive prenatal diagnosis. The measurement and detection of fetal DNA in maternal plasma and serum has led to clinical applications for the identification of fetal aneuploidies, pre-eclamptic pregnancies, noninvasive diagnosis of fetal Rhesus D genotype and some single gene disorders. The detection of fetal DNA sequences is a reality and could reduce the risk of invasive techniques for certain fetal disorders in the near future. [Archives Medical Review Journal 2013; 22(3.000: 317-334

  1. Infrared thermography: A non-invasive window into thermal physiology. (United States)

    Tattersall, Glenn J


    Infrared thermography is a non-invasive technique that measures mid to long-wave infrared radiation emanating from all objects and converts this to temperature. As an imaging technique, the value of modern infrared thermography is its ability to produce a digitized image or high speed video rendering a thermal map of the scene in false colour. Since temperature is an important environmental parameter influencing animal physiology and metabolic heat production an energetically expensive process, measuring temperature and energy exchange in animals is critical to understanding physiology, especially under field conditions. As a non-contact approach, infrared thermography provides a non-invasive complement to physiological data gathering. One caveat, however, is that only surface temperatures are measured, which guides much research to those thermal events occurring at the skin and insulating regions of the body. As an imaging technique, infrared thermal imaging is also subject to certain uncertainties that require physical modelling, which is typically done via built-in software approaches. Infrared thermal imaging has enabled different insights into the comparative physiology of phenomena ranging from thermogenesis, peripheral blood flow adjustments, evaporative cooling, and to respiratory physiology. In this review, I provide background and guidelines for the use of thermal imaging, primarily aimed at field physiologists and biologists interested in thermal biology. I also discuss some of the better known approaches and discoveries revealed from using thermal imaging with the objective of encouraging more quantitative assessment.

  2. Non-invasive Respiratory Support in Blunt Chest Injury

    Directory of Open Access Journals (Sweden)

    T. V. Lobus


    Full Text Available Objective. To optimize the results of treatment in patients with acute respiratory failure (ARF due to lung contusion, by using the methods of non-invasive mask respiratory support. Materials and methods. The study covered 31 patients with severe blunt chest injury, multiple costal fractures, and hypoxemic ARF. The patients underwent assisted ventilation (AV in the CPAP+PSV mode through a facial or nasal mask. Physiological parameters were recorded during non-invasive mask ventilation (NIMV in the stepwise fashion. A control group comprised 25 patients with the similar severity of injury and ARF who were given conventional AV.Results. In 67.7% of the study group patients, NIMV was effective in improving oxygenation and external respiration, without exerting negative hemodynamic effects. Endotracheal intubation and AV could be avoided in these patients. Comparison of the study and control groups revealed a significant reduction in the incidence of secondary pneumonias in the NIMV group and in the duration of treatment. Mask ventilation could decrease mortality from 44% in the control group to 9.7% in the NIMV group.Conclusion. NIMV applied to patients with hypoxemic ARF in the presence of lung contusion improves pulmonary function and, in the bulk of patients, allows endotracheal intubation and AV and consequently their associated complications. When mask ventilation is employed, management of patients becomes shorter and simpler and mortality rates substantially decrease. 

  3. Sleep-related breathing disorders and non-invasive ventilation

    Directory of Open Access Journals (Sweden)

    Agata Lax


    Full Text Available Non-invasive mechanical ventilation (NPPV was originally used in patients with acute respiratory impairment or exacerbations of chronic respiratory diseases, as an alternative to the endotracheal tube. Over the last thirty years NPPV has been also used at night in patients with stable chronic lung disease such as obstructive sleep apnea, the overlap syndrome (chronic obstructive pulmonary disease and obstructive sleep apnea, neuromuscular disorders, obesity-hypoventilation syndrome, and in other conditions such as sleep disorders associated with congestive heart failure (Cheyne-Stokes respiration. In this no-systematic review we discuss the different types of NPPV, the specific conditions in which they can be used and the indications, recommendations and evidence supporting the efficacy of NPPV. Optimizing patient acceptance and adherence to non-invasive ventilation treatment is challenging. The treatment of sleep-related disorders is a life-threatening condition. The optimal level of treatment should be determined in a sleep laboratory. Side effects directly affecting the patient’s adherence to treatment are known. The most common are nasopharyngeal symptoms including increased congestion and rhinorrhea; these effects are related to reduced humidity of inspired gas. Humidification of delivered gas may improve these symptoms.

  4. Non-invasive diagnostic imaging of colorectal liver metastases

    Institute of Scientific and Technical Information of China (English)

    Pier; Paolo; Mainenti; Federica; Romano; Laura; Pizzuti; Sabrina; Segreto; Giovanni; Storto; Lorenzo; Mannelli; Massimo; Imbriaco; Luigi; Camera; Simone; Maurea


    Colorectal cancer is one of the few malignant tumors in which synchronous or metachronous liver metastases [colorectal liver metastases(CRLMs)] may be treated with surgery. It has been demonstrated that resection of CRLMs improves the long-term prognosis. On the other hand, patients with un-resectable CRLMs may benefit from chemotherapy alone or in addition to liverdirected therapies. The choice of the most appropriate therapeutic management of CRLMs depends mostly on the diagnostic imaging. Nowadays, multiple non-invasive imaging modalities are available and those have a pivotal role in the workup of patients with CRLMs. Although extensive research has been performed with regards to the diagnostic performance of ultrasonography, computed tomography, positron emission tomography and magnetic resonance for the detection of CRLMs, the optimal imaging strategies for staging and follow up are still to be established. This largely due to the progressive technological and pharmacological advances which are constantly improving the accuracy of each imaging modality. This review describes the non-invasive imaging approaches of CRLMs reporting the technical features, the clinical indications, the advantages and the potential limitations of each modality, as well as including some information on the development of new imaging modalities, the role of new contrast media and the feasibility of using parametric image analysis as diagnostic marker of presence of CRLMs.

  5. Use of Doppler ultrasound for non-invasive urodynamic diagnosis

    Directory of Open Access Journals (Sweden)

    Hideo Ozawa


    Full Text Available Objectives: A totally non-invasive transperineal urodynamic technique using Doppler ultrasonography has been developed. Methods: Since normal urine does not have blood cells, urine was thought not to produce the Doppler effects. However, basic studies confirmed that the decrease of pressure at high velocity (Bernouilli effect caused dissolved gas to form microbubbles, which are detected by Doppler ultrasonography. Subjects sat and the probe was advanced via remote control to achieve gentle contact with the perineal skin. The digital uroflow data signals and the color Doppler ultrasound video images were processed on a personal computer. The flow-velocity curves from two sites; the distal prostatic urethra just above the external sphincter (V1 and the sphincteric urethra (V2 were plotted against time. The parameters of both the pressure-flow studies and the Doppler ultrasound urodynamic studies were compared in men who had various degrees of obstruction. Results: Functional cross-sectional area at prostatic urethra (A1, calculated by Q max /V1, was lower in the group of bladder outlet obstruction (BOO vs. control group. Velocity ratio (VR, which was calculated by V1/V2, was the parameter having the best correlation with BOO index, though A1 had a similar correlation. This method is viable to diagnose the degree of BOO. Conclusions: The development of non-invasive Doppler ultrasound videourodynamics (Doppler UDS will dramatically expand the information on voiding function.

  6. Influence of hemoglobin on non-invasive optical bilirubin sensing (United States)

    Jiang, Jingying; Gong, Qiliang; Zou, Da; Xu, Kexin


    Since the abnormal metabolism of bilirubin could lead to diseases in the human body, especially the jaundice which is harmful to neonates. Traditional invasive measurements are difficult to be accepted by people because of pain and infection. Therefore, the real-time and non-invasive measurement of bilirubin is of great significance. However, the accuracy of currently transcutaneous bilirubinometry(TcB) is generally not high enough, and affected by many factors in the human skin, mostly by hemoglobin. In this talk, absorption spectra of hemoglobin and bilirubin have been collected and analyzed, then the Partial Least Squares (PLS) models have been built. By analyzing and comparing the Correlation and Root Mean Square Error of Prediction(RMSEP), the results show that the Correlation of bilirubin solution model is larger than that of the mixture solution added with hemoglobin, and its RMSEP value is smaller than that of mixture solution. Therefore, hemoglobin has influences on the non-invasive optical bilirubin sensing. In next step, it is necessary to investigate how to eliminate the influence.

  7. Non-invasive measurement of oxygen diffusion in model foods. (United States)

    Bhunia, Kanishka; Sablani, Shyam S; Tang, Juming; Rasco, Barbara


    In this study, we developed a non-invasive method to determine oxygen diffusivity (DO2) in food gels using an Oxydot luminescence sensor. We designed and fabricated a transparent diffusion cell in order to represent oxygen transfer into foods packaged in an 8-ounce polymeric tray. Oxydots were glued to the sides (side-dot) and bottom (bottom-dot) of the cell and filled with 1, 2, and 3% (w/v) agar gel as a model food. After deoxygenation, local oxygen concentrations in the gels were measured non-invasively at 4, 12 and 22°C. Effective oxygen diffusivities in gels (DO2g) and water (DO2w) were obtained after fitting experimental data to the analytical solution (data from side-dot) and the numerical solution (data from bottom-dot) to Fick's second law. Temperature had significant positive influence (P0.05) was found between the activation energy (Ea) of water and gels (1-3% w/v) for temperatures ranging from 4 to 22°C. We used a combined obstruction and hydrodynamic model to explain why DO2g decreased as gel concentration increased. The method developed in this study can be used to study the oxygen diffusivity in foods. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Non-invasive assessment of the liver using imaging (United States)

    Thorling Thompson, Camilla; Wang, Haolu; Liu, Xin; Liang, Xiaowen; Crawford, Darrell H.; Roberts, Michael S.


    Chronic liver disease causes 2,000 deaths in Australia per year and early diagnosis is crucial to avoid progression to cirrhosis and end stage liver disease. There is no ideal method to evaluate liver function. Blood tests and liver biopsies provide spot examinations and are unable to track changes in function quickly. Therefore better techniques are needed. Non-invasive imaging has the potential to extract increased information over a large sampling area, continuously tracking dynamic changes in liver function. This project aimed to study the ability of three imaging techniques, multiphoton and fluorescence lifetime imaging microscopy, infrared thermography and photoacoustic imaging, in measuring liver function. Collagen deposition was obvious in multiphoton and fluorescence lifetime imaging in fibrosis and cirrhosis and comparable to conventional histology. Infrared thermography revealed a significantly increased liver temperature in hepatocellular carcinoma. In addition, multiphoton and fluorescence lifetime imaging and photoacoustic imaging could both track uptake and excretion of indocyanine green in rat liver. These results prove that non-invasive imaging can extract crucial information about the liver continuously over time and has the potential to be translated into clinic in the assessment of liver disease.

  9. Non-invasive diagnostic imaging of colorectal liver metastases. (United States)

    Mainenti, Pier Paolo; Romano, Federica; Pizzuti, Laura; Segreto, Sabrina; Storto, Giovanni; Mannelli, Lorenzo; Imbriaco, Massimo; Camera, Luigi; Maurea, Simone


    Colorectal cancer is one of the few malignant tumors in which synchronous or metachronous liver metastases [colorectal liver metastases (CRLMs)] may be treated with surgery. It has been demonstrated that resection of CRLMs improves the long-term prognosis. On the other hand, patients with un-resectable CRLMs may benefit from chemotherapy alone or in addition to liver-directed therapies. The choice of the most appropriate therapeutic management of CRLMs depends mostly on the diagnostic imaging. Nowadays, multiple non-invasive imaging modalities are available and those have a pivotal role in the workup of patients with CRLMs. Although extensive research has been performed with regards to the diagnostic performance of ultrasonography, computed tomography, positron emission tomography and magnetic resonance for the detection of CRLMs, the optimal imaging strategies for staging and follow up are still to be established. This largely due to the progressive technological and pharmacological advances which are constantly improving the accuracy of each imaging modality. This review describes the non-invasive imaging approaches of CRLMs reporting the technical features, the clinical indications, the advantages and the potential limitations of each modality, as well as including some information on the development of new imaging modalities, the role of new contrast media and the feasibility of using parametric image analysis as diagnostic marker of presence of CRLMs.

  10. Non-invasive means of measuring hepatic fat content

    Institute of Scientific and Technical Information of China (English)

    Sanjeev R Mehta; E Louise Thomas; Jimmy D Bell; Desmond G Johnston; Simon D Taylor-Robinson


    Hepatic steatosis affects 20% to 30% of the general adult population in the western world. Currently, the technique of choice for determining hepatic fat deposition and the stage of fibrosis is liver biopsy. However, it is an invasive procedure and its use is limited, particularly in children. It may also be subject to sampling error. Non-invasive techniques such as ultrasound, computerised tomography (CT), magnetic resonance imaging (MRI) and proton magnetic resonance spectroscopy (1H MRS) can detect hepatic steatosis, but currently cannot distinguish between simple steatosis and steatohepatitis, or stage the degree of fibrosis accurately. Ultrasound is widely used to detect hepatic steatosis, but its sensitivity is reduced in the morbidly obese and also in those with small amounts of fatty infiltration. It has been used to grade hepatic fat content, but this is subjective. CT can detect hepatic steatosis, but exposes subjects to ionising radiation, thus limiting its use in longitudinal studies and in children. Recently, magnetic resonance (MR) techniques using chemical shift imaging have provided a quantitative assessment of the degree of hepatic fatty infiltration, which correlates well with liver biopsy results in the same patients. Similarly, in vivo 1H MRS is a fast, safe, non-invasive method for the quantification of intrahepatocellular lipid (IHCL) levels. Both techniques will be useful tools in future longitudinal clinical studies, either in examining the natural history of conditions causing hepatic steatosis(e.g. non-alcoholic fatty liver disease), or in testing new treatments for these conditions.

  11. Modulation of Untruthful Responses with Non-Invasive Brain Stimulation (United States)

    Fecteau, Shirley; Boggio, Paulo; Fregni, Felipe; Pascual-Leone, Alvaro


    Deceptive abilities have long been studied in relation to personality traits. More recently, studies explored the neural substrates associated with deceptive skills suggesting a critical role of the prefrontal cortex. Here we investigated whether non-invasive brain stimulation over the dorsolateral prefrontal cortex (DLPFC) could modulate generation of untruthful responses about subject’s personal life across contexts (i.e., deceiving on guilt-free questions on daily activities; generating previously memorized lies about past experience; and producing spontaneous lies about past experience), as well as across modality responses (verbal and motor responses). Results reveal that real, but not sham, transcranial direct current stimulation (tDCS) over the DLPFC can reduce response latency for untruthful over truthful answers across contexts and modality responses. Also, contexts of lies seem to incur a different hemispheric laterality. These findings add up to previous studies demonstrating that it is possible to modulate some processes involved in generation of untruthful answers by applying non-invasive brain stimulation over the DLPFC and extend these findings by showing a differential hemispheric contribution of DLPFCs according to contexts. PMID:23550273

  12. Clinical role of non-invasive assessment of portal hypertension. (United States)

    Bolognesi, Massimo; Di Pascoli, Marco; Sacerdoti, David


    Measurement of portal pressure is pivotal in the evaluation of patients with liver cirrhosis. The measurement of the hepatic venous pressure gradient represents the reference method by which portal pressure is estimated. However, it is an invasive procedure that requires significant hospital resources, including experienced staff, and is associated with considerable cost. Non-invasive methods that can be reliably used to estimate the presence and the degree of portal hypertension are urgently needed in clinical practice. Biochemical and morphological parameters have been proposed for this purpose, but have shown disappointing results overall. Splanchnic Doppler ultrasonography and the analysis of microbubble contrast agent kinetics with contrast-enhanced ultrasonography have shown better accuracy for the evaluation of patients with portal hypertension. A key advancement in the non-invasive evaluation of portal hypertension has been the introduction in clinical practice of methods able to measure stiffness in the liver, as well as stiffness/congestion in the spleen. According to the data published to date, it appears to be possible to rule out clinically significant portal hypertension in patients with cirrhosis (i.e., hepatic venous pressure gradient ≥ 10 mmHg) with a level of clinically-acceptable accuracy by combining measurements of liver stiffness and spleen stiffness along with Doppler ultrasound evaluation. It is probable that the combination of these methods may also allow for the identification of patients with the most serious degree of portal hypertension, and ongoing research is helping to ensure progress in this field.


    There has been little discussion about how to apply population genetics methods to monitor the spread of transgenes that are detected outside the agricultural populations where they are deployed. Population geneticists have developed tools for analyzing the genetic makeup of indi...

  14. Non-invasive temperature measurement by using phase changes in electromagnetic waves in a cavity resonator. (United States)

    Ishihara, Yasutoshi; Ohwada, Hiroshi


    To improve the efficacy of hyperthermia treatment, a novel method of non-invasive measurement of changes in body temperature is proposed. The proposed method is based on phase changes with temperature in electromagnetic waves in a heating applicator and the temperature dependence of the dielectric constant. An image of the temperature change inside a body is reconstructed by applying a computed tomography algorithm. This method can be combined easily with a heating applicator based on a cavity resonator and can be used to treat cancer effectively while non-invasively monitoring the heating effect. In this paper the phase change distributions of electromagnetic waves with temperature changes are measured experimentally, and the accuracy of reconstruction is discussed. The phase change distribution is reconstructed by using a prototype system with a rectangular aluminum cavity resonator that can be rotated 360° around an axis of rotation. To make measurements without disturbing the electromagnetic field distribution, an optical electric field sensor is used. The phase change distribution is reconstructed from 4-projection data by using a simple back-projection algorithm. The paper demonstrates that the phase change distribution can be reconstructed. The difference between phase changes obtained experimentally and by numerical analysis is about 20% and is related mainly to the limited signal detection sensitivity of electromagnetic waves. A temperature change inside an object can be reconstructed from the measured phase changes in a cavity resonator.

  15. Non-invasive aerosol delivery and transport of gold nanoparticles to the brain (United States)

    Raliya, Ramesh; Saha, Debajit; Chadha, Tandeep S.; Raman, Baranidharan; Biswas, Pratim


    Targeted delivery of nanoscale carriers containing packaged payloads to the central nervous system has potential use in many diagnostic and therapeutic applications. Moreover, understanding of the bio-interactions of the engineered nanoparticles used for tissue-specific delivery by non-invasive delivery approaches are also of paramount interest. Here, we have examined this issue systematically in a relatively simple invertebrate model using insects. We synthesized 5 nm, positively charged gold nanoparticles (AuNPs) and targeted their delivery using the electrospray aerosol generator. Our results revealed that after the exposure of synthesized aerosol to the insect antenna, AuNPs reached the brain within an hour. Nanoparticle accumulation in the brain increased linearly with the exposure time. Notably, electrophysiological recordings from neurons in the insect brain several hours after exposure did not show any significant alterations in their spontaneous and odor-evoked spiking properties. Taken together, our findings reveal that aerosolized delivery of nanoparticles can be an effective non-invasive approach for delivering nanoparticles to the brain, and also presents an approach to monitor the short-term nano-biointeractions. PMID:28300204

  16. A non-invasive study of alopecia in Japanese macaques Macaca fuscata

    Institute of Scientific and Technical Information of China (English)

    Peng ZHANG


    This article provides information on the phenomenon of alopecia in Japanese macaques, Macaca fuscata, in various environments and proposes a 3-step scoring system for a quantitative assessment of hair loss. Results suggest that alopecia is commonly observed in Japanese macaques, with 20.5% of individuals showing head alopecia and 4.7% showing back alopecia across eight study groups. Alopecia was more commonly observed in adult females (30.8% individuals showing head alopecia and 15.3% showing back alopecia) than in other age-sex classes. Seasonal variation of back alopecia was noted, in particular, individuals with patchy back hair were more frequently observed in winter than in summer. Seasonal variation was not observed in head hair. The distribution of alopecia was also different among study groups. The wild population generally had better hair condition than provisioned populations and captive populations. The present study used a non-invasive alopecia scoring system which can be a useful, rapid and non-invasive tool to monitor animal health and well-being at a population level.

  17. Robust, non-invasive methods for metering groundwater well extraction in remote environments (United States)

    Bulovic, Nevenka; Keir, Greg; McIntyre, Neil


    Quantifying the rate of extraction from groundwater wells can be essential for regional scale groundwater management and impact assessment. This is especially the case in regions heavily dependent on groundwater such as the semi-arid Surat and Bowen Basins in Queensland, Australia. Of the 30 000+ groundwater wells in this area, the majority of which are used for stock watering and domestic purposes, almost none have flow metering devices installed. As part of a research project to estimate regional groundwater extraction, we have undertaken a small scale flow metering program on a selected set of wells. Conventional in-line flow meters were unsuitable for our project, as both non-invasiveness and adaptability / suitability to a variety of discharge pipe characteristics was critical. We describe the use of two metering technologies not widely used in groundwater applications, non-invasive, clamp-on ultrasonic transit time flow meters and tipping bucket flow meters, as semi-permanent installations on discharge pipes of various artesian and sub-artesian groundwater wells. We present examples of detailed extraction rate time-series, which are of particular value in developing predictive models of water well extraction in data limited areas where water use dynamics and drivers are poorly understood. We conclude by discussing future project trajectories, which include expansion of the monitoring network through development of novel metering techniques and telemetry across large areas of poor connectivity.

  18. In vivo non-invasive multiphoton tomography of human skin (United States)

    König, Karsten; Riemann, Iris; Ehlers, Alexander; Le Harzic, Ronan


    High resolution non-invasive 3D imaging devices are required to detect pathogenic microorganisms such as Anthrax spores, bacteria, viruses, fungi and chemical agents entering biological tissues such as the epidermis. Due to the low light penetration depth and the biodamage potential, ultraviolet light sources can not be employed to realize intratissue imaging of bio- and chemohazards. We report on the novel near infrared laser technology multiphoton tomography and the high resolution 4D imaging tool DermaInspect for non-invasive detection of intratissue agents and their influence on cellular metabolism based on multiphoton autofluorescence imaging (MAI) and second harmonic generation (SHG). Femtosecond laser pulses in the spectral range of 750 nm to 850 nm have been used to image in vivo human skin with subcellular spatial and picosecond temporal resolution. The non-linear induced autofluorescence of both, skin tissues and microorganisms, originates mainly from naturally endogenous fluorophores/protein structures like NAD(P)H, flavins, keratin, collagen, elastin, porphyrins and melanin. Bacteria emit in the blue/green spectral range due to NAD(P)H and flavoproteins and, in certain cases, in the red spectral range due to the biosynthesis of Zn-porphyrins, coproporphyrin and protoporphyrin. Collagen and exogenous non-centrosymmetric molecules can be detected by SHG signals. The system DermaInspect consists of a wavelength-tunable compact 80/90 MHz Ti:sapphire laser, a scan module with galvo scan mirrors, piezo-driven objective, fast photon detector and time-resolved single photon counting unit. It can be used to perform optical sectioning and 3D autofluorescence lifetime imaging (τ-mapping) with 1 μm spatial resolution and 270 ps temporal resolution. The parameter fluorescence lifetime depends on the type of fluorophore and its microenvironment and can be used to distinguish bio- and chemohazards from cellular background and to gain information for pathogen

  19. Blow collection as a non-invasive method for measuring cortisol in the beluga (Delphinapterus leucas.

    Directory of Open Access Journals (Sweden)

    Laura A Thompson

    Full Text Available Non-invasive sampling techniques are increasingly being used to monitor glucocorticoids, such as cortisol, as indicators of stressor load and fitness in zoo and wildlife conservation, research and medicine. For cetaceans, exhaled breath condensate (blow provides a unique sampling matrix for such purposes. The purpose of this work was to develop an appropriate collection methodology and validate the use of a commercially available EIA for measuring cortisol in blow samples collected from belugas (Delphinapterus leucas. Nitex membrane stretched over a petri dish provided the optimal method for collecting blow. A commercially available cortisol EIA for measuring human cortisol (detection limit 35 pg ml-1 was adapted and validated for beluga cortisol using tests of parallelism, accuracy and recovery. Blow samples were collected from aquarium belugas during monthly health checks and during out of water examination, as well as from wild belugas. Two aquarium belugas showed increased blow cortisol between baseline samples and 30 minutes out of water (Baseline, 0.21 and 0.04 µg dl-1; 30 minutes, 0.95 and 0.14 µg dl-1. Six wild belugas also showed increases in blow cortisol between pre and post 1.5 hour examination (Pre 0.03, 0.23, 0.13, 0.19, 0.13, 0.04 µg dl-1, Post 0.60, 0.31, 0.36, 0.24, 0.14, 0.16 µg dl-1. Though this methodology needs further investigation, this study suggests that blow sampling is a good candidate for non-invasive monitoring of cortisol in belugas. It can be collected from both wild and aquarium animals efficiently for the purposes of health monitoring and research, and may ultimately be useful in obtaining data on wild populations, including endangered species, which are difficult to handle directly.

  20. Real-time and non-invasive measurements of cell mechanical behaviour with optical coherence phase microscopy (United States)

    Gillies, D.; Gamal, W.; Downes, A.; Reinwald, Y.; Yang, Y.; El Haj, A.; Bagnaninchi, P. O.


    There is an unmet need in tissue engineering for non-invasive, label-free monitoring of cell mechanical behaviour in their physiological environment. Here, we describe a novel optical coherence phase microscopy (OCPM) set-up which can map relative cell mechanical behaviour in monolayers and 3D systems non-invasively, and in real-time. 3T3 and MCF-7 cells were investigated, with MCF-7 demonstrating an increased response to hydrostatic stimulus indicating MCF-7 being softer than 3T3. Thus, OCPM shows the ability to provide qualitative data on cell mechanical behaviour. Quantitative measurements of 6% agarose beads have been taken with commercial Cell Scale Microsquisher system demonstrating that their mechanical properties are in the same order of magnitude of cells, indicating that this is an appropriate test sample for the novel method described.

  1. [Non-invasive prenatal testing: challenges for future implementation]. (United States)

    Henneman, Lidewij; Page-Chrisiaens, G C M L Lieve; Oepkes, Dick


    The non-invasive prenatal test (NIPT) is an accurate and safe test in which blood from the pregnant woman is used to investigate if the unborn child possibly has trisomy 21 (Down's syndrome), trisomy 18 (Edwards' syndrome) or trisomy 13 (Patau syndrome). Since April 2014 the NIPT has been available in the Netherlands as part of the TRIDENT implementation project for those in whom the first trimester combined test showed an elevated risk (> 1:200) of trisomy, or on medical indication, as an alternative to chorionic villous sampling or amniocentesis. Since the introduction of the NIPT the use of these invasive tests, which are associated with a risk of miscarriage, has fallen steeply. The NIPT may replace the combined test. Also the number of conditions that is tested for can be increased. Modification of current prenatal screening will require extensive discussion, but whatever the modification, careful counseling remains essential to facilitate pregnant women's autonomous reproductive decision making.

  2. Non-invasive measurement of pressure gradients using ultrasound

    DEFF Research Database (Denmark)

    Olesen, Jacob Bjerring; Traberg, Marie Sand; Pihl, Michael Johannes


    A non-invasive method for estimating 2-D pressure gradients from ultrasound vector velocity data is presented. The method relies on in-plane vector velocity fields acquired using the Transverse Oscillation method. The pressure gradients are estimated by applying the Navier-Stokes equations...... Medical 2202 UltraView Pro Focus scanner. The results are validated through finite element simulations of the carotid flow model where the geometry is determined from MR images. This proof of concept study was conducted at nine ultrasound frames per second. Estimated pressure gradients along...... the longitudinal direction of the constriction varied from 0 kPa/m to 10 kPa/m with a normalized bias of -9.1% for the axial component and -7.9% for the lateral component. The relative standard deviation of the estimator, given in reference to the peak gradient, was 28.4% in the axial direction and 64...

  3. Non-invasive exploration in an environmentally sensitive world (United States)

    Livo, K.E.; Knepper, D.H.


    Modern remote sensing provides a means for locating and characterizing exposed mineralized systems in many parts of the world. These capabilities are non-invasive and help target specific areas for more detailed exploration. An example of how remote sensing technology can be used is evident from a study of the Questa Mining District, New Mexico. Analysis of low spectral resolution data from the Landsat Thematic Mapper satellite system clearly shows the regional distribution of two broad mineral groups often associated with mineralized systems: clay-carbonate-sulfate and iron oxides-iron hydroxides. Analysis of high spectral resolution data from the Airborne Visible and Infrared Imaging System (AVIRIS) shows the occurrence and distribution of many individual mineral species that characterize the pattern of hydrothermally altered rocks in the district.

  4. [Non-invasive brain stimulation for Parkinson's disease]. (United States)

    Gajo, Gianandrea; Pollak, Pierre; Lüscher, Christian; Benninger, David


    Parkinson's disease (PD) is a major socio-economic burden increasing with the aging population. In advanced PD, the emergence of symptoms refractory to conventional therapy poses a therapeutic challenge. The success of deep brain stimulation (DBS) and advances in the understanding of the pathophysiology of PD have raised interest in non-invasive brain stimulation (NIBS) as an alternative therapeutic tool. NIBS could offer an alternative approach for patients at risk who are excluded from surgery and/or to treat refractory symptoms. The treatment of the freezing of gait, a major cause of disability and falls in PD patients, could be enhanced by transcranial direct current stimulation (tDCS). A therapeutic study is currently performed at the Department of Neurology at the CHUV.

  5. Eyeblink conditioning: a non-invasive biomarker for neurodevelopmental disorders. (United States)

    Reeb-Sutherland, Bethany C; Fox, Nathan A


    Eyeblink conditioning (EBC) is a classical conditioning paradigm typically used to study the underlying neural processes of learning and memory. EBC has a well-defined neural circuitry, is non-invasive, and can be employed in human infants shortly after birth making it an ideal tool to use in both developing and special populations. In addition, abnormalities in the cerebellum, a region of the brain highly involved in EBC, have been implicated in a number of neurodevelopmental disorders including autism spectrum disorders (ASDs). In the current paper, we review studies that have employed EBC as a biomarker for several neurodevelopmental disorders including fetal alcohol syndrome, Down syndrome, fragile X syndrome, attention deficit/hyperactivity disorder, dyslexia, specific language impairment, and schizophrenia. In addition, we discuss the benefits of using such a tool in individuals with ASD.

  6. Non-invasive beamforming add-on module

    KAUST Repository

    Bader, Ahmed


    An embodiment of a non-invasive beamforming add-on apparatus couples to an existing antenna port and rectifies the beam azimuth in the upstream and downstream directions. The apparatus comprises input circuitry that is configured to receive one or more signals from a neighboring node of the linear wireless sensor network; first amplifier circuitry configured to adjust an amplitude of a respective received signal in accordance with a weighting coefficient and invoke a desired phase to a carrier frequency of the received signal thereby forming a first amplified signal; and second amplifier circuitry configured to adjust a gain of the first amplified signal towards upstream and downstream neighbors of the linear wireless sensor in the linear wireless sensor network.

  7. Moral Enhancement Using Non-invasive Brain Stimulation (United States)

    Darby, R. Ryan; Pascual-Leone, Alvaro


    Biomedical enhancement refers to the use of biomedical interventions to improve capacities beyond normal, rather than to treat deficiencies due to diseases. Enhancement can target physical or cognitive capacities, but also complex human behaviors such as morality. However, the complexity of normal moral behavior makes it unlikely that morality is a single capacity that can be deficient or enhanced. Instead, our central hypothesis will be that moral behavior results from multiple, interacting cognitive-affective networks in the brain. First, we will test this hypothesis by reviewing evidence for modulation of moral behavior using non-invasive brain stimulation. Next, we will discuss how this evidence affects ethical issues related to the use of moral enhancement. We end with the conclusion that while brain stimulation has the potential to alter moral behavior, such alteration is unlikely to improve moral behavior in all situations, and may even lead to less morally desirable behavior in some instances. PMID:28275345

  8. Non-invasive prenatal testing: ethics and policy considerations. (United States)

    Vanstone, Meredith; King, Carol; de Vrijer, Barbra; Nisker, Jeff


    New technologies analyzing fetal DNA in maternal blood have led to the wide commercial availability of non-invasive prenatal testing (NIPT). We present here for clinicians the ethical and policy issues related to an emerging practice option. Although NIPT presents opportunities for pregnant women, particularly women who are at increased risk of having a baby with an abnormality or who are otherwise likely to access invasive prenatal testing, NIPT brings significant ethics and policy challenges. The ethical issues include multiple aspects of informed decision-making, such as access to counselling about the possible results of the test in advance of making a decision about participation in NIPT. Policy considerations include issues related to offering and promoting a privately available medical strategy in publicly funded institutions. Ethics and policy considerations merge in NIPT with regard to sex selection and support for persons living with disabilities.

  9. Non-invasive assessment of phonatory and respiratory dynamics. (United States)

    LaBlance, G R; Steckol, K F; Cooper, M H


    Evaluation of vocal pathology and the accompanying dysphonia should include an assessment of laryngeal structure and mobility as well as respiratory dynamics. Laryngeal structure is best observed through laryngoscopy which provides an accurate assessment of the tissues and their mobility. Respiratory measures of lung volume, air-flow and pressure, and breathing dynamics are typically determined via spirometry and pneumotachography. While the above are traditional invasive procedures which interfere with normal speech production, recent advances in electronic technology have resulted in the development of non-invasive procedures to assess phonatory and respiratory dynamics. These procedures, when used as an adjunct to laryngoscopy, can provide information that is useful in the diagnosis and management of vocal tract dysfunction. The Laryngograph and Computer-Aided Fluency Establishment Trainer, described here, are examples of this new technology.

  10. Non-invasive brain stimulation in neglect rehabilitation: An update.

    Directory of Open Access Journals (Sweden)

    René Martin Müri


    Full Text Available Here, we review the effects of non-invasive brain stimulation (NIBS such as transcranial magnetic stimulation (TMS or transcranial direct current stimulation (tDCS in the rehabilitation of neglect. We found 12 studies including 172 patients (10 TMS studies and 2 tDCS studies fulfilling our search criteria. Activity of daily living (ADL measures such as the Barthel Index or more specifically for neglect, the Catherine Bergego Scale were the outcome measure in 3 studies. Five studies were randomized controlled trials with a follow-up time after intervention of up to 6 weeks. One TMS study fulfilled criteria for Class I and one for Class III evidence.The studies are heterogeneous concerning their methodology, outcome measures, and stimulation parameters making firm comparisons and conclusions difficult. Overall, there are however promising results for theta burst stimulation, suggesting that TMS is a powerful add-on therapy in the rehabilitation of neglect patients.

  11. Non-invasive brain stimulation in neglect rehabilitation: an update. (United States)

    Müri, René Martin; Cazzoli, Dario; Nef, Tobias; Mosimann, Urs P; Hopfner, Simone; Nyffeler, Thomas


    Here, we review the effects of non-invasive brain stimulation such as transcranial magnetic stimulation (TMS) or transcranial direct current stimulation (tDCS) in the rehabilitation of neglect. We found 12 studies including 172 patients (10 TMS studies and 2 tDCS studies) fulfilling our search criteria. Activity of daily living measures such as the Barthel Index or, more specifically for neglect, the Catherine Bergego Scale were the outcome measure in three studies. Five studies were randomized controlled trials with a follow-up time after intervention of up to 6 weeks. One TMS study fulfilled criteria for Class I and one for Class III evidence. The studies are heterogeneous concerning their methodology, outcome measures, and stimulation parameters making firm comparisons and conclusions difficult. Overall, there are however promising results for theta-burst stimulation, suggesting that TMS is a powerful add-on therapy in the rehabilitation of neglect patients.

  12. Non-invasive ventilation for sleep-disordered breathing in Smith-Magenis syndrome. (United States)

    Connor, Victoria; Zhao, Sizheng; Angus, Robert


    Smith-Magenis syndrome (SMS) is a rare genetic neurodevelopmental disorder characterised by behavioural disturbances, intellectual disability and early onset obesity. The physical features of this syndrome are well characterised; however, behavioural features, such as sleep disturbance, are less well understood and difficult to manage. Sleep issues in SMS are likely due to a combination of disturbed melatonin cycle, facial anatomy and obesity-related ventilatory problems. Sleep disorders can be very distressing to patients and their families, as exemplified by our patient's experience, and can worsen behavioural issues as well as general health. This case demonstrates the successful use of non-invasive ventilation in treating underlying obesity hypoventilation syndrome and obstructive sleep apnoea. As a consequence of addressing abnormalities in sleep patterns, some behavioural problems improved.

  13. Non-invasive actionable biomarkers for metastatic prostate cancer

    Directory of Open Access Journals (Sweden)

    Jun Luo


    Full Text Available In the current clinical setting, many disease management options are available for men diagnosed with prostate cancer. For metastatic prostate cancer, first-line therapies almost always involve agents designed to inhibit androgen receptor (AR signaling. Castration-resistant prostate cancers (CRPCs that arise following first-line androgen deprivation therapies (ADT may continue to respond to additional lines of AR-targeting therapies (abiraterone and enzalutamide, chemotherapies (docetaxel and cabazitaxel, bone-targeting Radium-223 therapy, and immunotherapy sipuleucel-T. The rapidly expanding therapies for CRPC is expected to transform this lethal disease into one that can be managed for prolonged period of time. In the past 3 years, a number of promising biomarkers that may help to guide treatment decisions have been proposed and evaluated, including androgen receptor splice variant-7 (AR-V7, a truncated AR lacking the ligand-binding domain (LBD and mediate constitutively-active AR signaling. Putative treatment selection markers such as AR-V7 may further improve survival benefit of existing therapies and help to accelerate development of new agents for metastatic prostate cancer. In the metastatic setting, it is important to consider compatibility between the putative biomarker with non-invasive sampling. In this review, biomarkers relevant to the setting of metastatic prostate cancer are discussed with respect to a number of key attributes critical for clinical development of non-invasive, actionable markers. It is envisioned that biomarkers for metastatic prostate cancer will continue to be discovered, developed, and refined to meet the unmet needs in both standard-of-care and clinical trial settings.

  14. Non-invasive prenatal testing for fetal chromosome abnormalities: review of clinical and ethical issues

    Directory of Open Access Journals (Sweden)

    Gekas J


    Full Text Available Jean Gekas,1,2 Sylvie Langlois,3 Vardit Ravitsky,4 François Audibert,5 David Gradus van den Berg,6 Hazar Haidar,4 François Rousseau2,7 1Prenatal Diagnosis Unit, Department of Medical Genetics and Pediatrics, Faculty of Medicine, Université Laval, Québec City, QC, Canada; 2Department of Medical Biology, CHU de Québec, Québec City, QC, Canada; 3Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada; 4Bioethics Program, Department of Social and Preventive Medicine, School of Public Health, University of Montreal, Montreal, QC, Canada; 5Department of Obstetrics and Gynecology, Hospital Sainte-Justine, Montreal, QC, Canada; 6Department of Social and Preventive Medicine, Faculty of Medicine, Université Laval, Québec City, QC, Canada; 7Department of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine, Université Laval, Québec City, QC, Canada Abstract: Genomics-based non-invasive prenatal screening using cell-free DNA (cfDNA screening was proposed to reduce the number of invasive procedures in current prenatal diagnosis for fetal aneuploidies. We review here the clinical and ethical issues of cfDNA screening. To date, it is not clear how cfDNA screening is going to impact the performances of clinical prenatal diagnosis and how it could be incorporated in real life. The direct marketing to users may have facilitated the early introduction of cfDNA screening into clinical practice despite limited evidence-based independent research data supporting this rapid shift. There is a need to address the most important ethical, legal, and social issues before its implementation in a mass setting. Its introduction might worsen current tendencies to neglect the reproductive autonomy of pregnant women. Keywords: prenatal diagnosis, Down syndrome, non-invasive prenatal testing, cell-free fetal DNA, informed consent, reproductive autonomy

  15. Monitoring adaptive genetic responses to environmental change

    DEFF Research Database (Denmark)

    Hansen, M.M.; Olivieri, I.; Waller, D.M.


    Widespread environmental changes including climate change, selective harvesting and landscape alterations now greatly affect selection regimes for most organisms. How animals and plants can adapt to these altered environments via contemporary evolution is thus of strong interest. We discuss how...... for selection and establishing clear links between genetic and environmental change. We then review a few exemplary studies that explore adaptive responses to climate change in Drosophila, selective responses to hunting and fishing, and contemporary evolution in Daphnia using resurrected resting eggs. We...

  16. Non-invasive evaluation of physiological stress in an iconic Australian marsupial: the Koala (Phascolarctos cinereus). (United States)

    Narayan, Edward J; Webster, Koa; Nicolson, Vere; Mucci, Al; Hero, Jean-Marc


    Koalas (Phascolarctos cinereus) are the only extant representatives of Australia's unique marsupial family Phascolarctidae and were listed as nationally Vulnerable in 2012. Causes of mortality are diverse, although the disease chlamydiosis, dog attacks, collisions with cars, and loss of habitat represent the principal reasons for the continued species decline. Koala breeding facilities in Queensland and New South Wales, Australia have been established for conservation and tourism. Non-invasive monitoring of physiological stress is important for determining the sub-lethal effects of environmental stressors on the well-being, reproduction and survival of Koalas in Zoos and also in the wild. In this study, we developed a faecal cortisol metabolite (FCM) enzyme-immunoassay (EIA) for monitoring physiological stress in Koalas from two established Zoos in Australia and also within a free-living sub-population from Queensland. Biological validation of the FCM EIA was done using an adrenocorticotropic hormone (ACTH) challenge. We discovered excretory lag-times of FCM of 24 h in females (n=2) and 48 h in male (n=2) Koalas in response to the ACTH challenge. FCM levels showed an episodic and delayed peak response lasting up to 9 days post ACTH challenge. This finding should be taken into consideration when designing future experiments to study the impacts of short-term (acute) and chronic stressors on the Koalas. Laboratory validations were done using parallelism and recovery checks (extraction efficiency) of the cortisol standard against pooled Koala faecal extracts. Greater than 99% recovery of the cortisol standard was obtained as well as a parallel displacement curve against Koala faecal extracts. FCM levels of the captive Koalas (n=10 males and 13 females) significantly differed by sex, reproductive condition (lactating versus non-lactating Koalas) and the handling groups. Handled male Koalas had 200% higher FCM levels than their non-handled counterparts, while females

  17. Early diagnosis of incipient caries based on non-invasive lasers (United States)

    Velescu, A.; Todea, C.; Vitez, B.


    AIM: The aim of this study is to detect incipient caries and enamel demineralization using laser fluorescence.This serves only as an auxilary aid to identify and to monitor the development of these lesions. MATERIALS AND METHODS: 6 patients were involved in this study, three females and three male. Each patient underwent a professional cleaning, visual examination of the oral cavity, and then direct inspection using DiagnoCam and DIAGNOdent. After data recording each patient was submitted to retro-alveolar X-ray on teeth that were detected with enamel lesions. All data was collected and analyzed statistically. RESULTS: Of 36 areas considered in clinically healthy, 24 carious surfaces were found using laser fluorescence, a totally non-invasive method for detecting incipient carious lesions compared with the radiographic examination. CONCLUSIONS: This method has good applicability for patients because it improves treatment plan by early detection of caries and involves less fear for anxious patients and children.

  18. Simple non-invasive analysis of embryonic stem cell-derived cardiomyocytes beating in vitro (United States)

    Radaszkiewicz, Katarzyna Anna; Sýkorová, Dominika; Karas, Pavel; Kudová, Jana; Kohút, Lukáš; Binó, Lucia; Večeřa, Josef; Víteček, Jan; Kubala, Lukáš; Pacherník, Jiří


    The analysis of digital video output enables the non-invasive screening of various active biological processes. For the monitoring and computing of the beating parameters of cardiomyocytes in vitro, CB Analyser (cardiomyocyte beating analyser) software was developed. This software is based on image analysis of the video recording of beating cardiomyocytes. CB Analyser was tested using cardiomyocytes derived from mouse embryonic stem cells at different stages of cardiomyogenesis. We observed that during differentiation (from day 18), the beat peak width decreased, which corresponded to the increased speed of an individual pulse. However, the beating frequency did not change. Further, the effects of epinephrine modulating mature cardiomyocyte functions were tested to validate the CB Analyser analysis. In conclusion, data show that CB Analyser is a useful tool for evaluating the functions of both developing and mature cardiomyocytes under various conditions in vitro.

  19. A practical guide to non-invasive foetal electrocardiogram extraction and analysis. (United States)

    Behar, Joachim; Andreotti, Fernando; Zaunseder, Sebastian; Oster, Julien; Clifford, Gari D


    Non-Invasive foetal electrocardiography (NI-FECG) represents an alternative foetal monitoring technique to traditional Doppler ultrasound approaches, that is non-invasive and has the potential to provide additional clinical information. However, despite the significant advances in the field of adult ECG signal processing over the past decades, the analysis of NI-FECG remains challenging and largely unexplored. This is mainly due to the relatively low signal-to-noise ratio of the FECG compared to the maternal ECG, which overlaps in both time and frequency. This article is intended to be used by researchers as a practical guide to NI-FECG signal processing, in the context of the above issues. It reviews recent advances in NI-FECG research including: publicly available databases, NI-FECG extraction techniques for foetal heart rate evaluation and morphological analysis, NI-FECG simulators and the methodology and statistics for assessing the performance of the extraction algorithms. Reference to the most recent work is given, recent findings are highlighted in the form of intermediate summaries, references to open source code and publicly available databases are provided and promising directions for future research are motivated. In particular we emphasise the need and specifications for building a new open reference database of NI-FECG signals, and the need for new algorithms to be benchmarked on the same database, employing the same evaluation statistics. Finally we motivate the need for research in NI-FECG to address morphological analysis, since this represent one of the most promising avenues for this foetal monitoring modality.

  20. Accuracy of non-invasive measurement of haemoglobin concentration by pulse co-oximetry during steady-state and dynamic conditions in liver surgery

    NARCIS (Netherlands)

    Vos, J. J.; Kalmar, A. F.; Struys, M. M. R. F.; Porte, R. J.; Wietasch, J. K. G.; Scheeren, T. W. L.; Hendriks, H. G. D.


    Background: The Masimo Radical 7 (Masimo Corp., Irvine, CA, USA) pulse co-oximeter calculates haemoglobin concentration (SpHb) non-invasively using transcutaneous spectrophotometry. We compared SpHb with invasive satellite-lab haemoglobin monitoring (Hb(satlab)) during major hepatic resections both

  1. Rapid detection of genetic modification for GMO monitoring in agriculture

    Directory of Open Access Journals (Sweden)

    Petrović Sofija


    Full Text Available Transgenic technology has expanded the ways of new genetic variability creation. Genetically modified organisms (GMOs are organisms which total genome is altered in a way that could not happen in nature. GM crops recorded a steady increase in its share in agricultural production. However, for the most part, GMO in agriculture has been limited to two cultivars - soy and corn, and the two genetic modifications, the total herbicide resistance and pest of the Lepidoptera genus. In order to monitor cultivation and trade of GMOs, tests of different precision are used, qualitatively and/or quantitatively determining the presence of genetic modification. Tests for the rapid determination of the presence of GM are suitable, since they can be implemented quickly and accurately, in terms of declared sensitivity, outside or in the laboratory. The example of the use of rapid tests demonstrates their value in use for rapid and efficient monitoring.

  2. Non-invasive prenatal testing of trisomy 18 by an epigenetic marker in first trimester maternal plasma.

    Directory of Open Access Journals (Sweden)

    Da Eun Lee

    Full Text Available BACKGROUND: Quantification of cell-free fetal DNA by methylation-based DNA discrimination has been used in non-invasive prenatal testing of fetal chromosomal aneuploidy. The maspin (Serpin peptidase inhibitor, clade B (ovalbumin, member 5; SERPINB5 gene, located on chromosome 18q21.33, is hypomethylated in the placenta and completely methylated in maternal blood cells. The objective of this study was to evaluate the accuracy of non-invasive detection of fetal trisomy 18 using the unmethylated-maspin (U-maspin gene as a cell-free fetal DNA marker and the methylated-maspin (M-maspin gene as a cell-free total DNA marker in the first trimester of pregnancy. METHODOLOGY/PRINCIPAL FINDINGS: A nested case-control study was conducted using maternal plasma collected from 66 pregnant women, 11 carrying fetuses with trisomy 18 and 55 carrying normal fetuses. Median U-maspin concentrations were significantly elevated in women with trisomy 18 fetuses compared with controls (27.2 vs. 6.7 copies/mL; P<0.001. Median M-maspin concentrations were also significantly higher in women with trisomy 18 fetuses than in controls (96.9 vs. 19.5 copies/mL, P<0.001. The specificities of U-maspin and M-maspin concentrations for non-invasive fetal trisomy 18 detection were 96.4% and 74.5%, respectively, with a sensitivity of 90.9%. CONCLUSIONS: Our results suggest that U-maspin and M-maspin concentrations may be useful as potential biomarkers for non-invasive detection of fetal trisomy 18 in the first trimester of pregnancy, irrespective of the sex and genetic variations of the fetus.

  3. Forest genetic monitoring: an overview of concepts and definitions. (United States)

    Fussi, Barbara; Westergren, Marjana; Aravanopoulos, Filippos; Baier, Roland; Kavaliauskas, Darius; Finzgar, Domen; Alizoti, Paraskevi; Bozic, Gregor; Avramidou, Evangelia; Konnert, Monika; Kraigher, Hojka


    Safeguarding sustainability of forest ecosystems with their habitat variability and all their functions is of highest priority. Therefore, the long-term adaptability of forest ecosystems to a changing environment must be secured, e.g., through sustainable forest management. High adaptability is based on biological variation starting at the genetic level. Thus, the ultimate goal of the Convention on Biological Diversity (CBD) to halt the ongoing erosion of biological variation is of utmost importance for forest ecosystem functioning and sustainability. Monitoring of biological diversity over time is needed to detect changes that threaten these biological resources. Genetic variation, as an integral part of biological diversity, needs special attention, and its monitoring can ensure its effective conservation. We compare forest genetic monitoring to other biodiversity monitoring concepts. Forest genetic monitoring (FGM) enables early detection of potentially harmful changes of forest adaptability before these appear at higher biodiversity levels (e.g., species or ecosystem diversity) and can improve the sustainability of applied forest management practices and direct further research. Theoretical genetic monitoring concepts developed up to now need to be evaluated before being implemented on a national and international scale. This article provides an overview of FGM concepts and definitions, discusses their advantages and disadvantages, and provides a flow chart of the steps needed for the optimization and implementation of FGM. FGM is an important module of biodiversity monitoring, and we define an effective FGM scheme as consisting of an assessment of a forest population's capacity to survive, reproduce, and persist under rapid environmental changes on a long-term scale.

  4. A pilot study using laser-based technique for non-invasive diagnostics of hypertensive conditions in mice (United States)

    Litvinova, Karina S.; Ahmad, Shakil; Wang, Keqing; Rafailov, Ilya E.; Sokolovski, Sergei G.; Zhang, Lin; Rafailov, Edik U.; Ahmed, Asif


    Endothelial dysfunction is directly linked to preeclampsia, a maternal hypertensive condition that is life threating for both the mother and the baby. Epidemiological studies show that women with a history of pre-eclampsia have an elevated risk for cardiovascular disease. Here we report a new non-invasive diagnostic test for preeclampsia in mice that allows us to non-invasively assess the condition of the animals during the experiment and treatment in established models of preeclampsia. A laser-based multifunctional diagnostics system (LAKK-M) was chosen to carry out non-invasive analysis of multiple parameters. The device was used to simultaneously record the microcirculatory blood flow and oxygen saturation, as well as fluorescence levels of endogenous fluorophores. Preliminary experiments were conducted on adenoviral (Ad-)- mediated overexpression of sFlt-1 (Ad-sFlt-1) to mimic preeclampsialike symptoms in mice. The recorded data displayed the ability of the LAKK-M diagnostics device to detect significant differences in perfusion measurements between the control and Ad-sFlt-1 treatment. Preliminary results provide a potential avenue to employ these diagnostics technology to monitor and aid in maintaining control of live animal conditions throughout the experiment and treatment.

  5. Non-invasive hyperthermia apparatus including coaxial applicator having a non-invasive radiometric receiving antenna incorporated therein and method of use thereof (United States)

    Ross, M.P.


    A coaxial hyperthermia applicator is disclosed for applying non-invasively electromagnetic energy to a body against which it is placed. The coaxial applicator antenna has formed integrally within it a non-invasive radiometric antenna for receiving thermoelectromagnetic emissions. The coaxial-configured applicator produces a bell-shaped radiation pattern symmetric about the axis of symmetry of the coaxial applicator. Integrating the radiometric antenna within the coaxial applicator produces a single device that performs dual functions. The first function is to transmit non-invasively energy for heating a subcutaneous tumor. The second function is to receive non-invasively thermal electromagnetic radiation from the tumor by which temperature is sensed and fed back to control the output of the coaxial applicator. 11 figs.

  6. Non-invasive photo acoustic approach for human bone diagnosis. (United States)

    Thella, Ashok Kumar; Rizkalla, James; Helmy, Ahdy; Suryadevara, Vinay Kumar; Salama, Paul; Rizkalla, Maher


    The existing modalities of bone diagnosis including X-ray and ultrasound may cite drawback in some cases related to health issues and penetration depth, while the ultrasound modality may lack image quality. Photo acoustic approach however, provides light energy to the acoustic wave, enabling it to activate and respond according to the propagating media (which is type of bones in this case). At the same time, a differential temperature change may result in the bio heat response, resulting from the heat absorbed across the multiple materials under study. In this work, we have demonstrated the features of using photo acoustic modality in order to non-invasively diagnose the type of human bones based on their electrical, thermal, and acoustic properties that differentiate the output response of each type. COMSOL software was utilized to combine both acoustic equations and bio heat equations, in order to study both the thermal and acoustic responses through which the differential diagnosis can be obtained. In this study, we solved both the acoustic equation and bio heat equations for four types of bones, bone (cancellous), bone (cortical), bone marrow (red), and bone marrow (yellow). 1 MHz acoustic source frequency was chosen and 10(5) W/m(2) power source was used in the simulation. The simulation tested the dynamic response of the wave over a distance of 5 cm from each side for the source. Near 2.4 cm was detected from simulation from each side of the source with a temperature change of within 0.5 K for various types of bones, citing a promising technique for a practical model to detect the type of bones via the differential temperature as well as the acoustic was response via the multiple materials associated with the human bones (skin and blood). The simulation results suggest that the PA technique may be applied to non-invasive diagnosis for the different types of bones, including cancerous bones. A practical model for detecting both the temperature change via

  7. Dried fluid spots for peste des petits ruminants virus load evaluation allowing for non-invasive diagnosis and genotyping. (United States)

    Bhuiyan, Ataur Rahman; Chowdhury, Emdadul Haque; Kwiatek, Olivier; Parvin, Rokshana; Rahman, Mushfiqur M; Islam, Mohammad R; Albina, Emmanuel; Libeau, Geneviève


    Active surveillance of peste des petits ruminants (PPR) should ease prevention and control of this disease widely present across Africa, Middle East, central and southern Asia. PPR is now present in Turkey at the gateway to the European Union. In Bangladesh, the diagnosis and genotyping of PPR virus (PPRV) may be hampered by inadequate infrastructures and by lack of proper clinical material, which is often not preserved under cold chain up to laboratories. It has been shown previously that Whatman® 3MM filter paper (GE Healthcare, France) preserves the nucleic acid of PPRV for at least 3 months at 32°C. In this study, we demonstrate the performances of filter papers for archiving RNA from local PPRV field isolates for further molecular detection and genotyping of PPRV, at -70°C combined with ambient temperature, for periods up to 16 months. PPR-suspected live animals were sampled and their blood and nasal swabs were applied on filter papers then air dried. Immediately after field sampling, RT-PCR amplifying a 448-bp fragment of the F gene appeared positive for both blood and nasal swabs when animals were in febrile stage and only nasal swabs were detected positive in non-febrile stage. Those tested positive were monitored by RT-PCR up to 10 months by storage at -70°C. At 16 months, using real time RT-PCR adapted to amplify the N gene from filter paper, high viral loads could still be detected (~2 x 10(7) copy numbers), essentially from nasal samples. The material was successfully sequenced and a Bayesian phylogenetic reconstruction achieved adequate resolution to establish temporal relationships within or between the geographical clusters of the PPRV strains. This clearly reveals the excellent capacity of filter papers to store genetic material that can be sampled using a non-invasive approach.

  8. Application of optical non-invasive methods in skin physiology (United States)

    Lademann, J.; Patzelt, A.; Darvin, M.; Richter, H.; Antoniou, C.; Sterry, W.; Koch, S.


    In the present paper the application of optical non-invasive methods in dermatology and cosmetology is discussed. Laser scanning microscopy (LSM) and optical coherent tomography (OCT) are the most promising methods for this application. Using these methods, the analysis of different skin parameters like dryness and oiliness of the skin, the barrier function and the structure of furrows and wrinkles are discussed. Additionally the homogeneity of distribution of topically applied creams, as well as their penetration into the skin were investigated. It is shown that these methods are highly valuable in dermatology for diagnostic and therapy control and for basic research, for instance in the field of structure analysis of hair follicles and sweat glands. The vertical images of the tissue produced by OCT can be easily compared with histological sections. Unfortunately, the resolution of the OCT technique is not high enough to carry out measurements on a cellular level, as is possible by LSM. LSM has the advantage that it can be used for the investigation of penetration and storage processes of topically applied substances, if these substances have fluorescent properties or if they are fluorescent-labelled.

  9. Novel non-invasive protein and peptide drug delivery approaches. (United States)

    Wallis, L; Kleynhans, E; Toit, T Du; Gouws, C; Steyn, D; Steenekamp, J; Viljoen, J; Hamman, J


    Protein and peptide based therapeutics are typically administered by injection due to their poor uptake when administered via enteral routes of drug administration. Unfortunately, chronic administration of these drugs through multiple injections presents certain patient related problems and it is difficult to mimic the normal physiological release patterns via this mode of drug administration. A need therefore exists to non-invasively deliver these drugs by means of alternative ways such as via the oral, pulmonary, nasal, transdermal and buccal administration routes. Although some attempts of needle free peptide and protein drug delivery have progressed to the clinical stage, relatively limited success has been achieved in terms of commercially available products. Despite the low frequency of clinical breakthroughs with noninvasive protein drug delivery this far, it remains an active research area with renewed interest not only due to its improved therapeutic potential, but also due to the attractive commercial outcomes it offers. It is the aim of this review article to reflect on the main strategies investigated to overcome the barriers against effective systemic protein drug delivery in different routes of drug administration. Approaches based on chemical modifications and pharmaceutical technologies are discussed with reference to examples of drugs and devices that have shown potential, while attempts that have failed are also briefly outlined.

  10. Non-invasive imaging of microcirculation: a technology review

    Directory of Open Access Journals (Sweden)

    Eriksson S


    Full Text Available Sam Eriksson,1,2 Jan Nilsson,1,2 Christian Sturesson1,2 1Department of Surgery, Clinical Sciences Lund, Lund University, 2Skåne University Hospital, Lund, Sweden Abstract: Microcirculation plays a crucial role in physiological processes of tissue oxygenation and nutritional exchange. Measurement of microcirculation can be applied on many organs in various pathologies. In this paper we aim to review the technique of non-invasive methods for imaging of the microcirculation. Methods covered are: videomicroscopy techniques, laser Doppler perfusion imaging, and laser speckle contrast imaging. Videomicroscopy techniques, such as orthogonal polarization spectral imaging and sidestream dark-field imaging, provide a plentitude of information and offer direct visualization of the microcirculation but have the major drawback that they may give pressure artifacts. Both laser Doppler perfusion imaging and laser speckle contrast imaging allow non-contact measurements but have the disadvantage of their sensitivity to motion artifacts and that they are confined to relative measurement comparisons. Ideal would be a non-contact videomicroscopy method with fully automatic analysis software. Keywords: laser speckle contrast imaging, sidestream dark-field, orthogonal polarization spectral imaging, laser Dopplerimaging

  11. Reducing proactive aggression through non-invasive brain stimulation. (United States)

    Dambacher, Franziska; Schuhmann, Teresa; Lobbestael, Jill; Arntz, Arnoud; Brugman, Suzanne; Sack, Alexander T


    Aggressive behavior poses a threat to human collaboration and social safety. It is of utmost importance to identify the functional mechanisms underlying aggression and to develop potential interventions capable of reducing dysfunctional aggressive behavior already at a brain level. We here experimentally shifted fronto-cortical asymmetry to manipulate the underlying motivational emotional states in both male and female participants while assessing the behavioral effects on proactive and reactive aggression. Thirty-two healthy volunteers received either anodal transcranial direct current stimulation to increase neural activity within right dorsolateral prefrontal cortex, or sham stimulation. Aggressive behavior was measured with the Taylor Aggression Paradigm. We revealed a general gender effect, showing that men displayed more behavioral aggression than women. After the induction of right fronto-hemispheric dominance, proactive aggression was reduced in men. This study demonstrates that non-invasive brain stimulation can reduce aggression in men. This is a relevant and promising step to better understand how cortical brain states connect to impulsive actions and to examine the causal role of the prefrontal cortex in aggression. Ultimately, such findings could help to examine whether the brain can be a direct target for potential supportive interventions in clinical settings dealing with overly aggressive patients and/or violent offenders.

  12. Facilitate insight by non-invasive brain stimulation.

    Directory of Open Access Journals (Sweden)

    Richard P Chi

    Full Text Available Our experiences can blind us. Once we have learned to solve problems by one method, we often have difficulties in generating solutions involving a different kind of insight. Yet there is evidence that people with brain lesions are sometimes more resistant to this so-called mental set effect. This inspired us to investigate whether the mental set effect can be reduced by non-invasive brain stimulation. 60 healthy right-handed participants were asked to take an insight problem solving task while receiving transcranial direct current stimulation (tDCS to the anterior temporal lobes (ATL. Only 20% of participants solved an insight problem with sham stimulation (control, whereas 3 times as many participants did so (p = 0.011 with cathodal stimulation (decreased excitability of the left ATL together with anodal stimulation (increased excitability of the right ATL. We found hemispheric differences in that a stimulation montage involving the opposite polarities did not facilitate performance. Our findings are consistent with the theory that inhibition to the left ATL can lead to a cognitive style that is less influenced by mental templates and that the right ATL may be associated with insight or novel meaning. Further studies including neurophysiological imaging are needed to elucidate the specific mechanisms leading to the enhancement.

  13. Non-Invasive Ocular Rigidity Measurement: A Differential Tonometry Approach

    Directory of Open Access Journals (Sweden)

    Efstathios T. Detorakis


    Full Text Available Purpose: Taking into account the fact that Goldmann applanation tonometry (GAT geometrically deforms the corneal apex and displaces volume from the anterior segment whereas Dynamic Contour Tonometry (DCT does not, we aimed at developing an algorithm for the calculation of ocular rigidity (OR based on the differences in pressure and volume between deformed and non-deformed status according to the general Friedenwald principle of differential tonometry. Methods: To avoid deviations of GAT IOP from true IOP in eyes with corneas different from the “calibration cornea” we applied the previously described Orssengo-Pye algorithm to calculate an error coefficient “C/B”. To test the feasibility of the proposed model, we calculated the OR coefficient (r in 17 cataract surgery candidates (9 males and 8 females. Results: The calculated r according to our model (mean ± SD, range was 0.0174 ± 0.010 (0.0123–0.022 mmHg/μL. A negative statistically significant correlation between axial length and r was detected whereas correlations between r and other biometric parameters examined were statistically not significant. Conclusions: The proposed method may prove a valid non-invasive tool for the measurement method of OR, which could help in introducing OR in the decision-making of the routine clinical practice.

  14. Alteration of political belief by non- invasive brain stimulation

    Directory of Open Access Journals (Sweden)

    Caroline eChawke


    Full Text Available People generally have imperfect introspective access to the mechanisms underlying their political beliefs, yet can confidently communicate the reasoning that goes into their decision making process. An innate desire for certainty and security in ones beliefs may play an important and somewhat automatic role in motivating the maintenance or rejection of partisan support. The aim of the current study was to clarify the role of the DLPFC in the alteration of political beliefs. Recent neuroimaging studies have focused on the association between the DLPFC (a region involved in the regulation of cognitive conflict and error feedback processing and reduced affiliation with opposing political candidates. As such, this study used a method of non- invasive brain simulation (tRNS to enhance activity of the bilateral DLPFC during the incorporation of political campaign information. These findings indicate a crucial role for this region in political belief formation. However, enhanced activation of DLPFC does not necessarily result in the specific rejection of political beliefs. In contrast to the hypothesis the results appear to indicate a significant increase in conservative values regardless of participant’s initial political orientation and the political campaign advertisement they were exposed to.

  15. Alteration of Political Belief by Non-invasive Brain Stimulation. (United States)

    Chawke, Caroline; Kanai, Ryota


    People generally have imperfect introspective access to the mechanisms underlying their political beliefs, yet can confidently communicate the reasoning that goes into their decision making process. An innate desire for certainty and security in ones beliefs may play an important and somewhat automatic role in motivating the maintenance or rejection of partisan support. The aim of the current study was to clarify the role of the DLPFC in the alteration of political beliefs. Recent neuroimaging studies have focused on the association between the DLPFC (a region involved in the regulation of cognitive conflict and error feedback processing) and reduced affiliation with opposing political candidates. As such, this study used a method of non-invasive brain simulation (tRNS) to enhance activity of the bilateral DLPFC during the incorporation of political campaign information. These findings indicate a crucial role for this region in political belief formation. However, enhanced activation of DLPFC does not necessarily result in the specific rejection of political beliefs. In contrast to the hypothesis the results appear to indicate a significant increase in conservative values regardless of participant's initial political orientation and the political campaign advertisement they were exposed to.

  16. Non-Invasive Biomarkers for Duchenne Muscular Dystrophy and Carrier Detection

    Directory of Open Access Journals (Sweden)

    Mónica Alejandra Anaya-Segura


    Full Text Available Non-invasive biological indicators of the absence/presence or progress of the disease that could be used to support diagnosis and to evaluate the effectiveness of treatment are of utmost importance in Duchenne Muscular Dystrophy (DMD. This neuromuscular disorder affects male children, causing weakness and disability, whereas female relatives are at risk of being carriers of the disease. A biomarker with both high sensitivity and specificity for accurate prediction is preferred. Until now creatine kinase (CK levels have been used for DMD diagnosis but these fail to assess disease progression. Herein we examined the potential applicability of serum levels of matrix metalloproteinase 9 (MMP-9 and matrix metalloproteinase 2 (MMP-2, tissue inhibitor of metalloproteinases 1 (TIMP-1, myostatin (GDF-8 and follistatin (FSTN as non-invasive biomarkers to distinguish between DMD steroid naïve patients and healthy controls of similar age and also for carrier detection. Our data suggest that serum levels of MMP-9, GDF-8 and FSTN are useful to discriminate DMD from controls (p < 0.05, to correlate with some neuromuscular assessments for DMD, and also to differentiate between Becker muscular dystrophy (BMD and Limb-girdle muscular dystrophy (LGMD patients. In DMD individuals under steroid treatment, GDF-8 levels increased as FSTN levels decreased, resembling the proportions of these proteins in healthy controls and also the baseline ratio of patients without steroids. GDF-8 and FSTN serum levels were also useful for carrier detection (p < 0.05. Longitudinal studies with larger cohorts are necessary to confirm that these molecules correlate with disease progression. The biomarkers presented herein could potentially outperform CK levels for carrier detection and also harbor potential for monitoring disease progression.

  17. Non-Invasive Measurement of Adrenocortical Activity in Blue-Fronted Parrots (Amazona aestiva, Linnaeus, 1758.

    Directory of Open Access Journals (Sweden)

    João C P Ferreira

    Full Text Available Parrots kept in zoos and private households often develop psychological and behavioural disorders. Despite knowing that such disorders have a multifactorial aetiology and that chronic stress is involved, little is known about their development mainly due to a poor understanding of the parrots' physiology and the lack of validated methods to measure stress in these species. In birds, blood corticosterone concentrations provide information about adrenocortical activity. However, blood sampling techniques are difficult, highly invasive and inappropriate to investigate stressful situations and welfare conditions. Thus, a non-invasive method to measure steroid hormones is critically needed. Aiming to perform a physiological validation of a cortisone enzyme immunoassay (EIA to measure glucocorticoid metabolites (GCM in droppings of 24 Blue-fronted parrots (Amazona aestiva, two experiments were designed. During the experiments all droppings were collected at 3-h intervals. Initially, birds were sampled for 24 h (experiment 1 and one week later assigned to four different treatments (experiment 2: Control (undisturbed, Saline (0.2 mL of 0.9% NaCl IM, Dexamethasone (1 mg/kg IM and Adrenocorticotropic hormone (ACTH; 25 IU IM. Treatments (always one week apart were applied to all animals in a cross-over study design. A daily rhythm pattern in GCM excretion was detected but there were no sex differences (first experiment. Saline and dexamethasone treatments had no effect on GCM (not different from control concentrations. Following ACTH injection, GCM concentration increased about 13.1-fold (median at the peak (after 3-9 h, and then dropped to pre-treatment concentrations. By a successful physiological validation, we demonstrated the suitability of the cortisone EIA to non-invasively monitor increased adrenocortical activity, and thus, stress in the Blue-fronted parrot. This method opens up new perspectives for investigating the connection between behavioural

  18. Rapid, serial, non-invasive assessment of drug efficacy in mice with autoluminescent Mycobacterium ulcerans infection.

    Directory of Open Access Journals (Sweden)

    Tianyu Zhang

    Full Text Available BACKGROUND: Buruli ulcer (BU caused by Mycobacterium ulcerans is the world's third most common mycobacterial infection. There is no vaccine against BU and surgery is needed for patients with large ulcers. Although recent experience indicates combination chemotherapy with streptomycin and rifampin improves cure rates, the utility of this regimen is limited by the 2-month duration of therapy, potential toxicity and required parenteral administration of streptomycin, and drug-drug interactions caused by rifampin. Discovery and development of drugs for BU is greatly hampered by the slow growth rate of M. ulcerans, requiring up to 3 months of incubation on solid media to produce colonies. Surrogate markers for evaluating antimicrobial activity in real-time which can be measured serially and non-invasively in infected footpads of live mice would accelerate pre-clinical evaluation of new drugs to treat BU. Previously, we developed bioluminescent M. ulcerans strains, demonstrating proof of concept for measuring luminescence as a surrogate marker for viable M. ulcerans in vitro and in vivo. However, the requirement of exogenous substrate limited the utility of such strains, especially for in vivo experiments. METHODOLOGY/PRINCIPAL FINDING: For this study, we engineered M. ulcerans strains that express the entire luxCDABE operon and therefore are autoluminescent due to endogenous substrate production. The selected reporter strain displayed a growth rate and virulence similar to the wild-type parent strain and enabled rapid, real-time monitoring of in vitro and in vivo drug activity, including serial, non-invasive assessments in live mice, producing results which correlated closely with colony-forming unit (CFU counts for a panel of drugs with various mechanisms of action. CONCLUSIONS/SIGNIFICANCE: Our results indicate that autoluminescent reporter strains of M. ulcerans are exceptional tools for pre-clinical evaluation of new drugs to treat BU due to

  19. A multi-analyte assay for the non-invasive detection of bladder cancer.

    Directory of Open Access Journals (Sweden)

    Steve Goodison

    Full Text Available Accurate urinary assays for bladder cancer (BCa detection would benefit both patients and healthcare systems. Through genomic and proteomic profiling of urine components, we have previously identified a panel of biomarkers that can outperform current urine-based biomarkers for the non-invasive detection of BCa. Herein, we report the diagnostic utility of various multivariate combinations of these biomarkers. We performed a case-controlled validation study in which voided urines from 127 patients (64 tumor bearing subjects were analyzed. The urinary concentrations of 14 biomarkers (IL-8, MMP-9, MMP-10, SDC1, CCL18, PAI-1, CD44, VEGF, ANG, CA9, A1AT, OPN, PTX3, and APOE were assessed by enzyme-linked immunosorbent assay (ELISA. Diagnostic performance of each biomarker and multivariate models were compared using receiver operating characteristic curves and the chi-square test. An 8-biomarker model achieved the most accurate BCa diagnosis (sensitivity 92%, specificity 97%, but a combination of 3 of the 8 biomarkers (IL-8, VEGF, and APOE was also highly accurate (sensitivity 90%, specificity 97%. For comparison, the commercial BTA-Trak ELISA test achieved a sensitivity of 79% and a specificity of 83%, and voided urine cytology detected only 33% of BCa cases in the same cohort. These data show that a multivariate urine-based assay can markedly improve the accuracy of non-invasive BCa detection. Further validation studies are under way to investigate the clinical utility of this panel of biomarkers for BCa diagnosis and disease monitoring.

  20. Fecal lipocalin 2, a sensitive and broadly dynamic non-invasive biomarker for intestinal inflammation.

    Directory of Open Access Journals (Sweden)

    Benoit Chassaing

    Full Text Available Inflammation has classically been defined histopathologically, especially by the presence of immune cell infiltrates. However, more recent studies suggest a role for "low-grade" inflammation in a variety of disorders ranging from metabolic syndrome to cancer, which is defined by modest elevations in pro-inflammatory gene expression. Consequently, there is a need for cost-effective, non-invasive biomarkers that, ideally, would have the sensitivity to detect low-grade inflammation and have a dynamic range broad enough to reflect classic robust intestinal inflammation. Herein, we report that, for assessment of intestinal inflammation, fecal lipocalin 2 (Lcn-2, measured by ELISA, serves this purpose. Specifically, using a well-characterized mouse model of DSS colitis, we observed that fecal Lcn-2 and intestinal expression of pro-inflammatory cytokines (IL-1β, CXCL1, TNFα are modestly but significantly induced by very low concentrations of DSS (0.25 and 0.5%, and become markedly elevated at higher concentrations of DSS (1.0 and 4.0%. As expected, careful histopathologic analysis noted only modest immune infiltrates at low DSS concentration and robust colitis at higher DSS concentrations. In accordance, increased levels of the neutrophil product myeloperoxidase (MPO was only detected in mice given 1.0 and 4.0% DSS. In addition, fecal Lcn-2 marks the severity of spontaneous colitis development in IL-10 deficient mice. Unlike histopathology, MPO, and q-RT-PCR, the assay of fecal Lcn-2 requires only a stool sample, permits measurement over time, and can detect inflammation as early as 1 day following DSS administration. Thus, assay of fecal Lcn-2 by ELISA can function as a non-invasive, sensitive, dynamic, stable and cost-effective means to monitor intestinal inflammation in mice.

  1. UWB based low-cost and non-invasive practical breast cancer early detection (United States)

    Vijayasarveswari, V.; Khatun, S.; Fakir, M. M.; Jusoh, M.; Ali, S.


    Breast cancer is one of the main causes of women death worldwide. Breast tumor is an early stage of cancer that locates in cells of a human breast. As there is no remedy, early detection is crucial. Towards this, Ultra-Wideband (UWB) is a prominent candidate. It is a wireless communication technology which can achieve high bandwidth with low power utilization. UWB is suitable to be used for short range communication systems including breast cancer detection since it is secure, non-invasive and human health friendly. This paper presents the low-cost and non-invasive early breast cancer detection strategy using UWB sensor (or antenna). Emphasis is given here to detect breast tumor in 2D and 3D environments. The developed system consisted of hardware and software. Hardware included UWB transceiver and a pair of home-made directional sensor/antenna. The software included feed-forward back propagation Neural Network (NN) module to detect the tumor existence, size and location along with soft interface between software and hardware. Forward scattering technique was used by placing two sensors diagonally opposite sides of a breast phantom. UWB pulses were transmitted from one side of phantom and received from other side, controlled by the software interface in PC environment. Collected received signals were then fed into the NN module for training, testing and validation. The system exhibited detection efficiency on tumor existence, location (x, y, z), and size were approximately 100%, (78.17%, 70.66%, 92.46%), 85.86% respectively. The proposed UWB based early breast cancer detection system could be more practical with low-cost, user friendly and non-harmful features. This project may help users to monitor their breast health regularly at their home.

  2. Genetically-encoded biosensors for monitoring cellular stress in bioprocessing. (United States)

    Polizzi, Karen M; Kontoravdi, Cleo


    With the current wealth of transcriptomic data, it is possible to design genetically-encoded biosensors for the detection of stress responses and apply these to high-throughput bioprocess development and monitoring of cellular health. Such biosensors can sense extrinsic factors such as nutrient or oxygen deprivation and shear stress, as well as intrinsic stress factors like oxidative damage and unfolded protein accumulation. Alongside, there have been developments in biosensing hardware and software applicable to the field of genetically-encoded biosensors in the near future. This review discusses the current state-of-the-art in biosensors for monitoring cultures during biological manufacturing and the future challenges for the field. Connecting the individual achievements into a coherent whole will enable the application of genetically-encoded biosensors in industry.

  3. Imaging the pancreas: from ex vivo to non-invasive technology

    DEFF Research Database (Denmark)

    Holmberg, D; Ahlgren, U


    While many recently published reviews have covered non-invasive nuclear imaging techniques, the aim of this review is to focus on current developments in optical imaging technologies for investigating the pancreas. Several of these modalities are being developed into non-invasive, real...

  4. Advanced signal processing theory and implementation for sonar, radar, and non-invasive medical diagnostic systems

    CERN Document Server

    Stergiopoulos, Stergios


    Integrates topics of signal processing from sonar, radar, and medical system technologies by identifying their concept similarities. This book covers non-invasive medical diagnostic system applications, including intracranial ultrasound, a technology that attempts to address non-invasive detection on brain injuries and stroke.

  5. A Real-Time Non-invasive Auto-bioluminescent Urinary Bladder Cancer Xenograft Model. (United States)

    John, Bincy Anu; Xu, Tingting; Ripp, Steven; Wang, Hwa-Chain Robert


    The study was to develop an auto-bioluminescent urinary bladder cancer (UBC) xenograft animal model for pre-clinical research. The study used a humanized, bacteria-originated lux reporter system consisting of six (luxCDABEfrp) genes to express components required for producing bioluminescent signals in human UBC J82, J82-Ras, and SW780 cells without exogenous substrates. Immune-deficient nude mice were inoculated with Lux-expressing UBC cells to develop auto-bioluminescent xenograft tumors that were monitored by imaging and physical examination. Lux-expressing auto-bioluminescent J82-Lux, J82-Ras-Lux, and SW780-Lux cell lines were established. Xenograft tumors derived from tumorigenic Lux-expressing auto-bioluminescent J82-Ras-Lux cells allowed a serial, non-invasive, real-time monitoring by imaging of tumor development prior to the presence of palpable tumors in animals. Using Lux-expressing auto-bioluminescent tumorigenic cells enabled us to monitor the entire course of xenograft tumor development through tumor cell implantation, adaptation, and growth to visible/palpable tumors in animals.

  6. Etiske utfordringer med non-invasive prenatale tester (NIPT

    Directory of Open Access Journals (Sweden)

    Bjørn Hofmann


    Full Text Available Analyser av cellefritt DNA fra foster i gravide kvinners blod gir nye muligheter innen fosterdiagnostikk: Testene er bedre enn eksisterende tester, de reduserer risikoen og er billigere. Flere land har tatt i bruk disse testene, og Helsedirektoratet i Norge har mottatt søknad om å ta i bruk en test som erstatter tidlig ultralyd og blodprøver. Likevel nøler norske myndigheter. Hvorfor gjør de det? Ett av svarene er at non-invasive prenatale tester fører med seg en rekke faglige og moralske spørsmål og gir flere grunnleggende etiske utfordringer. Denne artikkelen gjennomgår et bredt knippe av de utfordringene som NIPT reiser. Hensikten er å synliggjøre hvorfor NIPT påkaller etisk refleksjon og å bidra til en åpen debatt og en transparent beslutningsprosess. Artikkelen identifiserer fem sentrale og konkrete spørsmål for vurderingen av NIPT.Nøkkelord: non-invasiv prenatal diagnostikk, testing, fravalg, foster, blodprøve, ekspressivisme, statsliberalt dilemma, dilemma, abort, retten til ikke å viteEnglish summary: Ethical challenges with non-invasive prenatal tests (NIPTNon-invasive prenatal testing (NIPT performed with the use of massively parallel sequencing of cell-free DNA (cfDNA testing in maternal plasma gives extended possibilities in prenatal screening. The tests are claimed to be better than existing alternative tests, they reduce the risk, and it is claimed they are cheaper. They have been used in several countries since 2012, and the University Hospital of North Norway has applied to the Directorate of Health to replace first trimester ultrasound and plasma screening with NIPT. The Directorate of Health is reluctant to reply. Why is this? One of the answers may be that NIPT raises a series of professional and moral questions, and poses profound ethical challenges. This article reviews a series of the challenges with NIPT. The aim is to highlight why NIPT calls for ethical reflection and to contribute to an open debate

  7. Non-invasive Brain Stimulation for Essential Tremor (United States)

    Shih, Ludy C.; Pascual-Leone, Alvaro


    Background There is increasing interest in the use of non-invasive brain stimulation to characterize and potentially treat essential tremor (ET). Studies have used a variety of stimulation coils, paradigms, and target locations to make these observations. We reviewed the literature to compare prior studies and to evaluate the rationale and the methods used in these studies. Methods We performed a systematic literature search of the PubMed database using the terms “transcranial,” “noninvasive,” “brain stimulation,” “transcranial magnetic stimulation (TMS),” “transcranial direct current stimulation (tDCS),” “transcranial alternating current stimulation (tACS),” and “essential tremor.” Results Single pulses of TMS to the primary motor cortex have long been known to reset tremor. Although there are relatively few studies showing alterations in motor cortical physiology, such as motor threshold, short and long intracortical inhibition, and cortical silent period, there may be some evidence of altered intracortical facilitation and cerebello-brain inhibition in ET. Repetitive TMS, theta burst stimulation, tDCS, and tACS have been applied to human subjects with tremor with some preliminary signs of tremor reduction, particularly in those studies that employed consecutive daily sessions. Discussion A variety of stimulation paradigms and targets have been explored, with the increasing rationale an interest in targeting the cerebellum. Rigorous assessment of coil geometry, stimulation paradigm, rationale for selection of the specific anatomic target, and careful phenotypic and physiologic characterization of the subjects with ET undergoing these interventions may be critical in extending these preliminary findings into effective stimulation therapies. PMID:28373927

  8. Non-invasive investigation of inflammatory bowel disease

    Institute of Scientific and Technical Information of China (English)

    JA Tibble; I Bjarnason


    The assessment of inflammatory activity in intestinal disease in man can be done using a variety of different techniques. These range from the use of non - invasive acute phase inflammatory markers measured in plasma such as C reactive protein (CRP) and the erythrocyte sedimentation rate (ESR) (both of which give an indirect assessment of disease activity) to the direct assessment of disease activity by intestinal biopsy performed during endoscopy in association with endoscopic scoring systems. Both radiology and endoscopy are conventional for the diagnosis of inflammatory bowel disease (IBD).However these techniques have severe limitations when it comes to assessing functional components of the disease such as activity and prognosis. Here we briefly review the value of two emerging intestinal function tests. Intestinal permeability, although ideally suited for diagnostic screening for small bowel Crohns disease, appears to give reliable predictive data for imminent relapse of small bowel Crohns disease and it can be used to assess responses to treatment. More significantly it is now clear that single stool assay of neutrophil specific proteins (calprotectin, lactoferrin) give the same quantitative data on intestinal inflammation as the 4 - day faecal excretion of 111lndium labelled white cells. Faecal calprotectin is shown to be increased in over 95% of patients with IBD and correlates with clinical disease activity. It reliably differentiates between patients with IBD and irritable bowel syndrome. More importantly, at a given faecal calprotectin concentration in patients with quiescent IBD,the test has a specificity and sensitivity in excess of 85% in predicting clinical relapse of disease. This suggests that relapse of IBD is closely related to the degree of intestinal inflammation and suggests that targeted treatment at an asymptomatic stage of the disease may be indicated.

  9. Non-invasive evaluation of facial crestal bone with ultrasonography (United States)

    Sinjab, Khaled; Chung, Ming-Pang; Chiang, Yi-Chen; Wang, Hom-Lay; Giannobile, William V.; Kripfgans, Oliver D.


    Purpose Facial crestal bone level and dimension determine function and esthetics of dentition and dental implants. We have previously demonstrated that ultrasound can identify bony and soft tissue structures in the oral cavity. The aim of this study is to evaluate the accuracy of using ultrasound to measure facial crestal bone level and thickness. Materials and methods A commercially available medical ultrasound scanner, paired with a 14 MHz imaging probe was used to scan dental and periodontal tissues at the mid-facial site of each tooth on 6 fresh cadavers. The alveolar crest level in relation to the cemento-enamel junction and its thickness on ultrasound images were measured and compared to those on cone-beam computed tomography (CBCT) scans and/or direct measurements on a total of 144 teeth. Results The mean crestal bone level measured by means of ultrasound, CBCT and direct measures was 2.66 ± 0.86 mm, 2.51 ± 0.82 mm, and 2.71 ± 1.04 mm, respectively. The mean crestal bone thickness was 0.71 ± 0.44 mm and 0.74 ± 0.34 mm, measured by means of ultrasound and CBCT, respectively. The correlations of the ultrasound readings to the other two methods were between 0.78 and 0.88. The mean absolute differences in crestal bone height and thickness between ultrasound and CBCT were 0.09 mm (-1.20 to 1.00 mm, p = 0.06) and 0.03 mm (-0.48 to 0.54 mm, p = 0.03), respectively. Conclusion Ultrasound was as accurate in determining alveolar bone level and its thickness as CBCT and direct measurements. Clinical trials will be required to further validate this non-ionizing and non-invasive method for determining facial crestal bone position and dimension. PMID:28178323

  10. Rejuvenecimiento periorbitario no invasivo Non-invasive periorbital rejuvenation

    Directory of Open Access Journals (Sweden)

    J. L. Muñóz del Olmo


    Full Text Available Cirujanos plásticos y médicos estéticos se esfuerzan por lograr resultados satisfactorios y estéticos que mejoren o suavicen el paso del tiempo a nivel facial, con un especial interés o énfasis en el área periorbitaria. Un gran número de pacientes consultan para mejorar esta zona, pero por diferentes motivos desean que los procedimientos que se les realicen sean poco invasivos y con resultados rápidos, permitiéndoles así incorporarse lo antes posible a sus actividades cotidianas. Es fundamental el conocimiento de las proporciones faciales y periorbitarias para lograr resultados naturales. El objetivo de la técnica que proponemos es lograr una bioestimulación local de la piel, restaurar los volúmenes y reducir las arrugas de expresión o dinámicas, consiguiendo así una apariencia relajada y juvenil en el paciente.Plastic surgeons and aesthetic doctors are making an effort to reach positive aesthetic results. Their aim is to soften the effects of age on facial features stressing in the periorbital area. Many patients come to improve their facial image on this area, but they are asking for non-invasive and fast procedures to keep on their daily life. It is indispensable the knowledge of facial and periorbital proportions to achieve a more natural effect. The aim of the technique exposed is to achieve a local bioestimulation on skin, to restore volumes and to reduce expression and dynamical wrinkles. The expected result is a relaxing, youthful appearance.

  11. Case Report of a Pressure Ulcer Occurring Over the Nasal Bridge Due to a Non-Invasive Ventilation Facial Mask (United States)

    Ahmad, Faria; Zahoor, Muhammad Umar U


    Non-invasive ventilation (NIV) is used in patients with respiratory failure, sleep apnoea, and dyspnoea related to pulmonary oedema. NIV is provided through a facial mask. Many complications of NIV facial masks have been reported, including the breakdown of facial skin. We report a case of an elderly male admitted with multiple co-morbidities. The facial mask was applied continuously for NIV, without any relief or formal monitoring of the underlying skin. It resulted in a Grade II pressure ulcer. We discuss the possible mechanism and offer advice for prevention of such device-related pressure ulcers. PMID:27843731

  12. Review of biomedical optical imaging—a powerful, non-invasive, non-ionizing technology for improving in vivo diagnosis (United States)

    Balas, Costas


    This paper reviews the recent developments in the field of biomedical optical imaging, emphasizing technologies that have been moved from 'bench top to bedside'. Important new developments in this field allow for unprecedented visualization of the tissue microstructure and enable quantitative mapping of disease-specific endogenous and exogenous substances. With these advances, optical imaging technologies are becoming powerful clinical tools for non-invasive and objective diagnosis, guided treatment and monitoring therapies. Recent developments in visible and infrared diffuse spectroscopy and imaging, spectral imaging, optical coherence tomography, confocal imaging, molecular imaging and dynamic spectral imaging are presented together with their derivative medical devices. Their perspectives and challenges are discussed.

  13. Gingival crevicular blood: As a non-invasive screening tool for diabetes mellitus in dental clinics

    Directory of Open Access Journals (Sweden)

    Neema Shetty


    Full Text Available Background: A high number of patients with periodontitis may have undiagnosed diabetes. Self-monitoring devices provide a simple method for rapid monitoring of the glucose level in the blood by utilizing a blood sample from the finger, but this method requires a needle puncture to obtain blood. It is possible that gingival crevicular blood (GCB from routine periodontal probing may be a source of blood for glucose measurements. Aim: To establish whether GCB can be used as a non-invasive diagnostic aid in screening for diabetes mellitus during routine periodontal examination. Materials and Methods: The study involved 50 diabetics and 50 non-diabetics, with an age range of 26-66 years. Both diabetic and non-diabetic patients had moderate to severe gingivitis with at least one tooth in the maxillary anterior region showing bleeding upon probing. The Gingival Index and Oral Hygiene Index-Simplified were recorded. Blood oozing from the gingival sulcus/pocket following periodontal pocket probing was collected using a capillary tube and transferred to the test stick of a glucose self-monitoring device (Accu-Chek, Roche Diagnostic, Germany in patients with comparable gingival and oral hygiene status. This value was compared with the peripheral fingerstick blood glucose (PFBG value, which was obtained by pricking the finger tip at the same visit. Statistical analysis was performed using Pearson′s correlation coefficient. Result: There was no statistically significant difference between the gingival crevicular blood glucose (GCBG values and the PFBG values in both the diabetic (P = 0.129, NS and the non-diabetic (P = 0.503, NS groups. Karl Pearson′s product-moment correlation coefficient was calculated, which showed a positive correlation between the two measurements in the diabetic (r = 0.943 as well as the non-diabetic (r = 0.926 groups. Conclusion: The results suggest that GCB can be used as a non-invasive diagnostic aid in screening for diabetes

  14. Investigation of the agreement of a continuous non-invasive arterial pressure device in comparison with invasive radial artery measurement. (United States)

    Ilies, C; Bauer, M; Berg, P; Rosenberg, J; Hedderich, J; Bein, B; Hinz, J; Hanss, R


    Arterial pressure (AP) monitoring should be accurate, easy to use, free of risks, and ideally continuous. The continuous non-invasive arterial pressure (CNAP) device is non-invasive and provides continuous pressure readings. This study was performed to compare the agreement of CNAP and invasive AP monitoring. Ninety patients undergoing surgery under general anaesthesia were enrolled. Invasive pressure monitoring was established at the radial artery. CNAP monitoring using a finger sensor recording was begun before induction of anaesthesia. Statistical analysis was conducted with the Bland-Altman method for comparisons of repeated measures. We obtained 16 843 valid pressure readings from 85 patients. Mean (sd) bias during maintenance of anaesthesia was: systolic AP: 4.2 (16.5) mm Hg; mean AP (MAP): -4.3 (10.4) mm Hg; and diastolic AP: -5.8 (6) mm Hg. The results of a subgroup analysis of patients who had a mean intra-arterial pressure of pressure: -0.3 (9.7) mm Hg; mean pressure: -6.8 (7.6) mm Hg; and diastolic pressure: -7.9 (7.2) mm Hg. Bias and percentage error during the induction period were greater in both the main and subgroup analyses, probably due to recalibration being omitted after induction. The CNAP monitor showed an acceptable agreement and was interchangeable with invasive pressure monitoring for MAP during normotensive conditions. During induction of anaesthesia and when the AP was low, the agreement was less good and interchangeability was not achieved. These results suggest that CNAP is not statistically equivalent to invasive monitoring during all periods of anaesthesia but may be a useful additional AP monitor.

  15. Unique DNA methylation patterns distinguish non-invasive and invasive urothelial cancers and establish an epigenetic field defect in premalignant tissue (United States)

    Wolff, Erika M.; Chihara, Yoshitomo; Pan, Fei; Weisenberger, Daniel J.; Siegmund, Kimberly D.; Sugano, Kokichi; Kawashima, Kiyotaka; Laird, Peter W.; Jones, Peter A.; Liang, Gangning


    Urothelial cancer (UC) develops along two different genetic pathways, resulting in non-invasive or invasive tumors. However, it is unknown whether there are also different epigenetic pathways in UC. UC is also characterized by a high rate of recurrence and the presence of a field defect has been postulated. In this study, we compared the DNA methylation patterns between non-invasive and invasive UC, and the DNA methylation patterns in normal-appearing urothelium from bladders with cancer to urothelium from cancer-free bladders. We used the Illumina GoldenGate methylation assay at 1,370 loci in 49 non-invasive urothelial tumors, 38 invasive tumors with matched normal-appearing urothelium, and urothelium from 12 age-matched urothelial cancer-free patients. We found a distinct pattern of hypomethylation in the non-invasive tumors and widespread hypermethylation in the invasive tumors, confirming that the two pathways differ epigenetically in addition to genetically. We also found that 12% of the loci were hypermethylated in apparently normal urothelium from bladders with cancer, indicating an epigenetic field defect. X-chromosome inactivation analysis indicated that this field defect did not result in clonal expansion but occurred independently across the urothelium of bladders with cancer. The hypomethylation present in non-invasive tumors may counter-intuitively provide a biological explanation for the failure of these tumors to become invasive. In addition, an epithelium-wide epigenetic defect in bladders with cancer may contribute to a loss of epithelial integrity and create a permissible environment for tumors to arise. PMID:20841482

  16. The mean prehospital machine; accurate prehospital non-invasive blood pressure measurement in the critically ill patient. (United States)

    Muecke, Sandy; Bersten, Andrew; Plummer, John


    Non-invasive blood pressure recordings may be inaccurate in the critically ill patient and measurement difficulties are intensified in the prehospital setting. This may adversely impact upon outcomes for many critically ill patients, particularly those with traumatic brain injury and/or lengthy prehospital times. This study aimed to validate a non-invasive, oscillometric, ambulatory blood pressure measuring device, the Oscar 2, Model 222 (SunTech Medical, Morrisville, USA) during the ambulance transport of critically ill patients. We have previously shown that mean arterial blood pressures observed by Intensive Care Unit nurses from a patient monitor can be considered interchangeable with reference intra-arterial integrated mean pressures. In the current study, we compared non-invasive device mean pressures to intra-arterial pressures observed by retrieval nurses from the patient monitor, during the ambulance transportation of critically ill patients. Device performance was required to fulfil the Association for the Advancement of Medical Instrumentation (AAMI) protocol requirements. Additionally, linear mixed effects analyses and Bland-Altman comparisons were undertaken. For 157 measurements recorded from 23 patients, when the Oscar 2 did not indicate a measurement was associated with a fault, the device fulfilled the AAMI protocol requirements, with a mean error of -1.1 mmHg (standard deviation 7.8 mmHg), 95% confidence intervals (linear mixed effects analysis) -2.9, 0.8; P = 0.26. Bland-Altman plots indicated uniform agreement across a wide range of blood pressures. Sixteen percent of recordings were associated with a patient, environment, or device generated fault. When the Oscar 2 does not indicate a fault has occurred, clinicians may be confident the mean pressure, within acceptable limits, is accurate, even during ambulance motion, administration of high doses of vasopressors and mechanical ventilation. The Oscar 2 appears to be an accurate and rugged out

  17. A novel LabVIEW-based multi-channel non-invasive abdominal maternal-fetal electrocardiogram signal generator. (United States)

    Martinek, Radek; Kelnar, Michal; Koudelka, Petr; Vanus, Jan; Bilik, Petr; Janku, Petr; Nazeran, Homer; Zidek, Jan


    This paper describes the design, construction, and testing of a multi-channel fetal electrocardiogram (fECG) signal generator based on LabVIEW. Special attention is paid to the fetal heart development in relation to the fetus' anatomy, physiology, and pathology. The non-invasive signal generator enables many parameters to be set, including fetal heart rate (FHR), maternal heart rate (MHR), gestational age (GA), fECG interferences (biological and technical artifacts), as well as other fECG signal characteristics. Furthermore, based on the change in the FHR and in the T wave-to-QRS complex ratio (T/QRS), the generator enables manifestations of hypoxic states (hypoxemia, hypoxia, and asphyxia) to be monitored while complying with clinical recommendations for classifications in cardiotocography (CTG) and fECG ST segment analysis (STAN). The generator can also produce synthetic signals with defined properties for 6 input leads (4 abdominal and 2 thoracic). Such signals are well suited to the testing of new and existing methods of fECG processing and are effective in suppressing maternal ECG while non-invasively monitoring abdominal fECG. They may also contribute to the development of a new diagnostic method, which may be referred to as non-invasive trans-abdominal CTG +  STAN. The functional prototype is based on virtual instrumentation using the LabVIEW developmental environment and its associated data acquisition measurement cards (DAQmx). The generator also makes it possible to create synthetic signals and measure actual fetal and maternal ECGs by means of bioelectrodes.

  18. Evaluation of the fetal QT interval using non-invasive fetal ECG technology. (United States)

    Behar, Joachim; Zhu, Tingting; Oster, Julien; Niksch, Alisa; Mah, Douglas Y; Chun, Terrence; Greenberg, James; Tanner, Cassandre; Harrop, Jessica; Sameni, Reza; Ward, Jay; Wolfberg, Adam J; Clifford, Gari D


    Non-invasive fetal electrocardiography (NI-FECG) is a promising alternative continuous fetal monitoring method that has the potential to allow morphological analysis of the FECG. However, there are a number of challenges associated with the evaluation of morphological parameters from the NI-FECG, including low signal to noise ratio of the NI-FECG and methodological challenges for getting reference annotations and evaluating the accuracy of segmentation algorithms. This work aims to validate the measurement of the fetal QT interval in term laboring women using a NI-FECG electrocardiogram monitor. Fetal electrocardiogram data were recorded from 22 laboring women at term using the NI-FECG and an invasive fetal scalp electrode simultaneously. A total of 105 one-minute epochs were selected for analysis. Three pediatric electrophysiologists independently annotated individual waveforms and averaged waveforms from each epoch. The intervals measured on the averaged cycles taken from the NI-FECG and the fetal scalp electrode showed a close agreement; the root mean square error between all corresponding averaged NI-FECG and fetal scalp electrode beats was 13.6 ms, which is lower than the lowest adult root mean square error of 16.1 ms observed in related adult QT studies. These results provide evidence that NI-FECG technology enables accurate extraction of the fetal QT interval.

  19. Non invasive brain stimulation to enhance post-stroke recovery

    Directory of Open Access Journals (Sweden)

    Nathalie Kubis


    Full Text Available Brain plasticity after stroke remains poorly understood. Patients may improve spontaneously within the first 3 months and then more slowly in the coming year. The first days, decreased edema and reperfusion of the ischemic penumbra may possibly account for these phenomena, but the improvement during the next weeks suggests plasticity phenomena and cortical reorganization of the brain ischemic areas and of more remote areas. Indeed, the injured ischemic motor cortex has a reduced cortical excitability at the acute phase and a suspension of the topographic representation of affected muscles, whereas the contralateral motor cortex has an increased excitability and an enlarged somatomotor representation; furthermore, contralateral cortex exerts a transcallosal interhemispheric inhibition on the ischemic cortex. This results from the imbalance of the physiological reciprocal interhemispheric inhibition of each hemisphere on the other, contributing to worsening of neurological deficit. Cortical excitability is measurable through transcranial magnetic stimulation (TMS and prognosis has been established according to the presence of motor evoked potentials (MEP at the acute phase of stroke, which is predictive of better recovery. Conversely, the lack of response to early stimulation is associated with a poor functional outcome. Non-invasive stimulation techniques such as repetitive TMS (rTMS or transcranial direct current stimulation (tDCS have the potential to modulate brain cortical excitability with long lasting effects. In the setting of cerebrovascular disease, around 1000 stroke subjects have been included in placebo-controlled trials so far, most often with an objective of promoting motor recovery of the upper limb. High frequency repetitive stimulation (> 3 Hz rTMS, aiming to increase excitability of the ischemic cortex, or low frequency repetitive stimulation (≤ 1 Hz, aiming to reduce excitability of the contralateral homonymous cortex, or

  20. Non-invasive measurement of hemoglobin: assessment of two different point-of-care technologies.

    Directory of Open Access Journals (Sweden)

    Etienne Gayat

    Full Text Available BACKGROUND: Measurement of blood hemoglobin (Hb concentration is a routine procedure. Using a non-invasive point-of-care device reduces pain and discomfort for the patient and allows time saving in patient care. The aims of the present study were to assess the concordance of Hb levels obtained non-invasively with the Pronto-7 monitor (version 2.1.9, Masimo Corporation, Irvine, USA or with the NBM-200MP monitor (Orsense, Nes Ziona, Israel and the values obtained from the usual colorimetric method using blood samples and to determine the source of discordance. METHODS AND FINDINGS: We conducted two consecutive prospective open trials enrolling patients presenting in the emergency department of a university hospital. The first was designed to assess Pronto-7™ and the second NBM-200MP™. In each study, the main outcome measure was the agreement between both methods. Independent factors associated with the bias were determined using multiple linear regression. Three hundred patients were prospectively enrolled in each study. For Pronto-7™, the absolute mean difference was 0.56 g.L(-1 (95% confidence interval [CI] 0.41 to 0.69 with an upper agreement limit at 2.94 g.L(-1 (95% CI [2.70;3.19], a lower agreement limit at -1.84 g.L(-1 (95% CI [-2.08;-1.58] and an intra-class correlation coefficient at 0.80 (95% CI [0.74;0.84]. The corresponding values for the NBM-200MP™ were 0.21 [0.02;0.39], 3.42 [3.10;3.74], -3.01 [-3.32;-2.69] and 0.69 [0.62;0.75]. Multivariate analysis showed that age and laboratory values of hemoglobin were independently associated with the bias when using Pronto-7™, while perfusion index and laboratory value of hemoglobin were independently associated with the bias when using NBM-200MP™. CONCLUSION: Despite a relatively limited bias in both cases, the large limits of agreement found in both cases render the clinical usefulness of such devices debatable. For both devices, the bias is independently and inversely associated

  1. Non-invasive assessment of in-vitro embryo quality to improve transfer success

    DEFF Research Database (Denmark)

    Højbøge, Tina Rødgaard; Heegaard, Peter M. H.; Callesen, Henrik


    embryos before the transfer to a recipient still remains challenging. Presently, the predominant non-invasive technique for selecting viable embryos is based on morphology, where parameters such as rates of cleavage and blastocyst formation as well as developmental kinetics are evaluated mostly...... subjectively. The simple morphological approach is, however, inadequate for the prediction of embryo quality, and several studies have focused on developing new non-invasive methods using molecular approaches based particularly on proteomics, metabolomics and most recently small non-coding RNA, including micro......RNA. This review outlines the potential of several non-invasive in-vitro methods based on analysis of spent embryo culture medium....

  2. Non-invasive MRI biomarkers for the early assessment of iron overload in a humanized mouse model of β-thalassemia (United States)

    Jackson, Laurence H.; Vlachodimitropoulou, Evangelia; Shangaris, Panicos; Roberts, Thomas A.; Ryan, Thomas M.; Campbell-Washburn, Adrienne E.; David, Anna L.; Porter, John B.; Lythgoe, Mark F.; Stuckey, Daniel J.


    β-thalassemia (βT) is a genetic blood disorder causing profound and life threatening anemia. Current clinical management of βT is a lifelong dependence on regular blood transfusions, a consequence of which is systemic iron overload leading to acute heart failure. Recent developments in gene and chelation therapy give hope of better prognosis for patients, but successful translation to clinical practice is hindered by the lack of thorough preclinical testing using representative animal models and clinically relevant quantitative biomarkers. Here we demonstrate a quantitative and non-invasive preclinical Magnetic Resonance Imaging (MRI) platform for the assessment of βT in the γβ0/γβA humanized mouse model of βT. Changes in the quantitative MRI relaxation times as well as severe splenomegaly were observed in the heart, liver and spleen in βT. These data showed high sensitivity to iron overload and a strong relationship between quantitative MRI relaxation times and hepatic iron content. Importantly these changes preceded the onset of iron overload cardiomyopathy, providing an early biomarker of disease progression. This work demonstrates that multiparametric MRI is a powerful tool for the assessment of preclinical βT, providing sensitive and quantitative monitoring of tissue iron sequestration and cardiac dysfunction- parameters essential for the preclinical development of new therapeutics. PMID:28240317

  3. [Genetic ecological monitoring in human populations: heterozygosity, mtDNA haplotype variation, and genetic load]. (United States)

    Balanovskiĭ, O P; Koshel', S M; Zaporozhchenko, V V; Pshenichnov, A S; Frolova, S A; Kuznetsova, M A; Baranova, E E; Teuchezh, I E; Kuznetsova, A A; Romashkina, M V; Utevskaia, O M; Churnosov, M I; Villems, R; Balanovskaia, E V


    Yu. P. Altukhov suggested that heterozygosity is an indicator of the state of the gene pool. The idea and a linked concept of genetic ecological monitoring were applied to a new dataset on mtDNA variation in East European ethnic groups. Haplotype diversity (an analog of the average heterozygosity) was shown to gradually decrease northwards. Since a similar trend is known for population density, interlinked changes were assumed for a set of parameters, which were ordered to form a causative chain: latitude increases, land productivity decreases, population density decreases, effective population size decreases, isolation of subpopulations increases, genetic drift increases, and mtDNA haplotype diversity decreases. An increase in genetic drift increases the random inbreeding rate and, consequently, the genetic load. This was confirmed by a significant correlation observed between the incidence of autosomal recessive hereditary diseases and mtDNA haplotype diversity. Based on the findings, mtDNA was assumed to provide an informative genetic system for genetic ecological monitoring; e.g., analyzing the ecology-driven changes in the gene pool.

  4. Signal processing technique for non-invasive real-time estimation of cardiac output by inductance cardiography (thoracocardiography). (United States)

    Bucklar, G B; Kaplan, V; Bloch, K E


    Inductance cardiography (thoracocardiography) non-invasively monitors changes in stroke volume by recording ventricular volume curves with an inductive plethysmographic transducer encircling the chest at the level of the heart. Clinical application of this method has been hampered, as data analysis has not been feasible in real time. Therefore a novel, real-time signal processing technique for inductance cardiography has been developed. Its essential concept consists in performance of multiple tasks by several, logically linked signal processing modules that have access to common databases. Based on these principles, a software application was designed that performs acquisition, display, filtering and ECG-triggered ensemble averaging of inductance signals and separates cardiogenic waveforms from noise related to respiration and other sources. The resulting ventricular volume curves are automatically analysed. Performance of the technique for monitoring cardiac output in real time was compared with thermodilution in four patients in an intensive care unit. The bias (mean difference) among 76 paired thoracocardiographic and thermodilution derived changes in cardiac output was 0%; limits of agreement (+/- 2 SD of the bias) were +/- 25%. It is concluded that the proposed signal processing technique for inductance cardiography holds promise for non-invasive, real-time estimation of changes in cardiac output.

  5. Non-invasive skin biomarkers quantification of psoriasis and atopic dermatitis: cytokines, antioxidants and psoriatic skin auto-fluorescence. (United States)

    Portugal-Cohen, Meital; Horev, Liran; Ruffer, Claas; Schlippe, Gerrit; Voss, Werner; Ma'or, Ze'evi; Oron, Miriam; Soroka, Yoram; Frušić-Zlotkin, Marina; Milner, Yoram; Kohen, Ron


    Psoriasis and atopic dermatitis (AD) are challenging to treat due to the absence of suitable monitoring procedure and their recurrences. Alteration of skin hydrophilic biomarkers (SHB) and structural elements occur in both disorders and may possess a distinct profile for each clinical condition. To quantify skin cytokines and antioxidants non-invasively in psoriatic and in AD patients and to evaluate skin auto-fluorescence in psoriatic patients. A skin wash sampling technique was utilized to detect the expression of SHB on psoriatic and AD patients and healthy controls. Inflammatory cytokine (TNFα, IL-1α and IL-6) levels, total antioxidant scavenging capacity and uric acid content were estimated. Additionally, measurement of the fluorescent emission spectra of tryptophan moieties, collagen cross-links and elastin cross-links were performed on psoriatic patients and healthy controls. Our findings demonstrate significant alterations of the SHB levels among psoriasis, AD and healthy skin. Differences were also observed between lesional and non-lesional areas in patients with psoriasis and AD. Ultra-structural changes were found in psoriatic patients both in lesional and non-lesional areas. Employing non-invasive measurements of skin wash sampling and skin auto-fluorescence might serve as complementary analysis for improved diagnosis and treatment of psoriasis and AD. Furthermore, they may serve as an additional monitoring tool for various diseases, in which skin dysfunction is involved. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  6. Development of a portable non-invasive swallowing and respiration assessment device

    National Research Council Canada - National Science Library

    Shieh, Wann-Yun; Wang, Chin-Man; Chang, Chia-Shuo


    .... Recently, more and more researchers have focused their attention on the importance of swallowing and respiration coordination, and the use of non-invasive assessment systems has become a hot research trend...

  7. Lung protection during non-invasive synchronized assist versus volume control in rabbits

    National Research Council Canada - National Science Library

    Mirabella, Lucia; Grasselli, Giacomo; Haitsma, Jack J; Zhang, Haibo; Slutsky, Arthur S; Sinderby, Christer; Beck, Jennifer


    .... For this, we used non-invasive Neurally Adjusted Ventilatory Assist (NIV-NAVA), with the hypothesis that liberation of upper airways and the ventilator's integration with lung protective reflexes would be equally lung protective...

  8. S100B in serum and saliva: a valid invasive or non-invasive biomarker in obstructive sleep apnea? (United States)

    Traxdorf, M; Wendler, O; Tziridis, K; Bauer, J; Scherl, C


      The aim of this prospective study was to determine whether serum or saliva S100B could be established as an invasive or non-invasive biomarker of cerebrovascular stress due to chronic intermittent hypoxia in obstructive sleep apnea (OSA). S100B levels in serum and saliva were measured by an enzyme-linked immunosorbent assay (ELISA) in 40 patients with polysomnographically confirmed OSA (n=34) or ronchopathy (n=6) and 20 control subjects (n=20). We also investigated four healthy volunteers (n=4) to determine whether the S100B levels in serum and saliva are dependent on the time of day. Serum S100B was significantly higher in OSA than in healthy control subjects (p=0.007), although it was not related to the severity of OSA and was independent of age, sex, and subjective daytime symptoms. Values of S100B in saliva showed a marked scatter, so there was no significant difference between the OSA group and controls (p=0.62). We did not find that S100B levels in either serum or saliva depended on the time of day (p=0.53; p=0.91). Serum S100B allows us to discriminate healthy subjects from patients with OSA. However, it does not live up to its promise as a valid invasive predictor of OSA, since it does not correlate with the severity of the disease. Also, S100B in saliva is not suitable for use as a non-invasive biomarker to detect hypoxia-induced cerebrovascular stress in OSA. This finding prevents an S100B saliva-based assessment of risk or possible extent of structural brain damage, ruling out the possibility of non-invasive home monitoring of compliance and therapeutic efficacy in cases of OSA on treatment.

  9. A feasible method for non-invasive measurement of pulmonary vascular resistance in pulmonary arterial hypertension: Combined use of transthoracic Doppler-echocardiography and cardiac magnetic resonance. Non-invasive estimation of pulmonary vascular resistance

    Directory of Open Access Journals (Sweden)

    Yan Chaowu


    Translational perspective: In PAH, the non-invasive measurement of PVR is very important in clinical practice. Up to now, however, the widely accepted non-invasive method is still unavailable. Since TTE can estimate (MPAP–PCWP reliably and CMR is the best image modality for the measurement of CO, the combined use of two modalities has the potential to determine PVR non-invasively. In this research, the integrated non-invasive method showed good diagnostic accuracy and repeatability compared with RHC. Therefore, it might be a feasible method for non-invasive measurement of PVR in patients with PAH.

  10. Non-invasive mechanical ventilation and epidural anesthesia for an emergency open cholecystectomy. (United States)

    Yurtlu, Bülent Serhan; Köksal, Bengü; Hancı, Volkan; Turan, Işıl Özkoçak


    Non-invasive ventilation is an accepted treatment modality in both acute exacerbations of respiratory diseases and chronic obstructive lung disease. It is commonly utilized in the intensive care units, or for postoperative respiratory support in post-anesthesia care units. This report describes intraoperative support in non-invasive ventilation to neuroaxial anesthesia for an emergency upper abdominal surgery. Copyright © 2014 Sociedade Brasileira de Anestesiologia. Published by Elsevier Editora Ltda. All rights reserved.

  11. [Non-invasive mechanical ventilation and epidural anesthesia for an emergency open cholecystectomy]. (United States)

    Yurtlu, Bülent Serhan; Köksal, Bengü; Hancı, Volkan; Turan, Işıl Özkoçak


    Non-invasive ventilation is an accepted treatment modality in both acute exacerbations of respiratory diseases and chronic obstructive lung disease. It is commonly utilized in the intensive care units, or for postoperative respiratory support in post-anesthesia care units. This report describes intraoperative support in non-invasive ventilation to neuroaxial anesthesia for an emergency upper abdominal surgery. Copyright © 2014 Sociedade Brasileira de Anestesiologia. Publicado por Elsevier Editora Ltda. All rights reserved.

  12. Insights and Lessons from a Scientific Conference on Non-Invasive Delivery of Macromolecules. (United States)

    Savla, Ronak; Mrsny, Randall J; Park, Kinam; Aubert, Isabelle; Stamoran, Cornell


    A growing share of the pharmaceutical development pipeline is occupied by macromolecule drugs, which are primarily administered by injection. Despite decades of attempts, non-invasive delivery of macromolecules has seen only a few success stories. Potential benefits of non-invasive administration include better patient acceptance and adherence and potentially better efficacy and safety. Greater inter-disciplinary dialogue and collaboration are integral to realizing these benefits.

  13. Non-invasive measurement of hepatic oxygenation by an oxygen electrode in human orthotopic liver transplantation. (United States)

    Seifalian, A M; Mallett, S; Piasecki, C; Rolles, K; Davidson, B R


    Precise evaluation of graft reperfusion is difficult in clinical liver transplantation. The oxygen electrode (OE) is a novel technique to detect blood flow indirectly by measuring the quantity of oxygen which can diffuse from the hepatic tissue to the surface electrode. Application of the surface OE does not influence the liver blood flow or parenchymal perfusion. Adequate graft oxygenation is essential to the outcome of organ transplantation and has not previously been analysed intra-operatively in liver transplant recipients. The OE was applied to the surface of the graft intra-operatively in 22 human liver grafts after restoring portal vein and hepatic artery inflow. OE readings were compared with liver blood flow using an electromagnetic flowmeter (EMF). Intra-operative haemodynamics and donor organ parameters known to influence graft function were correlated with the OE readings. There was a significant correlation (r=0.89; poxygenation using the OE and total liver blood flow measured by EMF. The tissue oxygenation measurements were reproducible with a coefficient of variation of 5%. The hepatic tissue oxygenation increased significantly from baseline following venous reperfusion of the graft (282+/-23 vs 3107+/-288 (+/-SE) nA, poxygen perfusion. There was significant negative correlation (r=0.80, poxygenation. The OE provides a reliable, cheap and non-invasive method of monitoring liver graft oxygenation and perfusion during transplantation.

  14. Non-invasive detection of periodontal disease using diffuse reflectance spectroscopy: a clinical study (United States)

    Prasanth, Chandra Sekhar; Betsy, Joseph; Subhash, Narayanan; Jayanthi, Jayaraj L.; Prasanthila, Janam


    In clinical diagnostic procedures, gingival inflammation is considered as the initial stage of periodontal breakdown. This is often detected clinically by bleeding on probing as it is an objective measure of inflammation. Since conventional diagnostic procedures have several inherent drawbacks, development of novel non-invasive diagnostic techniques assumes significance. This clinical study was carried out in 15 healthy volunteers and 25 patients to demonstrate the applicability of diffuse reflectance (DR) spectroscopy for quantification and discrimination of various stages of inflammatory conditions in periodontal disease. The DR spectra of diseased lesions recorded using a point monitoring system consisting of a tungsten halogen lamp and a fiber-optic spectrometer showed oxygenated hemoglobin absorption dips at 545 and 575 nm. Mean DR spectra on normalization shows marked differences between healthy and different stages of gingival inflammation. Among the various DR intensity ratios investigated, involving oxy Hb absorption peaks, the R620/R575 ratio was found to be a good parameter of gingival inflammation. In order to screen the entire diseased area and its surroundings instantaneously, DR images were recorded with an EMCCD camera at 620 and 575 nm. We have observed that using the DR image intensity ratio R620/R575 mild inflammatory tissues could be discriminated from healthy with a sensitivity of 92% and specificity of 93%, and from moderate with a sensitivity of 83% and specificity of 96%. The sensitivity and specificity obtained between moderate and severe inflammation are 82% and 76% respectively.

  15. Active concentric ring electrode for non-invasive detection of intestinal myoelectric signals. (United States)

    Prats-Boluda, Gema; Garcia-Casado, Javier; Martinez-de-Juan, Jose L; Ye-Lin, Yiyao


    Although the surface electroenterogram (EEnG) is a weak signal contaminated by strong physiological interference, such as ECG and respiration, abdominal surface recordings of the EEnG could provide a non-invasive method of studying intestinal activity. The goal of this work was to develop a modular, active, low-cost and easy-to-use sensor to obtain a direct estimation of the Laplacian of the EEnG on the abdominal surface in order to enhance the quality of bipolar surface monitoring of intestinal activity. The sensor is made up of a set of 3 concentric dry Ag/AgCl ring electrodes and a battery-powered signal-conditioning circuit. Each section is etched on a different printed circuit board (PCB) and the sections are joined to each other by surface mount technology connectors. This means the sensing electrodes can be treated independently for purposes of maintenance and replacement and the signal conditioning circuit can be re-used. A total of ten recording sessions were carried out on humans. The results show that the surface recordings of the EEnG obtained by the active sensor present significantly less ECG and respiration interference than those obtained by bipolar recordings. In addition, bioelectrical sources whose frequency fitted with the slow wave component of the EEnG (SW) were identified by parametric spectral analysis in the surface signals picked up by the active sensors.

  16. Prototype of an opto-capacitive probe for non-invasive sensing cerebrospinal fluid circulation (United States)

    Myllylä, Teemu; Vihriälä, Erkki; Pedone, Matteo; Korhonen, Vesa; Surazynski, Lukasz; Wróbel, Maciej; Zienkiewicz, Aleksandra; Hakala, Jaakko; Sorvoja, Hannu; Lauri, Janne; Fabritius, Tapio; Jedrzejewska-Szczerska, Małgorzata; Kiviniemi, Vesa; Meglinski, Igor


    In brain studies, the function of the cerebrospinal fluid (CSF) awakes growing interest, particularly related to studies of the glymphatic system in the brain, which is connected with the complex system of lymphatic vessels responsible for cleaning the tissues. The CSF is a clear, colourless liquid including water (H2O) approximately with a concentration of 99 %. In addition, it contains electrolytes, amino acids, glucose, and other small molecules found in plasma. The CSF acts as a cushion behind the skull, providing basic mechanical as well as immunological protection to the brain. Disturbances of the CSF circulation have been linked to several brain related medical disorders, such as dementia. Our goal is to develop an in vivo method for the non-invasive measurement of cerebral blood flow and CSF circulation by exploiting optical and capacitive sensing techniques simultaneously. We introduce a prototype of a wearable probe that is aimed to be used for long-term brain monitoring purposes, especially focusing on studies of the glymphatic system. In this method, changes in cerebral blood flow, particularly oxy- and deoxyhaemoglobin, are measured simultaneously and analysed with the response gathered by the capacitive sensor in order to distinct the dynamics of the CSF circulation behind the skull. Presented prototype probe is tested by measuring liquid flows inside phantoms mimicking the CSF circulation.

  17. Image-guided ultrasound phased arrays are a disruptive technology for non-invasive therapy (United States)

    Hynynen, Kullervo; Jones, Ryan M.


    Focused ultrasound offers a non-invasive way of depositing acoustic energy deep into the body, which can be harnessed for a broad spectrum of therapeutic purposes, including tissue ablation, the targeting of therapeutic agents, and stem cell delivery. Phased array transducers enable electronic control over the beam geometry and direction, and can be tailored to provide optimal energy deposition patterns for a given therapeutic application. Their use in combination with modern medical imaging for therapy guidance allows precise targeting, online monitoring, and post-treatment evaluation of the ultrasound-mediated bioeffects. In the past there have been some technical obstacles hindering the construction of large aperture, high-power, densely-populated phased arrays and, as a result, they have not been fully exploited for therapy delivery to date. However, recent research has made the construction of such arrays feasible, and it is expected that their continued development will both greatly improve the safety and efficacy of existing ultrasound therapies as well as enable treatments that are not currently possible with existing technology. This review will summarize the basic principles, current statures, and future potential of image-guided ultrasound phased arrays for therapy.

  18. From liver biopsy to non-invasive markers in evaluating fibrosis in chronic liver disease

    Directory of Open Access Journals (Sweden)

    Cătălina Diaconu


    Full Text Available Chronic liver disease is a late stage of progressive hepatic fibrosis. It consists of functional and structural disruptions in most chronic liver diseases. An accurate diagnosis allows us to establish the degree of fibrosis and the stage of the disease, the prognosis of the patient and to predict a treatment response. Despite the fact that liver biopsy is considered a gold standard, noninvasive methods for diagnosing liver fibrosis have gained more and more importance. Whether we talk about serum biomarkers or imagistic methods from transient elastography to 3-D magnetic resonance elastography, the question remains: are these useful or useless? Serum biomarkers represent blood components that can reflect liver histological changes, thus they can monitor the continuous process of fibrosis. These can be subcategorized in direct (that show extracellular matrix turnover and indirect markers (that reflect disturbances in the hepatic function. However these markers alone are not as accurate in the staging of fibrosis, only help differentiate patients without or with low grade of fibrosis from those with significant fibrosis and cannot be considered alone in the diagnosis of liver fibrosis. Imagistic methods include: ultrasound-based transient elastography, magnetic resonance elastography (MRE, 2D-shear wave elastography, acoustic radiation impulse imaging (ARFI and cross sectional imaging, the first being the most used. Using a combination of non-invasive tools allows us to diminish the number of patients in need of liver biopsy. However, the patient must always be informed of the advantages and disadvantages of each method and its limitations.

  19. A review on the non-invasive evaluation of skeletal muscle oxygenation (United States)

    Halim, A. A. A.; Laili, M. H.; Aziz, N. A.; Laili, A. R.; Salikin, M. S.; Rusop, M.


    The aim of this review is to conduct a feasibility study of non-invasive evaluation in skeletal muscle oxygenation. This non-invasive evaluation could extract many information using a safe non-invasive method regarding to the oxygenation and microcirculation status in human blood muscle. This brief review highlights the progress of the application of NIRS to evaluate skeletal muscle oxygenation in various activity of human nature from the historical point of view to the present advancement. Since the discovery of non-invasive optical method during 1992, there are many non-invasive techniques uses optical properties on human subject such as near infrared spectroscopy NIRS, optical topography, functional near infrared spectroscopy fNIRS and imaging fNIRI. Furthermore, in this paper we discuss the light absorption potential (LAP) towards chromophores content inside human muscle. Modified beer lambert law was studied in order to build a better understanding toward LAP between chromophores under tissue multilayers in human muscle. This paper will describe the NIRS principle and the basis for its proposed used in skeletal muscle oxygenation. This will cover the advantages and limitation of such application. Thus, these non-invasive techniques could open other possibilities to study muscle performance diagnosis.

  20. Non-invasive photoacoustic spectroscopic determination of relative endogenous nitric oxide and ethylene content stoichiometry during the ripening of strawberries Fragaria anannasa (Duch.) and avocados Persea americana (Mill.). (United States)

    Leshem, Y Y; Pinchasov, Y


    Employing non-invasive photoacoustic spectrometry, emissions of nitric oxide (NO) and ethylene in post-harvest strawberries and avocados were monitored. A clear-cut stoichiometric relationship was found between the two gases: unripe fruit manifesting high NO and low ethylene levels-the converse in ripe fruit. Findings are discussed in the light of putative control of ethylene-promoted fruit senescence by endogenous NO.

  1. Raman spectroscopy in biomedicine – non-invasive in vitro analysis of cells and extracellular matrix components in tissues (United States)

    Brauchle, Eva; Schenke-Layland, Katja


    Raman spectroscopy is an established laser-based technology for the quality assurance of pharmaceutical products. Over the past few years, Raman spectroscopy has become a powerful diagnostic tool in the life sciences. Raman spectra allow assessment of the overall molecular constitution of biological samples, based on specific signals from proteins, nucleic acids, lipids, carbohydrates, and inorganic crystals. Measurements are non-invasive and do not require sample processing, making Raman spectroscopy a reliable and robust method with numerous applications in biomedicine. Moreover, Raman spectroscopy allows the highly sensitive discrimination of bacteria. Rama spectra retain information on continuous metabolic processes and kinetics such as lipid storage and recombinant protein production. Raman spectra are specific for each cell type and provide additional information on cell viability, differentiation status, and tumorigenicity. In tissues, Raman spectroscopy can detect major extracellular matrix components and their secondary structures. Furthermore, the non-invasive characterization of healthy and pathological tissues as well as quality control and process monitoring of in vitro-engineered matrix is possible. This review provides comprehensive insight to the current progress in expanding the applicability of Raman spectroscopy for the characterization of living cells and tissues, and serves as a good reference point for those starting in the field. PMID:23161832

  2. Chemical Analysis of Whale Breath Volatiles: A Case Study for Non-Invasive Field Health Diagnostics of Marine Mammals

    Directory of Open Access Journals (Sweden)

    Raquel Cumeras


    Full Text Available We explored the feasibility of collecting exhaled breath from a moribund gray whale (Eschrichtius robustus for potential non-invasive health monitoring of marine mammals. Biogenic volatile organic compound (VOC profiling is a relatively new field of research, in which the chemical composition of breath is used to non-invasively assess the health and physiological processes on-going within an animal or human. In this study, two telescopic sampling poles were designed and tested with the primary aim of collecting whale breath exhalations (WBEs. Once the WBEs were successfully collected, they were immediately transferred onto a stable matrix sorbent through a custom manifold system. A total of two large volume WBEs were successfully captured and pre-concentrated onto two Tenax®-TA traps (one exhalation per trap. The samples were then returned to the laboratory where they were analyzed using solid phase micro extraction (SPME and gas chromatography/mass spectrometry (GC/MS. A total of 70 chemicals were identified (58 positively identified in the whale breath samples. These chemicals were also matched against a database of VOCs found in humans, and 44% of chemicals found in the whale breath are also released by healthy humans. The exhaled gray whale breath showed a rich diversity of chemicals, indicating the analysis of whale breath exhalations is a promising new field of research.

  3. Non-invasive assessment of elastic modulus of arterial constructs during cell culture using ultrasound elasticity imaging. (United States)

    Dutta, Debaditya; Lee, Kee-Won; Allen, Robert A; Wang, Yadong; Brigham, John C; Kim, Kang


    Mechanical strength is a key design factor in tissue engineering of arteries. Most existing techniques assess the mechanical property of arterial constructs destructively, leading to sacrifice of a large number of animals. We propose an ultrasound-based non-invasive technique for the assessment of the mechanical strength of engineered arterial constructs. Tubular scaffolds made from a biodegradable elastomer and seeded with vascular fibroblasts and smooth muscle cells were cultured in a pulsatile-flow bioreactor. Scaffold distension was computed from ultrasound radiofrequency signals of the pulsating scaffold via 2-D phase-sensitive speckle tracking. Young's modulus was then calculated by solving the inverse problem from the distension and the recorded pulse pressure. The stiffness thus computed from ultrasound correlated well with direct mechanical testing results. As the scaffolds matured in culture, ultrasound measurements indicated an increase in Young's modulus, and histology confirmed the growth of cells and collagen fibrils in the constructs. The results indicate that ultrasound elastography can be used to assess and monitor non-invasively the mechanical properties of arterial constructs. Copyright © 2013 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  4. Optimization of a Novel Non-invasive Oral Sampling Technique for Zoonotic Pathogen Surveillance in Nonhuman Primates. (United States)

    Smiley Evans, Tierra; Barry, Peter A; Gilardi, Kirsten V; Goldstein, Tracey; Deere, Jesse D; Fike, Joseph; Yee, JoAnn; Ssebide, Benard J; Karmacharya, Dibesh; Cranfield, Michael R; Wolking, David; Smith, Brett; Mazet, Jonna A K; Johnson, Christine K


    Free-ranging nonhuman primates are frequent sources of zoonotic pathogens due to their physiologic similarity and in many tropical regions, close contact with humans. Many high-risk disease transmission interfaces have not been monitored for zoonotic pathogens due to difficulties inherent to invasive sampling of free-ranging wildlife. Non-invasive surveillance of nonhuman primates for pathogens with high potential for spillover into humans is therefore critical for understanding disease ecology of existing zoonotic pathogen burdens and identifying communities where zoonotic diseases are likely to emerge in the future. We developed a non-invasive oral sampling technique using ropes distributed to nonhuman primates to target viruses shed in the oral cavity, which through bite wounds and discarded food, could be transmitted to people. Optimization was performed by testing paired rope and oral swabs from laboratory colony rhesus macaques for rhesus cytomegalovirus (RhCMV) and simian foamy virus (SFV) and implementing the technique with free-ranging terrestrial and arboreal nonhuman primate species in Uganda and Nepal. Both ubiquitous DNA and RNA viruses, RhCMV and SFV, were detected in oral samples collected from ropes distributed to laboratory colony macaques and SFV was detected in free-ranging macaques and olive baboons. Our study describes a technique that can be used for disease surveillance in free-ranging nonhuman primates and, potentially, other wildlife species when invasive sampling techniques may not be feasible.

  5. Non-Invasive Measurement of Emittance and Optical Parameters for High-Brightness Hadron Beams in a Synchrotron

    CERN Document Server

    Jansson, A


    For hadron colliders, such as the Large Hadron Collider at CERN, emittance preservation is of prime importance to achieve a high luminosity. Since there are no significant effects (apart from active cooling) that decrease the emittance of a hadron beam, the smallest possible emittance is set by the source, and has to be preserved along the entire injector chain. One possible source of emittance increase is due to optical mismatch at beam transfer between two machines in this chain. To verify the matching on-line requires a non-invasive instrument capable of measuring the optical parameters of the injected beam. Such instruments are very rare. A quadrupole pick-up is a non-invasive instrument sensitive to beam size. It is basically a beam position monitor, where the non-linear response to particle position is used to extract information on the second moment of the transverse beam distribution. The basic idea was proposed a long time ago, and have been successfully used at a few occasions, but have not found an...

  6. Non-invasive red light optogenetic pacing and optical coherence microscopy (OCM) imaging for drosophila melanogaster (Conference Presentation) (United States)

    Men, Jing; Li, Airong; Jerwick, Jason; Tanzi, Rudolph E.; Zhou, Chao


    Cardiac pacing could be a powerful tool for investigating mammalian cardiac electrical conduction systems as well as for treatment of certain cardiac pathologies. However, traditional electrical pacing using pacemaker requires an invasive surgical procedure. Electrical currents from the implanted electrodes can also cause damage to heart tissue, further restricting its utility. Optogenetic pacing has been developed as a promising, non-invasive alternative to electrical stimulation for controlling animal heart rhythms. It induces heart contractions by shining pulsed light on transgene-generated microbial opsins, which in turn activate the light gated ion channels in animal hearts. However, commonly used opsins in optogenetic pacing, such as channelrhodopsin-2 (ChR2), require short light wavelength stimulation (475 nm), which is strongly absorbed and scattered by tissue. Here, we performed optogenetic pacing by expression of recently engineered red-shifted microbial opsins, ReaChR and CsChrimson, in a well-established animal model, Drosophila melanogaster, using the 617 nm stimulation light pulses. The OCM technique enables non-invasive optical imaging of animal hearts with high speed and ultrahigh axial and transverse resolutions. We integrated a customized OCM system with the optical stimulation system to monitor the optogenetic pacing noninvasively. The use of red-sifted opsins enabled deeper penetration of simulating light at lower power, which is promising for applications of optogenetic pacing in mammalian cardiac pathology studies or clinical treatments in the future.

  7. Reflectance confocal microscopy and dermoscopy for in vivo, non-invasive skin imaging of superficial basal cell carcinoma (United States)



    Superficial basal cell carcinoma (sBCC) is the second most frequent histological type of basal cell carcinoma (BCC), usually requiring a skin biopsy to confirm the diagnosis. It usually appears on the upper trunk and shoulders as erythematous and squamous lesions. Although it has a slow growth and seldom metastasizes, early diagnosis and management are of crucial importance in preventing local invasion and subsequent disfigurement. Dermoscopy is nowadays an indispensable tool for the dermatologist when evaluating skin tumors. Reflectance confocal microscopy (RCM) is a novel imaging technique that allows the non-invasive, in vivo quasi-microscopic morphological and dynamic assessment of superficial skin tumors. Moreover, it offers the advantage of performing infinite repeatable determinations to monitor disease progression and non-surgical treatment for sBCC. Herein, we present three lesions of sBCC evaluated using in vivo and non-invasive imaging techniques, emphasizing the usefulness of combining RCM with dermoscopy for increasing the diagnostic accuracy of sBCC. PMID:27123056

  8. Wireless network system based multi-non-invasive sensors for smart home (United States)

    Issa Ahmed, Rudhwan

    There are several techniques that have been implemented for smart homes usage; however, most of these techniques are limited to a few sensors. Many of these methods neither meet the needs of the user nor are cost-effective. This thesis discusses the design, development, and implementation of a wireless network system, based on multi-non-invasive sensors for smart home environments. This system has the potential to be used as a means to accurately, and remotely, determine the activities of daily living by continuously monitoring relatively simple parameters that measure the interaction between users and their surrounding environment. We designed and developed a prototype system to meet the specific needs of the elderly population. Unlike audio-video based health monitoring systems (which have associated problems such as the encroachment of privacy), the developed system's distinct features ensure privacy and are almost invisible to the occupants, thus increasing the acceptance levels of this system in household environments. The developed system not only achieved high levels of accuracy, but it is also portable, easy to use, cost-effective, and requires low data rates and less power compared to other wireless devices such as Wi-Fi, Bluetooth, wireless USB, Ultra wideband (UWB), or Infrared (IR) wireless. Field testing of the prototype system was conducted at different locations inside and outside of the Minto Building (Centre for Advanced Studies in Engineering at Carleton University) as well as other locations, such as the washroom, kitchen, and living room of a prototype apartment. The main goal of the testing was to determine the range of the prototype system and the functionality of each sensor in different environments. After it was verified that the system operated well in all of the tested environments, data were then collected at the different locations for analysis and interpretation in order to identify the activities of daily living of an occupant.

  9. Non-invasive accurate measurement of arterial PCO2 in a pediatric animal model. (United States)

    Fierstra, Jorn; Winter, Jeff D; Machina, Matthew; Lukovic, Jelena; Duffin, James; Kassner, Andrea; Fisher, Joseph A


    The PCO2 in arterial blood (PaCO2) is a good parameter for monitoring ventilation and acid-base changes in ventilated patients, but its measurement is invasive and difficult to obtain in small children. Attempts have been made to use the partial pressure of CO2 in end-tidal gas (PETCO2), as a noninvasive surrogate for PaCO2. Studies have revealed that, unfortunately, the differences between PETCO2 and PaCO2 are too variable to be clinically useful. We hypothesized that end-inspiratory rebreathing, previously shown to equalize PETCO2 and PaCO2 in spontaneously breathing humans, would also be effective with positive pressure ventilation. Eight newborn Yorkshire pigs were mechanically ventilated via a partial rebreathing circuit to implement end-inspiratory rebreathing. Arterial blood was sampled and tested for PaCO2. A variety of alveolar ventilations resulting in different combinations of end-tidal PCO2 (30-50 mmHg) and PO2 (35-500 mmHg) were tested for differences between PETCO2 and PaCO2 (PET-aCO2). The PET-aCO2 of all samples was (mean ± 1.96 SD) 0.4 ± 2.7 mmHg. Our study demonstrates that, in ventilated juvenile animals, end-inspiratory rebreathing maintains PET-aCO2 to what would be a clinically useful range. If verified clinically, this approach could open the way for non-invasive monitoring of arterial PCO2 in critically ill patients.

  10. Non-invasive quantification of endogenous root auxin transport using an integrated flux microsensor technique. (United States)

    McLamore, Eric S; Diggs, Alfred; Calvo Marzal, Percy; Shi, Jin; Blakeslee, Joshua J; Peer, Wendy A; Murphy, Angus S; Porterfield, D Marshall


    Indole-3-acetic acid (IAA) is a primary phytohormone that regulates multiple aspects of plant development. Because polar transport of IAA is an essential determinant of organogenesis and dynamic tropic growth, methods to monitor IAA movement in vivo are in demand. A self-referencing electrochemical microsensor was optimized to non-invasively measure endogenous IAA flux near the surface of Zea mays roots without the addition of exogenous IAA. Enhanced sensor surface modification, decoupling of acquired signals, and integrated flux analyses were combined to provide direct, real time quantification of endogenous IAA movement in B73 maize inbred and brachytic2 (br2) auxin transport mutant roots. BR2 is localized in epidermal and hypodermal tissues at the root apex. br2 roots exhibit reduced shootward IAA transport at the root apex in radiotracer experiments and reduced gravitropic growth. IAA flux data indicates that maximal transport occurs in the distal elongation zone of maize roots, and net transport in/out of br2 roots was decreased compared to B73. Integration of short term real time flux data in this zone revealed oscillatory patterns, with B73 exhibiting shorter oscillatory periods and greater amplitude than br2. IAA efflux and influx were inhibited using 1-N-naphthylphthalamic acid (NPA), and 2-naphthoxyacetic acid (NOA), respectively. A simple harmonic oscillation model of these data produced a correlation between modeled and measured values of 0.70 for B73 and 0.69 for br2. These results indicate that this technique is useful for real-time IAA transport monitoring in surface tissues and that this approach can be performed simultaneously with current live imaging techniques.

  11. Non-invasive fluid density and viscosity measurement (United States)

    Sinha, Dipen N.


    The noninvasively measurement of the density and viscosity of static or flowing fluids in a section of pipe such that the pipe performs as the sensing apparatus, is described. Measurement of a suitable structural vibration resonance frequency of the pipe and the width of this resonance permits the density and viscosity to be determined, respectively. The viscosity may also be measured by monitoring the decay in time of a vibration resonance in the pipe.

  12. Non-invasive prenatal testing for single gene disorders: exploring the ethics. (United States)

    Deans, Zuzana; Hill, Melissa; Chitty, Lyn S; Lewis, Celine


    Non-invasive prenatal testing for single gene disorders is now clearly on the horizon. This new technology offers obvious clinical benefits such as safe testing early in pregnancy. Before widespread implementation, it is important to consider the possible ethical implications. Four hypothetical scenarios are presented that highlight how ethical ideals of respect for autonomy, privacy and fairness may come into play when offering non-invasive prenatal testing for single gene disorders. The first scenario illustrates the moral case for using these tests for 'information only', identifying a potential conflict between larger numbers of women seeking the benefits of the test and the wider social impact of funding tests that do not offer immediate clinical benefit. The second scenario shows how the simplicity and safety of non-invasive prenatal testing could lead to more autonomous decision-making and, conversely, how this could also lead to increased pressure on women to take up testing. In the third scenario we show how, unless strong safeguards are put in place, offering non-invasive prenatal testing could be subject to routinisation with informed consent undermined and that woman who are newly diagnosed as carriers may be particularly vulnerable. The final scenario introduces the possibility of a conflict of the moral rights of a woman and her partner through testing for single gene disorders. This analysis informs our understanding of the potential impacts of non-invasive prenatal testing for single gene disorders on clinical practice and has implications for future policy and guidelines for prenatal care.

  13. Structure-driven design of radionuclide tracers for non-invasive imaging of uPAR and targeted radiotherapy. The tale of a synthetic peptide antagonist

    DEFF Research Database (Denmark)

    Ploug, Michael


    as for monitoring the effects of such treatments by non-invasive imaging using e.g. positron emission tomography. This mini-review will focus on recent advancements in translational research devoted to non-invasive targeting of uPAR, with a view to molecular imaging of its expression in live individuals as well......-function relationships in uPAR has been refined to such a level that a rational design of uPAR function as well as compounds specifically targeting defined functions of uPAR are now realistic options. This knowledge opens new avenues for developing therapeutic intervention regimens targeting uPAR as well...... as specific eradication of these cells by targeted radiotherapy....

  14. Dynamic characterization of satellite components through non-invasive methods

    Energy Technology Data Exchange (ETDEWEB)

    Mullins, Joshua G [Los Alamos National Laboratory; Wiest, Heather K [Los Alamos National Laboratory; Mascarenas, David D. L. [Los Alamos National Laboratory; Macknelly, David [INST-OFF/AWE; Park, Gyuhae [Los Alamos National Laboratory


    The rapid deployment of satellites is hindered by the need to flight-qualify their components and the resulting mechanical assembly. Conventional methods for qualification testing of satellite components are costly and time consuming. Furthermore, full-scale vehicles must be subjected to launch loads during testing. This harsh testing environment increases the risk of component damage during qualification. The focus of this research effort was to assess the performance of Structural Health Monitoring (SHM) techniques as a replacement for traditional vibration testing. SHM techniques were applied on a small-scale structure representative of a responsive satellite. The test structure consisted of an extruded aluminum space-frame covered with aluminum shear plates, which was assembled using bolted joints. Multiple piezoelectric patches were bonded to the test structure and acted as combined actuators and sensors. Various methods of SHM were explored including impedance-based health monitoring, wave propagation, and conventional frequency response functions. Using these methods in conjunction with finite element modelling, the dynamic properties of the test structure were established and areas of potential damage were identified and localized. The adequacy of the results from each SHM method was validated by comparison to results from conventional vibration testing.

  15. Efficient distinction of invasive aquatic plant species from non-invasive related species using DNA barcoding. (United States)

    Ghahramanzadeh, R; Esselink, G; Kodde, L P; Duistermaat, H; van Valkenburg, J L C H; Marashi, S H; Smulders, M J M; van de Wiel, C C M


    Biological invasions are regarded as threats to global biodiversity. Among invasive aliens, a number of plant species belonging to the genera Myriophyllum, Ludwigia and Cabomba, and to the Hydrocharitaceae family pose a particular ecological threat to water bodies. Therefore, one would try to prevent them from entering a country. However, many related species are commercially traded, and distinguishing invasive from non-invasive species based on morphology alone is often difficult for plants in a vegetative stage. In this regard, DNA barcoding could become a good alternative. In this study, 242 samples belonging to 26 species from 10 genera of aquatic plants were assessed using the chloroplast loci trnH-psbA, matK and rbcL. Despite testing a large number of primer sets and several PCR protocols, the matK locus could not be amplified or sequenced reliably and therefore was left out of the analysis. Using the other two loci, eight invasive species could be distinguished from their respective related species, a ninth one failed to produce sequences of sufficient quality. Based on the criteria of universal application, high sequence divergence and level of species discrimination, the trnH-psbA noncoding spacer was the best performing barcode in the aquatic plant species studied. Thus, DNA barcoding may be helpful with enforcing a ban on trade of such invasive species, such as is already in place in the Netherlands. This will become even more so once DNA barcoding would be turned into machinery routinely operable by a nonspecialist in botany and molecular genetics.

  16. Volatile organic compounds as non-invasive markers for plant phenotyping. (United States)

    Niederbacher, B; Winkler, J B; Schnitzler, J P


    Plants emit a great variety of volatile organic compounds (VOCs) that can actively participate in plant growth and protection against biotic and abiotic stresses. VOC emissions are strongly dependent on environmental conditions; the greatest ambiguity is whether or not the predicted change in climate will influence and modify plant-pest interactions that are mediated by VOCs. The constitutive and induced emission patterns between plant genotypes, species, and taxa are highly variable and can be used as pheno(chemo)typic markers to distinguish between different origins and provenances. In recent years significant progress has been made in molecular and genetic plant breeding. However, there is actually a lack of knowledge in functionally linking genotypes and phenotypes, particularly in analyses of plant-environment interactions. Plant phenotyping, the assessment of complex plant traits such as growth, development, tolerance, resistance, etc., has become a major bottleneck, and quantitative information on genotype-environment relationships is the key to addressing major future challenges. With increasing demand to support and accelerate progress in breeding for novel traits, the plant research community faces the need to measure accurately increasingly large numbers of plants and plant traits. In this review article, we focus on the promising outlook of VOC phenotyping as a fast and non-invasive measure of phenotypic dynamics. The basic principle is to define plant phenotypes according to their disease resistance and stress tolerance, which in turn will help in improving the performance and yield of economically relevant plants. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email:

  17. Non-Invasive Mechanic Ventilation Using in Flail Chest, Caused By Blunt Chest Trauma

    Directory of Open Access Journals (Sweden)

    Serdar Onat


    Full Text Available A 75-year-old woman admitted our faculty emergency room with shortness of breath, and chest pain after traffic accident’s second hour. She was diagnosed as bilateral multipl rib fractures, left clavicula fracture, and left flail chest by phsical and radiological examinations. She was transfered to Chest Surgery Depatment’s intensive care unit. The patient was undergone non-invasive mask mechanic ventilation support, because of the decreasing of blood oxygen saturation and increasing of arteriel blood partial carbondioxide pressure. The treatment of non-invasive mechanic ventilation was succesfull for ventilation support. With this report, we would like to attentioned that non-invasive mechanic ventilation for blunt chest trauma patients could be used succesfully and could be used instead of endotracheal invasive mechanic ventilation.

  18. Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves

    DEFF Research Database (Denmark)

    Rossini, P M; Burke, D; Chen, R


    These guidelines provide an up-date of previous IFCN report on "Non-invasive electrical and magnetic stimulation of the brain, spinal cord and roots: basic principles and procedures for routine clinical application" (Rossini et al., 1994). A new Committee, composed of international experts, some...... of whom were in the panel of the 1994 "Report", was selected to produce a current state-of-the-art review of non-invasive stimulation both for clinical application and research in neuroscience. Since 1994, the international scientific community has seen a rapid increase in non-invasive brain stimulation...... in studying cognition, brain-behavior relationship and pathophysiology of various neurologic and psychiatric disorders. New paradigms of stimulation and new techniques have been developed. Furthermore, a large number of studies and clinical trials have demonstrated potential therapeutic applications of non...

  19. [Next generation sequencing and its applications in non-invasive prenatal testing of aneuploidies]. (United States)

    Babay, Lilla Éva; Horányi, Dániel; Rigó, János; Nagy, Gyula Richárd


    The development of the new generation sequencing techniques brought a new era in the field of DNA sequencing, that also revolutionized the prenatal screening for aneuploidy. In order to provide a more complete view, the authors describe some first generation methods as well as the theoretical and technical background of the next generation methods. In the second part of this review, the authors focuse on non-invasive prenatal testing, which is a fetal cell-free DNA based method requiring advanced sequencing procedures. After discussing the theoretical and technical background, the authors review current application and utility of non-invasive prenatal testing. They conclude that non-invasive prenatal testing is the most effective screening test in high risk pregnancies and its efficiency can be justified in studies involving low risk pregnancies as well.

  20. Intraspecies differenes in phenotypic plasticity: Invasive versus non-invasive populations of Ceratophyllum demersum

    DEFF Research Database (Denmark)

    Hyldgaard, Benita; Brix, Hans


    in response to growth temperature. Populations of the submerged macrophyte Ceratophyllum demersum from New Zealand, where the species is introduced and invasive, and from Denmark, where the species is native and non-invasive, were grown in a common garden setup at temperatures of 12, 18, 25 and 35 ◦C. We...... hypothesized that the phenotypic plasticity in fitness-related traits like growth and photosynthesis were higher in the invasive than in the non-invasive population. The invasive population acclimated to elevated temperatures through increased rates of photosynthesis (range: Pamb: 8–452 mol O2 g−1 DM h−1......High phenotypic plasticity has been hypothesized to affect the invasiveness of plants, as high plasticity may enlarge the breath of environments in which the plants can survive and reproduce. Here we compare the phenotypic plasticity of invasive and non-invasive populations of the same species...

  1. Early non-invasive ventilation treatment for respiratory failure due to severe community-acquired pneumonia. (United States)

    Nicolini, Antonello; Ferraioli, Gianluca; Ferrari-Bravo, Maura; Barlascini, Cornelius; Santo, Mario; Ferrera, Lorenzo


    Severe community-acquired pneumonia (sCAP) have been as defined pneumonia requiring admission to the intensive care unit or carrying a high risk of death. Currently, the treatment of sCAP consists of antibiotic therapy and ventilator support. The use of invasive ventilation causes several complications as does admission to ICU. For this reason, non-invasive ventilation (NIV) has been used for acute respiratory failure to avoid endotracheal intubation. However, few studies have currently assessed the usefulness of NIV in sCAP. We prospectively assessed 127 patients with sCAP and severe acute respiratory failure [oxygen arterial pressure/oxygen inspiratory fraction ratio (PaO2/FiO2) intubation and the achievement of PaO2/FiO2 >250 with spontaneous breathing. We assessed predictors of NIV failure and hospital mortality using univariate and multivariate analyses. NIV failed in 32 patients (25.1%). Higher chest X-ray score at admission, chest X-ray worsening, and a lower PaO2/FiO2 and higher alveolar-arteriolar gradient (A-aDO2) after 1 h of NIV all independently predicted NIV failure. Higher lactate dehydrogenase and confusion, elevated blood urea, respiratory rate, blood pressure plus age ≥65 years at admission, higher A-aDO2, respiratory rate and lower PaO2/FiO2 after 1 h of NIV and intubation rate were directly related to hospital mortality. Successful treatment is strongly related to less severe illness as well as to a good initial and sustained response to medical therapy and NIV treatment. Constant monitoring of these patients is mandatory. © 2014 John Wiley & Sons Ltd.

  2. Non-invasive multiparametric qBOLD approach for robust mapping of the oxygen extraction fraction

    Energy Technology Data Exchange (ETDEWEB)

    Domsch, Sebastian; Mie, Moritz B.; Schad, Lothar R. [Heidelberg Univ., Medical Faculty Mannheim (Germany). Computer Assisted Clinical Medicine; Wenz, Frederik [Heidelberg Univ., Medical Faculty Mannheim (Germany). Dept. of Radiation Oncology


    Introduction: The quantitative blood oxygenation level-dependent (qBOLD) method has not become clinically established yet because long acquisition times are necessary to achieve an acceptable certainty of the parameter estimates. In this work, a non-invasive multiparametric (nimp) qBOLD approach based on a simple analytical model is proposed to facilitate robust oxygen extraction fraction (OEF) mapping within clinically acceptable acquisition times by using separate measurements. Methods: The protocol consisted of a gradient-echo sampled spin-echo sequence (GESSE), a T{sub 2}-weighted Carr-Purcell-Meiboom-Gill (CPMG) sequence, and a T{sub 2}{sup *}-weighted multi-slice multi-echo gradient echo (MMGE) sequence. The GESSE acquisition time was less than 5 minutes and the extra measurement time for CPMG / MMGE was below 2 minutes each. The proposed nimp-qBOLD approach was validated in healthy subjects (N = 5) and one patient. Results: The proposed nimp-qBOLD approach facilitated more robust OEF mapping with significantly reduced inter- and intra-subject variability compared to the standard qBOLD method. Thereby, an average OEF in all subjects of 27 ± 2 % in white matter (WM) and 29 ± 2 % in gray matter (GM) using the nimp-qBOLD method was more stable compared to 41 ± 10 % (WM) and 46 ± 10 % (GM) with standard qBOLD. Moreover, the spatial variance in the image slice (i.e. standard deviation divided by mean) was on average reduced from 35 % to 25 %. In addition, the preliminary results of the patient are encouraging. Conclusion: The proposed nimp-qBOLD technique provides a promising tool for robust OEF mapping within clinically acceptable acquisition times and could therefore provide an important contribution for analyzing tumors or monitoring the success of radio and chemo therapies. (orig.)

  3. Lights and shadows of non-invasive mechanical ventilation for chronic obstructive pulmonary disease (COPD exacerbations

    Directory of Open Access Journals (Sweden)

    Jose Luis Lopez-Campos


    Full Text Available Despite the overwhelming evidence justifying the use of non-invasive ventilation (NIV for providing ventilatory support in chronic obstructive pulmonary disease (COPD exacerbations, recent studies demonstrated that its application in real-life settings remains suboptimal. European clinical audits have shown that 1 NIV is not invariably available, 2 its availability depends on countries and hospital sizes, and 3 numerous centers declare their inability to provide NIV to all of the eligible patients presenting throughout the year. Even with an established indication, the use of NIV in acute respiratory failure due to COPD exacerbations faces important challenges. First, the location and personnel using NIV should be carefully selected. Second, the use of NIV is not straightforward despite the availability of technologically advanced ventilators. Third, NIV therapy of critically ill patients requires a thorough knowledge of both respiratory physiology and existing ventilatory devices. Accordingly, an optimal team-training experience, the careful selection of patients, and special attention to the selection of devices are critical for optimizing NIV outcomes. Additionally, when applied, NIV should be closely monitored, and endotracheal intubation should be promptly available in the case of failure. Another topic that merits careful consideration is the use of NIV in the elderly. This patient population is particularly fragile, with several physiological and social characteristics requiring specific attention in relation to NIV. Several other novel indications should also be critically examined, including the use of NIV during fiberoptic bronchoscopy or transesophageal echocardiography, as well as in interventional cardiology and pulmonology. The present narrative review aims to provide updated information on the use of NIV in acute settings to improve the clinical outcomes of patients hospitalized for COPD exacerbations.

  4. Application of quantum dot nanoparticles for potential non-invasive bio-imaging of mammalian spermatozoa

    Directory of Open Access Journals (Sweden)

    Feugang Jean M


    Full Text Available Abstract Background Various obstacles are encountered by mammalian spermatozoa during their journey through the female genital tract, and only few or none will reach the site of fertilization. Currently, there are limited technical approaches for non-invasive investigation of spermatozoa migration after insemination. As the knowledge surrounding sperm behavior throughout the female genital tract still remains elusive, the recent development of self-illuminating quantum dot nanoparticles may present a potential means for real-time in vitro and in vivo monitoring of spermatozoa. Results Here, we show the ability of boar spermatozoa to harmlessly interact and incorporate bioluminescent resonance energy transfer-conjugated quantum dot (BRET-QD nanoparticles. The confocal microscope revealed in situ fluorescence of BRET-QD in the entire spermatozoon, while the ultra-structural analysis using the transmission electron microscope indicated BRET-QD localization on the sperm plasma membrane and intracellular compartment. In controlled-in vitro assays, bioluminescent imaging demonstrated that spermatozoa incubated with BRET-QD and luciferase substrate (coelenterazine emit light (photons/sec above the background, which confirmed the in situ fluorescence imaging. Most importantly, sperm motility, viability, and fertilizing potential were not affected by the BRET-QD incorporation when used at an appropriated ratio. Conclusions Our results demonstrate that pig spermatozoa can incorporate BRET-QD nanoparticles without affecting their motility and capacity to interact with the oocyte when used at an appropriated balance. We anticipate that our study will enable in-depth exploration of the male components of in vivo migration, fertilization, and embryonic development at the molecular level using this novel approach.

  5. TH-C-17A-11: Hyperthermia-Driven Immunotherapy Using Non-Invasive Radiowaves

    Energy Technology Data Exchange (ETDEWEB)

    Serda, R; Savage, D; Corr, S; Curley, S [Baylor College of Medicine, Houston, TX (United States)


    Purpose: The sad truth is that cancer is blamed for the death of nearly one in four people in the US. Immunotherapy offers hope for stimulating cancer immunity leading to targeted killing of cancer cells and a preventative measure for cancer recurrence. Unfortunately, the clinical efficacy of immunotherapy has not yet been established, however novel approaches are being developed, including combining immunotherapy with traditional chemotherapy, radiotherapy or thermal therapy. Therapeutics such as radiofrequency (RF) ablation and select chemotherapeutics induce mild anticancer immune responses. This project seeks to enhance the immune responses stimulated by these agents by co-delivery of nanoparticle-based chemotherapeutics and immune modulators in the presence of RF induced hyperthermia. Methods: A 4T1 mouse model of breast cancer is used to test the ability of RF waves to enhance accumulation of nanoparticles in tumor tissue by increasing blood flow and extravation of nanoparticles from hyperpermeable vessels. Images of particle and cell trafficking in the tumor are captured using an integrated RF and confocal imaging system, and tumor growth is monitored by tumor bioluminescence and caliper measurements. Results: Here we demonstrate enhanced intratumoral blood flow induced by non-invasive RF waves and an increase in nanoparticle accumulation in the tumor. IL-12 is shown to have powerful anti-tumor effects leading to tumor regression and the release of Th1-biased cytokines. Doxorubicin nanoparticles combined with adjuvant nanoparticles exhibited superior antitumor effects to single agent therapy. Conclusion: RF therapy combined with nanotherapeutics is a promising approach to enhance the delivery of therapeutics to the tumor and to stimulate a tumor microenvironment that supports the development of cancer-specific immune responses. This research was supported by the National Institute of Health grant numbers U54 CA143837 and U54 CA151668, and the Kanzius


    Institute of Scientific and Technical Information of China (English)

    鄢盛恺; 林其燧; 宋耀虹; 王树琴


    Objective. To evaluate the clinical utility of a new non-invasive enzyme immunoassay(EIA) for the diagnosis of Helicobacter pylori (H.pylori) infection. Methods. Stool specimens of 63 patients were collected and tested by using a commercial kit for detecting Helicobacter pylori stool antigen (HpSA), of which 61 patients also underwent 13C-Urea breath test (13C-UBT). The tissue samples of 31 patients were obtained endoscopically and were examined with histologic technique (Warthin-Starry silver stain).Regarded 13C-UBT as a golden standard, HpSA test and histologic techniques were evaluated. Using this method,we also investigated the positive rate of H.Pylori infection in children in Beijing.Results.The sensitivity and specificity of HpSA test were 94.7% and 95.1% respectively; the positive and negative predictive values were 97.3% and 91.7% respectively; and the accuracy was 95.1%.The results showed the prevalence of H.pylori infection was 26.0% in children (3~18 years) of district of Xicheng in Beijing. After treatment, HpSA seems to disappear rapidly(3~5 days) from the feces. Conclusion. The detection of HpSA in stool samples by HpSA test is a rapid noninvasive test for detecting H.pylori infection, and has both high sensitivity and high specificity. It is suitable for screening and diagnosis of H.pylori infection, monitoring the treatment efficacy in routine in all hospitals.

  7. Highly sensitive, non-invasive detection of colorectal cancer mutations using single molecule, third generation sequencing

    Directory of Open Access Journals (Sweden)

    Giancarlo Russo


    We present the first study that applies the high read accuracy and depth of single molecule, real time, circular consensus sequencing (SMRT-CCS to the detection of mutations in stool DNA in order to provide a non-invasive, sensitive and accurate test for CRC. In stool DNA isolated from patients diagnosed with adenocarcinoma, we are able to detect mutations at frequencies below 0.5% with no false positives. This approach establishes a foundation for a non-invasive, highly sensitive assay to screen the population for CRC and the early stage adenomas that lead to CRC.

  8. Photoionization sensor CES for non-invasive medical diagnostics (United States)

    Mustafaev, Aleksandr; Rastvorova, Iuliia; Khobnya, Kristina; Podenko, Sofia


    Method CES (collisional electron spectroscopy), patented in Russia, the USA, Japan, China, Germany and Britain, allows to analyze the gaseous mixtures using electron spectroscopy under high pressures up to atmospheric without using vacuum. The design of VUV photoionization detector was developed based on this method. Such detector is used as a portable gas analyzer for continuous personal bio-medical monitoring. This detector measures energy of electrons produced in ionization with resonance photons, whose wavelength situated in the vacuum ultraviolet (VUV). Nowadays, micro plasma source of such photons on resonant line of Kr with energy of 10,6 eV is developed. Only impurities are ionized and detected by the VUV-emission, meanwhile the main components of air stay neutral that reduces background signal and increases the sensibility along with accuracy. The experimental facilities with VUV photoionization sensors CES are constructed with the overall sizes about 10*10*1 mm. The watt consumption may comprise less than 1W. Increase of electrometer amplifier's sensibility and more high-aperture construction are used today to increase the sensibility of CES-detectors. The wide range of detectable molecules and high sensitivity allow the development of portable device, which can become the base of the future preventive medicine. Work supported by Foundation for Assistance to Small Innovative Enterprises in Science and Technology.

  9. Structural health monitoring feature design by genetic programming (United States)

    Harvey, Dustin Y.; Todd, Michael D.


    Structural health monitoring (SHM) systems provide real-time damage and performance information for civil, aerospace, and other high-capital or life-safety critical structures. Conventional data processing involves pre-processing and extraction of low-dimensional features from in situ time series measurements. The features are then input to a statistical pattern recognition algorithm to perform the relevant classification or regression task necessary to facilitate decisions by the SHM system. Traditional design of signal processing and feature extraction algorithms can be an expensive and time-consuming process requiring extensive system knowledge and domain expertise. Genetic programming, a heuristic program search method from evolutionary computation, was recently adapted by the authors to perform automated, data-driven design of signal processing and feature extraction algorithms for statistical pattern recognition applications. The proposed method, called Autofead, is particularly suitable to handle the challenges inherent in algorithm design for SHM problems where the manifestation of damage in structural response measurements is often unclear or unknown. Autofead mines a training database of response measurements to discover information-rich features specific to the problem at hand. This study provides experimental validation on three SHM applications including ultrasonic damage detection, bearing damage classification for rotating machinery, and vibration-based structural health monitoring. Performance comparisons with common feature choices for each problem area are provided demonstrating the versatility of Autofead to produce significant algorithm improvements on a wide range of problems.

  10. For your interest? The ethical acceptability of using non-invasive prenatal testing to test 'purely for information'. (United States)

    Deans, Zuzana; Clarke, Angus J; Newson, Ainsley J


    Non-invasive prenatal testing (NIPT) is an emerging form of prenatal genetic testing that provides information about the genetic constitution of a foetus without the risk of pregnancy loss as a direct result of the test procedure. As with other prenatal tests, information from NIPT can help to make a decision about termination of pregnancy, plan contingencies for birth or prepare parents to raise a child with a genetic condition. NIPT can also be used by women and couples to test purely 'for information'. Here, no particular action is envisaged following the test; it is motivated entirely by an interest in the result. The fact that NIPT can be performed without posing a risk to the pregnancy could give rise to an increase in such requests. In this paper, we examine the ethical aspects of using NIPT 'purely for information', including the competing interests of the prospective parents and the future child, and the acceptability of testing for 'frivolous' reasons. Drawing on several clinical scenarios, we claim that arguments about testing children for genetic conditions are relevant to this debate. In addition, we raise ethical concerns over the potential for objectification of the child. We conclude that, in most cases, using NIPT to test for adult-onset conditions, carrier status or non-serious traits presenting in childhood would be unacceptable.

  11. Quantitative estimates of vascularity in a collagen-based cell scaffold containing basic fibroblast growth factor by non-invasive near-infrared spectroscopy for regenerative medicine (United States)

    Kushibiki, Toshihiro; Awazu, Kunio


    Successful tissue regeneration required both cells with high proliferative and differentiation potential and an environment permissive for regeneration. These conditions can be achieved by providing cell scaffolds and growth factors that induce angiogenesis and cell proliferation. Angiogenenis within cell scaffolds is typically determined by histological examination with immunohistochemical markers for endothelium. Unfortunately, this approach requires removal of tissue and the scaffold. In this study, we examined the hemoglobin content of implanted collagen-based cell scaffolds containing basic fibroblast growth factor (bFGF) in vivo by non-invasive near infrared spectroscopy (NIRS). We also compared the hemoglobin levels measured by NIRS to the hemoglobin content measured with a conventional biological assay. Non-invasive NIRS recordings were performed with a custom-built near-infrared spectrometer using light guide-coupled reflectance measurements. NIRS recordings revealed that absorbance increased after implantation of collagen scaffolds containing bFGF. This result correlated (R2=0.93) with our subsequent conventional hemoglobin assay. The NIRS technique provides a non-invasive method for measuring the degree of vascularization in cell scaffolds. This technique may be advantageous for monitoring angiogenesis within different cell scaffolds, a prerequisite for effective tissue regeneration.

  12. Trial by Dutch Laboratories for Evaluation of Non-Invasive Prenatal Testing. Part II - Women's Perspectives

    NARCIS (Netherlands)

    van Schendel, Rachel V; Page-Christiaens, Lieve; Beulen, Lean; Bilardo, Catia M; de Boer, Marjon A; Coumans, Audrey B C; Faas, Brigitte H; van Langen, Irene M; Lichtenbelt, Klaske D; van Maarle, Merel C; Macville, Merryn V E; Oepkes, Dick; Pajkrt, Eva; Henneman, Lidewij


    OBJECTIVE: To evaluate preferences and decision-making amongst high-risk pregnant women offered a choice between Non-Invasive Prenatal Testing (NIPT), invasive testing or no further testing. METHODS: Nationwide implementation study (TRIDENT) offering NIPT as contingent screening test for women at in

  13. Trial by Dutch Laboratories for Evaluation of Non-Invasive Prenatal Testing. : Part II - Women's Perspectives

    NARCIS (Netherlands)

    van Schendel, Rachel V; Page-Christiaens, Lieve; Beulen, Lean; Bilardo, Catia M; de Boer, Marjon A; Coumans, Audrey B C; Faas, Brigitte H; van Langen, Irene M; Lichtenbelt, Klaske D; van Maarle, Merel C; Macville, Merryn V E; Oepkes, Dick; Pajkrt, Eva; Henneman, Lidewij


    OBJECTIVE: To evaluate preferences and decision-making amongst high-risk pregnant women offered a choice between Non-Invasive Prenatal Testing (NIPT), invasive testing or no further testing. METHODS: Nationwide implementation study (TRIDENT) offering NIPT as contingent screening test for women at in

  14. Liver breath tests non-invasively predict higher stages of non-alcoholic steatohepatitis

    NARCIS (Netherlands)

    Portincasa, Piero; Grattagliano, Ignazio; Lauterburg, Bernhard H.; Palmieri, Vincenzo O.; Palasciano, Giuseppe; Stellaard, Frans


    Effectively assessing subtle hepatic metabolic functions by novel non-invasive tests might be of clinical utility in scoring NAFLD (non-alcoholic fatty liver disease) and in identifying altered metabolic pathways. The present study was conducted on 39 (20 lean and 19 obese) hypertransaminasemic pati

  15. Emerging technologies for non-invasive quantification of physiological oxygen transport in plants. (United States)

    Chaturvedi, P; Taguchi, M; Burrs, S L; Hauser, B A; Salim, W W A W; Claussen, J C; McLamore, E S


    Oxygen plays a critical role in plant metabolism, stress response/signaling, and adaptation to environmental changes (Lambers and Colmer, Plant Soil 274:7-15, 2005; Pitzschke et al., Antioxid Redox Signal 8:1757-1764, 2006; Van Breusegem et al., Plant Sci 161:405-414, 2001). Reactive oxygen species (ROS), by-products of various metabolic pathways in which oxygen is a key molecule, are produced during adaptation responses to environmental stress. While much is known about plant adaptation to stress (e.g., detoxifying enzymes, antioxidant production), the link between ROS metabolism, O2 transport, and stress response mechanisms is unknown. Thus, non-invasive technologies for measuring O2 are critical for understanding the link between physiological O2 transport and ROS signaling. New non-invasive technologies allow real-time measurement of O2 at the single cell and even organelle levels. This review briefly summarizes currently available (i.e., mainstream) technologies for measuring O2 and then introduces emerging technologies for measuring O2. Advanced techniques that provide the ability to non-invasively (i.e., non-destructively) measure O2 are highlighted. In the near future, these non-invasive sensors will facilitate novel experimentation that will allow plant physiologists to ask new hypothesis-driven research questions aimed at improving our understanding of physiological O2 transport.

  16. Recent Advances in Non-Invasive Delivery of Macromolecules using Nanoparticulate Carriers System. (United States)

    Shadab, Md; Haque, Shadabul; Sheshala, Ravi; Meng, Lim Wei; Meka, Venkata Srikanth; Ali, Javed


    The drug delivery of macromolecules such as proteins and peptides has become an important area of research and represents the fastest expanding share of the market for human medicines. The most common method for delivering macromolecules is parenterally. However parenteral administration of some therapeutic macromolecules has not been effective because of their rapid clearance from the body. As a result, most macromolecules are only therapeutically useful after multiple injections, which causes poor compliance and systemic side effects. Therefore, there is a need to improve delivery of therapeutic macromolecules to enable non-invasive delivery routes, less frequent dosing through controlled-release drug delivery, and improved drug targeting to increase efficacy and reduce side effects. Non-invasive administration routes such as intranasal, pulmonary, transdermal, ocular and oral delivery have been attempted intensively by formulating macromolecules into nanoparticulate carriers system such as polymeric and lipidic nanoparticles. This review discusses barriers to drug delivery and current formulation technologies to overcome the unfavorable properties of macromolecules via non-invasive delivery (mainly intranasal, pulmonary, transdermal oral and ocular) with a focus on nanoparticulate carrier systems. This review also provided a summary and discussion of recent data on non-invasive delivery of macromolecules using nanoparticulate formulations. Copyright© Bentham Science Publishers; For any queries, please email at

  17. Cardiac abnormalities assessed by non-invasive techniques in patients with newly diagnosed idiopathic inflammatory myopathies

    DEFF Research Database (Denmark)

    Diederichsen, Louise Pyndt; Simonsen, Jane Angel; Diederichsen, Axel Cosmus Pyndt


    inflammatory myopathies (IIM) by means of non-invasive techniques. METHODS: Fourteen patients with IIM (8 polymyositis, 4 dermatomyositis, 2 cancer-associated dermatomyositis) and 14 gender- and age- matched healthy control subjects were investigated. Participant assessments included a cardiac questionnaire...

  18. Non-invasive method of field imaging in parallel plate waveguides

    DEFF Research Database (Denmark)

    Iwaszczuk, Krzysztof; Andryieuski, Andrei; Lavrinenko, Andrei


    We present a new non-invasive air-photonic-based method of terahertz (THz) field imaging inside a parallel plate waveguide. The method is based on THz field-enhanced second harmonic generation of the fundamental laser beam in an external electric field. We also demonstrate the direct measurements...

  19. Non-invasive ambient pressure estimation using non-linear ultrasound contrast agents

    DEFF Research Database (Denmark)

    Andersen, Klaus Scheldrup

    Many attempts to find a non-invasive procedure to measure the blood pressure locally in the body have been made. This dissertation focuses on the approaches which utilize highly compressible ultrasound contrast agents as ambient pressure sensors. The literature within the topic has been reviewed...

  20. Non-invasive versus invasive mechanical ventilation for respiratory failure in severe acute respiratory syndrome

    Institute of Scientific and Technical Information of China (English)

    Loretta YC Yam; Alfred YF Chan; Thomas MT Cheung; Eva LH Tsui; Jane CK Chan; Vivian CW Wong


    Background Severe acute respiratory syndrome is frequently complicated by respiratory failure requiring ventilatory support. We aimed to compare the efficacy of non-invasive ventilation against invasive mechanical ventilation treating respiratory failure in this disease. Methods Retrospective analysis was conducted on all respiratory failure patients identified from the Hong Kong Hospital Authority Severe Acute Respiratory Syndrome Database. Intubation rate, mortality and secondary outcome of a hospital utilizing non-invasive ventilation under standard infection control conditions (NIV Hospital) were compared against 13 hospitals using solely invasive ventilation (IMV Hospitals). Multiple logistic regression analyses with adjustments for confounding variables were performed to test for association between outcomes and hospital groups. Results Both hospital groups had comparable demographics and clinical profiles, but NIV Hospital (42 patients) had higher lactate dehydrogenase ratio and worse radiographic score on admission and ribavirin-corticosteroid commencement. Compared to IMV Hospitals (451 patients), NIV Hospital had lower adjusted odds ratios for intubation (0.36, 95% CI 0.164-0.791, P=0.011) and death (0.235, 95% CI 0.077-0.716, P=0.011), and improved earlier after pulsed steroid rescue. There were no instances of transmission of severe acute respiratory syndrome among health care workers due to the use of non-invasive ventilation.Conclusion Compared to invasive mechanical ventilation, non-invasive ventilation as initial ventilatory support for acute respiratory failure in the presence of severe acute respiratory syndrome appeared to be associated with reduced intubation need and mortality.

  1. Non-invasive imaging in detecting myocardial viability: Myocardial function versus perfusion

    Directory of Open Access Journals (Sweden)

    Iqbal A. Elfigih


    Full Text Available Coronary artery disease (CAD is the most prevalent and single most common cause of morbidity and mortality [1] with the resulting left ventricular (LV dysfunction an important complication. The distinction between viable and non-viable myocardium in patients with LV dysfunction is a clinically important issue among possible candidates for myocardial revascularization. Several available non-invasive techniques are used to detect and assess ischemia and myocardial viability. These techniques include echocardiography, radionuclide images, cardiac magnetic resonance imaging and recently myocardial computed tomography perfusion imaging. This review aims to distinguish between the available non-invasive imaging techniques in detecting signs of functional and perfusion viability and identify those which have the most clinical relevance in detecting myocardial viability in patients with CAD and chronic ischemic LV dysfunction. The most current available studies showed that both myocardial perfusion and function based on non-invasive imaging have high sensitivity with however wide range of specificity for detecting myocardial viability. Both perfusion and function imaging modalities provide complementary information about myocardial viability and no optimum single imaging technique exists that can provide very accurate diagnostic and prognostic viability assessment. The weight of the body of evidence suggested that non-invasive imaging can help in guiding therapeutic decision making in patients with LV dysfunction.

  2. Ultraweak photon emission as a non-invasive health assessment: A systematic review

    NARCIS (Netherlands)

    Ives, J.A.; Wijk, E.P.A. van; Bat, N.; Crawford, C.; Walter, A.; Jonas, W.B.; Wijk, R. van; Greef, J. van der


    We conducted a systematic review (SR) of the peer reviewed scientific literature on ultraweak photon emissions (UPE) from humans. The question was: Can ultraweak photon emissions from humans be used as a non-invasive health assessment? A systematic search was conducted across eight relevant database

  3. Non Invasive Biomedical Analysis - Breath Networking Session at PittCon 2011, Atlanta, Georgia (United States)

    This was the second year that our breath colleagues organized a networking session at the Pittsburgh Conference and Exposition or ''PittCon'' ( time it was called "Non-invasive Biomedical Analysis" to broaden the scope a bit, but the primary focus rema...

  4. Non-Invasive Study of Nerve Fibres using Laser Interference Microscopy

    DEFF Research Database (Denmark)

    Brazhe, A. R.; Brazhe, N. A.; Rodionova, N. N.;


    information non-invasively about the internal structure of different regions of a nerve fibre. We also analyse the temporal variations in the internal optical properties in order to detect the rhythmic activity in the nerve fibre at different time scales and to shed light on the underlying biological...

  5. [18F]FLT PET for non-invasive assessment of tumor sensitivity to chemotherapy

    DEFF Research Database (Denmark)

    Erichsen, Kamille Dumong; Björkling, Fredrik; Madsen, Jacob;


    3'-deoxy-3'-[¹⁸F]fluorothymidine ([18F]FLT) is a tracer used to assess cell proliferation in vivo. The aim of the study was to use [18F]FLT positron emission tomography (PET) to study non-invasively early anti-proliferative effects of the experimental chemotherapeutic agent TP202377 in both sensi...... sensitive and resistant tumors....

  6. Microgradients in bacterial colonies : use of fluorescence ratio imaging : a non-invasive technique

    NARCIS (Netherlands)

    Malakar, P.K.; Brocklehurst, T.F.; Mackie, A.R.; Wilson, P.D.G.; Zwietering, M.H.; Riet, K. van 't


    Fluorescence ratio imaging is a non-invasive technique for studying the formation of microgradients in immobilised bacterial colonies. These gradients can be quantified easily when combined with the gel cassette system designed at the Institute of Food Research, Norwich, UK. Colonies of

  7. Invasive versus Non Invasive Methods Applied to Mummy Research: Will This Controversy Ever Be Solved?

    Directory of Open Access Journals (Sweden)

    Despina Moissidou


    Full Text Available Advances in the application of non invasive techniques to mummified remains have shed new light on past diseases. The virtual inspection of a corpse, which has almost completely replaced classical autopsy, has proven to be important especially when dealing with valuable museum specimens. In spite of some very rewarding results, there are still many open questions. Non invasive techniques provide information on hard and soft tissue pathologies and allow information to be gleaned concerning mummification practices (e.g., ancient Egyptian artificial mummification. Nevertheless, there are other fields of mummy studies in which the results provided by non invasive techniques are not always self-explanatory. Reliance exclusively upon virtual diagnoses can sometimes lead to inconclusive and misleading interpretations. On the other hand, several types of investigation (e.g., histology, paleomicrobiology, and biochemistry, although minimally invasive, require direct contact with the bodies and, for this reason, are often avoided, particularly by museum curators. Here we present an overview of the non invasive and invasive techniques currently used in mummy studies and propose an approach that might solve these conflicts.

  8. Current Directions in Non-Invasive Low Intensity Electric Brain Stimulation for Depressive Disorder

    NARCIS (Netherlands)

    Schutter, D.J.L.G.; Sack, A.T.


    Non-invasive stimulation of the human brain to improve depressive symptoms is increasingly finding its way in clinical settings as a viable form of somatic treatment. Following successful modulation of neural excitability with subsequent antidepressant effects, neural polarization by administrating

  9. Non-invasive imaging of kupffer cell status using radiolabelled mannosylated albumin

    NARCIS (Netherlands)

    Mahajan, V.; Hartimath, S.; Comley, R.; Stefan-Gueldner, M.; Roth, A.; Poelstra, K.; Reker-Smit, C.; Kamps, J.; Dierckx, R.; de Vries, Erik


    Background and Aims: Kupffer cells are responsible for maintaining liver homeostasis and have a vital role in chronic hepatotoxicity and various liver diseases. Positron Imaging Tomography (PET) is a non-invasive imaging technique that allows quantification and visualization of biochemical processes

  10. Liver breath tests non-invasively predict higher stages of non-alcoholic steatohepatitis

    NARCIS (Netherlands)

    Portincasa, Piero; Grattagliano, Ignazio; Lauterburg, Bernhard H.; Palmieri, Vincenzo O.; Palasciano, Giuseppe; Stellaard, Frans

    Effectively assessing subtle hepatic metabolic functions by novel non-invasive tests might be of clinical utility in scoring NAFLD (non-alcoholic fatty liver disease) and in identifying altered metabolic pathways. The present study was conducted on 39 (20 lean and 19 obese) hypertransaminasemic

  11. Non-invasive dendrochronology of late-medieval objects in Oslo

    DEFF Research Database (Denmark)

    Daly, Aoife; Streeton, Noëlle L.W.


    A technique for non-invasive dendrochronological analysis of oak was developed for archaeological material, using an industrial CT scanner. Since 2013, this experience has been extended within the scope of the research project ‘After the Black Death: Painting and Polychrome Sculpture in Norway...

  12. Molecular Insights on the Transition of Non-invasive DCIS to Invasive ductal Carcinoma

    Institute of Scientific and Technical Information of China (English)

    Dihua YU


    @@ More than 90% of breast cancer-related deaths are caused by metastasis not primary tumor. To effectively reduce cancer mortality, it is extremely im-portant to predict the risk of, and to intervene in, the critical transition from non-invasive ductal carcinoma in situ (DCIS) to life-threatening invasive ductal carcinoma (IDC).

  13. Application of quantum dot nanoparticles for potential non-invasive bio-imaging of mammalian spermatozoa (United States)

    Various obstacles are encountered by mammalian spermatozoa during their journey through the female genital tract, and only few or none will reach the site of fertilization. Currently, there are limited technical approaches for non-invasive investigation of spermatozoa migration after insemination. A...

  14. EAPD interim seminar and workshop in Brussels May 9 2015 Non-invasive caries treatment

    NARCIS (Netherlands)

    van Loveren, C.; van Palenstein Helderman, W.


    Aim This was to collect information for the 9th European Academy of Paediatric Dentistry Interim Seminar and Workshops to discuss the state of art on non-invasive caries therapy to be used if possible to formulate clinical guidelines by European experts in paediatric dentistry Methods Based on syste

  15. Factors affecting the clinical use of non-invasive prenatal testing: a mixed methods systematic review. (United States)

    Skirton, Heather; Patch, Christine


    Non-invasive prenatal testing has been in clinical use for a decade; however, there is evidence that this technology will be more widely applied within the next few years. Guidance is therefore required to ensure that the procedure is offered in a way that is evidence based and ethically and clinically acceptable. We conducted a systematic review of the current relevant literature to ascertain the factors that should be considered when offering non-invasive prenatal testing in a clinical setting. We undertook a systematic search of relevant databases, journals and reference lists, and from an initial list of 298 potential papers, identified 11 that were directly relevant to the study. Original data were extracted and presented in a table, and the content of all papers was analysed and presented in narrative form. Four main themes emerged: perceived attributes of the test, regulation and ethical issues, non-invasive prenatal testing in practice and economic considerations. However, there was a basic difference in the approach of actual or potential service users, who were very positive about the benefits of the technology, compared with other research participants, who were concerned with the potential moral and ethical outcomes of using this testing method. Recommendations for the appropriate use of non-invasive prenatal testing are made.

  16. The clinical utility of non-invasive prenatal testing in pregnancies with ultrasound anomalies

    NARCIS (Netherlands)

    Beulen, Lean; Faas, Brigitte H W; Feenstra, Ilse; van Vugt, John M G; Bekker, Mireille N

    OBJECTIVE: This study aims to evaluate the application of non-invasive prenatal testing (NIPT) as an alternative to invasive diagnostic prenatal testing for pregnancies with abnormal ultrasound findings. METHOD: A retrospective analysis was performed of 251 single and multiple pregnancies at high

  17. Clinical utility of non-invasive prenatal testing in pregnancies with ultrasound anomalies

    NARCIS (Netherlands)

    Beulen, L.; Faas, B.H.W.; Feenstra, I.; Vugt, J.M.G. van; Bekker, M.N.


    OBJECTIVE: To evaluate the application of non-invasive prenatal testing (NIPT) as an alternative to invasive diagnostic prenatal testing in pregnancies with abnormal ultrasound findings. METHODS: This was a retrospective analysis of 251 singleton and multiple pregnancies at high risk for fetal

  18. Current Directions in Non-Invasive Low Intensity Electric Brain Stimulation for Depressive Disorder

    NARCIS (Netherlands)

    Schutter, D.J.L.G.; Sack, A.T.


    Non-invasive stimulation of the human brain to improve depressive symptoms is increasingly finding its way in clinical settings as a viable form of somatic treatment. Following successful modulation of neural excitability with subsequent antidepressant effects, neural polarization by administrating

  19. NIPTRIC : an online tool for clinical interpretation of non-invasive prenatal testing (NIPT) results

    NARCIS (Netherlands)

    Sikkema-Raddatz, Birgit; Johansson, Lennart F; de Boer, Eddy N; Boon, Elles M J; Suijkerbuijk, Ron F; Bouman, Katelijne; Bilardo, Catia M; Swertz, Morris A; Dijkstra, Martijn; van Langen, Irene M; Sinke, Richard J; Te Meerman, Gerard J


    To properly interpret the result of a pregnant woman's non-invasive prenatal test (NIPT), her a priori risk must be taken into account in order to obtain her personalised a posteriori risk (PPR), which more accurately expresses her true likelihood of carrying a foetus with trisomy. Our aim was to de

  20. Non-invasive measurement of adrenal response after standardized exercise tests in prepubertal children

    NARCIS (Netherlands)

    Heijsman, Sigrid M.; Koers, Nicoline F.; Bocca, Gianni; van der Veen, Betty S.; Appelhof, Maaike; Kamps, Arvid W. A.


    Objective: To determine the feasibility of non-invasive evaluation of adrenal response in healthy prepubertal children by standardized exercise tests. Methods: On separate occasions, healthy prepubertal children performed a submaximal cycling test, a maximal cycling test, and a 20-m shuttle-run test

  1. The influence of different shavers on the skin quantified by non-invasive reflectance confocal microscopy

    NARCIS (Netherlands)

    Rodijk, F.M.; Zanelli, G.; Geerligs, M.; Erp, P.E.J. van; Peppelman, M.


    BACKGROUND: The impact of personal care devices on skin is mainly assessed using subjective tools. However, new objective, accurate non-invasive in vivo imaging techniques have been developed. The aim of this study was to evaluate the ability of reflectance confocal microscopy (RCM) in quantifying

  2. Non-invasive imaging of kupffer cell status using radiolabelled mannosylated albumin

    NARCIS (Netherlands)

    Mahajan, V.; Hartimath, S.; Comley, R.; Stefan-Gueldner, M.; Roth, A.; Poelstra, K.; Reker-Smit, C.; Kamps, J.; Dierckx, R.; de Vries, Erik


    Background and Aims: Kupffer cells are responsible for maintaining liver homeostasis and have a vital role in chronic hepatotoxicity and various liver diseases. Positron Imaging Tomography (PET) is a non-invasive imaging technique that allows quantification and visualization of biochemical processes

  3. Non Invasive Biomedical Analysis - Breath Networking Session at PittCon 2011, Atlanta, Georgia (United States)

    This was the second year that our breath colleagues organized a networking session at the Pittsburgh Conference and Exposition or ''PittCon'' ( time it was called "Non-invasive Biomedical Analysis" to broaden the scope a bit, but the primary focus rema...

  4. Non-invasive in-vivo imaging of stem cells after transplantation in cardiovascular tissue

    DEFF Research Database (Denmark)

    Mathiasen, Anders Bruun; Kastrup, Jens


    no improvements. To better understand the underlying mechanisms of these results, a reverse translation from bedside to bench has been opened. Non-invasive cell tracking after implantation has a pivotal role in this translation. Imaging based methods can help elucidate important issues such as retention...

  5. Smartphone spectrometer for non-invasive diffuse reflectance spectroscopy based hemoglobin sensing (Conference Presentation) (United States)

    Edwards, Perry S.


    Fiber-optic based diffuse reflectance spectroscopy (DRS) is shown to be a highly specific and highly sensitive method for non-invasive detection of various cancers (e.g. cervical and oral) as well as many other diseases. Fiber-optic DRS diagnosis relies on non-invasive biomarker detection (e.g. oxy- and deoxy-hemoglobin) and can be done without the need for sophisticated laboratory analysis of samples. Thus, it is highly amenable for clinical adoption especially in resource scarce regions that have limited access to such developed laboratory infrastructure. Despite the demonstrated effectiveness of fiber-optic DRS, such systems remain cost prohibitive in many of these regions, mainly due to the use of bulky and expensive spectrometers. Here, a fiber-optic DRS system is coupled to a smartphone spectrometer and is proposed as a low-cost solution for non-invasive tissue hemoglobin sensing. The performance of the system is assessed by measuring tissue phantoms with varying hemoglobin concentrations. A DRS retrieval algorithm is used to extract hemoglobin parameters from the measurements and determine the accuracy of the system. The results are then compared with those of a previously reported fiber-optic DRS system which is based on a larger more expensive spectrometer system. The preliminary results are encouraging and indicate the potential of the smartphone spectrometer as a viable low-cost option for non-invasive tissue hemoglobin sensing.

  6. Experimental bifurcation analysis of an impact oscillator - Tuning a non-invasive control scheme

    DEFF Research Database (Denmark)

    Bureau, Emil; Schilder, Frank; Santos, Ilmar


    We investigate a non-invasive, locally stabilizing control scheme necessary for an experimental bifurcation analysis. Our test-rig comprises a harmonically forced impact oscillator with hardening spring nonlinearity controlled by electromagnetic actuators, and serves as a prototype for electromag...

  7. Non-invasive assessment of bone quantity and quality in human trabeculae using scanning ultrasound imaging (United States)

    Xia, Yi

    Fractures and associated bone fragility induced by osteoporosis and osteopenia are widespread health threat to current society. Early detection of fracture risk associated with bone quantity and quality is important for both the prevention and treatment of osteoporosis and consequent complications. Quantitative ultrasound (QUS) is an engineering technology for monitoring bone quantity and quality of humans on earth and astronauts subjected to long duration microgravity. Factors currently limiting the acceptance of QUS technology involve precision, accuracy, single index and standardization. The objective of this study was to improve the accuracy and precision of an image-based QUS technique for non-invasive evaluation of trabecular bone quantity and quality by developing new techniques and understanding ultrasound/tissue interaction. Several new techniques have been developed in this dissertation study, including the automatic identification of irregular region of interest (iROI) in bone, surface topology mapping (STM) and mean scattering spacing (MSS) estimation for evaluating trabecular bone structure. In vitro results have shown that (1) the inter- and intra-observer errors in QUS measurement were reduced two to five fold by iROI compared to previous results; (2) the accuracy of QUS parameter, e.g., ultrasound velocity (UV) through bone, was improved 16% by STM; and (3) the averaged trabecular spacing can be estimated by MSS technique (r2=0.72, p<0.01). The measurement errors of BUA and UV introduced by the soft tissue and cortical shells in vivo can be quantified by developed foot model and simplified cortical-trabecular-cortical sandwich model, which were verified by the experimental results. The mechanisms of the errors induced by the cortical and soft tissues were revealed by the model. With developed new techniques and understanding of sound-tissue interaction, in vivo clinical trail and bed rest study were preformed to evaluate the performance of QUS in

  8. A non-invasive exploitation of energy conservation potentials using ultrasonics. Non-invasive diagnostics; Mit Ultraschall eingriffsfrei Energieeinsparpotenziale erschliessen. Nichtinvasive Diagnostik

    Energy Technology Data Exchange (ETDEWEB)

    Sacher, Joerg [Flexim GmbH, Berlin (Germany)


    Energy conservation is profitable. The independent energy efficiency service provider Eta Cube (Frankfurt, Federal Republic of Germany) provides an intelligent energy optimization which is financed by consumption cuts. A non-invasive measuring clamp-on ultrasonic system is used in order to determine the efficiency potential in the preparation of hot water and domestic water as well as for the air conditioning of buildings. The Fluxus F601 Double Energy from Flexim Flexible Industriemesstechnik GmbH (Berlin, Federal Republic of Germany) determines the performance and efficiency of thermal consumers without interruption of the supply.

  9. Magnetization transfer contrast MRI for non-invasive assessment of innate and adaptive immune responses against alginate-encapsulated cells. (United States)

    Chan, Kannie W Y; Liu, Guanshu; van Zijl, Peter C M; Bulte, Jeff W M; McMahon, Michael T


    By means of physical isolation of cells inside semi-permeable hydrogels, encapsulation has been widely used to immunoprotect transplanted cells. While spherical alginate microcapsules are now being used clinically, there still is little known about the patient's immune system response unless biopsies are obtained. We investigated the use of Magnetization Transfer (MT) imaging to non-invasively detect host immune responses against alginate capsules containing xenografted human hepatocytes in four groups of animals, including transplanted empty capsules (-Cells/-IS), capsules with live cells with (+LiveCells/+IS) and without immunosuppression (+LiveCells/-IS), and capsules with apoptotic cells in non-immunosuppressed animals (+DeadCells/-IS). The highest MT ratio (MTR) was found in +LiveCells/-IS, which increased from day 0 by 38% and 53% on days 7 and 14 after transplantation respectively, and corresponded to a distinctive increase in cell infiltration on histology. Furthermore, we show that macromolecular ratio maps based on MT data are more sensitive to cell infiltration and fibrosis than conventional MTR maps. Such maps showed a significant difference between +LiveCells/-IS (0.18 ± 0.02) and +DeadCells/-IS (0.13 ± 0.02) on day 7 (P < 0.01) existed, which was not observed on MTR imaging. We conclude that MT imaging, which is clinically available, can be applied for non-invasive monitoring of the occurrence of a host immune response against encapsulated cells. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Non-invasive assessment of hepatic fat accumulation in chronic hepatitis C by {sup 1}H magnetic resonance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Krssak, Martin [Department of Internal Medicine III, Division of Endocrinology and Metabolism, Medical University of Vienna (Austria); Hofer, Harald [Department of Internal Medicine III, Division of Gastroenterology and Hepatology, Medical University of Vienna (Austria); Wrba, Fritz [Department of Clinical Pathology, Medical University of Vienna (Austria); Meyerspeer, Martin [MR Centre-of-Excellence, Department of Radiodiagnostics, Medical University of Vienna (Austria); Center for Biomedical Engineering and Physics, Medical University of Vienna (Austria); Brehm, Attila [Department of Internal Medicine III, Division of Endocrinology and Metabolism, Medical University of Vienna (Austria); Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center of Diabetes Research and Department of Medicine/Metabolic Diseases, Heinrich Heine University, Duesseldorf (Germany); Lohninger, Alfred [Department of Medical Chemistry, Center for Physiology and Pathophysiology, Medical University of Vienna (Austria); Steindl-Munda, Petra [Department of Internal Medicine III, Division of Endocrinology and Metabolism, Medical University of Vienna (Austria); MR Centre-of-Excellence, Department of Radiodiagnostics, Medical University of Vienna (Austria); Moser, Ewald [MR Centre-of-Excellence, Department of Radiodiagnostics, Medical University of Vienna (Austria); Center for Biomedical Engineering and Physics, Medical University of Vienna (Austria); Ferenci, Peter [Department of Internal Medicine III, Division of Gastroenterology and Hepatology, Medical University of Vienna (Austria); Roden, Michael, E-mail: michael.roden@ddz.uni-duesseldorf.d [Department of Internal Medicine III, Division of Endocrinology and Metabolism, Medical University of Vienna (Austria); Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center of Diabetes Research and Department of Medicine/Metabolic Diseases, Heinrich Heine University, Duesseldorf (Germany)


    Background: Liver biopsy is the standard method for diagnosis of hepatic steatosis, but is invasive and carries some risk of morbidity. Aims and methods: Quantification of hepatocellular lipid content (HCL) with non-invasive single voxel {sup 1}H magnetic resonance spectroscopy (MRS) at 3 T was compared with histological grading and biochemical analysis of liver biopsies in 29 patients with chronic hepatitis C. Body mass index, indices of insulin resistance (homeostasis model assessment index, HOMA-IR), serum lipids and serum liver transaminases were also quantified. Results: HCL as assessed by {sup 1}H MRS linearly correlated (r = 0.70, p < 0.001) with histological evaluation of liver biopsies and was in agreement with histological steatosis staging in 65% of the patients. Biochemically assessed hepatic triglyceride contents correlated with HCL measured with {sup 1}H MRS (r = 0.63, p < 0.03) and allowed discriminating between none or mild steatosis versus moderate or severe steatosis. Patients infected with hepatitis C virus genotype 3 had a higher prevalence of steatosis (62%) which was not explained by differences in body mass or whole body insulin resistance. When these patients were excluded from correlation analysis, hepatic fat accumulation positively correlated with insulin resistance in the remaining hepatitis C patients (HCL vs. HOMA-IR, r = 0.559, p < 0.020, n = 17). Conclusion: Localized {sup 1}H MRS is a valid and useful method for quantification of HCL content in patients with chronic hepatitis C and can be easily applied to non-invasively monitoring of steatosis during repeated follow-up measurements in a clinical setting.

  11. A novel non invasive measurement of hemodynamic parameters: Comparison of single-chamber ventricular and dual-chamber pacemaker

    Directory of Open Access Journals (Sweden)

    Ingrid M. Pardede


    Full Text Available We carried out a cross sectional study to analyze hemodynamic parameters of single-chamber ventricular pacemaker compared with dual-chamber pacemaker by using thoracic electrical bioimpedance monitoring method (Physio Flow™ - a novel simple non-invasive measurement. A total of 48 consecutive outpatients comprised of 27 single chamber pacemaker and 21 dual chamber were analyzed. We measured cardiac parameters: heart rate, stroke volume index, cardiac output index, estimated ejection fraction, end diastolic volume, early diastolic function ratio, thoracic fluid index, and systemic parameters: left cardiac work index and systemic vascular resistance index. Baseline characteristic and pacemaker indication were similar in both groups. Cardiac parameters assessment revealed no significant difference between single-chamber pacemaker and dual-chamber pacemaker in heart rate, stroke volume index, cardiac index, estimated ejection fraction, end-diastolic volume, thoracic fluid index. There was significantly higher early diastolic function ratio in single-chamber pacemaker compared to dual-chamber pacemaker: 92% (10.2-187.7% vs. 100.6% (48.7-403.2%; p=0.006. Systemic parameters assessment revealed significantly higher left cardiac work index in single-chamber group than dual-chamber group 4.9 kg.m/m² (2.8-7.6 kg.m/m² vs. 4.3 kg.m/m² (2.9-7.2 kg.m/m²; p=0.004. There was no significant difference on systemic vascular resistance in single-chamber compared to dual-chamber pacemaker. Single-chamber ventricular pacemaker provides similar stroke volume, cardiac output and left cardiac work, compared to dual-chamber pacemaker. A non-invasive hemodynamic measurement using thoracic electrical bioimpedance is feasible for permanent pacemaker outpatients. (Med J Indones 2008; 17: 25-32Keywords: Permanent pacemaker, single chamber, dual chamber, thoracic electrical bioimpedance, hemodynamic parameter

  12. Rapid induction of orthotopic hepatocellular carcinoma in immune-competent rats by non-invasive ultrasound-guided cells implantation

    Directory of Open Access Journals (Sweden)

    Pan Huay-Ben


    Full Text Available Abstract Background The fact that prognoses remain poor in patients with advanced hepatocellular carcinoma highlights the demand for suitable animal models to facilitate the development of anti-cancer medications. This study employed a relatively non-invasive approach to establish an orthotopic hepatocellular carcinoma model in immune-competent rats. This was done by ultrasound-guided implantation of cancer cells and the model was used to evaluate the therapeutic efficacy of short-term and low-dose epirubicin chemotherapy. Methods Rat Novikoff hepatoma cells were injected percutaneously into the liver lobes of Sprague-Dawley rats under the guidance of high resolution ultrasound. The implantation rate and the correlation between dissected and ultrasound-measured tumor sizes were evaluated. A similar induction procedure was performed by means of laparotomy in a different group of rats. Pairs of tumor measurement were compared by ultrasound and computerized tomography scan. Rats with a successful establishment of the tumor were divided into the treatment (7-day low-dose epirubicin group and the control group. The tumor sizes were non-invasively monitored by the same ultrasound machine. Blood and tumor tissues from tumor-bearing rats were examined by biochemical and histological analysis respectively. Results Ultrasound-guided implantation of Novikoff hepatoma cells led to the formation of orthotopic hepatocellular carcinoma in 60.4% (55/91 of the Sprague-Dawley rats. Moreover, tumor sizes measured by ultrasound significantly correlated with those measured by calipers after sacrificing the animals (P Conclusions Ultrasound-guided implantation of Novikoff hepatoma cells is an effective means of establishing orthotopic hepatocellular carcinoma in Sprague-Dawley rats. Short-term and low-dose epirubicin chemotherapy had perturbed tumor progression by inducing apoptosis and neovascularization blockade.

  13. Clinical applications of non-invasive imaging techniques in suspected coronary artery disease and in acute myocardial infarction

    NARCIS (Netherlands)

    Nucifora, Gaetano


    Non-invasive cardiac imaging modalities play a crucial role in the diagnostic process and clinical management of patients without known coronary artery disease and patients with acute myocardial infarction. The first part of the thesis discusses the use of non-invasive imaging modalities (including

  14. (19)F-heptuloses as tools for the non-invasive imaging of GLUT2-expressing cells

    DEFF Research Database (Denmark)

    Malaisse, Willy J; Zhang, Ying; Louchami, Karim


    Suitable analogs of d-mannoheptulose are currently considered as possible tools for the non-invasive imaging of pancreatic islet insulin-producing cells. Here, we examined whether (19)F-heptuloses could be used for non-invasive imaging of GLUT2-expressing cells. After 20 min incubation, the uptake...

  15. A systematic approach for the accurate non-invasive estimation of blood glucose utilizing a novel light-tissue interaction adaptive modelling scheme

    Energy Technology Data Exchange (ETDEWEB)

    Rybynok, V O; Kyriacou, P A [City University, London (United Kingdom)


    Diabetes is one of the biggest health challenges of the 21st century. The obesity epidemic, sedentary lifestyles and an ageing population mean prevalence of the condition is currently doubling every generation. Diabetes is associated with serious chronic ill health, disability and premature mortality. Long-term complications including heart disease, stroke, blindness, kidney disease and amputations, make the greatest contribution to the costs of diabetes care. Many of these long-term effects could be avoided with earlier, more effective monitoring and treatment. Currently, blood glucose can only be monitored through the use of invasive techniques. To date there is no widely accepted and readily available non-invasive monitoring technique to measure blood glucose despite the many attempts. This paper challenges one of the most difficult non-invasive monitoring techniques, that of blood glucose, and proposes a new novel approach that will enable the accurate, and calibration free estimation of glucose concentration in blood. This approach is based on spectroscopic techniques and a new adaptive modelling scheme. The theoretical implementation and the effectiveness of the adaptive modelling scheme for this application has been described and a detailed mathematical evaluation has been employed to prove that such a scheme has the capability of extracting accurately the concentration of glucose from a complex biological media.

  16. A non-invasive, improved RIA and overt observation in the study of singleton Apennines’ wolf (Canis lupus reproductive behavior

    Directory of Open Access Journals (Sweden)

    Mauro Mattioli


    Full Text Available The analysis of fecal hormones allows a close but non-invasive monitoring of animals avoidingthe stress of restraint/capture, which in turn can upset animals’ hormonal profile. Steroid hormoneprogesterone was analysed in three singleton, female grey wolves of different age, belonging to theendangered species of the Apennines’ Canis lupus. The analysis was carried out during the breedingseason by using an improved radioimmunoassay on samples collected on the field. To reduce the stressto animals and danger to people, the overt observations were carried out by operators who were alreadyfamiliar with the animals, saving the money of a camera-monitoring-system. Concurrently, a male and afemale gray wolves housed together were monitored as a control. The results indicated the importance ofdehydration of fecal samples before the extraction with petroleum ether, which was shown to be moreefficient than diethyl ether, and that pre-treatment with methanol greatly enhances extraction (p<0.01.Females of Apennines’ grey wolf showed the first sign of oestrus by a vaginal blood loss, that was easilydetected on the ground; the analysis carried out on fecal samples revealed a rapidly declining lutealphase, with P4 metabolites reaching the basal values of a non-cyclic female. In the matter of welfare,behavioural observations on Apennines’ grey wolf showed that unpaired animals, although familiar withthe operators, failed to display a sexual social behavior during the reproductive season, that is thebehavioural signs were hidden in overt observational situation.

  17. Non-invasive optical measurement of cerebral metabolism and hemodynamics in infants. (United States)

    Lin, Pei-Yi; Roche-Labarbe, Nadege; Dehaes, Mathieu; Carp, Stefan; Fenoglio, Angela; Barbieri, Beniamino; Hagan, Katherine; Grant, P Ellen; Franceschini, Maria Angela


    Perinatal brain injury remains a significant cause of infant mortality and morbidity, but there is not yet an effective bedside tool that can accurately screen for brain injury, monitor injury evolution, or assess response to therapy. The energy used by neurons is derived largely from tissue oxidative metabolism, and neural hyperactivity and cell death are reflected by corresponding changes in cerebral oxygen metabolism (CMRO₂). Thus, measures of CMRO₂ are reflective of neuronal viability and provide critical diagnostic information, making CMRO₂ an ideal target for bedside measurement of brain health. Brain-imaging techniques such as positron emission tomography (PET) and single-photon emission computed tomography (SPECT) yield measures of cerebral glucose and oxygen metabolism, but these techniques require the administration of radionucleotides, so they are used in only the most acute cases. Continuous-wave near-infrared spectroscopy (CWNIRS) provides non-invasive and non-ionizing radiation measures of hemoglobin oxygen saturation (SO₂) as a surrogate for cerebral oxygen consumption. However, SO₂ is less than ideal as a surrogate for cerebral oxygen metabolism as it is influenced by both oxygen delivery and consumption. Furthermore, measurements of SO₂ are not sensitive enough to detect brain injury hours after the insult, because oxygen consumption and delivery reach equilibrium after acute transients. We investigated the possibility of using more sophisticated NIRS optical methods to quantify cerebral oxygen metabolism at the bedside in healthy and brain-injured newborns. More specifically, we combined the frequency-domain NIRS (FDNIRS) measure of SO2 with the diffuse correlation spectroscopy (DCS) measure of blood flow index (CBFi) to yield an index of CMRO₂ (CMRO₂i). With the combined FDNIRS/DCS system we are able to quantify cerebral metabolism and hemodynamics. This represents an improvement over CWNIRS for detecting brain health, brain

  18. Use of non-invasive ventilation in acute pulmonary edema and chronic obstructive pulmonary disease exacerbation in emergency medicine: predictors of failure. (United States)

    Passarini, Juliana Nalin de Souza; Zambon, Lair; Morcillo, André Moreno; Kosour, Carolina; Saad, Ivete Alonso Bredda


    This study analyzed acute respiratory failure caused by acute pulmonary edema, as well as chronic obstructive pulmonary disease exacerbation, that was treated with non-invasive mechanical ventilation to identify the factors that are associated with the success or failure non-invasive mechanical ventilation in urgent and emergency service. This study was a prospective, descriptive and analytical study. We included patients of both genders aged >18 years who used non-invasive mechanical ventilation due to acute respiratory failure that was secondary to acute pulmonary edema or chronic obstructive pulmonary disease exacerbation. Patients with acute respiratory failure that was secondary to pathologies other than acute pulmonary edema and chronic obstructive pulmonary disease or who presented with contraindications for the technique were excluded. Expiratory pressures between 5 and 8 cmH2O and inspiratory pressures between 10 and 12 cmH2O were used. Supplemental oxygen maintained peripheral oxygen saturation at >90%. The primary outcome was endotracheal intubation. A total of 152 patients were included. The median non-invasive mechanical ventilation time was 6 hours (range 1 - 32 hours) for chronic obstructive pulmonary disease patients (n=60) and 5 hours (range 2 - 32 hours) for acute pulmonary edema patients (n=92). Most (75.7%) patients progressed successfully. However, reduced APACHE II scores and lower peripheral oxygen saturation were observed. These results were statistically significant in patients who progressed to intubation (pendotracheal intubation 2.3 times (p=0.032). Patients with acute pulmonary edema and elevated GCS scores also increased the probability of success. Respiratory frequency >25 rpm, higher APACHE II scores, BiPAP use and chronic obstructive pulmonary disease diagnosis were associated with endotracheal intubation. Higher GCS and SpO2 values were associated with NIV success. Non-invasive mechanical ventilation can be used in emergency

  19. Non-invasive submilligram level quantification of in vivo blood components with slitless high-sensitivity spectrometer and noncooled NIR detector (United States)

    Kuribayashi, Ryosuke; Furukawa, Hiromitsu


    By using a "slit-less" Fourier-transform spectrometer, we demonstrate that cardiac-pulsation amplitude of absorbance can be extracted from 3.5-level absorbance unit (AU) spectra of a human fingertip with a resolution of blood components (water, HbO2, and lipids/proteins) in a fingertip are deduced in the sub-milligram order. The results indicate the capacity of the spectrometer for a portable non-invasive blood monitor as well as for a high-end analytic instrument.

  20. Magneto-electric nano-particles for non-invasive brain stimulation.

    Directory of Open Access Journals (Sweden)

    Kun Yue

    Full Text Available This paper for the first time discusses a computational study of using magneto-electric (ME nanoparticles to artificially stimulate the neural activity deep in the brain. The new technology provides a unique way to couple electric signals in the neural network to the magnetic dipoles in the nanoparticles with the purpose to enable a non-invasive approach. Simulations of the effect of ME nanoparticles for non-invasively stimulating the brain of a patient with Parkinson's Disease to bring the pulsed sequences of the electric field to the levels comparable to those of healthy people show that the optimized values for the concentration of the 20-nm nanoparticles (with the magneto-electric (ME coefficient of 100 V cm(-1 Oe(-1 in the aqueous solution is 3 × 10(6 particles/cc, and the frequency of the externally applied 300-Oe magnetic field is 80 Hz.

  1. Non-invasive determination of the complete elastic moduli of spider silks (United States)

    Koski, Kristie J.; Akhenblit, Paul; McKiernan, Keri; Yarger, Jeffery L.


    Spider silks possess nature’s most exceptional mechanical properties, with unrivalled extensibility and high tensile strength. Unfortunately, our understanding of silks is limited because the complete elastic response has never been measured—leaving a stark lack of essential fundamental information. Using non-invasive, non-destructive Brillouin light scattering, we obtain the entire stiffness tensors (revealing negative Poisson’s ratios), refractive indices, and longitudinal and transverse sound velocities for major and minor ampullate spider silks: Argiope aurantia, Latrodectus hesperus, Nephila clavipes, Peucetia viridans. These results completely quantify the linear elastic response for all possible deformation modes, information unobtainable with traditional stress-strain tests. For completeness, we apply the principles of Brillouin imaging to spatially map the elastic stiffnesses on a spider web without deforming or disrupting the web in a non-invasive, non-contact measurement, finding variation among discrete fibres, junctions and glue spots. Finally, we provide the stiffness changes that occur with supercontraction.

  2. Early predictors of success of non-invasive positive pressure ventilation in hypercapnic respiratory failure. (United States)

    Bhattacharyya, D; Prasad, Bnbm; Tampi, P S; Ramprasad, R


    Non-invasive positive pressure ventilation (NIPPV) has emerged as a significant advancement in the management of acute hypercapnic respiratory failure. Patients with hypercapnic respiratory failure requiring ventilation therapy (respiratory rate [RR] of > 30 breaths per minutes, PaCO2 > 55 mmHg and arterial pH intubation was evaluated. Of the 100 patients, 76 (76%) showed improvement in clinical parameters and ABG. There was improvement in HR and RR, pH, and PCO2 within the first hour in the success group and these parameters continued to improve even after four and 24 hours of NIPPV treatment. Out of 24 (24%) patients who failed to respond, 13 (54%) needed endotracheal intubation within one hour. The failure group had higher baseline HR than the success group. Improvement in HR, RR, pH, and PCO2 one hour after putting the patient on NIPPV predicts success of non-invasive positive pressure ventilation in hypercapnic respiratory failure.

  3. Evaluation of four non-invasive methods for examination and characterization of pressure ulcers

    DEFF Research Database (Denmark)

    Andersen, E.S.; Karlsmark, T.


    Background: Pressure ulcers are globally of major concern and there is need for research in the pathogenesis for early intervention. Early studies have suggested existence of a hypo-echogenic subepidermal layer at the location of pressure ulcers, visualized by ultrasound scans. As a continuation......, we here report on usability of four non-invasive techniques for evaluation of pressure ulcers. Methods: Fifteen pressure ulcers in stage 0-IV were examined using four different non-invasive techniques [redness index, skin temperature, skin elasticity (i.e. retraction time), and ultrasound scanning...... at all pressure ulcers, but none at the reference points. The skin retraction time was often higher at the location of a pressure ulcer than at the reference location. We found no correlation between the stage of the ulcers and temperature, redness index, subepidermal layer thickness, or retraction time...

  4. A holistic multimodal approach to the non-invasive analysis of watercolour paintings

    CERN Document Server

    Kogou, Sotiria; Bellesia, Sonia; Burgio, Lucia; Bailey, Kate; Brooks, Charlotte; Liang, Haida


    A holistic approach using non-invasive multimodal imaging and spectroscopic techniques to study the materials (pigments, drawing materials and paper) and painting techniques of watercolour paintings is presented. The non-invasive imaging and spectroscopic techniques include VIS-NIR reflectance spectroscopy and multispectral imaging, micro-Raman spectroscopy, X-ray fluorescence spectroscopy (XRF) and optical coherence tomography (OCT). The three spectroscopic techniques complement each other in pigment identification. Multispectral imaging (near infrared bands), OCT and micro-Raman complement each other in the visualisation and identification of the drawing material. OCT probes the microstructure and light scattering properties of the substrate while XRF detects the elemental composition that indicates the sizing methods and the filler content. The multiple techniques were applied in a study of forty six 19th century Chinese export watercolours from the Victoria & Albert Museum (V&A) and the Royal Hort...

  5. Non-invasive bleaching of the human lens by femtosecond laser photolysis

    DEFF Research Database (Denmark)

    Kessel, L.; Eskildsen, Lars; Poel, Mike van der


    were susceptible to photobleaching by a non-invasive procedure and whether this would lead to optical rejuvenation of the lens. Methodology/Principal Findings: Nine human donor lenses were treated with an 800 nm infra-red femtosecond pulsed laser in a treatment zone measuring 1 x 1 x 0.52 mm. After...... laser treatment the age-induced yellow discoloration of the lens was markedly reduced and the transmission of light was increased corresponding to an optical rejuvenation of 3 to 7 years. Conclusions/Significance: The results demonstrate that the age-induced yellowing of the human lens can be bleached...... by a non-invasive procedure based on femtosecond laser photolysis. Cataract is a disease associated with old age. At the current technological stage, lens aging is delayed but with a treatment covering the entire lens volume complete optical rejuvenation is expected. Thus, femtosecond photolysis has...

  6. Striving for habitual well-being in non-invasive ventilation

    DEFF Research Database (Denmark)

    Sørensen, Dorthe; Frederiksen, Kirsten; Grøfte, Thorbjørn;


    . A constant comparative classic grounded theory study was performed. Methods. Data collection consisted of participant observation during the treatment of 21 patients undergoing non-invasive ventilation, followed by interviews with 11 of the patients after treatment completion. Data were collected from...... December 2009 to January 2012. Results. A substantive theory of striving for habitual well-being was developed. The theory included three phases: initiation, transition, and determination. Each phase contained a set of subcategories to indicate the dimensions of and variations in the participants......’ behaviour. Conclusions. The substantive theory revealed that the patients’ behaviour was related to their breathlessness, sensation of being restrained by the mask and head gear, and the side effects of non-invasive ventilation. Relevance to clinical practice. This inter-relationship should be addressed...

  7. [CD147 expression in non-invasive and invasive breast carcinoma]. (United States)

    Nagashima, Saki; Sakurai, Kenichi; Suzuki, Shuhei; Hara, Yukiko; Maeda, Tetsuyo; Hirano, Tomohisa; Enomoto, Katsuhisa; Amano, Sadao; Koshinaga, Tsugumichi


    CD147 is a multifunctional membrane glycoprotein involved in tumor invasion, and is overexpressed in many solid tumors. However, the role of CD147 in breast cancer is not well understood. The aim of this study was to evaluate CD147 expression in non-invasive and invasive ductal carcinomas. We recruited 156 breast cancer patients who underwent radical operations at our hospital up until 2002. We performed immunohistochemistry on their tumor specimens, and compared these data with clinicopathological factors. We divided the patients into two groups: group A was comprised of non-invasive ductal carcinomas and group B, invasive ductal carcinomas. The CD147-positive rate was 62.8% for all patients and was higher in group B than group A. In all cases, the CD147-positive rate correlated with clinical stage, number of metastatic lymph nodes, and tumor size. These results implied that CD147 may be involved in the process of breast cancer invasion.

  8. Imaging and finite element analysis: a methodology for non-invasive characterization of aortic tissue. (United States)

    Flamini, Vittoria; Creane, Arthur P; Kerskens, Christian M; Lally, Caitríona


    Characterization of the mechanical properties of arterial tissues usually involves an invasive procedure requiring tissue removal. In this work we propose a non-invasive method to perform a biomechanical analysis of cardiovascular aortic tissue. This method is based on combining medical imaging and finite element analysis (FEA). Magnetic resonance imaging (MRI) was chosen since it presents relatively low risks for human health. A finite element model was created from the MRI images and loaded with systolic physiological pressures. By means of an optimization routine, the structural material properties were changed until average strains matched those measured by MRI. The method outlined in this work produced an estimate of the in situ properties of cardiovascular tissue based on non-invasive image datasets and finite element analysis.

  9. Non-invasive discrimination between pancreatic islets and exocrine cells using multiphoton microscopy (United States)

    Wu, Binlin; Li, Ge; Hao, Mingming; Mukherjee, Sushmita


    In this study, we propose a non-invasive method to distinguish pancreatic islet cells from exocrine cell clusters using multiphoton (MP) imaging. We demonstrate the principle of distinguishing them based on autofluorescence. The results show that MP imaging has a potential to distinguish pancreatic islets from exocrine cells. This ability to distinguish the two cell types could have many applications, such as the examination of fresh pancreatic biopsies when staining is not possible or desirable.

  10. Non-invasive vagus nerve stimulation in healthy humans reduces sympathetic nerve activity.


    Clancy, JA; Mary, DA; Witte, KK; Greenwood, JP; Deuchars, SA; Deuchars, J


    Background: Vagus nerve stimulation (VNS) is currently used to treat refractory epilepsy and is being investigated as a potential therapy for a range of conditions, including heart failure, tinnitus, obesity and Alzheimer's disease. However, the invasive nature and expense limits the use of VNS in patient populations and hinders the exploration of the mechanisms involved. Objective: We investigated a non-invasive method of VNS through electrical stimulation of the auricular branch of the vagu...

  11. Composite Biomarkers For Non-invasive Screening, Diagnosis And Prognosis Of Colorectal Cancer

    KAUST Repository

    Mansour, Hicham


    The present invention concerns particular biomarkers for diagnosing and/or prognosticating colorectal cancer, in particular in a non-invasive manner. The methods and compositions concern analysis of methylation patterns of one or more genes from a set of 29 genes identified as described herein. In certain embodiments, the gene set includes at least P15.INK4b, SST, GAS7, CNRIP1, and PIK3CG.

  12. Non-invasive parameters as predictors of high risk of variceal bleeding in cirrhotic patients

    Directory of Open Access Journals (Sweden)

    María Andrea Peñaloza-Posada


    Conclusions: The presence of large esophageal varices is the most important predictive risk factor for the occurrence of VB, independently of the class of Child-Pugh. Additionally, the portal vein diameter ≥ 13 mm is a non-invasive parameter related to high risk of VB. Therefore, these factors could be used as predictors of high risk of VB when the measure of HPVG is not available.

  13. Comparing the Validity of Non-Invasive Methods in Measuring Thoracic Kyphosis and Lumbar Lordosis

    Directory of Open Access Journals (Sweden)

    Mohammad Yousefi


    Full Text Available Background: the purpose of this article is to study the validity of each of the non-invasive methods (flexible ruler, spinal mouse, and processing the image versus the one through-Ray radiation (the basic method and comparing them with each other.Materials and Methods: for evaluating the validity of each of these non-invasive methods, the thoracic Kyphosis and lumber Lordosis angle of 20 students of Birjand University (age mean and standard deviation: 26±2, weight: 72±2.5 kg, height: 169±5.5 cm through fours methods of flexible ruler, spinal mouse, and image processing and X-ray.Results: the results indicated that the validity of the methods including flexible ruler, spinal mouse, and image processing in measuring the thoracic Kyphosis and lumber Lordosis angle respectively have an adherence of 0.81, 0.87, 0.73, 0.76, 0.83, 0.89 (p>0.05. As a result, regarding the gained validity against the golden method of X-ray, it could be stated that the three mentioned non-invasive methods have adequate validity. In addition, the one-way analysis of variance test indicated that there existed a meaningful relationship between the three methods of measuring the thoracic Kyphosis and lumber Lordosis, and with respect to the Tukey’s test result, the image processing method is the most precise one.Conclusion as a result, this method could be used along with other non-invasive methods as a valid measuring method.

  14. The role of invasive and non-invasive procedures in diagnosing fever of unknown origin. (United States)

    Mete, Bilgul; Vanli, Ersin; Yemisen, Mucahit; Balkan, Ilker Inanc; Dagtekin, Hilal; Ozaras, Resat; Saltoglu, Nese; Mert, Ali; Ozturk, Recep; Tabak, Fehmi


    The etiology of fever of unknown origin has changed because of the recent advances in and widespread use of invasive and non-invasive diagnostic tools. However, undiagnosed patients still constitute a significant number. To determine the etiological distribution and role of non-invasive and invasive diagnostic tools in the diagnosis of fever of unknown origin. One hundred patients who were hospitalized between June 2001 and 2009 with a fever of unknown origin were included in this study. Clinical and laboratory data were collected from the patients' medical records retrospectively. Fifty three percent of the patients were male, with a mean age of 45 years. The etiology of fever was determined to be infectious diseases in 26, collagen vascular diseases in 38, neoplastic diseases in 14, miscellaneous in 2 and undiagnosed in 20 patients. When the etiologic distribution was analyzed over time, it was noted that the rate of infectious diseases decreased, whereas the rate of rheumatological and undiagnosed diseases relatively increased because of the advances in imaging and microbiological studies. Seventy patients had a definitive diagnosis, whereas 10 patients had a possible diagnosis. The diagnoses were established based on clinical features and non-invasive tests for 61% of the patients and diagnostic benefit was obtained for 49% of the patients undergoing invasive tests. Biopsy procedures contributed a rate of 42% to diagnoses in patients who received biopsies. Clinical features (such as detailed medical history-taking and physical examination) may contribute to diagnoses, particularly in cases of collagen vascular diseases. Imaging studies exhibit certain pathologies that guide invasive studies. Biopsy procedures contribute greatly to diagnoses, particularly for malignancies and infectious diseases that are not diagnosed by non-invasive procedures.

  15. Non-invasive electric current stimulation for restoration of vision after unilateral occipital stroke. (United States)

    Gall, Carolin; Silvennoinen, Katri; Granata, Giuseppe; de Rossi, Francesca; Vecchio, Fabrizio; Brösel, Doreen; Bola, Michał; Sailer, Michael; Waleszczyk, Wioletta J; Rossini, Paolo M; Tatlisumak, Turgut; Sabel, Bernhard A


    Occipital stroke often leads to visual field loss, for which no effective treatment exists. Little is known about the potential of non-invasive electric current stimulation to ameliorate visual functions in patients suffering from unilateral occipital stroke. One reason is the traditional thinking that visual field loss after brain lesions is permanent. Since evidence is available documenting vision restoration by means of vision training or non-invasive electric current stimulation future studies should also consider investigating recovery processes after visual cortical strokes. Here, protocols of repetitive transorbital alternating current stimulation (rtACS) and transcranial direct current stimulation (tDCS) are presented and the European consortium for restoration of vision (REVIS) is introduced. Within the consortium different stimulation approaches will be applied to patients with unilateral occipital strokes resulting in homonymous hemianopic visual field defects. The aim of the study is to evaluate effects of current stimulation of the brain on vision parameters, vision-related quality of life, and physiological parameters that allow concluding about the mechanisms of vision restoration. These include EEG-spectra and coherence measures, and visual evoked potentials. The design of stimulation protocols involves an appropriate sham-stimulation condition and sufficient follow-up periods to test whether the effects are stable. This is the first application of non-invasive current stimulation for vision rehabilitation in stroke-related visual field deficits. Positive results of the trials could have far-reaching implications for clinical practice. The ability of non-invasive electrical current brain stimulation to modulate the activity of neuronal networks may have implications for stroke rehabilitation also in the visual domain.

  16. Entrainment of Perceptually Relevant Brain Oscillations by Non-Invasive Rhythmic Stimulation of the Human Brain


    Thut, Gregor; Schyns, Philippe G.; Gross, Joachim


    The notion of driving brain oscillations by directly stimulating neuronal elements with rhythmic stimulation protocols has become increasingly popular in research on brain rhythms. Induction of brain oscillations in a controlled and functionally meaningful way would likely prove highly beneficial for the study of brain oscillations, and their therapeutic control. We here review conventional and new non-invasive brain stimulation protocols as to their suitability for controlled intervention in...

  17. Utility of Transcutaneous Capnography for Optimization of Non-Invasive Ventilation Pressures. (United States)

    Chhajed, Prashant N; Gehrer, Simone; Pandey, Kamlesh V; Vaidya, Preyas J; Leuppi, Joerg D; Tamm, Michael; Strobel, Werner


    Nocturnal Non-invasive Positive Pressure Ventilation (NPPV) is the treatment of choice in patients with chronic hypercapnic respiratory failure due to hypoventilation. Continuous oxygen saturation measured with a pulse oximeter provides a surrogate measure of arterial oxygen saturation but does not completely reflect ventilation. Currently, Partial Pressure of Arterial (PaCO2) measured by arterial blood analysis is used for estimating the adequacy of ventilatory support and serves as the gold standard. To examine the safety, feasibility and utility of cutaneous capnography to re-titrate the non-invasive positive pressure ventilation settings in patients with chronic hypercapnic respiratory failure due to hypoventilation. Twelve patients with chronic hypercapnic respiratory failure prospectively underwent complete polysomnography and cutaneous capnography measurement on the ear lobe. Non-invasive ventilation pressures were adjusted with the aim of normalizing cutaneous carbon dioxide or at least reducing it by 10 to 15 mmHg. Sensor drift for cutaneous carbon dioxide of 0.7 mmHg per hour was integrated in the analysis. Mean baseline cutaneous carbon dioxide was 45.4 ± 6.5 mmHg and drift corrected awake value was 45.1 ± 8.3 mmHg. The correlation of baseline cutaneous carbon dioxide and the corrected awake cutaneous carbon dioxide with arterial blood gas values were 0.91 and 0.85 respectively. Inspiratory positive airway pressures were changed in nine patients (75%) and expiratory positive airway pressures in eight patients (66%). Epworth sleepiness score before and after the study showed no change in five patients, improvement in six patients and deterioration in one patient. Cutaneous capnography is feasible and permits the optimization of non-invasive ventilation pressure settings in patients with chronic hypercapnic respiratory failure due to hypoventilation. Continuous cutaneous capnography might serve as an important additional tool to complement diurnal

  18. Liver fibrosis can be assessed by non-invasive ultrasound elastography

    DEFF Research Database (Denmark)

    Thielsen, Peter; Wilkens, Rune; Rafaelsen, Søren Rafael;


    Diagnosis and assessment of liver fibrosis is of great importance for initiating treatment and starting hepatocellular carcinoma surveillance in patients with established cirrhosis. Liver biopsy is still considered the gold standard for liver fibrosis staging, however; it is far from perfect. Non......-invasive assessment of liver fibrosis is becoming more available and is well tolerated. This review describes the feasibility and reliability of two elastography methods: transient elastography and Acoustic Radiation Force Impulse-elastography....

  19. Non-invasive, Focused Ultrasound-Facilitated Gene Delivery for Optogenetics (United States)

    Wang, Shutao; Kugelman, Tara; Buch, Amanda; Herman, Mathieu; Han, Yang; Karakatsani, Maria Eleni; Hussaini, S. Abid; Duff, Karen; Konofagou, Elisa E.


    Optogenetics, a widely used technique in neuroscience research, is often limited by its invasive nature of application. Here, we present a noninvasive, ultrasound-based technique to introduce optogenetic channels into the brain by temporarily opening the blood-brain barrier (BBB). We demonstrate the efficiency of the method developed and evaluate the bioactivity of the non-invasively introduced channelrhodopsin channels by performing stimulation in freely behaving mice.

  20. Prognostic value of non-invasive stress testing for coronary artery disease in obese patients. (United States)

    Bigvava, Tamar; Zamani, Seyedeh Mahsa; Pieske-Kraigher, Elisabeth; Gebker, Rolf; Pieske, Burkert; Kelle, Sebastian


    Detecting coronary artery disease (CAD) in obese patients remains a challenge but can have substantial prognostic implications for this patient group. Until now, sufficient data was not available on which to base the selection of the imaging modality in obese patients. The decision on which imaging modality to use should therefore follow the general guidelines. In this article, the authors discuss the prognostic value of the different non-invasive stress testing methods for CAD in obese patients.

  1. EAPD interim seminar and workshop in Brussels May 9 2015 Non-invasive caries treatment


    van Loveren, C.; van Palenstein Helderman, W.


    Aim This was to collect information for the 9th European Academy of Paediatric Dentistry Interim Seminar and Workshops to discuss the state of art on non-invasive caries therapy to be used if possible to formulate clinical guidelines by European experts in paediatric dentistry Methods Based on systematic reviews and additional papers were assessed for methods to prevent caries initiation and caries progression both in the state of pre-cavitation and cavitation without invasive technologies. R...

  2. Non-invasive method of determination of thermoelectric materials figure of merit

    Directory of Open Access Journals (Sweden)

    Ashcheulov А. А.


    Full Text Available Thermoelectric effects arising in a sample placed in a measuring oscillating loop have been studied. It has been shown that asymmetric character of flowing current results in a volumetric bundle of induced Foucault currents and regions of Peltier heat release by thermoelectric sample which leads to increasing of irreversible heat losses recorded by measuring oscillating loop. The presence of this effect has caused the emergence of ingenious non-invasive method for recording of thermoelectric materials figure of merit.

  3. [Isolated left ventricular muscular diverticulum in an adult. Value of non-invasive examinations]. (United States)

    Holeman, A; Bellorini, M; Lefevre, T; Lévy, M; Loiret, J; Huerta, F; Thébault, B; Funck, F


    The authors report a case of ventriculum in a 45 year old women investigated for chest pain. This was a congenital muscular left ventricular diverticulum confirmed by a complete imaging series including echocardiography, magnetic resonance imaging, angio-scintigraphy and conventional angiography. This diverticulum was unusual due to the fact that there was no associated congenital disease and that it was discovered in an adult. The authors review the literature and discuss the value of non-invasive imaging procedures.

  4. Gene profiles between non-invasive and invasive colon cancer using laser microdissection and polypeptide analysis

    Institute of Scientific and Technical Information of China (English)

    Jin-Shui Zhu; Hua Guo; Ming-Quan Song; Guo-Qiang Chen; Qun Sun; Qiang Zhang


    AIM: To explore the expression of differential gene expression profiles of target cell between non-invasive submucosal and invasive advanced tumor in colon carcinoma using laser microdissection (LMD) in combination with polypeptide analysis.METHODS: Normal colon tissue samples from 20 healthy individuals and 30 cancer tissue samples from early non-invasive colon cancer cells were obtained. The cells from these samples were used LMD independently after P27-based amplification. aRNA from advanced colon cancer cells and metastatic cancer cells of 40 cases were applied to LMD and polypeptide analysis, semiquantitative reverse transcribed polymerase chain reaction (RT-PCR) and immunohistochemical assays were used to verify the results of microarray and further identify differentially expressed genes in non-invasive early stages of colon cancer.RESULTS: Five gene expressions were changed in colon carcinoma cells compared with that of controls. Of the five genes, three genes were downregulated and two were upregulated in invasive submucosal colon carcinoma compared with non-invasive cases. The results were confirmed at the level of aRNA and gene expression. Five genes were further identified as differentially expressed genes in the majority of cases (50%, 25/40) in progression of colon cancer, and their expression patterns of which were similar to tumor suppressor genes or oncogenes.CONCLUSION: This study suggested that combined use of polypeptide analysis might identify early expression profiles of five differential genes associated with the invasion of colon cancer. These results reveal that this gene may be a marker of submucosal invasion in early colon cancer.

  5. Non-invasive assessment of endothelial function. Intra and inter-observer variability


    Sotomayor González,Arturo; Kostine,Andrea; Gómez-Flores,Jorge R; Márquez, Manlio F; Hermosillo,Antonio G; Verdejo París,Juan; Iturralde Torres,Pedro; Colin Lizalde,Luis; Nava Townsend,Santiago; Cárdenas, Manuel


    Background and objectives: Non-invasive evaluation of endothelial function with high resolution ultrasound has become a widely accepted tool in determination of high risk subjects for early atherosclerosis. Despite its simple appearance, ultrasonographic assessment of brachial artery changes, is technically challenging and has a significant learning curve. In the present study, we evaluate the intra and inter-observer variability in assessing peripheral endothelial function with high resoluti...

  6. SNP-based non-invasive prenatal testing detects sex chromosome aneuploidies with high accuracy (United States)

    Samango-Sprouse, Carole; Banjevic, Milena; Ryan, Allison; Sigurjonsson, Styrmir; Zimmermann, Bernhard; Hill, Matthew; Hall, Megan P.; Westemeyer, Margaret; Saucier, Jennifer; Demko, Zachary; Rabinowitz, Matthew


    Objective To develop a single nucleotide polymorphism- and informatics-based non-invasive prenatal test that detects sex chromosome aneuploidies early in pregnancy. Methods Fifteen aneuploid samples, including thirteen 45,X, two 47,XXY, and one 47,XYY, along with 185 euploid controls, were analyzed. Cell-free DNA was isolated from maternal plasma, amplified in a single multiplex PCR assay that targeted 19,488 polymorphic loci covering chromosomes 13, 18, 21, X, and Y, and sequenced. Sequencing results were analyzed using a Bayesian-based maximum likelihood statistical method to determine copy number of interrogated chromosomes, calculating sample-specific accuracies. Results Of the samples that passed a stringent quality control metric (93%), the algorithm correctly identified copy number at all five chromosomes in all 187 samples, for 934/935 correct calls as early as 9.4 weeks of gestation. We detected 45,X with 91.7% sensitivity (CI: 61.5-99.8%) and 100% specificity (CI: 97.9-100%), and 47,XXY and 47,XYY. The average calculated accuracy was 99.78%. Conclusion This method non-invasively detected 45,X, 47,XXY, and 47,XYY fetuses from cfDNA isolated from maternal plasma with high calculated accuracies, and thus offers a non-invasive method with the potential to function as a routine screen allowing for early prenatal detection of rarely diagnosed yet commonly occurring sex aneuploidies. PMID:23712453

  7. Non-invasive Estimation of Pressure Gradients in Pulsatile Flow using Ultrasound

    DEFF Research Database (Denmark)

    Olesen, Jacob Bjerring; Villagómez Hoyos, Carlos Armando; Traberg, Marie Sand


    This paper investigates how pressure gradients in a pulsatile flow environment can be measured non-invasively using ultrasound. The presented set-up is based on vector velocity fields measured on a blood mimicking fluid moving at a peak flow rate of 1 ml/s through a constricted vessel. Fields of ...... and standard deviation of 10% and 13%, respectively, relative to peak estimated gradient. The paper concludes that maps of pressure gradients can be measured non-invasively using ultrasound with a precision of more than 85%......This paper investigates how pressure gradients in a pulsatile flow environment can be measured non-invasively using ultrasound. The presented set-up is based on vector velocity fields measured on a blood mimicking fluid moving at a peak flow rate of 1 ml/s through a constricted vessel. Fields...... of pressure gradients are calculated using the Navier-Stokes equations. Flow data are acquired to a depth of 3 cm using directional synthetic aperture flow imaging on a linear array transducer producing 1500 image frames of velocity estimates per second. Scans of a carotid bifurcation phantom with a 70...

  8. Non-Invasive Nanoparticle Imaging Technologies for Cosmetic and Skin Care Products

    Directory of Open Access Journals (Sweden)

    Lynlee L. Lin


    Full Text Available The nanotechnology field is growing at an unprecedented rate. This is resulting in significant benefits in skin care products and formulations. Likewise, imaging technology is also advancing. The convergence of these fields offers a unique opportunity to observe and quantify the interactions of nanoparticles within cosmetic and skin care formulations. More importantly, imaging technology holds tremendous promise for understanding how formulated nanoparticles interact with our skin. Imaging technologies can be broken into two major groups that include those that require invasive sample collection and processing (e.g., electron microscopy, mass spectrometry, and super-resolution structured illumination microscopy and those that can be used in non-invasive data collection settings. Fluorescence microscopy, confocal microscopy, coherent anti-Stokes Raman scattering spectroscopy and optical coherence tomography fall into the latter category and are the focus of this review in the context of skin care product and cosmetics testing. Cosmetic and skin care product testing is most informative when carried out in volunteers. This makes invasive or disruptive analysis techniques unfeasible and supports the use of non-invasive imaging technologies. The combination of non-invasive imaging and minimally invasive microbiopsy sampling for combined imaging and molecular data is the future of skin care product testing.

  9. Prediction of oesophageal varices in patients with primary biliary cirrhosis by non-invasive markers (United States)

    Gao, Lili; Li, Hanwei; Han, Jun; Zhang, Weihui


    Introduction Preliminary data suggested that non-invasive methods could be useful to assess presence of oesophageal varices (OV) in liver cirrhosis. The primary objectives were to investigate non-invasive markers for diagnosing and grading OV in patients with primary biliary cirrhosis. Material and methods This study included a total of 106 consecutive treatment-naive patients with primary biliary cirrhosis (PBC). Results of physical examination, blood tests, and abdominal ultrasound scan (USS) were measured. Performance of non-invasive markers for OV was expressed as sensitivity, specificity, positive, and negative predictive values (PPV, NPV), accuracy, and area under the curve (AUC). Results Oesophageal varices were found in 54 (50.9%) and large OV in 28 of the 106 patients. Variables found to differ significantly between patients with any grade or large and without OV included increased spleen length, increased portal vein diameter, low platelet count, and low levels of albumin or low γ-glutamyltranspeptidase (γ-GTP) values. Area under the receiver operating characteristic curve showed that spleen length (cutoff = 156.0) had AUC 0.753 (95% CI: 0.657–0.849), and high NPV (82.1%) to exclude any grade OV. Large OV could be excluded with NPV 70.6% by spleen length. Conclusions Predictive risk factors that use readily available laboratory results and ultrasound scan results may reliably identify esophageal varices in patients with PBC. PMID:28261290

  10. The Book of Kells: A non-invasive MOLAB investigation by complementary spectroscopic techniques (United States)

    Doherty, B.; Daveri, A.; Clementi, C.; Romani, A.; Bioletti, S.; Brunetti, B.; Sgamellotti, A.; Miliani, C.


    This paper highlights the efficacy of non-invasive portable spectroscopy for assessing the execution technique and constituent materials in one of the most important medieval manuscripts, the Book of Kells. An aimed campaign of in situ measurements by the MObile LABoratory (MOLAB) has analyzed its elemental composition and vibrational and electronic molecular properties. The ample analytical toolbox has afforded complementary diagnostic information of the pigment palette permitting the characterization of both inorganic and organic materials as pigments and dyes in the white, purple, blue, red, orange, green and black areas. In particular, the novel widespread use of calcinated gypsum (anhydrite) as both a white pigment and in correlation to the organic dyes in this manuscript has been noted. The non-invasive identification of the organic dye orchil is significant considering its rare non invasive detection in medieval manuscripts. Finally the occurrence of particular alterations of the organic black areas giving rise to calcium carboxylate and calcium oxalate has been specifically highlighted. Importantly, this work elaborates complex aspects of the employed painting materials which have given rise to numerous significant points of interest for a more elaborate understanding of this Irish treasure.

  11. Toenail as Non-invasive Biomarker in Metal Toxicity Measurement of Welding Fumes Exposure - A Review (United States)

    Bakri, S. F. Z.; Hariri, A.; Ma'arop, N. F.; Hussin, N. S. A. W.


    Workers are exposed to a variety of heavy metal pollutants that are released into the environment as a consequence of workplace activities. This chemical pollutants are incorporated into the human by varies of routes entry and can then be stored and distributed in different tissues, consequently have a potential to lead an adverse health effects and/or diseases. As to minimize the impact, a control measures should be taken to avoid these effects and human biological marker is a very effective tool in the assessment of occupational exposure and potential related risk as the results is normally accurate and reproducible. Toenail is the ideal matrix for most common heavy metals due to its reliability and practicality compared to other biological samples as well as it is a non-invasive and this appears as a huge advantage of toenail as a biomarker. This paper reviews studies that measure the heavy metals concentration in toenail as non-invasive matrix which later may adapt in the investigation of metal fume emitted from welding process. The development of new methodology and modern analytical techniques has allowed the use of toenail as non-invasive approach. The presence of a heavy metal in this matrix reflects an exposure but the correlations between heavy metal levels in the toenail must be established to ensure that these levels are related to the total body burden. These findings suggest that further studies on interactions of these heavy metals in metal fumes utilizing toenail biomarker endpoints are highly warranted especially among welders.

  12. Retinal functional imager (RFI): non-invasive functional imaging of the retina. (United States)

    Ganekal, S


    Retinal functional imager (RFI) is a unique non-invasive functional imaging system with novel capabilities for visualizing the retina. The objective of this review was to show the utility of non-invasive functional imaging in various disorders. Electronic literature search was carried out using the websites and The search words were retinal functional imager and non-invasive retinal imaging used in combination. The articles published or translated into English were studied. The RFI directly measures hemodynamic parameters such as retinal blood-flow velocity, oximetric state, metabolic responses to photic activation and generates capillary perfusion maps (CPM) that provides retinal vasculature detail similar to flourescein angiography. All of these parameters stand in a direct relationship to the function and therefore the health of the retina, and are known to be degraded in the course of retinal diseases. Detecting changes in retinal function aid early diagnosis and treatment as functional changes often precede structural changes in many retinal disorders.

  13. Hyperspectral imaging coupled with chemometric analysis for non-invasive differentiation of black pens (United States)

    Chlebda, Damian K.; Majda, Alicja; Łojewski, Tomasz; Łojewska, Joanna


    Differentiation of the written text can be performed with a non-invasive and non-contact tool that connects conventional imaging methods with spectroscopy. Hyperspectral imaging (HSI) is a relatively new and rapid analytical technique that can be applied in forensic science disciplines. It allows an image of the sample to be acquired, with full spectral information within every pixel. For this paper, HSI and three statistical methods (hierarchical cluster analysis, principal component analysis, and spectral angle mapper) were used to distinguish between traces of modern black gel pen inks. Non-invasiveness and high efficiency are among the unquestionable advantages of ink differentiation using HSI. It is also less time-consuming than traditional methods such as chromatography. In this study, a set of 45 modern gel pen ink marks deposited on a paper sheet were registered. The spectral characteristics embodied in every pixel were extracted from an image and analysed using statistical methods, externally and directly on the hypercube. As a result, different black gel inks deposited on paper can be distinguished and classified into several groups, in a non-invasive manner.

  14. Non-invasive, transient determination of the core temperature of a heat-generating solid body (United States)

    Anthony, Dean; Sarkar, Daipayan; Jain, Ankur


    While temperature on the surface of a heat-generating solid body can be easily measured using a variety of methods, very few techniques exist for non-invasively measuring the temperature inside the solid body as a function of time. Measurement of internal temperature is very desirable since measurement of just the surface temperature gives no indication of temperature inside the body, and system performance and safety is governed primarily by the highest temperature, encountered usually at the core of the body. This paper presents a technique to non-invasively determine the internal temperature based on the theoretical relationship between the core temperature and surface temperature distribution on the outside of a heat-generating solid body as functions of time. Experiments using infrared thermography of the outside surface of a thermal test cell in a variety of heating and cooling conditions demonstrate good agreement of the predicted core temperature as a function of time with actual core temperature measurement using an embedded thermocouple. This paper demonstrates a capability to thermally probe inside solid bodies in a non-invasive fashion. This directly benefits the accurate performance prediction and control of a variety of engineering systems where the time-varying core temperature plays a key role.

  15. Optimized intravenous Flat Detector CT for non-invasive visualization of intracranial stents: first results. (United States)

    Struffert, Tobias; Kloska, Stephan; Engelhorn, Tobias; Deuerling-Zheng, Yu; Ott, Sabine; Doelken, Marc; Saake, Marc; Köhrmann, Martin; Doerfler, Arnd


    As stents for treating intracranial atherosclerotic stenosis may develop in-stent re-stenosis (ISR) in up to 30%, follow-up imaging is mandatory. Residual stenosis (RS) is not rare. We evaluated an optimised Flat Detector CT protocol with intravenous contrast material application (i.v. FD-CTA) for non-invasive follow-up. In 12 patients with intracranial stents, follow-up imaging was performed using i.v. FD-CTA. MPR, subtracted MIP and VRT reconstructions were used to correlate to intra-arterial angiography (DSA). Two neuroradiologists evaluated the images in anonymous consensus reading and calculated the ISR or RS. Correlation coefficients and a Wilcoxon test were used for statistical analysis. In 4 patients, no stenosis was detected. In 6 patients RS and in two cases ISR by intima hyperplasia perfectly visible on MPR reconstructions of i.v. FD-CTA were detected. Wilcoxon's test showed no significant differences between the methods (p > 0.05). We found a high correlation with coefficients of the pairs DSA/ FD-CT MIP r = 0.91, DSA/ FD-CT MPR r = 0.82 and FD-CT MIP/ FD-CT MPR r = 0.8. Intravenous FD-CTA could clearly visualise the stent and the lumen, allowing ISR or RS to be recognised. FD-CTA provides a non-invasive depiction of intracranial stents and might replace DSA for non-invasive follow-up imaging.

  16. Non-invasive, transient determination of the core temperature of a heat-generating solid body. (United States)

    Anthony, Dean; Sarkar, Daipayan; Jain, Ankur


    While temperature on the surface of a heat-generating solid body can be easily measured using a variety of methods, very few techniques exist for non-invasively measuring the temperature inside the solid body as a function of time. Measurement of internal temperature is very desirable since measurement of just the surface temperature gives no indication of temperature inside the body, and system performance and safety is governed prim