WorldWideScience

Sample records for non-hermitian matrix ensembles

  1. Non-Hermitian Extensions of Wishart Random Matrix Ensembles

    International Nuclear Information System (INIS)

    Akemann, G.

    2011-01-01

    We briefly review the solution of three ensembles of non-Hermitian random matrices generalizing the Wishart-Laguerre (also called chiral) ensembles. These generalizations are realized as Gaussian two-matrix models, where the complex eigenvalues of the product of the two independent rectangular matrices are sought, with the matrix elements of both matrices being either real, complex or quaternion real. We also present the more general case depending on a non-Hermiticity parameter, that allows us to interpolate between the corresponding three Hermitian Wishart ensembles with real eigenvalues and the maximally non-Hermitian case. All three symmetry classes are explicitly solved for finite matrix size N x M for all complex eigenvalue correlations functions (and real or mixed correlations for real matrix elements). These are given in terms of the corresponding kernels built from orthogonal or skew-orthogonal Laguerre polynomials in the complex plane. We then present the corresponding three Bessel kernels in the complex plane in the microscopic large-N scaling limit at the origin, both at weak and strong non-Hermiticity with M - N ≥ 0 fixed. (author)

  2. Interpolation between Airy and Poisson statistics for unitary chiral non-Hermitian random matrix ensembles

    International Nuclear Information System (INIS)

    Akemann, G.; Bender, M.

    2010-01-01

    We consider a family of chiral non-Hermitian Gaussian random matrices in the unitarily invariant symmetry class. The eigenvalue distribution in this model is expressed in terms of Laguerre polynomials in the complex plane. These are orthogonal with respect to a non-Gaussian weight including a modified Bessel function of the second kind, and we give an elementary proof for this. In the large n limit, the eigenvalue statistics at the spectral edge close to the real axis are described by the same family of kernels interpolating between Airy and Poisson that was recently found by one of the authors for the elliptic Ginibre ensemble. We conclude that this scaling limit is universal, appearing for two different non-Hermitian random matrix ensembles with unitary symmetry. As a second result we give an equivalent form for the interpolating Airy kernel in terms of a single real integral, similar to representations for the asymptotic kernel in the bulk and at the hard edge of the spectrum. This makes its structure as a one-parameter deformation of the Airy kernel more transparent.

  3. The complex Laguerre symplectic ensemble of non-Hermitian matrices

    International Nuclear Information System (INIS)

    Akemann, G.

    2005-01-01

    We solve the complex extension of the chiral Gaussian symplectic ensemble, defined as a Gaussian two-matrix model of chiral non-Hermitian quaternion real matrices. This leads to the appearance of Laguerre polynomials in the complex plane and we prove their orthogonality. Alternatively, a complex eigenvalue representation of this ensemble is given for general weight functions. All k-point correlation functions of complex eigenvalues are given in terms of the corresponding skew orthogonal polynomials in the complex plane for finite-N, where N is the matrix size or number of eigenvalues, respectively. We also allow for an arbitrary number of complex conjugate pairs of characteristic polynomials in the weight function, corresponding to massive quark flavours in applications to field theory. Explicit expressions are given in the large-N limit at both weak and strong non-Hermiticity for the weight of the Gaussian two-matrix model. This model can be mapped to the complex Dirac operator spectrum with non-vanishing chemical potential. It belongs to the symmetry class of either the adjoint representation or two colours in the fundamental representation using staggered lattice fermions

  4. On the remarkable spectrum of a non-Hermitian random matrix model

    International Nuclear Information System (INIS)

    Holz, D E; Orland, H; Zee, A

    2003-01-01

    A non-Hermitian random matrix model proposed a few years ago has a remarkably intricate spectrum. Various attempts have been made to understand the spectrum, but even its dimension is not known. Using the Dyson-Schmidt equation, we show that the spectrum consists of a non-denumerable set of lines in the complex plane. Each line is the support of the spectrum of a periodic Hamiltonian, obtained by the infinite repetition of any finite sequence of the disorder variables. Our approach is based on the 'theory of words'. We make a complete study of all four-letter words. The spectrum is complicated because our matrix contains everything that will ever be written in the history of the universe, including this particular paper

  5. The effect of a non-hermitian crystal potential on the scattering matrix in reflection electron diffraction

    International Nuclear Information System (INIS)

    Smith, A.E.; Josefsson, T.W.

    1994-01-01

    An extension to include general inelastic scattering effects is developed for the case of reflection electron diffraction scattering from surfaces. In this extension of work by Lynch and Moodie, it is shown how the resultant non-Hermitian matrix problem can be recast in a form that is suitable for computation. In particular, a computational method is outlined based on techniques developed by Eberlein for matrix diagonalisation using complex rotations and shears. The resultant methods are applied to the problem of Convergent Beam RHEED. 23 refs., 3 figs

  6. Analogies between random matrix ensembles and the one-component plasma in two-dimensions

    Directory of Open Access Journals (Sweden)

    Peter J. Forrester

    2016-03-01

    Full Text Available The eigenvalue PDF for some well known classes of non-Hermitian random matrices — the complex Ginibre ensemble for example — can be interpreted as the Boltzmann factor for one-component plasma systems in two-dimensional domains. We address this theme in a systematic fashion, identifying the plasma system for the Ginibre ensemble of non-Hermitian Gaussian random matrices G, the spherical ensemble of the product of an inverse Ginibre matrix and a Ginibre matrix G1−1G2, and the ensemble formed by truncating unitary matrices, as well as for products of such matrices. We do this when each has either real, complex or real quaternion elements. One consequence of this analogy is that the leading form of the eigenvalue density follows as a corollary. Another is that the eigenvalue correlations must obey sum rules known to characterise the plasma system, and this leads us to an exhibit of an integral identity satisfied by the two-particle correlation for real quaternion matrices in the neighbourhood of the real axis. Further random matrix ensembles investigated from this viewpoint are self dual non-Hermitian matrices, in which a previous study has related to the one-component plasma system in a disk at inverse temperature β=4, and the ensemble formed by the single row and column of quaternion elements from a member of the circular symplectic ensemble.

  7. Non-Hermitian Heisenberg representation

    Czech Academy of Sciences Publication Activity Database

    Znojil, Miloslav

    2015-01-01

    Roč. 379, č. 36 (2015), s. 2013-2017 ISSN 0375-9601 Institutional support: RVO:61389005 Keywords : quantum mechanics * Non-Hermitian representation of observables * Generalized Heisenberg equations Subject RIV: BE - Theoretical Physics Impact factor: 1.677, year: 2015

  8. Critical statistics for non-Hermitian matrices

    International Nuclear Information System (INIS)

    Garcia-Garcia, A.M.; Verbaarschot, J.J.M.; Nishigaki, S.M.

    2002-01-01

    We introduce a generalized ensemble of non-Hermitian matrices interpolating between the Gaussian Unitary Ensemble, the Ginibre ensemble, and the Poisson ensemble. The joint eigenvalue distribution of this model is obtained by means of an extension of the Itzykson-Zuber formula to general complex matrices. Its correlation functions are studied both in the case of weak non-Hermiticity and in the case of strong non-Hermiticity. In the weak non-Hermiticity limit we show that the spectral correlations in the bulk of the spectrum display critical statistics: the asymptotic linear behavior of the number variance is already approached for energy differences of the order of the eigenvalue spacing. To lowest order, its slope does not depend on the degree of non-Hermiticity. Close the edge, the spectral correlations are similar to the Hermitian case. In the strong non-Hermiticity limit the crossover behavior from the Ginibre ensemble to the Poisson ensemble first appears close to the surface of the spectrum. Our model may be relevant for the description of the spectral correlations of an open disordered system close to an Anderson transition

  9. Random matrix ensembles for PT-symmetric systems

    International Nuclear Information System (INIS)

    Graefe, Eva-Maria; Mudute-Ndumbe, Steve; Taylor, Matthew

    2015-01-01

    Recently much effort has been made towards the introduction of non-Hermitian random matrix models respecting PT-symmetry. Here we show that there is a one-to-one correspondence between complex PT-symmetric matrices and split-complex and split-quaternionic versions of Hermitian matrices. We introduce two new random matrix ensembles of (a) Gaussian split-complex Hermitian; and (b) Gaussian split-quaternionic Hermitian matrices, of arbitrary sizes. We conjecture that these ensembles represent universality classes for PT-symmetric matrices. For the case of 2 × 2 matrices we derive analytic expressions for the joint probability distributions of the eigenvalues, the one-level densities and the level spacings in the case of real eigenvalues. (fast track communication)

  10. Non-Hermitian optics in atomic systems

    Science.gov (United States)

    Zhang, Zhaoyang; Ma, Danmeng; Sheng, Jiteng; Zhang, Yiqi; Zhang, Yanpeng; Xiao, Min

    2018-04-01

    A wide class of non-Hermitian Hamiltonians can possess entirely real eigenvalues when they have parity-time (PT) symmetric potentials. Recently, this family of non-Hermitian systems has attracted considerable attention in diverse areas of physics due to their extraordinary properties, especially in optical systems based on solid-state materials, such as coupled gain-loss waveguides and microcavities. Considering the desired refractive index can be effectively manipulated through atomic coherence, it is important to realize such non-Hermitian optical potentials and further investigate their distinct properties in atomic systems. In this paper, we review the recent theoretical and experimental progress of non-Hermitian optics with coherently prepared multi-level atomic configurations. The realizations of (anti-) PT symmetry with different schemes have extensively demonstrated the special optical properties of non-Hermitian optical systems with atomic coherence.

  11. 2 × 2 random matrix ensembles with reduced symmetry: from Hermitian to PT -symmetric matrices

    International Nuclear Information System (INIS)

    Gong Jiangbin; Wang Qinghai

    2012-01-01

    A possibly fruitful extension of conventional random matrix ensembles is proposed by imposing symmetry constraints on conventional Hermitian matrices or parity–time (PT)-symmetric matrices. To illustrate the main idea, we first study 2 × 2 complex Hermitian matrix ensembles with O(2)-invariant constraints, yielding novel level-spacing statistics such as singular distributions, the half-Gaussian distribution, distributions interpolating between the GOE (Gaussian orthogonal ensemble) distribution and half-Gaussian distributions, as well as the gapped-GOE distribution. Such a symmetry-reduction strategy is then used to explore 2 × 2 PT-symmetric matrix ensembles with real eigenvalues. In particular, PT-symmetric random matrix ensembles with U(2) invariance can be constructed, with the conventional complex Hermitian random matrix ensemble being a special case. In two examples of PT-symmetric random matrix ensembles, the level-spacing distributions are found to be the standard GUE (Gaussian unitary ensemble) statistics or the ‘truncated-GUE’ statistics. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Quantum physics with non-Hermitian operators’. (paper)

  12. Pseudospectra in non-Hermitian quantum mechanics

    Science.gov (United States)

    Krejčiřík, D.; Siegl, P.; Tater, M.; Viola, J.

    2015-10-01

    We propose giving the mathematical concept of the pseudospectrum a central role in quantum mechanics with non-Hermitian operators. We relate pseudospectral properties to quasi-Hermiticity, similarity to self-adjoint operators, and basis properties of eigenfunctions. The abstract results are illustrated by unexpected wild properties of operators familiar from PT -symmetric quantum mechanics.

  13. General coupled mode theory in non-Hermitian waveguides.

    Science.gov (United States)

    Xu, Jing; Chen, Yuntian

    2015-08-24

    In the presence of loss and gain, the coupled mode equation on describing the mode hybridization of various waveguides or cavities, or cavities coupled to waveguides becomes intrinsically non-Hermitian. In such non-Hermitian waveguides, the standard coupled mode theory fails. We generalize the coupled mode theory with a properly defined inner product based on reaction conservation. We apply our theory to the non-Hermitian parity-time symmetric waveguides, and obtain excellent agreement with results obtained by finite element fullwave simulations. The theory presented here is typically formulated in space to study coupling between waveguides, which can be transformed into time domain by proper reformulation to study coupling between non-Hermitian resonators. Our theory has the strength of studying non-Hermitian optical systems with inclusion of the full vector fields, thus is useful to study and design non-Hermitian devices that support asymmetric and even nonreciprocal light propagations.

  14. Non-Hermitian photonics based on parity-time symmetry

    Science.gov (United States)

    Feng, Liang; El-Ganainy, Ramy; Ge, Li

    2017-12-01

    Nearly one century after the birth of quantum mechanics, parity-time symmetry is revolutionizing and extending quantum theories to include a unique family of non-Hermitian Hamiltonians. While conceptually striking, experimental demonstration of parity-time symmetry remains unexplored in quantum electronic systems. The flexibility of photonics allows for creating and superposing non-Hermitian eigenstates with ease using optical gain and loss, which makes it an ideal platform to explore various non-Hermitian quantum symmetry paradigms for novel device functionalities. Such explorations that employ classical photonic platforms not only deepen our understanding of fundamental quantum physics but also facilitate technological breakthroughs for photonic applications. Research into non-Hermitian photonics therefore advances and benefits both fields simultaneously.

  15. Non-Hermitian localization in biological networks.

    Science.gov (United States)

    Amir, Ariel; Hatano, Naomichi; Nelson, David R

    2016-04-01

    We explore the spectra and localization properties of the N-site banded one-dimensional non-Hermitian random matrices that arise naturally in sparse neural networks. Approximately equal numbers of random excitatory and inhibitory connections lead to spatially localized eigenfunctions and an intricate eigenvalue spectrum in the complex plane that controls the spontaneous activity and induced response. A finite fraction of the eigenvalues condense onto the real or imaginary axes. For large N, the spectrum has remarkable symmetries not only with respect to reflections across the real and imaginary axes but also with respect to 90^{∘} rotations, with an unusual anisotropic divergence in the localization length near the origin. When chains with periodic boundary conditions become directed, with a systematic directional bias superimposed on the randomness, a hole centered on the origin opens up in the density-of-states in the complex plane. All states are extended on the rim of this hole, while the localized eigenvalues outside the hole are unchanged. The bias-dependent shape of this hole tracks the bias-independent contours of constant localization length. We treat the large-N limit by a combination of direct numerical diagonalization and using transfer matrices, an approach that allows us to exploit an electrostatic analogy connecting the "charges" embodied in the eigenvalue distribution with the contours of constant localization length. We show that similar results are obtained for more realistic neural networks that obey "Dale's law" (each site is purely excitatory or inhibitory) and conclude with perturbation theory results that describe the limit of large directional bias, when all states are extended. Related problems arise in random ecological networks and in chains of artificial cells with randomly coupled gene expression patterns.

  16. Special issue on quantum physics with non-Hermitian operators Special issue on quantum physics with non-Hermitian operators

    Science.gov (United States)

    Bender, Carl M.; Fring, Andreas; Guenther, Uwe; Jones, Hugh F.

    2012-01-01

    This is a call for contributions to a special issue of Journal of Physics A: Mathematical and Theoretical dedicated to quantum physics with non-Hermitian operators. The main motivation behind this special issue is to gather together recent results, developments and open problems in this rapidly evolving field of research in a single comprehensive volume. We expect that such a special issue will become a valuable reference for the broad scientific community working in mathematical and theoretical physics. The issue will be open to all contributions containing new results on non-Hermitian theories which are explicitly PT-symmetric and/or pseudo-Hermitian or quasi-Hermitian. The main novelties in the past years in this area have been many experimental observations, realizations, and applications of PT symmetric Hamiltonians in optics and microwave cavities. We especially invite contributions on the theoretical interpretations of these recent PT-symmetric experiments and on theoretical proposals for new experiments. Editorial policy The Guest Editors for this issue are Carl Bender, Andreas Fring, Uwe Guenther and Hugh Jones. The areas and topics for this issue include, but are not limited to: spectral problems novel properties of complex optical potentials PT-symmetry related threshold lasers and spectral singularities construction of metric operators scattering theory supersymmetric theories Lie algebraic and Krein-space methods random matrix models classical and semi-classical models exceptional points in model systems operator theoretic approaches microwave cavities aspects of integrability and exact solvability field theories with indefinite metric All contributions will be refereed and processed according to the usual procedure of the journal. Papers should report original and significant research that has not already been published. Guidelines for preparation of contributions The deadline for contributed papers will be 31 March 2012. This deadline will allow the

  17. Quantum entropy of systems described by non-Hermitian Hamiltonians

    International Nuclear Information System (INIS)

    Sergi, Alessandro; Zloshchastiev, Konstantin G

    2016-01-01

    We study the quantum entropy of systems that are described by general non-Hermitian Hamiltonians, including those which can model the effects of sinks or sources. We generalize the von Neumann entropy to the non-Hermitian case and find that one needs both the normalized and non-normalized density operators in order to properly describe irreversible processes. It turns out that such a generalization monitors the onset of disorder in quantum dissipative systems. We give arguments for why one can consider the generalized entropy as the informational entropy describing the flow of information between the system and the bath. We illustrate the theory by explicitly studying few simple models, including tunneling systems with two energy levels and non-Hermitian detuning. (paper: quantum statistical physics, condensed matter, integrable systems)

  18. Heralded Magnetism in Non-Hermitian Atomic Systems

    Directory of Open Access Journals (Sweden)

    Tony E. Lee

    2014-10-01

    Full Text Available Quantum phase transitions are usually studied in terms of Hermitian Hamiltonians. However, cold-atom experiments are intrinsically non-Hermitian because of spontaneous decay. Here, we show that non-Hermitian systems exhibit quantum phase transitions that are beyond the paradigm of Hermitian physics. We consider the non-Hermitian XY model, which can be implemented using three-level atoms with spontaneous decay. We exactly solve the model in one dimension and show that there is a quantum phase transition from short-range order to quasi-long-range order despite the absence of a continuous symmetry in the Hamiltonian. The ordered phase has a frustrated spin pattern. The critical exponent ν can be 1 or 1/2. Our results can be seen experimentally with trapped ions, cavity QED, and atoms in optical lattices.

  19. The chiral Gaussian two-matrix ensemble of real asymmetric matrices

    International Nuclear Information System (INIS)

    Akemann, G; Phillips, M J; Sommers, H-J

    2010-01-01

    We solve a family of Gaussian two-matrix models with rectangular N x (N + ν) matrices, having real asymmetric matrix elements and depending on a non-Hermiticity parameter μ. Our model can be thought of as the chiral extension of the real Ginibre ensemble, relevant for Dirac operators in the same symmetry class. It has the property that its eigenvalues are either real, purely imaginary or come in complex conjugate eigenvalue pairs. The eigenvalue joint probability distribution for our model is explicitly computed, leading to a non-Gaussian distribution including K-Bessel functions. All n-point density correlation functions are expressed for finite N in terms of a Pfaffian form. This contains a kernel involving Laguerre polynomials in the complex plane as a building block which was previously computed by the authors. This kernel can be expressed in terms of the kernel for complex non-Hermitian matrices, generalizing the known relation among ensembles of Hermitian random matrices. Compact expressions are given for the density at finite N as an example, as well as its microscopic large-N limits at the origin for fixed ν at strong and weak non-Hermiticity.

  20. Wigner-Smith delay times and the non-Hermitian Hamiltonian for the HOCl molecule

    International Nuclear Information System (INIS)

    Barr, A.M.; Reichl, L.E.

    2013-01-01

    We construct the scattering matrix for a two-dimensional model of a Cl atom scattering from an OH dimer. We show that the scattering matrix can be written in terms of a non-Hermitian Hamiltonian whose complex energy eigenvalues can be used to compute Wigner-Smith delay times for the Cl-OH scattering process. We compute the delay times for a range of energies, and show that the scattering states with the longest delay times are strongly influenced by unstable periodic orbits in the classical dynamics. (Copyright copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Optical Lattice Design Assisted by Non-Hermitian Hamiltonians

    International Nuclear Information System (INIS)

    Rodríguez-Lara, B M

    2016-01-01

    A brief introduction to non-Hermitian arrays of coupled waveguides is presented. The PT-symmetric dimer is revisited for the sake of clarity. It belongs to the class of photonic lattices with underlying SO(2,1) symmetry that have been shown to provide all-optical conversion from phase to amplitude. (paper)

  2. Non-Hermitian quantum mechanics and localization in physical systems

    International Nuclear Information System (INIS)

    Hatano, Naomichi

    1998-01-01

    Recent studies on a delocalization phenomenon of a non-Hermitian random system is reviewed. The complex spectrum of the system indicates delocalization transition of its eigenfunctions. It is emphasized that the delocalization is related to various physical phenomena such as flux-line pinning in superconductors and population biology of bacteria colony

  3. Theory of non-hermitian localization in one dimension: Localization ...

    Indian Academy of Sciences (India)

    of the finite depinning field H . The degree of depinning is measured by the averaged .... system [2] shows a direct relationship between the localization length of the ... tight-binding model in a non-hermitian field h, where the discrete sites n, ..... shows that complex eigenvalues do not appear for field strengths less thanh2.

  4. Unveiling the significance of eigenvectors in diffusing non-Hermitian matrices by identifying the underlying Burgers dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Burda, Zdzislaw, E-mail: zdzislaw.burda@agh.edu.pl [AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, al. Mickiewicza 30, PL-30059 Kraków (Poland); Grela, Jacek, E-mail: jacekgrela@gmail.com [M. Smoluchowski Institute of Physics and Mark Kac Complex Systems Research Centre, Jagiellonian University, PL-30348 Kraków (Poland); Nowak, Maciej A., E-mail: nowak@th.if.uj.edu.pl [M. Smoluchowski Institute of Physics and Mark Kac Complex Systems Research Centre, Jagiellonian University, PL-30348 Kraków (Poland); Tarnowski, Wojciech, E-mail: wojciech.tarnowski@uj.edu.pl [M. Smoluchowski Institute of Physics and Mark Kac Complex Systems Research Centre, Jagiellonian University, PL-30348 Kraków (Poland); Warchoł, Piotr, E-mail: piotr.warchol@uj.edu.pl [M. Smoluchowski Institute of Physics and Mark Kac Complex Systems Research Centre, Jagiellonian University, PL-30348 Kraków (Poland)

    2015-08-15

    Following our recent letter, we study in detail an entry-wise diffusion of non-hermitian complex matrices. We obtain an exact partial differential equation (valid for any matrix size N and arbitrary initial conditions) for evolution of the averaged extended characteristic polynomial. The logarithm of this polynomial has an interpretation of a potential which generates a Burgers dynamics in quaternionic space. The dynamics of the ensemble in the large N limit is completely determined by the coevolution of the spectral density and a certain eigenvector correlation function. This coevolution is best visible in an electrostatic potential of a quaternionic argument built of two complex variables, the first of which governs standard spectral properties while the second unravels the hidden dynamics of eigenvector correlation function. We obtain general formulas for the spectral density and the eigenvector correlation function for large N and for any initial conditions. We exemplify our studies by solving three examples, and we verify the analytic form of our solutions with numerical simulations.

  5. Symmetries and conservation laws in non-Hermitian field theories

    Science.gov (United States)

    Alexandre, Jean; Millington, Peter; Seynaeve, Dries

    2017-09-01

    Anti-Hermitian mass terms are considered, in addition to Hermitian ones, for P T -symmetric complex-scalar and fermionic field theories. In both cases, the Lagrangian can be written in a manifestly symmetric form in terms of the P T -conjugate variables, allowing for an unambiguous definition of the equations of motion. After discussing the resulting constraints on the consistency of the variational procedure, we show that the invariance of a non-Hermitian Lagrangian under a continuous symmetry transformation does not imply the existence of a corresponding conserved current. Conserved currents exist, but these are associated with transformations under which the Lagrangian is not invariant and which reflect the well-known interpretation of P T -symmetric theories in terms of systems with gain and loss. A formal understanding of this unusual feature of non-Hermitian theories requires a careful treatment of Noether's theorem, and we give specific examples for illustration.

  6. Embedded random matrix ensembles in quantum physics

    CERN Document Server

    Kota, V K B

    2014-01-01

    Although used with increasing frequency in many branches of physics, random matrix ensembles are not always sufficiently specific to account for important features of the physical system at hand. One refinement which retains the basic stochastic approach but allows for such features consists in the use of embedded ensembles.  The present text is an exhaustive introduction to and survey of this important field. Starting with an easy-to-read introduction to general random matrix theory, the text then develops the necessary concepts from the beginning, accompanying the reader to the frontiers of present-day research. With some notable exceptions, to date these ensembles have primarily been applied in nuclear spectroscopy. A characteristic example is the use of a random two-body interaction in the framework of the nuclear shell model. Yet, topics in atomic physics, mesoscopic physics, quantum information science and statistical mechanics of isolated finite quantum systems can also be addressed using these ensemb...

  7. Piecewise adiabatic following in non-Hermitian cycling

    Science.gov (United States)

    Gong, Jiangbin; Wang, Qing-hai

    2018-05-01

    The time evolution of periodically driven non-Hermitian systems is in general nonunitary but can be stable. It is hence of considerable interest to examine the adiabatic following dynamics in periodically driven non-Hermitian systems. We show in this work the possibility of piecewise adiabatic following interrupted by hopping between instantaneous system eigenstates. This phenomenon is first observed in a computational model and then theoretically explained, using an exactly solvable model, in terms of the Stokes phenomenon. In the latter case, the piecewise adiabatic following is shown to be a genuine critical behavior and the precise phase boundary in the parameter space is located. Interestingly, the critical boundary for piecewise adiabatic following is found to be unrelated to the domain for exceptional points. To characterize the adiabatic following dynamics, we also advocate a simple definition of the Aharonov-Anandan (AA) phase for nonunitary cyclic dynamics, which always yields real AA phases. In the slow driving limit, the AA phase reduces to the Berry phase if adiabatic following persists throughout the driving without hopping, but oscillates violently and does not approach any limit in cases of piecewise adiabatic following. This work exposes the rich features of nonunitary dynamics in cases of slow cycling and should stimulate future applications of nonunitary dynamics.

  8. Non-Hermitian spin chains with inhomogeneous coupling

    Energy Technology Data Exchange (ETDEWEB)

    Bytsko, Andrei G. [Rossijskaya Akademiya Nauk, St. Petersburg (Russian Federation). Inst. Matematiki; Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Gruppe Theorie

    2009-11-15

    An open U{sub q}(sl{sub 2})-invariant spin chain of spin S and length N with inhomogeneous coupling is investigated as an example of a non-Hermitian (quasi-Hermitian) model. For several particular cases of such a chain, the ranges of the deformation parameter {gamma} are determined for which the spectrum of the model is real. For a certain range of {gamma}, a universal metric operator is constructed and thus the quasi-Hermiticity of the model is established. The constructed metric operator is non-dynamical, its structure is determined only by the symmetry of the model. The results apply, in particular, to all known homogeneous U{sub q}(sl{sub 2})-invariant integrable spin chains with nearest-neighbour interaction. In addition, the most general form of a metric operator for a quasi-Hermitian operator in finite dimensional space is discussed. (orig.)

  9. Multiple Meixner polynomials and non-Hermitian oscillator Hamiltonians

    International Nuclear Information System (INIS)

    Ndayiragije, F; Van Assche, W

    2013-01-01

    Multiple Meixner polynomials are polynomials in one variable which satisfy orthogonality relations with respect to r > 1 different negative binomial distributions (Pascal distributions). There are two kinds of multiple Meixner polynomials, depending on the selection of the parameters in the negative binomial distribution. We recall their definition and some formulas and give generating functions and explicit expressions for the coefficients in the nearest neighbor recurrence relation. Following a recent construction of Miki, Tsujimoto, Vinet and Zhedanov (for multiple Meixner polynomials of the first kind), we construct r > 1 non-Hermitian oscillator Hamiltonians in r dimensions which are simultaneously diagonalizable and for which the common eigenstates are expressed in terms of multiple Meixner polynomials of the second kind. (paper)

  10. Non-Hermitian Operator Modelling of Basic Cancer Cell Dynamics

    Science.gov (United States)

    Bagarello, Fabio; Gargano, Francesco

    2018-04-01

    We propose a dynamical system of tumor cells proliferation based on operatorial methods. The approach we propose is quantum-like: we use ladder and number operators to describe healthy and tumor cells birth and death, and the evolution is ruled by a non-hermitian Hamiltonian which includes, in a non reversible way, the basic biological mechanisms we consider for the system. We show that this approach is rather efficient in describing some processes of the cells. We further add some medical treatment, described by adding a suitable term in the Hamiltonian, which controls and limits the growth of tumor cells, and we propose an optimal approach to stop, and reverse, this growth.

  11. Rotationally invariant family of Levy-like random matrix ensembles

    International Nuclear Information System (INIS)

    Choi, Jinmyung; Muttalib, K A

    2009-01-01

    We introduce a family of rotationally invariant random matrix ensembles characterized by a parameter λ. While λ = 1 corresponds to well-known critical ensembles, we show that λ ≠ 1 describes 'Levy-like' ensembles, characterized by power-law eigenvalue densities. For λ > 1 the density is bounded, as in Gaussian ensembles, but λ < 1 describes ensembles characterized by densities with long tails. In particular, the model allows us to evaluate, in terms of a novel family of orthogonal polynomials, the eigenvalue correlations for Levy-like ensembles. These correlations differ qualitatively from those in either the Gaussian or the critical ensembles. (fast track communication)

  12. Self-hybridization within non-Hermitian localized plasmonic systems

    Science.gov (United States)

    Lourenço-Martins, Hugo; Das, Pabitra; Tizei, Luiz H. G.; Weil, Raphaël; Kociak, Mathieu

    2018-04-01

    The orthogonal eigenmodes are well-defined solutions of Hermitian equations describing many physical situations from quantum mechanics to acoustics. However, a large variety of non-Hermitian problems, including gravitational waves close to black holes or leaky electromagnetic cavities, require the use of a bi-orthogonal eigenbasis with consequences challenging our physical understanding1-4. The need to compensate for energy losses made the few successful attempts5-8 to experimentally probe non-Hermiticity extremely complicated. We overcome this problem by considering localized plasmonic systems. As the non-Hermiticity in these systems does not stem from temporal invariance breaking but from spatial symmetry breaking, its consequences can be observed more easily. We report on the theoretical and experimental evidence for non-Hermiticity-induced strong coupling between surface plasmon modes of different orders within silver nanodaggers. The symmetry conditions for triggering this counter-intuitive self-hybridization phenomenon are provided. Similar observable effects are expected to exist in any system exhibiting bi-orthogonal eigenmodes.

  13. Supersymmetry applied to the spectrum edge of random matrix ensembles

    International Nuclear Information System (INIS)

    Andreev, A.V.; Simons, B.D.; Taniguchi, N.

    1994-01-01

    A new matrix ensemble has recently been proposed to describe the transport properties in mesoscopic quantum wires. Both analytical and numerical studies have shown that the ensemble of Laguerre or of chiral random matrices provides a good description of scattering properties in this class of systems. Until now only conventional methods of random matrix theory have been used to study statistical properties within this ensemble. We demonstrate that the supersymmetry method, already employed in the study Dyson ensembles, can be extended to treat this class of random matrix ensembles. In developing this approach we investigate both new, as well as verify known statistical measures. Although we focus on ensembles in which T-invariance is violated our approach lays the foundation for future studies of T-invariant systems. ((orig.))

  14. 15th International Conference on Non-Hermitian Hamiltonians in Quantum Physics

    CERN Document Server

    Passante, Roberto; Trapani, Camillo

    2016-01-01

    This book presents the Proceedings of the 15th International Conference on Non-Hermitian Hamiltonians in Quantum Physics, held in Palermo, Italy, from 18 to 23 May 2015. Non-Hermitian operators, and non-Hermitian Hamiltonians in particular, have recently received considerable attention from both the mathematics and physics communities. There has been a growing interest in non-Hermitian Hamiltonians in quantum physics since the discovery that PT-symmetric Hamiltonians can have a real spectrum and thus a physical relevance. The main subjects considered in this book include: PT-symmetry in quantum physics, PT-optics, Spectral singularities and spectral techniques, Indefinite-metric theories, Open quantum systems, Krein space methods, and Biorthogonal systems and applications. The book also provides a summary of recent advances in pseudo-Hermitian Hamiltonians and PT-symmetric Hamiltonians, as well as their applications in quantum physics and in the theory of open quantum systems.

  15. On the distribution of eigenvalues of certain matrix ensembles

    International Nuclear Information System (INIS)

    Bogomolny, E.; Bohigas, O.; Pato, M.P.

    1995-01-01

    Invariant random matrix ensembles with weak confinement potentials of the eigenvalues, corresponding to indeterminate moment problems, are investigated. These ensembles are characterized by the fact that the mean density of eigenvalues tends to a continuous function with increasing matrix dimension contrary to the usual cases where it grows indefinitely. It is demonstrated that the standard asymptotic formulae are not applicable in these cases and that the asymptotic distribution of eigenvalues can deviate from the classical ones. (author)

  16. Geometry of quantal adiabatic evolution driven by a non-Hermitian Hamiltonian

    International Nuclear Information System (INIS)

    Wu Zhaoyan; Yu Ting; Zhou Hongwei

    1994-01-01

    It is shown by using a counter example, which is exactly solvable, that the quantal adiabatic theorem does not generally hold for a non-Hermitian driving Hamiltonian, even if it varies extremely slowly. The condition for the quantal adiabatic theorem to hold for non-Hermitian driving Hamiltonians is given. The adiabatic evolutions driven by a non-Hermitian Hamiltonian provide examples of a new geometric structure, that is the vector bundle in which the inner product of two parallelly transported vectors generally changes. A new geometric concept, the attenuation tensor, is naturally introduced to describe the decay or flourish of the open quantum system. It is constructed in terms of the spectral projector of the Hamiltonian. (orig.)

  17. Spontaneous symmetry breaking and the Goldstone theorem in non-Hermitian field theories arXiv

    CERN Document Server

    Alexandre, Jean; Millington, Peter; Seynaeve, Dries

    We demonstrate the extension to PT-symmetric field theories of the Goldstone theorem, confirming that the spontaneous appearance of a field vacuum expectation value via minimisation of the effective potential in a non-Hermitian model is accompanied by a massless scalar boson. Laying a basis for our analysis, we first show how the conventional quantisation of the path-integral formulation of quantum field theory can be extended consistently to a non-Hermitian model by considering PT conjugation instead of Hermitian conjugation. The extension of the Goldstone theorem to a PT-symmetric field theory is made possible by the existence of a conserved current that does not, however, correspond to a symmetry of the non-Hermitian Lagrangian. In addition to extending the proof of the Goldstone theorem to a PT-symmetric theory, we exhibit a specific example in which we verify the existence of a massless boson at the tree and one-loop levels.

  18. Resolutions of Identity for Some Non-Hermitian Hamiltonians. II. Proofs

    Directory of Open Access Journals (Sweden)

    Andrey V. Sokolov

    2011-12-01

    Full Text Available This part is a continuation of the Part I where we built resolutions of identity for certain non-Hermitian Hamiltonians constructed of biorthogonal sets of their eigen- and associated functions for the spectral problem defined on entire axis. Non-Hermitian Hamiltonians under consideration are taken with continuous spectrum and the following cases are examined: an exceptional point of arbitrary multiplicity situated on a boundary of continuous spectrum and an exceptional point situated inside of continuous spectrum. In the present work the rigorous proofs are given for the resolutions of identity in both cases.

  19. Some applicationS of non-Hermitian operators in quantum mechanics and quantum field theory

    International Nuclear Information System (INIS)

    Recami, E.; Rodrigues, W.A. Jr.; Smrz, P.

    1983-01-01

    Due to the possibility of rephrasing it in terms of Lie-admissible algebras, some work done in the past in collaboration with A., Agodi, M., Baldo and V.S., Olkhovsky is here reported. Such work led to the introduction of non-Hermitian operators in (classical and relativistic) quantum theory. In particular: (i) the association of unstable states (decaying 'Resonances') with the eigenvectors of non-Hermitian hamiltonians; (ii) the problem of the four position operators for relativistic spin-zero particles are dealth with

  20. Spectral statistics in semiclassical random-matrix ensembles

    International Nuclear Information System (INIS)

    Feingold, M.; Leitner, D.M.; Wilkinson, M.

    1991-01-01

    A novel random-matrix ensemble is introduced which mimics the global structure inherent in the Hamiltonian matrices of autonomous, ergodic systems. Changes in its parameters induce a transition between a Poisson and a Wigner distribution for the level spacings, P(s). The intermediate distributions are uniquely determined by a single scaling variable. Semiclassical constraints force the ensemble to be in a regime with Wigner P(s) for systems with more than two freedoms

  1. Non-Hermitian wave packet approximation for coupled two-level systems in weak and intense fields

    Energy Technology Data Exchange (ETDEWEB)

    Puthumpally-Joseph, Raiju; Charron, Eric [Institut des Sciences Moléculaires d’Orsay (ISMO), CNRS, Univ. Paris-Sud, Université Paris-Saclay, F-91405 Orsay (France); Sukharev, Maxim [Science and Mathematics Faculty, College of Letters and Sciences, Arizona State University, Mesa, Arizona 85212 (United States)

    2016-04-21

    We introduce a non-Hermitian Schrödinger-type approximation of optical Bloch equations for two-level systems. This approximation provides a complete and accurate description of the coherence and decoherence dynamics in both weak and strong laser fields at the cost of losing accuracy in the description of populations. In this approach, it is sufficient to propagate the wave function of the quantum system instead of the density matrix, providing that relaxation and dephasing are taken into account via automatically adjusted time-dependent gain and decay rates. The developed formalism is applied to the problem of scattering and absorption of electromagnetic radiation by a thin layer comprised of interacting two-level emitters.

  2. Theory of superconductivity with non-Hermitian and parity-time reversal symmetric Cooper pairing symmetry

    Science.gov (United States)

    Ghatak, Ananya; Das, Tanmoy

    2018-01-01

    Recently developed parity (P ) and time-reversal (T ) symmetric non-Hermitian systems govern a rich variety of new and characteristically distinct physical properties, which may or may not have a direct analog in their Hermitian counterparts. We study here a non-Hermitian, PT -symmetric superconducting Hamiltonian that possesses a real quasiparticle spectrum in the PT -unbroken region of the Brillouin zone. Within a single-band mean-field theory, we find that real quasiparticle energies are possible when the superconducting order parameter itself is either Hermitian or anti-Hermitian. Within the corresponding Bardeen-Cooper-Schrieffer (BCS) theory, we find that several properties are characteristically distinct and novel in the non-Hermitian pairing case than its Hermitian counterpart. One of our significant findings is that while a Hermitian superconductor gives a second-order phase transition, the non-Hermitian one produces a robust first-order phase transition. The corresponding thermodynamic properties and the Meissner effect are also modified accordingly. Finally, we discuss how such a PT -symmetric pairing can emerge from an antisymmetric potential, such as the Dzyloshinskii-Moriya interaction, but with an external bath, or complex potential, among others.

  3. Analytical results for non-Hermitian parity–time-symmetric and ...

    Indian Academy of Sciences (India)

    Abstract. We investigate both the non-Hermitian parity–time-(PT-)symmetric and Hermitian asymmetric volcano potentials, and present the analytical solution in terms of the confluent Heun function. Under certain special conditions, the confluent Heun function can be terminated as a polynomial, thereby leading to certain ...

  4. The BL-QMR algorithm for non-Hermitian linear systems with multiple right-hand sides

    Energy Technology Data Exchange (ETDEWEB)

    Freund, R.W. [AT& T Bell Labs., Murray Hill, NJ (United States)

    1996-12-31

    Many applications require the solution of multiple linear systems that have the same coefficient matrix, but differ in their right-hand sides. Instead of applying an iterative method to each of these systems individually, it is potentially much more efficient to employ a block version of the method that generates iterates for all the systems simultaneously. However, it is quite intricate to develop robust and efficient block iterative methods. In particular, a key issue in the design of block iterative methods is the need for deflation. The iterates for the different systems that are produced by a block method will, in general, converge at different stages of the block iteration. An efficient and robust block method needs to be able to detect and then deflate converged systems. Each such deflation reduces the block size, and thus the block method needs to be able to handle varying block sizes. For block Krylov-subspace methods, deflation is also crucial in order to delete linearly and almost linearly dependent vectors in the underlying block Krylov sequences. An added difficulty arises for Lanczos-type block methods for non-Hermitian systems, since they involve two different block Krylov sequences. In these methods, deflation can now occur independently in both sequences, and consequently, the block sizes in the two sequences may become different in the course of the iteration, even though they were identical at the beginning. We present a block version of Freund and Nachtigal`s quasi-minimal residual method for the solution of non-Hermitian linear systems with single right-hand sides.

  5. Random matrix ensembles with random interactions: Results for ...

    Indian Academy of Sciences (India)

    ... Public Lectures · Lecture Workshops · Refresher Courses · Symposia · Live Streaming. Home; Journals; Pramana – Journal of Physics; Volume 73; Issue 3. Random matrix ensembles with random interactions: Results for EGUE(2)-(4). Manan Vyas Manan Vyas. Volume 73 Issue 3 September 2009 pp 521-531 ...

  6. Fluctuation, stationarity, and ergodic properties of random-matrix ensembles

    International Nuclear Information System (INIS)

    Pandey, A.

    1979-01-01

    The properties of random-matrix ensembles and the application of such ensembles to energy-level fluctuations and strength fluctuations are discussed. The two-point correlation function for complex spectra described by the three standard Gaussian ensembles is calculated, and its essential simplicity, displayed by an elementary procedure that derives from the dominance of binary correlations. The resultant function is exact for the unitary case and a very good approximation to the orthogonal and symplectic cases. The same procedure yields the spectrum for a Gaussian orthogonal ensemble (GOE) deformed by a pairing interaction. Several extensions are given and relationships to other problems of current interest are discussed. The standard fluctuation measures are rederived for the GOE, and their extensions to the unitary and symplectic cases are given. The measures are shown to derive, for the most part, from the two-point function, and new relationships between them are established, answering some long-standing questions. Some comparisons with experimental values are also made. All the cluster functions, and therefore the fluctuation measures, are shown to be stationary and strongly ergodic, thus justifying the use of random matrices for individual spectra. Strength fluctuations in the orthogonal ensemble are also considered. The Porter-Thomas distribution in its various forms is rederived and its ergodicity is established

  7. Defect States Emerging from a Non-Hermitian Flatband of Photonic Zero Modes

    Science.gov (United States)

    Qi, Bingkun; Zhang, Lingxuan; Ge, Li

    2018-03-01

    We show the existence of a flatband consisting of photonic zero modes in a gain and loss modulated lattice system as a result of the underlying non-Hermitian particle-hole symmetry. This general finding explains the previous observation in parity-time symmetric systems where non-Hermitian particle-hole symmetry is hidden. We further discuss the defect states in these systems, whose emergence can be viewed as an unconventional alignment of a pseudospin under the influence of a complex-valued pseudomagnetic field. These defect states also behave as a chain with two types of links, one rigid in a unit cell and one soft between unit cells, as the defect states become increasingly localized with the gain and loss strength.

  8. Constant-intensity waves and their modulation instability in non-Hermitian potentials

    Science.gov (United States)

    Makris, K. G.; Musslimani, Z. H.; Christodoulides, D. N.; Rotter, S.

    2015-07-01

    In all of the diverse areas of science where waves play an important role, one of the most fundamental solutions of the corresponding wave equation is a stationary wave with constant intensity. The most familiar example is that of a plane wave propagating in free space. In the presence of any Hermitian potential, a wave's constant intensity is, however, immediately destroyed due to scattering. Here we show that this fundamental restriction is conveniently lifted when working with non-Hermitian potentials. In particular, we present a whole class of waves that have constant intensity in the presence of linear as well as of nonlinear inhomogeneous media with gain and loss. These solutions allow us to study the fundamental phenomenon of modulation instability in an inhomogeneous environment. Our results pose a new challenge for the experiments on non-Hermitian scattering that have recently been put forward.

  9. Superradiance, disorder, and the non-Hermitian Hamiltonian in open quantum systems

    Energy Technology Data Exchange (ETDEWEB)

    Celardo, G. L.; Biella, A.; Giusteri, G. G.; Mattiotti, F. [Dipartimento di Matematica e Fisica and Interdisciplinary Laboratories for Advanced Materials Physics, Università Cattolica, via Musei 41, 25121 Brescia (Italy); Zhang, Y.; Kaplan, L. [Department of Physics and Engineering Physics, Tulane University, New Orleans, Louisiana 70118 (United States)

    2014-10-15

    We first briefly review the non-Hermitian effective Hamiltonian approach to open quantum systems and the associated phenomenon of superradiance. We next discuss the superradiance crossover in the presence of disorder and the relationship between superradiance and the localization transition. Finally, we investigate the regime of validity of the energy-independent effective Hamiltonian approximation and show that the results obtained by these methods are applicable to realistic physical systems.

  10. Problem of the coexistence of several non-Hermitian observables in PT -symmetric quantum mechanics

    Czech Academy of Sciences Publication Activity Database

    Znojil, Miloslav; Semorádová, Iveta; Růžička, František; Moulla, H.; Leghrib, I.

    2017-01-01

    Roč. 95, č. 4 (2017), č. článku 042122. ISSN 2469-9926 R&D Projects: GA ČR GA16-22945S Institutional support: RVO:61389005 Keywords : operators * Hilbert space * non-Hermitian Subject RIV: BE - Theoretical Physics OBOR OECD: Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect) Impact factor: 2.925, year: 2016

  11. Various scattering properties of a new PT-symmetric non-Hermitian potential

    Energy Technology Data Exchange (ETDEWEB)

    Ghatak, Ananya, E-mail: gananya04@gmail.com [Department of Physics, Banaras Hindu University, Varanasi-221005 (India); Mandal, Raka Dona Ray, E-mail: rakad.ray@gmail.com [Department of Physics, Rajghat Besant School, Varanasi-221001 (India); Mandal, Bhabani Prasad, E-mail: bhabani.mandal@gmail.com [Department of Physics, Banaras Hindu University, Varanasi-221005 (India)

    2013-09-15

    We complexify a 1-d potential V(x)=V{sub 0}cosh{sup 2}μ(tanh[(x−μd)/d]+tanh(μ)){sup 2} which exhibits bound, reflecting and free states to study various properties of a non-Hermitian system. This potential turns out a PT-symmetric non-Hermitian potential when one of the parameters (μ,d) becomes imaginary. For the case of μ→iμ, we have an entire real bound state spectrum. Explicit scattering states are constructed to show reciprocity at certain discrete values of energy even though the potential is not parity symmetric. Coexistence of deep energy minima of transmissivity with the multiple spectral singularities (MSS) is observed. We further show that this potential becomes invisible from the left (or right) at certain discrete energies. The penetrating states in the other case (d→id) are always reciprocal even though it is PT-invariant and no spectral singularity (SS) is present in this case. The presence of MSS and reflectionlessness is also discussed for the free states in the later case. -- Highlights: •Existence of multiple spectral singularities (MSS) in PT-symmetric non-Hermitian system is shown. •Reciprocity is restored at discrete positive energies even for parity non-invariant complex system. •Co-existence of MSS with deep energy minima of transitivity is obtained. •Possibilities of both unidirectional and bidirectional invisibility are explored for a non-Hermitian system. •Penetrating states are shown to be reciprocal for all energies for PT-symmetric system.

  12. Various scattering properties of a new PT-symmetric non-Hermitian potential

    International Nuclear Information System (INIS)

    Ghatak, Ananya; Mandal, Raka Dona Ray; Mandal, Bhabani Prasad

    2013-01-01

    We complexify a 1-d potential V(x)=V 0 cosh 2 μ(tanh[(x−μd)/d]+tanh(μ)) 2 which exhibits bound, reflecting and free states to study various properties of a non-Hermitian system. This potential turns out a PT-symmetric non-Hermitian potential when one of the parameters (μ,d) becomes imaginary. For the case of μ→iμ, we have an entire real bound state spectrum. Explicit scattering states are constructed to show reciprocity at certain discrete values of energy even though the potential is not parity symmetric. Coexistence of deep energy minima of transmissivity with the multiple spectral singularities (MSS) is observed. We further show that this potential becomes invisible from the left (or right) at certain discrete energies. The penetrating states in the other case (d→id) are always reciprocal even though it is PT-invariant and no spectral singularity (SS) is present in this case. The presence of MSS and reflectionlessness is also discussed for the free states in the later case. -- Highlights: •Existence of multiple spectral singularities (MSS) in PT-symmetric non-Hermitian system is shown. •Reciprocity is restored at discrete positive energies even for parity non-invariant complex system. •Co-existence of MSS with deep energy minima of transitivity is obtained. •Possibilities of both unidirectional and bidirectional invisibility are explored for a non-Hermitian system. •Penetrating states are shown to be reciprocal for all energies for PT-symmetric system

  13. Designing non-Hermitian dynamics for conservative state evolution on the Bloch sphere

    Science.gov (United States)

    Yu, Sunkyu; Piao, Xianji; Park, Namkyoo

    2018-03-01

    An evolution on the Bloch sphere is the fundamental state transition, including optical polarization controls and qubit operations. Conventional evolution of a polarization state or qubit is implemented within a closed system that automatically satisfies energy conservation from the Hermitian formalism. Although particular forms of static non-Hermitian Hamiltonians, such as parity-time-symmetric Hamiltonians, allow conservative states in an open system, the criteria for the energy conservation in a dynamical open system have not been fully explored. Here, we derive the condition of conservative state evolution in open-system dynamics and its inverse design method, by developing the non-Hermitian modification of the Larmor precession equation. We show that the geometrically designed locus on the Bloch sphere can be realized by different forms of dynamics, leading to the isolocus family of non-Hermitian dynamics. This increased degree of freedom allows the complementary phenomena of error-robust and highly sensitive evolutions on the Bloch sphere, which could be applicable to stable polarizers, quantum gates, and optimized sensors in dynamical open systems.

  14. Infinite families of (non)-Hermitian Hamiltonians associated with exceptional Xm Jacobi polynomials

    International Nuclear Information System (INIS)

    Midya, Bikashkali; Roy, Barnana

    2013-01-01

    Using an appropriate change of variable, the Schrödinger equation is transformed into a second-order differential equation satisfied by recently discovered Jacobi-type X m exceptional orthogonal polynomials. This facilitates the derivation of infinite families of exactly solvable Hermitian as well as non-Hermitian trigonometric Scarf potentials and a finite number of Hermitian and an infinite number of non-Hermitian PT-symmetric hyperbolic Scarf potentials. The bound state solutions of all these potentials are associated with the aforesaid exceptional orthogonal polynomials. These infinite families of potentials are shown to be extensions of the conventional trigonometric and hyperbolic Scarf potentials by the addition of some rational terms characterized by the presence of classical Jacobi polynomials. All the members of a particular family of these ‘rationally extended polynomial-dependent’ potentials have the same energy spectrum and possess translational shape-invariant symmetry. The obtained non-Hermitian trigonometric Scarf potentials are shown to be quasi-Hermitian in nature ensuring the reality of the associated energy spectra. (paper)

  15. A possible method for non-Hermitian and Non-PT-symmetric Hamiltonian systems.

    Directory of Open Access Journals (Sweden)

    Jun-Qing Li

    Full Text Available A possible method to investigate non-Hermitian Hamiltonians is suggested through finding a Hermitian operator η+ and defining the annihilation and creation operators to be η+ -pseudo-Hermitian adjoint to each other. The operator η+ represents the η+ -pseudo-Hermiticity of Hamiltonians. As an example, a non-Hermitian and non-PT-symmetric Hamiltonian with imaginary linear coordinate and linear momentum terms is constructed and analyzed in detail. The operator η+ is found, based on which, a real spectrum and a positive-definite inner product, together with the probability explanation of wave functions, the orthogonality of eigenstates, and the unitarity of time evolution, are obtained for the non-Hermitian and non-PT-symmetric Hamiltonian. Moreover, this Hamiltonian turns out to be coupled when it is extended to the canonical noncommutative space with noncommutative spatial coordinate operators and noncommutative momentum operators as well. Our method is applicable to the coupled Hamiltonian. Then the first and second order noncommutative corrections of energy levels are calculated, and in particular the reality of energy spectra, the positive-definiteness of inner products, and the related properties (the probability explanation of wave functions, the orthogonality of eigenstates, and the unitarity of time evolution are found not to be altered by the noncommutativity.

  16. Parity-time symmetry meets photonics: A new twist in non-Hermitian optics

    Science.gov (United States)

    Longhi, Stefano

    2017-12-01

    In the past decade, the concept of parity-time (PT) symmetry, originally introduced in non-Hermitian extensions of quantum mechanical theories, has come into thinking of photonics, providing a fertile ground for studying, observing, and utilizing some of the peculiar aspects of PT symmetry in optics. Together with related concepts of non-Hermitian physics of open quantum systems, such as non-Hermitian degeneracies (exceptional points) and spectral singularities, PT symmetry represents one among the most fruitful ideas introduced in optics in the past few years. Judicious tailoring of optical gain and loss in integrated photonic structures has emerged as a new paradigm in shaping the flow of light in unprecedented ways, with major applications encompassing laser science and technology, optical sensing, and optical material engineering. In this perspective, I review some of the main achievements and emerging areas of PT -symmetric and non-Hermtian photonics, and provide an outline of challenges and directions for future research in one of the fastest growing research area of photonics.

  17. S-AMP: Approximate Message Passing for General Matrix Ensembles

    DEFF Research Database (Denmark)

    Cakmak, Burak; Winther, Ole; Fleury, Bernard H.

    2014-01-01

    the approximate message-passing (AMP) algorithm to general matrix ensembles with a well-defined large system size limit. The generalization is based on the S-transform (in free probability) of the spectrum of the measurement matrix. Furthermore, we show that the optimality of S-AMP follows directly from its......We propose a novel iterative estimation algorithm for linear observation models called S-AMP. The fixed points of S-AMP are the stationary points of the exact Gibbs free energy under a set of (first- and second-) moment consistency constraints in the large system limit. S-AMP extends...

  18. Multiphoton ionization of H+2 at critical internuclear separations: non-Hermitian Floquet analysis

    International Nuclear Information System (INIS)

    Likhatov, P V; Telnov, D A

    2009-01-01

    We present ab initio time-dependent non-Hermitian Floquet calculations of multiphoton ionization (MPI) rates of hydrogen molecular ions subject to an intense linearly polarized monochromatic laser field with a wavelength of 800 nm. The orientation of the molecular axis is parallel to the polarization vector of the laser field. The MPI rates are computed for a wide range of internuclear separations R with high resolution in R and reproduce resonance and near-threshold structures. We show that enhancement of ionization at critical internuclear separations is related to resonance series with higher electronic states. The effect of two-centre interference on the MPI signal is discussed.

  19. Non-Hermitian interaction representation and its use in relativistic quantum mechanics

    Czech Academy of Sciences Publication Activity Database

    Znojil, Miloslav

    2017-01-01

    Roč. 385, č. 10 (2017), s. 162-179 ISSN 0003-4916 R&D Projects: GA ČR GA16-22945S Institutional support: RVO:61389005 Keywords : unitary quantum systems * non-Hermitian version of Dirac's interaction picture * complete set of time-evolution equations * application in relativistic quantum mechanics * Klein-Gordon example with space-time-dependent mass Subject RIV: BE - Theoretical Physics OBOR OECD: Atomic, molecular and chemical physics ( physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect) Impact factor: 2.465, year: 2016

  20. Krylov Subspace Methods for Complex Non-Hermitian Linear Systems. Thesis

    Science.gov (United States)

    Freund, Roland W.

    1991-01-01

    We consider Krylov subspace methods for the solution of large sparse linear systems Ax = b with complex non-Hermitian coefficient matrices. Such linear systems arise in important applications, such as inverse scattering, numerical solution of time-dependent Schrodinger equations, underwater acoustics, eddy current computations, numerical computations in quantum chromodynamics, and numerical conformal mapping. Typically, the resulting coefficient matrices A exhibit special structures, such as complex symmetry, or they are shifted Hermitian matrices. In this paper, we first describe a Krylov subspace approach with iterates defined by a quasi-minimal residual property, the QMR method, for solving general complex non-Hermitian linear systems. Then, we study special Krylov subspace methods designed for the two families of complex symmetric respectively shifted Hermitian linear systems. We also include some results concerning the obvious approach to general complex linear systems by solving equivalent real linear systems for the real and imaginary parts of x. Finally, numerical experiments for linear systems arising from the complex Helmholtz equation are reported.

  1. Non-hermitian symmetric N = 2 coset models, Poincare polynomials, and string compactification

    International Nuclear Information System (INIS)

    Fuchs, J.; Schweigert, C.

    1994-01-01

    The field identification problem, including fixed point resolution, is solved for the non-hermitian symmetric N = 2 superconformal coset theories. Thereby these models are finally identified as well-defined modular invariant conformal field theories. As an application, the theories are used as subtheories in N = 2 tensor products with c = 9, which in turn are taken as the inner sector of heterotic superstring compactifications. All string theories of this type are classified, and the chiral ring as well as the number of massless generations and anti-generations are computed with the help of the extended Poincare polynomial. Several equivalences between a priori different non-hermitian coset theories show up; in particular there is a level-rank duality for an infinite series of coset theories based on C-type Lie algebras. Further, some general results for generic N = 2 coset theories are proven: a simple formula for the number of identification currents is found, and it is shown that the set of Ramond ground states of any N = 2 coset model is invariant under charge conjugation. (orig.)

  2. On the use of transition matrix methods with extended ensembles.

    Science.gov (United States)

    Escobedo, Fernando A; Abreu, Charlles R A

    2006-03-14

    Different extended ensemble schemes for non-Boltzmann sampling (NBS) of a selected reaction coordinate lambda were formulated so that they employ (i) "variable" sampling window schemes (that include the "successive umbrella sampling" method) to comprehensibly explore the lambda domain and (ii) transition matrix methods to iteratively obtain the underlying free-energy eta landscape (or "importance" weights) associated with lambda. The connection between "acceptance ratio" and transition matrix methods was first established to form the basis of the approach for estimating eta(lambda). The validity and performance of the different NBS schemes were then assessed using as lambda coordinate the configurational energy of the Lennard-Jones fluid. For the cases studied, it was found that the convergence rate in the estimation of eta is little affected by the use of data from high-order transitions, while it is noticeably improved by the use of a broader window of sampling in the variable window methods. Finally, it is shown how an "elastic" window of sampling can be used to effectively enact (nonuniform) preferential sampling over the lambda domain, and how to stitch the weights from separate one-dimensional NBS runs to produce a eta surface over a two-dimensional domain.

  3. E2-quasi-exact solvability for non-Hermitian models

    International Nuclear Information System (INIS)

    Fring, Andreas

    2015-01-01

    We propose the notion of E 2 -quasi-exact solvability and apply this idea to find explicit solutions to the eigenvalue problem for a non-Hermitian Hamiltonian system depending on two parameters. The model considered reduces to the complex Mathieu Hamiltonian in a double scaling limit, which enables us to compute the exceptional points in the energy spectrum of the latter as a limiting process of the zeros for some algebraic equations. The coefficient functions in the quasi-exact eigenfunctions are univariate polynomials in the energy obeying a three-term recurrence relation. The latter property guarantees the existence of a linear functional such that the polynomials become orthogonal. The polynomials are shown to factorize for all levels above the quantization condition leading to vanishing norms rendering them to be weakly orthogonal. In two concrete examples we compute the explicit expressions for the Stieltjes measure. (paper)

  4. E2-quasi-exact solvability for non-Hermitian models

    Science.gov (United States)

    Fring, Andreas

    2015-04-01

    We propose the notion of E2-quasi-exact solvability and apply this idea to find explicit solutions to the eigenvalue problem for a non-Hermitian Hamiltonian system depending on two parameters. The model considered reduces to the complex Mathieu Hamiltonian in a double scaling limit, which enables us to compute the exceptional points in the energy spectrum of the latter as a limiting process of the zeros for some algebraic equations. The coefficient functions in the quasi-exact eigenfunctions are univariate polynomials in the energy obeying a three-term recurrence relation. The latter property guarantees the existence of a linear functional such that the polynomials become orthogonal. The polynomials are shown to factorize for all levels above the quantization condition leading to vanishing norms rendering them to be weakly orthogonal. In two concrete examples we compute the explicit expressions for the Stieltjes measure.

  5. Supersymmetric Extension of Non-Hermitian su(2 Hamiltonian and Supercoherent States

    Directory of Open Access Journals (Sweden)

    Omar Cherbal

    2010-12-01

    Full Text Available A new class of non-Hermitian Hamiltonians with real spectrum, which are written as a real linear combination of su(2 generators in the form H=ωJ_3+αJ_−+βJ_+, α≠β, is analyzed. The metrics which allows the transition to the equivalent Hermitian Hamiltonian is established. A pseudo-Hermitian supersymmetic extension of such Hamiltonians is performed. They correspond to the pseudo-Hermitian supersymmetric systems of the boson-phermion oscillators. We extend the supercoherent states formalism to such supersymmetic systems via the pseudo-unitary supersymmetric displacement operator method. The constructed family of these supercoherent states consists of two dual subfamilies that form a bi-overcomplete and bi-normal system in the boson-phermion Fock space. The states of each subfamily are eigenvectors of the boson annihilation operator and of one of the two phermion lowering operators.

  6. The area distribution of two-dimensional random walks and non-Hermitian Hofstadter quantum mechanics

    International Nuclear Information System (INIS)

    Matveenko, Sergey; Ouvry, Stéphane

    2014-01-01

    When random walks on a square lattice are biased horizontally to move solely to the right, the probability distribution of their algebraic area can be obtained exactly (Mashkevich and Ouvry 2009 J. Stat. Phys. 137 71). We explicitly map this biased classical random system onto a non-Hermitian Hofstadter-like quantum model where a charged particle on a square lattice coupled to a perpendicular magnetic field hops only to the right. For the commensurate case, when the magnetic flux per unit cell is rational, an exact solution of the quantum model is obtained. The periodicity of the lattice allows one to relate traces of the Nth power of the Hamiltonian to probability distribution generating functions of biased walks of length N. (paper)

  7. Geometrical meaning of winding number and its characterization of topological phases in one-dimensional chiral non-Hermitian systems

    Science.gov (United States)

    Yin, Chuanhao; Jiang, Hui; Li, Linhu; Lü, Rong; Chen, Shu

    2018-05-01

    We unveil the geometrical meaning of winding number and utilize it to characterize the topological phases in one-dimensional chiral non-Hermitian systems. While chiral symmetry ensures the winding number of Hermitian systems are integers, it can take half integers for non-Hermitian systems. We give a geometrical interpretation of the half integers by demonstrating that the winding number ν of a non-Hermitian system is equal to half of the summation of two winding numbers ν1 and ν2 associated with two exceptional points, respectively. The winding numbers ν1 and ν2 represent the times of the real part of the Hamiltonian in momentum space encircling the exceptional points and can only take integers. We further find that the difference of ν1 and ν2 is related to the second winding number or energy vorticity. By applying our scheme to a non-Hermitian Su-Schrieffer-Heeger model and an extended version of it, we show that the topologically different phases can be well characterized by winding numbers. Furthermore, we demonstrate that the existence of left and right zero-mode edge states is closely related to the winding number ν1 and ν2.

  8. Investigating the Composite Step Biconjugate A-Orthogonal Residual Method for Non-Hermitian Dense Linear Systems in Electromagnetics

    NARCIS (Netherlands)

    Jing, Yan-Fei; Huang, Ting-Zhu; Carpentieri, Bruno; Duan, Yong

    An interesting stabilizing variant of the biconjugate A-orthogonal residual (BiCOR) method is investigated for solving dense complex non-Hermitian systems of linear equations arising from the Galerlcin discretization of surface integral equations in electromagnetics. The novel variant is naturally

  9. Non-Hermitian systems of Euclidean Lie algebraic type with real energy spectra

    International Nuclear Information System (INIS)

    Dey, Sanjib; Fring, Andreas; Mathanaranjan, Thilagarajah

    2014-01-01

    We study several classes of non-Hermitian Hamiltonian systems, which can be expressed in terms of bilinear combinations of Euclidean–Lie algebraic generators. The classes are distinguished by different versions of antilinear (PT)-symmetries exhibiting various types of qualitative behaviour. On the basis of explicitly computed non-perturbative Dyson maps we construct metric operators, isospectral Hermitian counterparts for which we solve the corresponding time-independent Schrödinger equation for specific choices of the coupling constants. In these cases general analytical expressions for the solutions are obtained in the form of Mathieu functions, which we analyze numerically to obtain the corresponding energy spectra. We identify regions in the parameter space for which the corresponding spectra are entirely real and also domains where the PT symmetry is spontaneously broken and sometimes also regained at exceptional points. In some cases it is shown explicitly how the threshold region from real to complex spectra is characterized by the breakdown of the Dyson maps or the metric operator. We establish the explicit relationship to models currently under investigation in the context of beam dynamics in optical lattices. -- Highlights: •Different PT-symmetries lead to qualitatively different systems. •Construction of non-perturbative Dyson maps and isospectral Hermitian counterparts. •Numerical discussion of the eigenvalue spectra for one of the E(2)-systems. •Established link to systems studied in the context of optical lattices. •Setup for the E(3)-algebra is provided

  10. Non-Hermitian systems of Euclidean Lie algebraic type with real energy spectra

    Science.gov (United States)

    Dey, Sanjib; Fring, Andreas; Mathanaranjan, Thilagarajah

    2014-07-01

    We study several classes of non-Hermitian Hamiltonian systems, which can be expressed in terms of bilinear combinations of Euclidean-Lie algebraic generators. The classes are distinguished by different versions of antilinear (PT)-symmetries exhibiting various types of qualitative behaviour. On the basis of explicitly computed non-perturbative Dyson maps we construct metric operators, isospectral Hermitian counterparts for which we solve the corresponding time-independent Schrödinger equation for specific choices of the coupling constants. In these cases general analytical expressions for the solutions are obtained in the form of Mathieu functions, which we analyze numerically to obtain the corresponding energy spectra. We identify regions in the parameter space for which the corresponding spectra are entirely real and also domains where the PT symmetry is spontaneously broken and sometimes also regained at exceptional points. In some cases it is shown explicitly how the threshold region from real to complex spectra is characterized by the breakdown of the Dyson maps or the metric operator. We establish the explicit relationship to models currently under investigation in the context of beam dynamics in optical lattices.

  11. Astrophysical evidence for the non-Hermitian but PT-symmetric Hamiltonian of conformal gravity

    International Nuclear Information System (INIS)

    Mannheim, P.D.

    2013-01-01

    In this review we discuss the connection between two seemingly disparate topics, macroscopic gravity on astrophysical scales and Hamiltonians that are not Hermitian but PT symmetric on microscopic ones. In particular we show that the quantum-mechanical unitarity problem of the fourth-order derivative conformal gravity theory is resolved by recognizing that the scalar product appropriate to the theory is not the Dirac norm associated with a Hermitian Hamiltonian but is instead the norm associated with a non-Hermitian but PT-symmetric Hamiltonian. Moreover, the fourth-order theory Hamiltonian is not only not Hermitian, it is not even diagonalizable, being of Jordan-block form. With PT symmetry we establish that conformal gravity is consistent at the quantum-mechanical level. In consequence, we can apply the theory to data, to find that the theory is capable of naturally accounting for the systematics of the rotation curves of a large and varied sample of 138 spiral galaxies without any need for dark matter. The success of the fits provides evidence for the relevance of non-diagonalizable but PT-symmetric Hamiltonians to physics. (Copyright copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Complexified coherent states and quantum evolution with non-Hermitian Hamiltonians

    International Nuclear Information System (INIS)

    Graefe, Eva-Maria; Schubert, Roman

    2012-01-01

    The complex geometry underlying the Schrödinger dynamics of coherent states for non-Hermitian Hamiltonians is investigated. In particular, two seemingly contradictory approaches are compared: (i) a complex WKB formalism, for which the centres of coherent states naturally evolve along complex trajectories, which leads to a class of complexified coherent states; (ii) the investigation of the dynamical equations for the real expectation values of position and momentum, for which an Ehrenfest theorem has been derived in a previous paper, yielding real but non-Hamiltonian classical dynamics on phase space for the real centres of coherent states. Both approaches become exact for quadratic Hamiltonians. The apparent contradiction is resolved building on an observation by Huber, Heller and Littlejohn, that complexified coherent states are equivalent if their centres lie on a specific complex Lagrangian manifold. A rich underlying complex symplectic geometry is unravelled. In particular, a natural complex structure is identified that defines a projection from complex to real phase space, mapping complexified coherent states to their real equivalents. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Coherent states: mathematical and physical aspects’. (paper)

  13. Non-Hermitian multi-particle systems from complex root spaces

    International Nuclear Information System (INIS)

    Fring, Andreas; Smith, Monique

    2012-01-01

    We provide a general construction procedure for antilinearly invariant complex root spaces. The proposed method is generic and may be applied to any Weyl group allowing us to take any element of the group as a starting point for the construction. Worked-out examples for several specific Weyl groups are presented, focusing especially on those cases for which no solutions were found previously. When applied to the defining relations of models based on root systems, this usually leads to non-Hermitian models, which are nonetheless physically viable in a self-consistent sense as they are antilinearly invariant by construction. We discuss new types of Calogero models based on these complex roots. In addition, we propose an alternative construction leading to q-deformed roots. We employ the latter type of roots to formulate a new version of affine Toda field theories based on non-simply laced root systems. These models exhibit on the classical level a strong–weak duality in the coupling constant equivalent to a Lie algebraic duality, which is known for the quantum version of the undeformed case. (paper)

  14. Extension of the CPT theorem to non-Hermitian Hamiltonians and unstable states

    Energy Technology Data Exchange (ETDEWEB)

    Mannheim, Philip D., E-mail: philip.mannheim@uconn.edu

    2016-02-10

    We extend the CPT theorem to quantum field theories with non-Hermitian Hamiltonians and unstable states. Our derivation is a quite minimal one as it requires only the time-independent evolution of scalar products, invariance under complex Lorentz transformations, and a non-standard but nonetheless perfectly legitimate interpretation of charge conjugation as an antilinear operator. The first of these requirements does not force the Hamiltonian to be Hermitian. Rather, it forces its eigenvalues to either be real or to appear in complex conjugate pairs, forces the eigenvectors of such conjugate pairs to be conjugates of each other, and forces the Hamiltonian to admit of an antilinear symmetry. The latter two requirements then force this antilinear symmetry to be CPT, while forcing the Hamiltonian to be real rather than Hermitian. Our work justifies the use of the CPT theorem in establishing the equality of the lifetimes of unstable particles that are charge conjugates of each other. We show that the Euclidean time path integrals of a CPT-symmetric theory must always be real. In the quantum-mechanical limit the key results of the PT symmetry program of Bender and collaborators are recovered, with the C-operator of the PT symmetry program being identified with the linear component of the charge conjugation operator.

  15. Unidirectional reflectionless phenomena in a non-Hermitian quantum system of quantum dots coupled to a plasmonic waveguide.

    Science.gov (United States)

    Wu, Nan; Zhang, Cong; Jin, Xing Ri; Zhang, Ying Qiao; Lee, YoungPak

    2018-02-19

    Unidirectional reflectionless phenomena are investigated theoretically in a non-Hermitian quantum system composed of several quantum dots and a plasmonic waveguide. By adjusting the phase shifts between quantum dots, single- and dual-band unidirectional reflectionlessnesses are realized at exceptional points based on two and three quantum dots coupled to a plasmonic waveguide, respectively. In addition, single- and dual-band unidirectional perfect absorptions with high quality factors are obtained at the vicinity of exceptional points.

  16. A look-ahead variant of the Lanczos algorithm and its application to the quasi-minimal residual method for non-Hermitian linear systems. Ph.D. Thesis - Massachusetts Inst. of Technology, Aug. 1991

    Science.gov (United States)

    Nachtigal, Noel M.

    1991-01-01

    The Lanczos algorithm can be used both for eigenvalue problems and to solve linear systems. However, when applied to non-Hermitian matrices, the classical Lanczos algorithm is susceptible to breakdowns and potential instabilities. In addition, the biconjugate gradient (BCG) algorithm, which is the natural generalization of the conjugate gradient algorithm to non-Hermitian linear systems, has a second source of breakdowns, independent of the Lanczos breakdowns. Here, we present two new results. We propose an implementation of a look-ahead variant of the Lanczos algorithm which overcomes the breakdowns by skipping over those steps where a breakdown or a near-breakdown would occur. The new algorithm can handle look-ahead steps of any length and requires the same number of matrix-vector products and inner products per step as the classical Lanczos algorithm without look-ahead. Based on the proposed look-ahead Lanczos algorithm, we then present a novel BCG-like approach, the quasi-minimal residual (QMR) method, which avoids the second source of breakdowns in the BCG algorithm. We present details of the new method and discuss some of its properties. In particular, we discuss the relationship between QMR and BCG, showing how one can recover the BCG iterates, when they exist, from the QMR iterates. We also present convergence results for QMR, showing the connection between QMR and the generalized minimal residual (GMRES) algorithm, the optimal method in this class of methods. Finally, we give some numerical examples, both for eigenvalue computations and for non-Hermitian linear systems.

  17. A Matrix-Free Posterior Ensemble Kalman Filter Implementation Based on a Modified Cholesky Decomposition

    Directory of Open Access Journals (Sweden)

    Elias D. Nino-Ruiz

    2017-07-01

    Full Text Available In this paper, a matrix-free posterior ensemble Kalman filter implementation based on a modified Cholesky decomposition is proposed. The method works as follows: the precision matrix of the background error distribution is estimated based on a modified Cholesky decomposition. The resulting estimator can be expressed in terms of Cholesky factors which can be updated based on a series of rank-one matrices in order to approximate the precision matrix of the analysis distribution. By using this matrix, the posterior ensemble can be built by either sampling from the posterior distribution or using synthetic observations. Furthermore, the computational effort of the proposed method is linear with regard to the model dimension and the number of observed components from the model domain. Experimental tests are performed making use of the Lorenz-96 model. The results reveal that, the accuracy of the proposed implementation in terms of root-mean-square-error is similar, and in some cases better, to that of a well-known ensemble Kalman filter (EnKF implementation: the local ensemble transform Kalman filter. In addition, the results are comparable to those obtained by the EnKF with large ensemble sizes.

  18. X-ray absorption in insulators with non-Hermitian real-time time-dependent density functional theory.

    Science.gov (United States)

    Fernando, Ranelka G; Balhoff, Mary C; Lopata, Kenneth

    2015-02-10

    Non-Hermitian real-time time-dependent density functional theory was used to compute the Si L-edge X-ray absorption spectrum of α-quartz using an embedded finite cluster model and atom-centered basis sets. Using tuned range-separated functionals and molecular orbital-based imaginary absorbing potentials, the excited states spanning the pre-edge to ∼20 eV above the ionization edge were obtained in good agreement with experimental data. This approach is generalizable to TDDFT studies of core-level spectroscopy and dynamics in a wide range of materials.

  19. On characteristic polynomials for a generalized chiral random matrix ensemble with a source

    Science.gov (United States)

    Fyodorov, Yan V.; Grela, Jacek; Strahov, Eugene

    2018-04-01

    We evaluate averages involving characteristic polynomials, inverse characteristic polynomials and ratios of characteristic polynomials for a N× N random matrix taken from a L-deformed chiral Gaussian Unitary Ensemble with an external source Ω. Relation to a recently studied statistics of bi-orthogonal eigenvectors in the complex Ginibre ensemble, see Fyodorov (2017 arXiv:1710.04699), is briefly discussed as a motivation to study asymptotics of these objects in the case of external source proportional to the identity matrix. In particular, for an associated complex bulk/chiral edge scaling regime we retrieve the kernel related to Bessel/Macdonald functions.

  20. Universal shocks in the Wishart random-matrix ensemble.

    Science.gov (United States)

    Blaizot, Jean-Paul; Nowak, Maciej A; Warchoł, Piotr

    2013-05-01

    We show that the derivative of the logarithm of the average characteristic polynomial of a diffusing Wishart matrix obeys an exact partial differential equation valid for an arbitrary value of N, the size of the matrix. In the large N limit, this equation generalizes the simple inviscid Burgers equation that has been obtained earlier for Hermitian or unitary matrices. The solution, through the method of characteristics, presents singularities that we relate to the precursors of shock formation in the Burgers equation. The finite N effects appear as a viscosity term in the Burgers equation. Using a scaling analysis of the complete equation for the characteristic polynomial, in the vicinity of the shocks, we recover in a simple way the universal Bessel oscillations (so-called hard-edge singularities) familiar in random-matrix theory.

  1. Frobenius–Perron eigenstates in deformed microdisk cavities: non-Hermitian physics and asymmetric backscattering in ray dynamics

    International Nuclear Information System (INIS)

    Kullig, Julius; Wiersig, Jan

    2016-01-01

    In optical microdisk cavities with boundary deformations the backscattering between clockwise and counter-clockwise propagating waves is in general asymmetric. The striking consequence of this asymmetry is that these apparently weakly open systems show pronounced non-Hermitian phenomena. The optical modes appear in non-orthogonal pairs, where both modes copropagate in a preferred sense of rotation, i.e. the modes exhibit a finite chirality. Full asymmetry in the backscattering results in a non-Hermitian degeneracy (exceptional point) where the deviation from closed system evolution is strongest. We study the effects of asymmetric backscattering in ray dynamics. For this purpose, we construct a finite approximation of the Frobenius–Perron operator for deformed microdisk cavities, which describes the dynamics of intensities in phase space. Eigenstates of the Frobenius–Perron operator show nice analogies to optical modes: they come in non-orthogonal copropagating pairs and have a finite chirality. We introduce a new cavity system with a smooth asymmetric boundary deformation where we demonstrate our results and we illustrate the main aspects with the help of a simple analytically solvable 1D model. (paper)

  2. Is the concept of the non-Hermitian effective Hamiltonian relevant in the case of potential scattering?

    International Nuclear Information System (INIS)

    Savin, Dmitry V.; Sokolov, Valentin V.; Sommers, Hans-Juergen

    2003-01-01

    We examine the notion and properties of the non-Hermitian effective Hamiltonian of an unstable system using as an example potential resonance scattering with a fixed angular momentum. We present a consistent self-adjoint formulation of the problem of scattering on a finite-range potential, which is based on the separation of the configuration space into two segments, internal and external. The scattering amplitude is expressed in terms of the resolvent of a non-Hermitian operator H. The explicit form of this operator depends on both the radius of separation and the boundary conditions at this place, which can be chosen in many different ways. We discuss this freedom and show explicitly that the physical scattering amplitude is, nevertheless, unique, although not all choices are equally adequate from the physical point of view. The energy-dependent operator H should not be confused with the non-Hermitian effective Hamiltonian H eff which is usually exploited to describe interference of overlapping resonances. We note that the simple Breit-Wigner approximation is as a rule valid for any individual resonance in the case of few-channel scattering on a flat billiardlike cavity, leaving no room for nontrivial H eff to appear. The physics is appreciably richer in the case of an open chain of L connected similar cavities whose spectrum has a band structure. For a fixed band of L overlapping resonances, the smooth energy dependence of H can be ignored so that the constant LxL submatrix H eff approximately describes the time evolution of the chain in the energy domain of the band and the complex eigenvalues of H eff define the energies and widths of the resonances. We apply the developed formalism to the problem of a chain of L δ barriers, whose solution is also found independently in a closed form. We construct H eff for the two commonly considered types of boundary conditions (Neumann and Dirichlet) for the internal motion. Although the final results are in perfect

  3. A spin chain model with non-Hermitian interaction: the Ising quantum spin chain in an imaginary field

    International Nuclear Information System (INIS)

    Castro-Alvaredo, Olalla A; Fring, Andreas

    2009-01-01

    We investigate a lattice version of the Yang-Lee model which is characterized by a non-Hermitian quantum spin chain Hamiltonian. We propose a new way to implement PT-symmetry on the lattice, which serves to guarantee the reality of the spectrum in certain regions of values of the coupling constants. In that region of unbroken PT-symmetry, we construct a Dyson map, a metric operator and find the Hermitian counterpart of the Hamiltonian for small values of the number of sites, both exactly and perturbatively. Besides the standard perturbation theory about the Hermitian part of the Hamiltonian, we also carry out an expansion in the second coupling constant of the model. Our constructions turn out to be unique with the sole assumption that the Dyson map is Hermitian. Finally, we analyse the magnetization of the chain in the z- and x-direction.

  4. Embedded random matrix ensembles from nuclear structure and their recent applications

    Science.gov (United States)

    Kota, V. K. B.; Chavda, N. D.

    Embedded random matrix ensembles generated by random interactions (of low body rank and usually two-body) in the presence of a one-body mean field, introduced in nuclear structure physics, are now established to be indispensable in describing statistical properties of a large number of isolated finite quantum many-particle systems. Lie algebra symmetries of the interactions, as identified from nuclear shell model and the interacting boson model, led to the introduction of a variety of embedded ensembles (EEs). These ensembles with a mean field and chaos generating two-body interaction generate in three different stages, delocalization of wave functions in the Fock space of the mean-field basis states. The last stage corresponds to what one may call thermalization and complex nuclei, as seen from many shell model calculations, lie in this region. Besides briefly describing them, their recent applications to nuclear structure are presented and they are (i) nuclear level densities with interactions; (ii) orbit occupancies; (iii) neutrinoless double beta decay nuclear transition matrix elements as transition strengths. In addition, their applications are also presented briefly that go beyond nuclear structure and they are (i) fidelity, decoherence, entanglement and thermalization in isolated finite quantum systems with interactions; (ii) quantum transport in disordered networks connected by many-body interactions with centrosymmetry; (iii) semicircle to Gaussian transition in eigenvalue densities with k-body random interactions and its relation to the Sachdev-Ye-Kitaev (SYK) model for majorana fermions.

  5. Normalization sum rule and spontaneous breaking of U(N) invariance in random matrix ensembles

    International Nuclear Information System (INIS)

    Canali, C.M.; Kravtsov, V.E.

    1995-03-01

    It is shown that the two-level correlation function R(s,s') in the invariant random matrix ensembles (RME) with soft confinement exhibits a ''ghost peak'' at s approx. -s'. This lifts the sum rule prohibition for the level number variance to have a Poisson-like term var(n) = ηn that is typical of RME with broken U(N) symmetry. Thus we conclude that the U(N) invariance is broken spontaneously in the RME with soft confinement, η playing the role of an order-parameter. (author). 16 refs, 1 fig

  6. Distribution of Schmidt-like eigenvalues for Gaussian ensembles of the random matrix theory

    Science.gov (United States)

    Pato, Mauricio P.; Oshanin, Gleb

    2013-03-01

    We study the probability distribution function P(β)n(w) of the Schmidt-like random variable w = x21/(∑j = 1nx2j/n), where xj, (j = 1, 2, …, n), are unordered eigenvalues of a given n × n β-Gaussian random matrix, β being the Dyson symmetry index. This variable, by definition, can be considered as a measure of how any individual (randomly chosen) eigenvalue deviates from the arithmetic mean value of all eigenvalues of a given random matrix, and its distribution is calculated with respect to the ensemble of such β-Gaussian random matrices. We show that in the asymptotic limit n → ∞ and for arbitrary β the distribution P(β)n(w) converges to the Marčenko-Pastur form, i.e. is defined as P_{n}^{( \\beta )}(w) \\sim \\sqrt{(4 - w)/w} for w ∈ [0, 4] and equals zero outside of the support, despite the fact that formally w is defined on the interval [0, n]. Furthermore, for Gaussian unitary ensembles (β = 2) we present exact explicit expressions for P(β = 2)n(w) which are valid for arbitrary n and analyse their behaviour.

  7. Distribution of Schmidt-like eigenvalues for Gaussian ensembles of the random matrix theory

    International Nuclear Information System (INIS)

    Pato, Mauricio P; Oshanin, Gleb

    2013-01-01

    We study the probability distribution function P (β) n (w) of the Schmidt-like random variable w = x 2 1 /(∑ j=1 n x 2 j /n), where x j , (j = 1, 2, …, n), are unordered eigenvalues of a given n × n β-Gaussian random matrix, β being the Dyson symmetry index. This variable, by definition, can be considered as a measure of how any individual (randomly chosen) eigenvalue deviates from the arithmetic mean value of all eigenvalues of a given random matrix, and its distribution is calculated with respect to the ensemble of such β-Gaussian random matrices. We show that in the asymptotic limit n → ∞ and for arbitrary β the distribution P (β) n (w) converges to the Marčenko–Pastur form, i.e. is defined as P n (β) (w)∼√((4 - w)/w) for w ∈ [0, 4] and equals zero outside of the support, despite the fact that formally w is defined on the interval [0, n]. Furthermore, for Gaussian unitary ensembles (β = 2) we present exact explicit expressions for P (β=2) n (w) which are valid for arbitrary n and analyse their behaviour. (paper)

  8. An Efficient Local Correlation Matrix Decomposition Approach for the Localization Implementation of Ensemble-Based Assimilation Methods

    Science.gov (United States)

    Zhang, Hongqin; Tian, Xiangjun

    2018-04-01

    Ensemble-based data assimilation methods often use the so-called localization scheme to improve the representation of the ensemble background error covariance (Be). Extensive research has been undertaken to reduce the computational cost of these methods by using the localized ensemble samples to localize Be by means of a direct decomposition of the local correlation matrix C. However, the computational costs of the direct decomposition of the local correlation matrix C are still extremely high due to its high dimension. In this paper, we propose an efficient local correlation matrix decomposition approach based on the concept of alternating directions. This approach is intended to avoid direct decomposition of the correlation matrix. Instead, we first decompose the correlation matrix into 1-D correlation matrices in the three coordinate directions, then construct their empirical orthogonal function decomposition at low resolution. This procedure is followed by the 1-D spline interpolation process to transform the above decompositions to the high-resolution grid. Finally, an efficient correlation matrix decomposition is achieved by computing the very similar Kronecker product. We conducted a series of comparison experiments to illustrate the validity and accuracy of the proposed local correlation matrix decomposition approach. The effectiveness of the proposed correlation matrix decomposition approach and its efficient localization implementation of the nonlinear least-squares four-dimensional variational assimilation are further demonstrated by several groups of numerical experiments based on the Advanced Research Weather Research and Forecasting model.

  9. Gap probabilities for edge intervals in finite Gaussian and Jacobi unitary matrix ensembles

    International Nuclear Information System (INIS)

    Witte, N.S.; Forrester, P.J.

    1999-01-01

    The probabilities for gaps in the eigenvalue spectrum of the finite dimension N x N random matrix Hermite and Jacobi unitary ensembles on some single and disconnected double intervals are found. These are cases where a reflection symmetry exists and the probability factors into two other related probabilities, defined on single intervals. Our investigation uses the system of partial differential equations arising from the Fredholm determinant expression for the gap probability and the differential-recurrence equations satisfied by Hermite and Jacobi orthogonal polynomials. In our study we find second and third order nonlinear ordinary differential equations defining the probabilities in the general N case, specific explicit solutions for N = 1 and N = 2, asymptotic expansions, scaling at the edge of the Hermite spectrum as N →∞ and the Jacobi to Hermite limit both of which make correspondence to other cases reported here or known previously. (authors)

  10. Improving the ensemble optimization method through covariance matrix adaptation (CMA-EnOpt)

    NARCIS (Netherlands)

    Fonseca, R.M.; Leeuwenburgh, O.; Hof, P.M.J. van den; Jansen, J.D.

    2013-01-01

    Ensemble Optimization (EnOpt) is a rapidly emerging method for reservoir model based production optimization. EnOpt uses an ensemble of controls to approximate the gradient of the objective function with respect to the controls. Current implementations of EnOpt use a Gaussian ensemble with a

  11. Fluorescence Intrinsic Characterization of Excitation-Emission Matrix Using Multi-Dimensional Ensemble Empirical Mode Decomposition

    Directory of Open Access Journals (Sweden)

    Tzu-Chien Hsiao

    2013-11-01

    Full Text Available Excitation-emission matrix (EEM fluorescence spectroscopy is a noninvasive method for tissue diagnosis and has become important in clinical use. However, the intrinsic characterization of EEM fluorescence remains unclear. Photobleaching and the complexity of the chemical compounds make it difficult to distinguish individual compounds due to overlapping features. Conventional studies use principal component analysis (PCA for EEM fluorescence analysis, and the relationship between the EEM features extracted by PCA and diseases has been examined. The spectral features of different tissue constituents are not fully separable or clearly defined. Recently, a non-stationary method called multi-dimensional ensemble empirical mode decomposition (MEEMD was introduced; this method can extract the intrinsic oscillations on multiple spatial scales without loss of information. The aim of this study was to propose a fluorescence spectroscopy system for EEM measurements and to describe a method for extracting the intrinsic characteristics of EEM by MEEMD. The results indicate that, although PCA provides the principal factor for the spectral features associated with chemical compounds, MEEMD can provide additional intrinsic features with more reliable mapping of the chemical compounds. MEEMD has the potential to extract intrinsic fluorescence features and improve the detection of biochemical changes.

  12. Wigner Function:from Ensemble Average of Density Operator to Its One Matrix Element in Entangled Pure States

    Institute of Scientific and Technical Information of China (English)

    FAN Hong-Yi

    2002-01-01

    We show that the Wigner function W = Tr(△ρ) (an ensemble average of the density operator ρ, △ is theWigner operator) can be expressed as a matrix element of ρ in the entangled pure states. In doing so, converting fromquantum master equations to time-evolution equation of the Wigner functions seems direct and concise. The entangledstates are defined in the enlarged Fock space with a fictitious freedom.

  13. Improving the ensemble-optimization method through covariance-matrix adaptation

    NARCIS (Netherlands)

    Fonseca, R.M.; Leeuwenburgh, O.; Hof, P.M.J. van den; Jansen, J.D.

    2015-01-01

    Ensemble optimization (referred to throughout the remainder of the paper as EnOpt) is a rapidly emerging method for reservoirmodel-based production optimization. EnOpt uses an ensemble of controls to approximate the gradient of the objective function with respect to the controls. Current

  14. Simple Closed-Form Expression for Penning Reaction Rate Coefficients for Cold Molecular Collisions by Non-Hermitian Time-Independent Adiabatic Scattering Theory.

    Science.gov (United States)

    Pawlak, Mariusz; Ben-Asher, Anael; Moiseyev, Nimrod

    2018-01-09

    We present a simple expression and its derivation for reaction rate coefficients for cold anisotropic collision experiments based on adiabatic variational theory and time-independent non-Hermitian scattering theory. We demonstrate that only the eigenenergies of the resulting one-dimensional Schrödinger equation for different complex adiabats are required. The expression is applied to calculate the Penning ionization rate coefficients of an excited metastable helium atom with molecular hydrogen in an energy range spanning from hundreds of kelvins down to the millikelvin regime. Except for trivial quantities like the masses of the nuclei and the bond length of the diatomic molecule participating in the collision, one needs as input data only the complex potential energy surface (CPES). In calculations, we used recently obtained ab initio CPES by D. Bhattacharya et al. ( J. Chem. Theory Comput. 2017 , 13 , 1682 - 1690 ) without fitting parameters. The results show good accord with current measurements ( Nat. Phys. 2017 , 13 , 35 - 38 ).

  15. Exact Wigner surmise type evaluation of the spacing distribution in the bulk of the scaled random matrix ensembles

    International Nuclear Information System (INIS)

    Forrester, P.J.; Witte, N.S.

    2000-01-01

    Random matrix ensembles with orthogonal and unitary symmetry correspond to the cases of real symmetric and Hermitian random matrices respectively. We show that the probability density function for the corresponding spacings between consecutive eigenvalues can be written exactly in the Wigner surmise type form a(s) e-b(s) for a simply related to a Painleve transcendent and b its anti-derivative. A formula consisting of the sum of two such terms is given for the symplectic case (Hermitian matrices with real quaternion elements)

  16. Limit theorems for linear spectrum statistics of orthogonal polynomial ensembles and their applications in random matrix theory

    Science.gov (United States)

    Pan, Guangming; Wang, Shaochen; Zhou, Wang

    2017-10-01

    In this paper, we consider the asymptotic behavior of Xfn (n )≔∑i=1 nfn(xi ) , where xi,i =1 ,…,n form orthogonal polynomial ensembles and fn is a real-valued, bounded measurable function. Under the condition that Var Xfn (n )→∞ , the Berry-Esseen (BE) bound and Cramér type moderate deviation principle (MDP) for Xfn (n ) are obtained by using the method of cumulants. As two applications, we establish the BE bound and Cramér type MDP for linear spectrum statistics of Wigner matrix and sample covariance matrix in the complex cases. These results show that in the edge case (which means fn has a particular form f (x ) I (x ≥θn ) where θn is close to the right edge of equilibrium measure and f is a smooth function), Xfn (n ) behaves like the eigenvalues counting function of the corresponding Wigner matrix and sample covariance matrix, respectively.

  17. Solitonic dynamics and excitations of the nonlinear Schrödinger equation with third-order dispersion in non-Hermitian PT-symmetric potentials.

    Science.gov (United States)

    Chen, Yong; Yan, Zhenya

    2016-03-22

    Solitons are of the important significant in many fields of nonlinear science such as nonlinear optics, Bose-Einstein condensates, plamas physics, biology, fluid mechanics, and etc. The stable solitons have been captured not only theoretically and experimentally in both linear and nonlinear Schrödinger (NLS) equations in the presence of non-Hermitian potentials since the concept of the parity-time -symmetry was introduced in 1998. In this paper, we present novel bright solitons of the NLS equation with third-order dispersion in some complex -symmetric potentials (e.g., physically relevant -symmetric Scarff-II-like and harmonic-Gaussian potentials). We find stable nonlinear modes even if the respective linear -symmetric phases are broken. Moreover, we also use the adiabatic changes of the control parameters to excite the initial modes related to exact solitons to reach stable nonlinear modes. The elastic interactions of two solitons are exhibited in the third-order NLS equation with -symmetric potentials. Our results predict the dynamical phenomena of soliton equations in the presence of third-order dispersion and -symmetric potentials arising in nonlinear fiber optics and other physically relevant fields.

  18. Transitions in eigenvalue and wavefunction structure in (1+2) -body random matrix ensembles with spin.

    Science.gov (United States)

    Vyas, Manan; Kota, V K B; Chavda, N D

    2010-03-01

    Finite interacting Fermi systems with a mean-field and a chaos generating two-body interaction are modeled by one plus two-body embedded Gaussian orthogonal ensemble of random matrices with spin degree of freedom [called EGOE(1+2)-s]. Numerical calculations are used to demonstrate that, as lambda , the strength of the interaction (measured in the units of the average spacing of the single-particle levels defining the mean-field), increases, generically there is Poisson to GOE transition in level fluctuations, Breit-Wigner to Gaussian transition in strength functions (also called local density of states) and also a duality region where information entropy will be the same in both the mean-field and interaction defined basis. Spin dependence of the transition points lambda_{c} , lambdaF, and lambdad , respectively, is described using the propagator for the spectral variances and the formula for the propagator is derived. We further establish that the duality region corresponds to a region of thermalization. For this purpose we compared the single-particle entropy defined by the occupancies of the single-particle orbitals with thermodynamic entropy and information entropy for various lambda values and they are very close to each other at lambda=lambdad.

  19. Matrix-product-state simulation of an extended Brueschweiler bulk-ensemble database search

    International Nuclear Information System (INIS)

    SaiToh, Akira; Kitagawa, Masahiro

    2006-01-01

    Brueschweiler's database search in a spin Liouville space can be efficiently simulated on a conventional computer without error as long as the simulation cost of the internal circuit of an oracle function is polynomial, unlike the fact that in true NMR experiments, it suffers from an exponential decrease in the variation of a signal intensity. With the simulation method using the matrix-product-state proposed by Vidal [G. Vidal, Phys. Rev. Lett. 91, 147902 (2003)], we perform such a simulation. We also show the extensions of the algorithm without utilizing the J-coupling or DD-coupling splitting of frequency peaks in observation: searching can be completed with a single query in polynomial postoracle circuit complexities in an extension; multiple solutions of an oracle can be found in another extension whose query complexity is linear in the key length and in the number of solutions (this extension is to find all of marked keys). These extended algorithms are also simulated with the same simulation method

  20. Random-matrix theory of amplifying and absorbing resonators with PT or PTT' symmetry

    International Nuclear Information System (INIS)

    Birchall, Christopher; Schomerus, Henning

    2012-01-01

    We formulate Gaussian and circular random-matrix models representing a coupled system consisting of an absorbing and an amplifying resonator, which are mutually related by a generalized time-reversal symmetry. Motivated by optical realizations of such systems we consider a PT or a PTT ' time-reversal symmetry, which impose different constraints on magneto-optical effects, and then focus on five common settings. For each of these, we determine the eigenvalue distribution in the complex plane in the short-wavelength limit, which reveals that the fraction of real eigenvalues among all eigenvalues in the spectrum vanishes if all classical scales are kept fixed. Numerically, we find that the transition from real to complex eigenvalues in the various ensembles display a different dependence on the coupling strength between the two resonators. These differences can be linked to the level spacing statistics in the Hermitian limit of the considered models. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Quantum physics with non-Hermitian operators’. (paper)

  1. Ensemble averaged coherent state path integral for disordered bosons with a repulsive interaction (Derivation of mean field equations)

    International Nuclear Information System (INIS)

    Mieck, B.

    2007-01-01

    We consider bosonic atoms with a repulsive contact interaction in a trap potential for a Bose-Einstein condensation (BEC) and additionally include a random potential. The ensemble averages for two models of static (I) and dynamic (II) disorder are performed and investigated in parallel. The bosonic many body systems of the two disorder models are represented by coherent state path integrals on the Keldysh time contour which allow exact ensemble averages for zero and finite temperatures. These ensemble averages of coherent state path integrals therefore present alternatives to replica field theories or super-symmetric averaging techniques. Hubbard-Stratonovich transformations (HST) lead to two corresponding self-energies for the hermitian repulsive interaction and for the non-hermitian disorder-interaction. The self-energy of the repulsive interaction is absorbed by a shift into the disorder-self-energy which comprises as an element of a larger symplectic Lie algebra sp(4M) the self-energy of the repulsive interaction as a subalgebra (which is equivalent to the direct product of M x sp(2); 'M' is the number of discrete time intervals of the disorder-self-energy in the generating function). After removal of the remaining Gaussian integral for the self-energy of the repulsive interaction, the first order variations of the coherent state path integrals result in the exact mean field or saddle point equations, solely depending on the disorder-self-energy matrix. These equations can be solved by continued fractions and are reminiscent to the 'Nambu-Gorkov' Green function formalism in superconductivity because anomalous terms or pair condensates of the bosonic atoms are also included into the selfenergies. The derived mean field equations of the models with static (I) and dynamic (II) disorder are particularly applicable for BEC in d=3 spatial dimensions because of the singularity of the density of states at vanishing wavevector. However, one usually starts out from

  2. 'Lazy' quantum ensembles

    International Nuclear Information System (INIS)

    Parfionov, George; Zapatrin, Roman

    2006-01-01

    We compare different strategies aimed to prepare an ensemble with a given density matrix ρ. Preparing the ensemble of eigenstates of ρ with appropriate probabilities can be treated as 'generous' strategy: it provides maximal accessible information about the state. Another extremity is the so-called 'Scrooge' ensemble, which is mostly stingy in sharing the information. We introduce 'lazy' ensembles which require minimal effort to prepare the density matrix by selecting pure states with respect to completely random choice. We consider two parties, Alice and Bob, playing a kind of game. Bob wishes to guess which pure state is prepared by Alice. His null hypothesis, based on the lack of any information about Alice's intention, is that Alice prepares any pure state with equal probability. Then, the average quantum state measured by Bob turns out to be ρ, and he has to make a new hypothesis about Alice's intention solely based on the information that the observed density matrix is ρ. The arising 'lazy' ensemble is shown to be the alternative hypothesis which minimizes type I error

  3. Pseudospectra in non-Hermitian quantum mechanics

    Czech Academy of Sciences Publication Activity Database

    Krejčiřík, David; Siegl, Petr; Tater, Miloš; Viola, J.

    2015-01-01

    Roč. 56, č. 10 (2015), s. 103513 ISSN 0022-2488 R&D Projects: GA ČR(CZ) GA14-06818S; GA MŠk 7AMB12FR020 Institutional support: RVO:61389005 Keywords : quadratic differential operators * magnetic field Subject RIV: BE - Theoretical Physics Impact factor: 1.234, year: 2015

  4. Entanglement in non-Hermitian quantum theory

    Indian Academy of Sciences (India)

    hope that the entanglement in PT -symmetric quantum theory may provide new ways of processing information in the quantum world. We conclude our .... Similarly, if we have a two-level atom, then an arbitrary superposition of the ground state ...

  5. Algebraic techniques for diagonalization of a split quaternion matrix in split quaternionic mechanics

    International Nuclear Information System (INIS)

    Jiang, Tongsong; Jiang, Ziwu; Zhang, Zhaozhong

    2015-01-01

    In the study of the relation between complexified classical and non-Hermitian quantum mechanics, physicists found that there are links to quaternionic and split quaternionic mechanics, and this leads to the possibility of employing algebraic techniques of split quaternions to tackle some problems in complexified classical and quantum mechanics. This paper, by means of real representation of a split quaternion matrix, studies the problem of diagonalization of a split quaternion matrix and gives algebraic techniques for diagonalization of split quaternion matrices in split quaternionic mechanics

  6. Direct calculation of resonance energies and widths using an R-matrix approach

    International Nuclear Information System (INIS)

    Schneider, B.I.

    1981-01-01

    A modified R-matrix technique is presented which determines the eigenvalues and widths of resonant states by the direct diagonalization of a complex, non-Hermitian matrix. The method utilizes only real basis sets and requires a minimum of complex arithmetic. The method is applied to two problems, a set of coupled square wells and the Pi/sub g/ resonance of N 2 in the static-exchange approximation. The results of the calculation are in good agreement with other methods and converge very quickly with basis-set size

  7. Ensemble Methods

    Science.gov (United States)

    Re, Matteo; Valentini, Giorgio

    2012-03-01

    Ensemble methods are statistical and computational learning procedures reminiscent of the human social learning behavior of seeking several opinions before making any crucial decision. The idea of combining the opinions of different "experts" to obtain an overall “ensemble” decision is rooted in our culture at least from the classical age of ancient Greece, and it has been formalized during the Enlightenment with the Condorcet Jury Theorem[45]), which proved that the judgment of a committee is superior to those of individuals, provided the individuals have reasonable competence. Ensembles are sets of learning machines that combine in some way their decisions, or their learning algorithms, or different views of data, or other specific characteristics to obtain more reliable and more accurate predictions in supervised and unsupervised learning problems [48,116]. A simple example is represented by the majority vote ensemble, by which the decisions of different learning machines are combined, and the class that receives the majority of “votes” (i.e., the class predicted by the majority of the learning machines) is the class predicted by the overall ensemble [158]. In the literature, a plethora of terms other than ensembles has been used, such as fusion, combination, aggregation, and committee, to indicate sets of learning machines that work together to solve a machine learning problem [19,40,56,66,99,108,123], but in this chapter we maintain the term ensemble in its widest meaning, in order to include the whole range of combination methods. Nowadays, ensemble methods represent one of the main current research lines in machine learning [48,116], and the interest of the research community on ensemble methods is witnessed by conferences and workshops specifically devoted to ensembles, first of all the multiple classifier systems (MCS) conference organized by Roli, Kittler, Windeatt, and other researchers of this area [14,62,85,149,173]. Several theories have been

  8. NYYD Ensemble

    Index Scriptorium Estoniae

    2002-01-01

    NYYD Ensemble'i duost Traksmann - Lukk E.-S. Tüüri teosega "Symbiosis", mis on salvestatud ka hiljuti ilmunud NYYD Ensemble'i CDle. 2. märtsil Rakvere Teatri väikeses saalis ja 3. märtsil Rotermanni Soolalaos, kavas Tüür, Kaumann, Berio, Reich, Yun, Hauta-aho, Buckinx

  9. Multivariate localization methods for ensemble Kalman filtering

    KAUST Repository

    Roh, S.; Jun, M.; Szunyogh, I.; Genton, Marc G.

    2015-01-01

    the Schur (element-wise) product of the ensemble-based sample covariance matrix and a correlation matrix whose entries are obtained by the discretization of a distance-dependent correlation function. While the proper definition of the localization function

  10. Ensembl 2004.

    Science.gov (United States)

    Birney, E; Andrews, D; Bevan, P; Caccamo, M; Cameron, G; Chen, Y; Clarke, L; Coates, G; Cox, T; Cuff, J; Curwen, V; Cutts, T; Down, T; Durbin, R; Eyras, E; Fernandez-Suarez, X M; Gane, P; Gibbins, B; Gilbert, J; Hammond, M; Hotz, H; Iyer, V; Kahari, A; Jekosch, K; Kasprzyk, A; Keefe, D; Keenan, S; Lehvaslaiho, H; McVicker, G; Melsopp, C; Meidl, P; Mongin, E; Pettett, R; Potter, S; Proctor, G; Rae, M; Searle, S; Slater, G; Smedley, D; Smith, J; Spooner, W; Stabenau, A; Stalker, J; Storey, R; Ureta-Vidal, A; Woodwark, C; Clamp, M; Hubbard, T

    2004-01-01

    The Ensembl (http://www.ensembl.org/) database project provides a bioinformatics framework to organize biology around the sequences of large genomes. It is a comprehensive and integrated source of annotation of large genome sequences, available via interactive website, web services or flat files. As well as being one of the leading sources of genome annotation, Ensembl is an open source software engineering project to develop a portable system able to handle very large genomes and associated requirements. The facilities of the system range from sequence analysis to data storage and visualization and installations exist around the world both in companies and at academic sites. With a total of nine genome sequences available from Ensembl and more genomes to follow, recent developments have focused mainly on closer integration between genomes and external data.

  11. Ensembl 2017

    OpenAIRE

    Aken, Bronwen L.; Achuthan, Premanand; Akanni, Wasiu; Amode, M. Ridwan; Bernsdorff, Friederike; Bhai, Jyothish; Billis, Konstantinos; Carvalho-Silva, Denise; Cummins, Carla; Clapham, Peter; Gil, Laurent; Gir?n, Carlos Garc?a; Gordon, Leo; Hourlier, Thibaut; Hunt, Sarah E.

    2016-01-01

    Ensembl (www.ensembl.org) is a database and genome browser for enabling research on vertebrate genomes. We import, analyse, curate and integrate a diverse collection of large-scale reference data to create a more comprehensive view of genome biology than would be possible from any individual dataset. Our extensive data resources include evidence-based gene and regulatory region annotation, genome variation and gene trees. An accompanying suite of tools, infrastructure and programmatic access ...

  12. Ensemble Sampling

    OpenAIRE

    Lu, Xiuyuan; Van Roy, Benjamin

    2017-01-01

    Thompson sampling has emerged as an effective heuristic for a broad range of online decision problems. In its basic form, the algorithm requires computing and sampling from a posterior distribution over models, which is tractable only for simple special cases. This paper develops ensemble sampling, which aims to approximate Thompson sampling while maintaining tractability even in the face of complex models such as neural networks. Ensemble sampling dramatically expands on the range of applica...

  13. On Ensemble Nonlinear Kalman Filtering with Symmetric Analysis Ensembles

    KAUST Repository

    Luo, Xiaodong

    2010-09-19

    The ensemble square root filter (EnSRF) [1, 2, 3, 4] is a popular method for data assimilation in high dimensional systems (e.g., geophysics models). Essentially the EnSRF is a Monte Carlo implementation of the conventional Kalman filter (KF) [5, 6]. It is mainly different from the KF at the prediction steps, where it is some ensembles, rather then the means and covariance matrices, of the system state that are propagated forward. In doing this, the EnSRF is computationally more efficient than the KF, since propagating a covariance matrix forward in high dimensional systems is prohibitively expensive. In addition, the EnSRF is also very convenient in implementation. By propagating the ensembles of the system state, the EnSRF can be directly applied to nonlinear systems without any change in comparison to the assimilation procedures in linear systems. However, by adopting the Monte Carlo method, the EnSRF also incurs certain sampling errors. One way to alleviate this problem is to introduce certain symmetry to the ensembles, which can reduce the sampling errors and spurious modes in evaluation of the means and covariances of the ensembles [7]. In this contribution, we present two methods to produce symmetric ensembles. One is based on the unscented transform [8, 9], which leads to the unscented Kalman filter (UKF) [8, 9] and its variant, the ensemble unscented Kalman filter (EnUKF) [7]. The other is based on Stirling’s interpolation formula (SIF), which results in the divided difference filter (DDF) [10]. Here we propose a simplified divided difference filter (sDDF) in the context of ensemble filtering. The similarity and difference between the sDDF and the EnUKF will be discussed. Numerical experiments will also be conducted to investigate the performance of the sDDF and the EnUKF, and compare them to a well‐established EnSRF, the ensemble transform Kalman filter (ETKF) [2].

  14. Inelastic plasmon and inter-band electron-scattering potentials for Si from dielectric matrix calculations

    International Nuclear Information System (INIS)

    Josefsson, T.W.; Smith, A.E.

    1994-01-01

    Inelastic scattering of electrons in a crystalline environment may be represented by a complex non-hermitian potential. Completed generalised expressions for this inelastic electron scattering potential matrix, including virtual inelastic scattering, are derived for outer-shell electron and plasmon excitations. The relationship between these expressions and the general anisotropic dielectric response matrix of the solid is discussed. These generalised expressions necessarily include the off-diagonal terms representing effects due to departure from translational invariance in the interaction. Results are presented for the diagonal back structure dependent inelastic and virtual inelastic scattering potentials for Si, from a calculation of the inverse dielectric matrix in the random phase approximation. Good agreement is found with experiment as a function of incident energies from 10 eV to 100 keV. Anisotropy effects and hence the interaction de localisation represented by the off-diagonal scattering potential terms, are found to be significant below 1 keV. 38 refs., 2 figs

  15. World Music Ensemble: Kulintang

    Science.gov (United States)

    Beegle, Amy C.

    2012-01-01

    As instrumental world music ensembles such as steel pan, mariachi, gamelan and West African drums are becoming more the norm than the exception in North American school music programs, there are other world music ensembles just starting to gain popularity in particular parts of the United States. The kulintang ensemble, a drum and gong ensemble…

  16. two-body random matrix ensembles

    Indian Academy of Sciences (India)

    2015-02-03

    Feb 3, 2015 ... Abstract. Probability distribution (P(r)) of the level spacing ratios has been introduced recently and is used to investigate many-body localization as well as to quantify the distance from inte- grability on finite size lattices. In this paper, we study the distribution of the ratio of consecutive level spacings using ...

  17. plus two-body random matrix ensembles

    Indian Academy of Sciences (India)

    2015-02-03

    Feb 3, 2015 ... Probability distribution (()) of the level spacing ratios has been introduced recently and is used to investigate many-body localization as well as to quantify the distance from integrability on finite size lattices. In this paper, we study the distribution of the ratio of consecutive level spacings using one-body ...

  18. Ensemble manifold regularization.

    Science.gov (United States)

    Geng, Bo; Tao, Dacheng; Xu, Chao; Yang, Linjun; Hua, Xian-Sheng

    2012-06-01

    We propose an automatic approximation of the intrinsic manifold for general semi-supervised learning (SSL) problems. Unfortunately, it is not trivial to define an optimization function to obtain optimal hyperparameters. Usually, cross validation is applied, but it does not necessarily scale up. Other problems derive from the suboptimality incurred by discrete grid search and the overfitting. Therefore, we develop an ensemble manifold regularization (EMR) framework to approximate the intrinsic manifold by combining several initial guesses. Algorithmically, we designed EMR carefully so it 1) learns both the composite manifold and the semi-supervised learner jointly, 2) is fully automatic for learning the intrinsic manifold hyperparameters implicitly, 3) is conditionally optimal for intrinsic manifold approximation under a mild and reasonable assumption, and 4) is scalable for a large number of candidate manifold hyperparameters, from both time and space perspectives. Furthermore, we prove the convergence property of EMR to the deterministic matrix at rate root-n. Extensive experiments over both synthetic and real data sets demonstrate the effectiveness of the proposed framework.

  19. Multiple Meixner polynomials and non-Hermitian oscillator Hamiltonians

    OpenAIRE

    Ndayiragije, François; Van Assche, Walter

    2013-01-01

    Multiple Meixner polynomials are polynomials in one variable which satisfy orthogonality relations with respect to $r>1$ different negative binomial distributions (Pascal distributions). There are two kinds of multiple Meixner polynomials, depending on the selection of the parameters in the negative binomial distribution. We recall their definition and some formulas and give generating functions and explicit expressions for the coefficients in the nearest neighbor recurrence relation. Followi...

  20. Scattering theory using smeared non-Hermitian potentials

    Czech Academy of Sciences Publication Activity Database

    Znojil, Miloslav

    2009-01-01

    Roč. 80, č. 4 (2009), 045009/1-045009/12 ISSN 1550-7998 R&D Projects: GA MŠk LC06002; GA ČR GA202/07/1307 Institutional research plan: CEZ:AV0Z10480505 Keywords : symmetric quantum-mechanics * pseudo-hermiticity * real spectrum Subject RIV: BE - Theoretical Physics Impact factor: 4.922, year: 2009

  1. Multilevel ensemble Kalman filter

    KAUST Repository

    Chernov, Alexey; Hoel, Haakon; Law, Kody; Nobile, Fabio; Tempone, Raul

    2016-01-01

    This work embeds a multilevel Monte Carlo (MLMC) sampling strategy into the Monte Carlo step of the ensemble Kalman filter (EnKF). In terms of computational cost vs. approximation error the asymptotic performance of the multilevel ensemble Kalman filter (MLEnKF) is superior to the EnKF s.

  2. Entropy of network ensembles

    Science.gov (United States)

    Bianconi, Ginestra

    2009-03-01

    In this paper we generalize the concept of random networks to describe network ensembles with nontrivial features by a statistical mechanics approach. This framework is able to describe undirected and directed network ensembles as well as weighted network ensembles. These networks might have nontrivial community structure or, in the case of networks embedded in a given space, they might have a link probability with a nontrivial dependence on the distance between the nodes. These ensembles are characterized by their entropy, which evaluates the cardinality of networks in the ensemble. In particular, in this paper we define and evaluate the structural entropy, i.e., the entropy of the ensembles of undirected uncorrelated simple networks with given degree sequence. We stress the apparent paradox that scale-free degree distributions are characterized by having small structural entropy while they are so widely encountered in natural, social, and technological complex systems. We propose a solution to the paradox by proving that scale-free degree distributions are the most likely degree distribution with the corresponding value of the structural entropy. Finally, the general framework we present in this paper is able to describe microcanonical ensembles of networks as well as canonical or hidden-variable network ensembles with significant implications for the formulation of network-constructing algorithms.

  3. Multilevel ensemble Kalman filter

    KAUST Repository

    Chernov, Alexey

    2016-01-06

    This work embeds a multilevel Monte Carlo (MLMC) sampling strategy into the Monte Carlo step of the ensemble Kalman filter (EnKF). In terms of computational cost vs. approximation error the asymptotic performance of the multilevel ensemble Kalman filter (MLEnKF) is superior to the EnKF s.

  4. The Ensembl REST API: Ensembl Data for Any Language.

    Science.gov (United States)

    Yates, Andrew; Beal, Kathryn; Keenan, Stephen; McLaren, William; Pignatelli, Miguel; Ritchie, Graham R S; Ruffier, Magali; Taylor, Kieron; Vullo, Alessandro; Flicek, Paul

    2015-01-01

    We present a Web service to access Ensembl data using Representational State Transfer (REST). The Ensembl REST server enables the easy retrieval of a wide range of Ensembl data by most programming languages, using standard formats such as JSON and FASTA while minimizing client work. We also introduce bindings to the popular Ensembl Variant Effect Predictor tool permitting large-scale programmatic variant analysis independent of any specific programming language. The Ensembl REST API can be accessed at http://rest.ensembl.org and source code is freely available under an Apache 2.0 license from http://github.com/Ensembl/ensembl-rest. © The Author 2014. Published by Oxford University Press.

  5. Musical ensembles in Ancient Mesapotamia

    NARCIS (Netherlands)

    Krispijn, T.J.H.; Dumbrill, R.; Finkel, I.

    2010-01-01

    Identification of musical instruments from ancient Mesopotamia by comparing musical ensembles attested in Sumerian and Akkadian texts with depicted ensembles. Lexicographical contributions to the Sumerian and Akkadian lexicon.

  6. Crossover ensembles of random matrices and skew-orthogonal polynomials

    International Nuclear Information System (INIS)

    Kumar, Santosh; Pandey, Akhilesh

    2011-01-01

    Highlights: → We study crossover ensembles of Jacobi family of random matrices. → We consider correlations for orthogonal-unitary and symplectic-unitary crossovers. → We use the method of skew-orthogonal polynomials and quaternion determinants. → We prove universality of spectral correlations in crossover ensembles. → We discuss applications to quantum conductance and communication theory problems. - Abstract: In a recent paper (S. Kumar, A. Pandey, Phys. Rev. E, 79, 2009, p. 026211) we considered Jacobi family (including Laguerre and Gaussian cases) of random matrix ensembles and reported exact solutions of crossover problems involving time-reversal symmetry breaking. In the present paper we give details of the work. We start with Dyson's Brownian motion description of random matrix ensembles and obtain universal hierarchic relations among the unfolded correlation functions. For arbitrary dimensions we derive the joint probability density (jpd) of eigenvalues for all transitions leading to unitary ensembles as equilibrium ensembles. We focus on the orthogonal-unitary and symplectic-unitary crossovers and give generic expressions for jpd of eigenvalues, two-point kernels and n-level correlation functions. This involves generalization of the theory of skew-orthogonal polynomials to crossover ensembles. We also consider crossovers in the circular ensembles to show the generality of our method. In the large dimensionality limit, correlations in spectra with arbitrary initial density are shown to be universal when expressed in terms of a rescaled symmetry breaking parameter. Applications of our crossover results to communication theory and quantum conductance problems are also briefly discussed.

  7. Unquenched Complex Dirac Spectra at Nonzero Chemical Potential: Two-Color QCD Lattice Data versus Matrix Model

    International Nuclear Information System (INIS)

    Akemann, Gernot; Bittner, Elmar

    2006-01-01

    We compare analytic predictions of non-Hermitian chiral random matrix theory with the complex Dirac operator eigenvalue spectrum of two-color lattice gauge theory with dynamical fermions at nonzero chemical potential. The Dirac eigenvalues come in complex conjugate pairs, making the action of this theory real and positive for our choice of two staggered flavors. This enables us to use standard Monte Carlo simulations in testing the influence of the chemical potential and quark mass on complex eigenvalues close to the origin. We find excellent agreement between the analytic predictions and our data for two different volumes over a range of chemical potentials below the chiral phase transition. In particular, we detect the effect of unquenching when going to very small quark masses

  8. Ensemble Data Mining Methods

    Science.gov (United States)

    Oza, Nikunj C.

    2004-01-01

    Ensemble Data Mining Methods, also known as Committee Methods or Model Combiners, are machine learning methods that leverage the power of multiple models to achieve better prediction accuracy than any of the individual models could on their own. The basic goal when designing an ensemble is the same as when establishing a committee of people: each member of the committee should be as competent as possible, but the members should be complementary to one another. If the members are not complementary, Le., if they always agree, then the committee is unnecessary---any one member is sufficient. If the members are complementary, then when one or a few members make an error, the probability is high that the remaining members can correct this error. Research in ensemble methods has largely revolved around designing ensembles consisting of competent yet complementary models.

  9. Ensemble Data Mining Methods

    Data.gov (United States)

    National Aeronautics and Space Administration — Ensemble Data Mining Methods, also known as Committee Methods or Model Combiners, are machine learning methods that leverage the power of multiple models to achieve...

  10. Ensembl variation resources

    Directory of Open Access Journals (Sweden)

    Marin-Garcia Pablo

    2010-05-01

    Full Text Available Abstract Background The maturing field of genomics is rapidly increasing the number of sequenced genomes and producing more information from those previously sequenced. Much of this additional information is variation data derived from sampling multiple individuals of a given species with the goal of discovering new variants and characterising the population frequencies of the variants that are already known. These data have immense value for many studies, including those designed to understand evolution and connect genotype to phenotype. Maximising the utility of the data requires that it be stored in an accessible manner that facilitates the integration of variation data with other genome resources such as gene annotation and comparative genomics. Description The Ensembl project provides comprehensive and integrated variation resources for a wide variety of chordate genomes. This paper provides a detailed description of the sources of data and the methods for creating the Ensembl variation databases. It also explores the utility of the information by explaining the range of query options available, from using interactive web displays, to online data mining tools and connecting directly to the data servers programmatically. It gives a good overview of the variation resources and future plans for expanding the variation data within Ensembl. Conclusions Variation data is an important key to understanding the functional and phenotypic differences between individuals. The development of new sequencing and genotyping technologies is greatly increasing the amount of variation data known for almost all genomes. The Ensembl variation resources are integrated into the Ensembl genome browser and provide a comprehensive way to access this data in the context of a widely used genome bioinformatics system. All Ensembl data is freely available at http://www.ensembl.org and from the public MySQL database server at ensembldb.ensembl.org.

  11. The semantic similarity ensemble

    Directory of Open Access Journals (Sweden)

    Andrea Ballatore

    2013-12-01

    Full Text Available Computational measures of semantic similarity between geographic terms provide valuable support across geographic information retrieval, data mining, and information integration. To date, a wide variety of approaches to geo-semantic similarity have been devised. A judgment of similarity is not intrinsically right or wrong, but obtains a certain degree of cognitive plausibility, depending on how closely it mimics human behavior. Thus selecting the most appropriate measure for a specific task is a significant challenge. To address this issue, we make an analogy between computational similarity measures and soliciting domain expert opinions, which incorporate a subjective set of beliefs, perceptions, hypotheses, and epistemic biases. Following this analogy, we define the semantic similarity ensemble (SSE as a composition of different similarity measures, acting as a panel of experts having to reach a decision on the semantic similarity of a set of geographic terms. The approach is evaluated in comparison to human judgments, and results indicate that an SSE performs better than the average of its parts. Although the best member tends to outperform the ensemble, all ensembles outperform the average performance of each ensemble's member. Hence, in contexts where the best measure is unknown, the ensemble provides a more cognitively plausible approach.

  12. Random matrix theory

    CERN Document Server

    Deift, Percy

    2009-01-01

    This book features a unified derivation of the mathematical theory of the three classical types of invariant random matrix ensembles-orthogonal, unitary, and symplectic. The authors follow the approach of Tracy and Widom, but the exposition here contains a substantial amount of additional material, in particular, facts from functional analysis and the theory of Pfaffians. The main result in the book is a proof of universality for orthogonal and symplectic ensembles corresponding to generalized Gaussian type weights following the authors' prior work. New, quantitative error estimates are derive

  13. Multilevel ensemble Kalman filtering

    KAUST Repository

    Hoel, Haakon

    2016-01-08

    The ensemble Kalman filter (EnKF) is a sequential filtering method that uses an ensemble of particle paths to estimate the means and covariances required by the Kalman filter by the use of sample moments, i.e., the Monte Carlo method. EnKF is often both robust and efficient, but its performance may suffer in settings where the computational cost of accurate simulations of particles is high. The multilevel Monte Carlo method (MLMC) is an extension of classical Monte Carlo methods which by sampling stochastic realizations on a hierarchy of resolutions may reduce the computational cost of moment approximations by orders of magnitude. In this work we have combined the ideas of MLMC and EnKF to construct the multilevel ensemble Kalman filter (MLEnKF) for the setting of finite dimensional state and observation spaces. The main ideas of this method is to compute particle paths on a hierarchy of resolutions and to apply multilevel estimators on the ensemble hierarchy of particles to compute Kalman filter means and covariances. Theoretical results and a numerical study of the performance gains of MLEnKF over EnKF will be presented. Some ideas on the extension of MLEnKF to settings with infinite dimensional state spaces will also be presented.

  14. Neural Network Ensembles

    DEFF Research Database (Denmark)

    Hansen, Lars Kai; Salamon, Peter

    1990-01-01

    We propose several means for improving the performance an training of neural networks for classification. We use crossvalidation as a tool for optimizing network parameters and architecture. We show further that the remaining generalization error can be reduced by invoking ensembles of similar...... networks....

  15. Multilevel ensemble Kalman filtering

    KAUST Repository

    Hoel, Haakon; Chernov, Alexey; Law, Kody; Nobile, Fabio; Tempone, Raul

    2016-01-01

    The ensemble Kalman filter (EnKF) is a sequential filtering method that uses an ensemble of particle paths to estimate the means and covariances required by the Kalman filter by the use of sample moments, i.e., the Monte Carlo method. EnKF is often both robust and efficient, but its performance may suffer in settings where the computational cost of accurate simulations of particles is high. The multilevel Monte Carlo method (MLMC) is an extension of classical Monte Carlo methods which by sampling stochastic realizations on a hierarchy of resolutions may reduce the computational cost of moment approximations by orders of magnitude. In this work we have combined the ideas of MLMC and EnKF to construct the multilevel ensemble Kalman filter (MLEnKF) for the setting of finite dimensional state and observation spaces. The main ideas of this method is to compute particle paths on a hierarchy of resolutions and to apply multilevel estimators on the ensemble hierarchy of particles to compute Kalman filter means and covariances. Theoretical results and a numerical study of the performance gains of MLEnKF over EnKF will be presented. Some ideas on the extension of MLEnKF to settings with infinite dimensional state spaces will also be presented.

  16. Multivariate localization methods for ensemble Kalman filtering

    KAUST Repository

    Roh, S.

    2015-12-03

    In ensemble Kalman filtering (EnKF), the small number of ensemble members that is feasible to use in a practical data assimilation application leads to sampling variability of the estimates of the background error covariances. The standard approach to reducing the effects of this sampling variability, which has also been found to be highly efficient in improving the performance of EnKF, is the localization of the estimates of the covariances. One family of localization techniques is based on taking the Schur (element-wise) product of the ensemble-based sample covariance matrix and a correlation matrix whose entries are obtained by the discretization of a distance-dependent correlation function. While the proper definition of the localization function for a single state variable has been extensively investigated, a rigorous definition of the localization function for multiple state variables that exist at the same locations has been seldom considered. This paper introduces two strategies for the construction of localization functions for multiple state variables. The proposed localization functions are tested by assimilating simulated observations experiments into the bivariate Lorenz 95 model with their help.

  17. Multivariate localization methods for ensemble Kalman filtering

    KAUST Repository

    Roh, S.

    2015-05-08

    In ensemble Kalman filtering (EnKF), the small number of ensemble members that is feasible to use in a practical data assimilation application leads to sampling variability of the estimates of the background error covariances. The standard approach to reducing the effects of this sampling variability, which has also been found to be highly efficient in improving the performance of EnKF, is the localization of the estimates of the covariances. One family of localization techniques is based on taking the Schur (entry-wise) product of the ensemble-based sample covariance matrix and a correlation matrix whose entries are obtained by the discretization of a distance-dependent correlation function. While the proper definition of the localization function for a single state variable has been extensively investigated, a rigorous definition of the localization function for multiple state variables has been seldom considered. This paper introduces two strategies for the construction of localization functions for multiple state variables. The proposed localization functions are tested by assimilating simulated observations experiments into the bivariate Lorenz 95 model with their help.

  18. Multivariate localization methods for ensemble Kalman filtering

    Science.gov (United States)

    Roh, S.; Jun, M.; Szunyogh, I.; Genton, M. G.

    2015-12-01

    In ensemble Kalman filtering (EnKF), the small number of ensemble members that is feasible to use in a practical data assimilation application leads to sampling variability of the estimates of the background error covariances. The standard approach to reducing the effects of this sampling variability, which has also been found to be highly efficient in improving the performance of EnKF, is the localization of the estimates of the covariances. One family of localization techniques is based on taking the Schur (element-wise) product of the ensemble-based sample covariance matrix and a correlation matrix whose entries are obtained by the discretization of a distance-dependent correlation function. While the proper definition of the localization function for a single state variable has been extensively investigated, a rigorous definition of the localization function for multiple state variables that exist at the same locations has been seldom considered. This paper introduces two strategies for the construction of localization functions for multiple state variables. The proposed localization functions are tested by assimilating simulated observations experiments into the bivariate Lorenz 95 model with their help.

  19. Multivariate localization methods for ensemble Kalman filtering

    KAUST Repository

    Roh, S.; Jun, M.; Szunyogh, I.; Genton, Marc G.

    2015-01-01

    In ensemble Kalman filtering (EnKF), the small number of ensemble members that is feasible to use in a practical data assimilation application leads to sampling variability of the estimates of the background error covariances. The standard approach to reducing the effects of this sampling variability, which has also been found to be highly efficient in improving the performance of EnKF, is the localization of the estimates of the covariances. One family of localization techniques is based on taking the Schur (entry-wise) product of the ensemble-based sample covariance matrix and a correlation matrix whose entries are obtained by the discretization of a distance-dependent correlation function. While the proper definition of the localization function for a single state variable has been extensively investigated, a rigorous definition of the localization function for multiple state variables has been seldom considered. This paper introduces two strategies for the construction of localization functions for multiple state variables. The proposed localization functions are tested by assimilating simulated observations experiments into the bivariate Lorenz 95 model with their help.

  20. ABCD of Beta Ensembles and Topological Strings

    CERN Document Server

    Krefl, Daniel

    2012-01-01

    We study beta-ensembles with Bn, Cn, and Dn eigenvalue measure and their relation with refined topological strings. Our results generalize the familiar connections between local topological strings and matrix models leading to An measure, and illustrate that all those classical eigenvalue ensembles, and their topological string counterparts, are related one to another via various deformations and specializations, quantum shifts and discrete quotients. We review the solution of the Gaussian models via Macdonald identities, and interpret them as conifold theories. The interpolation between the various models is plainly apparent in this case. For general polynomial potential, we calculate the partition function in the multi-cut phase in a perturbative fashion, beyond tree-level in the large-N limit. The relation to refined topological string orientifolds on the corresponding local geometry is discussed along the way.

  1. Representing Color Ensembles.

    Science.gov (United States)

    Chetverikov, Andrey; Campana, Gianluca; Kristjánsson, Árni

    2017-10-01

    Colors are rarely uniform, yet little is known about how people represent color distributions. We introduce a new method for studying color ensembles based on intertrial learning in visual search. Participants looked for an oddly colored diamond among diamonds with colors taken from either uniform or Gaussian color distributions. On test trials, the targets had various distances in feature space from the mean of the preceding distractor color distribution. Targets on test trials therefore served as probes into probabilistic representations of distractor colors. Test-trial response times revealed a striking similarity between the physical distribution of colors and their internal representations. The results demonstrate that the visual system represents color ensembles in a more detailed way than previously thought, coding not only mean and variance but, most surprisingly, the actual shape (uniform or Gaussian) of the distribution of colors in the environment.

  2. Tailored Random Graph Ensembles

    International Nuclear Information System (INIS)

    Roberts, E S; Annibale, A; Coolen, A C C

    2013-01-01

    Tailored graph ensembles are a developing bridge between biological networks and statistical mechanics. The aim is to use this concept to generate a suite of rigorous tools that can be used to quantify and compare the topology of cellular signalling networks, such as protein-protein interaction networks and gene regulation networks. We calculate exact and explicit formulae for the leading orders in the system size of the Shannon entropies of random graph ensembles constrained with degree distribution and degree-degree correlation. We also construct an ergodic detailed balance Markov chain with non-trivial acceptance probabilities which converges to a strictly uniform measure and is based on edge swaps that conserve all degrees. The acceptance probabilities can be generalized to define Markov chains that target any alternative desired measure on the space of directed or undirected graphs, in order to generate graphs with more sophisticated topological features.

  3. Distribution of the Largest Eigenvalues of the Levi-Smirnov Ensemble

    International Nuclear Information System (INIS)

    Wieczorek, W.

    2004-01-01

    We calculate the distribution of the k-th largest eigenvalue in the random matrix Levi - Smirnov Ensemble (LSE), using the spectral dualism between LSE and chiral Gaussian Unitary Ensemble (GUE). Then we reconstruct universal spectral oscillations and we investigate an asymptotic behavior of the spectral distribution. (author)

  4. Imprinting and recalling cortical ensembles.

    Science.gov (United States)

    Carrillo-Reid, Luis; Yang, Weijian; Bando, Yuki; Peterka, Darcy S; Yuste, Rafael

    2016-08-12

    Neuronal ensembles are coactive groups of neurons that may represent building blocks of cortical circuits. These ensembles could be formed by Hebbian plasticity, whereby synapses between coactive neurons are strengthened. Here we report that repetitive activation with two-photon optogenetics of neuronal populations from ensembles in the visual cortex of awake mice builds neuronal ensembles that recur spontaneously after being imprinted and do not disrupt preexisting ones. Moreover, imprinted ensembles can be recalled by single- cell stimulation and remain coactive on consecutive days. Our results demonstrate the persistent reconfiguration of cortical circuits by two-photon optogenetics into neuronal ensembles that can perform pattern completion. Copyright © 2016, American Association for the Advancement of Science.

  5. Multilevel ensemble Kalman filtering

    KAUST Repository

    Hoel, Hakon

    2016-06-14

    This work embeds a multilevel Monte Carlo sampling strategy into the Monte Carlo step of the ensemble Kalman filter (EnKF) in the setting of finite dimensional signal evolution and noisy discrete-time observations. The signal dynamics is assumed to be governed by a stochastic differential equation (SDE), and a hierarchy of time grids is introduced for multilevel numerical integration of that SDE. The resulting multilevel EnKF is proved to asymptotically outperform EnKF in terms of computational cost versus approximation accuracy. The theoretical results are illustrated numerically.

  6. Multilevel ensemble Kalman filtering

    KAUST Repository

    Hoel, Hakon; Law, Kody J. H.; Tempone, Raul

    2016-01-01

    This work embeds a multilevel Monte Carlo sampling strategy into the Monte Carlo step of the ensemble Kalman filter (EnKF) in the setting of finite dimensional signal evolution and noisy discrete-time observations. The signal dynamics is assumed to be governed by a stochastic differential equation (SDE), and a hierarchy of time grids is introduced for multilevel numerical integration of that SDE. The resulting multilevel EnKF is proved to asymptotically outperform EnKF in terms of computational cost versus approximation accuracy. The theoretical results are illustrated numerically.

  7. Supersymmetry in random matrix theory

    International Nuclear Information System (INIS)

    Kieburg, Mario

    2010-01-01

    I study the applications of supersymmetry in random matrix theory. I generalize the supersymmetry method and develop three new approaches to calculate eigenvalue correlation functions. These correlation functions are averages over ratios of characteristic polynomials. In the first part of this thesis, I derive a relation between integrals over anti-commuting variables (Grassmann variables) and differential operators with respect to commuting variables. With this relation I rederive Cauchy- like integral theorems. As a new application I trace the supermatrix Bessel function back to a product of two ordinary matrix Bessel functions. In the second part, I apply the generalized Hubbard-Stratonovich transformation to arbitrary rotation invariant ensembles of real symmetric and Hermitian self-dual matrices. This extends the approach for unitarily rotation invariant matrix ensembles. For the k-point correlation functions I derive supersymmetric integral expressions in a unifying way. I prove the equivalence between the generalized Hubbard-Stratonovich transformation and the superbosonization formula. Moreover, I develop an alternative mapping from ordinary space to superspace. After comparing the results of this approach with the other two supersymmetry methods, I obtain explicit functional expressions for the probability densities in superspace. If the probability density of the matrix ensemble factorizes, then the generating functions exhibit determinantal and Pfaffian structures. For some matrix ensembles this was already shown with help of other approaches. I show that these structures appear by a purely algebraic manipulation. In this new approach I use structures naturally appearing in superspace. I derive determinantal and Pfaffian structures for three types of integrals without actually mapping onto superspace. These three types of integrals are quite general and, thus, they are applicable to a broad class of matrix ensembles. (orig.)

  8. Supersymmetry in random matrix theory

    Energy Technology Data Exchange (ETDEWEB)

    Kieburg, Mario

    2010-05-04

    I study the applications of supersymmetry in random matrix theory. I generalize the supersymmetry method and develop three new approaches to calculate eigenvalue correlation functions. These correlation functions are averages over ratios of characteristic polynomials. In the first part of this thesis, I derive a relation between integrals over anti-commuting variables (Grassmann variables) and differential operators with respect to commuting variables. With this relation I rederive Cauchy- like integral theorems. As a new application I trace the supermatrix Bessel function back to a product of two ordinary matrix Bessel functions. In the second part, I apply the generalized Hubbard-Stratonovich transformation to arbitrary rotation invariant ensembles of real symmetric and Hermitian self-dual matrices. This extends the approach for unitarily rotation invariant matrix ensembles. For the k-point correlation functions I derive supersymmetric integral expressions in a unifying way. I prove the equivalence between the generalized Hubbard-Stratonovich transformation and the superbosonization formula. Moreover, I develop an alternative mapping from ordinary space to superspace. After comparing the results of this approach with the other two supersymmetry methods, I obtain explicit functional expressions for the probability densities in superspace. If the probability density of the matrix ensemble factorizes, then the generating functions exhibit determinantal and Pfaffian structures. For some matrix ensembles this was already shown with help of other approaches. I show that these structures appear by a purely algebraic manipulation. In this new approach I use structures naturally appearing in superspace. I derive determinantal and Pfaffian structures for three types of integrals without actually mapping onto superspace. These three types of integrals are quite general and, thus, they are applicable to a broad class of matrix ensembles. (orig.)

  9. A Brief Tutorial on the Ensemble Kalman Filter

    OpenAIRE

    Mandel, Jan

    2009-01-01

    The ensemble Kalman filter (EnKF) is a recursive filter suitable for problems with a large number of variables, such as discretizations of partial differential equations in geophysical models. The EnKF originated as a version of the Kalman filter for large problems (essentially, the covariance matrix is replaced by the sample covariance), and it is now an important data assimilation component of ensemble forecasting. EnKF is related to the particle filter (in this context, a particle is the s...

  10. Diversity in random subspacing ensembles

    NARCIS (Netherlands)

    Tsymbal, A.; Pechenizkiy, M.; Cunningham, P.; Kambayashi, Y.; Mohania, M.K.; Wöß, W.

    2004-01-01

    Ensembles of learnt models constitute one of the main current directions in machine learning and data mining. It was shown experimentally and theoretically that in order for an ensemble to be effective, it should consist of classifiers having diversity in their predictions. A number of ways are

  11. PSO-Ensemble Demo Application

    DEFF Research Database (Denmark)

    2004-01-01

    Within the framework of the PSO-Ensemble project (FU2101) a demo application has been created. The application use ECMWF ensemble forecasts. Two instances of the application are running; one for Nysted Offshore and one for the total production (except Horns Rev) in the Eltra area. The output...

  12. New concept of statistical ensembles

    International Nuclear Information System (INIS)

    Gorenstein, M.I.

    2009-01-01

    An extension of the standard concept of the statistical ensembles is suggested. Namely, the statistical ensembles with extensive quantities fluctuating according to an externally given distribution is introduced. Applications in the statistical models of multiple hadron production in high energy physics are discussed.

  13. Ensembl 2002: accommodating comparative genomics.

    Science.gov (United States)

    Clamp, M; Andrews, D; Barker, D; Bevan, P; Cameron, G; Chen, Y; Clark, L; Cox, T; Cuff, J; Curwen, V; Down, T; Durbin, R; Eyras, E; Gilbert, J; Hammond, M; Hubbard, T; Kasprzyk, A; Keefe, D; Lehvaslaiho, H; Iyer, V; Melsopp, C; Mongin, E; Pettett, R; Potter, S; Rust, A; Schmidt, E; Searle, S; Slater, G; Smith, J; Spooner, W; Stabenau, A; Stalker, J; Stupka, E; Ureta-Vidal, A; Vastrik, I; Birney, E

    2003-01-01

    The Ensembl (http://www.ensembl.org/) database project provides a bioinformatics framework to organise biology around the sequences of large genomes. It is a comprehensive source of stable automatic annotation of human, mouse and other genome sequences, available as either an interactive web site or as flat files. Ensembl also integrates manually annotated gene structures from external sources where available. As well as being one of the leading sources of genome annotation, Ensembl is an open source software engineering project to develop a portable system able to handle very large genomes and associated requirements. These range from sequence analysis to data storage and visualisation and installations exist around the world in both companies and at academic sites. With both human and mouse genome sequences available and more vertebrate sequences to follow, many of the recent developments in Ensembl have focusing on developing automatic comparative genome analysis and visualisation.

  14. Contact planarization of ensemble nanowires

    Science.gov (United States)

    Chia, A. C. E.; LaPierre, R. R.

    2011-06-01

    The viability of four organic polymers (S1808, SC200, SU8 and Cyclotene) as filling materials to achieve planarization of ensemble nanowire arrays is reported. Analysis of the porosity, surface roughness and thermal stability of each filling material was performed. Sonication was used as an effective method to remove the tops of the nanowires (NWs) to achieve complete planarization. Ensemble nanowire devices were fully fabricated and I-V measurements confirmed that Cyclotene effectively planarizes the NWs while still serving the role as an insulating layer between the top and bottom contacts. These processes and analysis can be easily implemented into future characterization and fabrication of ensemble NWs for optoelectronic device applications.

  15. On Ensemble Nonlinear Kalman Filtering with Symmetric Analysis Ensembles

    KAUST Repository

    Luo, Xiaodong; Hoteit, Ibrahim; Moroz, Irene M.

    2010-01-01

    However, by adopting the Monte Carlo method, the EnSRF also incurs certain sampling errors. One way to alleviate this problem is to introduce certain symmetry to the ensembles, which can reduce the sampling errors and spurious modes in evaluation of the means and covariances of the ensembles [7]. In this contribution, we present two methods to produce symmetric ensembles. One is based on the unscented transform [8, 9], which leads to the unscented Kalman filter (UKF) [8, 9] and its variant, the ensemble unscented Kalman filter (EnUKF) [7]. The other is based on Stirling’s interpolation formula (SIF), which results in the divided difference filter (DDF) [10]. Here we propose a simplified divided difference filter (sDDF) in the context of ensemble filtering. The similarity and difference between the sDDF and the EnUKF will be discussed. Numerical experiments will also be conducted to investigate the performance of the sDDF and the EnUKF, and compare them to a well‐established EnSRF, the ensemble transform Kalman filter (ETKF) [2].

  16. An Adaptive Approach to Mitigate Background Covariance Limitations in the Ensemble Kalman Filter

    KAUST Repository

    Song, Hajoon

    2010-07-01

    A new approach is proposed to address the background covariance limitations arising from undersampled ensembles and unaccounted model errors in the ensemble Kalman filter (EnKF). The method enhances the representativeness of the EnKF ensemble by augmenting it with new members chosen adaptively to add missing information that prevents the EnKF from fully fitting the data to the ensemble. The vectors to be added are obtained by back projecting the residuals of the observation misfits from the EnKF analysis step onto the state space. The back projection is done using an optimal interpolation (OI) scheme based on an estimated covariance of the subspace missing from the ensemble. In the experiments reported here, the OI uses a preselected stationary background covariance matrix, as in the hybrid EnKF–three-dimensional variational data assimilation (3DVAR) approach, but the resulting correction is included as a new ensemble member instead of being added to all existing ensemble members. The adaptive approach is tested with the Lorenz-96 model. The hybrid EnKF–3DVAR is used as a benchmark to evaluate the performance of the adaptive approach. Assimilation experiments suggest that the new adaptive scheme significantly improves the EnKF behavior when it suffers from small size ensembles and neglected model errors. It was further found to be competitive with the hybrid EnKF–3DVAR approach, depending on ensemble size and data coverage.

  17. The Ensembl genome database project.

    Science.gov (United States)

    Hubbard, T; Barker, D; Birney, E; Cameron, G; Chen, Y; Clark, L; Cox, T; Cuff, J; Curwen, V; Down, T; Durbin, R; Eyras, E; Gilbert, J; Hammond, M; Huminiecki, L; Kasprzyk, A; Lehvaslaiho, H; Lijnzaad, P; Melsopp, C; Mongin, E; Pettett, R; Pocock, M; Potter, S; Rust, A; Schmidt, E; Searle, S; Slater, G; Smith, J; Spooner, W; Stabenau, A; Stalker, J; Stupka, E; Ureta-Vidal, A; Vastrik, I; Clamp, M

    2002-01-01

    The Ensembl (http://www.ensembl.org/) database project provides a bioinformatics framework to organise biology around the sequences of large genomes. It is a comprehensive source of stable automatic annotation of the human genome sequence, with confirmed gene predictions that have been integrated with external data sources, and is available as either an interactive web site or as flat files. It is also an open source software engineering project to develop a portable system able to handle very large genomes and associated requirements from sequence analysis to data storage and visualisation. The Ensembl site is one of the leading sources of human genome sequence annotation and provided much of the analysis for publication by the international human genome project of the draft genome. The Ensembl system is being installed around the world in both companies and academic sites on machines ranging from supercomputers to laptops.

  18. Performance Analysis of Local Ensemble Kalman Filter

    Science.gov (United States)

    Tong, Xin T.

    2018-03-01

    Ensemble Kalman filter (EnKF) is an important data assimilation method for high-dimensional geophysical systems. Efficient implementation of EnKF in practice often involves the localization technique, which updates each component using only information within a local radius. This paper rigorously analyzes the local EnKF (LEnKF) for linear systems and shows that the filter error can be dominated by the ensemble covariance, as long as (1) the sample size exceeds the logarithmic of state dimension and a constant that depends only on the local radius; (2) the forecast covariance matrix admits a stable localized structure. In particular, this indicates that with small system and observation noises, the filter error will be accurate in long time even if the initialization is not. The analysis also reveals an intrinsic inconsistency caused by the localization technique, and a stable localized structure is necessary to control this inconsistency. While this structure is usually taken for granted for the operation of LEnKF, it can also be rigorously proved for linear systems with sparse local observations and weak local interactions. These theoretical results are also validated by numerical implementation of LEnKF on a simple stochastic turbulence in two dynamical regimes.

  19. The canonical ensemble redefined - 1: Formalism

    International Nuclear Information System (INIS)

    Venkataraman, R.

    1984-12-01

    For studying the thermodynamic properties of systems we propose an ensemble that lies in between the familiar canonical and microcanonical ensembles. We point out the transition from the canonical to microcanonical ensemble and prove from a comparative study that all these ensembles do not yield the same results even in the thermodynamic limit. An investigation of the coupling between two or more systems with these ensembles suggests that the state of thermodynamical equilibrium is a special case of statistical equilibrium. (author)

  20. Statistical properties of many-particle spectra. IV. New ensembles by Stieltjes transform methods

    International Nuclear Information System (INIS)

    Pandey, A.

    1981-01-01

    New Gaussian matrix ensembles, with arbitrary centroids and variances for the matrix elements, are defined as modifications of the three standard ones: GOE, GUE and GSE. The average density and two-point correlation function are given in the general case in terms of the corresponding Stieltjes transforms, first used by Pastur for the density. It is shown for the centroid-modified ensemble K+αH that when the operator K preserves the underlying symmetries of the standard ensemble H, then, as the magnitude of α grows, the transition of the fluctuations to those of H is very rapid and discontinuous in the limit of asymptotic dimensionality. Corresponding results are found for other ensembles. A similar Dyson result for the effects of the breaking of a model symmetry on the fluctuations is generalized to any model symmetry, as well as to the fundamental symmetries such as time-reversed invariance

  1. Crossover between the Gaussian orthogonal ensemble, the Gaussian unitary ensemble, and Poissonian statistics.

    Science.gov (United States)

    Schweiner, Frank; Laturner, Jeanine; Main, Jörg; Wunner, Günter

    2017-11-01

    Until now only for specific crossovers between Poissonian statistics (P), the statistics of a Gaussian orthogonal ensemble (GOE), or the statistics of a Gaussian unitary ensemble (GUE) have analytical formulas for the level spacing distribution function been derived within random matrix theory. We investigate arbitrary crossovers in the triangle between all three statistics. To this aim we propose an according formula for the level spacing distribution function depending on two parameters. Comparing the behavior of our formula for the special cases of P→GUE, P→GOE, and GOE→GUE with the results from random matrix theory, we prove that these crossovers are described reasonably. Recent investigations by F. Schweiner et al. [Phys. Rev. E 95, 062205 (2017)2470-004510.1103/PhysRevE.95.062205] have shown that the Hamiltonian of magnetoexcitons in cubic semiconductors can exhibit all three statistics in dependence on the system parameters. Evaluating the numerical results for magnetoexcitons in dependence on the excitation energy and on a parameter connected with the cubic valence band structure and comparing the results with the formula proposed allows us to distinguish between regular and chaotic behavior as well as between existent or broken antiunitary symmetries. Increasing one of the two parameters, transitions between different crossovers, e.g., from the P→GOE to the P→GUE crossover, are observed and discussed.

  2. Three Solvable Matrix Models of a Quantum Catastrophe

    Czech Academy of Sciences Publication Activity Database

    Levai, G.; Růžička, František; Znojil, Miloslav

    2014-01-01

    Roč. 53, č. 9 (2014), s. 2875-2890 ISSN 0020-7748 Institutional support: RVO:61389005 Keywords : quantum theory * PT symmetry * Finite-dimensional non-Hermitian Hamiltonians * exceptional-point localization * quantum theory of catastrophes * methods of computer algebra Subject RIV: BE - Theoretical Physics Impact factor: 1.184, year: 2014

  3. Workshop report on large-scale matrix diagonalization methods in chemistry theory institute

    Energy Technology Data Exchange (ETDEWEB)

    Bischof, C.H.; Shepard, R.L.; Huss-Lederman, S. [eds.

    1996-10-01

    The Large-Scale Matrix Diagonalization Methods in Chemistry theory institute brought together 41 computational chemists and numerical analysts. The goal was to understand the needs of the computational chemistry community in problems that utilize matrix diagonalization techniques. This was accomplished by reviewing the current state of the art and looking toward future directions in matrix diagonalization techniques. This institute occurred about 20 years after a related meeting of similar size. During those 20 years the Davidson method continued to dominate the problem of finding a few extremal eigenvalues for many computational chemistry problems. Work on non-diagonally dominant and non-Hermitian problems as well as parallel computing has also brought new methods to bear. The changes and similarities in problems and methods over the past two decades offered an interesting viewpoint for the success in this area. One important area covered by the talks was overviews of the source and nature of the chemistry problems. The numerical analysts were uniformly grateful for the efforts to convey a better understanding of the problems and issues faced in computational chemistry. An important outcome was an understanding of the wide range of eigenproblems encountered in computational chemistry. The workshop covered problems involving self- consistent-field (SCF), configuration interaction (CI), intramolecular vibrational relaxation (IVR), and scattering problems. In atomic structure calculations using the Hartree-Fock method (SCF), the symmetric matrices can range from order hundreds to thousands. These matrices often include large clusters of eigenvalues which can be as much as 25% of the spectrum. However, if Cl methods are also used, the matrix size can be between 10{sup 4} and 10{sup 9} where only one or a few extremal eigenvalues and eigenvectors are needed. Working with very large matrices has lead to the development of

  4. Quantum ensembles of quantum classifiers.

    Science.gov (United States)

    Schuld, Maria; Petruccione, Francesco

    2018-02-09

    Quantum machine learning witnesses an increasing amount of quantum algorithms for data-driven decision making, a problem with potential applications ranging from automated image recognition to medical diagnosis. Many of those algorithms are implementations of quantum classifiers, or models for the classification of data inputs with a quantum computer. Following the success of collective decision making with ensembles in classical machine learning, this paper introduces the concept of quantum ensembles of quantum classifiers. Creating the ensemble corresponds to a state preparation routine, after which the quantum classifiers are evaluated in parallel and their combined decision is accessed by a single-qubit measurement. This framework naturally allows for exponentially large ensembles in which - similar to Bayesian learning - the individual classifiers do not have to be trained. As an example, we analyse an exponentially large quantum ensemble in which each classifier is weighed according to its performance in classifying the training data, leading to new results for quantum as well as classical machine learning.

  5. Gravitational lensing by eigenvalue distributions of random matrix models

    Science.gov (United States)

    Martínez Alonso, Luis; Medina, Elena

    2018-05-01

    We propose to use eigenvalue densities of unitary random matrix ensembles as mass distributions in gravitational lensing. The corresponding lens equations reduce to algebraic equations in the complex plane which can be treated analytically. We prove that these models can be applied to describe lensing by systems of edge-on galaxies. We illustrate our analysis with the Gaussian and the quartic unitary matrix ensembles.

  6. Ensemble forecasting of species distributions.

    Science.gov (United States)

    Araújo, Miguel B; New, Mark

    2007-01-01

    Concern over implications of climate change for biodiversity has led to the use of bioclimatic models to forecast the range shifts of species under future climate-change scenarios. Recent studies have demonstrated that projections by alternative models can be so variable as to compromise their usefulness for guiding policy decisions. Here, we advocate the use of multiple models within an ensemble forecasting framework and describe alternative approaches to the analysis of bioclimatic ensembles, including bounding box, consensus and probabilistic techniques. We argue that, although improved accuracy can be delivered through the traditional tasks of trying to build better models with improved data, more robust forecasts can also be achieved if ensemble forecasts are produced and analysed appropriately.

  7. Ensemble method for dengue prediction.

    Science.gov (United States)

    Buczak, Anna L; Baugher, Benjamin; Moniz, Linda J; Bagley, Thomas; Babin, Steven M; Guven, Erhan

    2018-01-01

    In the 2015 NOAA Dengue Challenge, participants made three dengue target predictions for two locations (Iquitos, Peru, and San Juan, Puerto Rico) during four dengue seasons: 1) peak height (i.e., maximum weekly number of cases during a transmission season; 2) peak week (i.e., week in which the maximum weekly number of cases occurred); and 3) total number of cases reported during a transmission season. A dengue transmission season is the 12-month period commencing with the location-specific, historical week with the lowest number of cases. At the beginning of the Dengue Challenge, participants were provided with the same input data for developing the models, with the prediction testing data provided at a later date. Our approach used ensemble models created by combining three disparate types of component models: 1) two-dimensional Method of Analogues models incorporating both dengue and climate data; 2) additive seasonal Holt-Winters models with and without wavelet smoothing; and 3) simple historical models. Of the individual component models created, those with the best performance on the prior four years of data were incorporated into the ensemble models. There were separate ensembles for predicting each of the three targets at each of the two locations. Our ensemble models scored higher for peak height and total dengue case counts reported in a transmission season for Iquitos than all other models submitted to the Dengue Challenge. However, the ensemble models did not do nearly as well when predicting the peak week. The Dengue Challenge organizers scored the dengue predictions of the Challenge participant groups. Our ensemble approach was the best in predicting the total number of dengue cases reported for transmission season and peak height for Iquitos, Peru.

  8. Ensemble method for dengue prediction.

    Directory of Open Access Journals (Sweden)

    Anna L Buczak

    Full Text Available In the 2015 NOAA Dengue Challenge, participants made three dengue target predictions for two locations (Iquitos, Peru, and San Juan, Puerto Rico during four dengue seasons: 1 peak height (i.e., maximum weekly number of cases during a transmission season; 2 peak week (i.e., week in which the maximum weekly number of cases occurred; and 3 total number of cases reported during a transmission season. A dengue transmission season is the 12-month period commencing with the location-specific, historical week with the lowest number of cases. At the beginning of the Dengue Challenge, participants were provided with the same input data for developing the models, with the prediction testing data provided at a later date.Our approach used ensemble models created by combining three disparate types of component models: 1 two-dimensional Method of Analogues models incorporating both dengue and climate data; 2 additive seasonal Holt-Winters models with and without wavelet smoothing; and 3 simple historical models. Of the individual component models created, those with the best performance on the prior four years of data were incorporated into the ensemble models. There were separate ensembles for predicting each of the three targets at each of the two locations.Our ensemble models scored higher for peak height and total dengue case counts reported in a transmission season for Iquitos than all other models submitted to the Dengue Challenge. However, the ensemble models did not do nearly as well when predicting the peak week.The Dengue Challenge organizers scored the dengue predictions of the Challenge participant groups. Our ensemble approach was the best in predicting the total number of dengue cases reported for transmission season and peak height for Iquitos, Peru.

  9. Advanced Atmospheric Ensemble Modeling Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Buckley, R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Chiswell, S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Kurzeja, R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Maze, G. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Viner, B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Werth, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-09-29

    Ensemble modeling (EM), the creation of multiple atmospheric simulations for a given time period, has become an essential tool for characterizing uncertainties in model predictions. We explore two novel ensemble modeling techniques: (1) perturbation of model parameters (Adaptive Programming, AP), and (2) data assimilation (Ensemble Kalman Filter, EnKF). The current research is an extension to work from last year and examines transport on a small spatial scale (<100 km) in complex terrain, for more rigorous testing of the ensemble technique. Two different release cases were studied, a coastal release (SF6) and an inland release (Freon) which consisted of two release times. Observations of tracer concentration and meteorology are used to judge the ensemble results. In addition, adaptive grid techniques have been developed to reduce required computing resources for transport calculations. Using a 20- member ensemble, the standard approach generated downwind transport that was quantitatively good for both releases; however, the EnKF method produced additional improvement for the coastal release where the spatial and temporal differences due to interior valley heating lead to the inland movement of the plume. The AP technique showed improvements for both release cases, with more improvement shown in the inland release. This research demonstrated that transport accuracy can be improved when models are adapted to a particular location/time or when important local data is assimilated into the simulation and enhances SRNL’s capability in atmospheric transport modeling in support of its current customer base and local site missions, as well as our ability to attract new customers within the intelligence community.

  10. Teaching Strategies for Specialized Ensembles.

    Science.gov (United States)

    Teaching Music, 1999

    1999-01-01

    Provides a strategy, from the book "Strategies for Teaching Specialized Ensembles," that addresses Standard 9A of the National Standards for Music Education. Explains that students will identify and describe the musical and historical characteristics of the classical era in music they perform and in audio examples. (CMK)

  11. Multimodel ensembles of wheat growth

    DEFF Research Database (Denmark)

    Martre, Pierre; Wallach, Daniel; Asseng, Senthold

    2015-01-01

    , but such studies are difficult to organize and have only recently begun. We report on the largest ensemble study to date, of 27 wheat models tested in four contrasting locations for their accuracy in simulating multiple crop growth and yield variables. The relative error averaged over models was 24...

  12. Spectral Diagonal Ensemble Kalman Filters

    Czech Academy of Sciences Publication Activity Database

    Kasanický, Ivan; Mandel, Jan; Vejmelka, Martin

    2015-01-01

    Roč. 22, č. 4 (2015), s. 485-497 ISSN 1023-5809 R&D Projects: GA ČR GA13-34856S Grant - others:NSF(US) DMS-1216481 Institutional support: RVO:67985807 Keywords : data assimilation * ensemble Kalman filter * spectral representation Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 1.321, year: 2015

  13. Genetic Algorithm Optimized Neural Networks Ensemble as ...

    African Journals Online (AJOL)

    Marquardt algorithm by varying conditions such as inputs, hidden neurons, initialization, training sets and random Gaussian noise injection to ... Several such ensembles formed the population which was evolved to generate the fittest ensemble.

  14. Global Ensemble Forecast System (GEFS) [1 Deg.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Global Ensemble Forecast System (GEFS) is a weather forecast model made up of 21 separate forecasts, or ensemble members. The National Centers for Environmental...

  15. Localization of atomic ensembles via superfluorescence

    International Nuclear Information System (INIS)

    Macovei, Mihai; Evers, Joerg; Keitel, Christoph H.; Zubairy, M. Suhail

    2007-01-01

    The subwavelength localization of an ensemble of atoms concentrated to a small volume in space is investigated. The localization relies on the interaction of the ensemble with a standing wave laser field. The light scattered in the interaction of the standing wave field and the atom ensemble depends on the position of the ensemble relative to the standing wave nodes. This relation can be described by a fluorescence intensity profile, which depends on the standing wave field parameters and the ensemble properties and which is modified due to collective effects in the ensemble of nearby particles. We demonstrate that the intensity profile can be tailored to suit different localization setups. Finally, we apply these results to two localization schemes. First, we show how to localize an ensemble fixed at a certain position in the standing wave field. Second, we discuss localization of an ensemble passing through the standing wave field

  16. Products of random matrices from fixed trace and induced Ginibre ensembles

    Science.gov (United States)

    Akemann, Gernot; Cikovic, Milan

    2018-05-01

    We investigate the microcanonical version of the complex induced Ginibre ensemble, by introducing a fixed trace constraint for its second moment. Like for the canonical Ginibre ensemble, its complex eigenvalues can be interpreted as a two-dimensional Coulomb gas, which are now subject to a constraint and a modified, collective confining potential. Despite the lack of determinantal structure in this fixed trace ensemble, we compute all its density correlation functions at finite matrix size and compare to a fixed trace ensemble of normal matrices, representing a different Coulomb gas. Our main tool of investigation is the Laplace transform, that maps back the fixed trace to the induced Ginibre ensemble. Products of random matrices have been used to study the Lyapunov and stability exponents for chaotic dynamical systems, where the latter are based on the complex eigenvalues of the product matrix. Because little is known about the universality of the eigenvalue distribution of such product matrices, we then study the product of m induced Ginibre matrices with a fixed trace constraint—which are clearly non-Gaussian—and M  ‑  m such Ginibre matrices without constraint. Using an m-fold inverse Laplace transform, we obtain a concise result for the spectral density of such a mixed product matrix at finite matrix size, for arbitrary fixed m and M. Very recently local and global universality was proven by the authors and their coworker for a more general, single elliptic fixed trace ensemble in the bulk of the spectrum. Here, we argue that the spectral density of mixed products is in the same universality class as the product of M independent induced Ginibre ensembles.

  17. Squeezing of Collective Excitations in Spin Ensembles

    DEFF Research Database (Denmark)

    Kraglund Andersen, Christian; Mølmer, Klaus

    2012-01-01

    We analyse the possibility to create two-mode spin squeezed states of two separate spin ensembles by inverting the spins in one ensemble and allowing spin exchange between the ensembles via a near resonant cavity field. We investigate the dynamics of the system using a combination of numerical an...

  18. A Note on Functional Averages over Gaussian Ensembles

    Directory of Open Access Journals (Sweden)

    Gabriel H. Tucci

    2013-01-01

    Full Text Available We find a new formula for matrix averages over the Gaussian ensemble. Let H be an n×n Gaussian random matrix with complex, independent, and identically distributed entries of zero mean and unit variance. Given an n×n positive definite matrix A and a continuous function f:ℝ+→ℝ such that ∫0∞‍e-αt|f(t|2dt0, we find a new formula for the expectation [Tr(f(HAH*]. Taking f(x=log(1+x gives another formula for the capacity of the MIMO communication channel, and taking f(x=(1+x-1 gives the MMSE achieved by a linear receiver.

  19. Eigenfunction statistics of Wishart Brownian ensembles

    International Nuclear Information System (INIS)

    Shukla, Pragya

    2017-01-01

    We theoretically analyze the eigenfunction fluctuation measures for a Hermitian ensemble which appears as an intermediate state of the perturbation of a stationary ensemble by another stationary ensemble of Wishart (Laguerre) type. Similar to the perturbation by a Gaussian stationary ensemble, the measures undergo a diffusive dynamics in terms of the perturbation parameter but the energy-dependence of the fluctuations is different in the two cases. This may have important consequences for the eigenfunction dynamics as well as phase transition studies in many areas of complexity where Brownian ensembles appear. (paper)

  20. Hartree and Exchange in Ensemble Density Functional Theory: Avoiding the Nonuniqueness Disaster.

    Science.gov (United States)

    Gould, Tim; Pittalis, Stefano

    2017-12-15

    Ensemble density functional theory is a promising method for the efficient and accurate calculation of excitations of quantum systems, at least if useful functionals can be developed to broaden its domain of practical applicability. Here, we introduce a guaranteed single-valued "Hartree-exchange" ensemble density functional, E_{Hx}[n], in terms of the right derivative of the universal ensemble density functional with respect to the coupling constant at vanishing interaction. We show that E_{Hx}[n] is straightforwardly expressible using block eigenvalues of a simple matrix [Eq. (14)]. Specialized expressions for E_{Hx}[n] from the literature, including those involving superpositions of Slater determinants, can now be regarded as originating from the unifying picture presented here. We thus establish a clear and practical description for Hartree and exchange in ensemble systems.

  1. Matrix theory

    CERN Document Server

    Franklin, Joel N

    2003-01-01

    Mathematically rigorous introduction covers vector and matrix norms, the condition-number of a matrix, positive and irreducible matrices, much more. Only elementary algebra and calculus required. Includes problem-solving exercises. 1968 edition.

  2. Nonequilibrium statistical mechanics ensemble method

    CERN Document Server

    Eu, Byung Chan

    1998-01-01

    In this monograph, nonequilibrium statistical mechanics is developed by means of ensemble methods on the basis of the Boltzmann equation, the generic Boltzmann equations for classical and quantum dilute gases, and a generalised Boltzmann equation for dense simple fluids The theories are developed in forms parallel with the equilibrium Gibbs ensemble theory in a way fully consistent with the laws of thermodynamics The generalised hydrodynamics equations are the integral part of the theory and describe the evolution of macroscopic processes in accordance with the laws of thermodynamics of systems far removed from equilibrium Audience This book will be of interest to researchers in the fields of statistical mechanics, condensed matter physics, gas dynamics, fluid dynamics, rheology, irreversible thermodynamics and nonequilibrium phenomena

  3. Statistical Analysis of Protein Ensembles

    Science.gov (United States)

    Máté, Gabriell; Heermann, Dieter

    2014-04-01

    As 3D protein-configuration data is piling up, there is an ever-increasing need for well-defined, mathematically rigorous analysis approaches, especially that the vast majority of the currently available methods rely heavily on heuristics. We propose an analysis framework which stems from topology, the field of mathematics which studies properties preserved under continuous deformations. First, we calculate a barcode representation of the molecules employing computational topology algorithms. Bars in this barcode represent different topological features. Molecules are compared through their barcodes by statistically determining the difference in the set of their topological features. As a proof-of-principle application, we analyze a dataset compiled of ensembles of different proteins, obtained from the Ensemble Protein Database. We demonstrate that our approach correctly detects the different protein groupings.

  4. Ensemble methods for handwritten digit recognition

    DEFF Research Database (Denmark)

    Hansen, Lars Kai; Liisberg, Christian; Salamon, P.

    1992-01-01

    Neural network ensembles are applied to handwritten digit recognition. The individual networks of the ensemble are combinations of sparse look-up tables (LUTs) with random receptive fields. It is shown that the consensus of a group of networks outperforms the best individual of the ensemble....... It is further shown that it is possible to estimate the ensemble performance as well as the learning curve on a medium-size database. In addition the authors present preliminary analysis of experiments on a large database and show that state-of-the-art performance can be obtained using the ensemble approach...... by optimizing the receptive fields. It is concluded that it is possible to improve performance significantly by introducing moderate-size ensembles; in particular, a 20-25% improvement has been found. The ensemble random LUTs, when trained on a medium-size database, reach a performance (without rejects) of 94...

  5. Benchmarking Commercial Conformer Ensemble Generators.

    Science.gov (United States)

    Friedrich, Nils-Ole; de Bruyn Kops, Christina; Flachsenberg, Florian; Sommer, Kai; Rarey, Matthias; Kirchmair, Johannes

    2017-11-27

    We assess and compare the performance of eight commercial conformer ensemble generators (ConfGen, ConfGenX, cxcalc, iCon, MOE LowModeMD, MOE Stochastic, MOE Conformation Import, and OMEGA) and one leading free algorithm, the distance geometry algorithm implemented in RDKit. The comparative study is based on a new version of the Platinum Diverse Dataset, a high-quality benchmarking dataset of 2859 protein-bound ligand conformations extracted from the PDB. Differences in the performance of commercial algorithms are much smaller than those observed for free algorithms in our previous study (J. Chem. Inf. 2017, 57, 529-539). For commercial algorithms, the median minimum root-mean-square deviations measured between protein-bound ligand conformations and ensembles of a maximum of 250 conformers are between 0.46 and 0.61 Å. Commercial conformer ensemble generators are characterized by their high robustness, with at least 99% of all input molecules successfully processed and few or even no substantial geometrical errors detectable in their output conformations. The RDKit distance geometry algorithm (with minimization enabled) appears to be a good free alternative since its performance is comparable to that of the midranked commercial algorithms. Based on a statistical analysis, we elaborate on which algorithms to use and how to parametrize them for best performance in different application scenarios.

  6. Mass Conservation and Positivity Preservation with Ensemble-type Kalman Filter Algorithms

    Science.gov (United States)

    Janjic, Tijana; McLaughlin, Dennis B.; Cohn, Stephen E.; Verlaan, Martin

    2013-01-01

    Maintaining conservative physical laws numerically has long been recognized as being important in the development of numerical weather prediction (NWP) models. In the broader context of data assimilation, concerted efforts to maintain conservation laws numerically and to understand the significance of doing so have begun only recently. In order to enforce physically based conservation laws of total mass and positivity in the ensemble Kalman filter, we incorporate constraints to ensure that the filter ensemble members and the ensemble mean conserve mass and remain nonnegative through measurement updates. We show that the analysis steps of ensemble transform Kalman filter (ETKF) algorithm and ensemble Kalman filter algorithm (EnKF) can conserve the mass integral, but do not preserve positivity. Further, if localization is applied or if negative values are simply set to zero, then the total mass is not conserved either. In order to ensure mass conservation, a projection matrix that corrects for localization effects is constructed. In order to maintain both mass conservation and positivity preservation through the analysis step, we construct a data assimilation algorithms based on quadratic programming and ensemble Kalman filtering. Mass and positivity are both preserved by formulating the filter update as a set of quadratic programming problems that incorporate constraints. Some simple numerical experiments indicate that this approach can have a significant positive impact on the posterior ensemble distribution, giving results that are more physically plausible both for individual ensemble members and for the ensemble mean. The results show clear improvements in both analyses and forecasts, particularly in the presence of localized features. Behavior of the algorithm is also tested in presence of model error.

  7. A variational ensemble scheme for noisy image data assimilation

    Science.gov (United States)

    Yang, Yin; Robinson, Cordelia; Heitz, Dominique; Mémin, Etienne

    2014-05-01

    -dependent background error covariance matrix that can be consistently adjusted to the background error. These nice advantages come however at the cost of a reduced rank modeling of the solution space. The B matrix is at most of rank N - 1 (N is the size of the ensemble) which is considerably lower than the dimension of state space. This rank deficiency may introduce spurious correlation errors, which particularly impact the quality of results associated with a high resolution computing grid. The common strategy to suppress these distant correlations for ensemble Kalman techniques is through localization procedures. In this paper we present key theoretical properties associated to different choices of methods involved in this setup and compare with an incremental 4DVar method experimentally the performances of several variations of an ensemble technique of interest. The comparisons have been led on the basis of a Shallow Water model and have been carried out both with synthetic data and real observations. We particularly addressed the potential pitfalls and advantages of the different methods. The results indicate an advantage in favor of the ensemble technique both in quality and computational cost when dealing with incomplete observations. We highlight as the premise of using ensemble variational assimilation, that the initial perturbation used to build the initial ensemble has to fit the physics of the observed phenomenon . We also apply the method to a stochastic shallow-water model which incorporate an uncertainty expression if the subgrid stress tensor related to the ensemble spread. References [1] A. C. Lorenc, The potential of the ensemble kalman filter for nwp - a comparison with 4d-var, Quart. J. Roy. Meteor. Soc., Vol. 129, pp. 3183-3203, 2003. [2] C. Liu, Q. Xiao, and B. Wang, An Ensemble-Based Four-Dimensional Variational Data Assimilation Scheme. Part I: Technical Formulation and Preliminary Test, Mon. Wea. Rev., Vol. 136(9), pp. 3363-3373, 2008. [3] M. Buehner, Ensemble

  8. Level and width statistics for a decaying chaotic system

    International Nuclear Information System (INIS)

    Mizutori, S.; Zelevinsky, V.G.

    1993-01-01

    The random matrix ensemble of discretized effective non-hermitian hamiltonians is used for studying local correlations and fluctuations of energies and widths in a quantum system where intrinsic levels are coupled to the continuum via a common decay channel. With the use of analytical estimates and numerical simulations, generic properties of statistical observables are obtained for the regimes of weak and strong continuum coupling as well as for the transitional region. Typical signals of the transition (width collectivization, disappearance of level repulsion at small spacings and violation of uniformity along the energy axis) are discussed quantitatively. (orig.)

  9. Level density of random matrices for decaying systems

    International Nuclear Information System (INIS)

    Haake, F.; Izrailev, F.; Saher, D.; Sommers, H.-J.

    1991-01-01

    Analytical and numerical results for the level density of a certain class of random non-Hermitian matrices H=H+iΓ are presented. The conservative part H belongs to the Gaussian orthogonal ensemble while the damping piece Γ is quadratic in Gaussian random numbers and may describe the decay of resonances through various channels. In the limit of a large matrix dimension the level density assumes a surprisingly simple dependence on the relative strength of the damping and the number of channels. 18 refs.; 4 figs

  10. New quasi-exactly solvable Hermitian as well as non-Hermitian PT ...

    Indian Academy of Sciences (India)

    Abstract. We start with quasi-exactly solvable (QES) Hermitian (and hence real) as ... the time reversal transformation t → −t and further, one replaces i → −i. One can ..... F M Fernandez, R Guardiola, J Ros and M Znojil, J. Phys. A32, 3105 ...

  11. New quasi-exactly solvable Hermitian as well as non-Hermitian PT ...

    Indian Academy of Sciences (India)

    We start with quasi-exactly solvable (QES) Hermitian (and hence real) as well as complex P T -invariant, double sinh-Gordon potential and show that even after adding perturbation terms, the resulting potentials, in both cases, are still QES potentials. Further, by using anti-isospectral transformations, we obtain Hermitian as ...

  12. Non-Hermitian Hamiltonians with a real spectrum and their physical ...

    Indian Academy of Sciences (India)

    tems and elaborate on a particular physical phenomenon whose discovery originated in the study of complex ... have been the focus of intensive research activity particularly following the work of. Bender and ..... barrier potential: H = − d2 dx2.

  13. Analytical results for non-Hermitian parity–time-symmetric and ...

    Indian Academy of Sciences (India)

    College of Physics and Electronic Engineering, Hainan Normal University, Haikou 571158, China ... The domain part of the email address of all email addresses used by the office of Indian Academy of Sciences, including those of the staff, the journals, various programmes, and Current ... Please take note of this change.

  14. The effective Hamiltonian for thin layers with non-Hermitian Robin-type boundary conditions

    Czech Academy of Sciences Publication Activity Database

    Borisov, D.; Krejčiřík, David

    2012-01-01

    Roč. 76, č. 1 (2012), s. 49-59 ISSN 0921-7134 R&D Projects: GA MŠk LC06002; GA ČR GAP203/11/0701 Institutional research plan: CEZ:AV0Z10480505 Keywords : WAVE-GUIDES * CURVATURE * DIRICHLET * LAPLACIAN Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.535, year: 2012

  15. Excited-state quantum phase transitions studied from a non-Hermitian perspective

    Czech Academy of Sciences Publication Activity Database

    Šindelka, Milan; Santos, L.F.; Moiseyev, N.

    2017-01-01

    Roč. 95, č. 1 (2017), s. 1-5, č. článku 010103. ISSN 2469-9926 R&D Projects: GA MŠk LG15013 Institutional support: RVO:68378271 Keywords : exceptional points * systems * model * signatures * dynamics * freedom * spectra Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 2.925, year: 2016

  16. Equivalent Hermitian Hamiltonian for the non-Hermitian -x4 potential

    International Nuclear Information System (INIS)

    Jones, H.F.; Mateo, J.

    2006-01-01

    The potential V(x)=-x 4 , which is unbounded below on the real line, can give rise to a well-posed bound state problem when x is taken on a contour in the lower-half complex plane. It is then PT-symmetric rather than Hermitian. Nonetheless it has been shown numerically to have a real spectrum, and a proof of reality, involving the correspondence between ordinary differential equations and integrable systems, was subsequently constructed for the general class of potentials -(ix) N . For such Hamiltonians the natural PT metric is not positive definite, but a dynamically-defined positive-definite metric can be defined, depending on an operator Q. Further, with the help of this operator an equivalent Hermitian Hamiltonian h can be constructed. This programme has been carried out exactly for a few soluble models, and the first few terms of a perturbative expansion have been found for the potential m 2 x 2 +igx 3 . However, until now, the -x 4 potential has proved intractable. In the present paper we give explicit, closed form expressions for Q and h, which are made possible by a particular parametrization of the contour in the complex plane on which the problem is defined. This constitutes an explicit proof of the reality of the spectrum. The resulting equivalent Hamiltonian has a potential with a positive quartic term together with a linear term

  17. Anomalous real spectra of non-Hermitian quantum graphs in a strong-coupling regime

    Czech Academy of Sciences Publication Activity Database

    Znojil, Miloslav

    2010-01-01

    Roč. 43, č. 33 (2010), 335303/1-335303/14 ISSN 1751-8113 R&D Projects: GA ČR GA202/07/1307; GA MŠk LC06002 Institutional research plan: CEZ:AV0Z10480505 Keywords : SYMMETRIC HAMILTONIANS * SPONTANEOUS BREAKDOWN * PERTURBATION-THEORY Subject RIV: BE - Theoretical Physics Impact factor: 1.641, year: 2010

  18. Non-Hermitian Hamiltonians with a real spectrum and their physical ...

    Indian Academy of Sciences (India)

    We present an evaluation of some recent attempts to understand the role of pseudo-Hermitian and P T -symmetric Hamiltonians in modelling unitary quantum systems and elaborate on a particular physical phenomenon whose discovery originated in the study of complex scattering potentials.

  19. Measuring social interaction in music ensembles.

    Science.gov (United States)

    Volpe, Gualtiero; D'Ausilio, Alessandro; Badino, Leonardo; Camurri, Antonio; Fadiga, Luciano

    2016-05-05

    Music ensembles are an ideal test-bed for quantitative analysis of social interaction. Music is an inherently social activity, and music ensembles offer a broad variety of scenarios which are particularly suitable for investigation. Small ensembles, such as string quartets, are deemed a significant example of self-managed teams, where all musicians contribute equally to a task. In bigger ensembles, such as orchestras, the relationship between a leader (the conductor) and a group of followers (the musicians) clearly emerges. This paper presents an overview of recent research on social interaction in music ensembles with a particular focus on (i) studies from cognitive neuroscience; and (ii) studies adopting a computational approach for carrying out automatic quantitative analysis of ensemble music performances. © 2016 The Author(s).

  20. Tridiagonal realization of the antisymmetric Gaussian β-ensemble

    International Nuclear Information System (INIS)

    Dumitriu, Ioana; Forrester, Peter J.

    2010-01-01

    The Householder reduction of a member of the antisymmetric Gaussian unitary ensemble gives an antisymmetric tridiagonal matrix with all independent elements. The random variables permit the introduction of a positive parameter β, and the eigenvalue probability density function of the corresponding random matrices can be computed explicitly, as can the distribution of (q i ), the first components of the eigenvectors. Three proofs are given. One involves an inductive construction based on bordering of a family of random matrices which are shown to have the same distributions as the antisymmetric tridiagonal matrices. This proof uses the Dixon-Anderson integral from Selberg integral theory. A second proof involves the explicit computation of the Jacobian for the change of variables between real antisymmetric tridiagonal matrices, its eigenvalues, and (q i ). The third proof maps matrices from the antisymmetric Gaussian β-ensemble to those realizing particular examples of the Laguerre β-ensemble. In addition to these proofs, we note some simple properties of the shooting eigenvector and associated Pruefer phases of the random matrices.

  1. Statistical ensembles in quantum mechanics

    International Nuclear Information System (INIS)

    Blokhintsev, D.

    1976-01-01

    The interpretation of quantum mechanics presented in this paper is based on the concept of quantum ensembles. This concept differs essentially from the canonical one by that the interference of the observer into the state of a microscopic system is of no greater importance than in any other field of physics. Owing to this fact, the laws established by quantum mechanics are not of less objective character than the laws governing classical statistical mechanics. The paradoxical nature of some statements of quantum mechanics which result from the interpretation of the wave functions as the observer's notebook greatly stimulated the development of the idea presented. (Auth.)

  2. Wind Power Prediction using Ensembles

    DEFF Research Database (Denmark)

    Giebel, Gregor; Badger, Jake; Landberg, Lars

    2005-01-01

    offshore wind farm and the whole Jutland/Funen area. The utilities used these forecasts for maintenance planning, fuel consumption estimates and over-the-weekend trading on the Leipzig power exchange. Othernotable scientific results include the better accuracy of forecasts made up from a simple...... superposition of two NWP provider (in our case, DMI and DWD), an investigation of the merits of a parameterisation of the turbulent kinetic energy within thedelivered wind speed forecasts, and the finding that a “naïve” downscaling of each of the coarse ECMWF ensemble members with higher resolution HIRLAM did...

  3. A random matrix approach to credit risk.

    Science.gov (United States)

    Münnix, Michael C; Schäfer, Rudi; Guhr, Thomas

    2014-01-01

    We estimate generic statistical properties of a structural credit risk model by considering an ensemble of correlation matrices. This ensemble is set up by Random Matrix Theory. We demonstrate analytically that the presence of correlations severely limits the effect of diversification in a credit portfolio if the correlations are not identically zero. The existence of correlations alters the tails of the loss distribution considerably, even if their average is zero. Under the assumption of randomly fluctuating correlations, a lower bound for the estimation of the loss distribution is provided.

  4. A random matrix approach to credit risk.

    Directory of Open Access Journals (Sweden)

    Michael C Münnix

    Full Text Available We estimate generic statistical properties of a structural credit risk model by considering an ensemble of correlation matrices. This ensemble is set up by Random Matrix Theory. We demonstrate analytically that the presence of correlations severely limits the effect of diversification in a credit portfolio if the correlations are not identically zero. The existence of correlations alters the tails of the loss distribution considerably, even if their average is zero. Under the assumption of randomly fluctuating correlations, a lower bound for the estimation of the loss distribution is provided.

  5. EnsembleGASVR: A novel ensemble method for classifying missense single nucleotide polymorphisms

    KAUST Repository

    Rapakoulia, Trisevgeni; Theofilatos, Konstantinos A.; Kleftogiannis, Dimitrios A.; Likothanasis, Spiridon D.; Tsakalidis, Athanasios K.; Mavroudi, Seferina P.

    2014-01-01

    do not support their predictions with confidence scores. Results: To overcome these limitations, a novel ensemble computational methodology is proposed. EnsembleGASVR facilitates a twostep algorithm, which in its first step applies a novel

  6. Multi-Model Ensemble Wake Vortex Prediction

    Science.gov (United States)

    Koerner, Stephan; Holzaepfel, Frank; Ahmad, Nash'at N.

    2015-01-01

    Several multi-model ensemble methods are investigated for predicting wake vortex transport and decay. This study is a joint effort between National Aeronautics and Space Administration and Deutsches Zentrum fuer Luft- und Raumfahrt to develop a multi-model ensemble capability using their wake models. An overview of different multi-model ensemble methods and their feasibility for wake applications is presented. The methods include Reliability Ensemble Averaging, Bayesian Model Averaging, and Monte Carlo Simulations. The methodologies are evaluated using data from wake vortex field experiments.

  7. Urban runoff forecasting with ensemble weather predictions

    DEFF Research Database (Denmark)

    Pedersen, Jonas Wied; Courdent, Vianney Augustin Thomas; Vezzaro, Luca

    This research shows how ensemble weather forecasts can be used to generate urban runoff forecasts up to 53 hours into the future. The results highlight systematic differences between ensemble members that needs to be accounted for when these forecasts are used in practice.......This research shows how ensemble weather forecasts can be used to generate urban runoff forecasts up to 53 hours into the future. The results highlight systematic differences between ensemble members that needs to be accounted for when these forecasts are used in practice....

  8. Hybrid vs Adaptive Ensemble Kalman Filtering for Storm Surge Forecasting

    Science.gov (United States)

    Altaf, M. U.; Raboudi, N.; Gharamti, M. E.; Dawson, C.; McCabe, M. F.; Hoteit, I.

    2014-12-01

    Recent storm surge events due to Hurricanes in the Gulf of Mexico have motivated the efforts to accurately forecast water levels. Toward this goal, a parallel architecture has been implemented based on a high resolution storm surge model, ADCIRC. However the accuracy of the model notably depends on the quality and the recentness of the input data (mainly winds and bathymetry), model parameters (e.g. wind and bottom drag coefficients), and the resolution of the model grid. Given all these uncertainties in the system, the challenge is to build an efficient prediction system capable of providing accurate forecasts enough ahead of time for the authorities to evacuate the areas at risk. We have developed an ensemble-based data assimilation system to frequently assimilate available data into the ADCIRC model in order to improve the accuracy of the model. In this contribution we study and analyze the performances of different ensemble Kalman filter methodologies for efficient short-range storm surge forecasting, the aim being to produce the most accurate forecasts at the lowest possible computing time. Using Hurricane Ike meteorological data to force the ADCIRC model over a domain including the Gulf of Mexico coastline, we implement and compare the forecasts of the standard EnKF, the hybrid EnKF and an adaptive EnKF. The last two schemes have been introduced as efficient tools for enhancing the behavior of the EnKF when implemented with small ensembles by exploiting information from a static background covariance matrix. Covariance inflation and localization are implemented in all these filters. Our results suggest that both the hybrid and the adaptive approach provide significantly better forecasts than those resulting from the standard EnKF, even when implemented with much smaller ensembles.

  9. Joys of Community Ensemble Playing: The Case of the Happy Roll Elastic Ensemble in Taiwan

    Science.gov (United States)

    Hsieh, Yuan-Mei; Kao, Kai-Chi

    2012-01-01

    The Happy Roll Elastic Ensemble (HREE) is a community music ensemble supported by Tainan Culture Centre in Taiwan. With enjoyment and friendship as its primary goals, it aims to facilitate the joys of ensemble playing and the spirit of social networking. This article highlights the key aspects of HREE's development in its first two years…

  10. The Reduced Rank of Ensemble Kalman Filter to Estimate the Temperature of Non Isothermal Continue Stirred Tank Reactor

    Directory of Open Access Journals (Sweden)

    Erna Apriliani

    2011-01-01

    Full Text Available Kalman filter is an algorithm to estimate the state variable of dynamical stochastic system. The square root ensemble Kalman filter is an modification of Kalman filter. The square root ensemble Kalman filter is proposed to keep the computational stability and reduce the computational time. In this paper we study the efficiency of the reduced rank ensemble Kalman filter. We apply this algorithm to the non isothermal continue stirred tank reactor problem. We decompose the covariance of the ensemble estimation by using the singular value decomposition (the SVD, and then we reduced the rank of the diagonal matrix of those singular values. We make a simulation by using Matlab program. We took some the number of ensemble such as 100, 200 and 500. We compared the computational time and the accuracy between the square root ensemble Kalman filter and the ensemble Kalman filter. The reduced rank ensemble Kalman filter can’t be applied in this problem because the dimension of state variable is too less.

  11. Evaluation of stability of k-means cluster ensembles with respect to random initialization.

    Science.gov (United States)

    Kuncheva, Ludmila I; Vetrov, Dmitry P

    2006-11-01

    Many clustering algorithms, including cluster ensembles, rely on a random component. Stability of the results across different runs is considered to be an asset of the algorithm. The cluster ensembles considered here are based on k-means clusterers. Each clusterer is assigned a random target number of clusters, k and is started from a random initialization. Here, we use 10 artificial and 10 real data sets to study ensemble stability with respect to random k, and random initialization. The data sets were chosen to have a small number of clusters (two to seven) and a moderate number of data points (up to a few hundred). Pairwise stability is defined as the adjusted Rand index between pairs of clusterers in the ensemble, averaged across all pairs. Nonpairwise stability is defined as the entropy of the consensus matrix of the ensemble. An experimental comparison with the stability of the standard k-means algorithm was carried out for k from 2 to 20. The results revealed that ensembles are generally more stable, markedly so for larger k. To establish whether stability can serve as a cluster validity index, we first looked at the relationship between stability and accuracy with respect to the number of clusters, k. We found that such a relationship strongly depends on the data set, varying from almost perfect positive correlation (0.97, for the glass data) to almost perfect negative correlation (-0.93, for the crabs data). We propose a new combined stability index to be the sum of the pairwise individual and ensemble stabilities. This index was found to correlate better with the ensemble accuracy. Following the hypothesis that a point of stability of a clustering algorithm corresponds to a structure found in the data, we used the stability measures to pick the number of clusters. The combined stability index gave best results.

  12. Popular Music and the Instrumental Ensemble.

    Science.gov (United States)

    Boespflug, George

    1999-01-01

    Discusses popular music, the role of the musical performer as a creator, and the styles of jazz and popular music. Describes the pop ensemble at the college level, focusing on improvisation, rehearsals, recording, and performance. Argues that pop ensembles be used in junior and senior high school. (CMK)

  13. Layered Ensemble Architecture for Time Series Forecasting.

    Science.gov (United States)

    Rahman, Md Mustafizur; Islam, Md Monirul; Murase, Kazuyuki; Yao, Xin

    2016-01-01

    Time series forecasting (TSF) has been widely used in many application areas such as science, engineering, and finance. The phenomena generating time series are usually unknown and information available for forecasting is only limited to the past values of the series. It is, therefore, necessary to use an appropriate number of past values, termed lag, for forecasting. This paper proposes a layered ensemble architecture (LEA) for TSF problems. Our LEA consists of two layers, each of which uses an ensemble of multilayer perceptron (MLP) networks. While the first ensemble layer tries to find an appropriate lag, the second ensemble layer employs the obtained lag for forecasting. Unlike most previous work on TSF, the proposed architecture considers both accuracy and diversity of the individual networks in constructing an ensemble. LEA trains different networks in the ensemble by using different training sets with an aim of maintaining diversity among the networks. However, it uses the appropriate lag and combines the best trained networks to construct the ensemble. This indicates LEAs emphasis on accuracy of the networks. The proposed architecture has been tested extensively on time series data of neural network (NN)3 and NN5 competitions. It has also been tested on several standard benchmark time series data. In terms of forecasting accuracy, our experimental results have revealed clearly that LEA is better than other ensemble and nonensemble methods.

  14. Ensemble methods for seasonal limited area forecasts

    DEFF Research Database (Denmark)

    Arritt, Raymond W.; Anderson, Christopher J.; Takle, Eugene S.

    2004-01-01

    The ensemble prediction methods used for seasonal limited area forecasts were examined by comparing methods for generating ensemble simulations of seasonal precipitation. The summer 1993 model over the north-central US was used as a test case. The four methods examined included the lagged-average...

  15. Topological quantization of ensemble averages

    International Nuclear Information System (INIS)

    Prodan, Emil

    2009-01-01

    We define the current of a quantum observable and, under well-defined conditions, we connect its ensemble average to the index of a Fredholm operator. The present work builds on a formalism developed by Kellendonk and Schulz-Baldes (2004 J. Funct. Anal. 209 388) to study the quantization of edge currents for continuous magnetic Schroedinger operators. The generalization given here may be a useful tool to scientists looking for novel manifestations of the topological quantization. As a new application, we show that the differential conductance of atomic wires is given by the index of a certain operator. We also comment on how the formalism can be used to probe the existence of edge states

  16. Characterizing Ensembles of Superconducting Qubits

    Science.gov (United States)

    Sears, Adam; Birenbaum, Jeff; Hover, David; Rosenberg, Danna; Weber, Steven; Yoder, Jonilyn L.; Kerman, Jamie; Gustavsson, Simon; Kamal, Archana; Yan, Fei; Oliver, William

    We investigate ensembles of up to 48 superconducting qubits embedded within a superconducting cavity. Such arrays of qubits have been proposed for the experimental study of Ising Hamiltonians, and efficient methods to characterize and calibrate these types of systems are still under development. Here we leverage high qubit coherence (> 70 μs) to characterize individual devices as well as qubit-qubit interactions, utilizing the common resonator mode for a joint readout. This research was funded by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA) under Air Force Contract No. FA8721-05-C-0002. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of ODNI, IARPA, or the US Government.

  17. Matrix calculus

    CERN Document Server

    Bodewig, E

    1959-01-01

    Matrix Calculus, Second Revised and Enlarged Edition focuses on systematic calculation with the building blocks of a matrix and rows and columns, shunning the use of individual elements. The publication first offers information on vectors, matrices, further applications, measures of the magnitude of a matrix, and forms. The text then examines eigenvalues and exact solutions, including the characteristic equation, eigenrows, extremum properties of the eigenvalues, bounds for the eigenvalues, elementary divisors, and bounds for the determinant. The text ponders on approximate solutions, as well

  18. Stabilizing canonical-ensemble calculations in the auxiliary-field Monte Carlo method

    Science.gov (United States)

    Gilbreth, C. N.; Alhassid, Y.

    2015-03-01

    Quantum Monte Carlo methods are powerful techniques for studying strongly interacting Fermi systems. However, implementing these methods on computers with finite-precision arithmetic requires careful attention to numerical stability. In the auxiliary-field Monte Carlo (AFMC) method, low-temperature or large-model-space calculations require numerically stabilized matrix multiplication. When adapting methods used in the grand-canonical ensemble to the canonical ensemble of fixed particle number, the numerical stabilization increases the number of required floating-point operations for computing observables by a factor of the size of the single-particle model space, and thus can greatly limit the systems that can be studied. We describe an improved method for stabilizing canonical-ensemble calculations in AFMC that exhibits better scaling, and present numerical tests that demonstrate the accuracy and improved performance of the method.

  19. MSEBAG: a dynamic classifier ensemble generation based on `minimum-sufficient ensemble' and bagging

    Science.gov (United States)

    Chen, Lei; Kamel, Mohamed S.

    2016-01-01

    In this paper, we propose a dynamic classifier system, MSEBAG, which is characterised by searching for the 'minimum-sufficient ensemble' and bagging at the ensemble level. It adopts an 'over-generation and selection' strategy and aims to achieve a good bias-variance trade-off. In the training phase, MSEBAG first searches for the 'minimum-sufficient ensemble', which maximises the in-sample fitness with the minimal number of base classifiers. Then, starting from the 'minimum-sufficient ensemble', a backward stepwise algorithm is employed to generate a collection of ensembles. The objective is to create a collection of ensembles with a descending fitness on the data, as well as a descending complexity in the structure. MSEBAG dynamically selects the ensembles from the collection for the decision aggregation. The extended adaptive aggregation (EAA) approach, a bagging-style algorithm performed at the ensemble level, is employed for this task. EAA searches for the competent ensembles using a score function, which takes into consideration both the in-sample fitness and the confidence of the statistical inference, and averages the decisions of the selected ensembles to label the test pattern. The experimental results show that the proposed MSEBAG outperforms the benchmarks on average.

  20. Creating ensembles of decision trees through sampling

    Science.gov (United States)

    Kamath, Chandrika; Cantu-Paz, Erick

    2005-08-30

    A system for decision tree ensembles that includes a module to read the data, a module to sort the data, a module to evaluate a potential split of the data according to some criterion using a random sample of the data, a module to split the data, and a module to combine multiple decision trees in ensembles. The decision tree method is based on statistical sampling techniques and includes the steps of reading the data; sorting the data; evaluating a potential split according to some criterion using a random sample of the data, splitting the data, and combining multiple decision trees in ensembles.

  1. Derivation of Mayer Series from Canonical Ensemble

    International Nuclear Information System (INIS)

    Wang Xian-Zhi

    2016-01-01

    Mayer derived the Mayer series from both the canonical ensemble and the grand canonical ensemble by use of the cluster expansion method. In 2002, we conjectured a recursion formula of the canonical partition function of a fluid (X.Z. Wang, Phys. Rev. E 66 (2002) 056102). In this paper we give a proof for this formula by developing an appropriate expansion of the integrand of the canonical partition function. We further derive the Mayer series solely from the canonical ensemble by use of this recursion formula. (paper)

  2. Derivation of Mayer Series from Canonical Ensemble

    Science.gov (United States)

    Wang, Xian-Zhi

    2016-02-01

    Mayer derived the Mayer series from both the canonical ensemble and the grand canonical ensemble by use of the cluster expansion method. In 2002, we conjectured a recursion formula of the canonical partition function of a fluid (X.Z. Wang, Phys. Rev. E 66 (2002) 056102). In this paper we give a proof for this formula by developing an appropriate expansion of the integrand of the canonical partition function. We further derive the Mayer series solely from the canonical ensemble by use of this recursion formula.

  3. Efficient Matrix Models for Relational Learning

    Science.gov (United States)

    2009-10-01

    base learners and h1:r is the ensemble learner. For example, consider the case where h1, . . . , hr are linear discriminants. The weighted vote of...a multilinear form naturally leads one to consider tensor factorization: e.g., UAV T is a special case of Tucker decomposition [129] on a 2D- tensor , a...matrix. Our five modeling choices can also be used to differentiate tensor factorizations, but the choices may be subtler for tensors than for

  4. A Link-Based Cluster Ensemble Approach For Improved Gene Expression Data Analysis

    Directory of Open Access Journals (Sweden)

    P.Balaji

    2015-01-01

    Full Text Available Abstract It is difficult from possibilities to select a most suitable effective way of clustering algorithm and its dataset for a defined set of gene expression data because we have a huge number of ways and huge number of gene expressions. At present many researchers are preferring to use hierarchical clustering in different forms this is no more totally optimal. Cluster ensemble research can solve this type of problem by automatically merging multiple data partitions from a wide range of different clusterings of any dimensions to improve both the quality and robustness of the clustering result. But we have many existing ensemble approaches using an association matrix to condense sample-cluster and co-occurrence statistics and relations within the ensemble are encapsulated only at raw level while the existing among clusters are totally discriminated. Finding these missing associations can greatly expand the capability of those ensemble methodologies for microarray data clustering. We propose general K-means cluster ensemble approach for the clustering of general categorical data into required number of partitions.

  5. Matrix thermalization

    International Nuclear Information System (INIS)

    Craps, Ben; Evnin, Oleg; Nguyen, Kévin

    2017-01-01

    Matrix quantum mechanics offers an attractive environment for discussing gravitational holography, in which both sides of the holographic duality are well-defined. Similarly to higher-dimensional implementations of holography, collapsing shell solutions in the gravitational bulk correspond in this setting to thermalization processes in the dual quantum mechanical theory. We construct an explicit, fully nonlinear supergravity solution describing a generic collapsing dilaton shell, specify the holographic renormalization prescriptions necessary for computing the relevant boundary observables, and apply them to evaluating thermalizing two-point correlation functions in the dual matrix theory.

  6. Matrix thermalization

    Science.gov (United States)

    Craps, Ben; Evnin, Oleg; Nguyen, Kévin

    2017-02-01

    Matrix quantum mechanics offers an attractive environment for discussing gravitational holography, in which both sides of the holographic duality are well-defined. Similarly to higher-dimensional implementations of holography, collapsing shell solutions in the gravitational bulk correspond in this setting to thermalization processes in the dual quantum mechanical theory. We construct an explicit, fully nonlinear supergravity solution describing a generic collapsing dilaton shell, specify the holographic renormalization prescriptions necessary for computing the relevant boundary observables, and apply them to evaluating thermalizing two-point correlation functions in the dual matrix theory.

  7. Matrix thermalization

    Energy Technology Data Exchange (ETDEWEB)

    Craps, Ben [Theoretische Natuurkunde, Vrije Universiteit Brussel (VUB), and International Solvay Institutes, Pleinlaan 2, B-1050 Brussels (Belgium); Evnin, Oleg [Department of Physics, Faculty of Science, Chulalongkorn University, Thanon Phayathai, Pathumwan, Bangkok 10330 (Thailand); Theoretische Natuurkunde, Vrije Universiteit Brussel (VUB), and International Solvay Institutes, Pleinlaan 2, B-1050 Brussels (Belgium); Nguyen, Kévin [Theoretische Natuurkunde, Vrije Universiteit Brussel (VUB), and International Solvay Institutes, Pleinlaan 2, B-1050 Brussels (Belgium)

    2017-02-08

    Matrix quantum mechanics offers an attractive environment for discussing gravitational holography, in which both sides of the holographic duality are well-defined. Similarly to higher-dimensional implementations of holography, collapsing shell solutions in the gravitational bulk correspond in this setting to thermalization processes in the dual quantum mechanical theory. We construct an explicit, fully nonlinear supergravity solution describing a generic collapsing dilaton shell, specify the holographic renormalization prescriptions necessary for computing the relevant boundary observables, and apply them to evaluating thermalizing two-point correlation functions in the dual matrix theory.

  8. Ensemble Weight Enumerators for Protograph LDPC Codes

    Science.gov (United States)

    Divsalar, Dariush

    2006-01-01

    Recently LDPC codes with projected graph, or protograph structures have been proposed. In this paper, finite length ensemble weight enumerators for LDPC codes with protograph structures are obtained. Asymptotic results are derived as the block size goes to infinity. In particular we are interested in obtaining ensemble average weight enumerators for protograph LDPC codes which have minimum distance that grows linearly with block size. As with irregular ensembles, linear minimum distance property is sensitive to the proportion of degree-2 variable nodes. In this paper the derived results on ensemble weight enumerators show that linear minimum distance condition on degree distribution of unstructured irregular LDPC codes is a sufficient but not a necessary condition for protograph LDPC codes.

  9. Ensemble Kalman filtering with residual nudging

    KAUST Repository

    Luo, X.; Hoteit, Ibrahim

    2012-01-01

    Covariance inflation and localisation are two important techniques that are used to improve the performance of the ensemble Kalman filter (EnKF) by (in effect) adjusting the sample covariances of the estimates in the state space. In this work

  10. Ensemble Machine Learning Methods and Applications

    CERN Document Server

    Ma, Yunqian

    2012-01-01

    It is common wisdom that gathering a variety of views and inputs improves the process of decision making, and, indeed, underpins a democratic society. Dubbed “ensemble learning” by researchers in computational intelligence and machine learning, it is known to improve a decision system’s robustness and accuracy. Now, fresh developments are allowing researchers to unleash the power of ensemble learning in an increasing range of real-world applications. Ensemble learning algorithms such as “boosting” and “random forest” facilitate solutions to key computational issues such as face detection and are now being applied in areas as diverse as object trackingand bioinformatics.   Responding to a shortage of literature dedicated to the topic, this volume offers comprehensive coverage of state-of-the-art ensemble learning techniques, including various contributions from researchers in leading industrial research labs. At once a solid theoretical study and a practical guide, the volume is a windfall for r...

  11. AUC-Maximizing Ensembles through Metalearning.

    Science.gov (United States)

    LeDell, Erin; van der Laan, Mark J; Petersen, Maya

    2016-05-01

    Area Under the ROC Curve (AUC) is often used to measure the performance of an estimator in binary classification problems. An AUC-maximizing classifier can have significant advantages in cases where ranking correctness is valued or if the outcome is rare. In a Super Learner ensemble, maximization of the AUC can be achieved by the use of an AUC-maximining metalearning algorithm. We discuss an implementation of an AUC-maximization technique that is formulated as a nonlinear optimization problem. We also evaluate the effectiveness of a large number of different nonlinear optimization algorithms to maximize the cross-validated AUC of the ensemble fit. The results provide evidence that AUC-maximizing metalearners can, and often do, out-perform non-AUC-maximizing metalearning methods, with respect to ensemble AUC. The results also demonstrate that as the level of imbalance in the training data increases, the Super Learner ensemble outperforms the top base algorithm by a larger degree.

  12. Random matrix theories and chaotic dynamics

    International Nuclear Information System (INIS)

    Bohigas, O.

    1991-01-01

    A review of some of the main ideas, assumptions and results of the Wigner-Dyson type random matrix theories (RMT) which are relevant in the general context of 'Chaos and Quantum Physics' is presented. RMT are providing interesting and unexpected clues to connect classical dynamics with quantum phenomena. It is this aspect which will be emphasised and, concerning the main body of RMT, the author will restrict himself to a minimum. However, emphasis will be put on some generalizations of the 'canonical' random matrix ensembles that increase their flexibility, rendering the incorporation of relevant physical constraints possible. (R.P.) 112 refs., 35 figs., 5 tabs

  13. Polarized ensembles of random pure states

    International Nuclear Information System (INIS)

    Cunden, Fabio Deelan; Facchi, Paolo; Florio, Giuseppe

    2013-01-01

    A new family of polarized ensembles of random pure states is presented. These ensembles are obtained by linear superposition of two random pure states with suitable distributions, and are quite manageable. We will use the obtained results for two purposes: on the one hand we will be able to derive an efficient strategy for sampling states from isopurity manifolds. On the other, we will characterize the deviation of a pure quantum state from separability under the influence of noise. (paper)

  14. Polarized ensembles of random pure states

    Science.gov (United States)

    Deelan Cunden, Fabio; Facchi, Paolo; Florio, Giuseppe

    2013-08-01

    A new family of polarized ensembles of random pure states is presented. These ensembles are obtained by linear superposition of two random pure states with suitable distributions, and are quite manageable. We will use the obtained results for two purposes: on the one hand we will be able to derive an efficient strategy for sampling states from isopurity manifolds. On the other, we will characterize the deviation of a pure quantum state from separability under the influence of noise.

  15. Quark ensembles with infinite correlation length

    OpenAIRE

    Molodtsov, S. V.; Zinovjev, G. M.

    2014-01-01

    By studying quark ensembles with infinite correlation length we formulate the quantum field theory model that, as we show, is exactly integrable and develops an instability of its standard vacuum ensemble (the Dirac sea). We argue such an instability is rooted in high ground state degeneracy (for 'realistic' space-time dimensions) featuring a fairly specific form of energy distribution, and with the cutoff parameter going to infinity this inherent energy distribution becomes infinitely narrow...

  16. Orbital magnetism in ensembles of ballistic billiards

    International Nuclear Information System (INIS)

    Ullmo, D.; Richter, K.; Jalabert, R.A.

    1993-01-01

    The magnetic response of ensembles of small two-dimensional structures at finite temperatures is calculated. Using semiclassical methods and numerical calculation it is demonstrated that only short classical trajectories are relevant. The magnetic susceptibility is enhanced in regular systems, where these trajectories appear in families. For ensembles of squares large paramagnetic susceptibility is obtained, in good agreement with recent measurements in the ballistic regime. (authors). 20 refs., 2 figs

  17. Multivariate localization methods for ensemble Kalman filtering

    OpenAIRE

    S. Roh; M. Jun; I. Szunyogh; M. G. Genton

    2015-01-01

    In ensemble Kalman filtering (EnKF), the small number of ensemble members that is feasible to use in a practical data assimilation application leads to sampling variability of the estimates of the background error covariances. The standard approach to reducing the effects of this sampling variability, which has also been found to be highly efficient in improving the performance of EnKF, is the localization of the estimates of the covariances. One family of ...

  18. Impacts of calibration strategies and ensemble methods on ensemble flood forecasting over Lanjiang basin, Southeast China

    Science.gov (United States)

    Liu, Li; Xu, Yue-Ping

    2017-04-01

    Ensemble flood forecasting driven by numerical weather prediction products is becoming more commonly used in operational flood forecasting applications.In this study, a hydrological ensemble flood forecasting system based on Variable Infiltration Capacity (VIC) model and quantitative precipitation forecasts from TIGGE dataset is constructed for Lanjiang Basin, Southeast China. The impacts of calibration strategies and ensemble methods on the performance of the system are then evaluated.The hydrological model is optimized by parallel programmed ɛ-NSGAII multi-objective algorithm and two respectively parameterized models are determined to simulate daily flows and peak flows coupled with a modular approach.The results indicatethat the ɛ-NSGAII algorithm permits more efficient optimization and rational determination on parameter setting.It is demonstrated that the multimodel ensemble streamflow mean have better skills than the best singlemodel ensemble mean (ECMWF) and the multimodel ensembles weighted on members and skill scores outperform other multimodel ensembles. For typical flood event, it is proved that the flood can be predicted 3-4 days in advance, but the flows in rising limb can be captured with only 1-2 days ahead due to the flash feature. With respect to peak flows selected by Peaks Over Threshold approach, the ensemble means from either singlemodel or multimodels are generally underestimated as the extreme values are smoothed out by ensemble process.

  19. Towards a GME ensemble forecasting system: Ensemble initialization using the breeding technique

    Directory of Open Access Journals (Sweden)

    Jan D. Keller

    2008-12-01

    Full Text Available The quantitative forecast of precipitation requires a probabilistic background particularly with regard to forecast lead times of more than 3 days. As only ensemble simulations can provide useful information of the underlying probability density function, we built a new ensemble forecasting system (GME-EFS based on the GME model of the German Meteorological Service (DWD. For the generation of appropriate initial ensemble perturbations we chose the breeding technique developed by Toth and Kalnay (1993, 1997, which develops perturbations by estimating the regions of largest model error induced uncertainty. This method is applied and tested in the framework of quasi-operational forecasts for a three month period in 2007. The performance of the resulting ensemble forecasts are compared to the operational ensemble prediction systems ECMWF EPS and NCEP GFS by means of ensemble spread of free atmosphere parameters (geopotential and temperature and ensemble skill of precipitation forecasting. This comparison indicates that the GME ensemble forecasting system (GME-EFS provides reasonable forecasts with spread skill score comparable to that of the NCEP GFS. An analysis with the continuous ranked probability score exhibits a lack of resolution for the GME forecasts compared to the operational ensembles. However, with significant enhancements during the 3 month test period, the first results of our work with the GME-EFS indicate possibilities for further development as well as the potential for later operational usage.

  20. Conductor gestures influence evaluations of ensemble performance.

    Science.gov (United States)

    Morrison, Steven J; Price, Harry E; Smedley, Eric M; Meals, Cory D

    2014-01-01

    Previous research has found that listener evaluations of ensemble performances vary depending on the expressivity of the conductor's gestures, even when performances are otherwise identical. It was the purpose of the present study to test whether this effect of visual information was evident in the evaluation of specific aspects of ensemble performance: articulation and dynamics. We constructed a set of 32 music performances that combined auditory and visual information and were designed to feature a high degree of contrast along one of two target characteristics: articulation and dynamics. We paired each of four music excerpts recorded by a chamber ensemble in both a high- and low-contrast condition with video of four conductors demonstrating high- and low-contrast gesture specifically appropriate to either articulation or dynamics. Using one of two equivalent test forms, college music majors and non-majors (N = 285) viewed sixteen 30 s performances and evaluated the quality of the ensemble's articulation, dynamics, technique, and tempo along with overall expressivity. Results showed significantly higher evaluations for performances featuring high rather than low conducting expressivity regardless of the ensemble's performance quality. Evaluations for both articulation and dynamics were strongly and positively correlated with evaluations of overall ensemble expressivity.

  1. Symmetric minimally entangled typical thermal states for canonical and grand-canonical ensembles

    Science.gov (United States)

    Binder, Moritz; Barthel, Thomas

    2017-05-01

    Based on the density matrix renormalization group (DMRG), strongly correlated quantum many-body systems at finite temperatures can be simulated by sampling over a certain class of pure matrix product states (MPS) called minimally entangled typical thermal states (METTS). When a system features symmetries, these can be utilized to substantially reduce MPS computation costs. It is conceptually straightforward to simulate canonical ensembles using symmetric METTS. In practice, it is important to alternate between different symmetric collapse bases to decrease autocorrelations in the Markov chain of METTS. To this purpose, we introduce symmetric Fourier and Haar-random block bases that are efficiently mixing. We also show how grand-canonical ensembles can be simulated efficiently with symmetric METTS. We demonstrate these approaches for spin-1 /2 X X Z chains and discuss how the choice of the collapse bases influences autocorrelations as well as the distribution of measurement values and, hence, convergence speeds.

  2. Characterization of the critical submanifolds in quantum ensemble control landscapes

    International Nuclear Information System (INIS)

    Wu Rebing; Rabitz, Herschel; Hsieh, Michael

    2008-01-01

    The quantum control landscape is defined as the functional that maps the control variables to the expectation values of an observable over the ensemble of quantum systems. Analyzing the topology of such landscapes is important for understanding the origins of the increasing number of laboratory successes in the optimal control of quantum processes. This paper proposes a simple scheme to compute the characteristics of the critical topology of the quantum ensemble control landscapes showing that the set of disjoint critical submanifolds one-to-one corresponds to a finite number of contingency tables that solely depend on the degeneracy structure of the eigenvalues of the initial system density matrix and the observable whose expectation value is to be maximized. The landscape characteristics can be calculated as functions of the table entries, including the dimensions and the numbers of positive and negative eigenvalues of the Hessian quadratic form of each of the connected components of the critical submanifolds. Typical examples are given to illustrate the effectiveness of this method

  3. Statistical hadronization and hadronic micro-canonical ensemble II

    International Nuclear Information System (INIS)

    Becattini, F.; Ferroni, L.

    2004-01-01

    We present a Monte Carlo calculation of the micro-canonical ensemble of the ideal hadron-resonance gas including all known states up to a mass of about 1.8 GeV and full quantum statistics. The micro-canonical average multiplicities of the various hadron species are found to converge to the canonical ones for moderately low values of the total energy, around 8 GeV, thus bearing out previous analyses of hadronic multiplicities in the canonical ensemble. The main numerical computing method is an importance sampling Monte Carlo algorithm using the product of Poisson distributions to generate multi-hadronic channels. It is shown that the use of this multi-Poisson distribution allows for an efficient and fast computation of averages, which can be further improved in the limit of very large clusters. We have also studied the fitness of a previously proposed computing method, based on the Metropolis Monte Carlo algorithm, for event generation in the statistical hadronization model. We find that the use of the multi-Poisson distribution as proposal matrix dramatically improves the computation performance. However, due to the correlation of subsequent samples, this method proves to be generally less robust and effective than the importance sampling method. (orig.)

  4. Calculations of light scattering matrices for stochastic ensembles of nanosphere clusters

    International Nuclear Information System (INIS)

    Bunkin, N.F.; Shkirin, A.V.; Suyazov, N.V.; Starosvetskiy, A.V.

    2013-01-01

    Results of the calculation of the light scattering matrices for systems of stochastic nanosphere clusters are presented. A mathematical model of spherical particle clustering with allowance for cluster–cluster aggregation is used. The fractal properties of cluster structures are explored at different values of the model parameter that governs cluster–cluster interaction. General properties of the light scattering matrices of nanosphere-cluster ensembles as dependent on their mean fractal dimension have been found. The scattering-matrix calculations were performed for finite samples of 10 3 random clusters, made up of polydisperse spherical nanoparticles, having lognormal size distribution with the effective radius 50 nm and effective variance 0.02; the mean number of monomers in a cluster and its standard deviation were set to 500 and 70, respectively. The implemented computation environment, modeling the scattering matrices for overall sequences of clusters, is based upon T-matrix program code for a given single cluster of spheres, which was developed in [1]. The ensemble-averaged results have been compared with orientation-averaged ones calculated for individual clusters. -- Highlights: ► We suggested a hierarchical model of cluster growth allowing for cluster–cluster aggregation. ► We analyzed the light scattering by whole ensembles of nanosphere clusters. ► We studied the evolution of the light scattering matrix when changing the fractal dimension

  5. An Adjoint-Based Adaptive Ensemble Kalman Filter

    KAUST Repository

    Song, Hajoon

    2013-10-01

    A new hybrid ensemble Kalman filter/four-dimensional variational data assimilation (EnKF/4D-VAR) approach is introduced to mitigate background covariance limitations in the EnKF. The work is based on the adaptive EnKF (AEnKF) method, which bears a strong resemblance to the hybrid EnKF/three-dimensional variational data assimilation (3D-VAR) method. In the AEnKF, the representativeness of the EnKF ensemble is regularly enhanced with new members generated after back projection of the EnKF analysis residuals to state space using a 3D-VAR [or optimal interpolation (OI)] scheme with a preselected background covariance matrix. The idea here is to reformulate the transformation of the residuals as a 4D-VAR problem, constraining the new member with model dynamics and the previous observations. This should provide more information for the estimation of the new member and reduce dependence of the AEnKF on the assumed stationary background covariance matrix. This is done by integrating the analysis residuals backward in time with the adjoint model. Numerical experiments are performed with the Lorenz-96 model under different scenarios to test the new approach and to evaluate its performance with respect to the EnKF and the hybrid EnKF/3D-VAR. The new method leads to the least root-mean-square estimation errors as long as the linear assumption guaranteeing the stability of the adjoint model holds. It is also found to be less sensitive to choices of the assimilation system inputs and parameters.

  6. An Adjoint-Based Adaptive Ensemble Kalman Filter

    KAUST Repository

    Song, Hajoon; Hoteit, Ibrahim; Cornuelle, Bruce D.; Luo, Xiaodong; Subramanian, Aneesh C.

    2013-01-01

    A new hybrid ensemble Kalman filter/four-dimensional variational data assimilation (EnKF/4D-VAR) approach is introduced to mitigate background covariance limitations in the EnKF. The work is based on the adaptive EnKF (AEnKF) method, which bears a strong resemblance to the hybrid EnKF/three-dimensional variational data assimilation (3D-VAR) method. In the AEnKF, the representativeness of the EnKF ensemble is regularly enhanced with new members generated after back projection of the EnKF analysis residuals to state space using a 3D-VAR [or optimal interpolation (OI)] scheme with a preselected background covariance matrix. The idea here is to reformulate the transformation of the residuals as a 4D-VAR problem, constraining the new member with model dynamics and the previous observations. This should provide more information for the estimation of the new member and reduce dependence of the AEnKF on the assumed stationary background covariance matrix. This is done by integrating the analysis residuals backward in time with the adjoint model. Numerical experiments are performed with the Lorenz-96 model under different scenarios to test the new approach and to evaluate its performance with respect to the EnKF and the hybrid EnKF/3D-VAR. The new method leads to the least root-mean-square estimation errors as long as the linear assumption guaranteeing the stability of the adjoint model holds. It is also found to be less sensitive to choices of the assimilation system inputs and parameters.

  7. Wavelet analysis of biological tissue's Mueller-matrix images

    Science.gov (United States)

    Tomka, Yu. Ya.

    2008-05-01

    The interrelations between statistics of the 1st-4th orders of the ensemble of Mueller-matrix images and geometric structure of birefringent architectonic nets of different morphological structure have been analyzed. The sensitivity of asymmetry and excess of statistic distributions of matrix elements Cik to changing of orientation structure of optically anisotropic protein fibrils of physiologically normal and pathologically changed biological tissues architectonics has been shown.

  8. Matrix inequalities

    CERN Document Server

    Zhan, Xingzhi

    2002-01-01

    The main purpose of this monograph is to report on recent developments in the field of matrix inequalities, with emphasis on useful techniques and ingenious ideas. Among other results this book contains the affirmative solutions of eight conjectures. Many theorems unify or sharpen previous inequalities. The author's aim is to streamline the ideas in the literature. The book can be read by research workers, graduate students and advanced undergraduates.

  9. Ensemble data assimilation in the Red Sea: sensitivity to ensemble selection and atmospheric forcing

    KAUST Repository

    Toye, Habib

    2017-05-26

    We present our efforts to build an ensemble data assimilation and forecasting system for the Red Sea. The system consists of the high-resolution Massachusetts Institute of Technology general circulation model (MITgcm) to simulate ocean circulation and of the Data Research Testbed (DART) for ensemble data assimilation. DART has been configured to integrate all members of an ensemble adjustment Kalman filter (EAKF) in parallel, based on which we adapted the ensemble operations in DART to use an invariant ensemble, i.e., an ensemble Optimal Interpolation (EnOI) algorithm. This approach requires only single forward model integration in the forecast step and therefore saves substantial computational cost. To deal with the strong seasonal variability of the Red Sea, the EnOI ensemble is then seasonally selected from a climatology of long-term model outputs. Observations of remote sensing sea surface height (SSH) and sea surface temperature (SST) are assimilated every 3 days. Real-time atmospheric fields from the National Center for Environmental Prediction (NCEP) and the European Center for Medium-Range Weather Forecasts (ECMWF) are used as forcing in different assimilation experiments. We investigate the behaviors of the EAKF and (seasonal-) EnOI and compare their performances for assimilating and forecasting the circulation of the Red Sea. We further assess the sensitivity of the assimilation system to various filtering parameters (ensemble size, inflation) and atmospheric forcing.

  10. The Hydrologic Ensemble Prediction Experiment (HEPEX)

    Science.gov (United States)

    Wood, A. W.; Thielen, J.; Pappenberger, F.; Schaake, J. C.; Hartman, R. K.

    2012-12-01

    The Hydrologic Ensemble Prediction Experiment was established in March, 2004, at a workshop hosted by the European Center for Medium Range Weather Forecasting (ECMWF). With support from the US National Weather Service (NWS) and the European Commission (EC), the HEPEX goal was to bring the international hydrological and meteorological communities together to advance the understanding and adoption of hydrological ensemble forecasts for decision support in emergency management and water resources sectors. The strategy to meet this goal includes meetings that connect the user, forecast producer and research communities to exchange ideas, data and methods; the coordination of experiments to address specific challenges; and the formation of testbeds to facilitate shared experimentation. HEPEX has organized about a dozen international workshops, as well as sessions at scientific meetings (including AMS, AGU and EGU) and special issues of scientific journals where workshop results have been published. Today, the HEPEX mission is to demonstrate the added value of hydrological ensemble prediction systems (HEPS) for emergency management and water resources sectors to make decisions that have important consequences for economy, public health, safety, and the environment. HEPEX is now organised around six major themes that represent core elements of a hydrologic ensemble prediction enterprise: input and pre-processing, ensemble techniques, data assimilation, post-processing, verification, and communication and use in decision making. This poster presents an overview of recent and planned HEPEX activities, highlighting case studies that exemplify the focus and objectives of HEPEX.

  11. Understanding ensemble protein folding at atomic detail

    International Nuclear Information System (INIS)

    Wallin, Stefan; Shakhnovich, Eugene I

    2008-01-01

    Although far from routine, simulating the folding of specific short protein chains on the computer, at a detailed atomic level, is starting to become a reality. This remarkable progress, which has been made over the last decade or so, allows a fundamental aspect of the protein folding process to be addressed, namely its statistical nature. In order to make quantitative comparisons with experimental kinetic data a complete ensemble view of folding must be achieved, with key observables averaged over the large number of microscopically different folding trajectories available to a protein chain. Here we review recent advances in atomic-level protein folding simulations and the new insight provided by them into the protein folding process. An important element in understanding ensemble folding kinetics are methods for analyzing many separate folding trajectories, and we discuss techniques developed to condense the large amount of information contained in an ensemble of trajectories into a manageable picture of the folding process. (topical review)

  12. Lattice gauge theory in the microcanonical ensemble

    International Nuclear Information System (INIS)

    Callaway, D.J.E.; Rahman, A.

    1983-01-01

    The microcanonical-ensemble formulation of lattice gauge theory proposed recently is examined in detail. Expectation values in this new ensemble are determined by solving a large set of coupled ordinary differential equations, after the fashion of a molecular dynamics simulation. Following a brief review of the microcanonical ensemble, calculations are performed for the gauge groups U(1), SU(2), and SU(3). The results are compared and contrasted with standard methods of computation. Several advantages of the new formalism are noted. For example, no random numbers are required to update the system. Also, this update is performed in a simultaneous fashion. Thus the microcanonical method presumably adapts well to parallel processing techniques, especially when the p action is highly nonlocal (such as when fermions are included)

  13. Ensemble Network Architecture for Deep Reinforcement Learning

    Directory of Open Access Journals (Sweden)

    Xi-liang Chen

    2018-01-01

    Full Text Available The popular deep Q learning algorithm is known to be instability because of the Q-value’s shake and overestimation action values under certain conditions. These issues tend to adversely affect their performance. In this paper, we develop the ensemble network architecture for deep reinforcement learning which is based on value function approximation. The temporal ensemble stabilizes the training process by reducing the variance of target approximation error and the ensemble of target values reduces the overestimate and makes better performance by estimating more accurate Q-value. Our results show that this architecture leads to statistically significant better value evaluation and more stable and better performance on several classical control tasks at OpenAI Gym environment.

  14. Ensemble Kalman methods for inverse problems

    International Nuclear Information System (INIS)

    Iglesias, Marco A; Law, Kody J H; Stuart, Andrew M

    2013-01-01

    The ensemble Kalman filter (EnKF) was introduced by Evensen in 1994 (Evensen 1994 J. Geophys. Res. 99 10143–62) as a novel method for data assimilation: state estimation for noisily observed time-dependent problems. Since that time it has had enormous impact in many application domains because of its robustness and ease of implementation, and numerical evidence of its accuracy. In this paper we propose the application of an iterative ensemble Kalman method for the solution of a wide class of inverse problems. In this context we show that the estimate of the unknown function that we obtain with the ensemble Kalman method lies in a subspace A spanned by the initial ensemble. Hence the resulting error may be bounded above by the error found from the best approximation in this subspace. We provide numerical experiments which compare the error incurred by the ensemble Kalman method for inverse problems with the error of the best approximation in A, and with variants on traditional least-squares approaches, restricted to the subspace A. In so doing we demonstrate that the ensemble Kalman method for inverse problems provides a derivative-free optimization method with comparable accuracy to that achieved by traditional least-squares approaches. Furthermore, we also demonstrate that the accuracy is of the same order of magnitude as that achieved by the best approximation. Three examples are used to demonstrate these assertions: inversion of a compact linear operator; inversion of piezometric head to determine hydraulic conductivity in a Darcy model of groundwater flow; and inversion of Eulerian velocity measurements at positive times to determine the initial condition in an incompressible fluid. (paper)

  15. Cluster ensembles, quantization and the dilogarithm

    DEFF Research Database (Denmark)

    Fock, Vladimir; Goncharov, Alexander B.

    2009-01-01

    A cluster ensemble is a pair of positive spaces (i.e. varieties equipped with positive atlases), coming with an action of a symmetry group . The space is closely related to the spectrum of a cluster algebra [ 12 ]. The two spaces are related by a morphism . The space is equipped with a closed -form......, possibly degenerate, and the space has a Poisson structure. The map is compatible with these structures. The dilogarithm together with its motivic and quantum avatars plays a central role in the cluster ensemble structure. We define a non-commutative -deformation of the -space. When is a root of unity...

  16. Ensemble computing for the petroleum industry

    International Nuclear Information System (INIS)

    Annaratone, M.; Dossa, D.

    1995-01-01

    Computer downsizing is one of the most often used buzzwords in today's competitive business, and the petroleum industry is at the forefront of this revolution. Ensemble computing provides the key for computer downsizing with its first incarnation, i.e., workstation farms. This paper concerns the importance of increasing the productivity cycle and not just the execution time of a job. The authors introduce the concept of ensemble computing and workstation farms. The they discuss how different computing paradigms can be addressed by workstation farms

  17. Matrix analysis

    CERN Document Server

    Bhatia, Rajendra

    1997-01-01

    A good part of matrix theory is functional analytic in spirit. This statement can be turned around. There are many problems in operator theory, where most of the complexities and subtleties are present in the finite-dimensional case. My purpose in writing this book is to present a systematic treatment of methods that are useful in the study of such problems. This book is intended for use as a text for upper division and gradu­ ate courses. Courses based on parts of the material have been given by me at the Indian Statistical Institute and at the University of Toronto (in collaboration with Chandler Davis). The book should also be useful as a reference for research workers in linear algebra, operator theory, mathe­ matical physics and numerical analysis. A possible subtitle of this book could be Matrix Inequalities. A reader who works through the book should expect to become proficient in the art of deriving such inequalities. Other authors have compared this art to that of cutting diamonds. One first has to...

  18. Symmetric minimally entangled typical thermal states, grand-canonical ensembles, and the influence of the collapse bases

    Science.gov (United States)

    Binder, Moritz; Barthel, Thomas

    Based on DMRG, strongly correlated quantum many-body systems at finite temperatures can be simulated by sampling over a certain class of pure matrix product states (MPS) called minimally entangled typical thermal states (METTS). Here, we show how symmetries of the system can be exploited to considerably reduce computation costs in the METTS algorithm. While this is straightforward for the canonical ensemble, we introduce a modification of the algorithm to efficiently simulate the grand-canonical ensemble under utilization of symmetries. In addition, we construct novel symmetry-conserving collapse bases for the transitions in the Markov chain of METTS that improve the speed of convergence of the algorithm by reducing autocorrelations.

  19. A class of energy-based ensembles in Tsallis statistics

    International Nuclear Information System (INIS)

    Chandrashekar, R; Naina Mohammed, S S

    2011-01-01

    A comprehensive investigation is carried out on the class of energy-based ensembles. The eight ensembles are divided into two main classes. In the isothermal class of ensembles the individual members are at the same temperature. A unified framework is evolved to describe the four isothermal ensembles using the currently accepted third constraint formalism. The isothermal–isobaric, grand canonical and generalized ensembles are illustrated through a study of the classical nonrelativistic and extreme relativistic ideal gas models. An exact calculation is possible only in the case of the isothermal–isobaric ensemble. The study of the ideal gas models in the grand canonical and the generalized ensembles has been carried out using a perturbative procedure with the nonextensivity parameter (1 − q) as the expansion parameter. Though all the thermodynamic quantities have been computed up to a particular order in (1 − q) the procedure can be extended up to any arbitrary order in the expansion parameter. In the adiabatic class of ensembles the individual members of the ensemble have the same value of the heat function and a unified formulation to described all four ensembles is given. The nonrelativistic and the extreme relativistic ideal gases are studied in the isoenthalpic–isobaric ensemble, the adiabatic ensemble with number fluctuations and the adiabatic ensemble with number and particle fluctuations

  20. An iterative stochastic ensemble method for parameter estimation of subsurface flow models

    International Nuclear Information System (INIS)

    Elsheikh, Ahmed H.; Wheeler, Mary F.; Hoteit, Ibrahim

    2013-01-01

    Parameter estimation for subsurface flow models is an essential step for maximizing the value of numerical simulations for future prediction and the development of effective control strategies. We propose the iterative stochastic ensemble method (ISEM) as a general method for parameter estimation based on stochastic estimation of gradients using an ensemble of directional derivatives. ISEM eliminates the need for adjoint coding and deals with the numerical simulator as a blackbox. The proposed method employs directional derivatives within a Gauss–Newton iteration. The update equation in ISEM resembles the update step in ensemble Kalman filter, however the inverse of the output covariance matrix in ISEM is regularized using standard truncated singular value decomposition or Tikhonov regularization. We also investigate the performance of a set of shrinkage based covariance estimators within ISEM. The proposed method is successfully applied on several nonlinear parameter estimation problems for subsurface flow models. The efficiency of the proposed algorithm is demonstrated by the small size of utilized ensembles and in terms of error convergence rates

  1. Quantum correlations of ideal Bose and Fermi gases in the canonical ensemble

    International Nuclear Information System (INIS)

    Tsutsui, Kazumasa; Kita, Takafumi

    2016-01-01

    We derive an expression for the reduced density matrices of ideal Bose and Fermi gases in the canonical ensemble, which corresponds to the Bloch-De Dominicis (or Wick's) theorem in the grand canonical ensemble for normal-ordered products of operators. Using this expression, we study one- and two-body correlations of homogeneous ideal gases with N particles. The pair distribution function g (2) (r) of fermions clearly exhibits antibunching with g (2) (0) = 0 due to the Pauli exclusion principle at all temperatures, whereas that of normal bosons shows bunching with g (2) (0) ≈ 2, corresponding to the Hanbury Brown-Twiss effect. For bosons below the Bose-Einstein condensation temperature T 0 , an off-diagonal long-range order develops in the one-particle density matrix to reach g (1) (r) = 1 at T = 0, and the pair correlation starts to decrease towards g (2) (r) ≈ 1 at T = 0. The results for N → ∞ are seen to converge to those of the grand canonical ensemble obtained by assuming the average <ψ(r)> of the field operator ψ(r) below T 0 . This fact justifies the introduction of the 'anomalous' average <ψ(r)> ≠ 0 below T 0 in the grand canonical ensemble as a mathematical means of removing unphysical particle-number fluctuations to reproduce the canonical results in the thermodynamic limit. (author)

  2. Compressing an Ensemble with Statistical Models: An Algorithm for Global 3D Spatio-Temporal Temperature

    KAUST Repository

    Castruccio, Stefano

    2015-04-02

    One of the main challenges when working with modern climate model ensembles is the increasingly larger size of the data produced, and the consequent difficulty in storing large amounts of spatio-temporally resolved information. Many compression algorithms can be used to mitigate this problem, but since they are designed to compress generic scientific data sets, they do not account for the nature of climate model output and they compress only individual simulations. In this work, we propose a different, statistics-based approach that explicitly accounts for the space-time dependence of the data for annual global three-dimensional temperature fields in an initial condition ensemble. The set of estimated parameters is small (compared to the data size) and can be regarded as a summary of the essential structure of the ensemble output; therefore, it can be used to instantaneously reproduce the temperature fields in an ensemble with a substantial saving in storage and time. The statistical model exploits the gridded geometry of the data and parallelization across processors. It is therefore computationally convenient and allows to fit a non-trivial model to a data set of one billion data points with a covariance matrix comprising of 10^18 entries.

  3. Compressing an Ensemble with Statistical Models: An Algorithm for Global 3D Spatio-Temporal Temperature

    KAUST Repository

    Castruccio, Stefano; Genton, Marc G.

    2015-01-01

    One of the main challenges when working with modern climate model ensembles is the increasingly larger size of the data produced, and the consequent difficulty in storing large amounts of spatio-temporally resolved information. Many compression algorithms can be used to mitigate this problem, but since they are designed to compress generic scientific data sets, they do not account for the nature of climate model output and they compress only individual simulations. In this work, we propose a different, statistics-based approach that explicitly accounts for the space-time dependence of the data for annual global three-dimensional temperature fields in an initial condition ensemble. The set of estimated parameters is small (compared to the data size) and can be regarded as a summary of the essential structure of the ensemble output; therefore, it can be used to instantaneously reproduce the temperature fields in an ensemble with a substantial saving in storage and time. The statistical model exploits the gridded geometry of the data and parallelization across processors. It is therefore computationally convenient and allows to fit a non-trivial model to a data set of one billion data points with a covariance matrix comprising of 10^18 entries.

  4. An iterative stochastic ensemble method for parameter estimation of subsurface flow models

    KAUST Repository

    Elsheikh, Ahmed H.

    2013-06-01

    Parameter estimation for subsurface flow models is an essential step for maximizing the value of numerical simulations for future prediction and the development of effective control strategies. We propose the iterative stochastic ensemble method (ISEM) as a general method for parameter estimation based on stochastic estimation of gradients using an ensemble of directional derivatives. ISEM eliminates the need for adjoint coding and deals with the numerical simulator as a blackbox. The proposed method employs directional derivatives within a Gauss-Newton iteration. The update equation in ISEM resembles the update step in ensemble Kalman filter, however the inverse of the output covariance matrix in ISEM is regularized using standard truncated singular value decomposition or Tikhonov regularization. We also investigate the performance of a set of shrinkage based covariance estimators within ISEM. The proposed method is successfully applied on several nonlinear parameter estimation problems for subsurface flow models. The efficiency of the proposed algorithm is demonstrated by the small size of utilized ensembles and in terms of error convergence rates. © 2013 Elsevier Inc.

  5. Matrix pentagons

    Science.gov (United States)

    Belitsky, A. V.

    2017-10-01

    The Operator Product Expansion for null polygonal Wilson loop in planar maximally supersymmetric Yang-Mills theory runs systematically in terms of multi-particle pentagon transitions which encode the physics of excitations propagating on the color flux tube ending on the sides of the four-dimensional contour. Their dynamics was unraveled in the past several years and culminated in a complete description of pentagons as an exact function of the 't Hooft coupling. In this paper we provide a solution for the last building block in this program, the SU(4) matrix structure arising from internal symmetry indices of scalars and fermions. This is achieved by a recursive solution of the Mirror and Watson equations obeyed by the so-called singlet pentagons and fixing the form of the twisted component in their tensor decomposition. The non-singlet, or charged, pentagons are deduced from these by a limiting procedure.

  6. Matrix pentagons

    Directory of Open Access Journals (Sweden)

    A.V. Belitsky

    2017-10-01

    Full Text Available The Operator Product Expansion for null polygonal Wilson loop in planar maximally supersymmetric Yang–Mills theory runs systematically in terms of multi-particle pentagon transitions which encode the physics of excitations propagating on the color flux tube ending on the sides of the four-dimensional contour. Their dynamics was unraveled in the past several years and culminated in a complete description of pentagons as an exact function of the 't Hooft coupling. In this paper we provide a solution for the last building block in this program, the SU(4 matrix structure arising from internal symmetry indices of scalars and fermions. This is achieved by a recursive solution of the Mirror and Watson equations obeyed by the so-called singlet pentagons and fixing the form of the twisted component in their tensor decomposition. The non-singlet, or charged, pentagons are deduced from these by a limiting procedure.

  7. The Hydrologic Ensemble Prediction Experiment (HEPEX)

    Science.gov (United States)

    Wood, Andy; Wetterhall, Fredrik; Ramos, Maria-Helena

    2015-04-01

    The Hydrologic Ensemble Prediction Experiment was established in March, 2004, at a workshop hosted by the European Center for Medium Range Weather Forecasting (ECMWF), and co-sponsored by the US National Weather Service (NWS) and the European Commission (EC). The HEPEX goal was to bring the international hydrological and meteorological communities together to advance the understanding and adoption of hydrological ensemble forecasts for decision support. HEPEX pursues this goal through research efforts and practical implementations involving six core elements of a hydrologic ensemble prediction enterprise: input and pre-processing, ensemble techniques, data assimilation, post-processing, verification, and communication and use in decision making. HEPEX has grown through meetings that connect the user, forecast producer and research communities to exchange ideas, data and methods; the coordination of experiments to address specific challenges; and the formation of testbeds to facilitate shared experimentation. In the last decade, HEPEX has organized over a dozen international workshops, as well as sessions at scientific meetings (including AMS, AGU and EGU) and special issues of scientific journals where workshop results have been published. Through these interactions and an active online blog (www.hepex.org), HEPEX has built a strong and active community of nearly 400 researchers & practitioners around the world. This poster presents an overview of recent and planned HEPEX activities, highlighting case studies that exemplify the focus and objectives of HEPEX.

  8. A method for ensemble wildland fire simulation

    Science.gov (United States)

    Mark A. Finney; Isaac C. Grenfell; Charles W. McHugh; Robert C. Seli; Diane Trethewey; Richard D. Stratton; Stuart Brittain

    2011-01-01

    An ensemble simulation system that accounts for uncertainty in long-range weather conditions and two-dimensional wildland fire spread is described. Fuel moisture is expressed based on the energy release component, a US fire danger rating index, and its variation throughout the fire season is modeled using time series analysis of historical weather data. This analysis...

  9. The Phantasmagoria of Competition in School Ensembles

    Science.gov (United States)

    Abramo, Joseph Michael

    2017-01-01

    Participation in competition festivals--where students and ensembles compete against each other for high scores and accolades--is a widespread practice in North American formal music education. In this article, I use Marx's theories of labor, value, and phantasmagoria to suggest a capitalist logic that structures these competitions. Marx's…

  10. Ensembl Genomes 2016: more genomes, more complexity.

    Science.gov (United States)

    Kersey, Paul Julian; Allen, James E; Armean, Irina; Boddu, Sanjay; Bolt, Bruce J; Carvalho-Silva, Denise; Christensen, Mikkel; Davis, Paul; Falin, Lee J; Grabmueller, Christoph; Humphrey, Jay; Kerhornou, Arnaud; Khobova, Julia; Aranganathan, Naveen K; Langridge, Nicholas; Lowy, Ernesto; McDowall, Mark D; Maheswari, Uma; Nuhn, Michael; Ong, Chuang Kee; Overduin, Bert; Paulini, Michael; Pedro, Helder; Perry, Emily; Spudich, Giulietta; Tapanari, Electra; Walts, Brandon; Williams, Gareth; Tello-Ruiz, Marcela; Stein, Joshua; Wei, Sharon; Ware, Doreen; Bolser, Daniel M; Howe, Kevin L; Kulesha, Eugene; Lawson, Daniel; Maslen, Gareth; Staines, Daniel M

    2016-01-04

    Ensembl Genomes (http://www.ensemblgenomes.org) is an integrating resource for genome-scale data from non-vertebrate species, complementing the resources for vertebrate genomics developed in the context of the Ensembl project (http://www.ensembl.org). Together, the two resources provide a consistent set of programmatic and interactive interfaces to a rich range of data including reference sequence, gene models, transcriptional data, genetic variation and comparative analysis. This paper provides an update to the previous publications about the resource, with a focus on recent developments. These include the development of new analyses and views to represent polyploid genomes (of which bread wheat is the primary exemplar); and the continued up-scaling of the resource, which now includes over 23 000 bacterial genomes, 400 fungal genomes and 100 protist genomes, in addition to 55 genomes from invertebrate metazoa and 39 genomes from plants. This dramatic increase in the number of included genomes is one part of a broader effort to automate the integration of archival data (genome sequence, but also associated RNA sequence data and variant calls) within the context of reference genomes and make it available through the Ensembl user interfaces. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  11. NYYD Ensemble ja Riho Sibul / Anneli Remme

    Index Scriptorium Estoniae

    Remme, Anneli, 1968-

    2001-01-01

    Gavin Bryarsi teos "Jesus' Blood Never Failed Me Yet" NYYD Ensemble'i ja Riho Sibula esituses 27. detsembril Pauluse kirikus Tartus ja 28. detsembril Rootsi- Mihkli kirikus Tallinnas. Kaastegevad Tartu Ülikooli Kammerkoor (Tartus) ja kammerkoor Voces Musicales (Tallinnas). Kunstiline juht Olari Elts

  12. Conductor gestures influence evaluations of ensemble performance

    Directory of Open Access Journals (Sweden)

    Steven eMorrison

    2014-07-01

    Full Text Available Previous research has found that listener evaluations of ensemble performances vary depending on the expressivity of the conductor’s gestures, even when performances are otherwise identical. It was the purpose of the present study to test whether this effect of visual information was evident in the evaluation of specific aspects of ensemble performance, articulation and dynamics. We constructed a set of 32 music performances that combined auditory and visual information and were designed to feature a high degree of contrast along one of two target characteristics: articulation and dynamics. We paired each of four music excerpts recorded by a chamber ensemble in both a high- and low-contrast condition with video of four conductors demonstrating high- and low-contrast gesture specifically appropriate to either articulation or dynamics. Using one of two equivalent test forms, college music majors and nonmajors (N = 285 viewed sixteen 30-second performances and evaluated the quality of the ensemble’s articulation, dynamics, technique and tempo along with overall expressivity. Results showed significantly higher evaluations for performances featuring high rather than low conducting expressivity regardless of the ensemble’s performance quality. Evaluations for both articulation and dynamics were strongly and positively correlated with evaluations of overall ensemble expressivity.

  13. Genetic Algorithm Optimized Neural Networks Ensemble as ...

    African Journals Online (AJOL)

    NJD

    Improvements in neural network calibration models by a novel approach using neural network ensemble (NNE) for the simultaneous ... process by training a number of neural networks. .... Matlab® version 6.1 was employed for building principal component ... provide a fair simulation of calibration data set with some degree.

  14. A Theoretical Analysis of Why Hybrid Ensembles Work

    Directory of Open Access Journals (Sweden)

    Kuo-Wei Hsu

    2017-01-01

    Full Text Available Inspired by the group decision making process, ensembles or combinations of classifiers have been found favorable in a wide variety of application domains. Some researchers propose to use the mixture of two different types of classification algorithms to create a hybrid ensemble. Why does such an ensemble work? The question remains. Following the concept of diversity, which is one of the fundamental elements of the success of ensembles, we conduct a theoretical analysis of why hybrid ensembles work, connecting using different algorithms to accuracy gain. We also conduct experiments on classification performance of hybrid ensembles of classifiers created by decision tree and naïve Bayes classification algorithms, each of which is a top data mining algorithm and often used to create non-hybrid ensembles. Therefore, through this paper, we provide a complement to the theoretical foundation of creating and using hybrid ensembles.

  15. Ensemble-based Kalman Filters in Strongly Nonlinear Dynamics

    Institute of Scientific and Technical Information of China (English)

    Zhaoxia PU; Joshua HACKER

    2009-01-01

    This study examines the effectiveness of ensemble Kalman filters in data assimilation with the strongly nonlinear dynamics of the Lorenz-63 model, and in particular their use in predicting the regime transition that occurs when the model jumps from one basin of attraction to the other. Four configurations of the ensemble-based Kalman filtering data assimilation techniques, including the ensemble Kalman filter, ensemble adjustment Kalman filter, ensemble square root filter and ensemble transform Kalman filter, are evaluated with their ability in predicting the regime transition (also called phase transition) and also are compared in terms of their sensitivity to both observational and sampling errors. The sensitivity of each ensemble-based filter to the size of the ensemble is also examined.

  16. Ensemble of classifiers based network intrusion detection system performance bound

    CSIR Research Space (South Africa)

    Mkuzangwe, Nenekazi NP

    2017-11-01

    Full Text Available This paper provides a performance bound of a network intrusion detection system (NIDS) that uses an ensemble of classifiers. Currently researchers rely on implementing the ensemble of classifiers based NIDS before they can determine the performance...

  17. Global Ensemble Forecast System (GEFS) [2.5 Deg.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Global Ensemble Forecast System (GEFS) is a weather forecast model made up of 21 separate forecasts, or ensemble members. The National Centers for Environmental...

  18. Using ensemble forecasting for wind power

    Energy Technology Data Exchange (ETDEWEB)

    Giebel, G.; Landberg, L.; Badger, J. [Risoe National Lab., Roskilde (Denmark); Sattler, K.

    2003-07-01

    Short-term prediction of wind power has a long tradition in Denmark. It is an essential tool for the operators to keep the grid from becoming unstable in a region like Jutland, where more than 27% of the electricity consumption comes from wind power. This means that the minimum load is already lower than the maximum production from wind energy alone. Danish utilities have therefore used short-term prediction of wind energy since the mid-90ies. However, the accuracy is still far from being sufficient in the eyes of the utilities (used to have load forecasts accurate to within 5% on a one-week horizon). The Ensemble project tries to alleviate the dependency of the forecast quality on one model by using multiple models, and also will investigate the possibilities of using the model spread of multiple models or of dedicated ensemble runs for a prediction of the uncertainty of the forecast. Usually, short-term forecasting works (especially for the horizon beyond 6 hours) by gathering input from a Numerical Weather Prediction (NWP) model. This input data is used together with online data in statistical models (this is the case eg in Zephyr/WPPT) to yield the output of the wind farms or of a whole region for the next 48 hours (only limited by the NWP model horizon). For the accuracy of the final production forecast, the accuracy of the NWP prediction is paramount. While many efforts are underway to increase the accuracy of the NWP forecasts themselves (which ultimately are limited by the amount of computing power available, the lack of a tight observational network on the Atlantic and limited physics modelling), another approach is to use ensembles of different models or different model runs. This can be either an ensemble of different models output for the same area, using different data assimilation schemes and different model physics, or a dedicated ensemble run by a large institution, where the same model is run with slight variations in initial conditions and

  19. From deep TLS validation to ensembles of atomic models built from elemental motions

    International Nuclear Information System (INIS)

    Urzhumtsev, Alexandre; Afonine, Pavel V.; Van Benschoten, Andrew H.; Fraser, James S.; Adams, Paul D.

    2015-01-01

    Procedures are described for extracting the vibration and libration parameters corresponding to a given set of TLS matrices and their simultaneous validation. Knowledge of these parameters allows the generation of structural ensembles corresponding to these matrices. The translation–libration–screw model first introduced by Cruickshank, Schomaker and Trueblood describes the concerted motions of atomic groups. Using TLS models can improve the agreement between calculated and experimental diffraction data. Because the T, L and S matrices describe a combination of atomic vibrations and librations, TLS models can also potentially shed light on molecular mechanisms involving correlated motions. However, this use of TLS models in mechanistic studies is hampered by the difficulties in translating the results of refinement into molecular movement or a structural ensemble. To convert the matrices into a constituent molecular movement, the matrix elements must satisfy several conditions. Refining the T, L and S matrix elements as independent parameters without taking these conditions into account may result in matrices that do not represent concerted molecular movements. Here, a mathematical framework and the computational tools to analyze TLS matrices, resulting in either explicit decomposition into descriptions of the underlying motions or a report of broken conditions, are described. The description of valid underlying motions can then be output as a structural ensemble. All methods are implemented as part of the PHENIX project

  20. From deep TLS validation to ensembles of atomic models built from elemental motions

    Energy Technology Data Exchange (ETDEWEB)

    Urzhumtsev, Alexandre, E-mail: sacha@igbmc.fr [Centre for Integrative Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS–INSERM–UdS, 1 Rue Laurent Fries, BP 10142, 67404 Illkirch (France); Université de Lorraine, BP 239, 54506 Vandoeuvre-les-Nancy (France); Afonine, Pavel V. [Lawrence Berkeley National Laboratory, Berkeley, California (United States); Van Benschoten, Andrew H.; Fraser, James S. [University of California, San Francisco, San Francisco, CA 94158 (United States); Adams, Paul D. [Lawrence Berkeley National Laboratory, Berkeley, California (United States); University of California Berkeley, Berkeley, CA 94720 (United States); Centre for Integrative Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS–INSERM–UdS, 1 Rue Laurent Fries, BP 10142, 67404 Illkirch (France)

    2015-07-28

    Procedures are described for extracting the vibration and libration parameters corresponding to a given set of TLS matrices and their simultaneous validation. Knowledge of these parameters allows the generation of structural ensembles corresponding to these matrices. The translation–libration–screw model first introduced by Cruickshank, Schomaker and Trueblood describes the concerted motions of atomic groups. Using TLS models can improve the agreement between calculated and experimental diffraction data. Because the T, L and S matrices describe a combination of atomic vibrations and librations, TLS models can also potentially shed light on molecular mechanisms involving correlated motions. However, this use of TLS models in mechanistic studies is hampered by the difficulties in translating the results of refinement into molecular movement or a structural ensemble. To convert the matrices into a constituent molecular movement, the matrix elements must satisfy several conditions. Refining the T, L and S matrix elements as independent parameters without taking these conditions into account may result in matrices that do not represent concerted molecular movements. Here, a mathematical framework and the computational tools to analyze TLS matrices, resulting in either explicit decomposition into descriptions of the underlying motions or a report of broken conditions, are described. The description of valid underlying motions can then be output as a structural ensemble. All methods are implemented as part of the PHENIX project.

  1. Ensemble data assimilation in the Red Sea: sensitivity to ensemble selection and atmospheric forcing

    KAUST Repository

    Toye, Habib; Zhan, Peng; Gopalakrishnan, Ganesh; Kartadikaria, Aditya R.; Huang, Huang; Knio, Omar; Hoteit, Ibrahim

    2017-01-01

    We present our efforts to build an ensemble data assimilation and forecasting system for the Red Sea. The system consists of the high-resolution Massachusetts Institute of Technology general circulation model (MITgcm) to simulate ocean circulation

  2. Robust Ensemble Filtering and Its Relation to Covariance Inflation in the Ensemble Kalman Filter

    KAUST Repository

    Luo, Xiaodong; Hoteit, Ibrahim

    2011-01-01

    A robust ensemble filtering scheme based on the H∞ filtering theory is proposed. The optimal H∞ filter is derived by minimizing the supremum (or maximum) of a predefined cost function, a criterion different from the minimum variance used

  3. Quantum canonical ensemble: A projection operator approach

    Science.gov (United States)

    Magnus, Wim; Lemmens, Lucien; Brosens, Fons

    2017-09-01

    Knowing the exact number of particles N, and taking this knowledge into account, the quantum canonical ensemble imposes a constraint on the occupation number operators. The constraint particularly hampers the systematic calculation of the partition function and any relevant thermodynamic expectation value for arbitrary but fixed N. On the other hand, fixing only the average number of particles, one may remove the above constraint and simply factorize the traces in Fock space into traces over single-particle states. As is well known, that would be the strategy of the grand-canonical ensemble which, however, comes with an additional Lagrange multiplier to impose the average number of particles. The appearance of this multiplier can be avoided by invoking a projection operator that enables a constraint-free computation of the partition function and its derived quantities in the canonical ensemble, at the price of an angular or contour integration. Introduced in the recent past to handle various issues related to particle-number projected statistics, the projection operator approach proves beneficial to a wide variety of problems in condensed matter physics for which the canonical ensemble offers a natural and appropriate environment. In this light, we present a systematic treatment of the canonical ensemble that embeds the projection operator into the formalism of second quantization while explicitly fixing N, the very number of particles rather than the average. Being applicable to both bosonic and fermionic systems in arbitrary dimensions, transparent integral representations are provided for the partition function ZN and the Helmholtz free energy FN as well as for two- and four-point correlation functions. The chemical potential is not a Lagrange multiplier regulating the average particle number but can be extracted from FN+1 -FN, as illustrated for a two-dimensional fermion gas.

  4. The classicality and quantumness of a quantum ensemble

    International Nuclear Information System (INIS)

    Zhu Xuanmin; Pang Shengshi; Wu Shengjun; Liu Quanhui

    2011-01-01

    In this Letter, we investigate the classicality and quantumness of a quantum ensemble. We define a quantity called ensemble classicality based on classical cloning strategy (ECCC) to characterize how classical a quantum ensemble is. An ensemble of commuting states has a unit ECCC, while a general ensemble can have a ECCC less than 1. We also study how quantum an ensemble is by defining a related quantity called quantumness. We find that the classicality of an ensemble is closely related to how perfectly the ensemble can be cloned, and that the quantumness of the ensemble used in a quantum key distribution (QKD) protocol is exactly the attainable lower bound of the error rate in the sifted key. - Highlights: → A quantity is defined to characterize how classical a quantum ensemble is. → The classicality of an ensemble is closely related to the cloning performance. → Another quantity is also defined to investigate how quantum an ensemble is. → This quantity gives the lower bound of the error rate in a QKD protocol.

  5. Exploring and Listening to Chinese Classical Ensembles in General Music

    Science.gov (United States)

    Zhang, Wenzhuo

    2017-01-01

    Music diversity is valued in theory, but the extent to which it is efficiently presented in music class remains limited. Within this article, I aim to bridge this gap by introducing four genres of Chinese classical ensembles--Qin and Xiao duets, Jiang Nan bamboo and silk ensembles, Cantonese ensembles, and contemporary Chinese orchestras--into the…

  6. Critical Listening in the Ensemble Rehearsal: A Community of Learners

    Science.gov (United States)

    Bell, Cindy L.

    2018-01-01

    This article explores a strategy for engaging ensemble members in critical listening analysis of performances and presents opportunities for improving ensemble sound through rigorous dialogue, reflection, and attentive rehearsing. Critical listening asks ensemble members to draw on individual playing experience and knowledge to describe what they…

  7. Thermodynamic state ensemble models of cis-regulation.

    Directory of Open Access Journals (Sweden)

    Marc S Sherman

    Full Text Available A major goal in computational biology is to develop models that accurately predict a gene's expression from its surrounding regulatory DNA. Here we present one class of such models, thermodynamic state ensemble models. We describe the biochemical derivation of the thermodynamic framework in simple terms, and lay out the mathematical components that comprise each model. These components include (1 the possible states of a promoter, where a state is defined as a particular arrangement of transcription factors bound to a DNA promoter, (2 the binding constants that describe the affinity of the protein-protein and protein-DNA interactions that occur in each state, and (3 whether each state is capable of transcribing. Using these components, we demonstrate how to compute a cis-regulatory function that encodes the probability of a promoter being active. Our intention is to provide enough detail so that readers with little background in thermodynamics can compose their own cis-regulatory functions. To facilitate this goal, we also describe a matrix form of the model that can be easily coded in any programming language. This formalism has great flexibility, which we show by illustrating how phenomena such as competition between transcription factors and cooperativity are readily incorporated into these models. Using this framework, we also demonstrate that Michaelis-like functions, another class of cis-regulatory models, are a subset of the thermodynamic framework with specific assumptions. By recasting Michaelis-like functions as thermodynamic functions, we emphasize the relationship between these models and delineate the specific circumstances representable by each approach. Application of thermodynamic state ensemble models is likely to be an important tool in unraveling the physical basis of combinatorial cis-regulation and in generating formalisms that accurately predict gene expression from DNA sequence.

  8. Universality in invariant random-matrix models: Existence near the soft edge

    International Nuclear Information System (INIS)

    Kanzieper, E.; Freilikher, V.

    1997-01-01

    We consider two non-Gaussian ensembles of large Hermitian random matrices with strong level confinement and show that near the soft edge of the spectrum both scaled density of states and eigenvalue correlations follow so-called Airy laws inherent in the Gaussian unitary ensemble. This suggests that the invariant one-matrix models should display universal eigenvalue correlations in the soft-edge scaling limit. copyright 1997 The American Physical Society

  9. Random matrix approach to plasmon resonances in the random impedance network model of disordered nanocomposites

    Science.gov (United States)

    Olekhno, N. A.; Beltukov, Y. M.

    2018-05-01

    Random impedance networks are widely used as a model to describe plasmon resonances in disordered metal-dielectric and other two-component nanocomposites. In the present work, the spectral properties of resonances in random networks are studied within the framework of the random matrix theory. We have shown that the appropriate ensemble of random matrices for the considered problem is the Jacobi ensemble (the MANOVA ensemble). The obtained analytical expressions for the density of states in such resonant networks show a good agreement with the results of numerical simulations in a wide range of metal filling fractions 0

  10. Improving Climate Projections Using "Intelligent" Ensembles

    Science.gov (United States)

    Baker, Noel C.; Taylor, Patrick C.

    2015-01-01

    Recent changes in the climate system have led to growing concern, especially in communities which are highly vulnerable to resource shortages and weather extremes. There is an urgent need for better climate information to develop solutions and strategies for adapting to a changing climate. Climate models provide excellent tools for studying the current state of climate and making future projections. However, these models are subject to biases created by structural uncertainties. Performance metrics-or the systematic determination of model biases-succinctly quantify aspects of climate model behavior. Efforts to standardize climate model experiments and collect simulation data-such as the Coupled Model Intercomparison Project (CMIP)-provide the means to directly compare and assess model performance. Performance metrics have been used to show that some models reproduce present-day climate better than others. Simulation data from multiple models are often used to add value to projections by creating a consensus projection from the model ensemble, in which each model is given an equal weight. It has been shown that the ensemble mean generally outperforms any single model. It is possible to use unequal weights to produce ensemble means, in which models are weighted based on performance (called "intelligent" ensembles). Can performance metrics be used to improve climate projections? Previous work introduced a framework for comparing the utility of model performance metrics, showing that the best metrics are related to the variance of top-of-atmosphere outgoing longwave radiation. These metrics improve present-day climate simulations of Earth's energy budget using the "intelligent" ensemble method. The current project identifies several approaches for testing whether performance metrics can be applied to future simulations to create "intelligent" ensemble-mean climate projections. It is shown that certain performance metrics test key climate processes in the models, and

  11. A second-order unconstrained optimization method for canonical-ensemble density-functional methods

    Science.gov (United States)

    Nygaard, Cecilie R.; Olsen, Jeppe

    2013-03-01

    A second order converging method of ensemble optimization (SOEO) in the framework of Kohn-Sham Density-Functional Theory is presented, where the energy is minimized with respect to an ensemble density matrix. It is general in the sense that the number of fractionally occupied orbitals is not predefined, but rather it is optimized by the algorithm. SOEO is a second order Newton-Raphson method of optimization, where both the form of the orbitals and the occupation numbers are optimized simultaneously. To keep the occupation numbers between zero and two, a set of occupation angles is defined, from which the occupation numbers are expressed as trigonometric functions. The total number of electrons is controlled by a built-in second order restriction of the Newton-Raphson equations, which can be deactivated in the case of a grand-canonical ensemble (where the total number of electrons is allowed to change). To test the optimization method, dissociation curves for diatomic carbon are produced using different functionals for the exchange-correlation energy. These curves show that SOEO favors symmetry broken pure-state solutions when using functionals with exact exchange such as Hartree-Fock and Becke three-parameter Lee-Yang-Parr. This is explained by an unphysical contribution to the exact exchange energy from interactions between fractional occupations. For functionals without exact exchange, such as local density approximation or Becke Lee-Yang-Parr, ensemble solutions are favored at interatomic distances larger than the equilibrium distance. Calculations on the chromium dimer are also discussed. They show that SOEO is able to converge to ensemble solutions for systems that are more complicated than diatomic carbon.

  12. Demonstrating the value of larger ensembles in forecasting physical systems

    Directory of Open Access Journals (Sweden)

    Reason L. Machete

    2016-12-01

    Full Text Available Ensemble simulation propagates a collection of initial states forward in time in a Monte Carlo fashion. Depending on the fidelity of the model and the properties of the initial ensemble, the goal of ensemble simulation can range from merely quantifying variations in the sensitivity of the model all the way to providing actionable probability forecasts of the future. Whatever the goal is, success depends on the properties of the ensemble, and there is a longstanding discussion in meteorology as to the size of initial condition ensemble most appropriate for Numerical Weather Prediction. In terms of resource allocation: how is one to divide finite computing resources between model complexity, ensemble size, data assimilation and other components of the forecast system. One wishes to avoid undersampling information available from the model's dynamics, yet one also wishes to use the highest fidelity model available. Arguably, a higher fidelity model can better exploit a larger ensemble; nevertheless it is often suggested that a relatively small ensemble, say ~16 members, is sufficient and that larger ensembles are not an effective investment of resources. This claim is shown to be dubious when the goal is probabilistic forecasting, even in settings where the forecast model is informative but imperfect. Probability forecasts for a ‘simple’ physical system are evaluated at different lead times; ensembles of up to 256 members are considered. The pure density estimation context (where ensemble members are drawn from the same underlying distribution as the target differs from the forecasting context, where one is given a high fidelity (but imperfect model. In the forecasting context, the information provided by additional members depends also on the fidelity of the model, the ensemble formation scheme (data assimilation, the ensemble interpretation and the nature of the observational noise. The effect of increasing the ensemble size is quantified by

  13. Data assimilation in integrated hydrological modeling using ensemble Kalman filtering

    DEFF Research Database (Denmark)

    Rasmussen, Jørn; Madsen, H.; Jensen, Karsten Høgh

    2015-01-01

    Groundwater head and stream discharge is assimilated using the ensemble transform Kalman filter in an integrated hydrological model with the aim of studying the relationship between the filter performance and the ensemble size. In an attempt to reduce the required number of ensemble members...... and estimating parameters requires a much larger ensemble size than just assimilating groundwater head observations. However, the required ensemble size can be greatly reduced with the use of adaptive localization, which by far outperforms distance-based localization. The study is conducted using synthetic data...

  14. Statistical ensembles for money and debt

    Science.gov (United States)

    Viaggiu, Stefano; Lionetto, Andrea; Bargigli, Leonardo; Longo, Michele

    2012-10-01

    We build a statistical ensemble representation of two economic models describing respectively, in simplified terms, a payment system and a credit market. To this purpose we adopt the Boltzmann-Gibbs distribution where the role of the Hamiltonian is taken by the total money supply (i.e. including money created from debt) of a set of interacting economic agents. As a result, we can read the main thermodynamic quantities in terms of monetary ones. In particular, we define for the credit market model a work term which is related to the impact of monetary policy on credit creation. Furthermore, with our formalism we recover and extend some results concerning the temperature of an economic system, previously presented in the literature by considering only the monetary base as a conserved quantity. Finally, we study the statistical ensemble for the Pareto distribution.

  15. Quark ensembles with the infinite correlation length

    Science.gov (United States)

    Zinov'ev, G. M.; Molodtsov, S. V.

    2015-01-01

    A number of exactly integrable (quark) models of quantum field theory with the infinite correlation length have been considered. It has been shown that the standard vacuum quark ensemble—Dirac sea (in the case of the space-time dimension higher than three)—is unstable because of the strong degeneracy of a state, which is due to the character of the energy distribution. When the momentum cutoff parameter tends to infinity, the distribution becomes infinitely narrow, leading to large (unlimited) fluctuations. Various vacuum ensembles—Dirac sea, neutral ensemble, color superconductor, and BCS state—have been compared. In the case of the color interaction between quarks, the BCS state has been certainly chosen as the ground state of the quark ensemble.

  16. Quark ensembles with the infinite correlation length

    International Nuclear Information System (INIS)

    Zinov’ev, G. M.; Molodtsov, S. V.

    2015-01-01

    A number of exactly integrable (quark) models of quantum field theory with the infinite correlation length have been considered. It has been shown that the standard vacuum quark ensemble—Dirac sea (in the case of the space-time dimension higher than three)—is unstable because of the strong degeneracy of a state, which is due to the character of the energy distribution. When the momentum cutoff parameter tends to infinity, the distribution becomes infinitely narrow, leading to large (unlimited) fluctuations. Various vacuum ensembles—Dirac sea, neutral ensemble, color superconductor, and BCS state—have been compared. In the case of the color interaction between quarks, the BCS state has been certainly chosen as the ground state of the quark ensemble

  17. Quark ensembles with the infinite correlation length

    Energy Technology Data Exchange (ETDEWEB)

    Zinov’ev, G. M. [National Academy of Sciences of Ukraine, Bogoliubov Institute for Theoretical Physics (Ukraine); Molodtsov, S. V., E-mail: molodtsov@itep.ru [Joint Institute for Nuclear Research (Russian Federation)

    2015-01-15

    A number of exactly integrable (quark) models of quantum field theory with the infinite correlation length have been considered. It has been shown that the standard vacuum quark ensemble—Dirac sea (in the case of the space-time dimension higher than three)—is unstable because of the strong degeneracy of a state, which is due to the character of the energy distribution. When the momentum cutoff parameter tends to infinity, the distribution becomes infinitely narrow, leading to large (unlimited) fluctuations. Various vacuum ensembles—Dirac sea, neutral ensemble, color superconductor, and BCS state—have been compared. In the case of the color interaction between quarks, the BCS state has been certainly chosen as the ground state of the quark ensemble.

  18. Various multistage ensembles for prediction of heating energy consumption

    Directory of Open Access Journals (Sweden)

    Radisa Jovanovic

    2015-04-01

    Full Text Available Feedforward neural network models are created for prediction of daily heating energy consumption of a NTNU university campus Gloshaugen using actual measured data for training and testing. Improvement of prediction accuracy is proposed by using neural network ensemble. Previously trained feed-forward neural networks are first separated into clusters, using k-means algorithm, and then the best network of each cluster is chosen as member of an ensemble. Two conventional averaging methods for obtaining ensemble output are applied; simple and weighted. In order to achieve better prediction results, multistage ensemble is investigated. As second level, adaptive neuro-fuzzy inference system with various clustering and membership functions are used to aggregate the selected ensemble members. Feedforward neural network in second stage is also analyzed. It is shown that using ensemble of neural networks can predict heating energy consumption with better accuracy than the best trained single neural network, while the best results are achieved with multistage ensemble.

  19. Online Learning of Commission Avoidant Portfolio Ensembles

    OpenAIRE

    Uziel, Guy; El-Yaniv, Ran

    2016-01-01

    We present a novel online ensemble learning strategy for portfolio selection. The new strategy controls and exploits any set of commission-oblivious portfolio selection algorithms. The strategy handles transaction costs using a novel commission avoidance mechanism. We prove a logarithmic regret bound for our strategy with respect to optimal mixtures of the base algorithms. Numerical examples validate the viability of our method and show significant improvement over the state-of-the-art.

  20. Modeling Coordination Problems in a Music Ensemble

    DEFF Research Database (Denmark)

    Frimodt-Møller, Søren R.

    2008-01-01

    This paper considers in general terms, how musicians are able to coordinate through rational choices in a situation of (temporary) doubt in an ensemble performance. A fictitious example involving a 5-bar development in an unknown piece of music is analyzed in terms of epistemic logic, more...... to coordinate. Such coordination can be described in terms of Michael Bacharach's theory of variable frames as an aid to solve game theoretic coordination problems....

  1. Microcanonical ensemble formulation of lattice gauge theory

    International Nuclear Information System (INIS)

    Callaway, D.J.E.; Rahman, A.

    1982-01-01

    A new formulation of lattice gauge theory without explicit path integrals or sums is obtained by using the microcanonical ensemble of statistical mechanics. Expectation values in the new formalism are calculated by solving a large set of coupled, nonlinear, ordinary differential equations. The average plaquette for compact electrodynamics calculated in this fashion agrees with standard Monte Carlo results. Possible advantages of the microcanonical method in applications to fermionic systems are discussed

  2. Ensemble forecasts of road surface temperatures

    Czech Academy of Sciences Publication Activity Database

    Sokol, Zbyněk; Bližňák, Vojtěch; Sedlák, Pavel; Zacharov, Petr, jr.; Pešice, Petr; Škuthan, M.

    2017-01-01

    Roč. 187, 1 May (2017), s. 33-41 ISSN 0169-8095 R&D Projects: GA ČR GA13-34856S; GA TA ČR(CZ) TA01031509 Institutional support: RVO:68378289 Keywords : ensemble prediction * road surface temperature * road weather forecast Subject RIV: DG - Athmosphere Sciences, Meteorology OBOR OECD: Meteorology and atmospheric sciences Impact factor: 3.778, year: 2016 http://www.sciencedirect.com/science/article/pii/S0169809516307311

  3. Parametric Level Statistics in Random Matrix Theory: Exact Solution

    International Nuclear Information System (INIS)

    Kanzieper, E.

    1999-01-01

    During recent several years, the theory of non-Gaussian random matrix ensembles has experienced a sound progress motivated by new ideas in quantum chromodynamics (QCD) and mesoscopic physics. Invariant non-Gaussian random matrix models appear to describe universal features of low-energy part of the spectrum of Dirac operator in QCD, and electron level statistics in normal conducting-superconducting hybrid structures. They also serve as a basis for constructing the toy models of universal spectral statistics expected at the edge of the metal-insulator transition. While conventional spectral statistics has received a detailed study in the context of RMT, quite a bit is known about parametric level statistics in non-Gaussian random matrix models. In this communication we report about exact solution to the problem of parametric level statistics in unitary invariant, U(N), non-Gaussian ensembles of N x N Hermitian random matrices with either soft or strong level confinement. The solution is formulated within the framework of the orthogonal polynomial technique and is shown to depend on both the unfolded two-point scalar kernel and the level confinement through a double integral transformation which, in turn, provides a constructive tool for description of parametric level correlations in non-Gaussian RMT. In the case of soft level confinement, the formalism developed is potentially applicable to a study of parametric level statistics in an important class of random matrix models with finite level compressibility expected to describe a disorder-induced metal-insulator transition. In random matrix ensembles with strong level confinement, the solution presented takes a particular simple form in the thermodynamic limit: In this case, a new intriguing connection relation between the parametric level statistics and the scalar two-point kernel of an unperturbed ensemble is demonstrated to emerge. Extension of the results obtained to higher-order parametric level statistics is

  4. Microcanonical ensemble extensive thermodynamics of Tsallis statistics

    International Nuclear Information System (INIS)

    Parvan, A.S.

    2005-01-01

    The microscopic foundation of the generalized equilibrium statistical mechanics based on the Tsallis entropy is given by using the Gibbs idea of statistical ensembles of the classical and quantum mechanics.The equilibrium distribution functions are derived by the thermodynamic method based upon the use of the fundamental equation of thermodynamics and the statistical definition of the functions of the state of the system. It is shown that if the entropic index ξ = 1/q - 1 in the microcanonical ensemble is an extensive variable of the state of the system, then in the thermodynamic limit z bar = 1/(q - 1)N = const the principle of additivity and the zero law of thermodynamics are satisfied. In particular, the Tsallis entropy of the system is extensive and the temperature is intensive. Thus, the Tsallis statistics completely satisfies all the postulates of the equilibrium thermodynamics. Moreover, evaluation of the thermodynamic identities in the microcanonical ensemble is provided by the Euler theorem. The principle of additivity and the Euler theorem are explicitly proved by using the illustration of the classical microcanonical ideal gas in the thermodynamic limit

  5. Modeling polydispersive ensembles of diamond nanoparticles

    International Nuclear Information System (INIS)

    Barnard, Amanda S

    2013-01-01

    While significant progress has been made toward production of monodispersed samples of a variety of nanoparticles, in cases such as diamond nanoparticles (nanodiamonds) a significant degree of polydispersivity persists, so scaling-up of laboratory applications to industrial levels has its challenges. In many cases, however, monodispersivity is not essential for reliable application, provided that the inevitable uncertainties are just as predictable as the functional properties. As computational methods of materials design are becoming more widespread, there is a growing need for robust methods for modeling ensembles of nanoparticles, that capture the structural complexity characteristic of real specimens. In this paper we present a simple statistical approach to modeling of ensembles of nanoparticles, and apply it to nanodiamond, based on sets of individual simulations that have been carefully selected to describe specific structural sources that are responsible for scattering of fundamental properties, and that are typically difficult to eliminate experimentally. For the purposes of demonstration we show how scattering in the Fermi energy and the electronic band gap are related to different structural variations (sources), and how these results can be combined strategically to yield statistically significant predictions of the properties of an entire ensemble of nanodiamonds, rather than merely one individual ‘model’ particle or a non-representative sub-set. (paper)

  6. Ensemble Clustering using Semidefinite Programming with Applications.

    Science.gov (United States)

    Singh, Vikas; Mukherjee, Lopamudra; Peng, Jiming; Xu, Jinhui

    2010-05-01

    In this paper, we study the ensemble clustering problem, where the input is in the form of multiple clustering solutions. The goal of ensemble clustering algorithms is to aggregate the solutions into one solution that maximizes the agreement in the input ensemble. We obtain several new results for this problem. Specifically, we show that the notion of agreement under such circumstances can be better captured using a 2D string encoding rather than a voting strategy, which is common among existing approaches. Our optimization proceeds by first constructing a non-linear objective function which is then transformed into a 0-1 Semidefinite program (SDP) using novel convexification techniques. This model can be subsequently relaxed to a polynomial time solvable SDP. In addition to the theoretical contributions, our experimental results on standard machine learning and synthetic datasets show that this approach leads to improvements not only in terms of the proposed agreement measure but also the existing agreement measures based on voting strategies. In addition, we identify several new application scenarios for this problem. These include combining multiple image segmentations and generating tissue maps from multiple-channel Diffusion Tensor brain images to identify the underlying structure of the brain.

  7. Decimated Input Ensembles for Improved Generalization

    Science.gov (United States)

    Tumer, Kagan; Oza, Nikunj C.; Norvig, Peter (Technical Monitor)

    1999-01-01

    Recently, many researchers have demonstrated that using classifier ensembles (e.g., averaging the outputs of multiple classifiers before reaching a classification decision) leads to improved performance for many difficult generalization problems. However, in many domains there are serious impediments to such "turnkey" classification accuracy improvements. Most notable among these is the deleterious effect of highly correlated classifiers on the ensemble performance. One particular solution to this problem is generating "new" training sets by sampling the original one. However, with finite number of patterns, this causes a reduction in the training patterns each classifier sees, often resulting in considerably worsened generalization performance (particularly for high dimensional data domains) for each individual classifier. Generally, this drop in the accuracy of the individual classifier performance more than offsets any potential gains due to combining, unless diversity among classifiers is actively promoted. In this work, we introduce a method that: (1) reduces the correlation among the classifiers; (2) reduces the dimensionality of the data, thus lessening the impact of the 'curse of dimensionality'; and (3) improves the classification performance of the ensemble.

  8. Microcanonical ensemble extensive thermodynamics of Tsallis statistics

    International Nuclear Information System (INIS)

    Parvan, A.S.

    2006-01-01

    The microscopic foundation of the generalized equilibrium statistical mechanics based on the Tsallis entropy is given by using the Gibbs idea of statistical ensembles of the classical and quantum mechanics. The equilibrium distribution functions are derived by the thermodynamic method based upon the use of the fundamental equation of thermodynamics and the statistical definition of the functions of the state of the system. It is shown that if the entropic index ξ=1/(q-1) in the microcanonical ensemble is an extensive variable of the state of the system, then in the thermodynamic limit z-bar =1/(q-1)N=const the principle of additivity and the zero law of thermodynamics are satisfied. In particular, the Tsallis entropy of the system is extensive and the temperature is intensive. Thus, the Tsallis statistics completely satisfies all the postulates of the equilibrium thermodynamics. Moreover, evaluation of the thermodynamic identities in the microcanonical ensemble is provided by the Euler theorem. The principle of additivity and the Euler theorem are explicitly proved by using the illustration of the classical microcanonical ideal gas in the thermodynamic limit

  9. EnsembleGraph: Interactive Visual Analysis of Spatial-Temporal Behavior for Ensemble Simulation Data

    Energy Technology Data Exchange (ETDEWEB)

    Shu, Qingya; Guo, Hanqi; Che, Limei; Yuan, Xiaoru; Liu, Junfeng; Liang, Jie

    2016-04-19

    We present a novel visualization framework—EnsembleGraph— for analyzing ensemble simulation data, in order to help scientists understand behavior similarities between ensemble members over space and time. A graph-based representation is used to visualize individual spatiotemporal regions with similar behaviors, which are extracted by hierarchical clustering algorithms. A user interface with multiple-linked views is provided, which enables users to explore, locate, and compare regions that have similar behaviors between and then users can investigate and analyze the selected regions in detail. The driving application of this paper is the studies on regional emission influences over tropospheric ozone, which is based on ensemble simulations conducted with different anthropogenic emission absences using the MOZART-4 (model of ozone and related tracers, version 4) model. We demonstrate the effectiveness of our method by visualizing the MOZART-4 ensemble simulation data and evaluating the relative regional emission influences on tropospheric ozone concentrations. Positive feedbacks from domain experts and two case studies prove efficiency of our method.

  10. Monthly ENSO Forecast Skill and Lagged Ensemble Size

    Science.gov (United States)

    Trenary, L.; DelSole, T.; Tippett, M. K.; Pegion, K.

    2018-04-01

    The mean square error (MSE) of a lagged ensemble of monthly forecasts of the Niño 3.4 index from the Climate Forecast System (CFSv2) is examined with respect to ensemble size and configuration. Although the real-time forecast is initialized 4 times per day, it is possible to infer the MSE for arbitrary initialization frequency and for burst ensembles by fitting error covariances to a parametric model and then extrapolating to arbitrary ensemble size and initialization frequency. Applying this method to real-time forecasts, we find that the MSE consistently reaches a minimum for a lagged ensemble size between one and eight days, when four initializations per day are included. This ensemble size is consistent with the 8-10 day lagged ensemble configuration used operationally. Interestingly, the skill of both ensemble configurations is close to the estimated skill of the infinite ensemble. The skill of the weighted, lagged, and burst ensembles are found to be comparable. Certain unphysical features of the estimated error growth were tracked down to problems with the climatology and data discontinuities.

  11. CELES: CUDA-accelerated simulation of electromagnetic scattering by large ensembles of spheres

    Science.gov (United States)

    Egel, Amos; Pattelli, Lorenzo; Mazzamuto, Giacomo; Wiersma, Diederik S.; Lemmer, Uli

    2017-09-01

    CELES is a freely available MATLAB toolbox to simulate light scattering by many spherical particles. Aiming at high computational performance, CELES leverages block-diagonal preconditioning, a lookup-table approach to evaluate costly functions and massively parallel execution on NVIDIA graphics processing units using the CUDA computing platform. The combination of these techniques allows to efficiently address large electrodynamic problems (>104 scatterers) on inexpensive consumer hardware. In this paper, we validate near- and far-field distributions against the well-established multi-sphere T-matrix (MSTM) code and discuss the convergence behavior for ensembles of different sizes, including an exemplary system comprising 105 particles.

  12. Generation of scenarios from calibrated ensemble forecasts with a dual ensemble copula coupling approach

    DEFF Research Database (Denmark)

    Ben Bouallègue, Zied; Heppelmann, Tobias; Theis, Susanne E.

    2016-01-01

    the original ensemble forecasts. Based on the assumption of error stationarity, parametric methods aim to fully describe the forecast dependence structures. In this study, the concept of ECC is combined with past data statistics in order to account for the autocorrelation of the forecast error. The new...... approach, called d-ECC, is applied to wind forecasts from the high resolution ensemble system COSMO-DE-EPS run operationally at the German weather service. Scenarios generated by ECC and d-ECC are compared and assessed in the form of time series by means of multivariate verification tools and in a product...

  13. Fitting a function to time-dependent ensemble averaged data.

    Science.gov (United States)

    Fogelmark, Karl; Lomholt, Michael A; Irbäck, Anders; Ambjörnsson, Tobias

    2018-05-03

    Time-dependent ensemble averages, i.e., trajectory-based averages of some observable, are of importance in many fields of science. A crucial objective when interpreting such data is to fit these averages (for instance, squared displacements) with a function and extract parameters (such as diffusion constants). A commonly overlooked challenge in such function fitting procedures is that fluctuations around mean values, by construction, exhibit temporal correlations. We show that the only available general purpose function fitting methods, correlated chi-square method and the weighted least squares method (which neglects correlation), fail at either robust parameter estimation or accurate error estimation. We remedy this by deriving a new closed-form error estimation formula for weighted least square fitting. The new formula uses the full covariance matrix, i.e., rigorously includes temporal correlations, but is free of the robustness issues, inherent to the correlated chi-square method. We demonstrate its accuracy in four examples of importance in many fields: Brownian motion, damped harmonic oscillation, fractional Brownian motion and continuous time random walks. We also successfully apply our method, weighted least squares including correlation in error estimation (WLS-ICE), to particle tracking data. The WLS-ICE method is applicable to arbitrary fit functions, and we provide a publically available WLS-ICE software.

  14. Differential migration and proliferation of geometrical ensembles of cell clusters

    International Nuclear Information System (INIS)

    Kumar, Girish; Chen, Bo; Co, Carlos C.; Ho, Chia-Chi

    2011-01-01

    Differential cell migration and growth drives the organization of specific tissue forms and plays a critical role in embryonic development, tissue morphogenesis, and tumor invasion. Localized gradients of soluble factors and extracellular matrix have been shown to modulate cell migration and proliferation. Here we show that in addition to these factors, initial tissue geometry can feedback to generate differential proliferation, cell polarity, and migration patterns. We apply layer by layer polyelectrolyte assembly to confine multicellular organization and subsequently release cells to demonstrate the spatial patterns of cell migration and growth. The cell shapes, spreading areas, and cell-cell contacts are influenced strongly by the confining geometry. Cells within geometric ensembles are morphologically polarized. Symmetry breaking was observed for cells on the circular pattern and cells migrate toward the corners and in the direction parallel to the longest dimension of the geometric shapes. This migration pattern is disrupted when actomyosin based tension was inhibited. Cells near the edge or corner of geometric shapes proliferate while cells within do not. Regions of higher rate of cell migration corresponded to regions of concentrated growth. These findings demonstrate that multicellular organization can result in spatial patterns of migration and proliferation.

  15. Ab initio calculation of harmonic generation spectra of helium using a time-dependent non-Hermitian formalism

    Czech Academy of Sciences Publication Activity Database

    Gilary, I.; Kaprálová, Petra; Moiseyev, N.

    2006-01-01

    Roč. 74, - (2006), 052505-1 ISSN 1050-2947 R&D Projects: GA AV ČR(CZ) KJB100550501; GA MŠk(CZ) LC512 Grant - others:Israel Science Foundation(IL) 1152/04 Institutional research plan: CEZ:AV0Z40550506 Keywords : high-order harmonic generation * symmetry selection rules * even harmonics * complex scaling * F-produkt Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.047, year: 2006

  16. On conjugate gradient type methods and polynomial preconditioners for a class of complex non-Hermitian matrices

    Science.gov (United States)

    Freund, Roland

    1988-01-01

    Conjugate gradient type methods are considered for the solution of large linear systems Ax = b with complex coefficient matrices of the type A = T + i(sigma)I where T is Hermitian and sigma, a real scalar. Three different conjugate gradient type approaches with iterates defined by a minimal residual property, a Galerkin type condition, and an Euclidian error minimization, respectively, are investigated. In particular, numerically stable implementations based on the ideas behind Paige and Saunder's SYMMLQ and MINRES for real symmetric matrices are proposed. Error bounds for all three methods are derived. It is shown how the special shift structure of A can be preserved by using polynomial preconditioning. Results on the optimal choice of the polynomial preconditioner are given. Also, some numerical experiments for matrices arising from finite difference approximations to the complex Helmholtz equation are reported.

  17. Ensemble-Based Data Assimilation in Reservoir Characterization: A Review

    Directory of Open Access Journals (Sweden)

    Seungpil Jung

    2018-02-01

    Full Text Available This paper presents a review of ensemble-based data assimilation for strongly nonlinear problems on the characterization of heterogeneous reservoirs with different production histories. It concentrates on ensemble Kalman filter (EnKF and ensemble smoother (ES as representative frameworks, discusses their pros and cons, and investigates recent progress to overcome their drawbacks. The typical weaknesses of ensemble-based methods are non-Gaussian parameters, improper prior ensembles and finite population size. Three categorized approaches, to mitigate these limitations, are reviewed with recent accomplishments; improvement of Kalman gains, add-on of transformation functions, and independent evaluation of observed data. The data assimilation in heterogeneous reservoirs, applying the improved ensemble methods, is discussed on predicting unknown dynamic data in reservoir characterization.

  18. Bioactive focus in conformational ensembles: a pluralistic approach

    Science.gov (United States)

    Habgood, Matthew

    2017-12-01

    Computational generation of conformational ensembles is key to contemporary drug design. Selecting the members of the ensemble that will approximate the conformation most likely to bind to a desired target (the bioactive conformation) is difficult, given that the potential energy usually used to generate and rank the ensemble is a notoriously poor discriminator between bioactive and non-bioactive conformations. In this study an approach to generating a focused ensemble is proposed in which each conformation is assigned multiple rankings based not just on potential energy but also on solvation energy, hydrophobic or hydrophilic interaction energy, radius of gyration, and on a statistical potential derived from Cambridge Structural Database data. The best ranked structures derived from each system are then assembled into a new ensemble that is shown to be better focused on bioactive conformations. This pluralistic approach is tested on ensembles generated by the Molecular Operating Environment's Low Mode Molecular Dynamics module, and by the Cambridge Crystallographic Data Centre's conformation generator software.

  19. Power law deformation of Wishart–Laguerre ensembles of random matrices

    International Nuclear Information System (INIS)

    Akemann, Gernot; Vivo, Pierpaolo

    2008-01-01

    We introduce a one-parameter deformation of the Wishart–Laguerre or chiral ensembles of positive definite random matrices with Dyson index β = 1,2 and 4. Our generalized model has a fat-tailed distribution while preserving the invariance under orthogonal, unitary or symplectic transformations. The spectral properties are derived analytically for finite matrix size N × M for all three values of β, in terms of the orthogonal polynomials of the standard Wishart–Laguerre ensembles. For large N in a certain double-scaling limit we obtain a generalized Marčenko–Pastur distribution on the macroscopic scale, and a generalized Bessel law at the hard edge which is shown to be universal. Both macroscopic and microscopic correlations exhibit power law tails, where the microscopic limit depends on β and the difference M−N. In the limit where our parameter governing the power law goes to infinity we recover the correlations of the Wishart–Laguerre ensembles. To illustrate these findings, the generalized Marčenko–Pastur distribution is shown to be in very good agreement with empirical data from financial covariance matrices

  20. Grand Canonical Ensembles in General Relativity

    International Nuclear Information System (INIS)

    Klein, David; Yang, Wei-Shih

    2012-01-01

    We develop a formalism for general relativistic, grand canonical ensembles in space-times with timelike Killing fields. Using that, we derive ideal gas laws, and show how they depend on the geometry of the particular space-times. A systematic method for calculating Newtonian limits is given for a class of these space-times, which is illustrated for Kerr space-time. In addition, we prove uniqueness of the infinite volume Gibbs measure, and absence of phase transitions for a class of interaction potentials in anti-de Sitter space.

  1. A Lagrangian formalism for nonequilibrium ensembles

    International Nuclear Information System (INIS)

    Sobouti, Y.

    1989-08-01

    It is suggested to formulate a nonequilibrium ensemble theory by maximizing a time-integrated entropy constrained by Liouville's equation. This leads to distribution functions of the form f = Z -1 exp(-g/kT), where g(p,q,t) is a solution of Liouville's equation. A further requirement that the entropy should be an additivie functional of the integrals of Liouville's equation, limits the choice of g to linear superpositions of the nonlinearly independent integrals of motion. Time-dependent and time-independent integrals may participate in this superposition. (author). 14 refs

  2. Extension of the GHJW theorem for operator ensembles

    International Nuclear Information System (INIS)

    Choi, Jeong Woon; Hong, Dowon; Chang, Ku-Young; Chi, Dong Pyo; Lee, Soojoon

    2011-01-01

    The Gisin-Hughston-Jozsa-Wootters theorem plays an important role in analyzing various theories about quantum information, quantum communication, and quantum cryptography. It means that any purifications on the extended system which yield indistinguishable state ensembles on their subsystem should have a specific local unitary relation. In this Letter, we show that the local relation is also established even when the indistinguishability of state ensembles is extended to that of operator ensembles.

  3. Canonical-ensemble state-averaged complete active space self-consistent field (SA-CASSCF) strategy for problems with more diabatic than adiabatic states: Charge-bond resonance in monomethine cyanines

    Energy Technology Data Exchange (ETDEWEB)

    Olsen, Seth, E-mail: seth.olsen@uq.edu.au [School of Mathematics and Physics, The University of Queensland, Brisbane QLD 4072 (Australia)

    2015-01-28

    This paper reviews basic results from a theory of the a priori classical probabilities (weights) in state-averaged complete active space self-consistent field (SA-CASSCF) models. It addresses how the classical probabilities limit the invariance of the self-consistency condition to transformations of the complete active space configuration interaction (CAS-CI) problem. Such transformations are of interest for choosing representations of the SA-CASSCF solution that are diabatic with respect to some interaction. I achieve the known result that a SA-CASSCF can be self-consistently transformed only within degenerate subspaces of the CAS-CI ensemble density matrix. For uniformly distributed (“microcanonical”) SA-CASSCF ensembles, self-consistency is invariant to any unitary CAS-CI transformation that acts locally on the ensemble support. Most SA-CASSCF applications in current literature are microcanonical. A problem with microcanonical SA-CASSCF models for problems with “more diabatic than adiabatic” states is described. The problem is that not all diabatic energies and couplings are self-consistently resolvable. A canonical-ensemble SA-CASSCF strategy is proposed to solve the problem. For canonical-ensemble SA-CASSCF, the equilibrated ensemble is a Boltzmann density matrix parametrized by its own CAS-CI Hamiltonian and a Lagrange multiplier acting as an inverse “temperature,” unrelated to the physical temperature. Like the convergence criterion for microcanonical-ensemble SA-CASSCF, the equilibration condition for canonical-ensemble SA-CASSCF is invariant to transformations that act locally on the ensemble CAS-CI density matrix. The advantage of a canonical-ensemble description is that more adiabatic states can be included in the support of the ensemble without running into convergence problems. The constraint on the dimensionality of the problem is relieved by the introduction of an energy constraint. The method is illustrated with a complete active space

  4. Gridded Calibration of Ensemble Wind Vector Forecasts Using Ensemble Model Output Statistics

    Science.gov (United States)

    Lazarus, S. M.; Holman, B. P.; Splitt, M. E.

    2017-12-01

    A computationally efficient method is developed that performs gridded post processing of ensemble wind vector forecasts. An expansive set of idealized WRF model simulations are generated to provide physically consistent high resolution winds over a coastal domain characterized by an intricate land / water mask. Ensemble model output statistics (EMOS) is used to calibrate the ensemble wind vector forecasts at observation locations. The local EMOS predictive parameters (mean and variance) are then spread throughout the grid utilizing flow-dependent statistical relationships extracted from the downscaled WRF winds. Using data withdrawal and 28 east central Florida stations, the method is applied to one year of 24 h wind forecasts from the Global Ensemble Forecast System (GEFS). Compared to the raw GEFS, the approach improves both the deterministic and probabilistic forecast skill. Analysis of multivariate rank histograms indicate the post processed forecasts are calibrated. Two downscaling case studies are presented, a quiescent easterly flow event and a frontal passage. Strengths and weaknesses of the approach are presented and discussed.

  5. Sequential ensemble-based optimal design for parameter estimation: SEQUENTIAL ENSEMBLE-BASED OPTIMAL DESIGN

    Energy Technology Data Exchange (ETDEWEB)

    Man, Jun [Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou China; Zhang, Jiangjiang [Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou China; Li, Weixuan [Pacific Northwest National Laboratory, Richland Washington USA; Zeng, Lingzao [Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou China; Wu, Laosheng [Department of Environmental Sciences, University of California, Riverside California USA

    2016-10-01

    The ensemble Kalman filter (EnKF) has been widely used in parameter estimation for hydrological models. The focus of most previous studies was to develop more efficient analysis (estimation) algorithms. On the other hand, it is intuitively understandable that a well-designed sampling (data-collection) strategy should provide more informative measurements and subsequently improve the parameter estimation. In this work, a Sequential Ensemble-based Optimal Design (SEOD) method, coupled with EnKF, information theory and sequential optimal design, is proposed to improve the performance of parameter estimation. Based on the first-order and second-order statistics, different information metrics including the Shannon entropy difference (SD), degrees of freedom for signal (DFS) and relative entropy (RE) are used to design the optimal sampling strategy, respectively. The effectiveness of the proposed method is illustrated by synthetic one-dimensional and two-dimensional unsaturated flow case studies. It is shown that the designed sampling strategies can provide more accurate parameter estimation and state prediction compared with conventional sampling strategies. Optimal sampling designs based on various information metrics perform similarly in our cases. The effect of ensemble size on the optimal design is also investigated. Overall, larger ensemble size improves the parameter estimation and convergence of optimal sampling strategy. Although the proposed method is applied to unsaturated flow problems in this study, it can be equally applied in any other hydrological problems.

  6. Convergence of the Square Root Ensemble Kalman Filter in the Large Ensemble Limit

    Czech Academy of Sciences Publication Activity Database

    Kwiatkowski, E.; Mandel, Jan

    2015-01-01

    Roč. 3, č. 1 (2015), s. 1-17 ISSN 2166-2525 R&D Projects: GA ČR GA13-34856S Institutional support: RVO:67985807 Keywords : data assimilation * Lp laws of large numbers * Hilbert space * ensemble Kalman filter Subject RIV: IN - Informatics, Computer Science

  7. New technique for ensemble dressing combining Multimodel SuperEnsemble and precipitation PDF

    Science.gov (United States)

    Cane, D.; Milelli, M.

    2009-09-01

    The Multimodel SuperEnsemble technique (Krishnamurti et al., Science 285, 1548-1550, 1999) is a postprocessing method for the estimation of weather forecast parameters reducing direct model output errors. It differs from other ensemble analysis techniques by the use of an adequate weighting of the input forecast models to obtain a combined estimation of meteorological parameters. Weights are calculated by least-square minimization of the difference between the model and the observed field during a so-called training period. Although it can be applied successfully on the continuous parameters like temperature, humidity, wind speed and mean sea level pressure (Cane and Milelli, Meteorologische Zeitschrift, 15, 2, 2006), the Multimodel SuperEnsemble gives good results also when applied on the precipitation, a parameter quite difficult to handle with standard post-processing methods. Here we present our methodology for the Multimodel precipitation forecasts applied on a wide spectrum of results over Piemonte very dense non-GTS weather station network. We will focus particularly on an accurate statistical method for bias correction and on the ensemble dressing in agreement with the observed precipitation forecast-conditioned PDF. Acknowledgement: this work is supported by the Italian Civil Defence Department.

  8. Ensemble-based forecasting at Horns Rev: Ensemble conversion and kernel dressing

    DEFF Research Database (Denmark)

    Pinson, Pierre; Madsen, Henrik

    . The obtained ensemble forecasts of wind power are then converted into predictive distributions with an original adaptive kernel dressing method. The shape of the kernels is driven by a mean-variance model, the parameters of which are recursively estimated in order to maximize the overall skill of obtained...

  9. Encoding of Spatial Attention by Primate Prefrontal Cortex Neuronal Ensembles

    Science.gov (United States)

    Treue, Stefan

    2018-01-01

    Abstract Single neurons in the primate lateral prefrontal cortex (LPFC) encode information about the allocation of visual attention and the features of visual stimuli. However, how this compares to the performance of neuronal ensembles at encoding the same information is poorly understood. Here, we recorded the responses of neuronal ensembles in the LPFC of two macaque monkeys while they performed a task that required attending to one of two moving random dot patterns positioned in different hemifields and ignoring the other pattern. We found single units selective for the location of the attended stimulus as well as for its motion direction. To determine the coding of both variables in the population of recorded units, we used a linear classifier and progressively built neuronal ensembles by iteratively adding units according to their individual performance (best single units), or by iteratively adding units based on their contribution to the ensemble performance (best ensemble). For both methods, ensembles of relatively small sizes (n decoding performance relative to individual single units. However, the decoder reached similar performance using fewer neurons with the best ensemble building method compared with the best single units method. Our results indicate that neuronal ensembles within the LPFC encode more information about the attended spatial and nonspatial features of visual stimuli than individual neurons. They further suggest that efficient coding of attention can be achieved by relatively small neuronal ensembles characterized by a certain relationship between signal and noise correlation structures. PMID:29568798

  10. Bayesian ensemble refinement by replica simulations and reweighting

    Science.gov (United States)

    Hummer, Gerhard; Köfinger, Jürgen

    2015-12-01

    We describe different Bayesian ensemble refinement methods, examine their interrelation, and discuss their practical application. With ensemble refinement, the properties of dynamic and partially disordered (bio)molecular structures can be characterized by integrating a wide range of experimental data, including measurements of ensemble-averaged observables. We start from a Bayesian formulation in which the posterior is a functional that ranks different configuration space distributions. By maximizing this posterior, we derive an optimal Bayesian ensemble distribution. For discrete configurations, this optimal distribution is identical to that obtained by the maximum entropy "ensemble refinement of SAXS" (EROS) formulation. Bayesian replica ensemble refinement enhances the sampling of relevant configurations by imposing restraints on averages of observables in coupled replica molecular dynamics simulations. We show that the strength of the restraints should scale linearly with the number of replicas to ensure convergence to the optimal Bayesian result in the limit of infinitely many replicas. In the "Bayesian inference of ensembles" method, we combine the replica and EROS approaches to accelerate the convergence. An adaptive algorithm can be used to sample directly from the optimal ensemble, without replicas. We discuss the incorporation of single-molecule measurements and dynamic observables such as relaxation parameters. The theoretical analysis of different Bayesian ensemble refinement approaches provides a basis for practical applications and a starting point for further investigations.

  11. Design ensemble machine learning model for breast cancer diagnosis.

    Science.gov (United States)

    Hsieh, Sheau-Ling; Hsieh, Sung-Huai; Cheng, Po-Hsun; Chen, Chi-Huang; Hsu, Kai-Ping; Lee, I-Shun; Wang, Zhenyu; Lai, Feipei

    2012-10-01

    In this paper, we classify the breast cancer of medical diagnostic data. Information gain has been adapted for feature selections. Neural fuzzy (NF), k-nearest neighbor (KNN), quadratic classifier (QC), each single model scheme as well as their associated, ensemble ones have been developed for classifications. In addition, a combined ensemble model with these three schemes has been constructed for further validations. The experimental results indicate that the ensemble learning performs better than individual single ones. Moreover, the combined ensemble model illustrates the highest accuracy of classifications for the breast cancer among all models.

  12. Ensemble atmospheric dispersion calculations for decision support systems

    International Nuclear Information System (INIS)

    Borysiewicz, M.; Potempski, S.; Galkowski, A.; Zelazny, R.

    2003-01-01

    This document describes two approaches to long-range atmospheric dispersion of pollutants based on the ensemble concept. In the first part of the report some experiences related to the exercises undertaken under the ENSEMBLE project of the European Union are presented. The second part is devoted to the implementation of mesoscale numerical prediction models RAMS and atmospheric dispersion model HYPACT on Beowulf cluster and theirs usage for ensemble forecasting and long range atmospheric ensemble dispersion calculations based on available meteorological data from NCEO, NOAA (USA). (author)

  13. Spectral properties of embedded Gaussian unitary ensemble of random matrices with Wigner's SU(4) symmetry

    International Nuclear Information System (INIS)

    Vyas, Manan; Kota, V.K.B.

    2010-01-01

    For m fermions in Ω number of single particle orbitals, each fourfold degenerate, we introduce and analyze in detail embedded Gaussian unitary ensemble of random matrices generated by random two-body interactions that are SU(4) scalar [EGUE(2)-SU(4)]. Here the SU(4) algebra corresponds to the Wigner's supermultiplet SU(4) symmetry in nuclei. Embedding algebra for the EGUE(2)-SU(4) ensemble is U(4Ω) contains U(Ω) x SU(4). Exploiting the Wigner-Racah algebra of the embedding algebra, analytical expression for the ensemble average of the product of any two m particle Hamiltonian matrix elements is derived. Using this, formulas for a special class of U(Ω) irreducible representations (irreps) {4 r , p}, p = 0, 1, 2, 3 are derived for the ensemble averaged spectral variances and also for the covariances in energy centroids and spectral variances. On the other hand, simplifying the tabulations of Hecht for SU(Ω) Racah coefficients, numerical calculations are carried out for general U(Ω) irreps. Spectral variances clearly show, by applying Jacquod and Stone prescription, that the EGUE(2)-SU(4) ensemble generates ground state structure just as the quadratic Casimir invariant (C 2 ) of SU(4). This is further corroborated by the calculation of the expectation values of C 2 [SU(4)] and the four periodicity in the ground state energies. Secondly, it is found that the covariances in energy centroids and spectral variances increase in magnitude considerably as we go from EGUE(2) for spinless fermions to EGUE(2) for fermions with spin to EGUE(2)-SU(4) implying that the differences in ensemble and spectral averages grow with increasing symmetry. Also for EGUE(2)-SU(4) there are, unlike for GUE, non-zero cross-correlations in energy centroids and spectral variances defined over spaces with different particle numbers and/or U(Ω) [equivalently SU(4)] irreps. In the dilute limit defined by Ω → ∞, r >> 1 and r/Ω → 0, for the {4 r , p} irreps, we have derived analytical

  14. DroidEnsemble: Detecting Android Malicious Applications with Ensemble of String and Structural Static Features

    KAUST Repository

    Wang, Wei

    2018-05-11

    Android platform has dominated the Operating System of mobile devices. However, the dramatic increase of Android malicious applications (malapps) has caused serious software failures to Android system and posed a great threat to users. The effective detection of Android malapps has thus become an emerging yet crucial issue. Characterizing the behaviors of Android applications (apps) is essential to detecting malapps. Most existing work on detecting Android malapps was mainly based on string static features such as permissions and API usage extracted from apps. There also exists work on the detection of Android malapps with structural features, such as Control Flow Graph (CFG) and Data Flow Graph (DFG). As Android malapps have become increasingly polymorphic and sophisticated, using only one type of static features may result in false negatives. In this work, we propose DroidEnsemble that takes advantages of both string features and structural features to systematically and comprehensively characterize the static behaviors of Android apps and thus build a more accurate detection model for the detection of Android malapps. We extract each app’s string features, including permissions, hardware features, filter intents, restricted API calls, used permissions, code patterns, as well as structural features like function call graph. We then use three machine learning algorithms, namely, Support Vector Machine (SVM), k-Nearest Neighbor (kNN) and Random Forest (RF), to evaluate the performance of these two types of features and of their ensemble. In the experiments, We evaluate our methods and models with 1386 benign apps and 1296 malapps. Extensive experimental results demonstrate the effectiveness of DroidEnsemble. It achieves the detection accuracy as 95.8% with only string features and as 90.68% with only structural features. DroidEnsemble reaches the detection accuracy as 98.4% with the ensemble of both types of features, reducing 9 false positives and 12 false

  15. Importance of ensembles in projecting regional climate trends

    Science.gov (United States)

    Arritt, Raymond; Daniel, Ariele; Groisman, Pavel

    2016-04-01

    We have performed an ensemble of simulations using RegCM4 to examine the ability to reproduce observed trends in precipitation intensity and to project future changes through the 21st century for the central United States. We created a matrix of simulations over the CORDEX North America domain for 1950-2099 by driving the regional model with two different global models (HadGEM2-ES and GFDL-ESM2M, both for RCP8.5), by performing simulations at both 50 km and 25 km grid spacing, and by using three different convective parameterizations. The result is a set of 12 simulations (two GCMs by two resolutions by three convective parameterizations) that can be used to systematically evaluate the influence of simulation design on predicted precipitation. The two global models were selected to bracket the range of climate sensitivity in the CMIP5 models: HadGEM2-ES has the highest ECS of the CMIP5 models, while GFDL-ESM2M has one of the lowestt. Our evaluation metrics differ from many other RCM studies in that we focus on the skill of the models in reproducing past trends rather than the mean climate state. Trends in frequency of extreme precipitation (defined as amounts exceeding 76.2 mm/day) for most simulations are similar to the observed trend but with notable variations depending on RegCM4 configuration and on the driving GCM. There are complex interactions among resolution, choice of convective parameterization, and the driving GCM that carry over into the future climate projections. We also note that biases in the current climate do not correspond to biases in trends. As an example of these points the Emanuel scheme is consistently "wet" (positive bias in precipitation) yet it produced the smallest precipitation increase of the three convective parameterizations when used in simulations driven by HadGEM2-ES. However, it produced the largest increase when driven by GFDL-ESM2M. These findings reiterate that ensembles using multiple RCM configurations and driving GCMs are

  16. Cluster Ensemble-Based Image Segmentation

    Directory of Open Access Journals (Sweden)

    Xiaoru Wang

    2013-07-01

    Full Text Available Image segmentation is the foundation of computer vision applications. In this paper, we propose a new cluster ensemble-based image segmentation algorithm, which overcomes several problems of traditional methods. We make two main contributions in this paper. First, we introduce the cluster ensemble concept to fuse the segmentation results from different types of visual features effectively, which can deliver a better final result and achieve a much more stable performance for broad categories of images. Second, we exploit the PageRank idea from Internet applications and apply it to the image segmentation task. This can improve the final segmentation results by combining the spatial information of the image and the semantic similarity of regions. Our experiments on four public image databases validate the superiority of our algorithm over conventional single type of feature or multiple types of features-based algorithms, since our algorithm can fuse multiple types of features effectively for better segmentation results. Moreover, our method is also proved to be very competitive in comparison with other state-of-the-art segmentation algorithms.

  17. Nanobiosensing with Arrays and Ensembles of Nanoelectrodes

    Directory of Open Access Journals (Sweden)

    Najmeh Karimian

    2016-12-01

    Full Text Available Since the first reports dating back to the mid-1990s, ensembles and arrays of nanoelectrodes (NEEs and NEAs, respectively have gained an important role as advanced electroanalytical tools thank to their unique characteristics which include, among others, dramatically improved signal/noise ratios, enhanced mass transport and suitability for extreme miniaturization. From the year 2000 onward, these properties have been exploited to develop electrochemical biosensors in which the surfaces of NEEs/NEAs have been functionalized with biorecognition layers using immobilization modes able to take the maximum advantage from the special morphology and composite nature of their surface. This paper presents an updated overview of this field. It consists of two parts. In the first, we discuss nanofabrication methods and the principles of functioning of NEEs/NEAs, focusing, in particular, on those features which are important for the development of highly sensitive and miniaturized biosensors. In the second part, we review literature references dealing the bioanalytical and biosensing applications of sensors based on biofunctionalized arrays/ensembles of nanoelectrodes, focusing our attention on the most recent advances, published in the last five years. The goal of this review is both to furnish fundamental knowledge to researchers starting their activity in this field and provide critical information on recent achievements which can stimulate new ideas for future developments to experienced scientists.

  18. Ensemble Kalman filtering with residual nudging

    KAUST Repository

    Luo, X.

    2012-10-03

    Covariance inflation and localisation are two important techniques that are used to improve the performance of the ensemble Kalman filter (EnKF) by (in effect) adjusting the sample covariances of the estimates in the state space. In this work, an additional auxiliary technique, called residual nudging, is proposed to monitor and, if necessary, adjust the residual norms of state estimates in the observation space. In an EnKF with residual nudging, if the residual norm of an analysis is larger than a pre-specified value, then the analysis is replaced by a new one whose residual norm is no larger than a pre-specified value. Otherwise, the analysis is considered as a reasonable estimate and no change is made. A rule for choosing the pre-specified value is suggested. Based on this rule, the corresponding new state estimates are explicitly derived in case of linear observations. Numerical experiments in the 40-dimensional Lorenz 96 model show that introducing residual nudging to an EnKF may improve its accuracy and/or enhance its stability against filter divergence, especially in the small ensemble scenario.

  19. Deterministic Mean-Field Ensemble Kalman Filtering

    KAUST Repository

    Law, Kody

    2016-05-03

    The proof of convergence of the standard ensemble Kalman filter (EnKF) from Le Gland, Monbet, and Tran [Large sample asymptotics for the ensemble Kalman filter, in The Oxford Handbook of Nonlinear Filtering, Oxford University Press, Oxford, UK, 2011, pp. 598--631] is extended to non-Gaussian state-space models. A density-based deterministic approximation of the mean-field limit EnKF (DMFEnKF) is proposed, consisting of a PDE solver and a quadrature rule. Given a certain minimal order of convergence k between the two, this extends to the deterministic filter approximation, which is therefore asymptotically superior to standard EnKF for dimension d<2k. The fidelity of approximation of the true distribution is also established using an extension of the total variation metric to random measures. This is limited by a Gaussian bias term arising from nonlinearity/non-Gaussianity of the model, which arises in both deterministic and standard EnKF. Numerical results support and extend the theory.

  20. Online cross-validation-based ensemble learning.

    Science.gov (United States)

    Benkeser, David; Ju, Cheng; Lendle, Sam; van der Laan, Mark

    2018-01-30

    Online estimators update a current estimate with a new incoming batch of data without having to revisit past data thereby providing streaming estimates that are scalable to big data. We develop flexible, ensemble-based online estimators of an infinite-dimensional target parameter, such as a regression function, in the setting where data are generated sequentially by a common conditional data distribution given summary measures of the past. This setting encompasses a wide range of time-series models and, as special case, models for independent and identically distributed data. Our estimator considers a large library of candidate online estimators and uses online cross-validation to identify the algorithm with the best performance. We show that by basing estimates on the cross-validation-selected algorithm, we are asymptotically guaranteed to perform as well as the true, unknown best-performing algorithm. We provide extensions of this approach including online estimation of the optimal ensemble of candidate online estimators. We illustrate excellent performance of our methods using simulations and a real data example where we make streaming predictions of infectious disease incidence using data from a large database. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  1. Ensemble Kalman filtering with residual nudging

    Directory of Open Access Journals (Sweden)

    Xiaodong Luo

    2012-10-01

    Full Text Available Covariance inflation and localisation are two important techniques that are used to improve the performance of the ensemble Kalman filter (EnKF by (in effect adjusting the sample covariances of the estimates in the state space. In this work, an additional auxiliary technique, called residual nudging, is proposed to monitor and, if necessary, adjust the residual norms of state estimates in the observation space. In an EnKF with residual nudging, if the residual norm of an analysis is larger than a pre-specified value, then the analysis is replaced by a new one whose residual norm is no larger than a pre-specified value. Otherwise, the analysis is considered as a reasonable estimate and no change is made. A rule for choosing the pre-specified value is suggested. Based on this rule, the corresponding new state estimates are explicitly derived in case of linear observations. Numerical experiments in the 40-dimensional Lorenz 96 model show that introducing residual nudging to an EnKF may improve its accuracy and/or enhance its stability against filter divergence, especially in the small ensemble scenario.

  2. Deterministic Mean-Field Ensemble Kalman Filtering

    KAUST Repository

    Law, Kody; Tembine, Hamidou; Tempone, Raul

    2016-01-01

    The proof of convergence of the standard ensemble Kalman filter (EnKF) from Le Gland, Monbet, and Tran [Large sample asymptotics for the ensemble Kalman filter, in The Oxford Handbook of Nonlinear Filtering, Oxford University Press, Oxford, UK, 2011, pp. 598--631] is extended to non-Gaussian state-space models. A density-based deterministic approximation of the mean-field limit EnKF (DMFEnKF) is proposed, consisting of a PDE solver and a quadrature rule. Given a certain minimal order of convergence k between the two, this extends to the deterministic filter approximation, which is therefore asymptotically superior to standard EnKF for dimension d<2k. The fidelity of approximation of the true distribution is also established using an extension of the total variation metric to random measures. This is limited by a Gaussian bias term arising from nonlinearity/non-Gaussianity of the model, which arises in both deterministic and standard EnKF. Numerical results support and extend the theory.

  3. Efficiency criterion for teleportation via channel matrix, measurement matrix and collapsed matrix

    Directory of Open Access Journals (Sweden)

    Xin-Wei Zha

    Full Text Available In this paper, three kinds of coefficient matrixes (channel matrix, measurement matrix, collapsed matrix associated with the pure state for teleportation are presented, the general relation among channel matrix, measurement matrix and collapsed matrix is obtained. In addition, a criterion for judging whether a state can be teleported successfully is given, depending on the relation between the number of parameter of an unknown state and the rank of the collapsed matrix. Keywords: Channel matrix, Measurement matrix, Collapsed matrix, Teleportation

  4. Random Matrix Theory and Econophysics

    Science.gov (United States)

    Rosenow, Bernd

    2000-03-01

    Random Matrix Theory (RMT) [1] is used in many branches of physics as a ``zero information hypothesis''. It describes generic behavior of different classes of systems, while deviations from its universal predictions allow to identify system specific properties. We use methods of RMT to analyze the cross-correlation matrix C of stock price changes [2] of the largest 1000 US companies. In addition to its scientific interest, the study of correlations between the returns of different stocks is also of practical relevance in quantifying the risk of a given stock portfolio. We find [3,4] that the statistics of most of the eigenvalues of the spectrum of C agree with the predictions of RMT, while there are deviations for some of the largest eigenvalues. We interpret these deviations as a system specific property, e.g. containing genuine information about correlations in the stock market. We demonstrate that C shares universal properties with the Gaussian orthogonal ensemble of random matrices. Furthermore, we analyze the eigenvectors of C through their inverse participation ratio and find eigenvectors with large ratios at both edges of the eigenvalue spectrum - a situation reminiscent of localization theory results. This work was done in collaboration with V. Plerou, P. Gopikrishnan, T. Guhr, L.A.N. Amaral, and H.E Stanley and is related to recent work of Laloux et al.. 1. T. Guhr, A. Müller Groeling, and H.A. Weidenmüller, ``Random Matrix Theories in Quantum Physics: Common Concepts'', Phys. Rep. 299, 190 (1998). 2. See, e.g. R.N. Mantegna and H.E. Stanley, Econophysics: Correlations and Complexity in Finance (Cambridge University Press, Cambridge, England, 1999). 3. V. Plerou, P. Gopikrishnan, B. Rosenow, L.A.N. Amaral, and H.E. Stanley, ``Universal and Nonuniversal Properties of Cross Correlations in Financial Time Series'', Phys. Rev. Lett. 83, 1471 (1999). 4. V. Plerou, P. Gopikrishnan, T. Guhr, B. Rosenow, L.A.N. Amaral, and H.E. Stanley, ``Random Matrix Theory

  5. Minimum error discrimination for an ensemble of linearly independent pure states

    International Nuclear Information System (INIS)

    Singal, Tanmay; Ghosh, Sibasish

    2016-01-01

    Inspired by the work done by Belavkin (1975 Stochastics 1 315) and independently by Mochon, (2006 Phys. Rev. A 73 032328), we formulate the problem of minimum error discrimination (MED) of any ensemble of n linearly independent pure states by stripping the problem of its rotational covariance and retaining only the rotationally invariant aspect of the problem. This is done by embedding the optimal conditions in a matrix equality as well as matrix inequality. Employing the implicit function theorem in these conditions we get a set of first-order coupled ordinary nonlinear differential equations which can be used to drag the solution from an initial point (where solution is known) to another point (whose solution is sought). This way of obtaining the solution can be done through a simple Taylor series expansion and analytic continuation when required. Thus, we complete the work done by Belavkin and Mochon by ultimately leading their theory to a solution for the MED problem of linearly independent pure state ensembles. We also compare the computational complexity of our technique with the barrier-type interior point method of SDP and show that our technique is computationally as efficient as (actually, a bit more than) the SDP algorithm, with the added advantage of being much simpler to implement. (paper)

  6. Smallest eigenvalue distribution of the fixed-trace Laguerre beta-ensemble

    International Nuclear Information System (INIS)

    Chen Yang; Liu Dangzheng; Zhou Dasheng

    2010-01-01

    In this paper we study the entanglement of the reduced density matrix of a bipartite quantum system in a random pure state. It transpires that this involves the computation of the smallest eigenvalue distribution of the fixed-trace Laguerre ensemble of N x N random matrices. We showed that for finite N the smallest eigenvalue distribution may be expressed in terms of Jack polynomials. Furthermore, based on the exact results, we found a limiting distribution when the smallest eigenvalue is suitably scaled with N followed by a large N limit. Our results turn out to be the same as the smallest eigenvalue distribution of the classical Laguerre ensembles without the fixed-trace constraint. This suggests in a broad sense, the global constraint does not influence local correlations, at least, in the large N limit. Consequently, we have solved an open problem: the determination of the smallest eigenvalue distribution of the reduced density matrix-obtained by tracing out the environmental degrees of freedom-for a bipartite quantum system of unequal dimensions.

  7. Quantum Control of Open Systems and Dense Atomic Ensembles

    Science.gov (United States)

    DiLoreto, Christopher

    Controlling the dynamics of open quantum systems; i.e. quantum systems that decohere because of interactions with the environment, is an active area of research with many applications in quantum optics and quantum computation. My thesis expands the scope of this inquiry by seeking to control open systems in proximity to an additional system. The latter could be a classical system such as metal nanoparticles, or a quantum system such as a cluster of similar atoms. By modelling the interactions between the systems, we are able to expand the accessible state space of the quantum system in question. For a single, three-level quantum system, I examine isolated systems that have only normal spontaneous emission. I then show that intensity-intensity correlation spectra, which depend directly on the density matrix of the system, can be used detect whether transitions share a common energy level. This detection is possible due to the presence of quantum interference effects between two transitions if they are connected. This effect allows one to asses energy level structure diagrams in complex atoms/molecules. By placing an open quantum system near a nanoparticle dimer, I show that the spontaneous emission rate of the system can be changed "on demand" by changing the polarization of an incident, driving field. In a three-level, Lambda system, this allows a qubit to both retain high qubit fidelity when it is operating, and to be rapidly initialized to a pure state once it is rendered unusable by decoherence. This type of behaviour is not possible in a single open quantum system; therefore adding a classical system nearby extends the overall control space of the quantum system. An open quantum system near identical neighbours in a dense ensemble is another example of how the accessible state space can be expanded. I show that a dense ensemble of atoms rapidly becomes disordered with states that are not directly excited by an incident field becoming significantly populated

  8. Extended biorthogonal matrix polynomials

    Directory of Open Access Journals (Sweden)

    Ayman Shehata

    2017-01-01

    Full Text Available The pair of biorthogonal matrix polynomials for commutative matrices were first introduced by Varma and Tasdelen in [22]. The main aim of this paper is to extend the properties of the pair of biorthogonal matrix polynomials of Varma and Tasdelen and certain generating matrix functions, finite series, some matrix recurrence relations, several important properties of matrix differential recurrence relations, biorthogonality relations and matrix differential equation for the pair of biorthogonal matrix polynomials J(A,B n (x, k and K(A,B n (x, k are discussed. For the matrix polynomials J(A,B n (x, k, various families of bilinear and bilateral generating matrix functions are constructed in the sequel.

  9. Matrix completion by deep matrix factorization.

    Science.gov (United States)

    Fan, Jicong; Cheng, Jieyu

    2018-02-01

    Conventional methods of matrix completion are linear methods that are not effective in handling data of nonlinear structures. Recently a few researchers attempted to incorporate nonlinear techniques into matrix completion but there still exists considerable limitations. In this paper, a novel method called deep matrix factorization (DMF) is proposed for nonlinear matrix completion. Different from conventional matrix completion methods that are based on linear latent variable models, DMF is on the basis of a nonlinear latent variable model. DMF is formulated as a deep-structure neural network, in which the inputs are the low-dimensional unknown latent variables and the outputs are the partially observed variables. In DMF, the inputs and the parameters of the multilayer neural network are simultaneously optimized to minimize the reconstruction errors for the observed entries. Then the missing entries can be readily recovered by propagating the latent variables to the output layer. DMF is compared with state-of-the-art methods of linear and nonlinear matrix completion in the tasks of toy matrix completion, image inpainting and collaborative filtering. The experimental results verify that DMF is able to provide higher matrix completion accuracy than existing methods do and DMF is applicable to large matrices. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. A Comparison of Ensemble Kalman Filters for Storm Surge Assimilation

    KAUST Repository

    Altaf, Muhammad

    2014-08-01

    This study evaluates and compares the performances of several variants of the popular ensembleKalman filter for the assimilation of storm surge data with the advanced circulation (ADCIRC) model. Using meteorological data from Hurricane Ike to force the ADCIRC model on a domain including the Gulf ofMexico coastline, the authors implement and compare the standard stochastic ensembleKalman filter (EnKF) and three deterministic square root EnKFs: the singular evolutive interpolated Kalman (SEIK) filter, the ensemble transform Kalman filter (ETKF), and the ensemble adjustment Kalman filter (EAKF). Covariance inflation and localization are implemented in all of these filters. The results from twin experiments suggest that the square root ensemble filters could lead to very comparable performances with appropriate tuning of inflation and localization, suggesting that practical implementation details are at least as important as the choice of the square root ensemble filter itself. These filters also perform reasonably well with a relatively small ensemble size, whereas the stochastic EnKF requires larger ensemble sizes to provide similar accuracy for forecasts of storm surge.

  11. Conductor and Ensemble Performance Expressivity and State Festival Ratings

    Science.gov (United States)

    Price, Harry E.; Chang, E. Christina

    2005-01-01

    This study is the second in a series examining the relationship between conducting and ensemble performance. The purpose was to further examine the associations among conductor, ensemble performance expressivity, and festival ratings. Participants were asked to rate the expressivity of video-only conducting and parallel audio-only excerpts from a…

  12. An iterative ensemble Kalman filter for reservoir engineering applications

    NARCIS (Netherlands)

    Krymskaya, M.V.; Hanea, R.G.; Verlaan, M.

    2009-01-01

    The study has been focused on examining the usage and the applicability of ensemble Kalman filtering techniques to the history matching procedures. The ensemble Kalman filter (EnKF) is often applied nowadays to solving such a problem. Meanwhile, traditional EnKF requires assumption of the

  13. Competitive Learning Neural Network Ensemble Weighted by Predicted Performance

    Science.gov (United States)

    Ye, Qiang

    2010-01-01

    Ensemble approaches have been shown to enhance classification by combining the outputs from a set of voting classifiers. Diversity in error patterns among base classifiers promotes ensemble performance. Multi-task learning is an important characteristic for Neural Network classifiers. Introducing a secondary output unit that receives different…

  14. A Comparison of Ensemble Kalman Filters for Storm Surge Assimilation

    KAUST Repository

    Altaf, Muhammad; Butler, T.; Mayo, T.; Luo, X.; Dawson, C.; Heemink, A. W.; Hoteit, Ibrahim

    2014-01-01

    This study evaluates and compares the performances of several variants of the popular ensembleKalman filter for the assimilation of storm surge data with the advanced circulation (ADCIRC) model. Using meteorological data from Hurricane Ike to force the ADCIRC model on a domain including the Gulf ofMexico coastline, the authors implement and compare the standard stochastic ensembleKalman filter (EnKF) and three deterministic square root EnKFs: the singular evolutive interpolated Kalman (SEIK) filter, the ensemble transform Kalman filter (ETKF), and the ensemble adjustment Kalman filter (EAKF). Covariance inflation and localization are implemented in all of these filters. The results from twin experiments suggest that the square root ensemble filters could lead to very comparable performances with appropriate tuning of inflation and localization, suggesting that practical implementation details are at least as important as the choice of the square root ensemble filter itself. These filters also perform reasonably well with a relatively small ensemble size, whereas the stochastic EnKF requires larger ensemble sizes to provide similar accuracy for forecasts of storm surge.

  15. Ensemble dispersion forecasting - Part 2. Application and evaluation

    DEFF Research Database (Denmark)

    Galmarini, S.; Bianconi, R.; Addis, R.

    2004-01-01

    of the dispersion of ETEX release 1 and the model ensemble is compared with the monitoring data. The scope of the comparison is to estimate to what extent the ensemble analysis is an improvement with respect to the single model results and represents a superior analysis of the process evolution. (C) 2004 Elsevier...

  16. Adaptive calibration of (u,v)‐wind ensemble forecasts

    DEFF Research Database (Denmark)

    Pinson, Pierre

    2012-01-01

    of sufficient reliability. The original framework introduced here allows for an adaptive bivariate calibration of these ensemble forecasts. The originality of this methodology lies in the fact that calibrated ensembles still consist of a set of (space–time) trajectories, after translation and dilation...... of translation and dilation factors are discussed. Copyright © 2012 Royal Meteorological Society...

  17. Ensemble-based Probabilistic Forecasting at Horns Rev

    DEFF Research Database (Denmark)

    Pinson, Pierre; Madsen, Henrik

    2009-01-01

    forecasting methodology. In a first stage, ensemble forecasts of meteorological variables are converted to power through a suitable power curve model. This modelemploys local polynomial regression, and is adoptively estimated with an orthogonal fitting method. The obtained ensemble forecasts of wind power...

  18. Programming in the Zone: Repertoire Selection for the Large Ensemble

    Science.gov (United States)

    Hopkins, Michael

    2013-01-01

    One of the great challenges ensemble directors face is selecting high-quality repertoire that matches the musical and technical levels of their ensembles. Thoughtful repertoire selection can lead to increased student motivation as well as greater enthusiasm for the music program from parents, administrators, teachers, and community members. Common…

  19. Probabilistic Determination of Native State Ensembles of Proteins

    DEFF Research Database (Denmark)

    Olsson, Simon; Vögeli, Beat Rolf; Cavalli, Andrea

    2014-01-01

    ensembles of proteins by the combination of physical force fields and experimental data through modern statistical methodology. As an example, we use NMR residual dipolar couplings to determine a native state ensemble of the extensively studied third immunoglobulin binding domain of protein G (GB3...

  20. Preferences of and Attitudes toward Treble Choral Ensembles

    Science.gov (United States)

    Wilson, Jill M.

    2012-01-01

    In choral ensembles, a pursuit where females far outnumber males, concern exists that females are being devalued. Attitudes of female choral singers may be negatively affected by the gender imbalance that exists in mixed choirs and by the placement of the mixed choir as the most select ensemble in a program. The purpose of this research was to…

  1. Modality-Driven Classification and Visualization of Ensemble Variance

    Energy Technology Data Exchange (ETDEWEB)

    Bensema, Kevin; Gosink, Luke; Obermaier, Harald; Joy, Kenneth I.

    2016-10-01

    Advances in computational power now enable domain scientists to address conceptual and parametric uncertainty by running simulations multiple times in order to sufficiently sample the uncertain input space. While this approach helps address conceptual and parametric uncertainties, the ensemble datasets produced by this technique present a special challenge to visualization researchers as the ensemble dataset records a distribution of possible values for each location in the domain. Contemporary visualization approaches that rely solely on summary statistics (e.g., mean and variance) cannot convey the detailed information encoded in ensemble distributions that are paramount to ensemble analysis; summary statistics provide no information about modality classification and modality persistence. To address this problem, we propose a novel technique that classifies high-variance locations based on the modality of the distribution of ensemble predictions. Additionally, we develop a set of confidence metrics to inform the end-user of the quality of fit between the distribution at a given location and its assigned class. We apply a similar method to time-varying ensembles to illustrate the relationship between peak variance and bimodal or multimodal behavior. These classification schemes enable a deeper understanding of the behavior of the ensemble members by distinguishing between distributions that can be described by a single tendency and distributions which reflect divergent trends in the ensemble.

  2. Supplementary Material for: Compressing an Ensemble With Statistical Models: An Algorithm for Global 3D Spatio-Temporal Temperature

    KAUST Repository

    Castruccio, Stefano

    2016-01-01

    One of the main challenges when working with modern climate model ensembles is the increasingly larger size of the data produced, and the consequent difficulty in storing large amounts of spatio-temporally resolved information. Many compression algorithms can be used to mitigate this problem, but since they are designed to compress generic scientific datasets, they do not account for the nature of climate model output and they compress only individual simulations. In this work, we propose a different, statistics-based approach that explicitly accounts for the space-time dependence of the data for annual global three-dimensional temperature fields in an initial condition ensemble. The set of estimated parameters is small (compared to the data size) and can be regarded as a summary of the essential structure of the ensemble output; therefore, it can be used to instantaneously reproduce the temperature fields in an ensemble with a substantial saving in storage and time. The statistical model exploits the gridded geometry of the data and parallelization across processors. It is therefore computationally convenient and allows to fit a nontrivial model to a dataset of 1 billion data points with a covariance matrix comprising of 1018 entries. Supplementary materials for this article are available online.

  3. Random matrix theory in nuclear structure: past, present and future

    International Nuclear Information System (INIS)

    Kota, V.K.B.

    2012-01-01

    Random matrix theory (RMT) introduced by Wigner in 50's to describe statistical properties of slow-neutron resonances in heavy nuclei such as 232 Th, was developed further in the 60's by Dyson, Mehta, Porter and others and in the 70's by French, Pandey, Bohigas and others. Going beyond this, the demonstration that level fluctuations of quantum analogues of classically chaotic few-degrees-of-freedom systems follow random matrix theory (integrable systems follow Poisson as shown by Berry) in 1984 by Bohigas and others on one hand and the recognition from 1995 onwards that two-body random matrix ensembles derived from shell model have wide ranging applications on the other, defined new directions in RMT applications in nuclear physics. Growth points in RMT in nuclear physics are: (i) analysis of nuclear data looking for order-chaos transitions and symmetry (Time-reversal, Parity, Isospin) breaking; (ii) analysis of shell model driven embedded (or two-body) random matrix ensembles giving statistical properties generated by random interactions in the presence of a mean-field; (iii) statistical nuclear spectroscopy generated by embedded ensembles for level densities, occupancies, GT strengths, transition strength sums and so on; (iv) the new paradigm of regular structures generated by random interactions as brought out by studies using various nuclear models; (v) random matrix theory for nuclear reactions with particular reference to open quantum systems; (vi) RMT results from nuclear physics to atomic physics, mesoscopic physics and quantum information science. Topics (i)-(vi) emphasizing recent results are discussed. (author)

  4. An educational model for ensemble streamflow simulation and uncertainty analysis

    Directory of Open Access Journals (Sweden)

    A. AghaKouchak

    2013-02-01

    Full Text Available This paper presents the hands-on modeling toolbox, HBV-Ensemble, designed as a complement to theoretical hydrology lectures, to teach hydrological processes and their uncertainties. The HBV-Ensemble can be used for in-class lab practices and homework assignments, and assessment of students' understanding of hydrological processes. Using this modeling toolbox, students can gain more insights into how hydrological processes (e.g., precipitation, snowmelt and snow accumulation, soil moisture, evapotranspiration and runoff generation are interconnected. The educational toolbox includes a MATLAB Graphical User Interface (GUI and an ensemble simulation scheme that can be used for teaching uncertainty analysis, parameter estimation, ensemble simulation and model sensitivity. HBV-Ensemble was administered in a class for both in-class instruction and a final project, and students submitted their feedback about the toolbox. The results indicate that this educational software had a positive impact on students understanding and knowledge of uncertainty in hydrological modeling.

  5. Ensemble inequivalence: Landau theory and the ABC model

    International Nuclear Information System (INIS)

    Cohen, O; Mukamel, D

    2012-01-01

    It is well known that systems with long-range interactions may exhibit different phase diagrams when studied within two different ensembles. In many of the previously studied examples of ensemble inequivalence, the phase diagrams differ only when the transition in one of the ensembles is first order. By contrast, in a recent study of a generalized ABC model, the canonical and grand-canonical ensembles of the model were shown to differ even when they both exhibit a continuous transition. Here we show that the order of the transition where ensemble inequivalence may occur is related to the symmetry properties of the order parameter associated with the transition. This is done by analyzing the Landau expansion of a generic model with long-range interactions. The conclusions drawn from the generic analysis are demonstrated for the ABC model by explicit calculation of its Landau expansion. (paper)

  6. Nonlocal inhomogeneous broadening in plasmonic nanoparticle ensembles

    DEFF Research Database (Denmark)

    Tserkezis, Christos; Maack, Johan Rosenkrantz; Liu, Z.

    Nonclassical effects are increasingly more relevant in plasmonics as modern nanofabrication techniques rapidly approach the extreme nanoscale limits, for which departing from classical electrodynamics becomes important. One of the largest-scale necessary corrections towards this direction...... is to abandon the local response approximation (LRA) and take the nonlocal response of the metal into account, typically through the simple hydrodynamic Drude model (HDM), which predicts a sizedependent deviation of plasmon modes from the quasistatic (QS) limit. While this behaviour has been explored for simple...... metallic nanoparticles (NPs) or NP dimers, the possibility of inhomogeneous resonance broadening due to size variation in a large NP collection and the resulting spectral overlap of modes (as depicted in Fig. 1), has been so far overlooked. Here we study theoretically the effect of nonlocality on ensemble...

  7. Dynamical Engineering of Interactions in Qudit Ensembles

    Science.gov (United States)

    Choi, Soonwon; Yao, Norman Y.; Lukin, Mikhail D.

    2017-11-01

    We propose and analyze a method to engineer effective interactions in an ensemble of d -level systems (qudits) driven by global control fields. In particular, we present (i) a necessary and sufficient condition under which a given interaction can be decoupled, (ii) the existence of a universal sequence that decouples any (cancelable) interaction, and (iii) an efficient algorithm to engineer a target Hamiltonian from an initial Hamiltonian (if possible). We illustrate the potential of this method with two examples. Specifically, we present a 6-pulse sequence that decouples effective spin-1 dipolar interactions and demonstrate that a spin-1 Ising chain can be engineered to study transitions among three distinct symmetry protected topological phases. Our work enables new approaches for the realization of both many-body quantum memories and programmable analog quantum simulators using existing experimental platforms.

  8. La crise du vivre-ensemble

    DEFF Research Database (Denmark)

    Schultz, Nils Voisin

    2014-01-01

    Cet article examine les caractères idéologique et affectif de deux essais écrits respectivement par Alain Finkielkraut et Richard Millet sur la crise actuelle du vivre-ensemble en France. Les deux penseurs critiquent la société multiculturelle, mais alors que pour Finkielkraut cette société est une...... chance pour la France à condition que le dialogue interculturel soit renforcé et que l’idée d’une culture française y garde sa place, elle reste pour Millet une impossibilité. L’enjeu de l’analyse est de dévoiler la capacité des discours à générer par l’affectivité une peur capable d’intensifier l’argumentation...

  9. Dynamic principle for ensemble control tools.

    Science.gov (United States)

    Samoletov, A; Vasiev, B

    2017-11-28

    Dynamical equations describing physical systems in contact with a thermal bath are commonly extended by mathematical tools called "thermostats." These tools are designed for sampling ensembles in statistical mechanics. Here we propose a dynamic principle underlying a range of thermostats which is derived using fundamental laws of statistical physics and ensures invariance of the canonical measure. The principle covers both stochastic and deterministic thermostat schemes. Our method has a clear advantage over a range of proposed and widely used thermostat schemes that are based on formal mathematical reasoning. Following the derivation of the proposed principle, we show its generality and illustrate its applications including design of temperature control tools that differ from the Nosé-Hoover-Langevin scheme.

  10. Global Optimization Ensemble Model for Classification Methods

    Science.gov (United States)

    Anwar, Hina; Qamar, Usman; Muzaffar Qureshi, Abdul Wahab

    2014-01-01

    Supervised learning is the process of data mining for deducing rules from training datasets. A broad array of supervised learning algorithms exists, every one of them with its own advantages and drawbacks. There are some basic issues that affect the accuracy of classifier while solving a supervised learning problem, like bias-variance tradeoff, dimensionality of input space, and noise in the input data space. All these problems affect the accuracy of classifier and are the reason that there is no global optimal method for classification. There is not any generalized improvement method that can increase the accuracy of any classifier while addressing all the problems stated above. This paper proposes a global optimization ensemble model for classification methods (GMC) that can improve the overall accuracy for supervised learning problems. The experimental results on various public datasets showed that the proposed model improved the accuracy of the classification models from 1% to 30% depending upon the algorithm complexity. PMID:24883382

  11. Global Optimization Ensemble Model for Classification Methods

    Directory of Open Access Journals (Sweden)

    Hina Anwar

    2014-01-01

    Full Text Available Supervised learning is the process of data mining for deducing rules from training datasets. A broad array of supervised learning algorithms exists, every one of them with its own advantages and drawbacks. There are some basic issues that affect the accuracy of classifier while solving a supervised learning problem, like bias-variance tradeoff, dimensionality of input space, and noise in the input data space. All these problems affect the accuracy of classifier and are the reason that there is no global optimal method for classification. There is not any generalized improvement method that can increase the accuracy of any classifier while addressing all the problems stated above. This paper proposes a global optimization ensemble model for classification methods (GMC that can improve the overall accuracy for supervised learning problems. The experimental results on various public datasets showed that the proposed model improved the accuracy of the classification models from 1% to 30% depending upon the algorithm complexity.

  12. Uncertainty in dispersion forecasts using meteorological ensembles

    International Nuclear Information System (INIS)

    Chin, H N; Leach, M J

    1999-01-01

    The usefulness of dispersion forecasts depends on proper interpretation of results. Understanding the uncertainty in model predictions and the range of possible outcomes is critical for determining the optimal course of action in response to terrorist attacks. One of the objectives for the Modeling and Prediction initiative is creating tools for emergency planning for special events such as the upcoming the Olympics. Meteorological forecasts hours to days in advance are used to estimate the dispersion at the time of the event. However, there is uncertainty in any meteorological forecast, arising from both errors in the data (both initial conditions and boundary conditions) and from errors in the model. We use ensemble forecasts to estimate the uncertainty in the forecasts and the range of possible outcomes

  13. Data assimilation the ensemble Kalman filter

    CERN Document Server

    Evensen, Geir

    2007-01-01

    Data Assimilation comprehensively covers data assimilation and inverse methods, including both traditional state estimation and parameter estimation. This text and reference focuses on various popular data assimilation methods, such as weak and strong constraint variational methods and ensemble filters and smoothers. It is demonstrated how the different methods can be derived from a common theoretical basis, as well as how they differ and/or are related to each other, and which properties characterize them, using several examples. Rather than emphasize a particular discipline such as oceanography or meteorology, it presents the mathematical framework and derivations in a way which is common for any discipline where dynamics is merged with measurements. The mathematics level is modest, although it requires knowledge of basic spatial statistics, Bayesian statistics, and calculus of variations. Readers will also appreciate the introduction to the mathematical methods used and detailed derivations, which should b...

  14. Multicomponent ensemble models to forecast induced seismicity

    Science.gov (United States)

    Király-Proag, E.; Gischig, V.; Zechar, J. D.; Wiemer, S.

    2018-01-01

    In recent years, human-induced seismicity has become a more and more relevant topic due to its economic and social implications. Several models and approaches have been developed to explain underlying physical processes or forecast induced seismicity. They range from simple statistical models to coupled numerical models incorporating complex physics. We advocate the need for forecast testing as currently the best method for ascertaining if models are capable to reasonably accounting for key physical governing processes—or not. Moreover, operational forecast models are of great interest to help on-site decision-making in projects entailing induced earthquakes. We previously introduced a standardized framework following the guidelines of the Collaboratory for the Study of Earthquake Predictability, the Induced Seismicity Test Bench, to test, validate, and rank induced seismicity models. In this study, we describe how to construct multicomponent ensemble models based on Bayesian weightings that deliver more accurate forecasts than individual models in the case of Basel 2006 and Soultz-sous-Forêts 2004 enhanced geothermal stimulation projects. For this, we examine five calibrated variants of two significantly different model groups: (1) Shapiro and Smoothed Seismicity based on the seismogenic index, simple modified Omori-law-type seismicity decay, and temporally weighted smoothed seismicity; (2) Hydraulics and Seismicity based on numerically modelled pore pressure evolution that triggers seismicity using the Mohr-Coulomb failure criterion. We also demonstrate how the individual and ensemble models would perform as part of an operational Adaptive Traffic Light System. Investigating seismicity forecasts based on a range of potential injection scenarios, we use forecast periods of different durations to compute the occurrence probabilities of seismic events M ≥ 3. We show that in the case of the Basel 2006 geothermal stimulation the models forecast hazardous levels

  15. Ensemble Bayesian forecasting system Part I: Theory and algorithms

    Science.gov (United States)

    Herr, Henry D.; Krzysztofowicz, Roman

    2015-05-01

    The ensemble Bayesian forecasting system (EBFS), whose theory was published in 2001, is developed for the purpose of quantifying the total uncertainty about a discrete-time, continuous-state, non-stationary stochastic process such as a time series of stages, discharges, or volumes at a river gauge. The EBFS is built of three components: an input ensemble forecaster (IEF), which simulates the uncertainty associated with random inputs; a deterministic hydrologic model (of any complexity), which simulates physical processes within a river basin; and a hydrologic uncertainty processor (HUP), which simulates the hydrologic uncertainty (an aggregate of all uncertainties except input). It works as a Monte Carlo simulator: an ensemble of time series of inputs (e.g., precipitation amounts) generated by the IEF is transformed deterministically through a hydrologic model into an ensemble of time series of outputs, which is next transformed stochastically by the HUP into an ensemble of time series of predictands (e.g., river stages). Previous research indicated that in order to attain an acceptable sampling error, the ensemble size must be on the order of hundreds (for probabilistic river stage forecasts and probabilistic flood forecasts) or even thousands (for probabilistic stage transition forecasts). The computing time needed to run the hydrologic model this many times renders the straightforward simulations operationally infeasible. This motivates the development of the ensemble Bayesian forecasting system with randomization (EBFSR), which takes full advantage of the analytic meta-Gaussian HUP and generates multiple ensemble members after each run of the hydrologic model; this auxiliary randomization reduces the required size of the meteorological input ensemble and makes it operationally feasible to generate a Bayesian ensemble forecast of large size. Such a forecast quantifies the total uncertainty, is well calibrated against the prior (climatic) distribution of

  16. Robust Ensemble Filtering and Its Relation to Covariance Inflation in the Ensemble Kalman Filter

    KAUST Repository

    Luo, Xiaodong

    2011-12-01

    A robust ensemble filtering scheme based on the H∞ filtering theory is proposed. The optimal H∞ filter is derived by minimizing the supremum (or maximum) of a predefined cost function, a criterion different from the minimum variance used in the Kalman filter. By design, the H∞ filter is more robust than the Kalman filter, in the sense that the estimation error in the H∞ filter in general has a finite growth rate with respect to the uncertainties in assimilation, except for a special case that corresponds to the Kalman filter. The original form of the H∞ filter contains global constraints in time, which may be inconvenient for sequential data assimilation problems. Therefore a variant is introduced that solves some time-local constraints instead, and hence it is called the time-local H∞ filter (TLHF). By analogy to the ensemble Kalman filter (EnKF), the concept of ensemble time-local H∞ filter (EnTLHF) is also proposed. The general form of the EnTLHF is outlined, and some of its special cases are discussed. In particular, it is shown that an EnKF with certain covariance inflation is essentially an EnTLHF. In this sense, the EnTLHF provides a general framework for conducting covariance inflation in the EnKF-based methods. Some numerical examples are used to assess the relative robustness of the TLHF–EnTLHF in comparison with the corresponding KF–EnKF method.

  17. The Matrix Cookbook

    DEFF Research Database (Denmark)

    Petersen, Kaare Brandt; Pedersen, Michael Syskind

    Matrix identities, relations and approximations. A desktop reference for quick overview of mathematics of matrices.......Matrix identities, relations and approximations. A desktop reference for quick overview of mathematics of matrices....

  18. Nucleus as a canonical ensemble, 2

    International Nuclear Information System (INIS)

    Sato, Hiroshi.

    1986-11-01

    Highly excited nuclear states formed by high energy heavy-ion collisions are studied in terms of the temperature dependent antisymmetrized density matrix of many fermions in a harmonic oscillator well. Particle inclusive spectrum and multiplicity are studied with the density matrix derived. The deuteron formation probability, the coalescence model and the d/pn and d/p ratios are formulated and studied. The relationship between the d/p ratio and the entropy is discussed. It is found that quantities obtained are consistent with those found in high energy heavy-ion collisions. (author)

  19. Carbonate fuel cell matrix

    Science.gov (United States)

    Farooque, Mohammad; Yuh, Chao-Yi

    1996-01-01

    A carbonate fuel cell matrix comprising support particles and crack attenuator particles which are made platelet in shape to increase the resistance of the matrix to through cracking. Also disclosed is a matrix having porous crack attenuator particles and a matrix whose crack attenuator particles have a thermal coefficient of expansion which is significantly different from that of the support particles, and a method of making platelet-shaped crack attenuator particles.

  20. Effect of land model ensemble versus coupled model ensemble on the simulation of precipitation climatology and variability

    Science.gov (United States)

    Wei, Jiangfeng; Dirmeyer, Paul A.; Yang, Zong-Liang; Chen, Haishan

    2017-10-01

    Through a series of model simulations with an atmospheric general circulation model coupled to three different land surface models, this study investigates the impacts of land model ensembles and coupled model ensemble on precipitation simulation. It is found that coupling an ensemble of land models to an atmospheric model has a very minor impact on the improvement of precipitation climatology and variability, but a simple ensemble average of the precipitation from three individually coupled land-atmosphere models produces better results, especially for precipitation variability. The generally weak impact of land processes on precipitation should be the main reason that the land model ensembles do not improve precipitation simulation. However, if there are big biases in the land surface model or land surface data set, correcting them could improve the simulated climate, especially for well-constrained regional climate simulations.

  1. Decadal climate predictions improved by ocean ensemble dispersion filtering

    Science.gov (United States)

    Kadow, C.; Illing, S.; Kröner, I.; Ulbrich, U.; Cubasch, U.

    2017-06-01

    Decadal predictions by Earth system models aim to capture the state and phase of the climate several years in advance. Atmosphere-ocean interaction plays an important role for such climate forecasts. While short-term weather forecasts represent an initial value problem and long-term climate projections represent a boundary condition problem, the decadal climate prediction falls in-between these two time scales. In recent years, more precise initialization techniques of coupled Earth system models and increased ensemble sizes have improved decadal predictions. However, climate models in general start losing the initialized signal and its predictive skill from one forecast year to the next. Here we show that the climate prediction skill of an Earth system model can be improved by a shift of the ocean state toward the ensemble mean of its individual members at seasonal intervals. We found that this procedure, called ensemble dispersion filter, results in more accurate results than the standard decadal prediction. Global mean and regional temperature, precipitation, and winter cyclone predictions show an increased skill up to 5 years ahead. Furthermore, the novel technique outperforms predictions with larger ensembles and higher resolution. Our results demonstrate how decadal climate predictions benefit from ocean ensemble dispersion filtering toward the ensemble mean.Plain Language SummaryDecadal predictions aim to predict the climate several years in advance. Atmosphere-ocean interaction plays an important role for such climate forecasts. The ocean memory due to its heat capacity holds big potential skill. In recent years, more precise initialization techniques of coupled Earth system models (incl. atmosphere and ocean) have improved decadal predictions. Ensembles are another important aspect. Applying slightly perturbed predictions to trigger the famous butterfly effect results in an ensemble. Instead of evaluating one prediction, but the whole ensemble with its

  2. Matrix with Prescribed Eigenvectors

    Science.gov (United States)

    Ahmad, Faiz

    2011-01-01

    It is a routine matter for undergraduates to find eigenvalues and eigenvectors of a given matrix. But the converse problem of finding a matrix with prescribed eigenvalues and eigenvectors is rarely discussed in elementary texts on linear algebra. This problem is related to the "spectral" decomposition of a matrix and has important technical…

  3. Triangularization of a Matrix

    Indian Academy of Sciences (India)

    Much of linear algebra is devoted to reducing a matrix (via similarity or unitary similarity) to another that has lots of zeros. The simplest such theorem is the Schur triangularization theorem. This says that every matrix is unitarily similar to an upper triangular matrix. Our aim here is to show that though it is very easy to prove it ...

  4. An Efficient Ensemble Learning Method for Gene Microarray Classification

    Directory of Open Access Journals (Sweden)

    Alireza Osareh

    2013-01-01

    Full Text Available The gene microarray analysis and classification have demonstrated an effective way for the effective diagnosis of diseases and cancers. However, it has been also revealed that the basic classification techniques have intrinsic drawbacks in achieving accurate gene classification and cancer diagnosis. On the other hand, classifier ensembles have received increasing attention in various applications. Here, we address the gene classification issue using RotBoost ensemble methodology. This method is a combination of Rotation Forest and AdaBoost techniques which in turn preserve both desirable features of an ensemble architecture, that is, accuracy and diversity. To select a concise subset of informative genes, 5 different feature selection algorithms are considered. To assess the efficiency of the RotBoost, other nonensemble/ensemble techniques including Decision Trees, Support Vector Machines, Rotation Forest, AdaBoost, and Bagging are also deployed. Experimental results have revealed that the combination of the fast correlation-based feature selection method with ICA-based RotBoost ensemble is highly effective for gene classification. In fact, the proposed method can create ensemble classifiers which outperform not only the classifiers produced by the conventional machine learning but also the classifiers generated by two widely used conventional ensemble learning methods, that is, Bagging and AdaBoost.

  5. Selecting a climate model subset to optimise key ensemble properties

    Directory of Open Access Journals (Sweden)

    N. Herger

    2018-02-01

    Full Text Available End users studying impacts and risks caused by human-induced climate change are often presented with large multi-model ensembles of climate projections whose composition and size are arbitrarily determined. An efficient and versatile method that finds a subset which maintains certain key properties from the full ensemble is needed, but very little work has been done in this area. Therefore, users typically make their own somewhat subjective subset choices and commonly use the equally weighted model mean as a best estimate. However, different climate model simulations cannot necessarily be regarded as independent estimates due to the presence of duplicated code and shared development history. Here, we present an efficient and flexible tool that makes better use of the ensemble as a whole by finding a subset with improved mean performance compared to the multi-model mean while at the same time maintaining the spread and addressing the problem of model interdependence. Out-of-sample skill and reliability are demonstrated using model-as-truth experiments. This approach is illustrated with one set of optimisation criteria but we also highlight the flexibility of cost functions, depending on the focus of different users. The technique is useful for a range of applications that, for example, minimise present-day bias to obtain an accurate ensemble mean, reduce dependence in ensemble spread, maximise future spread, ensure good performance of individual models in an ensemble, reduce the ensemble size while maintaining important ensemble characteristics, or optimise several of these at the same time. As in any calibration exercise, the final ensemble is sensitive to the metric, observational product, and pre-processing steps used.

  6. Selecting a climate model subset to optimise key ensemble properties

    Science.gov (United States)

    Herger, Nadja; Abramowitz, Gab; Knutti, Reto; Angélil, Oliver; Lehmann, Karsten; Sanderson, Benjamin M.

    2018-02-01

    End users studying impacts and risks caused by human-induced climate change are often presented with large multi-model ensembles of climate projections whose composition and size are arbitrarily determined. An efficient and versatile method that finds a subset which maintains certain key properties from the full ensemble is needed, but very little work has been done in this area. Therefore, users typically make their own somewhat subjective subset choices and commonly use the equally weighted model mean as a best estimate. However, different climate model simulations cannot necessarily be regarded as independent estimates due to the presence of duplicated code and shared development history. Here, we present an efficient and flexible tool that makes better use of the ensemble as a whole by finding a subset with improved mean performance compared to the multi-model mean while at the same time maintaining the spread and addressing the problem of model interdependence. Out-of-sample skill and reliability are demonstrated using model-as-truth experiments. This approach is illustrated with one set of optimisation criteria but we also highlight the flexibility of cost functions, depending on the focus of different users. The technique is useful for a range of applications that, for example, minimise present-day bias to obtain an accurate ensemble mean, reduce dependence in ensemble spread, maximise future spread, ensure good performance of individual models in an ensemble, reduce the ensemble size while maintaining important ensemble characteristics, or optimise several of these at the same time. As in any calibration exercise, the final ensemble is sensitive to the metric, observational product, and pre-processing steps used.

  7. Modeling task-specific neuronal ensembles improves decoding of grasp

    Science.gov (United States)

    Smith, Ryan J.; Soares, Alcimar B.; Rouse, Adam G.; Schieber, Marc H.; Thakor, Nitish V.

    2018-06-01

    Objective. Dexterous movement involves the activation and coordination of networks of neuronal populations across multiple cortical regions. Attempts to model firing of individual neurons commonly treat the firing rate as directly modulating with motor behavior. However, motor behavior may additionally be associated with modulations in the activity and functional connectivity of neurons in a broader ensemble. Accounting for variations in neural ensemble connectivity may provide additional information about the behavior being performed. Approach. In this study, we examined neural ensemble activity in primary motor cortex (M1) and premotor cortex (PM) of two male rhesus monkeys during performance of a center-out reach, grasp and manipulate task. We constructed point process encoding models of neuronal firing that incorporated task-specific variations in the baseline firing rate as well as variations in functional connectivity with the neural ensemble. Models were evaluated both in terms of their encoding capabilities and their ability to properly classify the grasp being performed. Main results. Task-specific ensemble models correctly predicted the performed grasp with over 95% accuracy and were shown to outperform models of neuronal activity that assume only a variable baseline firing rate. Task-specific ensemble models exhibited superior decoding performance in 82% of units in both monkeys (p  <  0.01). Inclusion of ensemble activity also broadly improved the ability of models to describe observed spiking. Encoding performance of task-specific ensemble models, measured by spike timing predictability, improved upon baseline models in 62% of units. Significance. These results suggest that additional discriminative information about motor behavior found in the variations in functional connectivity of neuronal ensembles located in motor-related cortical regions is relevant to decode complex tasks such as grasping objects, and may serve the basis for more

  8. Ensemble Deep Learning for Biomedical Time Series Classification

    Directory of Open Access Journals (Sweden)

    Lin-peng Jin

    2016-01-01

    Full Text Available Ensemble learning has been proved to improve the generalization ability effectively in both theory and practice. In this paper, we briefly outline the current status of research on it first. Then, a new deep neural network-based ensemble method that integrates filtering views, local views, distorted views, explicit training, implicit training, subview prediction, and Simple Average is proposed for biomedical time series classification. Finally, we validate its effectiveness on the Chinese Cardiovascular Disease Database containing a large number of electrocardiogram recordings. The experimental results show that the proposed method has certain advantages compared to some well-known ensemble methods, such as Bagging and AdaBoost.

  9. Device and Method for Gathering Ensemble Data Sets

    Science.gov (United States)

    Racette, Paul E. (Inventor)

    2014-01-01

    An ensemble detector uses calibrated noise references to produce ensemble sets of data from which properties of non-stationary processes may be extracted. The ensemble detector comprising: a receiver; a switching device coupled to the receiver, the switching device configured to selectively connect each of a plurality of reference noise signals to the receiver; and a gain modulation circuit coupled to the receiver and configured to vary a gain of the receiver based on a forcing signal; whereby the switching device selectively connects each of the plurality of reference noise signals to the receiver to produce an output signal derived from the plurality of reference noise signals and the forcing signal.

  10. Parallel quantum computing in a single ensemble quantum computer

    International Nuclear Information System (INIS)

    Long Guilu; Xiao, L.

    2004-01-01

    We propose a parallel quantum computing mode for ensemble quantum computer. In this mode, some qubits are in pure states while other qubits are in mixed states. It enables a single ensemble quantum computer to perform 'single-instruction-multidata' type of parallel computation. Parallel quantum computing can provide additional speedup in Grover's algorithm and Shor's algorithm. In addition, it also makes a fuller use of qubit resources in an ensemble quantum computer. As a result, some qubits discarded in the preparation of an effective pure state in the Schulman-Varizani and the Cleve-DiVincenzo algorithms can be reutilized

  11. Random matrix models for phase diagrams

    International Nuclear Information System (INIS)

    Vanderheyden, B; Jackson, A D

    2011-01-01

    We describe a random matrix approach that can provide generic and readily soluble mean-field descriptions of the phase diagram for a variety of systems ranging from quantum chromodynamics to high-T c materials. Instead of working from specific models, phase diagrams are constructed by averaging over the ensemble of theories that possesses the relevant symmetries of the problem. Although approximate in nature, this approach has a number of advantages. First, it can be useful in distinguishing generic features from model-dependent details. Second, it can help in understanding the 'minimal' number of symmetry constraints required to reproduce specific phase structures. Third, the robustness of predictions can be checked with respect to variations in the detailed description of the interactions. Finally, near critical points, random matrix models bear strong similarities to Ginsburg-Landau theories with the advantage of additional constraints inherited from the symmetries of the underlying interaction. These constraints can be helpful in ruling out certain topologies in the phase diagram. In this Key Issues Review, we illustrate the basic structure of random matrix models, discuss their strengths and weaknesses, and consider the kinds of system to which they can be applied.

  12. Evaluation of medium-range ensemble flood forecasting based on calibration strategies and ensemble methods in Lanjiang Basin, Southeast China

    Science.gov (United States)

    Liu, Li; Gao, Chao; Xuan, Weidong; Xu, Yue-Ping

    2017-11-01

    Ensemble flood forecasts by hydrological models using numerical weather prediction products as forcing data are becoming more commonly used in operational flood forecasting applications. In this study, a hydrological ensemble flood forecasting system comprised of an automatically calibrated Variable Infiltration Capacity model and quantitative precipitation forecasts from TIGGE dataset is constructed for Lanjiang Basin, Southeast China. The impacts of calibration strategies and ensemble methods on the performance of the system are then evaluated. The hydrological model is optimized by the parallel programmed ε-NSGA II multi-objective algorithm. According to the solutions by ε-NSGA II, two differently parameterized models are determined to simulate daily flows and peak flows at each of the three hydrological stations. Then a simple yet effective modular approach is proposed to combine these daily and peak flows at the same station into one composite series. Five ensemble methods and various evaluation metrics are adopted. The results show that ε-NSGA II can provide an objective determination on parameter estimation, and the parallel program permits a more efficient simulation. It is also demonstrated that the forecasts from ECMWF have more favorable skill scores than other Ensemble Prediction Systems. The multimodel ensembles have advantages over all the single model ensembles and the multimodel methods weighted on members and skill scores outperform other methods. Furthermore, the overall performance at three stations can be satisfactory up to ten days, however the hydrological errors can degrade the skill score by approximately 2 days, and the influence persists until a lead time of 10 days with a weakening trend. With respect to peak flows selected by the Peaks Over Threshold approach, the ensemble means from single models or multimodels are generally underestimated, indicating that the ensemble mean can bring overall improvement in forecasting of flows. For

  13. Reduced Kalman Filters for Clock Ensembles

    Science.gov (United States)

    Greenhall, Charles A.

    2011-01-01

    This paper summarizes the author's work ontimescales based on Kalman filters that act upon the clock comparisons. The natural Kalman timescale algorithm tends to optimize long-term timescale stability at the expense of short-term stability. By subjecting each post-measurement error covariance matrix to a non-transparent reduction operation, one obtains corrected clocks with improved short-term stability and little sacrifice of long-term stability.

  14. Canonical ensembles and nonzero density quantum chromodynamics

    International Nuclear Information System (INIS)

    Hasenfratz, A.; Toussaint, D.

    1992-01-01

    We study QCD with nonzero chemical potential on 4 4 lattices by averaging over the canonical partition functions, or sectors with fixed quark number. We derive a condensed matrix of size 2x3xL 3 whose eigenvalues can be used to find the canonical partition functions. We also experiment with a weight for configuration generation which respects the Z(3) symmetry which forces the canonical partition function to be zero for quark numbers that are not multiples of three. (orig.)

  15. Skew-orthogonal polynomials and random matrix theory

    CERN Document Server

    Ghosh, Saugata

    2009-01-01

    Orthogonal polynomials satisfy a three-term recursion relation irrespective of the weight function with respect to which they are defined. This gives a simple formula for the kernel function, known in the literature as the Christoffel-Darboux sum. The availability of asymptotic results of orthogonal polynomials and the simple structure of the Christoffel-Darboux sum make the study of unitary ensembles of random matrices relatively straightforward. In this book, the author develops the theory of skew-orthogonal polynomials and obtains recursion relations which, unlike orthogonal polynomials, depend on weight functions. After deriving reduced expressions, called the generalized Christoffel-Darboux formulas (GCD), he obtains universal correlation functions and non-universal level densities for a wide class of random matrix ensembles using the GCD. The author also shows that once questions about higher order effects are considered (questions that are relevant in different branches of physics and mathematics) the ...

  16. Information in small neuronal ensemble activity in the hippocampal CA1 during delayed non-matching to sample performance in rats

    Directory of Open Access Journals (Sweden)

    Takahashi Susumu

    2009-09-01

    Full Text Available Abstract Background The matrix-like organization of the hippocampus, with its several inputs and outputs, has given rise to several theories related to hippocampal information processing. Single-cell electrophysiological studies and studies of lesions or genetically altered animals using recognition memory tasks such as delayed non-matching-to-sample (DNMS tasks support the theories. However, a complete understanding of hippocampal function necessitates knowledge of the encoding of information by multiple neurons in a single trial. The role of neuronal ensembles in the hippocampal CA1 for a DNMS task was assessed quantitatively in this study using multi-neuronal recordings and an artificial neural network classifier as a decoder. Results The activity of small neuronal ensembles (6-18 cells over brief time intervals (2-50 ms contains accurate information specifically related to the matching/non-matching of continuously presented stimuli (stimulus comparison. The accuracy of the combination of neurons pooled over all the ensembles was markedly lower than those of the ensembles over all examined time intervals. Conclusion The results show that the spatiotemporal patterns of spiking activity among cells in the small neuronal ensemble contain much information that is specifically useful for the stimulus comparison. Small neuronal networks in the hippocampal CA1 might therefore act as a comparator during recognition memory tasks.

  17. Universality of correlation functions in random matrix models of QCD

    International Nuclear Information System (INIS)

    Jackson, A.D.; Sener, M.K.; Verbaarschot, J.J.M.

    1997-01-01

    We demonstrate the universality of the spectral correlation functions of a QCD inspired random matrix model that consists of a random part having the chiral structure of the QCD Dirac operator and a deterministic part which describes a schematic temperature dependence. We calculate the correlation functions analytically using the technique of Itzykson-Zuber integrals for arbitrary complex supermatrices. An alternative exact calculation for arbitrary matrix size is given for the special case of zero temperature, and we reproduce the well-known Laguerre kernel. At finite temperature, the microscopic limit of the correlation functions are calculated in the saddle-point approximation. The main result of this paper is that the microscopic universality of correlation functions is maintained even though unitary invariance is broken by the addition of a deterministic matrix to the ensemble. (orig.)

  18. Low-temperature random matrix theory at the soft edge

    International Nuclear Information System (INIS)

    Edelman, Alan; Persson, Per-Olof; Sutton, Brian D.

    2014-01-01

    “Low temperature” random matrix theory is the study of random eigenvalues as energy is removed. In standard notation, β is identified with inverse temperature, and low temperatures are achieved through the limit β → ∞. In this paper, we derive statistics for low-temperature random matrices at the “soft edge,” which describes the extreme eigenvalues for many random matrix distributions. Specifically, new asymptotics are found for the expected value and standard deviation of the general-β Tracy-Widom distribution. The new techniques utilize beta ensembles, stochastic differential operators, and Riccati diffusions. The asymptotics fit known high-temperature statistics curiously well and contribute to the larger program of general-β random matrix theory

  19. Scalable quantum information processing with atomic ensembles and flying photons

    International Nuclear Information System (INIS)

    Mei Feng; Yu Yafei; Feng Mang; Zhang Zhiming

    2009-01-01

    We present a scheme for scalable quantum information processing with atomic ensembles and flying photons. Using the Rydberg blockade, we encode the qubits in the collective atomic states, which could be manipulated fast and easily due to the enhanced interaction in comparison to the single-atom case. We demonstrate that our proposed gating could be applied to generation of two-dimensional cluster states for measurement-based quantum computation. Moreover, the atomic ensembles also function as quantum repeaters useful for long-distance quantum state transfer. We show the possibility of our scheme to work in bad cavity or in weak coupling regime, which could much relax the experimental requirement. The efficient coherent operations on the ensemble qubits enable our scheme to be switchable between quantum computation and quantum communication using atomic ensembles.

  20. HIGH-RESOLUTION ATMOSPHERIC ENSEMBLE MODELING AT SRNL

    Energy Technology Data Exchange (ETDEWEB)

    Buckley, R.; Werth, D.; Chiswell, S.; Etherton, B.

    2011-05-10

    The High-Resolution Mid-Atlantic Forecasting Ensemble (HME) is a federated effort to improve operational forecasts related to precipitation, convection and boundary layer evolution, and fire weather utilizing data and computing resources from a diverse group of cooperating institutions in order to create a mesoscale ensemble from independent members. Collaborating organizations involved in the project include universities, National Weather Service offices, and national laboratories, including the Savannah River National Laboratory (SRNL). The ensemble system is produced from an overlapping numerical weather prediction model domain and parameter subsets provided by each contributing member. The coordination, synthesis, and dissemination of the ensemble information are performed by the Renaissance Computing Institute (RENCI) at the University of North Carolina-Chapel Hill. This paper discusses background related to the HME effort, SRNL participation, and example results available from the RENCI website.

  1. Relation between native ensembles and experimental structures of proteins

    DEFF Research Database (Denmark)

    Best, R. B.; Lindorff-Larsen, Kresten; DePristo, M. A.

    2006-01-01

    Different experimental structures of the same protein or of proteins with high sequence similarity contain many small variations. Here we construct ensembles of "high-sequence similarity Protein Data Bank" (HSP) structures and consider the extent to which such ensembles represent the structural...... Data Bank ensembles; moreover, we show that the effects of uncertainties in structure determination are insufficient to explain the results. These results highlight the importance of accounting for native-state protein dynamics in making comparisons with ensemble-averaged experimental data and suggest...... heterogeneity of the native state in solution. We find that different NMR measurements probing structure and dynamics of given proteins in solution, including order parameters, scalar couplings, and residual dipolar couplings, are remarkably well reproduced by their respective high-sequence similarity Protein...

  2. Time-dependent generalized Gibbs ensembles in open quantum systems

    Science.gov (United States)

    Lange, Florian; Lenarčič, Zala; Rosch, Achim

    2018-04-01

    Generalized Gibbs ensembles have been used as powerful tools to describe the steady state of integrable many-particle quantum systems after a sudden change of the Hamiltonian. Here, we demonstrate numerically that they can be used for a much broader class of problems. We consider integrable systems in the presence of weak perturbations which break both integrability and drive the system to a state far from equilibrium. Under these conditions, we show that the steady state and the time evolution on long timescales can be accurately described by a (truncated) generalized Gibbs ensemble with time-dependent Lagrange parameters, determined from simple rate equations. We compare the numerically exact time evolutions of density matrices for small systems with a theory based on block-diagonal density matrices (diagonal ensemble) and a time-dependent generalized Gibbs ensemble containing only a small number of approximately conserved quantities, using the one-dimensional Heisenberg model with perturbations described by Lindblad operators as an example.

  3. Quantum Ensemble Classification: A Sampling-Based Learning Control Approach.

    Science.gov (United States)

    Chen, Chunlin; Dong, Daoyi; Qi, Bo; Petersen, Ian R; Rabitz, Herschel

    2017-06-01

    Quantum ensemble classification (QEC) has significant applications in discrimination of atoms (or molecules), separation of isotopes, and quantum information extraction. However, quantum mechanics forbids deterministic discrimination among nonorthogonal states. The classification of inhomogeneous quantum ensembles is very challenging, since there exist variations in the parameters characterizing the members within different classes. In this paper, we recast QEC as a supervised quantum learning problem. A systematic classification methodology is presented by using a sampling-based learning control (SLC) approach for quantum discrimination. The classification task is accomplished via simultaneously steering members belonging to different classes to their corresponding target states (e.g., mutually orthogonal states). First, a new discrimination method is proposed for two similar quantum systems. Then, an SLC method is presented for QEC. Numerical results demonstrate the effectiveness of the proposed approach for the binary classification of two-level quantum ensembles and the multiclass classification of multilevel quantum ensembles.

  4. Probing RNA native conformational ensembles with structural constraints

    DEFF Research Database (Denmark)

    Fonseca, Rasmus; van den Bedem, Henry; Bernauer, Julie

    2016-01-01

    substates, which are difficult to characterize experimentally and computationally. Here, we present an innovative, entirely kinematic computational procedure to efficiently explore the native ensemble of RNA molecules. Our procedure projects degrees of freedom onto a subspace of conformation space defined...

  5. Reservoir History Matching Using Ensemble Kalman Filters with Anamorphosis Transforms

    KAUST Repository

    Aman, Beshir M.

    2012-01-01

    Some History matching methods such as Kalman filter, particle filter and the ensemble Kalman filter are reviewed and applied to a test case in the reservoir application. The key idea is to apply the transformation before the update step

  6. An ensemble classifier to predict track geometry degradation

    International Nuclear Information System (INIS)

    Cárdenas-Gallo, Iván; Sarmiento, Carlos A.; Morales, Gilberto A.; Bolivar, Manuel A.; Akhavan-Tabatabaei, Raha

    2017-01-01

    Railway operations are inherently complex and source of several problems. In particular, track geometry defects are one of the leading causes of train accidents in the United States. This paper presents a solution approach which entails the construction of an ensemble classifier to forecast the degradation of track geometry. Our classifier is constructed by solving the problem from three different perspectives: deterioration, regression and classification. We considered a different model from each perspective and our results show that using an ensemble method improves the predictive performance. - Highlights: • We present an ensemble classifier to forecast the degradation of track geometry. • Our classifier considers three perspectives: deterioration, regression and classification. • We construct and test three models and our results show that using an ensemble method improves the predictive performance.

  7. Dissipation induced asymmetric steering of distant atomic ensembles

    Science.gov (United States)

    Cheng, Guangling; Tan, Huatang; Chen, Aixi

    2018-04-01

    The asymmetric steering effects of separated atomic ensembles denoted by the effective bosonic modes have been explored by the means of quantum reservoir engineering in the setting of the cascaded cavities, in each of which an atomic ensemble is involved. It is shown that the steady-state asymmetric steering of the mesoscopic objects is unconditionally achieved via the dissipation of the cavities, by which the nonlocal interaction occurs between two atomic ensembles, and the direction of steering could be easily controlled through variation of certain tunable system parameters. One advantage of the present scheme is that it could be rather robust against parameter fluctuations, and does not require the accurate control of evolution time and the original state of the system. Furthermore, the double-channel Raman transitions between the long-lived atomic ground states are used and the atomic ensembles act as the quantum network nodes, which makes our scheme insensitive to the collective spontaneous emission of atoms.

  8. Probability Maps for the Visualization of Assimilation Ensemble Flow Data

    KAUST Repository

    Hollt, Thomas; Hadwiger, Markus; Knio, Omar; Hoteit, Ibrahim

    2015-01-01

    resampling, every member can follow up on any of the members before resampling. Tracking behavior over time, such as all possible paths of a particle in an ensemble vector field, becomes very difficult, as the number of combinations rises exponentially

  9. Kinematic matrix theory and universalities in self-propellers and active swimmers.

    Science.gov (United States)

    Nourhani, Amir; Lammert, Paul E; Borhan, Ali; Crespi, Vincent H

    2014-06-01

    We describe an efficient and parsimonious matrix-based theory for studying the ensemble behavior of self-propellers and active swimmers, such as nanomotors or motile bacteria, that are typically studied by differential-equation-based Langevin or Fokker-Planck formalisms. The kinematic effects for elementary processes of motion are incorporated into a matrix, called the "kinematrix," from which we immediately obtain correlators and the mean and variance of angular and position variables (and thus effective diffusivity) by simple matrix algebra. The kinematrix formalism enables us recast the behaviors of a diverse range of self-propellers into a unified form, revealing universalities in their ensemble behavior in terms of new emergent time scales. Active fluctuations and hydrodynamic interactions can be expressed as an additive composition of separate self-propellers.

  10. Developing of Thai Classical Music Ensemble in Rattanakosin Period

    OpenAIRE

    Pansak Vandee

    2013-01-01

    The research titled “Developing of Thai Classical Music Ensemble in Rattanakosin Period" aimed 1) to study the history of Thai Classical Music Ensemble in Rattanakosin Period and 2) to analyze changing in each period of Rattanakosin Era. This is the historical and documentary research. The data was collected by in-depth interview those musicians, and academic music experts and field study. The focus group discussion was conducted to analyze and conclude the findings. The research found that t...

  11. Weight Distribution for Non-binary Cluster LDPC Code Ensemble

    Science.gov (United States)

    Nozaki, Takayuki; Maehara, Masaki; Kasai, Kenta; Sakaniwa, Kohichi

    In this paper, we derive the average weight distributions for the irregular non-binary cluster low-density parity-check (LDPC) code ensembles. Moreover, we give the exponential growth rate of the average weight distribution in the limit of large code length. We show that there exist $(2,d_c)$-regular non-binary cluster LDPC code ensembles whose normalized typical minimum distances are strictly positive.

  12. A Separation between Divergence and Holevo Information for Ensembles

    OpenAIRE

    Jain, Rahul; Nayak, Ashwin; Su, Yi

    2007-01-01

    The notion of divergence information of an ensemble of probability distributions was introduced by Jain, Radhakrishnan, and Sen in the context of the ``substate theorem''. Since then, divergence has been recognized as a more natural measure of information in several situations in quantum and classical communication. We construct ensembles of probability distributions for which divergence information may be significantly smaller than the more standard Holevo information. As a result, we establ...

  13. ENSEMBLE methods to reconcile disparate national long range dispersion forecasts

    OpenAIRE

    Mikkelsen, Torben; Galmarini, S.; Bianconi, R.; French, S.

    2003-01-01

    ENSEMBLE is a web-based decision support system for real-time exchange and evaluation of national long-range dispersion forecasts of nuclear releases with cross-boundary consequences. The system is developed with the purpose to reconcile among disparatenational forecasts for long-range dispersion. ENSEMBLE addresses the problem of achieving a common coherent strategy across European national emergency management when national long-range dispersion forecasts differ from one another during an a...

  14. An automated approach to network features of protein structure ensembles

    Science.gov (United States)

    Bhattacharyya, Moitrayee; Bhat, Chanda R; Vishveshwara, Saraswathi

    2013-01-01

    Network theory applied to protein structures provides insights into numerous problems of biological relevance. The explosion in structural data available from PDB and simulations establishes a need to introduce a standalone-efficient program that assembles network concepts/parameters under one hood in an automated manner. Herein, we discuss the development/application of an exhaustive, user-friendly, standalone program package named PSN-Ensemble, which can handle structural ensembles generated through molecular dynamics (MD) simulation/NMR studies or from multiple X-ray structures. The novelty in network construction lies in the explicit consideration of side-chain interactions among amino acids. The program evaluates network parameters dealing with topological organization and long-range allosteric communication. The introduction of a flexible weighing scheme in terms of residue pairwise cross-correlation/interaction energy in PSN-Ensemble brings in dynamical/chemical knowledge into the network representation. Also, the results are mapped on a graphical display of the structure, allowing an easy access of network analysis to a general biological community. The potential of PSN-Ensemble toward examining structural ensemble is exemplified using MD trajectories of an ubiquitin-conjugating enzyme (UbcH5b). Furthermore, insights derived from network parameters evaluated using PSN-Ensemble for single-static structures of active/inactive states of β2-adrenergic receptor and the ternary tRNA complexes of tyrosyl tRNA synthetases (from organisms across kingdoms) are discussed. PSN-Ensemble is freely available from http://vishgraph.mbu.iisc.ernet.in/PSN-Ensemble/psn_index.html. PMID:23934896

  15. Parallelism in matrix computations

    CERN Document Server

    Gallopoulos, Efstratios; Sameh, Ahmed H

    2016-01-01

    This book is primarily intended as a research monograph that could also be used in graduate courses for the design of parallel algorithms in matrix computations. It assumes general but not extensive knowledge of numerical linear algebra, parallel architectures, and parallel programming paradigms. The book consists of four parts: (I) Basics; (II) Dense and Special Matrix Computations; (III) Sparse Matrix Computations; and (IV) Matrix functions and characteristics. Part I deals with parallel programming paradigms and fundamental kernels, including reordering schemes for sparse matrices. Part II is devoted to dense matrix computations such as parallel algorithms for solving linear systems, linear least squares, the symmetric algebraic eigenvalue problem, and the singular-value decomposition. It also deals with the development of parallel algorithms for special linear systems such as banded ,Vandermonde ,Toeplitz ,and block Toeplitz systems. Part III addresses sparse matrix computations: (a) the development of pa...

  16. Neutrino mass matrix

    International Nuclear Information System (INIS)

    Strobel, E.L.

    1985-01-01

    Given the many conflicting experimental results, examination is made of the neutrino mass matrix in order to determine possible masses and mixings. It is assumed that the Dirac mass matrix for the electron, muon, and tau neutrinos is similar in form to those of the quarks and charged leptons, and that the smallness of the observed neutrino masses results from the Gell-Mann-Ramond-Slansky mechanism. Analysis of masses and mixings for the neutrinos is performed using general structures for the Majorana mass matrix. It is shown that if certain tentative experimental results concerning the neutrino masses and mixing angles are confirmed, significant limitations may be placed on the Majorana mass matrix. The most satisfactory simple assumption concerning the Majorana mass matrix is that it is approximately proportional to the Dirac mass matrix. A very recent experimental neutrino mass result and its implications are discussed. Some general properties of matrices with structure similar to the Dirac mass matrices are discussed

  17. SVM and SVM Ensembles in Breast Cancer Prediction.

    Science.gov (United States)

    Huang, Min-Wei; Chen, Chih-Wen; Lin, Wei-Chao; Ke, Shih-Wen; Tsai, Chih-Fong

    2017-01-01

    Breast cancer is an all too common disease in women, making how to effectively predict it an active research problem. A number of statistical and machine learning techniques have been employed to develop various breast cancer prediction models. Among them, support vector machines (SVM) have been shown to outperform many related techniques. To construct the SVM classifier, it is first necessary to decide the kernel function, and different kernel functions can result in different prediction performance. However, there have been very few studies focused on examining the prediction performances of SVM based on different kernel functions. Moreover, it is unknown whether SVM classifier ensembles which have been proposed to improve the performance of single classifiers can outperform single SVM classifiers in terms of breast cancer prediction. Therefore, the aim of this paper is to fully assess the prediction performance of SVM and SVM ensembles over small and large scale breast cancer datasets. The classification accuracy, ROC, F-measure, and computational times of training SVM and SVM ensembles are compared. The experimental results show that linear kernel based SVM ensembles based on the bagging method and RBF kernel based SVM ensembles with the boosting method can be the better choices for a small scale dataset, where feature selection should be performed in the data pre-processing stage. For a large scale dataset, RBF kernel based SVM ensembles based on boosting perform better than the other classifiers.

  18. Flood Forecasting Based on TIGGE Precipitation Ensemble Forecast

    Directory of Open Access Journals (Sweden)

    Jinyin Ye

    2016-01-01

    Full Text Available TIGGE (THORPEX International Grand Global Ensemble was a major part of the THORPEX (Observing System Research and Predictability Experiment. It integrates ensemble precipitation products from all the major forecast centers in the world and provides systematic evaluation on the multimodel ensemble prediction system. Development of meteorologic-hydrologic coupled flood forecasting model and early warning model based on the TIGGE precipitation ensemble forecast can provide flood probability forecast, extend the lead time of the flood forecast, and gain more time for decision-makers to make the right decision. In this study, precipitation ensemble forecast products from ECMWF, NCEP, and CMA are used to drive distributed hydrologic model TOPX. We focus on Yi River catchment and aim to build a flood forecast and early warning system. The results show that the meteorologic-hydrologic coupled model can satisfactorily predict the flow-process of four flood events. The predicted occurrence time of peak discharges is close to the observations. However, the magnitude of the peak discharges is significantly different due to various performances of the ensemble prediction systems. The coupled forecasting model can accurately predict occurrence of the peak time and the corresponding risk probability of peak discharge based on the probability distribution of peak time and flood warning, which can provide users a strong theoretical foundation and valuable information as a promising new approach.

  19. Impact of ensemble learning in the assessment of skeletal maturity.

    Science.gov (United States)

    Cunha, Pedro; Moura, Daniel C; Guevara López, Miguel Angel; Guerra, Conceição; Pinto, Daniela; Ramos, Isabel

    2014-09-01

    The assessment of the bone age, or skeletal maturity, is an important task in pediatrics that measures the degree of maturation of children's bones. Nowadays, there is no standard clinical procedure for assessing bone age and the most widely used approaches are the Greulich and Pyle and the Tanner and Whitehouse methods. Computer methods have been proposed to automatize the process; however, there is a lack of exploration about how to combine the features of the different parts of the hand, and how to take advantage of ensemble techniques for this purpose. This paper presents a study where the use of ensemble techniques for improving bone age assessment is evaluated. A new computer method was developed that extracts descriptors for each joint of each finger, which are then combined using different ensemble schemes for obtaining a final bone age value. Three popular ensemble schemes are explored in this study: bagging, stacking and voting. Best results were achieved by bagging with a rule-based regression (M5P), scoring a mean absolute error of 10.16 months. Results show that ensemble techniques improve the prediction performance of most of the evaluated regression algorithms, always achieving best or comparable to best results. Therefore, the success of the ensemble methods allow us to conclude that their use may improve computer-based bone age assessment, offering a scalable option for utilizing multiple regions of interest and combining their output.

  20. Concrete ensemble Kalman filters with rigorous catastrophic filter divergence.

    Science.gov (United States)

    Kelly, David; Majda, Andrew J; Tong, Xin T

    2015-08-25

    The ensemble Kalman filter and ensemble square root filters are data assimilation methods used to combine high-dimensional, nonlinear dynamical models with observed data. Ensemble methods are indispensable tools in science and engineering and have enjoyed great success in geophysical sciences, because they allow for computationally cheap low-ensemble-state approximation for extremely high-dimensional turbulent forecast models. From a theoretical perspective, the dynamical properties of these methods are poorly understood. One of the central mysteries is the numerical phenomenon known as catastrophic filter divergence, whereby ensemble-state estimates explode to machine infinity, despite the true state remaining in a bounded region. In this article we provide a breakthrough insight into the phenomenon, by introducing a simple and natural forecast model that transparently exhibits catastrophic filter divergence under all ensemble methods and a large set of initializations. For this model, catastrophic filter divergence is not an artifact of numerical instability, but rather a true dynamical property of the filter. The divergence is not only validated numerically but also proven rigorously. The model cleanly illustrates mechanisms that give rise to catastrophic divergence and confirms intuitive accounts of the phenomena given in past literature.

  1. On the forecast skill of a convection-permitting ensemble

    Science.gov (United States)

    Schellander-Gorgas, Theresa; Wang, Yong; Meier, Florian; Weidle, Florian; Wittmann, Christoph; Kann, Alexander

    2017-01-01

    The 2.5 km convection-permitting (CP) ensemble AROME-EPS (Applications of Research to Operations at Mesoscale - Ensemble Prediction System) is evaluated by comparison with the regional 11 km ensemble ALADIN-LAEF (Aire Limitée Adaption dynamique Développement InterNational - Limited Area Ensemble Forecasting) to show whether a benefit is provided by a CP EPS. The evaluation focuses on the abilities of the ensembles to quantitatively predict precipitation during a 3-month convective summer period over areas consisting of mountains and lowlands. The statistical verification uses surface observations and 1 km × 1 km precipitation analyses, and the verification scores involve state-of-the-art statistical measures for deterministic and probabilistic forecasts as well as novel spatial verification methods. The results show that the convection-permitting ensemble with higher-resolution AROME-EPS outperforms its mesoscale counterpart ALADIN-LAEF for precipitation forecasts. The positive impact is larger for the mountainous areas than for the lowlands. In particular, the diurnal precipitation cycle is improved in AROME-EPS, which leads to a significant improvement of scores at the concerned times of day (up to approximately one-third of the scored verification measure). Moreover, there are advantages for higher precipitation thresholds at small spatial scales, which are due to the improved simulation of the spatial structure of precipitation.

  2. Ensembles of a small number of conformations with relative populations

    Energy Technology Data Exchange (ETDEWEB)

    Vammi, Vijay, E-mail: vsvammi@iastate.edu; Song, Guang, E-mail: gsong@iastate.edu [Iowa State University, Bioinformatics and Computational Biology Program, Department of Computer Science (United States)

    2015-12-15

    In our previous work, we proposed a new way to represent protein native states, using ensembles of a small number of conformations with relative Populations, or ESP in short. Using Ubiquitin as an example, we showed that using a small number of conformations could greatly reduce the potential of overfitting and assigning relative populations to protein ensembles could significantly improve their quality. To demonstrate that ESP indeed is an excellent alternative to represent protein native states, in this work we compare the quality of two ESP ensembles of Ubiquitin with several well-known regular ensembles or average structure representations. Extensive amount of significant experimental data are employed to achieve a thorough assessment. Our results demonstrate that ESP ensembles, though much smaller in size comparing to regular ensembles, perform equally or even better sometimes in all four different types of experimental data used in the assessment, namely, the residual dipolar couplings, residual chemical shift anisotropy, hydrogen exchange rates, and solution scattering profiles. This work further underlines the significance of having relative populations in describing the native states.

  3. Three-model ensemble wind prediction in southern Italy

    Science.gov (United States)

    Torcasio, Rosa Claudia; Federico, Stefano; Calidonna, Claudia Roberta; Avolio, Elenio; Drofa, Oxana; Landi, Tony Christian; Malguzzi, Piero; Buzzi, Andrea; Bonasoni, Paolo

    2016-03-01

    Quality of wind prediction is of great importance since a good wind forecast allows the prediction of available wind power, improving the penetration of renewable energies into the energy market. Here, a 1-year (1 December 2012 to 30 November 2013) three-model ensemble (TME) experiment for wind prediction is considered. The models employed, run operationally at National Research Council - Institute of Atmospheric Sciences and Climate (CNR-ISAC), are RAMS (Regional Atmospheric Modelling System), BOLAM (BOlogna Limited Area Model), and MOLOCH (MOdello LOCale in H coordinates). The area considered for the study is southern Italy and the measurements used for the forecast verification are those of the GTS (Global Telecommunication System). Comparison with observations is made every 3 h up to 48 h of forecast lead time. Results show that the three-model ensemble outperforms the forecast of each individual model. The RMSE improvement compared to the best model is between 22 and 30 %, depending on the season. It is also shown that the three-model ensemble outperforms the IFS (Integrated Forecasting System) of the ECMWF (European Centre for Medium-Range Weather Forecast) for the surface wind forecasts. Notably, the three-model ensemble forecast performs better than each unbiased model, showing the added value of the ensemble technique. Finally, the sensitivity of the three-model ensemble RMSE to the length of the training period is analysed.

  4. Protein folding simulations by generalized-ensemble algorithms.

    Science.gov (United States)

    Yoda, Takao; Sugita, Yuji; Okamoto, Yuko

    2014-01-01

    In the protein folding problem, conventional simulations in physical statistical mechanical ensembles, such as the canonical ensemble with fixed temperature, face a great difficulty. This is because there exist a huge number of local-minimum-energy states in the system and the conventional simulations tend to get trapped in these states, giving wrong results. Generalized-ensemble algorithms are based on artificial unphysical ensembles and overcome the above difficulty by performing random walks in potential energy, volume, and other physical quantities or their corresponding conjugate parameters such as temperature, pressure, etc. The advantage of generalized-ensemble simulations lies in the fact that they not only avoid getting trapped in states of energy local minima but also allows the calculations of physical quantities as functions of temperature or other parameters from a single simulation run. In this article we review the generalized-ensemble algorithms. Four examples, multicanonical algorithm, replica-exchange method, replica-exchange multicanonical algorithm, and multicanonical replica-exchange method, are described in detail. Examples of their applications to the protein folding problem are presented.

  5. SVM and SVM Ensembles in Breast Cancer Prediction.

    Directory of Open Access Journals (Sweden)

    Min-Wei Huang

    Full Text Available Breast cancer is an all too common disease in women, making how to effectively predict it an active research problem. A number of statistical and machine learning techniques have been employed to develop various breast cancer prediction models. Among them, support vector machines (SVM have been shown to outperform many related techniques. To construct the SVM classifier, it is first necessary to decide the kernel function, and different kernel functions can result in different prediction performance. However, there have been very few studies focused on examining the prediction performances of SVM based on different kernel functions. Moreover, it is unknown whether SVM classifier ensembles which have been proposed to improve the performance of single classifiers can outperform single SVM classifiers in terms of breast cancer prediction. Therefore, the aim of this paper is to fully assess the prediction performance of SVM and SVM ensembles over small and large scale breast cancer datasets. The classification accuracy, ROC, F-measure, and computational times of training SVM and SVM ensembles are compared. The experimental results show that linear kernel based SVM ensembles based on the bagging method and RBF kernel based SVM ensembles with the boosting method can be the better choices for a small scale dataset, where feature selection should be performed in the data pre-processing stage. For a large scale dataset, RBF kernel based SVM ensembles based on boosting perform better than the other classifiers.

  6. Phase Structure Of Fuzzy Field Theories And Multi trace Matrix Models

    International Nuclear Information System (INIS)

    Tekel, J.

    2015-01-01

    We review the interplay of fuzzy field theories and matrix models, with an emphasis on the phase structure of fuzzy scalar field theories. We give a self-contained introduction to these topics and give the details concerning the saddle point approach for the usual single trace and multi trace matrix models. We then review the attempts to explain the phase structure of the fuzzy field theory using a corresponding random matrix ensemble, showing the strength and weaknesses of this approach. We conclude with a list of challenges one needs to overcome and the most interesting open problems one can try to solve. (author)

  7. Modeling cometary photopolarimetric characteristics with Sh-matrix method

    Science.gov (United States)

    Kolokolova, L.; Petrov, D.

    2017-12-01

    Cometary dust is dominated by particles of complex shape and structure, which are often considered as fractal aggregates. Rigorous modeling of light scattering by such particles, even using parallelized codes and NASA supercomputer resources, is very computer time and memory consuming. We are presenting a new approach to modeling cometary dust that is based on the Sh-matrix technique (e.g., Petrov et al., JQSRT, 112, 2012). This method is based on the T-matrix technique (e.g., Mishchenko et al., JQSRT, 55, 1996) and was developed after it had been found that the shape-dependent factors could be separated from the size- and refractive-index-dependent factors and presented as a shape matrix, or Sh-matrix. Size and refractive index dependences are incorporated through analytical operations on the Sh-matrix to produce the elements of T-matrix. Sh-matrix method keeps all advantages of the T-matrix method, including analytical averaging over particle orientation. Moreover, the surface integrals describing the Sh-matrix elements themselves can be solvable analytically for particles of any shape. This makes Sh-matrix approach an effective technique to simulate light scattering by particles of complex shape and surface structure. In this paper, we present cometary dust as an ensemble of Gaussian random particles. The shape of these particles is described by a log-normal distribution of their radius length and direction (Muinonen, EMP, 72, 1996). Changing one of the parameters of this distribution, the correlation angle, from 0 to 90 deg., we can model a variety of particles from spheres to particles of a random complex shape. We survey the angular and spectral dependencies of intensity and polarization resulted from light scattering by such particles, studying how they depend on the particle shape, size, and composition (including porous particles to simulate aggregates) to find the best fit to the cometary observations.

  8. On evaluation of ensemble precipitation forecasts with observation-based ensembles

    Directory of Open Access Journals (Sweden)

    S. Jaun

    2007-04-01

    Full Text Available Spatial interpolation of precipitation data is uncertain. How important is this uncertainty and how can it be considered in evaluation of high-resolution probabilistic precipitation forecasts? These questions are discussed by experimental evaluation of the COSMO consortium's limited-area ensemble prediction system COSMO-LEPS. The applied performance measure is the often used Brier skill score (BSS. The observational references in the evaluation are (a analyzed rain gauge data by ordinary Kriging and (b ensembles of interpolated rain gauge data by stochastic simulation. This permits the consideration of either a deterministic reference (the event is observed or not with 100% certainty or a probabilistic reference that makes allowance for uncertainties in spatial averaging. The evaluation experiments show that the evaluation uncertainties are substantial even for the large area (41 300 km2 of Switzerland with a mean rain gauge distance as good as 7 km: the one- to three-day precipitation forecasts have skill decreasing with forecast lead time but the one- and two-day forecast performances differ not significantly.

  9. EnsembleGASVR: A novel ensemble method for classifying missense single nucleotide polymorphisms

    KAUST Repository

    Rapakoulia, Trisevgeni

    2014-04-26

    Motivation: Single nucleotide polymorphisms (SNPs) are considered the most frequently occurring DNA sequence variations. Several computational methods have been proposed for the classification of missense SNPs to neutral and disease associated. However, existing computational approaches fail to select relevant features by choosing them arbitrarily without sufficient documentation. Moreover, they are limited to the problem ofmissing values, imbalance between the learning datasets and most of them do not support their predictions with confidence scores. Results: To overcome these limitations, a novel ensemble computational methodology is proposed. EnsembleGASVR facilitates a twostep algorithm, which in its first step applies a novel evolutionary embedded algorithm to locate close to optimal Support Vector Regression models. In its second step, these models are combined to extract a universal predictor, which is less prone to overfitting issues, systematizes the rebalancing of the learning sets and uses an internal approach for solving the missing values problem without loss of information. Confidence scores support all the predictions and the model becomes tunable by modifying the classification thresholds. An extensive study was performed for collecting the most relevant features for the problem of classifying SNPs, and a superset of 88 features was constructed. Experimental results show that the proposed framework outperforms well-known algorithms in terms of classification performance in the examined datasets. Finally, the proposed algorithmic framework was able to uncover the significant role of certain features such as the solvent accessibility feature, and the top-scored predictions were further validated by linking them with disease phenotypes. © The Author 2014.

  10. Kinetics of particle ensembles with variable charges

    International Nuclear Information System (INIS)

    Ivlev, A. V.; Zhdanov, S.; Klumov, B.; Morfill, G.; Tsytovich, V. N.; Angelis, U. de

    2005-01-01

    One of the remarkable features distinguishing complex (dusty) plasmas from usual plasmas is that charges on the grains are not constant, but fluctuate in time around some equilibrium value which, in then, is some function of spatial coordinates. Generally, ensembles of particles with variable charges are non-Hamiltonian systems where the mutual collisions do not conserve energy. Therefore, the use of thermodynamic potentials to describe such systems is not really valid. An appropriate way to investigate their evolution is to employ the kinetic approach. We studied (both analytical and numerically) two cases: (a) inhomogeneous charge-it depends on the particle coordinate but does not change in time, and (b)fluctuating charge-it changes in time around the equilibrium value, which is constant in space. For both cases we used the Fokker-Planck approach to derive the collision integral which describes the momentum and energy transfer in mutual particle collisions as well as in the collisions with neutrals. We obtained that the mean particle energy grows in time when the neutral friction is below a certain threshold (as shown in Fig. 1). In case (a) the energy changes as ∞(t c r-t)''2, in case (b) it scales as ∞(t c r-t)''-1, exhibiting the explosion-like growth with t c r a critical time scale. The obtained solutions can be of significant importance for laboratory dusty plasmas as well as for space plasma environments, where inhomogeneous charge distributions are often present. For instance, the instability can cause dust heating in low-pressure complex plasma experiments, it can be responsible for the melting of plasma crystals, it might operate in protoplanetary disks and effect the kinetics of the planet formation, etc. (Author)

  11. Random ensemble learning for EEG classification.

    Science.gov (United States)

    Hosseini, Mohammad-Parsa; Pompili, Dario; Elisevich, Kost; Soltanian-Zadeh, Hamid

    2018-01-01

    Real-time detection of seizure activity in epilepsy patients is critical in averting seizure activity and improving patients' quality of life. Accurate evaluation, presurgical assessment, seizure prevention, and emergency alerts all depend on the rapid detection of seizure onset. A new method of feature selection and classification for rapid and precise seizure detection is discussed wherein informative components of electroencephalogram (EEG)-derived data are extracted and an automatic method is presented using infinite independent component analysis (I-ICA) to select independent features. The feature space is divided into subspaces via random selection and multichannel support vector machines (SVMs) are used to classify these subspaces. The result of each classifier is then combined by majority voting to establish the final output. In addition, a random subspace ensemble using a combination of SVM, multilayer perceptron (MLP) neural network and an extended k-nearest neighbors (k-NN), called extended nearest neighbor (ENN), is developed for the EEG and electrocorticography (ECoG) big data problem. To evaluate the solution, a benchmark ECoG of eight patients with temporal and extratemporal epilepsy was implemented in a distributed computing framework as a multitier cloud-computing architecture. Using leave-one-out cross-validation, the accuracy, sensitivity, specificity, and both false positive and false negative ratios of the proposed method were found to be 0.97, 0.98, 0.96, 0.04, and 0.02, respectively. Application of the solution to cases under investigation with ECoG has also been effected to demonstrate its utility. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Field-theoretic simulations of block copolymer nanocomposites in a constant interfacial tension ensemble.

    Science.gov (United States)

    Koski, Jason P; Riggleman, Robert A

    2017-04-28

    Block copolymers, due to their ability to self-assemble into periodic structures with long range order, are appealing candidates to control the ordering of functionalized nanoparticles where it is well-accepted that the spatial distribution of nanoparticles in a polymer matrix dictates the resulting material properties. The large parameter space associated with block copolymer nanocomposites makes theory and simulation tools appealing to guide experiments and effectively isolate parameters of interest. We demonstrate a method for performing field-theoretic simulations in a constant volume-constant interfacial tension ensemble (nVγT) that enables the determination of the equilibrium properties of block copolymer nanocomposites, including when the composites are placed under tensile or compressive loads. Our approach is compatible with the complex Langevin simulation framework, which allows us to go beyond the mean-field approximation. We validate our approach by comparing our nVγT approach with free energy calculations to determine the ideal domain spacing and modulus of a symmetric block copolymer melt. We analyze the effect of numerical and thermodynamic parameters on the efficiency of the nVγT ensemble and subsequently use our method to investigate the ideal domain spacing, modulus, and nanoparticle distribution of a lamellar forming block copolymer nanocomposite. We find that the nanoparticle distribution is directly linked to the resultant domain spacing and is dependent on polymer chain density, nanoparticle size, and nanoparticle chemistry. Furthermore, placing the system under tension or compression can qualitatively alter the nanoparticle distribution within the block copolymer.

  13. Strong diffusion formulation of Markov chain ensembles and its optimal weaker reductions

    Science.gov (United States)

    Güler, Marifi

    2017-10-01

    Two self-contained diffusion formulations, in the form of coupled stochastic differential equations, are developed for the temporal evolution of state densities over an ensemble of Markov chains evolving independently under a common transition rate matrix. Our first formulation derives from Kurtz's strong approximation theorem of density-dependent Markov jump processes [Stoch. Process. Their Appl. 6, 223 (1978), 10.1016/0304-4149(78)90020-0] and, therefore, strongly converges with an error bound of the order of lnN /N for ensemble size N . The second formulation eliminates some fluctuation variables, and correspondingly some noise terms, within the governing equations of the strong formulation, with the objective of achieving a simpler analytic formulation and a faster computation algorithm when the transition rates are constant or slowly varying. There, the reduction of the structural complexity is optimal in the sense that the elimination of any given set of variables takes place with the lowest attainable increase in the error bound. The resultant formulations are supported by numerical simulations.

  14. Reduced neutron widths in the nuclear data ensemble: Experiment and theory do not agree

    International Nuclear Information System (INIS)

    Koehler, P.E.

    2010-01-01

    I have analyzed reduced neutron widths (Γ n 0 ) for the subset of 1245 resonances in the nuclear data ensemble (NDE) for which they have been reported. Random matrix theory (RMT) predicts for the Gaussian orthogonal ensemble (GOE) that these widths should follow a χ 2 distribution having one degree of freedom (ν=1) - the Porter Thomas (PT) distribution. Using the maximum-likelihood (ML) technique, I have determined that the Γ n 0 values in the NDE are best described by a χ 2 distribution having ν=(0.801±0.052), which is 3.8 standard deviations smaller than predicted by RMT. I show that this striking disagreement is most likely due to the inclusion of significant p-wave contamination to the supposedly pure s-wave NDE. Furthermore, when an energy-dependent threshold is used to remove the p-wave contamination, ML analysis yields ν=(1.217±0.092) for the remaining data, still in poor agreement with the RMT prediction for the GOE. These results cast very serious doubt on claims that the NDE represents a striking confirmation of RMT. (author)

  15. Reduced neutron widths in the nuclear data ensemble: Experiment and theory do not agree

    International Nuclear Information System (INIS)

    Koehler, P. E.

    2011-01-01

    I have analyzed reduced neutron widths (Γ n 0 ) for the subset of 1245 resonances in the nuclear data ensemble (NDE) for which they have been reported. Random matrix theory (RMT) predicts for the Gaussian orthogonal ensemble that these widths should follow a χ 2 distribution having one degree of freedom (ν=1)--the Porter Thomas distribution (PTD). Careful analysis of the Γ n 0 values in the NDE rejects the validity of the PTD with a statistical significance of at least 99.97% (ν=0.801±0.052). This striking disagreement with the RMT prediction is most likely due to the inclusion of significant p-wave contamination to the supposedly pure s-wave NDE. When an energy-dependent threshold is used to remove the p-wave contamination, the PTD is still rejected with a statistical significance of at least 98.17% (ν=1.217±0.092). Furthermore, examination of the primary references for the NDE reveals that many resonances in most of the individual data sets were selected using methods derived from RMT. Therefore, using the full NDE data set to test RMT predictions seems highly questionable. These results cast very serious doubt on claims that the NDE represents a striking confirmation of RMT.

  16. Boosting iterative stochastic ensemble method for nonlinear calibration of subsurface flow models

    KAUST Repository

    Elsheikh, Ahmed H.

    2013-06-01

    A novel parameter estimation algorithm is proposed. The inverse problem is formulated as a sequential data integration problem in which Gaussian process regression (GPR) is used to integrate the prior knowledge (static data). The search space is further parameterized using Karhunen-Loève expansion to build a set of basis functions that spans the search space. Optimal weights of the reduced basis functions are estimated by an iterative stochastic ensemble method (ISEM). ISEM employs directional derivatives within a Gauss-Newton iteration for efficient gradient estimation. The resulting update equation relies on the inverse of the output covariance matrix which is rank deficient.In the proposed algorithm we use an iterative regularization based on the ℓ2 Boosting algorithm. ℓ2 Boosting iteratively fits the residual and the amount of regularization is controlled by the number of iterations. A termination criteria based on Akaike information criterion (AIC) is utilized. This regularization method is very attractive in terms of performance and simplicity of implementation. The proposed algorithm combining ISEM and ℓ2 Boosting is evaluated on several nonlinear subsurface flow parameter estimation problems. The efficiency of the proposed algorithm is demonstrated by the small size of utilized ensembles and in terms of error convergence rates. © 2013 Elsevier B.V.

  17. A molecular ensemble in the rER for procollagen maturation.

    Science.gov (United States)

    Ishikawa, Yoshihiro; Bächinger, Hans Peter

    2013-11-01

    Extracellular matrix (ECM) proteins create structural frameworks in tissues such as bone, skin, tendon and cartilage etc. These connective tissues play important roles in the development and homeostasis of organs. Collagen is the most abundant ECM protein and represents one third of all proteins in humans. The biosynthesis of ECM proteins occurs in the rough endoplasmic reticulum (rER). This review describes the current understanding of the biosynthesis and folding of procollagens, which are the precursor molecules of collagens, in the rER. Multiple folding enzymes and molecular chaperones are required for procollagen to establish specific posttranslational modifications, and facilitate folding and transport to the cell surface. Thus, this molecular ensemble in the rER contributes to ECM maturation and to the development and homeostasis of tissues. Mutations in this ensemble are likely candidates for connective tissue disorders. This article is part of a Special Issue entitled: Functional and structural diversity of endoplasmic reticulum. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Combining 2-m temperature nowcasting and short range ensemble forecasting

    Directory of Open Access Journals (Sweden)

    A. Kann

    2011-12-01

    Full Text Available During recent years, numerical ensemble prediction systems have become an important tool for estimating the uncertainties of dynamical and physical processes as represented in numerical weather models. The latest generation of limited area ensemble prediction systems (LAM-EPSs allows for probabilistic forecasts at high resolution in both space and time. However, these systems still suffer from systematic deficiencies. Especially for nowcasting (0–6 h applications the ensemble spread is smaller than the actual forecast error. This paper tries to generate probabilistic short range 2-m temperature forecasts by combining a state-of-the-art nowcasting method and a limited area ensemble system, and compares the results with statistical methods. The Integrated Nowcasting Through Comprehensive Analysis (INCA system, which has been in operation at the Central Institute for Meteorology and Geodynamics (ZAMG since 2006 (Haiden et al., 2011, provides short range deterministic forecasts at high temporal (15 min–60 min and spatial (1 km resolution. An INCA Ensemble (INCA-EPS of 2-m temperature forecasts is constructed by applying a dynamical approach, a statistical approach, and a combined dynamic-statistical method. The dynamical method takes uncertainty information (i.e. ensemble variance from the operational limited area ensemble system ALADIN-LAEF (Aire Limitée Adaptation Dynamique Développement InterNational Limited Area Ensemble Forecasting which is running operationally at ZAMG (Wang et al., 2011. The purely statistical method assumes a well-calibrated spread-skill relation and applies ensemble spread according to the skill of the INCA forecast of the most recent past. The combined dynamic-statistical approach adapts the ensemble variance gained from ALADIN-LAEF with non-homogeneous Gaussian regression (NGR which yields a statistical mbox{correction} of the first and second moment (mean bias and dispersion for Gaussian distributed continuous

  19. Developing an Ensemble Prediction System based on COSMO-DE

    Science.gov (United States)

    Theis, S.; Gebhardt, C.; Buchhold, M.; Ben Bouallègue, Z.; Ohl, R.; Paulat, M.; Peralta, C.

    2010-09-01

    The numerical weather prediction model COSMO-DE is a configuration of the COSMO model with a horizontal grid size of 2.8 km. It has been running operationally at DWD since 2007, it covers the area of Germany and produces forecasts with a lead time of 0-21 hours. The model COSMO-DE is convection-permitting, which means that it does without a parametrisation of deep convection and simulates deep convection explicitly. One aim is an improved forecast of convective heavy rain events. Convection-permitting models are in operational use at several weather services, but currently not in ensemble mode. It is expected that an ensemble system could reveal the advantages of a convection-permitting model even better. The probabilistic approach is necessary, because the explicit simulation of convective processes for more than a few hours cannot be viewed as a deterministic forecast anymore. This is due to the chaotic behaviour and short life cycle of the processes which are simulated explicitly now. In the framework of the project COSMO-DE-EPS, DWD is developing and implementing an ensemble prediction system (EPS) for the model COSMO-DE. The project COSMO-DE-EPS comprises the generation of ensemble members, as well as the verification and visualization of the ensemble forecasts and also statistical postprocessing. A pre-operational mode of the EPS with 20 ensemble members is foreseen to start in 2010. Operational use is envisaged to start in 2012, after an upgrade to 40 members and inclusion of statistical postprocessing. The presentation introduces the project COSMO-DE-EPS and describes the design of the ensemble as it is planned for the pre-operational mode. In particular, the currently implemented method for the generation of ensemble members will be explained and discussed. The method includes variations of initial conditions, lateral boundary conditions, and model physics. At present, pragmatic methods are applied which resemble the basic ideas of a multi-model approach

  20. NEW SPECTRAL STATISTICS FOR ENSEMBLES OF 2 × 2 REAL SYMMETRIC RANDOM MATRICES

    Directory of Open Access Journals (Sweden)

    Sachin Kumar

    2017-12-01

    Full Text Available We investigate spacing statistics for ensembles of various real random matrices where the matrix-elements have various Probability Distribution Function (PDF: f(x including Gaussian. For two modifications of 2 × 2 matrices with various PDFs, we derive the spacing distributions p(s of adjacent energy eigenvalues. Nevertheless, they show the linear level repulsion near s = 0 as αs where α depends on the choice of the PDF. More interestingly when f(x = xe−x2 (f(0 = 0, we get cubic level repulsion near s = 0: p(s ~ s3e−s2.We also derive the distribution of eigenvalues D(ε for these matrices.

  1. Patience of matrix games

    DEFF Research Database (Denmark)

    Hansen, Kristoffer Arnsfelt; Ibsen-Jensen, Rasmus; Podolskii, Vladimir V.

    2013-01-01

    For matrix games we study how small nonzero probability must be used in optimal strategies. We show that for image win–lose–draw games (i.e. image matrix games) nonzero probabilities smaller than image are never needed. We also construct an explicit image win–lose game such that the unique optimal...

  2. Matrix comparison, Part 2

    DEFF Research Database (Denmark)

    Schneider, Jesper Wiborg; Borlund, Pia

    2007-01-01

    The present two-part article introduces matrix comparison as a formal means for evaluation purposes in informetric studies such as cocitation analysis. In the first part, the motivation behind introducing matrix comparison to informetric studies, as well as two important issues influencing such c...

  3. Unitarity of CKM Matrix

    CERN Document Server

    Saleem, M

    2002-01-01

    The Unitarity of the CKM matrix is examined in the light of the latest available accurate data. The analysis shows that a conclusive result cannot be derived at present. Only more precise data can determine whether the CKM matrix opens new vistas beyond the standard model or not.

  4. Shallow cumuli ensemble statistics for development of a stochastic parameterization

    Science.gov (United States)

    Sakradzija, Mirjana; Seifert, Axel; Heus, Thijs

    2014-05-01

    According to a conventional deterministic approach to the parameterization of moist convection in numerical atmospheric models, a given large scale forcing produces an unique response from the unresolved convective processes. This representation leaves out the small-scale variability of convection, as it is known from the empirical studies of deep and shallow convective cloud ensembles, there is a whole distribution of sub-grid states corresponding to the given large scale forcing. Moreover, this distribution gets broader with the increasing model resolution. This behavior is also consistent with our theoretical understanding of a coarse-grained nonlinear system. We propose an approach to represent the variability of the unresolved shallow-convective states, including the dependence of the sub-grid states distribution spread and shape on the model horizontal resolution. Starting from the Gibbs canonical ensemble theory, Craig and Cohen (2006) developed a theory for the fluctuations in a deep convective ensemble. The micro-states of a deep convective cloud ensemble are characterized by the cloud-base mass flux, which, according to the theory, is exponentially distributed (Boltzmann distribution). Following their work, we study the shallow cumulus ensemble statistics and the distribution of the cloud-base mass flux. We employ a Large-Eddy Simulation model (LES) and a cloud tracking algorithm, followed by a conditional sampling of clouds at the cloud base level, to retrieve the information about the individual cloud life cycles and the cloud ensemble as a whole. In the case of shallow cumulus cloud ensemble, the distribution of micro-states is a generalized exponential distribution. Based on the empirical and theoretical findings, a stochastic model has been developed to simulate the shallow convective cloud ensemble and to test the convective ensemble theory. Stochastic model simulates a compound random process, with the number of convective elements drawn from a

  5. On the proper use of Ensembles for Predictive Uncertainty assessment

    Science.gov (United States)

    Todini, Ezio; Coccia, Gabriele; Ortiz, Enrique

    2015-04-01

    Probabilistic forecasting has become popular in the last decades. Hydrological probabilistic forecasts have been based either on uncertainty processors (Krzysztofowic, 1999; Todini, 2004; Todini, 2008) or on ensembles, following meteorological traditional approaches and the establishment of the HEPEX program (http://hepex.irstea.fr. Unfortunately, the direct use of ensembles as a measure of the predictive density is an incorrect practice, because the ensemble measures the spread of the forecast instead of, following the definition of predictive uncertainty, the conditional probability of the future outcome conditional on the forecast. Only few correct approaches are reported in the literature, which correctly use the ensemble to estimate an expected conditional predictive density (Reggiani et al., 2009), similarly to what is done when several predictive models are available as in the BMA (Raftery et al., 2005) or MCP(Todini, 2008; Coccia and Todini, 2011) approaches. A major problem, limiting the correct use of ensembles, is in fact the difficulty of defining the time dependence of the ensemble members, due to the lack of a consistent ranking: in other words, when dealing with multiple models, the ith model remains the ith model regardless to the time of forecast, while this does not happen when dealing with ensemble members, since there is no definition for the ith member of an ensemble. Nonetheless, the MCP approach (Todini, 2008; Coccia and Todini, 2011), essentially based on a multiple regression in the Normal space, can be easily extended to use ensembles to represent the local (in time) smaller or larger conditional predictive uncertainty, as a function of the ensemble spread. This is done by modifying the classical linear regression equations, impliying perfectly observed predictors, to alternative regression equations similar to the Kalman filter ones, allowing for uncertain predictors. In this way, each prediction in time accounts for both the predictive

  6. Fuzzy risk matrix

    International Nuclear Information System (INIS)

    Markowski, Adam S.; Mannan, M. Sam

    2008-01-01

    A risk matrix is a mechanism to characterize and rank process risks that are typically identified through one or more multifunctional reviews (e.g., process hazard analysis, audits, or incident investigation). This paper describes a procedure for developing a fuzzy risk matrix that may be used for emerging fuzzy logic applications in different safety analyses (e.g., LOPA). The fuzzification of frequency and severity of the consequences of the incident scenario are described which are basic inputs for fuzzy risk matrix. Subsequently using different design of risk matrix, fuzzy rules are established enabling the development of fuzzy risk matrices. Three types of fuzzy risk matrix have been developed (low-cost, standard, and high-cost), and using a distillation column case study, the effect of the design on final defuzzified risk index is demonstrated

  7. Fuzzy vulnerability matrix

    International Nuclear Information System (INIS)

    Baron, Jorge H.; Rivera, S.S.

    2000-01-01

    The so-called vulnerability matrix is used in the evaluation part of the probabilistic safety assessment for a nuclear power plant, during the containment event trees calculations. This matrix is established from what is knows as Numerical Categories for Engineering Judgement. This matrix is usually established with numerical values obtained with traditional arithmetic using the set theory. The representation of this matrix with fuzzy numbers is much more adequate, due to the fact that the Numerical Categories for Engineering Judgement are better represented with linguistic variables, such as 'highly probable', 'probable', 'impossible', etc. In the present paper a methodology to obtain a Fuzzy Vulnerability Matrix is presented, starting from the recommendations on the Numerical Categories for Engineering Judgement. (author)

  8. Regionalization of post-processed ensemble runoff forecasts

    Directory of Open Access Journals (Sweden)

    J. O. Skøien

    2016-05-01

    Full Text Available For many years, meteorological models have been run with perturbated initial conditions or parameters to produce ensemble forecasts that are used as a proxy of the uncertainty of the forecasts. However, the ensembles are usually both biased (the mean is systematically too high or too low, compared with the observed weather, and has dispersion errors (the ensemble variance indicates a too low or too high confidence in the forecast, compared with the observed weather. The ensembles are therefore commonly post-processed to correct for these shortcomings. Here we look at one of these techniques, referred to as Ensemble Model Output Statistics (EMOS (Gneiting et al., 2005. Originally, the post-processing parameters were identified as a fixed set of parameters for a region. The application of our work is the European Flood Awareness System (http://www.efas.eu, where a distributed model is run with meteorological ensembles as input. We are therefore dealing with a considerably larger data set than previous analyses. We also want to regionalize the parameters themselves for other locations than the calibration gauges. The post-processing parameters are therefore estimated for each calibration station, but with a spatial penalty for deviations from neighbouring stations, depending on the expected semivariance between the calibration catchment and these stations. The estimated post-processed parameters can then be used for regionalization of the postprocessing parameters also for uncalibrated locations using top-kriging in the rtop-package (Skøien et al., 2006, 2014. We will show results from cross-validation of the methodology and although our interest is mainly in identifying exceedance probabilities for certain return levels, we will also show how the rtop package can be used for creating a set of post-processed ensembles through simulations.

  9. A multi-model ensemble approach to seabed mapping

    Science.gov (United States)

    Diesing, Markus; Stephens, David

    2015-06-01

    Seabed habitat mapping based on swath acoustic data and ground-truth samples is an emergent and active marine science discipline. Significant progress could be achieved by transferring techniques and approaches that have been successfully developed and employed in such fields as terrestrial land cover mapping. One such promising approach is the multiple classifier system, which aims at improving classification performance by combining the outputs of several classifiers. Here we present results of a multi-model ensemble applied to multibeam acoustic data covering more than 5000 km2 of seabed in the North Sea with the aim to derive accurate spatial predictions of seabed substrate. A suite of six machine learning classifiers (k-Nearest Neighbour, Support Vector Machine, Classification Tree, Random Forest, Neural Network and Naïve Bayes) was trained with ground-truth sample data classified into seabed substrate classes and their prediction accuracy was assessed with an independent set of samples. The three and five best performing models were combined to classifier ensembles. Both ensembles led to increased prediction accuracy as compared to the best performing single classifier. The improvements were however not statistically significant at the 5% level. Although the three-model ensemble did not perform significantly better than its individual component models, we noticed that the five-model ensemble did perform significantly better than three of the five component models. A classifier ensemble might therefore be an effective strategy to improve classification performance. Another advantage is the fact that the agreement in predicted substrate class between the individual models of the ensemble could be used as a measure of confidence. We propose a simple and spatially explicit measure of confidence that is based on model agreement and prediction accuracy.

  10. Probabilistic Predictions of PM2.5 Using a Novel Ensemble Design for the NAQFC

    Science.gov (United States)

    Kumar, R.; Lee, J. A.; Delle Monache, L.; Alessandrini, S.; Lee, P.

    2017-12-01

    Poor air quality (AQ) in the U.S. is estimated to cause about 60,000 premature deaths with costs of 100B-150B annually. To reduce such losses, the National AQ Forecasting Capability (NAQFC) at the National Oceanic and Atmospheric Administration (NOAA) produces forecasts of ozone, particulate matter less than 2.5 mm in diameter (PM2.5), and other pollutants so that advance notice and warning can be issued to help individuals and communities limit the exposure and reduce air pollution-caused health problems. The current NAQFC, based on the U.S. Environmental Protection Agency Community Multi-scale AQ (CMAQ) modeling system, provides only deterministic AQ forecasts and does not quantify the uncertainty associated with the predictions, which could be large due to the chaotic nature of atmosphere and nonlinearity in atmospheric chemistry. This project aims to take NAQFC a step further in the direction of probabilistic AQ prediction by exploring and quantifying the potential value of ensemble predictions of PM2.5, and perturbing three key aspects of PM2.5 modeling: the meteorology, emissions, and CMAQ secondary organic aerosol formulation. This presentation focuses on the impact of meteorological variability, which is represented by three members of NOAA's Short-Range Ensemble Forecast (SREF) system that were down-selected by hierarchical cluster analysis. These three SREF members provide the physics configurations and initial/boundary conditions for the Weather Research and Forecasting (WRF) model runs that generate required output variables for driving CMAQ that are missing in operational SREF output. We conducted WRF runs for Jan, Apr, Jul, and Oct 2016 to capture seasonal changes in meteorology. Estimated emissions of trace gases and aerosols via the Sparse Matrix Operator Kernel (SMOKE) system were developed using the WRF output. WRF and SMOKE output drive a 3-member CMAQ mini-ensemble of once-daily, 48-h PM2.5 forecasts for the same four months. The CMAQ mini-ensemble

  11. Implementation of single qubit in QD ensembles

    International Nuclear Information System (INIS)

    Alegre, T.P. Mayer

    2004-01-01

    Full text: During the last decades the semiconductor industry has achieved the production of exponentially shrinking components. This fact points to fundamental limits of integration, making computation with single atoms or particles like an electron an ultimate goal. To get to this limit, quantum systems in solid state have to be manipulated in a controllable fashion. The assessment of quantum degrees of freedom for information processing may allow exponentially faster performance for certain classes of problems. The essential aspect to be explored in quantum information processing resides in the superposition of states that allows resources such as entangled states to be envisaged. The quest for the optimal system to host a quantum variable that is sufficiently isolated from the environment encompasses implementations spanning optical, atomic, molecular and solid state systems. In the solid state, a variety of proposals have come forth, each one having its own advantages and disadvantages. The main conclusion from these e efforts is that there is no decisive technology upon which quantum information devices will be built. Self-assembled quantum dots (SAQDs or QDs), can be grown with size uniformity that enables the observation of single electron loading events. They can in turn be used to controllably trap single electrons into discrete levels, atom-like, with their corresponding shells. Hund's rules and Pauli exclusion principle are observed in these nanostructures and are key in allowing and preserving a particular quantum state. Provided that one can trap one electron in a QD ensemble, the corresponding spin can be manipulated by an external magnetic field by either conventional Electron Spin Resonance (ESR) techniques or g-tensor modulation resonance (g-TMR). By analogy with Nuclear Magnetic Resonance, single qubit operations are proposed, which at some point in time should be scaled, provided that spin-spin interactions can be controlled. Read out can be

  12. A hybrid nudging-ensemble Kalman filter approach to data assimilation. Part I: application in the Lorenz system

    Directory of Open Access Journals (Sweden)

    Lili Lei

    2012-05-01

    Full Text Available A hybrid data assimilation approach combining nudging and the ensemble Kalman filter (EnKF for dynamic analysis and numerical weather prediction is explored here using the non-linear Lorenz three-variable model system with the goal of a smooth, continuous and accurate data assimilation. The hybrid nudging-EnKF (HNEnKF computes the hybrid nudging coefficients from the flow-dependent, time-varying error covariance matrix from the EnKF's ensemble forecasts. It extends the standard diagonal nudging terms to additional off-diagonal statistical correlation terms for greater inter-variable influence of the innovations in the model's predictive equations to assist in the data assimilation process. The HNEnKF promotes a better fit of an analysis to data compared to that achieved by either nudging or incremental analysis update (IAU. When model error is introduced, it produces similar or better root mean square errors compared to the EnKF while minimising the error spikes/discontinuities created by the intermittent EnKF. It provides a continuous data assimilation with better inter-variable consistency and improved temporal smoothness than that of the EnKF. Data assimilation experiments are also compared to the ensemble Kalman smoother (EnKS. The HNEnKF has similar or better temporal smoothness than that of the EnKS, and with much smaller central processing unit (CPU time and data storage requirements.

  13. Application of random matrix theory to biological networks

    Energy Technology Data Exchange (ETDEWEB)

    Luo Feng [Department of Computer Science, Clemson University, 100 McAdams Hall, Clemson, SC 29634 (United States); Department of Pathology, U.T. Southwestern Medical Center, 5323 Harry Hines Blvd. Dallas, TX 75390-9072 (United States); Zhong Jianxin [Department of Physics, Xiangtan University, Hunan 411105 (China) and Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)]. E-mail: zhongjn@ornl.gov; Yang Yunfeng [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Scheuermann, Richard H. [Department of Pathology, U.T. Southwestern Medical Center, 5323 Harry Hines Blvd. Dallas, TX 75390-9072 (United States); Zhou Jizhong [Department of Botany and Microbiology, University of Oklahoma, Norman, OK 73019 (United States) and Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)]. E-mail: zhouj@ornl.gov

    2006-09-25

    We show that spectral fluctuation of interaction matrices of a yeast protein-protein interaction network and a yeast metabolic network follows the description of the Gaussian orthogonal ensemble (GOE) of random matrix theory (RMT). Furthermore, we demonstrate that while the global biological networks evaluated belong to GOE, removal of interactions between constituents transitions the networks to systems of isolated modules described by the Poisson distribution. Our results indicate that although biological networks are very different from other complex systems at the molecular level, they display the same statistical properties at network scale. The transition point provides a new objective approach for the identification of functional modules.

  14. Operational hydrological forecasting in Bavaria. Part II: Ensemble forecasting

    Science.gov (United States)

    Ehret, U.; Vogelbacher, A.; Moritz, K.; Laurent, S.; Meyer, I.; Haag, I.

    2009-04-01

    In part I of this study, the operational flood forecasting system in Bavaria and an approach to identify and quantify forecast uncertainty was introduced. The approach is split into the calculation of an empirical 'overall error' from archived forecasts and the calculation of an empirical 'model error' based on hydrometeorological forecast tests, where rainfall observations were used instead of forecasts. The 'model error' can especially in upstream catchments where forecast uncertainty is strongly dependent on the current predictability of the atrmosphere be superimposed on the spread of a hydrometeorological ensemble forecast. In Bavaria, two meteorological ensemble prediction systems are currently tested for operational use: the 16-member COSMO-LEPS forecast and a poor man's ensemble composed of DWD GME, DWD Cosmo-EU, NCEP GFS, Aladin-Austria, MeteoSwiss Cosmo-7. The determination of the overall forecast uncertainty is dependent on the catchment characteristics: 1. Upstream catchment with high influence of weather forecast a) A hydrological ensemble forecast is calculated using each of the meteorological forecast members as forcing. b) Corresponding to the characteristics of the meteorological ensemble forecast, each resulting forecast hydrograph can be regarded as equally likely. c) The 'model error' distribution, with parameters dependent on hydrological case and lead time, is added to each forecast timestep of each ensemble member d) For each forecast timestep, the overall (i.e. over all 'model error' distribution of each ensemble member) error distribution is calculated e) From this distribution, the uncertainty range on a desired level (here: the 10% and 90% percentile) is extracted and drawn as forecast envelope. f) As the mean or median of an ensemble forecast does not necessarily exhibit meteorologically sound temporal evolution, a single hydrological forecast termed 'lead forecast' is chosen and shown in addition to the uncertainty bounds. This can be

  15. The nuclear reaction matrix

    International Nuclear Information System (INIS)

    Krenciglowa, E.M.; Kung, C.L.; Kuo, T.T.S.; Osnes, E.; and Department of Physics, State University of New York at Stony Brook, Stony Brook, New York 11794)

    1976-01-01

    Different definitions of the reaction matrix G appropriate to the calculation of nuclear structure are reviewed and discussed. Qualitative physical arguments are presented in support of a two-step calculation of the G-matrix for finite nuclei. In the first step the high-energy excitations are included using orthogonalized plane-wave intermediate states, and in the second step the low-energy excitations are added in, using harmonic oscillator intermediate states. Accurate calculations of G-matrix elements for nuclear structure calculations in the Aapprox. =18 region are performed following this procedure and treating the Pauli exclusion operator Q 2 /sub p/ by the method of Tsai and Kuo. The treatment of Q 2 /sub p/, the effect of the intermediate-state spectrum and the energy dependence of the reaction matrix are investigated in detail. The present matrix elements are compared with various matrix elements given in the literature. In particular, close agreement is obtained with the matrix elements calculated by Kuo and Brown using approximate methods

  16. Ensemble Kalman filtering with one-step-ahead smoothing

    KAUST Repository

    Raboudi, Naila F.

    2018-01-11

    The ensemble Kalman filter (EnKF) is widely used for sequential data assimilation. It operates as a succession of forecast and analysis steps. In realistic large-scale applications, EnKFs are implemented with small ensembles and poorly known model error statistics. This limits their representativeness of the background error covariances and, thus, their performance. This work explores the efficiency of the one-step-ahead (OSA) smoothing formulation of the Bayesian filtering problem to enhance the data assimilation performance of EnKFs. Filtering with OSA smoothing introduces an updated step with future observations, conditioning the ensemble sampling with more information. This should provide an improved background ensemble in the analysis step, which may help to mitigate the suboptimal character of EnKF-based methods. Here, the authors demonstrate the efficiency of a stochastic EnKF with OSA smoothing for state estimation. They then introduce a deterministic-like EnKF-OSA based on the singular evolutive interpolated ensemble Kalman (SEIK) filter. The authors show that the proposed SEIK-OSA outperforms both SEIK, as it efficiently exploits the data twice, and the stochastic EnKF-OSA, as it avoids observational error undersampling. They present extensive assimilation results from numerical experiments conducted with the Lorenz-96 model to demonstrate SEIK-OSA’s capabilities.

  17. Universal critical wrapping probabilities in the canonical ensemble

    Directory of Open Access Journals (Sweden)

    Hao Hu

    2015-09-01

    Full Text Available Universal dimensionless quantities, such as Binder ratios and wrapping probabilities, play an important role in the study of critical phenomena. We study the finite-size scaling behavior of the wrapping probability for the Potts model in the random-cluster representation, under the constraint that the total number of occupied bonds is fixed, so that the canonical ensemble applies. We derive that, in the limit L→∞, the critical values of the wrapping probability are different from those of the unconstrained model, i.e. the model in the grand-canonical ensemble, but still universal, for systems with 2yt−d>0 where yt=1/ν is the thermal renormalization exponent and d is the spatial dimension. Similar modifications apply to other dimensionless quantities, such as Binder ratios. For systems with 2yt−d≤0, these quantities share same critical universal values in the two ensembles. It is also derived that new finite-size corrections are induced. These findings apply more generally to systems in the canonical ensemble, e.g. the dilute Potts model with a fixed total number of vacancies. Finally, we formulate an efficient cluster-type algorithm for the canonical ensemble, and confirm these predictions by extensive simulations.

  18. Curve Boxplot: Generalization of Boxplot for Ensembles of Curves.

    Science.gov (United States)

    Mirzargar, Mahsa; Whitaker, Ross T; Kirby, Robert M

    2014-12-01

    In simulation science, computational scientists often study the behavior of their simulations by repeated solutions with variations in parameters and/or boundary values or initial conditions. Through such simulation ensembles, one can try to understand or quantify the variability or uncertainty in a solution as a function of the various inputs or model assumptions. In response to a growing interest in simulation ensembles, the visualization community has developed a suite of methods for allowing users to observe and understand the properties of these ensembles in an efficient and effective manner. An important aspect of visualizing simulations is the analysis of derived features, often represented as points, surfaces, or curves. In this paper, we present a novel, nonparametric method for summarizing ensembles of 2D and 3D curves. We propose an extension of a method from descriptive statistics, data depth, to curves. We also demonstrate a set of rendering and visualization strategies for showing rank statistics of an ensemble of curves, which is a generalization of traditional whisker plots or boxplots to multidimensional curves. Results are presented for applications in neuroimaging, hurricane forecasting and fluid dynamics.

  19. Skill forecasting from different wind power ensemble prediction methods

    International Nuclear Information System (INIS)

    Pinson, Pierre; Nielsen, Henrik A; Madsen, Henrik; Kariniotakis, George

    2007-01-01

    This paper presents an investigation on alternative approaches to the providing of uncertainty estimates associated to point predictions of wind generation. Focus is given to skill forecasts in the form of prediction risk indices, aiming at giving a comprehensive signal on the expected level of forecast uncertainty. Ensemble predictions of wind generation are used as input. A proposal for the definition of prediction risk indices is given. Such skill forecasts are based on the dispersion of ensemble members for a single prediction horizon, or over a set of successive look-ahead times. It is shown on the test case of a Danish offshore wind farm how prediction risk indices may be related to several levels of forecast uncertainty (and energy imbalances). Wind power ensemble predictions are derived from the transformation of ECMWF and NCEP ensembles of meteorological variables to power, as well as by a lagged average approach alternative. The ability of risk indices calculated from the various types of ensembles forecasts to resolve among situations with different levels of uncertainty is discussed

  20. Visualizing Confidence in Cluster-Based Ensemble Weather Forecast Analyses.

    Science.gov (United States)

    Kumpf, Alexander; Tost, Bianca; Baumgart, Marlene; Riemer, Michael; Westermann, Rudiger; Rautenhaus, Marc

    2018-01-01

    In meteorology, cluster analysis is frequently used to determine representative trends in ensemble weather predictions in a selected spatio-temporal region, e.g., to reduce a set of ensemble members to simplify and improve their analysis. Identified clusters (i.e., groups of similar members), however, can be very sensitive to small changes of the selected region, so that clustering results can be misleading and bias subsequent analyses. In this article, we - a team of visualization scientists and meteorologists-deliver visual analytics solutions to analyze the sensitivity of clustering results with respect to changes of a selected region. We propose an interactive visual interface that enables simultaneous visualization of a) the variation in composition of identified clusters (i.e., their robustness), b) the variability in cluster membership for individual ensemble members, and c) the uncertainty in the spatial locations of identified trends. We demonstrate that our solution shows meteorologists how representative a clustering result is, and with respect to which changes in the selected region it becomes unstable. Furthermore, our solution helps to identify those ensemble members which stably belong to a given cluster and can thus be considered similar. In a real-world application case we show how our approach is used to analyze the clustering behavior of different regions in a forecast of "Tropical Cyclone Karl", guiding the user towards the cluster robustness information required for subsequent ensemble analysis.

  1. Multiple graph regularized nonnegative matrix factorization

    KAUST Repository

    Wang, Jim Jing-Yan

    2013-10-01

    Non-negative matrix factorization (NMF) has been widely used as a data representation method based on components. To overcome the disadvantage of NMF in failing to consider the manifold structure of a data set, graph regularized NMF (GrNMF) has been proposed by Cai et al. by constructing an affinity graph and searching for a matrix factorization that respects graph structure. Selecting a graph model and its corresponding parameters is critical for this strategy. This process is usually carried out by cross-validation or discrete grid search, which are time consuming and prone to overfitting. In this paper, we propose a GrNMF, called MultiGrNMF, in which the intrinsic manifold is approximated by a linear combination of several graphs with different models and parameters inspired by ensemble manifold regularization. Factorization metrics and linear combination coefficients of graphs are determined simultaneously within a unified object function. They are alternately optimized in an iterative algorithm, thus resulting in a novel data representation algorithm. Extensive experiments on a protein subcellular localization task and an Alzheimer\\'s disease diagnosis task demonstrate the effectiveness of the proposed algorithm. © 2013 Elsevier Ltd. All rights reserved.

  2. Ensemble hydrological forecast efficiency evolution over various issue dates and lead-time: case study for the Cheboksary reservoir (Volga River)

    Science.gov (United States)

    Gelfan, Alexander; Moreido, Vsevolod

    2017-04-01

    Ensemble hydrological forecasting allows for describing uncertainty caused by variability of meteorological conditions in the river basin for the forecast lead-time. At the same time, in snowmelt-dependent river basins another significant source of uncertainty relates to variability of initial conditions of the basin (snow water equivalent, soil moisture content, etc.) prior to forecast issue. Accurate long-term hydrological forecast is most crucial for large water management systems, such as the Cheboksary reservoir (the catchment area is 374 000 sq.km) located in the Middle Volga river in Russia. Accurate forecasts of water inflow volume, maximum discharge and other flow characteristics are of great value for this basin, especially before the beginning of the spring freshet season that lasts here from April to June. The semi-distributed hydrological model ECOMAG was used to develop long-term ensemble forecast of daily water inflow into the Cheboksary reservoir. To describe variability of the meteorological conditions and construct ensemble of possible weather scenarios for the lead-time of the forecast, two approaches were applied. The first one utilizes 50 weather scenarios observed in the previous years (similar to the ensemble streamflow prediction (ESP) procedure), the second one uses 1000 synthetic scenarios simulated by a stochastic weather generator. We investigated the evolution of forecast uncertainty reduction, expressed as forecast efficiency, over various consequent forecast issue dates and lead time. We analyzed the Nash-Sutcliffe efficiency of inflow hindcasts for the period 1982 to 2016 starting from 1st of March with 15 days frequency for lead-time of 1 to 6 months. This resulted in the forecast efficiency matrix with issue dates versus lead-time that allows for predictability identification of the basin. The matrix was constructed separately for observed and synthetic weather ensembles.

  3. Matrix Metalloproteinase Enzyme Family

    Directory of Open Access Journals (Sweden)

    Ozlem Goruroglu Ozturk

    2013-04-01

    Full Text Available Matrix metalloproteinases play an important role in many biological processes such as embriogenesis, tissue remodeling, wound healing, and angiogenesis, and in some pathological conditions such as atherosclerosis, arthritis and cancer. Currently, 24 genes have been identified in humans that encode different groups of matrix metalloproteinase enzymes. This review discuss the members of the matrix metalloproteinase family and their substrate specificity, structure, function and the regulation of their enzyme activity by tissue inhibitors. [Archives Medical Review Journal 2013; 22(2.000: 209-220

  4. Matrix groups for undergraduates

    CERN Document Server

    Tapp, Kristopher

    2005-01-01

    Matrix groups touch an enormous spectrum of the mathematical arena. This textbook brings them into the undergraduate curriculum. It makes an excellent one-semester course for students familiar with linear and abstract algebra and prepares them for a graduate course on Lie groups. Matrix Groups for Undergraduates is concrete and example-driven, with geometric motivation and rigorous proofs. The story begins and ends with the rotations of a globe. In between, the author combines rigor and intuition to describe basic objects of Lie theory: Lie algebras, matrix exponentiation, Lie brackets, and maximal tori.

  5. Elementary matrix theory

    CERN Document Server

    Eves, Howard

    1980-01-01

    The usefulness of matrix theory as a tool in disciplines ranging from quantum mechanics to psychometrics is widely recognized, and courses in matrix theory are increasingly a standard part of the undergraduate curriculum.This outstanding text offers an unusual introduction to matrix theory at the undergraduate level. Unlike most texts dealing with the topic, which tend to remain on an abstract level, Dr. Eves' book employs a concrete elementary approach, avoiding abstraction until the final chapter. This practical method renders the text especially accessible to students of physics, engineeri

  6. Invariant β-Wishart ensembles, crossover densities and asymptotic corrections to the Marčenko–Pastur law

    International Nuclear Information System (INIS)

    Allez, Romain; Bouchaud, Jean-Philippe; Majumdar, Satya N; Vivo, Pierpaolo

    2013-01-01

    We construct a diffusive matrix model for the β-Wishart (or Laguerre) ensemble for general continuous β ∈ [0, 2], which preserves invariance under the orthogonal/unitary group transformation. Scaling the Dyson index β with the largest size M of the data matrix as β = 2c/M (with c a fixed positive constant), we obtain a family of spectral densities parametrized by c. As c is varied, this density interpolates continuously between the Marčenko–Pastur (c → ∞ limit) and the Gamma law (c → 0 limit). Analyzing the full Stieltjes transform (resolvent) equation, we obtain as a byproduct the correction to the Marčenko–Pastur density in the bulk up to order 1/M for all β and up to order 1/M 2 for the particular cases β = 1, 2. (paper)

  7. The Ensembl Web site: mechanics of a genome browser.

    Science.gov (United States)

    Stalker, James; Gibbins, Brian; Meidl, Patrick; Smith, James; Spooner, William; Hotz, Hans-Rudolf; Cox, Antony V

    2004-05-01

    The Ensembl Web site (http://www.ensembl.org/) is the principal user interface to the data of the Ensembl project, and currently serves >500,000 pages (approximately 2.5 million hits) per week, providing access to >80 GB (gigabyte) of data to users in more than 80 countries. Built atop an open-source platform comprising Apache/mod_perl and the MySQL relational database management system, it is modular, extensible, and freely available. It is being actively reused and extended in several different projects, and has been downloaded and installed in companies and academic institutions worldwide. Here, we describe some of the technical features of the site, with particular reference to its dynamic configuration that enables it to handle disparate data from multiple species.

  8. Deviations from Wick's theorem in the canonical ensemble

    Science.gov (United States)

    Schönhammer, K.

    2017-07-01

    Wick's theorem for the expectation values of products of field operators for a system of noninteracting fermions or bosons plays an important role in the perturbative approach to the quantum many-body problem. A finite-temperature version holds in the framework of the grand canonical ensemble, but not for the canonical ensemble appropriate for systems with fixed particle number such as ultracold quantum gases in optical lattices. Here we present formulas for expectation values of products of field operators in the canonical ensemble using a method in the spirit of Gaudin's proof of Wick's theorem for the grand canonical case. The deviations from Wick's theorem are examined quantitatively for two simple models of noninteracting fermions.

  9. Statistical ensembles and molecular dynamics studies of anisotropic solids. II

    International Nuclear Information System (INIS)

    Ray, J.R.; Rahman, A.

    1985-01-01

    We have recently discussed how the Parrinello--Rahman theory can be brought into accord with the theory of the elastic and thermodynamic behavior of anisotropic media. This involves the isoenthalpic--isotension ensemble of statistical mechanics. Nose has developed a canonical ensemble form of molecular dynamics. We combine Nose's ideas with the Parrinello--Rahman theory to obtain a canonical form of molecular dynamics appropriate to the study of anisotropic media subjected to arbitrary external stress. We employ this isothermal--isotension ensemble in a study of a fcc→ close-packed structural phase transformation in a Lennard-Jones solid subjected to uniaxial compression. Our interpretation of the Nose theory does not involve a scaling of the time variable. This latter fact leads to simplifications when studying the time dependence of quantities

  10. Evaluation of LDA Ensembles Classifiers for Brain Computer Interface

    International Nuclear Information System (INIS)

    Arjona, Cristian; Pentácolo, José; Gareis, Iván; Atum, Yanina; Gentiletti, Gerardo; Acevedo, Rubén; Rufiner, Leonardo

    2011-01-01

    The Brain Computer Interface (BCI) translates brain activity into computer commands. To increase the performance of the BCI, to decode the user intentions it is necessary to get better the feature extraction and classification techniques. In this article the performance of a three linear discriminant analysis (LDA) classifiers ensemble is studied. The system based on ensemble can theoretically achieved better classification results than the individual counterpart, regarding individual classifier generation algorithm and the procedures for combine their outputs. Classic algorithms based on ensembles such as bagging and boosting are discussed here. For the application on BCI, it was concluded that the generated results using ER and AUC as performance index do not give enough information to establish which configuration is better.

  11. Adiabatic passage and ensemble control of quantum systems

    International Nuclear Information System (INIS)

    Leghtas, Z; Sarlette, A; Rouchon, P

    2011-01-01

    This paper considers population transfer between eigenstates of a finite quantum ladder controlled by a classical electric field. Using an appropriate change of variables, we show that this setting can be set in the framework of adiabatic passage, which is known to facilitate ensemble control of quantum systems. Building on this insight, we present a mathematical proof of robustness for a control protocol-chirped pulse-practised by experimentalists to drive an ensemble of quantum systems from the ground state to the most excited state. We then propose new adiabatic control protocols using a single chirped and amplitude-shaped pulse, to robustly perform any permutation of eigenstate populations, on an ensemble of systems with unknown coupling strengths. These adiabatic control protocols are illustrated by simulations on a four-level ladder.

  12. Generation of Exotic Quantum States of a Cold Atomic Ensemble

    DEFF Research Database (Denmark)

    Christensen, Stefan Lund

    Over the last decades quantum effects have become more and more controllable, leading to the implementations of various quantum information protocols. These protocols are all based on utilizing quantum correlation. In this thesis we consider how states of an atomic ensemble with such correlations...... can be created and characterized. First we consider a spin-squeezed state. This state is generated by performing quantum non-demolition measurements of the atomic population difference. We show a spectroscopically relevant noise reduction of -1.7dB, the ensemble is in a many-body entangled state...... — a nanofiber based light-atom interface. Using a dual-frequency probing method we measure and prepare an ensemble with a sub-Poissonian atom number distribution. This is a first step towards the implementation of more exotic quantum states....

  13. Optical properties of indium phosphide nanowire ensembles at various temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Lohn, Andrew J; Onishi, Takehiro; Kobayashi, Nobuhiko P [Baskin School of Engineering, University of California Santa Cruz, Santa Cruz, CA 95064 (United States); Nanostructured Energy Conversion Technology and Research (NECTAR), Advanced Studies Laboratories, University of California Santa Cruz-NASA Ames Research Center, Moffett Field, CA 94035 (United States)

    2010-09-03

    Ensembles that contain two types (zincblende and wurtzite) of indium phosphide nanowires grown on non-single crystalline surfaces were studied by micro-photoluminescence and micro-Raman spectroscopy at various low temperatures. The obtained spectra are discussed with the emphasis on the effects of differing lattice types, geometries, and crystallographic orientations present within an ensemble of nanowires grown on non-single crystalline surfaces. In the photoluminescence spectra, a typical Varshni dependence of band gap energy on temperature was observed for emissions from zincblende nanowires and in the high temperature regime energy transfer from excitonic transitions and band-edge transitions was identified. In contrast, the photoluminescence emissions associated with wurtzite nanowires were rather insensitive to temperature. Raman spectra were collected simultaneously from zincblende and wurtzite nanowires coexisting in an ensemble. Raman peaks of the wurtzite nanowires are interpreted as those related to the zincblende nanowires by a folding of the phonon dispersion.

  14. Optical properties of indium phosphide nanowire ensembles at various temperatures

    International Nuclear Information System (INIS)

    Lohn, Andrew J; Onishi, Takehiro; Kobayashi, Nobuhiko P

    2010-01-01

    Ensembles that contain two types (zincblende and wurtzite) of indium phosphide nanowires grown on non-single crystalline surfaces were studied by micro-photoluminescence and micro-Raman spectroscopy at various low temperatures. The obtained spectra are discussed with the emphasis on the effects of differing lattice types, geometries, and crystallographic orientations present within an ensemble of nanowires grown on non-single crystalline surfaces. In the photoluminescence spectra, a typical Varshni dependence of band gap energy on temperature was observed for emissions from zincblende nanowires and in the high temperature regime energy transfer from excitonic transitions and band-edge transitions was identified. In contrast, the photoluminescence emissions associated with wurtzite nanowires were rather insensitive to temperature. Raman spectra were collected simultaneously from zincblende and wurtzite nanowires coexisting in an ensemble. Raman peaks of the wurtzite nanowires are interpreted as those related to the zincblende nanowires by a folding of the phonon dispersion.

  15. Spatio-temporal behaviour of medium-range ensemble forecasts

    Science.gov (United States)

    Kipling, Zak; Primo, Cristina; Charlton-Perez, Andrew

    2010-05-01

    Using the recently-developed mean-variance of logarithms (MVL) diagram, together with the TIGGE archive of medium-range ensemble forecasts from nine different centres, we present an analysis of the spatio-temporal dynamics of their perturbations, and show how the differences between models and perturbation techniques can explain the shape of their characteristic MVL curves. We also consider the use of the MVL diagram to compare the growth of perturbations within the ensemble with the growth of the forecast error, showing that there is a much closer correspondence for some models than others. We conclude by looking at how the MVL technique might assist in selecting models for inclusion in a multi-model ensemble, and suggest an experiment to test its potential in this context.

  16. Efficient Kernel-Based Ensemble Gaussian Mixture Filtering

    KAUST Repository

    Liu, Bo

    2015-11-11

    We consider the Bayesian filtering problem for data assimilation following the kernel-based ensemble Gaussian-mixture filtering (EnGMF) approach introduced by Anderson and Anderson (1999). In this approach, the posterior distribution of the system state is propagated with the model using the ensemble Monte Carlo method, providing a forecast ensemble that is then used to construct a prior Gaussian-mixture (GM) based on the kernel density estimator. This results in two update steps: a Kalman filter (KF)-like update of the ensemble members and a particle filter (PF)-like update of the weights, followed by a resampling step to start a new forecast cycle. After formulating EnGMF for any observational operator, we analyze the influence of the bandwidth parameter of the kernel function on the covariance of the posterior distribution. We then focus on two aspects: i) the efficient implementation of EnGMF with (relatively) small ensembles, where we propose a new deterministic resampling strategy preserving the first two moments of the posterior GM to limit the sampling error; and ii) the analysis of the effect of the bandwidth parameter on contributions of KF and PF updates and on the weights variance. Numerical results using the Lorenz-96 model are presented to assess the behavior of EnGMF with deterministic resampling, study its sensitivity to different parameters and settings, and evaluate its performance against ensemble KFs. The proposed EnGMF approach with deterministic resampling suggests improved estimates in all tested scenarios, and is shown to require less localization and to be less sensitive to the choice of filtering parameters.

  17. Hacking the Matrix.

    Science.gov (United States)

    Czerwinski, Michael; Spence, Jason R

    2017-01-05

    Recently in Nature, Gjorevski et al. (2016) describe a fully defined synthetic hydrogel that mimics the extracellular matrix to support in vitro growth of intestinal stem cells and organoids. The hydrogel allows exquisite control over the chemical and physical in vitro niche and enables identification of regulatory properties of the matrix. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. The Matrix Organization Revisited

    DEFF Research Database (Denmark)

    Gattiker, Urs E.; Ulhøi, John Parm

    1999-01-01

    This paper gives a short overview of matrix structure and technology management. It outlines some of the characteristics and also points out that many organizations may actualy be hybrids (i.e. mix several ways of organizing to allocate resorces effectively).......This paper gives a short overview of matrix structure and technology management. It outlines some of the characteristics and also points out that many organizations may actualy be hybrids (i.e. mix several ways of organizing to allocate resorces effectively)....

  19. The Exopolysaccharide Matrix

    Science.gov (United States)

    Koo, H.; Falsetta, M.L.; Klein, M.I.

    2013-01-01

    Many infectious diseases in humans are caused or exacerbated by biofilms. Dental caries is a prime example of a biofilm-dependent disease, resulting from interactions of microorganisms, host factors, and diet (sugars), which modulate the dynamic formation of biofilms on tooth surfaces. All biofilms have a microbial-derived extracellular matrix as an essential constituent. The exopolysaccharides formed through interactions between sucrose- (and starch-) and Streptococcus mutans-derived exoenzymes present in the pellicle and on microbial surfaces (including non-mutans) provide binding sites for cariogenic and other organisms. The polymers formed in situ enmesh the microorganisms while forming a matrix facilitating the assembly of three-dimensional (3D) multicellular structures that encompass a series of microenvironments and are firmly attached to teeth. The metabolic activity of microbes embedded in this exopolysaccharide-rich and diffusion-limiting matrix leads to acidification of the milieu and, eventually, acid-dissolution of enamel. Here, we discuss recent advances concerning spatio-temporal development of the exopolysaccharide matrix and its essential role in the pathogenesis of dental caries. We focus on how the matrix serves as a 3D scaffold for biofilm assembly while creating spatial heterogeneities and low-pH microenvironments/niches. Further understanding on how the matrix modulates microbial activity and virulence expression could lead to new approaches to control cariogenic biofilms. PMID:24045647

  20. A new ensemble model for short term wind power prediction

    DEFF Research Database (Denmark)

    Madsen, Henrik; Albu, Razvan-Daniel; Felea, Ioan

    2012-01-01

    As the objective of this study, a non-linear ensemble system is used to develop a new model for predicting wind speed in short-term time scale. Short-term wind power prediction becomes an extremely important field of research for the energy sector. Regardless of the recent advancements in the re-search...... of prediction models, it was observed that different models have different capabilities and also no single model is suitable under all situations. The idea behind EPS (ensemble prediction systems) is to take advantage of the unique features of each subsystem to detain diverse patterns that exist in the dataset...

  1. Breaking of ensembles of linear and nonlinear oscillators

    International Nuclear Information System (INIS)

    Buts, V.A.

    2016-01-01

    Some results concerning the study of the dynamics of ensembles of linear and nonlinear oscillators are stated. It is shown that, in general, a stable ensemble of linear oscillator has a limited number of oscillators. This number has been defined for some simple models. It is shown that the features of the dynamics of linear oscillators can be used for conversion of the low-frequency energy oscillations into high frequency oscillations. The dynamics of coupled nonlinear oscillators in most cases is chaotic. For such a case, it is shown that the statistical characteristics (moments) of chaotic motion can significantly reduce potential barriers that keep the particles in the capture region

  2. Reservoir History Matching Using Ensemble Kalman Filters with Anamorphosis Transforms

    KAUST Repository

    Aman, Beshir M.

    2012-12-01

    This work aims to enhance the Ensemble Kalman Filter performance by transforming the non-Gaussian state variables into Gaussian variables to be a step closer to optimality. This is done by using univariate and multivariate Box-Cox transformation. Some History matching methods such as Kalman filter, particle filter and the ensemble Kalman filter are reviewed and applied to a test case in the reservoir application. The key idea is to apply the transformation before the update step and then transform back after applying the Kalman correction. In general, the results of the multivariate method was promising, despite the fact it over-estimated some variables.

  3. A short-range ensemble prediction system for southern Africa

    CSIR Research Space (South Africa)

    Park, R

    2012-10-01

    Full Text Available system for southern Africa R PARK, WA LANDMAN AND F ENGELBRECHT CSIR, PO Box 395, Pretoria, South Africa, 0001 Email: xxxxxxxxxxxxxx@csir.co.za ? www.csir.co.za INTRODUCTION This research has been conducted in order to develop a short-range ensemble... stream_source_info Park_2012.pdf.txt stream_content_type text/plain stream_size 7211 Content-Encoding ISO-8859-1 stream_name Park_2012.pdf.txt Content-Type text/plain; charset=ISO-8859-1 A short-range ensemble prediction...

  4. Good and Bad Neighborhood Approximations for Outlier Detection Ensembles

    DEFF Research Database (Denmark)

    Kirner, Evelyn; Schubert, Erich; Zimek, Arthur

    2017-01-01

    Outlier detection methods have used approximate neighborhoods in filter-refinement approaches. Outlier detection ensembles have used artificially obfuscated neighborhoods to achieve diverse ensemble members. Here we argue that outlier detection models could be based on approximate neighborhoods...... in the first place, thus gaining in both efficiency and effectiveness. It depends, however, on the type of approximation, as only some seem beneficial for the task of outlier detection, while no (large) benefit can be seen for others. In particular, we argue that space-filling curves are beneficial...

  5. Ensemble system for Part-of-Speech tagging

    OpenAIRE

    Dell'Orletta, Felice

    2009-01-01

    The paper contains a description of the Felice-POS-Tagger and of its performance in Evalita 2009. Felice-POS-Tagger is an ensemble system that combines six different POS taggers. When evaluated on the official test set, the ensemble system outperforms each of the single tagger components and achieves the highest accuracy score in Evalita 2009 POS Closed Task. It is shown rst that the errors made from the dierent taggers are complementary, and then how to use this complementary behavior to the...

  6. The canonical ensemble redefined - 3. Ideal Bose gas

    International Nuclear Information System (INIS)

    Venkataraman, R.

    1984-12-01

    The ideal Bose gas solved in the redefined ensemble formalism exhibits a discontinuity in the specific heat suggesting that Bose-Einstein condensation is a second order phase transition. The deviations from the classical ideal gas behaviour are larger than those predicted by Gibbs ensemble. Below Tsub(c) the pressure is not independent of the volume. For a certain range of values of VT 3 , the peak in black body radiation shows a shift in the frequency scale and this could be detected, at least in principle, experimentally. (author)

  7. Kohn-Sham Theory for Ground-State Ensembles

    International Nuclear Information System (INIS)

    Ullrich, C. A.; Kohn, W.

    2001-01-01

    An electron density distribution n(r) which can be represented by that of a single-determinant ground state of noninteracting electrons in an external potential v(r) is called pure-state v -representable (P-VR). Most physical electronic systems are P-VR. Systems which require a weighted sum of several such determinants to represent their density are called ensemble v -representable (E-VR). This paper develops formal Kohn-Sham equations for E-VR physical systems, using the appropriate coupling constant integration. It also derives local density- and generalized gradient approximations, and conditions and corrections specific to ensembles

  8. Learning to Run with Actor-Critic Ensemble

    OpenAIRE

    Huang, Zhewei; Zhou, Shuchang; Zhuang, BoEr; Zhou, Xinyu

    2017-01-01

    We introduce an Actor-Critic Ensemble(ACE) method for improving the performance of Deep Deterministic Policy Gradient(DDPG) algorithm. At inference time, our method uses a critic ensemble to select the best action from proposals of multiple actors running in parallel. By having a larger candidate set, our method can avoid actions that have fatal consequences, while staying deterministic. Using ACE, we have won the 2nd place in NIPS'17 Learning to Run competition, under the name of "Megvii-hzw...

  9. Reproducing multi-model ensemble average with Ensemble-averaged Reconstructed Forcings (ERF) in regional climate modeling

    Science.gov (United States)

    Erfanian, A.; Fomenko, L.; Wang, G.

    2016-12-01

    Multi-model ensemble (MME) average is considered the most reliable for simulating both present-day and future climates. It has been a primary reference for making conclusions in major coordinated studies i.e. IPCC Assessment Reports and CORDEX. The biases of individual models cancel out each other in MME average, enabling the ensemble mean to outperform individual members in simulating the mean climate. This enhancement however comes with tremendous computational cost, which is especially inhibiting for regional climate modeling as model uncertainties can originate from both RCMs and the driving GCMs. Here we propose the Ensemble-based Reconstructed Forcings (ERF) approach to regional climate modeling that achieves a similar level of bias reduction at a fraction of cost compared with the conventional MME approach. The new method constructs a single set of initial and boundary conditions (IBCs) by averaging the IBCs of multiple GCMs, and drives the RCM with this ensemble average of IBCs to conduct a single run. Using a regional climate model (RegCM4.3.4-CLM4.5), we tested the method over West Africa for multiple combination of (up to six) GCMs. Our results indicate that the performance of the ERF method is comparable to that of the MME average in simulating the mean climate. The bias reduction seen in ERF simulations is achieved by using more realistic IBCs in solving the system of equations underlying the RCM physics and dynamics. This endows the new method with a theoretical advantage in addition to reducing computational cost. The ERF output is an unaltered solution of the RCM as opposed to a climate state that might not be physically plausible due to the averaging of multiple solutions with the conventional MME approach. The ERF approach should be considered for use in major international efforts such as CORDEX. Key words: Multi-model ensemble, ensemble analysis, ERF, regional climate modeling

  10. Momentum distribution functions in ensembles: the inequivalence of microcannonical and canonical ensembles in a finite ultracold system.

    Science.gov (United States)

    Wang, Pei; Xianlong, Gao; Li, Haibin

    2013-08-01

    It is demonstrated in many thermodynamic textbooks that the equivalence of the different ensembles is achieved in the thermodynamic limit. In this present work we discuss the inequivalence of microcanonical and canonical ensembles in a finite ultracold system at low energies. We calculate the microcanonical momentum distribution function (MDF) in a system of identical fermions (bosons). We find that the microcanonical MDF deviates from the canonical one, which is the Fermi-Dirac (Bose-Einstein) function, in a finite system at low energies where the single-particle density of states and its inverse are finite.

  11. Bidirectional Modulation of Intrinsic Excitability in Rat Prelimbic Cortex Neuronal Ensembles and Non-Ensembles after Operant Learning.

    Science.gov (United States)

    Whitaker, Leslie R; Warren, Brandon L; Venniro, Marco; Harte, Tyler C; McPherson, Kylie B; Beidel, Jennifer; Bossert, Jennifer M; Shaham, Yavin; Bonci, Antonello; Hope, Bruce T

    2017-09-06

    Learned associations between environmental stimuli and rewards drive goal-directed learning and motivated behavior. These memories are thought to be encoded by alterations within specific patterns of sparsely distributed neurons called neuronal ensembles that are activated selectively by reward-predictive stimuli. Here, we use the Fos promoter to identify strongly activated neuronal ensembles in rat prelimbic cortex (PLC) and assess altered intrinsic excitability after 10 d of operant food self-administration training (1 h/d). First, we used the Daun02 inactivation procedure in male FosLacZ-transgenic rats to ablate selectively Fos-expressing PLC neurons that were active during operant food self-administration. Selective ablation of these neurons decreased food seeking. We then used male FosGFP-transgenic rats to assess selective alterations of intrinsic excitability in Fos-expressing neuronal ensembles (FosGFP + ) that were activated during food self-administration and compared these with alterations in less activated non-ensemble neurons (FosGFP - ). Using whole-cell recordings of layer V pyramidal neurons in an ex vivo brain slice preparation, we found that operant self-administration increased excitability of FosGFP + neurons and decreased excitability of FosGFP - neurons. Increased excitability of FosGFP + neurons was driven by increased steady-state input resistance. Decreased excitability of FosGFP - neurons was driven by increased contribution of small-conductance calcium-activated potassium (SK) channels. Injections of the specific SK channel antagonist apamin into PLC increased Fos expression but had no effect on food seeking. Overall, operant learning increased intrinsic excitability of PLC Fos-expressing neuronal ensembles that play a role in food seeking but decreased intrinsic excitability of Fos - non-ensembles. SIGNIFICANCE STATEMENT Prefrontal cortex activity plays a critical role in operant learning, but the underlying cellular mechanisms are

  12. Matrix Information Geometry

    CERN Document Server

    Bhatia, Rajendra

    2013-01-01

    This book is an outcome of the Indo-French Workshop on Matrix Information Geometries (MIG): Applications in Sensor and Cognitive Systems Engineering, which was held in Ecole Polytechnique and Thales Research and Technology Center, Palaiseau, France, in February 23-25, 2011. The workshop was generously funded by the Indo-French Centre for the Promotion of Advanced Research (IFCPAR).  During the event, 22 renowned invited french or indian speakers gave lectures on their areas of expertise within the field of matrix analysis or processing. From these talks, a total of 17 original contribution or state-of-the-art chapters have been assembled in this volume. All articles were thoroughly peer-reviewed and improved, according to the suggestions of the international referees. The 17 contributions presented  are organized in three parts: (1) State-of-the-art surveys & original matrix theory work, (2) Advanced matrix theory for radar processing, and (3) Matrix-based signal processing applications.  

  13. Development of multimodel ensemble based district level medium ...

    Indian Academy of Sciences (India)

    tively by computing the anomaly correlation coef- ficient between the predicted rainfall and observed rainfall. High resolution (lat./long.) gridded data ..... particularly in the prediction of intensity and mesoscale rainfall features causing inland flooding. During recent years, Ensemble. Prediction System (EPS) has emerged as ...

  14. ENSEMBLE methods to reconcile disparate national long range dispersion forecasting

    Energy Technology Data Exchange (ETDEWEB)

    Mikkelsen, T; Galmarini, S; Bianconi, R; French, S [eds.

    2003-11-01

    ENSEMBLE is a web-based decision support system for real-time exchange and evaluation of national long-range dispersion forecasts of nuclear releases with cross-boundary consequences. The system is developed with the purpose to reconcile among disparate national forecasts for long-range dispersion. ENSEMBLE addresses the problem of achieving a common coherent strategy across European national emergency management when national long-range dispersion forecasts differ from one another during an accidental atmospheric release of radioactive material. A series of new decision-making 'ENSEMBLE' procedures and Web-based software evaluation and exchange tools have been created for real-time reconciliation and harmonisation of real-time dispersion forecasts from meteorological and emergency centres across Europe during an accident. The new ENSEMBLE software tools is available to participating national emergency and meteorological forecasting centres, which may choose to integrate them directly into operational emergency information systems, or possibly use them as a basis for future system development. (au)

  15. Korean Percussion Ensemble ("Samulnori") in the General Music Classroom

    Science.gov (United States)

    Kang, Sangmi; Yoo, Hyesoo

    2016-01-01

    This article introduces "samulnori" (Korean percussion ensemble), its cultural background, and instructional methods as parts of a classroom approach to teaching upper-level general music. We introduce five of eight sections from "youngnam nong-ak" (a style of samulnori) as a repertoire for teaching Korean percussion music to…

  16. Inhomogeneous ensembles of radical pairs in chemical compasses

    Science.gov (United States)

    Procopio, Maria; Ritz, Thorsten

    2016-11-01

    The biophysical basis for the ability of animals to detect the geomagnetic field and to use it for finding directions remains a mystery of sensory biology. One much debated hypothesis suggests that an ensemble of specialized light-induced radical pair reactions can provide the primary signal for a magnetic compass sensor. The question arises what features of such a radical pair ensemble could be optimized by evolution so as to improve the detection of the direction of weak magnetic fields. Here, we focus on the overlooked aspect of the noise arising from inhomogeneity of copies of biomolecules in a realistic biological environment. Such inhomogeneity leads to variations of the radical pair parameters, thereby deteriorating the signal arising from an ensemble and providing a source of noise. We investigate the effect of variations in hyperfine interactions between different copies of simple radical pairs on the directional response of a compass system. We find that the choice of radical pair parameters greatly influences how strongly the directional response of an ensemble is affected by inhomogeneity.

  17. ENSEMBLE methods to reconcile disparate national long range dispersion forecasting

    Energy Technology Data Exchange (ETDEWEB)

    Mikkelsen, T.; Galmarini, S.; Bianconi, R.; French, S. (eds.)

    2003-11-01

    ENSEMBLE is a web-based decision support system for real-time exchange and evaluation of national long-range dispersion forecasts of nuclear releases with cross-boundary consequences. The system is developed with the purpose to reconcile among disparate national forecasts for long-range dispersion. ENSEMBLE addresses the problem of achieving a common coherent strategy across European national emergency management when national long-range dispersion forecasts differ from one another during an accidental atmospheric release of radioactive material. A series of new decision-making 'ENSEMBLE' procedures and Web-based software evaluation and exchange tools have been created for real-time reconciliation and harmonisation of real-time dispersion forecasts from meteorological and emergency centres across Europe during an accident. The new ENSEMBLE software tools is available to participating national emergency and meteorological forecasting centres, which may choose to integrate them directly into operational emergency information systems, or possibly use them as a basis for future system development. (au)

  18. Power to Detect Intervention Effects on Ensembles of Social Networks

    Science.gov (United States)

    Sweet, Tracy M.; Junker, Brian W.

    2016-01-01

    The hierarchical network model (HNM) is a framework introduced by Sweet, Thomas, and Junker for modeling interventions and other covariate effects on ensembles of social networks, such as what would be found in randomized controlled trials in education research. In this article, we develop calculations for the power to detect an intervention…

  19. Music Ensemble Participation: Personality Traits and Music Experience

    Science.gov (United States)

    Torrance, Tracy A.; Bugos, Jennifer A.

    2017-01-01

    The purpose of this study was two-fold: (1) to examine the relationship between personality type and ensemble choice and (2) to examine the differences in personality across age and music experience in young adults. Participants (N = 137; 68 instrumentalists, 69 vocalists) completed a demographic survey and the Big Five Personality Inventory.…

  20. Enhancing COSMO-DE ensemble forecasts by inexpensive techniques

    Directory of Open Access Journals (Sweden)

    Zied Ben Bouallègue

    2013-02-01

    Full Text Available COSMO-DE-EPS, a convection-permitting ensemble prediction system based on the high-resolution numerical weather prediction model COSMO-DE, is pre-operational since December 2010, providing probabilistic forecasts which cover Germany. This ensemble system comprises 20 members based on variations of the lateral boundary conditions, the physics parameterizations and the initial conditions. In order to increase the sample size in a computationally inexpensive way, COSMO-DE-EPS is combined with alternative ensemble techniques: the neighborhood method and the time-lagged approach. Their impact on the quality of the resulting probabilistic forecasts is assessed. Objective verification is performed over a six months period, scores based on the Brier score and its decomposition are shown for June 2011. The combination of the ensemble system with the alternative approaches improves probabilistic forecasts of precipitation in particular for high precipitation thresholds. Moreover, combining COSMO-DE-EPS with only the time-lagged approach improves the skill of area probabilities for precipitation and does not deteriorate the skill of 2 m-temperature and wind gusts forecasts.