Non-Gaussian halo assembly bias
International Nuclear Information System (INIS)
Reid, Beth A.; Verde, Licia; Dolag, Klaus; Matarrese, Sabino; Moscardini, Lauro
2010-01-01
The strong dependence of the large-scale dark matter halo bias on the (local) non-Gaussianity parameter, f NL , offers a promising avenue towards constraining primordial non-Gaussianity with large-scale structure surveys. In this paper, we present the first detection of the dependence of the non-Gaussian halo bias on halo formation history using N-body simulations. We also present an analytic derivation of the expected signal based on the extended Press-Schechter formalism. In excellent agreement with our analytic prediction, we find that the halo formation history-dependent contribution to the non-Gaussian halo bias (which we call non-Gaussian halo assembly bias) can be factorized in a form approximately independent of redshift and halo mass. The correction to the non-Gaussian halo bias due to the halo formation history can be as large as 100%, with a suppression of the signal for recently formed halos and enhancement for old halos. This could in principle be a problem for realistic galaxy surveys if observational selection effects were to pick galaxies occupying only recently formed halos. Current semi-analytic galaxy formation models, for example, imply an enhancement in the expected signal of ∼ 23% and ∼ 48% for galaxies at z = 1 selected by stellar mass and star formation rate, respectively
Non-Gaussianity and Excursion Set Theory: Halo Bias
Energy Technology Data Exchange (ETDEWEB)
Adshead, Peter [Enrico Fermi Institute, Univ. of Chicago, IL (United States); Baxter, Eric J. [Univ. of Chicago, Chicago, IL (United States); Dodelson, Scott [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); Lidz, Adam [Univ. of Pennsylvania, Philadelphia, PA (United States)
2012-09-01
We study the impact of primordial non-Gaussianity generated during inflation on the bias of halos using excursion set theory. We recapture the familiar result that the bias scales as $k^{-2}$ on large scales for local type non-Gaussianity but explicitly identify the approximations that go into this conclusion and the corrections to it. We solve the more complicated problem of non-spherical halos, for which the collapse threshold is scale dependent.
Imprint of primordial non-Gaussianity on dark matter halo profiles
Energy Technology Data Exchange (ETDEWEB)
Dizgah, Azadeh Moradinezhad; Dodelson, Scott; Riotto, Antonio
2013-09-01
We study the impact of primordial non-Gaussianity on the density profile of dark matter halos by using the semi-analytical model introduced recently by Dalal {\\it et al.} which relates the peaks of the initial linear density field to the final density profile of dark matter halos. Models with primordial non-Gaussianity typically produce an initial density field that differs from that produced in Gaussian models. We use the path-integral formulation of excursion set theory to calculate the non-Gaussian corrections to the peak profile and derive the statistics of the peaks of non-Gaussian density field. In the context of the semi-analytic model for halo profiles, currently allowed values for primordial non-Gaussianity would increase the shapes of the inner dark matter profiles, but only at the sub-percent level except in the very innermost regions.
The halo bispectrum in N-body simulations with non-Gaussian initial conditions
Sefusatti, E.; Crocce, M.; Desjacques, V.
2012-10-01
We present measurements of the bispectrum of dark matter haloes in numerical simulations with non-Gaussian initial conditions of local type. We show, in the first place, that the overall effect of primordial non-Gaussianity on the halo bispectrum is larger than on the halo power spectrum when all measurable configurations are taken into account. We then compare our measurements with a tree-level perturbative prediction, finding good agreement at large scales when the constant Gaussian bias parameter, both linear and quadratic, and their constant non-Gaussian corrections are fitted for. The best-fitting values of the Gaussian bias factors and their non-Gaussian, scale-independent corrections are in qualitative agreement with the peak-background split expectations. In particular, we show that the effect of non-Gaussian initial conditions on squeezed configurations is fairly large (up to 30 per cent for fNL = 100 at redshift z = 0.5) and results from contributions of similar amplitude induced by the initial matter bispectrum, scale-dependent bias corrections as well as from non-linear matter bispectrum corrections. We show, in addition, that effects at second order in fNL are irrelevant for the range of values allowed by cosmic microwave background and galaxy power spectrum measurements, at least on the scales probed by our simulations (k > 0.01 h Mpc-1). Finally, we present a Fisher matrix analysis to assess the possibility of constraining primordial non-Gaussianity with future measurements of the galaxy bispectrum. We find that a survey with a volume of about 10 h-3 Gpc3 at mean redshift z ≃ 1 could provide an error on fNL of the order of a few. This shows the relevance of a joint analysis of galaxy power spectrum and bispectrum in future redshift surveys.
The Halo Mass Function from Excursion Set Theory. III. Non-Gaussian Fluctuations
Maggiore, Michele
2010-01-01
We compute the effect of primordial non-Gaussianity on the halo mass function, using excursion set theory. In the presence of non-Gaussianity the stochastic evolution of the smoothed density field, as a function of the smoothing scale, is non-markovian and beside "local" terms that generalize Press-Schechter (PS) theory, there are also "memory" terms, whose effect on the mass function can be computed using the formalism developed in the first paper of this series. We find that, when computing the effect of the three-point correlator on the mass function, a PS-like approach which consists in neglecting the cloud-in-cloud problem and in multiplying the final result by a fudge factor close to 2, is in principle not justified. When computed correctly in the framework of excursion set theory, in fact, the "local" contribution vanishes (for all odd-point correlators the contribution of the image gaussian cancels the Press-Schechter contribution rather than adding up), and the result comes entirely from non-trivial ...
Beyond assembly bias: exploring secondary halo biases for cluster-size haloes
Mao, Yao-Yuan; Zentner, Andrew R.; Wechsler, Risa H.
2018-03-01
Secondary halo bias, commonly known as `assembly bias', is the dependence of halo clustering on a halo property other than mass. This prediction of the Λ Cold Dark Matter cosmology is essential to modelling the galaxy distribution to high precision and interpreting clustering measurements. As the name suggests, different manifestations of secondary halo bias have been thought to originate from halo assembly histories. We show conclusively that this is incorrect for cluster-size haloes. We present an up-to-date summary of secondary halo biases of high-mass haloes due to various halo properties including concentration, spin, several proxies of assembly history, and subhalo properties. While concentration, spin, and the abundance and radial distribution of subhaloes exhibit significant secondary biases, properties that directly quantify halo assembly history do not. In fact, the entire assembly histories of haloes in pairs are nearly identical to those of isolated haloes. In general, a global correlation between two halo properties does not predict whether or not these two properties exhibit similar secondary biases. For example, assembly history and concentration (or subhalo abundance) are correlated for both paired and isolated haloes, but follow slightly different conditional distributions in these two cases. This results in a secondary halo bias due to concentration (or subhalo abundance), despite the lack of assembly bias in the strict sense for cluster-size haloes. Due to this complexity, caution must be exercised in using any one halo property as a proxy to study the secondary bias due to another property.
Energy Technology Data Exchange (ETDEWEB)
Hoejstrup, J. [NEG Micon Project Development A/S, Randers (Denmark); Hansen, K.S. [Denmarks Technical Univ., Dept. of Energy Engineering, Lyngby (Denmark); Pedersen, B.J. [VESTAS Wind Systems A/S, Lem (Denmark); Nielsen, M. [Risoe National Lab., Wind Energy and Atmospheric Physics, Roskilde (Denmark)
1999-03-01
The pdf`s of atmospheric turbulence have somewhat wider tails than a Gaussian, especially regarding accelerations, whereas velocities are close to Gaussian. This behaviour is being investigated using data from a large WEB-database in order to quantify the amount of non-Gaussianity. Models for non-Gaussian turbulence have been developed, by which artificial turbulence can be generated with specified distributions, spectra and cross-correlations. The artificial time series will then be used in load models and the resulting loads in the Gaussian and the non-Gaussian cases will be compared. (au)
Byrnes, Christian T; Tasinato, Gianmassimo; Wands, David
2012-01-01
We propose a method to probe higher-order correlators of the primordial density field through the inhomogeneity of local non-Gaussian parameters, such as f_NL, measured within smaller patches of the sky. Correlators between n-point functions measured in one patch of the sky and k-point functions measured in another patch depend upon the (n+k)-point functions over the entire sky. The inhomogeneity of non-Gaussian parameters may be a feasible way to detect or constrain higher-order correlators in local models of non-Gaussianity, as well as to distinguish between single and multiple-source scenarios for generating the primordial density perturbation, and more generally to probe the details of inflationary physics.
Halo assembly bias and the tidal anisotropy of the local halo environment
Paranjape, Aseem; Hahn, Oliver; Sheth, Ravi K.
2018-02-01
We study the role of the local tidal environment in determining the assembly bias of dark matter haloes. Previous results suggest that the anisotropy of a halo's environment (i.e, whether it lies in a filament or in a more isotropic region) can play a significant role in determining the eventual mass and age of the halo. We statistically isolate this effect using correlations between the large-scale and small-scale environments of simulated haloes at z = 0 with masses between 1011.6 ≲ (m/h-1M⊙) ≲ 1014.9. We probe the large-scale environment using a novel halo-by-halo estimator of linear bias. For the small-scale environment, we identify a variable αR that captures the tidal anisotropy in a region of radius R = 4R200b around the halo and correlates strongly with halo bias at fixed mass. Segregating haloes by αR reveals two distinct populations. Haloes in highly isotropic local environments (αR ≲ 0.2) behave as expected from the simplest, spherically averaged analytical models of structure formation, showing a negative correlation between their concentration and large-scale bias at all masses. In contrast, haloes in anisotropic, filament-like environments (αR ≳ 0.5) tend to show a positive correlation between bias and concentration at any mass. Our multi-scale analysis cleanly demonstrates how the overall assembly bias trend across halo mass emerges as an average over these different halo populations, and provides valuable insights towards building analytical models that correctly incorporate assembly bias. We also discuss potential implications for the nature and detectability of galaxy assembly bias.
Gaussian and Non-Gaussian operations on non-Gaussian state: engineering non-Gaussianity
Directory of Open Access Journals (Sweden)
Olivares Stefano
2014-03-01
Full Text Available Multiple photon subtraction applied to a displaced phase-averaged coherent state, which is a non-Gaussian classical state, produces conditional states with a non trivial (positive Glauber-Sudarshan Prepresentation. We theoretically and experimentally demonstrate that, despite its simplicity, this class of conditional states cannot be fully characterized by direct detection of photon numbers. In particular, the non-Gaussianity of the state is a characteristics that must be assessed by phase-sensitive measurements. We also show that the non-Gaussianity of conditional states can be manipulated by choosing suitable conditioning values and composition of phase-averaged states.
ZOMG - III. The effect of halo assembly on the satellite population
Garaldi, Enrico; Romano-Díaz, Emilio; Borzyszkowski, Mikolaj; Porciani, Cristiano
2018-01-01
We use zoom hydrodynamical simulations to investigate the properties of satellites within galaxy-sized dark-matter haloes with different assembly histories. We consider two classes of haloes at redshift z = 0: 'stalled' haloes that assembled at z > 1 and 'accreting' ones that are still forming nowadays. Previously, we showed that the stalled haloes are embedded within thick filaments of the cosmic web, while the accreting ones lie where multiple thin filaments converge. We find that satellites in the two classes have both similar and different properties. Their mass spectra, radial count profiles, baryonic and stellar content, and the amount of material they shed are indistinguishable. However, the mass fraction locked in satellites is substantially larger for the accreting haloes as they experience more mergers at late times. The largest difference is found in the satellite kinematics. Substructures fall towards the accreting haloes along quasi-radial trajectories whereas an important tangential velocity component is developed, before accretion, while orbiting the filament that surrounds the stalled haloes. Thus, the velocity anisotropy parameter of the satellites (β) is positive for the accreting haloes and negative for the stalled ones. This signature enables us to tentatively categorize the Milky Way halo as stalled based on a recent measurement of β. Half of our haloes contain clusters of satellites with aligned orbital angular momenta corresponding to flattened structures in space. These features are not driven by baryonic physics and are only found in haloes hosting grand-design spiral galaxies, independently of their assembly history.
Non-Gaussian signatures of tachyacoustic cosmology
Energy Technology Data Exchange (ETDEWEB)
Bessada, Dennis, E-mail: dennis.bessada@unifesp.br [UNIFESP — Universidade Federal de São Paulo, Laboratório de Física Teórica e Computação Científica, Rua São Nicolau, 210, 09913-030, Diadema, SP (Brazil)
2012-09-01
I investigate non-Gaussian signatures in the context of tachyacoustic cosmology, that is, a noninflationary model with superluminal speed of sound. I calculate the full non-Gaussian amplitude A, its size f{sub NL}, and corresponding shapes for a red-tilted spectrum of primordial scalar perturbations. Specifically, for cuscuton-like models I show that f{sub NL} ∼ O(1), and the shape of its non-Gaussian amplitude peaks for both equilateral and local configurations, the latter being dominant. These results, albeit similar, are quantitatively distinct from the corresponding ones obtained by Magueijo et al. in the context of superluminal bimetric models.
Loop corrections to primordial non-Gaussianity
Boran, Sibel; Kahya, E. O.
2018-02-01
We discuss quantum gravitational loop effects to observable quantities such as curvature power spectrum and primordial non-Gaussianity of cosmic microwave background (CMB) radiation. We first review the previously shown case where one gets a time dependence for zeta-zeta correlator due to loop corrections. Then we investigate the effect of loop corrections to primordial non-Gaussianity of CMB. We conclude that, even with a single scalar inflaton, one might get a huge value for non-Gaussianity which would exceed the observed value by at least 30 orders of magnitude. Finally we discuss the consequences of this result for scalar driven inflationary models.
The Impact of Assembly Bias on the Galaxy Content of Dark Matter Halos
Zehavi, Idit; Contreras, Sergio; Padilla, Nelson; Smith, Nicholas J.; Baugh, Carlton M.; Norberg, Peder
2018-01-01
We study the dependence of the galaxy content of dark matter halos on large-scale environment and halo formation time using semi-analytic galaxy models applied to the Millennium simulation. We analyze subsamples of halos at the extremes of these distributions and measure the occupation functions for the galaxies they host. We find distinct differences among these occupation functions. The main effect with environment is that central galaxies (and in one model, also the satellites) in denser regions start populating lower-mass halos. A similar, but significantly stronger, trend exists with halo age, where early-forming halos are more likely to host central galaxies at lower halo mass. We discuss the origin of these trends and the connection to the stellar mass–halo mass relation. We find that, at fixed halo mass, older halos and to some extent also halos in dense environments tend to host more massive galaxies. Additionally, we see a reverse trend for the occupation of satellite galaxies where early-forming halos have fewer satellites, likely due to having more time for them to merge with the central galaxy. We describe these occupancy variations in terms of the changes in the occupation function parameters, which can aid in constructing realistic mock galaxy samples. Finally, we study the corresponding galaxy auto- and cross-correlation functions of the different samples and elucidate the impact of assembly bias on galaxy clustering. Our results can inform theoretical modeling of galaxy assembly bias and attempts to detect it in the real universe.
ZOMG - I. How the cosmic web inhibits halo growth and generates assembly bias
Borzyszkowski, Mikolaj; Porciani, Cristiano; Romano-Díaz, Emilio; Garaldi, Enrico
2017-07-01
The clustering of dark matter haloes with fixed mass depends on their formation history, an effect known as assembly bias. We use zoom N-body simulations to investigate the origin of this phenomenon. For each halo at redshift z = 0, we determine the time in which the physical volume containing its final mass becomes stable. We consider five examples for which this happens at z ˜ 1.5 and two that do not stabilize by z = 0. The zoom simulations show that early-collapsing haloes do not grow in mass at z = 0 while late-forming ones show a net inflow. The reason is that 'accreting' haloes are located at the nodes of a network of thin filaments feeding them. Conversely, each 'stalled' halo lies within a prominent filament that is thicker than the halo size. Infalling material from the surroundings becomes part of the filament while matter within it recedes from the halo. We conclude that assembly bias originates from quenching halo growth due to tidal forces following the formation of non-linear structures in the cosmic web, as previously conjectured in the literature. Also the internal dynamics of the haloes change: the velocity anisotropy profile is biased towards radial (tangential) orbits in accreting (stalled) haloes. Our findings reveal the cause of the yet unexplained dependence of halo clustering on the anisotropy. Finally, we extend the excursion-set theory to account for these effects. A simple criterion based on the ellipticity of the linear tidal field combined with the spherical-collapse model provides excellent predictions for both classes of haloes.
Non-Gaussianity effects in petrophysical quantities
Koohi Lai, Z.; Jafari, G. R.
2013-10-01
It has been proved that there are many indicators (petrophysical quantities) for the estimation of petroleum reservoirs. The value of information contained in each indicator is yet to be addressed. In this work, the most famous and applicable petrophysical quantities for a reservoir, which are the gamma emission (GR), sonic transient time (DT), neutron porosity (NPHI), bulk density (RHOB), and deep induced resistivity (ILD), have been analyzed in order to characterize a reservoir. The implemented technique is the well-logging method. Based on the log-normal model defined in random multiplicative processes, the probability distribution function (PDF) for the data sets is described. The shape of the PDF depends on the parameter λ2 which determines the efficiency of non-Gaussianity. When non-Gaussianity appears, it is a sign of uncertainty and phase transition in the critical regime. The large value and scale-invariant behavior of the non-Gaussian parameter λ2 is an indication of a new phase which proves adequate for the existence of petroleum reservoirs. Our results show that one of the indicators (GR) is more non-Gaussian than the other indicators, scale wise. This means that GR is a continuously critical indicator. But by moving windows with various scales, the estimated λ2 shows that the most appropriate indicator for distinguishing the critical regime is ILD, which shows an increase at the end of the measured region of the well.
The Eating Habits of Giants and Dwarfs: Chemo-dynamics of Halo Assembly in Nearby Galaxies
Romanowsky, Aaron J.; SAGES Team
2012-01-01
I will present novel results on the halo assembly of nearby galaxies, from dwarfs to the most massive ellipticals, using Subaru imaging and Keck spectroscopy. Field stars, globular clusters, and planetary nebulae are used as wide-field chemo-dynamical tracers, mapping out halo substructures that were previously known and unknown. Comparisons are made with simulations of galaxy formation. Supported by the National Science Foundation Grants AST-0808099, AST-0909237, and AST-1109878.
Stochastic Energetics for Non-Gaussian Processes
Kanazawa, Kiyoshi; Sagawa, Takahiro; Hayakawa, Hisao
2012-05-01
By introducing a new stochastic integral, we investigate the energetics of classical stochastic systems driven by non-Gaussian white noises. In particular, we introduce a decomposition of the total energy difference into the work and the heat for each trajectory, and derive a formula to calculate the heat from experimental data on the dynamics. We apply our formulation and results to a Langevin system driven by a Poisson noise.
Resonant non-Gaussianity with equilateral properties
International Nuclear Information System (INIS)
Gwyn, Rhiannon; Rummel, Markus
2012-11-01
We discuss the effect of superimposing multiple sources of resonant non-Gaussianity, which arise for instance in models of axion inflation. The resulting sum of oscillating shape contributions can be used to ''Fourier synthesize'' different non-oscillating shapes in the bispectrum. As an example we reproduce an approximately equilateral shape from the superposition of O(10) oscillatory contributions with resonant shape. This implies a possible degeneracy between the equilateral-type non-Gaussianity typical of models with non-canonical kinetic terms, such as DBI inflation, and an equilateral-type shape arising from a superposition of resonant-type contributions in theories with canonical kinetic terms. The absence of oscillations in the 2-point function together with the structure of the resonant N-point functions, imply that detection of equilateral non-Gaussianity at a level greater than the PLANCK sensitivity of f NL ∝O(5) will rule out a resonant origin. We comment on the questions arising from possible embeddings of this idea in a string theory setting.
Resonant non-Gaussianity with equilateral properties
Energy Technology Data Exchange (ETDEWEB)
Gwyn, Rhiannon [Max-Planck-Institut fuer Gravitationsphysik (Albert-Einstein-Institut), Potsdam (Germany); Rummel, Markus [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Westphal, Alexander [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2012-11-15
We discuss the effect of superimposing multiple sources of resonant non-Gaussianity, which arise for instance in models of axion inflation. The resulting sum of oscillating shape contributions can be used to ''Fourier synthesize'' different non-oscillating shapes in the bispectrum. As an example we reproduce an approximately equilateral shape from the superposition of O(10) oscillatory contributions with resonant shape. This implies a possible degeneracy between the equilateral-type non-Gaussianity typical of models with non-canonical kinetic terms, such as DBI inflation, and an equilateral-type shape arising from a superposition of resonant-type contributions in theories with canonical kinetic terms. The absence of oscillations in the 2-point function together with the structure of the resonant N-point functions, imply that detection of equilateral non-Gaussianity at a level greater than the PLANCK sensitivity of f{sub NL} {proportional_to}O(5) will rule out a resonant origin. We comment on the questions arising from possible embeddings of this idea in a string theory setting.
Persistent homology and non-Gaussianity
Cole, Alex; Shiu, Gary
2018-03-01
In this paper, we introduce the topological persistence diagram as a statistic for Cosmic Microwave Background (CMB) temperature anisotropy maps. A central concept in 'Topological Data Analysis' (TDA), the idea of persistence is to represent a data set by a family of topological spaces. One then examines how long topological features 'persist' as the family of spaces is traversed. We compute persistence diagrams for simulated CMB temperature anisotropy maps featuring various levels of primordial non-Gaussianity of local type. Postponing the analysis of observational effects, we show that persistence diagrams are more sensitive to local non-Gaussianity than previous topological statistics including the genus and Betti number curves, and can constrain Δ fNLloc= 35.8 at the 68% confidence level on the simulation set, compared to Δ fNLloc= 60.6 for the Betti number curves. Given the resolution of our simulations, we expect applying persistence diagrams to observational data will give constraints competitive with those of the Minkowski Functionals. This is the first in a series of papers where we plan to apply TDA to different shapes of non-Gaussianity in the CMB and Large Scale Structure.
ELUCID. IV. Galaxy Quenching and its Relation to Halo Mass, Environment, and Assembly Bias
Wang, Huiyuan; Mo, H. J.; Chen, Sihan; Yang, Yang; Yang, Xiaohu; Wang, Enci; van den Bosch, Frank C.; Jing, Yipeng; Kang, Xi; Lin, Weipeng; Lim, S. H.; Huang, Shuiyao; Lu, Yi; Li, Shijie; Cui, Weiguang; Zhang, Youcai; Tweed, Dylan; Wei, Chengliang; Li, Guoliang; Shi, Feng
2018-01-01
We examine the quenched fraction of central and satellite galaxies as a function of galaxy stellar mass, halo mass, and the matter density of their large-scale environment. Matter densities are inferred from our ELUCID simulation, a constrained simulation of the local universe sampled by SDSS, while halo masses and central/satellite classification are taken from the galaxy group catalog of Yang et al. The quenched fraction for the total population increases systematically with the three quantities. We find that the “environmental quenching efficiency,” which quantifies the quenched fraction as a function of halo mass, is independent of stellar mass. And this independence is the origin of the stellar mass independence of density-based quenching efficiency found in previous studies. Considering centrals and satellites separately, we find that the two populations follow similar correlations of quenching efficiency with halo mass and stellar mass, suggesting that they have experienced similar quenching processes in their host halo. We demonstrate that satellite quenching alone cannot account for the environmental quenching efficiency of the total galaxy population, and that the difference between the two populations found previously arises mainly from the fact that centrals and satellites of the same stellar mass reside, on average, in halos of different mass. After removing these effects of halo mass and stellar mass, there remains a weak, but significant, residual dependence on environmental density, which is eliminated when halo assembly bias is taken into account. Our results therefore indicate that halo mass is the prime environmental parameter that regulates the quenching of both centrals and satellites.
The structure and assembly history of cluster-sized haloes in self-interacting dark matter
Brinckmann, Thejs; Zavala, Jesús; Rapetti, David; Hansen, Steen H.; Vogelsberger, Mark
2018-02-01
We perform dark-matter-only simulations of 28 relaxed massive cluster-sized haloes for cold dark matter (CDM) and self-interacting dark matter (SIDM) models, to study structural differences between the models at large radii, where the impact of baryonic physics is expected to be very limited. We find that the distributions for the radial profiles of the density, ellipsoidal axial ratios and velocity anisotropies (β) of the haloes differ considerably between the models (at the ˜1σ level), even at ≳ 10 per cent of the virial radius, if the self-scattering cross-section is σ/mχ = 1 cm2 g-1. Direct comparison with observationally inferred density profiles disfavours SIDM for σ/mχ = 1 cm2 g-1, but in an intermediate radial range ( ˜ 3 per cent of the virial radius), where the impact of baryonic physics is uncertain. At this level of the cross-section, we find a narrower β distribution in SIDM, clearly skewed towards isotropic orbits, with no SIDM (90 per cent of CDM) haloes having β > 0.12 at 7 per cent of the virial radius. We estimate that with an observational sample of ˜30 (˜1015 M⊙) relaxed clusters, β can potentially be used to put competitive constraints on SIDM, once observational uncertainties improve by a factor of a few. We study the suppression of the memory of halo assembly history in SIDM clusters. For σ/mχ = 1 cm2 g-1, we find that this happens only in the central halo regions (˜1/4 of the scale radius of the halo), and only for haloes that assembled their mass within this region earlier than a formation redshift zf ˜ 2. Otherwise, the memory of assembly remains and is reflected in ways similar to CDM, albeit with weaker trends.
Energy Technology Data Exchange (ETDEWEB)
González-Samaniego, A.; Avila-Reese, V.; Rodríguez-Puebla, A.; Valenzuela, O. [Instituto de Astronomía, Universidad Nacional Autónoma de México, A.P. 70-264, 04510 México D. F. (Mexico); Colín, P. [Centro de Radioastronomía y Astrofísica, Universidad Nacional Autónoma de México, A.P. 72-3 (Xangari), Morelia, Michoacán 58089 (Mexico)
2014-04-10
We present zoom-in N-body/hydrodynamics resimulations of dwarf galaxies formed in isolated cold dark matter (CDM) halos with the same virial mass (M{sub v} ≈ 2.5 × 10{sup 10} M {sub ☉}) at redshift z = 0. Our goals are to (1) study the mass assembly histories (MAHs) of the halo, stellar, and gaseous components; and (2) explore the effects of the halo MAHs on the stellar/baryonic assembly of simulated dwarfs. Overall, the dwarfs are roughly consistent with observations. More specific results include: (1) the stellar-to-halo mass ratio remains roughly constant since z ∼ 1, i.e., the stellar MAHs closely follow halo MAHs. (2) The evolution of the galaxy gas fractions, f{sub g} , are episodic, showing that the supernova-driven outflows play an important role in regulating f{sub g} —and hence, the star formation rate (SFR)—however, in most cases, a large fraction of the gas is ejected from the halo. (3) The star formation histories are episodic with changes in the SFRs, measured every 100 Myr, of factors of 2-10 on average. (4) Although the dwarfs formed in late assembled halos show more extended SF histories, their z = 0 specific SFRs are still below observations. (5) The inclusion of baryons most of the time reduces the virial mass by 10%-20% with respect to pure N-body simulations. Our results suggest that rather than increasing the strength of the supernova-driven outflows, processes that reduce the star formation efficiency could help to solve the potential issues faced by CDM-based simulations of dwarfs, such as low values of the specific SFR and high stellar masses.
Non-Gaussianity from Broken Symmetries
Kolb, Edward W; Vallinotto, A; Kolb, Edward W.; Riotto, Antonio; Vallinotto, Alberto
2006-01-01
Recently we studied inflation models in which the inflaton potential is characterized by an underlying approximate global symmetry. In the first work we pointed out that in such a model curvature perturbations are generated after the end of the slow-roll phase of inflation. In this work we develop further the observational implications of the model and compute the degree of non-Gaussianity predicted in the scenario. We find that the corresponding nonlinearity parameter, $f_{NL}$, can be as large as 10^2.
CMB constraints on running non-Gaussianity
Oppizzi, Filippo; Liguori, Michele; Renzi, Alessandro; Arroja, Frederico; Bartolo, Nicola
2017-01-01
We develop a complete set of tools for CMB forecasting, simulation and estimation of primordial running bispectra, arising from a variety of curvaton and single-field (DBI) models of Inflation. We validate our pipeline using mock CMB running non-Gaussianity realizations and test it on real data by obtaining experimental constraints on the $f_{\\rm NL}$ running spectral index, $n_{\\rm NG}$, using WMAP 9-year data. Our final bounds (68\\% C.L.) read $-0.3< n_{\\rm NG}
Single field inflation and non-Gaussianity
International Nuclear Information System (INIS)
Gangui, Alejandro; Martin, Jerome; Sakellariadou, Mairi
2002-01-01
We study non-Gaussian signatures on the cosmic microwave background (CMB) radiation predicted within inflationary models with non-vacuum initial states for cosmological perturbations. The model incorporates a privileged scale, which implies the existence of a feature in the primordial power spectrum. This broken-scale-invariant model predicts a vanishing three-point correlation function for the CMB temperature anisotropies (or any other odd-numbered-point correlation function) whilst an intrinsic non-Gaussian signature arises for any even-numbered-point correlation function. We thus focus on the first non-vanishing moment, the CMB four-point function at zero lag, namely the kurtosis, and compute its expected value for different locations of the primordial feature in the spectrum, as suggested in the literature to conform with observations of large scale structure. The excess kurtosis is found to be negative and the signal to noise ratio for the dimensionless excess kurtosis parameter is equal to |S/N|≅4x10 -4 , almost independently of the free parameters of the model. This signature turns out to be undetectable. We conclude that, subject to current tests, Gaussianity is a generic property of single field inflationary models. The only uncertainty concerning this prediction is that the effect of back reaction has not yet been properly incorporated. The implications for the trans-Planckian problem of inflation are also briefly discussed
Ferramacho, L. D.; Santos, M. G.; Jarvis, M. J.; Camera, S.
2014-08-01
We explore the use of different radio galaxy populations as tracers of different mass haloes and therefore, with different bias properties, to constrain primordial non-Gaussianity of the local type. We perform a Fisher matrix analysis based on the predicted auto- and cross-angular power spectra of these populations, using simulated redshift distributions as a function of detection flux and the evolution of the bias for the different galaxy types (star-forming galaxies, starburst galaxies, radio-quiet quasars, FR I and FR II AGN galaxies). We show that such a multitracer analysis greatly improves the information on non-Gaussianity by drastically reducing the cosmic variance contribution to the overall error budget. By applying this method to future surveys, we predict a constraint of σ fnl = 3.6 on the local non-Gaussian parameter for a galaxy detection flux limit of 10 μJy and σ fnl = 2.2 for 1 μJy. We show that this significantly improves on the constraints obtained when using the whole undifferentiated populations (σ fnl = 48 10 μJy and σ fnl = 12 for 1 μJy). We conclude that continuum radio surveys alone have the potential to constrain primordial non-Gaussianity to an accuracy at least a factor of 2 better than the present constraints obtained with Planck data on the cosmic microwave background bispectrum, opening a window to obtain σ fnl ˜ 1 with the Square Kilometre Array.
Image reconstruction under non-Gaussian noise
DEFF Research Database (Denmark)
Sciacchitano, Federica
During acquisition and transmission, images are often blurred and corrupted by noise. One of the fundamental tasks of image processing is to reconstruct the clean image from a degraded version. The process of recovering the original image from the data is an example of inverse problem. Due...... that the CM estimate outperforms the MAP estimate, when the error depends on Bregman distances. This PhD project can have many applications in the modern society, in fact the reconstruction of high quality images with less noise and more details enhances the image processing operations, such as edge detection......D thesis intends to solve some of the many open questions for image restoration under non-Gaussian noise. The two main kinds of noise studied in this PhD project are the impulse noise and the Cauchy noise. Impulse noise is due to for instance the malfunctioning pixel elements in the camera sensors, errors...
Integration of non-Gaussian fields
DEFF Research Database (Denmark)
Ditlevsen, Ove Dalager; Mohr, Gunnar; Hoffmeyer, Pernille
1996-01-01
The limitations of the validity of the central limit theorem argument as applied to definite integrals of non-Gaussian random fields are empirically explored by way of examples. The purpose is to investigate in specific cases whether the asymptotic convergence to the Gaussian distribution is fast...... enough to justify that it is sufficiently accurate for the applications to shortcut the problem and just assume that the distribution of the relevant stochastic integral is Gaussian. An earlier published example exhibiting this problem concerns silo pressure fields. [Ditlevsen, O., Christensen, C......, 1994](1) The numerical technique applied to obtain approximate information about the distribution of the integral is based on a recursive application of Winterstein approximations (moment fitted linear combinations of Hermite polynomials of standard Gaussian variables). The method uses the very long...
Estimators for local non-Gaussianities
International Nuclear Information System (INIS)
Creminelli, P.; Senatore, L.; Zaldarriaga, M.
2006-05-01
We study the Likelihood function of data given f NL for the so-called local type of non-Gaussianity. In this case the curvature perturbation is a non-linear function, local in real space, of a Gaussian random field. We compute the Cramer-Rao bound for f NL and show that for small values of f NL the 3- point function estimator saturates the bound and is equivalent to calculating the full Likelihood of the data. However, for sufficiently large f NL , the naive 3-point function estimator has a much larger variance than previously thought. In the limit in which the departure from Gaussianity is detected with high confidence, error bars on f NL only decrease as 1/ln N pix rather than N pix -1/2 as the size of the data set increases. We identify the physical origin of this behavior and explain why it only affects the local type of non- Gaussianity, where the contribution of the first multipoles is always relevant. We find a simple improvement to the 3-point function estimator that makes the square root of its variance decrease as N pix -1/2 even for large f NL , asymptotically approaching the Cramer-Rao bound. We show that using the modified estimator is practically equivalent to computing the full Likelihood of f NL given the data. Thus other statistics of the data, such as the 4-point function and Minkowski functionals, contain no additional information on f NL . In particular, we explicitly show that the recent claims about the relevance of the 4-point function are not correct. By direct inspection of the Likelihood, we show that the data do not contain enough information for any statistic to be able to constrain higher order terms in the relation between the Gaussian field and the curvature perturbation, unless these are orders of magnitude larger than the size suggested by the current limits on f NL . (author)
Primordial non-Gaussianity from LAMOST surveys
International Nuclear Information System (INIS)
Gong Yan; Wang Xin; Chen Xuelei; Zheng Zheng
2010-01-01
The primordial non-Gaussianity (PNG) in the matter density perturbation is a very powerful probe of the physics of the very early Universe. The local PNG can induce a distinct scale-dependent bias on the large scale structure distribution of galaxies and quasars, which could be used for constraining it. We study the detection limits of PNG from the surveys of the LAMOST telescope. The cases of the main galaxy survey, the luminous red galaxy (LRG) survey, and the quasar survey of different magnitude limits are considered. We find that the Main1 sample (i.e. the main galaxy survey which is one magnitude deeper than the SDSS main galaxy survey, or r NL are |f NL | NL | NL | is between 50 and 103, depending on the magnitude limit of the survey. With Planck-like priors on cosmological parameters, the quasar survey with g NL | < 43 (2σ). We also discuss the possibility of further tightening the constraint by using the relative bias method proposed by Seljak.
Anomalous dimensions and non-gaussianity
Energy Technology Data Exchange (ETDEWEB)
Green, Daniel; Lewandowski, Matthew; Senatore, Leonardo; Silverstein, Eva; Zaldarriaga, Matias
2013-10-01
We analyze the signatures of inflationary models that are coupled to interacting field theories, a basic class of multifield models also motivated by their role in providing dynamically small scales. Near the squeezed limit of the bispectrum, we find a simple scaling behavior determined by operator dimensions, which are constrained by the appropriate unitarity bounds. Specifically, we analyze two simple and calculable classes of examples: conformal field theories (CFTs), and large-N CFTs deformed by relevant time-dependent double-trace operators. Together these two classes of examples exhibit a wide range of scalings and shapes of the bispectrum, including nearly equilateral, orthogonal and local non-Gaussianity in different regimes. Along the way, we compare and contrast the shape and amplitude with previous results on weakly coupled fields coupled to inflation. This signature provides a precision test for strongly coupled sectors coupled to inflation via irrelevant operators suppressed by a high mass scale up to ~ 103 times the inflationary Hubble scale.
Non-Gaussianity from inflation: theory and observations
Bartolo, N.; Komatsu, E.; Matarrese, S.; Riotto, A.
2004-11-01
This is a review of models of inflation and of their predictions for the primordial non-Gaussianity in the density perturbations which are thought to be at the origin of structures in the Universe. Non-Gaussianity emerges as a key observable to discriminate among competing scenarios for the generation of cosmological perturbations and is one of the primary targets of present and future Cosmic Microwave Background satellite missions. We give a detailed presentation of the state-of-the-art of the subject of non-Gaussianity, both from the theoretical and the observational point of view, and provide all the tools necessary to compute at second order in perturbation theory the level of non-Gaussianity in any model of cosmological perturbations. We discuss the new wave of models of inflation, which are firmly rooted in modern particle physics theory and predict a significant amount of non-Gaussianity. The review is addressed to both astrophysicists and particle physicists and contains useful tables which summarize the theoretical and observational results regarding non-Gaussianity.
Consistency relations for sharp inflationary non-Gaussian features
International Nuclear Information System (INIS)
Mooij, Sander; Palma, Gonzalo A.; Panotopoulos, Grigoris; Soto, Alex
2016-01-01
If cosmic inflation suffered tiny time-dependent deviations from the slow-roll regime, these would induce the existence of small scale-dependent features imprinted in the primordial spectra, with their shapes and sizes revealing information about the physics that produced them. Small sharp features could be suppressed at the level of the two-point correlation function, making them undetectable in the power spectrum, but could be amplified at the level of the three-point correlation function, offering us a window of opportunity to uncover them in the non-Gaussian bispectrum. In this article, we show that sharp features may be analyzed using only data coming from the three point correlation function parametrizing primordial non-Gaussianity. More precisely, we show that if features appear in a particular non-Gaussian triangle configuration (e.g. equilateral, folded, squeezed), these must reappear in every other configuration according to a specific relation allowing us to correlate features across the non-Gaussian bispectrum. As a result, we offer a method to study scale-dependent features generated during inflation that depends only on data coming from measurements of non-Gaussianity, allowing us to omit data from the power spectrum.
EVOLUTION OF THE GALAXY-DARK MATTER CONNECTION AND THE ASSEMBLY OF GALAXIES IN DARK MATTER HALOS
Energy Technology Data Exchange (ETDEWEB)
Yang Xiaohu; Zhang Youcai; Han Jiaxin [Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatory, Nandan Road 80, Shanghai 200030 (China); Mo, H. J. [Department of Astronomy, University of Massachusetts, Amherst, MA 01003-9305 (United States); Van den Bosch, Frank C., E-mail: xhyang@shao.ac.cn [Astronomy Department, Yale University, P.O. Box 208101, New Haven, CT 06520-8101 (United States)
2012-06-10
We present a new model to describe the galaxy-dark matter connection across cosmic time, which unlike the popular subhalo abundance-matching technique is self-consistent in that it takes account of the facts that (1) subhalos are accreted at different times and (2) the properties of satellite galaxies may evolve after accretion. Using observations of galaxy stellar mass functions (SMFs) out to z {approx} 4, the conditional SMF at z {approx} 0.1 obtained from Sloan Digital Sky Survey galaxy group catalogs, and the two-point correlation function (2PCF) of galaxies at z {approx} 0.1 as a function of stellar mass, we constrain the relation between galaxies and dark matter halos over the entire cosmic history from z {approx} 4 to the present. This relation is then used to predict the median assembly histories of different stellar mass components within dark matter halos (central galaxies, satellite galaxies, and halo stars). We also make predictions for the 2PCFs of high-z galaxies as function of stellar mass. Our main findings are the following: (1) Our model reasonably fits all data within the observational uncertainties, indicating that the {Lambda}CDM concordance cosmology is consistent with a wide variety of data regarding the galaxy population across cosmic time. (2) At low-z, the stellar mass of central galaxies increases with halo mass as M{sup 0.3} and M{sup {approx}>4.0} at the massive and low-mass ends, respectively. The ratio M{sub *,c}/M reveals a maximum of {approx}0.03 at a halo mass M {approx} 10{sup 11.8} h{sup -1} M{sub Sun }, much lower than the universal baryon fraction ({approx}0.17). At higher redshifts the maximum in M{sub *,c}/M remains close to {approx}0.03, but shifts to higher halo mass. (3) The inferred timescale for the disruption of satellite galaxies is about the same as the dynamical friction timescale of their subhalos. (4) The stellar mass assembly history of central galaxies is completely decoupled from the assembly history of its host
Continuous-variable quantum teleportation with non-Gaussian resources
International Nuclear Information System (INIS)
Dell'Anno, F.; De Siena, S.; Albano, L.; Illuminati, F.
2007-01-01
We investigate continuous variable quantum teleportation using non-Gaussian states of the radiation field as entangled resources. We compare the performance of different classes of degaussified resources, including two-mode photon-added and two-mode photon-subtracted squeezed states. We then introduce a class of two-mode squeezed Bell-like states with one-parameter dependence for optimization. These states interpolate between and include as subcases different classes of degaussified resources. We show that optimized squeezed Bell-like resources yield a remarkable improvement in the fidelity of teleportation both for coherent and nonclassical input states. The investigation reveals that the optimal non-Gaussian resources for continuous variable teleportation are those that most closely realize the simultaneous maximization of the content of entanglement, the degree of affinity with the two-mode squeezed vacuum, and the, suitably measured, amount of non-Gaussianity
Folded resonant non-Gaussianity in general single field inflation
International Nuclear Information System (INIS)
Chen, Xingang
2010-01-01
We compute a novel type of large non-Gaussianity due to small periodic features in general single field inflationary models. We show that the non-Bunch-Davies vacuum component generated by features, although has a very small amplitude, can have significant impact on the non-Gaussianity. Three mechanisms are turned on simultaneously in such models, namely the resonant effect, non-Bunch-Davies vacuum and higher derivative kinetic terms, resulting in a bispectrum with distinctive shapes and running. The size can be equal to or larger than that previously found in each single mechanism. Our full results, including the resonant and folded resonant non-Gaussianities, give the leading order bispectra due to general periodic features in general single field inflation
Non-Gaussianity in a quasiclassical electronic circuit
Suzuki, Takafumi J.; Hayakawa, Hisao
2017-05-01
We study the non-Gaussian dynamics of a quasiclassical electronic circuit coupled to a mesoscopic conductor. Non-Gaussian noise accompanying the nonequilibrium transport through the conductor significantly modifies the stationary probability density function (PDF) of the flux in the dissipative circuit. We incorporate weak quantum fluctuation of the dissipative LC circuit with a stochastic method and evaluate the quantum correction of the stationary PDF. Furthermore, an inverse formula to infer the statistical properties of the non-Gaussian noise from the stationary PDF is derived in the classical-quantum crossover regime. The quantum correction is indispensable to correctly estimate the microscopic transfer events in the QPC with the quasiclassical inverse formula.
Option pricing for non-Gaussian price fluctuations
Kleinert, Hagen
2004-07-01
From the path integral description of price fluctuations with non-Gaussian distributions we derive a stochastic calculus which replaces Itô's calculus for harmonic fluctuations. We set up a natural martingale for option pricing from the wealth balance of options, stocks, and bonds, and evaluate the resulting formula for truncated Lévy distributions. After this, an alternative formula is derived for a model of multivariant Gaussian price fluctuations which leads to non-Gaussian return distributions fitting Dow Jones data excellently from long to short time scales with a tail behavior e - x/ x3/2.
Higher moments of weighted integrals of non-Gaussian fields
DEFF Research Database (Denmark)
Mohr, Gunnar
1999-01-01
In general, the exact probability distribution of a definite integral of a given non-Gaussian random field is not known. Some information about this unknown distribution can be obtained from the 3rd and 4th moment of the integral. Approximations to these moments can be calculated by discretizing...... the integral and replacing the integrand by third-degree polynomials of correlated Gaussian Variables which reproduce the first four moments and the correlation function of the field correctly. The method described (see Ditlevsen O, Mohr G, Hoffmeyer P. Integration of non-Gaussian fields. Probabilistic...
Uhlemann, C.; Pajer, E.; Pichon, C.; Nishimichi, T.; Codis, S.; Bernardeau, F.
2018-03-01
Non-Gaussianities of dynamical origin are disentangled from primordial ones using the formalism of large deviation statistics with spherical collapse dynamics. This is achieved by relying on accurate analytical predictions for the one-point probability distribution function and the two-point clustering of spherically averaged cosmic densities (sphere bias). Sphere bias extends the idea of halo bias to intermediate density environments and voids as underdense regions. In the presence of primordial non-Gaussianity, sphere bias displays a strong scale dependence relevant for both high- and low-density regions, which is predicted analytically. The statistics of densities in spheres are built to model primordial non-Gaussianity via an initial skewness with a scale dependence that depends on the bispectrum of the underlying model. The analytical formulas with the measured non-linear dark matter variance as input are successfully tested against numerical simulations. For local non-Gaussianity with a range from fNL = -100 to +100, they are found to agree within 2 per cent or better for densities ρ ∈ [0.5, 3] in spheres of radius 15 Mpc h-1 down to z = 0.35. The validity of the large deviation statistics formalism is thereby established for all observationally relevant local-type departures from perfectly Gaussian initial conditions. The corresponding estimators for the amplitude of the non-linear variance σ8 and primordial skewness fNL are validated using a fiducial joint maximum likelihood experiment. The influence of observational effects and the prospects for a future detection of primordial non-Gaussianity from joint one- and two-point densities-in-spheres statistics are discussed.
Superstatistical generalised Langevin equation: non-Gaussian viscoelastic anomalous diffusion
Ślęzak, Jakub; Metzler, Ralf; Magdziarz, Marcin
2018-02-01
Recent advances in single particle tracking and supercomputing techniques demonstrate the emergence of normal or anomalous, viscoelastic diffusion in conjunction with non-Gaussian distributions in soft, biological, and active matter systems. We here formulate a stochastic model based on a generalised Langevin equation in which non-Gaussian shapes of the probability density function and normal or anomalous diffusion have a common origin, namely a random parametrisation of the stochastic force. We perform a detailed analysis demonstrating how various types of parameter distributions for the memory kernel result in exponential, power law, or power-log law tails of the memory functions. The studied system is also shown to exhibit a further unusual property: the velocity has a Gaussian one point probability density but non-Gaussian joint distributions. This behaviour is reflected in the relaxation from a Gaussian to a non-Gaussian distribution observed for the position variable. We show that our theoretical results are in excellent agreement with stochastic simulations.
Lifting Primordial Non-Gaussianity Above the Noise
Welling, Yvette; Woude, Drian van der; Pajer, Enrico
2016-01-01
Primordial non-Gaussianity (PNG) in Large Scale Structures is obfuscated by the many additional sources of non-linearity. Within the Effective Field Theory approach to Standard Perturbation Theory, we show that matter non-linearities in the bispectrum can be modeled sufficiently well to strengthen
Higher Moments of Weighted Integrals of Non-Gaussian Fields
DEFF Research Database (Denmark)
Mohr, Gunnar
1996-01-01
In general , the exact probability distribution of a definite non-Gaussian random field is not known. Some information about this unknown distribution can be obtained from the 3rd and 4th moment of the integral. Approximations to these moments are calculated by a numerical technique based...
Mixed non-Gaussianity in multiple-DBI inflation
Energy Technology Data Exchange (ETDEWEB)
Emery, Jon; Tasinato, Gianmassimo; Wands, David, E-mail: jon.emery@port.ac.uk, E-mail: gianmassimo.tasinato@port.ac.uk, E-mail: david.wands@port.ac.uk [Institute of Cosmology and Gravitation, University of Portsmouth, Dennis Sciama Building, Portsmouth, PO1 3FX (United Kingdom)
2013-05-01
We study a model of multiple-field DBI inflation leading to mixed form of primordial non-Gaussianity, including equilateral and local bispectrum shapes. We present a general formalism based on the Hamilton-Jacobi approach, allowing us to go beyond slow-roll, combining the three-point function for the fields at Hubble-exit with the non-linear evolution of super-Hubble scales. We are able to obtain analytic results by taking a separable Ansatz for the Hubble rate. We find general expressions for both the equilateral and local type non-Gaussianity parameter f{sub NL}. The equilateral non-Gaussianity includes the usual enhancement for small sound speeds, but multiplied by an analytic factor which can lead to a suppression. We illustrate our results with two scenarios. In the first model, previously found to have detectable local non-Gaussianity, we find that the equilateral signal is not sufficiently suppressed to evade current observational bounds. In our second scenario we construct a model which exhibits both a detectable equilateral f{sub NL} and a negative local f{sub NL}.
Continuous variable entanglement distillation of non-Gaussian states
DEFF Research Database (Denmark)
Lassen, Mikael Østergaard; Dong, Ruifang; Heersink, Joel
2009-01-01
We experimentally demonstrate distillation of continuous variable entangled light that has undergone non-Gaussian attenuation loss. The continuous variable entanglement is generated with optical fibers and sent through a lossy channel, where the transmission is varying in time. By employing simple...
ZOMG - II. Does the halo assembly history influence central galaxies and gas accretion?
Romano-Díaz, Emilio; Garaldi, Enrico; Borzyszkowski, Mikolaj; Porciani, Cristiano
2017-08-01
The growth rate and the internal dynamics of galaxy-sized dark-matter haloes depend on their location within the cosmic web. Haloes that sit at the nodes grow in mass till the present time and are dominated by radial orbits. Conversely, haloes embedded in prominent filaments do not change much in size and are dominated by tangential orbits. Using zoom hydrodynamical simulations including star formation and feedback, we study how gas accretes on to these different classes of objects, which, for simplicity, we dub 'accreting' and 'stalled' haloes. We find that all haloes get a fresh supply of newly accreted gas in their inner regions, although this slowly decreases with time, in particular for the stalled haloes. The inflow of new gas is always higher than (but comparable with) that of recycled material. Overall, the cold-gas fraction increases (decreases) with time for the accreting (stalled) haloes. In all cases, a stellar disc and a bulge form at the centre of the simulated haloes. The total stellar mass is in excellent agreement with expectations based on the abundance-matching technique. Many properties of the central galaxies do not seem to correlate with the large-scale environment in which the haloes reside. However, there are two notable exceptions that characterize stalled haloes with respect to their accreting counterparts: (I) The galaxy disc contains much older stellar populations. (II) Its vertical scaleheight is larger by a factor of 2 or more. This thickening is likely due to the heating of the long-lived discs by mergers and close flybys.
Making tensor factorizations robust to non-gaussian noise.
Energy Technology Data Exchange (ETDEWEB)
Chi, Eric C. (Rice University, Houston, TX); Kolda, Tamara Gibson
2011-03-01
Tensors are multi-way arrays, and the CANDECOMP/PARAFAC (CP) tensor factorization has found application in many different domains. The CP model is typically fit using a least squares objective function, which is a maximum likelihood estimate under the assumption of independent and identically distributed (i.i.d.) Gaussian noise. We demonstrate that this loss function can be highly sensitive to non-Gaussian noise. Therefore, we propose a loss function based on the 1-norm because it can accommodate both Gaussian and grossly non-Gaussian perturbations. We also present an alternating majorization-minimization (MM) algorithm for fitting a CP model using our proposed loss function (CPAL1) and compare its performance to the workhorse algorithm for fitting CP models, CP alternating least squares (CPALS).
Primordial black holes from inflation and non-Gaussianity
Franciolini, G.; Kehagias, A.; Matarrese, S.; Riotto, A.
2018-03-01
Primordial black holes may owe their origin to the small-scale enhancement of the comoving curvature perturbation generated during inflation. Their mass fraction at formation is markedly sensitive to possible non-Gaussianities in such large, but rare fluctuations. We discuss a path-integral formulation which provides the exact mass fraction of primordial black holes at formation in the presence of non-Gaussianity. Through a couple of classes of models, one based on single-field inflation and the other on spectator fields, we show that restricting to a Gaussian statistics may lead to severe inaccuracies in the estimate of the mass fraction as well as on the clustering properties of the primordial black holes.
An innovation approach to non-Gaussian time series analysis
Ozaki, Tohru; Iino, Mitsunori
2001-01-01
The paper shows that the use of both types of random noise, white noise and Poisson noise, can be justified when using an innovations approach. The historical background for this is sketched, and then several methods of whitening dependent time series are outlined, including a mixture of Gaussian white noise and a compound Poisson process: this appears as a natural extension of the Gaussian white noise model for the prediction errors of a non-Gaussian time series. A stati...
Productive interactions: heavy particles and non-Gaussianity
International Nuclear Information System (INIS)
Flauger, Raphael; Mirbabayi, Mehrdad; Senatore, Leonardo; Silverstein, Eva
2017-01-01
We analyze the shape and amplitude of oscillatory features in the primordial power spectrum and non-Gaussianity induced by periodic production of heavy degrees of freedom coupled to the inflaton φ. We find that non-adiabatic production of particles can contribute effects which are detectable or constrainable using cosmological data even if their time-dependent masses are always heavier than the scale φ̇ 1/2 , much larger than the Hubble scale. This provides a new role for UV completion, consistent with the criteria from effective field theory for when heavy fields cannot be integrated out. This analysis is motivated in part by the structure of axion monodromy, and leads to an additional oscillatory signature in a subset of its parameter space. At the level of a quantum field theory model that we analyze in detail, the effect arises consistently with radiative stability for an interesting window of couplings up to of order ∼< 1. The amplitude of the bispectrum and higher-point functions can be larger than that for Resonant Non-Gaussianity, and its signal/noise may be comparable to that of the corresponding oscillations in the power spectrum (and even somewhat larger within a controlled regime of parameters). Its shape is distinct from previously analyzed templates, but was partly motivated by the oscillatory equilateral searches performed recently by the Planck collaboration. We also make some general comments about the challenges involved in making a systematic study of primordial non-Gaussianity.
Current inversion induced by colored non-Gaussian noise
International Nuclear Information System (INIS)
Bag, Bidhan Chandra; Hu, Chin-Kung
2009-01-01
We study a stochastic process driven by colored non-Gaussian noises. For the flashing ratchet model we find that there is a current inversion in the variation of the current with the half-cycle period which accounts for the potential on–off operation. The current inversion almost disappears if one switches from non-Gaussian (NG) to Gaussian (G) noise. We also find that at low value of the asymmetry parameter of the potential the mobility controlled current is more negative for NG noise as compared to G noise. But at large magnitude of the parameter the diffusion controlled positive current is higher for the former than for the latter. On increasing the noise correlation time (τ), keeping the noise strength fixed, the mean velocity of a particle first increases and then decreases after passing through a maximum if the noise is non-Gaussian. For Gaussian noise, the current monotonically decreases. The current increases with the noise parameter p, 0< p<5/3, which is 1 for Gaussian noise
Directory of Open Access Journals (Sweden)
Lépine S.
2012-02-01
Full Text Available While recent sky surveys have uncovered large numbers of ever fainter Milky Way satellites, their classification as star clusters, low-luminosity galaxies, or tidal overdensities remains often unclear. Likewise, their contributions to the build-up of the halo is yet debated. In this contribution we will discuss the current knowledge of the stellar populations and chemo-dynamics in these puzzling satellites, with a particular focus on dwarf spheroidal galaxies and the globular clusters in the outer Galactic halo. Also the question of whether some of the outermost halo objects are dynamically associated with the (Milky Way halo at all is addressed in terms of proper measurements in the remote Leo I and II dwarf galaxies.
Fluctuation relations with intermittent non-Gaussian variables.
Budini, Adrián A
2011-12-01
Nonequilibrium stationary fluctuations may exhibit a special symmetry called fluctuation relations (FRs). Here, we show that this property is always satisfied by the subtraction of two random and independent variables related by a thermodynamiclike change of measure. Taking one of them as a modulated Poisson process, it is demonstrated that intermittence and FRs are compatible properties that may coexist naturally. Strong non-Gaussian features characterize the probability distribution and its generating function. Their associated large deviation functions develop a "kink" at the origin and a plateau regime respectively. Application of this model in different stationary nonequilibrium situations is discussed.
Detection of local non-Gaussianity with future observations
International Nuclear Information System (INIS)
Li Hong; Liu Jie
2012-01-01
In this Letter we estimate the primordial non-Gaussianity (PNG) by simulating future observations. We use the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) as an example and focus on the cross correlation signal between the galaxies and the Integrate Sachs-Wolfe (ISW) effect of CMB. Our result is optimistical. It shows the potential of LAMOST, particularly its quasar survey, in probing for the PNG by ISW - galaxy cross correlation. This study is particularly relevant because LAMOST is almost parallel to the timetable of the upcoming high precision Planck satellite.
Quasi-single field inflation and non-Gaussianities
International Nuclear Information System (INIS)
Chen, Xingang; Wang, Yi
2010-01-01
In quasi-single field inflation models, massive isocurvature modes, that are coupled to the inflaton and have mass of order the Hubble parameter, can have nontrivial impacts on density perturbations, especially non-Gaussianities. We study a simple example of quasi-single field inflation in terms of turning inflaton trajectory. Large bispectra with a one-parameter family of novel shapes arise, lying between the well-known local and equilateral shape. The trispectra can also be very large and its magnitude t NL can be much larger than f NL 2
Theory of non-Gaussianity in warm inflation
Energy Technology Data Exchange (ETDEWEB)
Bastero-Gil, Mar [Departamento de Física Teórica y del Cosmos, Universidad de Granada, Granada-18071 (Spain); Berera, Arjun [SUPA, School of Physics and Astronomy, University of Edinburgh, Edinburgh, EH9 3JZ (United Kingdom); Moss, Ian G. [School of Mathematics and Statistics, Newcastle University, Newcastle upon Tyne, NE1 7RU (United Kingdom); Ramos, Rudnei O., E-mail: mbg@ugr.es, E-mail: ab@ph.ed.ac.uk, E-mail: ian.moss@ncl.ac.uk, E-mail: rudnei@uerj.br [Departamento de Física Teórica, Universidade do Estado do Rio de Janeiro, 20550-013 Rio de Janeiro, RJ (Brazil)
2014-12-01
The theory and methodology is developed to compute the bispectrum in warm inflation, leading to results for the non-linearity parameter and the shape of the bispectrum. Particular attention is paid to the study of the bispectrum in the regime of weak dissipation and how stochastic fluctuations affect the bispectrum. It is shown that, in contrast to the strong dissipative regime, the amplitude of non-Gaussianity is strongly dependent on the parameters governing the microscopic physics in the intermediate and weak dissipation warm inflation regimes. The most important results concern the shape of the bispectrum, which has two different, but distinct, forms in the weak and strong dissipative regimes.
Holographic non-Gaussianities in general single-field inflation
International Nuclear Information System (INIS)
Isono, Hiroshi; Noumi, Toshifumi; Shiu, Gary; Wong, Sam S.C.; Zhou, Siyi
2016-01-01
We use holographic techniques to compute inflationary non-Gaussianities for general single-field inflation, including models with a non-trivial sound speed. In this holographic approach, the inflationary dynamics is captured by a relevant deformation of the dual conformal field theory (CFT) in the UV, while the inflationary correlators are computed by conformal perturbation theory. In this paper, we discuss the effects of higher derivative operators, such as (∂ μ ϕ∂ μ ϕ) m , which are known to induce a non-trivial sound speed and source potentially large non-Gaussianities. We compute the full inflationary bispectra from the deformed CFT correlators. We also discuss the squeezed limit of the bispectra from the viewpoint of operator product expansions. As is generic in the holographic description of inflation, our power spectrum is blue tilted in the UV region. We extend our bispectrum computation to the IR region by resumming the conformal perturbations to all orders. We provide a self-consistent setup which reproduces a red tilted power spectrum, as well as all possible bispectrum shapes in the slow-roll regime.
Multipoint propagators for non-Gaussian initial conditions
International Nuclear Information System (INIS)
Bernardeau, Francis; Sefusatti, Emiliano; Crocce, Martin
2010-01-01
We show here how renormalized perturbation theory calculations applied to the quasilinear growth of the large-scale structure can be carried on in presence of primordial non-Gaussian (PNG) initial conditions. It is explicitly demonstrated that the series reordering scheme proposed in Bernardeau, Crocce, and Scoccimarro [Phys. Rev. D 78, 103521 (2008)] is preserved for non-Gaussian initial conditions. This scheme applies to the power spectrum and higher-order spectra and is based on a reorganization of the contributing terms into the sum of products of multipoint propagators. In case of PNG, new contributing terms appear, the importance of which is discussed in the context of current PNG models. The properties of the building blocks of such resummation schemes, the multipoint propagators, are then investigated. It is first remarked that their expressions are left unchanged at one-loop order irrespective of statistical properties of the initial field. We furthermore show that the high-momentum limit of each of these propagators can be explicitly computed even for arbitrary initial conditions. They are found to be damped by an exponential cutoff whose expression is directly related to the moment generating function of the one-dimensional displacement field. This extends what had been established for multipoint propagators for Gaussian initial conditions. Numerical forms of the cutoff are shown for the so-called local model of PNG.
Planck 2013 Results. XXIV. Constraints on primordial non-Gaussianity
Ade, P.A.R.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A.J.; Barreiro, R.B.; Bartlett, J.G.; Bartolo, N.; Battaner, E.; Benabed, K.; Benoit, A.; Benoit-Levy, A.; Bernard, J.P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bock, J.J.; Bonaldi, A.; Bonavera, L.; Bond, J.R.; Borrill, J.; Bouchet, F.R.; Bridges, M.; Bucher, M.; Burigana, C.; Butler, R.C.; Cardoso, J.F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chiang, L.Y.; Chiang, H.C.; Christensen, P.R.; Church, S.; Clements, D.L.; Colombi, S.; Colombo, L.P.L.; Couchot, F.; Coulais, A.; Crill, B.P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R.D.; Davis, R.J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.M.; Desert, F.X.; Diego, J.M.; Dole, H.; Donzelli, S.; Dore, O.; Douspis, M.; Ducout, A.; Dunkley, J.; Dupac, X.; Efstathiou, G.; Elsner, F.; Ensslin, T.A.; Eriksen, H.K.; Fergusson, J.; Finelli, F.; Forni, O.; Frailis, M.; Franceschi, E.; Galeotta, S.; Ganga, K.; Giard, M.; Giraud-Heraud, Y.; Gonzalez-Nuevo, J.; Gorski, K.M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Hansen, F.K.; Hanson, D.; Harrison, D.; Heavens, A.; Henrot-Versille, S.; Hernandez-Monteagudo, C.; Herranz, D.; Hildebrandt, S.R.; Hivon, E.; Hobson, M.; Holmes, W.A.; Hornstrup, A.; Hovest, W.; Huffenberger, K.M.; Jaffe, T.R.; Jaffe, A.H.; Jones, W.C.; Juvela, M.; Keihanen, E.; Keskitalo, R.; Kisner, T.S.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lacasa, F.; Lagache, G.; Lahteenmaki, A.; Lamarre, J.M.; Lasenby, A.; Laureijs, R.J.; Lawrence, C.R.; Leahy, J.P.; Leonardi, R.; Lesgourgues, J.; Lewis, A.; Liguori, M.; Lilje, P.B.; Linden-Vornle, M.; Lopez-Caniego, M.; Lubin, P.M.; Macias-Perez, J.F.; Maffei, B.; Maino, D.; Mandolesi, N.; Mangilli, A.; Marinucci, D.; Maris, M.; Marshall, D.J.; Martin, P.G.; Martinez-Gonzalez, E.; Masi, S.; Matarrese, S.; Matthai, F.; Mazzotta, P.; Meinhold, P.R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschenes, M.A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Naselsky, P.; Natoli, P.; Netterfield, C.B.; Norgaard-Nielsen, H.U.; Noviello, F.; Novikov, D.; Novikov, I.; Osborne, S.; Oxborrow, C.A.; Paci, F.; Pagano, L.; Pajot, F.; Paoletti, D.; Pasian, F.; Patanchon, G.; Peiris, H.V.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G.W.; Prezeau, G.; Prunet, S.; Puget, J.L.; Rachen, J.P.; Racine, B.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.; Rubino-Martin, J.A.; Rusholme, B.; Sandri, M.; Santos, D.; Savini, G.; Scott, D.; Seiffert, M.D.; Shellard, E.P.S.; Smith, K.; Spencer, L.D.; Starck, J.L.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sunyaev, R.; Sureau, F.; Sutton, D.; Suur-Uski, A.S.; Sygnet, J.F.; Tauber, J.A.; Tavagnacco, D.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Varis, J.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L.A.; Wandelt, B.D.; White, M.; White, S.D.M.; Yvon, D.; Zacchei, A.; Zonca, A.
2014-01-01
The Planck nominal mission cosmic microwave background (CMB) maps yield unprecedented constraints on primordial non-Gaussianity (NG). Using three optimal bispectrum estimators, separable template-fitting (KSW), binned, and modal, we obtain consistent values for the primordial local, equilateral, and orthogonal bispectrum amplitudes, quoting as our final result fNL^local= 2.7+/-5.8, fNL^equil= -42+/-75, and fNL^ortho= -25+\\-39 (68% CL statistical). NG is detected in the data; using skew-C_l statistics we find a nonzero bispectrum from residual point sources, and the ISW-lensing bispectrum at a level expected in the LambdaCDM scenario. The results are based on comprehensive cross-validation of these estimators on Gaussian and non-Gaussian simulations, are stable across component separation techniques, pass an extensive suite of tests, and are confirmed by skew-C_l, wavelet bispectrum and Minkowski functional estimators. Beyond estimates of individual shape amplitudes, we present model-independent, 3-dimensional...
Holographic non-Gaussianities in general single-field inflation
Energy Technology Data Exchange (ETDEWEB)
Isono, Hiroshi [Department of Physics, Faculty of Science,Chulalongkorn University, Bangkok 10330 (Thailand); Noumi, Toshifumi [Department of Physics and Jockey Club Institute for Advanced Study,Hong Kong University of Science and Technology (Hong Kong); Department of Physics,Kobe University, Kobe 657-8501 (Japan); Shiu, Gary [Department of Physics and Jockey Club Institute for Advanced Study,Hong Kong University of Science and Technology (Hong Kong); Department of Physics, University of Wisconsin-Madison,Madison, WI 53706 (United States); Wong, Sam S.C.; Zhou, Siyi [Department of Physics and Jockey Club Institute for Advanced Study,Hong Kong University of Science and Technology (Hong Kong)
2016-12-07
We use holographic techniques to compute inflationary non-Gaussianities for general single-field inflation, including models with a non-trivial sound speed. In this holographic approach, the inflationary dynamics is captured by a relevant deformation of the dual conformal field theory (CFT) in the UV, while the inflationary correlators are computed by conformal perturbation theory. In this paper, we discuss the effects of higher derivative operators, such as (∂{sub μ}ϕ∂{sup μ}ϕ){sup m}, which are known to induce a non-trivial sound speed and source potentially large non-Gaussianities. We compute the full inflationary bispectra from the deformed CFT correlators. We also discuss the squeezed limit of the bispectra from the viewpoint of operator product expansions. As is generic in the holographic description of inflation, our power spectrum is blue tilted in the UV region. We extend our bispectrum computation to the IR region by resumming the conformal perturbations to all orders. We provide a self-consistent setup which reproduces a red tilted power spectrum, as well as all possible bispectrum shapes in the slow-roll regime.
Primordial perturbations and non-Gaussianities from modulated trapping
International Nuclear Information System (INIS)
Langlois, David; Sorbo, Lorenzo
2009-01-01
We propose a new mechanism to generate primordial curvature perturbations, based on the resonant production of particles during inflation. It is known that this phenomenon can trap the inflaton for a fraction of e-fold. This effect is governed by the mass of the produced particles and by their coupling to the inflaton, parameters which can depend on the expectation value of other fields. If one of such additional fields—a modulaton—is light, then its fluctuations, acquired during the earlier stages of inflation, will induce a spatial modulation of the trapping, and thus of the end of inflation, corresponding to a curvature perturbation. We calculate the power spectrum, bispectrum and trispectrum of the curvature perturbations generated by this mechanism, taking into account the perturbations due to the inflaton fluctuations as well. We find that modulated trapping could provide the main contribution to the observed power spectrum and lead to detectable primordial non-gaussianities
Lifting primordial non-Gaussianity above the noise
International Nuclear Information System (INIS)
Welling, Yvette; Woude, Drian van der; Pajer, Enrico
2016-01-01
Primordial non-Gaussianity (PNG) in Large Scale Structures is obfuscated by the many additional sources of non-linearity. Within the Effective Field Theory approach to Standard Perturbation Theory, we show that matter non-linearities in the bispectrum can be modeled sufficiently well to strengthen current bounds with near future surveys, such as Euclid. We find that the EFT corrections are crucial to this improvement in sensitivity. Yet, our understanding of non-linearities is still insufficient to reach important theoretical benchmarks for equilateral PNG, while, for local PNG, our forecast is more optimistic. We consistently account for the theoretical error intrinsic to the perturbative approach and discuss the details of its implementation in Fisher forecasts.
Non-Gaussianity and the Cosmic Microwave Background Anisotropies
Bartolo, N; Riotto, A
2010-01-01
We review in a pedagogical way the present status of the impact of non-Gaussianity (NG) on the Cosmic Microwave Background (CMB) anisotropies. We first show how to set the initial conditions at second-order for the (gauge invariant) CMB anisotropies when some primordial NG is present. However, there are many sources of NG in CMB anisotropies, beyond the primordial one, which can contaminate the primordial signal. We mainly focus on the NG generated from the post-inflationary evolution of the CMB anisotropies at second-order in perturbation theory at large and small angular scales, such as the ones generated at the recombination epoch. We show how to derive the equations to study the second-order CMB anisotropies and provide analytical computations to evaluate their contamination to primordial NG (complemented with numerical examples). We also offer a brief summary of other secondary effects. This review requires basic knowledge of the theory of cosmological perturbations at the linear level.
A model of non-Gaussian diffusion in heterogeneous media
Lanoiselée, Yann; Grebenkov, Denis S.
2018-04-01
Recent progress in single-particle tracking has shown evidence of the non-Gaussian distribution of displacements in living cells, both near the cellular membrane and inside the cytoskeleton. Similar behavior has also been observed in granular materials, turbulent flows, gels and colloidal suspensions, suggesting that this is a general feature of diffusion in complex media. A possible interpretation of this phenomenon is that a tracer explores a medium with spatio-temporal fluctuations which result in local changes of diffusivity. We propose and investigate an ergodic, easily interpretable model, which implements the concept of diffusing diffusivity. Depending on the parameters, the distribution of displacements can be either flat or peaked at small displacements with an exponential tail at large displacements. We show that the distribution converges slowly to a Gaussian one. We calculate statistical properties, derive the asymptotic behavior and discuss some implications and extensions.
Interconversion of pure Gaussian states requiring non-Gaussian operations
Jabbour, Michael G.; García-Patrón, Raúl; Cerf, Nicolas J.
2015-01-01
We analyze the conditions under which local operations and classical communication enable entanglement transformations between bipartite pure Gaussian states. A set of necessary and sufficient conditions had been found [G. Giedke et al., Quant. Inf. Comput. 3, 211 (2003)] for the interconversion between such states that is restricted to Gaussian local operations and classical communication. Here, we exploit majorization theory in order to derive more general (sufficient) conditions for the interconversion between bipartite pure Gaussian states that goes beyond Gaussian local operations. While our technique is applicable to an arbitrary number of modes for each party, it allows us to exhibit surprisingly simple examples of 2 ×2 Gaussian states that necessarily require non-Gaussian local operations to be transformed into each other.
First constraints on the running of non-Gaussianity.
Becker, Adam; Huterer, Dragan
2012-09-21
We use data from the Wilkinson Microwave Anisotropy probe temperature maps to constrain a scale-dependent generalization of the popular "local" model for primordial non-Gaussianity. In the model where the parameter f(NL) is allowed to run with scale k, f(NL)(k) = f*(NL) (k/k(piv))(n)(fNL), we constrain the running to be n(f)(NL) = 0.30(-1.2)(+1.9) at 95% confidence, marginalized over the amplitude f*(NL). The constraints depend somewhat on the prior probabilities assigned to the two parameters. In the near future, constraints from a combination of Planck and large-scale structure surveys are expected to improve this limit by about an order of magnitude and usefully constrain classes of inflationary models.
Modulated reheating and large non-gaussianity in string cosmology
Energy Technology Data Exchange (ETDEWEB)
Cicoli, M.; Quevedo, F. [Abdus Salam ICTP, Strada Costiera 11, Trieste 34014 (Italy); Tasinato, G. [Institute of Cosmology and Gravitation, University of Portsmouth, Dennis Sciama Building, Portsmouth, PO1 3FX (United Kingdom); Zavala, I. [Centre for Theoretical Physics, University of Groningen, Nijenborgh 4, 9747 AG Groningen (Netherlands); Burgess, C.P., E-mail: michele.cicoli@desy.de, E-mail: gianmassimo.tasinato@port.ac.uk, E-mail: e.i.zavala@rug.nl, E-mail: cburgess@perimeterinstitute.ca, E-mail: F.Quevedo@damtp.cam.ac.uk [Department of Physics and Astronomy, McMaster University, Hamilton ON (Canada)
2012-05-01
A generic feature of the known string inflationary models is that the same physics that makes the inflaton lighter than the Hubble scale during inflation often also makes other scalars this light. These scalars can acquire isocurvature fluctuations during inflation, and given that their VEVs determine the mass spectrum and the coupling constants of the effective low-energy field theory, these fluctuations give rise to couplings and masses that are modulated from one Hubble patch to another. These seem just what is required to obtain primordial adiabatic fluctuations through conversion into density perturbations through the 'modulation mechanism', wherein reheating takes place with different efficiency in different regions of our Universe. Fluctuations generated in this way can generically produce non-gaussianity larger than obtained in single-field slow-roll inflation; potentially observable in the near future. We provide here the first explicit example of the modulation mechanism at work in string cosmology, within the framework of LARGE Volume Type-IIB string flux compactifications. The inflationary dynamics involves two light Kähler moduli: a fibre divisor plays the rôle of the inflaton whose decay rate to visible sector degrees of freedom is modulated by the primordial fluctuations of a blow-up mode (which is made light by the use of poly-instanton corrections). We find the challenges of embedding the mechanism into a concrete UV completion constrains the properties of the non-gaussianity that is found, since for generic values of the underlying parameters, the model predicts a local bi-spectrum with f{sub NL} of order 'a few'. However, a moderate tuning of the parameters gives also rise to explicit examples with f{sub NL} ∼ O(20) potentially observable by the Planck satellite.
Occupational Hearing Loss from Non-Gaussian Noise.
Suter, Alice H
2017-08-01
Noise levels are truly continuous in relatively few occupations, with some degree of intermittency the most common condition. The sound levels of intermittent noise are often referred to as non-Gaussian in that they are not normally distributed in the time domain. In some conditions, intermittent noise affects the ear differently from continuous noise, and it is this assumption that underlies the selection of the 5-dB exchange rate (ER). The scientific and professional communities have debated this assumption over recent decades. This monograph explores the effect of non-Gaussian noise on the auditory system. It begins by summarizing an earlier report by the same author concentrating on the subject of the ER. The conclusions of the earlier report supported the more conservative 3-dB ER with possible adjustments to the permissible exposure limit for certain working conditions. The current document has expanded on the earlier report in light of the relevant research accomplished in the intervening decades. Although some of the animal research has supported the mitigating effect of intermittency, a closer look at many of these studies reveals certain weaknesses, along with the fact that these noise exposures were not usually representative of the conditions under which people actually work. The more recent animal research on complex noise shows that intermittencies do not protect the cochlea and that many of the previous assumptions about the ameliorative effect of intermittencies are no longer valid, lending further support to the 3-dB ER. The neurologic effects of noise on hearing have gained increasing attention in recent years because of improvements in microscopy and immunostaining techniques. Animal experiments showing damage to auditory synapses from noise exposures previously considered harmless may signify the need for a more conservative approach to the assessment of noise-induced hearing loss and consequently the practice of hearing conservation programs.
Sasaki, Misao; Wands, David
2010-06-01
In recent years there has been a resurgence of interest in the study of non-linear perturbations of cosmological models. This has been the result of both theoretical developments and observational advances. New theoretical challenges arise at second and higher order due to mode coupling and the need to develop new gauge-invariant variables beyond first order. In particular, non-linear interactions lead to deviations from a Gaussian distribution of primordial perturbations even if initial vacuum fluctuations are exactly Gaussian. These non-Gaussianities provide an important probe of models for the origin of structure in the very early universe. We now have a detailed picture of the primordial distribution of matter from surveys of the cosmic microwave background, notably NASA's WMAP satellite. The situation will continue to improve with future data from the ESA Planck satellite launched in 2009. To fully exploit these data cosmologists need to extend non-linear cosmological perturbation theory beyond the linear theory that has previously been sufficient on cosmological scales. Another recent development has been the realization that large-scale structure, revealed in high-redshift galaxy surveys, could also be sensitive to non-linearities in the primordial curvature perturbation. This focus section brings together a collection of invited papers which explore several topical issues in this subject. We hope it will be of interest to theoretical physicists and astrophysicists alike interested in understanding and interpreting recent developments in cosmological perturbation theory and models of the early universe. Of course it is only an incomplete snapshot of a rapidly developing field and we hope the reader will be inspired to read further work on the subject and, perhaps, fill in some of the missing pieces. This focus section is dedicated to the memory of Lev Kofman (1957-2009), an enthusiastic pioneer of inflationary cosmology and non-Gaussian perturbations.
Assembly, installation and commissioning of the JET-EP Halo Current Sensors system
International Nuclear Information System (INIS)
Peruzzo, S.; Grando, L.; Pomaro, N.; Sonato, P.; Fullard, K.; Huntley, S.; Lam, N.; Riccardo, V.
2006-01-01
The Halo Current Sensors (HCS) system has been developed under the JET-EP enhancement programme, to allow a more detailed study of the Halo Currents flowing in the upper part of the JET vessel. A better understanding of the origin, distribution and scaling of Halo Currents in tokamaks is one of the critical issues for any next step device, like the ITER project, in particular for the design of the plasma facing components and for a reliable plasma operation at high performances. The HCS system includes four sets of probes located in four octants equally spaced along the toroidal coordinate, each containing up to eight Rogowski coils and two toroidal field pick-up coils. The Rogowski coils are designed to directly measure the current flowing through the tiles of the upper dump plate, whereas the toroidal field pick-up coils are conceived to give an estimate the total poloidal Halo Current flowing through the first wall structures. The HCS system was installed in the JET vacuum vessel in March 2005 during the 2004/05 Shutdown and started the acquisition of signals during the restart phase of the machine in autumn 2005. This paper will highlight and discuss the critical aspects and the lessons learned during the final phase of the procurement of the system; the in-vessel installation, accomplished by means of remote handling system, and the pre-commissioning tests executed on the system will be described in detail. The paper will then focus on the analysis and interpretation of the data collected during the functional commissioning of the new system, carried out during the restart phase of the machine preceding the experimental campaigns. Since the beginning of operation the HCS signals showed the effects of several noise sources, increased by the low sensitivity of the probes, due to design geometrical constraints. The expected pick-up of stray magnetic fields was quite easily compensated through a correlation with other existing magnetic diagnostics. Moreover the
Assembly, installation and commissioning of the new halo current sensors system for JET
International Nuclear Information System (INIS)
Peruzzo, S.; Fullard, K.; Grando, L.; Huntley, S.; Lam, N.; Pomaro, N.; Riccardo, V.; Sonato, P.
2007-01-01
This paper presents the status of the halo current sensors (HCS) diagnostic enhancement project for JET. The HCS system includes four sets of probes located in four octants equally spaced along the toroidal coordinate, with a total of 24 Rogowski coils and 5 toroidal field pick-up coils. These sensors are meant to provide a measurement of the current flowing through each single tile of the upper dump plate and an estimate of the total poloidal halo current flowing through the first wall structures. The HCS system was installed in the JET vacuum vessel in March 2005 during the 2004/2005 shutdown and the acquisition of signals started during the restart phase of the machine in autumn 2005. This paper firstly summarises the critical aspects encountered during the final phase of the procurement of the system and the in-vessel installation, which was accomplished using the remote handling system. The paper then focuses on the analysis and interpretation of the data collected during the functional commissioning of the new system, carried out during the restart phase of the machine preceding the experimental campaigns
Directory of Open Access Journals (Sweden)
Carollo D.
2012-02-01
Full Text Available In recent years, massive new spectroscopic data sets, such as the over half million stellar spectra obtained during the course of SDSS (in particular its sub-survey SEGUE, have provided the quantitative detail required to formulate a coherent story of the assembly and evolution of the Milky Way. The disk and halo systems of our Galaxy have been shown to be both more complex, and more interesting, than previously thought. Here we concentrate on the halo system of the Milky Way. New data from SDSS/SEGUE has revealed that the halo system comprises at least two components, the inner halo and the outer halo, with demonstrably different characteristics (metallicity distributions, density distributions, kinematics, etc.. In addition to suggesting new ways to examine these data, the inner/outer halo dichotomy has enabled an understanding of at least one long-standing observational result, the increase of the fraction of carbon-enhanced metal-poor (CEMP stars with decreasing metallicity.
Non-Gaussianity from Self-Ordering Scalar Fields
Figueroa, Daniel G; Kamionkowski, Marc
2010-01-01
The Universe may harbor relics of the post-inflationary epoch in the form of a network of self-ordered scalar fields. Such fossils, while consistent with current cosmological data at trace levels, may leave too weak an imprint on the cosmic microwave background and the large-scale distribution of matter to allow for direct detection. The non-Gaussian statistics of the density perturbations induced by these fields, however, permit a direct means to probe for these relics. Here we calculate the bispectrum that arises in models of self-ordered scalar fields. We find a compact analytic expression for the bispectrum, evaluate it numerically, and provide a simple approximation that may be useful for data analysis. The bispectrum is largest for triangles that are aligned (have edges $k_1\\simeq 2 k_2 \\simeq 2 k_3$) as opposed to the local-model bispectrum, which peaks for squeezed triangles ($k_1\\simeq k_2 \\gg k_3$), and the equilateral bispectrum, which peaks at $k_1\\simeq k_2 \\simeq k_3$. We estimate that this non-...
Planck 2015 results. XVII. Constraints on primordial non-Gaussianity
Ade, P.A.R.; Arnaud, M.; Arroja, F.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A.J.; Barreiro, R.B.; Bartolo, N.; Basak, S.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.P.; Bersanelli, M.; Bielewicz, P.; Bock, J.J.; Bonaldi, A.; Bonavera, L.; Bond, J.R.; Borrill, J.; Bouchet, F.R.; Boulanger, F.; Bucher, M.; Burigana, C.; Butler, R.C.; Calabrese, E.; Cardoso, J.F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chiang, H.C.; Christensen, P.R.; Church, S.; Clements, D.L.; Colombi, S.; Colombo, L.P.L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B.P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R.D.; Davis, R.J.; de Bernardis, P.; De Rosa, A.; De Zotti, G.; Delabrouille, J.; Désert, F.X.; Diego, J.M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T.A.; Eriksen, H.K.; Fergusson, J.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A.A.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Gauthier, C.; Ghosh, T.; Giard, M.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K.M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J.E.; Hamann, J.; Hansen, F.K.; Hanson, D.; Harrison, D.L.; Heavens, A.; Helou, G.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S.R.; Hivon, E.; Hobson, M.; Holmes, W.A.; Hornstrup, A.; Hovest, W.; Huang, Z.; Huffenberger, K.M.; Hurier, G.; Jaffe, A.H.; Jaffe, T.R.; Jones, W.C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kim, J.; Kisner, T.S.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lacasa, F.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.M.; Lasenby, A.; Lattanzi, M.; Lawrence, C.R.; Leonardi, R.; Lesgourgues, J.; Levrier, F.; Lewis, A.; Liguori, M.; Lilje, P.B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P.M.; Macías-Pérez, J.F.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Marinucci, D.; Maris, M.; Martin, P.G.; Martínez-González, E.; Masi, S.; Matarrese, S.; McGehee, P.; Meinhold, P.R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Münchmeyer, M.; Munshi, D.; Murphy, J.A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C.B.; Nørgaard-Nielsen, H.U.; Noviello, F.; Novikov, D.; Novikov, I.; Oxborrow, C.A.; Paci, F.; Pagano, L.; Pajot, F.; Paoletti, D.; Pasian, F.; Patanchon, G.; Peiris, H.V.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Popa, L.; Pratt, G.W.; Prézeau, G.; Prunet, S.; Puget, J.L.; Rachen, J.P.; Racine, B.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; Rubiño-Martín, J.A.; Rusholme, B.; Sandri, M.; Santos, D.; Savelainen, M.; Savini, G.; Scott, D.; Seiffert, M.D.; Shellard, E.P.S.; Shiraishi, M.; Smith, K.; Spencer, L.D.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sunyaev, R.; Sutter, P.; Sutton, D.; Suur-Uski, A.S.; Sygnet, J.F.; Tauber, J.A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Troja, A.; Tucci, M.; Tuovinen, J.; Valenziano, L.; Valiviita, J.; van Tent, B.; Vielva, P.; Villa, F.; Wade, L.A.; Wandelt, B.D.; Wehus, I.K.; Yvon, D.; Zacchei, A.; Zonca, A.
2016-01-01
The Planck full mission cosmic microwave background(CMB) temperature and E-mode polarization maps are analysed to obtain constraints on primordial non-Gaussianity(NG). Using three classes of optimal bispectrum estimators - separable template-fitting (KSW), binned, and modal - we obtain consistent values for the local, equilateral, and orthogonal bispectrum amplitudes, quoting as our final result from temperature alone fNL^local=2.5+\\-5.7, fNL^equil=-16+\\-70 and fNL^ortho=-34+\\-33(68%CL). Combining temperature and polarization data we obtain fNL^local=0.8+\\-5.0, fNL^equil=-4+\\-43 and fNL^ortho=-26+\\-21 (68%CL). The results are based on cross-validation of these estimators on simulations, are stable across component separation techniques, pass an extensive suite of tests, and are consistent with Minkowski functionals based measurements. The effect of time-domain de-glitching systematics on the bispectrum is negligible. In spite of these test outcomes we conservatively label the results including polarization da...
Conditional Mean Values of Slightly Non-Gaussian processes with Application to design Wave-Loads
DEFF Research Database (Denmark)
Jensen, Jørgen Juncher
1996-01-01
Recently, conditional mean wave kinematics have been derived for slightly non-Gaussian waves. The result includes cumulants up to third order and thus the lowest order of the non-Gaussian contribution. This is consistent with application of second order Stokes waves. Here theanalysis is extended...
Comparisons of Non-Gaussian Statistical Models in DNA Methylation Analysis
Directory of Open Access Journals (Sweden)
Zhanyu Ma
2014-06-01
Full Text Available As a key regulatory mechanism of gene expression, DNA methylation patterns are widely altered in many complex genetic diseases, including cancer. DNA methylation is naturally quantified by bounded support data; therefore, it is non-Gaussian distributed. In order to capture such properties, we introduce some non-Gaussian statistical models to perform dimension reduction on DNA methylation data. Afterwards, non-Gaussian statistical model-based unsupervised clustering strategies are applied to cluster the data. Comparisons and analysis of different dimension reduction strategies and unsupervised clustering methods are presented. Experimental results show that the non-Gaussian statistical model-based methods are superior to the conventional Gaussian distribution-based method. They are meaningful tools for DNA methylation analysis. Moreover, among several non-Gaussian methods, the one that captures the bounded nature of DNA methylation data reveals the best clustering performance.
Transport phenomena in intracellular calcium dynamics driven by non-Gaussian noises
Lin, Ling; Duan, Wei-Long
2018-02-01
The role of non-Gaussian noises on transport characteristic of Ca2+ in intracellular calcium oscillation system driven by non-Gaussian noises is studied by means of second-order stochastic Runge-Kutta type algorithm. The statistical properties of velocity of cytosolic and calcium store's Ca2+ concentration are simulated. The results exhibit, as parameter p(which is used to control the degree of the departure from the non-Gaussian noise and Gaussian noise.)increases, calcium in cytosol shows positive, zero, and negative transport, but in calcium store always hold positive value. As non-Gaussian noises increase, calcium in cytosol appears negative and zero transport, and in calcium store appears positive transport. As correlation time of non-Gaussian noises varies, calcium in both cytosol and calcium store occur negative, zero, and positive transport.
Toward the detection of gravitational waves under non-Gaussian noises I. Locally optimal statistic.
Yokoyama, Jun'ichi
2014-01-01
After reviewing the standard hypothesis test and the matched filter technique to identify gravitational waves under Gaussian noises, we introduce two methods to deal with non-Gaussian stationary noises. We formulate the likelihood ratio function under weakly non-Gaussian noises through the Edgeworth expansion and strongly non-Gaussian noises in terms of a new method we call Gaussian mapping where the observed marginal distribution and the two-body correlation function are fully taken into account. We then apply these two approaches to Student's t-distribution which has a larger tails than Gaussian. It is shown that while both methods work well in the case the non-Gaussianity is small, only the latter method works well for highly non-Gaussian case.
Global adiabaticity and non-Gaussianity consistency condition
Directory of Open Access Journals (Sweden)
Antonio Enea Romano
2016-10-01
Full Text Available In the context of single-field inflation, the conservation of the curvature perturbation on comoving slices, Rc, on super-horizon scales is one of the assumptions necessary to derive the consistency condition between the squeezed limit of the bispectrum and the spectrum of the primordial curvature perturbation. However, the conservation of Rc holds only after the perturbation has reached the adiabatic limit where the constant mode of Rc dominates over the other (usually decaying mode. In this case, the non-adiabatic pressure perturbation defined in the thermodynamic sense, δPnad≡δP−cw2δρ where cw2=P˙/ρ˙, usually becomes also negligible on superhorizon scales. Therefore one might think that the adiabatic limit is the same as thermodynamic adiabaticity. This is in fact not true. In other words, thermodynamic adiabaticity is not a sufficient condition for the conservation of Rc on super-horizon scales. In this paper, we consider models that satisfy δPnad=0 on all scales, which we call global adiabaticity (GA, which is guaranteed if cw2=cs2, where cs is the phase velocity of the propagation of the perturbation. A known example is the case of ultra-slow-roll (USR inflation in which cw2=cs2=1. In order to generalize USR we develop a method to find the Lagrangian of GA K-inflation models from the behavior of background quantities as functions of the scale factor. Applying this method we show that there indeed exists a wide class of GA models with cw2=cs2, which allows Rc to grow on superhorizon scales, and hence violates the non-Gaussianity consistency condition.
Energy Technology Data Exchange (ETDEWEB)
Deason, A. J.; Conroy, C. [Department of Astronomy and Astrophysics, University of California Santa Cruz, Santa Cruz, CA 95064 (United States); Wetzel, A. R. [Department of Astronomy, Yale University, New Haven, CT 06520 (United States); Tinker, J. L., E-mail: alis@ucolick.org [Center for Cosmology and Particle Physics, Department of Physics, New York University, New York, NY 10013 (United States)
2013-11-10
We investigate the use of the halo mass-gap statistic—defined as the logarithmic difference in mass between the host halo and its most massive satellite subhalo—as a probe of halo age and concentration. A cosmological N-body simulation is used to study N ∼ 25, 000 group/cluster-sized halos in the mass range 10{sup 12.5} < M{sub halo}/M{sub ☉} < 10{sup 14.5}. In agreement with previous work, we find that halo mass-gap is related to halo formation time and concentration. On average, older and more highly concentrated halos have larger halo mass-gaps, and this trend is stronger than the mass-concentration relation over a similar dynamic range. However, there is a large amount of scatter owing to the transitory nature of the satellite subhalo population, which limits the use of the halo mass-gap statistic on an object-by-object basis. For example, we find that 20% of very large halo mass-gap systems (akin to {sup f}ossil groups{sup )} are young and have likely experienced a recent merger between a massive satellite subhalo and the central subhalo. We relate halo mass-gap to the observable stellar mass-gap via abundance matching. Using a galaxy group catalog constructed from the Sloan Digital Sky Survey Data Release 7, we find that the star formation and structural properties of galaxies at fixed mass show no trend with stellar mass-gap. This is despite a variation in halo age of ≈2.5 Gyr over ≈1.2 dex in stellar mass-gap. Thus, we find no evidence to suggest that the halo formation history significantly affects galaxy properties.
On the Shaker Simulation of Wind-Induced Non-Gaussian Random Vibration
Directory of Open Access Journals (Sweden)
Fei Xu
2016-01-01
Full Text Available Gaussian signal is produced by ordinary random vibration controllers to test the products in the laboratory, while the field data is usually non-Gaussian. Two methodologies are presented in this paper for shaker simulation of wind-induced non-Gaussian vibration. The first methodology synthesizes the non-Gaussian signal offline and replicates it on the shaker in the Time Waveform Replication (TWR mode. A new synthesis method is used to model the non-Gaussian signal as a Gaussian signal multiplied by an amplitude modulation function (AMF. A case study is presented to show that the synthesized non-Gaussian signal has the same power spectral density (PSD, probability density function (PDF, and loading cycle distribution (LCD as the field data. The second methodology derives a damage equivalent Gaussian signal from the non-Gaussian signal based on the fatigue damage spectrum (FDS and the extreme response spectrum (ERS and reproduces it on the shaker in the closed-loop frequency domain control mode. The PSD level and the duration time of the derived Gaussian signal can be manipulated for accelerated testing purpose. A case study is presented to show that the derived PSD matches the damage potential of the non-Gaussian environment for both fatigue and peak response.
Estimator of a non-Gaussian parameter in multiplicative log-normal models
Kiyono, Ken; Struzik, Zbigniew R.; Yamamoto, Yoshiharu
2007-10-01
We study non-Gaussian probability density functions (PDF’s) of multiplicative log-normal models in which the multiplication of Gaussian and log-normally distributed random variables is considered. To describe the PDF of the velocity difference between two points in fully developed turbulent flows, the non-Gaussian PDF model was originally introduced by Castaing [Physica D 46, 177 (1990)]. In practical applications, an experimental PDF is approximated with Castaing’s model by tuning a single non-Gaussian parameter, which corresponds to the logarithmic variance of the log-normally distributed variable in the model. In this paper, we propose an estimator of the non-Gaussian parameter based on the q th order absolute moments. To test the estimator, we introduce two types of stochastic processes within the framework of the multiplicative log-normal model. One is a sequence of independent and identically distributed random variables. The other is a log-normal cascade-type multiplicative process. By analyzing the numerically generated time series, we demonstrate that the estimator can reliably determine the theoretical value of the non-Gaussian parameter. Scale dependence of the non-Gaussian parameter in multiplicative log-normal models is also studied, both analytically and numerically. As an application of the estimator, we demonstrate that non-Gaussian PDF’s observed in the S&P500 index fluctuations are well described by the multiplicative log-normal model.
Searching for primordial non-Gaussianity in Planck CMB maps using a combined estimator
Energy Technology Data Exchange (ETDEWEB)
Novaes, C.P.; Wuensche, C.A. [Divisão de Astrofísica, Instituto Nacional de Pesquisas Espaciais, Av. dos Astronautas 1758, São José dos Campos 12227-010, SP (Brazil); Bernui, A. [Observatório Nacional, Rua General José Cristino 77, São Cristóvão, 20921-400, Rio de Janeiro, RJ (Brazil); Ferreira, I.S., E-mail: camilapnovaes@gmail.com, E-mail: bernui@on.br, E-mail: ivan@fis.unb.br, E-mail: ca.wuensche@inpe.br [Instituto de Física, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Asa Norte, 70919-970, Brasília, DF (Brazil)
2014-01-01
The extensive search for deviations from Gaussianity in cosmic microwave background radiation (CMB) data is very important due to the information about the very early moments of the universe encoded there. Recent analyses from Planck CMB data do not exclude the presence of non-Gaussianity of small amplitude, although they are consistent with the Gaussian hypothesis. The use of different techniques is essential to provide information about types and amplitudes of non-Gaussianities in the CMB data. In particular, we find interesting to construct an estimator based upon the combination of two powerful statistical tools that appears to be sensitive enough to detect tiny deviations from Gaussianity in CMB maps. This estimator combines the Minkowski functionals with a Neural Network, maximizing a tool widely used to study non-Gaussian signals with a reinforcement of another tool designed to identify patterns in a data set. We test our estimator by analyzing simulated CMB maps contaminated with different amounts of local primordial non-Gaussianity quantified by the dimensionless parameter f{sub NL}. We apply it to these sets of CMB maps and find ∼> 98% of chance of positive detection, even for small intensity local non-Gaussianity like f{sub NL} = 38±18, the current limit from Planck data for large angular scales. Additionally, we test the suitability to distinguish between primary and secondary non-Gaussianities: first we train the Neural Network with two sets, one of nearly Gaussian CMB maps (|f{sub NL}| ≤ 10) but contaminated with realistic inhomogeneous Planck noise (i.e., secondary non-Gaussianity) and the other of non-Gaussian CMB maps, that is, maps endowed with weak primordial non-Gaussianity (28 ≤ f{sub NL} ≤ 48); after that we test an ensemble composed of CMB maps either with one of these non-Gaussian contaminations, and find out that our method successfully classifies ∼ 95% of the tested maps as being CMB maps containing primordial or
Gaussian vs non-Gaussian turbulence: impact on wind turbine loads
DEFF Research Database (Denmark)
Berg, Jacob; Natarajan, Anand; Mann, Jakob
2016-01-01
taking into account the safety factor for extreme moments. Other extreme load moments as well as the fatigue loads are not affected because of the use of non-Gaussian turbulent inflow. It is suggested that the turbine thus acts like a low-pass filter that averages out the non-Gaussian behaviour, which......From large-eddy simulations of atmospheric turbulence, a representation of Gaussian turbulence is constructed by randomizing the phases of the individual modes of variability. Time series of Gaussian turbulence are constructed and compared with its non-Gaussian counterpart. Time series from the two...
Baura, Alendu; Sen, Monoj Kumar; Goswami, Gurupada; Bag, Bidhan Chandra
2011-01-28
In this paper we have calculated escape rate from a meta stable state in the presence of both colored internal thermal and external nonthermal noises. For the internal noise we have considered usual gaussian distribution but the external noise may be gaussian or non-gaussian in characteristic. The calculated rate is valid for low noise strength of non-gaussian noise such that an effective gaussian approximation of non-gaussian noise wherein the higher order even cumulants of order "4" and higher are neglected. The rate expression we derived here reduces to the known results of the literature, as well as for purely external noise driven activated rate process. The latter exhibits how the rate changes if one switches from non-gaussian to gaussian character of the external noise.
Feasibility study on the least square method for fitting non-Gaussian noise data
Xu, Wei; Chen, Wen; Liang, Yingjie
2018-02-01
This study is to investigate the feasibility of least square method in fitting non-Gaussian noise data. We add different levels of the two typical non-Gaussian noises, Lévy and stretched Gaussian noises, to exact value of the selected functions including linear equations, polynomial and exponential equations, and the maximum absolute and the mean square errors are calculated for the different cases. Lévy and stretched Gaussian distributions have many applications in fractional and fractal calculus. It is observed that the non-Gaussian noises are less accurately fitted than the Gaussian noise, but the stretched Gaussian cases appear to perform better than the Lévy noise cases. It is stressed that the least-squares method is inapplicable to the non-Gaussian noise cases when the noise level is larger than 5%.
The Matter Bispectrum in N-body Simulations with non-Gaussian Initial Conditions
Sefusatti, Emiliano; Crocce, Martin; Desjacques, Vincent
2010-01-01
We present measurements of the dark matter bispectrum in N-body simulations with non-Gaussian initial conditions of the local kind for a large variety of triangular configurations and compare them with predictions from Eulerian perturbation theory up to one-loop corrections. We find that the effects of primordial non-Gaussianity at large scales, when compared to perturbation theory, are well described by the initial component of the matter bispectrum, linearly extrapolated at the redshift of ...
On the Response of a Nonlinear Structure to High Kurtosis Non-Gaussian Random Loadings
Rizzi, Stephen A.; Przekop, Adam; Turner, Travis L.
2011-01-01
This paper is a follow-on to recent work by the authors in which the response and high-cycle fatigue of a nonlinear structure subject to non-Gaussian loadings was found to vary markedly depending on the nature of the loading. There it was found that a non-Gaussian loading having a steady rate of short-duration, high-excursion peaks produced essentially the same response as would have been incurred by a Gaussian loading. In contrast, a non-Gaussian loading having the same kurtosis, but with bursts of high-excursion peaks was found to elicit a much greater response. This work is meant to answer the question of when consideration of a loading probability distribution other than Gaussian is important. The approach entailed nonlinear numerical simulation of a beam structure under Gaussian and non-Gaussian random excitations. Whether the structure responded in a Gaussian or non-Gaussian manner was determined by adherence to, or violations of, the Central Limit Theorem. Over a practical range of damping, it was found that the linear response to a non-Gaussian loading was Gaussian when the period of the system impulse response is much greater than the rate of peaks in the loading. Lower damping reduced the kurtosis, but only when the linear response was non-Gaussian. In the nonlinear regime, the response was found to be non-Gaussian for all loadings. The effect of a spring-hardening type of nonlinearity was found to limit extreme values and thereby lower the kurtosis relative to the linear response regime. In this case, lower damping gave rise to greater nonlinearity, resulting in lower kurtosis than a higher level of damping.
Characterisation of non-Gaussian fluctuations in multiplicative log-normal models
Kiyono, Ken; Struzik, Zbigniew R.; Yamamoto, Yoshiharu
2007-07-01
Within the general framework of multiplicative log-normal models, we propose methods to characterise non-Gaussian and intermittent fluctuations, and study basic characteristics of non-Gaussian stochastic processes displaying slow convergence to a Gaussian with an increasing coarse-grained level of the time series. Here the multiplicative log-normal model stands for a stochastic process described by the multiplication of Gaussian and log-normally distributed variables. In other words, using two Gaussian variables, ξ and ω, the time series {xi} of this process can be described as xi = ξi expωi. Depending on the variance of ω, λ2, the probability density function (PDF) of x exhibits a non-Gaussian shape. As the non-Gaussianity parameter λ2 increases, the non-Gaussian tails become fatter. On the other hand, when λ2 → 0, the PDF converges to a Gaussian distribution. For the purpose of estimating the non-Gaussianity parameter λ2 from the observed time series, we evaluate a novel method based on analytical expressions of the absolute moments for the multiplicative log-normal models.
Non-Gaussian noise-weakened stability in a foraging colony system with time delay
Dong, Xiaohui; Zeng, Chunhua; Yang, Fengzao; Guan, Lin; Xie, Qingshuang; Duan, Weilong
2018-02-01
In this paper, the dynamical properties in a foraging colony system with time delay and non-Gaussian noise were investigated. Using delay Fokker-Planck approach, the stationary probability distribution (SPD), the associated relaxation time (ART) and normalization correlation function (NCF) are obtained, respectively. The results show that: (i) the time delay and non-Gaussian noise can induce transition from a single peak to double peaks in the SPD, i.e., a type of bistability occurring in a foraging colony system where time delay and non-Gaussian noise not only cause transitions between stable states, but also construct the states themselves. Numerical simulations are presented and are in good agreement with the approximate theoretical results; (ii) there exists a maximum in the ART as a function of the noise intensity, this maximum for ART is identified as the characteristic of the non-Gaussian noise-weakened stability of the foraging colonies in the steady state; (iii) the ART as a function of the noise correlation time exhibits a maximum and a minimum, where the minimum for ART is identified as the signature of the non-Gaussian noise-enhanced stability of the foraging colonies; and (iv) the time delay can enhance the stability of the foraging colonies in the steady state, while the departure from Gaussian noise can weaken it, namely, the time delay and departure from Gaussian noise play opposite roles in ART or NCF.
Non-Gaussian signatures arising from warm inflation driven by geometric tachyon
International Nuclear Information System (INIS)
Bhattacharjee, Anindita; Deshamukhya, Atri
2014-01-01
In a warm inflationary scenario, the initial seeds of density perturbation arise from thermal fluctuations of the inflaton field. These fluctuations in principle have Gaussian distribution. In a Gaussian distribution the density perturbation can be expressed as the two point correlation function. Thus if in an inflationary model the density perturbation is expressed as correlation function of order higher than two, these fluctuations are non-Gaussian in nature. A simple inflationary model containing single scalar field, slow roll, canonical kinetic term and vacuum initial state can produce a tiny amount of non-Gaussianity which are very small to be detected by any experiment. Non-Gaussianity can also arise in inflationary models containing multiple scalar fields. For an inflationary scenario with single scalar field, non-Gaussianity can be expressed in terms of bi-spectrum however for multi field Inflation, it is expressed in terms of trispectrum etc. In this piece of work, the warm inflationary scenario, driven by a D3 brane due to the presence of a stack of k coincident NS 5 branes is considered and the non-Gaussian effects in such an inflationary scenario has been analysed by measuring the bispectrum of the gravitational field fluctuations generated during the warm inflation in strong dissipative regime. The bi-spectrum of the Inflation is expressed in terms of the parameter f NL and it is seen that the value of f NL parameter lies well within the limit observed by WMAP7
Directory of Open Access Journals (Sweden)
Xiguang Xu
2018-04-01
Full Text Available Spectrum sensing is the most important task in cognitive radio (CR. In this paper, a new robust distributed spectrum sensing approach, called diffusion maximum correntropy criterion (DMCC-based robust spectrum sensing, is proposed for CR in the presence of non-Gaussian noise or impulsive noise. The proposed distributed scheme, which does not need any central processing unit, is characterized by an adaptive diffusion model. The maximum correntropy criterion, which is insensitive to impulsive interference, is introduced to deal with the effect of non-Gaussian noise. Simulation results show that the DMCC-based spectrum sensing algorithm has an excellent robust property with respect to non-Gaussian noise. It is also observed that the new method displays a considerably better detection performance than its predecessor (i.e., diffusion least mean square (DLMS in impulsive noise. Moreover, the mean and variance convergence analysis of the proposed algorithm are also carried out.
Entanglement and Wigner Function Negativity of Multimode Non-Gaussian States
Walschaers, Mattia; Fabre, Claude; Parigi, Valentina; Treps, Nicolas
2017-11-01
Non-Gaussian operations are essential to exploit the quantum advantages in optical continuous variable quantum information protocols. We focus on mode-selective photon addition and subtraction as experimentally promising processes to create multimode non-Gaussian states. Our approach is based on correlation functions, as is common in quantum statistical mechanics and condensed matter physics, mixed with quantum optics tools. We formulate an analytical expression of the Wigner function after the subtraction or addition of a single photon, for arbitrarily many modes. It is used to demonstrate entanglement properties specific to non-Gaussian states and also leads to a practical and elegant condition for Wigner function negativity. Finally, we analyze the potential of photon addition and subtraction for an experimentally generated multimode Gaussian state.
Remarks on non-Gaussian fluctuations of the inflaton and constancy of ζ outside the horizon
International Nuclear Information System (INIS)
Mahajan, N; Rangarajan, R
2014-01-01
We have pointed out that the non-Gaussianity arising from cubic self interactions of the inflaton field is proportional to ξN e . For scales of interest N e = 60, and for models such as new inflation, natural inflation, and running mass inflation ξ is large compared to the slow roll parameter. Therefore, the contribution from self interactions should not be outrightly ignored while retaining other terms in the non-Gaussianity parameter f NL . But the N e dependent term seems to imply the growth of non-Gaussianities outside the horizon. Therefore, we have briefly discussed the issue of the constancy of correlations of the curvature perturbation ζ outside the horizon. We have then presented our results on the 3-point function of ζ k , and found that the N e dependent contribution to f NL from self interactions of the inflaton field is cancelled by contributions from other terms associated with non-linearities in cosmological perturbation theory
A non-Gaussian multivariate distribution with all lower-dimensional Gaussians and related families
Dutta, Subhajit
2014-07-28
Several fascinating examples of non-Gaussian bivariate distributions which have marginal distribution functions to be Gaussian have been proposed in the literature. These examples often clarify several properties associated with the normal distribution. In this paper, we generalize this result in the sense that we construct a pp-dimensional distribution for which any proper subset of its components has the Gaussian distribution. However, the jointpp-dimensional distribution is inconsistent with the distribution of these subsets because it is not Gaussian. We study the probabilistic properties of this non-Gaussian multivariate distribution in detail. Interestingly, several popular tests of multivariate normality fail to identify this pp-dimensional distribution as non-Gaussian. We further extend our construction to a class of elliptically contoured distributions as well as skewed distributions arising from selections, for instance the multivariate skew-normal distribution.
The Use of Spectral Method for Fatigue Life Assessment for Non-Gaussian Random Loads
Directory of Open Access Journals (Sweden)
Niesłony Adam
2016-06-01
Full Text Available The well-known problem with the fatigue lifetime assessment of non-Gaussian loading signals with the use of spectral method has been presented in the paper. A correction factors that transform the non-Gaussian signal into an equivalent Gaussian signal proposed by Bracessi et al. (2009 has been used for the purpose of lifetime calculations together with Palmgren-Miner Hypothesis. The calculations have been performed for the 10HNAP steel under random non-Gaussian load with four dominating frequencies. The signal has been generated on the test stand SHM250 for random tension-compression tests. The results with zero and non-zero mean stresses have been used to calculate the fatigue life with the frequency domain method based on Dirlik’s model and with a time domain method with the use of the rainflow cycle counting algorithm. The obtained calculation results have been compared with experimental results.
Morisaki, Soichiro; Yokoyama, Jun'ichi; Eda, Kazunari; Itoh, Yousuke
2016-01-01
We introduce a new analysis method to deal with stationary non-Gaussian noises in gravitational wave detectors in terms of the independent component analysis. First, we consider the simplest case where the detector outputs are linear combinations of the inputs, consisting of signals and various noises, and show that this method may be helpful to increase the signal-to-noise ratio. Next, we take into account the time delay between the inputs and the outputs. Finally, we extend our method to nonlinearly correlated noises and show that our method can identify the coupling coefficients and remove non-Gaussian noises. Although we focus on gravitational wave data analysis, our methods are applicable to the detection of any signals under non-Gaussian noises.
Cosmic Strings and Their Induced Non-Gaussianities in the Cosmic Microwave Background
Directory of Open Access Journals (Sweden)
Christophe Ringeval
2010-01-01
small fraction of the CMB angular power spectrum, cosmic strings could actually be the main source of its non-Gaussianities. In this paper, after having reviewed the basic cosmological properties of a string network, we present the signatures Nambu-Goto cosmic strings would induce in various observables ranging from the one-point function of the temperature anisotropies to the bispectrum and trispectrum. It is shown that string imprints are significantly different than those expected from the primordial type of non-Gaussianity and could therefore be easily distinguished.
Primordial Non-Gaussianity in the Large-Scale Structure of the Universe
Directory of Open Access Journals (Sweden)
Vincent Desjacques
2010-01-01
generated the cosmological fluctuations observed today. Any detection of significant non-Gaussianity would thus have profound implications for our understanding of cosmic structure formation. The large-scale mass distribution in the Universe is a sensitive probe of the nature of initial conditions. Recent theoretical progress together with rapid developments in observational techniques will enable us to critically confront predictions of inflationary scenarios and set constraints as competitive as those from the Cosmic Microwave Background. In this paper, we review past and current efforts in the search for primordial non-Gaussianity in the large-scale structure of the Universe.
Thermally activated switching in the presence of non-Gaussian noise
Billings, Lora; Dykman, Mark I.; Schwartz, Ira B.
2008-11-01
We study the effect of a non-Gaussian noise on interstate switching activated primarily by Gaussian noise. Even weak non-Gaussian noise can strongly change the switching rate. The effect is determined by all moments of the noise distribution. It is expressed in a closed form in terms of the noise characteristic functional. The analytical results are compared with the results of simulations for an overdamped system driven by white Gaussian noise and a Poisson noise. Switching induced by a purely Poisson noise is also discussed.
Non-Gaussian isocurvature perturbations from Goldstone modes generated during inflation
International Nuclear Information System (INIS)
Bucher, M.; Zhu, Y.
1997-01-01
We investigate non-Gaussian isocurvature perturbations generated by the evolution of Goldstone modes during inflation. If a global symmetry is broken before inflation, the resulting Goldstone modes are disordered during inflation in a precise and predictable way. After inflation these Goldstone modes order themselves in a self-similar way, much as Goldstone modes in field ordering scenarios based on the Kibble mechanism. For (H inf 2 /M Pl 2 )∼10 -6 , through their gravitational interaction these Goldstone modes generate density perturbations of approximately the right magnitude to explain the cosmic microwave background (CMB) anisotropy and seed the structure seen in the universe today. We point out that for the pattern of symmetry breaking in which a global U(1) is completely broken, the inflationary evolution of the Goldstone field may be treated as that of a massless scalar field. Unlike the more commonly discussed case in which a global U(1) is completely broken in a cosmological phase transition, in the inflationary case the production of defects can be made exponentially small, so that Goldstone field evolution is completely linear. In such a model non-Gaussian perturbations result because to lowest order density perturbations are sourced by products of Gaussian fields. Consequently, in this non-Gaussian model N-point correlations may be calculated by evaluating Feynman diagrams. We explore the issue of phase dispersion and conclude that this non-Gaussian model predicts Doppler peaks in the CMB anisotropy. copyright 1997 The American Physical Society
Joint Bayesian Analysis of Parameters and States in Nonlinear, Non-Gaussian State Space Models
Barra, I.; Hoogerheide, L.F.; Koopman, S.J.; Lucas, A.
2017-01-01
We propose a new methodology for designing flexible proposal densities for the joint posterior density of parameters and states in a nonlinear, non-Gaussian state space model. We show that a highly efficient Bayesian procedure emerges when these proposal densities are used in an independent
Elastic–plastic adhesive contact of non-Gaussian rough surfaces
Indian Academy of Sciences (India)
Abstract. The paper describes an analysis of adhesion at the contact between non-. Gaussian rough surfaces using the Weibull distribution with skewness as the key parameter to characterize asymmetry. The analysis uses an improved elastic–plastic model of contact deformation that is based on accurate Finite Element ...
Monte Carlo estimation for nonlinear non-Gaussian state space models
Jungbacker, B.M.J.P.; Koopman, S.J.
2007-01-01
We develop a proposal or importance density for state space models with a nonlinear non-Gaussian observation vector y ∼ p(yθ) and an unobserved linear Gaussian signal vector θ ∼ p(θ). The proposal density is obtained from the Laplace approximation of the smoothing density p(θy). We present efficient
Sellentin, Elena; Heavens, Alan F.
2018-01-01
We investigate whether a Gaussian likelihood, as routinely assumed in the analysis of cosmological data, is supported by simulated survey data. We define test statistics, based on a novel method that first destroys Gaussian correlations in a data set, and then measures the non-Gaussian correlations that remain. This procedure flags pairs of data points that depend on each other in a non-Gaussian fashion, and thereby identifies where the assumption of a Gaussian likelihood breaks down. Using this diagnosis, we find that non-Gaussian correlations in the CFHTLenS cosmic shear correlation functions are significant. With a simple exclusion of the most contaminated data points, the posterior for s8 is shifted without broadening, but we find no significant reduction in the tension with s8 derived from Planck cosmic microwave background data. However, we also show that the one-point distributions of the correlation statistics are noticeably skewed, such that sound weak-lensing data sets are intrinsically likely to lead to a systematically low lensing amplitude being inferred. The detected non-Gaussianities get larger with increasing angular scale such that for future wide-angle surveys such as Euclid or LSST, with their very small statistical errors, the large-scale modes are expected to be increasingly affected. The shifts in posteriors may then not be negligible and we recommend that these diagnostic tests be run as part of future analyses.
Zhu, Tao; Wang, Anzhong; Kirsten, Klaus; Cleaver, Gerald; Sheng, Qin
2018-02-01
Loop quantum cosmology provides a resolution of the classical big bang singularity in the deep Planck era. The evolution, prior to the usual slow-roll inflation, naturally generates excited states at the onset of the slow-roll inflation. It is expected that these quantum gravitational effects could leave its fingerprints on the primordial perturbation spectrum and non-Gaussianity, and lead to some observational evidences in the cosmic microwave background. While the impact of the quantum effects on the primordial perturbation spectrum has been already studied and constrained by current data, in this paper we continue to study such effects but now on the non-Gaussianity of the primordial curvature perturbations. We present detailed and analytical calculations of the non-Gaussianity and show explicitly that the corrections due to the quantum effects are at the same magnitude of the slow-roll parameters in the observable scales and thus are well within current observational constraints. Despite this, we show that the non-Gaussianity in the squeezed limit can be enhanced at superhorizon scales and it is these effects that can yield a large statistical anisotropy on the power spectrum through the Erickcek-Kamionkowski-Carroll mechanism.
PHYSICS OF NON-GAUSSIAN FIELDS AND THE COSMOLOGICAL GENUS STATISTIC
International Nuclear Information System (INIS)
James, J. Berian
2012-01-01
We report a technique to calculate the impact of distinct physical processes inducing non-Gaussianity on the cosmological density field. A natural decomposition of the cosmic genus statistic into an orthogonal polynomial sequence allows complete expression of the scale-dependent evolution of the topology of large-scale structure, in which effects including galaxy bias, nonlinear gravitational evolution, and primordial non-Gaussianity may be delineated. The relationship of this decomposition to previous methods for analyzing the genus statistic is briefly considered and the following applications are made: (1) the expression of certain systematics affecting topological measurements, (2) the quantification of broad deformations from Gaussianity that appear in the genus statistic as measured in the Horizon Run simulation, and (3) the study of the evolution of the genus curve for simulations with primordial non-Gaussianity. These advances improve the treatment of flux-limited galaxy catalogs for use with this measurement and further the use of the genus statistic as a tool for exploring non-Gaussianity.
A non-Gaussian distribution quantifies distances measured with fluorescence localization techniques
DEFF Research Database (Denmark)
Churchman, L.S.; Flyvbjerg, H.; Spudich, J.A.
2006-01-01
When single-molecule fluorescence localization techniques are pushed to their lower limits in attempts to measure ever-shorter distances, measurement errors become important to understand. Here we describe the non-Gaussian distribution of measured distances that is the key to proper interpretation...
Directory of Open Access Journals (Sweden)
Zhu Xiao
2016-05-01
Full Text Available In this paper, a novel nonlinear framework of smoothing method, non-Gaussian delayed particle smoother (nGDPS, is proposed, which enables vehicle state estimation (VSE with high accuracy taking into account the non-Gaussianity of the measurement and process noises. Within the proposed method, the multivariate Student’s t-distribution is adopted in order to compute the probability distribution function (PDF related to the process and measurement noises, which are assumed to be non-Gaussian distributed. A computation approach based on Ensemble Kalman Filter (EnKF is designed to cope with the mean and the covariance matrix of the proposal non-Gaussian distribution. A delayed Gibbs sampling algorithm, which incorporates smoothing of the sampled trajectories over a fixed-delay, is proposed to deal with the sample degeneracy of particles. The performance is investigated based on the real-world data, which is collected by low-cost on-board vehicle sensors. The comparison study based on the real-world experiments and the statistical analysis demonstrates that the proposed nGDPS has significant improvement on the vehicle state accuracy and outperforms the existing filtering and smoothing methods.
Numerically Accelerated Importance Sampling for Nonlinear Non-Gaussian State Space Models
Koopman, S.J.; Lucas, A.; Scharth, M.
2015-01-01
We propose a general likelihood evaluation method for nonlinear non-Gaussian state-space models using the simulation-based method of efficient importance sampling. We minimize the simulation effort by replacing some key steps of the likelihood estimation procedure by numerical integration. We refer
Directory of Open Access Journals (Sweden)
Shin'ya Nakano
2014-05-01
Full Text Available A hybrid algorithm that combines the ensemble transform Kalman filter (ETKF and the importance sampling approach is proposed. Since the ETKF assumes a linear Gaussian observation model, the estimate obtained by the ETKF can be biased in cases with nonlinear or non-Gaussian observations. The particle filter (PF is based on the importance sampling technique, and is applicable to problems with nonlinear or non-Gaussian observations. However, the PF usually requires an unrealistically large sample size in order to achieve a good estimation, and thus it is computationally prohibitive. In the proposed hybrid algorithm, we obtain a proposal distribution similar to the posterior distribution by using the ETKF. A large number of samples are then drawn from the proposal distribution, and these samples are weighted to approximate the posterior distribution according to the importance sampling principle. Since the importance sampling provides an estimate of the probability density function (PDF without assuming linearity or Gaussianity, we can resolve the bias due to the nonlinear or non-Gaussian observations. Finally, in the next forecast step, we reduce the sample size to achieve computational efficiency based on the Gaussian assumption, while we use a relatively large number of samples in the importance sampling in order to consider the non-Gaussian features of the posterior PDF. The use of the ETKF is also beneficial in terms of the computational simplicity of generating a number of random samples from the proposal distribution and in weighting each of the samples. The proposed algorithm is not necessarily effective in case that the ensemble is located distant from the true state. However, monitoring the effective sample size and tuning the factor for covariance inflation could resolve this problem. In this paper, the proposed hybrid algorithm is introduced and its performance is evaluated through experiments with non-Gaussian observations.
Non-Gaussianities due to relativistic corrections to the observed galaxy bispectrum
International Nuclear Information System (INIS)
Dio, E. Di; Perrier, H.; Durrer, R.; Dizgah, A. Moradinezhad; Riotto, A.; Marozzi, G.; Noreña, J.
2017-01-01
High-precision constraints on primordial non-Gaussianity (PNG) will significantly improve our understanding of the physics of the early universe. Among all the subtleties in using large scale structure observables to constrain PNG, accounting for relativistic corrections to the clustering statistics is particularly important for the upcoming galaxy surveys covering progressively larger fraction of the sky. We focus on relativistic projection effects due to the fact that we observe the galaxies through the light that reaches the telescope on perturbed geodesics. These projection effects can give rise to an effective f NL that can be misinterpreted as the primordial non-Gaussianity signal and hence is a systematic to be carefully computed and accounted for in modelling of the bispectrum. We develop the technique to properly account for relativistic effects in terms of purely observable quantities, namely angles and redshifts. We give some examples by applying this approach to a subset of the contributions to the tree-level bispectrum of the observed galaxy number counts calculated within perturbation theory and estimate the corresponding non-Gaussianity parameter, f NL , for the local, equilateral and orthogonal shapes. For the local shape, we also compute the local non-Gaussianity resulting from terms obtained using the consistency relation for observed number counts. Our goal here is not to give a precise estimate of f NL for each shape but rather we aim to provide a scheme to compute the non-Gaussian contamination due to relativistic projection effects. For the terms considered in this work, we obtain contamination of f NL loc ∼ O(1).
Durbin, J.; Koopman, S.J.M.
1998-01-01
The analysis of non-Gaussian time series using state space models is considered from both classical and Bayesian perspectives. The treatment in both cases is based on simulation using importance sampling and antithetic variables; Monte Carlo Markov chain methods are not employed. Non-Gaussian
THE ONGOING ASSEMBLY OF A CENTRAL CLUSTER GALAXY: PHASE-SPACE SUBSTRUCTURES IN THE HALO OF M87
Energy Technology Data Exchange (ETDEWEB)
Romanowsky, Aaron J.; Brodie, Jean P.; Arnold, Jacob A. [University of California Observatories, 1156 High Street, Santa Cruz, CA 95064 (United States); Strader, Jay [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Mihos, J. Christopher [Department of Astronomy, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106 (United States); Spitler, Lee R.; Forbes, Duncan A.; Foster, Caroline [Centre for Astrophysics and Supercomputing, Swinburne University, Hawthorn, VIC 3122 (Australia)
2012-03-20
The halos of galaxies preserve unique records of their formation histories. We carry out the first combined observational and theoretical study of phase-space halo substructure in an early-type galaxy: M87, the central galaxy in the Virgo cluster. We analyze an unprecedented wide-field, high-precision photometric and spectroscopic data set for 488 globular clusters (GCs), which includes new, large-radius Subaru/Suprime-Cam and Keck/DEIMOS observations. We find signatures of two substructures in position-velocity phase space. One is a small, cold stream associated with a known stellar filament in the outer halo; the other is a large shell-like pattern in the inner halo that implies a massive, hitherto unrecognized accretion event. We perform extensive statistical tests and independent metallicity analyses to verify the presence and characterize the properties of these features, and to provide more general methodologies for future extragalactic studies of phase-space substructure. The cold outer stream is consistent with a dwarf galaxy accretion event, while for the inner shell there is tension between a low progenitor mass implied by the cold velocity dispersion, and a high mass from the large number of GCs, which might be resolved by a {approx}0.5 L* E/S0 progenitor. We also carry out proof-of-principle numerical simulations of the accretion of smaller galaxies in an M87-like gravitational potential. These produce analogous features to the observed substructures, which should have observable lifetimes of {approx}1 Gyr. The shell and stream GCs together support a scenario where the extended stellar envelope of M87 has been built up by a steady rain of material that continues until the present day. This phase-space method demonstrates unique potential for detailed tests of galaxy formation beyond the Local Group.
Detecting nonlinearity in time series driven by non-Gaussian noise: the case of river flows
Directory of Open Access Journals (Sweden)
F. Laio
2004-01-01
Full Text Available Several methods exist for the detection of nonlinearity in univariate time series. In the present work we consider riverflow time series to infer the dynamical characteristics of the rainfall-runoff transformation. It is shown that the non-Gaussian nature of the driving force (rainfall can distort the results of such methods, in particular when surrogate data techniques are used. Deterministic versus stochastic (DVS plots, conditionally applied to the decay phases of the time series, are instead proved to be a suitable tool to detect nonlinearity in processes driven by non-Gaussian (Poissonian noise. An application to daily discharges from three Italian rivers provides important clues to the presence of nonlinearity in the rainfall-runoff transformation.
Inflation with multiple sound speeds: A model of multiple DBI type actions and non-Gaussianities
International Nuclear Information System (INIS)
Cai Yifu; Xia Haiying
2009-01-01
In this Letter we study adiabatic and isocurvature perturbations in the frame of inflation with multiple sound speeds involved. We suggest this scenario can be realized by a number of generalized scalar fields with arbitrary kinetic forms. These scalars have their own sound speeds respectively, so the propagations of field fluctuations are individual. Specifically, we study a model constructed by two DBI type actions. We find that the critical length scale for the freezing of perturbations corresponds to the maximum sound horizon. Moreover, if the mass term of one field is much lighter than that of the other, the entropy perturbation could be quite large and so may give rise to a growth outside sound horizon. At cubic order, we find that the non-Gaussianity of local type is possibly large when entropy perturbations are able to convert into curvature perturbations. We also calculate the non-Gaussianity of equilateral type approximately.
A Network of Kalman Filters for MAI and ISI Compensation in a Non-Gaussian Environment
Directory of Open Access Journals (Sweden)
Sayadi Bessem
2005-01-01
Full Text Available This paper develops a new multiuser detector based on a network of kalman filters (NKF dealing with multiple access-interference (MAI, intersymbol Interference (ISI, and an impulsive observation noise. The two proposed schemes are based on the modeling of the DS-CDMA system by a discrete-time linear system that has non-Gaussian state and measurement noises. By approximating the non-Gaussian densities of the noises by a weighted sum of Gaussian terms and under the common MMSE estimation criterion, we first derive an NKF detector. This version is further optimized by introducing a feedback exploiting the ISI interference structure. The resulting scheme is an NKF detector based on a likelihood ratio test (LRT. Monte-Carlo simulations have shown that the NKF and the NKF based on LRT detectors significantly improve the efficiency and the performance of the classical Kalman algorithm.
Estimation for Non-Gaussian Locally Stationary Processes with Empirical Likelihood Method
Directory of Open Access Journals (Sweden)
Hiroaki Ogata
2012-01-01
Full Text Available An application of the empirical likelihood method to non-Gaussian locally stationary processes is presented. Based on the central limit theorem for locally stationary processes, we give the asymptotic distributions of the maximum empirical likelihood estimator and the empirical likelihood ratio statistics, respectively. It is shown that the empirical likelihood method enables us to make inferences on various important indices in a time series analysis. Furthermore, we give a numerical study and investigate a finite sample property.
Non-Gaussian diffusion imaging for enhanced contrast of brain tissue affected by ischemic stroke.
Grinberg, Farida; Farrher, Ezequiel; Ciobanu, Luisa; Geffroy, Françoise; Le Bihan, Denis; Shah, N Jon
2014-01-01
Recent diffusion MRI studies of stroke in humans and animals have shown that the quantitative parameters characterising the degree of non-Gaussianity of the diffusion process are much more sensitive to ischemic changes than the apparent diffusion coefficient (ADC) considered so far as the "gold standard". The observed changes exceeded that of the ADC by a remarkable factor of 2 to 3. These studies were based on the novel non-Gaussian methods, such as diffusion kurtosis imaging (DKI) and log-normal distribution function imaging (LNDFI). As shown in our previous work investigating the animal stroke model, a combined analysis using two methods, DKI and LNDFI provides valuable complimentary information. In the present work, we report the application of three non-Gaussian diffusion models to quantify the deviations from the Gaussian behaviour in stroke induced by transient middle cerebral artery occlusion in rat brains: the gamma-distribution function (GDF), the stretched exponential model (SEM), and the biexponential model. The main goal was to compare the sensitivity of various non-Gaussian metrics to ischemic changes and to investigate if a combined application of several models will provide added value in the assessment of stroke. We have shown that two models, GDF and SEM, exhibit a better performance than the conventional method and allow for a significantly enhanced visualization of lesions. Furthermore, we showed that valuable information regarding spatial properties of stroke lesions can be obtained. In particular, we observed a stratified cortex structure in the lesions that were well visible in the maps of the GDF and SEM metrics, but poorly distinguishable in the ADC-maps. Our results provided evidence that cortical layers tend to be differently affected by ischemic processes.
Non-Gaussian diffusion imaging for enhanced contrast of brain tissue affected by ischemic stroke.
Directory of Open Access Journals (Sweden)
Farida Grinberg
Full Text Available Recent diffusion MRI studies of stroke in humans and animals have shown that the quantitative parameters characterising the degree of non-Gaussianity of the diffusion process are much more sensitive to ischemic changes than the apparent diffusion coefficient (ADC considered so far as the "gold standard". The observed changes exceeded that of the ADC by a remarkable factor of 2 to 3. These studies were based on the novel non-Gaussian methods, such as diffusion kurtosis imaging (DKI and log-normal distribution function imaging (LNDFI. As shown in our previous work investigating the animal stroke model, a combined analysis using two methods, DKI and LNDFI provides valuable complimentary information. In the present work, we report the application of three non-Gaussian diffusion models to quantify the deviations from the Gaussian behaviour in stroke induced by transient middle cerebral artery occlusion in rat brains: the gamma-distribution function (GDF, the stretched exponential model (SEM, and the biexponential model. The main goal was to compare the sensitivity of various non-Gaussian metrics to ischemic changes and to investigate if a combined application of several models will provide added value in the assessment of stroke. We have shown that two models, GDF and SEM, exhibit a better performance than the conventional method and allow for a significantly enhanced visualization of lesions. Furthermore, we showed that valuable information regarding spatial properties of stroke lesions can be obtained. In particular, we observed a stratified cortex structure in the lesions that were well visible in the maps of the GDF and SEM metrics, but poorly distinguishable in the ADC-maps. Our results provided evidence that cortical layers tend to be differently affected by ischemic processes.
Bartolo, N; Riotto, A
2012-01-01
We estimate analytically the second-order cosmic microwave background temperature anisotropies at the recombination epoch in the squeezed limit and we deduce the contamination to the primordial local non-Gaussianity. We find that the level of contamination corresponds to f_NL^{con}=O(1) which is below the sensitivity of present experiments and smaller than the value O(5) recently claimed in the literature.
Linear amplification and quantum cloning for non-Gaussian continuous variables
Nha, Hyunchul; Milburn, G. J.; Carmichael, H. J.
2010-10-01
We investigate phase-insensitive linear amplification at the quantum limit for single- and two-mode states and show that there exists a broad class of non-Gaussian states whose nonclassicality survives even at an arbitrarily large gain. We identify the corresponding observable nonclassical effects and find that they include, remarkably, two-mode entanglement. The implications of our results for quantum cloning outside the Gaussian regime are also addressed.
Neutron study of non-Gaussian self dynamics in liquid parahydrogen
International Nuclear Information System (INIS)
Bafile, Ubaldo; Celli, Milva; Colognesi, Daniele; Zoppi, Marco; Guarini, Eleonora; De Francesco, Alessio; Formisano, Ferdinando; Neumann, Martin
2012-01-01
A time-honoured approach to single-molecule, or self, dynamics of liquids is based on the so-called Gaussian approximation (GA), where it is assumed that, in the whole dynamical range between hydrodynamic diffusion and free-particle streaming, the motion of a particle is fully determined by a unique function of time directly related to the velocity autocorrelation function. An evident support to the GA is offered by the fact that the approximation becomes exact in both above limit conditions. Yet, experimental inquiries into the presence of non-Gaussian dynamics are very scarce, particularly in liquid parahydrogen in spite of its importance as the prototype of a 'quantum Boltzmann liquid' which has also served as a benchmark for the development of quantum dynamics simulation algorithms. Though experimental evidence of the breakdown of the GA was obtained by some of the authors a few years ago, the localization in Q space of non-Gaussian behaviour was still undetermined, and no quantitative assessment of the effect was ever obtained. These issues have been tackled and solved by a new neutron investigation, which provides the first determination of non-Gaussian behaviour in the framework of the well-known theoretical approach by Rahman, Singwi and Sjölander.
Scale-dependent bias from the reconstruction of non-Gaussian distributions
International Nuclear Information System (INIS)
Chongchitnan, Sirichai; Silk, Joseph
2011-01-01
Primordial non-Gaussianity introduces a scale-dependent variation in the clustering of density peaks corresponding to rare objects. This variation, parametrized by the bias, is investigated on scales where a linear perturbation theory is sufficiently accurate. The bias is obtained directly in real space by comparing the one- and two-point probability distributions of density fluctuations. We show that these distributions can be reconstructed using a bivariate Edgeworth series, presented here up to an arbitrarily high order. The Edgeworth formalism is shown to be well-suited for ''local'' cubic-order non-Gaussianity parametrized by g NL . We show that a strong scale dependence in the bias can be produced by g NL of order 10 5 , consistent with cosmic microwave background constraints. On a separation length of ∼100 Mpc, current constraints on g NL still allow the bias for the most massive clusters to be enhanced by 20-30% of the Gaussian value. We further examine the bias as a function of mass scale, and also explore the relationship between the clustering and the abundance of massive clusters in the presence of g NL . We explain why the Edgeworth formalism, though technically challenging, is a very powerful technique for constraining high-order non-Gaussianity with large-scale structures.
Synthesis and analysis of discriminators under influence of broadband non-Gaussian noise
Artyushenko, V. M.; Volovach, V. I.
2018-01-01
We considered the problems of the synthesis and analysis of discriminators, when the useful signal is exposed to non-Gaussian additive broadband noise. It is shown that in this case, the discriminator of the tracking meter should contain the nonlinear transformation unit, the characteristics of which are determined by the Fisher information relative to the probability density function of the mixture of non-Gaussian broadband noise and mismatch errors. The parameters of the discriminatory and phase characteristics of the discriminators working under the above conditions are obtained. It is shown that the efficiency of non-linear processing depends on the ratio of power of FM noise to the power of Gaussian noise. The analysis of the information loss of signal transformation caused by the linear section of discriminatory characteristics of the unit of nonlinear transformations of the discriminator is carried out. It is shown that the average slope of the nonlinear transformation characteristic is determined by the Fisher information relative to the probability density function of the mixture of non-Gaussian noise and mismatch errors.
Non-Gaussianities and the stimulated creation of quanta in the inflationary universe
International Nuclear Information System (INIS)
Agullo, Ivan; Parker, Leonard
2011-01-01
Cosmological inflation generates a spectrum of density perturbations that can seed the cosmic structures we observe today. These perturbations are usually computed as the result of the gravitationally induced spontaneous creation of perturbations from an initial vacuum state. In this paper, we compute the perturbations arising from gravitationally induced stimulated creation when perturbations are already present in the initial state. The effect of these initial perturbations is not diluted by inflation and survives to its end, and beyond. We consider a generic statistical density operator ρ describing an initial mixed state that includes probabilities for nonzero numbers of scalar perturbations to be present at early times during inflation. We analyze the primordial bispectrum for general configurations of the three different momentum vectors in its arguments. We find that the initial presence of quanta can significantly enhance non-Gaussianities in the so-called squeezed limit. Our results show that an observation of non-Gaussianities in the squeezed limit can occur for single-field inflation when the state in the very early inflationary Universe is not the vacuum, but instead contains early-time perturbations. Valuable information about the initial state can then be obtained from observations of those non-Gaussianities.
Remarks on non-Gaussian fluctuations of the inflaton and constancy of ζ outside the horizon
International Nuclear Information System (INIS)
Mahajan, Namit; Rangarajan, Raghavan
2011-01-01
We point out that the non-Gaussianity arising from cubic self-interactions of the inflaton field is proportional to ξN e where ξ∼V ''' and N e is the number of e-foldings from horizon exit till the end of inflation. For scales of interest N e =60, and for models of inflation such as new inflation, natural inflation, and running mass inflation ξ is large compared to the slow-roll parameter ε∼V '2 . Therefore, the contribution from self-interactions should not be outrightly ignored while retaining other terms in the non-Gaussianity parameter f NL . However, the N e -dependent term seems to imply the growth of non-Gaussianities outside the horizon. Therefore, we briefly discuss the issue of the constancy of correlations of the curvature perturbation ζ outside the horizon. We then calculate the 3-point function of the inflaton fluctuations using the canonical formalism and further obtain the 3-point function of ζ k . We find that the N e -dependent contribution to f NL from self-interactions of the inflaton field is canceled by contributions from other terms associated with nonlinearities in cosmological perturbation theory.
Non-Gaussianity of petrophysical parameters using q entropy and a multifractal random walk
Koohi Lai, Z.; Vasheghani Farahani, S.; Jafari, G. R.
2012-11-01
Geological systems such as petroleum reservoirs can be investigated using Tsallis entropy and multiplicative hierarchical cascade models. The occurrence of non-Gaussianity is a sign of uncertainty and a phase transition, which could indicate the existence of a petroleum reservoir. Two important parameters that describe a system at any scale are determined: the degree of non-Gaussianity, q, for the entropy and the intermittency, λ2, which explains critical behavior in a system. Some petrophysical indicators can be used to characterize a reservoir, but there is a lack of methods for measuring scaling information. This study compares non-Gaussianity for three selected indicators at various scales: gamma radiation (GR), sonic transient time (DT) and neutron porosity (NPHI). The results show that GR has a fat-tailed probability distribution function (PDF) at all scales, which is a sign of phase transition in the system and indicates high q and λ2. This provides valuable information about GR. NPHI shows scale dependence and the PDF converges to a Gaussian distribution at large scales. This is indicative of separated and uncorrelated porosity at large scales. For the DT series, small λ2 and q at all scales are a hallmark of local DT correlations.
Impact of Non-Gaussian Error Volumes on Conjunction Assessment Risk Analysis
Ghrist, Richard W.; Plakalovic, Dragan
2012-01-01
An understanding of how an initially Gaussian error volume becomes non-Gaussian over time is an important consideration for space-vehicle conjunction assessment. Traditional assumptions applied to the error volume artificially suppress the true non-Gaussian nature of the space-vehicle position uncertainties. For typical conjunction assessment objects, representation of the error volume by a state error covariance matrix in a Cartesian reference frame is a more significant limitation than is the assumption of linearized dynamics for propagating the error volume. In this study, the impact of each assumption is examined and isolated for each point in the volume. Limitations arising from representing the error volume in a Cartesian reference frame is corrected by employing a Monte Carlo approach to probability of collision (Pc), using equinoctial samples from the Cartesian position covariance at the time of closest approach (TCA) between the pair of space objects. A set of actual, higher risk (Pc >= 10 (exp -4)+) conjunction events in various low-Earth orbits using Monte Carlo methods are analyzed. The impact of non-Gaussian error volumes on Pc for these cases is minimal, even when the deviation from a Gaussian distribution is significant.
International Nuclear Information System (INIS)
Tan, Cheng-Yang; Fermilab
2006-01-01
One common way for measuring the emittance of an electron beam is with the slits method. The usual approach for analyzing the data is to calculate an emittance that is a subset of the parent emittance. This paper shows an alternative way by using the method of correlations which ties the parameters derived from the beamlets to the actual parameters of the parent emittance. For parent distributions that are Gaussian, this method yields exact results. For non-Gaussian beam distributions, this method yields an effective emittance that can serve as a yardstick for emittance comparisons
Non-Gaussian Autoregressive Processes with Tukey g-and-h Transformations
Yan, Yuan
2017-11-20
When performing a time series analysis of continuous data, for example from climate or environmental problems, the assumption that the process is Gaussian is often violated. Therefore, we introduce two non-Gaussian autoregressive time series models that are able to fit skewed and heavy-tailed time series data. Our two models are based on the Tukey g-and-h transformation. We discuss parameter estimation, order selection, and forecasting procedures for our models and examine their performances in a simulation study. We demonstrate the usefulness of our models by applying them to two sets of wind speed data.
Stochastic differential calculus for Gaussian and non-Gaussian noises: A critical review
Falsone, G.
2018-03-01
In this paper a review of the literature works devoted to the study of stochastic differential equations (SDEs) subjected to Gaussian and non-Gaussian white noises and to fractional Brownian noises is given. In these cases, particular attention must be paid in treating the SDEs because the classical rules of the differential calculus, as the Newton-Leibnitz one, cannot be applied or are applicable with many difficulties. Here all the principal approaches solving the SDEs are reported for any kind of noise, highlighting the negative and positive properties of each one and making the comparisons, where it is possible.
Partial summations of stationary sequences of non-Gaussian random variables
DEFF Research Database (Denmark)
Mohr, Gunnar; Ditlevsen, Ove Dalager
1996-01-01
The distribution of the sum of a finite number of identically distributed random variables is in many cases easily determined given that the variables are independent. The moments of any order of the sum can always be expressed by the moments of the single term without computational problems...... of convergence of the distribution of a sum (or an integral) of mutually dependent random variables to the Gaussian distribution. The paper is closely related to the work in Ditlevsen el al. [Ditlevsen, O., Mohr, G. & Hoffmeyer, P. Integration of non-Gaussian fields. Prob. Engng Mech 11 (1996) 15-23](2)....
Micro-motion Parameter Estimation in Non-Gaussian Noise via Mutual Correntropy
Directory of Open Access Journals (Sweden)
Xiong Dingding
2017-06-01
Full Text Available This study considered parameter estimations for micro-motion targets embedded in non-Gaussian noise with a Single Input Multiple Output (SIMO radar. A novel estimation algorithm based on mutual correntropy was presented and used to derive the micro-perturbation parameters by exploiting the second and higher-order knowledge of the return signals among multiple channels. Compared with a conventional Fourier Transform (FT method, the method proposed herein had a much higher Signal to Noise Ratio (SNR gain. In addition, the location was derived by employing the Phase-Comparison Monopulse (PCM technique. Finally, several numerical results were provided and discussed.
Non-Gaussian statistics, classical field theory, and realizable Langevin models
International Nuclear Information System (INIS)
Krommes, J.A.
1995-11-01
The direct-interaction approximation (DIA) to the fourth-order statistic Z ∼ left-angle λψ 2 ) 2 right-angle, where λ is a specified operator and ψ is a random field, is discussed from several points of view distinct from that of Chen et al. [Phys. Fluids A 1, 1844 (1989)]. It is shown that the formula for Z DIA already appeared in the seminal work of Martin, Siggia, and Rose (Phys. Rev. A 8, 423 (1973)] on the functional approach to classical statistical dynamics. It does not follow from the original generalized Langevin equation (GLE) of Leith [J. Atmos. Sd. 28, 145 (1971)] and Kraichnan [J. Fluid Mech. 41, 189 (1970)] (frequently described as an amplitude representation for the DIA), in which the random forcing is realized by a particular superposition of products of random variables. The relationship of that GLE to renormalized field theories with non-Gaussian corrections (''spurious vertices'') is described. It is shown how to derive an improved representation, that realizes cumulants through O(ψ 4 ), by adding to the GLE a particular non-Gaussian correction. A Markovian approximation Z DIA M to Z DIA is derived. Both Z DIA and Z DIA M incorrectly predict a Gaussian kurtosis for the steady state of a solvable three-mode example
Detecting Non-Gaussian and Lognormal Characteristics of Temperature and Water Vapor Mixing Ratio
Kliewer, A.; Fletcher, S. J.; Jones, A. S.; Forsythe, J. M.
2017-12-01
Many operational data assimilation and retrieval systems assume that the errors and variables come from a Gaussian distribution. This study builds upon previous results that shows that positive definite variables, specifically water vapor mixing ratio and temperature, can follow a non-Gaussian distribution and moreover a lognormal distribution. Previously, statistical testing procedures which included the Jarque-Bera test, the Shapiro-Wilk test, the Chi-squared goodness-of-fit test, and a composite test which incorporated the results of the former tests were employed to determine locations and time spans where atmospheric variables assume a non-Gaussian distribution. These tests are now investigated in a "sliding window" fashion in order to extend the testing procedure to near real-time. The analyzed 1-degree resolution data comes from the National Oceanic and Atmospheric Administration (NOAA) Global Forecast System (GFS) six hour forecast from the 0Z analysis. These results indicate the necessity of a Data Assimilation (DA) system to be able to properly use the lognormally-distributed variables in an appropriate Bayesian analysis that does not assume the variables are Gaussian.
Ebtehaj, M.; Foufoula, E.
2012-12-01
Improved estimation of geophysical state variables in a noisy environment from down-sampled observations and background model forecasts has been the subject of growing research in the past decades. Often the number of degrees of freedom in high-dimensional non-Gaussian natural states is quite small compared to their ambient dimensionality, a property often revealed as a sparse representation in an appropriately chosen domain. Aiming to increase the hydrometeorological forecast skill and motivated by wavelet-domain sparsity of some land-surface geophysical states, new framework is presented that recast the classical variational data assimilation/fusion (DA/DF) problem via L_1 regularization in the wavelet domain. Our results suggest that proper regularization can lead to more accurate recovery of a wide range of smooth/non-smooth geophysical states exhibiting remarkable non-Gaussian features. The promise of the proposed framework is demonstrated in multi-sensor satellite and land-based precipitation data fusion, while the regularized DA is performed on the heat equation in a 4D-VAR context, using sparse regularization in the wavelet domain.; ; Top panel: Noisy observations of the linear advection diffusion equation at five consecutive snapshots, middle panel: Classical 4D-VAR and bottom panel: l_1 regularized 4D-VAR with improved results.
International Nuclear Information System (INIS)
Chowdhury, P; Majumdar, A S; Sinha, S; Home, D; Mousavi, S V; Mozaffari, M R
2012-01-01
The weak equivalence principle of gravity is examined at the quantum level in two ways. First, the position detection probabilities of particles described by a non-Gaussian wave packet projected upwards against gravity around the classical turning point and also around the point of initial projection are calculated. These probabilities exhibit mass dependence at both these points, thereby reflecting the quantum violation of the weak equivalence principle. Second, the mean arrival time of freely falling particles is calculated using the quantum probability current, which also turns out to be mass dependent. Such a mass dependence is shown to be enhanced by increasing the non-Gaussianity parameter of the wave packet, thus signifying a stronger violation of the weak equivalence principle through a greater departure from Gaussianity of the initial wave packet. The mass dependence of both the position detection probabilities and the mean arrival time vanishes in the limit of large mass. Thus, compatibility between the weak equivalence principle and quantum mechanics is recovered in the macroscopic limit of the latter. A selection of Bohm trajectories is exhibited to illustrate these features in the free fall case. (paper)
UV-protected (natural) inflation: primordial fluctuations and non-gaussian features
Energy Technology Data Exchange (ETDEWEB)
Germani, Cristiano; Watanabe, Yuki, E-mail: cristiano.germani@physik.lmu.de, E-mail: yuki.watanabe@physik.lmu.de [Arnold Sommerfeld Center for Theoretical Physics, Ludwig-Maximilians-University, Theresienstrasse 37, 80333 Munich (Germany)
2011-07-01
We consider the UV-protected inflation, where the inflaton potential is obtained by quantum (one-loop) breaking of a global symmetry into a discrete symmetry. In this model, all coupling scales are sub-Planckian. This is achieved by coupling the inflaton kinetic term to the Einstein tensor such that the friction is enhanced gravitationally at high energies. In this respect, this new interaction makes virtually any potential adequate for inflation while keeping the system perturbative unitary. We show that even if the gravitationally enhanced friction intrinsically contains new nonlinearities, the UV-protected inflation (and any similar models) behaves as a single field scenario with red tilted spectrum and potentially detectable gravitational waves. Interestingly enough, we find that non-Gaussianity of the curvature perturbations in the local form are completely dominated by the nonlinear gauge transformation from the spatially flat to uniform-field gauge and/or by parity violating interactions of the inflaton and gauge bosons. In particular, the parity violating interactions may produce detectable non-Gaussianity.
Generation of Stationary Non-Gaussian Time Histories with a Specified Cross-spectral Density
Directory of Open Access Journals (Sweden)
David O. Smallwood
1997-01-01
Full Text Available The paper reviews several methods for the generation of stationary realizations of sampled time histories with non-Gaussian distributions and introduces a new method which can be used to control the cross-spectral density matrix and the probability density functions (pdfs of the multiple input problem. Discussed first are two methods for the specialized case of matching the auto (power spectrum, the skewness, and kurtosis using generalized shot noise and using polynomial functions. It is then shown that the skewness and kurtosis can also be controlled by the phase of a complex frequency domain description of the random process. The general case of matching a target probability density function using a zero memory nonlinear (ZMNL function is then covered. Next methods for generating vectors of random variables with a specified covariance matrix for a class of spherically invariant random vectors (SIRV are discussed. Finally the general case of matching the cross-spectral density matrix of a vector of inputs with non-Gaussian marginal distributions is presented.
Maximum Correntropy Criterion Kalman Filter for α-Jerk Tracking Model with Non-Gaussian Noise
Directory of Open Access Journals (Sweden)
Bowen Hou
2017-11-01
Full Text Available As one of the most critical issues for target track, α -jerk model is an effective maneuver target track model. Non-Gaussian noises always exist in the track process, which usually lead to inconsistency and divergence of the track filter. A novel Kalman filter is derived and applied on α -jerk tracking model to handle non-Gaussian noise. The weighted least square solution is presented and the standard Kalman filter is deduced firstly. A novel Kalman filter with the weighted least square based on the maximum correntropy criterion is deduced. The robustness of the maximum correntropy criterion is also analyzed with the influence function and compared with the Huber-based filter, and, moreover, the kernel size of Gaussian kernel plays an important role in the filter algorithm. A new adaptive kernel method is proposed in this paper to adjust the parameter in real time. Finally, simulation results indicate the validity and the efficiency of the proposed filter. The comparison study shows that the proposed filter can significantly reduce the noise influence for α -jerk model.
International Nuclear Information System (INIS)
Chingangbam, Pravabati; Park, Changbom
2009-01-01
We simulate CMB maps including non-Gaussianity arising from cubic order perturbations of the primordial gravitational potential, characterized by the non-linearity parameter g NL . The maps are used to study the characteristic nature of the resulting non-Gaussian temperature fluctuations. We measure the genus and investigate how it deviates from Gaussian shape as a function of g NL and smoothing scale. We find that the deviation of the non-Gaussian genus curve from the Gaussian one has an antisymmetric, sine function like shape, implying more hot and more cold spots for g NL > 0 and less of both for g NL NL and also exhibits mild increase as the smoothing scale increases. We further study other statistics derived from the genus, namely, the number of hot spots, the number of cold spots, combined number of hot and cold spots and the slope of the genus curve at mean temperature fluctuation. We find that these observables carry signatures of g NL that are clearly distinct from the quadratic order perturbations, encoded in the parameter f NL . Hence they can be very useful tools for distinguishing not only between non-Gaussian temperature fluctuations and Gaussian ones but also between g NL and f NL type non-Gaussianities
Bartolo, Nicola; Matarrese, Sabino; Pietroni, Massimo; Riotto, Antonio
2010-01-01
We apply the time-renormalization group approach to study the effect of primordial non-Gaussianities in the non-linear evolution of cosmological dark matter density perturbations. This method improves the standard perturbation approach by solving renormalization group-like equations governing the dynamics of gravitational instability. The primordial bispectra constructed from the dark matter density contrast and the velocity fields represent initial conditions for the renormalization group flow. We consider local, equilateral and folded shapes for the initial non-Gaussianity and analyze as well the case in which the non-linear parameter f_{NL} parametrizing the strength of the non-Gaussianity depends on the momenta in Fourier space through a power-law relation, the so-called running non-Gaussianity. For the local model of non-Gaussianity we compare our findings for the power-spectrum with those of recent N-body simulations and find that they accurately fit the N-body data up to wave-numbers k \\sim 0.25 h/Mpc ...
Use of δN formalism-difficulties in generating large local-type non-Gaussianity during inflation
International Nuclear Information System (INIS)
Tanaka, Takahiro; Suyama, Teruaki; Yokoyama, Shuichiro
2010-01-01
We discuss the generation of non-Gaussianity in density perturbation through the super-horizon evolution during inflation by using the so-called δN formalism. We first provide a general formula for the nonlinearity parameter generated during inflation. We find that it is proportional to the slow-roll parameters, multiplied by the model-dependent factors that may enhance non-Gaussianity to the observable ranges. Then we discuss three typical examples to illustrate how difficult it is to generate sizable non-Gaussianity through the super-horizon evolution during inflation. The first example is the double inflation model, which shows that temporal violation of slow-roll conditions is not enough for the generation of non-Gaussianity. The second example is the ordinary hybrid inflation model, which illustrates the importance of taking into account perturbations on small scales. Finally, we discuss the Kadota-Stewart model. This model gives an example in which we have to choose rather unnatural initial conditions even if large non-Gaussianity can be generated.
Directory of Open Access Journals (Sweden)
Jing Yuan
Full Text Available PURPOSE: To technically investigate the non-Gaussian diffusion of head and neck diffusion weighted imaging (DWI at 3 Tesla and compare advanced non-Gaussian diffusion models, including diffusion kurtosis imaging (DKI, stretched-exponential model (SEM, intravoxel incoherent motion (IVIM and statistical model in the patients with nasopharyngeal carcinoma (NPC. MATERIALS AND METHODS: After ethics approval was granted, 16 patients with NPC were examined using DWI performed at 3T employing an extended b-value range from 0 to 1500 s/mm(2. DWI signals were fitted to the mono-exponential and non-Gaussian diffusion models on primary tumor, metastatic node, spinal cord and muscle. Non-Gaussian parameter maps were generated and compared to apparent diffusion coefficient (ADC maps in NPC. RESULTS: Diffusion in NPC exhibited non-Gaussian behavior at the extended b-value range. Non-Gaussian models achieved significantly better fitting of DWI signal than the mono-exponential model. Non-Gaussian diffusion coefficients were substantially different from mono-exponential ADC both in magnitude and histogram distribution. CONCLUSION: Non-Gaussian diffusivity in head and neck tissues and NPC lesions could be assessed by using non-Gaussian diffusion models. Non-Gaussian DWI analysis may reveal additional tissue properties beyond ADC and holds potentials to be used as a complementary tool for NPC characterization.
A non-Gaussian Ornstein-Uhlenbeck model for pricing wind power futures
DEFF Research Database (Denmark)
Benth, Fred Espen; Pircalabu, Anca
2018-01-01
The recent introduction of wind power futures written on the German wind power production index has brought with it new interesting challenges in terms of modeling and pricing. Some particularities of this product are the strong seasonal component embedded in the underlying, the fact that the wind...... index is bounded from both above and below, and also that the futures are settled against a synthetically generated spot index. Here, we consider the non-Gaussian Ornstein-Uhlenbeck type processes proposed by Barndorff-Nielsen and Shephard (2001) in the context of modeling the wind power production...... index. We discuss the properties of the model and estimation of the model parameters. Further, the model allows for an analytical formula for pricing wind power futures. We provide an empirical study, where the model is calibrated to 37 years of German wind power production index that is synthetically...
Dynamic heterogeneity and non-Gaussian statistics for acetylcholine receptors on live cell membrane
He, W.; Song, H.; Su, Y.; Geng, L.; Ackerson, B. J.; Peng, H. B.; Tong, P.
2016-05-01
The Brownian motion of molecules at thermal equilibrium usually has a finite correlation time and will eventually be randomized after a long delay time, so that their displacement follows the Gaussian statistics. This is true even when the molecules have experienced a complex environment with a finite correlation time. Here, we report that the lateral motion of the acetylcholine receptors on live muscle cell membranes does not follow the Gaussian statistics for normal Brownian diffusion. From a careful analysis of a large volume of the protein trajectories obtained over a wide range of sampling rates and long durations, we find that the normalized histogram of the protein displacements shows an exponential tail, which is robust and universal for cells under different conditions. The experiment indicates that the observed non-Gaussian statistics and dynamic heterogeneity are inherently linked to the slow-active remodelling of the underlying cortical actin network.
A Robust Non-Gaussian Data Assimilation Method for Highly Non-Linear Models
Directory of Open Access Journals (Sweden)
Elias D. Nino-Ruiz
2018-03-01
Full Text Available In this paper, we propose an efficient EnKF implementation for non-Gaussian data assimilation based on Gaussian Mixture Models and Markov-Chain-Monte-Carlo (MCMC methods. The proposed method works as follows: based on an ensemble of model realizations, prior errors are estimated via a Gaussian Mixture density whose parameters are approximated by means of an Expectation Maximization method. Then, by using an iterative method, observation operators are linearized about current solutions and posterior modes are estimated via a MCMC implementation. The acceptance/rejection criterion is similar to that of the Metropolis-Hastings rule. Experimental tests are performed on the Lorenz 96 model. The results show that the proposed method can decrease prior errors by several order of magnitudes in a root-mean-square-error sense for nearly sparse or dense observational networks.
Fault Detection for Non-Gaussian Stochastic Systems with Time-Varying Delay
Directory of Open Access Journals (Sweden)
Tao Li
2013-01-01
Full Text Available Fault detection (FD for non-Gaussian stochastic systems with time-varying delay is studied. The available information for the addressed problem is the input and the measured output probability density functions (PDFs of the system. In this framework, firstly, by constructing an augmented Lyapunov functional, which involves some slack variables and a tuning parameter, a delay-dependent condition for the existence of FD observer is derived in terms of linear matrix inequality (LMI and the fault can be detected through a threshold. Secondly, in order to improve the detection sensitivity performance, the optimal algorithm is applied to minimize the threshold value. Finally, paper-making process example is given to demonstrate the applicability of the proposed approach.
Non-Gaussianity and statistical anisotropy from vector field populated inflationary models
Dimastrogiovanni, Emanuela; Matarrese, Sabino; Riotto, Antonio
2010-01-01
We present a review of vector field models of inflation and, in particular, of the statistical anisotropy and non-Gaussianity predictions of models with SU(2) vector multiplets. Non-Abelian gauge groups introduce a richer amount of predictions compared to the Abelian ones, mostly because of the presence of vector fields self-interactions. Primordial vector fields can violate isotropy leaving their imprint in the comoving curvature fluctuations zeta at late times. We provide the analytic expressions of the correlation functions of zeta up to fourth order and an analysis of their amplitudes and shapes. The statistical anisotropy signatures expected in these models are important and, potentially, the anisotropic contributions to the bispectrum and the trispectrum can overcome the isotropic parts.
Pires, C. L.
2013-12-01
Principal components (PCs) of the low-frequency variability have zero cross correlation by construction but they are not statistically independent. Their degree of dependency is assessed through the Shannon mutual information (MI). PCs were computed here both for: 1) the monthly running means of the stream functions of a one million days run of a T63, 3level, perpetual winter forced, quasi-geostrophic (QG3) model and 2) the annual running means of the SST from GISS 1880-2012 data. One computes both the dyadic MI: I(X,Y) and triadic MI: I(X,Y,Z) among arbitrary PCs X,Y,Z (rotated or not) by using a kernel-based MI estimation method applied to previously Gaussianized marginal variables obtained by Gaussian anamorphosis thus making estimation more resistant to outliers. Non-vanishing MI comes from the non-Gaussianity of the full PDF of the state-vector of retained PCs. Statistically significant non-Gaussian dyadic MI appears between leading PC-pairs, both for the QG3 model run (projecting on planetary-slow scales) and for GISS data where some nonlinear correlations are emphasized between Pacific and Atlantic SST modes. We propose an iterative optimization algorithm looking for uncorrelated variables X, Y, Z, (obtained from orthogonal projections), taken from a multivariate space of N PCs (N≥3), which maximize I(X,Y,Z), i.e. their triadic non-Gaussian interaction. It also maximizes the joint negentropy leading to the presence of relevant non-linear correlations across the three linearly uncorrelated variables. This is solved through an iterative optimization method by maximizing a positive contrast function (e.g. the squared expectation E(XYZ)2 ), vanishing under Gaussian conditions. In order to understand the origin of a statistically significant positive mutual information I(X,Y,Z)>0, one decomposes it into a dyadic term: I2(X,Y,Z)≡I(X,Y)+I(X,Z)+I(Y,Z), vanishing iff X,Y,Z are pair-wised independent and into a triadic term, the so called interactivity term: It(X
Role of time delay on intracellular calcium dynamics driven by non-Gaussian noises.
Duan, Wei-Long; Zeng, Chunhua
2016-04-28
Effect of time delay (τ) on intracellular calcium dynamics with non-Gaussian noises in transmission processes of intracellular Ca(2+) is studied by means of second-order stochastic Runge-Kutta type algorithm. By simulating and analyzing time series, normalized autocorrelation function, and characteristic correlation time of cytosolic and calcium store's Ca(2+) concentration, the results exhibit: (i) intracellular calcium dynamics's time coherence disappears and stability strengthens as τ → 0.1s; (ii) for the case of τ short, but they trend to a level line as τ → 0.1s, and for the case of τ > 0.1s, they show different variation as τ increases, the former changes from underdamped motion to a level line, but the latter changes from damped motion to underdamped motion; and (iii) at the moderate value of time delay, reverse resonance occurs both in cytosol and calcium store.
Non-Gaussian ground-state deformations near a black-hole singularity
Hofmann, Stefan; Schneider, Marc
2017-03-01
The singularity theorem by Hawking and Penrose qualifies Schwarzschild black holes as geodesic incomplete space-times. Albeit this is a mathematically rigorous statement, it requires an operational framework that allows us to probe the spacelike singularity via a measurement process. Any such framework necessarily has to be based on quantum theory. As a consequence, the notion of classical completeness needs to be adapted to situations where the only adequate description is in terms of quantum fields in dynamical space-times. It is shown that Schwarzschild black holes turn out to be complete when probed by self-interacting quantum fields in the ground state and in excited states. The measure for populating quantum fields on hypersurfaces in the vicinity of the black-hole singularity goes to zero towards the singularity. This statement is robust under non-Gaussian deformations of and excitations relative to the ground state. The physical relevance of different completeness concepts for black holes is discussed.
Constraints on Primordial Non-Gaussianity from 800 000 Photometric Quasars.
Leistedt, Boris; Peiris, Hiranya V; Roth, Nina
2014-11-28
We derive robust constraints on primordial non-Gaussianity (PNG) using the clustering of 800 000 photometric quasars from the Sloan Digital Sky Survey in the redshift range 0.5constraints lead to -105running parameter n_{f_{NL}} to constrain b(k)∝k^{-2+n_{f_{NL}}} and a generalized PNG amplitude f[over ˜]_{NL}, we obtain -45.5 exp(3.7n_{f_{NL}})constraints obtained to date on PNG using a single population of large-scale structure tracers, and are already at the level of pre-Planck constraints from the cosmic microwave background. A conservative forecast for a Large Synoptic Survey Telescope (LSST)-like survey incorporating mode projection yields σ(f_{NL})∼5-competitive with the Planck result-highlighting the power of upcoming large scale structure surveys to probe the initial conditions of the Universe.
Dynamics of Bayesian non-Gaussian sensorimotor learning with multiple time scales
Zhou, Baohua; Hofmann, David; Sober, Samuel; Nemenman, Ilya
Various theoretical and experimental studies have suggested that sensorimotor learning in animals happens on multiple time scales. In such models, animals can respond to perturbations quickly but keep memories for a long period of time. However, those previous models only focus on average learning behaviors. Here, we propose a model with multiple time scales that deals with the dynamics of whole behavior distributions. The model includes multiple memories, each with a non-Gaussian distribution and its own associated time scale. The memories are combined to generate a distribution of the desired motor command. Our model explains simultaneously the dynamics of distributions of the songbird vocal behaviors in various experiments, including adaptations after step changes or ramps in the error signals and dynamics of forgetting during the washout period, where an immediate sharp approach to the baseline is followed by a prolonged decay. This work was supported partially by NIH Grant # 1 R01 EB022872, and NIH Grant # NS084844.
Continuous-variable entanglement distillation of non-Gaussian mixed states
DEFF Research Database (Denmark)
Dong, Ruifang; Lassen, Mikael Østergaard; Heersink, Joel
2010-01-01
Many different quantum-information communication protocols such as teleportation, dense coding, and entanglement-based quantum key distribution are based on the faithful transmission of entanglement between distant location in an optical network. The distribution of entanglement in such a network...... is, however, hampered by loss and noise that is inherent in all practical quantum channels. Thus, to enable faithful transmission one must resort to the protocol of entanglement distillation. In this paper we present a detailed theoretical analysis and an experimental realization of continuous...... variable entanglement distillation in a channel that is inflicted by different kinds of non-Gaussian noise. The continuous variable entangled states are generated by exploiting the third order nonlinearity in optical fibers, and the states are sent through a free-space laboratory channel in which...
Effect of primordial non-Gaussianities on galaxy clusters scaling relations
Trindade, A. M. M.; da Silva, Antonio
2017-07-01
Galaxy clusters are a valuable source of cosmological information. Their formation and evolution depends on the underlying cosmology and on the statistical nature of the primordial density fluctuations. Here we investigate the impact of primordial non-Gaussianities (PNG) on the scaling properties of galaxy clusters. We performed a series of hydrodynamic N-body simulations featuring adiabatic gas physics and different levels of non-Gaussianity within the Λ cold dark matter framework. We focus on the T-M, S-M, Y-M and YX-M scalings relating the total cluster mass with temperature, entropy and Sunyaev-Zeld'ovich integrated pressure that reflect the thermodynamic state of the intracluster medium. Our results show that PNG have an impact on cluster scalings laws. The scalings mass power-law indexes are almost unaffected by the existence of PNG, but the amplitude and redshift evolution of their normalizations are clearly affected. Changes in the Y-M and YX-M normalizations are as high as 22 per cent and 16 per cent when fNL varies from -500 to 500, respectively. Results are consistent with the view that positive/negative fNL affect cluster profiles due to an increase/decrease of cluster concentrations. At low values of fNL, as suggested by present Planck constraints on a scale invariant fNL, the impact on the scaling normalizations is only a few per cent. However, if fNL varies with scale, PNG may have larger amplitudes at clusters scales; thus, our results suggest that PNG should be taken into account when cluster data are used to infer or forecast cosmological parameters from existing or future cluster surveys.
International Nuclear Information System (INIS)
Haven, Kyle; Majda, Andrew; Abramov, Rafail
2005-01-01
Many situations in complex systems require quantitative estimates of the lack of information in one probability distribution relative to another. In short term climate and weather prediction, examples of these issues might involve the lack of information in the historical climate record compared with an ensemble prediction, or the lack of information in a particular Gaussian ensemble prediction strategy involving the first and second moments compared with the non-Gaussian ensemble itself. The relative entropy is a natural way to quantify the predictive utility in this information, and recently a systematic computationally feasible hierarchical framework has been developed. In practical systems with many degrees of freedom, computational overhead limits ensemble predictions to relatively small sample sizes. Here the notion of predictive utility, in a relative entropy framework, is extended to small random samples by the definition of a sample utility, a measure of the unlikeliness that a random sample was produced by a given prediction strategy. The sample utility is the minimum predictability, with a statistical level of confidence, which is implied by the data. Two practical algorithms for measuring such a sample utility are developed here. The first technique is based on the statistical method of null-hypothesis testing, while the second is based upon a central limit theorem for the relative entropy of moment-based probability densities. These techniques are tested on known probability densities with parameterized bimodality and skewness, and then applied to the Lorenz '96 model, a recently developed 'toy' climate model with chaotic dynamics mimicking the atmosphere. The results show a detection of non-Gaussian tendencies of prediction densities at small ensemble sizes with between 50 and 100 members, with a 95% confidence level
Energy Technology Data Exchange (ETDEWEB)
Li, Wenfang; Du, Jinjin; Wen, Ruijuan; Li, Gang; Zhang, Tiancai, E-mail: tczhang@sxu.edu.cn [State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006 (China)
2014-03-28
We have investigated the transmission spectra of a Fabry-Perot interferometer (FPI) with squeezed vacuum state injection and non-Gaussian detection, including photon number resolving detection and parity detection. In order to show the suitability of the system, parallel studies were made of the performance of two other light sources: coherent state of light and Fock state of light either with classical mean intensity detection or with non-Gaussian detection. This shows that by using the squeezed vacuum state and non-Gaussian detection simultaneously, the resolution of the FPI can go far beyond the cavity standard bandwidth limit based on the current techniques. The sensitivity of the scheme has also been explored and it shows that the minimum detectable sensitivity is better than that of the other schemes.
THE ACS LCID PROJECT: ON THE ORIGIN OF DWARF GALAXY TYPES—A MANIFESTATION OF THE HALO ASSEMBLY BIAS?
Energy Technology Data Exchange (ETDEWEB)
Gallart, Carme; Monelli, Matteo; Aparicio, Antonio; Battaglia, Giuseppina; Drozdovsky, Igor; Hidalgo, Sebastian L. [Instituto de Astrofísica de Canarias, La Laguna, Tenerife (Spain); Mayer, Lucio [Institut für Theoretische Physik, University of Zurich, Zürich (Switzerland); Bernard, Edouard J. [Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom); Cassisi, Santi [INAF-Osservatorio Astronomico di Collurania, Teramo (Italy); Cole, Andrew A. [School of Physical Sciences, University of Tasmania, Private Bag 37, Hobart, TAS 7005 (Australia); Dolphin, Andrew E. [Raytheon, 1151 E. Hermans Road, Tucson, AZ 85706 (United States); Navarro, Julio F. [Department of Physics and Astronomy, University of Victoria, PO Box 1700, STN CSC, Victoria, BC V8W 3P6 (Canada); Salvadori, Stefania [Kapteyn Astronomical Institute, Landleven 12, NL-9747 AD Groningen (Netherlands); Skillman, Evan D. [Minnesota Institute for Astrophysics, University of Minnesota, Minneapolis, MN (United States); Stetson, Peter B. [Herzberg Astronomy and Astrophysics, National Research Council Canada, 5071 West Saanich Road, Victoria, BC V9E 2E7 (Canada); Weisz, Daniel R., E-mail: monelli@iac.es [Astronomy Department, University of Washington, Box 351580, Seattle, WA (United States)
2015-10-01
We discuss how knowledge of the whole evolutionary history of dwarf galaxies, including details on the early star formation events, can provide insight on the origin of the different dwarf galaxy types. We suggest that these types may be imprinted by the early conditions of formation rather than only being the result of a recent morphological transformation driven by environmental effects. We present precise star formation histories of a sample of Local Group dwarf galaxies, derived from color–magnitude diagrams reaching the oldest main-sequence turnoffs. We argue that these galaxies can be assigned to two basic types: fast dwarfs that started their evolution with a dominant and short star formation event and slow dwarfs that formed a small fraction of their stars early and have continued forming stars until the present time (or almost). These two different evolutionary paths do not map directly onto the present-day morphology (dwarf spheroidal versus dwarf irregular). Slow and fast dwarfs also differ in their inferred past location relative to the Milky Way and/or M31, which hints that slow dwarfs were generally assembled in lower-density environments than fast dwarfs. We propose that the distinction between a fast and slow dwarf galaxy primarily reflects the characteristic density of the environment where they form. At a later stage, interaction with a large host galaxy may play a role in the final gas removal and ultimate termination of star formation.
International Nuclear Information System (INIS)
Guo Yongfeng; Xu Wei; Li Dongxi; Xie Wenxian
2008-01-01
A stochastic dissipative dynamical system driven by non-Gaussian noise is investigated. A general approximate Fokker-Planck equation of the system is derived through a path-integral approach. Based on the definition of Shannon's information entropy, the exact time dependence of entropy flux and entropy production of the system is calculated both in the absence and in the presence of non-equilibrium constraint. The present calculation can be used to interpret the interplay of the dissipative constant and non-Gaussian noise on the entropy flux and entropy production
Theoretical analysis of non-Gaussian heterogeneity effects on subsurface flow and transport
Riva, Monica; Guadagnini, Alberto; Neuman, Shlomo P.
2017-04-01
Much of the stochastic groundwater literature is devoted to the analysis of flow and transport in Gaussian or multi-Gaussian log hydraulic conductivity (or transmissivity) fields, Y(x)=ln\\func K(x) (x being a position vector), characterized by one or (less frequently) a multiplicity of spatial correlation scales. Yet Y and many other variables and their (spatial or temporal) increments, ΔY, are known to be generally non-Gaussian. One common manifestation of non-Gaussianity is that whereas frequency distributions of Y often exhibit mild peaks and light tails, those of increments ΔY are generally symmetric with peaks that grow sharper, and tails that become heavier, as separation scale or lag between pairs of Y values decreases. A statistical model that captures these disparate, scale-dependent distributions of Y and ΔY in a unified and consistent manner has been recently proposed by us. This new "generalized sub-Gaussian (GSG)" model has the form Y(x)=U(x)G(x) where G(x) is (generally, but not necessarily) a multiscale Gaussian random field and U(x) is a nonnegative subordinator independent of G. The purpose of this paper is to explore analytically, in an elementary manner, lead-order effects that non-Gaussian heterogeneity described by the GSG model have on the stochastic description of flow and transport. Recognizing that perturbation expansion of hydraulic conductivity K=eY diverges when Y is sub-Gaussian, we render the expansion convergent by truncating Y's domain of definition. We then demonstrate theoretically and illustrate by way of numerical examples that, as the domain of truncation expands, (a) the variance of truncated Y (denoted by Yt) approaches that of Y and (b) the pdf (and thereby moments) of Yt increments approach those of Y increments and, as a consequence, the variogram of Yt approaches that of Y. This in turn guarantees that perturbing Kt=etY to second order in σYt (the standard deviation of Yt) yields results which approach those we obtain
A neural-network based estimator to search for primordial non-Gaussianity in Planck CMB maps
Energy Technology Data Exchange (ETDEWEB)
Novaes, C.P.; Bernui, A. [Observatório Nacional, Rua General José Cristino 77, São Cristóvão, 20921-400, Rio de Janeiro, RJ (Brazil); Ferreira, I.S. [Instituto de Física, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Asa Norte, 70919-970, Brasília, DF (Brazil); Wuensche, C.A., E-mail: camilapnovaes@gmail.com, E-mail: bernui@on.br, E-mail: ivan@fis.unb.br, E-mail: ca.wuensche@inpe.br [Divisão de Astrofísica, Instituto Nacional de Pesquisas Espaciais, Av. dos Astronautas 1758, São José dos Campos, 12227-010, SP (Brazil)
2015-09-01
We present an upgraded combined estimator, based on Minkowski Functionals and Neural Networks, with excellent performance in detecting primordial non-Gaussianity in simulated maps that also contain a weighted mixture of Galactic contaminations, besides real pixel's noise from Planck cosmic microwave background radiation data. We rigorously test the efficiency of our estimator considering several plausible scenarios for residual non-Gaussianities in the foreground-cleaned Planck maps, with the intuition to optimize the training procedure of the Neural Network to discriminate between contaminations with primordial and secondary non-Gaussian signatures. We look for constraints of primordial local non-Gaussianity at large angular scales in the foreground-cleaned Planck maps. For the SMICA map we found f{sub NL} = 33 ± 23, at 1σ confidence level, in excellent agreement with the WMAP-9yr and Planck results. In addition, for the other three Planck maps we obtain similar constraints with values in the interval f{sub NL} element of [33, 41], concomitant with the fact that these maps manifest distinct features in reported analyses, like having different pixel's noise intensities.
Czech Academy of Sciences Publication Activity Database
Lamperti, M.; Allevi, A.; Bondani, M.; Machulka, R.; Michálek, Václav; Haderka, O.; Peřina Jr., J.
2014-01-01
Roč. 12, č. 2 (2014), "1461017-1"-"1461017-7" ISSN 0219-7499 R&D Projects: GA ČR GAP205/12/0382 Institutional support: RVO:68378271 Keywords : quantum state engineering and measurements * parametric down-conversion * photodetectors * sub-Poissonian statistics * non-Gaussianity Subject RIV: BH - Optics, Masers, Lasers Impact factor: 0.877, year: 2014
Directory of Open Access Journals (Sweden)
Carlos A. L. Pires
2017-01-01
Full Text Available We propose an expansion of multivariate time-series data into maximally independent source subspaces. The search is made among rotations of prewhitened data which maximize non-Gaussianity of candidate sources. We use a tensorial invariant approximation of the multivariate negentropy in terms of a linear combination of squared coskewness and cokurtosis. By solving a high-order singular value decomposition problem, we extract the axes associated with most non-Gaussianity. Moreover, an estimate of the Gaussian subspace is provided by the trailing singular vectors. The independent subspaces are obtained through the search of “quasi-independent” components within the estimated non-Gaussian subspace, followed by the identification of groups with significant joint negentropies. Sources result essentially from the coherency of extremes of the data components. The method is then applied to the global sea surface temperature anomalies, equatorward of 65°, after being tested with non-Gaussian surrogates consistent with the data anomalies. The main emerging independent components and subspaces, supposedly generated by independent forcing, include different variability modes, namely, The East-Pacific, the Central Pacific, and the Atlantic Niños, the Atlantic Multidecadal Oscillation, along with the subtropical dipoles in the Indian, South Pacific, and South-Atlantic oceans. Benefits and usefulness of independent subspaces are then discussed.
Czech Academy of Sciences Publication Activity Database
Jeon, J. H.; Javanainen, M.; Martinez-Seara, Hector; Metzler, R.; Vattulainen, I.
2016-01-01
Roč. 6, č. 2 (2016), č. článku 021006. ISSN 2160-3308 Institutional support: RVO:61388963 Keywords : protein crowding * membranes * simulations * diffusion * non-Gaussian anomalous diffusion Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 12.789, year: 2016 http://journals. aps .org/prx/abstract/10.1103/PhysRevX.6.021006
DEFF Research Database (Denmark)
Andreasen, Martin Møller; Christensen, Bent Jesper
This paper suggests a new and easy approach to estimate linear and non-linear dynamic term structure models with latent factors. We impose no distributional assumptions on the factors and they may therefore be non-Gaussian. The novelty of our approach is to use many observables (yields or bonds p...
ENSO's non-stationary and non-Gaussian character: the role of climate shifts
Boucharel, J.; Dewitte, B.; Garel, B.; Du Penhoat, Y.
2009-07-01
El Niño Southern Oscillation (ENSO) is the dominant mode of climate variability in the Pacific, having socio-economic impacts on surrounding regions. ENSO exhibits significant modulation on decadal to inter-decadal time scales which is related to changes in its characteristics (onset, amplitude, frequency, propagation, and predictability). Some of these characteristics tend to be overlooked in ENSO studies, such as its asymmetry (the number and amplitude of warm and cold events are not equal) and the deviation of its statistics from those of the Gaussian distribution. These properties could be related to the ability of the current generation of coupled models to predict ENSO and its modulation. Here, ENSO's non-Gaussian nature and asymmetry are diagnosed from in situ data and a variety of models (from intermediate complexity models to full-physics coupled general circulation models (CGCMs)) using robust statistical tools initially designed for financial mathematics studies. In particular α-stable laws are used as theoretical background material to measure (and quantify) the non-Gaussian character of ENSO time series and to estimate the skill of ``naïve'' statistical models in producing deviation from Gaussian laws and asymmetry. The former are based on non-stationary processes dominated by abrupt changes in mean state and empirical variance. It is shown that the α-stable character of ENSO may result from the presence of climate shifts in the time series. Also, cool (warm) periods are associated with ENSO statistics having a stronger (weaker) tendency towards Gaussianity and lower (greater) asymmetry. This supports the hypothesis of ENSO being rectified by changes in mean state through nonlinear processes. The relationship between changes in mean state and nonlinearity (skewness) is further investigated both in the Zebiak and Cane (1987)'s model and the models of the Intergovernmental Panel for Climate Change (IPCC). Whereas there is a clear relationship in all
Xiang, Yu; Xu, Buqing; Mišta, Ladislav; Tufarelli, Tommaso; He, Qiongyi; Adesso, Gerardo
2017-10-01
Einstein-Podolsky-Rosen (EPR) steering is an asymmetric form of correlations which is intermediate between quantum entanglement and Bell nonlocality, and can be exploited as a resource for quantum communication with one untrusted party. In particular, steering of continuous-variable Gaussian states has been extensively studied theoretically and experimentally, as a fundamental manifestation of the EPR paradox. While most of these studies focused on quadrature measurements for steering detection, two recent works revealed that there exist Gaussian states which are only steerable by suitable non-Gaussian measurements. In this paper we perform a systematic investigation of EPR steering of bipartite Gaussian states by pseudospin measurements, complementing and extending previous findings. We first derive the density-matrix elements of two-mode squeezed thermal Gaussian states in the Fock basis, which may be of independent interest. We then use such a representation to investigate steering of these states as detected by a simple nonlinear criterion, based on second moments of the correlation matrix constructed from pseudospin operators. This analysis reveals previously unexplored regimes where non-Gaussian measurements are shown to be more effective than Gaussian ones to witness steering of Gaussian states in the presence of local noise. We further consider an alternative set of pseudospin observables, whose expectation value can be expressed more compactly in terms of Wigner functions for all two-mode Gaussian states. However, according to the adopted criterion, these observables are found to be always less sensitive than conventional Gaussian observables for steering detection. Finally, we investigate continuous-variable Werner states, which are non-Gaussian mixtures of Gaussian states, and find that pseudospin measurements are always more effective than Gaussian ones to reveal their steerability. Our results provide useful insights on the role of non-Gaussian
Statistical Analysis of Hyper-Spectral Data: A Non-Gaussian Approach
Directory of Open Access Journals (Sweden)
M. Diani
2007-01-01
Full Text Available We investigate the statistical modeling of hyper-spectral data. The accurate modeling of experimental data is critical in target detection and classification applications. In fact, having a statistical model that is capable of properly describing data variability leads to the derivation of the best decision strategies together with a reliable assessment of algorithm performance. Most existing classification and target detection algorithms are based on the multivariate Gaussian model which, in many cases, deviates from the true statistical behavior of hyper-spectral data. This motivated us to investigate the capability of non-Gaussian models to represent data variability in each background class. In particular, we refer to models based on elliptically contoured (EC distributions. We consider multivariate EC-t distribution and two distinct mixture models based on EC distributions. We describe the methodology adopted for the statistical analysis and we propose a technique to automatically estimate the unknown parameters of statistical models. Finally, we discuss the results obtained by analyzing data gathered by the multispectral infrared and visible imaging spectrometer (MIVIS sensor.
Triadic Non-Gaussian low-frequency Teleconnections in the Atmosphere and Ocean
Pires, Carlos; Perdigão, Rui
2014-05-01
Teleconnections (TCs) normally rely upon long distance and simultaneous/lagged non-zero correlations of a geophysical field. However, for non-Gaussian multivariate probability distributions like that of the space spanned by low-frequency atmospheric-oceanic components, the linear Pearson correlation can be zero whereas some nonlinear correlation is nonzero. Therefore, in the non-Gaussian world, TCs can only be correctly assessed by the multiinformation (MI) - generalization of mutual information for any number of variables. Non-Gaussianity of spatially-distributed geophysical complex networks, still allows for a more 'exotic' behavior (triads), where three variables X,Y,Z (e.g. field values taken at three mutually distant points) are uncorrelated or even pair-wised statistically independent, (i.e. vanishing mutual information I(X,Y)=I(X,Z)=I(Y,Z)=0), while the triadic MI I(X,Y,Z) is greater than zero. These 'threesome' TCs (perfect and almost perfect triads) are shown to exist in the atmospheric-oceanic monthly-decadal timescale variability. In order to show that, two datasets are used: a) monthly-running averages of the stream-function fields issued from a million-day run of a quasi-geostrophic 3-level, T21 model (QG-model); b) annual-running SST averages for the 1880-2012 period, taken from GISS. The intensity of triadic TCs are measured by the interaction multiinformation (IMI) II(X,Y,Z)=I(X,Y,Z)-[I(X,Y)+I(X,Z)+I(Y,Z)] which is positive (negative) in case of synergy (redundancy) among variables. A relevant remark is the fact that the coarse-grained IMI version is maximal when the categorical variable outcomes satisfy a Latin-Square relationship (e.g. the Boolean exclusive disjunction of 2 symbols, i.e. Z=Xand/orY, the Sudoku game of 9 symbols). We devise an optimization gradient-descent-based algorithm for finding triads in the space of orthogonally rotated normalized principal components (RN-PCs) of the analyzed field. RN-PCs (X,Y,Z) are uncorrelated by
A Geostatistical Scaling Approach for the Generation of Non Gaussian Random Variables and Increments
Guadagnini, Alberto; Neuman, Shlomo P.; Riva, Monica; Panzeri, Marco
2016-04-01
We address manifestations of non-Gaussian statistical scaling displayed by many variables, Y, and their (spatial or temporal) increments. Evidence of such behavior includes symmetry of increment distributions at all separation distances (or lags) with sharp peaks and heavy tails which tend to decay asymptotically as lag increases. Variables reported to exhibit such distributions include quantities of direct relevance to hydrogeological sciences, e.g. porosity, log permeability, electrical resistivity, soil and sediment texture, sediment transport rate, rainfall, measured and simulated turbulent fluid velocity, and other. No model known to us captures all of the documented statistical scaling behaviors in a unique and consistent manner. We recently proposed a generalized sub-Gaussian model (GSG) which reconciles within a unique theoretical framework the probability distributions of a target variable and its increments. We presented an algorithm to generate unconditional random realizations of statistically isotropic or anisotropic GSG functions and illustrated it in two dimensions. In this context, we demonstrated the feasibility of estimating all key parameters of a GSG model underlying a single realization of Y by analyzing jointly spatial moments of Y data and corresponding increments. Here, we extend our GSG model to account for noisy measurements of Y at a discrete set of points in space (or time), present an algorithm to generate conditional realizations of corresponding isotropic or anisotropic random field, and explore them on one- and two-dimensional synthetic test cases.
Non-Gaussian resistance noise in misfit layer compounds: Bi-Se-Cr
Peng, Lintao; Freedman, Alex; Clarke, Samantha; Freedman, Danna; Grayson, M.
Misfit layer ternary compounds Bi-Se-Cr have been synthesized and structurally and magnetically characterized. However, the nature of the magnetic ordering below the transition temperature remains debatable between ferromagnetic and spin-glass. These misfit layer compounds consist of two alternating chalcogenide layers of CrSe2 and BiSe along the c-axis. Whereas the a-axis is lattice matched, the lattice mismatch along the b-axis introduces non-periodic modulation of atomic position leading to quasi-crystalline order along the b-axis alone. We explore unconventional electrical transport properties in the noise spectrum of these compounds. After thinning down the compounds to nanoscale, Van der Pauw devices are fabricated with standard electron beam lithography process. Large resistance noise was observed at temperature below the Cure temperature. The magnitude of resistance noise is much greater than trivial intrinsic noises like thermal Johnson noise and increases as temperature decreases. The probability density function of the relative noise shows 2-4 peaks among different observations which indicate strong non-Gaussian statistic property suggesting glassy behaviors in this material.
Self-focusing of a non-Gaussian laser mode in a dense plasma
International Nuclear Information System (INIS)
Nayyar, V.P.
1978-01-01
This paper presents a study of the self-focusing of a high-power non-Gaussian laser beam operating in TEM 01 mode in a strongly ionized plasma. The nonlinearity in the dielectric constant is caused by the nonuniform redistribution of carriers due to their inhomogeneous heating by the laser beam having transverse variation of intensity along its wave front. It is found that when the power of the beam exceeds the critical power, focusing effects are observed in the Y direction, whereas divergence of the beam takes place in the X direction. In the reverse case (when P 2 first increases in the Y direction, after penetrating a certain depth it reaches a broadened maxima and then starts decreasing with the distance of propagation inside the medium. The beam continues diverging in the X direction. It has also been found that absorption brings about a reduction in the extent of self-focusing. When the absorption length is less than the self-focusing length appreciable self-focusing does not take place
A Hybrid Monte Carlo Sampling Filter for Non-Gaussian Data Assimilation
Directory of Open Access Journals (Sweden)
Adrian Sandu
2015-12-01
Full Text Available Data assimilation combines information from models, measurements, and priors to obtain improved estimates of the state of a dynamical system such as the atmosphere. Ensemble-based data assimilation approaches such as the Ensemble Kalman filter (EnKF have gained wide popularity due to their simple formulation, ease of implementation, and good practical results. Many of these methods are derived under the assumption that the underlying probability distributions are Gaussian. It is well accepted, however, that the Gaussianity assumption is too restrictive when applied to large nonlinear models, nonlinear observation operators, and large levels of uncertainty. When the Gaussianity assumptions are severely violated, the performance of EnKF variations degrades. This paper proposes a new ensemble-based data assimilation method, named the sampling filter, which obtains the analysis by sampling directly from the posterior distribution. The sampling strategy is based on a Hybrid Monte Carlo (HMC approach that can handle non-Gaussian probability distributions. Numerical experiments are carried out using the Lorenz-96 model and observation operators with different levels of non-linearity and differentiability. The proposed filter is also tested with shallow water model on a sphere with linear observation operator. Numerical results show that the sampling filter performs well even in highly nonlinear situations where the traditional filters diverge.
Non-Gaussian spatiotemporal simulation of multisite daily precipitation: downscaling framework
Ben Alaya, M. A.; Ouarda, T. B. M. J.; Chebana, F.
2018-01-01
Probabilistic regression approaches for downscaling daily precipitation are very useful. They provide the whole conditional distribution at each forecast step to better represent the temporal variability. The question addressed in this paper is: how to simulate spatiotemporal characteristics of multisite daily precipitation from probabilistic regression models? Recent publications point out the complexity of multisite properties of daily precipitation and highlight the need for using a non-Gaussian flexible tool. This work proposes a reasonable compromise between simplicity and flexibility avoiding model misspecification. A suitable nonparametric bootstrapping (NB) technique is adopted. A downscaling model which merges a vector generalized linear model (VGLM as a probabilistic regression tool) and the proposed bootstrapping technique is introduced to simulate realistic multisite precipitation series. The model is applied to data sets from the southern part of the province of Quebec, Canada. It is shown that the model is capable of reproducing both at-site properties and the spatial structure of daily precipitations. Results indicate the superiority of the proposed NB technique, over a multivariate autoregressive Gaussian framework (i.e. Gaussian copula).
International Nuclear Information System (INIS)
Kenfack, Lionel Tenemeza; Tchoffo, Martin; Fai, Lukong Cornelius; Fouokeng, Georges Collince
2017-01-01
We address the entanglement dynamics of a three-qubit system interacting with a classical fluctuating environment described either by a Gaussian or non-Gaussian noise in three different configurations namely: common, independent and mixed environments. Specifically, we focus on the Ornstein-Uhlenbeck (OU) noise and the random telegraph noise (RTN). The qubits are prepared in a state composed of a Greenberger-Horne-Zeilinger (GHZ) and a W state. With the help of the tripartite negativity, we show that the entanglement evolution is not only affected by the type of system-environment coupling but also by the kind and the memory properties of the considered noise. We also compared the dynamics induced by the two kinds of noise and we find that even if both noises have a Lorentzian spectrum, the effects of the OU noise cannot be in a simple way deduced from those of the RTN and vice-versa. In addition, we show that the entanglement can be indefinitely preserved when the qubits are coupled to the environmental noise in a common environment (CE). Finally, the presence or absence of peculiar phenomena such as entanglement revivals (ER) and entanglement sudden death (ESD) is observed.
EVOLUTION OF THE MAGNETIC FIELD LINE DIFFUSION COEFFICIENT AND NON-GAUSSIAN STATISTICS
Energy Technology Data Exchange (ETDEWEB)
Snodin, A. P. [Department of Mathematics, Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok, Bangkok 10800 (Thailand); Ruffolo, D. [Department of Physics, Faculty of Science, Mahidol University, Bangkok 10400 (Thailand); Matthaeus, W. H. [Bartol Research Institute and Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States)
2016-08-20
The magnetic field line random walk (FLRW) plays an important role in the transport of energy and particles in turbulent plasmas. For magnetic fluctuations that are transverse or almost transverse to a large-scale mean magnetic field, theories describing the FLRW usually predict asymptotic diffusion of magnetic field lines perpendicular to the mean field. Such theories often depend on the assumption that one can relate the Lagrangian and Eulerian statistics of the magnetic field via Corrsin’s hypothesis, and additionally take the distribution of magnetic field line displacements to be Gaussian. Here we take an ordinary differential equation (ODE) model with these underlying assumptions and test how well it describes the evolution of the magnetic field line diffusion coefficient in 2D+slab magnetic turbulence, by comparisons to computer simulations that do not involve such assumptions. In addition, we directly test the accuracy of the Corrsin approximation to the Lagrangian correlation. Over much of the studied parameter space we find that the ODE model is in fairly good agreement with computer simulations, in terms of both the evolution and asymptotic values of the diffusion coefficient. When there is poor agreement, we show that this can be largely attributed to the failure of Corrsin’s hypothesis rather than the assumption of Gaussian statistics of field line displacements. The degree of non-Gaussianity, which we measure in terms of the kurtosis, appears to be an indicator of how well Corrsin’s approximation works.
Non-Gaussian Analysis of Turbulent Boundary Layer Fluctuating Pressure on Aircraft Skin Panels
Rizzi, Stephen A.; Steinwolf, Alexander
2005-01-01
The purpose of the study is to investigate the probability density function (PDF) of turbulent boundary layer fluctuating pressures measured on the outer sidewall of a supersonic transport aircraft and to approximate these PDFs by analytical models. Experimental flight results show that the fluctuating pressure PDFs differ from the Gaussian distribution even for standard smooth surface conditions. The PDF tails are wider and longer than those of the Gaussian model. For pressure fluctuations in front of forward-facing step discontinuities, deviations from the Gaussian model are more significant and the PDFs become asymmetrical. There is a certain spatial pattern of the skewness and kurtosis behavior depending on the distance upstream from the step. All characteristics related to non-Gaussian behavior are highly dependent upon the distance from the step and the step height, less dependent on aircraft speed, and not dependent on the fuselage location. A Hermite polynomial transform model and a piecewise-Gaussian model fit the flight data well both for the smooth and stepped conditions. The piecewise-Gaussian approximation can be additionally regarded for convenience in usage after the model is constructed.
Energy Technology Data Exchange (ETDEWEB)
Kenfack, Lionel Tenemeza, E-mail: kenfacklionel300@gmail.com [Mesoscopic and Multilayer Structure Laboratory, Department of Physics, Faculty of Science, University of Dschang, PO Box: 67 Dschang (Cameroon); Tchoffo, Martin; Fai, Lukong Cornelius [Mesoscopic and Multilayer Structure Laboratory, Department of Physics, Faculty of Science, University of Dschang, PO Box: 67 Dschang (Cameroon); Fouokeng, Georges Collince [Mesoscopic and Multilayer Structure Laboratory, Department of Physics, Faculty of Science, University of Dschang, PO Box: 67 Dschang (Cameroon); Laboratoire de Génie des Matériaux, Pôle Recherche-Innovation-Entrepreneuriat (PRIE), Institut Universitaire de la Côte, BP 3001 Douala (Cameroon)
2017-04-15
We address the entanglement dynamics of a three-qubit system interacting with a classical fluctuating environment described either by a Gaussian or non-Gaussian noise in three different configurations namely: common, independent and mixed environments. Specifically, we focus on the Ornstein-Uhlenbeck (OU) noise and the random telegraph noise (RTN). The qubits are prepared in a state composed of a Greenberger-Horne-Zeilinger (GHZ) and a W state. With the help of the tripartite negativity, we show that the entanglement evolution is not only affected by the type of system-environment coupling but also by the kind and the memory properties of the considered noise. We also compared the dynamics induced by the two kinds of noise and we find that even if both noises have a Lorentzian spectrum, the effects of the OU noise cannot be in a simple way deduced from those of the RTN and vice-versa. In addition, we show that the entanglement can be indefinitely preserved when the qubits are coupled to the environmental noise in a common environment (CE). Finally, the presence or absence of peculiar phenomena such as entanglement revivals (ER) and entanglement sudden death (ESD) is observed.
Directory of Open Access Journals (Sweden)
Carlos A. L. Pires
2013-02-01
Full Text Available The Minimum Mutual Information (MinMI Principle provides the least committed, maximum-joint-entropy (ME inferential law that is compatible with prescribed marginal distributions and empirical cross constraints. Here, we estimate MI bounds (the MinMI values generated by constraining sets Tcr comprehended by mcr linear and/or nonlinear joint expectations, computed from samples of N iid outcomes. Marginals (and their entropy are imposed by single morphisms of the original random variables. N-asymptotic formulas are given both for the distribution of cross expectation’s estimation errors, the MinMI estimation bias, its variance and distribution. A growing Tcr leads to an increasing MinMI, converging eventually to the total MI. Under N-sized samples, the MinMI increment relative to two encapsulated sets Tcr1 ⊂ Tcr2 (with numbers of constraints mcr1
International Nuclear Information System (INIS)
Mandel, Kaisey S.; Kirshner, Robert P.; Foley, Ryan J.
2014-01-01
We investigate the statistical dependence of the peak intrinsic colors of Type Ia supernovae (SNe Ia) on their expansion velocities at maximum light, measured from the Si II λ6355 spectral feature. We construct a new hierarchical Bayesian regression model, accounting for the random effects of intrinsic scatter, measurement error, and reddening by host galaxy dust, and implement a Gibbs sampler and deviance information criteria to estimate the correlation. The method is applied to the apparent colors from BVRI light curves and Si II velocity data for 79 nearby SNe Ia. The apparent color distributions of high-velocity (HV) and normal velocity (NV) supernovae exhibit significant discrepancies for B – V and B – R, but not other colors. Hence, they are likely due to intrinsic color differences originating in the B band, rather than dust reddening. The mean intrinsic B – V and B – R color differences between HV and NV groups are 0.06 ± 0.02 and 0.09 ± 0.02 mag, respectively. A linear model finds significant slopes of –0.021 ± 0.006 and –0.030 ± 0.009 mag (10 3 km s –1 ) –1 for intrinsic B – V and B – R colors versus velocity, respectively. Because the ejecta velocity distribution is skewed toward high velocities, these effects imply non-Gaussian intrinsic color distributions with skewness up to +0.3. Accounting for the intrinsic-color-velocity correlation results in corrections to A V extinction estimates as large as –0.12 mag for HV SNe Ia and +0.06 mag for NV events. Velocity measurements from SN Ia spectra have the potential to diminish systematic errors from the confounding of intrinsic colors and dust reddening affecting supernova distances
Discriminative learning of receptive fields from responses to non-Gaussian stimulus ensembles.
Directory of Open Access Journals (Sweden)
Arne F Meyer
Full Text Available Analysis of sensory neurons' processing characteristics requires simultaneous measurement of presented stimuli and concurrent spike responses. The functional transformation from high-dimensional stimulus space to the binary space of spike and non-spike responses is commonly described with linear-nonlinear models, whose linear filter component describes the neuron's receptive field. From a machine learning perspective, this corresponds to the binary classification problem of discriminating spike-eliciting from non-spike-eliciting stimulus examples. The classification-based receptive field (CbRF estimation method proposed here adapts a linear large-margin classifier to optimally predict experimental stimulus-response data and subsequently interprets learned classifier weights as the neuron's receptive field filter. Computational learning theory provides a theoretical framework for learning from data and guarantees optimality in the sense that the risk of erroneously assigning a spike-eliciting stimulus example to the non-spike class (and vice versa is minimized. Efficacy of the CbRF method is validated with simulations and for auditory spectro-temporal receptive field (STRF estimation from experimental recordings in the auditory midbrain of Mongolian gerbils. Acoustic stimulation is performed with frequency-modulated tone complexes that mimic properties of natural stimuli, specifically non-Gaussian amplitude distribution and higher-order correlations. Results demonstrate that the proposed approach successfully identifies correct underlying STRFs, even in cases where second-order methods based on the spike-triggered average (STA do not. Applied to small data samples, the method is shown to converge on smaller amounts of experimental recordings and with lower estimation variance than the generalized linear model and recent information theoretic methods. Thus, CbRF estimation may prove useful for investigation of neuronal processes in response to
Energy Technology Data Exchange (ETDEWEB)
Miao, Yan-Gang [Nankai University, School of Physics, Tianjin (China); Chinese Academy of Sciences, State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, P.O. Box 2735, Beijing (China); CERN, PH-TH Division, Geneva 23 (Switzerland); Xu, Zhen-Ming [Nankai University, School of Physics, Tianjin (China)
2016-04-15
Considering non-Gaussian smeared matter distributions, we investigate the thermodynamic behaviors of the noncommutative high-dimensional Schwarzschild-Tangherlini anti-de Sitter black hole, and we obtain the condition for the existence of extreme black holes. We indicate that the Gaussian smeared matter distribution, which is a special case of non-Gaussian smeared matter distributions, is not applicable for the six- and higher-dimensional black holes due to the hoop conjecture. In particular, the phase transition is analyzed in detail. Moreover, we point out that the Maxwell equal area law holds for the noncommutative black hole whose Hawking temperature is within a specific range, but fails for one whose the Hawking temperature is beyond this range. (orig.)
Miao, Yan-Gang
2016-01-01
Considering non-Gaussian smeared matter distributions, we investigate thermodynamic behaviors of the noncommutative high-dimensional Schwarzschild-Tangherlini anti-de Sitter black hole, and obtain the condition for the existence of extreme black holes. We indicate that the Gaussian smeared matter distribution, which is a special case of non-Gaussian smeared matter distributions, is not applicable for the 6- and higher-dimensional black holes due to the hoop conjecture. In particular, the phase transition is analyzed in detail. Moreover, we point out that the Maxwell equal area law maintains for the noncommutative black hole with the Hawking temperature within a specific range, but fails with the Hawking temperature beyond this range.
Phase coherence among the Fourier modes and non-Gaussian characteristics in the Alfvén chaos system
Nariyuki, Yasuhiro; Sasaki, Makoto; Kasuya, Naohiro; Hada, Tohru; Yagi, Masatoshi
2017-03-01
Non-Gaussian characteristics in time series of the Alfvén chaos system are discussed. The phase coherence index, a measure defined by using the surrogate data method and the structure function, is used to evaluate the phase coherence among the Fourier modes. Through Monte Carlo significance testing, it is found that the phase coherence decays monotonically with increasing dissipative parameter and time scale. By applying the Mori projection operator method assuming the Markov process, a model equation for the time correlation function is derived from the generalized Langevin equation. As opposed to the result of the phase coherence analysis, it is concluded that the difference between the direct numerical simulation and the model equation becomes pronounced as the dissipative parameters are increased. This suggests that, even when the phase coherence index is not significant, the underlying physical system may be a non-Gaussian process.
Camera, Stefano; Santos, Mário G; Ferreira, Pedro G; Ferramacho, Luís
2013-10-25
The large-scale structure of the Universe supplies crucial information about the physical processes at play at early times. Unresolved maps of the intensity of 21 cm emission from neutral hydrogen HI at redshifts z=/~1-5 are the best hope of accessing the ultralarge-scale information, directly related to the early Universe. A purpose-built HI intensity experiment may be used to detect the large scale effects of primordial non-Gaussianity, placing stringent bounds on different models of inflation. We argue that it may be possible to place tight constraints on the non-Gaussianity parameter f(NL), with an error close to σ(f(NL))~1.
Tyagi, Neha; Cherayil, Binny J.
2018-03-01
The increasingly widespread occurrence in complex fluids of particle motion that is both Brownian and non-Gaussian has recently been found to be successfully modeled by a process (frequently referred to as ‘diffusing diffusivity’) in which the white noise that governs Brownian diffusion is itself stochastically modulated by either Ornstein–Uhlenbeck dynamics or by two-state noise. But the model has so far not been able to account for an aspect of non-Gaussian Brownian motion that is also commonly observed: a non-monotonic decay of the parameter that quantifies the extent of deviation from Gaussian behavior. In this paper, we show that the inclusion of memory effects in the model—via a generalized Langevin equation—can rationalise this phenomenon.
International Nuclear Information System (INIS)
Chrzanowski, H. M.; Bernu, J.; Sparkes, B. M.; Hage, B.; Lam, P. K.; Symul, T.; Lund, A. P.; Ralph, T. C.
2011-01-01
The nonlinearity of a conditional photon-counting measurement can be used to ''de-Gaussify'' a Gaussian state of light. Here we present and experimentally demonstrate a technique for photon-number resolution using only homodyne detection. We then apply this technique to inform a conditional measurement, unambiguously reconstructing the statistics of the non-Gaussian one- and two-photon-subtracted squeezed vacuum states. Although our photon-number measurement relies on ensemble averages and cannot be used to prepare non-Gaussian states of light, its high efficiency, photon-number-resolving capabilities, and compatibility with the telecommunications band make it suitable for quantum-information tasks relying on the outcomes of mean values.
Directory of Open Access Journals (Sweden)
I.V. Pylyuk
2013-06-01
Full Text Available The application of the collective variables method to the study of the behaviour of nonuniversal characteristics of the system in the critical region is illustrated by an example of the order parameter. Explicit expressions for the order parameter (the average spin moment of a three-dimensional uniaxial magnet are obtained in approximations of quartic and sextic non-Gaussian fluctuation distributions (the ρ4 and ρ6 models, respectively, taking into account confluent corrections. Some distinctive features appearing in the process of calculating the order parameter on the basis of two successive non-Gaussian approximations are indicated. The dependence of the average spin moment of an Ising-like system on the temperature and microscopic parameters is studied.
Energy Technology Data Exchange (ETDEWEB)
Zentner, I. [IMSIA, UMR EDF-ENSTA-CNRS-CEA 9219, Université Paris-Saclay, 828 Boulevard des Maréchaux, 91762 Palaiseau Cedex (France); Ferré, G., E-mail: gregoire.ferre@ponts.org [CERMICS – Ecole des Ponts ParisTech, 6 et 8 avenue Blaise Pascal, Cité Descartes, Champs sur Marne, 77455 Marne la Vallée Cedex 2 (France); Poirion, F. [Department of Structural Dynamics and Aeroelasticity, ONERA, BP 72, 29 avenue de la Division Leclerc, 92322 Chatillon Cedex (France); Benoit, M. [Institut de Recherche sur les Phénomènes Hors Equilibre (IRPHE), UMR 7342 (CNRS, Aix-Marseille Université, Ecole Centrale Marseille), 49 rue Frédéric Joliot-Curie, BP 146, 13384 Marseille Cedex 13 (France)
2016-06-01
In this paper, a new method for the identification and simulation of non-Gaussian and non-stationary stochastic fields given a database is proposed. It is based on two successive biorthogonal decompositions aiming at representing spatio–temporal stochastic fields. The proposed double expansion allows to build the model even in the case of large-size problems by separating the time, space and random parts of the field. A Gaussian kernel estimator is used to simulate the high dimensional set of random variables appearing in the decomposition. The capability of the method to reproduce the non-stationary and non-Gaussian features of random phenomena is illustrated by applications to earthquakes (seismic ground motion) and sea states (wave heights).
Energy Technology Data Exchange (ETDEWEB)
Chrzanowski, H. M.; Bernu, J.; Sparkes, B. M.; Hage, B.; Lam, P. K.; Symul, T. [Centre for Quantum Computation and Communication Technology, Quantum Optics group, Department of Quantum Science, Research School of Physics and Engineering, Australian National University, Canberra ACT 0200 (Australia); Lund, A. P. [Centre for Quantum Computation and Communication Technology, Centre for Quantum Dynamics, Griffith University, Nathan QLD 4111 (Australia); Ralph, T. C. [Centre for Quantum Computation and Communication Technology, Department of Physics, University of Queensland, St. Lucia QLD 4072 (Australia)
2011-11-15
The nonlinearity of a conditional photon-counting measurement can be used to ''de-Gaussify'' a Gaussian state of light. Here we present and experimentally demonstrate a technique for photon-number resolution using only homodyne detection. We then apply this technique to inform a conditional measurement, unambiguously reconstructing the statistics of the non-Gaussian one- and two-photon-subtracted squeezed vacuum states. Although our photon-number measurement relies on ensemble averages and cannot be used to prepare non-Gaussian states of light, its high efficiency, photon-number-resolving capabilities, and compatibility with the telecommunications band make it suitable for quantum-information tasks relying on the outcomes of mean values.
Fast fitting of non-Gaussian state-space models to animal movement data via Template Model Builder
DEFF Research Database (Denmark)
Albertsen, Christoffer Moesgaard; Whoriskey, Kim; Yurkowski, David
2015-01-01
recommend using the Laplace approximation combined with automatic differentiation (as implemented in the novel R package Template Model Builder; TMB) for the fast fitting of continuous-time multivariate non-Gaussian SSMs. Through Argos satellite tracking data, we demonstrate that the use of continuous...... are able to estimate additional parameters compared to previous methods, all without requiring a substantial increase in computational time. The model implementation is made available through the R package argosTrack....
Energy Technology Data Exchange (ETDEWEB)
Orr, Nigel [Lab. de Physique Corpusculaire, Caen Univ., 14 (France); Collaboration: La Direction des Sciences de la Matiere du CEA (FR); Le Fonds National de la Recherche Scientifique de Belgique (BE)
1998-12-31
A brief overview of the nuclear halo is presented. Following some historical remarks the general characteristics of the halo systems are discussed with reference to a simple model. The conditions governing the formation of halos are also explored, as are two subjects of current interest - low-lying resonances of halo nucleon correlations. (author) 54 refs., 16 figs., 1 tabs.
Lentka, Łukasz; Smulko, Janusz; Kotarski, Mateusz; Granqvist, Claes-Göran; Ionescu, Radu
2017-04-03
Volatile organic compounds, such as formaldehyde, can be used as biomarkers in human exhaled breath in order to non-invasively detect various diseases, and the same compounds are of much interest also in the context of environmental monitoring and protection. Here, we report on a recently-developed gas sensor, based on surface-functionalized gold nanoparticles, which is able to generate voltage noise with a distinctly non-Gaussian component upon exposure to formaldehyde with concentrations on the ppm level, whereas this component is absent, or at least much weaker, when the sensor is exposed to ethanol or to pure air. We survey four different statistical methods to elucidate a non-Gaussian component and assess their pros and cons with regard to efficient gas detection. Specifically, the non-Gaussian component was clearly exposed in analysis using level-crossing parameters, which require nothing but a modest computational effort and simple electronic circuitry, and analogous results could be reached through the bispectrum function, albeit with more intense computation. Useful information could be obtained also via the Lévy-stable distribution and, possibly, the second spectrum.
Directory of Open Access Journals (Sweden)
Ronghui ZHENG
2017-12-01
Full Text Available A control method for Multi-Input Multi-Output (MIMO non-Gaussian random vibration test with cross spectra consideration is proposed in the paper. The aim of the proposed control method is to replicate the specified references composed of auto spectral densities, cross spectral densities and kurtoses on the test article in the laboratory. It is found that the cross spectral densities will bring intractable coupling problems and induce difficulty for the control of the multi-output kurtoses. Hence, a sequential phase modification method is put forward to solve the coupling problems in multi-input multi-output non-Gaussian random vibration test. To achieve the specified responses, an improved zero memory nonlinear transformation is utilized first to modify the Fourier phases of the signals with sequential phase modification method to obtain one frame reference response signals which satisfy the reference spectra and reference kurtoses. Then, an inverse system method is used in frequency domain to obtain the continuous stationary drive signals. At the same time, the matrix power control algorithm is utilized to control the spectra and kurtoses of the response signals further. At the end of the paper, a simulation example with a cantilever beam and a vibration shaker test are implemented and the results support the proposed method very well. Keywords: Cross spectra, Kurtosis control, Multi-input multi-output, Non-Gaussian, Random vibration test
Soury, Hamza
2016-06-29
The Gaussian distribution is typically used to model the additive noise affecting communication systems. However, in many cases the noise cannot be modeled by a Gaussian distribution. In this thesis, we investigate the performance of different communication systems perturbed by non-Gaussian noise. Three families of noise are considered in this work, namely the generalized Gaussian noise, the Laplace noise/interference, and the impulsive noise that is modeled by an α-stable distribution. More specifically, in the first part of this thesis, the impact of an additive generalized Gaussian noise is studied by computing the average symbol error rate (SER) of one dimensional and two dimensional constellations in fading environment. We begin by the simple case of two symbols, i.e. binary phase shift keying (BPSK) constellation. From the results of this constellation, we extended the work to the average SER of an M pulse amplitude modulation (PAM). The first 2 − D constellation is the M quadrature amplitude modulation (QAM) (studied for two geometric shapes, namely square and rectangular), which is the combination of two orthogonal PAM signals (in-phase and quadrature phase PAM). In the second part, the system performance of a circular constellation, namely M phase shift keying (MPSK) is studied in conjunction with a Laplace noise with independent noise components. A closed form and an asymptotic expansion of the SER are derived for two detectors, maximum likelihood and minimum distance detectors. Next, we look at the intra cell interference of a full duplex cellular network which is shown to follow a Laplacian distribution with dependent, but uncorrelated, complex components. The densities of that interference are expressed in a closed form in order to obtain the SER of several communication systems (BPSK, PAM, QAM, and MPSK). Finally, we study the statistics of the α-stable distribution. Those statistics are expressed in closed form in terms of the Fox H function and
International Nuclear Information System (INIS)
Fan Hong-Yi; Wang Zhen
2014-01-01
For directly normalizing the photon non-Gaussian states (e.g., photon added and subtracted squeezed states), we use the method of integration within an ordered product (IWOP) of operators to derive some new bosonic operator-ordering identities. We also derive some new integration transformation formulas about one- and two-variable Hermite polynomials in complex function space. These operator identities and associative integration formulas provide much convenience for constructing non-Gaussian states in quantum engineering. (general)
Directory of Open Access Journals (Sweden)
Pan Zhao
2018-01-01
Full Text Available In this paper we consider pricing problems of the geometric average Asian options under a non-Gaussian model, in which the underlying stock price is driven by a process based on non-extensive statistical mechanics. The model can describe the peak and fat tail characteristics of returns. Thus, the description of underlying asset price and the pricing of options are more accurate. Moreover, using the martingale method, we obtain closed form solutions for geometric average Asian options. Furthermore, the numerical analysis shows that the model can avoid underestimating risks relative to the Black-Scholes model.
Energy Technology Data Exchange (ETDEWEB)
Liu, Yunlong; Wang, Aiping; Guo, Lei; Wang, Hong
2017-07-09
This paper presents an error-entropy minimization tracking control algorithm for a class of dynamic stochastic system. The system is represented by a set of time-varying discrete nonlinear equations with non-Gaussian stochastic input, where the statistical properties of stochastic input are unknown. By using Parzen windowing with Gaussian kernel to estimate the probability densities of errors, recursive algorithms are then proposed to design the controller such that the tracking error can be minimized. The performance of the error-entropy minimization criterion is compared with the mean-square-error minimization in the simulation results.
Tuzlukov, Vyacheslav
2011-06-01
In this paper, we consider the problem of M-ary signal detection based on the generalized approach to signal processing (GASP) in noise over a single-input multiple-output (SIMO) channel affected by frequency-dispersive Rayleigh distributed fading and corrupted by additive non-Gaussian noise modeled as spherically invariant random process. We derive both the optimum generalized detector (GD) structure based on GASP and a suboptimal reduced-complexity GD applying the low energy coherence approach jointly with the GASP in noise. Both GD structures are independent of the actual noise statistics. We also carry out a performance analysis of both GDs and compare with the conventional receivers. The performance analysis is carried out with reference to the case that the channel is affected by a frequency-selective fading and for a binary frequency-shift keying (BFSK) signaling format. The results obtained through both a Chernoff-bounding technique and Monte Carlo simulations reveal that the adoption of diversity also represents a suitable means to restore performance in the presence of dispersive fading and impulsive non-Gaussian noise. It is also shown that the suboptimal GD incurs a limited loss with respect to the optimum GD and this loss is less in comparison with the conventional receiver.
Li, Tiejun; Min, Bin; Wang, Zhiming
2013-03-14
The stochastic integral ensuring the Newton-Leibnitz chain rule is essential in stochastic energetics. Marcus canonical integral has this property and can be understood as the Wong-Zakai type smoothing limit when the driving process is non-Gaussian. However, this important concept seems not well-known for physicists. In this paper, we discuss Marcus integral for non-Gaussian processes and its computation in the context of stochastic energetics. We give a comprehensive introduction to Marcus integral and compare three equivalent definitions in the literature. We introduce the exact pathwise simulation algorithm and give the error analysis. We show how to compute the thermodynamic quantities based on the pathwise simulation algorithm. We highlight the information hidden in the Marcus mapping, which plays the key role in determining thermodynamic quantities. We further propose the tau-leaping algorithm, which advance the process with deterministic time steps when tau-leaping condition is satisfied. The numerical experiments and its efficiency analysis show that it is very promising.
Liao, Qin; Guo, Ying; Huang, Duan; Huang, Peng; Zeng, Guihua
2018-02-01
We propose a long-distance continuous-variable quantum key distribution (CVQKD) with a four-state protocol using non-Gaussian state-discrimination detection. A photon subtraction operation, which is deployed at the transmitter, is used for splitting the signal required for generating the non-Gaussian operation to lengthen the maximum transmission distance of the CVQKD. Whereby an improved state-discrimination detector, which can be deemed as an optimized quantum measurement that allows the discrimination of nonorthogonal coherent states beating the standard quantum limit, is applied at the receiver to codetermine the measurement result with the conventional coherent detector. By tactfully exploiting the multiplexing technique, the resulting signals can be simultaneously transmitted through an untrusted quantum channel, and subsequently sent to the state-discrimination detector and coherent detector, respectively. Security analysis shows that the proposed scheme can lengthen the maximum transmission distance up to hundreds of kilometers. Furthermore, by taking the finite-size effect and composable security into account we obtain the tightest bound of the secure distance, which is more practical than that obtained in the asymptotic limit.
Samanta, Sudeshna; Raychaudhuri, A. K.; Zhong, Xing; Gupta, A.
2015-11-01
We have carried out an extensive investigation on the resistance fluctuations (noise) in an epitaxial thin film of VO2 encompassing the metal-insulator transition (MIT) region to investigate the dynamic phase coexistence of metal and insulating phases. Both flicker noise as well as the Nyquist noise (thermal noise) were measured. The experiments showed that flicker noise, which has a 1 /f spectral power dependence, evolves with temperature in the transition region following the evolution of the phase fractions and is governed by activated kinetics. Importantly, closer to the insulating end of the transition, when the metallic phase fraction is low, the magnitude of the noise shows an anomaly and a strong non-Gaussian component of noise develops. In this region, the local electron temperature (as measured through the Nyquist noise thermometry) shows a deviation from the equilibrium bath temperature. It is proposed that this behavior arises due to current crowding where a substantial amount of the current is carried through well separated small metallic islands leading to a dynamic correlated current path redistribution and an enhanced effective local current density. This leads to a non-Gaussian component to the resistance fluctuation and an associated local deviation of the electron temperature from the bath. Our experiment establishes that phase coexistence leads to a strong inhomogeneity in the region of MIT that makes the current transport strongly inhomogeneous and correlated.
Directory of Open Access Journals (Sweden)
Francisco L. Silva-González
2014-01-01
Full Text Available A non-Gaussian stochastic equivalent linearization (NSEL method for estimating the non-Gaussian response of inelastic non-linear structural systems subjected to seismic ground motions represented as nonstationary random processes is presented. Based on a model that represents the time evolution of the joint probability density function (PDF of the structural response, mathematical expressions of equivalent linearization coefficients are derived. The displacement and velocity are assumed jointly Gaussian and the marginal PDF of the hysteretic component of the displacement is modeled by a mixed PDF which is Gaussian when the structural behavior is linear and turns into a bimodal PDF when the structural behavior is hysteretic. The proposed NSEL method is applied to calculate the response of hysteretic single-degree-of-freedom systems with different vibration periods and different design displacement ductility values. The results corresponding to the proposed method are compared with those calculated by means of Monte Carlo simulation, as well as by a Gaussian equivalent linearization method. It is verified that the NSEL approach proposed herein leads to maximum structural response standard deviations similar to those obtained with Monte Carlo technique. In addition, a brief discussion about the extension of the method to muti-degree-of-freedom systems is presented.
Levy-Student processes for a stochastic model of beam halos
International Nuclear Information System (INIS)
Petroni, N. Cufaro; De Martino, S.; De Siena, S.; Illuminati, F.
2006-01-01
We describe the transverse beam distribution in particle accelerators within the controlled, stochastic dynamical scheme of the stochastic mechanics which produces time reversal invariant diffusion processes. In this paper we analyze the consequences of introducing the generalized Student laws, namely non-Gaussian, Levy infinitely divisible (but not stable) distributions. We will analyze this idea from two different standpoints: (a) first by supposing that the stationary distribution of our (Wiener powered) stochastic model is a Student distribution; (b) by supposing that our model is based on a (non-Gaussian) Levy process whose increments are Student distributed. In the case (a) the longer tails of the power decay of the Student laws, and in the case (b) the discontinuities of the Levy-Student process can well account for the rare escape of particles from the beam core, and hence for the formation of a halo in intense beams
International Nuclear Information System (INIS)
Geloni, G.; Saldin, E.L.; Schneidmiller, E.A.; Yurkov, M.V.
2004-01-01
An effective and practical technique based on the detection of the coherent synchrotron radiation (CSR) spectrum can be used to characterize the profile function of ultra-short bunches. The CSR spectrum measurement has an important limitation: no spectral phase information is available, and the complete profile function cannot be obtained in general. In this paper we propose to use constrained deconvolution method for bunch profile reconstruction based on a priori-known information about formation of the electron bunch. Application of the method is illustrated with practically important example of a bunch formed in a single bunch-compressor. Downstream of the bunch compressor the bunch charge distribution is strongly non-Gaussian with a narrow leading peak and a long tail. The longitudinal bunch distribution is derived by measuring the bunch tail constant with a streak camera and by using a priory available information about profile function
Geloni, G.; Saldin, E. L.; Schneidmiller, E. A.; Yurkov, M. V.
2004-08-01
An effective and practical technique based on the detection of the coherent synchrotron radiation (CSR) spectrum can be used to characterize the profile function of ultra-short bunches. The CSR spectrum measurement has an important limitation: no spectral phase information is available, and the complete profile function cannot be obtained in general. In this paper we propose to use constrained deconvolution method for bunch profile reconstruction based on a priori-known information about formation of the electron bunch. Application of the method is illustrated with practically important example of a bunch formed in a single bunch-compressor. Downstream of the bunch compressor the bunch charge distribution is strongly non-Gaussian with a narrow leading peak and a long tail. The longitudinal bunch distribution is derived by measuring the bunch tail constant with a streak camera and by using a priory available information about profile function.
International Nuclear Information System (INIS)
Hao Meng-Li; Xu Wei; Liu Di; Li Dong-Xi
2014-01-01
The extinction phenomenon induced by multiplicative non-Gaussian Lévy noise in a tumor growth model with immune response is discussed. Under the influence of the stochastic immune rate, the model is analyzed in terms of a stochastic differential equation with multiplicative noise. By means of the theory of the infinitesimal generator of Hunt processes, the escape probability, which is used to measure the noise-induced extinction probability of tumor cells, is explicitly expressed as a function of initial tumor cell density, stability index and noise intensity. Based on the numerical calculations, it is found that for different initial densities of tumor cells, noise parameters play opposite roles on the escape probability. The optimally selected values of the multiplicative noise intensity and the stability index are found to maximize the escape probability. (general)
Guo, Yong-Feng; Xi, Bei; Wei, Fang; Tan, Jian-Guo
2017-12-01
In this paper, the phenomenon of stochastic resonance in FitzHugh-Nagumo (FHN) neural system driven by correlated non-Gaussian noise and Gaussian white noise is investigated. First, the analytical expression of the stationary probability distribution is derived by using the path integral approach and the unified colored noise approximation. Then, we obtain the expression of signal-to-noise ratio (SNR) by applying the theory of two-state model. The results show that the phenomena of stochastic resonance and multiple stochastic resonance appear in FHN neural system under different values of parameters. The effects of the multiplicative noise intensity D and the additive noise intensity Q on the SNR are entirely different. In addition, the discharge behavior of FHN neural system is restrained when the value of Q is smaller. But, it is conducive to enhance signal response of FHN neural system when the values of Q and D are relatively larger.
Guadagnini, A.; Riva, M.; Neuman, S. P.
2016-12-01
Environmental quantities such as log hydraulic conductivity (or transmissivity), Y(x) = ln K(x), and their spatial (or temporal) increments, ΔY, are known to be generally non-Gaussian. Documented evidence of such behavior includes symmetry of increment distributions at all separation scales (or lags) between incremental values of Y with sharp peaks and heavy tails that decay asymptotically as lag increases. This statistical scaling occurs in porous as well as fractured media characterized by either one or a hierarchy of spatial correlation scales. In hierarchical media one observes a range of additional statistical ΔY scaling phenomena, all of which are captured comprehensibly by a novel generalized sub-Gaussian (GSG) model. In this model Y forms a mixture Y(x) = U(x) G(x) of single- or multi-scale Gaussian processes G having random variances, U being a non-negative subordinator independent of G. Elsewhere we developed ways to generate unconditional and conditional random realizations of isotropic or anisotropic GSG fields which can be embedded in numerical Monte Carlo flow and transport simulations. Here we present and discuss expressions for probability distribution functions of Y and ΔY as well as their lead statistical moments. We then focus on a simple flow setting of mean uniform steady state flow in an unbounded, two-dimensional domain, exploring ways in which non-Gaussian heterogeneity affects stochastic flow and transport descriptions. Our expressions represent (a) lead order autocovariance and cross-covariance functions of hydraulic head, velocity and advective particle displacement as well as (b) analogues of preasymptotic and asymptotic Fickian dispersion coefficients. We compare them with corresponding expressions developed in the literature for Gaussian Y.
Energy Technology Data Exchange (ETDEWEB)
Jeffrey, Natasha L. S.; Fletcher, Lyndsay; Labrosse, Nicolas [School of Physics and Astronomy, University of Glasgow, G12 8QQ, Glasgow (United Kingdom)
2017-02-10
In a solar flare, a large fraction of the magnetic energy released is converted rapidly to the kinetic energy of non-thermal particles and bulk plasma motion. This will likely result in non-equilibrium particle distributions and turbulent plasma conditions. We investigate this by analyzing the profiles of high temperature extreme ultraviolet emission lines from a major flare (SOL2014-03-29T17:44) observed by the EUV Imaging Spectrometer (EIS) on Hinode . We find that in many locations the line profiles are non-Gaussian, consistent with a kappa distribution of emitting ions with properties that vary in space and time. At the flare footpoints, close to sites of hard X-ray emission from non-thermal electrons, the κ index for the Fe xvi 262.976 Å line at 3 MK takes values of 3–5. In the corona, close to a low-energy HXR source, the Fe xxiii 263.760 Å line at 15 MK shows κ values of typically 4–7. The observed trends in the κ parameter show that we are most likely detecting the properties of the ion population rather than any instrumental effects. We calculate that a non-thermal ion population could exist if locally accelerated on timescales ≤0.1 s. However, observations of net redshifts in the lines also imply the presence of plasma downflows, which could lead to bulk turbulence, with increased non-Gaussianity in cooler regions. Both interpretations have important implications for theories of solar flare particle acceleration.
New (theoretical) Perspectives on the Galactic Halo
Helmi, A.; Turon, C; Meynadier, F; Arenou, F
1 discuss recent progress in our understanding of the formation of the stellar halo of the Milky Way in the context of the concordance cosmological model. The Gaia mission will provide unique insights especially into the early assembly of the Galaxy and likely be key in unraveling its merger
Energy Technology Data Exchange (ETDEWEB)
Takeuchi, Y. [Osaka Univ. of Education, Osaka (Japan)
1998-09-30
Optimization of observations with feedback in the estimation theory of stochastic systems was investigated. Previously, the authors showed that the optimum observation was obtained for non-Gaussian signal and the independent Gaussian white additive noise. This paper presents that a similar result is obtained for more general non-Gaussian additive noise. The optimum construction method of observations is still valid for the case of continuous square-integral martingale in which the signal can express arbitrary square-integral stochastic processes and the additive noise can express most of independent continuous stochastic processes. This paper shows that the Min-Max methodology is valid for more general non-Gaussian signal and a class of the additive noise of a square-integral martingale. 10 refs.
Rizzi, Stephen A.; Behnke, marlana N.; Przekop, Adam
2010-01-01
High-cycle fatigue of an elastic-plastic beam structure under the combined action of thermal and high-intensity non-Gaussian acoustic loadings is considered. Such loadings can be highly damaging when snap-through motion occurs between thermally post-buckled equilibria. The simulated non-Gaussian loadings investigated have a range of skewness and kurtosis typical of turbulent boundary layer pressure fluctuations in the vicinity of forward facing steps. Further, the duration and steadiness of high excursion peaks is comparable to that found in such turbulent boundary layer data. Response and fatigue life estimates are found to be insensitive to the loading distribution, with the minor exception of cases involving plastic deformation. In contrast, the fatigue life estimate was found to be highly affected by a different type of non-Gaussian loading having bursts of high excursion peaks.
Uffink, G.J.M.; Elfeki, A.; Dekking, M.; Bruining, J.; Kraaikamp, C.
2011-01-01
In the present study, we examine non-Gaussian spreading of solutes subject to advection, dispersion and kinetic sorption (adsorption/desorption). We start considering the behavior of a single particle and apply a random walk to describe advection/dispersion plus a Markov chain to describe kinetic
ENSO's non-stationary and non-Gaussian character: the role of climate shifts
Directory of Open Access Journals (Sweden)
J. Boucharel
2009-07-01
Full Text Available El Niño Southern Oscillation (ENSO is the dominant mode of climate variability in the Pacific, having socio-economic impacts on surrounding regions. ENSO exhibits significant modulation on decadal to inter-decadal time scales which is related to changes in its characteristics (onset, amplitude, frequency, propagation, and predictability. Some of these characteristics tend to be overlooked in ENSO studies, such as its asymmetry (the number and amplitude of warm and cold events are not equal and the deviation of its statistics from those of the Gaussian distribution. These properties could be related to the ability of the current generation of coupled models to predict ENSO and its modulation.
Here, ENSO's non-Gaussian nature and asymmetry are diagnosed from in situ data and a variety of models (from intermediate complexity models to full-physics coupled general circulation models (CGCMs using robust statistical tools initially designed for financial mathematics studies. In particular α-stable laws are used as theoretical background material to measure (and quantify the non-Gaussian character of ENSO time series and to estimate the skill of ``naïve'' statistical models in producing deviation from Gaussian laws and asymmetry. The former are based on non-stationary processes dominated by abrupt changes in mean state and empirical variance. It is shown that the α-stable character of ENSO may result from the presence of climate shifts in the time series. Also, cool (warm periods are associated with ENSO statistics having a stronger (weaker tendency towards Gaussianity and lower (greater asymmetry. This supports the hypothesis of ENSO being rectified by changes in mean state through nonlinear processes. The relationship between changes in mean state and nonlinearity (skewness is further investigated both in the Zebiak and Cane (1987's model and the models of the Intergovernmental Panel for Climate Change (IPCC. Whereas
Komarek, Tomas
2014-01-01
This note serves as a final report about CERN Summer Student Programme 2014 project. The beam halo is an undesired phenomenon for physics analyses on particle accelerators. It surrounds the beam core and constitutes an important part of background for signal measurements on some detectors, eg. in the forward region. In this study, the data from the ALFA detector were used, specifically from the run 191373 ($\\beta^*=90\\unit{m}$) and the run 213268 ($\\beta^*=1\\unit{km}$). Using the ROOT framework, a software for beam halo events selection was created and beam halo properties were examined. In the run 213268, excessive beam halo is suspected to be the reason for multiple beam scrapings that occurred. A kinematic reconstruction of beam halo particles is attempted in order to understand beam halo properties in the interaction point. Some further simulations are employed to find constraints for beam halo particles in order to survive in the accelerator for a longer time/many revolutions. This work represents a st...
International Nuclear Information System (INIS)
Kang-Kang, Wang; Xian-Bin, Liu; Yu, Zhou
2015-01-01
In this paper, the stability and stochastic resonance (SR) phenomenon induced by the multiplicative periodic signal for a metapopulation system driven by the additive Gaussian noise, multiplicative non-Gaussian noise and noise correlation time is investigated. By using the fast descent method, unified colored noise approximation and McNamara and Wiesenfeld’s SR theory, the analytical expressions of the stationary probability distribution function and signal-to-noise ratio (SNR) are derived in the adiabatic limit. Via numerical calculations, each effect of the addictive noise intensity, the multiplicative noise intensity and the correlation time upon the steady state probability distribution function and the SNR is discussed, respectively. It is shown that multiplicative, additive noises and the departure parameter from the Gaussian noise can all destroy the stability of the population system. However, the noise correlation time can consolidate the stability of the system. On the other hand, the correlation time always plays an important role in motivating the SR and enhancing the SNR. Under different parameter conditions of the system, the multiplicative, additive noises and the departure parameter can not only excite SR phenomenon, but also restrain the SR phenomenon, which demonstrates the complexity of different noises upon the nonlinear system. (paper)
Bid, Aveek; Raychaudhuri, A. K.
2016-11-01
We report a detailed experimental study of the resistance fluctuations measured at low temperatures in high quality metal nanowires ranging in diameter from 15-200 nm. The wires exhibit co-existing face-centered-cubic and 4H hcp phases of varying degrees as determined from the x-ray diffraction data. We observe the appearance of a large non-Gaussian noise for nanowires of diameter smaller than 50 nm over a certain temperature range around ≈30 K. The diameter range ˜30 nm, where the noise has maxima coincides with the maximum volume fraction of the co-existing 4H hcp phase thus establishing a strong link between the fluctuation and the phase co-existence. The resistance fluctuation in the same temperature range also shows a deviation of 1/f behavior at low frequency with appearance of single frequency Lorentzian type contribution in the spectral power density. The fluctuations are thermally activated with an activation energy {E}{{a}}˜ 35 meV, which is of same order as the activation energy of creation of stacking fault in FCC metals that leads to the co-existing crystallographic phases. Combining the results of crystallographic studies of the nanowires and analysis of the resistance fluctuations we could establish the correlation between the appearance of the large resistance noise and the onset of phase co-existence in these nanowires.
Directory of Open Access Journals (Sweden)
Douglas Scott C
2007-01-01
Full Text Available We derive new fixed-point algorithms for the blind separation of complex-valued mixtures of independent, noncircularly symmetric, and non-Gaussian source signals. Leveraging recently developed results on the separability of complex-valued signal mixtures, we systematically construct iterative procedures on a kurtosis-based contrast whose evolutionary characteristics are identical to those of the FastICA algorithm of Hyvarinen and Oja in the real-valued mixture case. Thus, our methods inherit the fast convergence properties, computational simplicity, and ease of use of the FastICA algorithm while at the same time extending this class of techniques to complex signal mixtures. For extracting multiple sources, symmetric and asymmetric signal deflation procedures can be employed. Simulations for both noiseless and noisy mixtures indicate that the proposed algorithms have superior finite-sample performance in data-starved scenarios as compared to existing complex ICA methods while performing about as well as the best of these techniques for larger data-record lengths.
Energy Technology Data Exchange (ETDEWEB)
Behbahani, Siavosh R.; /SLAC /Stanford U., Phys. Dept. /Boston U.; Dymarsky, Anatoly; /Princeton, Inst. Advanced Study; Mirbabayi, Mehrdad; /New York U., CCPP /New York U.; Senatore, Leonardo; /Stanford U., Phys. Dept. /KIPAC, Menlo Park
2012-06-06
We apply the Effective Field Theory of Inflation to study the case where the continuous shift symmetry of the Goldstone boson {pi} is softly broken to a discrete subgroup. This case includes and generalizes recently proposed String Theory inspired models of Inflation based on Axion Monodromy. The models we study have the property that the 2-point function oscillates as a function of the wavenumber, leading to oscillations in the CMB power spectrum. The non-linear realization of time diffeomorphisms induces some self-interactions for the Goldstone boson that lead to a peculiar non-Gaussianity whose shape oscillates as a function of the wavenumber. We find that in the regime of validity of the effective theory, the oscillatory signal contained in the n-point correlation functions, with n > 2, is smaller than the one contained in the 2-point function, implying that the signature of oscillations, if ever detected, will be easier to find first in the 2-point function, and only then in the higher order correlation functions. Still the signal contained in higher-order correlation functions, that we study here in generality, could be detected at a subleading level, providing a very compelling consistency check for an approximate discrete shift symmetry being realized during inflation.
Zhao, Nan; Paradiso, Joseph A.
2015-01-01
What if lighting were not fixed to our architecture but becomes part of our body? Light would be only where it is needed. Buildings would light up brightly when busy, and dim down when people leave. Lighting would become more energy efficient, more personal, and colorful, tailored to individual needs. What applications beyond illumination would be possible in such a scenario? Halo is a wearable lighting device that aims to investigate this question. More specifically Halo explores the potenti...
Marko, Nicholas F.; Weil, Robert J.
2012-01-01
Introduction Gene expression data is often assumed to be normally-distributed, but this assumption has not been tested rigorously. We investigate the distribution of expression data in human cancer genomes and study the implications of deviations from the normal distribution for translational molecular oncology research. Methods We conducted a central moments analysis of five cancer genomes and performed empiric distribution fitting to examine the true distribution of expression data both on the complete-experiment and on the individual-gene levels. We used a variety of parametric and nonparametric methods to test the effects of deviations from normality on gene calling, functional annotation, and prospective molecular classification using a sixth cancer genome. Results Central moments analyses reveal statistically-significant deviations from normality in all of the analyzed cancer genomes. We observe as much as 37% variability in gene calling, 39% variability in functional annotation, and 30% variability in prospective, molecular tumor subclassification associated with this effect. Conclusions Cancer gene expression profiles are not normally-distributed, either on the complete-experiment or on the individual-gene level. Instead, they exhibit complex, heavy-tailed distributions characterized by statistically-significant skewness and kurtosis. The non-Gaussian distribution of this data affects identification of differentially-expressed genes, functional annotation, and prospective molecular classification. These effects may be reduced in some circumstances, although not completely eliminated, by using nonparametric analytics. This analysis highlights two unreliable assumptions of translational cancer gene expression analysis: that “small” departures from normality in the expression data distributions are analytically-insignificant and that “robust” gene-calling algorithms can fully compensate for these effects. PMID:23118863
The prolate dark matter halo of the Andromeda galaxy
International Nuclear Information System (INIS)
Hayashi, Kohei; Chiba, Masashi
2014-01-01
We present new limits on the global shape of the dark matter halo in the Andromeda galaxy using and generalizing non-spherical mass models developed by Hayashi and Chiba and compare our results with theoretical predictions of cold dark matter (CDM) models. This is motivated by the fact that CDM models predict non-spherical virialized dark halos, which reflect the process of mass assembly in the galactic scale. Applying our models to the latest kinematic data of globular clusters and dwarf spheroidal galaxies in the Andromeda halo, we find that the most plausible cases for Andromeda yield a prolate shape for its dark halo, irrespective of assumed density profiles. We also find that this prolate dark halo in Andromeda is consistent with theoretical predictions in which the satellites are distributed anisotropically and preferentially located along major axes of their host halos. It is a reflection of the intimate connection between galactic dark matter halos and the cosmic web. Therefore, our result is profound in understanding internal dynamics of halo tracers in Andromeda, such as orbital evolutions of tidal stellar streams, which play important roles in extracting the abundance of CDM subhalos through their dynamical effects on stream structures.
DARK MATTER HALO MERGERS: DEPENDENCE ON ENVIRONMENT
International Nuclear Information System (INIS)
Hester, J. A.; Tasitsiomi, A.
2010-01-01
This paper presents a study of the specific major merger rate as a function of group membership, local environment, and redshift in a very large, 500 h -1 Mpc, cosmological N-body simulation, the Millennium Simulation. The goal is to provide environmental diagnostics of major merger populations in order to test simulations against observations and provide further constraints on major merger driven galaxy evolution scenarios. A halo sample is defined using the maximum circular velocity, which is both well defined for subhalos and closely correlated with galaxy luminosity. Subhalos, including the precursors of major mergers, are severely tidally stripped. Major mergers between subhalos are therefore rare compared to mergers between subhalos and their host halos. Tidal stripping also suppresses dynamical friction, resulting in long major merger timescales when the more massive merger progenitor does not host other subhalos. When other subhalos are present, however, major merger timescales are several times shorter. This enhancement may be due to inelastic unbound collisions between subhalos, which deplete their orbital angular momentum and lead to faster orbital decay. Following these results, we predict that major mergers in group environments are dominated by mergers involving the central galaxy, that the specific major merger rate is suppressed in groups when all group members are considered together, and that the frequency of fainter companions is enhanced for major mergers and their remnants. We also measure an 'assembly bias' in the specific major merger rate in that major mergers of galaxy-like halos are slightly suppressed in overdense environments while major mergers of group-like halos are slightly enhanced. A dynamical explanation for this trend is advanced which calls on both tidal effects and interactions between bound halos beyond the virial radii of locally dynamically dominant halos.
Davoodi, H.; Noori, M.
1990-07-01
The work presented in this paper constitutes the second phase of on-going research aimed at developing mathematical models for representing general hysteretic behavior of structures and approximation techniques for the computation and analysis of the response of hysteretic systems to random excitations. In this second part, the technique previously developed by the authors for the Gaussian response analysis of non-linear systems with general hysteretic behavior is extended for the non-Gaussian analysis of these systems. This approximation technique is based on the approach proposed independently by Ibrahim and Wu-Lin. In this work up to fourth order moments of the response co-ordinates are obtained for the Bouc-Baber-Wen smooth hysteresis model. These higher order statistics previously have not been made available for general hysteresis models by using existing approximation methods. Second order moments obtained for the model by this non-Gaussian closure scheme are compared with equivalent linearization and Gaussian closure results via Monte Carlo simulation (MCS). Higher order moments are compared with the simulation results. The study performed for a wide range of degradation parameters and input power spectral density ( PSD) levels shows that the non-Gaussian responses obtained by this approach are in better agreement with the MCS results than the linearized and Gaussian ones. This approximation technique can provide information on higher order moments for general hysteretic systems. This information is valuable in random vibration and the reliability analysis of hysteretically yielding structures.
Directory of Open Access Journals (Sweden)
Tomio L.
2010-04-01
Full Text Available Universal aspects of few-body systems will be reviewed motivated by recent interest in atomic and nuclear physics. The critical conditions for the existence of excited states in three-body systems with two-identical particles will be explored. In particular, we consider halo nuclei that can be modeled as three-body nuclear systems, with two halo neutrons and a core. In this context, we also discuss the low-energy neutron−19C elastic scattering, near the conditions for the app earance of an Eﬁmov state.
Indian Academy of Sciences (India)
A point source of monochromatic light viewed through a cloud of particles would appear surrounded by a corona or halo due to diffraction by the particles. The radiations. Fig. 66. Diffraction corona due to. Lycopodium spores showing. a). Granular structure in monochromatic light, and b) radial streaks in white light. diffracted ...
Indian Academy of Sciences (India)
surrounded by a corona or halo due to diffraction by the particles. The radiations. Fig. 66. Diffraction corona due to. Lycopodium spores showing. a). Granular structure in monochromatic light, and b) radial streaks in white light. diffracted by the particles and reaching the retina of the eye and focussed there~n are superposed.
Czech Academy of Sciences Publication Activity Database
Gordillo-Vázquez, F.J.; Luque, A.; Šimek, Milan
2011-01-01
Roč. 116, č. 9 (2011), A09319-A09319 ISSN 0148-0227 Institutional research plan: CEZ:AV0Z20430508 Keywords : sprites * halos * spectroscopy Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 3.021, year: 2011 http://www.trappa.iaa.es/sites/all/files/papers/isi_journal_papers/2011/2011_08.pdf
Halo histories versus Galaxy properties at z = 0 - I. The quenching of star formation
Tinker, Jeremy L.; Wetzel, Andrew R.; Conroy, Charlie; Mao, Yao-Yuan
2017-12-01
We test whether halo age and galaxy age are correlated at fixed halo and galaxy mass. The formation histories, and thus ages, of dark matter haloes correlate with their large-scale density ρ, an effect known as assembly bias. We test whether this correlation extends to galaxies by measuring the dependence of galaxy stellar age on ρ. To clarify the comparison between theory and observation, and to remove the strong environmental effects on satellites, we use galaxy group catalogues to identify central galaxies and measure their quenched fraction, fQ, as a function of large-scale environment. Models that match halo age to central galaxy age predict a strong positive correlation between fQ and ρ. However, we show that the amplitude of this effect depends on the definition of halo age: assembly bias is significantly reduced when removing the effects of splashback haloes - those haloes that are central but have passed through a larger halo or experienced strong tidal encounters. Defining age using halo mass at its peak value rather than current mass removes these effects. In Sloan Digital Sky Survey data, at M* ≳ 1010 M⊙ h-2, there is a ∼5 per cent increase in fQ from low-to-high densities, which is in agreement with predictions of dark matter haloes using peak halo mass. At lower stellar mass there is little to no correlation of fQ with ρ. For these galaxies, age matching is inconsistent with the data across the range of halo formation metrics that we tested. This implies that halo formation history has a small but statistically significant impact on quenching of star formation at high masses, while the quenching process in low-mass central galaxies is uncorrelated with halo formation history.
Chevallard, Jacopo; Silk, Joseph; Nishimichi, Takahiro; Habouzit, Melanie; Mamon, Gary A.; Peirani, Sébastien
2015-01-01
Understanding how the intergalactic medium (IGM) was reionized at z ≳ 6 is one of the big challenges of current high-redshift astronomy. It requires modelling the collapse of the first astrophysical objects (Pop III stars, first galaxies) and their interaction with the IGM, while at the same time pushing current observational facilities to their limits. The observational and theoretical progress of the last few years have led to the emergence of a coherent picture in which the budget of hydrogen-ionizing photons is dominated by low-mass star-forming galaxies, with little contribution from Pop III stars and quasars. The reionization history of the Universe therefore critically depends on the number density of low-mass galaxies at high redshift. In this work, we explore how changes in the cosmological model, and in particular in the statistical properties of initial density fluctuations, affect the formation of early galaxies. Following Habouzit et al. (2014), we run five different N-body simulations with Gaussian and (scale-dependent) non-Gaussian initial conditions, all consistent with Planck constraints. By appealing to a phenomenological galaxy formation model and to a population synthesis code, we compute the far-UV galaxy luminosity function down to MFUV = -14 at redshift 7 ≤ z ≤ 15. We find that models with strong primordial non-Gaussianities on ≲ Mpc scales show a far-UV luminosity function significantly enhanced (up to a factor of 3 at z = 14) in low-mass galaxies. We adopt a reionization model calibrated from state-of-the-art hydrodynamical simulations and show that such scale-dependent non-Gaussianities leave a clear imprint on the Universe reionization history and electron Thomson scattering optical depth τe. Although current uncertainties in the physics of reionization and on the determination of τe still dominate the signatures of non-Gaussianities, our results suggest that τe could ultimately be used to constrain the statistical properties
Antonella Del Rosso
2015-01-01
In the LHC, beams of 25-ns-spaced proton bunches travel at almost the speed of light and pass through many different devices installed along the ring that monitor their properties. During their whirling motion, beam particles might interact with the collimation instrumentation or with residual gas in the vacuum chambers and this creates the beam halo – an annoying source of background for the physics data. Newly installed CMS sub-detectors are now able to monitor it. The Beam Halo Monitors (BHM) are installed around the CMS rotating shielding. The BHM are designed and built by University of Minnesota, CERN, Princeton University, INFN Bologna and the National Technical University of Athens. (Image: Andrea Manna). The Beam Halo Monitor (BHM) is a set of 20 Cherenkov radiators – 10-cm-long quartz crystals – installed at each end of the huge CMS detector. Their design goal is to measure the particles that can cause the so-called “machine-induced...
Li, Dong-Xi; Xu, Wei; Guo, Yong-Feng; Li, Gao-Jie
2008-09-01
The mean first-passage time of a bistable system with time-delayed feedback driven by multiplicative non-Gaussian noise and additive Gaussian white noise is investigated. Firstly, the non-Markov process is reduced to the Markov process through a path-integral approach; Secondly, the approximate Fokker-Planck equation is obtained by applying the unified coloured noise approximation, the small time delay approximation and the Novikov Theorem. The functional analysis and simplification are employed to obtain the approximate expressions of MFPT. The effects of non-Gaussian parameter (measures deviation from Gaussian character) r, the delay time τ, the noise correlation time τ0, the intensities D and α of noise on the MFPT are discussed. It is found that the escape time could be reduced by increasing the delay time τ, the noise correlation time τ0, or by reducing the intensities D and α. As far as we know, this is the first time to consider the effect of delay time on the mean first-passage time in the stochastic dynamical system.
International Nuclear Information System (INIS)
Li Dongxi; Xu Wei; Guo Yongfeng; Li Gaojie
2008-01-01
The mean first-passage time of a bistable system with time-delayed feedback driven by multiplicative non-Gaussian noise and additive Gaussian white noise is investigated. Firstly, the non-Markov process is reduced to the Markov process through a path-integral approach; Secondly, the approximate Fokker-Planck equation is obtained by applying the unified coloured noise approximation, the small time delay approximation and the Novikov Theorem. The functional analysis and simplification are employed to obtain the approximate expressions of MFPT. The effects of non-Gaussian parameter (measures deviation from Gaussian character) r, the delay time τ, the noise correlation time τ 0 , the intensities D and α of noise on the MFPT are discussed. It is found that the escape time could be reduced by increasing the delay time τ, the noise correlation time τ 0 , or by reducing the intensities D and α. As far as we know, this is the first time to consider the effect of delay time on the mean first-passage time in the stochastic dynamical system
QUANTIFYING KINEMATIC SUBSTRUCTURE IN THE MILKY WAY'S STELLAR HALO
International Nuclear Information System (INIS)
Xue Xiangxiang; Zhao Gang; Luo Ali; Rix, Hans-Walter; Bell, Eric F.; Koposov, Sergey E.; Kang, Xi; Liu, Chao; Yanny, Brian; Beers, Timothy C.; Lee, Young Sun; Bullock, James S.; Johnston, Kathryn V.; Morrison, Heather; Rockosi, Constance; Weaver, Benjamin A.
2011-01-01
We present and analyze the positions, distances, and radial velocities for over 4000 blue horizontal-branch (BHB) stars in the Milky Way's halo, drawn from SDSS DR8. We search for position-velocity substructure in these data, a signature of the hierarchical assembly of the stellar halo. Using a cumulative 'close pair distribution' as a statistic in the four-dimensional space of sky position, distance, and velocity, we quantify the presence of position-velocity substructure at high statistical significance among the BHB stars: pairs of BHB stars that are close in position on the sky tend to have more similar distances and radial velocities compared to a random sampling of these overall distributions. We make analogous mock observations of 11 numerical halo formation simulations, in which the stellar halo is entirely composed of disrupted satellite debris, and find a level of substructure comparable to that seen in the actually observed BHB star sample. This result quantitatively confirms the hierarchical build-up of the stellar halo through a signature in phase (position-velocity) space. In detail, the structure present in the BHB stars is somewhat less prominent than that seen in most simulated halos, quite possibly because BHB stars represent an older sub-population. BHB stars located beyond 20 kpc from the Galactic center exhibit stronger substructure than at r gc < 20 kpc.
Grootes, M. W.; Dvornik, A.; Laureijs, R. J.; Tuffs, R. J.; Popescu, C. C.; Robotham, A. S. G.; Liske, J.; Brown, M. J. I.; Holwerda, B. W.; Wang, L.
2018-03-01
We present a detailed analysis of the specific star formation rate - stellar mass (sSFR - M*) of z ≤ 0.13 disk central galaxies using a morphologically selected mass-complete sample (M* ≥ 109.5M⊙). Considering samples of grouped and ungrouped galaxies, we find the sSFR - M* relations of disk-dominated central galaxies to have no detectable dependence on host dark-matter halo (DMH) mass, even where weak-lensing measurements indicate a difference in halo mass of a factor ≳ 5. We further detect a gradual evolution of the sSFR - M* relation of non-grouped (field) central disk galaxies with redshift, even over a Δz ≈ 0.04 (≈5 . 108yr) interval, while the scatter remains constant. This evolution is consistent with extrapolation of the "main-sequence-of-star-forming-galaxies" from previous literature that uses larger redshift baselines and coarser sampling. Taken together, our results present new constraints on the paradigm under which the SFR of galaxies is determined by a self-regulated balance between gas inflows and outflows, and consumption of gas by star-formation in disks, with the inflow being determined by the product of the cosmological accretion rate and a fuelling-efficiency - \\dot{M}_{b,halo}ζ. In particular, maintaining the paradigm requires \\dot{M}_{b,halo}ζ to be independent of the mass Mhalo of the host DMH. Furthermore, it requires the fuelling-efficiency ζ to have a strong redshift dependence (∝(1 + z)2.7 for M* = 1010.3M⊙ over z = 0 - 0.13), even though no morphological transformation to spheroids can be invoked to explain this in our disk-dominated sample. The physical mechanisms capable of giving rise to such dependencies of ζ on Mhalo and z for disks are unclear.
HALOE test and evaluation software
Edmonds, W.; Natarajan, S.
1987-01-01
Computer programming, system development and analysis efforts during this contract were carried out in support of the Halogen Occultation Experiment (HALOE) at NASA/Langley. Support in the major areas of data acquisition and monitoring, data reduction and system development are described along with a brief explanation of the HALOE project. Documented listings of major software are located in the appendix.
Neutron halo in deformed nuclei
International Nuclear Information System (INIS)
Zhou Shangui; Meng Jie; Ring, P.; Zhao Enguang
2010-01-01
Halo phenomena in deformed nuclei are investigated within a deformed relativistic Hartree Bogoliubov (DRHB) theory. These weakly bound quantum systems present interesting examples for the study of the interdependence between the deformation of the core and the particles in the halo. Contributions of the halo, deformation effects, and large spatial extensions of these systems are described in a fully self-consistent way by the DRHB equations in a spherical Woods-Saxon basis with the proper asymptotic behavior at a large distance from the nuclear center. Magnesium and neon isotopes are studied and detailed results are presented for the deformed neutron-rich and weakly bound nucleus 44 Mg. The core of this nucleus is prolate, but the halo has a slightly oblate shape. This indicates a decoupling of the halo orbitals from the deformation of the core. The generic conditions for the occurrence of this decoupling effects are discussed.
Directory of Open Access Journals (Sweden)
Yuancheng Sun
2016-01-01
Full Text Available For the non-Gaussian singular time-delayed stochastic distribution control (SDC system with unknown external disturbance where the output probability density function (PDF is approximated by the rational square-root B-spline basis function, a robust fault diagnosis and fault tolerant control algorithm is presented. A full-order observer is constructed to estimate the exogenous disturbance and an adaptive observer is used to estimate the fault size. A fault tolerant tracking controller is designed using the feedback of distribution tracking error, fault, and disturbance estimation to let the postfault output PDF still track desired distribution. Finally, a simulation example is included to illustrate the effectiveness of the proposed algorithms and encouraging results have been obtained.
Sirunyan, Albert M; CMS Collaboration; Adam, Wolfgang; Ambrogi, Federico; Asilar, Ece; Bergauer, Thomas; Brandstetter, Johannes; Brondolin, Erica; Dragicevic, Marko; Erö, Janos; Flechl, Martin; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Grossmann, Johannes; Hrubec, Josef; Jeitler, Manfred; König, Axel; Krammer, Natascha; Krätschmer, Ilse; Liko, Dietrich; Madlener, Thomas; Mikulec, Ivan; Pree, Elias; Rad, Navid; Rohringer, Herbert; Schieck, Jochen; Schöfbeck, Robert; Spanring, Markus; Spitzbart, Daniel; Waltenberger, Wolfgang; Wittmann, Johannes; Wulz, Claudia-Elisabeth; Zarucki, Mateusz; Chekhovsky, Vladimir; Mossolov, Vladimir; Suarez Gonzalez, Juan; De Wolf, Eddi A; Di Croce, Davide; Janssen, Xavier; Lauwers, Jasper; Van De Klundert, Merijn; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Abu Zeid, Shimaa; Blekman, Freya; D'Hondt, Jorgen; De Bruyn, Isabelle; De Clercq, Jarne; Deroover, Kevin; Flouris, Giannis; Lontkovskyi, Denys; Lowette, Steven; Marchesini, Ivan; Moortgat, Seth; Moreels, Lieselotte; Python, Quentin; Skovpen, Kirill; Tavernier, Stefaan; Van Doninck, Walter; Van Mulders, Petra; Van Parijs, Isis; Beghin, Diego; Brun, Hugues; Clerbaux, Barbara; De Lentdecker, Gilles; Delannoy, Hugo; Dorney, Brian; Fasanella, Giuseppe; Favart, Laurent; Goldouzian, Reza; Grebenyuk, Anastasia; Lenzi, Thomas; Luetic, Jelena; Maerschalk, Thierry; Marinov, Andrey; Seva, Tomislav; Starling, Elizabeth; Vander Velde, Catherine; Vanlaer, Pascal; Vannerom, David; Yonamine, Ryo; Zenoni, Florian; Zhang, Fengwangdong; Cimmino, Anna; Cornelis, Tom; Dobur, Didar; Fagot, Alexis; Gul, Muhammad; Khvastunov, Illia; Poyraz, Deniz; Roskas, Christos; Salva Diblen, Sinem; Tytgat, Michael; Verbeke, Willem; Zaganidis, Nicolas; Bakhshiansohi, Hamed; Bondu, Olivier; Brochet, Sébastien; Bruno, Giacomo; Caputo, Claudio; Caudron, Adrien; David, Pieter; De Visscher, Simon; Delaere, Christophe; Delcourt, Martin; Francois, Brieuc; Giammanco, Andrea; Komm, Matthias; Krintiras, Georgios; Lemaitre, Vincent; Magitteri, Alessio; Mertens, Alexandre; Musich, Marco; Piotrzkowski, Krzysztof; Quertenmont, Loic; Saggio, Alessia; Vidal Marono, Miguel; Wertz, Sébastien; Zobec, Joze; Aldá Júnior, Walter Luiz; Alves, Fábio Lúcio; Alves, Gilvan; Brito, Lucas; Correa Martins Junior, Marcos; Hensel, Carsten; Moraes, Arthur; Pol, Maria Elena; Rebello Teles, Patricia; Belchior Batista Das Chagas, Ewerton; Carvalho, Wagner; Chinellato, Jose; Coelho, Eduardo; Melo Da Costa, Eliza; Da Silveira, Gustavo Gil; De Jesus Damiao, Dilson; Fonseca De Souza, Sandro; Huertas Guativa, Lina Milena; Malbouisson, Helena; Melo De Almeida, Miqueias; Mora Herrera, Clemencia; Mundim, Luiz; Nogima, Helio; Sanchez Rosas, Luis Junior; Santoro, Alberto; Sznajder, Andre; Thiel, Mauricio; Tonelli Manganote, Edmilson José; Torres Da Silva De Araujo, Felipe; Vilela Pereira, Antonio; Ahuja, Sudha; Bernardes, Cesar Augusto; Tomei, Thiago; De Moraes Gregores, Eduardo; Mercadante, Pedro G; Novaes, Sergio F; Padula, Sandra; Romero Abad, David; Ruiz Vargas, José Cupertino; Aleksandrov, Aleksandar; Hadjiiska, Roumyana; Iaydjiev, Plamen; Misheva, Milena; Rodozov, Mircho; Shopova, Mariana; Sultanov, Georgi; Dimitrov, Anton; Litov, Leander; Pavlov, Borislav; Petkov, Peicho; Fang, Wenxing; Gao, Xuyang; Yuan, Li; Ahmad, Muhammad; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; Chen, Mingshui; Chen, Ye; Jiang, Chun-Hua; Leggat, Duncan; Liao, Hongbo; Liu, Zhenan; Romeo, Francesco; Shaheen, Sarmad Masood; Spiezia, Aniello; Tao, Junquan; Wang, Chunjie; Wang, Zheng; Yazgan, Efe; Zhang, Huaqiao; Zhang, Sijing; Zhao, Jingzhou; Ban, Yong; Chen, Geng; Li, Jing; Li, Qiang; Liu, Shuai; Mao, Yajun; Qian, Si-Jin; Wang, Dayong; Xu, Zijun; Avila, Carlos; Cabrera, Andrés; Chaparro Sierra, Luisa Fernanda; Florez, Carlos; González Hernández, Carlos Felipe; Ruiz Alvarez, José David; Segura Delgado, Manuel Alejandro; Courbon, Benoit; Godinovic, Nikola; Lelas, Damir; Puljak, Ivica; Ribeiro Cipriano, Pedro M; Sculac, Toni; Antunovic, Zeljko; Kovac, Marko; Brigljevic, Vuko; Ferencek, Dinko; Kadija, Kreso; Mesic, Benjamin; Starodumov, Andrei; Susa, Tatjana; Ather, Mohsan Waseem; Attikis, Alexandros; Mavromanolakis, Georgios; Mousa, Jehad; Nicolaou, Charalambos; Ptochos, Fotios; Razis, Panos A; Rykaczewski, Hans; Finger, Miroslav; Finger Jr, Michael; Carrera Jarrin, Edgar; Abdelalim, Ahmed Ali; Mohammed, Yasser; Salama, Elsayed; Dewanjee, Ram Krishna; Kadastik, Mario; Perrini, Lucia; Raidal, Martti; Tiko, Andres; Veelken, Christian; Eerola, Paula; Kirschenmann, Henning; Pekkanen, Juska; Voutilainen, Mikko; Havukainen, Joona; Heikkilä, Jaana Kristiina; Jarvinen, Terhi; Karimäki, Veikko; Kinnunen, Ritva; Lampén, Tapio; Lassila-Perini, Kati; Laurila, Santeri; Lehti, Sami; Lindén, Tomas; Luukka, Panja-Riina; Siikonen, Hannu; Tuominen, Eija; Tuominiemi, Jorma; Tuuva, Tuure; Besancon, Marc; Couderc, Fabrice; Dejardin, Marc; Denegri, Daniel; Faure, Jean-Louis; Ferri, Federico; Ganjour, Serguei; Ghosh, Saranya; Gras, Philippe; Hamel de Monchenault, Gautier; Jarry, Patrick; Kucher, Inna; Leloup, Clément; Locci, Elizabeth; Machet, Martina; Malcles, Julie; Negro, Giulia; Rander, John; Rosowsky, André; Sahin, Mehmet Özgür; Titov, Maksym; Abdulsalam, Abdulla; Amendola, Chiara; Antropov, Iurii; Baffioni, Stephanie; Beaudette, Florian; Busson, Philippe; Cadamuro, Luca; Charlot, Claude; Granier de Cassagnac, Raphael; Jo, Mihee; Lisniak, Stanislav; Lobanov, Artur; Martin Blanco, Javier; Nguyen, Matthew; Ochando, Christophe; Ortona, Giacomo; Paganini, Pascal; Pigard, Philipp; Salerno, Roberto; Sauvan, Jean-Baptiste; Sirois, Yves; Stahl Leiton, Andre Govinda; Strebler, Thomas; Yilmaz, Yetkin; Zabi, Alexandre; Zghiche, Amina; Agram, Jean-Laurent; Andrea, Jeremy; Bloch, Daniel; Brom, Jean-Marie; Buttignol, Michael; Chabert, Eric Christian; Chanon, Nicolas; Collard, Caroline; Conte, Eric; Coubez, Xavier; Fontaine, Jean-Charles; Gelé, Denis; Goerlach, Ulrich; Jansová, Markéta; Le Bihan, Anne-Catherine; Tonon, Nicolas; Van Hove, Pierre; Gadrat, Sébastien; Beauceron, Stephanie; Bernet, Colin; Boudoul, Gaelle; Chierici, Roberto; Contardo, Didier; Depasse, Pierre; El Mamouni, Houmani; Fay, Jean; Finco, Linda; Gascon, Susan; Gouzevitch, Maxime; Grenier, Gérald; Ille, Bernard; Lagarde, Francois; Laktineh, Imad Baptiste; Lethuillier, Morgan; Mirabito, Laurent; Pequegnot, Anne-Laure; Perries, Stephane; Popov, Andrey; Sordini, Viola; Vander Donckt, Muriel; Viret, Sébastien; Toriashvili, Tengizi; Tsamalaidze, Zviad; Autermann, Christian; Feld, Lutz; Kiesel, Maximilian Knut; Klein, Katja; Lipinski, Martin; Preuten, Marius; Schomakers, Christian; Schulz, Johannes; Zhukov, Valery; Albert, Andreas; Dietz-Laursonn, Erik; Duchardt, Deborah; Endres, Matthias; Erdmann, Martin; Erdweg, Sören; Esch, Thomas; Fischer, Robert; Güth, Andreas; Hamer, Matthias; Hebbeker, Thomas; Heidemann, Carsten; Hoepfner, Kerstin; Knutzen, Simon; Merschmeyer, Markus; Meyer, Arnd; Millet, Philipp; Mukherjee, Swagata; Pook, Tobias; Radziej, Markus; Reithler, Hans; Rieger, Marcel; Scheuch, Florian; Teyssier, Daniel; Thüer, Sebastian; Flügge, Günter; Kargoll, Bastian; Kress, Thomas; Künsken, Andreas; Müller, Thomas; Nehrkorn, Alexander; Nowack, Andreas; Pistone, Claudia; Pooth, Oliver; Stahl, Achim; Aldaya Martin, Maria; Arndt, Till; Asawatangtrakuldee, Chayanit; Beernaert, Kelly; Behnke, Olaf; Behrens, Ulf; Bermúdez Martínez, Armando; Bin Anuar, Afiq Aizuddin; Borras, Kerstin; Botta, Valeria; Campbell, Alan; Connor, Patrick; Contreras-Campana, Christian; Costanza, Francesco; Diez Pardos, Carmen; Eckerlin, Guenter; Eckstein, Doris; Eichhorn, Thomas; Eren, Engin; Gallo, Elisabetta; Garay Garcia, Jasone; Geiser, Achim; Grados Luyando, Juan Manuel; Grohsjean, Alexander; Gunnellini, Paolo; Guthoff, Moritz; Harb, Ali; Hauk, Johannes; Hempel, Maria; Jung, Hannes; Kasemann, Matthias; Keaveney, James; Kleinwort, Claus; Korol, Ievgen; Krücker, Dirk; Lange, Wolfgang; Lelek, Aleksandra; Lenz, Teresa; Leonard, Jessica; Lipka, Katerina; Lohmann, Wolfgang; Mankel, Rainer; Melzer-Pellmann, Isabell-Alissandra; Meyer, Andreas Bernhard; Mittag, Gregor; Mnich, Joachim; Mussgiller, Andreas; Ntomari, Eleni; Pitzl, Daniel; Raspereza, Alexei; Savitskyi, Mykola; Saxena, Pooja; Shevchenko, Rostyslav; Spannagel, Simon; Stefaniuk, Nazar; Van Onsem, Gerrit Patrick; Walsh, Roberval; Wen, Yiwen; Wichmann, Katarzyna; Wissing, Christoph; Zenaiev, Oleksandr; Aggleton, Robin; Bein, Samuel; Blobel, Volker; Centis Vignali, Matteo; Dreyer, Torben; Garutti, Erika; Gonzalez, Daniel; Haller, Johannes; Hinzmann, Andreas; Hoffmann, Malte; Karavdina, Anastasia; Klanner, Robert; Kogler, Roman; Kovalchuk, Nataliia; Kurz, Simon; Lapsien, Tobias; Marconi, Daniele; Meyer, Mareike; Niedziela, Marek; Nowatschin, Dominik; Pantaleo, Felice; Peiffer, Thomas; Perieanu, Adrian; Scharf, Christian; Schleper, Peter; Schmidt, Alexander; Schumann, Svenja; Schwandt, Joern; Sonneveld, Jory; Stadie, Hartmut; Steinbrück, Georg; Stober, Fred-Markus Helmut; Stöver, Marc; Tholen, Heiner; Troendle, Daniel; Usai, Emanuele; Vanhoefer, Annika; Vormwald, Benedikt; Akbiyik, Melike; Barth, Christian; Baselga, Marta; Baur, Sebastian; Butz, Erik; Caspart, René; Chwalek, Thorsten; Colombo, Fabio; De Boer, Wim; Dierlamm, Alexander; Faltermann, Nils; Freund, Benedikt; Friese, Raphael; Giffels, Manuel; Harrendorf, Marco Alexander; Hartmann, Frank; Heindl, Stefan Michael; Husemann, Ulrich; Kassel, Florian; Kudella, Simon; Mildner, Hannes; Mozer, Matthias Ulrich; Müller, Thomas; Plagge, Michael; Quast, Gunter; Rabbertz, Klaus; Schröder, Matthias; Shvetsov, Ivan; Sieber, Georg; Simonis, Hans-Jürgen; Ulrich, Ralf; Wayand, Stefan; Weber, Marc; Weiler, Thomas; Williamson, Shawn; Wöhrmann, Clemens; Wolf, Roger; Anagnostou, Georgios; Daskalakis, Georgios; Geralis, Theodoros; Kyriakis, Aristotelis; Loukas, Demetrios; Topsis-Giotis, Iasonas; Karathanasis, George; Kesisoglou, Stilianos; Panagiotou, Apostolos; Saoulidou, Niki; Kousouris, Konstantinos; Evangelou, Ioannis; Foudas, Costas; Gianneios, Paraskevas; Katsoulis, Panagiotis; Kokkas, Panagiotis; Mallios, Stavros; Manthos, Nikolaos; Papadopoulos, Ioannis; Paradas, Evangelos; Strologas, John; Triantis, Frixos A; Tsitsonis, Dimitrios; Csanad, Mate; Filipovic, Nicolas; Pasztor, Gabriella; Surányi, Olivér; Veres, Gabor Istvan; Bencze, Gyorgy; Hajdu, Csaba; Horvath, Dezso; Hunyadi, Ádám; Sikler, Ferenc; Veszpremi, Viktor; Beni, Noemi; Czellar, Sandor; Karancsi, János; Makovec, Alajos; Molnar, Jozsef; Szillasi, Zoltan; Bartók, Márton; Raics, Peter; Trocsanyi, Zoltan Laszlo; Ujvari, Balazs; Choudhury, Somnath; Komaragiri, Jyothsna Rani; Bahinipati, Seema; Bhowmik, Sandeep; Mal, Prolay; Mandal, Koushik; Nayak, Aruna; Sahoo, Deepak Kumar; Sahoo, Niladribihari; Swain, Sanjay Kumar; Bansal, Sunil; Beri, Suman Bala; Bhatnagar, Vipin; Chawla, Ridhi; Dhingra, Nitish; Kalsi, Amandeep Kaur; Kaur, Anterpreet; Kaur, Manjit; Kaur, Sandeep; Kumar, Ramandeep; Kumari, Priyanka; Mehta, Ankita; Singh, Jasbir; Walia, Genius; Kumar, Ashok; Shah, Aashaq; Bhardwaj, Ashutosh; Chauhan, Sushil; Choudhary, Brajesh C; Garg, Rocky Bala; Keshri, Sumit; Kumar, Ajay; Malhotra, Shivali; Naimuddin, Md; Ranjan, Kirti; Sharma, Ramkrishna; Bhardwaj, Rishika; Bhattacharya, Rajarshi; Bhattacharya, Satyaki; Bhawandeep, Bhawandeep; Dey, Sourav; Dutt, Suneel; Dutta, Suchandra; Ghosh, Shamik; Majumdar, Nayana; Modak, Atanu; Mondal, Kuntal; Mukhopadhyay, Supratik; Nandan, Saswati; Purohit, Arnab; Roy, Ashim; Roy Chowdhury, Suvankar; Sarkar, Subir; Sharan, Manoj; Thakur, Shalini; Behera, Prafulla Kumar; Chudasama, Ruchi; Dutta, Dipanwita; Jha, Vishwajeet; Kumar, Vineet; Mohanty, Ajit Kumar; Netrakanti, Pawan Kumar; Pant, Lalit Mohan; Shukla, Prashant; Topkar, Anita; Aziz, Tariq; Dugad, Shashikant; Mahakud, Bibhuprasad; Mitra, Soureek; Mohanty, Gagan Bihari; Sur, Nairit; Sutar, Bajrang; Banerjee, Sudeshna; Bhattacharya, Soham; Chatterjee, Suman; Das, Pallabi; Guchait, Monoranjan; Jain, Sandhya; Kumar, Sanjeev; Maity, Manas; Majumder, Gobinda; Mazumdar, Kajari; Sarkar, Tanmay; Wickramage, Nadeesha; Chauhan, Shubhanshu; Dube, Sourabh; Hegde, Vinay; Kapoor, Anshul; Kothekar, Kunal; Pandey, Shubham; Rane, Aditee; Sharma, Seema; Chenarani, Shirin; Eskandari Tadavani, Esmaeel; Etesami, Seyed Mohsen; Khakzad, Mohsen; Mohammadi Najafabadi, Mojtaba; Naseri, Mohsen; Paktinat Mehdiabadi, Saeid; Rezaei Hosseinabadi, Ferdos; Safarzadeh, Batool; Zeinali, Maryam; Felcini, Marta; Grunewald, Martin; Abbrescia, Marcello; Calabria, Cesare; Colaleo, Anna; Creanza, Donato; Cristella, Leonardo; De Filippis, Nicola; De Palma, Mauro; Errico, Filippo; Fiore, Luigi; Iaselli, Giuseppe; Lezki, Samet; Maggi, Giorgio; Maggi, Marcello; Miniello, Giorgia; My, Salvatore; Nuzzo, Salvatore; Pompili, Alexis; Pugliese, Gabriella; Radogna, Raffaella; Ranieri, Antonio; Selvaggi, Giovanna; Sharma, Archana; Silvestris, Lucia; Venditti, Rosamaria; Verwilligen, Piet; Abbiendi, Giovanni; Battilana, Carlo; Bonacorsi, Daniele; Borgonovi, Lisa; Braibant-Giacomelli, Sylvie; Campanini, Renato; Capiluppi, Paolo; Castro, Andrea; Cavallo, Francesca Romana; Chhibra, Simranjit Singh; Codispoti, Giuseppe; Cuffiani, Marco; Dallavalle, Gaetano-Marco; Fabbri, Fabrizio; Fanfani, Alessandra; Fasanella, Daniele; Giacomelli, Paolo; Grandi, Claudio; Guiducci, Luigi; Marcellini, Stefano; Masetti, Gianni; Montanari, Alessandro; Navarria, Francesco; Perrotta, Andrea; Rossi, Antonio; Rovelli, Tiziano; Siroli, Gian Piero; Tosi, Nicolò; Albergo, Sebastiano; Costa, Salvatore; Di Mattia, Alessandro; Giordano, Ferdinando; Potenza, Renato; Tricomi, Alessia; Tuve, Cristina; Barbagli, Giuseppe; Chatterjee, Kalyanmoy; Ciulli, Vitaliano; Civinini, Carlo; D'Alessandro, Raffaello; Focardi, Ettore; Lenzi, Piergiulio; Meschini, Marco; Paoletti, Simone; Russo, Lorenzo; Sguazzoni, Giacomo; Strom, Derek; Viliani, Lorenzo; Benussi, Luigi; Bianco, Stefano; Fabbri, Franco; Piccolo, Davide; Primavera, Federica; Calvelli, Valerio; Ferro, Fabrizio; Robutti, Enrico; Tosi, Silvano; Benaglia, Andrea; Beschi, Andrea; Brianza, Luca; Brivio, Francesco; Ciriolo, Vincenzo; Dinardo, Mauro Emanuele; Fiorendi, Sara; Gennai, Simone; Ghezzi, Alessio; Govoni, Pietro; Malberti, Martina; Malvezzi, Sandra; Manzoni, Riccardo Andrea; Menasce, Dario; Moroni, Luigi; Paganoni, Marco; Pauwels, Kristof; Pedrini, Daniele; Pigazzini, Simone; Ragazzi, Stefano; Tabarelli de Fatis, Tommaso; Buontempo, Salvatore; Cavallo, Nicola; Di Guida, Salvatore; Fabozzi, Francesco; Fienga, Francesco; Iorio, Alberto Orso Maria; Khan, Wajid Ali; Lista, Luca; Meola, Sabino; Paolucci, Pierluigi; Sciacca, Crisostomo; Thyssen, Filip; Azzi, Patrizia; Bacchetta, Nicola; Benato, Lisa; Bisello, Dario; Boletti, Alessio; Carlin, Roberto; Carvalho Antunes De Oliveira, Alexandra; Checchia, Paolo; Dall'Osso, Martino; De Castro Manzano, Pablo; Dorigo, Tommaso; Gasparini, Fabrizio; Gasparini, Ugo; Gozzelino, Andrea; Gulmini, Michele; Lacaprara, Stefano; Lujan, Paul; Margoni, Martino; Meneguzzo, Anna Teresa; Pozzobon, Nicola; Ronchese, Paolo; Rossin, Roberto; Torassa, Ezio; Ventura, Sandro; Zanetti, Marco; Zumerle, Gianni; Braghieri, Alessandro; Magnani, Alice; Montagna, Paolo; Ratti, Sergio P; Re, Valerio; Ressegotti, Martina; Riccardi, Cristina; Salvini, Paola; Vai, Ilaria; Vitulo, Paolo; Alunni Solestizi, Luisa; Biasini, Maurizio; Bilei, Gian Mario; Cecchi, Claudia; Ciangottini, Diego; Fanò, Livio; Leonardi, Roberto; Manoni, Elisa; Mantovani, Giancarlo; Mariani, Valentina; Menichelli, Mauro; Rossi, Alessandro; Santocchia, Attilio; Spiga, Daniele; Androsov, Konstantin; Azzurri, Paolo; Bagliesi, Giuseppe; Boccali, Tommaso; Borrello, Laura; Castaldi, Rino; Ciocci, Maria Agnese; Dell'Orso, Roberto; Fedi, Giacomo; Giannini, Leonardo; Giassi, Alessandro; Grippo, Maria Teresa; Ligabue, Franco; Lomtadze, Teimuraz; Manca, Elisabetta; Mandorli, Giulio; Messineo, Alberto; Palla, Fabrizio; Rizzi, Andrea; Savoy-Navarro, Aurore; Spagnolo, Paolo; Tenchini, Roberto; Tonelli, Guido; Venturi, Andrea; Verdini, Piero Giorgio; Barone, Luciano; Cavallari, Francesca; Cipriani, Marco; Daci, Nadir; Del Re, Daniele; Di Marco, Emanuele; Diemoz, Marcella; Gelli, Simone; Longo, Egidio; Margaroli, Fabrizio; Marzocchi, Badder; Meridiani, Paolo; Organtini, Giovanni; Paramatti, Riccardo; Preiato, Federico; Rahatlou, Shahram; Rovelli, Chiara; Santanastasio, Francesco; Amapane, Nicola; Arcidiacono, Roberta; Argiro, Stefano; Arneodo, Michele; Bartosik, Nazar; Bellan, Riccardo; Biino, Cristina; Cartiglia, Nicolo; Cenna, Francesca; Costa, Marco; Covarelli, Roberto; Degano, Alessandro; Demaria, Natale; Kiani, Bilal; Mariotti, Chiara; Maselli, Silvia; Migliore, Ernesto; Monaco, Vincenzo; Monteil, Ennio; Monteno, Marco; Obertino, Maria Margherita; Pacher, Luca; Pastrone, Nadia; Pelliccioni, Mario; Pinna Angioni, Gian Luca; Ravera, Fabio; Romero, Alessandra; Ruspa, Marta; Sacchi, Roberto; Shchelina, Ksenia; Sola, Valentina; Solano, Ada; Staiano, Amedeo; Traczyk, Piotr; Belforte, Stefano; Casarsa, Massimo; Cossutti, Fabio; Della Ricca, Giuseppe; Zanetti, Anna; Kim, Dong Hee; Kim, Gui Nyun; Kim, Min Suk; Lee, Jeongeun; Lee, Sangeun; Lee, Seh Wook; Moon, Chang-Seong; Oh, Young Do; Sekmen, Sezen; Son, Dong-Chul; Yang, Yu Chul; Lee, Ari; Kim, Hyunchul; Moon, Dong Ho; Oh, Geonhee; Brochero Cifuentes, Javier Andres; Goh, Junghwan; Kim, Tae Jeong; Cho, Sungwoong; Choi, Suyong; Go, Yeonju; Gyun, Dooyeon; Ha, Seungkyu; Hong, Byung-Sik; Jo, Youngkwon; Kim, Yongsun; Lee, Kisoo; Lee, Kyong Sei; Lee, Songkyo; Lim, Jaehoon; Park, Sung Keun; Roh, Youn; Almond, John; Kim, Junho; Kim, Jae Sung; Lee, Haneol; Lee, Kyeongpil; Nam, Kyungwook; Oh, Sung Bin; Radburn-Smith, Benjamin Charles; Seo, Seon-hee; Yang, Unki; Yoo, Hwi Dong; Yu, Geum Bong; Kim, Hyunyong; Kim, Ji Hyun; Lee, Jason Sang Hun; Park, Inkyu; Choi, Young-Il; Hwang, Chanwook; Lee, Jongseok; Yu, Intae; Dudenas, Vytautas; Juodagalvis, Andrius; Vaitkus, Juozas; Ahmed, Ijaz; Ibrahim, Zainol Abidin; Md Ali, Mohd Adli Bin; Mohamad Idris, Faridah; Wan Abdullah, Wan Ahmad Tajuddin; Yusli, Mohd Nizam; Zolkapli, Zukhaimira; Reyes-Almanza, Rogelio; Ramirez-Sanchez, Gabriel; Duran-Osuna, Cecilia; Castilla-Valdez, Heriberto; De La Cruz-Burelo, Eduard; Heredia-De La Cruz, Ivan; Rabadán-Trejo, Raúl Iraq; Lopez-Fernandez, Ricardo; Mejia Guisao, Jhovanny; Sánchez Hernández, Alberto; Carrillo Moreno, Salvador; Oropeza Barrera, Cristina; Vazquez Valencia, Fabiola; Eysermans, Jan; Pedraza, Isabel; Salazar Ibarguen, Humberto Antonio; Uribe Estrada, Cecilia; Morelos Pineda, Antonio; Krofcheck, David; Butler, Philip H; Ahmad, Ashfaq; Ahmad, Muhammad; Hassan, Qamar; Hoorani, Hafeez R; Saddique, Asif; Shah, Mehar Ali; Shoaib, Muhammad; Waqas, Muhammad; Bialkowska, Helena; Bluj, Michal; Boimska, Bozena; Frueboes, Tomasz; Górski, Maciej; Kazana, Malgorzata; Nawrocki, Krzysztof; Szleper, Michal; Zalewski, Piotr; Bunkowski, Karol; Byszuk, Adrian; Doroba, Krzysztof; Kalinowski, Artur; Konecki, Marcin; Krolikowski, Jan; Misiura, Maciej; Olszewski, Michal; Pyskir, Andrzej; Walczak, Marek; Bargassa, Pedrame; Beirão Da Cruz E Silva, Cristóvão; Di Francesco, Agostino; Faccioli, Pietro; Galinhas, Bruno; Gallinaro, Michele; Hollar, Jonathan; Leonardo, Nuno; Lloret Iglesias, Lara; Nemallapudi, Mythra Varun; Seixas, Joao; Strong, Giles; Toldaiev, Oleksii; Vadruccio, Daniele; Varela, Joao; Baginyan, Andrey; Golunov, Alexey; Golutvin, Igor; Karjavin, Vladimir; Korenkov, Vladimir; Kozlov, Guennady; Lanev, Alexander; Malakhov, Alexander; Matveev, Viktor; Mitsyn, Valeri Valentinovitch; Palichik, Vladimir; Perelygin, Victor; Shmatov, Sergey; Skatchkov, Nikolai; Smirnov, Vitaly; Yuldashev, Bekhzod S; Zarubin, Anatoli; Zhiltsov, Victor; Ivanov, Yury; Kim, Victor; Kuznetsova, Ekaterina; Levchenko, Petr; Murzin, Victor; Oreshkin, Vadim; Smirnov, Igor; Sosnov, Dmitry; Sulimov, Valentin; Uvarov, Lev; Vavilov, Sergey; Vorobyev, Alexey; Andreev, Yuri; Dermenev, Alexander; Gninenko, Sergei; Golubev, Nikolai; Karneyeu, Anton; Kirsanov, Mikhail; Krasnikov, Nikolai; Pashenkov, Anatoli; Tlisov, Danila; Toropin, Alexander; Epshteyn, Vladimir; Gavrilov, Vladimir; Lychkovskaya, Natalia; Popov, Vladimir; Pozdnyakov, Ivan; Safronov, Grigory; Spiridonov, Alexander; Stepennov, Anton; Toms, Maria; Vlasov, Evgueni; Zhokin, Alexander; Aushev, Tagir; Bylinkin, Alexander; Chistov, Ruslan; Danilov, Mikhail; Parygin, Pavel; Philippov, Dmitry; Polikarpov, Sergey; Tarkovskii, Evgenii; Zhemchugov, Evgenii; Andreev, Vladimir; Azarkin, Maksim; Dremin, Igor; Kirakosyan, Martin; Terkulov, Adel; Baskakov, Alexey; Belyaev, Andrey; Boos, Edouard; Ershov, Alexander; Gribushin, Andrey; Kaminskiy, Alexandre; Kodolova, Olga; Korotkikh, Vladimir; Lokhtin, Igor; Miagkov, Igor; Nazarova, Elizaveta; Obraztsov, Stepan; Petrushanko, Sergey; Savrin, Viktor; Snigirev, Alexander; Vardanyan, Irina; Blinov, Vladimir; Skovpen, Yuri; Shtol, Dmitry; Azhgirey, Igor; Bayshev, Igor; Bitioukov, Sergei; Elumakhov, Dmitry; Godizov, Anton; Kachanov, Vassili; Kalinin, Alexey; Konstantinov, Dmitri; Mandrik, Petr; Petrov, Vladimir; Ryutin, Roman; Sobol, Andrei; Troshin, Sergey; Tyurin, Nikolay; Uzunian, Andrey; Volkov, Alexey; Adzic, Petar; Cirkovic, Predrag; Devetak, Damir; Dordevic, Milos; Milosevic, Jovan; Rekovic, Vladimir; Alcaraz Maestre, Juan; Bachiller, Irene; Barrio Luna, Mar; Cerrada, Marcos; Colino, Nicanor; De La Cruz, Begona; Delgado Peris, Antonio; Escalante Del Valle, Alberto; Fernandez Bedoya, Cristina; Fernández Ramos, Juan Pablo; Flix, Jose; Fouz, Maria Cruz; Gonzalez Lopez, Oscar; Goy Lopez, Silvia; Hernandez, Jose M; Josa, Maria Isabel; Moran, Dermot; Pérez-Calero Yzquierdo, Antonio María; Puerta Pelayo, Jesus; Quintario Olmeda, Adrián; Redondo, Ignacio; Romero, Luciano; Senghi Soares, Mara; Álvarez Fernández, Adrian; Albajar, Carmen; de Trocóniz, Jorge F; Missiroli, Marino; Cuevas, Javier; Erice, Carlos; Fernandez Menendez, Javier; Gonzalez Caballero, Isidro; González Fernández, Juan Rodrigo; Palencia Cortezon, Enrique; Sanchez Cruz, Sergio; Vischia, Pietro; Vizan Garcia, Jesus Manuel; Cabrillo, Iban Jose; Calderon, Alicia; Chazin Quero, Barbara; Curras, Esteban; Duarte Campderros, Jordi; Fernandez, Marcos; Garcia-Ferrero, Juan; Gomez, Gervasio; Lopez Virto, Amparo; Marco, Jesus; Martinez Rivero, Celso; Martinez Ruiz del Arbol, Pablo; Matorras, Francisco; Piedra Gomez, Jonatan; Rodrigo, Teresa; Ruiz-Jimeno, Alberto; Scodellaro, Luca; Trevisani, Nicolò; Vila, Ivan; Vilar Cortabitarte, Rocio; Abbaneo, Duccio; Akgun, Bora; Auffray, Etiennette; Baillon, Paul; Ball, Austin; Barney, David; Bendavid, Joshua; Bianco, Michele; Bloch, Philippe; Bocci, Andrea; Botta, Cristina; Camporesi, Tiziano; Castello, Roberto; Cepeda, Maria; Cerminara, Gianluca; Chapon, Emilien; Chen, Yi; D'Enterria, David; Dabrowski, Anne; Daponte, Vincenzo; David Tinoco Mendes, Andre; De Gruttola, Michele; De Roeck, Albert; Deelen, Nikkie; Dobson, Marc; Du Pree, Tristan; Dünser, Marc; Dupont, Niels; Elliott-Peisert, Anna; Everaerts, Pieter; Fallavollita, Francesco; Franzoni, Giovanni; Fulcher, Jonathan; Funk, Wolfgang; Gigi, Dominique; Gilbert, Andrew; Gill, Karl; Glege, Frank; Gulhan, Doga; Harris, Philip; Hegeman, Jeroen; Innocente, Vincenzo; Jafari, Abideh; Janot, Patrick; Karacheban, Olena; Kieseler, Jan; Knünz, Valentin; Kornmayer, Andreas; Kortelainen, Matti J; Krammer, Manfred; Lange, Clemens; Lecoq, Paul; Lourenco, Carlos; Lucchini, Marco Toliman; Malgeri, Luca; Mannelli, Marcello; Martelli, Arabella; Meijers, Frans; Merlin, Jeremie Alexandre; Mersi, Stefano; Meschi, Emilio; Milenovic, Predrag; Moortgat, Filip; Mulders, Martijn; Neugebauer, Hannes; Ngadiuba, Jennifer; Orfanelli, Styliani; Orsini, Luciano; Pape, Luc; Perez, Emmanuel; Peruzzi, Marco; Petrilli, Achille; Petrucciani, Giovanni; Pfeiffer, Andreas; Pierini, Maurizio; Rabady, Dinyar; Racz, Attila; Reis, Thomas; Rolandi, Gigi; Rovere, Marco; Sakulin, Hannes; Schäfer, Christoph; Schwick, Christoph; Seidel, Markus; Selvaggi, Michele; Sharma, Archana; Silva, Pedro; Sphicas, Paraskevas; Stakia, Anna; Steggemann, Jan; Stoye, Markus; Tosi, Mia; Treille, Daniel; Triossi, Andrea; Tsirou, Andromachi; Veckalns, Viesturs; Verweij, Marta; Zeuner, Wolfram Dietrich; Bertl, Willi; Caminada, Lea; Deiters, Konrad; Erdmann, Wolfram; Horisberger, Roland; Ingram, Quentin; Kaestli, Hans-Christian; Kotlinski, Danek; Langenegger, Urs; Rohe, Tilman; Wiederkehr, Stephan Albert; Backhaus, Malte; Bäni, Lukas; Berger, Pirmin; Bianchini, Lorenzo; Casal, Bruno; Dissertori, Günther; Dittmar, Michael; Donegà, Mauro; Dorfer, Christian; Grab, Christoph; Heidegger, Constantin; Hits, Dmitry; Hoss, Jan; Kasieczka, Gregor; Klijnsma, Thomas; Lustermann, Werner; Mangano, Boris; Marionneau, Matthieu; Meinhard, Maren Tabea; Meister, Daniel; Micheli, Francesco; Musella, Pasquale; Nessi-Tedaldi, Francesca; Pandolfi, Francesco; Pata, Joosep; Pauss, Felicitas; Perrin, Gaël; Perrozzi, Luca; Quittnat, Milena; Reichmann, Michael; Sanz Becerra, Diego Alejandro; Schönenberger, Myriam; Shchutska, Lesya; Tavolaro, Vittorio Raoul; Theofilatos, Konstantinos; Vesterbacka Olsson, Minna Leonora; Wallny, Rainer; Zhu, De Hua; Aarrestad, Thea Klaeboe; Amsler, Claude; Canelli, Maria Florencia; De Cosa, Annapaola; Del Burgo, Riccardo; Donato, Silvio; Galloni, Camilla; Hreus, Tomas; Kilminster, Benjamin; Pinna, Deborah; Rauco, Giorgia; Robmann, Peter; Salerno, Daniel; Schweiger, Korbinian; Seitz, Claudia; Takahashi, Yuta; Zucchetta, Alberto; Candelise, Vieri; Chang, Yu-Hsiang; Cheng, Kai-yu; Doan, Thi Hien; Jain, Shilpi; Khurana, Raman; Kuo, Chia-Ming; Lin, Willis; Pozdnyakov, Andrey; Yu, Shin-Shan; Kumar, Arun; Chang, Paoti; Chao, Yuan; Chen, Kai-Feng; Chen, Po-Hsun; Fiori, Francesco; Hou, George Wei-Shu; Hsiung, Yee; Liu, Yueh-Feng; Lu, Rong-Shyang; Paganis, Efstathios; Psallidas, Andreas; Steen, Arnaud; Tsai, Jui-fa; Asavapibhop, Burin; Kovitanggoon, Kittikul; Singh, Gurpreet; Srimanobhas, Norraphat; Bakirci, Mustafa Numan; Bat, Ayse; Boran, Fatma; Damarseckin, Serdal; Demiroglu, Zuhal Seyma; Dozen, Candan; Eskut, Eda; Girgis, Semiray; Gokbulut, Gul; Guler, Yalcin; Hos, Ilknur; Kangal, Evrim Ersin; Kara, Ozgun; Kayis Topaksu, Aysel; Kiminsu, Ugur; Oglakci, Mehmet; Onengut, Gulsen; Ozdemir, Kadri; Polatoz, Ayse; Tok, Ufuk Guney; Topakli, Huseyin; Turkcapar, Semra; Zorbakir, Ibrahim Soner; Zorbilmez, Caglar; Bilin, Bugra; Karapinar, Guler; Ocalan, Kadir; Yalvac, Metin; Zeyrek, Mehmet; Gülmez, Erhan; Kaya, Mithat; Kaya, Ozlem; Tekten, Sevgi; Yetkin, Elif Asli; Nazlim Agaras, Merve; Atay, Serhat; Cakir, Altan; Cankocak, Kerem; Köseoglu, Ilknur; Grynyov, Boris; Levchuk, Leonid; Ball, Fionn; Beck, Lana; Brooke, James John; Burns, Douglas; Clement, Emyr; Cussans, David; Davignon, Olivier; Flacher, Henning; Goldstein, Joel; Heath, Greg P; Heath, Helen F; Kreczko, Lukasz; Newbold, Dave M; Paramesvaran, Sudarshan; Sakuma, Tai; Seif El Nasr-storey, Sarah; Smith, Dominic; Smith, Vincent J; Belyaev, Alexander; Brew, Christopher; Brown, Robert M; Calligaris, Luigi; Cieri, Davide; Cockerill, David JA; Coughlan, John A; Harder, Kristian; Harper, Sam; Linacre, Jacob; Olaiya, Emmanuel; Petyt, David; Shepherd-Themistocleous, Claire; Thea, Alessandro; Tomalin, Ian R; Williams, Thomas; Auzinger, Georg; Bainbridge, Robert; Borg, Johan; Breeze, Shane; Buchmuller, Oliver; Bundock, Aaron; Casasso, Stefano; Citron, Matthew; Colling, David; Corpe, Louie; Dauncey, Paul; Davies, Gavin; De Wit, Adinda; Della Negra, Michel; Di Maria, Riccardo; Elwood, Adam; Haddad, Yacine; Hall, Geoffrey; Iles, Gregory; James, Thomas; Lane, Rebecca; Laner, Christian; Lyons, Louis; Magnan, Anne-Marie; Malik, Sarah; Mastrolorenzo, Luca; Matsushita, Takashi; Nash, Jordan; Nikitenko, Alexander; Palladino, Vito; Pesaresi, Mark; Raymond, David Mark; Richards, Alexander; Rose, Andrew; Scott, Edward; Seez, Christopher; Shtipliyski, Antoni; Summers, Sioni; Tapper, Alexander; Uchida, Kirika; Vazquez Acosta, Monica; Virdee, Tejinder; Wardle, Nicholas; Winterbottom, Daniel; Wright, Jack; Zenz, Seth Conrad; Cole, Joanne; Hobson, Peter R; Khan, Akram; Kyberd, Paul; Reid, Ivan; Teodorescu, Liliana; Zahid, Sema; Borzou, Ahmad; Call, Kenneth; Dittmann, Jay; Hatakeyama, Kenichi; Liu, Hongxuan; Pastika, Nathaniel; Smith, Caleb; Bartek, Rachel; Dominguez, Aaron; Buccilli, Andrew; Cooper, Seth; Henderson, Conor; Rumerio, Paolo; West, Christopher; Arcaro, Daniel; Avetisyan, Aram; Bose, Tulika; Gastler, Daniel; Rankin, Dylan; Richardson, Clint; Rohlf, James; Sulak, Lawrence; Zou, David; Benelli, Gabriele; Cutts, David; Garabedian, Alex; Hadley, Mary; Hakala, John; Heintz, Ulrich; Hogan, Julie Managan; Kwok, Ka Hei Martin; Laird, Edward; Landsberg, Greg; Lee, Jangbae; Mao, Zaixing; Narain, Meenakshi; Pazzini, Jacopo; Piperov, Stefan; Sagir, Sinan; Syarif, Rizki; Yu, David; Band, Reyer; Brainerd, Christopher; Breedon, Richard; Burns, Dustin; Calderon De La Barca Sanchez, Manuel; Chertok, Maxwell; Conway, John; Conway, Rylan; Cox, Peter Timothy; Erbacher, Robin; Flores, Chad; Funk, Garrett; Ko, Winston; Lander, Richard; Mclean, Christine; Mulhearn, Michael; Pellett, Dave; Pilot, Justin; Shalhout, Shalhout; Shi, Mengyao; Smith, John; Stolp, Dustin; Tos, Kyle; Tripathi, Mani; Wang, Zhangqier; Bachtis, Michail; Bravo, Cameron; Cousins, Robert; Dasgupta, Abhigyan; Florent, Alice; Hauser, Jay; Ignatenko, Mikhail; Mccoll, Nickolas; Regnard, Simon; Saltzberg, David; Schnaible, Christian; Valuev, Vyacheslav; Bouvier, Elvire; Burt, Kira; Clare, Robert; Ellison, John Anthony; Gary, J William; Ghiasi Shirazi, Seyyed Mohammad Amin; Hanson, Gail; Heilman, Jesse; Karapostoli, Georgia; Kennedy, Elizabeth; Lacroix, Florent; Long, Owen Rosser; Olmedo Negrete, Manuel; Paneva, Mirena Ivova; Si, Weinan; Wang, Long; Wei, Hua; Wimpenny, Stephen; Yates, Brent; Branson, James G; Cittolin, Sergio; Derdzinski, Mark; Gerosa, Raffaele; Gilbert, Dylan; Hashemi, Bobak; Holzner, André; Klein, Daniel; Kole, Gouranga; Krutelyov, Vyacheslav; Letts, James; Macneill, Ian; Masciovecchio, Mario; Olivito, Dominick; Padhi, Sanjay; Pieri, Marco; Sani, Matteo; Sharma, Vivek; Simon, Sean; Tadel, Matevz; Vartak, Adish; Wasserbaech, Steven; Wood, John; Würthwein, Frank; Yagil, Avraham; Zevi Della Porta, Giovanni; Amin, Nick; Bhandari, Rohan; Bradmiller-Feld, John; Campagnari, Claudio; Dishaw, Adam; Dutta, Valentina; Franco Sevilla, Manuel; Golf, Frank; Gouskos, Loukas; Heller, Ryan; Incandela, Joe; Ovcharova, Ana; Qu, Huilin; Richman, Jeffrey; Stuart, David; Suarez, Indara; Yoo, Jaehyeok; Anderson, Dustin; Bornheim, Adolf; Lawhorn, Jay Mathew; Newman, Harvey B; Nguyen, Thong; Pena, Cristian; Spiropulu, Maria; Vlimant, Jean-Roch; Xie, Si; Zhang, Zhicai; Zhu, Ren-Yuan; Andrews, Michael Benjamin; Ferguson, Thomas; Mudholkar, Tanmay; Paulini, Manfred; Russ, James; Sun, Menglei; Vogel, Helmut; Vorobiev, Igor; Weinberg, Marc; Cumalat, John Perry; Ford, William T; Jensen, Frank; Johnson, Andrew; Krohn, Michael; Leontsinis, Stefanos; Mulholland, Troy; Stenson, Kevin; Wagner, Stephen Robert; Alexander, James; Chaves, Jorge; Chu, Jennifer; Dittmer, Susan; Mcdermott, Kevin; Mirman, Nathan; Patterson, Juliet Ritchie; Quach, Dan; Rinkevicius, Aurelijus; Ryd, Anders; Skinnari, Louise; Soffi, Livia; Tan, Shao Min; Tao, Zhengcheng; Thom, Julia; Tucker, Jordan; Wittich, Peter; Zientek, Margaret; Abdullin, Salavat; Albrow, Michael; Alyari, Maral; Apollinari, Giorgio; Apresyan, Artur; Apyan, Aram; Banerjee, Sunanda; Bauerdick, Lothar AT; Beretvas, Andrew; Berryhill, Jeffrey; Bhat, Pushpalatha C; Bolla, Gino; Burkett, Kevin; Butler, Joel Nathan; Canepa, Anadi; Cerati, Giuseppe Benedetto; Cheung, Harry; Chlebana, Frank; Cremonesi, Matteo; Duarte, Javier; Elvira, Victor Daniel; Freeman, Jim; Gecse, Zoltan; Gottschalk, Erik; Gray, Lindsey; Green, Dan; Grünendahl, Stefan; Gutsche, Oliver; Harris, Robert M; Hasegawa, Satoshi; Hirschauer, James; Hu, Zhen; Jayatilaka, Bodhitha; Jindariani, Sergo; Johnson, Marvin; Joshi, Umesh; Klima, Boaz; Kreis, Benjamin; Lammel, Stephan; Lincoln, Don; Lipton, Ron; Liu, Miaoyuan; Liu, Tiehui; Lopes De Sá, Rafael; Lykken, Joseph; Maeshima, Kaori; Magini, Nicolo; Marraffino, John Michael; Mason, David; McBride, Patricia; Merkel, Petra; Mrenna, Stephen; Nahn, Steve; O'Dell, Vivian; Pedro, Kevin; Prokofyev, Oleg; Rakness, Gregory; Ristori, Luciano; Schneider, Basil; Sexton-Kennedy, Elizabeth; Soha, Aron; Spalding, William J; Spiegel, Leonard; Stoynev, Stoyan; Strait, James; Strobbe, Nadja; Taylor, Lucas; Tkaczyk, Slawek; Tran, Nhan Viet; Uplegger, Lorenzo; Vaandering, Eric Wayne; Vernieri, Caterina; Verzocchi, Marco; Vidal, Richard; Wang, Michael; Weber, Hannsjoerg Artur; Whitbeck, Andrew; Acosta, Darin; Avery, Paul; Bortignon, Pierluigi; Bourilkov, Dimitri; Brinkerhoff, Andrew; Carnes, Andrew; Carver, Matthew; Curry, David; Field, Richard D; Furic, Ivan-Kresimir; Gleyzer, Sergei V; Joshi, Bhargav Madhusudan; Konigsberg, Jacobo; Korytov, Andrey; Kotov, Khristian; Ma, Peisen; Matchev, Konstantin; Mei, Hualin; Mitselmakher, Guenakh; Shi, Kun; Sperka, David; Terentyev, Nikolay; Thomas, Laurent; Wang, Jian; Wang, Sean-Jiun; Yelton, John; Joshi, Yagya Raj; Linn, Stephan; Markowitz, Pete; Rodriguez, Jorge Luis; Ackert, Andrew; Adams, Todd; Askew, Andrew; Hagopian, Sharon; Hagopian, Vasken; Johnson, Kurtis F; Kolberg, Ted; Martinez, German; Perry, Thomas; Prosper, Harrison; Saha, Anirban; Santra, Arka; Sharma, Varun; Yohay, Rachel; Baarmand, Marc M; Bhopatkar, Vallary; Colafranceschi, Stefano; Hohlmann, Marcus; Noonan, Daniel; Roy, Titas; Yumiceva, Francisco; Adams, Mark Raymond; Apanasevich, Leonard; Berry, Douglas; Betts, Russell Richard; Cavanaugh, Richard; Chen, Xuan; Evdokimov, Olga; Gerber, Cecilia Elena; Hangal, Dhanush Anil; Hofman, David Jonathan; Jung, Kurt; Kamin, Jason; Sandoval Gonzalez, Irving Daniel; Tonjes, Marguerite; Trauger, Hallie; Varelas, Nikos; Wang, Hui; Wu, Zhenbin; Zhang, Jingyu; Bilki, Burak; Clarida, Warren; Dilsiz, Kamuran; Durgut, Süleyman; Gandrajula, Reddy Pratap; Haytmyradov, Maksat; Khristenko, Viktor; Merlo, Jean-Pierre; Mermerkaya, Hamit; Mestvirishvili, Alexi; Moeller, Anthony; Nachtman, Jane; Ogul, Hasan; Onel, Yasar; Ozok, Ferhat; Penzo, Aldo; Snyder, Christina; Tiras, Emrah; Wetzel, James; Yi, Kai; Blumenfeld, Barry; Cocoros, Alice; Eminizer, Nicholas; Fehling, David; Feng, Lei; Gritsan, Andrei; Maksimovic, Petar; Roskes, Jeffrey; Sarica, Ulascan; Swartz, Morris; Xiao, Meng; You, Can; Al-bataineh, Ayman; Baringer, Philip; Bean, Alice; Boren, Samuel; Bowen, James; Castle, James; Khalil, Sadia; Kropivnitskaya, Anna; Majumder, Devdatta; Mcbrayer, William; Murray, Michael; Royon, Christophe; Sanders, Stephen; Schmitz, Erich; Tapia Takaki, Daniel; Wang, Quan; Ivanov, Andrew; Kaadze, Ketino; Maravin, Yurii; Mohammadi, Abdollah; Saini, Lovedeep Kaur; Skhirtladze, Nikoloz; Toda, Sachiko; Rebassoo, Finn; Wright, Douglas; Anelli, Christopher; Baden, Drew; Baron, Owen; Belloni, Alberto; Eno, Sarah Catherine; Feng, Yongbin; Ferraioli, Charles; Hadley, Nicholas John; Jabeen, Shabnam; Jeng, Geng-Yuan; Kellogg, Richard G; Kunkle, Joshua; Mignerey, Alice; Ricci-Tam, Francesca; Shin, Young Ho; Skuja, Andris; Tonwar, Suresh C; Abercrombie, Daniel; Allen, Brandon; Azzolini, Virginia; Barbieri, Richard; Baty, Austin; Bi, Ran; Brandt, Stephanie; Busza, Wit; Cali, Ivan Amos; D'Alfonso, Mariarosaria; Demiragli, Zeynep; Gomez Ceballos, Guillelmo; Goncharov, Maxim; Hsu, Dylan; Hu, Miao; Iiyama, Yutaro; Innocenti, Gian Michele; Klute, Markus; Kovalskyi, Dmytro; Lai, Yue Shi; Lee, Yen-Jie; Levin, Andrew; Luckey, Paul David; Maier, Benedikt; Marini, Andrea Carlo; Mcginn, Christopher; Mironov, Camelia; Narayanan, Siddharth; Niu, Xinmei; Paus, Christoph; Roland, Christof; Roland, Gunther; Salfeld-Nebgen, Jakob; Stephans, George; Tatar, Kaya; Velicanu, Dragos; Wang, Jing; Wang, Ta-Wei; Wyslouch, Bolek; Benvenuti, Alberto; Chatterjee, Rajdeep Mohan; Evans, Andrew; Hansen, Peter; Hiltbrand, Joshua; Kalafut, Sean; Kubota, Yuichi; Lesko, Zachary; Mans, Jeremy; Nourbakhsh, Shervin; Ruckstuhl, Nicole; Rusack, Roger; Turkewitz, Jared; Wadud, Mohammad Abrar; Acosta, John Gabriel; Oliveros, Sandra; Avdeeva, Ekaterina; Bloom, Kenneth; Claes, Daniel R; Fangmeier, Caleb; Gonzalez Suarez, Rebeca; Kamalieddin, Rami; Kravchenko, Ilya; Monroy, Jose; Siado, Joaquin Emilo; Snow, Gregory R; Stieger, Benjamin; Dolen, James; Godshalk, Andrew; Harrington, Charles; Iashvili, Ia; Nguyen, Duong; Parker, Ashley; Rappoccio, Salvatore; Roozbahani, Bahareh; Alverson, George; Barberis, Emanuela; Freer, Chad; Hortiangtham, Apichart; Massironi, Andrea; Morse, David Michael; Orimoto, Toyoko; Teixeira De Lima, Rafael; Trocino, Daniele; Wamorkar, Tanvi; Wang, Bingran; Wisecarver, Andrew; Wood, Darien; Bhattacharya, Saptaparna; Charaf, Otman; Hahn, Kristan Allan; Mucia, Nicholas; Odell, Nathaniel; Schmitt, Michael Henry; Sung, Kevin; Trovato, Marco; Velasco, Mayda; Bucci, Rachael; Dev, Nabarun; Hildreth, Michael; Hurtado Anampa, Kenyi; Jessop, Colin; Karmgard, Daniel John; Kellams, Nathan; Lannon, Kevin; Li, Wenzhao; Loukas, Nikitas; Marinelli, Nancy; Meng, Fanbo; Mueller, Charles; Musienko, Yuri; Planer, Michael; Reinsvold, Allison; Ruchti, Randy; Siddireddy, Prasanna; Smith, Geoffrey; Taroni, Silvia; Wayne, Mitchell; Wightman, Andrew; Wolf, Matthias; Woodard, Anna; Alimena, Juliette; Antonelli, Louis; Bylsma, Ben; Durkin, Lloyd Stanley; Flowers, Sean; Francis, Brian; Hart, Andrew; Hill, Christopher; Ji, Weifeng; Liu, Bingxuan; Luo, Wuming; Winer, Brian L; Wulsin, Howard Wells; Cooperstein, Stephane; Driga, Olga; Elmer, Peter; Hardenbrook, Joshua; Hebda, Philip; Higginbotham, Samuel; Kalogeropoulos, Alexis; Lange, David; Luo, Jingyu; Marlow, Daniel; Mei, Kelvin; Ojalvo, Isabel; Olsen, James; Palmer, Christopher; Piroué, Pierre; Stickland, David; Tully, Christopher; Malik, Sudhir; Norberg, Scarlet; Barker, Anthony; Barnes, Virgil E; Das, Souvik; Folgueras, Santiago; Gutay, Laszlo; Jha, Manoj; Jones, Matthew; Jung, Andreas Werner; Khatiwada, Ajeeta; Miller, David Harry; Neumeister, Norbert; Peng, Cheng-Chieh; Qiu, Hao; Schulte, Jan-Frederik; Sun, Jian; Wang, Fuqiang; Xiao, Rui; Xie, Wei; Cheng, Tongguang; Parashar, Neeti; Stupak, John; Chen, Zhenyu; Ecklund, Karl Matthew; Freed, Sarah; Geurts, Frank JM; Guilbaud, Maxime; Kilpatrick, Matthew; Li, Wei; Michlin, Benjamin; Padley, Brian Paul; Roberts, Jay; Rorie, Jamal; Shi, Wei; Tu, Zhoudunming; Zabel, James; Zhang, Aobo; Bodek, Arie; de Barbaro, Pawel; Demina, Regina; Duh, Yi-ting; Ferbel, Thomas; Galanti, Mario; Garcia-Bellido, Aran; Han, Jiyeon; Hindrichs, Otto; Khukhunaishvili, Aleko; Lo, Kin Ho; Tan, Ping; Verzetti, Mauro; Ciesielski, Robert; Goulianos, Konstantin; Mesropian, Christina; Agapitos, Antonis; Chou, John Paul; Gershtein, Yuri; Gómez Espinosa, Tirso Alejandro; Halkiadakis, Eva; Heindl, Maximilian; Hughes, Elliot; Kaplan, Steven; Kunnawalkam Elayavalli, Raghav; Kyriacou, Savvas; Lath, Amitabh; Montalvo, Roy; Nash, Kevin; Osherson, Marc; Saka, Halil; Salur, Sevil; Schnetzer, Steve; Sheffield, David; Somalwar, Sunil; Stone, Robert; Thomas, Scott; Thomassen, Peter; Walker, Matthew; Delannoy, Andrés G; Foerster, Mark; Heideman, Joseph; Riley, Grant; Rose, Keith; Spanier, Stefan; Thapa, Krishna; Bouhali, Othmane; Castaneda Hernandez, Alfredo; Celik, Ali; Dalchenko, Mykhailo; De Mattia, Marco; Delgado, Andrea; Dildick, Sven; Eusebi, Ricardo; Gilmore, Jason; Huang, Tao; Kamon, Teruki; Mueller, Ryan; Pakhotin, Yuriy; Patel, Rishi; Perloff, Alexx; Perniè, Luca; Rathjens, Denis; Safonov, Alexei; Tatarinov, Aysen; Ulmer, Keith; Akchurin, Nural; Damgov, Jordan; De Guio, Federico; Dudero, Phillip Russell; Faulkner, James; Gurpinar, Emine; Kunori, Shuichi; Lamichhane, Kamal; Lee, Sung Won; Libeiro, Terence; Mengke, Tielige; Muthumuni, Samila; Peltola, Timo; Undleeb, Sonaina; Volobouev, Igor; Wang, Zhixing; Greene, Senta; Gurrola, Alfredo; Janjam, Ravi; Johns, Willard; Maguire, Charles; Melo, Andrew; Ni, Hong; Padeken, Klaas; Sheldon, Paul; Tuo, Shengquan; Velkovska, Julia; Xu, Qiao; Arenton, Michael Wayne; Barria, Patrizia; Cox, Bradley; Hirosky, Robert; Joyce, Matthew; Ledovskoy, Alexander; Li, Hengne; Neu, Christopher; Sinthuprasith, Tutanon; Wang, Yanchu; Wolfe, Evan; Xia, Fan; Harr, Robert; Karchin, Paul Edmund; Poudyal, Nabin; Sturdy, Jared; Thapa, Prakash; Zaleski, Shawn; Brodski, Michael; Buchanan, James; Caillol, Cécile; Dasu, Sridhara; Dodd, Laura; Duric, Senka; Gomber, Bhawna; Grothe, Monika; Herndon, Matthew; Hervé, Alain; Hussain, Usama; Klabbers, Pamela; Lanaro, Armando; Levine, Aaron; Long, Kenneth; Loveless, Richard; Ruggles, Tyler; Savin, Alexander; Smith, Nicholas; Smith, Wesley H; Taylor, Devin; Woods, Nathaniel
2017-01-01
Event-by-event fluctuations in the elliptic-flow coefficient $v_2$ are studied in PbPb collisions at $\\sqrt{\\smash[b]{s_{_\\text{NN}}}} = $ 5.02 TeV using the CMS detector at the CERN LHC. Elliptic-flow probability distributions ${p}(v_2)$ for charged particles with transverse momentum 0.3 $ < {p_{\\mathrm{T}}} < $ 3.0 GeV/$c$ and pseudorapidity $ | \\eta | < $ 1.0 are determined for different collision centrality classes. The moments of the ${p}(v_2)$ distributions are used to calculate the $v_{2}$ coefficients based on cumulant orders 2, 4, 6, and 8. A rank ordering of the higher-order cumulant results and nonzero standardized skewness values obtained for the ${p}(v_2)$ distributions indicate non-Gaussian initial-state fluctuation behavior. Bessel-Gaussian and elliptic power fits to the flow distributions are studied to characterize the initial-state spatial anisotropy.
Energy Technology Data Exchange (ETDEWEB)
Sirunyan, Albert M; et al.
2017-11-15
Event-by-event fluctuations in the elliptic-flow coefficient $v_2$ are studied in PbPb collisions at $\\sqrt{s_{_\\text{NN}}} = 5.02$ TeV using the CMS detector at the CERN LHC. Elliptic-flow probability distributions ${p}(v_2)$ for charged particles with transverse momentum 0.3$< p_\\mathrm{T} <$3.0 GeV and pseudorapidity $| \\eta | <$ 1.0 are determined for different collision centrality classes. The moments of the ${p}(v_2)$ distributions are used to calculate the $v_{2}$ coefficients based on cumulant orders 2, 4, 6, and 8. A rank ordering of the higher-order cumulant results and nonzero standardized skewness values obtained for the ${p}(v_2)$ distributions indicate non-Gaussian initial-state fluctuation behavior. Bessel-Gaussian and elliptic power fits to the flow distributions are studied to characterize the initial-state spatial anisotropy.
Sokolov, R. I.; Abdullin, R. R.
2017-11-01
The use of nonlinear Markov process filtering makes it possible to restore both video stream frames and static photos at the stage of preprocessing. The present paper reflects the results of research in comparison of these types image filtering quality by means of special algorithm when Gaussian or non-Gaussian noises acting. Examples of filter operation at different values of signal-to-noise ratio are presented. A comparative analysis has been performed, and the best filtered kind of noise has been defined. It has been shown the quality of developed algorithm is much better than quality of adaptive one for RGB signal filtering at the same a priori information about the signal. Also, an advantage over median filter takes a place when both fluctuation and pulse noise filtering.
Gao, Xian; Kobayashi, Tsutomu; Yamaguchi, Masahide; Yokoyama, Jun'ichi
2011-11-18
We completely clarify the feature of primordial non-Gaussianities of tensor perturbations in the most general single-field inflation model with second-order field equations. It is shown that the most general cubic action for the tensor perturbation h(ij) is composed only of two contributions, one with two spacial derivatives and the other with one time derivative on each h(ij). The former is essentially identical to the cubic term that appears in Einstein gravity and predicts a squeezed shape, while the latter newly appears in the presence of the kinetic coupling to the Einstein tensor and predicts an equilateral shape. Thus, only two shapes appear in the graviton bispectrum of the most general single-field inflation model, which could open a new clue to the identification of inflationary gravitational waves in observations of cosmic microwave background anisotropies as well as direct detection experiments.
Monten, Ruben; Toldo, Chiara
2018-02-01
We present new AdS4 black hole solutions in N =2 gauged supergravity coupled to vector and hypermultiplets. We focus on a particular consistent truncation of M-theory on the homogeneous Sasaki–Einstein seven-manifold M 111, characterized by the presence of one Betti vector multiplet. We numerically construct static and spherically symmetric black holes with electric and magnetic charges, corresponding to M2 and M5 branes wrapping non-contractible cycles of the internal manifold. The novel feature characterizing these nonzero temperature configurations is the presence of a massive vector field halo. Moreover, we verify the first law of black hole mechanics and we study the thermodynamics in the canonical ensemble. We analyze the behavior of the massive vector field condensate across the small-large black hole phase transition and we interpret the process in the dual field theory.
Cosmic web type dependence of halo clustering
Fisher, J. D.; Faltenbacher, A.
2018-01-01
We use the Millennium Simulation to show that halo clustering varies significantly with cosmic web type. Haloes are classified as node, filament, sheet and void haloes based on the eigenvalue decomposition of the velocity shear tensor. The velocity field is sampled by the peculiar velocities of a fixed number of neighbouring haloes, and spatial derivatives are computed using a kernel borrowed from smoothed particle hydrodynamics. The classification scheme is used to examine the clustering of haloes as a function of web type for haloes with masses larger than 1011 h- 1 M⊙. We find that node haloes show positive bias, filament haloes show negligible bias and void and sheet haloes are antibiased independent of halo mass. Our findings suggest that the mass dependence of halo clustering is rooted in the composition of web types as a function of halo mass. The substantial fraction of node-type haloes for halo masses ≳ 2 × 1013 h- 1 M⊙ leads to positive bias. Filament-type haloes prevail at intermediate masses, 1012-1013 h- 1 M⊙, resulting in unbiased clustering. The large contribution of sheet-type haloes at low halo masses ≲ 1012 h- 1 M⊙ generates antibiasing.
The Excursion Set Theory of Halo Mass Functions, Halo Clustering, and Halo Growth
Zentner, Andrew R.
I review the excursion set theory with particular attention toward applications to cold dark matter halo formation and growth, halo abundance, and halo clustering. After a brief introduction to notation and conventions, I begin by recounting the heuristic argument leading to the mass function of bound objects given by Press and Schechter. I then review the more formal derivation of the Press-Schechter halo mass function that makes use of excursion sets of the density field. The excursion set formalism is powerful and can be applied to numerous other problems. I review the excursion set formalism for describing both halo clustering and bias and the properties of void regions. As one of the most enduring legacies of the excursion set approach and one of its most common applications, I spend considerable time reviewing the excursion set theory of halo growth. This section of the review culminates with the description of two Monte Carlo methods for generating ensembles of halo mass accretion histories. In the last section, I emphasize that the standard excursion set approach is the result of several simplifying assumptions. Dropping these assumptions can lead to more faithful predictions and open excursion set theory to new applications. One such assumption is that the height of the barriers that define collapsed objects is a constant function of scale. I illustrate the implementation of the excursion set approach for barriers of arbitrary shape. One such application is the now well-known improvement of the excursion set mass function derived from the "moving" barrier for ellipsoidal collapse. I also emphasize that the statement that halo accretion histories are independent of halo environment in the excursion set approach is not a general prediction of the theory. It is a simplifying assumption. I review the method for constructing correlated random walks of the density field in the more general case. I construct a simple toy model to illustrate that excursion set
Bar formation in Cosmological Haloes
Curir, A.; Mazzei, P.; Murante, G.
2003-06-01
We investigate the growth of bar instability in stellar disks embedded in fully cosmological halos. We choose a Lambda -CDM cosmology (i.e. Omega_Λ() = 0.7, Omegam() = 0.3, H[0] = 70 km/s/Mpc) with 25h-1 Mpc of box size. The halo was selected from a low-resolution run (128^3 particles), it doesn't suffer major mergers since z = 5 and it lives in a low-density environment. Then we re-simulate the halo at 8 times higher resolution, following the whole simulation box with a multi-mass tecnique to account for the large-scale tidal forces. The stellar disk is embedded in the halo at a redshift z = 2. The evolution of the system spans more than 10 Gyr down to z = 0.
GAVINO ROSELLÓ, AARÓN
2017-01-01
The halo effect is one of the most classic cognitive biases of psychology, and one that we can observe frequently in everyday life. It consists in the realization of an erroneous generalization from a single characteristic or quality of an object or a person, that is, we make a previous judgment from which, we generalize the rest of characteristics. The halo effect manifests itself as continuous in our life. For example, if someone is very handsome or attractive we attribute another series...
International Nuclear Information System (INIS)
Yan, Ren; Haopeng, Pang; Xiaoyuan, Feng; Jiawen, Zhang; Zhenwei, Yao; Jinsong, Wu; Chengjun, Yao; Tianming, Qiu; Ji, Xiong; Mao, Sheng; Yueyue, Ding; Yong, Zhang; Jianfeng, Luo
2016-01-01
This study was conducted to compare the association of Gaussian and non-Gaussian magnetic resonance imaging (MRI)-derived parameters with histologic grade and MIB-1 (Ki-67 labeling) index (MI) in brain glioma. Sixty-five patients with pathologically confirmed glioma, who underwent diffusion-weighted MRI with 2 b values (0, 1000 s/mm 2 ) and 22 b values (≤5000 s/mm 2 ), respectively, were divided into three groups of grade II (n = 35), grade III (n = 8), and grade IV (n = 22). Comparisons by two groups were made for apparent diffusion coefficient (ADC), slow diffusion coefficient (Dslow), distributed diffusion coefficient (DDC), and heterogeneity index α. Analyses of receiver operating characteristic (ROC) curve were performed to maximize the area under the curve (AUC) for differentiating grade III + IV (high-grade glioma, HGG) from grade II (low-grade glioma, LGG) and grade IV (glioblastoma multiforme, GBM) from grade II + III (other grade glioma, OGG). Correlations with MI were analyzed for the MRI parameters. On tumor regions, the values of ADC, Dslow, DDC, and α were significantly higher in grade II [(1.37 ± 0.29, 0.70 ± 0.11, 1.39 ± 0.34) (x 10 -3 mm 2 /s) and 0.88 ± 0.05, respectively] than in grade III [(0.99 ± 0.13, 0.55 ± 0.07, 1.04 ± 0.20) (x 10 -3 mm 2 /s) and 0.80 ± 0.03, respectively] and grade IV [(1.03 ± 0.14, 0.50 ± 0.05, 1.02 ± 0.16) (x 10 -3 mm 2 /s) and 0.76 ± 0.04, respectively] (all P < 0.001). The parameter α showed the highest AUCs of 0.950 and 0.922 in discriminating HGG from LGG and GBM from OGG, respectively. Significant correlations with histologic grade and MI were observed for the MRI parameters. The non-Gaussian MRI-derived parameters α and Dslow are superior to ADC in glioma grading, which are comparable with ADC as reliable biomarkers in noninvasively predicting the proliferation level of glioma malignancy. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Yan, Ren; Haopeng, Pang; Xiaoyuan, Feng; Jiawen, Zhang; Zhenwei, Yao [Fudan University, Department of Radiology, Huashan Hospital, Shanghai (China); Jinsong, Wu; Chengjun, Yao; Tianming, Qiu [Fudan University, Department of Neurosurgery, Huashan Hospital, Shanghai (China); Ji, Xiong [Fudan University, Department of Neuropathology, Huashan Hospital, Shanghai (China); Mao, Sheng; Yueyue, Ding [Department of Imaging, Suzhou Children' s Hospital, Suzhou, Jiangsu (China); Yong, Zhang [MR Research, GE Healthcare, Shanghai (China); Jianfeng, Luo [Fudan University, Department of Biostatistics, Public Health School, Shanghai (China)
2016-02-15
This study was conducted to compare the association of Gaussian and non-Gaussian magnetic resonance imaging (MRI)-derived parameters with histologic grade and MIB-1 (Ki-67 labeling) index (MI) in brain glioma. Sixty-five patients with pathologically confirmed glioma, who underwent diffusion-weighted MRI with 2 b values (0, 1000 s/mm{sup 2}) and 22 b values (≤5000 s/mm{sup 2}), respectively, were divided into three groups of grade II (n = 35), grade III (n = 8), and grade IV (n = 22). Comparisons by two groups were made for apparent diffusion coefficient (ADC), slow diffusion coefficient (Dslow), distributed diffusion coefficient (DDC), and heterogeneity index α. Analyses of receiver operating characteristic (ROC) curve were performed to maximize the area under the curve (AUC) for differentiating grade III + IV (high-grade glioma, HGG) from grade II (low-grade glioma, LGG) and grade IV (glioblastoma multiforme, GBM) from grade II + III (other grade glioma, OGG). Correlations with MI were analyzed for the MRI parameters. On tumor regions, the values of ADC, Dslow, DDC, and α were significantly higher in grade II [(1.37 ± 0.29, 0.70 ± 0.11, 1.39 ± 0.34) (x 10{sup -3} mm{sup 2}/s) and 0.88 ± 0.05, respectively] than in grade III [(0.99 ± 0.13, 0.55 ± 0.07, 1.04 ± 0.20) (x 10{sup -3} mm{sup 2}/s) and 0.80 ± 0.03, respectively] and grade IV [(1.03 ± 0.14, 0.50 ± 0.05, 1.02 ± 0.16) (x 10{sup -3} mm{sup 2}/s) and 0.76 ± 0.04, respectively] (all P < 0.001). The parameter α showed the highest AUCs of 0.950 and 0.922 in discriminating HGG from LGG and GBM from OGG, respectively. Significant correlations with histologic grade and MI were observed for the MRI parameters. The non-Gaussian MRI-derived parameters α and Dslow are superior to ADC in glioma grading, which are comparable with ADC as reliable biomarkers in noninvasively predicting the proliferation level of glioma malignancy. (orig.)
Jones, A. S.; Fletcher, S. J.; Kidder, S. Q.; Forsythe, J. M.
2012-12-01
The CSU/NOAA Data Processing and Error Analysis System (DPEAS) was created to merge, or blend, multiple satellite and model data sets within a single consistent framework. DPEAS is designed to be used at both research and operational facilities to facilitate Research-to-Operations technology transfers. The system supports massive parallelization via grid computing technologies, and hosts data fusion techniques for transference to 24/7 operations in a low cost computational environment. In this work, we highlight the data assimilation and data fusion methodologies of the DPEAS framework that facilitates new and complex multi-satellite non-Gaussian data assimilation algorithm developments. DPEAS is in current operational use at NOAA/NESDIS Office of Satellite and Product Operations (OSPO) and performs multi-product data fusion of global "blended" Total Precipitable Water (bTPW) and blended Rainfall Rate (bRR). In this work we highlight: 1) the current dynamic inter-satellite calibration processing performed within the DPEAS data fusion and error analysis, 2) as well as our DPEAS development plans for future blended products (AMSR-2 and Megha-Tropiques), and 3) layered TPW products using the NASA AIRS data for National Weather Service forecaster use via the NASA SPoRT facility at Huntsville, AL. We also discuss new system additions for cloud verification and prediction activities in collaboration with the National Center for Atmospheric Research (NCAR), and planned use with the USAF Air Force Weather Agency's (AFWA) global Cloud Depiction and Forecast System (CDFS) facilities. Scientifically, we focus on the data fusion of atmospheric and land surface product information, including global cloud and water vapor data sets, soil moisture data, and specialized land surface products. The data fusion methods include the use of 1DVAR data assimilation for satellite sounding data sets, and numerous real-time statistical analysis methods. Our new development activities to
Halo modelling in chameleon theories
Energy Technology Data Exchange (ETDEWEB)
Lombriser, Lucas; Koyama, Kazuya [Institute of Cosmology and Gravitation, University of Portsmouth, Dennis Sciama Building, Burnaby Road, Portsmouth, PO1 3FX (United Kingdom); Li, Baojiu, E-mail: lucas.lombriser@port.ac.uk, E-mail: kazuya.koyama@port.ac.uk, E-mail: baojiu.li@durham.ac.uk [Institute for Computational Cosmology, Ogden Centre for Fundamental Physics, Department of Physics, University of Durham, Science Laboratories, South Road, Durham, DH1 3LE (United Kingdom)
2014-03-01
We analyse modelling techniques for the large-scale structure formed in scalar-tensor theories of constant Brans-Dicke parameter which match the concordance model background expansion history and produce a chameleon suppression of the gravitational modification in high-density regions. Thereby, we use a mass and environment dependent chameleon spherical collapse model, the Sheth-Tormen halo mass function and linear halo bias, the Navarro-Frenk-White halo density profile, and the halo model. Furthermore, using the spherical collapse model, we extrapolate a chameleon mass-concentration scaling relation from a ΛCDM prescription calibrated to N-body simulations. We also provide constraints on the model parameters to ensure viability on local scales. We test our description of the halo mass function and nonlinear matter power spectrum against the respective observables extracted from large-volume and high-resolution N-body simulations in the limiting case of f(R) gravity, corresponding to a vanishing Brans-Dicke parameter. We find good agreement between the two; the halo model provides a good qualitative description of the shape of the relative enhancement of the f(R) matter power spectrum with respect to ΛCDM caused by the extra attractive gravitational force but fails to recover the correct amplitude. Introducing an effective linear power spectrum in the computation of the two-halo term to account for an underestimation of the chameleon suppression at intermediate scales in our approach, we accurately reproduce the measurements from the N-body simulations.
Halo modelling in chameleon theories
International Nuclear Information System (INIS)
Lombriser, Lucas; Koyama, Kazuya; Li, Baojiu
2014-01-01
We analyse modelling techniques for the large-scale structure formed in scalar-tensor theories of constant Brans-Dicke parameter which match the concordance model background expansion history and produce a chameleon suppression of the gravitational modification in high-density regions. Thereby, we use a mass and environment dependent chameleon spherical collapse model, the Sheth-Tormen halo mass function and linear halo bias, the Navarro-Frenk-White halo density profile, and the halo model. Furthermore, using the spherical collapse model, we extrapolate a chameleon mass-concentration scaling relation from a ΛCDM prescription calibrated to N-body simulations. We also provide constraints on the model parameters to ensure viability on local scales. We test our description of the halo mass function and nonlinear matter power spectrum against the respective observables extracted from large-volume and high-resolution N-body simulations in the limiting case of f(R) gravity, corresponding to a vanishing Brans-Dicke parameter. We find good agreement between the two; the halo model provides a good qualitative description of the shape of the relative enhancement of the f(R) matter power spectrum with respect to ΛCDM caused by the extra attractive gravitational force but fails to recover the correct amplitude. Introducing an effective linear power spectrum in the computation of the two-halo term to account for an underestimation of the chameleon suppression at intermediate scales in our approach, we accurately reproduce the measurements from the N-body simulations
The shape of dark matter haloes in the Aquarius simulations: Evolution and memory
Directory of Open Access Journals (Sweden)
Sales L.V.
2012-02-01
Full Text Available We use the high resolution cosmological N-body simulations from the Aquarius project to investigate in detail the mechanisms that determine the shape of Milky Way-type dark matter haloes. We find that, when measured at the instantaneous virial radius, the shape of individual haloes changes with time, evolving from a typically prolate configuration at early stages to a more triaxial/oblate geometry at the present day. This evolution in halo shape correlates well with the distribution of the infalling material: prolate configurations arise when haloes are fed through narrow filaments, which characterizes the early epochs of halo assembly, whereas triaxial/oblate configurations result as the accretion turns more isotropic at later times. Interestingly, at redshift z = 0, clear imprints of the past history of each halo are recorded in their shapes at different radii, which also exhibit a variation from prolate in the inner regions to triaxial/oblate in the outskirts. Provided that the Aquarius haloes are fair representatives of Milky Way-like 1012M☉ objects, we conclude that the shape of such dark matter haloes is a complex, time-dependent property, with each radial shell retaining memory of the conditions at the time of collapse.
Gopinath, Kaundinya; Krishnamurthy, Venkatagiri; Sathian, K
2018-02-01
In a recent study, Eklund et al. employed resting-state functional magnetic resonance imaging data as a surrogate for null functional magnetic resonance imaging (fMRI) datasets and posited that cluster-wise family-wise error (FWE) rate-corrected inferences made by using parametric statistical methods in fMRI studies over the past two decades may have been invalid, particularly for cluster defining thresholds less stringent than p < 0.001; this was principally because the spatial autocorrelation functions (sACF) of fMRI data had been modeled incorrectly to follow a Gaussian form, whereas empirical data suggested otherwise. Here, we show that accounting for non-Gaussian signal components such as those arising from resting-state neural activity as well as physiological responses and motion artifacts in the null fMRI datasets yields first- and second-level general linear model analysis residuals with nearly uniform and Gaussian sACF. Further comparison with nonparametric permutation tests indicates that cluster-based FWE corrected inferences made with Gaussian spatial noise approximations are valid.
Energy Technology Data Exchange (ETDEWEB)
Jerome, Neil P.; Miyazaki, Keiko; Collins, David J.; Orton, Matthew R.; D' Arcy, James A.; Leach, Martin O. [Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research, London (United Kingdom); Wallace, Toni; Koh, Dow-Mu [Royal Marsden NHS Foundation Trust, Department of Radiology, Sutton, Surrey (United Kingdom); Moreno, Lucas [The Institute of Cancer Research, Paediatric Drug Development Team, Division of Cancer Therapeutics and Clinical Studies, London (United Kingdom); Hospital Nino Jesus, Madrid (Spain); Royal Marsden NHS Foundation Trust, Paediatric Drug Development Unit, Children and Young People' s Unit, Sutton, Surrey (United Kingdom); Pearson, Andrew D.J.; Marshall, Lynley V.; Carceller, Fernando; Zacharoulis, Stergios [The Institute of Cancer Research, Paediatric Drug Development Team, Division of Cancer Therapeutics and Clinical Studies, London (United Kingdom); Royal Marsden NHS Foundation Trust, Paediatric Drug Development Unit, Children and Young People' s Unit, Sutton, Surrey (United Kingdom)
2017-01-15
To examine repeatability of parameters derived from non-Gaussian diffusion models in data acquired in children with solid tumours. Paediatric patients (<16 years, n = 17) were scanned twice, 24 h apart, using DWI (6 b-values, 0-1000 mm{sup -2} s) at 1.5 T in a prospective study. Tumour ROIs were drawn (3 slices) and all data fitted using IVIM, stretched exponential, and kurtosis models; percentage coefficients of variation (CV) calculated for each parameter at all ROI histogram centiles, including the medians. The values for ADC, D, DDC{sub α}, α, and DDC{sub K} gave CV < 10 % down to the 5th centile, with sharp CV increases below 5th and above 95th centile. K, f, and D* showed increased CV (>30 %) over the histogram. ADC, D, DDC{sub α}, and DDC{sub K} were strongly correlated (ρ > 0.9), DDC{sub α} and α were not correlated (ρ = 0.083). Perfusion- and kurtosis-related parameters displayed larger, more variable CV across the histogram, indicating observed clinical changes outside of D/DDC in these models should be interpreted with caution. Centiles below 5th for all parameters show high CV and are unreliable as diffusion metrics. The stretched exponential model behaved well for both DDC{sub α} and α, making it a strong candidate for modelling multiple-b-value diffusion imaging data. (orig.)
International Nuclear Information System (INIS)
Nha, Hyunchul; Kim, Jaewan
2006-01-01
We derive a class of inequalities, from the uncertainty relations of the su(1,1) and the su(2) algebra in conjunction with partial transposition, that must be satisfied by any separable two-mode states. These inequalities are presented in terms of the su(2) operators J x =(a † b+ab † )/2, J y =(a † b-ab † )/2i, and the total photon number a +N b >. They include as special cases the inequality derived by Hillery and Zubairy [Phys. Rev. Lett. 96, 050503 (2006)], and the one by Agarwal and Biswas [New J. Phys. 7, 211 (2005)]. In particular, optimization over the whole inequalities leads to the criterion obtained by Agarwal and Biswas. We show that this optimal criterion can detect entanglement for a broad class of non-Gaussian entangled states, i.e., the su(2) minimum-uncertainty states. Experimental schemes to test the optimal criterion are also discussed, especially the one using linear optical devices and photodetectors
Zu, Ying; Mandelbaum, Rachel
2018-02-01
Recent studies suggest that the quenching properties of galaxies are correlated over several mega-parsecs. The large-scale "galactic conformity" phenomenon around central galaxies has been regarded as a potential signature of "galaxy assembly bias" or "pre-heating", both of which interpret conformity as a result of direct environmental effects acting on galaxy formation. Building on the iHOD halo quenching framework developed in Zu & Mandelbaum (2015, 2016), we discover that our fiducial halo mass quenching model, without any galaxy assembly bias, can successfully explain the overall environmental dependence and the conformity of galaxy colours in SDSS, as measured by the mark correlation functions of galaxy colours and the red galaxy fractions around isolated primaries, respectively. Our fiducial iHOD halo quenching mock also correctly predicts the differences in the spatial clustering and galaxy-galaxy lensing signals between the more vs. less red galaxy subsamples, split by the red-sequence ridge-line at fixed stellar mass. Meanwhile, models that tie galaxy colours fully or partially to halo assembly bias have difficulties in matching all these observables simultaneously. Therefore, we demonstrate that the observed environmental dependence of galaxy colours can be naturally explained by the combination of 1) halo quenching and 2) the variation of halo mass function with environment — an indirect environmental effect mediated by two separate physical processes.
Building Halos by Digesting Satellites
Kohler, Susanna
2016-05-01
We think galactic halos are built through the addition of material from the smaller subhalos of satellites digested by their hosts. Though most of the stars in Milky-Way-mass halos were probably formed in situ, many were instead accumulated over time, as orbiting dwarf galaxies were torn apart and their stars flung throughout the host galaxy. A recent set of simulations has examined this brutal formation process.In the authors simulations, a subhalo first falls into the host halo. At this point, it can either survive to present day as a satellite galaxy, or it can be destroyed, its stars scattering throughout the host halo. [Deason et al. 2016]Subhalo FateThere are many open questions about the growth of Milky-Way-mass halos from the accretion of subhalos. Which subhalos are torn apart and accreted, and which ones survive intact? Are more small or large subhalos accreted? Does subhalo accretion affect the host galaxys metallicity? And what can we learn from all of this about the Milky Ways formation history?In a recently published study, a team of scientists from Stanford University and SLAC National Accelerator Laboratory set out to answer these questions using a suite of 45 zoom-in simulations of Milky-Way-mass halos. Led by Alis Deason, the team tracked the accretion history of these 45 test galaxies to determine how their halos were built.Piecing Together HistoryDeason and collaborators reach several new and interesting conclusions based on the outcomes of their simulations.Average accreted stellar mass from destroyed dwarfs for each host halo, as a function of the time of the last major accretion event. More stellar mass is accreted in more recent accretion events. [Deason et al. 2016]Most of the stellar mass accreted by the Milky-Way-mass halos typically comes from only one or two destroyed dwarfs. The accreted dwarfs are usually low-mass if they were accreted early on in the simulation (i.e., in the early universe), and high-mass if they were accreted
Ravenni, Andrea; Liguori, Michele; Bartolo, Nicola; Shiraishi, Maresuke
2017-09-01
Cross-correlations between Cosmic Microwave Background (CMB) temperature and y-spectral distortion anisotropies have been previously proposed as a way to measure the local bispectrum parameter fNLloc. in a range of scales inaccessible to either CMB (T, E) bispectra or μ T correlations. This is useful e.g. to test scale dependence of primordial non-Gaussianity. Unfortunately, the primordial y T signal is strongly contaminated by the late-time correlation between the Integrated Sachs Wolfe and Sunyaev-Zel'dovich (SZ) effects. Moreover, SZ itself generates a large noise contribution in the y-parameter map. We consider two original ways to address these issues. In order to remove the bias due to the SZ-CMB temperature coupling, while also providing additional signal, we include in the analysis the cross-correlation between y-distortions and CMB polarization. In order to reduce the noise, we propose to clean the y-map by subtracting a SZ template, reconstructed via cross-correlation with external tracers (CMB and galaxy-lensing signals). We combine this SZ template subtraction with the previously suggested solution of directly masking detected clusters. Our final forecasts show that, using y-distortions, a PRISM-like survey can achieve 1σ(fNLloc.) = 300, while an ideal experiment will achieve 1σ(fNLloc.) = 130 with improvements of a factor between 2.1 and 3.8, depending on the considered survey, from adding the y E signal, and a further 20-30 % from template cleaning. These forecasts are much worse than current fNLloc. boundaries from Planck, but we stress that they refer to completely different scales.
Energy Technology Data Exchange (ETDEWEB)
Ravenni, Andrea; Liguori, Michele; Bartolo, Nicola [Dipartimento di Fisica e Astronomia ' G. Galilei' , Università degli Studi di Padova, via Marzolo 8, Padova, I-35131 Italy (Italy); Shiraishi, Maresuke, E-mail: ravenni@pd.infn.it, E-mail: liguori@pd.infn.it, E-mail: bartolo@pd.infn.it, E-mail: shiraishi-m@t.kagawa-nct.ac.jp [Department of General Education, National Institute of Technology, Kagawa College, 355 Chokushi-cho, Takamatsu, Kagawa, 761-8058 Japan (Japan)
2017-09-01
Cross-correlations between Cosmic Microwave Background (CMB) temperature and y -spectral distortion anisotropies have been previously proposed as a way to measure the local bispectrum parameter f {sub NL}{sup loc}. in a range of scales inaccessible to either CMB ( T , E ) bispectra or μ T correlations. This is useful e.g. to test scale dependence of primordial non-Gaussianity. Unfortunately, the primordial y T signal is strongly contaminated by the late-time correlation between the Integrated Sachs Wolfe and Sunyaev-Zel'dovich (SZ) effects. Moreover, SZ itself generates a large noise contribution in the y -parameter map. We consider two original ways to address these issues. In order to remove the bias due to the SZ-CMB temperature coupling, while also providing additional signal, we include in the analysis the cross-correlation between y -distortions and CMB polarization . In order to reduce the noise, we propose to clean the y -map by subtracting a SZ template, reconstructed via cross-correlation with external tracers (CMB and galaxy-lensing signals). We combine this SZ template subtraction with the previously suggested solution of directly masking detected clusters. Our final forecasts show that, using y -distortions, a PRISM-like survey can achieve 1σ( f {sub NL}{sup loc}.) = 300, while an ideal experiment will achieve 1σ( f {sub NL}{sup loc}.) = 130 with improvements of a factor between 2.1 and 3.8, depending on the considered survey, from adding the y E signal, and a further 20–30 % from template cleaning. These forecasts are much worse than current f {sub NL}{sup loc}. boundaries from Planck , but we stress that they refer to completely different scales.
Halo Mitigation Using Nonlinear Lattices
Sonnad, Kiran G
2005-01-01
This work shows that halos in beams with space charge effects can be controlled by combining nonlinear focusing and collimation. The study relies on Particle-in-Cell (PIC) simulations for a one dimensional, continuous focusing model. The PIC simulation results show that nonlinear focusing leads to damping of the beam oscillations thereby reducing the mismatch. It is well established that reduced mismatch leads to reduced halo formation. However, the nonlinear damping is accompanied by emittance growth causing the beam to spread in phase space. As a result, inducing nonlinear damping alone cannot help mitigate the halo. To compensate for this expansion in phase space, the beam is collimated in the simulation and further evolution of the beam shows that the halo is not regenerated. The focusing model used in the PIC is analysed using the Lie Transform perturbation theory showing that by averaging over a lattice period, one can reuduce the focusing force to a form that is identical to that used in the PIC simula...
Halo effects in grading student projects.
Dennis, Ian
2007-07-01
Halo effects in rating specific pieces of work, as in educational grading, have received little attention. Grades awarded by 2 independent graders to undergraduate projects were analyzed with a correlated uniqueness model. Grades showed substantial halo despite being awarded by expert assessors at the time of reading the work. There was greater halo between different grades applying to the same section of the project than between grades applying to different sections. Supervisors who had regular contact with the student whose work they were grading showed no more halo than other graders. More reliable graders showed less within-section halo than graders of lower reliability but equal between-sections halo. The halo effects observed cannot be entirely attributable to a unitary general impression.
Brown dwarfs as dark galactic halos
International Nuclear Information System (INIS)
Adams, F.C.; Walker, T.P.
1990-01-01
The possibility that the dark matter in galactic halos can consist of brown dwarf stars is considered. The radiative signature for such halos consisting solely of brown dwarfs is calculated, and the allowed range of brown dwarf masses, the initial mass function (IMF), the stellar properties, and the density distribution of the galactic halo are discussed. The prediction emission from the halo is compared with existing observations. It is found that, for any IMF of brown dwarfs below the deuterium burning limit, brown dwarf halos are consistent with observations. Brown dwarf halos cannot, however, explain the recently observed near-IR background. It is shown that future satellite missions will either detect brown dwarf halos or place tight constraints on the allowed range of the IMF. 30 refs
ULTRAVIOLET HALOS AROUND SPIRAL GALAXIES. I. MORPHOLOGY
Energy Technology Data Exchange (ETDEWEB)
Hodges-Kluck, Edmund; Cafmeyer, Julian; Bregman, Joel N., E-mail: hodgeskl@umich.edu [Department of Astronomy, University of Michigan, Ann Arbor, MI 48109 (United States)
2016-12-10
We examine ultraviolet halos around a sample of highly inclined galaxies within 25 Mpc to measure their morphology and luminosity. Despite contamination from galactic light scattered into the wings of the point-spread function, we find that ultraviolet (UV) halos occur around each galaxy in our sample. Around most galaxies the halos form a thick, diffuse disk-like structure, but starburst galaxies with galactic superwinds have qualitatively different halos that are more extensive and have filamentary structure. The spatial coincidence of the UV halos above star-forming regions, the lack of consistent association with outflows or extraplanar ionized gas, and the strong correlation between the halo and galaxy UV luminosity suggest that the UV light is an extragalactic reflection nebula. UV halos may thus represent 10{sup 6}–10{sup 7} M {sub ⊙} of dust within 2–10 kpc of the disk, whose properties may change with height in starburst galaxies.
Reionization histories of Milky Way mass halos
Energy Technology Data Exchange (ETDEWEB)
Li, Tony Y.; Wechsler, Risa H.; Abel, Tom [Kavli Institute for Particle Astrophysics and Cosmology, Physics Department, Stanford University, Stanford, CA 94305 (United States); Alvarez, Marcelo A., E-mail: tonyyli@stanford.edu, E-mail: rwechsler@stanford.edu, E-mail: tabel@stanford.edu, E-mail: malvarez@cita.utoronto.ca [CITA, University of Toronto, Toronto, Ontario M5S 3H8 (Canada)
2014-04-20
We investigate the connection between the reionization era and the present-day universe by examining the mass reionization histories of z = 0 dark matter halos. In a 600{sup 3} Mpc{sup 3} volume, we combine a dark matter N-body simulation with a three-dimensional seminumerical reionization model. This tags each particle with a reionization redshift, so that individual present-day halos can be connected to their reionization histories and environments. We find that the vast majority of present-day halos with masses larger than ∼ few × 10{sup 11} M {sub ☉} reionize earlier than the rest of the universe. We also find significant halo-to-halo diversity in mass reionization histories, and find that in realistic inhomogeneous models, the material within a given halo is not expected to reionize at the same time. In particular, the scatter in reionization times within individual halos is typically larger than the scatter among halos. From our fiducial reionization model, we find that the typical 68% scatter in reionization times within halos is ∼115 Myr for 10{sup 12±0.25} M {sub ☉} halos, decreasing slightly to ∼95 Myr for 10{sup 15±0.25} M {sub ☉} halos. We find a mild correlation between reionization history and environment: halos with shorter reionization histories are typically in more clustered environments, with the strongest trend on a scale of ∼20 Mpc. Material in Milky Way mass halos with short reionization histories is preferentially reionized in relatively large H II regions, implying reionization mostly by sources external to the progenitors of the present-day halo. We investigate the impact on our results of varying the reionization model parameters, which span a range of reionization scenarios with varying timing and morphology.
Examining the effect of galaxy evolution on the stellar-halo mass relation in the EAGLE simulation
Kulier, Andrea; Padilla, Nelson; Schaye, Joop; Crain, Robert; Schaller, Matthieu; Bower, Richard; Theuns, Tom; Paillas, Enrique
2018-01-01
The EAGLE hydrodynamical simulation was used in Matthee et al. 2016 to examine the scatter in the stellar mass-halo mass relation of central galaxies, finding that the stellar mass (M*) correlates well with the maximum circular velocity (Vmax) of the host halo, but with a substantial scatter that does not correlate significantly with other host halo properties. Here we further examine the scatter in the stellar mass-halo mass relation of central galaxies in EAGLE, its correlation with other properties, and its origin. We find that at fixed Vmax, galaxies with lower concentration have younger stellar populations, as expected from the relationship between concentration and halo assembly time. However, at fixed Vmax and halo concentration, galaxies with larger M* have younger stellar ages, so that combining the two effects, galaxies with younger stellar ages at fixed halo mass have higher stellar masses. The host halos of galaxies with larger M* at fixed Vmax and concentration also contain more gas than those with smaller stellar masses at z = 0.1, i.e. the baryon fraction of the halos is larger. There is an even stronger correlation between the scatter in M* at z = 0.1 and the scatter in the baryon fraction of the galaxy's progenitors at z ~ 1, such that the latter sets ~50% of the scatter in M* at z = 0.1. We conclude that most of the scatter between Vmax and M* at z = 0.1 is set at earlier redshifts by the scatter in the baryon fraction of halos, which in turn is primarily the result of differences in feedback strength within halos.
DEFF Research Database (Denmark)
Nissen, Poul Erik; Schuster, William J.
2011-01-01
Context. Current models of galaxy formation predict that the Galactic halo was assembled hierarchically. By measuring abundance ratios in stars it may be possible to identify substructures in the halo resulting from this process. Aims. A previous study of 94 dwarf stars with −1.6 ..., on the other hand, most likely originate from systems with a slower chemical evolution, characterized by additional enrichment from type Ia supernovae and low-mass AGB stars....
Lanzafame, S; Giannelli, M; Garaci, F; Floris, R; Duggento, A; Guerrisi, M; Toschi, N
2016-05-01
/RK/AK values, indicating substantial anatomical variability of these discrepancies. In the HCP dataset, the median voxelwise percentage differences across the whole white matter skeleton were (nonlinear least squares algorithm) 14.5% (8.2%-23.1%) for MD, 4.3% (1.4%-17.3%) for FA, -5.2% (-48.7% to -0.8%) for MO, 12.5% (6.4%-21.2%) for RD, and 16.1% (9.9%-25.6%) for AD (all ranges computed as 0.01 and 0.99 quantiles). All differences/trends were consistent between the discovery (HCP) and replication (local) datasets and between estimation algorithms. However, the relationships between such trends, estimated diffusion tensor invariants, and kurtosis estimates were impacted by the choice of fitting routine. Model-dependent differences in the estimation of conventional indexes of MD/FA/MO/RD/AD can be well beyond commonly seen disease-related alterations. While estimating diffusion tensor-derived indexes using the DKI model may be advantageous in terms of mitigating b-value dependence of diffusivity estimates, such estimates should not be referred to as conventional DTI-derived indexes in order to avoid confusion in interpretation as well as multicenter comparisons. In order to assess the potential and advantages of DKI with respect to DTI as well as to standardize diffusion-weighted imaging methods between centers, both conventional DTI-derived indexes and diffusion tensor invariants derived by fitting the non-Gaussian DKI model should be separately estimated and analyzed using the same combination of fitting routines.
Historical halo displays as past weather indicator
Neuhäuser, Dagmar; Neuhäuser, Ralph
2017-04-01
Certain halo displays like the 22° circle were known to indicate specific weather pattern since millennia - as specified in Babylonian omina, Aristotle's Meteorology, farmers' weather lore, etc. Today, it is known that halo phenomena are due to refraction and reflection of sun and moon light in ice crystals in cirrus and cirrostratus, so that halo observations do indicate atmospheric conditions like temperature, humidity, pressure etc. in a few km height. The Astronomical Diaries of Babylonia have recorded both halo phenomena (circles, parhelia, etc.) and weather conditions (rain, clouds, etc.), so that we can use them to show statistically, whether, which and how fast halo phenomena are related to weather - for the last few centuries BC for Babylonia. We can then also compare the observations of Babylonian priests in the given BC epoch (without air and light pollution) with the last few decades of the modern epoch (with air and light pollution), where amateur halo observers have systematically recorded such phenomena (in Europe). Weather and climate are known to be partly driven by solar activity. Hence, one could also consider whether there is an indirect relation between halo displays as weather proxy and aurorae as solar activity proxy - if low solar activity leads to low pressure systems, one could expect more halos, preliminary studies show such a hint. For the last few decades, we have many halo observations, satellite imaging of the aurora oval, and many data on solar activity. A statistically sufficient amount of aurora and halo observations should be available for the historic time to investigate such a possible connection: halos were recorded very often in antiquity and the medieval times (as found in chronicles etc.), and modern scholarly catalogs of aurorae also often contain unrecognized halo displays.
Unbound particles in dark matter halos
Energy Technology Data Exchange (ETDEWEB)
Behroozi, Peter S.; Loeb, Abraham; Wechsler, Risa H.
2013-06-13
We investigate unbound dark matter particles in halos by tracing particle trajectories in a simulation run to the far future (a = 100). We find that the traditional sum of kinetic and potential energies is a very poor predictor of which dark matter particles will eventually become unbound from halos. We also study the mass fraction of unbound particles, which increases strongly towards the edges of halos, and decreases significantly at higher redshifts. We discuss implications for dark matter detection experiments, precision calibrations of the halo mass function, the use of baryon fractions to constrain dark energy, and searches for intergalactic supernovae.
The correlation between the sizes of globular cluster systems and their host dark matter haloes
Hudson, Michael J.; Robison, Bailey
2018-04-01
The sizes of entire systems of globular clusters (GCs) depend on the formation and destruction histories of the GCs themselves, but also on the assembly, merger and accretion history of the dark matter (DM) haloes that they inhabit. Recent work has shown a linear relation between total mass of globular clusters in the globular cluster system and the mass of its host dark matter halo, calibrated from weak lensing. Here we extend this to GC system sizes, by studying the radial density profiles of GCs around galaxies in nearby galaxy groups. We find that radial density profiles of the GC systems are well fit with a de Vaucouleurs profile. Combining our results with those from the literature, we find tight relationship (˜0.2 dex scatter) between the effective radius of the GC system and the virial radius (or mass) of its host DM halo, for halos with masses greater than ˜1012M⊙. The steep non-linear dependence of this relationship (R_{{e, GCS}} ∝ R_{200}^{2.5 - 3} ∝ M_{200}^{0.8 - 1}) is currently not well understood, but is an important clue regarding the assembly history of DM haloes and of the GC systems that they host.
Linking dwarf galaxies to halo building blocks with the most metal-poor star in Sculptor.
Frebel, Anna; Kirby, Evan N; Simon, Joshua D
2010-03-04
Current cosmological models indicate that the Milky Way's stellar halo was assembled from many smaller systems. On the basis of the apparent absence of the most metal-poor stars in present-day dwarf galaxies, recent studies claimed that the true Galactic building blocks must have been vastly different from the surviving dwarfs. The discovery of an extremely iron-poor star (S1020549) in the Sculptor dwarf galaxy based on a medium-resolution spectrum cast some doubt on this conclusion. Verification of the iron-deficiency, however, and measurements of additional elements, such as the alpha-element Mg, are necessary to demonstrate that the same type of stars produced the metals found in dwarf galaxies and the Galactic halo. Only then can dwarf galaxy stars be conclusively linked to early stellar halo assembly. Here we report high-resolution spectroscopic abundances for 11 elements in S1020549, confirming its iron abundance of less than 1/4,000th that of the Sun, and showing that the overall abundance pattern follows that seen in low-metallicity halo stars, including the alpha-elements. Such chemical similarity indicates that the systems destroyed to form the halo billions of years ago were not fundamentally different from the progenitors of present-day dwarfs, and suggests that the early chemical enrichment of all galaxies may be nearly identical.
Analytic modeling of axisymmetric disruption halo currents
International Nuclear Information System (INIS)
Humphreys, D.A.; Kellman, A.G.
1999-01-01
Currents which can flow in plasma facing components during disruptions pose a challenge to the design of next generation tokamaks. Induced toroidal eddy currents and both induced and conducted poloidal ''halo'' currents can produce design-limiting electromagnetic loads. While induction of toroidal and poloidal currents in passive structures is a well-understood phenomenon, the driving terms and scalings for poloidal currents flowing on open field lines during disruptions are less well established. A model of halo current evolution is presented in which the current is induced in the halo by decay of the plasma current and change in enclosed toroidal flux while being convected into the halo from the core by plasma motion. Fundamental physical processes and scalings are described in a simplified analytic version of the model. The peak axisymmetric halo current is found to depend on halo and core plasma characteristics during the current quench, including machine and plasma dimensions, resistivities, safety factor, and vertical stability growth rate. Two extreme regimes in poloidal halo current amplitude are identified depending on the minimum halo safety factor reached during the disruption. A 'type I' disruption is characterized by a minimum safety factor that remains relatively high (typically 2 - 3, comparable to the predisruption safety factor), and a relatively low poloidal halo current. A 'type II' disruption is characterized by a minimum safety factor comparable to unity and a relatively high poloidal halo current. Model predictions for these two regimes are found to agree well with halo current measurements from vertical displacement event disruptions in DIII-D [T. S. Taylor, K. H. Burrell, D. R. Baker, G. L. Jackson, R. J. La Haye, M. A. Mahdavi, R. Prater, T. C. Simonen, and A. D. Turnbull, open-quotes Results from the DIII-D Scientific Research Program,close quotes in Proceedings of the 17th IAEA Fusion Energy Conference, Yokohama, 1998, to be published in
THE PSEUDO-EVOLUTION OF HALO MASS
International Nuclear Information System (INIS)
Diemer, Benedikt; Kravtsov, Andrey V.; More, Surhud
2013-01-01
A dark matter halo is commonly defined as a spherical overdensity of matter with respect to a reference density, such as the critical density or the mean matter density of the universe. Such definitions can lead to a spurious pseudo-evolution of halo mass simply due to redshift evolution of the reference density, even if its physical density profile remains constant over time. We estimate the amount of such pseudo-evolution of mass between z = 1 and 0 for halos identified in a large N-body simulation, and show that it accounts for almost the entire mass evolution of the majority of halos with M 200ρ-bar ≲ 10 12 h -1 M ☉ and can be a significant fraction of the apparent mass growth even for cluster-sized halos. We estimate the magnitude of the pseudo-evolution assuming that halo density profiles remain static in physical coordinates, and show that this simple model predicts the pseudo-evolution of halos identified in numerical simulations to good accuracy, albeit with significant scatter. We discuss the impact of pseudo-evolution on the evolution of the halo mass function and show that the non-evolution of the low-mass end of the halo mass function is the result of a fortuitous cancellation between pseudo-evolution and the absorption of small halos into larger hosts. We also show that the evolution of the low-mass end of the concentration-mass relation observed in simulations is almost entirely due to the pseudo-evolution of mass. Finally, we discuss the implications of our results for the interpretation of the evolution of various scaling relations between the observable properties of galaxies and galaxy clusters and their halo masses.
UARS Halogen Occultation Experiment (HALOE) Level 2 V001
National Aeronautics and Space Administration — The HALOE home page on the WWW is http://haloe.gats-inc.com/home/index.php The Halogen Occultation Experiment (HALOE) on NASA's Upper Atmosphere Research Satellite...
HaloSat - A CubeSat to Study the Hot Galactic Halo
Kaaret, Philip
2017-08-01
Observations of the nearby universe fail to locate about half of the normal matter (baryons) observed in the early universe. The missing baryons may be in hot galactic halos. HaloSat is a CubeSat designed to map oxygen line emission (O VII and O VIII) around the Milky Way in order to constrain the mass and spatial distribution of hot gas in the halo. HaloSat has a grasp competitive with current X-ray observatories. Its observing program will be optimized to minimize contributions from solar wind charge exchange (SWCX) emission that limit the accuracy of current measurements. We describe the current status of HaloSat.
Douri, Thaer Hasan
2016-11-15
Halo scalp ring (HSR) is a rare form of non-scarring annular alopecia that is attributed to caput succedaneum. It arises perinatally because of prolonged pressure on the scalp by the cervix during or before the delivery. We report two new cases of halo scalp ring in full term pregnancy - newborns.
Douri, Thaer Hasan
2016-01-01
Halo scalp ring (HSR) is a rare form of non-scarring annular alopecia that is attributed to caput succedaneum. It arises perinatally because of prolonged pressure on the scalp by the cervix during or before the delivery. We report two new cases of halo scalp ring in full term pregnancy - newborns.
Halo abundances and shear in void models
DEFF Research Database (Denmark)
Alonso, David; García-Bellido, Juan; Haugbølle, Troels
2012-01-01
We study the non-linear gravitational collapse of dark matter into halos through numerical N-body simulations of Lemaitre-Tolman-Bondi void models. We extend the halo mass function formalism to these models in a consistent way. This extension not only compares well with the simulated data at all...
Studying dark matter haloes with weak lensing
Velander, Malin Barbro Margareta
2012-01-01
Our Universe is comprised not only of normal matter but also of unknown components: dark matter and dark energy. This Thesis recounts studies of dark matter haloes, using a technique known as weak gravitational lensing, in order to learn more about the nature of these dark components. The haloes
Efimov effect in 2-neutron halo nuclei
Indian Academy of Sciences (India)
This paper presents an overview of our theoretical investigations in search of Efimov states in light 2-neutron halo nuclei. The calculations have been carried out within a three-body formalism, assuming a compact core and two valence neutrons forming the halo. The calculations provide strong evidence for the occurrence ...
WFIRST: Surveying galactic halos within 10Mpc
Courtney, Sol; Johnston, Kathryn; Sanderson, Robyn; WINGS Team
2018-01-01
Three aims of a WFIRST Infrared Nearby Galaxy Survey (WINGS) of stellar halos are: (i) to look at the global properties of the halos (e.g. radial profile and total content); (ii) to find and interpret structures that are signatures of accretion histories (including luminosity functions, merger rates and orbits); (iii) to find features at widest possible separations in order to constrain the distribution of dark matter. For all of the above purposes, the halos should be observed to the greatest radial extent possible. The extent to which this is possible or interesting will depend on expected densities of the stellar halos as well as contamination by background galaxies at faint magnitudes. This study “observes" the Bullock/Johnston stellar halo models as a guide for these expectations.
Halo formation in three-dimensional bunches
International Nuclear Information System (INIS)
Gluckstern, R.L.; Fedotov, A.V.; Kurennoy, S.; Ryne, R.
1998-01-01
We have constructed, analytically and numerically, a class of self-consistent six-dimensional (6D) phase space stationary distributions. Stationary distributions allow us to study the halo development mechanism without it being obscured by beam redistribution and its effect on halo formation. The beam is then mismatched longitudinally and/or transversely, and we explore the formation of longitudinal and transverse halos in 3D axisymmetric beam bunches. We find that the longitudinal halo forms first for comparable longitudinal and transverse mismatches because the longitudinal tune depression is more severe than the transverse one for elongated bunches. Of particular importance is the result that, due to the coupling between longitudinal and transverse motion, a longitudinal or transverse halo is observed for a mismatch less than 10% if the mismatch in the other plane is large. copyright 1998 The American Physical Society
Energy Technology Data Exchange (ETDEWEB)
Rojas-Niño, Armando; Pichardo, Barbara; Valenzuela, Octavio [Instituto de Astronomía, Universidad Nacional Autónoma de México, A.P. 70-264, 04510, México, D.F., Universitaria, D.F., México (Mexico); Martínez-Medina, Luis A., E-mail: barbara@astro.unam.mx, E-mail: octavio@astro.unam.mx [Departamento de Física, Centro de Investigación y de Estudios Avanzados del IPN, A.P. 14-740, 07000 México D.F., México (Mexico)
2015-05-20
Recent studies have presented evidence that the Milky Way global potential may be non-spherical. In this case, the assembling process of the Galaxy may have left long-lasting stellar halo kinematic fossils due to the shape of the dark matter halo, potentially originated by orbital resonances. We further investigate such a possibility, now considering potential models further away from ΛCDM halos, like scalar field dark matter halos and Modified Newtonian Dynamics (MOND), and including several other factors that may mimic the emergence and permanence of kinematic groups, such as a spherical and triaxial halo with an embedded disk potential. We find that regardless of the density profile (DM nature), kinematic groups only appear in the presence of a triaxial halo potential. For the case of a MOND-like gravity theory no kinematic structure is present. We conclude that the detection of these kinematic stellar groups could confirm the predicted triaxiality of dark halos in cosmological galaxy formation scenarios.
On mini-halo encounters with stars
Green, Anne M.; Goodwin, Simon P.
2007-03-01
We study, analytically and numerically, the energy input into dark matter mini-haloes by interactions with stars. We find that the fractional energy input in simulations of Plummer spheres agrees well with the impulse approximation for small and large impact parameters, with a rapid transition between these two regimes. Using the impulse approximation, the fractional energy input at large impact parameters is fairly independent of the mass and density profiles of the mini-halo; however, low-mass mini-haloes experience a greater fractional energy input in close encounters. We formulate a fitting function which encodes these results and use it to estimate the disruption time-scales of mini-haloes, taking into account the stellar velocity dispersion and mass distribution. For mini-haloes with mass on typical orbits which pass through the disc, we find that the estimated disruption time-scales are independent of mini-halo mass, and are of the order of the age of the Milky Way. For more massive mini-haloes, the estimated disruption time-scales increase rapidly with increasing mass.
Dark matter haloes: a multistream view
Ramachandra, Nesar S.; Shandarin, Sergei F.
2017-09-01
Mysterious dark matter constitutes about 85 per cent of all masses in the Universe. Clustering of dark matter plays a dominant role in the formation of all observed structures on scales from a fraction to a few hundreds of Mega-parsecs. Galaxies play a role of lights illuminating these structures so they can be observed. The observations in the last several decades have unveiled opulent geometry of these structures currently known as the cosmic web. Haloes are the highest concentrations of dark matter and host luminous galaxies. Currently the most accurate modelling of dark matter haloes is achieved in cosmological N-body simulations. Identifying the haloes from the distribution of particles in N-body simulations is one of the problems attracting both considerable interest and efforts. We propose a novel framework for detecting potential dark matter haloes using the field unique for dark matter-multistream field. The multistream field emerges at the non-linear stage of the growth of perturbations because the dark matter is collisionless. Counting the number of velocity streams in gravitational collapses supplements our knowledge of spatial clustering. We assume that the virialized haloes have convex boundaries. Closed and convex regions of the multistream field are hence isolated by imposing a positivity condition on all three eigenvalues of the Hessian estimated on the smoothed multistream field. In a single-scale analysis of high multistream field resolution and low softening length, the halo substructures with local multistream maxima are isolated as individual halo sites.
A KiDS weak lensing analysis of assembly bias in GAMA galaxy groups
Dvornik, Andrej; Cacciato, Marcello; Kuijken, Konrad; Viola, Massimo; Hoekstra, Henk; Nakajima, Reiko; van Uitert, Edo; Brouwer, Margot; Choi, Ami; Erben, Thomas; Fenech Conti, Ian; Farrow, Daniel J.; Herbonnet, Ricardo; Heymans, Catherine; Hildebrandt, Hendrik; Hopkins, Andrew M.; McFarland, John; Norberg, Peder; Schneider, Peter; Sifón, Cristóbal; Valentijn, Edwin; Wang, Lingyu
2017-07-01
We investigate possible signatures of halo assembly bias for spectroscopically selected galaxy groups from the Galaxy And Mass Assembly (GAMA) survey using weak lensing measurements from the spatially overlapping regions of the deeper, high-imaging-quality photometric Kilo-Degree Survey. We use GAMA groups with an apparent richness larger than 4 to identify samples with comparable mean host halo masses but with a different radial distribution of satellite galaxies, which is a proxy for the formation time of the haloes. We measure the weak lensing signal for groups with a steeper than average and with a shallower than average satellite distribution and find no sign of halo assembly bias, with the bias ratio of 0.85^{+0.37}_{-0.25}, which is consistent with the Λ cold dark matter prediction. Our galaxy groups have typical masses of 1013 M⊙ h-1, naturally complementing previous studies of halo assembly bias on galaxy cluster scales.
The relationship between galaxy and dark matter halo size from z ˜ 3 to the present
Somerville, Rachel S.; Behroozi, Peter; Pandya, Viraj; Dekel, Avishai; Faber, S. M.; Fontana, Adriano; Koekemoer, Anton M.; Koo, David C.; Pérez-González, P. G.; Primack, Joel R.; Santini, Paola; Taylor, Edward N.; van der Wel, Arjen
2018-01-01
We explore empirical constraints on the statistical relationship between the radial size of galaxies and the radius of their host dark matter haloes from z ∼ 0.1-3 using the Galaxy And Mass Assembly (GAMA) and Cosmic Assembly Near Infrared Deep Extragalactic Legacy Survey (CANDELS) surveys. We map dark matter halo mass to galaxy stellar mass using relationships from abundance matching, applied to the Bolshoi-Planck dissipationless N-body simulation. We define SRHR ≡ re/Rh as the ratio of galaxy radius to halo virial radius, and SRHRλ ≡ re/(λRh) as the ratio of galaxy radius to halo spin parameter times halo radius. At z ∼ 0.1, we find an average value of SRHR ≃ 0.018 and SRHRλ ≃ 0.5 with very little dependence on stellar mass. Stellar radius-halo radius (SRHR) and SRHRλ have a weak dependence on cosmic time since z ∼ 3. SRHR shows a mild decrease over cosmic time for low-mass galaxies, but increases slightly or does not evolve for more massive galaxies. We find hints that at high redshift (z ∼ 2-3), SRHRλ is lower for more massive galaxies, while it shows no significant dependence on stellar mass at z ≲ 0.5. We find that for both the GAMA and CANDELS samples, at all redshifts from z ∼ 0.1-3, the observed conditional size distribution in stellar mass bins is remarkably similar to the conditional distribution of λRh. We discuss the physical interpretation and implications of these results.
The growth of galaxies and their gaseous haloes
Voort, Frederieke van de
2012-01-01
Galaxies grow by accreting gas, which they need to form stars, from their surrounding haloes. These haloes, in turn, accrete gas from the diffuse intergalactic medium. Feedback from stars and black holes returns gas from the galaxy to the halo and can even expel it from the halo. This cycle of gas
Exact Relativistic Magnetized Haloes around Rotating Disks
Directory of Open Access Journals (Sweden)
Antonio C. Gutiérrez-Piñeres
2015-01-01
Full Text Available The study of the dynamics of magnetic fields in galaxies is one of important problems in formation and evolution of galaxies. In this paper, we present the exact relativistic treatment of a rotating disk surrounded by a magnetized material halo. The features of the halo and disk are described by the distributional energy-momentum tensor of a general fluid in canonical form. All the relevant quantities and the metric and electromagnetic potentials are exactly determined by an arbitrary harmonic function only. For instance, the generalized Kuzmin-disk potential is used. The particular class of solutions obtained is asymptotically flat and satisfies all the energy conditions. Moreover, the motion of a charged particle on the halo is described. As far as we know, this is the first relativistic model describing analytically the magnetized halo of a rotating disk.
Beam halo studies in LEHIPA DTL
Roy, S.; Pande, R.; Rao, S. V. L. S.; Krishnagopal, S.; Singh, P.
2015-11-01
The Low Energy High Intensity Proton Accelerator (LEHIPA) project at Bhabha Atomic Research Centre (BARC) consists of a 20 MeV, 30 mA proton linac. The accelerator comprises of a 3 MeV Radio Frequency Quadrupole (RFQ) and a 20 MeV Drift Tube Linac (DTL). In such high intensity accelerators, beam halos are of concern as they not only cause an increase in emittance, but also lead to beam loss and radio activation. We have studied the effect of beam mismatch at the DTL input on halo formation and propagation. The particle core model is used to excite the three envelope eigen modes; the quadrupole mode, the fast mode and the slow mode by giving input beam mismatch. These modes get damped as the beam progresses through the DTL. The damping mechanism is clearly Landau damping and leads to increase in rms emittance of the beam. The evolution of these modes and the corresponding increase in beam emittance and maximum beam extent, as the beam propagates through the DTL, has been studied for different space charge tunes. The halo parameter based on the definition of Allen and Wangler has been calculated. It is seen that beam halos are very important for LEHIPA DTL, even at 20 MeV and leads to emittance and beam size increase and also to beam loss in some cases. The longitudinal halo is present even without mismatch and transverse halos arise in the presence of beam mismatch.
MODIFIED GRAVITY SPINS UP GALACTIC HALOS
Energy Technology Data Exchange (ETDEWEB)
Lee, Jounghun [Astronomy Program, Department of Physics and Astronomy, FPRD, Seoul National University, Seoul 151-747 (Korea, Republic of); Zhao, Gong-Bo [National Astronomy Observatories, Chinese Academy of Science, Beijing 100012 (China); Li, Baojiu [Institute of Computational Cosmology, Department of Physics, Durham University, Durham DH1 3LE (United Kingdom); Koyama, Kazuya, E-mail: jounghun@astro.snu.ac.kr [Institute of Cosmology and Gravitation, University of Portsmouth, Portsmouth, PO1 3FX (United Kingdom)
2013-01-20
We investigate the effect of modified gravity on the specific angular momentum of galactic halos by analyzing the halo catalogs at z = 0 from high-resolution N-body simulations for a f(R) gravity model that meets the solar-system constraint. It is shown that the galactic halos in the f(R) gravity model tend to acquire significantly higher specific angular momentum than those in the standard {Lambda}CDM model. The largest difference in the specific angular momentum distribution between these two models occurs for the case of isolated galactic halos with mass less than 10{sup 11} h {sup -1} M {sub Sun }, which are likely least shielded by the chameleon screening mechanism. As the specific angular momentum of galactic halos is rather insensitive to other cosmological parameters, it can in principle be an independent discriminator of modified gravity. We speculate a possibility of using the relative abundance of low surface brightness galaxies (LSBGs) as a test of general relativity given that the formation of the LSBGs occurs in fast spinning dark halos.
Kinematic and Chemical Constraints on the Formation of M31's Inner and Outer Halo
Koch, Andreas; Rich, R. Michael; Reitzel, David B.; Martin, Nicolas F.; Ibata, Rodrigo A.; Chapman, Scott C.; Majewski, Steven R.; Mori, Masao; Loh, Yeong-Shang; Ostheimer, James C.; Tanaka, Mikito
2008-12-01
The halo of M31 shows a wealth of substructures, some of which are consistent with assembly from satellite accretion. Here we report on kinematic and abundance results from Keck DEIMOS spectroscopy in the near-infrared calcium triplet region of over 3500 red giant star candidates along the minor axis and in off-axis spheroid fields of M31. These data reach out to large radial distances of about 160 kpc. The derived radial velocity distributions show an indication of a kinematically cold substructure around ~17 kpc, which has been reported before. We devise a new and improved method to measure spectroscopic metallicities from the calcium triplet in low signal-to-noise ratio spectra using a weighted co-addition of the individual lines. The resulting distribution (accurate to ~0.3 dex down to signal-to-noise ratios of 5) leads us to note an even stronger gradient in the abundance distribution along M31's minor axis and in particular toward the outer halo fields than previously detected. The mean metallicity in the outer fields reaches below -2 dex, with individual values as low as lesssim-2.6 dex. This is the first time such a metal-poor halo has been detected in M31. In the fields toward the inner spheroid, we find a sharp decline of ~0.5 dex in metallicity in a region at ~20 kpc, which roughly coincides with the edge of an extended disk, previously detected from star count maps. A large fraction of red giants that we detect in the most distant fields are likely members of M33's overlapping halo. A comparison of our velocities with those predicted by new N-body simulations argues that the event responsible for the Giant Stream is most likely not responsible for the full population of the inner halo. We show further that the abundance distribution of the Stream is different from that of the inner halo, from which it becomes evident, in turn, that the merger event that formed the Stream and the outer halo cannot have contributed any significant material to the inner
Simulating Halos with the Caterpillar Project
Kohler, Susanna
2016-04-01
The Caterpillar Project is a beautiful series of high-resolution cosmological simulations. The goal of this project is to examine the evolution of dark-matter halos like the Milky Ways, to learn about how galaxies like ours formed. This immense computational project is still in progress, but the Caterpillar team is already providing a look at some of its first results.Lessons from Dark-Matter HalosWhy simulate the dark-matter halos of galaxies? Observationally, the formation history of our galaxy is encoded in galactic fossil record clues, like the tidal debris from disrupted satellite galaxies in the outer reaches of our galaxy, or chemical abundance patterns throughout our galactic disk and stellar halo.But to interpret this information in a way that lets us learn about our galaxys history, we need to first test galaxy formation and evolution scenarios via cosmological simulations. Then we can compare the end result of these simulations to what we observe today.This figure illustrates the difference that mass resolution makes. In the left panel, the mass resolution is 1.5*10^7 solar masses per particle. In the right panel, the mass resolution is 3*10^4 solar masses per particle [Griffen et al. 2016]A Computational ChallengeDue to how computationally expensive such simulations are, previous N-body simulations of the growth of Milky-Way-like halos have consisted of only one or a few halos each. But in order to establish a statistical understanding of how galaxy halos form and find out whether the Milky Ways halo is typical or unusual! it is necessary to simulate a larger number of halos.In addition, in order to accurately follow the formation and evolution of substructure within the dark-matter halos, these simulations must be able to resolve the smallest dwarf galaxies, which are around a million solar masses. This requires an extremely high mass resolution, which adds to the computational expense of the simulation.First OutcomesThese are the challenges faced by
Revealing the Cosmic Web-dependent Halo Bias
Yang, Xiaohu; Zhang, Youcai; Lu, Tianhuan; Wang, Huiyuan; Shi, Feng; Tweed, Dylan; Li, Shijie; Luo, Wentao; Lu, Yi; Yang, Lei
2017-10-01
Halo bias is the one of the key ingredients of the halo models. It was shown at a given redshift to be only dependent, to the first order, on the halo mass. In this study, four types of cosmic web environments—clusters, filaments, sheets, and voids—are defined within a state-of-the-art high-resolution N-body simulation. Within these environments, we use both halo-dark matter cross correlation and halo-halo autocorrelation functions to probe the clustering properties of halos. The nature of the halo bias differs strongly between the four different cosmic web environments described here. With respect to the overall population, halos in clusters have significantly lower biases in the {10}11.0˜ {10}13.5 {h}-1 {M}⊙ mass range. In other environments, however, halos show extremely enhanced biases up to a factor 10 in voids for halos of mass ˜ {10}12.0 {h}-1 {M}⊙ . Such a strong cosmic web environment dependence in the halo bias may play an important role in future cosmological and galaxy formation studies. Within this cosmic web framework, the age dependency of halo bias is found to be only significant in clusters and filaments for relatively small halos ≲ {10}12.5 {h}-1 {M}⊙ .
Gravitationally Consistent Halo Catalogs and Merger Trees for Precision Cosmology
Behroozi, Peter S.; Wechsler, Risa H.; Wu, Hao-Yi; Busha, Michael T.; Klypin, Anatoly A.; Primack, Joel R.
2013-01-01
We present a new algorithm for generating merger trees and halo catalogs which explicitly ensures consistency of halo properties (mass, position, and velocity) across time steps. Our algorithm has demonstrated the ability to improve both the completeness (through detecting and inserting otherwise missing halos) and purity (through detecting and removing spurious objects) of both merger trees and halo catalogs. In addition, our method is able to robustly measure the self-consistency of halo finders; it is the first to directly measure the uncertainties in halo positions, halo velocities, and the halo mass function for a given halo finder based on consistency between snapshots in cosmological simulations. We use this algorithm to generate merger trees for two large simulations (Bolshoi and Consuelo) and evaluate two halo finders (ROCKSTAR and BDM). We find that both the ROCKSTAR and BDM halo finders track halos extremely well; in both, the number of halos which do not have physically consistent progenitors is at the 1%-2% level across all halo masses. Our code is publicly available at http://code.google.com/p/consistent-trees. Our trees and catalogs are publicly available at http://hipacc.ucsc.edu/Bolshoi/.
Halo Intrinsic Alignment: Dependence on Mass, Formation Time, and Environment
Energy Technology Data Exchange (ETDEWEB)
Xia, Qianli; Kang, Xi; Wang, Peng; Luo, Yu [Purple Mountain Observatory, the Partner Group of MPI für Astronomie, 2 West Beijing Road, Nanjing 210008 (China); Yang, Xiaohu; Jing, Yipeng [Center for Astronomy and Astrophysics, Shanghai Jiao Tong University, Shanghai 200240 (China); Wang, Huiyuan [Key Laboratory for Research in Galaxies and Cosmology, Department of Astronomy, University of Science and Technology of China, Hefei, Anhui 230026 (China); Mo, Houjun, E-mail: kangxi@pmo.ac.cn [Astronomy Department and Center for Astrophysics, Tsinghua University, Beijing 10084 (China)
2017-10-10
In this paper we use high-resolution cosmological simulations to study halo intrinsic alignment and its dependence on mass, formation time, and large-scale environment. In agreement with previous studies using N -body simulations, it is found that massive halos have stronger alignment. For the first time, we find that for a given halo mass older halos have stronger alignment and halos in cluster regions also have stronger alignment than those in filaments. To model these dependencies, we extend the linear alignment model with inclusion of halo bias and find that the halo alignment with its mass and formation time dependence can be explained by halo bias. However, the model cannot account for the environment dependence, as it is found that halo bias is lower in clusters and higher in filaments. Our results suggest that halo bias and environment are independent factors in determining halo alignment. We also study the halo alignment correlation function and find that halos are strongly clustered along their major axes and less clustered along the minor axes. The correlated halo alignment can extend to scales as large as 100 h {sup −1} Mpc, where its feature is mainly driven by the baryon acoustic oscillation effect.
International Nuclear Information System (INIS)
Jameson, R.A.
1994-01-01
Beam halos are formed via self-consistent motion of the beam particles. Interactions of single particles with time-varying density distributions of other particles are a major source of halo. Aspects of these interactions are studied for an initially equilibrium distribution in a radial, linear, continuous focusing system. When there is a mismatch, it is shown that in the self-consistent system, there is a threshold in space-charge and mismatch, above which a halo is formed that extends to ∼1.5 times the initial maximum mismatch radius. Tools are sought for characterizing the halo dynamics. Testing the particles against the width of the mismatch driving resonance is useful for finding a conservative estimate of the threshold. The exit, entering and transition times, and the time evolution of the halo, are also explored using this technique. Extension to higher dimensions is briefly discussed
Halo Histories vs. Galaxy Properties at z=0 II: Large-Scale Galactic Conformity
Tinker, Jeremy L.; Hahn, ChangHoon; Mao, Yao-Yuan; Wetzel, Andrew R.; Conroy, Charlie
2018-03-01
Using group catalogs from the SDSS DR7, we measure galactic conformity in the local universe. We measure the quenched fraction of neighbour galaxies around isolated primary galaxies, dividing the isolated sample into star-forming and quiescent objects. We restrict our measurements to scales >1 Mpc to probe the correlations between halo formation histories. Over the stellar mass range 109.7 ≤ M*/M⊙ ≤ 1010.9, we find minimal evidence for conformity. We further compare these data to predictions of the halo age-matching model, in which the oldest galaxies are associated with the oldest halos. For models with strong correlations between halo and stellar age, the conformity is too large to be consistent with the data. Weaker implementations of the age-matching model would not produce a detectable signal in SDSS data. We reproduce the results of Kauffmann et al. (2013), in which the star formation rates of neighbour galaxies are reduced around primary galaxies when the primaries are low star formers. However, we find this result is mainly driven by contamination in the isolation criterion; when removing the small fraction of satellite galaxies in the sample, the conformity signal largely goes away. Lastly, we show that small conformity signals, i.e., 2-5% differences in the quenched fractions of neighbour galaxies, can be produced by mechanisms other than halo assembly bias. For example, if passive galaxies occupy more massive halos than star forming galaxies of the same stellar mass, a conformity signal that is consistent with recent measurements from PRIMUS (Berti et al. 2016) can be produced.
Smooth halos in the cosmic web
International Nuclear Information System (INIS)
Gaite, José
2015-01-01
Dark matter halos can be defined as smooth distributions of dark matter placed in a non-smooth cosmic web structure. This definition of halos demands a precise definition of smoothness and a characterization of the manner in which the transition from smooth halos to the cosmic web takes place. We introduce entropic measures of smoothness, related to measures of inequality previously used in economy and with the advantage of being connected with standard methods of multifractal analysis already used for characterizing the cosmic web structure in cold dark matter N-body simulations. These entropic measures provide us with a quantitative description of the transition from the small scales portrayed as a distribution of halos to the larger scales portrayed as a cosmic web and, therefore, allow us to assign definite sizes to halos. However, these ''smoothness sizes'' have no direct relation to the virial radii. Finally, we discuss the influence of N-body discreteness parameters on smoothness
Mapping substructures in dark matter haloes
Knebe, Alexander; Gill, Stuart P. D.; Kawata, Daisuke; Gibson, Brad K.
2005-02-01
We present a detailed study of the real and integrals-of-motion space distributions of a disrupting satellite obtained from a fully self-consistent high-resolution cosmological simulation of a galaxy cluster. The satellite has been re-simulated using various analytical halo potentials, and we find that its debris appears as a coherent structure in integrals-of-motion space in all models (`live' and analytical potential), although the distribution is significantly smeared for the live host halo. The primary mechanism for the dispersion is the mass growth of the host. However, when quantitatively comparing the effects of `live' and time-varying host potentials, we conclude that not all of the dispersion can be accounted for by the steady growth of the mass of the host. We ascribe the remaining discrepancies to additional effects in the `live' halo such as non-sphericity of the host and interactions with other satellites which have not been modelled analytically.
Beam halo in high-intensity beams
International Nuclear Information System (INIS)
Wangler, T.P.
1993-01-01
In space-charge dominated beams the nonlinear space-charge forces produce a filamentation pattern, which in projection to the 2-D phase spaces results in a 2-component beam consisting of an inner core and a diffuse outer halo. The beam-halo is of concern for a next generation of cw, high-power proton linacs that could be applied to intense neutron generators for nuclear materials processing. The author describes what has been learned about beam halo and the evolution of space-charge dominated beams using numerical simulations of initial laminar beams in uniform linear focusing channels. Initial results are presented from a study of beam entropy for an intense space-charge dominated beam
Stability of BEC galactic dark matter halos
Energy Technology Data Exchange (ETDEWEB)
Guzmán, F.S.; Lora-Clavijo, F.D.; González-Avilés, J.J.; Rivera-Paleo, F.J., E-mail: guzman@ifm.umich.mx, E-mail: fadulora@ifm.umich.mx, E-mail: javiles@ifm.umich.mx, E-mail: friverap@ifm.umich.mx [Instituto de Física y Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio C-3, Cd. Universitaria, 58040 Morelia, Michoacán (Mexico)
2013-09-01
In this paper we show that spherically symmetric BEC dark matter halos, with the sin r/r density profile, that accurately fit galactic rotation curves and represent a potential solution to the cusp-core problem are unstable. We do this by introducing back the density profiles into the fully time-dependent Gross-Pitaevskii-Poisson system of equations. Using numerical methods to track the evolution of the system, we found that these galactic halos lose mass at an approximate rate of half of its mass in a time scale of dozens of Myr. We consider this time scale is enough as to consider these halos are unstable and unlikely to be formed. We provide some arguments to show that this behavior is general and discuss some other drawbacks of the model that restrict its viability.
Galaxy halo occupation at high redshift
Bullock, James S.; Wechsler, Risa H.; Somerville, Rachel S.
2002-01-01
We discuss how current and future data on the clustering and number density of z~3 Lyman-break galaxies (LBGs) can be used to constrain their relationship to dark matter haloes. We explore a three-parameter model in which the number of LBGs per dark halo scales like a power law in the halo mass: N(M)=(M/M1)S for M>Mmin. Here, Mmin is the minimum mass halo that can host an LBG, M1 is a normalization parameter, associated with the mass above which haloes host more than one observed LBG, and S determines the strength of the mass-dependence. We show how these three parameters are constrained by three observable properties of LBGs: the number density, the large-scale bias and the fraction of objects in close pairs. Given these three quantities, the three unknown model parameters may be estimated analytically, allowing a full exploration of parameter space. As an example, we assume a ΛCDM cosmology and consider the observed properties of a recent sample of spectroscopically confirmed LBGs. We find that the favoured range for our model parameters is Mmin~=(0.4-8)×1010h- 1Msolar, M1~=(6-10)×1012h- 1Msolar, and 0.9acceptable if the allowed range of bg is permitted to span all recent observational estimates. We also discuss how the observed clustering of LBGs as a function of luminosity can be used to constrain halo occupation, although because of current observational uncertainties we are unable to reach any strong conclusions. Our methods and results can be used to constrain more realistic models that aim to derive the occupation function N(M) from first principles, and offer insight into how basic physical properties affect the observed properties of LBGs.
Two Stellar Components in the Halo of the Milky Way
National Research Council Canada - National Science Library
Carollo, Daniela; Beers, Timothy C; Lee, Young-Sun; Chiba, Masashi; Norris, John E; Wilhelm, Ronald; Sivarani, Thirupathi; Marsteller, Brian; Munn, Jeffrey A; Bailer-Jones, Coryn A
2007-01-01
... of galaxy formation and evolution. Although the halo was once considered a single component, evidence for its dichotomy has slowly emerged in recent years from inspection of small samples of halo objects...
A double potential model for neutron halo nuclei
Abbas, Afsar
2003-01-01
It is shown here that loosely bound halo structure of neutron rich nuclei and the ground state spin of single neutron halo nuclei are correlated and are consistently explained if one assumes a double potential shell model for these nuclei.
Interactions between massive dark halos and warped disks
Kuijken, K; Persic, M; Salucci, P
1997-01-01
The normal mode theory for warping of galaxy disks, in which disks are assumed to be tilted with respect to the equator of a massive, flattened dark halo, assumes a rigid, fixed halo. However, consideration of the back-reaction by a misaligned disk on a massive particle halo shows there to be strong
Halo white dwarfs in the Gaia era
van Oirschot, P.; Nelemans, G.; Pols, O.; Helmi, A.; Tolstoy, E.; Brown, A. G. A.; Pugliese, G.; de Koter, A.; Wijburg, M.
The Galactic Halo is the oldest and most metal-poor component of the Galaxy. It is studied in detail both to understand the formation and evolution of galaxies, as well as the formation and evolution of the earliest stars. With this aim in mind, we plan to couple a population synthesis model to a
Reflection halo twins : subsun and supersun
Konnen, Gunther P.; van der Werf, Siebren Y.
2011-01-01
From an aircraft, a short distinct vertical structure is sometimes seen above the setting sun. Such a feature can be understood as a halo, which is the counterpart of the well-known subsun. Whereas the latter arises from reflections off basal faces of plate-oriented ice crystals illuminated from
Cosmology and cluster halo scaling relations
Araya-Melo, Pablo A.; van de Weygaert, Rien; Jones, Bernard J. T.
2009-01-01
We explore the effects of dark matter and dark energy on the dynamical scaling properties of galaxy clusters. We investigate the cluster Faber-Jackson (FJ), Kormendy and Fundamental Plane (FP) relations between the mass, radius and velocity dispersion of cluster-sized haloes in cosmological N-body
Halo nucleus and double-λ hypernucleus
Indian Academy of Sciences (India)
It appears that the halo phenomenon is a delicately balanced threshold effect and neglect of the details of many-body system may not be crucial. Our neglect of the angular momentum of the extra core neutrons does not seem to affect the results in a significant way. We can infer that the choice of the depth of the core-n.
Effective field theory for halo nuclei
International Nuclear Information System (INIS)
Hagen, Philipp Robert
2014-01-01
We investigate properties of two- and three-body halo systems using effective field theory. If the two-particle scattering length a in such a system is large compared to the typical range of the interaction R, low-energy observables in the strong and the electromagnetic sector can be calculated in halo EFT in a controlled expansion in R/ vertical stroke a vertical stroke. Here we focus on universal properties and stay at leading order in the expansion. Motivated by the existence of the P-wave halo nucleus 6 He, we first set up an EFT framework for a general three-body system with resonant two-particle P-wave interactions. Based on a Lagrangian description, we identify the area in the effective range parameter space where the two-particle sector of our model is renormalizable. However, we argue that for such parameters, there are two two-body bound states: a physical one and an additional deeper-bound and non-normalizable state that limits the range of applicability of our theory. With regard to the three-body sector, we then classify all angular-momentum and parity channels that display asymptotic discrete scale invariance and thus require renormalization via a cut-off dependent three-body force. In the unitary limit an Efimov effect occurs. However, this effect is purely mathematical, since, due to causality bounds, the unitary limit for P-wave interactions can not be realized in nature. Away from the unitary limit, the three-body binding energy spectrum displays an approximate Efimov effect but lies below the unphysical, deep two-body bound state and is thus unphysical. Finally, we discuss possible modifications in our halo EFT approach with P-wave interactions that might provide a suitable way to describe physical three-body bound states. We then set up a halo EFT formalism for two-neutron halo nuclei with resonant two-particle S-wave interactions. Introducing external currents via minimal coupling, we calculate observables and universal correlations for such
The Impact of Theoretical Uncertainties in the Halo Mass Function and Halo
Energy Technology Data Exchange (ETDEWEB)
Wu, Hao-Yi; Zentner, Andrew R.; Wechsler, Risa H.; /KIPAC, Menlo Park /SLAC /Pittsburgh U. /KIPAC, Menlo Park /SLAC
2010-06-04
We study the impact of theoretical uncertainty in the dark matter halo mass function and halo bias on dark energy constraints from imminent galaxy cluster surveys. We find that for an optical cluster survey like the Dark Energy Survey, the accuracy required on the predicted halo mass function to make it an insignificant source of error on dark energy parameters is {approx}1%. The analogous requirement on the predicted halo bias is less stringent ({approx}5%), particularly if the observable-mass distribution can be well constrained by other means. These requirements depend upon survey area but are relatively insensitive to survey depth. The most stringent requirements are likely to come from a survey over a significant fraction of the sky that aims to observe clusters down to relatively low mass, M{sub th}{approx} 10{sup 13.7} h{sup -1} M{sub sun}; for such a survey, the mass function and halo bias must be predicted to accuracies of {approx}0.5% and {approx}1%, respectively. These accuracies represent a limit on the practical need to calibrate ever more accurate halo mass and bias functions. We find that improving predictions for the mass function in the low-redshift and low-mass regimes is the most effective way to improve dark energy constraints.
Relations between the Sizes of Galaxies and Their Dark Matter Halos at Redshifts 0 < z < 3
Energy Technology Data Exchange (ETDEWEB)
Huang, Kuang-Han [University of California Davis, 1 Shields Avenue, Davis, CA 95616 (United States); Fall, S. Michael; Ferguson, Henry C.; Grogin, Norman; Koekemoer, Anton [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Van der Wel, Arjen [Max Planck Institute for Astronomy, Koenigstuhl 17, D-69117 Heidelberg (Germany); Lee, Seong-Kook [Center for the Exploration of the Origin of the Universe, Department of Physics and Astronomy, Seoul National University, Seoul (Korea, Republic of); Pérez-González, Pablo G. [Departamento de Astrofísica, Facultad de CC. Física, Universidad Complutense de Madrid, E-28040, Madrid (Spain); Wuyts, Stijn, E-mail: khhuang@ucdavis.edu [Department of Physics, University of Bath, Claverton Down, Bath, BA2 7AY (United Kingdom)
2017-03-20
We derive relations between the effective radii R {sub eff} of galaxies and the virial radii R {sub 200} {sub c} of their dark matter halos over the redshift range 0 < z < 3. For galaxies, we use the measured sizes from deep images taken with Hubble Space Telescope for the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey; for halos, we use the inferred sizes from abundance matching to cosmological dark matter simulations via a stellar mass–halo mass (SMHM) relation. For this purpose, we derive a new SMHM relation based on the same selection criteria and other assumptions as for our sample of galaxies with size measurements. As a check on the robustness of our results, we also derive R {sub eff}–R {sub 200} {sub c} relations for three independent SMHM relations from the literature. We find that galaxy R {sub eff} is proportional on average to halo R {sub 200} {sub c}, confirming and extending to high redshifts the z = 0 results of Kravtsov. Late-type galaxies (with low Sérsic index and high specific star formation rate (sSFR)) follow a linear R {sub eff}– R {sub 200} {sub c} relation, with effective radii at 0.5 < z < 3 close to those predicted by simple models of disk formation; at z < 0.5, the sizes of late-type galaxies appear to be slightly below this prediction. Early-type galaxies (with high Sérsic index and low sSFR) follow a roughly parallel R {sub eff}– R {sub 200} {sub c} relation, ∼0.2–0.3 dex below the one for late-type galaxies. Our observational results, reinforced by recent hydrodynamical simulations, indicate that galaxies grow quasi-homologously with their dark matter halos.
Halo ellipticity of GAMA galaxy groups from KiDS weak lensing
van Uitert, Edo; Hoekstra, Henk; Joachimi, Benjamin; Schneider, Peter; Bland-Hawthorn, Joss; Choi, Ami; Erben, Thomas; Heymans, Catherine; Hildebrandt, Hendrik; Hopkins, Andrew M.; Klaes, Dominik; Kuijken, Konrad; Nakajima, Reiko; Napolitano, Nicola R.; Schrabback, Tim; Valentijn, Edwin; Viola, Massimo
2017-06-01
We constrain the average halo ellipticity of ˜2600 galaxy groups from the Galaxy And Mass Assembly (GAMA) survey, using the weak gravitational lensing signal measured from the overlapping Kilo Degree Survey (KiDS). To do so, we quantify the azimuthal dependence of the stacked lensing signal around seven different proxies for the orientation of the dark matter distribution, as it is a priori unknown which one traces the orientation best. On small scales, the major axis of the brightest group/cluster member (BCG) provides the best proxy, leading to a clear detection of an anisotropic signal. In order to relate that to a halo ellipticity, we have to adopt a model density profile. We derive new expressions for the quadrupole moments of the shear field given an elliptical model surface mass density profile. Modelling the signal with an elliptical Navarro-Frenk-White profile on scales R < 250 kpc, and assuming that the BCG is perfectly aligned with the dark matter, we find an average halo ellipticity of ɛh = 0.38 ± 0.12, in fair agreement with results from cold dark matter only simulations. On larger scales, the lensing signal around the BCGs becomes isotropic and the distribution of group satellites provides a better proxy for the halo's orientation instead, leading to a 3σ-4σ detection of a non-zero halo ellipticity at 250 < R < 750 kpc. Our results suggest that the distribution of stars enclosed within a certain radius forms a good proxy for the orientation of the dark matter within that radius, which has also been observed in hydrodynamical simulations.
Non-Gaussian Statistical Communication Theory
Middleton, David
2012-01-01
The book is based on the observation that communication is the central operation of discovery in all the sciences. In its "active mode" we use it to "interrogate" the physical world, sending appropriate "signals" and receiving nature's "reply". In the "passive mode" we receive nature's signals directly. Since we never know a prioriwhat particular return signal will be forthcoming, we must necessarily adopt a probabilistic model of communication. This has developed over the approximately seventy years since it's beginning, into a Statistical Communication Theory (or SCT). Here it is the set or
Non-Gaussianity from Axion Monodromy Inflation
Hannestad, Steen; Jarnhus, Philip R; Sloth, Martin S
2010-01-01
We study the primordial non-Gaussinity predicted from simple models of inflation with a linear potential and superimposed oscillations. This generic form of the potential is predicted by the axion monodromy inflation model, that has recently been proposed as a possible realization of chaotic inflation in string theory, where the monodromy from wrapped branes extends the range of the closed string axions to beyond the Planck scale. The superimposed oscillations in the potential can lead to new signatures in the CMB spectrum and bispectrum. In particular the bispectrum will have a new distinct shape. We calculate the power spectrum and bispectrum of curvature perturbations in the model, as well as make analytic estimates in various limiting cases. From the numerical analysis we find that for a wide range of allowed parameters the model produces a feature in the bispectrum with fnl ~ 50 or larger while the power spectrum is almost featureless. This model is therefore an example of a string-inspired inflationary ...
IBS for non-gaussian distributions
International Nuclear Information System (INIS)
Fedotov, A.; Sidorin, A.O.; Smirnov, A.V.
2010-01-01
In many situations distribution can significantly deviate from Gaussian which requires accurate treatment of IBS. Our original interest in this problem was motivated by the need to have an accurate description of beam evolution due to IBS while distribution is strongly affected by the external electron cooling force. A variety of models with various degrees of approximation were developed and implemented in BETACOOL in the past to address this topic. A more complete treatment based on the friction coefficient and full 3-D diffusion tensor was introduced in BETACOOL at the end of 2007 under the name 'local IBS model'. Such a model allowed us calculation of IBS for an arbitrary beam distribution. The numerical benchmarking of this local IBS algorithm and its comparison with other models was reported before. In this paper, after briefly describing the model and its limitations, they present its comparison with available experimental data.
Adaptive Filtering for Non-Gaussian Processes
DEFF Research Database (Denmark)
Kidmose, Preben
2000-01-01
A new stochastic gradient robust filtering method, based on a non-linear amplitude transformation, is proposed. The method requires no a priori knowledge of the characteristics of the input signals and it is insensitive to the signals distribution and to the stationarity of the signals. A simulat...
Bregman Cost for Non-Gaussian Noise
DEFF Research Database (Denmark)
Burger, Martin; Dong, Yiqiu; Sciacchitano, Federica
estimator for the Bregman cost if the image is corrupted by Gaussian noise. In this work we extend this result to other noise models with log-concave likelihood density, by introducing two related Bregman cost functions for which the CM and the MAP estimates are proper Bayes estima-tors. Moreover, we also...
Multifield DBI Inflation and Non-Gaussianities
Huang, Min-xin; Underwood, Bret
2008-01-01
We analyze the trajectories for multifield DBI inflation, which can arise in brane inflation models, and show that the trajectories are the same as in typical slow roll inflation. We calculate the power spectrum and find that the higher derivative terms of the DBI action lead to a suppression of the contribution from the isocurvature perturbations. We also calculate the bispectrum generated by the isocurvature perturbation, and find that it leads to distinctive features.
Non-Gaussianity from Axion Monodromy Inflation
DEFF Research Database (Denmark)
Hannestad, Steen; Haugboelle, Troels; R. Jarnhus, Philip
2010-01-01
We study the primordial non-Gaussinity predicted from simple models of inflation with a linear potential and superimposed oscillations. This generic form of the potential is predicted by the axion monodromy inflation model, that has recently been proposed as a possible realization of chaotic...... inflation in string theory, where the monodromy from wrapped branes extends the range of the closed string axions to beyond the Planck scale. The superimposed oscillations in the potential can lead to new signatures in the CMB spectrum and bispectrum. In particular the bispectrum will have a new distinct...
Research Progresses of Halo Streams in the Solar Neighborhood
Xi-long, Liang; Jing-kun, Zhao; Yu-qin, Chen; Gang, Zhao
2018-01-01
The stellar streams originated from the Galactic halo may be detected when they pass by the solar neighborhood, and they still keep some information at their birth times. Thus, the investigation of halo streams in the solar neighborhood is very important for understanding the formation and evolution of our Galaxy. In this paper, the researches of halo streams in the solar neighborhood are briefly reviewed. We have introduced the methods how to detect the halo streams and identify their member stars, summarized the progresses in the observation of member stars of halo streams and in the study of their origins, introduced in detail how to analyze the origins of halo streams in the solar neighborhood by means of numerical simulation and chemical abundance, and finally discussed the prospects of the LAMOST and GAIA in the research of halo streams in the solar neighborhood.
ORIGAMI: DELINEATING HALOS USING PHASE-SPACE FOLDS
International Nuclear Information System (INIS)
Falck, Bridget L.; Neyrinck, Mark C.; Szalay, Alexander S.
2012-01-01
We present the ORIGAMI method of identifying structures, particularly halos, in cosmological N-body simulations. Structure formation can be thought of as the folding of an initially flat three-dimensional manifold in six-dimensional phase space. ORIGAMI finds the outer folds that delineate these structures. Halo particles are identified as those that have undergone shell-crossing along three orthogonal axes, providing a dynamical definition of halo regions that is independent of density. ORIGAMI also identifies other morphological structures: particles that have undergone shell-crossing along 2, 1, or 0 orthogonal axes correspond to filaments, walls, and voids, respectively. We compare this method to a standard friends-of-friends halo-finding algorithm and find that ORIGAMI halos are somewhat larger, more diffuse, and less spherical, though the global properties of ORIGAMI halos are in good agreement with other modern halo-finding algorithms.
ORIGAMI: DELINEATING HALOS USING PHASE-SPACE FOLDS
Energy Technology Data Exchange (ETDEWEB)
Falck, Bridget L.; Neyrinck, Mark C.; Szalay, Alexander S. [Department of Physics and Astronomy, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 (United States)
2012-08-01
We present the ORIGAMI method of identifying structures, particularly halos, in cosmological N-body simulations. Structure formation can be thought of as the folding of an initially flat three-dimensional manifold in six-dimensional phase space. ORIGAMI finds the outer folds that delineate these structures. Halo particles are identified as those that have undergone shell-crossing along three orthogonal axes, providing a dynamical definition of halo regions that is independent of density. ORIGAMI also identifies other morphological structures: particles that have undergone shell-crossing along 2, 1, or 0 orthogonal axes correspond to filaments, walls, and voids, respectively. We compare this method to a standard friends-of-friends halo-finding algorithm and find that ORIGAMI halos are somewhat larger, more diffuse, and less spherical, though the global properties of ORIGAMI halos are in good agreement with other modern halo-finding algorithms.
Gilpatrick, J D; Day, L; Kerstiens, D; Stettler, M; Valdiviez, R
2001-01-01
The halo experiment presently being conducted at the Low Energy Demonstration Accelerator (LEDA) at Los Alamos National Laboratory (LANL) has specific instruments that acquire horizontally and vertically projected particle-density beam distributions out to greater than 105:1 dynamic range. We measure the core of the distributions using traditional wire scanners, and the tails of the distribution using water-cooled graphite scraping devices. The wire scanner and halo scrapers are mounted on the same moving frame whose location is controlled with stepper motors. A sequence within the Experimental Physics and Industrial Control System (EPICS) software communicates with a National Instrument LabVIEW virtual instrument to control the movement and location of the scanner/scraper assembly. Secondary electrons from the wire scanner 33 μm carbon wire and protons impinging on the scraper are both detected with a lossy-integrator electronic circuit. Algorithms implemented within EPICS and in Research Systems Interactiv...
Deason, Alis J.; Mao, Yao-Yuan; Wechsler, Risa H.
2016-04-01
We study the mass spectrum of destroyed dwarfs that contribute to the accreted stellar mass of Milky Way (MW)-mass (Mvir ˜ 1012.1 M⊙) halos using a suite of 45 zoom-in dissipationless simulations. Empirical models are employed to relate (peak) subhalo mass to dwarf stellar mass, and we use constraints from z = 0 observations and hydrodynamical simulations to estimate the metallicity distribution of the accreted stellar material. The dominant contributors to the accreted stellar mass are relatively massive dwarfs with Mstar ˜ 108-1010M⊙. Halos with more quiescent accretion histories tend to have lower mass progenitors (108-109 M⊙), and lower overall accreted stellar masses. Ultra-faint mass (Mstar 108 M⊙ can contribute a considerable fraction (˜20%-60%) of metal-poor stars if their metallicity distributions have significant metal-poor tails. Finally, we find that the generic assumption of a quiescent assembly history for the MW halo seems to be in tension with the mass spectrum of its surviving dwarfs. We suggest that the MW could be a “transient fossil” a quiescent halo with a recent accretion event(s) that disguises the preceding formation history of the halo.
Radio haloes in Sunyaev-Zel'dovich-selected clusters of galaxies: the making of a halo?
Bonafede, A.; Intema, H.; Brüggen, M.; Vazza, F.; Basu, K.; Sommer, M.; Ebeling, H.; de Gasperin, F.; Röttgering, H. J. A.; van Weeren, R. J.; Cassano, R.
2015-12-01
Radio haloes are synchrotron radio sources detected in some massive galaxy clusters. Their size of Mpc indicates that (re)acceleration processes are taking place in the host cluster. X-ray catalogues of galaxy clusters have been used in the past to search for radio haloes and to understand their connection with cluster-cluster mergers and with the thermal component of the intracluster medium. More recently, the Sunyaev-Zel'dovich effect has been proven to be a better route to search for massive clusters in a wider redshift range. With the aim of discovering new radio haloes and understanding their connection with cluster-cluster mergers, we have selected the most massive clusters from the Planck early source catalogue and we have observed with the Giant Metrewave Radio Telescope at 323 MHz those objects for which deep observations were not available. We have discovered new peculiar radio emission in three of the observed clusters, finding (i) a radio halo in the cluster RXCJ0949.8+1708, (ii) extended emission in Abell 1443 that we classify as a radio halo plus a radio relic, with a bright filament embedded in the radio halo, and (iii) low-power radio emission in CIZA J1938.3+5409 that is ten times below the radio-X-ray correlation and represents the first direct detection of the radio emission in the `upper-limit' region of the radio-X-ray diagram. We discuss the properties of these new radio haloes in the framework of theoretical models for the radio emission.
THE INNER STRUCTURE OF DWARF-SIZED HALOS IN WARM AND COLD DARK MATTER COSMOLOGIES
Energy Technology Data Exchange (ETDEWEB)
González-Samaniego, A.; Avila-Reese, V. [Instituto de Astronomía, Universidad Nacional Autónoma de México, A.P. 70-264, 04510, México, D.F., México (Mexico); Colín, P. [Instituto de Radioastronomía y Astrofísica, Universidad Nacional Autónoma de México, A.P. 72-3 (Xangari), Morelia, Michoacán 58089, México (Mexico)
2016-03-10
By means of N-body + hydrodynamic zoom-in simulations we study the evolution of the inner dark matter and stellar mass distributions of central dwarf galaxies formed in halos of virial masses M{sub v} = (2–3) × 10{sup 10} h{sup −1} M{sub ⊙} at z = 0, both in a warm dark matter (WDM) and cold dark matter (CDM) cosmology. The half-mode mass in the WDM power spectrum of our simulations is M{sub f} = 2 × 10{sup 10} h{sup −1} M{sub ⊙}. In the dark matter (DM) only simulations halo density profiles are well described by the Navarro–Frenk–White parametric fit in both cosmologies, though the WDM halos have concentrations lower by factors of 1.5–2.0 than their CDM counterparts. In the hydrodynamic simulations, the effects of baryons significantly flatten the inner density, velocity dispersion, and pseudo phase space density profiles of the WDM halos but not of the CDM ones. The density slope, measured at ≈0.02R{sub v}, α{sub 0.02}, becomes shallow in periods of 2–5 Gyr in the WDM runs. We explore whether this flattening process correlates with the global star formation (SF), M{sub s}/M{sub v} ratio, gas outflow, and internal specific angular momentum histories. We do not find any clear trends, but when α{sub 0.02} is shallower than −0.5, M{sub s}/M{sub v} is always between 0.25% and 1%. We conclude that the main reason for the formation of the shallow core is the presence of strong gas mass fluctuations inside the inner halo, which are a consequence of the feedback driven by a very bursty and sustained SF history in shallow gravitational potentials. Our WDM halos, which assemble late and are less concentrated than the CDM ones, obey these conditions. There are also (rare) CDM systems with extended mass assembly histories that obey these conditions and form shallow cores. The dynamical heating and expansion processes behind the DM core flattening apply also to the stars in such a way that the stellar age and metallicity gradients of the
Magnetic spiral arms in galaxy haloes
Henriksen, R. N.
2017-08-01
We seek the conditions for a steady mean field galactic dynamo. The parameter set is reduced to those appearing in the α2 and α/ω dynamo, namely velocity amplitudes, and the ratio of sub-scale helicity to diffusivity. The parameters can be allowed to vary on conical spirals. We analyse the mean field dynamo equations in terms of scale invariant logarithmic spiral modes and special exact solutions. Compatible scale invariant gravitational spiral arms are introduced and illustrated in an appendix, but the detailed dynamical interaction with the magnetic field is left for another work. As a result of planar magnetic spirals `lifting' into the halo, multiple sign changes in average rotation measures forming a regular pattern on each side of the galactic minor axis, are predicted. Such changes have recently been detected in the Continuum Halos in Nearby Galaxies-an EVLA Survey (CHANG-ES) survey.
Limits on the window for halo phenomena
International Nuclear Information System (INIS)
Fleck, S.
1994-05-01
We study domain of coupling constants for which a 3-body or 4-body system is bound while none of its subsystems is bound. Limits on the size of the domain are derived from a variant of the Hall-Post inequalities which relate N-body to (N-1)-body energies at given coupling. Possible applications to halo nuclei and hypernuclei are briefly outlined. (authors). 15 refs., 2 figs
The Extended Baryonic Halo of NGC 3923
Directory of Open Access Journals (Sweden)
Bryan W. Miller
2017-07-01
Full Text Available Galaxy halos and their globular cluster systems build up over time by the accretion of small satellites. We can learn about this process in detail by observing systems with ongoing accretion events and comparing the data with simulations. Elliptical shell galaxies are systems that are thought to be due to ongoing or recent minor mergers. We present preliminary results of an investigation of the baryonic halo—light profile, globular clusters, and shells/streams—of the shell galaxy NGC 3923 from deep Dark Energy Camera (DECam g and i-band imaging. We present the 2D and radial distributions of the globular cluster candidates out to a projected radius of about 185 kpc, or ∼ 37 R e , making this one of the most extended cluster systems studied. The total number of clusters implies a halo mass of M h ∼ 3 × 10 13 M ⊙ . Previous studies had identified between 22 and 42 shells, making NGC 3923 the system with the largest number of shells. We identify 23 strong shells and 11 that are uncertain. Future work will measure the halo mass and mass profile from the radial distributions of the shell, N-body models, and line-of-sight velocity distribution (LOSVD measurements of the shells using the Multi Unit Spectroscopic Explorer (MUSE.
Controlling halo-chaos via wavelet-based feedback
Directory of Open Access Journals (Sweden)
Jin-Qing Fang
2002-01-01
Full Text Available Halo-chaos in high-current accelerator has become one of the key issues because it can cause excessive radioactivity from the accelerators and significantly limits the applications of the new accelerators in industrial and other fields. Some general engineering methods for chaos control have been developed, but they generally are unsuccessful for halo-chaos suppression due to many technical constraints. In this article, controllability condition for beam halo-chaos is analyzed qualitatively. Then Particles-in-Cell (PIC simulations explore the nature of beam halo-chaos formation. A nonlinear control method and wavelet function feedback controller are proposed for controlling beam halo-chaos. After control of beam halo-chaos for initial proton beam with water bag distributions, the beam halo strength factor H is reduced to zero, and other statistical physical quantities of beam halo-chaos are doubly reduced. The results show that the developed methods in this paper are very effective for proton beam halo-chaos suppression. Potential application of the halo-chaos control method is finally pointed out.
HaloSat - A CubeSat to Study the Hot Galactic Halo
Kaaret, Philip; Jahoda, Keith; Dingwall, Brenda
2014-08-01
Observations fail to locate about half of the baryons required in cosmology. One possible reservoir of missing baryons associated with our Milky Way galaxy is an extended halo of X-ray emitting gas at temperatures of several million degrees. We describe a CubeSat capable of measuring the oxygen line emission from the hot, Galactic halo. HaloSat will provide an unprecedented, all sky map of the emission lines of O VII and O VIII. This will improve our understanding of the quantity and distribution of hot gas in the Milky Way and also of solar wind charge exchange interactions within the solar system. The mission can be accomplished at modest cost.
Nuclear halo and its related reactions
International Nuclear Information System (INIS)
Zhang Huanqiao
2005-01-01
In order to search proton halo, the reaction cross sections of 27,28 P, 29 S and the corresponding isotones on Si target were measured at intermediate energies. The measured reaction cross sections of the N=12 and 13 isotones show an abrupt increase at Z=15. The experimental results for the isotones with Z=14 as well as 28 P can be well described by the modified Glauber theory of the optical limit approach. The enhancement of the reaction cross sections for 28 P could be explained in the modified Glauber theory with an enlarged core. Theoretical analysis with the modified Glauber theory of the optical limit and few-body approaches underpredicted the experimental data of 27 P. Our theoretical analysis shows that an enlarged core together with proton halo is probably the mechanism responsible for the enhancement of the cross sections for the reaction of 27 P+ 28 Si. In addition, we find from the experimental results that 29 S may have a moderate proton halo structure. Except the nuclei near or at drop-lines, halo may appear in the excited states of stable nuclei. By means of the asymptotic normalization coefficients (ANC's) extracted from transfer reactions of 11 B(d, p) 12 B, 12 C(d, p) 13 C, and H( 6 He, n) 6 Li, we have verified that the second ( Jπ = 2 - ) and third (Jπ = 1 - ) excited states in 12 B and the first (Jπ =1/2 + ) excited state in 13 C are the neutron halo states, while the second excited state (3.56 MeV, Jπ = 0 + ) in 6 Li is a proton-neutron halo state. We have proposed a procedure to extract the probability for valence particle being out of the binding potential from the measured nuclear asymptotic normalization coefficients. With this procedure, available data regarding the nuclear halo candidates are systematically analyzed and a number of halo nuclei are confirmed. Based on these results we have got a much relaxed condition for nuclear halo occurrence. Furthermore, we have presented the scaling laws for the dimensionless quantity 2 >/R 2 of
Study of 11Be and 11Li by core breakup and the halo research in 19C
International Nuclear Information System (INIS)
Angelique, J.C.; Liegard, E.; Marques, F.M.; Orr, N.A.
1998-01-01
The radioactive beam group of the LPC worked in the period 1993-1995 mainly on the nuclear halo problem by means of neutron angular distribution measurements in the framework of the E133c Experiment 'Studies of halos in light neutron-rich nuclei' at GANIL. In the first of these experiments which utilized the LISE3 spectrometer associated to the 30 neutron detectors of the NORDBALL collaboration, the 11 Be and 11 Li were studied in the core fragmentation reaction where the core of a halo system has e violent interaction with the target. Due to the fact that the average distance between the core and the halo neutrons is very large these neutrons are very slightly perturbed by the reaction and, in principle, their angular and momentum distribution reflect their intrinsic momentum in the projectile ground state. Consequently, this type of measurements constitute a very interesting probe in the halo study. The experiment made use first of 11 Be as the halo of this system is simple and well characterized (a single neutron with l = 0). Measurements of neutron angular distributions were also performed for a 10 Be beam. The aim of this measurements was to estimate the contribution of the core breaking reactions with the 11 Be coming from the target-core collisions. Also a 9 Li beam was used with 11 Li. The results for 10,11 Be are analyzed and the first indications are encouraging. In a second series of experiments a search for new neutron halo systems has been undertaken by the study of 19 C breaking, this nucleus being a candidate to one neutron halo system. As the intensity of the secondary beam is very low the detector assembly DEMON was utilized and also SISSI was used with an α spectrometer to collect and separate the secondary beams. The first results indicate the existence of a one neutron halo in 19 C. The obtained data are used for other normal nuclei 21 N, 22 O and 24 F for estimate the contribution of the core-target reactions
Radio halos in SZ-selected clusters of galaxies: the making of a halo?
Bonafede, A.; Intema, H. T.; Brüggen, M.; Vazza, F.; Basu, K.; Sommer, M.; Ebeling, H.; de Gasperin, F.; Röttgering, H. J. A.; van Weeren, R. J.; Cassano, R.
2015-01-01
Radio halos are synchrotron radio sources detected in some massive galaxy clusters. Their Mpc-size indicates that (re)acceleration processes are taking place in the host cluster. X-ray catalogues of galaxy clusters have been used in the past to search for radio halos and to understand their connection with cluster-cluster mergers and with the thermal component of the intra-cluster medium. More recently, the Sunyaev-Zel'dovich effect has been proven to be a better route to search for massive c...
The “Building Blocks” of Stellar Halos
Directory of Open Access Journals (Sweden)
Kyle A. Oman
2017-08-01
Full Text Available The stellar halos of galaxies encode their accretion histories. In particular, the median metallicity of a halo is determined primarily by the mass of the most massive accreted object. We use hydrodynamical cosmological simulations from the apostle project to study the connection between the stellar mass, the metallicity distribution, and the stellar age distribution of a halo and the identity of its most massive progenitor. We find that the stellar populations in an accreted halo typically resemble the old stellar populations in a present-day dwarf galaxy with a stellar mass ∼0.2–0.5 dex greater than that of the stellar halo. This suggests that had they not been accreted, the primary progenitors of stellar halos would have evolved to resemble typical nearby dwarf irregulars.
A machine learning approach to galaxy-LSS classification - I. Imprints on halo merger trees
Hui, Jianan; Aragon, Miguel; Cui, Xinping; Flegal, James M.
2018-04-01
The cosmic web plays a major role in the formation and evolution of galaxies and defines, to a large extent, their properties. However, the relation between galaxies and environment is still not well understood. Here, we present a machine learning approach to study imprints of environmental effects on the mass assembly of haloes. We present a galaxy-LSS machine learning classifier based on galaxy properties sensitive to the environment. We then use the classifier to assess the relevance of each property. Correlations between galaxy properties and their cosmic environment can be used to predict galaxy membership to void/wall or filament/cluster with an accuracy of 93 per cent. Our study unveils environmental information encoded in properties of haloes not normally considered directly dependent on the cosmic environment such as merger history and complexity. Understanding the physical mechanism by which the cosmic web is imprinted in a halo can lead to significant improvements in galaxy formation models. This is accomplished by extracting features from galaxy properties and merger trees, computing feature scores for each feature and then applying support vector machine (SVM) to different feature sets. To this end, we have discovered that the shape and depth of the merger tree, formation time, and density of the galaxy are strongly associated with the cosmic environment. We describe a significant improvement in the original classification algorithm by performing LU decomposition of the distance matrix computed by the feature vectors and then using the output of the decomposition as input vectors for SVM.
Clustering dark energy and halo abundances
Batista, Ronaldo C.; Marra, Valerio
2017-11-01
Within the standard paradigm, dark energy is taken as a homogeneous fluid that drives the accelerated expansion of the universe and does not contribute to the mass of collapsed objects such as galaxies and galaxy clusters. The abundance of galaxy clusters—measured through a variety of channels—has been extensively used to constrain the normalization of the power spectrum: it is an important probe as it allows us to test if the standard ΛCDM model can indeed accurately describe the evolution of structures across billions of years. It is then quite significant that the Planck satellite has detected, via the Sunyaev-Zel'dovich effect, less clusters than expected according to the primary CMB anisotropies. One of the simplest generalizations that could reconcile these observations is to consider models in which dark energy is allowed to cluster, i.e., allowing its sound speed to vary. In this case, however, the standard methods to compute the abundance of galaxy clusters need to be adapted to account for the contributions of dark energy. In particular, we examine the case of clustering dark energy—a dark energy fluid with negligible sound speed—with a redshift-dependent equation of state. We carefully study how the halo mass function is modified in this scenario, highlighting corrections that have not been considered before in the literature. We address modifications in the growth function, collapse threshold, virialization densities and also changes in the comoving scale of collapse and mass function normalization. Our results show that clustering dark energy can impact halo abundances at the level of 10%-30%, depending on the halo mass, and that cluster counts are modified by about 30% at a redshift of unity.
Fast low-energy halo-to-halo transfers between Sun–planet systems
Directory of Open Access Journals (Sweden)
Shang Haibin
2014-04-01
Full Text Available In this paper, the problem of fast low-energy halo-to-halo transfers between Sun–planet systems is discussed under ephemeris constraints. According to the structure of an invariant manifold, employing an invariant manifold and planetary gravity assist to save fuel consumption is analyzed from the view of orbital energy. Then, a pseudo-manifold is introduced to replace the invariant manifold in such a way that more transfer opportunities are allowed. Fast escape and capture can be achieved along the pseudo-manifold. Furthermore, a global searching method that is based on patched-models is proposed to find an appropriate transfer trajectory. In this searching method, the trajectory is divided into several segments that can be designed under simple dynamical models, and an analytical algorithm is developed for connecting the segments. Earth–Mars and Earth–Venus halo-to-halo transfers are designed to demonstrate the proposed approach. Numerical results show that the transfers that combine the pseudo-manifolds and planetary gravity assist can offer significant fuel consumption and flight time savings over traditional transfer schemes.
Haloes, molecules and multi-neutrons
Energy Technology Data Exchange (ETDEWEB)
Marques Moreno, F.M
2003-01-01
Away from the equilibrium between protons and neutrons within stable nuclei, many exotic nuclei exist. Most of the known nuclear properties evolve smoothly with exoticism, but some extreme proton-neutron combinations have revealed during the last decade completely new concepts. They will be illustrated through three examples: the extended and dilute halo formed by very weakly bound neutrons, the molecular-like neutron orbitals found in nuclei exhibiting a clustering, and the recently revived debate on the possible existence of neutral nuclei. The different experimental results will be reviewed, and we will see how several properties of these new phenomena can be well understood within relatively simple theoretical approaches. (author)
Sub-Coulomb fusion with halo nuclei
International Nuclear Information System (INIS)
Fekou-Youmbi, V.; Sida, J.L.; Alamanos, N.; Auger, F.; Bazin, D.; Borcea, C.; Cabot, C.; Cunsolo, A.; Foti, A.; Gillibert, A.; Lepine, A.; Lewitowicz, M.; Liguori-Neto, R.; Mittig, W.; Pollacco, E.; Roussel-Chomaz, P.; Volant, C.; Yong Feng, Y.
1995-01-01
The nuclear structure of halo nuclei may have strong influence on the fusion cross section at sub-barrier energies. The actual theoretical debate is briefly reviewed and sub-barrier fusion calculations for the system 11 Be+ 238 U are presented. An experimental program on sub-barrier fusion for the systems 7,9,10,11 Be+ 238 U is underway at GANIL. First results with 9 Be and 11 Be beams were obtained using the F.U.S.ION detector. Relative fission cross sections are presented. ((orig.))
Statistics of matter distribution from halo dynamics
International Nuclear Information System (INIS)
Bonometto, S.A.; Borgani, S.; Persic, M.; Salucci, P.
1990-01-01
The galaxy-background correlation function at short distances is explored by means of the observed disk dynamics of spiral galaxies. Using both the sample of galaxies and the analytical method for dark-to-luminous mass decomposition from optical rotation curves presented by Persic and Salucci (1988, 1990), individual sizes and mean densities are worked out for 42 extended halos as functions of both the intensity and the gradient of the central velocity field. The statistics for the expected density enhancements within given distances from galactic centers shows simple properties which strongly tie galaxy-background and galaxy-galaxy correlation functions. 42 refs
Universal properties of dark matter halos.
Boyarsky, A; Neronov, A; Ruchayskiy, O; Tkachev, I
2010-05-14
We discuss the universal relation between density and size of observed dark matter halos that was recently shown to hold on a wide range of scales, from dwarf galaxies to galaxy clusters. Predictions of cold dark matter (ΛCDM) N-body simulations are consistent with this relation. We demonstrate that this property of ΛCDM can be understood analytically in the secondary infall model. Qualitative understanding given by this model provides a new way to predict which deviations from ΛCDM or large-scale modifications of gravity can affect universal behavior and, therefore, to constrain them observationally.
Unitarity Bounds and the Cuspy Halo Problem
International Nuclear Information System (INIS)
Hui, Lam
2001-01-01
Conventional cold dark matter cosmological models predict cuspy halos which are in apparent conflict with observations. We show that unitarity arguments imply interesting constraints on two proposals to address this problem: collisional dark matter and strongly annihilating dark matter. Efficient scattering in both implies m∼<12 GeV and m∼<25 GeV , respectively. We also show that the strong annihilation in the second scenario implies the presence of elastic scattering. Recent evidence suggests a collisional scenario where the cross section scales inversely with velocity -- we argue superelastic processes are likely involved. Exceptions and implications for searches are discussed
Poole, Gregory B.; Mutch, Simon J.; Croton, Darren J.; Wyithe, Stuart
2017-12-01
We introduce GBPTREES: an algorithm for constructing merger trees from cosmological simulations, designed to identify and correct for pathological cases introduced by errors or ambiguities in the halo finding process. GBPTREES is built upon a halo matching method utilizing pseudo-radial moments constructed from radially sorted particle ID lists (no other information is required) and a scheme for classifying merger tree pathologies from networks of matches made to-and-from haloes across snapshots ranging forward-and-backward in time. Focusing on SUBFIND catalogues for this work, a sweep of parameters influencing our merger tree construction yields the optimal snapshot cadence and scanning range required for converged results. Pathologies proliferate when snapshots are spaced by ≲0.128 dynamical times; conveniently similar to that needed for convergence of semi-analytical modelling, as established by Benson et al. Total merger counts are converged at the level of ∼5 per cent for friends-of-friends (FoF) haloes of size np ≳ 75 across a factor of 512 in mass resolution, but substructure rates converge more slowly with mass resolution, reaching convergence of ∼10 per cent for np ≳ 100 and particle mass mp ≲ 109 M⊙. We present analytic fits to FoF and substructure merger rates across nearly all observed galactic history (z ≤ 8.5). While we find good agreement with the results presented by Fakhouri et al. for FoF haloes, a slightly flatter dependence on merger ratio and increased major merger rates are found, reducing previously reported discrepancies with extended Press-Schechter estimates. When appropriately defined, substructure merger rates show a similar mass ratio dependence as FoF rates, but with stronger mass and redshift dependencies for their normalization.
Subhalo demographics in the Illustris simulation: effects of baryons and halo-to-halo variation
Chua, Kun Ting Eddie; Pillepich, Annalisa; Rodriguez-Gomez, Vicente; Vogelsberger, Mark; Bird, Simeon; Hernquist, Lars
2017-12-01
We study the abundance of subhaloes in the hydrodynamical cosmological simulation Illustris, which includes both baryons and dark matter in a cold dark matter volume 106.5 Mpc a side. We compare Illustris to its dark-matter only (DMO) analogue, Illustris-Dark and quantify the effects of baryonic processes on the demographics of subhaloes in the host mass range 1011-3 × 1014 M⊙. We focus on both the evolved (z = 0) subhalo cumulative mass functions (SHMF) and the statistics of subhaloes ever accreted, i.e. infall SHMF. We quantify the variance in subhalo abundance at fixed host mass and investigate the physical reasons responsible for such scatter. We find that in Illustris, baryonic physics impacts both the infall and z = 0 subhalo abundance by tilting the DMO function and suppressing the abundance of low-mass subhaloes. The breaking of self-similarity in the subhalo abundance at z = 0 is enhanced by the inclusion of baryonic physics. The non-monotonic alteration of the evolved subhalo abundances can be explained by the modification of the concentration-mass relation of Illustris hosts compared to Illustris-Dark. Interestingly, the baryonic implementation in Illustris does not lead to an increase in the halo-to-halo variation compared to Illustris-Dark. In both cases, the normalized intrinsic scatter today is larger for Milky Way-like haloes than for cluster-sized objects. For Milky Way-like haloes, it increases from about eight per cent at infall to about 25 per cent at the current epoch. In both runs, haloes of fixed mass formed later host more subhaloes than early formers.
2012-03-20
... Enforcement Administration Manufacturer of Controlled Substances, Notice of Registration; Halo Pharmaceutical... FR 77850, Halo Pharmaceutical Inc., 30 North Jefferson Road, Whippany, New Jersey 07981, made... determined that the registration of Halo Pharmaceutical Inc. to manufacture the listed basic classes of...
2012-12-21
... Enforcement Administration Manufacturer of Controlled Substances, Notice of Registration, Halo Pharmaceutical... 47114, Halo Pharmaceutical, Inc., 30 North Jefferson Road, Whippany, New Jersey 07981, made application... determined that the registration of Halo Pharmaceutical, Inc., to manufacture the listed basic classes of...
Alternative techniques for beam halo measurements
Welsch, CP; Burel, B; Lefèvre, T; Chapman, T; Pilon, MJ
2006-01-01
In future high intensity, high energy accelerators it must be ensured that particle losses are minimized, as activation of the vacuum chambers or other components makes maintenance and upgrade work time consuming and costly. It is imperative to have a clear understanding of the mechanisms that can lead to halo formation and to have the possibility to test available theoretical models with an adequate experimental setup. Measurements based on optical transition radiation (OTR) are a well-established technique for measurements of the transverse beam profile. However, in order to be suitable for halo measurements as well, the dynamic range of the final image acquisition system needs to be high, being able to cover at least five orders of magnitude in intensity changes. Here, the performance of a standard acquisition system as it is used in the CLIC test facility (CTF3) is compared to a step-by-step measurement with a small movable photo multiplier tube and an innovative camera system based on charge injection de...
The CMS Beam Halo Monitor Detector System
CMS Collaboration
2015-01-01
A new Beam Halo Monitor (BHM) detector system has been installed in the CMS cavern to measure the machine-induced background (MIB) from the LHC. This background originates from interactions of the LHC beam halo with the final set of collimators before the CMS experiment and from beam gas interactions. The BHM detector uses the directional nature of Cherenkov radiation and event timing to select particles coming from the direction of the beam and to suppress those originating from the interaction point. It consists of 40 quartz rods, placed on each side of the CMS detector, coupled to UV sensitive PMTs. For each bunch crossing the PMT signal is digitized by a charge integrating ASIC and the arrival time of the signal is recorded. The data are processed in real time to yield a precise measurement of per-bunch-crossing background rate. This measurement is made available to CMS and the LHC, to provide real-time feedback on the beam quality and to improve the efficiency of data taking. In this talk we will describ...
The CMS Beam Halo Monitor Detector System
Stifter, Kelly
2015-01-01
A new Beam Halo Monitor (BHM) detector system has been installed in the CMS cavern to measure the machine-induced background (MIB) from the LHC. This background originates from interactions of the LHC beam halo with the final set of collimators before the CMS experiment and from beam gas interactions. The BHM detector uses the directional nature of Cherenkov radiation and event timing to select particles coming from the direction of the beam and to supress those originating from the interaction point. It consists of 40 quartz rods, placed on each side of the CMS detector, coupled to UV sensitive PMTs. For each bunch crossing the PMT signal is digitized by a charge integrating ASIC and the arrival time of the signal is recorded. The data are processed in real time to yield a precise measurement of per-bunch-crossing background rate. This measurement is made available to CMS and the LHC, to provide real-time feedback on the beam quality and to improve the efficiency of data taking. In this talk we will descri...
SECULAR DAMPING OF STELLAR BARS IN SPINNING DARK MATTER HALOS
Energy Technology Data Exchange (ETDEWEB)
Long, Stacy; Shlosman, Isaac [Department of Physics and Astronomy, University of Kentucky, Lexington, KY 40506-0055 (United States); Heller, Clayton [Department of Physics, Georgia Southern University, Statesboro, GA 30460 (United States)
2014-03-01
We demonstrate using numerical simulations of isolated galaxies that growth of stellar bars in spinning dark matter halos is heavily suppressed in the secular phase of evolution. In a representative set of models, we show that for values of the cosmological spin parameter λ ≳ 0.03, bar growth (in strength and size) becomes increasingly quenched. Furthermore, the slowdown of the bar pattern speed weakens considerably with increasing λ until it ceases completely. The terminal structure of the bars is affected as well, including extent and shape of their boxy/peanut bulges. The essence of this effect lies in the modified angular momentum exchange between the disk and the halo facilitated by the bar. For the first time we have demonstrated that a dark matter halo can emit and not purely absorb angular momentum. Although the halo as a whole is not found to emit, the net transfer of angular momentum from the disk to the halo is significantly reduced or completely eliminated. The paradigm shift implies that the accepted view that disks serve as sources of angular momentum and halos serve as sinks must be revised. Halos with λ ≳ 0.03 are expected to form a substantial fraction, based on the lognormal distribution of λ. The dependence of secular bar evolution on halo spin, therefore, implies profound corollaries for the cosmological evolution of galactic disks.
A two-point correlation function for Galactic halo stars
Cooper, A. P.; Cole, S.; Frenk, C. S.; Helmi, A.
2011-01-01
We describe a correlation function statistic that quantifies the amount of spatial and kinematic substructure in the stellar halo. We test this statistic using model stellar halo realizations constructed from the Aquarius suite of six high-resolution cosmological N-body simulations, in combination
A 500 PARSEC HALO SURROUNDING THE GALACTIC GLOBULAR NGC 1851
Olszewski, Edward W.; Saha, Abhijit; Knezek, Patricia; Subramaniam, Annapurni; de Boer, Thomas; Seitzer, Patrick
2009-01-01
Using imaging that shows 4 mag of main-sequence stars, we have discovered that the Galactic globular cluster NGC 1851 is surrounded by a halo that is visible from the tidal radius of 700 arcsec (41 pc) to more than 4500 arcsec (> 250 pc). This halo is symmetric and falls in density as a power law of
Remarks on the spherical scalar field halo in galaxies
International Nuclear Information System (INIS)
Nandi, Kamal K.; Valitov, Ildar; Migranov, Nail G.
2009-01-01
Matos, Guzman, and Nunez proposed a model for the galactic halo within the framework of scalar field theory. We argue that an analysis involving the full metric can reveal the true physical nature of the halo only when a certain condition is maintained. We fix that condition and also calculate its impact on observable parameters of the model.
Is the dark halo of our Galaxy spherical?
Helmi, A
2004-01-01
It has been recently claimed that the confined structure of the debris from the Sagittarius dwarf implies that the dark matter halo of our Galaxy should be nearly spherical, in strong contrast with predictions from cold dark matter simulations, where dark haloes are found to have typical density
Depth-Dependent Halos : Illustrative Rendering of Dense Line Data
Everts, Maarten H.; Bekker, Henk; Roerdink, Jos B.T.M.; Isenberg, Tobias
2009-01-01
We present a technique for the illustrative rendering of 3D line data at interactive frame rates. We create depth-dependent halos around lines to emphasize tight line bundles while less structured lines are de-emphasized. Moreover, the depth-dependent halos combined with depth cueing via line width
A Hidden Radio Halo in the Galaxy Cluster A1682?
Indian Academy of Sciences (India)
2016-01-27
Jan 27, 2016 ... High sensitivity observations of radio halos in galaxy clusters at frequencies ≤ 330 MHz are still relatively rare, and very little is known compared to the classical 1.4 GHz images. The few radio halos imaged down to 150–240 MHz show a considerable spread in size, morphology and spectral properties.
Characteristics of halo current in JT-60U
International Nuclear Information System (INIS)
Neyatani, Y.; Nakamura, Y.; Yoshino, R.; Hatae, T.
2001-01-01
Halo currents and their toroidal peaking factor (TPF) have been measured in JT-60U by Rogowski coil type halo current sensors. The electron temperature in the halo region was around 10 eV at 1 ms before the timing of the maximum halo current. The maximum TPF *I h /I p0 was 0.52 in the operational range of I p =0.7∼1.8MA, B T =2.2∼3.5T, including ITER design parameters of κ>1.6 and q 95 =3, which was lower than that of the maximum value of ITER data base (0.75). The magnitude of halo currents tended to decrease with the increase in stored energy just before the energy quench and with the line integrated electron density at the time of the maximum halo current. A termination technique in which the current channel remains stationary was useful to avoid halo current generation. Intense neon gas puffing during the VDE was effective for reducing the halo currents. (author)
The f ( R ) halo mass function in the cosmic web
Energy Technology Data Exchange (ETDEWEB)
Braun-Bates, F. von; Winther, H.A.; Alonso, D.; Devriendt, J., E-mail: francesca.vonbraun-bates@physics.ox.ac.uk, E-mail: hans.a.winther@physics.ox.ac.uk, E-mail: david.alonso@physics.ox.ac.uk, E-mail: julien.devriendt@physics.ox.ac.uk [Astrophysics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH (United Kingdom)
2017-03-01
An important indicator of modified gravity is the effect of the local environment on halo properties. This paper examines the influence of the local tidal structure on the halo mass function, the halo orientation, spin and the concentration-mass relation. We use the excursion set formalism to produce a halo mass function conditional on large-scale structure. Our simple model agrees well with simulations on large scales at which the density field is linear or weakly non-linear. Beyond this, our principal result is that f ( R ) does affect halo abundances, the halo spin parameter and the concentration-mass relationship in an environment-independent way, whereas we find no appreciable deviation from \\text(ΛCDM) for the mass function with fixed environment density, nor the alignment of the orientation and spin vectors of the halo to the eigenvectors of the local cosmic web. There is a general trend for greater deviation from \\text(ΛCDM) in underdense environments and for high-mass haloes, as expected from chameleon screening.
Influence of halo doping profiles on MOS transistor mismatch
Andricciola, P.; Tuinhout, H.
2009-01-01
Halo implants are used in modern CMOS technology to reduce the short channel effect. However, the lateral non-uniformity of the channel doping has been proven to degenerate the mismatch performance. With this paper we want to discuss the influence of the halo profile on MOS transistor mismatch. The
Mancillas, Brisa; Ávila-Reese, Vladimir; Rodríguez-Puebla, Aldo; Valls-Gabaud, David
2017-06-01
Several pieces of evidence suggest that disk formation is the generic process of assembly of galaxies, while the spheroidal component arises from the merging/interactions of disks as well as from their secular evolution. To understand galaxy formation and evolution, a cosmological framework is required. The current cosmological paradigm is summarized in the so-called Λ-cold dark matter model (ΛCDM). The statistical connection between the masses of the observed galaxies and those of the simulated CDM halos in large volumes leads us to the galaxy-halo mass relation, which summarizes the main astrophysical processes of galaxy formation and evolution (gas heating and cooling, SF, SN- and AGN-driven feedback, etc.). An important question is how this relation constrained by semi-empirical methods (e.g., Rodriguez-Puebla et al. 2014) is "projected" into the disk galaxy scaling relations and other galaxy correlations. To explore this question, we generate a synthetic catalog of thousands of disk/halo systems by means of an extended Mo, Mao & White (1998) model, and by using as input the baryonic-to-halo mass relation, fbar(Mh), of local disk galaxy as recently constrained by Calette et al. (2015).
a Doorway to Borromean Halo Nuclei:. the Samba Configuration
Yamashita, M. T.; Frederico, T.; Hussein, M. H.
We exploit the possibility of new configurations in three-body halo nuclei, Samba type (the neutron-core form a bound system) as a doorway to Borromean systems. The nuclei 12Be, 15B, 23N and 27F are of such nature, in particular 23N with a half-life of 37.7 s and a halo radius of 6.07 fm is an excellent example of Samba-halo configuration. The fusion below the barrier of the Samba halo nuclei with heavy targets could reveal the so far elusive enhancement and a dominance of one-neutron over two-neutron transfers, in contrast to what was found recently for the Borromean halo nucleus 6He+238U.
Development of an Automatic Detection Program of Halo CMEs
Choi, K.; Park, M. Y.; Kim, J.
2017-12-01
The front-side halo CMEs are the major cause for large geomagnetic storms. Halo CMEs can result in damage to satellites, communication, electrical transmission lines and power systems. Thus automated techniques for detecting and analysing Halo CMEs from coronagraph data are of ever increasing importance for space weather monitoring and forecasting. In this study, we developed the algorithm that can automatically detect and do image processing the Halo CMEs in the images from the LASCO C3 coronagraph on board the SOHO spacecraft. With the detection algorithm, we derived the geometric and kinematical parameters of halo CMEs, such as source location, width, actual CME speed and arrival time at 21.5 solar radii.
Pulsed neutron source based on accelerator-subcritical-assembly
Energy Technology Data Exchange (ETDEWEB)
Inoue, Makoto; Noda, Akira; Iwashita, Yoshihisa; Okamoto, Hiromi; Shirai, Toshiyuki [Kyoto Univ., Uji (Japan). Inst. for Chemical Research
1997-03-01
A new pulsed neutron source which consists of a 300MeV proton linac and a nuclear fuel subcritical assembly is proposed. The proton linac produces pulsed spallation neutrons, which are multipied by the subcritical assembly. A prototype proton linac that accelerates protons up to 7MeV has been developed and a high energy section of a DAW structure is studied with a power model. Halo formations in high intensity beam are also being studied. (author)
What sets the central structure of dark matter haloes?
Ogiya, Go; Hahn, Oliver
2018-02-01
Dark matter (DM) haloes forming near the thermal cut-off scale of the density perturbations are unique, since they are the smallest objects and form through monolithic gravitational collapse, while larger haloes contrastingly have experienced mergers. While standard cold dark matter (CDM) simulations readily produce haloes that follow the universal Navarro-Frenk-White (NFW) density profile with an inner slope, ρ ∝ r-α, with α = 1, recent simulations have found that when the free-streaming cut-off expected for the CDM model is resolved, the resulting haloes follow nearly power-law density profiles of α ∼ 1.5. In this paper, we study the formation of density cusps in haloes using idealized N-body simulations of the collapse of proto-haloes. When the proto-halo profile is initially cored due to particle free-streaming at high redshift, we universally find ∼r-1.5 profiles irrespective of the proto-halo profile slope outside the core and large-scale non-spherical perturbations. Quite in contrast, when the proto-halo has a power-law profile, then we obtain profiles compatible with the NFW shape when the density slope of the proto-halo patch is shallower than a critical value, αini ∼ 0.3, while the final slope can be steeper for αini ≳ 0.3. We further demonstrate that the r-1.5 profiles are sensitive to small-scale noise, which gradually drives them towards an inner slope of -1, where they become resilient to such perturbations. We demonstrate that the r-1.5 solutions are in hydrostatic equilibrium, largely consistent with a simple analytic model, and provide arguments that angular momentum appears to determine the inner slope.
Effects of deformations and orientations on neutron-halo structure of light-halo nuclei
International Nuclear Information System (INIS)
Sawhney, Gudveen; Gupta, Raj K.; Sharma, Manoj K.
2013-01-01
The availability of radioactive nuclear beams have enabled to study the structure of nuclei far from the stability line, which in turn led to the discovery of neutron-halo nuclei. These nuclei, located near the neutron drip-line exhibit a high probability of presence of one or two loosely bound neutrons at a large distance from the rest of nucleons. The fragmentation behavior is studied for 13 cases of 1n-halo nuclei, which include 11 Be, 14 B, 15 C, 17 C, 19 C, 22 N, 22 O, 23 O, 24 O, 24 F, 26 F, 29 Ne and 31 Ne, using the cluster-core model (CCM) extended to include the deformations and orientations of nuclei
THE OVERDENSITY AND MASSES OF THE FRIENDS-OF-FRIENDS HALOS AND UNIVERSALITY OF HALO MASS FUNCTION
International Nuclear Information System (INIS)
More, Surhud; Kravtsov, Andrey V.; Dalal, Neal; Gottloeber, Stefan
2011-01-01
The friends-of-friends algorithm (hereafter FOF) is a percolation algorithm which is routinely used to identify dark matter halos from N-body simulations. We use results from percolation theory to show that the boundary of FOF halos does not correspond to a single density threshold but to a range of densities close to a critical value that depends upon the linking length parameter, b. We show that for the commonly used choice of b = 0.2, this critical density is equal to 81.62 times the mean matter density. Consequently, halos identified by the FOF algorithm enclose an average overdensity which depends on their density profile (concentration) and therefore changes with halo mass, contrary to the popular belief that the average overdensity is ∼180. We derive an analytical expression for the overdensity as a function of the linking length parameter b and the concentration of the halo. Results of tests carried out using simulated and actual FOF halos identified in cosmological simulations show excellent agreement with our analytical prediction. We also find that the mass of the halo that the FOF algorithm selects crucially depends upon mass resolution. We find a percolation-theory-motivated formula that is able to accurately correct for the dependence on number of particles for the mock realizations of spherical and triaxial Navarro-Frenk-White halos. However, we show that this correction breaks down when applied to the real cosmological FOF halos due to the presence of substructures. Given that abundance of substructure depends on redshift and cosmology, we expect that the resolution effects due to substructure on the FOF mass and halo mass function will also depend on redshift and cosmology and will be difficult to correct for in general. Finally, we discuss the implications of our results for the universality of the mass function.
The Milky Way Halo in Action Space
Myeong, G. C.; Evans, N. W.; Belokurov, V.; Sanders, J. L.; Koposov, S. E.
2018-04-01
We analyze the structure of the local stellar halo of the Milky Way using ∼60000 stars with full phase space coordinates extracted from the SDSS–Gaia catalog. We display stars in action space as a function of metallicity in a realistic axisymmetric potential for the Milky Way Galaxy. The metal-rich population is more distended toward high radial action J R as compared to azimuthal or vertical action, J ϕ or J z . It has a mild prograde rotation ( ≈ 25 {km} {{{s}}}-1), is radially anisotropic and highly flattened, with axis ratio q ≈ 0.6–0.7. The metal-poor population is more evenly distributed in all three actions. It has larger prograde rotation ( ≈ 50 {km} {{{s}}}-1), a mild radial anisotropy, and a roundish morphology (q ≈ 0.9). We identify two further components of the halo in action space. There is a high-energy, retrograde component that is only present in the metal-rich stars. This is suggestive of an origin in a retrograde encounter, possibly the one that created the stripped dwarf galaxy nucleus, ωCentauri. Also visible as a distinct entity in action space is a resonant component, which is flattened and prograde. It extends over a range of metallicities down to [Fe/H] ≈ ‑3. It has a net outward radial velocity ≈ 12 {km} {{{s}}}-1 within the solar circle at | z| < 3.5 {kpc}. The existence of resonant stars at such extremely low metallicities has not been seen before.
DARK MATTER SUB-HALO COUNTS VIA STAR STREAM CROSSINGS
International Nuclear Information System (INIS)
Carlberg, R. G.
2012-01-01
Dark matter sub-halos create gaps in the stellar streams orbiting in the halos of galaxies. We evaluate the sub-halo stream crossing integral with the guidance of simulations to find that the linear rate of gap creation, R U , in a typical cold dark matter (CDM) galactic halo at 100 kpc is R U ≅0.0066 M-hat 8 -0.35 kpc -1 Gyr -1 , where M-hat 8 (≡ M-hat /10 8 M ☉ ) is the minimum mass halo that creates a visible gap. The relation can be recast entirely in terms of observables, as R U ≅0.059w -0.85 kpc -1 Gyr -1 , for w in kpc, normalized at 100 kpc. Using published data, the density of gaps is estimated for M31's NW stream and the Milky Way Pal 5 stream, Orphan stream, and Eastern Banded Structure. The estimated rates of gap creation all have errors of 50% or more due to uncertain dynamical ages and the relatively noisy stream density measurements. The gap-rate-width data are in good agreement with the CDM-predicted relation. The high density of gaps in the narrow streams requires a total halo population of 10 5 sub-halos above a minimum mass of 10 5 M ☉ .
Stellar Bar Evolution in the Absence of Dark Matter Halo
Roshan, Mahmood
2018-02-01
We study the stellar bar growth in high-resolution numerical galaxy models with and without dark matter halos. In all models, the galactic disk is exponential, and the halos are rigid or live Plummer spheres. More specifically, when there is no dark matter halo, we modify the gravitational force between point particles. To do so, we use the weak field limit of an alternative theory of dark matter known as MOG in the literature. The galaxy model in MOG has the same initial conditions as galaxy models with a dark matter halo. On the other hand, the initial random velocities and Toomre’s local stability parameter are the same for all of the models. We show that the evolution and growth of the bar in MOG is substantially different from the standard cases including dark matter halo. More importantly, we find that the bar growth rate and its final magnitude are smaller in MOG. On the other hand, the maximum value of the bar in MOG is smaller than that in the Newtonian models. It is shown that although the live dark matter halo may support bar instability, MOG has stabilizing effects. Furthermore, we show that MOG supports fast pattern speeds, and unlike in the dark matter halo models, the pattern speed does not decrease with time. These differences, combined with the relevant observations, may help to distinguish between dark matter and modified gravity in galactic scales.
The role of massive halos in the star formation history of the Universe
Popesso, P.; Biviano, A.; Finoguenov, A.; Wilman, D.; Salvato, M.; Magnelli, B.; Gruppioni, C.; Pozzi, F.; Rodighiero, G.; Ziparo, F.; Berta, S.; Elbaz, D.; Dickinson, M.; Lutz, D.; Altieri, B.; Aussel, H.; Cimatti, A.; Fadda, D.; Ilbert, O.; Le Floch, E.; Nordon, R.; Poglitsch, A.; Genel, S.; Xu, C. K.
2015-07-01
Context. The most striking feature of the cosmic star formation history (CSFH) of the Universe is a dramatic drop in the star formation (SF) activity after z ~ 1. Aims: In this work we investigate whether the very same process of assembly and growth of structures is one of the major drivers of the observed decline in the Universe's SF activity. Methods: We study the contribution to the CSFH of galaxies in halos of different masses. This is done by studying the total SF rate-halo mass-redshift plane from redshift 0 to redshift ~1.6 in a sample of 57 groups and clusters by using the deepest available mid- and far-infrared surveys conducted with Spitzer MIPS and Herschel PACS and SPIRE, on blank (ECDFS, CDFN, and the COSMOS) and cluster fields. Results: Our results show that low mass groups (Mhalo ~ 6 × 1012-6 × 1013 M⊙) provide a 60-80% contribution to the CSFH at z ~ 1. This contribution has declined faster than the CSFH in the past 8 billion years to less than 10% at z sustained by lower mass halos. More massive systems (Mhalo > 6 × 1013 M⊙) provide only a marginal contribution (50%) of very massive, highly star-forming main sequence galaxies. Below z ~ 1 a quenching process must take place in massive halos to cause the observed faster suppression of their SF activity. Such a process must be a slow one, though, since most of the models implementing a rapid quenching of the SF activity in accreting satellites significantly underpredict the observed SF level in massive halos at any redshift. This would rule out short time-scale mechanisms such as ram pressure stripping. Instead, starvation or the satellite's transition from cold to hot accretion would provide a quenching timescale of 1 to few Gyr that is more consistent with the observations. Conclusions: Our results suggest a scenario in which, owing to the structure formation process, more and more galaxies experience the group environment and the associated quenching process in the past 8 billion years
Chemical Cartography. I. A Carbonicity Map of the Galactic Halo
Energy Technology Data Exchange (ETDEWEB)
Lee, Young Sun; Kim, Young Kwang [Department of Astronomy and Space Science, Chungnam National University, Daejeon 34134 (Korea, Republic of); Beers, Timothy C.; Placco, Vinicius; Yoon, Jinmi [Department of Physics and JINA Center for the Evolution of the Elements, University of Notre Dame, Notre Dame, IN 46556 (United States); Carollo, Daniela [Research School of Astronomy and Astrophysics, The Australian National University, Canberra, ACT 2611 (Australia); Masseron, Thomas [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Jung, Jaehun, E-mail: youngsun@cnu.ac.kr [Department of Astronomy, Space Science, and Geology, Chungnam National University, Daejeon 34134 (Korea, Republic of)
2017-02-10
We present the first map of carbonicity, [C/Fe], for the halo system of the Milky Way, based on a sample of over 100,000 main-sequence turnoff stars with available spectroscopy from the Sloan Digital Sky Survey. This map, which explores distances up to 15 kpc from the Sun, reveals clear evidence for the dual nature of the Galactic halo, based on the spatial distribution of stellar carbonicity. The metallicity distribution functions of stars in the inner- and outer-halo regions of the carbonicity map reproduce those previously argued to arise from contributions of the inner- and outer-halo populations, with peaks at [Fe/H] = −1.5 and −2.2, respectively. From consideration of the absolute carbon abundances for our sample, A (C), we also confirm that the carbon-enhanced metal-poor (CEMP) stars in the outer-halo region exhibit a higher frequency of CEMP-no stars (those with no overabundances of heavy neutron-capture elements) than of CEMP- s stars (those with strong overabundances of elements associated with the s -process), whereas the stars in the inner-halo region exhibit a higher frequency of CEMP- s stars. We argue that the contrast in the behavior of the CEMP-no and CEMP- s fractions in these regions arises from differences in the mass distributions of the mini-halos from which the stars of the inner- and outer-halo populations formed, which gives rise in turn to the observed dichotomy of the Galactic halo.
Wide-field kinematic structure of early-type galaxy halos
Arnold, Jacob Antony
2013-12-01
The stellar halos of nearby galaxies bare the signatures of the mass-assembly processes that have driven galaxy evolution over the last ˜10 Gyr. Finding and interpreting these relict clues in galaxies within and beyond the local group offers one of the most promising avenues for understanding how galaxies accumulate their stars over time. To tackle this problem we have performed a systematic study of the wide-field kinematic structure of nearby (Dspectroscopy out to several effective radii (˜3 R e). The 22 galaxies presented here span a range of environments (field, group, and cluster), intrinsic luminosities (-22.4 infrared Calcium II triplet. For each spectrum, we parameterize the line-of-sight velocity distribution (LOSVD) as a truncated Gauss-Hermite series convolved with an optimally weighted combination of stellar templates. These kinematic measurements (V, sigma, h3, and h4) are combined with literature values to construct spatially resolved maps of large-scale kinematic structure. A variety of kinematic behaviors are observed beyond ~1 Re, potentially reflecting the stochastic and chaotic assembly of stellar bulges and halos in early-type galaxies. Next, we describe a global analysis (out to 5 Re) of kinematics and metallicity in the nearest S0 galaxy, NGC 3115, along with implications for its assembly history. The data include high-quality wide-field imaging and multi-slit spectra of the field stars and globular clusters (GCs). Within two effective radii, the bulge (as traced by the stars and metal-rich GCs) is flattened and rotates rapidly. At larger radii, the rotation declines dramatically, while the characteristic GC metallicities also decrease with radius. We argue that this pattern is not naturally explained by a binary major merger, but instead by a two-phase assembly process where the inner regions have formed in an early violent, dissipative phase, followed by the protracted growth of the outer parts via minor mergers. To test this hypothesis
International Nuclear Information System (INIS)
Deason, Alis J.; Mao, Yao-Yuan; Wechsler, Risa H.
2016-01-01
We study the mass spectrum of destroyed dwarfs that contribute to the accreted stellar mass of Milky Way (MW)-mass (M vir ∼ 10 12.1 M ⊙ ) halos using a suite of 45 zoom-in dissipationless simulations. Empirical models are employed to relate (peak) subhalo mass to dwarf stellar mass, and we use constraints from z = 0 observations and hydrodynamical simulations to estimate the metallicity distribution of the accreted stellar material. The dominant contributors to the accreted stellar mass are relatively massive dwarfs with M star ∼ 10 8 –10 10 M ⊙ . Halos with more quiescent accretion histories tend to have lower mass progenitors (10 8 –10 9 M ⊙ ), and lower overall accreted stellar masses. Ultra-faint mass (M star < 10 5 M ⊙ ) dwarfs contribute a negligible amount (≪1%) to the accreted stellar mass and, despite having low average metallicities, supply a small fraction (∼2%–5%) of the very metal-poor stars with [Fe/H] < −2. Dwarfs with masses 10 5 < M star /M ⊙ < 10 8 provide a substantial amount of the very metal-poor stellar material (∼40%–80%), and even relatively metal-rich dwarfs with M star > 10 8 M ⊙ can contribute a considerable fraction (∼20%–60%) of metal-poor stars if their metallicity distributions have significant metal-poor tails. Finally, we find that the generic assumption of a quiescent assembly history for the MW halo seems to be in tension with the mass spectrum of its surviving dwarfs. We suggest that the MW could be a “transient fossil”; a quiescent halo with a recent accretion event(s) that disguises the preceding formation history of the halo
Connecting Galaxies, Halos, and Star Formation Rates Across Cosmic Time
Energy Technology Data Exchange (ETDEWEB)
Conroy, Charlie; Wechsler, Risa H.
2008-06-02
A simple, observationally-motivated model is presented for understanding how halo masses, galaxy stellar masses, and star formation rates are related, and how these relations evolve with time. The relation between halo mass and galaxy stellar mass is determined by matching the observed spatial abundance of galaxies to the expected spatial abundance of halos at multiple epochs--i.e. more massive galaxies are assigned to more massive halos at each epoch. This 'abundance matching' technique has been shown previously to reproduce the observed luminosity- and scale-dependence of galaxy clustering over a range of epochs. Halos at different epochs are connected by halo mass accretion histories estimated from N-body simulations. The halo-galaxy connection at fixed epochs in conjunction with the connection between halos across time provides a connection between observed galaxies across time. With approximations for the impact of merging and accretion on the growth of galaxies, one can then directly infer the star formation histories of galaxies as a function of stellar and halo mass. This model is tuned to match both the observed evolution of the stellar mass function and the normalization of the observed star formation rate--stellar mass relation to z {approx} 1. The data demands, for example, that the star formation rate density is dominated by galaxies with M{sub star} {approx} 10{sup 10.0-10.5} M{sub {circle_dot}} from 0 < z < 1, and that such galaxies over these epochs reside in halos with M{sub vir} {approx} 10{sup 11.5-12.5} M{sub {circle_dot}}. The star formation rate--halo mass relation is approximately Gaussian over the range 0 < z < 1 with a mildly evolving mean and normalization. This model is then used to shed light on a number of issues, including (1) a clarification of 'downsizing', (2) the lack of a sharp characteristic halo mass at which star formation is truncated, and (3) the dominance of star formation over merging to the stellar
Evolution of Southern Hemisphere spring air masses observed by HALOE
Pierce, R. Bradley; Grose, William L.; Russell, James M., III; Tuck, Adrian F.
1994-01-01
The evolution of Southern Hemisphere air masses observed by the Halogen Occultation Experiment (HALOE) during September 21 through October 15, 1992, is investigated using isentropic trajectories computed from United Kingdom Meteorological Office (UKMO) assimilated winds and temperatures. Maps of constituent concentrations are obtained by accumulation of air masses from previous HALOE occultations. Lagged correlations between initial and subsequent HALOE observations of the same air mass are used to validate the air mass trajectories. High correlations are found for lag times as large as 10 days. Frequency distributions of the air mass constituent concentrations are used to examine constituent distributions in and around the Southern Hemisphere polar vortex.
Stellar halos: a rosetta stone for galaxy formation and cosmology
Inglis Read, Justin
2015-08-01
Stellar halos make up about a percent of the total stellar mass in galaxies. Yet their old age and long phase mixing times make them living fossil records of galactic history. In this talk, I review the latest simulations of structure formation in our standard Lambda Cold Dark Matter cosmology. I discuss the latest predictions for stellar halos and the relationship between the stellar halo light and the underlying dark matter. Finally, I discuss how these simulations compare to observations of the Milky Way and Andromeda and, ultimately, what this means for our cosmological model and the formation history of the Galaxy.
Effective Dark Matter Halo Catalog in f(R) Gravity.
He, Jian-Hua; Hawken, Adam J; Li, Baojiu; Guzzo, Luigi
2015-08-14
We introduce the idea of an effective dark matter halo catalog in f(R) gravity, which is built using the effective density field. Using a suite of high resolution N-body simulations, we find that the dynamical properties of halos, such as the distribution of density, velocity dispersion, specific angular momentum and spin, in the effective catalog of f(R) gravity closely mimic those in the cold dark matter model with a cosmological constant (ΛCDM). Thus, when using effective halos, an f(R) model can be viewed as a ΛCDM model. This effective catalog therefore provides a convenient way for studying the baryonic physics, the galaxy halo occupation distribution and even semianalytical galaxy formation in f(R) cosmologies.
UARS Halogen Occultation Experiment (HALOE) Level 3AT V001
National Aeronautics and Space Administration — The Halogen Occultation Experiment (HALOE) Level 3AT data product consists of daily vertical profiles of temperature, aerosol extinction and concentrations of HCl,...
On the galaxy-halo connection in the EAGLE simulation
Desmond, Harry; Mao, Yao-Yuan; Wechsler, Risa H.; Crain, Robert A.; Schaye, Joop
2017-10-01
Empirical models of galaxy formation require assumptions about the correlations between galaxy and halo properties. These may be calibrated against observations or inferred from physical models such as hydrodynamical simulations. In this Letter, we use the EAGLE simulation to investigate the correlation of galaxy size with halo properties. We motivate this analysis by noting that the common assumption of angular momentum partition between baryons and dark matter in rotationally supported galaxies overpredicts both the spread in the stellar mass-size relation and the anticorrelation of size and velocity residuals, indicating a problem with the galaxy-halo connection it implies. We find the EAGLE galaxy population to perform significantly better on both statistics, and trace this success to the weakness of the correlations of galaxy size with halo mass, concentration and spin at fixed stellar mass. Using these correlations in empirical models will enable fine-grained aspects of galaxy scalings to be matched.
A beam halo event of the ATLAS Experiment
ATLAS, Experiment
2014-01-01
Beam halo events: These occur as a single beam of protons is circulating in one direction in LHC, just passing through ATLAS. An outlier particle hits a part of the detector causing a spray of particles.
Summary of the 2014 Beam-Halo Monitoring Workshop
Energy Technology Data Exchange (ETDEWEB)
Fisher, Alan
2015-09-25
Understanding and controlling beam halo is important for high-intensity hadron accelerators, for high-brightness electron linacs, and for low-emittance light sources. This can only be achieved by developing suitable diagnostics. The main challenge faced by such instrumentation is the high dynamic range needed to observe the halo in the presence of an intense core. In addition, measurements must often be made non-invasively. This talk summarizes the one-day workshop on Beam-Halo Monitoring that was held at SLAC on September 19 last year, immediately following IBIC 2014 in Monterey. Workshop presentations described invasive techniques using wires, screens, or crystal collimators, and non-invasive measurements with gas or scattered electrons. Talks on optical methods showed the close links between observing halo and astronomical problems like observing the solar corona or directly observing a planet orbiting another star.
Halo Core Tracking for Galaxy Placement in Cosmological Simulations
Korytov, Danila
2017-01-01
Synthetic galaxy catalogs are an important product of cosmological simulations. Upcoming surveys, such as LSST, require high volume and high resolution simulations for generating large object catalogs. These catalogs have many uses including testing and improving analysis pipelines, predictions for different cosmologies and investigations of systematic errors. Dark matter (DM) only simulations are able to reach the required volume and resolution but need an accurate prescription for galaxy placement within DM halos. We present a method for galaxy placement. For halos above a characteristic mass, central DM simulation particles are taken as tracer particles for a galaxy. These halo ``cores'' are tracked through the simulation and may merge with other ``cores'' or be ripped apart by halo tidal forces. We examine how accurately we can reproduce galaxy cluster profiles, two point correlation functions and other galaxy statistics.
Analytical Model of Symmetric Halo Doped DG-Tunnel FET
Directory of Open Access Journals (Sweden)
S. Nagarajan
2015-11-01
Full Text Available Two-dimensional analytical model of symmetric halo doped double gate tunnel field effect transistor has been presented in this work. This model is developed based on the 2-D Poisson’s equation. Some important parameters such that surface potential, vertical and lateral electric field, electric field intensity and band energy have been modelled. The doping concentration and length of halo regions are varied and dependency of various parameters is studied. The halo doping is imparted to improve the ON current and to reduce the intrinsic ambipolarity of the device. Hence we can achieve improved ION/IOFF ratio. The scaling property of halo doped structure is analyzed with various dielectric constants.
Possible existence of wormholes in the central regions of halos
Energy Technology Data Exchange (ETDEWEB)
Rahaman, Farook, E-mail: rahaman@iucaa.ernet.in [Department of Mathematics, Jadavpur University, Kolkata 700032, West Bengal (India); Salucci, P., E-mail: salucci@sissa.it [SISSA, International School for Advanced Studies, Via Bonomea 265, 34136, Trieste (Italy); INFN, Sezione di Trieste, Via Valerio 2, 34127, Trieste (Italy); Kuhfittig, P.K.F., E-mail: kuhfitti@msoe.edu [Department of Mathematics, Milwaukee School of Engineering, Milwaukee, WI 53202-3109 (United States); Ray, Saibal, E-mail: saibal@iucaa.ernet.in [Department of Physics, Government College of Engineering and Ceramic Technology, Kolkata 700010, West Bengal (India); Rahaman, Mosiur, E-mail: mosiurju@gmail.com [Department of Mathematics, Meghnad Saha Institute of Technology, Kolkata 700150 (India)
2014-11-15
An earlier study (Rahaman, et al., 2014 and Kuhfittig, 2014) has demonstrated the possible existence of wormholes in the outer regions of the galactic halo, based on the Navarro–Frenk–White (NFW) density profile. This paper uses the Universal Rotation Curve (URC) dark matter model to obtain analogous results for the central parts of the halo. This result is an important compliment to the earlier result, thereby confirming the possible existence of wormholes in most of the spiral galaxies. - Highlights: • Earlier we showed possible existence of wormholes in the outer regions of halo. • We obtain here analogous results for the central parts of the galactic halo. • Our result is an important compliment to the earlier result. • This confirms possible existence of wormholes in most of the spiral galaxies.
Halo performance on low light level image intensifiers
Cui, Dongxu; Ren, Ling; Chang, Benkang; Shi, Feng; Shi, Jifang; Qian, Yunsheng; Wang, Honggang; Zhang, Junju
To analyze the formation mechanism of the halo on low light level image intensifiers and the influencing factors on the halo size, a halo tester has been designed. Under the illumination between 10-2 lx and 10-4 lx, we use the tester to collect a 0.1922 mm hole image directly with CoolSNAPK4 charge-coupled device (CCD) in a darkroom. The practical measurement result shows that the amplification ratio is 343.4. Then we put the super second and third generation image intensifiers after the hole, and the halo sizes of the hole images on the screens are determined as 0.2388 and 0.5533 mm respectively. The results are helpful to improve the quality of the low light level image intensifiers.
First Attempts at using Active Halo Control at the LHC
Energy Technology Data Exchange (ETDEWEB)
Wagner, Joschka [CERN; Bruce, Roderik [CERN; Garcia Morales, Hector [CERN; Höfle, Wolfgang [CERN; Kotzian, Gerd [CERN; Kwee-Hinzmann, Regina [CERN; Langner, Andy [CERN; Mereghetti, Alessio [CERN; Quaranta, Elena [CERN; Redaelli, Stefano [CERN; Rossi, Adriana [CERN; Salvachua, Belen [CERN; Stancari, Giulio [Fermilab; Tomás, Rogelio [CERN; Valentino, Gianluca [CERN; Valuch, Daniel [CERN
2016-06-01
The beam halo population is a non-negligible factor for the performance of the LHC collimation system and the machine protection. In particular this could become crucial for aiming at stored beam energies of 700 MJ in the High Luminosity (HL-LHC) project, in order to avoid beam dumps caused by orbit jitter and to ensure safety during a crab cavity failure. Therefore several techniques to safely deplete the halo, i.e. active halo control, are under development. In a first attempt a novel way for safe halo depletion was tested with particle narrow-band excitation employing the LHC Transverse Damper (ADT). At an energy of 450 GeV a bunch selective beam tail scraping without affecting the core distribution was attempted. This paper presents the first measurement results, as well as a simple simulation to model the underlying dynamics.
BEAM HALO FORMATION IN HIGH-INTENSITY BEAMS.
Energy Technology Data Exchange (ETDEWEB)
FEDOTOV, A.V.
2005-03-18
Studies of beam halo became unavoidable feature of high-intensity machines where uncontrolled beam loss should be kept to extremely small level. For a well controlled stable beam such a loss is typically associated with the low density halo surrounding beam core. In order to minimize uncontrolled beam loss or improve performance of an accelerator, it is very important to understand what are the sources of halo formation in a specific machine of interest. The dominant mechanisms are, in fact, different in linear accelerators, circular machines or Energy Recovering Linacs (ERL). In this paper, we summarize basic mechanisms of halo formation in high-intensity beams and discuss their application to various types of accelerators of interest, such as linacs, rings and ERL.
Revisiting Scaling Relations for Giant Radio Halos in Galaxy Clusters
Cassano, R.; Ettori, S.; Brunetti, G.; Giacintucci, S.; Pratt, G. W.; Venturi, T.; Kale, R.; Dolag, K.; Markevitch, Maxim L.
2013-01-01
Many galaxy clusters host megaparsec-scale radio halos, generated by ultrarelativistic electrons in the magnetized intracluster medium. Correlations between the synchrotron power of radio halos and the thermal properties of the hosting clusters were established in the last decade, including the connection between the presence of a halo and cluster mergers. The X-ray luminosity and redshift-limited Extended GMRT Radio Halo Survey provides a rich and unique dataset for statistical studies of the halos. We uniformly analyze the radio and X-ray data for the GMRT cluster sample, and use the new Planck Sunyaev-Zel'dovich (SZ) catalog to revisit the correlations between the power of radio halos and the thermal properties of galaxy clusters. We find that the radio power at 1.4 GHz scales with the cluster X-ray (0.1-2.4 keV) luminosity computed within R(sub 500) as P(sub 1.4) approx. L(2.1+/-0.2) - 500). Our bigger and more homogenous sample confirms that the X-ray luminous (L(sub 500) > 5 × 10(exp 44) erg/s)) clusters branch into two populations-radio halos lie on the correlation, while clusters without radio halos have their radio upper limits well below that correlation. This bimodality remains if we excise cool cores from the X-ray luminosities. We also find that P(sub 1.4) scales with the cluster integrated SZ signal within R(sub 500), measured by Planck, as P(sub 1.4) approx. Y(2.05+/-0.28) - 500), in line with previous findings. However, contrary to previous studies that were limited by incompleteness and small sample size, we find that "SZ-luminous" Y(sub 500) > 6×10(exp -5) Mpc(exp 2) clusters show a bimodal behavior for the presence of radio halos, similar to that in the radio-X-ray diagram. Bimodality of both correlations can be traced to clusters dynamics, with radio halos found exclusively in merging clusters. These results confirm the key role of mergers for the origin of giant radio halos, suggesting that they trigger the relativistic particle acceleration.
Testing approximate predictions of displacements of cosmological dark matter halos
Munari, Emiliano; Monaco, Pierluigi; Koda, Jun; Kitaura, Francisco-Shu; Sefusatti, Emiliano; Borgani, Stefano
2017-07-01
We present a test to quantify how well some approximate methods, designed to reproduce the mildly non-linear evolution of perturbations, are able to reproduce the clustering of DM halos once the grouping of particles into halos is defined and kept fixed. The following methods have been considered: Lagrangian Perturbation Theory (LPT) up to third order, Truncated LPT, Augmented LPT, MUSCLE and COLA. The test runs as follows: halos are defined by applying a friends-of-friends (FoF) halo finder to the output of an N-body simulation. The approximate methods are then applied to the same initial conditions of the simulation, producing for all particles displacements from their starting position and velocities. The position and velocity of each halo are computed by averaging over the particles that belong to that halo, according to the FoF halo finder. This procedure allows us to perform a well-posed test of how clustering of the matter density and halo density fields are recovered, without asking to the approximate method an accurate reconstruction of halos. We have considered the results at z=0,0.5,1, and we have analysed power spectrum in real and redshift space, object-by-object difference in position and velocity, density Probability Distribution Function (PDF) and its moments, phase difference of Fourier modes. We find that higher LPT orders are generally able to better reproduce the clustering of halos, while little or no improvement is found for the matter density field when going to 2LPT and 3LPT. Augmentation provides some improvement when coupled with 2LPT, while its effect is limited when coupled with 3LPT. Little improvement is brought by MUSCLE with respect to Augmentation. The more expensive particle-mesh code COLA outperforms all LPT methods, and this is true even for mesh sizes as large as the inter-particle distance. This test sets an upper limit on the ability of these methods to reproduce the clustering of halos, for the cases when these objects are
Testing approximate predictions of displacements of cosmological dark matter halos
Energy Technology Data Exchange (ETDEWEB)
Munari, Emiliano; Monaco, Pierluigi; Borgani, Stefano [Department of Physics, Astronomy Unit, University of Trieste, via Tiepolo 11, I-34143 Trieste (Italy); Koda, Jun [INAF – Osservatorio Astronomico di Brera, via E. Bianchi 46, I-23807 Merate (Italy); Kitaura, Francisco-Shu [Instituto de Astrofísica de Canarias, 38205 San Cristóbal de La Laguna, Santa Cruz de Tenerife (Spain); Sefusatti, Emiliano, E-mail: munari@oats.inaf.it, E-mail: monaco@oats.inaf.it, E-mail: jun.koda@brera.inaf.it, E-mail: fkitaura@iac.es, E-mail: sefusatti@oats.inaf.it, E-mail: borgani@oats.inaf.it [INAF – Osservatorio Astronomico di Trieste, via Tiepolo 11, I-34143 Trieste (Italy)
2017-07-01
We present a test to quantify how well some approximate methods, designed to reproduce the mildly non-linear evolution of perturbations, are able to reproduce the clustering of DM halos once the grouping of particles into halos is defined and kept fixed. The following methods have been considered: Lagrangian Perturbation Theory (LPT) up to third order, Truncated LPT, Augmented LPT, MUSCLE and COLA. The test runs as follows: halos are defined by applying a friends-of-friends (FoF) halo finder to the output of an N-body simulation. The approximate methods are then applied to the same initial conditions of the simulation, producing for all particles displacements from their starting position and velocities. The position and velocity of each halo are computed by averaging over the particles that belong to that halo, according to the FoF halo finder. This procedure allows us to perform a well-posed test of how clustering of the matter density and halo density fields are recovered, without asking to the approximate method an accurate reconstruction of halos. We have considered the results at z =0,0.5,1, and we have analysed power spectrum in real and redshift space, object-by-object difference in position and velocity, density Probability Distribution Function (PDF) and its moments, phase difference of Fourier modes. We find that higher LPT orders are generally able to better reproduce the clustering of halos, while little or no improvement is found for the matter density field when going to 2LPT and 3LPT. Augmentation provides some improvement when coupled with 2LPT, while its effect is limited when coupled with 3LPT. Little improvement is brought by MUSCLE with respect to Augmentation. The more expensive particle-mesh code COLA outperforms all LPT methods, and this is true even for mesh sizes as large as the inter-particle distance. This test sets an upper limit on the ability of these methods to reproduce the clustering of halos, for the cases when these objects are
Analytical shear and flexion of Einasto dark matter haloes
Retana-Montenegro, E.; Frutos-Alfaro, F.; Baes, M.
2012-01-01
N-body simulations predict that dark matter haloes are described by specific density profiles on both galactic- and cluster-sized scales. Weak gravitational lensing through the measurements of their first and second order properties, shear and flexion, is a powerful observational tool for investigating the true shape of these profiles. One of the three-parameter density profiles recently favoured in the description of dark matter haloes is the Einasto profile. We present exact expressions for...
clustep: Initial conditions for galaxy cluster halo simulations
Ruggiero, Rafael
2017-11-01
clustep generates a snapshot in GADGET-2 (ascl:0003.001) format containing a galaxy cluster halo in equilibrium; this snapshot can also be read in RAMSES (ascl:1011.007) using the DICE patch. The halo is made of a dark matter component and a gas component, with the latter representing the ICM. Each of these components follows a Dehnen density profile, with gamma=0 or gamma=1. If gamma=1, then the profile corresponds to a Hernquist profile.
MD 1691: Active halo control using tune ripple at injection
Garcia Morales, Hector; Bruce, Roderik; Redaelli, Stefano; Fitterer, Miriam; Fiascaris, Maria; Nisbet, David; Thiesen, Hugues; Valentino, Gianluca; Xu, Chen; CERN. Geneva. ATS Department
2017-01-01
In this MD we performed halo excitation through tune ripple. This consists in an excitation that introduces new resonance sidebands around the existing resonance lines. In presence of sufficient detuning with amplitude, these sidebands can in principle affect only the dynamics of the halo particles at large amplitudes. Tune ripple was induced through a current modulation of the warm trim quadrupoles in IR7. This is the first time this method is experimentally tested at the LHC.
Integrated Marketing Communications (IMC) Di PT Halo Rumah Bernyanyi
Rismayanti, Rebekka
2016-01-01
: This research aims to describe the effectiveness of Integrated Marketing Communication (IMC) in PT Halo Rumah Bernyanyi which, from the perspective of marketing strategy, could be studied by analyzing the segmentation, targeting, and positioning. Using case-study method with in-depth interview, the result shows that the implementation of IMC at PT Halo Rumah Bernyayi is arranged in one single strategy and tend to neglect the complexities of running multi-brand family karaoke-house. This con...
Integrated Marketing Communications (IMC) di PT Halo Rumah Bernyanyi
Rebekka Rismayanti
2017-01-01
Abstract: This research aims to describe the effectiveness of Integrated Marketing Communication (IMC) in PT Halo Rumah Bernyanyi which, from the perspective of marketing strategy, could be studied by analyzing the segmentation, targeting, and positioning. Using case-study method with in-depth interview, the result shows that the implementation of IMC at PT Halo Rumah Bernyayi is arranged in one single strategy and tend to neglect the complexities of running multi-brand family karaoke-house. ...
Possible existence of wormholes in the galactic halo region
Energy Technology Data Exchange (ETDEWEB)
Rahaman, Farook [Jadavpur University, Department of Mathematics, Kolkata, West Bengal (India); Kuhfittig, P.K.F. [Milwaukee School of Engineering, Department of Mathematics, Milwaukee, WI (United States); Ray, Saibal [Government College of Engineering and Ceramic Technology, Department of Physics, Kolkata, West Bengal (India); Islam, Nasarul [Danga High Madrasah, Department of Mathematics, Kolkata, West Bengal (India)
2014-02-15
Two observational results, the density profile from simulations performed in the ΛCDM scenario and the observed flat galactic rotation curves, are taken as input with the aim of showing that the galactic halo possesses some of the characteristics needed to support traversable wormholes. This result should be sufficient to provide an incentive for scientists to seek observational evidence for wormholes in the galactic halo region. (orig.)
Halo-independent direct detection analyses without mass assumptions
International Nuclear Information System (INIS)
Anderson, Adam J.; Fox, Patrick J.; Kahn, Yonatan; McCullough, Matthew
2015-01-01
Results from direct detection experiments are typically interpreted by employing an assumption about the dark matter velocity distribution, with results presented in the m χ −σ n plane. Recently methods which are independent of the DM halo velocity distribution have been developed which present results in the v min −g-tilde plane, but these in turn require an assumption on the dark matter mass. Here we present an extension of these halo-independent methods for dark matter direct detection which does not require a fiducial choice of the dark matter mass. With a change of variables from v min to nuclear recoil momentum (p R ), the full halo-independent content of an experimental result for any dark matter mass can be condensed into a single plot as a function of a new halo integral variable, which we call h-til-tilde(p R ). The entire family of conventional halo-independent g-tilde(v min ) plots for all DM masses are directly found from the single h-tilde(p R ) plot through a simple rescaling of axes. By considering results in h-tilde(p R ) space, one can determine if two experiments are inconsistent for all masses and all physically possible halos, or for what range of dark matter masses the results are inconsistent for all halos, without the necessity of multiple g-tilde(v min ) plots for different DM masses. We conduct a sample analysis comparing the CDMS II Si events to the null results from LUX, XENON10, and SuperCDMS using our method and discuss how the results can be strengthened by imposing the physically reasonable requirement of a finite halo escape velocity
Halo and space charge issues in the SNS Ring
International Nuclear Information System (INIS)
Fedotov, A.V.; Abell, D.T.; Beebe-Wang, J.; Lee, Y.Y.; Malitsky, N.; Wei, J.; Gluckstern, R.L.
2000-01-01
The latest designs for high-intensity proton rings require minimizing beam-induced radioactivation of the vacuum chamber. Although the tune depression in the ring is much smaller than in high-intensity linacs, space-charge contributions to halo formation and, hence, beam loss may be significant. This paper reviews our current understanding of halo formation issues for the Spallation Neutron Source (SNS) accumulator ring
Dissipative dark matter halos: The steady state solution
Foot, R.
2018-02-01
Dissipative dark matter, where dark matter particle properties closely resemble familiar baryonic matter, is considered. Mirror dark matter, which arises from an isomorphic hidden sector, is a specific and theoretically constrained scenario. Other possibilities include models with more generic hidden sectors that contain massless dark photons [unbroken U (1 ) gauge interactions]. Such dark matter not only features dissipative cooling processes but also is assumed to have nontrivial heating sourced by ordinary supernovae (facilitated by the kinetic mixing interaction). The dynamics of dissipative dark matter halos around rotationally supported galaxies, influenced by heating as well as cooling processes, can be modeled by fluid equations. For a sufficiently isolated galaxy with a stable star formation rate, the dissipative dark matter halos are expected to evolve to a steady state configuration which is in hydrostatic equilibrium and where heating and cooling rates locally balance. Here, we take into account the major cooling and heating processes, and numerically solve for the steady state solution under the assumptions of spherical symmetry, negligible dark magnetic fields, and that supernova sourced energy is transported to the halo via dark radiation. For the parameters considered, and assumptions made, we were unable to find a physically realistic solution for the constrained case of mirror dark matter halos. Halo cooling generally exceeds heating at realistic halo mass densities. This problem can be rectified in more generic dissipative dark matter models, and we discuss a specific example in some detail.
Cold dark matter. 1: The formation of dark halos
Gelb, James M.; Bertschinger, Edmund
1994-01-01
We use numerical simulations of critically closed cold dark matter (CDM) models to study the effects of numerical resolution on observable quantities. We study simulations with up to 256(exp 3) particles using the particle-mesh (PM) method and with up to 144(exp 3) particles using the adaptive particle-particle-mesh (P3M) method. Comparisons of galaxy halo distributions are made among the various simulations. We also compare distributions with observations, and we explore methods for identifying halos, including a new algorithm that finds all particles within closed contours of the smoothed density field surrounding a peak. The simulated halos show more substructure than predicted by the Press-Schechter theory. We are able to rule out all omega = 1 CDM models for linear amplitude sigma(sub 8) greater than or approximately = 0.5 because the simulations produce too many massive halos compared with the observations. The simulations also produce too many low-mass halos. The distribution of halos characterized by their circular velocities for the P3M simulations is in reasonable agreement with the observations for 150 km/s less than or = V(sub circ) less than or = 350 km/s.
Unmixing the Galactic Halo with RR Lyrae tagging
Belokurov, V.; Deason, A. J.; Koposov, S. E.; Catelan, M.; Erkal, D.; Drake, A. J.; Evans, N. W.
2018-03-01
We show that tagging RR Lyrae stars according to their location in the period-amplitude diagram can be used to shed light on the genesis of the Galactic stellar halo. The mixture of RR Lyrae of ab type, separated into classes along the lines suggested by Oosterhoff, displays a strong and coherent evolution with Galactocentric radius. The change in the RR Lyrae composition appears to coincide with the break in the halo's radial density profile at ˜25 kpc. Using simple models of the stellar halo, we establish that at least three different types of accretion events are necessary to explain the observed RRab behavior. Given that there exists a correlation between the RRab class fraction and the total stellar content of a dwarf satellite, we hypothesize that the field halo RRab composition is controlled by the mass of the progenitor contributing the bulk of the stellar debris at the given radius. This idea is tested against a suite of cosmological zoom-in simulations of Milky Way-like stellar halo formation. Finally, we study some of the most prominent stellar streams in the Milky Way halo and demonstrate that their RRab class fractions follow the trends established previously.
Stellar-to-halo mass relation of cluster galaxies
International Nuclear Information System (INIS)
Niemiec, Anna; Jullo, Eric; Limousin, Marceau; Giocoli, Carlo
2017-01-01
In the formation of galaxy groups and clusters, the dark matter haloes containing satellite galaxies are expected to be tidally stripped in gravitational interactions with the host. We use galaxy-galaxy weak lensing to measure the average mass of dark matter haloes of satellite galaxies as a function of projected distance to the centre of the host, since stripping is expected to be greater for satellites closer to the centre of the cluster. We further classify the satellites according to their stellar mass: assuming that the stellar component of the galaxy is less disrupted by tidal stripping, stellar mass can be used as a proxy of the infall mass. We study the stellar to halo mass relation of satellites as a function of the cluster-centric distance to measure tidal stripping. We use the shear catalogues of the DES science veri cation archive, the CFHTLenS and the CFHT Stripe 82 surveys, and we select satellites from the redMaPPer catalogue of clusters. For galaxies located in the outskirts of clusters, we nd a stellar to halo mass relation in good agreement with the theoretical expectations from Moster, Naab & White (2013) for central galaxies. In the centre of the cluster, we nd that this relation is shifted to smaller halo mass for a given stellar mass. We interpret this nding as further evidence for tidal stripping of dark matter haloes in high density environments.
The CMS Beam Halo Monitor Electronics
AUTHOR|(CDS)2080684; Fabbri, F.; Grassi, T.; Hughes, E.; Mans, J.; Montanari, A.; Orfanelli, S.; Rusack, R.; Torromeo, G.; Stickland, D.P.; Stifter, K.
2016-01-01
The CMS Beam Halo Monitor has been successfully installed in the CMS cavern in LHC Long Shutdown 1 for measuring the machine induced background for LHC Run II. The system is based on 40 detector units composed of synthetic quartz Cherenkov radiators coupled to fast photomultiplier tubes. The readout electronics chain uses many components developed for the Phase 1 upgrade to the CMS Hadronic Calorimeter electronics, with dedicated firmware and readout adapted to the beam monitoring requirements. The PMT signal is digitized by a charge integrating ASIC (QIE10), providing both the signal rise time, with few ns resolution, and the charge integrated over one bunch crossing. The backend electronics uses microTCA technology and receives data via a high-speed 5 Gbps asynchronous link. It records histograms with sub-bunch crossing timing resolution and is readout by IPbus using the newly designed CMS data acquisition for non-event based data. The data is processed in real time and published to CMS and the LHC, providi...
The CMS Beam Halo Monitor electronics
International Nuclear Information System (INIS)
Tosi, N.; Fabbri, F.; Montanari, A.; Torromeo, G.; Dabrowski, A.E.; Orfanelli, S.; Grassi, T.; Hughes, E.; Mans, J.; Rusack, R.; Stifter, K.; Stickland, D.P.
2016-01-01
The CMS Beam Halo Monitor has been successfully installed in the CMS cavern in LHC Long Shutdown 1 for measuring the machine induced background for LHC Run II. The system is based on 40 detector units composed of synthetic quartz Cherenkov radiators coupled to fast photomultiplier tubes (PMTs). The readout electronics chain uses many components developed for the Phase 1 upgrade to the CMS Hadronic Calorimeter electronics, with dedicated firmware and readout adapted to the beam monitoring requirements. The PMT signal is digitized by a charge integrating ASIC (QIE10), providing both the signal rise time, with few nanosecond resolution, and the charge integrated over one bunch crossing. The backend electronics uses microTCA technology and receives data via a high-speed 5 Gbps asynchronous link. It records histograms with sub-bunch crossing timing resolution and is read out via IPbus using the newly designed CMS data acquisition for non-event based data. The data is processed in real time and published to CMS and the LHC, providing online feedback on the beam quality. A dedicated calibration monitoring system has been designed to generate short triggered pulses of light to monitor the efficiency of the system. The electronics has been in operation since the first LHC beams of Run II and has served as the first demonstration of the new QIE10, Microsemi Igloo2 FPGA and high-speed 5 Gbps link with LHC data
Performance of the CMS Beam Halo Monitor
CMS Collaboration
2015-01-01
The CMS Beam Halo Monitor has been successfully installed in the CMS cavern in LHC Long Shutdown 1 for measuring the machine induced background for LHC Run II. The system is based on 40 detector units composed of radiation hard synthetic quartz Cherenkov radiators coupled to fast photomultiplier tubes for a direction sensitive measurement. The readout electronics chain uses many components developed for the Phase 1 upgrade to the CMS Hadronic Calorimeter electronics, with dedicated firmware and readout adapted to the beam monitoring requirements. The PMT signal is digitized by a charge integrating ASIC (QIE10), providing both the signal rise time, with few ns resolution, and the charge integrated over one bunch crossing. The backend electronics uses microTCA technology and received data via a high-speed 5 Gbps asynchronous link. It records histograms with sub-bunch crossing timing resolution and is readout by IPbus using the newly designed CMS data acquisition for non-event based data. The data is processed i...
Design of CMS Beam Halo Monitor system
AUTHOR|(CDS)2078842
2015-01-01
A fast and directional monitoring system for the CMS experiment is designed to provide an online, bunch-by-bunch measurement of beam background induced by beam halo interactions, separately for each beam. The background detection is based on Cherenkov radiation produced in synthetic fused silica read out by a fast, UV sensitive photomultiplier tube. Twenty detector units per end will be azimuthally distributed around the rotating shielding of CMS, covering ~408 cm2 at 20.6m from the interaction point, at a radius of ~180 cm. The directional and fast response of the system allows the discrimination of the background particles from the dominant flux in the cavern induced by pp collision debris, produced within the 25 ns bunch spacing. A robust multi-layered shielding will enclose each detector unit to protect the photomultiplier tube from the magnetic field and to eliminate the occupancy from low energy particles. The design of the front-end units is validated by experimental results. An overview of the new sy...
Halo structure of strange particles in nuclei
International Nuclear Information System (INIS)
Akaishi, Yoshinori; Yamazaki, Toshimitsu.
1997-01-01
Some characteristic behaviors of hyperons in nuclei which have recently been revealed experimentally and theoretically are discussed with the emphasis on the repulsive part of the hyperon-nucleus interaction. The observed Σ 4 He nucleus is a bound state with J π = 0 + and T ≅ 1/2. Its nucleus-Σ potential derived from a realistic ΣN interaction is characterized by inner repulsion and a strong Lane term, which play important roles in forming the Σ-hypernuclear bound state. In 208 Pb a typical Coulomb-assisted bound state is expected, where Σ is trapped in the surface region by the nucleus-Σ potential with the aid of Coulomb and centrifugal interactions. In the double-strangeness (S=-2) sector, there is a possibility that the lightest double-Λ hypernucleus ΛΛ 4 H is abundantly populated by stopping Ξ - on 4 He. Its formation branching amounts to about 15%. A stopped Ξ - on 9 Be will also produce efficiently a variety of double-Λ hyperfragments. Discrete spectra of weak-decay pions from the fragments will provide a means of mass spectroscopy of double-Λ hypernuclei. In the S=-2 five-body system an excited state Ξ 5 H is predicted to appear with 'strangeness halo' and the ground state ΛΛ 5 H with almost pure ΛΛ component. (author)
The CMS Beam Halo Monitor electronics
Tosi, N.; Dabrowski, A. E.; Fabbri, F.; Grassi, T.; Hughes, E.; Mans, J.; Montanari, A.; Orfanelli, S.; Rusack, R.; Torromeo, G.; Stickland, D. P.; Stifter, K.
2016-02-01
The CMS Beam Halo Monitor has been successfully installed in the CMS cavern in LHC Long Shutdown 1 for measuring the machine induced background for LHC Run II. The system is based on 40 detector units composed of synthetic quartz Cherenkov radiators coupled to fast photomultiplier tubes (PMTs). The readout electronics chain uses many components developed for the Phase 1 upgrade to the CMS Hadronic Calorimeter electronics, with dedicated firmware and readout adapted to the beam monitoring requirements. The PMT signal is digitized by a charge integrating ASIC (QIE10), providing both the signal rise time, with few nanosecond resolution, and the charge integrated over one bunch crossing. The backend electronics uses microTCA technology and receives data via a high-speed 5 Gbps asynchronous link. It records histograms with sub-bunch crossing timing resolution and is read out via IPbus using the newly designed CMS data acquisition for non-event based data. The data is processed in real time and published to CMS and the LHC, providing online feedback on the beam quality. A dedicated calibration monitoring system has been designed to generate short triggered pulses of light to monitor the efficiency of the system. The electronics has been in operation since the first LHC beams of Run II and has served as the first demonstration of the new QIE10, Microsemi Igloo2 FPGA and high-speed 5 Gbps link with LHC data.
Beam halo collimation in heavy ion synchrotrons
Directory of Open Access Journals (Sweden)
I. Strašík
2015-08-01
Full Text Available This paper presents a systematic study of the halo collimation of ion beams from proton up to uranium in synchrotrons. The projected Facility for Antiproton and Ion Research synchrotron SIS100 is used as a reference case. The concepts are separated into fully stripped (e.g., ^{238}U^{92+} and partially stripped (e.g., ^{238}U^{28+} ion collimation. An application of the two-stage betatron collimation system, well established for proton accelerators, is intended also for fully stripped ions. The two-stage system consists of a primary collimator (a scattering foil and secondary collimators (bulky absorbers. Interaction of the particles with the primary collimator (scattering, momentum losses, and nuclear interactions was simulated by using fluka. Particle-tracking simulations were performed by using mad-x. Finally, the dependence of the collimation efficiency on the primary ion species was determined. The influence of the collimation system adjustment, lattice imperfections, and beam parameters was estimated. The concept for the collimation of partially stripped ions employs a thin stripping foil in order to change their charge state. These ions are subsequently deflected towards a dump location using a beam optical element. The charge state distribution after the stripping foil was obtained from global. The ions were tracked by using mad–x.
Flickering AGN can explain the strong circumgalactic O VI observed by COS-Halos
Oppenheimer, Benjamin D.; Segers, Marijke; Schaye, Joop; Richings, Alexander J.; Crain, Robert A.
2018-03-01
Proximity zone fossils (PZFs) are ionization signatures around recently active galactic nuclei (AGNs) where metal species in the circumgalactic medium remain overionized after the AGNs have shut off due to their long recombination time scales. We explore cosmological zoom hydrodynamic simulations, using the EAGLE (Evolution and Assembly of GaLaxies and their Environments) model paired with a non-equilibrium ionization and cooling module including time-variable AGN radiation to model PZFs around star-forming disc galaxies in the z ˜ 0.2 Universe. Previous simulations typically underestimated the O VI content of galactic haloes, but we show that plausible PZF models increase O VI column densities by 2 - 3 × to achieve the levels observed around COS-Halos star-forming galaxies out to 150 kpc. Models with AGN bolometric luminosities ≳ 1043.6erg s- 1, duty cycle fractions ≲ 10 per cent, and AGN lifetimes ≲ 106 yr are the most promising, because their supermassive black holes grow at the cosmologically expected rate and they mostly appear as inactive AGN, consistent with COS-Halos. The central requirement is that the typical star-forming galaxy hosted an active AGN within a time-scale comparable to the recombination time of a high metal ion, which for circumgalactic O VI is ≈107 yr. H I, by contrast, returns to equilibrium much more rapidly due to its low neutral fraction and does not show a significant PZF effect. O VI absorption features originating from PZFs appear narrow, indicating photoionization, and are often well aligned with lower metal ion species. PZFs are highly likely to affect the physical interpretation of circumgalactic high ionization metal lines if, as expected, normal galaxies host flickering AGN.
Directory of Open Access Journals (Sweden)
Tyler M. M. Stack
2017-05-01
Full Text Available 5-Halo-2-hydroxymuconates and 5-halo-2-hydroxy-2,4-pentadienoates are stable dienols that are proposed intermediates in bacterial meta-fission pathways for the degradation of halogenated aromatic compounds. The presence of the halogen raises questions about how the bulk and/or electronegativity of these substrates would affect enzyme catalysis or whether some pathway enzymes have evolved to accommodate it. To address these questions, 5-halo-2-hydroxymuconates and 5-halo-2-hydroxy-2,4-pentadienoates (5-halo = Cl, Br, F were synthesized and a preliminary analysis of their enzymatic properties carried out. In aqueous buffer, 5-halo-2-hydroxy-2,4-pentadienoates rapidly equilibrate with the β,γ-unsaturated ketones. For the 5-chloro and 5-bromo derivatives, a slower conversion to the α,β-isomers follows. There is no detectable formation of the α,β-isomer for the 5-fluoro derivative. Kinetic parameters were also obtained for both sets of compounds in the presence of 4-oxalocrotonate tautomerase (4-OT from Pseudomonas putida mt-2 and Leptothrix cholodnii SP-6. For 5-halo-2-hydroxymuconates, there are no major differences in the kinetic parameters for the two enzymes (following the formation of the β,γ-unsaturated ketones. In contrast, the L. cholodnii SP-6 4-OT is ≈10-fold less efficient than the P. putida mt-2 4-OT in the formation of the β,γ-unsaturated ketones and the α,β-isomers from the 5-halo-2-hydroxy-2,4-pentadienoates. The implications of these findings are discussed. The availability of these compounds will facilitate future studies of the haloaromatic catabolic pathways.
The diversity and similarity of simulated cold dark matter haloes
Navarro, Julio F.; Ludlow, Aaron; Springel, Volker; Wang, Jie; Vogelsberger, Mark; White, Simon D. M.; Jenkins, Adrian; Frenk, Carlos S.; Helmi, Amina
2010-02-01
We study the mass, velocity dispersion and anisotropy profiles of Λ cold dark matter (ΛCDM) haloes using a suite of N-body simulations of unprecedented numerical resolution. The Aquarius Project follows the formation of six different galaxy-sized haloes simulated several times at varying numerical resolution, allowing numerical convergence to be assessed directly. The highest resolution simulation represents a single dark matter halo using 4.4 billion particles, of which 1.1 billion end up within the virial radius. Our analysis confirms a number of results claimed by earlier work, and clarifies a few issues where conflicting claims may be found in the recent literature. The mass profile of ΛCDM haloes deviates slightly but systematically from the form proposed by Navarro, Frenk & White. The spherically averaged density profile becomes progressively shallower inwards and, at the innermost resolved radius, the logarithmic slope is γ ≡ - d ln ρ/d ln r universal: different haloes cannot, in general, be rescaled to look identical. Departures from similarity are also seen in velocity dispersion profiles and correlate with those in density profiles so as to preserve a power-law form for the spherically averaged pseudo-phase-space density, ρ/σ3 ~ r-1.875. The index here is identical to that of Bertschinger's similarity solution for self-similar infall on to a point mass from an otherwise uniform Einstein-de Sitter universe. The origin of this striking behaviour is unclear, but its robustness suggests that it reflects a fundamental structural property of ΛCDM haloes. Our conclusions are reliable down to radii below 0.4 per cent of the virial radius, providing well-defined predictions for halo structure when baryonic effects are neglected, and thus an instructive theoretical template against which the modifications induced by the baryonic components of real galaxies can be judged.
A mechanical device for enhancing the halo density in the TMX-U tandem mirror
International Nuclear Information System (INIS)
Hsu, W.L.; Barr, W.L.; Simonen, T.C.
1984-01-01
The halo recycler, a mechanical device similar to pump limiters used in tokamaks, is studied as a means of enhancing the halo plasma density in the Tandem Mirror Experiment Upgrade (TMX-U). The recycler structure consists of an annular chamber at each end of the tandem mirror device where the halo plasma is collected. The halo plasma density is increased by recycling the halo ions as they are neutralized by the collector plate. With sufficient power fed into the halo electrons, the recycler can sustain an upstream electron temperature of 30 eV for effective halo shielding while maintaining a low temperature of 5 eV near the collector plate to reduce sputtering. A power flow model has shown that the required power for heating the halo is low enough to make the halo recycler a practical concept. (orig.)
The Angular Momentum of Baryons and Dark Matter Halos Revisited
Kimm, Taysun; Devriendt, Julien; Slyz, Adrianne; Pichon, Christophe; Kassin, Susan A.; Dubois, Yohan
2011-01-01
Recent theoretical studies have shown that galaxies at high redshift are fed by cold, dense gas filaments, suggesting angular momentum transport by gas differs from that by dark matter. Revisiting this issue using high-resolution cosmological hydrodynamics simulations with adaptive-mesh refinement (AMR), we find that at the time of accretion, gas and dark matter do carry a similar amount of specific angular momentum, but that it is systematically higher than that of the dark matter halo as a whole. At high redshift, freshly accreted gas rapidly streams into the central region of the halo, directly depositing this large amount of angular momentum within a sphere of radius r = 0.1R(sub vir). In contrast, dark matter particles pass through the central region unscathed, and a fraction of them ends up populating the outer regions of the halo (r/R(sub vir) > 0.1), redistributing angular momentum in the process. As a result, large-scale motions of the cosmic web have to be considered as the origin of gas angular momentum rather than its virialised dark matter halo host. This generic result holds for halos of all masses at all redshifts, as radiative cooling ensures that a significant fraction of baryons remain trapped at the centre of the halos. Despite this injection of angular momentum enriched gas, we predict an amount for stellar discs which is in fair agreement with observations at z=0. This arises because the total specific angular momentum of the baryons (gas and stars) remains close to that of dark matter halos. Indeed, our simulations indicate that any differential loss of angular momentum amplitude between the two components is minor even though dark matter halos continuously lose between half and two-thirds of their specific angular momentum modulus as they evolve. In light of our results, a substantial revision of the standard theory of disc formation seems to be required. We propose a new scenario where gas efficiently carries the angular momentum generated
Halo-Independent Direct Detection Analyses Without Mass Assumptions
Anderson, Adam J.; Kahn, Yonatan; McCullough, Matthew
2015-10-06
Results from direct detection experiments are typically interpreted by employing an assumption about the dark matter velocity distribution, with results presented in the $m_\\chi-\\sigma_n$ plane. Recently methods which are independent of the DM halo velocity distribution have been developed which present results in the $v_{min}-\\tilde{g}$ plane, but these in turn require an assumption on the dark matter mass. Here we present an extension of these halo-independent methods for dark matter direct detection which does not require a fiducial choice of the dark matter mass. With a change of variables from $v_{min}$ to nuclear recoil momentum ($p_R$), the full halo-independent content of an experimental result for any dark matter mass can be condensed into a single plot as a function of a new halo integral variable, which we call $\\tilde{h}(p_R)$. The entire family of conventional halo-independent $\\tilde{g}(v_{min})$ plots for all DM masses are directly found from the single $\\tilde{h}(p_R)$ plot through a simple re...
HOT GAS HALOS IN EARLY-TYPE FIELD GALAXIES
International Nuclear Information System (INIS)
Mulchaey, John S.; Jeltema, Tesla E.
2010-01-01
We use Chandra and XMM-Newton to study the hot gas content in a sample of field early-type galaxies. We find that the L X -L K relationship is steeper for field galaxies than for comparable galaxies in groups and clusters. The low hot gas content of field galaxies with L K ∼ * suggests that internal processes such as supernovae-driven winds or active galactic nucleus feedback expel hot gas from low-mass galaxies. Such mechanisms may be less effective in groups and clusters where the presence of an intragroup or intracluster medium can confine outflowing material. In addition, galaxies in groups and clusters may be able to accrete gas from the ambient medium. While there is a population of L K ∼ * galaxies in groups and clusters that retain hot gas halos, some galaxies in these rich environments, including brighter galaxies, are largely devoid of hot gas. In these cases, the hot gas halos have likely been removed via ram pressure stripping. This suggests a very complex interplay between the intragroup/intracluster medium and hot gas halos of galaxies in rich environments, with the ambient medium helping to confine or even enhance the halos in some cases and acting to remove gas in others. In contrast, the hot gas content of more isolated galaxies is largely a function of the mass of the galaxy, with more massive galaxies able to maintain their halos, while in lower mass systems the hot gas escapes in outflowing winds.
The Structure and Evolution of Cold Dark Matter Halos
Diemand, Jürg; Moore, Ben
2011-02-01
In the standard cosmological model a mysterious cold dark matter (CDM) component dominates the formation of structures. Numerical studies of the f ormation of CDM halos have produced several robust results that allow unique tests of the hierarchical clustering paradigm. Universal properties of halos, including their mass profiles and substructure properties are roughly consistent with observational data from the scales of dwarf galaxies to galaxy clusters. Resolving the fine grained structure of halos has enabled us to make predictions for ongoing and planned direct and indirect dark matter detection experiments. While simulations of pure CDM halos are now very accurate and in good agreement (recently claimed discrepancies are addressed in detail in this review), we are still unable to make robust, quantitative predictions about galaxy formation and about how the dark matter distribution changes in the process. Whilst discrepancies between observations and simulations have been the subject of much debate in the literature, galaxy formation and evolution needs to be understood in more detail in order to fully test the CDM paradigm. Whatever the true nature of the dark matter particle is, its clustering properties must not be too different from a cold neutralino like particle to maintain all the successes of the model in matching large scale structure data and the global properties of halos which are mostly in good agreement with observations.
Two distinct halo populations in the solar neighborhood. III
DEFF Research Database (Denmark)
Schuster, W. J.; Moreno, E.; Nissen, Poul Erik
2012-01-01
Context. In Papers I and II of this series, we have found clear indications of the existence of two distinct populations of stars in the solar neighborhood belonging to the metal-rich end of the halo metallicity distribution function. Based on high-resolution, high S/N spectra, it is possible...... to distinguish between “high-alpha” and “low-alpha” components using the [α/Fe] versus [Fe/H] diagram. Aims. Precise relative ages and orbital parameters are determined for 67 halo and 16 thick-disk stars having metallicities in the range −1.4 .... The “high-alpha” halo stars have ages 2–3 Gyr larger than the “low-alpha” ones, with some probability that the thick-disk stars have ages intermediate between these two halo components. The orbital parameters show very distinct differences between the “high-alpha” and “low-alpha” halo stars. The “low...
Early halo immobilization of displaced traumatic spondylolisthesis of the axis.
Vaccaro, Alexander R; Madigan, Luke; Bauerle, Wayne B; Blescia, Adam; Cotler, Jerome M
2002-10-15
A retrospective study evaluating early halo immobilization of Types II and IIA hangman's fractures. To determine the treatment efficacy of early halo immobilization of Type II and IIA hangman's fractures. The treatment of hangman's fractures with traction reduction is well established, but the time required in traction before the institution of halo-vest immobilization is controversial. A retrospective review of all patients admitted to a level one spinal cord injury center between 1986 and 1999 with either a Type II or IIA hangman's fracture was performed. Initial and final radiographs were measured for translation and angulation. The need for reapplication of traction was also recorded. There were a total of 27 Type II and four Type IIA fractures. Of the Type II fractures, 21 went onto union after early halo immobilization. Six patients required reapplication of traction reduction because of fracture displacement. The Type IIA fractures all progressed to union. The discerning factor between the failure group and the success group was the initial degree of angulation on lateral cervical radiography. The patients requiring reapplication of traction had an initial fracture angulation of 12 degrees or greater. Early halo immobilization after traction reduction of Type II and IIA hangman's fractures is an effective method of management. Type II fractures with an angulation of greater than or equal to 12 degrees may require an extended period of traction to ensure adequate long-term fracture alignment.
HALOGEN: a tool for fast generation of mock halo catalogues
Avila, Santiago; Murray, Steven G.; Knebe, Alexander; Power, Chris; Robotham, Aaron S. G.; Garcia-Bellido, Juan
2015-06-01
We present a simple method of generating approximate synthetic halo catalogues: HALOGEN. This method uses a combination of second-order Lagrangian Perturbation Theory (2LPT) in order to generate the large-scale matter distribution, analytical mass functions to generate halo masses, and a single-parameter stochastic model for halo bias to position haloes. HALOGEN represents a simplification of similar recently published methods. Our method is constrained to recover the two-point function at intermediate (10 h-1 Mpc space distortions) with results from N-body simulations to determine the validity of our method for different purposes. One of the benefits of HALOGEN is its flexibility, and we demonstrate this by showing how it can be adapted to varying cosmologies and simulation specifications. A driving motivation for the development of such approximate schemes is the need to compute covariance matrices and study the systematic errors for large galaxy surveys, which requires thousands of simulated realizations. We discuss the applicability of our method in this context, and conclude that it is well suited to mass production of appropriate halo catalogues. The code is publicly available at https://github.com/savila/halogen.
Deep brain transcranial magnetic stimulation using variable "Halo coil" system
Meng, Y.; Hadimani, R. L.; Crowther, L. J.; Xu, Z.; Qu, J.; Jiles, D. C.
2015-05-01
Transcranial Magnetic Stimulation has the potential to treat various neurological disorders non-invasively and safely. The "Halo coil" configuration can stimulate deeper regions of the brain with lower surface to deep-brain field ratio compared to other coil configurations. The existing "Halo coil" configuration is fixed and is limited in varying the site of stimulation in the brain. We have developed a new system based on the current "Halo coil" design along with a graphical user interface system that enables the larger coil to rotate along the transverse plane. The new system can also enable vertical movement of larger coil. Thus, this adjustable "Halo coil" configuration can stimulate different regions of the brain by adjusting the position and orientation of the larger coil on the head. We have calculated magnetic and electric fields inside a MRI-derived heterogeneous head model for various positions and orientations of the coil. We have also investigated the mechanical and thermal stability of the adjustable "Halo coil" configuration for various positions and orientations of the coil to ensure safe operation of the system.
THE BLACK HOLE–DARK MATTER HALO CONNECTION
International Nuclear Information System (INIS)
Sabra, Bassem M.; Saliba, Charbel; Akl, Maya Abi; Chahine, Gilbert
2015-01-01
We explore the connection between the central supermassive black holes (SMBH) in galaxies and the dark matter halo through the relation between the masses of the SMBHs and the maximum circular velocities of the host galaxies, as well as the relationship between stellar velocity dispersion of the spheroidal component and the circular velocity. Our assumption here is that the circular velocity is a proxy for the mass of the dark matter halo. We rely on a heterogeneous sample containing galaxies of all types. The only requirement is that the galaxy has a direct measurement of the mass of its SMBH and a direct measurement of its circular velocity and its velocity dispersion. Previous studies have analyzed the connection between the SMBH and dark matter halo through the relationship between the circular velocity and the bulge velocity dispersion, with the assumption that the bulge velocity dispersion stands in for the mass of the SMBH, via the well-established SMBH mass–bulge velocity dispersion relation. Using intermediate relations may be misleading when one is studying them to decipher the active ingredients of galaxy formation and evolution. We believe that our approach will provide a more direct probe of the SMBH and the dark matter halo connection. We find that the correlation between the mass of SMBHs and the circular velocities of the host galaxies is extremely weak, leading us to state the dark matter halo may not play a major role in regulating the black hole growth in the present Universe
THE BLACK HOLE–DARK MATTER HALO CONNECTION
Energy Technology Data Exchange (ETDEWEB)
Sabra, Bassem M. [Department of Physics and Astronomy, Notre Dame University-Louaize, P.O. Box 72 Zouk Mikael, Zouk Mosbeh (Lebanon); Saliba, Charbel; Akl, Maya Abi; Chahine, Gilbert, E-mail: bsabra@ndu.edu.lb [Department of Physics, Lebanese University II, Fanar (Lebanon)
2015-04-10
We explore the connection between the central supermassive black holes (SMBH) in galaxies and the dark matter halo through the relation between the masses of the SMBHs and the maximum circular velocities of the host galaxies, as well as the relationship between stellar velocity dispersion of the spheroidal component and the circular velocity. Our assumption here is that the circular velocity is a proxy for the mass of the dark matter halo. We rely on a heterogeneous sample containing galaxies of all types. The only requirement is that the galaxy has a direct measurement of the mass of its SMBH and a direct measurement of its circular velocity and its velocity dispersion. Previous studies have analyzed the connection between the SMBH and dark matter halo through the relationship between the circular velocity and the bulge velocity dispersion, with the assumption that the bulge velocity dispersion stands in for the mass of the SMBH, via the well-established SMBH mass–bulge velocity dispersion relation. Using intermediate relations may be misleading when one is studying them to decipher the active ingredients of galaxy formation and evolution. We believe that our approach will provide a more direct probe of the SMBH and the dark matter halo connection. We find that the correlation between the mass of SMBHs and the circular velocities of the host galaxies is extremely weak, leading us to state the dark matter halo may not play a major role in regulating the black hole growth in the present Universe.
A ROBUST MEASURE OF DARK MATTER HALO ELLIPTICITIES
Energy Technology Data Exchange (ETDEWEB)
Evslin, Jarah [Institute of Modern Physics, CAS, NanChangLu 509, Lanzhou 730000 (China)
2016-08-01
In simulations of the standard cosmological model (ΛCDM), dark matter halos are aspherical. However, so far the asphericity of an individual galaxy’s halo has never been robustly established. We use the Jeans equations to define a quantity that robustly characterizes a deviation from rotational symmetry. This quantity is essentially the gravitational torque and it roughly provides the ellipticity projected along the line of sight. We show that the Thirty Meter Telescope (TMT), with a single epoch of observations combined with those of the Gaia Space Telescope , can distinguish the ΛCDM value of the torque from zero for each Sculptor-like dwarf galaxy with a confidence between 0 and 5 σ , depending on the orientation of each halo. With two epochs of observations, TMT will achieve a 5 σ discovery of torque and thus asphericity for most such galaxies, thus providing a new and powerful test of the ΛCDM model.
Properties of the ISM - Gas in the halo
Savage, Blair D.
1990-01-01
The properties of interstellar gas in the galactic halo are reviewed. Halo gas is found to have a wide range of physical conditions with temperatures ranging from less than 170 K to more than 200,000 K. The gas extending away from the plane of the Milky Way has density scale heights ranging from less than 300 pc for certain species in the neutral medium to approximately 3000 pc for the most highly ionized gas. The complex kinematical characteristics of the gas provides important clues about its origin. The gas phase elemental abundances in the neutral halo gas are closer to solar than is found for the highly depleted gas of the Milky Way disk. The possible origin of gas at large distances away from the galactic plane is discussed.
Axionic dark matter signatures in various halo models
Energy Technology Data Exchange (ETDEWEB)
Vergados, J.D., E-mail: vergados@uoi.gr [Center for Axion and Precision Physics Research, Institute for Basic Science (IBS), Daejeon 34141 (Korea, Republic of); Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141 (Korea, Republic of); ARC Centre of Excellence in Particle Physics at the Terascale and Centre for the Subatomic Structure of Matter (CSSM), University of Adelaide, Adelaide SA 5005 (Australia); Semertzidis, Y.K. [Center for Axion and Precision Physics Research, Institute for Basic Science (IBS), Daejeon 34141 (Korea, Republic of); Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141 (Korea, Republic of)
2017-02-15
In the present work we study possible signatures in the Axion Dark Matter searches. We focus on the dependence of the expected width in resonant cavities for various popular halo models, leading to standard velocity distributions, e.g. Maxwell–Boltzmann, as well as phase-mixed and non-virialized axionic dark matter (flows, caustic rings). We study, in particular, the time dependence of the resonance width (modulation) arising from such models. We find that the difference between the maximum (in June) and the minimum (in December) can vary by about 10% in the case of standard halos. In the case of mixed phase halos the variation is a bit bigger and for caustic rings the maximum is expected to occur a bit later. Experimentally such a modulation is observable with present technology.
Particle ejection during mergers of dark matter halos
Energy Technology Data Exchange (ETDEWEB)
Carucci, Isabella P.; Sparre, Martin; Hansen, Steen H. [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, Copenhagen, 2100 Denmark (Denmark); Joyce, Michael, E-mail: carucci@dark-cosmology.dk, E-mail: sparre@dark-cosmology.dk, E-mail: hansen@dark-cosmology.dk, E-mail: joyce@lpnhe.in2p3.fr [Laboratoire de Physique Nucléaire et Hautes Énergies, Université Pierre et Marie Curie - Paris 6, CNRS IN2P3 UMR 7585, 4 Place Jussieu, Paris Cedex 05, 75752 France (France)
2014-06-01
Dark matter halos are built from accretion and merging. During merging some of the dark matter particles may be ejected with velocities higher than the escape velocity. We use both N-body simulations and single-particle smooth-field simulations to demonstrate that rapid changes to the mean field potential are responsible for such ejection, and in particular that dynamical friction plays no significant role in it. Studying a range of minor mergers, we find that typically between 5–15% of the particles from the smaller of the two merging structures are ejected. We also find that the ejected particles originate essentially from the small halo, and more specifically are particles in the small halo which pass later through the region in which the merging occurs.
Reactions of Proton Halo Nuclei in a Relativistic Optical Potential
Rashdan, M
2003-01-01
The reaction cross section, sigma sub R; of the proton halo nuclei sup 1 sup 7 Ne and sup 1 sup 2 N on Si is calculated using an optical potential derived from the solution of the Dirac-Brueckner-Bethe-Goldstone equation, starting from the one-boson-exchange potential of Bonn. The nuclear densities are generated from self-consistent Hartree-Fock calculations using the recent Skyrme interaction SKRA. It is found that the enhancement in the reaction cross section found experimentally for the sup 1 sup 7 Ne + Si system in comparison to sup 1 sup 5 O + Si, where sup 1 sup 5 O has been considered as a core of sup 1 sup 7 Ne, is mainly due to the proton halo structure of sup 1 sup 7 Ne which increases the interaction, in the surface and tail regions. Glauber model calculations did not produce this enhancement in sigma sub R for proton halo nuclei
Halo-independent methods for inelastic dark matter scattering
International Nuclear Information System (INIS)
Bozorgnia, Nassim; Schwetz, Thomas; Herrero-Garcia, Juan; Zupan, Jure
2013-01-01
We present halo-independent methods to analyze the results of dark matter direct detection experiments assuming inelastic scattering. We focus on the annual modulation signal reported by DAMA/LIBRA and present three different halo-independent tests. First, we compare it to the upper limit on the unmodulated rate from XENON100 using (a) the trivial requirement that the amplitude of the annual modulation has to be smaller than the bound on the unmodulated rate, and (b) a bound on the annual modulation amplitude based on an expansion in the Earth's velocity. The third test uses the special predictions of the signal shape for inelastic scattering and allows for an internal consistency check of the data without referring to any astrophysics. We conclude that a strong conflict between DAMA/LIBRA and XENON100 in the framework of spin-independent inelastic scattering can be established independently of the local properties of the dark matter halo
Two distinct halo populations in the solar neighborhood. IV
DEFF Research Database (Denmark)
Nissen, P. E.; Schuster, W. J.
2012-01-01
We investigate if there is a difference in the lithium abundances of stars belonging to two halo populations of F and G main-sequence stars previously found to differ in [alpha/Fe] for the metallicity range -1.4 ...-resolution spectra using MARCS model atmospheres. Furthermore, masses of the stars are determined from the logTeff - logg diagram by interpolating between Yonsei-Yale evolutionary tracks. There is no significant systematic difference in the lithium abundances of high- and low-alpha halo stars. For the large majority...... predicted from standard Big Bang nucleosynthesis calculations and the WMAP baryon density. The relation, however, does not apply to stars with [Fe/H] halo stars were formed with a Li abundance close to the primordial value, and that lithium in their atmospheres has been...
The Halo Boundary of Galaxy Clusters in the SDSS
Energy Technology Data Exchange (ETDEWEB)
Baxter, Eric; Jain, Bhuvnesh; Sheth, Ravi K. [Center for Particle Cosmology, Department of Physics, University of Pennsylvania, Philadelphia, PA 19104 (United States); Chang, Chihway; Kravtsov, Andrey [Kavli Institute for Cosmological Physics, The University of Chicago, Chicago, IL 60637 (United States); Adhikari, Susmita; Dalal, Neal [Department of Astronomy, University of Illinois at Urbana-Champaign, Champaign, IL 61801 (United States); More, Surhud [Kavli Institute for the Physics and Mathematics of the Universe (WPI), Tokyo Institutes for Advanced Study, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba, 277-8583 (Japan); Rozo, Eduardo [Department of Physics, University of Arizona, Tucson, AZ 85721 (United States); Rykoff, Eli, E-mail: ebax@sas.upenn.edu [Kavli Institute for Particle Astrophysics and Cosmology, P.O. Box 2450, Stanford University, Stanford, CA 94305 (United States)
2017-05-20
Analytical models and simulations predict a rapid decline in the halo density profile associated with the transition from the “infalling” regime outside the halo to the “collapsed” regime within the halo. Using data from SDSS, we explore evidence for such a feature in the density profiles of galaxy clusters using several different approaches. We first estimate the steepening of the outer galaxy density profile around clusters, finding evidence for truncation of the halo profile. Next, we measure the galaxy density profile around clusters using two sets of galaxies selected on color. We find evidence of an abrupt change in galaxy colors that coincides with the location of the steepening of the density profile. Since galaxies that have completed orbits within the cluster are more likely to be quenched of star formation and thus appear redder, this abrupt change in galaxy color can be associated with the transition from single-stream to multi-stream regimes. We also use a standard model comparison approach to measure evidence for a “splashback”-like feature, but find that this approach is very sensitive to modeling assumptions. Finally, we perform measurements using an independent cluster catalog to test for potential systematic errors associated with cluster selection. We identify several avenues for future work: improved understanding of the small-scale galaxy profile, lensing measurements, identification of proxies for the halo accretion rate, and other tests. With upcoming data from the DES, KiDS, and HSC surveys, we can expect significant improvements in the study of halo boundaries.
Three-body halo nuclei in an effective theory framework
Energy Technology Data Exchange (ETDEWEB)
Canham, David L.
2009-05-20
The universal properties and structure of halo nuclei composed of two neutrons (2n) and a core are investigated within an effective quantum mechanics framework. We construct an effective interaction potential that exploits the separation of scales in halo nuclei and treat the nucleus as an effective three-body system, which to leading order is described by the large S-wave scattering lengths in the underlying two-body subsystems. The uncertainty from higher orders in the expansion is quantified through theoretical error bands. First, we investigate the possibility to observe excited Efimov states in 2n halo nuclei. Based on the experimental data, {sup 20}C is the only halo nucleus candidate to possibly have an Efimov excited state, with an energy less than 7 keV below the scattering threshold. Second, we study the structure of {sup 20}C and other 2n halo nuclei. In particular, we calculate their matter density form factors, radii, and two-neutron opening angles. We then make a systematic improvement upon these calculations by extending the effective potential to the next-to-leading order. To this order, we require an additional two-body parameter, which we tune to the effective range of the interaction. In addition to range corrections to the 2n halo nuclei results, we show corrections to the Efimov effect in the three-boson system. Furthermore, we explore universality in the linear range corrections to the Efimov spectrum. Finally, we study the scattering of D{sup 0} and D{sup *0} mesons and their antiparticles off the X(3872) in an effective field theory for short-range interactions. We present results for the S-wave scattering amplitude, total interaction cross section and S-wave scattering length. (orig.)
Targeting Cislunar Near Rectilinear Halo Orbits for Human Space Exploration
Williams, Jacob; Lee, David E.; Whitley, Ryan J.; Bokelmann, Kevin A.; Davis, Diane C.; Berry, Christopher F.
2017-01-01
Part of the challenge of charting a human exploration space architecture is finding locations to stage missions to multiple destinations. To that end, a specific subset of Earth-Moon halo orbits, known as Near Rectilinear Halo Orbits (NRHOs) are evaluated. In this paper, a systematic process for generating full ephemeris based ballistic NRHOs is outlined, different size NRHOs are examined for their favorability to avoid eclipses, the performance requirements for missions to and from NRHOs are calculated, and disposal options are evaluated. Combined, these studies confirm the feasibility of cislunar NRHOs to enable human exploration in the cislunar proving ground.
Modelling giant radio halos. Doctoral Thesis Award Lecture 2012
Donnert, J. M. F.
2013-06-01
We review models for giant radio halos in clusters of galaxies, with a focus on numerical and theoretical work. After summarising the most important observations of these objects, we present an introduction to the theoretical aspects of hadronic models. We compare these models with observations using simulations and find severe problems for hadronic models. We give a short introduction to reacceleration models and show results from the first simulation of CRe reacceleration in cluster mergers. We find that in-line with previous theoretical work, reacceleration models are able to elegantly explain main observables of giant radio halos.
Signatures of compact halos of sterile-neutrino dark matter
Kühnel, Florian; Ohlsson, Tommy
2017-11-01
We investigate compact halos of sterile-neutrino dark matter and examine observable signatures with respect to neutrino and photon emission. Primarily, we consider two cases: primordial black-hole halos and ultracompact minihalos. In both cases, we find that there exists a broad range of possible parameter choices such that detection in the near future with x-ray and gamma-ray telescopes might be well possible. In fact, for energies above 10 TeV, the neutrino telescope IceCube would be a splendid detection machine for such macroscopic dark-matter candidates.
Mismatch and misalignment: dark haloes and satellites of disc galaxies
Deason, A. J.; McCarthy, I. G.; Font, A. S.; Evans, N. W.; Frenk, C. S.; Belokurov, V.; Libeskind, N. I.; Crain, R. A.; Theuns, T.
2011-08-01
We study the phase-space distribution of satellite galaxies associated with late-type galaxies in the GIMIC suite of simulations. GIMIC consists of resimulations of five cosmologically representative regions from the Millennium Simulation, which have higher resolution and incorporate baryonic physics. Whilst the disc of the galaxy is well aligned with the inner regions (r˜ 0.1r200) of the dark matter halo, both in shape and angular momentum, there can be substantial misalignments at larger radii (r˜r200). Misalignments of >45° are seen in ˜30 per cent of our sample. We find that the satellite population aligns with the shape (and angular momentum) of the outer dark matter halo. However, the alignment with the galaxy is weak owing to the mismatch between the disc and dark matter halo. Roughly 20 per cent of the satellite systems with 10 bright galaxies within r200 exhibit a polar spatial alignment with respect to the galaxy - an orientation reminiscent of the classical satellites of the Milky Way. We find that a small fraction (˜10 per cent) of satellite systems show evidence for rotational support which we attribute to group infall. There is a bias towards satellites on prograde orbits relative to the spin of the dark matter halo (and to a lesser extent with the angular momentum of the disc). This preference towards co-rotation is stronger in the inner regions of the halo where the most massive satellites accreted at relatively early times are located. We attribute the anisotropic spatial distribution and angular momentum bias of the satellites at z= 0 to their directional accretion along the major axes of the dark matter halo. The satellite galaxies have been accreted relatively recently compared to the dark matter mass and have experienced less phase-mixing and relaxation - the memory of their accretion history can remain intact to z= 0. Understanding the phase-space distribution of the z= 0 satellite population is key for studies that estimate the host halo
Dynamical Constraints On The Galaxy-Halo Connection
Desmond, Harry
2017-07-01
Dark matter halos comprise the bulk of the universe's mass, yet must be probed by the luminous galaxies that form within them. A key goal of modern astrophysics, therefore, is to robustly relate the visible and dark mass, which to first order means relating the properties of galaxies and halos. This may be expected not only to improve our knowledge of galaxy formation, but also to enable high-precision cosmological tests using galaxies and hence maximise the utility of future galaxy surveys. As halos are inaccessible to observations - as galaxies are to N-body simulations - this relation requires an additional modelling step.The aim of this thesis is to develop and evaluate models of the galaxy-halo connection using observations of galaxy dynamics. In particular, I build empirical models based on the technique of halo abundance matching for five key dynamical scaling relations of galaxies - the Tully-Fisher, Faber-Jackson, mass-size and mass discrepancy-acceleration relations, and Fundamental Plane - which relate their baryon distributions and rotation or velocity dispersion profiles. I then develop a statistical scheme based on approximate Bayesian computation to compare the predicted and measured values of a number of summary statistics describing the relations' important features. This not only provides quantitative constraints on the free parameters of the models, but also allows absolute goodness-of-fit measures to be formulated. I find some features to be naturally accounted for by an abundance matching approach and others to impose new constraints on the galaxy-halo connection; the remainder are challenging to account for and may imply galaxy-halo correlations beyond the scope of basic abundance matching.Besides providing concrete statistical tests of specific galaxy formation theories, these results will be of use for guiding the inputs of empirical and semi-analytic galaxy formation models, which require galaxy-halo correlations to be imposed by hand. As
Halo Occupation Distribution Modeling of Clustering of Luminous Red Galaxies
Zheng, Zheng; Zehavi, Idit; Eisenstein, Daniel J.; Weinberg, David H.; Jing, Y. P.
2008-01-01
We perform Halo Occupation Distribution (HOD) modeling to interpret small-scale and intermediate-scale clustering of 35,000 luminous early-type galaxies and their cross-correlation with a reference imaging sample of normal L* galaxies in the Sloan Digital Sky Survey. The modeling results show that most of these luminous red galaxies (LRGs) are central galaxies residing in massive halos of typical mass M ~ a few times 10^13 to 10^14 Msun/h, while a few percent of them have to be satellites wit...
Halo-like structures studied by atomic force microscopy
DEFF Research Database (Denmark)
Sørensen, Alexis Hammer; Kyhle, Anders; Hansen, L. Theil
1997-01-01
Nanometer-sized clusters of copper have been produced in a hollow cathode sputtering source and deposited on SiOx. Halo-like structures consisting of micrometer sized protrusions in the solicon oxide surface surrounded by thin rings of smaller particles are observed. The area in between seems...... to be depleted of particles. We propose that the halo-like structures are a result of electrostatic forces acting between the incoming charged clusters and charged regions on the surface. A simple computer simulation supports this suggestion....
Black Hole Space-time In Dark Matter Halo
Xu, Zhaoyi; Hou, Xian; Gong, Xiaobo; Wang, Jiancheng
2018-01-01
For the first time, we obtain the analytical form of black hole space-time metric in dark matter halo for the stationary situation. Using the relation between the rotation velocity (in the equatorial plane) and the spherical symmetric space-time metric coefficient, we obtain the space-time metric for pure dark matter. By considering the dark matter halo in spherical symmetric space-time as part of the energy-momentum tensors in the Einstein field equation, we then obtain the spherical symmetr...
Thomason, L. W.
2012-01-01
Herein, the Halogen Occultation Experiment (HALOE) aerosol extinction coefficient data is evaluated in the low aerosol loading period after 1996 as the first necessary step in a process that will eventually allow the production of a combined HALOE/SAGE II (Stratospheric Aerosol and Gas Experiment) aerosol climatology of derived aerosol products including surface area density. Based on these analyses, it is demonstrated that HALOE's 3.46 microns is of good quality above 19 km and suitable for scientific applications above that altitude. However, it is increasingly suspect at lower altitudes and should not be used below 17 km under any circumstances after 1996. The 3.40 microns is biased by about 10% throughout the lower stratosphere due to the failure to clear NO2 but otherwise appears to be a high quality product down to 15 km. The 2.45 and 5.26 micron aerosol extinction coefficient measurements are clearly biased and should not be used for scientific applications after the most intense parts of the Pinatubo period. Many of the issues in the aerosol data appear to be related to either the failure to clear some interfering gas species or doing so poorly. For instance, it is clear that the 3.40micronaerosol extinction coefficient measurements can be improved through the inclusion of an NO2 correction and could, in fact, end up as the highest quality overall HALOE aerosol extinction coefficient measurement. It also appears that the 2.45 and 5.26 micron channels may be improved by updating the Upper Atmosphere Pilot Database which is used as a resource for the removal of gas species otherwise not available from direct HALOE measurements. Finally, a simple model to demonstrate the promise of mixed visible/infrared aerosol extinction coefficient ensembles for the retrieval of bulk aerosol properties demonstrates that a combined HALOE/SAGE II aerosol climatology is feasible and may represent a substantial improvement over independently derived data sets.
Resolution of vitiligo following excision of halo congenital melanocytic nevus: a rare case report.
Wang, Kai; Wang, Zhi; Huang, Weiqing
2016-05-01
Halo congenital melanocytic nevus (CMN) associated with vitiligo is rare, especially with regard to CMN excision. Only two reports of excision of halo CMN following repigmentation of vitiligo are found in the literature. We present a case of a girl with halo CMN and periorbital vitiligo. The halo CMN was excised and followed by spontaneous improvement of vitiligo. The result suggests excision of the inciting lesion may be a promising way to control vitiligo. © 2015 Wiley Periodicals, Inc.
Research Note--Should Consumers Use the Halo to Form Product Evaluations?
Peter Boatwright; Ajay Kalra; Wei Zhang
2008-01-01
In purchase situations where attribute information is either missing or difficult to judge, a well-known heuristic that consumers use to form evaluations is the halo effect. The psychology literature has widely considered the halo a reflection of consumers' inability to discriminate between different attributes and have therefore labeled it the "halo error" or the "logical error." The objective of this paper is to offer a rationale for the halo effect. We use a decision-theory framework to sh...
International Nuclear Information System (INIS)
Abe, Hideaki; Sakai, Takao; Ishida, Tomio; Yokota, Norikatsu.
1992-01-01
The lower ends of a plurality of plate-like shape memory alloys are secured at the periphery of the upper inside of the handling head of a fuel assembly. As the shape memory alloy, a Cu-Zn alloy, a Ti-Pd alloy or a Fe-Ni alloy is used. When high temperature coolants flow out to the handling head, the shape memory alloy deforms by warping to the outer side more greatly toward the upper portion thereof with the temperature increase of the coolants. As the result, the shape of the flow channel of the coolants is changed so as to enlarge at the exit of the upper end of the fuel assembly. Then, the pressure loss of the coolants in the fuel assembly is decreased by the enlargement. Accordingly, the flow rate of the coolants in the fuel assembly is increased to lower the temperature of the coolants. Further, high temperature coolants and low temperature coolants are mixed sufficiently just above the fuel assembly. This can suppress the temperature fluctuation of the mixed coolants in the upper portion of the reactor core, thereby enabling to decrease a fatigue and failures of the structural components in the upper portion of the reactor core. (I.N.)
De bepaling van halo-azijnzuren, chloriet en chloraat in drinkwater
Peters RJB; van de Meer-Arp KKM; Versteegh JFM
1990-01-01
A method was developed to determine halo-acetic acids with a detection limit of 0.1 mug/L. Halo-acetic acids were determined in samples drinking water derived from surface- and bankfiltrated water however, not in drinking water derived from groundwater. Halo-acetic acids were found in chlorinated
International Nuclear Information System (INIS)
Nakatsuka, Masafumi; Matsuzuka, Ryuji.
1976-01-01
Object: To provide a fuel assembly which can decrease pressure loss of coolant to uniform temperature. Structure: A sectional area of a flow passage in the vicinity of an inner peripheral surface of a wrapper tube is limited over the entire length to prevent the temperature of a fuel element in the outermost peripheral portion from being excessively decreased to thereby flatten temperature distribution. To this end, a plurality of pincture-frame-like sheet metals constituting a spacer for supporting a fuel assembly, which has a plurality of fuel elements planted lengthwise and in given spaced relation within the wrapper tube, is disposed in longitudinal grooves and in stacked fashion to form a substantially honeycomb-like space in cross section. The fuel elements are inserted and supported in the space to form a fuel assembly. (Kamimura, M.)
A KiDS weak lensing analysis of assembly bias in GAMA galaxy groups
Dvornik, Andrej; Cacciato, Marcello; Kuijken, Konrad; Viola, Massimo; Hoekstra, Henk; Nakajima, Reiko; van Uitert, Edo; Brouwer, Margot; Choi, Ami; Erben, Thomas; Fenech Conti, Ian; Farrow, Daniel J.; Herbonnet, Ricardo; Heymans, Catherine; Hildebrandt, Hendrik; Hopkins, Andrew. M.; McFarland, John; Norberg, Peder; Schneider, Peter; Sifón, Cristóbal; Valentijn, Edwin; Wang, Lingyu
2017-01-01
We investigate possible signatures of halo assembly bias for spectroscopically selected galaxy groups from the GAMA survey using weak lensing measurements from the spatially overlapping regions of the deeper, high-imaging-quality photometric KiDS survey. We use GAMA groups with an apparent richness
On halo formation from space-charge dominated beams
International Nuclear Information System (INIS)
Lagniel, Jean-Michel
1994-01-01
In this paper, as in J.S. O'Connell, T.P. Wangler, R.S. Mills and K.R. Crandall, Beam halo formation from space-charge dominated beams in uniform focusing channels, PAC Washington, 1993, the interaction of particles with a zero-emittance, uniform-density beam core is described. When this core is mismatched in a uniform linear focusing channel, its envelope oscillates, just like a matched beam in an alternating gradient channel. As is usual for this kind of channel, the particle evolution in the transverse phase plane has been followed period by period. For a strong core modulation, this analysis clearly shows i) how the particles nearest to the core move to the halo, ii) two stable areas separated from the core, and iii) how trajectories develop along the ''lattice''. Also the halo formation problem is compared with similar phenomena from stellar dynamics in order to demonstrate that it is the mechanism of resonance overlap which leads to the formation of a halo area where the particle trajectories are stochastic. The chaotic behaviour of the particle trajectories in this area is subsequently discussed. ((orig.))
Inheritance of halo blight resistance in common bean | Chataika ...
African Journals Online (AJOL)
Halo blight caused by (Pseudomonas syringe pv. phaseolicola (Burkh) (Psp)) is an important disease of common bean (Phaseolus vulgaris L.) world-wide. Several races of the Psp exist and likewise some sources of resistance in common bean have been identified. CAL 143, is a CIAT-bred common bean line, which was ...
Does the galaxy-halo connection vary with environment?
Dragomir, Radu; Rodríguez-Puebla, Aldo; Primack, Joel R.; Lee, Christoph T.
2018-05-01
(Sub)halo abundance matching (SHAM) assumes that one (sub) halo property, such as mass Mvir or peak circular velocity Vpeak, determines properties of the galaxy hosted in each (sub) halo such as its luminosity or stellar mass. This assumption implies that the dependence of galaxy luminosity functions (GLFs) and the galaxy stellar mass function (GSMF) on environmental density is determined by the corresponding halo density dependence. In this paper, we test this by determining from a Sloan Digital Sky Survey sample the observed dependence with environmental density of the ugriz GLFs and GSMF for all galaxies, and for central and satellite galaxies separately. We then show that the SHAM predictions are in remarkable agreement with these observations, even when the galaxy population is divided between central and satellite galaxies. However, we show that SHAM fails to reproduce the correct dependence between environmental density and g - r colour for all galaxies and central galaxies, although it better reproduces the colour dependence on environmental density of satellite galaxies.
Uncovering the hidden iceberg structure of the Galactic halo
Moss, Vanessa A.; Di Teodoro, Enrico M.; McClure-Griffiths, Naomi M.; Lockman, Felix; Pisano, D. J.; Price, Daniel; Rees, Glen
2018-01-01
How the Milky Way gets its gas and keeps its measured star formation rate going are both long-standing mysteries in Galactic studies, with important implications for galaxy evolution across the Universe. I will present our recent discovery of two populations of neutral hydrogen (HI) in the halo of the Milky Way: 1) a narrow line-width dense population typical of the majority of bright high velocity cloud (HVC) components, and 2) a fainter, broad line-width diffuse population that aligns well with the population found in very sensitive pointings such as in Lockman et al. (2002). From our existing data, we concluded that the diffuse population likely outweighs the dense HI by a factor of 3. This discovery of diffuse HI, which appears to be prevalent throughout the halo, takes us closer to solving the Galactic mystery of accretion and reveals a gaseous neutral halo hidden from the view of most large-scale surveys. We are currently carrying out deep Parkes observations to investigate these results further, in order to truly uncover the nature of the diffuse HI and determine whether our 3:1 ratio (based on the limited existing data) is consistent with what is seen when Parkes and the 140 ft Green Bank telescope are employed at comparable sensitivity. With these data, through a combination of both known and new sightline measurements, we aim to reveal the structure of the Galactic halo in more detail than ever before.
Spin alignment of dark matter haloes in filaments and walls
Aragón-Calvo, M. A.; Weygaert, R. van de; Jones, B. J. T.; Hulst, T. van der
2006-01-01
Abstract: The MMF technique is used to segment the cosmic web as seen in a cosmological N-body simulation into wall-like and filament-like structures. We find that the spins and shapes of dark matter haloes are significantly correlated with each other and with the orientation of their host
Spin alignment of dark matter halos in filaments and walls
Aragon-Calvo, Miguel A.; van de Weygaert, Rien; Jones, Bernard J. T.; van der Hulst, J. M.
2007-01-01
The MMF technique is used to segment the cosmic web as seen in a cosmological N-body simulation into wall-like and filament-like structures. We find that the spins and shapes of dark matter halos are significantly correlated with each other and with the orientation of their host structures. The
Test of internal halo targets in the HERA proton ring
International Nuclear Information System (INIS)
Hast, C.; Hofmann, W.; Khan, S.; Knoepfle, K.T.; Reber, M.; Rieling, J.; Spahn, M.; Spengler, J.; Lohse, T.; Pugatch, V.
1994-07-01
Internal wire targets in the halo of stored proton beams provide a line source of proton-nucleus interactions for highest-rate fixed target experiments. We have studied such internal halo targets at the 820 GeV proton ring of the HERA ep collider. The tests showed that most of the protons in the beam halo - which would otherwise hit the collimators - can be brought to interaction in a relatively thin target wire at distances of 7 to 8 beam widths from the center of the beam. At less than 10% of the HERA total design current, and less than 20% of the current per bunch, interaction rates up to 8 MHz were observed, corresponding to more than 2 interactions per bunch crossing. The halo targets were used in parallel to the HERA luminosity operation; no significant disturbances of the HERA ep experiments, of the machine stability or beam quality were observed. We present data on the steady-state and transient behaviour of interaction rates and discuss the interpretation in terms of a simple beam dynamics model. Issues of short-, medium- and long-term rate fluctuations and of rate stabilization by feedback are addressed. (orig.)
Anisotropy in Dynamical Models of Elliptical Galaxy Dark Halos
Forestell, Amy; Gebhardt, K.
2013-07-01
Abstract (2,250 Maximum Characters): We discuss the orbital anisotropy results of axisymmetric orbit-superposition dynamical models of elliptical galaxies NGC 821 and NGC 4697. For NGC 821 stellar kinematics are used to determine the best-fitted dark halo (Forestell 2010), then we determine the orbital properties required for planetary nebulae to match the observed kinematic data (Romanowsky et al. 2003) in that assumed dark halo. For NGC 4697 we use both stellar and planetary nebula kinematics (Pinkney et al. 2003, Mendez et al. 2009) to model the galaxy dark halo. In both galaxies we find that the planetary nebulae, which are located at large radii, show radial anisotropy. This is consistent with the results of Dekel et al. (2005), who use disk galaxy merger simulations to show that large anisotropies can be created in the resulting elliptical galaxies and that this anisotropy in combination with the different density profile of a young population could explain how the low dispersions from planetary nebulae measurements are also consistent with typical dark matter halos.
Planetary Nebulae as kinematic and dynamical tracers of galaxy halos
Coccato, Lodovico; Napolitano, Nicola; Arnaboldi, Magda; Cortesi, Arianna; Romanowsky, Aaron; Gerhard, Ortwin; Merrifield, Michael; Kuijken, Konrad; Freeman, Ken; Douglas, Nigel
2015-01-01
The kinematics and dynamical properties of galaxy halos are difficult to measure, given the faint stellar surface brightness that characterizes those regions. Gas-rich systems such as spiral galaxies can be probed using the radio emission of their gas component. Early type galaxies contain less gas,
Dynamics of Stars and Globular Clusters in Galaxy Halos
Romanowsky, Aaron J.; Douglas, Nigel G.; Kuijken, Konrad; Arnaboldi, Magda; Kissler-Patig, Markus; Sharples, Ray M.; Zepf, Stephen E.; Rhode, Katherine L.; Kissler-Patig, M.
2003-01-01
We have obtained kinematical data in the halos of the giant ellipticals M49 and M87. These include globular cluster velocities in M49 to 10 R_eff and planetary nebula velocities in M49 and M87 to 4 R_eff. We report initial results, including dynamical comparisons between the diffuse stellar
On the shape of the Galactic dark matter halo
Helmi, A
2004-01-01
The confined nature of the debris from the Sagittarius dwarf to a narrow trail on the sky has recently prompted the suggestion that the dark matter halo of our Galaxy should be nearly spherical (Ibata et al. 2001; Majewski et al. 2003). This would seem to be in strong contrast with predictions from
Giant Radio Halos in Galaxy Clusters as Probes of Particle ...
Indian Academy of Sciences (India)
2016-01-27
Jan 27, 2016 ... Giant radio halos in galaxy clusters probe mechanisms of particle acceleration connected with cluster merger events. Shocks and turbulence are driven in the inter-galactic medium (IGM) during clusters mergers and may have a deep impact on the non-thermal properties of galaxy clusters. Models of ...
The prolate shape of the galactic dark-matter halo
Helmi, A; Spooner, NJC; Kudryavtsev,
2005-01-01
Knowledge of the distribution of dark-matter in our Galaxy plays a crucial role in the interpretation of dark-matter detection experiments. I will argue here that probably the best way of constraining the properties of the dark-matter halo is through astrophysical observations. These provide
Prospects for detecting supersymmetric dark matter in the Galactic halo
Springel, V.; White, S. D. M.; Frenk, C. S.; Navarro, J. F.; Jenkins, A.; Vogelsberger, M.; Wang, J.; Ludlow, A.; Helmi, A.
2008-01-01
Dark matter is the dominant form of matter in the Universe, but its nature is unknown. It is plausibly an elementary particle, perhaps the lightest supersymmetric partner of known particle species(1). In this case, annihilation of dark matter in the halo of the Milky Way should produce gamma-rays at
The Galactic Halo in Mixed Dark Matter Cosmologies
Anderhalden, D.; Diemand, J.; Bertone, G.; Macciò, A.V.; Schneider, A.
2012-01-01
A possible solution to the small scale problems of the cold dark matter (CDM) scenario is that the dark matter consists of two components, a cold and a warm one. We perform a set of high resolution simulations of the Milky Way halo varying the mass of the WDM particle (mWDM) and the cosmic dark
Giant Radio Halos in Galaxy Clusters as Probes of Particle ...
Indian Academy of Sciences (India)
ticles allow good correspondence with present observations, from radio halos to γ-ray upper limits, although several aspects of this complex scenario still remain poorly understood. After providing basic motivations for turbulent acceleration in galaxy clusters, we discuss relevant aspects of the physics of particle acceleration.
GRAVITATIONAL IMAGING BY ELLIPTIC GALAXIES - THE EFFECTS OF DARK HALOS
BREIMER, TG; SANDERS, RH
It has been claimed that some gravitational lenses in which a background quasar is multiply-imaged by a single foreground galaxy support the existence of dark massive halos in elliptical galaxies. We reexamine this claim by considering the lensing effects of spherical galaxies with and without a
Double folding model analysis of elastic scattering of halo nucleus ...
Indian Academy of Sciences (India)
With the continuous advancement of radioactive ion beam facilities worldwide, acceler- ated radioactive beams including halo nuclei have become accessible for investigation. The nuclei such as ... As there is integration over two densities, this is called the DF model. The M3Y NN interaction used is the one prescribed by ...
Prospects for detecting supersymmetric dark matter in the Galactic halo.
Springel, V; White, S D M; Frenk, C S; Navarro, J F; Jenkins, A; Vogelsberger, M; Wang, J; Ludlow, A; Helmi, A
2008-11-06
Dark matter is the dominant form of matter in the Universe, but its nature is unknown. It is plausibly an elementary particle, perhaps the lightest supersymmetric partner of known particle species. In this case, annihilation of dark matter in the halo of the Milky Way should produce gamma-rays at a level that may soon be observable. Previous work has argued that the annihilation signal will be dominated by emission from very small clumps (perhaps smaller even than the Earth), which would be most easily detected where they cluster together in the dark matter haloes of dwarf satellite galaxies. Here we report that such small-scale structure will, in fact, have a negligible impact on dark matter detectability. Rather, the dominant and probably most easily detectable signal will be produced by diffuse dark matter in the main halo of the Milky Way. If the main halo is strongly detected, then small dark matter clumps should also be visible, but may well contain no stars, thereby confirming a key prediction of the cold dark matter model.
Is the halo responsible for the microlensing events?
Roulet, E.; Giudice, G.F.
1994-01-01
Abstract: We discuss whether the astrophysical objects responsible for the recently reported microlensing events of sources in the Large Magellanic Cloud can be identified as the brown dwarf components of the spheroid of our galaxy, rather than the constituents of a dark baryonic halo.
A Search for Moving Groups in the Galactic Halo
Aguilar, L. A.; Hoogerwerf, R.
The idea that the Galactic Halo has been formed largely by the accretion and tidal disruption of satellite systems has been gaining strength. The discovery of a retrograde rotating stellar group (Majewski et al., 1992), patchiness in the kinematics of halo stars (Majewski et al., 1996), the realization that most of the Milky Way satellites lie near two great circles in the sky (Lynden-Bell, 1976) and the discovery of an elongated dwarf galaxy in Sagittarius (Ibata et al., 1994), all add credence to this idea. Theoretically, the apparent fragility of galactic disks (Toth & Ostriker, 1992) no longer seems to be a problem for accretion (Velazquez & White, 1997). The tidal ``streamers'' from tidal disruption seem to be long lived (Barnes 1996) and can be exploited to devise algorithms to search for them in galactic surveys (Johnston et al., 1996). The phase space portrait of the halo, far from being a smooth distribution, should consist of a patchy aggregation of tidally disrupted systems that have been phase mixed over wide swaths in the sky, but which retain kinematic memory of their existence as a coherent entity. The challenges to discover these moving groups in the halo are enormous due to the distances involved and the fact that they can span large angles in the sky. The availability of astrometric databases of unprecedent accuracies (HIPPARCOS) and plans for follow up (GAIA), offer an opportunity to search for these moving groups. Together with these databases, new search techniques must be devised (Chen etal. 1997, Hoogerwerf & Aguilar, 1997).
Frozen Hydrocarbon Particles of Cometary Halos as Carriers of ...
Indian Academy of Sciences (India)
The possible nature of unidentified cometary emissions is under discussion. We propose a new model of the ice particles in cometary halos as a mixture of frozen polycyclic aromatic hydrocarbons and acyclic hydrocarbons.We describe principal properties of frozen hydrocarbon particles (FHPs) and suggest interpreting ...
Influence of "Halo" and "Demon" Effects in Subjective Grading.
Gibb, Gerald D.
1983-01-01
The phenomenon of "halo" effects in subjective grading was investigated. Two groups of three raters evaluated 20 term papers in introductory psychology. Term paper grades correlated significantly with course grades when information about previous academic performance was made available. When this information was not available, the…
Giant Radio Halos in Galaxy Clusters as Probes of Particle ...
Indian Academy of Sciences (India)
After providing basic motivations for turbulent acceleration in galaxy ... A simple motivation. Observations constrain models of giant radio halos, in several cases putting some tension on a 'pure' secondary origin of the emitting electrons (e.g. .... Stronger turbulence induces more efficient acceleration leading to a faster.
Mining the Galactic halo for very metal-poor stars
Salvadori, S.; Ferrara, A.; Schneider, R.; Scannapieco, E.; Kawata, D.
We study the age and metallicity distribution function (MDF) of metal-poor stars in the Milky Way halo as a function of galactocentric radius by combining N-body simulations and semi-analytical methods. We find that the oldest stars populate the innermost region, while extremely metal-poor stars are
IDENTIFYING STAR STREAMS IN THE MILKY WAY HALO
Energy Technology Data Exchange (ETDEWEB)
King, Charles III; Brown, Warren R.; Geller, Margaret J.; Kenyon, Scott J., E-mail: cking@cfa.harvard.edu, E-mail: wbrown@cfa.harvard.edu, E-mail: mgeller@cfa.harvard.edu, E-mail: skenyon@cfa.harvard.edu [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States)
2012-05-01
We develop statistical methods for identifying star streams in the halo of the Milky Way that exploit observed spatial and radial velocity distributions. Within a great circle, departures of the observed spatial distribution from random provide a measure of the likelihood of a potential star stream. Comparisons between the radial velocity distribution within a great circle and the radial velocity distribution of the entire sample also measure the statistical significance of potential streams. The radial velocities enable construction of a more powerful joint statistical test for identifying star streams in the Milky Way halo. Applying our method to halo stars in the Hypervelocity Star (HVS) survey, we detect the Sagittarius stream at high significance. Great circle counts and comparisons with theoretical models suggest that the Sagittarius stream comprises 10%-17% of the halo stars in the HVS sample. The population of blue stragglers and blue horizontal branch stars varies along the stream and is a potential probe of the distribution of stellar populations in the Sagittarius dwarf galaxy prior to disruption.
IDENTIFYING STAR STREAMS IN THE MILKY WAY HALO
International Nuclear Information System (INIS)
King, Charles III; Brown, Warren R.; Geller, Margaret J.; Kenyon, Scott J.
2012-01-01
We develop statistical methods for identifying star streams in the halo of the Milky Way that exploit observed spatial and radial velocity distributions. Within a great circle, departures of the observed spatial distribution from random provide a measure of the likelihood of a potential star stream. Comparisons between the radial velocity distribution within a great circle and the radial velocity distribution of the entire sample also measure the statistical significance of potential streams. The radial velocities enable construction of a more powerful joint statistical test for identifying star streams in the Milky Way halo. Applying our method to halo stars in the Hypervelocity Star (HVS) survey, we detect the Sagittarius stream at high significance. Great circle counts and comparisons with theoretical models suggest that the Sagittarius stream comprises 10%-17% of the halo stars in the HVS sample. The population of blue stragglers and blue horizontal branch stars varies along the stream and is a potential probe of the distribution of stellar populations in the Sagittarius dwarf galaxy prior to disruption.
The halo sign: HRCT findings in 85 patients.
Alves, Giordano Rafael Tronco; Marchiori, Edson; Irion, Klaus; Nin, Carlos Schuler; Watte, Guilherme; Pasqualotto, Alessandro Comarú; Severo, Luiz Carlos; Hochhegger, Bruno
2016-01-01
The halo sign consists of an area of ground-glass opacity surrounding pulmonary lesions on chest CT scans. We compared immunocompetent and immunosuppressed patients in terms of halo sign features and sought to identify those of greatest diagnostic value. This was a retrospective study of CT scans performed at any of seven centers between January of 2011 and May of 2015. Patients were classified according to their immune status. Two thoracic radiologists reviewed the scans in order to determine the number of lesions, as well as their distribution, size, and contour, together with halo thickness and any other associated findings. Of the 85 patients evaluated, 53 were immunocompetent and 32 were immunosuppressed. Of the 53 immunocompetent patients, 34 (64%) were diagnosed with primary neoplasm. Of the 32 immunosuppressed patients, 25 (78%) were diagnosed with aspergillosis. Multiple and randomly distributed lesions were more common in the immunosuppressed patients than in the immunocompetent patients (p estado imunológico. Dois radiologistas torácicos analisaram os exames a fim de determinar o número de lesões e sua distribuição, tamanho e contorno, bem como a espessura do halo e quaisquer outros achados associados. Dos 85 pacientes avaliados, 53 eram imunocompetentes e 32 eram imunodeprimidos. Dos 53 pacientes imunocompetentes, 34 (64%) receberam diagnóstico de neoplasia primária. Dos 32 pacientes imunodeprimidos, 25 (78%) receberam diagnóstico de aspergilose. Lesões múltiplas e distribuídas aleatoriamente foram mais comuns nos imunodeprimidos do que nos imunocompetentes (p que apresentem o sinal do halo.
International Nuclear Information System (INIS)
Nakamura, Mitsuya; Yamashita, Jun-ichi; Mochida, Takaaki.
1986-01-01
Purpose: To improve the fuel economy by increasing the reactivity at the latter burning stage of fuel assemblies and thereby increasing the burn-up degree. Constitution: At the later stage of the burning where the infinite multiplication factor of a fuel assembly is lowered, fuel rods are partially discharged to increase the fuel-moderator volume ratio in the fuel assembly. Then, plutonium is positively burnt by bringing the ratio near to an optimum point where the infinite multiplication factor becomes maximum and the reactivity of the fuel assembly is increased by utilizing the spectral shift effect. The number of the fuel rods to be removed is selected so as to approach the fuel-moderator atom number ratio where the infinite multiplication factor is maximum. Further, the positions where the thermal neutron fluxes are low are most effective for removing the rods and those positions between which no fuel rods are present and which are adjacent with neither the channel box nor the water rods are preferred. The rods should be removed at the time when the burning is proceeded at lest for one cycle. The reactivity is thus increased and the burn-up degree of fuels upon taking-out can be improved. (Kamimura, M.)
International Nuclear Information System (INIS)
Sandling, M.
1981-01-01
An improved valve assembly, used for controlling the flow of radioactive slurry, is described. Radioactive contamination of the air during removal or replacement of the valve is prevented by sucking air from the atmosphere through a portion of the structure above the valve housing. (U.K.)
Energy Technology Data Exchange (ETDEWEB)
Deason, Alis J.; Mao, Yao-Yuan; Wechsler, Risa H., E-mail: adeason@stanford.edu [Kavli Institute for Particle Astrophysics and Cosmology and Physics Department, Stanford University, Stanford, CA 94305 (United States)
2016-04-10
We study the mass spectrum of destroyed dwarfs that contribute to the accreted stellar mass of Milky Way (MW)-mass (M{sub vir} ∼ 10{sup 12.1} M{sub ⊙}) halos using a suite of 45 zoom-in dissipationless simulations. Empirical models are employed to relate (peak) subhalo mass to dwarf stellar mass, and we use constraints from z = 0 observations and hydrodynamical simulations to estimate the metallicity distribution of the accreted stellar material. The dominant contributors to the accreted stellar mass are relatively massive dwarfs with M{sub star} ∼ 10{sup 8}–10{sup 10}M{sub ⊙}. Halos with more quiescent accretion histories tend to have lower mass progenitors (10{sup 8}–10{sup 9} M{sub ⊙}), and lower overall accreted stellar masses. Ultra-faint mass (M{sub star} < 10{sup 5} M{sub ⊙}) dwarfs contribute a negligible amount (≪1%) to the accreted stellar mass and, despite having low average metallicities, supply a small fraction (∼2%–5%) of the very metal-poor stars with [Fe/H] < −2. Dwarfs with masses 10{sup 5} < M{sub star}/M{sub ⊙} < 10{sup 8} provide a substantial amount of the very metal-poor stellar material (∼40%–80%), and even relatively metal-rich dwarfs with M{sub star} > 10{sup 8} M{sub ⊙} can contribute a considerable fraction (∼20%–60%) of metal-poor stars if their metallicity distributions have significant metal-poor tails. Finally, we find that the generic assumption of a quiescent assembly history for the MW halo seems to be in tension with the mass spectrum of its surviving dwarfs. We suggest that the MW could be a “transient fossil”; a quiescent halo with a recent accretion event(s) that disguises the preceding formation history of the halo.
Extended and filamentary Lyα emission from the formation of a protogalactic halo at z = 2.63
Rauch, Michael; Becker, George D.; Haehnelt, Martin G.; Gauthier, Jean-Rene; Sargent, Wallace L. W.
2013-02-01
We report the observation of a further asymmetric, extended Lyα emitting halo at z = 2.63, from our ultra-deep, long-slit spectroscopic survey of faint high-redshift emitters, undertaken with Magellan LDSS3 in the GOODS-S field. The Lyα emission, detected over more than 30 kpc, is spatially coincident with a statistically significant concentration of galaxies visible in deep broad-band imaging. While these faint galaxies without spectroscopic redshifts cannot all with certainty be associated with one another or with the Lyα emission, there are a number of compelling reasons why they very probably form a Milky Way halo-mass group at the Lyα redshift. Filamentary structure, possibly consisting of Lyα emission with very high equivalent width, blue stellar continua and evidence for disturbed stellar populations, suggest that the properties of the emitting region reflect ongoing galaxy assembly, with recent galaxy mergers and star formation occurring in the group. The Lyα emission may be powered by cooling radiation or spatially extended star formation in the halo, but is unlikely to be fluorescence driven by either an active galactic nucleus or one of the galaxies. A comparison with the Lyα surface brightness profiles of more typical, bright Lyα emitters or Lyman break galaxies from similarly deep two-dimensional spectra shows them to be conspicuously different from the extended, asymmetric object studied here. This is consistent with the picture that typical Lyα emitters represent Lyα resonantly scattering from single, kinematically quiescent, compact sources of ionizing radiation, whereas extended emission of the kind seen in the current halo reflect a more active, kinematically disturbed stage in the galaxy formation process. Hence, unusual Lyα emission as observed here may provide unique insights into what is probably a key mode of galaxy formation at high redshifts. Our observations provide further, circumstantial evidence that galaxy mergers may
A Phenomenological Model of Star Formation Efficiency in Dark Matter Halos
Finnegan, Daniel; Alsheshakly, Ghadeer; Moustakas, John
2018-01-01
The efficiency of star formation in massive dark matter halos is extraordinarily low, less than 10% in >10^13 Msun sized halos. Although many physical processes have been proposed to explain this low efficiency, such as feedback from supermassive black halos and massive stars, this question remains one of the most important outstanding problems in galaxy evolution. To explore this problem, we build a simple phenomenological model to predict the variations in gas fraction and star formation efficiency as a function of halo mass. We compare our model predictions to central galaxy stellar masses and halo masses drawn from the literature, and discuss plans for our future work.
Study of fusion probabilities with halo nuclei using different proximity based potentials
International Nuclear Information System (INIS)
Kumari, Raj
2013-01-01
We study fusion of halo nuclei with heavy targets using proximity based potentials due to Aage Winther (AW) 95, Bass 80 and Proximity 2010. In order to consider the extended matter distribution of halo nuclei, the nuclei radii borrowed from cross section measurements are included in these potentials. Our study reveals that the barrier heights are effectively reduced and fusion cross sections are appreciably enhanced by including extended radii of these nuclei. We also find that the extended sizes of halos contribute towards enhancement of fusion probabilities in case of proton halo nuclei, but, contribute to transfer or break-up process rather than fusion yield in case of neutron halo nuclei
Constraints on the Formation of M31’s Stellar Halo from the SPLASH Survey
Directory of Open Access Journals (Sweden)
Karoline Gilbert
2017-09-01
Full Text Available The SPLASH (Spectroscopic and Photometric Landscape of Andromeda’s Stellar Halo Survey has observed fields throughout M31’s stellar halo, dwarf satellites, and stellar disk. The observations and derived measurements have either been compared to predictions from simulations of stellar halo formation or modeled directly in order to derive inferences about the formation and evolution of M31’s stellar halo. We summarize some of the major results from the SPLASH survey and the resulting implications for our understanding of the build-up of M31’s stellar halo.
THE CONTRIBUTION OF HALOS WITH DIFFERENT MASS RATIOS TO THE OVERALL GROWTH OF CLUSTER-SIZED HALOS
Energy Technology Data Exchange (ETDEWEB)
Lemze, Doron; Ford, Holland C.; Medezinski, Elinor [Department of Physics and Astronomy, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 (United States); Postman, Marc; Koekemoer, Anton [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21208 (United States); Genel, Shy [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Balestra, Italo; Nonino, Mario; Biviano, Andrea [INAF/Osservatorio Astronomico di Trieste, via G.B. Tiepolo 11, I-34143 Trieste (Italy); Donahue, Megan [Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824-2320 (United States); Kelson, Daniel; Voit, G. Mark [Carnegie Institute for Science, Carnegie Observatories, Pasadena, CA (United States); Mercurio, Amata [INAF/Osservatorio Astronomico di Capodimonte, Salita Moiariello 16, I-80131 Napoli (Italy); Rosati, Piero [European Southern Observatory, Karl-Schwarzschild Strasse 2, D-85748 Garching (Germany); Umetsu, Keiichi [Institute of Astronomy and Astrophysics, Academia Sinica, P.O. Box 23-141, Taipei 10617, Taiwan (China); Sand, David [Department of Physics, Texas Tech University, Box 41051, Lubbock, TX 79409-1051 (United States); Meneghetti, Massimo [INAF, Osservatorio Astronomico di Bologna, via Ranzani 1, I-40127 Bologna (Italy); Melchior, Peter [Center for Cosmology and Astro-Particle Physics, The Ohio State University, 191 West Woodruff Avenue, Columbus, OH 43210 (United States); Newman, Andrew B. [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, MS 249-17, Pasadena, CA 91125 (United States); Bhatti, Waqas A. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); and others
2013-10-20
We provide a new observational test for a key prediction of the ΛCDM cosmological model: the contributions of mergers with different halo-to-main-cluster mass ratios to cluster-sized halo growth. We perform this test by dynamically analyzing 7 galaxy clusters, spanning the redshift range 0.13 < z{sub c} < 0.45 and caustic mass range 0.4-1.5 10{sup 15} h{sub 0.73}{sup -1} M{sub ☉}, with an average of 293 spectroscopically confirmed bound galaxies to each cluster. The large radial coverage (a few virial radii), which covers the whole infall region, with a high number of spectroscopically identified galaxies enables this new study. For each cluster, we identify bound galaxies. Out of these galaxies, we identify infalling and accreted halos and estimate their masses and their dynamical states. Using the estimated masses, we derive the contribution of different mass ratios to cluster-sized halo growth. For mass ratios between ∼0.2 and ∼0.7, we find a ∼1σ agreement with ΛCDM expectations based on the Millennium simulations I and II. At low mass ratios, ∼< 0.2, our derived contribution is underestimated since the detection efficiency decreases at low masses, ∼2 × 10{sup 14} h{sub 0.73}{sup -1} M{sub ☉}. At large mass ratios, ∼> 0.7, we do not detect halos probably because our sample, which was chosen to be quite X-ray relaxed, is biased against large mass ratios. Therefore, at large mass ratios, the derived contribution is also underestimated.
The vertical structure of gaseous galaxy discs in cold dark matter haloes
Benítez-Llambay, Alejandro; Navarro, Julio F.; Frenk, Carlos S.; Ludlow, Aaron D.
2018-01-01
We study the vertical structure of polytropic centrifugally supported gaseous discs embedded in cold dark matter (CDM) haloes. At fixed radius, R, the shape of the vertical density profile depends weakly on whether the disc is self-gravitating (SG) or non-self-gravitating (NSG). The disc 'characteristic' thickness, zH, set by the midplane sound speed and circular velocity, zNSG = (cs/Vc)R, in the NSG case, and by the sound speed and surface density, z_SG = c_s^2/GΣ, in SG discs, is smaller than zSG and zNSG. SG discs are typically Toomre unstable, NSG discs are stable. Exponential discs in CDM haloes with roughly flat circular velocity curves 'flare' outwards. Flares in mono abundance or coeval populations in galaxies like the Milky Way are thus not necessarily due to radial migration. For the polytropic equation of state of the Evolution and Assembly of GaLaxies and their Environments (EAGLE) simulations, discs that match observational constraints are NSG for Md smoothed particle hydrodynamic simulations and find excellent agreement. Our results clarify the role of the gravitational softening on the thickness of simulated discs, and on the onset of radial instabilities. EAGLE low-mass discs are NSG so the softening plays no role in their vertical structure. High-mass discs are expected to be SG and unstable, and may be artificially thickened and stabilized unless gravity is well resolved. Simulations with spatial resolution high enough to not compromise the vertical structure of a disc also resolve the onset of their instabilities, but the converse is not true.
Bose-Einstein condensate haloes embedded in dark energy
Membrado, M.; Pacheco, A. F.
2018-04-01
Context. We have studied clusters of self-gravitating collisionless Newtonian bosons in their ground state and in the presence of the cosmological constant to model dark haloes of dwarf spheroidal (dSph) galaxies. Aim. We aim to analyse the influence of the cosmological constant on the structure of these systems. Observational data of Milky Way dSph galaxies allow us to estimate the boson mass. Methods: We obtained the energy of the ground state of the cluster in the Hartree approximation by solving a variational problem in the particle density. We have also developed and applied the virial theorem. Dark halo models were tested in a sample of 19 galaxies. Galaxy radii, 3D deprojected half-light radii, mass enclosed within them, and luminosity-weighted averages of the square of line-of-sight velocity dispersions are used to estimate the particle mass. Results: Cosmological constant repulsive effects are embedded in one parameter ξ. They are appreciable for ξ > 10-5. Bound structures appear for ξ ≤ ξc = 1.65 × 10-4, what imposes a lower bound for cluster masses as a function of the particle mass. In principle, these systems present tunnelling through a potential barrier; however, after estimating their mean lifes, we realize that their existence is not affected by the age of the Universe. When Milky Way dSph galaxies are used to test the model, we obtain 3.5-1.0+1.3 × 10-22 eV for the particle mass and a lower limit of 5.1-2.8+2.2 × 106 M⊙ for bound haloes. Conclusions: Our estimation for the boson mass is in agreement with other recent results which use different methods. From our particle mass estimation, the treated dSph galaxies would present dark halo masses 5-11 ×107 M⊙. With these values, they would not be affected by the cosmological constant (ξ 10-5) would already feel their effects. Our model that includes dark energy allows us to deal with these dark haloes. Assuming quantities averaged in the sample of galaxies, 10-5 limiting the halo mass.
International Nuclear Information System (INIS)
Echigoya, Hironori; Nomata, Terumitsu.
1983-01-01
Purpose: To render the axial distribution relatively flat. Constitution: First nuclear element comprises a fuel can made of zircalloy i.e., the metal with less neutron absorption, which is filled with a plurality of UO 2 pellets and sealed by using a lower end plug, a plenum spring and an upper end plug by means of welding. Second fuel element is formed by substituting a part of the UO 2 pellets with a water tube which is sealed with water and has a space for allowing the heat expansion. The nuclear fuel assembly is constituted by using the first and second fuel elements together. In such a structure, since water reflects neutrons and decrease their leakage to increase the temperature, reactivity is added at the upper portion of the fuel assembly to thereby flatten the axial power distribution. Accordingly, stable operation is possible only by means of deep control rods while requiring no shallow control rods. (Sekiya, K.)
International Nuclear Information System (INIS)
Genel, Shy; Genzel, Reinhard; Bouche, Nicolas; Naab, Thorsten; Sternberg, Amiel
2009-01-01
We have developed a new method to extract halo merger rates from the Millennium Simulation. First, by removing superfluous mergers that are artifacts of the standard friends-of-friends (FOF) halo identification algorithm, we find a lower merger rate compared to previous work. The reductions are more significant at lower redshifts and lower halo masses, and especially for minor mergers. Our new approach results in a better agreement with predictions from the extended Press-Schechter model. Second, we find that the FOF halo finder overestimates the halo mass by up to 50% for halos that are about to merge, which leads to an additional ∼20% overestimate of the merger rate. Therefore, we define halo masses by including only particles that are gravitationally bound to their FOF groups. We provide new best-fitting parameters for a global formula to account for these improvements. In addition, we extract the merger rate per progenitor halo, as well as per descendant halo. The merger rate per progenitor halo is the quantity that should be related to observed galaxy merger fractions when they are measured via pair counting. At low-mass/redshift, the merger rate increases moderately with mass and steeply with redshift. At high enough mass/redshift (for the rarest halos with masses a few times the 'knee' of the mass function), these trends break down, and the merger rate per progenitor halo decreases with mass and increases only moderately with redshift. Defining the merger rate per progenitor halo also allows us to quantify the rate at which halos are being accreted onto larger halos, in addition to the minor and major merger rates. We provide an analytic formula that converts any given merger rate per descendant halo into a merger rate per progenitor halo. Finally, we perform a direct comparison between observed merger fractions and the fraction of halos in the Millennium Simulation that have undergone a major merger during the recent dynamical friction time, and find a
DEFF Research Database (Denmark)
Assembling Consumption marks a definitive step in the institutionalisation of qualitative business research. By gathering leading scholars and educators who study markets, marketing and consumption through the lenses of philosophy, sociology and anthropology, this book clarifies and applies...... the investigative tools offered by assemblage theory, actor-network theory and non-representational theory. Clear theoretical explanation and methodological innovation, alongside empirical applications of these emerging frameworks will offer readers new and refreshing perspectives on consumer culture and market...
Staff Association
2016-01-01
5th April, 2016 – Ordinary General Assembly of the Staff Association! In the first semester of each year, the Staff Association (SA) invites its members to attend and participate in the Ordinary General Assembly (OGA). This year the OGA will be held on Tuesday, April 5th 2016 from 11:00 to 12:00 in BE Auditorium, Meyrin (6-2-024). During the Ordinary General Assembly, the activity and financial reports of the SA are presented and submitted for approval to the members. This is the occasion to get a global view on the activities of the SA, its financial management, and an opportunity to express one’s opinion, including taking part in the votes. Other points are listed on the agenda, as proposed by the Staff Council. Who can vote? Only “ordinary” members (MPE) of the SA can vote. Associated members (MPA) of the SA and/or affiliated pensioners have a right to vote on those topics that are of direct interest to them. Who can give his/her opinion? The Ordinary General Asse...
International Nuclear Information System (INIS)
Ueda, Sei; Ando, Ryohei; Mitsutake, Toru.
1995-01-01
The present invention concerns a fuel assembly suitable to a BWR-type reactor and improved especially with the nuclear characteristic, heat performance, hydraulic performance, dismantling or assembling performance and economical property. A part of poison rods are formed as a large-diameter/multi-region poison rods having a larger diameter than a fuel rod. A large number of fuel rods are disposed surrounding a large diameter water rod and a group of the large-diameter/multi-region poison rods in adjacent with the water rod. The large-diameter water rod has a burnable poison at the tube wall portion. At least a portion of the large-diameter poison rods has a coolant circulation portion allowing coolants to circulate therethrough. Since the large-diameter poison rods are disposed at a position of high neutron fluxes, a large neutron multiplication factor suppression effect can be provided, thereby enabling to reduce the number of burnable poison rods relative to fuels. As a result, power peaking in the fuel assembly is moderated and a greater amount of plutonium can be loaded. In addition the flow of cooling water which tends to gather around the large diameter water rod can be controlled to improve cooling performance of fuels. (N.H.)
On the distribution of interstellar gas in the galactic halo
Hobbs, L. M.; Morgan, W. W.; Albert, C. E.; Lockman, F. J.
1982-01-01
New and existing observations of 21-cm emission lines toward 10 distant, high-latitude OB stars are combined with existing observations of interstellar Lyman-alpha absorption lines, in order to determine the ratio, N21/N-alpha, of the two different column densities of H I. This ratio, which is related to the fraction of the cool, neutral gas in the halo that lies beyond each star, decreases smoothly to about unity with increasing distance from the galactic plane. The column density of neutral gas beyond about 1 kpc can be as much as one-third of the total above the plane, but only relatively small amounts of such gas lie more than 2 kpc from the plane. The distances to, and the possible birthplaces of, these Population I stars in the halo are discussed.