WorldWideScience

Sample records for non-flaring solar upper

  1. A new approach for deriving the solar irradiance from non-flaring solar upper atmosphere plasmas at 2 x 10^4<-T<-2 x 10^7 K

    Energy Technology Data Exchange (ETDEWEB)

    Colgan, James P [Los Alamos National Laboratory; Abdallaf, Jr., Joseph [Los Alamos National Laboratory; Fontes, Christopher J [Los Alamos National Laboratory; Sherrill, Manolo E [Los Alamos National Laboratory; Feldmn, U [NON LANL; Landi, E [NON LANL; Brown, C M [NON LANL; Seely, J F [NON LANL; Doschek, G A [NON LANL; Dammasch, I E [NON LANL

    2008-01-01

    We propose a new approach for deriving the solar irradiance in the X-ray to VUV range due to the emission by solar upper atmosphere plasmas at 2 x 10{sup 4} {le} T {le} 2 x 10{sup 7} K. Our approach is based on new understanding of the properties of the solar upper atmosphere; specifically, the discovery that the majority of emission from the non-flaring solar upper transition region and corona in the temperature range 3 x 10{sup 5} {le} T {le} 3 x 10{sup 6} K arises from isothermal plasmas that have four distinct temperatures: 0.35, 0.9, 1.4 and 3 x 10{sup 6} K. In the lower transition region (2 x 10{sup 4} {le} T {le} 2 x 10{sup 5} K) of coronal holes, quiet regions or active regions, although multithermal and variable in brightness, the shape of emission measure vs. temperature curves is almost constant. Flaring plasmas are for most part isothermal, although their emission measure and temperature continuously change. In this paper we review these recent results and propose a set of simple spectrometers for recording the solar spectrum in several narrow bands. The solar emission measure, average plasma temperature, and composition can be derived using the measured line fluxes. By combining the emission measure and other plasma properties with the output of a suite of atomic physics codes, which are also described here, the solar irradiance in the temperature range 2 x 10{sup 4} {le} T {le} 2 x 10{sup 7} K can be calculated.

  2. Integrated Solar Upper Stage Technical Support

    Science.gov (United States)

    Jaworske, Donald A.

    1998-01-01

    NASA Lewis Research Center is participating in the Integrated Solar Upper Stage (ISUS) program. This program is a ground-based demonstration of an upper stage concept that will be used to generate both solar propulsion and solar power. Solar energy collected by a primary concentrator is directed into the aperture of a secondary concentrator and further concentrated into the aperture of a heat receiver. The energy stored in the receiver-absorber-converter is used to heat hydrogen gas to provide propulsion during the orbital transfer portion of the mission. During the balance of the mission, electric power is generated by thermionic diodes. Several materials issues were addressed as part of the technical support portion of the ISUS program, including: 1) Evaluation of primary concentrator coupons; 2) Evaluation of secondary concentrator coupons; 3) Evaluation of receiver-absorber-converter coupons; 4) Evaluation of in-test witness coupons. Two different types of primary concentrator coupons were evaluated from two different contractors-replicated coupons made from graphite-epoxy composite and coupons made from microsheet glass. Specular reflectivity measurements identified the replicated graphite-epoxy composite coupons as the primary concentrator material of choice. Several different secondary concentrator materials were evaluated, including a variety of silver and rhodium reflectors. The specular reflectivity of these materials was evaluated under vacuum at temperatures up to 800 C. The optical properties of several coupons of rhenium on graphite were evaluated to predict the thermal performance of the receiver-absorber-converter. Finally, during the ground test demonstration, witness coupons placed in strategic locations throughout the thermal vacuum facility were evaluated for contaminants. All testing for the ISUS program was completed successfully in 1997. Investigations related to materials issues have proven helpful in understanding the operation of the test

  3. Upper Sand Mountain Parish Solar Construction Workshops. Final performance report

    Energy Technology Data Exchange (ETDEWEB)

    1983-02-01

    The Upper Sand Mountain Parish continues to employ its initial strategy for involving high school vocational students with the pre cutting and instructional assembly aid to area families. The parish project works with high school vocational classes in pre fabbing solar devices into kit form. Then, students are employed to serve as instructors for Saturday construction workshops at the local electric cooperative. Trained teams of older and unemployed adults work with youth in building solar greenhouses for those able to pay labor. Over three years, the project has assisted and built 50 to 60 attached solar greenhouses with construction teams realizing in excess of $26,000 in labor for newly developed skills. The project continues to assist owners in monitoring and developing horticulturally as well as energy producing greenhouses. During the spring of 1982, the parish assisted greenhouse owners in marketing over 60,000 bedding plants worth over $3000. Monthly Greenhouse Owner Fellowship meetings have been a helpful setting for sharing of ideas and exchange of insights. A low interest solar loan fund, offering 5% loans for three years, has assisted over 30 families in going solar. The principle for this revolving fund has almost reached the $15,000 mark. The track record for loan repayments has been exceptional. Through workshops and tours we have aquainted hundreds of people across the southeast with low cost/low technology solar projects and a workable strategy for involving community groups and students in them. With church involvement, we have provided over $25,000 in grants to over 200 area families. Workshop information and plans are available to those interested for bread box solar water heaters, food dryers, window box collectors, insulation panels, and greenhouses.

  4. Solar cycle variation of the upper atmosphere temperature of Mars

    International Nuclear Information System (INIS)

    Hantsch, M.H.; Bauer, S.J.

    1989-01-01

    Neutral gas temperatures inferred from topside plasma scale heights of electron density distributions obtained from observations by US and USSR Mars missions imply a much higher dependence of solar activity (expressed by the 10.7 cm radio flux F 10.7 ) than that found for Venus. This dependence, however, does not appear to be consistent with the observed solar cycle dependence of ionospheric peak plasma densities. The reason for this discrepancy seems to lie in the fact, that photochemical equilibrium applies only to altitudes below 170 km, whereas topside scale heights are usually derived for a much greater altitude range and thus may be modified by transport and other processes. If scale heights are obtained by matching a Chapman-layer to plasma density profiles near the ionosphere peak, the derived neutral temperatures show a much weaker dependence on F 10.7 , in fact one essentially the same as for Venus. Thus, the response of the upper atmosphere for Mars, at least near the ionospheric peak, appears to be virtually identical to that of Venus

  5. ON THE COMBINATION OF IMAGING-POLARIMETRY WITH SPECTROPOLARIMETRY OF UPPER SOLAR ATMOSPHERES DURING SOLAR ECLIPSES

    International Nuclear Information System (INIS)

    Qu, Z. Q.; Deng, L. H.; Dun, G. T.; Chang, L.; Zhang, X. Y.; Cheng, X. M.; Qu, Z. N.; Xue, Z. K.; Ma, L.; Allington-Smith, J.; Murray, G.

    2013-01-01

    We present results from imaging polarimetry (IP) of upper solar atmospheres during a total solar eclipse on 2012 November 13 and spectropolarimetry of an annular solar eclipse on 2010 January 15. This combination of techniques provides both the synoptic spatial distribution of polarization above the solar limb and spectral information on the physical mechanism producing the polarization. Using these techniques together we demonstrate that even in the transition region, the linear polarization increases with height and can exceed 20%. IP shows a relatively smooth background distribution in terms of the amplitude and direction modified by solar structures above the limb. A map of a new quantity that reflects direction departure from the background polarization supplies an effective technique to improve the contrast of this fine structure. Spectral polarimetry shows that the relative contribution to the integrated polarization over the observed passband from the spectral lines decreases with height while the contribution from the continuum increases as a general trend. We conclude that both imaging and spectral polarimetry obtained simultaneously over matched spatial and spectral domains will be fruitful for future eclipse observations

  6. Thermal Time Evolution of Non-Flaring Active Regions Determined by SDO/AIA

    Science.gov (United States)

    Wright, Paul James; Hannah, Iain; Viall, Nicholeen; MacKinnon, Alexander; Ireland, Jack; Bradshaw, Stephen

    2017-08-01

    We present the pixel-level time evolution of DEM maps from SDO/AIA data using two different methods (Hannah et al. 2012; Cheung et al. 2015). These sets of Differential Emission Measure (DEM) maps allow us to determine the slopes of the DEM throughout non-flaring structures, and investigate how this changes with time, a crucial parameter in terms of how these flux tubes are being heated. We present this analysis on both real and synthetic data allowing us to understand how robustly we can recover the thermal time evolution. As this analysis also produces the time series in different temperature bands we can further investigate the underlying heating mechanisms by applying a variety of techniques to probe the frequency and nature of the heating, such as time-lag analysis (Viall & Klimchuck 2012; 2016), power spectrum analysis (Ireland et al. 2015), and Local Intermittency Measure (Dinkelaker & MacKinnon 2013a,b).

  7. Upper Secondary Students' Understanding of the Basic Physical Interactions in Analogous Atomic and Solar Systems

    Science.gov (United States)

    Taber, Keith S.

    2013-01-01

    Comparing the atom to a "tiny solar system" is a common teaching analogy, and the extent to which learners saw the systems as analogous was investigated. English upper secondary students were asked parallel questions about the physical interactions between the components of a simple atomic system and a simple solar system to investigate…

  8. Solar activity impact on the Earth’s upper atmosphere

    Czech Academy of Sciences Publication Activity Database

    Kutiev, I.; Tsagouri, I.; Perrone, L.; Pancheva, D.; Mukhtarov, P.; Mikhailov, A.; Laštovička, Jan; Jakowski, N.; Burešová, Dalia; Blanch, E.; Andonov, B.; Altadill, D.; Magdaleno, S.; Parisi, M.; Torta, J. M.

    2013-01-01

    Roč. 3, February (2013), A06/1-A06/21 ISSN 2115-7251 Grant - others:COST(XE) ES0803 Institutional support: RVO:68378289 Keywords : ionosphere * solar activity * storm * total electron content * data analysis Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 2.519, year: 2013 http://www.swsc-journal.org/index.php?option=com_article&access=doi&doi=10.1051/swsc/2013028&Itemid=129

  9. The upper limit of the solar antineutrino flux according to the LSD array data

    International Nuclear Information System (INIS)

    Al'etta, M.; Antonioli, P.; Badino, D.

    1997-01-01

    The analysis of the experimental data obtained at the LSD liquid scintillation detector is carried out with the aim of searching the possible flux of electron antineutrinos from Sun. The most strong at present upper limit for the electron antineutrino flux of solar origin is determined: ≤ 1.0 x 10 5 cm -2 x s -1 (the reliability level of 90%)

  10. Sensitivity of upper atmospheric emissions calculations to solar/stellar UV flux

    Directory of Open Access Journals (Sweden)

    Barthelemy Mathieu

    2014-01-01

    Full Text Available The solar UV (UltraViolet flux, especially the EUV (Extreme UltraViolet and FUV (Far UltraViolet components, is one of the main energetic inputs for planetary upper atmospheres. It drives various processes such as ionization, or dissociation which give rise to upper atmospheric emissions, especially in the UV and visible. These emissions are one of the main ways to investigate the upper atmospheres of planets. However, the uncertainties in the flux measurement or modeling can lead to biased estimates of fundamental atmospheric parameters, such as concentrations or temperatures in the atmospheres. We explore the various problems that can be identified regarding the uncertainties in solar/stellar UV flux by considering three examples. The worst case appears when the solar reflection component is dominant in the recorded spectrum as is seen for outer solar system measurements from HST (Hubble Space Telescope. We also show that the estimation of some particular line parameters (intensity and shape, especially Lyman α, is crucial, and that both total intensity and line profile are useful. In the case of exoplanets, the problem is quite critical since the UV flux of their parent stars is often very poorly known.

  11. Modeling the solar cycle change in nitric oxide in the thermosphere and upper mesosphere

    International Nuclear Information System (INIS)

    Fuller-Rowell, T.J.

    1993-01-01

    Measurements from the Solar Mesosphere Explorer (SME) satellite have shown that low-latitude nitric oxide densities at 110 km decrease by about a factor of 8 from January 1982 to April 1985. This time period corresponds to the descending phase of the last solar cycle where the monthly smoothed sunspot number decreased from more than 150 to less than 25. In addition, nitric oxide was observed to vary by a factor of 2 over a solar rotation, during high solar activity. A one-dimensional, globally averaged model of the thermosphere and upper mesosphere has been used to study the height distribution of nitric oxide (NO) and its response to changes in the solar extreme ultraviolet radiation (EUV) through the solar cycle and over a solar rotation. The primary source of nitric oxide is the reaction of excited atomic nitrogen, N( 2 D), with molecular oxygen. The atomic nitrogen is created by a number of ion-neutral reactions and by direct dissociation of molecular nitrogen by photons and photoelectrons. The occurrence of the peak nitric oxide density at or below 115 km is a direct consequence of ionization and dissociation of molecular nitrogen by photoelectrons, which are produced by the solar flux below 30.0 nm (XUV). Nitric oxide is shown to vary over the solar cycle by a factor of 7 at low latitudes in the lower thermosphere E region, due to the estimated change in the solar EUV flux, in good agreement with the SME satellite observations. The NO density is shown to be strongly dependent on the temperature profile in the lower thermosphere and accounts for the difference between the current model and previous work. Wavelengths less than 1.8 nm have little impact on the NO profile. A factor of 3 change in solar flux below 5.0 nm at high solar activity produced a factor of 2 change in the peak NO density, consistent with SME observations over a solar rotation; this change also lowered the peak to 100 km, consistent with rocket data. 52 refs., 10 figs., 5 tabs

  12. The solar-flare infrared continuum - Observational techniques and upper limits

    Science.gov (United States)

    Hudson, H. S.

    1975-01-01

    Exploratory observations at 20 microns and 350 microns have determined detection thresholds for solar flares in these wavelengths. In the 20-micron range, solar atmospheric fluctuations (the 'temperature field') set the basic limits on flare detectability at about 5 K; at 350 microns, extinction in the earth's atmosphere provides the basic limitation of about 30 K. These thresholds are low enough for the successful detection of several infrared-emitting components of large flares. The upper limits obtained for subflares indicate that the thickness of the H-alpha flare region does not exceed approximately 10 km. This result confirms the conclusion of Suemoto and Hiei (1959) regarding the small effective thickness of the H-alpha-emitting regions in solar flares.

  13. Solar Science Digital Comic Series that promotes Science Literacy with Upper Elementary and Middle School Students

    Science.gov (United States)

    Kellagher, E.; Scherrer, D. K.; Buhr Sullivan, S. M.

    2013-12-01

    The SDO instruments (EVE, AIA and HMI) teams have created a digital comic book series for upper elementary and middle school students featuring solar science aficionados Camilla and Colours, 2 cool mascot characters. These comics may be printed or read on mobile devices and are available as a free download. Many teachers are looking for resources to use with their students via the IPad so our collaboration helps supply teachers with a great resource that teaches about solar concepts and helps dispel solar misconceptions. It doesn't come as a surprise to a lot of us, but a recent study confirms what's been theorized for years: Comics are a stronger learning tool than text books. Image-based storytelling is a powerful educational tool. Comics are probably more able to combine story and information simultaneously, more effectively and seamlessly, than almost any other medium. There's also a great potential to incorporate interactive elements into digital versions, so that more information can be presented on certain items on a page. For example, videos, animations and even historic footage and audio can be embedded into digital comics. Really, the possibilities are limited only by the creators' imaginations as to how to find new ways to create a rich experience that is interesting to explore for students. We are excited to unveil this new series of solar science comics that promotes science literacy with upper elementary and middle school students.

  14. Estimate of the upper limit of amplitude of Solar Cycle No. 23

    Energy Technology Data Exchange (ETDEWEB)

    Silbergleit, V. M; Larocca, P. A [Departamento de Fisica, UBA (Argentina)

    2001-07-01

    AA* indices of values greater than 60 10{sup -9} Tesla are considered in order to characterize geomagnetic storms since the available series of these indices comprise the years from 1868 to 1998 (The longest existing interval of geomagnetic activity). By applying the precursor technique we have performed an analysis of the storm periods and the solar activity, obtaining a good correlation between the number of storms ({alpha})(characterized by the AA* indices) and the amplitudes of each solar cycle ({zeta}) and those of the next ({mu}). Using the multiple regression method applied to {alpha}=A+B{zeta} +C{mu}, the constants are calculated and the values found are: A=-33 {+-}18, B= 0.74{+-}0.13 y C= 0.56{+-}0.13. The present statistical method indicates that the current solar cycle (number 23) would have an upper limit of 202{+-}57 monthy mean sunspots. This value indicates that the solar activity would be high causing important effects on the Earth's environment. [Spanish] Se consideran los valores de los indices AA* de valor mayor que 60 10{sup -9} Tesla para caracterizar tormentas geomagneticas ya que las series disponibles de estos indices van desde 1868 hasta 1998 (el mas largo intervalo de la actividad geomagnetica existente). Aplicando la tecnica del precursor hemos realizado un analisis de los periodos de tormentas y la actividad solar obteniendo una buena correlacion entre el numero de tormentas ({alpha}) (caracterizado por los indices AA*) y las amplitudes de los ciclos solares corriente ({zeta}) y el proximo ({mu}). Usando el metodo de regresion multiple aplicado a {alpha}=A+B{zeta} +C{mu}, las consonantes resultaron: A=-33 {+-}18, B= 0.74{+-}0.13 y C= 0.56{+-}0.13. El metodo estadistico presentado indica que el ciclo actual (numero 23) tendria un pico de 202{+-} 57 manchas mensuales promedio. Este valor indica que la actividad solar seria alta produciendo importantes efectos en el medio ambiente terrestre.

  15. Upper limit to the 1-20 MeV solar neutron flux.

    Science.gov (United States)

    Lockwood, J. A.; Ifedili, S. O.; Jenkins, R. W.

    1973-01-01

    The upper limit on the quiet time solar neutron flux from 1 to 20 MeV has been measured to be less than .002 neutrons at the 95% confidence level. This result is deduced from the OGO-6 neutron detector measurements of the 'day-night' effect near the equator at low altitudes for the period from June 7 to Dec. 23, 1969. The OGO-6 detector had very low (less than 4%) counting rate contributions from locally produced neutrons in the detecting system and the spacecraft and from charged-particle interactions in the neutron sensor.

  16. INFERENCE OF HEATING PROPERTIES FROM “HOT” NON-FLARING PLASMAS IN ACTIVE REGION CORES. I. SINGLE NANOFLARES

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, W. T.; Bradshaw, S. J. [Department of Physics and Astronomy, Rice University, Houston, TX 77251-1892 (United States); Cargill, P. J., E-mail: will.t.barnes@rice.edu [Space and Atmospheric Physics, The Blackett Laboratory, Imperial College, London SW7 2BW (United Kingdom)

    2016-09-20

    The properties that are expected of “hot” non-flaring plasmas due to nanoflare heating in active regions are investigated using hydrodynamic modeling tools, including a two-fluid development of the Enthalpy Based Thermal Evolution of Loops code. Here we study a single nanoflare and show that while simple models predict an emission measure distribution extending well above 10 MK, which is consistent with cooling by thermal conduction, many other effects are likely to limit the existence and detectability of such plasmas. These include: differential heating between electrons and ions, ionization non-equilibrium, and for short nanoflares, the time taken for the coronal density to increase. The most useful temperature range to look for this plasma, often called the “smoking gun” of nanoflare heating, lies between 10{sup 6.6} and 10{sup 7} K. Signatures of the actual heating may be detectable in some instances.

  17. TITAN’S UPPER ATMOSPHERE FROM CASSINI/UVIS SOLAR OCCULTATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Capalbo, Fernando J.; Bénilan, Yves [Laboratoire Inter-Universitaire des Systèmes Atmosphériques (LISA), UMR 7583 du CNRS, Universités Paris Est Créteil (UPEC) and Paris Diderot - UPD, 61 avenue du Général de Gaulle, F-94010, Créteil Cédex (France); Yelle, Roger V.; Koskinen, Tommi T., E-mail: fernando.capalbo@lisa.u-pec.fr [Lunar and Planetary Laboratory, University of Arizona, 1629 E. University Blvd., Tucson, AZ 85721 (United States)

    2015-12-01

    Titan’s atmosphere is composed mainly of molecular nitrogen, methane being the principal trace gas. From the analysis of 8 solar occultations measured by the Extreme Ultraviolet channel of the Ultraviolet Imaging Spectrograph (UVIS) on board Cassini, we derived vertical profiles of N{sub 2} in the range 1100–1600 km and vertical profiles of CH{sub 4} in the range 850–1300 km. The correction of instrument effects and observational effects applied to the data are described. We present CH{sub 4} mole fractions, and average temperatures for the upper atmosphere obtained from the N{sub 2} profiles. The occultations correspond to different times and locations, and an analysis of variability of density and temperature is presented. The temperatures were analyzed as a function of geographical and temporal variables, without finding a clear correlation with any of them, although a trend of decreasing temperature toward the north pole was observed. The globally averaged temperature obtained is (150 ± 1) K. We compared our results from solar occultations with those derived from other UVIS observations, as well as studies performed with other instruments. The observational data we present confirm the atmospheric variability previously observed, add new information to the global picture of Titan’s upper atmosphere composition, variability, and dynamics, and provide new constraints to photochemical models.

  18. OH in the Tropical Upper Troposhere and Its Relationships to Solar Radiation and Reactive Nitrogen

    Science.gov (United States)

    Gao, R. S.; Rosenlof, K. H.; Fahey, D. W.; Wennberg, P. O.; Hintsa, E. J.; Hanisco, T. F.

    2014-01-01

    In situ measurements of [OH], [HO2] (square brackets denote species concentrations), and other chemical species were made in the tropical upper troposphere (TUT). [OH] showed a robust correlation with solar zenith angle. Beyond this dependence, however, [HOx] ([OH] + [HO2]) only weakly responds to variations in its source and sink species. For example, at a given SZA, [HOx] was broadly independent of the product of [O3] and [H2O]. This suggests that [OH] is heavily buffered in the TUT. One important exception to this result is found in regions with very low [O3], [NO], and [NOy], where [OH] is highly suppressed, pointing to the critical role of NO in sustaining OH in the TUT.

  19. INFERENCE OF HEATING PROPERTIES FROM “HOT” NON-FLARING PLASMAS IN ACTIVE REGION CORES. II. NANOFLARE TRAINS

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, W. T.; Bradshaw, S. J. [Department of Physics and Astronomy, Rice University, Houston, TX 77251-1892 (United States); Cargill, P. J., E-mail: will.t.barnes@rice.edu, E-mail: stephen.bradshaw@rice.edu, E-mail: p.cargill@imperial.ac.uk [Space and Atmospheric Physics, The Blackett Laboratory, Imperial College, London SW7 2BW (United Kingdom)

    2016-12-20

    Despite its prediction over two decades ago, the detection of faint, high-temperature (“hot”) emission due to nanoflare heating in non-flaring active region cores has proved challenging. Using an efficient two-fluid hydrodynamic model, this paper investigates the properties of the emission expected from repeating nanoflares (a nanoflare train) of varying frequency as well as the separate heating of electrons and ions. If the emission measure distribution (EM(T)) peaks at T = T{sub m} , we find that EM(T{sub m}) is independent of details of the nanoflare train, and EM(T) above and below T{sub m} reflects different aspects of the heating. Below T{sub m} , the main influence is the relationship of the waiting time between successive nanoflares to the nanoflare energy. Above T{sub m}, power-law nanoflare distributions lead to an extensive plasma population not present in a mono-energetic train. Furthermore, in some cases, characteristic features are present in EM(T). Such details may be detectable given adequate spectral resolution and a good knowledge of the relevant atomic physics. In the absence of such resolution we propose some metrics that can be used to infer the presence of “hot” plasma.

  20. Upper limits to the quiet-time solar neutron flux from 10 to 100 MeV

    Science.gov (United States)

    Moon, S.; Simnett, G. M.; White, R. S.

    1976-01-01

    A large-area solid-angle double-scatter neutron telescope was flown to search for solar neutrons on three balloon flights in 1971 and 1972. The first two flights were launched from Palestine, Texas, and the third from Cape Girardeau, Missouri. The float altitude on each flight was at about 5 g/sq cm residual atmosphere. Neutrons from 10 to 100 MeV were measured. No solar flares occurred during the flights. Upper limits to the quiet-time solar neutron fluxes at the 95-per cent confidence level are 2.8, 4.6, 9.6, and 9.0 x 10 to the -4th power neutron/sq cm/sec in the energy intervals of 10-30, 30-50, 50-100, and 10-100 MeV, respectively.

  1. Dynamics of the Upper Atmosphere X-ray Emission during the 23rd Solar Cycle

    Science.gov (United States)

    Pugacheva, Galina; Gusev, Anatoly; Martin, Inácio M.; Spjeldvik, Walther

    Long-term observations with the RPS-1instrument on the CORONAS-F satellite (July 2001 to December 2005) permitted the evaluation of the low energy 3.0-31.5 keV X-ray emission flux radiated by the upper nocturnal atmosphere. This emission mostly results from the bremsstrahlung radiation from magnetospheric electrons. The entire nocturnal atmosphere emits energy in the range of 3 to 5 keV, especially in the southern hemisphere, over the Pacific and Indian ocean areas. In the northern hemisphere, the brightest emission from the atmo-sphere is observed at high latitudes in the region of Earth's radiation belt (ERB). In lower northern latitudes, the X-ray emission intensity is rather weak especially during the summer, and on 5-8 keV maps there are regions where there are no discernible emissions. At energies higher than 8 keV, only areas over the South-Atlantic magnetic anomaly and ERB at high latitudes are distinctly observed. This emission is produced by X-rays arising from interactions of ERB particles, descending to the altitude of 500 km in their bounce motion with the am-bient atmospheric matter, and by direct ERB particles passing through the lateral walls and entrance window of the detector (electrons with energies higher than 100 keV and protons with energies higher than 3 MeV). In order to determine the source mechanisms of soft X-rays in the energy range 3 to 8 keV from regions in the ERB, we studied the relationship between the seasonal variation of the X-ray atmospheric radiation and phases of the solar activity cycle. The global monthly, six-monthly, and yearly-averaged X-ray flux distributions were statistically determined for the five-year duration of the CORONAS-F mission. From these distributions, it is possible to infer about the influence of the phase of the solar activity and seasonal effects on the fluxes with energy in the range of 3 to 8 keV. Analysis of these data revealed important regularities in the behavior of this emission. We noted that

  2. Estimation of past solar and upper atmosphere conditions from historical and modern auroral observations

    Directory of Open Access Journals (Sweden)

    W. Schröder

    2004-06-01

    Full Text Available On the basis of the analysis of the data of auroral observations at middle latitudes during low solar activity, and modern spectrophotometric research, the feasibility of their joint use for the estimation of the level of the solar activity during periods without instrumental measurements is discussed. In this paper an attempt is undertaken to determine quantitative information on solar activity by comparing the data of visual auroral observations with the modern parameter of their luminescence.

  3. THE ROLE OF NITROGEN IN TITAN’S UPPER ATMOSPHERIC HYDROCARBON CHEMISTRY OVER THE SOLAR CYCLE

    Energy Technology Data Exchange (ETDEWEB)

    Luspay-Kuti, A.; Mandt, K. E.; Greathouse, T. K. [Department of Space Research, Southwest Research Institute, San Antonio, TX 78228 (United States); Westlake, J. H. [Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723 (United States); Plessis, S., E-mail: aluspaykuti@swri.edu [Fund Kis, F-92160 Antony (France)

    2016-06-01

    Titan’s thermospheric photochemistry is primarily driven by solar radiation. Similarly to other planetary atmospheres, such as Mars’, Titan’s atmospheric structure is also directly affected by variations in the solar extreme-UV/UV output in response to the 11-year-long solar cycle. Here, we investigate the influence of nitrogen on the vertical production, loss, and abundance profiles of hydrocarbons as a function of the solar cycle. Our results show that changes in the atmospheric nitrogen atomic density (primarily in its ground state N({sup 4}S)) as a result of photon flux variations have important implications for the production of several minor hydrocarbons. The solar minimum enhancement of CH{sub 3}, C{sub 2}H{sub 6}, and C{sub 3}H{sub 8}, despite the lower CH{sub 4} photodissociation rates compared with solar maximum conditions, is explained by the role of N({sup 4}S). N({sup 4}S) indirectly controls the altitude of termolecular versus bimolecular chemical regimes through its relationship with CH{sub 3}. When in higher abundance during solar maximum at lower altitudes, N({sup 4}S) increases the importance of bimolecular CH{sub 3} + N({sup 4}S) reactions producing HCN and H{sub 2}CN. The subsequent remarkable CH{sub 3} loss and decrease in the CH{sub 3} abundance at lower altitudes during solar maximum affects the overall hydrocarbon chemistry.

  4. The Upper Limit to the Theoretical Efficiency of P-N Homojunction and Interfacial Layer Heterojunction Solar Cells.

    Science.gov (United States)

    Spitzer, Mark Bradley

    The physical mechanisms governing photovoltaic energy conversion in p-n homojunction and interfacial layer heterojunction (ILH) solar cells are examined. The usefulness of minority carrier mirrors (MCM) in such cells is studied by solving the minority carrier diffusion equation in the n- and p-type quasi-neutral regions of the cell, with boundary conditions representing MCM's at the ends of these regions. In this formalism, the MCM is considered to be an interfacial plane having zero surface recombination velocity. Non -zero values are also considered. It is shown that the MCM improves the open circuit voltage of the solar cell when it is located within a diffusion length of the junction between the n- and p-type regions. The effect of the MCM diminishes as the distance between it and the junction increases. The above analysis is applied to the direct gap materials CuInSe(,2) (E = 1.0eV) and GaAs (E = 1.43eV). It is shown that the theoretical upper limit to the conversion efficiency for devices employing MCM's on the front and back is approximately 26% for a CuInSe(,2) cell of width 2 microns. The analysis is also applied to cells made from silicon. A cell thickness of approximately 300 microns is necessary to absorb all the light owing to the indirect bandgap of silicon, yet the solar cell must be made thin in order to attain the maximum effect of the MCM's. A concept of internal light trapping is discussed; this trapping causes the light to undergo multiple reflections within the thin cell. By solving the minority carrier diffusion equation with appropriate generation function, it is shown that the upper limit to the efficiency is approximately 27%, for a cell of 15 microns in width. The ILH solar cell is examined. A model describing current transport in the ILH cell is discussed and applied to the MIS solar cell. A new type of solar cell, the back surface MIS cell, is considered. The model is applied to this type of cell and the efficiency is calculated. The ILH

  5. The plasma properties of the solar upper atmosphere determined from high resolution observations and the nature of the physical processes sustaining it

    International Nuclear Information System (INIS)

    Feldman, U.

    1994-01-01

    Half a century ago, it was established that the temperature of the ''quiescent'' solar corona is ∼10 6 K (∼100 eV). Wave theories have been used to explain the means by which the Sun keeps the corona about 200 times hotter than the 5000 K (∼0.5 eV) photosphere. In recent years, it has been suggested that a mechanism other than wave dissipation heats the ''quiescent'' corona and other transient phenomena that occur in the upper solar atmosphere. It is postulated by some that the solar upper atmosphere is heated by small bursts of energy resulting from magnetic reconnection. In this paper, the plasma properties of the upper solar atmosphere, a domain that, when flares are included, encompasses about three orders of magnitude in temperature (3x10 4 --3x10 7 K) and four orders of magnitude in electron density (3x10 8 ---3x10 12 cm -3 ), are described. It is shown that conventional scenarios based on magnetic reconnections may not adequately explain the observed plasma properties of the solar upper atmosphere. However, a model, consisting of electric currents flowing along magnetic field lines may have a better chance simulating the observed properties. For quiescent solar upper atmosphere phenomena, constant currents are needed to simulate the observations, while for flares, currents supplied by an exponentially decaying storage media are required

  6. Upper limits for stratospheric H2O2 and HOCl from high resolution balloon-borne infrared solar absorption spectra

    Science.gov (United States)

    Larsen, J. C.; Rinsland, C. P.; Goldman, A.; Murcray, D. G.; Murcray, F. J.

    1985-01-01

    Solar absorption spectra from two stratospheric balloon flights have been analyzed for the presence of H2O2 and HOCl absorption in the 1230.0 to 1255.0 per cm region. The data were recorded at 0.02 per cm resolution during sunset with the University of Denver interferometer system on October 27, 1978 and March 23, 1981. Selected spectral regions were analyzed with the technique of nonlinear least squares spectral curve fitting. Upper limits of 0.33 ppbv for H2O2 and 0.36 ppbv for HOCl near 28 km are derived from the 1978 flight data while upper limits of 0.44 ppbv for H2O2 and 0.43 ppbv for HOCl at 29.5 km are obtained from the 1981 flight data.

  7. Retrieval of upper atmosphere pressure-temperature profiles from high resolution solar occultation spectra

    Science.gov (United States)

    Rinsland, C. P.; Russell, J. M., III; Park, J. H.; Namkung, J.

    1987-01-01

    Pressure-temperature profiles over the 18 to 75 km altitude range were retrieved from 0.01 cm(-1) resolution infrared solar absorption spectra recorded with the Atmospheric Trace Molecule Spectroscopy (ATMOS) Fourier transform spectrometer operating in the solar occultation mode during the Spacelab 3 shuttle mission (April 30 to May 1, 1985). The analysis method is described and preliminary results deduced for five occultation events are compared to correlative pressure-temperature measurments.

  8. Upper limits to the masses of objects in the solar comet cloud

    International Nuclear Information System (INIS)

    Hills, J.G.

    1985-01-01

    The lack of a large steady stream of long-period comets with semi-major axes less than 2 x 10 4 AU rules out the sun having a companion more massive than about 0.01 M/sub solar/ with a semi-major axis less than about 1 x 10 4 AU. Any companion with a semi-major axis between 1 x 10 4 AU and 5 x 10 4 AU has more than a 50% probability of having entered the planetary system during the lifetime of the Solar System. The lack of apparent damage to the planetary system rules out any companion more massive than about 0.02 M/sub solar/ with a semi-major axis less than about 5 x 10 4 AU

  9. Solar tides in the equatorial upper thermosphere: A comparison between AE-E data and the TIGCM for solstice, solar minimum conditions

    International Nuclear Information System (INIS)

    Burrage, M.D.; Storz, M.F.; Abreu, V.J.; Fesen, C.G.; Roble, R.G.

    1991-01-01

    Equatorial thermospheric tidal temperatures and densities inferred from Atmosphere Explorer E (AE-E) mass spectrometer data are compared with theoretical predictions from the National Center for Atmospheric Research Thermosphere/Ionisphere General Circulation Model (TIGCM) for solar minimum, solstice conditions. The thermospheric diurnal and semidiurnal tides are excited in situ by solar heating and by ion-neutral momentum coupling. Semidiurnal tides are also generated by upward propagating waves excited by heating in the lower atmosphere. The model calculations include all of these sources. The TIGCM reproduces the gross tidal features observed by the satellite, including the midnight temperature anomaly, and the diurnal phases are in good agreement for the densities of atomic oxygen and molecular nitrogen. However, for the neutral temperature, the predicted phases are 1-2 hours earlier than observed. In addition, the diurnal temperature and density amplitudes predicted by the model are considerably weaker than indicated by the AE-E measurements. The semidiurnal variations found in the observations agree well with the model for December solstice but not for June. The present results indicate that upward propagating tides from the lower atmosphere are responsible for at least half of the amplitude of the semidiurnal tide in the upper thermosphere

  10. Letter to the EditorOn the use of the sunspot number for the estimation of past solar and upper atmosphere conditions from historical and modern auroral observations

    Directory of Open Access Journals (Sweden)

    Vaquero

    2005-07-01

    Full Text Available In this short contribution the use of different sunspot numbers for the estimation of past solar and upper atmosphere conditions from historical and modern auroral observations realised by Schröder et al. (2004 is analysed. Moreover, some comments are made on the relationships between mean annual visual observations of the auroras at middle latitudes of Europe and the mean annual sunspot number during 1780–1829. Keywords. Atmospheric composition and structure (Airglow and aurora – Magnetospheric physics (Auroral phenomena, solar wind-magnetosphere interactions – History of geophysics (Solar-planetary relationship

  11. Black light visualized solar lentigines on the shoulders and upper back are associated with objectively measured UVR exposure and cutaneous malignant melanoma

    DEFF Research Database (Denmark)

    Idorn, Luise Winkel; Datta, Pameli; Heydenreich, Jakob

    2015-01-01

    , and to investigate the association between solar lentigines and cutaneous malignant melanoma (CMM). Forty-eight patients with CMM and 48 controls that matched the patients individually by age, sex, constitutive skin type and occupation participated. Solar lentigines on the shoulders and upper back were counted....... Among controls, the number of solar lentigines was positively associated with daily hours spent outdoors between noon and 3 pm on holidays (P = 0.027), days at the beach (P = 0.048) and reported number of life sunburns (P ... lentigines (P = 0.044). There was a positive association between CMM and higher solar lentigines grade; Category III versus Category I (P = 0.002) and Category II versus Category I (P = 0.014). Our findings indicate that solar lentigines in healthy individuals are associated with number of life sunburns...

  12. Inorganic iodine in the tropical upper troposphere and lower stratosphere as derived from balloon-borne solar occultation observations

    Science.gov (United States)

    Butz, A.; Dorf, M.; Kreycy, S.; Kritten, L.; Prados, C.; Pfeilsticker, K.

    2009-04-01

    The budget and photochemistry of iodine is assessed in the tropical Upper Troposphere/ Lower Stratosphere (UT/LS) where the halogen source gases enter the stratosphere and supply the stratosphere with halogen species. Two stratospheric balloon flights of the LPMA/DOAS (Limb Profile Monitor of the Atmosphere/Differential Optical Absorption Spectrometer) payload were performed from a tropical station in north-eastern Brazil (5°S, 43°W) in June 2005 and June 2008. The LPMA/DOAS payload conducted spectroscopic direct sun measurements in the UV/visible and infrared spectral range during balloon ascent/descent and in solar occultation geometry. Here we focus on the outcome of the occultation measurements during sunrise and sunset. The DOAS observations allow for the retrieval of IO and OIO from their absorption features in the visible spectral range. Neither species could be detected unambiguously with detection limits ranging between 0.01 and 0.2 ppt in the UT/LS. Constraining a stratospheric chemistry model by the inferred detection limits for IO and OIO, yields an upper limit for Iy of 0.1 to 0.3 ppt.

  13. Solar Cycle Variation of Upper Thermospheric Temperature Over King Sejong Station, Antarctica

    Directory of Open Access Journals (Sweden)

    Jong-Kyun Chung

    2000-12-01

    Full Text Available A ground Fabry-Perot interferometer has been used to measure atomic oxygen nightglow (OI 630.0 nm from the thermosphere (about 250 km at King Sejong station (KSS, geographic: 62.22oS, 301.25oE; geomagnetic: 50.65oS, 7.51oE, Antarctica. While numerous studies of the thermosphere have been performed on high latitude using ground-based Fabry-Perot interferometers, the thermospheric measurements in the Southern Hemisphere are relatively new and sparse. Therefore, the nightglow measurements at KSS play an important role in extending the thermospheric studies to the Southern Hemisphere. In this study, we investigated the effects of the geomagnetic and solar activities on the thermospheric neutral temperatures that have been observed at KSS in 1989 and 1997. The measured average temperatures are 1400 K in 1989 and 800 K in 1997, reflecting the influence of the solar activity. The measurements were compared with empirical models, MSIS-86 and semi-empirical model, VSH.

  14. Design and modeling of an SJ infrared solar cell approaching upper limit of theoretical efficiency

    Science.gov (United States)

    Sahoo, G. S.; Mishra, G. P.

    2018-01-01

    Recent trends of photovoltaics account for the conversion efficiency limit making them more cost effective. To achieve this we have to leave the golden era of silicon cell and make a path towards III-V compound semiconductor groups to take advantages like bandgap engineering by alloying these compounds. In this work we have used a low bandgap GaSb material and designed a single junction (SJ) cell with a conversion efficiency of 32.98%. SILVACO ATLAS TCAD simulator has been used to simulate the proposed model using both Ray Tracing and Transfer Matrix Method (under 1 sun and 1000 sun of AM1.5G spectrum). A detailed analyses of photogeneration rate, spectral response, potential developed, external quantum efficiency (EQE), internal quantum efficiency (IQE), short-circuit current density (JSC), open-circuit voltage (VOC), fill factor (FF) and conversion efficiency (η) are discussed. The obtained results are compared with previously reported SJ solar cell reports.

  15. Upper-mesospheric temperatures measured during intense substorms in the declining phase of the January 2005 solar proton events

    Directory of Open Access Journals (Sweden)

    H. Nesse Tyssøy

    2008-09-01

    Full Text Available Temperature measurements from the ALOMAR Weber Na lidar together with cosmic radio noise absorption measurements from IRIS and particle measurements from NOAA 15, 16 and 17 are used to study effects of geomagnetic activity on the polar winter upper-mesospheric temperature. On 21–22 January 2005 we have 14 h of continuous temperature measurement with the Na lidar coinciding with strong geomagnetic activity in the declining phase of one of the hardest and most energetic Solar Proton Event (SPE of solar cycle 23. According to measurements by the imaging riometer IRIS in northern Finland, the temperature measurements coincide with two periods of increased cosmic radio noise absorption. Particle measurements from the three satellites, NOAA 15, 16 and 17 that pass through and near our region of interest confirm that the absorption events are probably due to particle precipitation and not due to changes in e.g. the electron recombination coefficient. The measured temperature variation at 85 and 90 km is dominated by a 7.6-h wave with downward phase propagation and a vertical wavelength of approximately 10 km. Assuming that the wave is due to a lower altitude source independent of the particle precipitation, we do not find any temperature modification that seems to be related to the absorption events. The average temperature is larger than expected above 90 km based on MSIS and the monthly mean from falling spheres, which could be due to particle precipitation and Joule heating prior to our measurement period. There is also a possibility that the identified wave phenomenon is an effect of the geomagnetic activity itself. Earlier studies have reported of similar wavelike structures in wind observations made by the EISCAT VHF radar during SPEs, and found it conceivable that the wave could be excited by the effect of energetic particles precipitating into the mesosphere.

  16. Upper-mesospheric temperatures measured during intense substorms in the declining phase of the January 2005 solar proton events

    Directory of Open Access Journals (Sweden)

    H. Nesse Tyssøy

    2008-09-01

    Full Text Available Temperature measurements from the ALOMAR Weber Na lidar together with cosmic radio noise absorption measurements from IRIS and particle measurements from NOAA 15, 16 and 17 are used to study effects of geomagnetic activity on the polar winter upper-mesospheric temperature. On 21–22 January 2005 we have 14 h of continuous temperature measurement with the Na lidar coinciding with strong geomagnetic activity in the declining phase of one of the hardest and most energetic Solar Proton Event (SPE of solar cycle 23. According to measurements by the imaging riometer IRIS in northern Finland, the temperature measurements coincide with two periods of increased cosmic radio noise absorption. Particle measurements from the three satellites, NOAA 15, 16 and 17 that pass through and near our region of interest confirm that the absorption events are probably due to particle precipitation and not due to changes in e.g. the electron recombination coefficient.

    The measured temperature variation at 85 and 90 km is dominated by a 7.6-h wave with downward phase propagation and a vertical wavelength of approximately 10 km. Assuming that the wave is due to a lower altitude source independent of the particle precipitation, we do not find any temperature modification that seems to be related to the absorption events. The average temperature is larger than expected above 90 km based on MSIS and the monthly mean from falling spheres, which could be due to particle precipitation and Joule heating prior to our measurement period. There is also a possibility that the identified wave phenomenon is an effect of the geomagnetic activity itself. Earlier studies have reported of similar wavelike structures in wind observations made by the EISCAT VHF radar during SPEs, and found it conceivable that the wave could be excited by the effect of energetic particles precipitating into the mesosphere.

  17. Thermal structure and dynamics of the Martian upper atmosphere at solar minimum from global circulation model simulations

    Directory of Open Access Journals (Sweden)

    T. Moffat-Griffin

    2007-11-01

    Full Text Available Simulations of the Martian upper atmosphere have been produced from a self-consistent three-dimensional numerical model of the Martian thermosphere and ionosphere, called MarTIM. It covers an altitude range of 60 km to the upper thermosphere, usually at least 250 km altitude. A radiation scheme is included that allows the main sources of energy input, EUV/UV and IR absorption by CO2 and CO, to be calculated. CO2, N2 and O are treated as the major gases in MarTIM, and are mutually diffused (though neutral chemistry is ignored. The densities of other species (the minor gases, CO, Ar, O2 and NO, are based on diffusive equilibrium above the turbopause. The ionosphere is calculated from a simple photoionisation and charge exchange routine though in this paper we will only consider the thermal and dynamic structure of the neutral atmosphere at solar minimum conditions. The semi-diurnal (2,2 migrating tide, introduced at MarTIM's lower boundary, affects the dynamics up to 130 km. The Mars Climate Database (Lewis et al., 2001 can be used as a lower boundary in MarTIM. The effect of this is to increase wind speeds in the thermosphere and to produce small-scale structures throughout the thermosphere. Temperature profiles are in good agreement with Pathfinder results. Wind velocities are slightly lower compared to analysis of MGS accelerometer data (Withers, 2003. The novel step-by-step approach of adding in new features to MarTIM has resulted in further understanding of the drivers of the Martian thermosphere.

  18. Thermal structure and dynamics of the Martian upper atmosphere at solar minimum from global circulation model simulations

    Directory of Open Access Journals (Sweden)

    T. Moffat-Griffin

    2007-11-01

    Full Text Available Simulations of the Martian upper atmosphere have been produced from a self-consistent three-dimensional numerical model of the Martian thermosphere and ionosphere, called MarTIM. It covers an altitude range of 60 km to the upper thermosphere, usually at least 250 km altitude. A radiation scheme is included that allows the main sources of energy input, EUV/UV and IR absorption by CO2 and CO, to be calculated. CO2, N2 and O are treated as the major gases in MarTIM, and are mutually diffused (though neutral chemistry is ignored. The densities of other species (the minor gases, CO, Ar, O2 and NO, are based on diffusive equilibrium above the turbopause. The ionosphere is calculated from a simple photoionisation and charge exchange routine though in this paper we will only consider the thermal and dynamic structure of the neutral atmosphere at solar minimum conditions. The semi-diurnal (2,2 migrating tide, introduced at MarTIM's lower boundary, affects the dynamics up to 130 km. The Mars Climate Database (Lewis et al., 2001 can be used as a lower boundary in MarTIM. The effect of this is to increase wind speeds in the thermosphere and to produce small-scale structures throughout the thermosphere. Temperature profiles are in good agreement with Pathfinder results. Wind velocities are slightly lower compared to analysis of MGS accelerometer data (Withers, 2003. The novel step-by-step approach of adding in new features to MarTIM has resulted in further understanding of the drivers of the Martian thermosphere.

  19. Solar wind interaction with Mars Upper atmosphere: Results from the one-way coupling between the Multi-fluid MHD model and the M-TGCM model

    Science.gov (United States)

    Dong, C.; Bougher, S. W.; Ma, Y.; Toth, G.; Nagy, A. F.; Brain, D. A.; Najib, D.

    2012-12-01

    The study of the solar wind interaction with Mars upper atmosphere/ionosphere has triggered great interest in recent years. Among the large number of topics in this research area, the investigation of ion escape rates has become increasingly important due to its potential impact on the long-term evolution of Mars atmosphere (e.g., loss of water) over its history. In the present work, we adopt the 3D Mars neutral atmosphere profiles from the well-regarded Mars Thermospheric Global Circulation Model (M-TGCM) and one-way couple it with the 3D BATS-R-US Mars multi-fluid MHD model that solves separate momentum equations for each ion species. The M-TGCM model takes into account the effects of the solar cycle (solar minimum: F10.7=70 and solar maximum: F10.7=200 with equinox condition: Ls=0), allowing us to investigate the effects of the solar cycle on the Mars upper atmosphere ion escape by using a one-way coupling, i.e., the M-TGCM model outputs are used as inputs for the multi-fluid MHD model. A case for solar maximum with extremely high solar wind parameters is also investigated to estimate how high the escape flux can be for such an extreme case. Moreover, the ion escape flux along a satellite trajectory will be studied. This has the potential to provide predictions of ion escape rates for comparison to future data to be returned by the MAVEN mission (2012-2016). In order to make the code run more efficiently, we adopt a more appropriate grid structure compared to the one used previously. This new grid structure will benefit us to investigate the effects of some dynamic events (such as CME and dust storm) on the ion escape flux.

  20. Solar flares as proxy for the young Sun: satellite observed thermosphere response to an X17.2 flare of Earth's upper atmosphere

    Directory of Open Access Journals (Sweden)

    S. Krauss

    2012-08-01

    Full Text Available We analyzed the measured thermospheric response of an extreme solar X17.2 flare that irradiated the Earth's upper atmosphere during the so-called Halloween events in late October/early November 2003. We suggest that such events can serve as proxies for the intense electromagnetic and corpuscular radiation environment of the Sun or other stars during their early phases of evolution. We applied and compared empirical thermosphere models with satellite drag measurements from the GRACE satellites and found that the Jacchia-Bowman 2008 model can reproduce the drag measurements very well during undisturbed solar conditions but gets worse during extreme solar events. By analyzing the peak of the X17.2 flare spectra and comparing it with spectra of young solar proxies, our results indicate that the peak flare radiation flux corresponds to a hypothetical Sun-like star or the Sun at the age of approximately 2.3 Gyr. This implies that the peak extreme ultraviolet (EUV radiation is enhanced by a factor of about 2.5 times compared to today's Sun. On the assumption that the Sun emitted an EUV flux of that magnitude and by modifying the activity indices in the Jacchia-Bowman 2008 model, we obtain an average exobase temperature of 1950 K, which corresponds with previous theoretical studies related to thermospheric heating and expansion caused by the solar EUV flux.

  1. The temporal behavior of upper stratospheric ozone at low latitudes - Evidence from Nimbus 4 BUV data for short-term responses to solar ultraviolet variability

    Science.gov (United States)

    Hood, L. L.

    1984-01-01

    Ozone mixing ratios at pressure levels near 2 mbar are analyzed for the purpose of estimating the average response of the upper stratospheric ozone to solar UV variability on the time scale of the solar rotation period. The data were obtained from observations made with the Nimbus 4 backscattering UV radiometer in 13 latitude zones between 65 degrees N and 65 degrees S. The anaysis showed that temporal variations are negatively correlated with changes in zonally averaged equivalent temperature measured simultaneously by Nimbus 4 radiometer. A linear regression analysis is performed in order to obtain estimates of the average percent change of ozone at low latitudes, on the considered time scale for given changes in 10.7-cm flux, and in the UV flux model developed by Lean et al. (1982). Reproductions of the ozone profiles are provided.

  2. Modeling the Soft X-Ray During Solar Flares

    Science.gov (United States)

    Leaman, C. J.

    2016-12-01

    Solar Radiation can effect our communication and navigation systems here on Earth. In particular, solar X-ray (SXR) and extreme ultraviolet (EUV) radiation is responsible for ionizing (charging) earth's upper atmosphere, and sudden changes in the ionosphere can disrupt high frequency communication systems (e.g. airplane-to-ground) and degrade the location accuracy for GPS navigation. New soft X-ray flare data are needed to study the sources for the SXR radiation and variability of the solar flares and thus help to answer questions if all flares follow the same trend or have different plasma characteristics? In December 2015, the Miniature X-Ray Solar Spectrometer (MinXSS) launched from Cape Canaveral Florida to answer those questions. The MinXSS CubeSat is a miniature satellite that was designed to measure the soft X-ray spectra and study flares in the 1-15 Å wavelength range. So far, the CubeSat has observed more than ten flares. The MinXSS flare data are plotted in energy vs irradiance to display the soft X-ray spectra, and these spectra are compared with different types of CHIANTI models of the soft X-ray radiation. One comparison is for non-flaring spectra using AIA EUV images to identify solar features called active regions, coronal holes, and quiet sun, and then using the fractional area of each feature to calculate a CHIANTI-based spectrum. This comparison reveals how important the active region radiation is for the SXR spectra. A second comparison is for flare spectra to several isothermal models that were created using CHIANTI. The isothermal model comparisons were done with both the raw count spectra from MinXSS and the derived irradiance spectra. This dual comparison helps to validate the irradiance conversion algorithm for MinXSS. Comparisons of the MinXSS data to the models show that flares tend to follow a temperature pattern. Analysis of the MinXSS data can help us understand our sun better, could lead to better forecasts of solar flares, and thus

  3. Computational Fluid Dynamics Model for Solar Thermal Storage Tanks with Helical Jacket Heater and Upper Spiral Coil Heater

    International Nuclear Information System (INIS)

    Baek, Seung Man; Zhong, Yiming; Nam, Jin Hyun; Chung, Jae Dong; Hong, Hiki

    2013-01-01

    In a solar domestic hot water (Shadow) system, solar energy is collected using collector panels, transferred to a circulating heat transfer fluid (brine), and eventually stored in a thermal storage tank (Test) as hot water. In this study, a computational fluid dynamics (CAD) model was developed to predict the solar thermal energy storage in a hybrid type Test equipped with a helical jacket heater (mantle heat exchanger) and an immersed spiral coil heater. The helical jacket heater, which is the brine flow path attached to the side wall of a Test, has advantages including simple system design, low brine flow rate, and enhanced thermal stratification. In addition, the spiral coil heater further enhances the thermal performance and thermal stratification of the Test. The developed model was validated by the good agreement between the CAD results and the experimental results performed with the hybrid-type Test in Shadow settings

  4. DYNAMO: a Mars upper atmosphere package for investigating solar wind interaction and escape processes, and mapping Martian fields

    DEFF Research Database (Denmark)

    Chassefiere, E.; Nagy, A.; Mandea, M.

    2004-01-01

    DYNAMO is a small multi-instrument payload aimed at characterizing current atmospheric escape, which is still poorly constrained, and improving gravity and magnetic field representations, in order to better understand the magnetic, geologic and thermal history of Mars. The internal structure...... of periapsis 170 km), and in a lesser extent 2a, offers an unprecedented opportunity to investigate by in situ probing the chemical and dynamical properties of the deep ionosphere, thermosphere, and the interaction between the atmosphere and the solar wind, and therefore the present atmospheric escape rate...

  5. New Solar Soft X-ray Observations from the X123 Spectrometer

    Science.gov (United States)

    Caspi, A.; McTiernan, J. M.; Warren, H. P.; Woods, T. N.

    2014-12-01

    The Amptek X123 is a new soft X-ray photon-counting spectrometer, based on a silicon drift detector with integrated thermoelectric cooler, vacuum housing, and multi-channel analyzer (including pulse pile-up rejection), capable of measuring solar line and continuum emission from ~0.5 to ~30 keV with ~0.15 keV FWHM resolution. It was flown on two recent SDO/EVE sounding rocket calibration underflights, is the primary science instrument on the upcoming Miniature X-ray Solar Spectrometer (MinXSS) NASA CubeSat, and is part of the proposed instrument payload for the CubeSat Imaging X-ray Solar Spectrometer (CubIXSS) mission concept. With the best resolution yet obtained from a broadband X-ray spectrometer, the X123 will enable new studies of plasma heating and particle acceleration, during flares and quiescent periods, and help to fill a crucial observational gap from ~0.2 to ~1.2 keV, not currently measured by existing instruments but critical for understanding solar-driven dynamics in Earth's upper atmosphere (ionosphere, thermosphere, mesosphere). We present results from a new analysis of X123 data obtained from the SDO/EVE rocket flights. In preparation for future MinXSS and CubIXSS data, we adapt a recently-developed technique combining EUV and X-ray spectra from SDO/EVE and RHESSI, respectively, to obtain a self-consistent differential emission measure (DEM) over the full range of coronal temperatures, ~2-50 MK. Including the X123 rocket X-ray spectra, we apply the adapted technique to examine both the coronal DEM and composition during quiescent (non-flaring) times with varying activity levels, obtaining constraints on the high-temperature extent of the quiescent DEM, the elemental abundances, and any potential non-thermal emission, and use the observations to extrapolate the spectrum to the poorly-observed ~0.2-1.2 keV band. We compare these results with those from a parallel technique using SDO/AIA imaging data. We discuss the implications for coronal plasma

  6. Ionospheric Absorption on 1539 Khz in Relation to Solar Ionizing Radiation

    Science.gov (United States)

    Boska, J.

    1984-01-01

    Radio wave absorption data on 1539 kHz for the summer period of 1978 to 1980 are considered in relation to variations of solar X-ray and L-alpha radiation. It is shown that under non-flare conditions L-alpha dominates in controlling absorption and that X-rays contribute about 10% to the total absorption. Optimum regression equations show that absorption is proportional to the m-th power of ionizing flux where m 1. The role of correcting L-alpha values, measured by the AE-E satellite, is discussed.

  7. Solar wind interaction with Mars' upper atmosphere: Results from 3-D studies using one-way coupling between the Multi-fluid MHD, the M-GITM and the AMPS models

    Science.gov (United States)

    Dong, C.; Bougher, S. W.; Ma, Y.; Toth, G.; Lee, Y.; Nagy, A. F.; Tenishev, V.; Pawlowski, D. J.; Meng, X.; Combi, M. R.

    2013-12-01

    The study of the solar wind interaction with Mars upper atmosphere/ionosphere has triggered a great of interest in recent years. Among the large number of topics in this research area, the investigation of ion escape fluxes has become increasingly important due to its potential impact on the long-term evolution of Mars atmosphere (e.g., loss of water) over its history. In the present work, we adopt the 3-D Mars cold neutral atmosphere profiles (0~300 km) from the newly developed and validated Mars Global Ionosphere Thermosphere Model (M-GITM) and the 3-D hot oxygen profiles (100km~5RM) from the exosphere Monte Carlo model Adaptive Mesh Particle Simulator (AMPS). We apply these 3-D model outputs fields into the 3-D BATS-R-US Mars multi-fluid MHD model (100km~20RM) that can better simulate the interplay between Mars upper atmosphere and solar wind by considering the dynamics of individual ion species. The multi-fluid model solves separate continuity, momentum and energy equations for each ion species (H+, O+, O2+, CO2+). The M-GITM model together with the AMPS exosphere model take into account the effects of solar cycle and seasonal variations on both cold and hot neutral atmospheres, allowing us to investigate the corresponding effects on the Mars upper atmosphere ion escape by using a one-way coupling approach, i.e., both the M-GITM and AMPS model outputs are used as the inputs for the multi-fluid model and M-GITM is used as input into the AMPS exosphere model. The calculations are carried out for selected cases with different nominal solar wind, solar cycle and crustal field orientation conditions. This work has the potential to provide predictions of ion escape rates for comparison to future data to be returned by the MAVEN primary mission (2014-2016) and thereby improve our understanding of present day escape processes. Acknowledgments: The work presented here was supported by NASA grants NNH10CC04C, NNX09AL26G, NSF grant ATM-0535811.

  8. Magnetohydrodynamic Simulation of a Solar Flare

    OpenAIRE

    横山, 央明; Takaaki, YOKOYAMA; 国立天文台; National Astronomical Observatory of Japan

    2002-01-01

    A solar flare is an explosive release of the magnetic energy in the solar upper atmosphere, the corona. The magnetic reconnection model of a solar flare and the results of magnetohydrohynamic simulations are shown.

  9. Simultaneous Observation of High Temperature Plasma of Solar Corona By TESIS CORONAS-PHOTON and XRT Hinode.

    Science.gov (United States)

    Reva, A.; Kuzin, S.; Bogachev, S.; Shestov, S.

    2012-05-01

    The Mg XII spectroheliograph is a part of instrumentation complex TESIS (satellite CORONAS-PHOTON). This instrument builds monochromatic images of hot plasma of the solar corona (λ = 8.42 Å, T>5 MK). The Mg XII spectroheliograph observed hot plasma in the non-flaring active-region NOAA 11019 during nine days. We reconstructed DEM of this active region with the help of genetic algorithm (we used data of the Mg XII spectroheliograph, XRT and EIT). Emission measure of the hot component amounts 1 % of the emission measure of the cool component.

  10. Are Solar Active Regions with Major Flares More Fractal, Multifractal, or Turbulent Than Others?

    Science.gov (United States)

    Georgoulis, Manolis K.

    2012-02-01

    Multiple recent investigations of solar magnetic-field measurements have raised claims that the scale-free (fractal) or multiscale (multifractal) parameters inferred from the studied magnetograms may help assess the eruptive potential of solar active regions, or may even help predict major flaring activity stemming from these regions. We investigate these claims here, by testing three widely used scale-free and multiscale parameters, namely, the fractal dimension, the multifractal structure function and its inertial-range exponent, and the turbulent power spectrum and its power-law index, on a comprehensive data set of 370 timeseries of active-region magnetograms (17 733 magnetograms in total) observed by SOHO’s Michelson Doppler Imager (MDI) over the entire Solar Cycle 23. We find that both flaring and non-flaring active regions exhibit significant fractality, multifractality, and non-Kolmogorov turbulence but none of the three tested parameters manages to distinguish active regions with major flares from flare-quiet ones. We also find that the multiscale parameters, but not the scale-free fractal dimension, depend sensitively on the spatial resolution and perhaps the observational characteristics of the studied magnetograms. Extending previous works, we attribute the flare-forecasting inability of fractal and multifractal parameters to i) a widespread multiscale complexity caused by a possible underlying self-organization in turbulent solar magnetic structures, flaring and non-flaring alike, and ii) a lack of correlation between the fractal properties of the photosphere and overlying layers, where solar eruptions occur. However useful for understanding solar magnetism, therefore, scale-free and multiscale measures may not be optimal tools for active-region characterization in terms of eruptive ability or, ultimately, for major solar-flare prediction.

  11. Strategy for the Explorer program for solar and space physics

    International Nuclear Information System (INIS)

    1984-01-01

    Contents include: executive summary; the Explorer program - background and current status; strategy - level of activity; solar-terrestrial research (solar physics, space plasma physics, and upper atmospheric physics)

  12. SOLAR FLARE PREDICTION USING SDO/HMI VECTOR MAGNETIC FIELD DATA WITH A MACHINE-LEARNING ALGORITHM

    International Nuclear Information System (INIS)

    Bobra, M. G.; Couvidat, S.

    2015-01-01

    We attempt to forecast M- and X-class solar flares using a machine-learning algorithm, called support vector machine (SVM), and four years of data from the Solar Dynamics Observatory's Helioseismic and Magnetic Imager, the first instrument to continuously map the full-disk photospheric vector magnetic field from space. Most flare forecasting efforts described in the literature use either line-of-sight magnetograms or a relatively small number of ground-based vector magnetograms. This is the first time a large data set of vector magnetograms has been used to forecast solar flares. We build a catalog of flaring and non-flaring active regions sampled from a database of 2071 active regions, comprised of 1.5 million active region patches of vector magnetic field data, and characterize each active region by 25 parameters. We then train and test the machine-learning algorithm and we estimate its performances using forecast verification metrics with an emphasis on the true skill statistic (TSS). We obtain relatively high TSS scores and overall predictive abilities. We surmise that this is partly due to fine-tuning the SVM for this purpose and also to an advantageous set of features that can only be calculated from vector magnetic field data. We also apply a feature selection algorithm to determine which of our 25 features are useful for discriminating between flaring and non-flaring active regions and conclude that only a handful are needed for good predictive abilities

  13. Variations of daytime and nighttime electron temperature and heat flux in the upper ionosphere, topside ionosphere and lower plasmasphere for low and high solar activity

    Czech Academy of Sciences Publication Activity Database

    Truhlík, Vladimír; Třísková, Ludmila; Bilitza, D.; Podolská, Kateřina

    2009-01-01

    Roč. 71, 17-18 (2009), s. 2055-2063 ISSN 1364-6826 R&D Projects: GA AV ČR IAA300420603 Grant - others: NASA (US) NNH06CD17C Institutional research plan: CEZ:AV0Z30420517 Keywords : Electron temperature * Solar activity variation * Latitudinal and field aligned profiles * Heat flux Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 1.643, year: 2009

  14. THE TAOS PROJECT: UPPER BOUNDS ON THE POPULATION OF SMALL KUIPER BELT OBJECTS AND TESTS OF MODELS OF FORMATION AND EVOLUTION OF THE OUTER SOLAR SYSTEM

    International Nuclear Information System (INIS)

    Bianco, F. B.; Zhang, Z.-W.; King, S.-K.; Wang, J.-H.; Lee, T.; Lin, H.-C.; Lehner, M. J.; Mondal, S.; Giammarco, J.; Holman, M. J.; Alcock, C.; Coehlo, N. K.; Axelrod, T.; Byun, Y.-I.; Kim, D.-W.; Chen, W. P.; Cook, K. H.; Dave, R.; De Pater, I.; Lissauer, J. J.

    2010-01-01

    We have analyzed the first 3.75 years of data from the Taiwanese American Occultation Survey (TAOS). TAOS monitors bright stars to search for occultations by Kuiper Belt objects (KBOs). This data set comprises 5 x 10 5 star hours of multi-telescope photometric data taken at 4 or 5 Hz. No events consistent with KBO occultations were found in this data set. We compute the number of events expected for the Kuiper Belt formation and evolution models of Pan and Sari, Kenyon and Bromley, Benavidez and Campo Bagatin, and Fraser. A comparison with the upper limits we derive from our data constrains the parameter space of these models. This is the first detailed comparison of models of the KBO size distribution with data from an occultation survey. Our results suggest that the KBO population is composed of objects with low internal strength and that planetary migration played a role in the shaping of the size distribution.

  15. Solar quiescent Active Region temperature distribution inferred from the Miniature Solar X-ray Solar Spectrometer (MinXSS) CubeSat soft X-ray spectra, Hinode X-ray Telescope (XRT) soft X-ray filter images and EUV measurements.

    Science.gov (United States)

    Moore, C. S.; Woods, T. N.; Caspi, A.; Mason, J. P.

    2016-12-01

    Soft X-rays serve as an important diagnostic tool for hot (T > 106 K) solar coronal plasma elemental composition, elemental ionization states, density of emitting plasma and dynamical events triggered by magnetic field structures. Spectrally resolved, solar disc averaged, soft X-ray spectra from the Miniature X-ray Solar Spectrometer (MinXSS) CubeSat combined with spatially resolved soft X-ray filter images from the Hinode X-ray Telescope (XRT) and complimentary EUV data can yield unique inferences of the quiescent (non-flaring) active regions' emitting plasma temperature distribution and chemical composition. This talk will discuss how the MinXSS spectra and Hinode XRT images from the sparsely measured 0.7 - 10 keV ( 0.124 - 1.77 nm) region, can augment estimations of active region temperature distribution and elemental abundance variations that are currently being assessed primarily from typical EUV and hard X-ray observations.

  16. The first X-ray imaging spectroscopy of quiescent solar active regions with NuSTAR

    DEFF Research Database (Denmark)

    Hannah, Iain G.; Grefenstette, Brian W.; Smith, David M.

    2016-01-01

    We present the first observations of quiescent active regions (ARs) using the Nuclear Spectroscopic Telescope Array (NuSTAR), a focusing hard X-ray telescope capable of studying faint solar emission from high-temperature and non-thermal sources. We analyze the first directly imaged and spectrally...... resolved X-rays above 2 keV from non-flaring ARs, observed near the west limb on 2014 November 1. The NuSTAR X-ray images match bright features seen in extreme ultraviolet and soft X-rays. The NuSTAR imaging spectroscopy is consistent with isothermal emission of temperatures 3.1-4.4 MK and emission......, at least an order of magnitude stricter than previous limits. With longer duration observations and a weakening solar cycle (resulting in an increased livetime), future NuSTAR observations will have sensitivity to a wider range of temperatures as well as possible non-thermal emission....

  17. Solar Indices - Solar Irradiance

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of indices related to solar activity contributed by a number of national and private solar observatories located worldwide. This...

  18. Solar Indices - Solar Ultraviolet

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of indices related to solar activity contributed by a number of national and private solar observatories located worldwide. This...

  19. Solar Indices - Solar Corona

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of indices related to solar activity contributed by a number of national and private solar observatories located worldwide. This...

  20. Solar Indices - Solar Flares

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of indices related to solar activity contributed by a number of national and private solar observatories located worldwide. This...

  1. MULTISCALE DYNAMICS OF SOLAR MAGNETIC STRUCTURES

    International Nuclear Information System (INIS)

    Uritsky, Vadim M.; Davila, Joseph M.

    2012-01-01

    Multiscale topological complexity of the solar magnetic field is among the primary factors controlling energy release in the corona, including associated processes in the photospheric and chromospheric boundaries. We present a new approach for analyzing multiscale behavior of the photospheric magnetic flux underlying these dynamics as depicted by a sequence of high-resolution solar magnetograms. The approach involves two basic processing steps: (1) identification of timing and location of magnetic flux origin and demise events (as defined by DeForest et al.) by tracking spatiotemporal evolution of unipolar and bipolar photospheric regions, and (2) analysis of collective behavior of the detected magnetic events using a generalized version of the Grassberger-Procaccia correlation integral algorithm. The scale-free nature of the developed algorithms makes it possible to characterize the dynamics of the photospheric network across a wide range of distances and relaxation times. Three types of photospheric conditions are considered to test the method: a quiet photosphere, a solar active region (NOAA 10365) in a quiescent non-flaring state, and the same active region during a period of M-class flares. The results obtained show (1) the presence of a topologically complex asymmetrically fragmented magnetic network in the quiet photosphere driven by meso- and supergranulation, (2) the formation of non-potential magnetic structures with complex polarity separation lines inside the active region, and (3) statistical signatures of canceling bipolar magnetic structures coinciding with flaring activity in the active region. Each of these effects can represent an unstable magnetic configuration acting as an energy source for coronal dissipation and heating.

  2. Solar building

    OpenAIRE

    Zhang, Luxin

    2014-01-01

    In my thesis I describe the utilization of solar energy and solar energy with building integration. In introduction it is also mentioned how the solar building works, trying to make more people understand and accept the solar building. The thesis introduces different types of solar heat collectors. I compared the difference two operation modes of solar water heating system and created examples of solar water system selection. I also introduced other solar building applications. It is conv...

  3. Solar energy

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This chapter discusses the role solar energy may have in the energy future of the US. The topics discussed in the chapter include the solar resource, solar architecture including passive solar design and solar collectors, solar-thermal concentrating systems including parabolic troughs and dishes and central receivers, photovoltaic cells including photovoltaic systems for home use, and environmental, health and safety issues

  4. Samba Solar; Samba Solar

    Energy Technology Data Exchange (ETDEWEB)

    Thurston, Charles W.

    2012-07-01

    Brazil, the biggest country of the South American subcontinent, has discovered the power of solar energy. Brazil recently introduced net metering of solar power plants and started to open the power supply grid to PV systems. The market has great potential as Brazil is the world's sixth biggest national economy.

  5. Support for solar energy collectors

    Science.gov (United States)

    Cole, Corey; Ardell-Smith, Zachary; Ciasulli, John; Jensen, Soren

    2016-11-01

    A solar energy collection system can include support devices configured to accommodate misalignment of components during assembly. For example, the system can include piles fixed to the earth and an adjustable bearing assembly at the upper end of the pile. The adjustable bearing assembly can include at least one of a vertical adjustment device, a lateral adjustment device and an angular adjustment device. The solar energy collection system can also include a plurality of solar energy collection device pre-wired together and mounted to a support member so as to form modular units. The system can also include enhanced supports for wire trays extending between rows of solar energy collection devices.

  6. Upper GI Endoscopy

    Science.gov (United States)

    ... Upper GI Series Urinary Tract Imaging Urodynamic Testing Virtual Colonoscopy Upper GI Endoscopy What is upper gastrointestinal ( ... endoscopy, a doctor obtains biopsies by passing an instrument through the endoscope to obtain a small piece ...

  7. Solar Features - Solar Flares

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A solar flare is a short-lived sudden increase in the intensity of radiation emitted in the neighborhood of sunspots. For many years it was best monitored in the...

  8. Solar Cookers.

    Science.gov (United States)

    King, Richard C.

    1981-01-01

    Describes the use of solar cookers in the science classroom. Includes instructions for construction of a solar cooker, an explanation of how solar cookers work, and a number of suggested activities. (DS)

  9. Upper Limb Exoskeleton

    NARCIS (Netherlands)

    Rusak, Z.; Luijten, J.; Kooijman, A.

    2015-01-01

    The present invention relates a wearable exoskeleton for a user having a torso with an upper limb to support motion of the said upper limb. The wearable exoskeleton comprises a first fixed frame mountable to the torso, an upper arm brace and a first group of actuators for moving the upper arm brace

  10. Dust Removal from Solar Cells

    Science.gov (United States)

    Ashpis, David E. (Inventor)

    2015-01-01

    A solar panel cleaning device includes a solar panel having a plurality of photovoltaic cells arranged in rows and embedded in the solar panel with space between the rows. A transparent dielectric overlay is affixed to the solar panel. A plurality of electrode pairs each of which includes an upper and a lower electrode are arranged on opposite sides of the transparent dielectric and are affixed thereto. The electrodes may be transparent electrodes which may be arranged without concern for blocking sunlight to the solar panel. The solar panel may be a dielectric and its dielectric properties may be continuously and spatially variable. Alternatively the dielectric used may have dielectric segments which produce different electrical field and which affects the wind "generated."

  11. Non-neutralized Electric Currents in Solar Active Regions and Flare Productivity

    Science.gov (United States)

    Kontogiannis, Ioannis; Georgoulis, Manolis K.; Park, Sung-Hong; Guerra, Jordan A.

    2017-11-01

    We explore the association of non-neutralized currents with solar flare occurrence in a sizable sample of observations, aiming to show the potential of such currents in solar flare prediction. We used the high-quality vector magnetograms that are regularly produced by the Helioseismic Magnetic Imager, and more specifically, the Space weather HMI Active Region Patches (SHARP). Through a newly established method that incorporates detailed error analysis, we calculated the non-neutralized currents contained in active regions (AR). Two predictors were produced, namely the total and the maximum unsigned non-neutralized current. Both were tested in AR time-series and a representative sample of point-in-time observations during the interval 2012 - 2016. The average values of non-neutralized currents in flaring active regions are higher by more than an order of magnitude than in non-flaring regions and correlate very well with the corresponding flare index. The temporal evolution of these parameters appears to be connected to physical processes, such as flux emergence and/or magnetic polarity inversion line formation, that are associated with increased solar flare activity. Using Bayesian inference of flaring probabilities, we show that the total unsigned non-neutralized current significantly outperforms the total unsigned magnetic flux and other well-established current-related predictors. It therefore shows good prospects for inclusion in an operational flare-forecasting service. We plan to use the new predictor in the framework of the FLARECAST project along with other highly performing predictors.

  12. Solar Energy.

    Science.gov (United States)

    Eaton, William W.

    Presented is the utilization of solar radiation as an energy resource principally for the production of electricity. Included are discussions of solar thermal conversion, photovoltic conversion, wind energy, and energy from ocean temperature differences. Future solar energy plans, the role of solar energy in plant and fossil fuel production, and…

  13. Solar Combisystems

    DEFF Research Database (Denmark)

    Thür, Alexander

    2006-01-01

    This note first introduces what is a solar combisystem, the structure how a solar combisystem is build up and what are criteria’s to evaluate a solar combisystem concept. Further on the main components of a solar combisystem, the main characteristics and possible advantages and disadvantages...... compared to each other are described. It is not the goal of this note to explain the technical details how to design all components of a solar combisystem. This is done during other lectures of the solar course and in other basic courses as well. This note tries to explain how a solar combisystem...

  14. Upper Extremity Length Equalization

    OpenAIRE

    DeCoster, Thomas A.; Ritterbusch, John; Crawford, Mark

    1992-01-01

    Significant upper extremity length inequality is uncommon but can cause major functional problems. The ability to position and use the hand may be impaired by shortness of any of the long bones of the upper extremity. In many respects upper and lower extremity length problems are similar. They most commonly occur after injury to a growing bone and the treatment modalities utilized in the lower extremity may be applied to the upper extremity. These treatment options include epiphysiodesis, sho...

  15. Upper Gastrointestinal (GI) Series

    Science.gov (United States)

    ... standard barium upper GI series, which uses only barium a double-contrast upper GI series, which uses both air and ... evenly coat your upper GI tract with the barium. If you are having a double-contrast study, you will swallow gas-forming crystals that ...

  16. Solar Imagery

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of solar photographic and illustrated datasets contributed by a number of national and private solar observatories located worldwide....

  17. Solar Features

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of solar feature datasets contributed by a number of national and private solar observatories located worldwide.

  18. Solar Indices

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of indices related to solar activity contributed by a number of national and private solar observatories located worldwide. This...

  19. Solar Neutrinos

    OpenAIRE

    Antonelli, V.; Miramonti, L.; Peña Garay, Carlos; Serenelli, A.

    2013-01-01

    The study of solar neutrinos has given since ever a fundamental contribution both to astroparticle and to elementary particle physics, offering an ideal test of solar models and offering at the same time relevant indications on the fundamental interactions among particles. After reviewing the striking results of the last two decades, which were determinant to solve the long standing solar neutrino puzzle and refine the Standard Solar Model, we focus our attention on the more recent results in...

  20. Solar holography

    Science.gov (United States)

    Ludman, Jacques E.; Riccobono, Juanita R.; Caulfield, H. John; Upton, Timothy D.

    2002-07-01

    A solar photovoltaic energy collection system using a reflection hologram is described herein. The system uses a single-axis tracking system in conjunction with a spectral- splitting holographic element. The hologram accurately focuses the desired regions of the solar spectrum to match the bandgaps of two ro more different solar cells, while diverting unused IR wavelengths away. Other applications for solar holography include daylighting and greenhouses.

  1. Buying Solar.

    Science.gov (United States)

    Dawson, Joe

    Presented are guidelines for buying solar systems for the individual consumer. This is intended to help the consumer reduce many of the risks associated with the purchase of solar systems, particularly the risks of fraud and deception. Engineering terms associated with solar technology are presented and described to enable the consumer to discuss…

  2. Solar Special

    International Nuclear Information System (INIS)

    Van Roekel, A.; Osborne, J.; Schroeter, S.; De Jong, R.; De Saint Jacob, Y.

    2009-01-01

    Solar power is growing much faster than most policymakers and analysts realise. As costs come down and feed-in tariffs go up across Europe, a number of countries have started in pursuit of market leader Germany. But in Germany criticism is growing of the multi-billion-euro support schemes that keep the solar industry booming. In this section of the magazine several articles are dedicated to developments in solar energy in Europe. The first article is an overview story on the strong growing global market for solar cells, mainly thanks to subsidy schemes. The second article is on the position of foreign companies in the solar market in Italy. Article number three is dedicated to the conditions for solar technology companies to establish themselves in the German state of Saxony. Also the fifth article deals with the development of solar cells in Saxony: scientists, plant manufacturers and module producers in Saxony are working on new technologies that can be used to produce solar electricity cost-effectively. The goal is to bring the price down to match that of conventionally generated electricity within the next few years. The sixth article deals with the the solar power market in Belgium, which may be overheated or 'oversubsidized'. Article seven is on France, which used to be a pioneer in solar technology, but now produces only a fraction of the solar output of market leader Germany. However, new attractive feed-in-tariffs are changing the solar landscape drastically

  3. Solar urticaria

    Directory of Open Access Journals (Sweden)

    Srinivas C

    1995-01-01

    Full Text Available A 35-year-old female and a 41-year-old male presented with clinical features suggestive of solar urticaria. The diagnosis of solar urticaria and the effectiveness of a combination of H1 and H2 blocking antihistamines were confirmed by phototesting with a solar simulator

  4. Solar Indices - Solar Radio Flux

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of indices related to solar activity contributed by a number of national and private solar observatories located worldwide. This...

  5. Solar Coronal Jets: Observations, Theory, and Modeling

    Science.gov (United States)

    Raouafi, N. E.; Patsourakos, S.; Pariat, E.; Young, P. R.; Sterling, A.; Savcheva, A.; Shimojo, M.; Moreno-Insertis, F.; Devore, C. R.; Archontis, V.; hide

    2016-01-01

    Chromospheric and coronal jets represent important manifestations of ubiquitous solar transients, which may be the source of signicant mass and energy input to the upper solar atmosphere and the solar wind. While the energy involved in a jet-like event is smaller than that of nominal solar ares and Coronal Mass Ejections (CMEs), jets share many common properties with these major phenomena, in particular, the explosive magnetically driven dynamics. Studies of jets could, therefore, provide critical insight for understanding the larger, more complex drivers of the solar activity. On the other side of the size-spectrum, the study of jets could also supply important clues on the physics of transients closeor at the limit of the current spatial resolution such as spicules. Furthermore, jet phenomena may hint to basic process for heating the corona and accelerating the solar wind; consequently their study gives us the opportunity to attack a broadrange of solar-heliospheric problems.

  6. Lifetime and production rate of NOx in the upper stratosphere and lower mesosphere in the polar spring/summer after the solar proton event in October–November 2003

    Directory of Open Access Journals (Sweden)

    F. Friederich

    2013-03-01

    Full Text Available We present altitude-dependent lifetimes of NOx, determined with MIPAS/ENVISAT (the Michelson Interferometer for Passive Atmospheric Sounding/the European Environment Satellite, for the Southern polar region after the solar proton event in October–November 2003. Between 50° S and 90° S and decreasing in altitude they range from about two days at 64 km to about 20 days at 44 km. The lifetimes are controlled by transport, mixing and photochemistry. We infer estimates of dynamical lifetimes by comparison of the observed decay to photochemical lifetimes calculated with the SLIMCAT 3-D Model. Photochemical loss contributes to the observed NOx depletion by 0.1% at 44 km, increasing with altitude to 45% at 64 km. In addition, we show the correlation of modelled ionization rates and observed NOx densities under consideration of the determined lifetimes of NOx, and calculate altitude-dependent effective production rates of NOx due to ionization. For that we compare ionization rates of the AIMOS data base with the MIPAS measurements from 15 October–31 December 2003. We derive effective NOx-production rates to be applied to the AIMOS ionization rates which range from about 0.2 NOx-molecules per ion pair at 44 km to 0.7 NOx-molecules per ion pair at 62 km. These effective production rates are considerably lower than predicted by box model simulations which could hint at an overestimation of the modelled ionization rates.

  7. Solar magnetohydrodynamics

    International Nuclear Information System (INIS)

    Priest, E.R.

    1982-01-01

    The book serves several purposes. First set of chapters gives a concise general introduction to solar physics. In a second set the basic methods of magnetohydrodynamics are developed. A third set of chapters is an account of current theories for observed phenomena. The book is suitable for a course in solar physics and it also provides a comprehensive review of present magnetohydrodynamical models in solar physics. (SC)

  8. Solar Simulator

    Science.gov (United States)

    1981-01-01

    Oriel Corporation's simulators have a high pressure xenon lamp whose reflected light is processed by an optical system to produce a uniform solar beam. Because of many different types of applications, the simulators must be adjustable to replicate many different areas of the solar radiation spectrum. Simulators are laboratory tools for such purposes as testing and calibrating solar cells, or other solar energy systems, testing dyes, paints and pigments, pharmaceuticals and cosmetic preparations, plant and animal studies, food and agriculture studies and oceanographic research.

  9. Toward an Efficient Prediction of Solar Flares: Which Parameters, and How?

    Directory of Open Access Journals (Sweden)

    Manolis K. Georgoulis

    2013-11-01

    Full Text Available Solar flare prediction has become a forefront topic in contemporary solar physics, with numerous published methods relying on numerous predictive parameters, that can even be divided into parameter classes. Attempting further insight, we focus on two popular classes of flare-predictive parameters, namely multiscale (i.e., fractal and multifractal and proxy (i.e., morphological parameters, and we complement our analysis with a study of the predictive capability of fundamental physical parameters (i.e., magnetic free energy and relative magnetic helicity. Rather than applying the studied parameters to a comprehensive statistical sample of flaring and non-flaring active regions, that was the subject of our previous studies, the novelty of this work is their application to an exceptionally long and high-cadence time series of the intensely eruptive National Oceanic and Atmospheric Administration (NOAA active region (AR 11158, observed by the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory. Aiming for a detailed study of the temporal evolution of each parameter, we seek distinctive patterns that could be associated with the four largest flares in the AR in the course of its five-day observing interval. We find that proxy parameters only tend to show preflare impulses that are practical enough to warrant subsequent investigation with sufficient statistics. Combining these findings with previous results, we conclude that: (i carefully constructed, physically intuitive proxy parameters may be our best asset toward an efficient future flare-forecasting; and (ii the time series of promising parameters may be as important as their instantaneous values. Value-based prediction is the only approach followed so far. Our results call for novel signal and/or image processing techniques to efficiently utilize combined amplitude and temporal-profile information to optimize the inferred solar-flare probabilities.

  10. Upper respiratory tract (image)

    Science.gov (United States)

    The major passages and structures of the upper respiratory tract include the nose or nostrils, nasal cavity, mouth, throat (pharynx), and voice box (larynx). The respiratory system is lined with a mucous membrane that ...

  11. ACA Federal Upper Limits

    Data.gov (United States)

    U.S. Department of Health & Human Services — Affordable Care Act Federal Upper Limits (FUL) based on the weighted average of the most recently reported monthly average manufacturer price (AMP) for...

  12. Solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Wendel, W.

    1977-03-03

    A solar collector is described. The absorber consists of a plate onto which the light is focussed through lenses. The heat is transported from the absorber to the heat accumulator via metallic heat conductors. In case of insufficient solar radiation, the heat transport from the collector to the accumulator may be interrupted by a disconnecting switch. The casing consists of Eternit.

  13. Solar Sprint

    Science.gov (United States)

    Tabor, Richard; Anderson, Stephen

    2007-01-01

    In the "Solar Sprint" activity, students design, test, and race a solar-powered car built with Legos. The use of ratios is incorporated to simulate the actual work of scientists and engineers. This method encourages fourth-grade students to think about multiple variables and stimulates their curiosity when an activity doesn't come out as…

  14. Solar cooking

    Science.gov (United States)

    Over two billion people face fuel wood shortages, causing tremendous personal and environmental stress. Over 4 million people die prematurely from indoor air pollution. Solar cooking can reduce fuel wood consumption and indoor air pollution. Solar cooking has been practiced and published since th...

  15. Solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Tsukamoto, Moriaki; Hayashibara, Mitsuo

    1988-08-18

    Concerning the exsisting solar cell utilizing wavelength transition, the area of the solar cell element necessary for unit electric power output can be made small, but transition efficiency of the solar cell as a whole including a plastic plate with phosphor is not high. This invention concerns a solar cell which is appropriate for transferring the light within a wide spectrum range of the sunlight to electricilty efficiently, utilizes wavelength transition and has high efficiency per unit area. In other words, the solar cell of this invention has the feature of providing in parallel with a photoelectric transfer layer a layer of wavelength transitioning material (phosphor) which absorbs the light within the range of wavelength of low photoelectric transfer efficiency at the photoelectric transfer layer and emits the light within the range of wavelength in which the photoelectric transfer rate is high on the light incident side of the photoelectric transfer layer. (5 figs)

  16. Solar thermal

    International Nuclear Information System (INIS)

    Jones, J.

    2006-01-01

    While wind power is widely acknowledged as the most developed of the 'new' renewables, the number two technology, in terms of installed capacity functioning worldwide, is solar heating, or solar thermal. The author has investigated recent industry reports on how these markets are developing. The authors of an International Energy Agency (IEA) survey studied 41 countries in depth at the end of 2004, revealing that 141 million m 3 - corresponding to an installed capacity of 98.4 GWth - were installed in the sample countries (these nations represent 3.74 billion people, about 57% of the world's population). The installed capacity within the areas studied represents approximately 85%-90% of the solar thermal market worldwide. The use of solar heating varies greatly between countries - even close neighbours - and between economic regions. Its uptake often has more to do with policy than solar resource. There is also different uptake of technology. In China, Europe and Japan, plants with flat-plate and evacuated tube collectors are used, mainly to heat water and for space heating. Unglazed plastic collectors, used mainly for swimming pool heating, meanwhile, dominate the North American markets. Though the majority of solar heating installations today are installed on domestic rooftops, the larger-scale installations should not be overlooked. One important part of the market is the hotel sector - in particular hotels in locations that serve the seasonal summer holiday market, where solar is extremely effective. Likewise hospitals and residential homes, multi-family apartment blocks and sports centres are all good examples of places where solar thermal can deliver results. There are also a growing number of industrial applications, where solar thermal can meet the hot water needs (and possibly more) of a range of industries, such as food processing and agriculture. The ability of solar to provide a heat source for cooling is expected to become increasingly important as

  17. Solar energy: photovoltaics

    International Nuclear Information System (INIS)

    Goetzberger, A.; Voss, B.; Knobloch, J.

    1994-01-01

    This textbooks covers the following topics: foundations of photovoltaics, solar energy, P-N junctions, physics of solar cells, high-efficiency solar cells, technology of Si solar cells, other solar cells, photovoltaic applications. (orig.)

  18. KamLAND and Solar Antineutrino Spectrum

    CERN Document Server

    Chauhan, B C; Torrente-Lujan, E; Chauhan, Bhag C.; Pulido, Joao

    2004-01-01

    We use the recent KamLAND observations to predict the solar antineutrino spectrum at some confidence limits. We find that a scaling of the antineutrino probability with respect to the magnetic field profile --in the sense that the same probability function can be reproduced by any profile with a suitable peak field value-- can be utilised to obtain a general shape of the solar antineutrino spectrum. This scaling and the upper bound on the solar antineutrino event rate, that can be derived from the data, lead to: 1) an upper bound on the solar antineutrino flux, 2) the prediction of their energy spectrum, as the normalisation of the spectrum can be obtained from the total number of antineutrino events recorded in the experiment. We get $\\phi_{\\bar\

  19. Exploration of the Transition Region-Corona Interface With the Multi-Order Solar EUV Spectrograph Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to observe the solar upper transition region and lower corona in Ne VII 46.5 nm with the Multi-Order Solar EUV Spectrograph (MOSES) rocket payload. The...

  20. Solar neutrinos

    International Nuclear Information System (INIS)

    Schatzman, E.

    1983-01-01

    The solar energy is produced by a series of nuclear reactions taking place in the deep interior of the sun. Some of these reactions produce neutrinos which may be detected, the proper detection system being available. The results of the Davis experiment (with 37 Cl) are given, showing a deficiency in the solar neutrino flux. The relevant explanation is either a property of the neutrino or an important change in the physics of the solar models. The prospect of a new experiment (with 71 Ga) is important as it will decide which of the two explanations is correct [fr

  1. Characteristics of the Polarity Inversion Line and Solar Flare Forecasts

    Science.gov (United States)

    Sadykov, Viacheslav M.; Kosovichev, Alexander G.

    2017-08-01

    Studying connection between solar flares and properties of magnetic field in active regions is very important for understanding the flare physics and developing space weather forecasts. In this work, we analyze relationship between the flare X-ray peak flux from the GOES satellite, and characteristics of the line-of-sight (LOS) magnetograms obtained by the SDO/HMI instrument during the period of April, 2010 - June, 2016. We try to answer two questions: 1) What characteristics of the LOS magnetic field are most important for the flare initiation and magnitude? 2) Is it possible to construct a reliable forecast of ≥ M1.0 and ≥ X1.0 class flares based only on the LOS magnetic field characteristics? To answer these questions, we apply a Polarity Inversion Line (PIL) detection algorithm, and derive various properties of the PIL and the corresponding Active Regions (AR). The importance of these properties for flare forecasting is determined by their ability to separate flaring cases from non-flaring, and their Fisher ranking score. It is found that the PIL characteristics are of special importance for the forecasts of both ≥ M1.0 and ≥ X1.0 flares, while the global AR characteristics become comparably discriminative only for ≥ X1.0 flares. We use the Support Vector Machine (SVM) classifier and train it on the six characteristics of the most importance for each case. The obtained True Skill Statistics (TSS) values of 0.70 for ≥ M1.0 flares and 0.64 for ≥ X1.0 flares are better than the currently-known expert-based predictions. Therefore, the results confirm the importance of the LOS magnetic field data and, in particular, the PIL region characteristics for flare forecasts.

  2. Report from upper atmospheric science

    International Nuclear Information System (INIS)

    Carignan, G.R.; Roble, R.G.; Mende, S.B.; Nagy, A.F.; Hudson, R.D.

    1989-01-01

    Most of the understanding of the thermosphere resulted from the analysis of data accrued through the Atmosphere Explorer satellites, the Dynamics Explorer 2 satellite, and observations from rockets, balloons, and ground based instruments. However, new questions were posed by the data that have not yet been answered. The mesosphere and lower thermosphere have been less thoroughly studied because of the difficulty of accessibility on a global scale, and many rather fundamental characteristics of these regions are not well understood. A wide variety of measurement platforms can be used to implement various parts of a measurement strategy, but the major thrusts of the International Solar Terrestrial Physics Program would require Explorer-class missions. A remote sensing mission to explore the mesosphere and lower thermosphere and one and two Explorer-type spacecraft to enable a mission into the thermosphere itself would provide the essential components of a productive program of exploration of this important region of the upper atomsphere. Theoretical mission options are explored

  3. Right upper quadrant pain

    International Nuclear Information System (INIS)

    Ralls, P.W.; Colletti, P.M.; Boswell, W.D. Jr.; Halls, J.M.

    1984-01-01

    Historically, assessment of acute right upper quadrant abdominal pain has been a considerable clinical challenge. While clinical findings and laboratory data frequently narrow the differential diagnosis, symptom overlap generally precludes definitive diagnosis among the various diseases causing acute right upper quadrant pain. Fortunately, the advent of newer diagnostic imaging modalities has greatly improved the rapidity and reliability of diagnosis in these patients. An additional challenge to the physician, with increased awareness of the importance of cost effectiveness in medicine, is to select appropriate diagnostic schema that rapidly establish accurate diagnoses in the most economical fashion possible. The dual goals of this discussion are to assess not only the accuracy of techniques used to evaluate patients with acute right upper quadrant pain, but also to seek out cost-effective, coordinated imaging techniques to achieve this goal

  4. Solar chulha

    Science.gov (United States)

    Jadhao, P. H.; Patrikar, S. R.

    2016-05-01

    The main goal of the proposed system is to transfer energy from sun to the cooking load that is located in the kitchen. The energy is first collected by the solar collector lens system and two curve bars of same radius of curvature are mounted parallel and adjacent to each other at different height the solar collector is clamed on this two bars such that solar collector is exactly perpendicular to sunlight. The topology includes an additional feature which is window in the wall through which the beam is collimated is directed in the of kitchen. The solar energy that is collected is directed by the mirror system into the kitchen, where it is redirected to cooking platform located in the kitchen. The special feature in this system full Indian meal can be made since cooking platform is indoors.

  5. Solar prominences

    CERN Document Server

    Engvold, Oddbjørn

    2015-01-01

    This volume presents the latest research results on solar prominences, including new developments on e.g. chirality, fine structure, magnetism, diagnostic tools and relevant solar plasma physics. In 1875 solar prominences, as seen out of the solar limb, were described by P.A. Secchi in his book Le Soleil as "gigantic pink or peach-flower coloured flames". The development of spectroscopy, coronagraphy and polarimetry brought tremendous observational advances in the twentieth century. The authors present and discuss exciting new challenges (resulting from observations made by space and ground-based telescopes in the 1990s and the first decade of the 21st century) concerning the diagnostics of prominences, their formation, their life time and their eruption along with their impact in the heliosphere (including the Earth). The book starts with a general introduction of the prominence “object” with some historical background on observations and instrumentation. In the next chapter, the various forms of promine...

  6. Solar Radio

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Scientists monitor the structure of the solar corona, the outer most regions of the Sun's atmosphere, using radio waves (100?s of MHz to 10?s of GHz). Variations in...

  7. Solar chulha

    Energy Technology Data Exchange (ETDEWEB)

    Jadhao, P. H. [Department of Physics J.D. Institute of Engg. & Tech. Yavatmal (India); Patrikar, S. R. [Department of Physics VNIT, Nagpur (India)

    2016-05-06

    The main goal of the proposed system is to transfer energy from sun to the cooking load that is located in the kitchen. The energy is first collected by the solar collector lens system and two curve bars of same radius of curvature are mounted parallel and adjacent to each other at different height the solar collector is clamed on this two bars such that solar collector is exactly perpendicular to sunlight. The topology includes an additional feature which is window in the wall through which the beam is collimated is directed in the of kitchen. The solar energy that is collected is directed by the mirror system into the kitchen, where it is redirected to cooking platform located in the kitchen. The special feature in this system full Indian meal can be made since cooking platform is indoors.

  8. Solar Neutrinos

    OpenAIRE

    Pallavicini, Marco

    2009-01-01

    The status of solar neutrino experiments and their implications for both nonstandard astrophysics ({\\it e.g.,} cool sun models) and nonstandard neutrino properties ({\\it e.g.,} MSW conversions) are discussed. Assuming that all of the experiments are correct, the relative rates observed by Kamiokande and Homestake are hard to account for by a purely astrophysical solution, while MSW conversions can describe all of the data. Assuming the standard solar model, there are two allowed regions for M...

  9. Upper-extremity venography

    International Nuclear Information System (INIS)

    Yao, J.S.T.; Neiman, H.L.

    1985-01-01

    Symptomatically, patients often present with pain, swelling, and occasionally discoloration of the hand. In the presence of chronic swelling, it may be difficult to differentiate thrombosis from lymphedema, especially in patients who have undergone mastectomy. Noninvasive testing is helpful in differentiating between these two conditions, but venography offers definitive diagnosis. More importantly, venography demonstrates the site as well as the extent of the thrombotic process. Venography of the upper extremity was first introduced in 1931. Unlike the lower extremity, the use of this simple radiographic technique to evaluate venous problems of the upper extremity has received little attention

  10. Solar generation

    International Nuclear Information System (INIS)

    Villeneuve, J.

    2012-01-01

    Solar energy might become the main energy resource for mankind in the next 50 years. The author describes the assets of photovoltaic energy and helio-thermodynamics and reviews the conditions required for such a future. The first condition is an integrated approach for the development of solar energy in buildings, it means to develop in parallel the use of low-power appliances, to insulate buildings, to use daylight. Secondly to find an efficient solution to store solar energy. In the building sector this solution could be the use of solar energy (through solar panels) and geothermal heat pump to be able to recover in winter the calories caught in summer and stored in the ground. In a warmer and warmer world, the production of cold from solar calories has the advantage of sparing electricity and to make the demand for calories corresponding with the peak of the resource. A graph shows that the expected cost of photovoltaic electricity in 2020 will be half the 2011 cost and will correspond to the retail price of electricity. (A.C.)

  11. The reaction of the atmosphere to solar disturbances

    Science.gov (United States)

    Mikhnevich, V. V.

    1979-01-01

    The effect of solar flares on the thermosphere and the troposphere is investigated. It is found that during periods of geoeffect solar disturbances, there is a connection between phenomena in the upper and lower atmospheres and that variations in atmospheric parameters correlate with changes in the geomagnetic index.

  12. Solar Features - Solar Flares - SIDS

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Sudden Ionospheric Disturbance (SID) is any of several radio propagation anomalies due to ionospheric changes resulting from solar or geophysical events.

  13. Solar Features - Solar Flares - Patrol

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The H-alpha Flare Patrol identifies time periods each day when the sun is being continuously monitored by select ground-based solar observatories.

  14. Upper airway evaluation

    International Nuclear Information System (INIS)

    Hoffman, E.A.; Gefter, W.B.; Schnall, M.; Nordberg, J.; Listerud, J.; Lenkinski, R.E.

    1988-01-01

    The authors are evaluating upper-airway sleep disorders with magnetic resonance (MR) imaging and x-ray cine computed tomography (CT). Fixed structural anatomy is visualized with multisection spin-echo MR imaging, the dynamic component with cine CT. Unique aspects of the study are described in this paper

  15. Solar Magnetism eXplorer (Solme X)

    Science.gov (United States)

    Peter, Hardi; Abbo, L.; Andretta, V.; Auchere, F.; Bemporad, A.; Berrilli, F.; Bommier, V.; Cassini, R.; Curdt, W.; Davila, J.; hide

    2011-01-01

    The magnetic field plays a pivotal role in many fields of Astrophysics. This is especially true for the physics of the solar atmosphere. Measuring the magnetic field in the upper solar atmosphere is crucial to understand the nature of the underlying physical processes that drive the violent dynamics of the solar corona-that can also affect life on Earth. SolmeX, a fully equipped solar space observatory for remote-sensing observations, will provide the first comprehensive measurements of the strength and direction of the magnetic field in the upper solar atmosphere. The mission consists of two spacecraft, one carrying the instruments, and another one in formation flight at a distance of about 200 m carrying the occulter to provide an artificial total solar eclipse. This will ensure high-quality coronagraphic observations above the solar limb. SolmeX integrates two spectro-polarimetric coronagraphs for off-limb observations, one in the EUV and one in the IR, and three instruments for observations on the disk. The latter comprises one imaging polarimeter in the EUV for coronal studies, a spectro-polarimeter in the EUV to investigate the low corona, and an imaging spectro-polarimeter in the UV for chromospheric studies. SOHO and other existing missions have investigated the emission of the upper atmosphere in detail (not considering polarization), and as this will be the case also for missions planned for the near future. Therefore it is timely that SolmeX provides the final piece of the observational quest by measuring the magnetic field in the upper atmosphere through polarimetric observations

  16. Solar pond conception - experimental and theoretical studies

    Energy Technology Data Exchange (ETDEWEB)

    Kurt, Huseyin [Zonguldak Karaelmas Univ., Technical Education Faculty, Karabuk (Turkey); Halici, Fethi [Sakarya Univ., Mechanical Engineering Dept., Adapazari (Turkey); Binark, A. Korhan [Marmara Univ., Technical Education Faculty, Istanbul (Turkey)

    2000-07-01

    A one dimensional transient mathematical model for predicting the thermal performance of the salt gradient solar pond is developed and presented. In this paper, the natural solar ponds and different artificial solar pond systems found in the literature are introduced. Necessary modifications are made on the experimental stand located in Istanbul Technical University, the experimental stand is introduced and natural phenomena produced in the pond by the different solar pond variations under natural conditions are observed. In the theoretical work based on a one dimensional unsteady state heat conduction model with internal heat generation, the energy and mass balance equations for the upper convective zone, the non-convective zone and the lower convective zone, all of which form the solar pond, are written in terms of differential equations. These equations are solved analytically and numerically. The results obtained from the analysis are compared with the experimental results. The temperature and the concentration profiles are separately presented in the figures. (Author)

  17. Solar cells

    International Nuclear Information System (INIS)

    1980-01-01

    A method of producing solar cells is described which consists of producing a substantially monocrystalline tubular body of silicon or other suitable semiconductor material, treating this body to form an annular rectifying junction and then cutting it longitudinally to form a number of nearly flat ribbons from which the solar cells are fabricated. The P=N rectifying junction produced by the formation of silicon dioxide on the layers at the inner and outer surfaces of the body can be formed by ion-implantation or diffusion. (U.K.)

  18. Solar Energy and You.

    Science.gov (United States)

    Conservation and Renewable Energy Inquiry and Referral Service (DOE), Silver Spring, MD.

    This booklet provides an introduction to solar energy by discussing: (1) how a home is heated; (2) how solar energy can help in the heating process; (3) the characteristics of passive solar houses; (4) the characteristics of active solar houses; (5) how solar heat is stored; and (6) other uses of solar energy. Also provided are 10 questions to…

  19. Thermodynamic Upper Bound on Broadband Light Coupling with Photonic Structures

    KAUST Repository

    Yu, Zongfu

    2012-10-01

    The coupling between free space radiation and optical media critically influences the performance of optical devices. We show that, for any given photonic structure, the sum of the external coupling rates for all its optical modes are subject to an upper bound dictated by the second law of thermodynamics. Such bound limits how efficient light can be coupled to any photonic structure. As one example of application, we use this upper bound to derive the limit of light absorption in broadband solar absorbers. © 2012 American Physical Society.

  20. Solar system

    CERN Document Server

    Bell, Samantha

    2018-01-01

    "Using the new Next Generation Science Standards (NGSS), the My World of Science series provides the earliest readers with background on key STEM concepts. Solar System explores basic planetary astronomy in a simple, engaging way that will help readers develop word recognition and reading skills. Includes a glossary and index."-- Provided by publisher.

  1. Solar Neutrinos

    OpenAIRE

    Bellini, G.; Ianni, A.; Ranucci, G.

    2010-01-01

    Solar neutrino investigation has represented one of the most active field of particle physics over the past decade, accumulating important and sometimes unexpected achievements. After reviewing some of the most recent impressive successes, the future perspectives of this exciting area of neutrino research will be discussed.

  2. Solar Neutrinos

    Indian Academy of Sciences (India)

    Solar Neutrinos. Revathi Ananthakrishnan. 1. Introduction. The neutrino, which means the little neutral one in Ital- ian, is a very special elementary particle. It is a spin half, chargeless and almost . massless particle and therefore eluded detection for a long time. However, the sun is a rich source of neutrinos and physicists ...

  3. Solar Power

    Science.gov (United States)

    Ford, Norman C.; Kane, Joseph W.

    1971-01-01

    Proposes a method of collecting solar energy by using available plastics for Fresnel lenses to focus heat onto a converter where thermal dissociation of water would produce hydrogen. The hydrogen would be used as an efficient non-polluting fuel. Cost estimates are included. (AL)

  4. Solar activity forcing of the middle atmosphere

    Directory of Open Access Journals (Sweden)

    K. Mohanakumar

    Full Text Available Studies on the influence of solar activity in 11-year cycle on middle atmospheric thermodynamic parameters, such as temperature, pressure and density, and zonal and meridional wind components over three meteorological rocket launching stations, located in the tropics (Thumba, mid-latitude (Volgograd and high-latitude (Heiss Island regions of the northern hemisphere have been carried out. The temperature in all the three regions showed a negative response in the stratosphere and positive association in the mesosphere with the changes in solar activity. The temperature decreases by 2–3% from its mean value in the stratosphere and increases by 4–6% in the mesosphere for an increase in 100 units of solar radio flux. Atmospheric pressure is found to be more sensitive to solar changes. An average solar maximum condition enhances the pressure in the stratosphere by 5% and in the upper mesosphere by 16–18% compared to the respective mean values. Density also showed strong association with the changes in solar activity. Increase in the solar radio flux tends to strengthen winter westerlies in the upper stratosphere over the mid-latitude and summer easterlies in the middle stratosphere over tropics. Larger variability in the zonal wind is noted near stratopause height. Results obtained from the study indicate that there is an external force exerted on the Earth's atmosphere during the period of high solar activity. These results can be incorporated for further studies on the dynamics of the middle atmosphere in association with the changes in solar activity.

  5. Solar activity forcing of the middle atmosphere

    Directory of Open Access Journals (Sweden)

    K. Mohanakumar

    1995-08-01

    Full Text Available Studies on the influence of solar activity in 11-year cycle on middle atmospheric thermodynamic parameters, such as temperature, pressure and density, and zonal and meridional wind components over three meteorological rocket launching stations, located in the tropics (Thumba, mid-latitude (Volgograd and high-latitude (Heiss Island regions of the northern hemisphere have been carried out. The temperature in all the three regions showed a negative response in the stratosphere and positive association in the mesosphere with the changes in solar activity. The temperature decreases by 2–3% from its mean value in the stratosphere and increases by 4–6% in the mesosphere for an increase in 100 units of solar radio flux. Atmospheric pressure is found to be more sensitive to solar changes. An average solar maximum condition enhances the pressure in the stratosphere by 5% and in the upper mesosphere by 16–18% compared to the respective mean values. Density also showed strong association with the changes in solar activity. Increase in the solar radio flux tends to strengthen winter westerlies in the upper stratosphere over the mid-latitude and summer easterlies in the middle stratosphere over tropics. Larger variability in the zonal wind is noted near stratopause height. Results obtained from the study indicate that there is an external force exerted on the Earth's atmosphere during the period of high solar activity. These results can be incorporated for further studies on the dynamics of the middle atmosphere in association with the changes in solar activity.

  6. Biomechanics of the upper limb

    OpenAIRE

    Łukasz Jaworski; Robert Karpiński; Angelika Dobrowolska

    2016-01-01

    The article presents basics of the human upper limb’s anatomy, including skeletal system, joints and basic division of muscles in the limb. The biomechanics of the upper limb is introduced. The range of performed motions is depicted. The possible applications of anatomy and biomechanics of the upper limb are shown.

  7. Behavior of a solar collector loop during stagnation

    DEFF Research Database (Denmark)

    Chen, Ziqian; Dragsted, Janne; Furbo, Simon

    2015-01-01

    A mathematical model simulating the emptying behavior of a pressurized solar collector loop with solar collectors with a good emptying behavior is developed and validated with measured data. The calculated results are in good agreement with the measured results. The developed simulation model...... is therefore suitable to determine the behavior of a solar collector loop during stagnation. A volume ratio R, which is the ratio of the volume of the vapour in the upper pipes of the solar collector loop during stagnation and the fluid content of solar collectors, is introduced to determine the mass...... of the collector fluid pushed into the expansion vessel during stagnation, Min. A correlation function for the mass Min and the volume ratio R for solar collector loops is obtained. The function can be used to determine a suitable size of expansion vessels for solar collector loops....

  8. Graves upper eyelid retraction.

    Science.gov (United States)

    Cruz, Antonio Augusto Velasco; Ribeiro, Sara F T; Garcia, Denny M; Akaishi, Patricia Mitiko; Pinto, Carolina T

    2013-01-01

    Graves upper eyelid retraction (GUER) is the most common and characteristic sign of Graves orbitopathy. Despite being well recognized since the 19th century, GUER is still a subject of controversy. We review GUER, including historical aspects, diagnosis, methods of measurements, ocular surface abnormalities, etiology, and medical and surgical treatments. There is no consensus about the mechanisms of its etiology or the best surgical correction. There is a need for quantitative studies on the effects of GUER on lid movements. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Upper atmosphere density from the motion of the ANS satellite

    Science.gov (United States)

    Sehnal, L.

    1983-01-01

    The ANS satellite (the First Netherlands Astronomical Satellite, 1974 70 A) was launched on August 30, 1974, into a sun-synchronous orbit, whereby the orbital plane was perpendicular to the direction to the sun. It is noted that the orbital sun synchronization required a highly inclined retro-grade orbit, i = 98 deg. The satellite was a rectangular prism having two solar panels oriented with their planes perpendicular to the solar rays. This special orbit and orientation gave rise to peculiar perturbations; these have been analyzed, in particular with respect to the changes in the inclination (Wakker et al., 1981; Sehnal, 1981, 1982). In addition, the determination of the upper atmosphere densities was used in computing the satellite drag coefficient Sehnal, 1982). The data employed were those derived at the European Space Operation Center. The values obtained for the densities of the upper atmosphere are analyzed and compared with the values given in several recently proposed models.

  10. Climate Change in the Upper Atmosphere

    Science.gov (United States)

    Solomon, S. C.; Liu, H.; Marsh, D. R.; McInerney, J. M.; Qian, L.; Vitt, F.

    2016-12-01

    The terrestrial upper atmosphere is cooling and contracting in response to anthropogenic increases in greenhouse gases. This effect, the opposite of troposheric behavior, is primarily due to infrared radiative cooling by heterogeneous molecules, particularly carbon dioxide, as predicted by Roble and Dickinson in 1989. Upper atmosphere global change has been observed in several ways, most definitively by changes in thermospheric density inferred from satellite drag measurements, or, more controversially, in the possible increase of polar mesospheric clouds. When the TIMED mission launched in 2001, climate change was on its agenda, but surreptitiously, because trends were not expected to be observable during a supposed two-year mission. Now, 15 years later, TIMED has become a pathfinder for climate analysis, particularly through carbon dioxide emissions measured by the SABER instrument. New complexities have emerged, however: the possibility that the carbon dioxide mixing ratio near the mesopause is increasing faster with increasing altitude, and the possibility that solar ultraviolet and geomagnetic activity are exhibiting a decreasing trend over the past one-to-three solar cycles. We have conducted simulations of anthropogenic change in the upper atmosphere using the Whole Atmosphere Community Climate Model - eXtended (WACCM-X), a component of the NCAR Community Earth System Model. The atmospheric response was evaluated using carbon dioxide, methane, and CFC lower boundary conditions from the late 1900's and early 2000's. The results show that the thermosphere should cool at a rate of several degrees per decade under present rates of change, largely driven by the effect of carbon dioxide cooling on thermospheric scale heights. Changes in middle atmosphere temperature, methane, and ozone, have much smaller effects on the thermosphere. Thermospheric cooling causes the ionosphere to also contract to lower altitude, but with small changes induced in NmF2. Whole

  11. Collecting Solar Energy. Solar Energy Education Project.

    Science.gov (United States)

    O'Brien, Alexander

    This solar energy learning module for use with junior high school students offers a list of activities, a pre-post test, job titles, basic solar energy vocabulary, and diagrams of solar energy collectors and installations. The purpose is to familiarize students with applications of solar energy and titles of jobs where this knowledge could be…

  12. Magnetohydrodynamic and thermal processes in solar flare energy build-up and release

    International Nuclear Information System (INIS)

    Tend, W. van.

    1979-01-01

    A solar flare can be described as an instability in the upper solar atmosphere that converts 10 28 ergs to 10 32 ergs of magnetic energy into other forms of energy, mainly kinetic energy. The solar flare gives rise to a wealth of observable phenomena. The author develops a fairly simple model to explain many of these apparently very diverse features of solar flares. (Auth.)

  13. Solar club

    CERN Multimedia

    Solar club

    2013-01-01

    SOLAR CLUB Le  CERN-Solar-Club souhaite une  très bonne année 2013 à tous les Cernois et Cernoises, et remercie encore une fois  tous ceux et celles qui, fin octobre, par leur vote, nous ont permis de finir dans les 5 premiers du concours "Conforama Solidaire" et ainsi financer nôtre projet "énergie solaire et eau potable pour Kilela Balanda" en République Démocratique du Congo (voir : http://www.confo.ch/solidarite/?lang=fr). Nous vous annoncons également notre Assemblée Générale Annuelle jeudi 21 février à 18 h 00 Salle C, 1er étage, Bât. 61 Vous êtes les bienvenus si vous souhaitez en savoir un peu plus sur les énergies renouvelables.

  14. Fisica solare

    CERN Document Server

    Degl’Innocenti, Egidio Landi

    2008-01-01

    Il volume è un'introduzione alla Fisica Solare che si propone lo scopo di illustrare alla persona che intende avvicinarsi a questa disciplina (studenti, dottori di ricerca, ricercatori) i meccanismi fisici che stanno alla base della complessa fenomenologia osservata sulla stella a noi più vicina. Il volume non ha la pretesa di essere esauriente (basta pensare che la fisica solare spazia su un gran numero di discipline, quali la Fisica Nucleare, la Termodinamica, L'Elettrodinamica, la Fisica Atomica e Molecolare, la Spettoscopia in tutte le bande dello spettro elettromagnetico, la Magnetoidrodinamica, la Fisica del Plasma, lo sviluppo di nuova strumentazione, l'Ottica, ecc.). Piuttosto, sono stati scelti un numero di argomenti di rilevanza fondamentale nello studio presente del Sole (soprattutto nei riguardi delle osservazioni da terra con grandi telescopi) e su tali argomenti si è cercato di dare una panoramica generale, inclusiva dell'evoluzione storica, senza scendere in soverchi dettagli. Siccome la Fis...

  15. Solar Training Network and Solar Ready Vets

    Energy Technology Data Exchange (ETDEWEB)

    Dalstrom, Tenley Ann

    2016-09-14

    In 2016, the White House announced the Solar Ready Vets program, funded under DOE's SunShot initiative would be administered by The Solar Foundation to connect transitioning military personnel to solar training and employment as they separate from service. This presentation is geared to informing and recruiting employer partners for the Solar Ready Vets program, and the Solar Training Network. It describes the programs, and the benefits to employers that choose to connect to the programs.

  16. Concentrated solar power generation using solar receivers

    Science.gov (United States)

    Anderson, Bruce N.; Treece, William Dean; Brown, Dan; Bennhold, Florian; Hilgert, Christoph

    2017-08-08

    Inventive concentrated solar power systems using solar receivers, and related devices and methods, are generally described. Low pressure solar receivers are provided that function to convert solar radiation energy to thermal energy of a working fluid, e.g., a working fluid of a power generation or thermal storage system. In some embodiments, low pressure solar receivers are provided herein that are useful in conjunction with gas turbine based power generation systems.

  17. RGB color photometry of the solar corona from total solar eclipses

    Science.gov (United States)

    Shopov, Y. Y.; Varonov, A.; Stoykova, D. A.

    2016-02-01

    In the following article we present some of our results from observations of two total solar eclipses (TSE). By combining appropriate photographic equipment and post-processing techniques we show that numerous solar phenomena can be captured in details during TSE. We use color slide RGB photometry technique to visualize invisible regions of the solar corona and to highlight some of the solar phenomena that are very difficult for observation by Earth-based observatories. In fact it reveals more details of the far solar corona than any original image taken from ground-based observations. RGB photometry visualizes different components of the solar corona in one image, which is impossible using conventional observations. This makes it valuable tool for studies of the solar corona. Here we first observe peculiar near infrared emission regions around the upper part of the solar limb during the 1999 TSE. So far its origin is unknown and they need further studies including observations during other solar eclipses. Our observational experiment was designed for other purposes and their registration was completely unexpected.

  18. Solar flares

    International Nuclear Information System (INIS)

    Kaastra, J.S.

    1985-01-01

    In this thesis an electrodynamic model for solar flares is developed. The main theoretical achievements underlying the present study are treated briefly and the observable flare parameters are described within the framework of the flare model of this thesis. The flare model predicts large induced electric fields. Therefore, acceleration processes of charged particles by direct electric fields are treated. The spectrum of the accelerated particles in strong electric fields is calculated, 3 with the electric field and the magnetic field perpendicular and in the vicinity of an X-type magnetic neutral line. An electromagnetic field configuration arises in the case of a solar flare. A rising current filament in a quiescent background bipolar magnetic field causes naturally an X-type magnetic field configuration below the filament with a strong induced electric field perpendicular to the ambient magnetic field. This field configuration drives particles and magnetic energy towards the neutral line, where a current sheet is generated. The global evolution of the fields in the flare is determined by force balance of the Lorentz forces on the filament and the force balance on the current sheet. The X-ray, optical and radio observations of a large solar flare on May 16, 1981 are analyzed. It is found that these data fit the model very well. (Auth.)

  19. Solar chameleons

    International Nuclear Information System (INIS)

    Brax, Philippe; Zioutas, Konstantin

    2010-01-01

    We analyze the creation of chameleons deep inside the Sun (R∼0.7R sun ) and their subsequent conversion to photons near the magnetized surface of the Sun. We find that the spectrum of the regenerated photons lies in the soft x-ray region, hence addressing the solar corona problem. Moreover, these back-converted photons originating from chameleons have an intrinsic difference with regenerated photons from axions: their relative polarizations are mutually orthogonal before Compton interacting with the surrounding plasma. Depending on the photon-chameleon coupling and working in the strong coupling regime of the chameleons to matter, we find that the induced photon flux, when regenerated resonantly with the surrounding plasma, coincides with the solar flux within the soft x-ray energy range. Moreover, using the soft x-ray solar flux as a prior, we find that with a strong enough photon-chameleon coupling, the chameleons emitted by the Sun could lead to a regenerated photon flux in the CAST magnetic pipes, which could be within the reach of CAST with upgraded detector performance. Then, axion helioscopes have thus the potential to detect and identify particle candidates for the ubiquitous dark energy in the Universe.

  20. Solar Chameleons

    CERN Document Server

    Brax, Philippe

    2010-01-01

    We analyse the creation of chameleons deep inside the sun and their subsequent conversion to photons near the magnetised surface of the sun. We find that the spectrum of the regenerated photons lies in the soft X-ray region, hence addressing the solar corona problem. Moreover, these back-converted photons originating from chameleons have an intrinsic difference with regenerated photons from axions: their relative polarisations are mutually orthogonal before Compton interacting with the surrounding plasma. Depending on the photon-chameleon coupling and working in the strong coupling regime of the chameleons to matter, we find that the induced photon flux, when regenerated resonantly with the surrounding plasma, coincides with the solar flux within the soft X-ray energy range. Moreover, using the soft X-ray solar flux as a prior, we find that with a strong enough photon-chameleon coupling the chameleons emitted by the sun could lead to a regenerated photon flux in the CAST pipes, which could be within the reach...

  1. Solar cities

    International Nuclear Information System (INIS)

    Roaf, S.; Fuentes, M.; Gupta, R.

    2005-01-01

    Over the last decade, climate change has moved from being the concern of few to a widely recognized threat to humanity itself and the natural environment. The 1990s were the warmest decade on record, and ever-increasing atmospheric levels of greenhouse gases such as carbon dioxide (CO/sub 2/), could, if left unchecked lead to serious consequences globally, including increased risks of droughts, floods and storms, disruption to agriculture, rising sea levels and the spread of disease. The contribution of anthropogenic emissions of carbon dioxide has been recognized as the principal cause of the atmospheric changes that drive these climate trends. Globally, buildings are the largest source of indirect carbon emissions. In 2000, the UK Royal Commission on Environmental Pollution estimated that in order to stabilise carbon emissions at levels, which avoid catastrophic alterations in the climate, we would have to reduce emissions from the built environment by at least 60% by 2050 and 80% by 2100 relative to 1997 levels. Studies of the Oxford Ecohouse have demonstrated that it is not difficult to reduce carbon emissions from houses by 60% or more through energy efficiency measures, but it is only possible to reach the 90% level of reductions required by using renewable energy technologies. Solar energy technologies have been the most successfully applied of all renewable to date largely because they are the only systems that can be incorporated easily into the urban fabric. In addition, the short fossil fuel horizons that are predicted (c. 40 years left for oil and 65 years for gas) will drive the markets for solar technologies. For these reasons, the cities of the future will be powered by solar energy, to a greater or lesser extent, depending on the city form and location. In recognition of the need to move rapidly towards a renewable energy future, a group of international cities, including Oxford, have started the Solar City Network. In this paper we outline the

  2. Solar solution

    International Nuclear Information System (INIS)

    Shi Zhengrong

    2009-01-01

    China is facing enormous energy challenges. Everyone seems to know that we need to increase our energy supply by the equivalent of one power plant per week to support China's economic growth, which is allowing millions of people to enjoy better standards of living. Much less is known of the extent to which China has taken steps to mitigate the impact of that growing energy demand through incentives for greater efficiency and renewable energy. Policies include: Cutting energy intensity - 20 per cent between 2005 and 2010, saving five times as much CO 2 as the EU's goals. Cutting major pollutants by 10 per cent by 2010. Setting one of the world's most aggressive renewable energy standards: 15 per cent of national energy from renewables by 2020. Setting targets of 300 megawatts of installed solar by 2010, and 1.8 gigawatts by 2020, in the 2007 National Development and Reform Commission Renewable Energy Development Plan. Dedicating $180 billion for renewable energy by 2020. Imposing energy efficiency targets for the top 1,000 companies, a measure with greater carbon savings potential than most Western initiatives. Establishing building energy codes in all regions and extensive efficiency standards for appliances, which will be particularly important as China continues to grow. Targeting new buildings in major cities like Beijing, Shanghai and Chongqing, to achieve 65 per cent greater energy efficiency than local codes require. Closing thousands of older, smaller, dirtier power plants by 2010. China understands the economic development potential in clean energy technologies. Even the noted journalist Thomas Friedman has remarked that 'China is going green in a big way,' using domestic demand for cleaner energy to build low-cost, scalable green technologies. Suntech Power Holdings - now the world's largest solar photovoltaic (PV) module manufacturer, with operations around the globe - was just one of dozens of solar companies that realised the opportunity provided by

  3. Early solar physics

    CERN Document Server

    Meadows, A J

    1970-01-01

    Early Solar Physics reviews developments in solar physics, particularly the advent of solar spectroscopy and the discovery of relationships between the various layers of the solar atmosphere and between the different forms of solar activity. Topics covered include solar observations during 1843; chemical analysis of the solar atmosphere; the spectrum of a solar prominence; and the solar eclipse of December 12, 1871. Spectroscopic observations of the sun are also presented. This book is comprised of 30 chapters and begins with an overview of ideas about the sun in the mid-nineteenth century, fo

  4. Upper Carboniferous herbaceous lycopsids

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, B.A. [University of Wales, Cardigan (United Kingdom). Dept. of Geography

    1997-01-01

    Herbaceous lycopsids are often overlooked in palaeobotanical studies because of problems of morphological interpretation and identification. The literature on Euramerican Upper Carboniferous herbaceous lycopsids is reviewed on those species referred to the genera Selaginellites, Lycopodites, Paurodendron, Carinostrobus, Miadesmia, Spencerites and the identification of some specimens is challenged. The stratigraphical range of these lycopsids and those of dispersed spores referable to them are also reviewed and suggestions are given for the relatively late appearance of many of these lycopsids in the Euramerican Coal Measures swamps. It is suggested that anisophyllous Selaginella-like lycopsids made their first appearance in the Bolsovian (ex Westphalian C) of the Saar-Lorraine intramontane basin. Evidence from studies of coal balls and dispersed spore assemblages confirm that herbaceous lycopsids were most abundantly present in open-moor communities. Certain species of these herbaceous lycopsids, the Selaginella-like ones, are included within the extant genus Selaginella Linnaeus. For this reason a number of new combinations are proposed.

  5. Solar energy collector

    Science.gov (United States)

    Brin, Raymond L.; Pace, Thomas L.

    1978-01-01

    The invention relates to a solar energy collector comprising solar energy absorbing material within chamber having a transparent wall, solar energy being transmitted through the transparent wall, and efficiently absorbed by the absorbing material, for transfer to a heat transfer fluid. The solar energy absorbing material, of generally foraminous nature, absorbs and transmits the solar energy with improved efficiency.

  6. Non-thermal hydrogen atoms in the terrestrial upper thermosphere.

    Science.gov (United States)

    Qin, Jianqi; Waldrop, Lara

    2016-12-06

    Model predictions of the distribution and dynamical transport of hydrogen atoms in the terrestrial atmosphere have long-standing discrepancies with ultraviolet remote sensing measurements, indicating likely deficiencies in conventional theories regarding this crucial atmospheric constituent. Here we report the existence of non-thermal hydrogen atoms that are much hotter than the ambient oxygen atoms in the upper thermosphere. Analysis of satellite measurements indicates that the upper thermospheric hydrogen temperature, more precisely the mean kinetic energy of the atomic hydrogen population, increases significantly with declining solar activity, contrary to contemporary understanding of thermospheric behaviour. The existence of hot hydrogen atoms in the upper thermosphere, which is the key to reconciling model predictions and observations, is likely a consequence of low atomic oxygen density leading to incomplete collisional thermalization of the hydrogen population following its kinetic energization through interactions with hot atomic or ionized constituents in the ionosphere, plasmasphere or magnetosphere.

  7. Solar constant values for estimating solar radiation

    International Nuclear Information System (INIS)

    Li, Huashan; Lian, Yongwang; Wang, Xianlong; Ma, Weibin; Zhao, Liang

    2011-01-01

    There are many solar constant values given and adopted by researchers, leading to confusion in estimating solar radiation. In this study, some solar constant values collected from literature for estimating solar radiation with the Angstroem-Prescott correlation are tested in China using the measured data between 1971 and 2000. According to the ranking method based on the t-statistic, a strategy to select the best solar constant value for estimating the monthly average daily global solar radiation with the Angstroem-Prescott correlation is proposed. -- Research highlights: → The effect of the solar constant on estimating solar radiation is investigated. → The investigation covers a diverse range of climate and geography in China. → A strategy to select the best solar constant for estimating radiation is proposed.

  8. Solar cycle variations in mesospheric carbon monoxide

    Science.gov (United States)

    Lee, Jae N.; Wu, Dong L.; Ruzmaikin, Alexander; Fontenla, Juan

    2018-05-01

    As an extension of Lee et al. (2013), solar cycle variation of carbon monoxide (CO) is analyzed with MLS observation, which covers more than thirteen years (2004-2017) including maximum of solar cycle 24. Being produced primarily by the carbon dioxide (CO2) photolysis in the lower thermosphere, the variations of the mesospheric CO concentration are largely driven by the solar cycle modulated ultraviolet (UV) variation. This solar signal extends down to the lower altitudes by the dynamical descent in the winter polar vortex, showing a time lag that is consistent with the average descent velocity. To characterize a global distribution of the solar impact, MLS CO is correlated with the SORCE measured total solar irradiance (TSI) and UV. As high as 0.8 in most of the polar mesosphere, the linear correlation coefficients between CO and UV/TSI are more robust than those found in the previous work. The photochemical contribution explains most (68%) of the total variance of CO while the dynamical contribution accounts for 21% of the total variance at upper mesosphere. The photochemistry driven CO anomaly signal is extended in the tropics by vertical mixing. The solar cycle signal in CO is further examined with the Whole Atmosphere Community Climate Model (WACCM) 3.5 simulation by implementing two different modeled Spectral Solar Irradiances (SSIs): SRPM 2012 and NRLSSI. The model simulations underestimate the mean CO amount and solar cycle variations of CO, by a factor of 3, compared to those obtained from MLS observation. Different inputs of the solar spectrum have small impacts on CO variation.

  9. Reconstruction of solar UV irradiance since 1974

    Science.gov (United States)

    Krivova, N. A.; Solanki, S. K.; Wenzler, T.; Podlipnik, B.

    2009-09-01

    Variations of the solar UV irradiance are an important driver of chemical and physical processes in the Earth's upper atmosphere and may also influence global climate. Here we reconstruct solar UV irradiance in the range 115-400 nm over the period 1974-2007 by making use of the recently developed empirical extension of the Spectral And Total Irradiance Reconstruction (SATIRE) models employing Solar Ultraviolet Spectral Irradiance Monitor (SUSIM) data. The evolution of the solar photospheric magnetic flux, which is a central input to the model, is described by the magnetograms and continuum images recorded at the Kitt Peak National Solar Observatory between 1974 and 2003 and by the Michelson Doppler Imager instrument on SOHO since 1996. The reconstruction extends the available observational record by 1.5 solar cycles. The reconstructed Ly-α irradiance agrees well with the composite time series by Woods et al. (2000). The amplitude of the irradiance variations grows with decreasing wavelength and in the wavelength regions of special interest for studies of the Earth's climate (Ly-α and oxygen absorption continuum and bands between 130 and 350 nm) is 1-2 orders of magnitude stronger than in the visible or if integrated over all wavelengths (total solar irradiance).

  10. Solar Electricity

    Science.gov (United States)

    1988-01-01

    ARCO Solar manufactures PV Systems tailored to a broad variety of applications. PV arrays are routinely used at remote communications installations to operate large microwave repeaters, TV and radio repeaters rural telephone, and small telemetry systems that monitor environmental conditions. Also used to power agricultural water pumping systems, to provide electricity for isolated villages and medical clinics, for corrosion protection for pipelines and bridges, to power railroad signals, air/sea navigational aids, and for many types of military systems. ARCO is now moving into large scale generation for utilities.

  11. Solar Club

    CERN Multimedia

    Solar Club

    2010-01-01

    Le CERN Solar-Club vous invite à la présentation de sa participation dans : The Cyprus Institute Solar Car Challenge du 18 au 20 juin à Chypre . en réponse à l’invitation dudit institut, dans le cadre de la demande de Chypre pour joindre le CERN . Le Club y participera avec son vénérable Photon rénové , et la Dyane E-Solaire d’un de ses membres, rénové aussi . Après la présentation, le forum est ouvert pour toutes vos questions et propositions diverses, également dans d’autres domaines des énergies renouvelables . C’est aussi l’occasion pour joindre le Club ! Où, et Quand ? Le Mercredi 7 Avril à 19 h 00, au 6ème étage du Bât. Principal, (60-6-015) à la suite de l’AG des membres du Club , à 18h00 dans...

  12. Solar Heating and Cooling

    Science.gov (United States)

    Duffie, John A.; Beckman, William A.

    1976-01-01

    Describes recent research that has made solar energy economically competitive with other energy sources. Includes solar energy building architecture, storage systems, and economic production data. (MLH)

  13. Mobile Solar Tracker Facility

    Data.gov (United States)

    Federal Laboratory Consortium — NIST's mobile solar tracking facility is used to characterize the electrical performance of photovoltaic panels. It incorporates meteorological instruments, a solar...

  14. Solar Energy Systems

    Science.gov (United States)

    1984-01-01

    Calibrated in kilowatt hours per square meter, the solar counter produced by Dodge Products, Inc. provides a numerical count of the solar energy that has accumulated on a surface. Solar energy sensing, measuring and recording devices in corporate solar cell technology developed by Lewis Research Center. Customers for their various devices include architects, engineers and others engaged in construction and operation of solar energy facilities; manufacturers of solar systems or solar related products, such as glare reducing windows; and solar energy planners in federal and state government agencies.

  15. Fast Solar Sailing for Solar System Exploration

    Data.gov (United States)

    National Aeronautics and Space Administration — Practical spinning solar sails will be needed for the most demanding and scientifically compelling solar sail missions of the future. The "heliogyro" is potentially...

  16. High mortality of Red Sea zooplankton under ambient solar radiation.

    Science.gov (United States)

    Al-Aidaroos, Ali M; El-Sherbiny, Mohsen M O; Satheesh, Sathianeson; Mantha, Gopikrishna; Agustī, Susana; Carreja, Beatriz; Duarte, Carlos M

    2014-01-01

    High solar radiation along with extreme transparency leads to high penetration of solar radiation in the Red Sea, potentially harmful to biota inhabiting the upper water column, including zooplankton. Here we show, based on experimental assessments of solar radiation dose-mortality curves on eight common taxa, the mortality of zooplankton in the oligotrophic waters of the Red Sea to increase steeply with ambient levels of solar radiation in the Red Sea. Responses curves linking solar radiation doses with zooplankton mortality were evaluated by exposing organisms, enclosed in quartz bottles, allowing all the wavelengths of solar radiation to penetrate, to five different levels of ambient solar radiation (100%, 21.6%, 7.2%, 3.2% and 0% of solar radiation). The maximum mortality rates under ambient solar radiation levels averaged (±standard error of the mean, SEM) 18.4±5.8% h(-1), five-fold greater than the average mortality in the dark for the eight taxa tested. The UV-B radiation required for mortality rates to reach ½ of maximum values averaged (±SEM) 12±5.6 h(-1)% of incident UVB radiation, equivalent to the UV-B dose at 19.2±2.7 m depth in open coastal Red Sea waters. These results confirm that Red Sea zooplankton are highly vulnerable to ambient solar radiation, as a consequence of the combination of high incident radiation and high water transparency allowing deep penetration of damaging UV-B radiation. These results provide evidence of the significance of ambient solar radiation levels as a stressor of marine zooplankton communities in tropical, oligotrophic waters. Because the oligotrophic ocean extends across 70% of the ocean surface, solar radiation can be a globally-significant stressor for the ocean ecosystem, by constraining zooplankton use of the upper levels of the water column and, therefore, the efficiency of food transfer up the food web in the oligotrophic ocean.

  17. Low upper bounds of ideals

    OpenAIRE

    Kucera, Antonin; Slaman, Theodore A.

    2007-01-01

    We show that there is a low T-upper bound for the class of K-trivial sets, namely those which are weak from the point of view of algorithmic randomness. This result is a special case of a more general characterization of ideals in Δ02 T-degrees for which there is a low T-upper bound.

  18. Solar neutrinos and nonradial solar oscillations

    International Nuclear Information System (INIS)

    Zatsepin, G.T.; Gavryuseva, E.A.; Kopysov, Yu.S.

    1980-01-01

    The problem of origin of surface solar oscillations is considered. It is assumed that generation of oscillations is performed by the solar nucleus. The necessary excitation condition for gravitational oscillations of the solar nucleus is a sharp decrease of the oscillation amplitude outside the nucleus, where the nuclear reaction rates are small and only radiation losses are considerable. It is shown that the specific singularities of gravitational wave propagation in solar entrails permit to attain a significant reduction of the oscillation amplitude. The solar entrails can serve as an effective trap for gravitational waves, if the substance of the solar nucleus is close to the state of convectional equilibrium. In order that the g 1 quadrupole mode of the solar nucleus has a period of 2h 40 min and sharply decreases in the solar mantle, it is enough that only the external part of the solar nucleus is close to the state of convectional equilibrium. Closeness of the solar nucleus to the state of convectional equilibrium is an argument in favour of its periodic mixing. Periodic mixing of the solar nucleus can serve as a cause of a low counting rate of solar neutrinos in R.Davis chlorous detector

  19. Solar energy an introduction

    CERN Document Server

    Mackay, Michael E

    2015-01-01

    Solar Energy presents an introduction to all aspects of solar energy, from photovoltaic devices to active and passive solar thermal energy conversion, giving both a detailed and broad perspective of the field. It is aimed at the beginner involved in solar energy or a related field, or for someone wanting to gain a broader perspective of solar energy technologies. A chapter considering solar radiation, basic principles applied to solar energy, semiconductor physics, and light absorption brings the reader on equal footing with the technology of either solar generated electrical current or useful heat. Details of how a solar cell works and then production of current from a photovoltaic device is discussed. Characterization of a solar cell is examined, allowing one the ability to interpret the current-voltage relation, followed by discussion of parameter extraction from this relation. This information can be used to understand what limits the performance of a given solar cell with the potential to optimize its pe...

  20. EDITORIAL Solar harvest Solar harvest

    Science.gov (United States)

    Demming, Anna

    2010-12-01

    The first observations of the photoelectric effect date back to the early 19th century from work by Alexandre Edmond Becquerel, Heinrich Hertz, Wilhelm Hallwachs and J J Thomson. The theory behind the phenomena was clarified in a seminal paper by Einstein in 1905 and became an archetypical feature of the wave-particle description of light. A different manifestation of quantised electron excitation, whereby electrons are not emitted but excited into the valence band of the material, is what we call the photoconductive effect. As well as providing an extension to theories in fundamental physics, the phenomenon has spawned a field with enormous ramifications in the energy industry through the development of solar cells. Among advances in photovoltaic technology has been the development of organic photovoltaic technology. These devices have many benefits over their inorganic counterparts, such as light-weight, flexible material properties, as well as versatile materials' synthesis and low-cost large-scale production—all highly advantageous for manufacturing. The first organic photovoltaic systems were reported over 50 years ago [1], but the potential of the field has escalated in recent years in terms of efficiency, largely through band offsetting. Since then, great progress has been made in studies for optimising the efficiency of organic solar cells, such as the work by researchers in Germany and the Netherlands, where investigations were made into the percentage composition and annealing effects on composites of poly(3-hexylthiophene) (P3HT) and the fullerene derivative [6,6]-phenyl-C61 butyric acid methyl ester (PCBM) [2]. Hybrid devices that aim to exploit the advantages of both inorganic and organic constituents have also proven promising. One example of this is the work reported by researchers in Tunisia and France on a systematic study for optimising the composition morphology of TiO2 nanoparticles in poly(N-vinylcarbazole) (PVK), which also led to insights

  1. Solar flares

    International Nuclear Information System (INIS)

    Zirin, H.

    1974-01-01

    A review of the knowledge about solar flares which has been obtained through observations from the earth and from space by various methods is presented. High-resolution cinematography is best carried out at H-alpha wavelengths to reveal the structure, time history, and location of flares. The classification flares in H alpha according to either physical or morphological criteria is discussed. The study of flare morphology, which shows where, when, and how flares occur, is important for evaluating theories of flares. Consideration is given to studies of flares by optical spectroscopy, radio emissions, and at X-ray and XUV wavelengths. Research has shown where and possibly why flares occur, but the physics of the instability involved, of the particle acceleration, and of the heating are still not understood. (IAA)

  2. HOT PLASMA FROM SOLAR ACTIVE-REGION CORES: CONSTRAINTS FROM THE HINODE X-RAY TELESCOPE

    Energy Technology Data Exchange (ETDEWEB)

    Schmelz, J. T. [USRA, 7178 Columbia Gateway Drive, Columbia, MD 21046 (United States); Christian, G. M.; Matheny, P. O., E-mail: jschmelz@usra.edu [Physics Department, University of Memphis, Memphis, TN 38152 (United States)

    2016-12-20

    Mechanisms invoked to heat the solar corona to millions of degrees kelvin involve either magnetic waves or magnetic reconnections. Turbulence in the convection zone produces MHD waves, which travel upward and dissipate. Photospheric motions continuously build up magnetic energy, which is released through magnetic reconnection. In this paper, we concentrate on hot non-flaring plasma with temperatures of 5 MK <  T  < 10 MK because it is one of the few observables for which wave and reconnection models make different predictions. Wave models predict no (or little) hot plasma, whereas reconnection models predict it, although in amounts that are challenging to detect with current instrumentation. We used data from the X-ray Telescope (XRT) and the Atmospheric Imaging Assembly (AIA). We requested a special XRT observing sequence, which cycled through the thickest XRT filter several times per hour so we could average these images and improve the signal-to-noise. We did differential emission measure (DEM) analysis using the time-averaged thick-filter data as well as all available channels from both the XRT and AIA for regions observed on 2014 December 11. Whereas our earlier work was only able to determine that plasma with a temperature greater than 5 MK was present , we are now able to find a well-constrained DEM distribution. We have therefore added a strong observational constraint that must be explained by any viable coronal heating model. Comparing state-of-the-art wave and reconnection model predictions, we can conclude that reconnection is heating the hot plasma in these active regions.

  3. Solar Heating Equipment

    Science.gov (United States)

    1981-01-01

    Solar Unlimited, Inc.'s suncatcher line includes a variety of solar arrays, derived from NASA's satellite program: water heating only, partial home heating, or water and whole house central heating. Solar Unlimited developed a set of vigorous requirements to avoid problems common to solar heating technologies.

  4. Solar workshops financial incentives

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-01-01

    Ten one-day workshops were held across the United States. Information in this workbook is compiled in conjunction with those workshops. The following discussions are included: solar as a fuel (history); why alternative fuels are being sought today; the need for conservation; advantages of solar energy; the potential of solar energy; why solar energy is not more widely used; a definition of solar; how solar can help meet energy demands; Federal policies and programs; what solar technologies exist today that can be effectively utilized (thermal applications, fuels from biomass, solar electric). Additional information is presented in three attachments: Energy-Conserving Methods; Domestic Policy Review of Solar Energy; and DOE Secretary's Annual Report to Congress-Solar Section. (MCW)

  5. Photovoltaic solar concentrator

    Science.gov (United States)

    Nielson, Gregory N.; Cruz-Campa, Jose Luis; Okandan, Murat; Resnick, Paul J.; Sanchez, Carlos Anthony; Clews, Peggy J.; Gupta, Vipin P.

    2015-09-08

    A process including forming a photovoltaic solar cell on a substrate, the photovoltaic solar cell comprising an anchor positioned between the photovoltaic solar cell and the substrate to suspend the photovoltaic solar cell from the substrate. A surface of the photovoltaic solar cell opposite the substrate is attached to a receiving substrate. The receiving substrate may be bonded to the photovoltaic solar cell using an adhesive force or a metal connecting member. The photovoltaic solar cell is then detached from the substrate by lifting the receiving substrate having the photovoltaic solar cell attached thereto and severing the anchor connecting the photovoltaic solar cell to the substrate. Depending upon the type of receiving substrate used, the photovoltaic solar cell may be removed from the receiving substrate or remain on the receiving substrate for use in the final product.

  6. Electric Propulsion Upper-Stage for Launch Vehicle Capability Enhancement

    Science.gov (United States)

    Kemp, Gregory E.; Dankanich, John W.; Woodcock, Gordon R.; Wingo, Dennis R.

    2007-01-01

    The NASA In-Space Propulsion Technology Project Office initiated a preliminary study to evaluate the performance benefits of a solar electric propulsion (SEP) upper-stage with existing and near-term small launch vehicles. The analysis included circular and elliptical Low Earth Orbit (LEO) to Geosynchronous Earth Orbit (GEO) transfers, and LEO to Low Lunar Orbit (LLO) applications. SEP subsystem options included state-of-the-art and near-term solar arrays and electric thrusters. In-depth evaluations of the Aerojet BPT-4000 Hall thruster and NEXT gridded ion engine were conducted to compare performance, cost and revenue potential. Preliminary results indicate that Hall thruster technology is favored for low-cost, low power SEP stages, while gridded-ion engines are favored for higher power SEP systems unfettered by transfer time constraints. A low-cost point design is presented that details one possible stage configuration and outlines system limitations, in particular fairing volume constraints. The results demonstrate mission enhancements to large and medium class launch vehicles, and mission enabling performance when SEP system upper stages are mounted to low-cost launchers such as the Minotaur and Falcon 1. Study results indicate the potential use of SEP upper stages to double GEO payload mass capability and to possibly enable launch on demand capability for GEO assets. Transition from government to commercial applications, with associated cost/benefit analysis, has also been assessed. The sensitivity of system performance to specific impulse, array power, thruster size, and component costs are also discussed.

  7. Hybrid Solar Cooking

    OpenAIRE

    Prasanna, UR; Umanand, L

    2010-01-01

    In the existing traditional solar cookers, the cooking is performed near the collector which may be at an inconvenient location for cooking purposes. This paper proposes a hybrid solar cooking system where the solar energy is brought to the kitchen. The energy source is a combination of the solar thermal energy and the Liquefied Petroleum Gas (LPG) that is very common in kitchens. The solar thermal energy is transferred to the kitchen by means of a circulating fluid like oil. The transfer of ...

  8. Solar collector array

    Science.gov (United States)

    Hall, John Champlin; Martins, Guy Lawrence

    2015-09-06

    A method and apparatus for efficient manufacture, assembly and production of solar energy. In one aspect, the apparatus may include a number of modular solar receiver assemblies that may be separately manufactured, assembled and individually inserted into a solar collector array housing shaped to receive a plurality of solar receivers. The housing may include optical elements for focusing light onto the individual receivers, and a circuit for electrically connecting the solar receivers.

  9. Development of Solar Research

    Science.gov (United States)

    Wittmann, Axel D.; Wolfschmidt, Gudrun; Duerbeck, Hilmar W.

    Originally based on a workshop on “Development of Solar Research”, held in Freiburg/Breisgau, this book contains articles on megalithic structures, the Nebra sky-disk, ancient sun cults, the observation of sunspots, the photography of the sun during eclipses, eclipse maps and expeditions, solar telescopes, solar physics during the Nazi era, archives of solar observations, scientific ballooning for solar research, site-testing on the Canary Islands, as well as on international cooperation.

  10. SUMER: Solar Ultraviolet Measurements of Emitted Radiation

    Science.gov (United States)

    Wilhelm, K.; Axford, W. I.; Curdt, W.; Gabriel, A. H.; Grewing, M.; Huber, M. C. E.; Jordan, M. C. E.; Lemaire, P.; Marsch, E.; Poland, A. I.

    1988-01-01

    The SUMER (solar ultraviolet measurements of emitted radiation) experiment is described. It will study flows, turbulent motions, waves, temperatures and densities of the plasma in the upper atmosphere of the Sun. Structures and events associated with solar magnetic activity will be observed on various spatial and temporal scales. This will contribute to the understanding of coronal heating processes and the solar wind expansion. The instrument will take images of the Sun in EUV (extreme ultra violet) light with high resolution in space, wavelength and time. The spatial resolution and spectral resolving power of the instrument are described. Spectral shifts can be determined with subpixel accuracy. The wavelength range extends from 500 to 1600 angstroms. The integration time can be as short as one second. Line profiles, shifts and broadenings are studied. Ratios of temperature and density sensitive EUV emission lines are established.

  11. Design of a solar-assisted drying system using the double-pass solar collector

    International Nuclear Information System (INIS)

    Sopian, K.; Daud, W.R.; Supranto; Othman, M.Y.; Yatim, B.

    2000-01-01

    A solar-assisted drying system that uses the double-pass solar collector with porous media in the second channel has been designed and constructed at the Solar Energy Research Park, Universiti Kebangsaan Malaysia. The drying system has a total of six double-pass solar collectors. Each collector has a length of 240 cm and a width of 120 cm. The upper channel depth is 3.5 cm and the lower channel depth is 10.5 cm. The lower channel is filled up with steel wool as the porous media. The solar collectors are arranged as 2 banks of 3 collectors each in series. Internal manifold are used to connect the collectors. An auxiliary heater source is installed to supply heat under unfavourable solar radiation conditions. An on/off controller is used to control the startup and shutdown of the auxiliary heater. An outlet temperature of 80-90 0 C can be achieved at a solar radiation range of 800-900 W/m 3 , ambient temperature of 29 degree C and flow rate of O.20 kg/s. (Author)

  12. Solar Club

    CERN Multimedia

    Solar Club

    2012-01-01

      Le  CERN Solar Club tiendra son Assemblée Générale le Mercredi  4 avril, à 18h00 dans la salle C, bat.61, 1e étage de 18h00  à  19h30. Grande table ronde avec  présentations de projets concernant toute forme d’Energie  Renouvelable par des membres du club,  et… par  VOUS, nos invités. Au programme : - L’E-push : petite remorque électrique, qui pousse vôtre vélo par Robert Becker. - Le Stockage Saisonnier Sous-Lacustre d’Energie Solaire (S3LES) par  William van Sprolant. - Compte-Rendu de plusieurs conférences récentes concernant les E.R. par Jacques Dupin. - VOS  Projets ou Sujets (contactez : paul.gelissen@orange.fr). - Partie «administrative» avec rapport d’activités, rapport fina...

  13. Solar Design Workbook

    Energy Technology Data Exchange (ETDEWEB)

    Franta, G.; Baylin, F.; Crowther, R.; Dubin, F.; Grace, A., Griffith, J.W.; Holtz, M.; Kutscher, C.; Nordham, D.; Selkowitz, S.; Villecco, M.

    1981-06-01

    This Solar Design Workbook presents solar building design applications for commercial buildir^s. The book is divided into four sections. The first section describes the variety of solar applications in buildings including conservation aspects, solar fundamentals, passive systems, active systems, daylighting, and other solar options. Solar system design evaluation techniques including considerations for building energy requirements, passive systems, active systems, and economics are presented in Section II. The third section attempts to assist the designer in the building design process for energy conservation and solar applications including options and considerations for pre-design, design, and post-design phases. The information required for the solar design proee^ has not been fully developed at this time. Therefore, Section III is incomplete, but an overview of the considerations with some of the design proces elements is presented. Section IV illustrates ease studies that utilize solar applications in the building design.

  14. Solar Adaptive Optics

    Directory of Open Access Journals (Sweden)

    Thomas R. Rimmele

    2011-06-01

    Full Text Available Adaptive optics (AO has become an indispensable tool at ground-based solar telescopes. AO enables the ground-based observer to overcome the adverse effects of atmospheric seeing and obtain diffraction limited observations. Over the last decade adaptive optics systems have been deployed at major ground-based solar telescopes and revitalized ground-based solar astronomy. The relatively small aperture of solar telescopes and the bright source make solar AO possible for visible wavelengths where the majority of solar observations are still performed. Solar AO systems enable diffraction limited observations of the Sun for a significant fraction of the available observing time at ground-based solar telescopes, which often have a larger aperture than equivalent space based observatories, such as HINODE. New ground breaking scientific results have been achieved with solar adaptive optics and this trend continues. New large aperture telescopes are currently being deployed or are under construction. With the aid of solar AO these telescopes will obtain observations of the highly structured and dynamic solar atmosphere with unprecedented resolution. This paper reviews solar adaptive optics techniques and summarizes the recent progress in the field of solar adaptive optics. An outlook to future solar AO developments, including a discussion of Multi-Conjugate AO (MCAO and Ground-Layer AO (GLAO will be given.

  15. Principles of solar engineering

    CERN Document Server

    Goswami, D Yogi

    2015-01-01

    Introduction to Solar Energy ConversionGlobal Energy Needs and ResourcesSolar EnergyEnergy StorageEconomics of Solar SystemsSummary of RE ResourcesForecast of Future Energy MixReferencesFundamentals of Solar RadiationThe Physics of the Sun and Its Energy TransportThermal Radiation FundamentalsSun-Earth Geometric RelationshipSolar RadiationEstimation of Terrestrial Solar RadiationModels Based on Long-Term Measured Horizontal Solar RadiationMeasurement of Solar RadiationSolar Radiation Mapping Using Satellite DataReferencesSuggested ReadingsSolar Thermal CollectorsRadiative Properties and Characteristics of MaterialsFlat-Plate CollectorsTubular Solar Energy CollectorsExperimental Testing of CollectorsConcentrating Solar CollectorsParabolic Trough ConcentratorCompound-Curvature Solar ConcentratorsCentral Receiver CollectorFresnel Reflectors and LensesSolar Concentrator SummaryReferencesSuggested ReadingThermal Energy Storage and TransportThermal Energy StorageTypes of TESDesign of Storage SystemEnergy Transport ...

  16. Southern Hemisphere Upper Thermospheric Wind Climatology

    Science.gov (United States)

    Dhadly, M. S.; Emmert, J. T.; Drob, D. P.

    2017-12-01

    This study is focused on the poorly understood large-scale upper thermospheric wind dynamics in the southern polar cap, auroral, and mid latitudes. The gaps in our understanding of the dynamic high-latitude thermosphere are largely due to the sparseness of thermospheric wind measurements. Using data from current observational facilities, it is unfeasible to construct a synoptic picture of the Southern Hemisphere upper thermospheric winds. However, enough data with wide spatial and temporal coverage have accumulated to construct a meaningful statistical analysis of winds as function of season, magnetic latitude, and magnetic local time. We use long-term data from nine ground-based stations located at different southern high latitudes and three space-based instruments. These diverse data sets possess different geometries and different spatial and solar coverage. The major challenge of the effort is to combine these disparate sources of data into a coherent picture while overcoming the sampling limitations and biases among the datasets. Our preliminary analyses show mutual biases present among some of them. We first address the biases among various data sets and then combine them in a coherent way to construct maps of neutral winds for various seasons. We then validate the fitted climatology against the observational data and compare with corresponding fits of 25 years of simulated winds from the National Center for Atmospheric Research Thermosphere-Ionosphere-Electrodynamics General Circulation Model. This study provides critical insight into magnetosphere-ionosphere-thermosphere coupling and sets a necessary benchmark for validating new observations and tuning first-principles models.

  17. Empirical model of atomic nitrogen in the upper thermosphere

    Science.gov (United States)

    Engebretson, M. J.; Mauersberger, K.; Kayser, D. C.; Potter, W. E.; Nier, A. O.

    1977-01-01

    Atomic nitrogen number densities in the upper thermosphere measured by the open source neutral mass spectrometer (OSS) on Atmosphere Explorer-C during 1974 and part of 1975 have been used to construct a global empirical model at an altitude of 375 km based on a spherical harmonic expansion. The most evident features of the model are large diurnal and seasonal variations of atomic nitrogen and only a moderate and latitude-dependent density increase during periods of geomagnetic activity. Maximum and minimum N number densities at 375 km for periods of low solar activity are 3.6 x 10 to the 6th/cu cm at 1500 LST (local solar time) and low latitude in the summer hemisphere and 1.5 x 10 to the 5th/cu cm at 0200 LST at mid-latitudes in the winter hemisphere.

  18. VUV photochemistry simulation of planetary upper atmosphere using synchrotron radiation.

    Science.gov (United States)

    Carrasco, Nathalie; Giuliani, Alexandre; Correia, Jean Jacques; Cernogora, Guy

    2013-07-01

    The coupling of a gas reactor, named APSIS, with a vacuum-ultraviolet (VUV) beamline at the SOLEIL synchrotron radiation facility, for a photochemistry study of gas mixtures, is reported. The reactor may be irradiated windowless with gas pressures up to hundreds of millibar, and thus allows the effect of energetic photons below 100 nm wavelength to be studied on possibly dense media. This set-up is perfectly suited to atmospheric photochemistry investigations, as illustrated by a preliminary report of a simulation of the upper atmospheric photochemistry of Titan, the largest satellite of Saturn. Titan's atmosphere is mainly composed of molecular nitrogen and methane. Solar VUV irradiation with wavelengths no longer than 100 nm on the top of the atmosphere enables the dissociation and ionization of nitrogen, involving a nitrogen chemistry specific to nitrogen-rich upper atmospheres.

  19. Oncoplastic Surgery for Upper/Upper Inner Quadrant Breast Cancer.

    Science.gov (United States)

    Lin, Joseph; Chen, Dar-Ren; Wang, Yu-Fen; Lai, Hung-Wen

    2016-01-01

    Tumors located in the upper/upper inner quadrant of the breast warrant more attention. A small lesion relative to the size of breast in this location may be resolved by performing a level I oncoplastic technique. However, a wide excision may significantly reduce the overall quality of the breast shape by distorting the visible breast line. From June 2012 to April 2015, 36 patients with breast cancer located in the upper/upper inner quadrant underwent breast-conservation surgery with matrix rotation mammoplasty. According to the size and location of the tumor relative to the nipple-areola complex, 11 patients underwent matrix rotation with periareolar de-epithelialization (donut group) and the other 25 underwent matrix rotation only (non-donut group). The cosmetic results were self-assessed by questionnaires. The average weights of the excised breast lumps in the donut and non-donut groups were 104.1 and 84.5 g, respectively. During the 3-year follow-up period, local recurrence was observed in one case and was managed with nipple-sparing mastectomy followed by breast reconstruction with prosthetic implants. In total, 31 patients (88.6%) ranked their postoperative result as either acceptable or satisfactory. The treated breasts were also self-evaluated by 27 patients (77.1%) to be nearly identical to or just slightly different from the untreated side. Matrix rotation is an easy breast-preserving technique for treating breast cancer located in the upper/upper inner quadrant of the breast that requires a relatively wide excision. With this technique, a larger breast tumor could be removed without compromising the breast appearance.

  20. Oncoplastic Surgery for Upper/Upper Inner Quadrant Breast Cancer.

    Directory of Open Access Journals (Sweden)

    Joseph Lin

    Full Text Available Tumors located in the upper/upper inner quadrant of the breast warrant more attention. A small lesion relative to the size of breast in this location may be resolved by performing a level I oncoplastic technique. However, a wide excision may significantly reduce the overall quality of the breast shape by distorting the visible breast line. From June 2012 to April 2015, 36 patients with breast cancer located in the upper/upper inner quadrant underwent breast-conservation surgery with matrix rotation mammoplasty. According to the size and location of the tumor relative to the nipple-areola complex, 11 patients underwent matrix rotation with periareolar de-epithelialization (donut group and the other 25 underwent matrix rotation only (non-donut group. The cosmetic results were self-assessed by questionnaires. The average weights of the excised breast lumps in the donut and non-donut groups were 104.1 and 84.5 g, respectively. During the 3-year follow-up period, local recurrence was observed in one case and was managed with nipple-sparing mastectomy followed by breast reconstruction with prosthetic implants. In total, 31 patients (88.6% ranked their postoperative result as either acceptable or satisfactory. The treated breasts were also self-evaluated by 27 patients (77.1% to be nearly identical to or just slightly different from the untreated side. Matrix rotation is an easy breast-preserving technique for treating breast cancer located in the upper/upper inner quadrant of the breast that requires a relatively wide excision. With this technique, a larger breast tumor could be removed without compromising the breast appearance.

  1. Large Abundances of Polycyclic Aromatic Hydrocarbons in Titan's Upper Atmosphere

    Science.gov (United States)

    Lopez-Puertas, M.; Dinelli, B. M.; Adriani, A.; Funke, B.; Garcia-Comas, M.; Moriconi, M. L.; D'Aversa, E.; Boersma, C.; Allamandola, L. J.

    2013-01-01

    In this paper, we analyze the strong unidentified emission near 3.28 micron in Titan's upper daytime atmosphere recently discovered by Dinelli et al.We have studied it by using the NASA Ames PAH IR Spectroscopic Database. The polycyclic aromatic hydrocarbons (PAHs), after absorbing UV solar radiation, are able to emit strongly near 3.3 micron. By using current models for the redistribution of the absorbed UV energy, we have explained the observed spectral feature and have derived the vertical distribution of PAH abundances in Titan's upper atmosphere. PAHs have been found to be present in large concentrations, about (2-3) × 10(exp 4) particles / cubic cm. The identified PAHs have 9-96 carbons, with a concentration-weighted average of 34 carbons. The mean mass is approx 430 u; the mean area is about 0.53 sq. nm; they are formed by 10-11 rings on average, and about one-third of them contain nitrogen atoms. Recently, benzene together with light aromatic species as well as small concentrations of heavy positive and negative ions have been detected in Titan's upper atmosphere. We suggest that the large concentrations of PAHs found here are the neutral counterpart of those positive and negative ions, which hence supports the theory that the origin of Titan main haze layer is located in the upper atmosphere.

  2. Upper incisors' positions after extraction.

    Science.gov (United States)

    Werneck, Eduardo César; Mattos, Fernanda Silva; Cotrim-Ferreira, Flávio Augusto; Prado, Renata Falchete; Silva, Márcio Garcia; Araújo, Adriano Marotta

    2014-01-01

    The aim of this research was to verify the amount of horizontal and vertical movement and incisor inclination of upper incisors and correlate these with Edgewise and Alexander brackets use and the presence of overbite during anterior retraction in sliding mechanics. The sample was composed of 40 adult patients divided into 2 groups, treated with Edgewise and Alexander brackets (20 each) subdivided in 2 groups (10 each), according to the presence or absence of deep bite. Treatment consisted of 4 extraction cases with sliding mechanics with the 2 different brackets. Pre- and post-treatment cephalograms were measured and the values of interest submitted to descriptive statistical analysis, ANOVA at 5%, the Tukey test and Pearson's correlation. Upper incisor retraction was not related to the brackets used nor to the presence of deep bite, though lingual tipping was greater when Edgewise brackets were used and deep bite was absent. No statistically significant differences in upper incisor vertical movements were observed and no correlation was determined between upper incisor intrusion and lower incisor labial tipping in overbite correction or in upper incisor retraction and lower incisor labial tipping for overjet correction. Bracket prescription and its interaction with deep bite were significant and Edgewise brackets without deep bite showed the worst inclination control. It was concluded that bracket prescriptions are important to increase control of sliding mechanics.

  3. Climatology of GW-TIDs in the magnetic equatorial upper thermosphere over India

    Science.gov (United States)

    Manju, G.; Aswathy, R. P.

    2017-11-01

    An analysis of Gravity wave induced travelling ionospheric disturbances (GW-TIDs) in the thermosphere during high and low solar epochs is undertaken using ionosonde data at Trivandrum (8.50N, 770E). Wavelet analysis is performed on the temporal variations of foF2 and the amplitudes of waves present in two period bands of (0.5-1.5) h and (2-4) h are extracted. The real height profiles are generated at 15 min internal for the whole day (for sample days) during high and low solar activity years. The study reveals that the GW-TID activity is significantly greater for solar minimum compared to solar maximum for the period 8.5-17.5 h. Diurnally the GW-TID activity in the (2-4) h period band peaks in the post sunset hours for both high and low solar epochs. For the 0.5-1.5 h period band, the diurnal maximum in GW-TID is occurring in the post sunset hours for high solar epoch while it occurs in the morning hours around 10 h LT for low solar epoch. Seasonally the day time GW-TID activity maximizes (minimizes) for winter (vernal equinox). The post sunset time GW-TID maximizes (minimizes) either for summer/winter (vernal equinox). The other interesting observation is the anti correlation of GW-TID in upper thermosphere with solar activity for day time and the correlation of the same with solar activity in the post sunset hours. The present results for daytime are in agreement with the equatorial daytime GW-TID behaviour reported from CHAMP satellite observations. The GW-TID activity during post sunset time for equatorial region upper thermosphere has not been reported so far.

  4. Solar renovation demonstration projects

    Energy Technology Data Exchange (ETDEWEB)

    Bruun Joergensen, O. [ed.

    1998-10-01

    In the framework of the IEA SHC Programme, a Task on building renovation was initiated, `Task 20, Solar Energy in Building Renovation`. In a part of the task, Subtask C `Design of Solar Renovation Projects`, different solar renovation demonstration projects were developed. The objective of Subtask C was to demonstrate the application of advanced solar renovation concepts on real buildings. This report documents 16 different solar renovation demonstration projects including the design processes of the projects. The projects include the renovation of houses, schools, laboratories, and factories. Several solar techniques were used: building integrated solar collectors, glazed balconies, ventilated solar walls, transparent insulation, second skin facades, daylight elements and photovoltaic systems. These techniques are used in several simple as well as more complex system designs. (au)

  5. Solar Thermal Energy Technology

    Energy Technology Data Exchange (ETDEWEB)

    Cason, D.L.; Pitsenbarger, J. [eds.

    1996-02-01

    Solar Thermal Energy Technology (PST) announces on a bimonthly basis the current worldwide research and development information that would expand the technology base required for the advancement of solar thermal systems as a significant energy resource.

  6. Solar power roof shingle

    Science.gov (United States)

    Forestieri, A. F.; Ratajczak, A. F.; Sidorak, L. G.

    1975-01-01

    Silicon solar cell module provides both all-weather protection and electrical power. Module consists of array of circular silicon solar cells bonded to fiberglass substrate roof shingle with fluorinated ethylene propylene encapsulant.

  7. Solar Dynamics Observatory

    Data.gov (United States)

    National Aeronautics and Space Administration — A searchable database of all Solar Dynamics Observatory data including EUV, magnetograms, visible light and X-ray. SDO: The Solar Dynamics Observatory is the first...

  8. Aeronet Solar Flux

    Data.gov (United States)

    National Aeronautics and Space Administration — SolRad-Net (Solar Radiation Network) is an established network of ground-based sensors providing high-frequency solar flux measurements in quasi-realtime to the...

  9. Solar Indices - Sunspot Numbers

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of indices related to solar activity contributed by a number of national and private solar observatories located worldwide. This...

  10. Solar engineering 1994

    International Nuclear Information System (INIS)

    Klett, D.E.; Hogan, R.E.; Tanaka, Tadayoshi

    1994-01-01

    This volume of 83 papers constitutes the Proceedings of the 1994 International Solar Energy Conference held March 27--30, 1994 in San Francisco, California. The Conference was jointly sponsored by the Solar Energy Division of the American Society of Mechanical Engineers, The Japan Society of Mechanical Engineers and the Japan Solar Energy Society. This is the fourth cooperation between ASME, JSME and JSES in cosponsoring the International Solar Energy Conference. The papers cover a wide range of solar technologies from low temperature solar ponds and desalinization to high temperature concentrators for space applications and central receivers for terrestrial power generation. Other topics covered include solar detoxification of hazardous waste, dish Stirling systems, solar cooling, photovoltaics, building energy analysis and conservation, simulation, and testing and measurement techniques. All papers were indexed separately for the data base

  11. Solar Resource Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Renne, D.; George, R.; Wilcox, S.; Stoffel, T.; Myers, D.; Heimiller, D.

    2008-02-01

    This report covers the solar resource assessment aspects of the Renewable Systems Interconnection study. The status of solar resource assessment in the United States is described, and summaries of the availability of modeled data sets are provided.

  12. Solar Indices - Plage Regions

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of indices related to solar activity contributed by a number of national and private solar observatories located worldwide. This...

  13. Emerging Solar Technologies: Perovskite Solar Cell

    Indian Academy of Sciences (India)

    tus of hybrid perovskite solar cells. 1. Introduction. Gradually, primary energy resources such as fossil fuels, coal, and natural gas are depleting, while the global energy consump- tion is increasing. Solar energy, along with wind, biomass, tidal, and geothermal sources is emerging as an answer to our energy- starved planet.

  14. Durable solar mirror films

    Energy Technology Data Exchange (ETDEWEB)

    O' Neill, Mark B.; Henderson, Andrew J.; Hebrink, Timothy J.; Katare, Rajesh K.; Jing, Naiyong; North, Diane; Peterson, Eric M.

    2017-02-14

    The present disclosure generally relates to durable solar mirror films, methods of making durable solar mirror films, and constructions including durable solar mirror films. In one embodiment, the present disclosure relates to a solar mirror film comprising: a multilayer optical film layer including having a coefficient of hygroscopic expansion of less than about 30 ppm per percent relative humidity; and a reflective layer having a coefficient of hygroscopic expansion.

  15. Solar Energy Technician/Installer

    Science.gov (United States)

    Moore, Pam

    2007-01-01

    Solar power (also known as solar energy) is solar radiation emitted from the sun. Large panels that absorb the sun's energy as the sun beats down on them gather solar power. The energy in the rays can be used for heat (solar thermal energy) or converted to electricity (photovoltaic energy). Each solar energy project, from conception to…

  16. Solar spectral irradiance changes during cycle 24

    Energy Technology Data Exchange (ETDEWEB)

    Marchenko, S. V.; DeLand, M. T. [Also at NASA/Goddard Space Flight Center, Greenbelt, MD, USA. (United States)

    2014-07-10

    We use solar spectra obtained by the Ozone Monitoring Instrument (OMI) on board the Aura satellite to detect and follow long-term (years) and short-term (weeks) changes in the solar spectral irradiance (SSI) in the 265-500 nm spectral range. During solar Cycle 24, in the relatively line-free regions the SSI changed by ∼0.6% ± 0.2% around 265 nm. These changes gradually diminish to 0.15% ± 0.20% at 500 nm. All strong spectral lines and blends, with the notable exception of the upper Balmer lines, vary in unison with the solar 'continuum'. Besides the lines with strong chromospheric components, the most involved species include Fe I blends and all prominent CH, NH, and CN spectral bands. Following the general trend seen in the solar 'continuum', the variability of spectral lines also decreases toward longer wavelengths. The long-term solar cycle SSI changes are closely, to within the quoted 0.1%-0.2% uncertainties, matched by the appropriately adjusted short-term SSI variations derived from the 27 day rotational modulation cycles. This further strengthens and broadens the prevailing notion about the general scalability of the UV SSI variability to the emissivity changes in the Mg II 280 nm doublet on timescales from weeks to years. We also detect subtle deviations from this general rule: the prominent spectral lines and blends at λ ≳ 350 nm show slightly more pronounced 27 day SSI changes when compared to the long-term (years) trends. We merge the solar data from Cycle 21 with the current Cycle 24 OMI and GOME-2 observations and provide normalized SSI variations for the 170-795 nm spectral region.

  17. Experimenting with Solar Energy

    Science.gov (United States)

    Roman, Harry T.

    2004-01-01

    Over the past 25 years, the author has had the opportunity to study the subject of solar energy and to get involved with the installation, operation, and testing of solar energy systems. His work has taken him all over the United States and put him in contact with solar experts from around the world. He has also had the good fortune of seeing some…

  18. Alternatives in solar energy

    Science.gov (United States)

    Schueler, D. G.

    1978-01-01

    Although solar energy has the potential of providing a significant source of clean and renewable energy for a variety of applications, it is expected to penetrate the nation's energy economy very slowly. The alternative solar energy technologies which employ direct collection and conversion of solar radiation as briefly described.

  19. Solar energy potential

    Science.gov (United States)

    1973-01-01

    The potential of solar energy as a national resource is discussed. Research and development programs for the development of eleven concepts are described to show the proposed funding for each year over a fifteen year period. The estimated energy contributions by period for each of the solar concepts are analyzed. The estimated impact of the solar concepts to the year 2020 are tabulated.

  20. Solar tracking system

    Science.gov (United States)

    Okandan, Murat; Nielson, Gregory N.

    2016-07-12

    Solar tracking systems, as well as methods of using such solar tracking systems, are disclosed. More particularly, embodiments of the solar tracking systems include lateral supports horizontally positioned between uprights to support photovoltaic modules. The lateral supports may be raised and lowered along the uprights or translated to cause the photovoltaic modules to track the moving sun.

  1. Solar cell concentrating system

    International Nuclear Information System (INIS)

    Garg, H.P.; Sharma, V.K.; Agarwal, R.K.

    1986-11-01

    This study reviews fabrication techniques and testing facilities for different solar cells under concentration which have been developed and tested. It is also aimed to examine solar energy concentrators which are prospective candidates for photovoltaic concentrator systems. This may provide an impetus to the scientists working in the area of solar cell technology

  2. Nanostructured Organic Solar Cells

    DEFF Research Database (Denmark)

    Radziwon, Michal Jędrzej; Rubahn, Horst-Günter; Madsen, Morten

    Recent forecasts for alternative energy generation predict emerging importance of supporting state of art photovoltaic solar cells with their organic equivalents. Despite their significantly lower efficiency, number of application niches are suitable for organic solar cells. This work reveals...... the principles of bulk heterojunction organic solar cells fabrication as well as summarises major differences in physics of their operation....

  3. Superstrate sub-cell voltage-matched multijunction solar cells

    Science.gov (United States)

    Mascarenhas, Angelo; Alberi, Kirstin

    2016-03-15

    Voltage-matched thin film multijunction solar cell and methods of producing cells having upper CdTe pn junction layers formed on a transparent substrate which in the completed device is operatively positioned in a superstate configuration. The solar cell also includes a lower pn junction formed independently of the CdTe pn junction and an insulating layer between CdTe and lower pn junctions. The voltage-matched thin film multijunction solar cells further include a parallel connection between the CdTe pn junction and lower pn junctions to form a two-terminal photonic device. Methods of fabricating devices from independently produced upper CdTe junction layers and lower junction layers are also disclosed.

  4. Diagnostic indications for upper gastrointestinal endoscopy ...

    African Journals Online (AJOL)

    Background/Aim: Upper gastrointestinal (GI) endoscopy now assumes a prominent role in the diagnosis and therapy of upper GI diseases. Some indications for upper gastrointestinal endoscopy include dyspepsia, dysphagia, peptic ulcer disease (PUD) and upper gastrointestinal bleeding. This study aimed to review the ...

  5. Solar Proton Events in Six Solar Cycles

    Science.gov (United States)

    Vitaly, Ishkov

    Based on materials the catalogs of solar proton events (SPE) in 1955 ‒ 2010 and list SPE for the current 24 solar cycle (SC) are examined confirmed SPE with E> 10 MeV proton flux in excess of 1 proton cm-2 s ster-1 (pfu) from Švestka and Simon’s (1955 - 1969) and 5 volumes Logachev’s (1970 - 2006) Catalogs of SPE. Historically thus it was formed, that the measurements of the proton fluxes began in the epoch “increased” solar activity (SC 18 ‒ 22), and includes transition period of the solar magnetic fields reconstruction from epoch “increased” to the epoch “lowered” solar activity (22 ‒ 23 SC). In current 24 SC ‒ first SC of the incipient epoch of “lowered” SA ‒ SPE realize under the new conditions, to that of previously not observed. As showed a study of five solar cycles with the reliable measurements of E> 10 MeV proton flux in excess of 1 pfu (1964 - 2013): ‒ a quantity of SPEs remained approximately identical in SC 20, 21, somewhat decreased in the initial solar cycle of the solar magnetic fields reconstruction period (22), but it returned to the same quantity in, the base for the period of reconstruction, SC 23. ‒ Into the first 5 years of the each solar cycle development the rate of the proton generation events noticeably increased in 22 cycles of solar activity and returned to the average in cycles 23 and 24. ‒ Extreme solar flare events are achieved, as a rule, in the solar magnetic fields reconstruction period (August - September 1859; June 1991; October ‒ November 2003.), it is confirmed also for SPE: the extreme fluxes of solar protons (S4) except one (August 1972) were occurred in period of perestroika (SC 22 and 23). This can speak, that inside the epochs SA, when the generation of magnetic field in the convective zone works in the steady-state regime, extreme SPE are improbable. ‒ The largest in the fluxes of protons (S3, S4) occur in the complexes of the active regions flare events, where magnetic field more

  6. Approach to upper gastrointestinal bleeding

    African Journals Online (AJOL)

    Upper gastrointestinal haemorrhage has a variety of causes (Table 1) and is the commonest complication of peptic ulceration and portal hypertension. Peptic ulceration in the duodenum or stomach and oesophageal varices are the conditions most often responsible for patients who have the potential to present.

  7. Horizontal Diplopia Following Upper Blepharoplasty

    Directory of Open Access Journals (Sweden)

    Tomás Ortiz-Basso

    2014-09-01

    Full Text Available Diplopia is an infrequent complication after blepharoplasty. Most of the cases are in its vertical form due to trauma of the extraocular muscles. In this article, we present a case of horizontal diplopia following cosmetic upper blepharoplasty; we review the literature on this unexpected complication and offer some recommendations to avoid it.

  8. Angiography of the upper extremity

    International Nuclear Information System (INIS)

    Janevski, B.K.

    1982-01-01

    This thesis provides a description of the technical and medical aspects of arteriography of the upper extremity and an extensive analysis of the angiographic anatomy and pathology of 750 selective studies performed in more than 500 patients. A short historical review is provided of angiography as a whole and of arteriography of the hand in particular. The method of percutaneous transfemoral catheterization of the arteries of the upper extremity and particularly the arteries of the hand is considered, discussing the problems the angiographer encounters frequently, describing the angiographic complications which may occur and emphasizing the measures to keep them to a minimum. The use of vasodilators in hand angiography is discussed. A short description of the embryological patterns persisting in the arteries of the arm is included in order to understand the congenital variations of the arteries of the upper extremity. The angiographic patterns and clinical aspects of the most common pathological processes involving the arteries of the upper extremities are presented. Special attention is paid to the correlation between angiography and pathology. (Auth.)

  9. Approach to upper gastrointestinal bleeding

    African Journals Online (AJOL)

    Upper gastrointestinal haemorrhage has a variety of causes (Table 1) and is the commonest complication of peptic ulceration and portal hypertension. Peptic ulceration in the duo- denum or stomach and oesophageal varices are the conditions most often responsible for patients who have the potential to present.

  10. Solar Cycle Variations as Observed by MLS Carbon Monoxide

    Science.gov (United States)

    Lee, J. N.; Wu, D. L.; Ruzmaikin, A.; Fontenla, J. M.

    2017-12-01

    More than thirteen years (2004-2017) of carbon monoxide (CO) measurements from the Aura Microwave Limb Sounder (MLS) are analyzed to better understand impacts of solar cycle 24. The upper mesospheric CO, produced primarily by the carbon dioxide (CO2) photolysis in the lower thermosphere, is sensitive to solar irradiance variability. We find that interannual variations of the mesospheric CO concentration are largely driven by the solar-cycle modulated ultraviolet (UV) variation in most of the UV wavelengths (120 to 280 nm) in high latitude regions. Despite different mean CO abundances in the SH and NH winters, their solar-cycle dependence appears to be symmetric with respect to the winter pole. This solar signal extends down to the lower altitudes by the dynamical descent in the polar vortex, showing a time lag that is consistent with the average descent velocity. To characterize a global distribution of the solar influence, Aura MLS CO is correlated with the Solar Radiation and Climate Experiment (SORCE) Total Irradiance Monitor (TIM) measured total solar irradiance (TSI) and with the SORCE Solar-Stellar Irradiance Comparison Experiment (SOLSTICE) measured UV. As high as 0.8 in most of the polar mesosphere, the linear correlation coefficients between CO and UV/TSI are more robust than those found in the previous work, with the extended analysis period. Different from the result shown in Lee et al. (2013), the downward propagation of the solar signals is similar in both NH and SH high latitudes. Effects of solar forcing on mesospheric CO extend far beyond the polar region. CO is a good tracer to show that the solar induced CO anomaly seems to follow the global meridional residual circulation and hemispheric transition from pole to pole in every six months. WACCM simulation experiment with two different solar spectral irradiance models, SRPM (Solar Radiation Physical Modeling) 2012 and NRLSSI (Naval Research Laboratory Spectral Solar Irradiance), shows that the

  11. Solar radiation absorbing material

    Science.gov (United States)

    Googin, John M.; Schmitt, Charles R.; Schreyer, James M.; Whitehead, Harlan D.

    1977-01-01

    Solar energy absorbing means in solar collectors are provided by a solar selective carbon surface. A solar selective carbon surface is a microporous carbon surface having pores within the range of 0.2 to 2 micrometers. Such a surface is provided in a microporous carbon article by controlling the pore size. A thermally conductive substrate is provided with a solar selective surface by adhering an array of carbon particles in a suitable binder to the substrate, a majority of said particles having diameters within the range of about 0.2-10 microns.

  12. Solar energy conversion systems

    CERN Document Server

    Brownson, Jeffrey R S

    2013-01-01

    Solar energy conversion requires a different mind-set from traditional energy engineering in order to assess distribution, scales of use, systems design, predictive economic models for fluctuating solar resources, and planning to address transient cycles and social adoption. Solar Energy Conversion Systems examines solar energy conversion as an integrative design process, applying systems thinking methods to a solid knowledge base for creators of solar energy systems. This approach permits different levels of access for the emerging broad audience of scientists, engineers, architects, planners

  13. Solar energy in Israel

    International Nuclear Information System (INIS)

    Zvirin, Y.; Zamkow, S.

    1993-01-01

    The state of Israel has been a pioneer in the solar energy development and utilization since it was founded. In the 50's solar domestic home heaters became commercially available. At the same time research work has been started in different areas of solar energy, which led to more advanced solar systems for additional applications. The presentation includes some details of commercial utilization of solar energy and a brief description of the main Research and Development projects in industry, universities and research institutes. (authors)

  14. Magnetic tornadoes as energy channels into the solar corona.

    Science.gov (United States)

    Wedemeyer-Böhm, Sven; Scullion, Eamon; Steiner, Oskar; van der Voort, Luc Rouppe; de la Cruz Rodriguez, Jaime; Fedun, Viktor; Erdélyi, Robert

    2012-06-27

    Heating the outer layers of the magnetically quiet solar atmosphere to more than one million kelvin and accelerating the solar wind requires an energy flux of approximately 100 to 300 watts per square metre, but how this energy is transferred and dissipated there is a puzzle and several alternative solutions have been proposed. Braiding and twisting of magnetic field structures, which is caused by the convective flows at the solar surface, was suggested as an efficient mechanism for atmospheric heating. Convectively driven vortex flows that harbour magnetic fields are observed to be abundant in the photosphere (the visible surface of the Sun). Recently, corresponding swirling motions have been discovered in the chromosphere, the atmospheric layer sandwiched between the photosphere and the corona. Here we report the imprints of these chromospheric swirls in the transition region and low corona, and identify them as observational signatures of rapidly rotating magnetic structures. These ubiquitous structures, which resemble super-tornadoes under solar conditions, reach from the convection zone into the upper solar atmosphere and provide an alternative mechanism for channelling energy from the lower into the upper solar atmosphere.

  15. Nile behaviour and Upper Palaeolithic humans in Upper Egypt

    Science.gov (United States)

    Vermeersch, Pierre M.

    2014-05-01

    There is evidence of a decreasing human occupation of the Upper Egyptian Nile valley during the MIS 5 to MIS 3 period. Whereas very large extraction sites of the Middle Stone Age have been recorded, only very few sites of the Upper Palaeolithic have been found. The best explanation of this fact is that during the Late Middle Stone Age and the Upper Palaeolithc there was nearly no need for raw materials because there was only a very restricted population present in Upper Egypt. From about 22 ka BP an important population increase is registered by the presence of numerous Late Palaeolithic sites. During the whole LGM there is abundant presence of humans along the Nile Valley in Upper Egypt. This population was mainly living from fishing. There seems to be an abrupt end of the Palaeolithic occupation after 12.8 ka BP. Until now, no sites were found in the Valley until some rare Epipaleolithic sites occur about 8.0 ka BP. It will be suggested that these population changes are influenced by the river Nile behaviour. The best interpretation of the observations in the Upper Egyptian Nile Valley is the hypothesis that at the same time that Nile flow was reduced because of the dryness in its source area, the impact of aeolian activity was increased over Northeast Africa. The increased aeolian activity by northern winds in the Fayum and Wadi Ryan during the LGM resulted in the accumulation of aeolian sand in the valley. That aeolian sand was transported along the western Nile valley cliffs until it was accumulated when the Nile Valley change it S-N direction, such as at Nag'Hammadi. At other places sand was invading the Nile valley, directly from the Western Desert, creating a damming of the Nile at several places such as Armant and Aswan. As Nile flow was quite reduced, the Nile was unable to erode all the incoming sand and the Nile water with its important clay content was dammed. At several places large lakes were created in the Nile Valley. Those lakes were an ideal

  16. Solar heating and hot water system installed at Arlington Raquetball Club, Arlington, Virginia

    Science.gov (United States)

    1981-01-01

    A solar space and water heating system is described. The solar energy system consists of 2,520 sq. ft. of flat plate solar collectors and a 4,000 gallon solar storage tank. The transfer medium in the forced closed loop is a nontoxic antifreeze solution (50 percent water, 50 percent propylene glycol). The service hot water system consists of a preheat coil (60 ft. of 1 1/4 in copper tubing) located in the upper third of the solar storage tank and a recirculation loop between the preheat coil and the existing electric water heaters. The space heating system consists of two separate water to air heat exchangers located in the ducts of the existing space heating/cooling systems. The heating water is supplied from the solar storage tank. Extracts from site files, specification references for solar modifications to existing building heating and hot water systems, and installation, operation and maintenance instructions are included.

  17. The coronas-F space mission key results for solar terrestrial physics

    CERN Document Server

    2014-01-01

    This volume is the updated and extended translation of the Russian original. It presents the results of observations of solar activity and its effects in the Earth space environment carried out from July 2001 to December 2005 on board the CORONAS-F space mission. The general characteristics of the CORONAS-F scientific payload are provided with a description of the principal experiments. The main results focus on the global oscillations of the Sun (p-modes), solar corona, solar flares, solar cosmic rays, Earth’s radiation belts, and upper atmosphere. The book will be welcomed by students, post-graduates, and scientists working in the field of solar and solar-terrestrial physics. This English edition is supplemented by sections presenting new results of the SPIRIT and TESIS experiments under the CORONAS solar program, as well as from the SONG experiment onboard the CORONAS-F satellite.

  18. Preliminary design of the INPE's Solar Vector Magnetograph

    Science.gov (United States)

    Vieira, L. E. A.; de Gonzalez, A. L. Clúa; Lago, A. Dal; Wrasse, C.; Echer, E.; Guarnieri, F. L.; Cardoso, F. Reis; Guerrero, G.; Costa, J. Rezende; Palacios, J.; Balmaceda, L.; Alves, L. Ribeiro; da Silva, L.; Costa, L. L.; Sampaio, M.; Soares, M. C. Rabello; Barbosa, M.; Domingues, M.; Rigozo, N.; Mendes, O.; Jauer, P.; Dallaqua, R.; Branco, R. H.; Stekel, T.; Gonzalez, W.; Kabata, W.

    2015-10-01

    We describe the preliminary design of a magnetograph and visible-light imager instrument to study the solar dynamo processes through observations of the solar surface magnetic field distribution. The instrument will provide measurements of the vector magnetic field and of the line-of-sight velocity in the solar photosphere. As the magnetic field anchored at the solar surface produces most of the structures and energetic events in the upper solar atmosphere and significantly influences the heliosphere, the development of this instrument plays an important role in reaching the scientific goals of The Atmospheric and Space Science Coordination (CEA) at the Brazilian National Institute for Space Research (INPE). In particular, the CEA's space weather program will benefit most from the development of this technology. We expect that this project will be the starting point to establish a strong research program on Solar Physics in Brazil. Our main aim is acquiring progressively the know-how to build state-of-the-art solar vector magnetograph and visible-light imagers for space-based platforms to contribute to the efforts of the solar-terrestrial physics community to address the main unanswered questions on how our nearby Star works.

  19. Interannual Variations of MLS Carbon Monoxide Induced by Solar Cycle

    Science.gov (United States)

    Lee, Jae N.; Wu, Dong L.; Ruzmaikin, Alexander

    2013-01-01

    More than eight years (2004-2012) of carbon monoxide (CO) measurements from the Aura Microwave Limb Sounder (MLS) are analyzed. The mesospheric CO, largely produced by the carbon dioxide (CO2) photolysis in the lower thermosphere, is sensitive to the solar irradiance variability. The long-term variation of observed mesospheric MLS CO concentrations at high latitudes is likely driven by the solar-cycle modulated UV forcing. Despite of different CO abundances in the southern and northern hemispheric winter, the solar-cycle dependence appears to be similar. This solar signal is further carried down to the lower altitudes by the dynamical descent in the winter polar vortex. Aura MLS CO is compared with the Solar Radiation and Climate Experiment (SORCE) total solar irradiance (TSI) and also with the spectral irradiance in the far ultraviolet (FUV) region from the SORCE Solar-Stellar Irradiance Comparison Experiment (SOLSTICE). Significant positive correlation (up to 0.6) is found between CO and FUVTSI in a large part of the upper atmosphere. The distribution of this positive correlation in the mesosphere is consistent with the expectation of CO changes induced by the solar irradiance variations.

  20. Photovoltaic solar concentrator

    Science.gov (United States)

    Nielson, Gregory N.; Gupta, Vipin P.; Okandan, Murat; Watts, Michael R.

    2016-03-15

    A photovoltaic solar concentrator is disclosed with one or more transverse-junction solar cells (also termed point contact solar cells) and a lens located above each solar cell to concentrate sunlight onto the solar cell to generate electricity. Piezoelectric actuators tilt or translate each lens to track the sun using a feedback-control circuit which senses the electricity generated by one or more of the solar cells. The piezoelectric actuators can be coupled through a displacement-multiplier linkage to provide an increased range of movement of each lens. Each lens in the solar concentrator can be supported on a frame (also termed a tilt plate) having three legs, with the movement of the legs being controlled by the piezoelectric actuators.

  1. Frequency agile solar radiotelescope

    Science.gov (United States)

    Bastian, Tim S.

    2003-02-01

    The Frequency Agile Solar Radiotelescope (FASR) is a solar-dedicated, ground based, interferometric array optimized to perform broadband imaging spectroscopy from ~ 0.1-30+ GHz. It will do so with the angular, spectral, and temporal resolution required to exploit radio emission from the Sun as a diagnostic of the wide variety of astrophysical processes that occur there. FASR represents a major advance over existing radioheliographs, and is expected to remain the world's premier solar radio instrument for two decades or more after completion. FASR will be a versatile and powerful instrument, providing unique data to a broad users community. Solar, solar-terrestrial, and space physicists will exploit FASR to attack a broad science program, including problems of fundamental interest: coronal magnetography, solar flares and particle acceleration, drivers of space weather, and the thermal structure and dynamics of the solar atmosphere. A design study and implementation planning are underway. Recent progress is reviewed here.

  2. Solar energy modulator

    Science.gov (United States)

    Hale, R. R. (Inventor); Mcdougal, A. R.

    1984-01-01

    A module is described with a receiver having a solar energy acceptance opening and supported by a mounting ring along the optic axis of a parabolic mirror in coaxial alignment for receiving solar energy from the mirror, and a solar flux modulator plate for varying the quantity of solar energy flux received by the acceptance opening of the module. The modulator plate is characterized by an annular, plate-like body, the internal diameter of which is equal to or slightly greater than the diameter of the solar energy acceptance opening of the receiver. Slave cylinders are connected to the modulator plate for supporting the plate for axial displacement along the axis of the mirror, therby shading the opening with respect to solar energy flux reflected from the surface of the mirror to the solar energy acceptance opening.

  3. Photovoltaic solar cell

    Science.gov (United States)

    Nielson, Gregory N.; Gupta, Vipin P.; Okandan, Murat; Watts, Michael R.

    2015-09-08

    A photovoltaic solar concentrator is disclosed with one or more transverse-junction solar cells (also termed point contact solar cells) and a lens located above each solar cell to concentrate sunlight onto the solar cell to generate electricity. Piezoelectric actuators tilt or translate each lens to track the sun using a feedback-control circuit which senses the electricity generated by one or more of the solar cells. The piezoelectric actuators can be coupled through a displacement-multiplier linkage to provide an increased range of movement of each lens. Each lens in the solar concentrator can be supported on a frame (also termed a tilt plate) having three legs, with the movement of the legs being controlled by the piezoelectric actuators.

  4. Photovoltaic solar concentrator

    Science.gov (United States)

    Nielson, Gregory N.; Okandan, Murat; Resnick, Paul J.; Cruz-Campa, Jose Luis

    2012-12-11

    A photovoltaic solar concentrator is disclosed with one or more transverse-junction solar cells (also termed point contact solar cells) and a lens located above each solar cell to concentrate sunlight onto the solar cell to generate electricity. Piezoelectric actuators tilt or translate each lens to track the sun using a feedback-control circuit which senses the electricity generated by one or more of the solar cells. The piezoelectric actuators can be coupled through a displacement-multiplier linkage to provide an increased range of movement of each lens. Each lens in the solar concentrator can be supported on a frame (also termed a tilt plate) having three legs, with the movement of the legs being controlled by the piezoelectric actuators.

  5. Solar engineering of thermal processes

    CERN Document Server

    Duffie, John A

    2013-01-01

    The updated fourth edition of the ""bible"" of solar energy theory and applications Over several editions, Solar Engineering of Thermal Processes has become a classic solar engineering text and reference. This revised Fourth Edition offers current coverage of solar energy theory, systems design, and applications in different market sectors along with an emphasis on solar system design and analysis using simulations to help readers translate theory into practice. An important resource for students of solar engineering, solar energy, and alternative energy as well

  6. A Pilot Scale Solar Reactor For Carbothermic Reduction Of ZnO

    Energy Technology Data Exchange (ETDEWEB)

    Frommherz, U.; Kraeupl, S.; Wieckert, C.

    2005-03-01

    For the first time a high temperature solar chemical reactor concept for processing of solids has been scaled up from a laboratory scale to pilot scale. The chosen design features two cavities in series: The upper cavity has a small aperture to let in concentrated solar power. It functions as the solar receiver, radiant absorber, and radiant emitter to the lower cavity which serves as the reaction chamber. The scaled up reactor has been designed and manufactured. First solar zinc has been produced during the commissioning. (author)

  7. Solar energy guide

    International Nuclear Information System (INIS)

    Lentz, A.; Winter, R.

    1993-07-01

    Many aspects with regard to the practical use of solar energy are discussed. This guide is aimed at informing local and regional administrators, committee members of housing corporations and public utilities and public relations officers on the possibilities to use solar energy. In chapter one an overview is given of the use of solar energy in the housing sector, the recreational sector, agricultural sector, industry, trade and other sectors. In the chapters two, three and four attention is paid to passive solar energy, active thermal solar energy and photovoltaic energy respectively. In the chapters five and six aspects concerning the implementation of solar energy systems in practice are discussed. First an outline of the parties involved in implementing solar energy is given: the municipality, the energy utility, the province, local authorities, advisors, housing constructors and the occupants of the buildings. Then attention is paid to the consequences of implementing solar energy for the building inspection and regulations, the finances, energy savings and the environment. In chapter seven an overview is given of the subsidy regulations of the European Community, the Dutch national and local governments. Chapter contains addresses of solar thermal systems, photovoltaic systems and other institutes operating in the field of solar energy, as well as the titles of a number of brochures and courses. 51 figs., 7 tabs., 86 refs

  8. National Community Solar Platform

    Energy Technology Data Exchange (ETDEWEB)

    Rupert, Bart [Clean Energy Collective, Louisville, CO (United States)

    2016-06-30

    This project was created to provide a National Community Solar Platform (NCSP) portal known as Community Solar Hub, that is available to any entity or individual who wants to develop community solar. This has been done by providing a comprehensive portal to make CEC’s solutions, and other proven community solar solutions, externally available for everyone to access – making the process easy through proven platforms to protect subscribers, developers and utilities. The successful completion of this project provides these tools via a web platform and integration APIs, a wide spectrum of community solar projects included in the platform, multiple groups of customers (utilities, EPCs, and advocates) using the platform to develop community solar, and open access to anyone interested in community solar. CEC’s Incubator project includes web-based informational resources, integrated systems for project information and billing systems, and engagement with customers and users by community solar experts. The combined effort externalizes much of Clean Energy Collective’s industry-leading expertise, allowing third parties to develop community solar without duplicating expensive start-up efforts. The availability of this platform creates community solar projects that are cheaper to build and cheaper to participate in, furthering the goals of DOE’s SunShot Initiative. Final SF 425 Final SF 428 Final DOE F 2050.11 Final Report Narrative

  9. Upper Gastrointestinal (GI) Tract X-Ray (Radiography)

    Science.gov (United States)

    ... News Physician Resources Professions Site Index A-Z X-ray (Radiography) - Upper GI Tract Upper gastrointestinal tract radiography or ... X-ray? What is Upper Gastrointestinal (GI) Tract Radiography? Upper gastrointestinal tract radiography, also called an upper ...

  10. PERFORMANCE EVALUATION OF SOLAR COLLECTORS USING A SOLAR SIMULATOR

    Directory of Open Access Journals (Sweden)

    M. Norhafana

    2015-11-01

    Full Text Available Solar water heating systems is one of the applications of solar energy. One of the components of a solar water heating system is a solar collector that consists of an absorber. The performance of the solar water heating system depends on the absorber in the solar collector. In countries with unsuitable weather conditions, the indoor testing of solar collectors with the use of a solar simulator is preferred. Thus, this study is conducted to use a multilayered absorber in the solar collector of a solar water heating system as well as to evaluate the performance of the solar collector in terms of useful heat of the multilayered absorber using the multidirectional ability of a solar simulator at several values of solar radiation. It is operated at three variables of solar radiation of 400 W/m2, 550 W/m2 and 700 W/m2 and using three different positions of angles at 0º, 45º and 90º. The results show that the multilayer absorber in the solar collector is only able to best adapt at 45° of solar simulator with different values of radiation intensity. At this angle the maximum values of useful heat and temperature difference are achieved. KEYWORDS: solar water heating system; solar collector; multilayered absorber; solar simulator; solar radiation 

  11. The Upper Danube Nature Park

    International Nuclear Information System (INIS)

    Dosedla, H.C.

    1997-01-01

    When in 1980 the Upper Danube Nature Park was founded as one of 65 nature sanctuaries in Germany there was great diversity of opinions concerning its intended character. The protected region consisting of a geologically outstanding landscape within central Europe is covering the first 80 km the upper Danube where the young river shortly after it's source in the Black Forest is breaking through the narrow canyons of the Jurassic rock plateau of the so-called Suebian Alps and also locates the subterranean passage where the stream is submerging from the surface for nearly ten miles. Since the purpose of nature preservation according to German las is closely combined with the rather contradicting aim of offering an attractive recreation area thus facing the immense impacts of modern mass tourism there are numerous problems which in the course of years have resulted in an intricate patterns of subtle management methods coping with the growing awareness of the ecological balance. (author)

  12. Solar Thermal Energy; Energia Solar Termica

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Martinez, M.; Cuesta-Santianes, M. J.; Cabrera Jimenez, J. A.

    2008-07-01

    Approximately, 50 % of worldwide primary energy consumption is done in the form of heat in applications with a temperature lower than 250 degree centigree (low-medium temperature heat). These data clearly demonstrate the great potential of solar thermal energy to substitute conventional fossil fuels, which are becoming more expensive and are responsible for global warming. Low-medium temperature solar thermal energy is mainly used to obtain domestic hot water and provide space heating. Active solar thermal systems are those related to the use of solar thermal collectors. This study is dealing with low temperature solar thermal applications, mainly focusing on active solar thermal systems. This kind of systems has been extensively growing worldwide during the last years. At the end of 2006, the collector capacity in operation worldwide equalled 127.8 GWth. The technology is considered to be already developed and actions should be aimed at favouring a greater market penetration: diffusion, financial support, regulations establishment, etc. China and USA are the leading countries with a technology based on evacuated tube collectors and unglazed collectors, respectively. The rest of the world markets are dominated by the flat glazed collectors technology. (Author) 15 refs.

  13. Diagnosing transient plasma status: from solar atmosphere to tokamak divertor

    International Nuclear Information System (INIS)

    Giunta, A.S.; Henderson, S.; O'Mullane, M.; Summers, H.P.; Harrison, J.; Doyle, J.G.

    2016-01-01

    This work strongly exploits the interdisciplinary links between astrophysical (such as the solar upper atmosphere) and laboratory plasmas (such as tokamak devices) by sharing the development of a common modelling for time-dependent ionisation. This is applied to the interpretation of solar flare data observed by the UVSP (Ultraviolet Spectrometer and Polarimeter), on-board the Solar Maximum Mission and the IRIS (Interface Region Imaging Spectrograph), and also to data from B2-SOLPS (Scrape Off Layer Plasma Simulations) for MAST (Mega Ampère Spherical Tokamak) Super-X divertor upgrade. The derived atomic data, calculated in the framework of the ADAS (Atomic Data and Analysis Structure) project, allow equivalent prediction in non-stationary transport regimes and transients of both the solar atmosphere and tokamak divertors, except that the tokamak evolution is about one thousand times faster.

  14. Energy efficiency analysis of a trapezoidal solar pond

    Science.gov (United States)

    Wu, Dan; Liu, HongSheng; Jiang, Linsong; Wang, Jiansheng

    2017-12-01

    In this paper we present an investigation of the energy performance of a mini trapezoidal solar pond (with surface of 2.4m×2.4m and depth of 1.5 m) which was built in Dalian, China. The pond was filled with salty water to form the upper convective zone (UCZ), the non-convective zone (UCZ), and the lower convective zone (LCZ). Energy efficiency, the ratio of available energy to the total energy, was defined basing on the first law of thermodynamics at each zone of the solar pond. The energy efficiency of the three layers were analyzed separately accounting to the simulation results of the temperature distribution in the trapezoidal solar pond. It shows that the energy efficiency of the solar pond is relatively high at the beginning of the operation, and the energy efficiency of the UCZ is the lowest while the LCZ is the highest.

  15. Technology improves upper extremity rehabilitation.

    Science.gov (United States)

    Kowalczewski, Jan; Prochazka, Arthur

    2011-01-01

    Stroke survivors with hemiparesis and spinal cord injury (SCI) survivors with tetraplegia find it difficult or impossible to perform many activities of daily life. There is growing evidence that intensive exercise therapy, especially when supplemented with functional electrical stimulation (FES), can improve upper extremity function, but delivering the treatment can be costly, particularly after recipients leave rehabilitation facilities. Recently, there has been a growing level of interest among researchers and healthcare policymakers to deliver upper extremity treatments to people in their homes using in-home teletherapy (IHT). The few studies that have been carried out so far have encountered a variety of logistical and technical problems, not least the difficulty of conducting properly controlled and blinded protocols that satisfy the requirements of high-level evidence-based research. In most cases, the equipment and communications technology were not designed for individuals with upper extremity disability. It is clear that exercise therapy combined with interventions such as FES, supervised over the Internet, will soon be adopted worldwide in one form or another. Therefore it is timely that researchers, clinicians, and healthcare planners interested in assessing IHT be aware of the pros and cons of the new technology and the factors involved in designing appropriate studies of it. It is crucial to understand the technical barriers, the role of telesupervisors, the motor improvements that participants can reasonably expect and the process of optimizing IHT-exercise therapy protocols to maximize the benefits of the emerging technology. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Geomagnetic response to solar and interplanetary disturbances

    Directory of Open Access Journals (Sweden)

    Maris Georgeta

    2013-07-01

    Full Text Available The space weather discipline involves different physical scenarios, which are characterised by very different physical conditions, ranging from the Sun to the terrestrial magnetosphere and ionosphere. Thanks to the great modelling effort made during the last years, a few Sun-to-ionosphere/thermosphere physics-based numerical codes have been developed. However, the success of the prediction is still far from achieving the desirable results and much more progress is needed. Some aspects involved in this progress concern both the technical progress (developing and validating tools to forecast, selecting the optimal parameters as inputs for the tools, improving accuracy in prediction with short lead time, etc. and the scientific development, i.e., deeper understanding of the energy transfer process from the solar wind to the coupled magnetosphere-ionosphere-thermosphere system. The purpose of this paper is to collect the most relevant results related to these topics obtained during the COST Action ES0803. In an end-to-end forecasting scheme that uses an artificial neural network, we show that the forecasting results improve when gathering certain parameters, such as X-ray solar flares, Type II and/or Type IV radio emission and solar energetic particles enhancements as inputs for the algorithm. Regarding the solar wind-magnetosphere-ionosphere interaction topic, the geomagnetic responses at high and low latitudes are considered separately. At low latitudes, we present new insights into temporal evolution of the ring current, as seen by Burton’s equation, in both main and recovery phases of the storm. At high latitudes, the PCC index appears as an achievement in modelling the coupling between the upper atmosphere and the solar wind, with a great potential for forecasting purposes. We also address the important role of small-scale field-aligned currents in Joule heating of the ionosphere even under non-disturbed conditions. Our scientific results in

  17. Hybrids of Solar Sail, Solar Electric, and Solar Thermal Propulsion for Solar-System Exploration

    Science.gov (United States)

    Wilcox, Brian H.

    2012-01-01

    Solar sails have long been known to be an attractive method of propulsion in the inner solar system if the areal density of the overall spacecraft (S/C) could be reduced to approx.10 g/sq m. It has also long been recognized that the figure (precise shape) of useful solar sails needs to be reasonably good, so that the reflected light goes mostly in the desired direction. If one could make large reflective surfaces with reasonable figure at an areal density of approx.10 g/sq m, then several other attractive options emerge. One is to use such sails as solar concentrators for solar-electric propulsion. Current flight solar arrays have a specific output of approx. 100W/kg at 1 Astronomical Unit (AU) from the sun, and near-term advances promise to significantly increase this figure. A S/C with an areal density of 10 g/sq m could accelerate up to 29 km/s per year as a solar sail at 1 AU. Using the same sail as a concentrator at 30 AU, the same spacecraft could have up to approx. 45 W of electric power per kg of total S/C mass available for electric propulsion (EP). With an EP system that is 50% power-efficient, exhausting 10% of the initial S/C mass per year as propellant, the exhaust velocity is approx. 119 km/s and the acceleration is approx. 12 km/s per year. This hybrid thus opens attractive options for missions to the outer solar system, including sample-return missions. If solar-thermal propulsion were perfected, it would offer an attractive intermediate between solar sailing in the inner solar system and solar electric propulsion for the outer solar system. In the example above, both the solar sail and solar electric systems don't have a specific impulse that is near-optimal for the mission. Solar thermal propulsion, with an exhaust velocity of the order of 10 km/s, is better matched to many solar system exploration missions. This paper derives the basic relationships between these three propulsion options and gives examples of missions that might be enabled by

  18. Solar opacities constrained by solar neutrinos and solar oscillations

    International Nuclear Information System (INIS)

    Cox, A.N.

    1989-01-01

    This review discusses the current situation for opacities at the solar center, the solar surface, and for the few million kelvin temperatures that occur below the convection zone. The solar center conditions are important because they are crucial for the neutrino production, which continues to be predicted about 4 times that observed. The main extinction effects there are free-free photon absorption in the electric fields of the hydrogen, helium and the CNO atoms, free electron scattering of photons, and the bound-free and bound-bound absorption of photons by iron atoms with two electrons in the 1s bound level. An assumption that the iron is condensed-out below the convection zone, and the opacity in the central regions is thereby reduced, results in about a 25 percent reduction in the central opacity but only a 5 percent reduction at the base of the convection zone. Furthermore, the p-mode solar oscillations are changed with this assumption, and do not fit the observed ones as well as for standard models. A discussion of the large effective opacity reduction by weakly interacting massive particles also results in poor agreement with observed p-mode oscillation frequencies. The much larger opacities for the solar surface layers from the Los Alamos Astrophysical Opacity Library instead of the widely used Cox and Tabor values show small improvements in oscillation frequency predictions, but the largest effect is in the discussion of p-mode stability. Solar oscillation frequencies can serve as an opacity experiment for the temperatures and densities, respectively, of a few million kelvin and between 0.1 and 10 g/cm 3 . Current oscillation frequency calculations indicate that possibly the Opacity Library values need an increase of typically 15 percent just at the bottom of the convection zone at 3 x 10 6 K. 41 refs., 15 figs., 1 tab

  19. Solar thermal aircraft

    Science.gov (United States)

    Bennett, Charles L.

    2007-09-18

    A solar thermal powered aircraft powered by heat energy from the sun. A heat engine, such as a Stirling engine, is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller. The heat engine has a thermal battery in thermal contact with it so that heat is supplied from the thermal battery. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

  20. Solar panel cleaning robot

    Science.gov (United States)

    Nalladhimmu, Pavan Kumar Reddy; Priyadarshini, S.

    2018-04-01

    As the demand of electricity is increasing, there is need to using the renewable sources to produce the energy at present of power shortage, the use of solar energy could be beneficial to great extent and easy to get the maximum efficiency. There is an urgent in improving the efficiency of solar power generation. Current solar panels setups take a major power loss when unwanted obstructions cover the surface of the panels. To make solar energy more efficiency of solar array systems must be maximized efficiency evaluation of PV panels, that has been discussed with particular attention to the presence of dust on the efficiency of the PV panels have been highlighted. This paper gives the how the solar panel cleaning system works and designing of the cleaning system.

  1. Climate Fundamentals for Solar Heating.

    Science.gov (United States)

    Conservation and Renewable Energy Inquiry and Referral Service (DOE), Silver Spring, MD.

    The design of any solar heating system is influenced heavily by climate; in this bulletin, information on climate as related to solar heating is as related to solar heating is provided. Topics discussed include: (1) solar radiation; (2) degree days; (3) climate and calculations which make use of solar radiation and degree days; and (4)…

  2. Solar Renewable Energy. Teaching Unit.

    Science.gov (United States)

    Buchanan, Marion; And Others

    This unit develops the concept of solar energy as a renewable resource. It includes: (1) an introductory section (developing understandings of photosynthesis and impact of solar energy); (2) information on solar energy use (including applications and geographic limitations of solar energy use); and (3) future considerations of solar energy…

  3. SOLAR EFFECTS ON BUILDING DESIGN.

    Science.gov (United States)

    Building Research Inst., Inc., Washington, DC.

    A REPORT OF A PROGRAM HELD AS PART OF THE BUILDING RESEARCH INSTITUTE 1962 SPRING CONFERENCE ON THE SOLAR EFFECTS ON BUILDING DESIGN. TOPICS DISCUSSED ARE--(1) SOLAR ENERGY DATA APPLICABLE TO BUILDING DESIGN, (2) THERMAL EFFECTS OF SOLAR RADIATION ON MAN, (3) SOLAR EFFECTS ON ARCHITECTURE, (4) SOLAR EFFECTS ON BUILDING COSTS, (5) SELECTION OF…

  4. Solar energy emplacement developer

    Science.gov (United States)

    Mortensen, Michael; Sauls, Bob

    1991-01-01

    A preliminary design was developed for a Lunar Power System (LPS) composed of photovoltaic arrays and microwave reflectors fabricated from lunar materials. The LPS will collect solar energy on the surface of the Moon, transform it into microwave energy, and beam it back to Earth where it will be converted into usable energy. The Solar Energy Emplacement Developer (SEED) proposed will use a similar sort of solar energy collection and dispersement to power the systems that will construct the LPS.

  5. Solar photocatalyzed process economics

    International Nuclear Information System (INIS)

    Link, H.

    1990-01-01

    This paper describes the Solar Energy Research Institute (SERI) cost estimates for solar water detoxification systems based on the best available information as of October 1990. Comparative costs are also provided for competitive conventional technologies which are presently applied in the water detoxification market. Although costs for solar photocatalytic systems are presently higher than those of competitive technologies, cost and performance improvements should lead to cost competitiveness by 1995

  6. Solar Asset Management Software

    Energy Technology Data Exchange (ETDEWEB)

    Iverson, Aaron [Ra Power Management, Inc., Oakland, CA (United States); Zviagin, George [Ra Power Management, Inc., Oakland, CA (United States)

    2016-09-30

    Ra Power Management (RPM) has developed a cloud based software platform that manages the financial and operational functions of third party financed solar projects throughout their lifecycle. RPM’s software streamlines and automates the sales, financing, and management of a portfolio of solar assets. The software helps solar developers automate the most difficult aspects of asset management, leading to increased transparency, efficiency, and reduction in human error. More importantly, our platform will help developers save money by improving their operating margins.

  7. Profile in solar

    International Nuclear Information System (INIS)

    Cohen, S.; Woods, A.

    1991-01-01

    This article reviews an innovative solar hot water heater and its inventor/entrepreneur. It includes the inventor's strategy for developing and marketing the product and his ideas on the state of the solar industry in general. There is a brief description of the solar water heater which has as prominent features its skylight-like appearance, resistance to freeze damage, simplicity and low cost

  8. Sustained attractiveness and natural youthful appearance by upper lip rejuvenation : Minimally invasive procedures to combat facial aging.

    Science.gov (United States)

    Wollina, Uwe; Goldman, Alberto

    2017-04-05

    Facial aging is a complex process individualized by interaction with exogenous and endogenous factors. The upper lip is one of the facial components by which facial attractiveness is defined. Upper lip aging is significantly influenced by maxillary bone and teeth. Aging of the cutaneous part can be aggravated by solar radiation and smoking. We provide a review about minimally invasive techniques for correction of aging signs of the upper lip with a tailored approach to patient's characteristics. The treatment is based upon use of fillers, laser, and minor surgery.

  9. The Upper Atmosphere Research Satellite (UARS): Ten successful years of observations

    Science.gov (United States)

    Johnson, J.; Ahmad, S.; Serafino, G.; Jackman, C.

    As a major element in NASA's comprehensive Upper Atmosphere Research Program, the Upper Atmosphere Research Satellite (UARS) was launched on September 12, 1991, into a circular orbit at an altitude of approximately 570 km with an inclination of 57 degrees. Ten instruments were flown aboard UARS with the goal to understand 1) the response of the upper atmospheric chemistry to natural and human perturbations, 2) the chemical processes and dynamics that control upper atmosphere structure and variability, and 3) couplings of the lower and upper atmosphere that play a major role in defining climate and climate variability. UARS with its ten unique instruments has been the first satellite to provide high quality, simultaneous global measurements of the chemistry, dynamics, and energetics of the stratosphere, mesosphere, and lower thermosphere. After 10 years of successful data collection (far exceeding the originally projected lifetime of 3 years), the official mission ended in September 2001. However, seven instruments aboard UARS are still operational and six regularly take measurements. Standard UARS products consisting of measurements of atmospheric internal structure (trace constituents, physical dynamics, radiative emission, thermal structure, density) and measurements of the external influences acting upon the upper atmosphere (solar radiation and charged particle precipitation) and ancillary data consisting of model analyses and correlative measurements are archived at the Goddard Earth Sciences DAAC. Data products from heritage sensors including Nimbus-4 Backscatter Ultraviolet Spectrometer (BUV), Nimbus-7 Solar Backscatter Ultraviolet Spectrometer (SBUV) and a series of Total Ozone Mapping Spectrometer (TOMS) instruments are also archived at the Goddard DAAC. The continuity of ozone, other trace species, and solar UV measurements will be maintained with the launch of the Aura spacecraft in early 2004 (the third mission in NASA's Earth Observing System program

  10. Kelvin wave variability in the upper stratosphere observed in SBUV ozone data

    Science.gov (United States)

    Randel, William J.; Gille, John C.

    1991-01-01

    The Solar Backscatter UV ozone data collected for the eight years between 1979 and 1986 are used to analyze the signatures of equatorially trapped Kelvin waves in the upper stratosphere. The data reveal a strong semiannual modulation of Kelvin wave activity, confirming the results of previous rocketsonde observations. A comparison of the eight-year-average ensemble spectra to the semiannual oscillation in the stratospheric zonal winds revealed a seasonal asymmetry in the strength of Kelvin waves, which mimics the asymmetry observed in the zonal winds. No consistent relationship was observed with the quasi-biennial oscillation in the lower stratosphere, while correlations with the upper stratospheric winds are weak or nonexistent.

  11. Upper intestinal and biliary tract endoprosthesis

    NARCIS (Netherlands)

    Tytgat, G. N.; Bartelsman, J. F.; den Hartog Jager, F. C.; Huibregtse, K.; Mathus-Vliegen, E. M.

    1986-01-01

    The endoscopic insertion of an endoprosthesis is now a standard procedure in the ultimate palliation of malignant obstructing upper gastrointestinal and biliary malignancy. The commercially available prostheses and introducing devices are adequate for the majority of upper intestinal cancers. For

  12. Rectenna solar cells

    CERN Document Server

    Moddel, Garret

    2013-01-01

    Rectenna Solar Cells discusses antenna-coupled diode solar cells, an emerging technology that has the potential to provide ultra-high efficiency, low-cost solar energy conversion. This book will provide an overview of solar rectennas, and provide thorough descriptions of the two main components: the diode, and the optical antenna. The editors discuss the science, design, modeling, and manufacturing of the antennas coupled with the diodes. The book will provide concepts to understanding the challenges, fabrication technologies, and materials required to develop rectenna structures. Written by e

  13. Solar and interplanetary disturbances

    CERN Document Server

    Alurkar, S K

    1997-01-01

    Over the last three decades, a spate of solar wind observations have been made with sophisticated ground-based and space-borne instruments. Two highly successful space missions of the Skylab and the twin spacecraft Helios 1 and 2 have amassed an invaluable wealth of information on the large scale structure of the inner heliosphere, the solar and interplanetary magnetic field, coronal holes, interplanetary dust, solar windflows, etc.Solar and interplanetary propagating phenomena have been extensively studied during the last two decades. Very recently, a new simple model based on results from a

  14. CERN... Solar Style

    CERN Multimedia

    2001-01-01

    Inventor William van Sprolant presenting the Solar Club's latest invention, the solar fountain. The CERN Solar Club is giving new meaning to the phrase 'fun in the sun' with their most recently developed contraption, the Solar Fountain. The Fountain was presented to the public just outside of Restaurant 1 on Wednesday October, 17th and uses solar energy to run a water pump at its base to propel a golden plastic ball up into the air. As lovely as the fountain is, the funny thing about it is that the height of the water jet and the ball are an artistic method of measuring the amount of solar power being captured by the photovoltaique panel (no batteries included). The day it was presented started out cloudy, but as the afternoon wore on, the weather brightened and the fountain jumped to life. William van Sprolant, the Solar Fountain's inventor, had great fun with the fountain in front of a group of visiting children swiveling the solar panel in multiple directions. 'Everyone who installs solar panels worrie...

  15. Solar Cycle Predictions

    Science.gov (United States)

    Pesnell, William Dean

    2012-01-01

    Solar cycle predictions are needed to plan long-term space missions; just like weather predictions are needed to plan the launch. Fleets of satellites circle the Earth collecting many types of science data, protecting astronauts, and relaying information. All of these satellites are sensitive at some level to solar cycle effects. Predictions of drag on LEO spacecraft are one of the most important. Launching a satellite with less propellant can mean a higher orbit, but unanticipated solar activity and increased drag can make that a Pyrrhic victory as you consume the reduced propellant load more rapidly. Energetic events at the Sun can produce crippling radiation storms that endanger all assets in space. Solar cycle predictions also anticipate the shortwave emissions that cause degradation of solar panels. Testing solar dynamo theories by quantitative predictions of what will happen in 5-20 years is the next arena for solar cycle predictions. A summary and analysis of 75 predictions of the amplitude of the upcoming Solar Cycle 24 is presented. The current state of solar cycle predictions and some anticipations how those predictions could be made more accurate in the future will be discussed.

  16. Harnessing solar heat

    CERN Document Server

    Norton, Brian

    2013-01-01

    Systems engineered by man to harness solar heat in a controlled manner now include a diverse range of technologies each serving distinctive needs in particular climate contexts. This text covers the breadth of solar energy technologies for the conversion of solar energy to provide heat, either as the directly-used output or as an intermediary to other uses such as power generation or cooling. It is a wholly updated, extended and revised version of “Solar Energy Thermal Technology” first published in 1992. The text draws on the own author’s research and that of numerous colleagues and

  17. Solar neutrino experiments

    Energy Technology Data Exchange (ETDEWEB)

    Hampel, W. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany)

    1996-11-01

    The present status of experimental solar neutrino research is reviewed. Updated results from the Homestake, Kamiokande, GALLEX and SAGE detectors all show a deficit when compared to recent standard solar model calculations. Two of these detectors, GALLEX and SAGE, have recently been checked with artificial {sup 51}Cr neutrino sources. It is shown that astrophysical scenarios to solve the solar neutrino problems are not favoured by the data. There is hope that the results of forthcoming solar neutrino experiments can provide the answers to the open questions. (author) 6 figs., 3 tabs., 36 refs.

  18. Solar energy storage

    CERN Document Server

    Sorensen, Bent

    2015-01-01

    While solar is the fastest-growing energy source in the world, key concerns around solar power's inherent variability threaten to de-rail that scale-up . Currently, integration of intermittent solar resources into the grid creates added complication to load management, leading some utilities to reject it altogether, while other operators may penalize the producers via rate increases or force solar developers to include storage devices on-site to smooth out power delivery at the point of production. However these efforts at mitigation unfold, it is increasingly clear to parties on all sides th

  19. Solar Cooker Technological Change

    DEFF Research Database (Denmark)

    Ahmad, Bashir

    1997-01-01

    The challenges which solar cooking technology is facing right now is discussed. Based on a field study in Madras and Gujarat, it is asserted that there is an important incompatibility between the technology and the every day real-life conditions of the "users" of solar cooker. An evaluation report...... on a solar cooker technology in Burkina Faso supports the findings of the study. It is concluded that the users and other important actors have to be incorporated in the technological development process of solar cookers in the future....

  20. Solar Stereoscopy and Tomography

    Directory of Open Access Journals (Sweden)

    Markus J. Aschwanden

    2011-10-01

    Full Text Available We review stereoscopic and tomographic methods used in the solar corona, including ground-based and space-based measurements, using solar rotation or multiple spacecraft vantage points, in particular from the STEREO mission during 2007--2010. Stereoscopic and tomographic observations in the solar corona include large-scale structures, streamers, active regions, coronal loops, loop oscillations, acoustic waves in loops, erupting filaments and prominences, bright points, jets, plumes, flares, CME source regions, and CME-triggered global coronal waves. Applications in the solar interior (helioseismic tomography and reconstruction and tracking of CMEs from the outer corona and into the heliosphere (interplanetary CMEs are not included.

  1. Long Island Solar Farm

    Energy Technology Data Exchange (ETDEWEB)

    Anders, R.

    2013-05-01

    The Long Island Solar Farm (LISF) is a remarkable success story, whereby very different interest groups found a way to capitalize on unusual circumstances to develop a mutually beneficial source of renewable energy. The uniqueness of the circumstances that were necessary to develop the Long Island Solar Farm make it very difficult to replicate. The project is, however, an unparalleled resource for solar energy research, which will greatly inform large-scale PV solar development in the East. Lastly, the LISF is a superb model for the process by which the project developed and the innovation and leadership shown by the different players.

  2. Solar thermal barometer

    International Nuclear Information System (INIS)

    Anon.

    2004-01-01

    After the bad year of 2002, the european solar thermal market returned to double-digit growth rate in 2003: 22%. Nevertheless, the sector still has not recovered the growth rate it had in the early 2000 and European Commission targets are still far from being reached. This paper presents the thermal solar industry barometer. Data on the evolution of annually installed surfaces in the european union since 1993, the cumulated capacity of thermal collectors installed in the European Union, the estimation of the annual energy production associated to european solar thermal capacities and the main companies of the European Union thermal solar sector are presented and discussed. (A.L.B.)

  3. Passive solar technology

    Energy Technology Data Exchange (ETDEWEB)

    Watson, D

    1981-04-01

    The present status of passive solar technology is summarized, including passive solar heating, cooling and daylighting. The key roles of the passive solar system designer and of innovation in the building industry are described. After definitions of passive design and a summary of passive design principles are given, performance and costs of passive solar technology are discussed. Passive energy design concepts or methods are then considered in the context of the overall process by which building decisions are made to achieve the integration of new techniques into conventional design. (LEW).

  4. 1978-1988 Total Solar Irradiance (TSI) Variability Trends

    Science.gov (United States)

    Lee, Robert B., III; Priestley, Kory J.; Wilson, Robert S.; Al-Hajjah, Aiman; Paden, Jack; Pandey, Dhirendra K.; Thomas, Susan

    1999-01-01

    Total solar irradiance (TSI), normalized to the mean earth-sun distance, is analyzed to assess long-term solar variability which may affect climate. TSI data sets are reviewed primarily from the 1984-1999 Earth Radiation Budgets Satellite (ERBS), 1978-1993 Nimbus7, 1980-1989 Solar Maximum Mission (SMM), 19911998 Upper Atmospheric Research Satellite (UARS), and 1996-1998 Solar and Heliospheric Observatory (SOHO)/ Variability of solar IRradiance and Gravity Oscillations (VIRGO) Spacecraft missions. The data sets indicate that 1365 W/sq m [Watts per meter square] is the most likely TSI amplitude at minimum solar magnetic activity as indicated by minimum sunspot numbers. The TSI long-term variability component was found to vary with a period of approximately 10 years and with an amplitude of 2 W/sq m. An empirical TSI fit model, based upon 10.7-cm solar radio fluxes and prompt photometric sunspot indices, was used to characterize TSI variability. Comparisons among TSI measurements and empirical fit trends are reviewed as well as inconsistencies among current spacecraft TSI data set trends. The 1996-1998, SOHO/VIRGO measurement indicate stronger TSI increasing trends than those suggested by the corresponding ERBS and UARS measurement and by the empirical model fit. 1978-1999 TSI data sets are analyzed to identify the probable existence of another long-term TSI variability component.

  5. Solar Public Observations in Japan

    Science.gov (United States)

    Yaji, K.

    2002-01-01

    Now in Japan, there are more than fifty astronomical educational facilities which have solar telescopes, for example, public observatories and science museums. Because many of the solar telescopes have H-alpha filters, such active chromospheric phenomena as solar flares and prominences are easily presented to the public. Though the objects of these solar telescopes must be mainly education and public outreach, they have enough good performance to contribute to solar research. But, the staff in the most of facilities don't know well how to observe the sun and how to understand the solar phenomena. So, we started two attempts in order to support their solar observations. One is the administration of the "Solar Telescope Mailing List (solnet ML)". The purpose is exchanges of information on solar daily phenomena, instruments of solar telescopes, and solar articles. Almost one hundred solar observers use actively this mailing list. The other is the arrangement of the "Solar Telescope Workshop", which were held in 2000 and 2001. These workshops provide a chance for staff in public observational facilities to study observational methods, to learn educational techniques using solar observations, and to show their observational results on solar active phenomena. These two attempts also play a role to link public observers with professional solar researchers. In this presentation, we review the current situation of public solar observations in Japan and introduce solar images observed with the public educational facilities. In addition, we would like to mention what we hope for professional solar researchers.

  6. Extrasolar solar-sail trajectories and dark matter

    Science.gov (United States)

    Matloff, Gregory L.

    2014-11-01

    Hyper-thin, high-speed solar-photon sail space probes exploring the Sun's Oort comet cloud could also be used to set an upper bound to the concentration of WIMPS (weakly interacting massive particles), one of the suggested (but unconfirmed) forms of dark matter within the vicinity of the solar system. Newton's Shell Theorem would be applied to determine variations in apparent solar mass as the probe moves further out from the Sun. Application of this technique to the trajectories of Pioneer 10/11 reveals that the upper limit to WIMP concentration within ~60 AU of the Sun is ~0.2 Earth masses, as revealed in studies of the Pioneer Anomaly. If the published accuracy of the Pioneer acceleration measurements can be increased by an order of magnitude, probe trajectory measurements out to ~10,000 AU may confirm or falsify the hypothesis that WIMP mass within the solar vicinity is ~3X star mass. It is shown that a space-manufactured ~40-nm thick beryllium hollow-body solar sail deployed from a ~0.07 AU perihelion is a candidate spacecraft for such a mission. Possible science-team organization strategy for a ~100-year mission to ~10,000 AU is discussed.

  7. Parameterization models for solar radiation and solar technology applications

    International Nuclear Information System (INIS)

    Khalil, Samy A.

    2008-01-01

    Solar radiation is very important for the evaluation and wide use of solar renewable energy systems. The development of calibration procedures for broadband solar radiation photometric instrumentation and the improvement of broadband solar radiation measurement accuracy have been done. An improved diffuse sky reference and photometric calibration and characterization software for outdoor pyranometer calibrations are outlined. Parameterizations for direct beam, total hemispherical and diffuse sky radiation and solar radiation technology are briefly reviewed. The uncertainties for various broadband solar radiations of solar energy and atmospheric effects are discussed. The varying responsivities of solar radiation with meteorological, statistical and climatological parameters and possibility atmospheric conditions was examined

  8. Cancer of the upper rectum.

    Science.gov (United States)

    Bondeven, Peter

    2016-10-01

    Rectal cancer constitutes one-third of all colorectal cancers, and the incidence in Denmark increasing. In 2012, 1.400 cases were registered, and of these 38% were located in the upper rectum. There have been several key advances in the optimal management of rectal cancer during the past decades, primarily by standardisation and improvement of the surgical procedure. There is now general agreement that the optimal surgical treatment involves the concept of total mesorectal excision and that a resection with tumour-free margins is crucial. Controversy exists as to whether total mesorectal excision (TME) is necessary for upper rectal cancers or if a partial mesorectal excision (PME) with mesorectal transection 5 cm below the tumour is adequate. Furthermore, there is no agreement as to whether surgery alone is sufficient or whether neoadjuvant radio- and/or chemotherapy should be administered for tumours of the upper rectum. This thesis aims to discuss aspects of the treatment of rectal cancer with regard to the adequacy of mesorectal excision and oncological outcome with a particular focus on cancer of the upper rectum. In study I, the extent and completeness of mesorectal excision was estimated by postoperative magnetic resonance imaging of the pelvis in patients with primary surgery for rectal cancer. In the 136 patients with post-operative MRI, inadvertent residual mesorectal tissue was evident in 40%, especially following PME, suggesting suboptimal surgery performed. Additionally in patients who had PME, the distal margin was found to be less than 3 cm in more than 50% of patients, suggesting a discrepancy between guidelines and the actual surgery performed. In study II, we estimated the risk of local recurrence in the previously audited cohort of patients, with a particular focus on patients with upper rectal cancer treated by PME and without neo-adjuvant therapy as standard. Using Kaplan-Meier analysis, the total three-year local recurrence rate was 7% with

  9. Make Your Own Solar Panel.

    Science.gov (United States)

    Suzuki, David

    1992-01-01

    Presents an activity in which students make a simulated solar panel to learn about the principles behind energy production using solar panels. Provides information about how solar panels function to produce energy. (MCO)

  10. Surface Meteorology and Solar Energy

    Data.gov (United States)

    National Aeronautics and Space Administration — Surface Meteorology and Solar Energy data - over 200 satellite-derived meteorology and solar energy parameters, monthly averaged from 22 years of data, global solar...

  11. Solar Neutrons and Related Phenomena

    CERN Document Server

    Dorman, Lev

    2010-01-01

    This book presents the first comprehensive compilation and review of the extensive body of experimental and theoretical material on solar neutrons and related phenomena published in the scientific literature over the last sixty years. Phenomena related to solar neutrons are more specifically: the decay products of solar neutrons solar gamma rays generated in processes like nuclear reactions between solar energetic charged particles and matter of the solar atmosphere, as well as by the capture of solar neutrons by hydrogen atoms in the solar atmosphere the propagation of solar neutrons, solar gamma rays and other secondary particles through the solar photosphere, chromosphere and corona, as well as through interplanetary space and through the Earth's atmosphere. Models and simulations of particle acceleration, interactions, and propagation processes show that observations of solar neutrons and gamma rays in space and in the Earth's atmosphere yield essential and unique information on the source function of ene...

  12. Solar: California, not dreaming

    Energy Technology Data Exchange (ETDEWEB)

    Jones, J.

    2006-03-15

    The California Solar Initiative (CSI) was approved by the California Public Utilities Commission (PUC) in January 2006. The CSI is the largest solar programme of this kind ever in the USA and provides for $3.2 billion in incentives for solar projects between 2007 and 2017. The PUC will oversee a $2.5 billion programme to provide funding for solar installations on commercial and existing residential buildings, while the California Energy Commission (CEC) will manage a separate $350 million fund targeted at new residential building. Existing solar programmes operated by the PUC and CEC will be consolidated into the CSI. The CEC programme will use already allocated funding, but the PUC programme will be funded through revenues collected from customers of the main gas and electric utilities in California. Funds will be distributed via rebates to householders or companies that install solar. As well as solar photovoltaics (PV), rebates will also go to solar thermal power (concentrating solar power) and solar heating and cooling. CSI funding can be used in combination with existing federal tax credits. The aim is a gradual increase from installation of 40 MW of PV in 2005 to 100 MW by 2009. The CSI is also expected to create favourable market conditions for PV manufacturers in California and to encourage investment in production of solar-grade silicon in or near California. Objections from the International Brotherhood of Electrical Workers (IBEW) appear to have been overcome but a number of other potential snags remain. CSI is expected to be replicated in other US states.

  13. Eyebrow Position Following Upper Blepharoplasty.

    Science.gov (United States)

    Dar, Suhail A; Rubinstein, Tal J; Perry, Julian D

    2015-01-01

    To evaluate the effect of upper blepharoplasty on eyebrow height, accounting for ocular dominance, fat excision, change in MRD1, and degree of dermatochalasis. Retrospective review of patients undergoing upper blepharoplasty between January 2013 and July 2014. Patients with a prior history of ocular trauma, disease, and surgery were excluded. Digital photographs were analyzed using NIH ImageJ software to measure pre and postoperative eyebrow height at the medial, central, and lateral positions, MRD1, and dermatochalasis. Univariable comparisons of brow height and MRD1 were performed. A multivariate analysis was used to assess for the effect of percentage change in MRD1 and dermatochalasis and of ocular dominance and fat excision in mean percentage change of eyebrow height. Charts of 19 patients were reviewed. Mean age was 73.2 years (SD = 8.86). There were 9 male (47.4%) and 10 female (52.6%) patients. There were 11 right eye dominant (57.9%) and 8 left eye dominant (42.1%) patients. Then 13 patients (68.4%) underwent fat removal. A univariable comparison found insufficient evidence to suggest a significant change from 0 postoperatively in brow height at all positions. A multivariable comparison found insufficient evidence to suggest MRD1, ocular dominance, or dermatochalasis were significantly associated with mean percentage change in brow height at all positions with or without fat excision. Upper blepharoplasty does not change eyebrow height at the medial, central, or lateral positions, after accounting for any impact of ocular dominance, fat excision, change in MRD1, or degree of dermatochalasis.

  14. Astroparticle physics with solar neutrinos

    OpenAIRE

    NAKAHATA, Masayuki

    2011-01-01

    Solar neutrino experiments observed fluxes smaller than the expectations from the standard solar model. This discrepancy is known as the “solar neutrino problem”. Flux measurements by Super-Kamiokande and SNO have demonstrated that the solar neutrino problem is due to neutrino oscillations. Combining the results of all solar neutrino experiments, parameters for solar neutrino oscillations are obtained. Correcting for the effect of neutrino oscillations, the observed neutrino fluxes are consis...

  15. Energy Storage and Release through the Solar Activity Cycle Models Meet Radio Observations

    CERN Document Server

    Nindos, Alexander

    2012-01-01

    For nearly sixty years, radio observations have provided a unique insight into the physics of the active and quiescent solar atmosphere. Thanks to the variety of emission mechanisms and to the large altitude range available to observations, fundamental plasma parameters have been measured from the low chromosphere to the upper corona and interplanetary medium. This book presents current research in solar radio astronomy and shows how well it fits in the exceptional scientific context brought by the current space solar observatories. It essentially contains contributed research and review papers presented during the 2010 Community of European Solar Radio Astronomers (CESRA) meeting, which took place in Belgium in June 2010. This book is aimed at graduate students and researchers working in solar physics and space science. Previously published in Solar Physics journal, Vol. 273/2, 2011.

  16. The Solar Energy Notebook.

    Science.gov (United States)

    Rankins, William H., III; Wilson, David A.

    This publication is a handbook for the do-it-yourselfer or anyone else interested in solar space and water heating. Described are methods for calculating sun angles, available energy, heating requirements, and solar heat storage. Also described are collector and system designs with mention of some design problems to avoid. Climatological data for…

  17. Probing the Solar Interior

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 3; Issue 3. Probing the Solar Interior Hearing the Heartbeats of the Sun. Ashok Ambastha. General ... Author Affiliations. Ashok Ambastha1. Joint In-Charge Udaipur Solar Observatory Physical Research laboratory P.O. Box No. 198 Udaipur 313 001, India ...

  18. Priority to solar energy

    International Nuclear Information System (INIS)

    Berner, Joachim

    2011-01-01

    There are many different combinations of solar heating systems and heat pumps in the market; some of them differ considerably in terms of the design concept, control management and storage technology. One thing they all have in common is that solar heating comes first.

  19. Solar absorption cooling

    NARCIS (Netherlands)

    Kim, D.S.

    2007-01-01

    As the world concerns more and more on global climate changes and depleting energy resources, solar cooling technology receives increasing interests from the public as an environment-friendly and sustainable alternative. However, making a competitive solar cooling machine for the market still

  20. The lower solar atmosphere

    NARCIS (Netherlands)

    Rutten, R.J.

    1998-01-01

    This "rapporteur" report discusses the solar photosphere and low chromosphere in the context of chemical composition studies. The highly dynamical nature of the photosphere does not seem to jeopardize precise determination of solar abundances in classical fashion. It is still an open question how

  1. Development of Solar Scintillometer

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... A photodiode is used as the detector. The telescope along with detector was obtained from National Solar Observatory (NSO), and is similar to the one used for Advanced Technology Solar Telescope (ATST) site survey. At USO we developed the amplifier and data acquisition system for the scintillometer.

  2. Solar neutrino oscillation phenomenology

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 62; Issue 2 ... We first present the allowed areas obtained from global solar analysis and demonstrate the preference of the solar data towards the large-mixing-angle (LMA) MSW ... Harish-Chandra Research Institute, Chhatnag Road, Jhusi, Allahabad 211 019, India.

  3. Million Solar Roofs

    Energy Technology Data Exchange (ETDEWEB)

    None

    2003-11-01

    Since its announcement in June 1997, the Million Solar Roofs Initiative has generated a major buzz in communities, states, and throughout the nation. With more than 300,000 installations, the buzz is getting louder. This brochure describes Million Solar Roofs activities and partnerships.

  4. Solar neutrino oscillations

    International Nuclear Information System (INIS)

    Haxton, W.C.

    1993-01-01

    The special properties of solar neutrinos that render this flux so uniquely important in searches for neutrino masses and flavor mixing are reviewed. The effects of matter, including density fluctuations and turbulence, on solar neutrino oscillations are explained through analogies with more familiar atomic physics phenomena

  5. The thermodynamic solar energy

    International Nuclear Information System (INIS)

    Rivoire, B.

    2002-04-01

    The thermodynamic solar energy is the technic in the whole aiming to transform the solar radiation energy in high temperature heat and then in mechanical energy by a thermodynamic cycle. These technic are most often at an experimental scale. This paper describes and analyzes the research programs developed in the advanced countries, since 1980. (A.L.B.)

  6. Sunmotor Solar Shack 120

    International Nuclear Information System (INIS)

    Jensen, E.

    2009-01-01

    This article described a solar pump that was developed by Alberta-based Sunmotor International Ltd. The prototype Solar Shack 120 was recently deployed in central Alberta for a remediation project for Devon Canada. The portable solar pump unit is well suited for environmental remediation in the oilpatch where conventional electricity is not available. The solar panels automatically run the pump whenever there is enough sunlight and there is liquid in the sump. Devon Canada wanted a system that continues to pump during cloudy weather to avoid the accumulation of effluent in the sump. The Solar Shack 120 delivers 120 volts of alternating current (vac) power. Solar panels are used to charge a bank of large sealed batteries that supply direct power (DC) to an inverter, which converts it into AC. A thermostat control was added to shut off the pumps in cold weather to avoid battery discharging. The Solar Shack unit has possibilities in countries with unreliable electricity supplies. It could provide a backup power supply that automatically kicks in whenever the power grid goes down. Sunmotor International Ltd. can supply complete remote power systems for both AC and DC electrical requirements. The systems are designed for each application to ensure customer satisfaction. The company is currently building a unit that integrates solar power with a generator backup, thereby eliminating the annoying noise of a continually running generator. 1 fig

  7. Pioneering with Solar Power.

    Science.gov (United States)

    Pollack, George; Pollack, Mary

    1982-01-01

    Describes the development of Mississippi County Community College's (MCCC's) solar energy system. Explains the functioning of the campus's computer-controlled photovoltaic concentrator system, MCCC's cooperative agreement with the Arkansas-Missouri Power Company, program funding, the integration of the solar system with other building components,…

  8. Residential Solar Systems.

    Science.gov (United States)

    Fulkerson, Dan

    This publication contains student and teacher instructional materials for a course in residential solar systems. The text is designed either as a basic solar course or as a supplement to extend student skills in areas such as architectural drafting, air conditioning and refrigeration, and plumbing. The materials are presented in four units…

  9. Solar Electricity for Homes

    Science.gov (United States)

    Roman, Harry T.

    2012-01-01

    Every day, the sun showers the Earth with millions of times more energy than its people use. The only problem is that energy is spread out over the entire Earth's surface and must be harvested. Engineers are learning to capture and use some of this energy to make electricity for homes. Solar panels make up the heart of a solar system. They can be…

  10. Probing the Solar Interior

    Indian Academy of Sciences (India)

    Ashok Ambastha is with the Udaipur Solar. Observatory, Physical. Research Laboratory. He is involved in the observations and modelling of solar activity and magnetic fields since. 1983. He is presently leading the scientific programs of the. Observatory. He is associated with the. GONG project since 1986. His other ...

  11. The solar neutrino problem

    Indian Academy of Sciences (India)

    The solar neutrino problem, the longstanding disagreement between the measured and predicted neutrino flux from the Sun, has moved from being a curiosity of solar physics to a research problem that now commands the attention of a large number of physicists who have at their disposal impressive experimental ...

  12. Solar energy in Peru

    Energy Technology Data Exchange (ETDEWEB)

    Pierson, H.

    1981-12-01

    The past, present, and future of Peru is discussed in terms of solar energy development and the social, economic, climatic, and technical factors involved. It is pointed out that there are 3 geographical divisions in Peru including: (1) the foggy coastal strip where rain is infrequent, insolation is low and population is high; (2) the mountainous Andes region with high insolation and many populated high mountain valleys; and (3) the rainy, Amazon basin covered with jungle, and sparcely populated with high but inconsistent insolation. Since there is little competition with other forms of energy, solar energy shows promise. Passive solar heating of buildings, particularly in the Andes region, is described, as well as the use of solar water heaters. Prototypes are described and illustrated. Industrial use of solar heated water in the wool industry as well as solar food drying and solar desalination are discussed. High temperature applications (electrical generators and refrigeration) as well as photovoltaic systems are discussed briefly. It is concluded that social and political factors are holding back the development of solar energy but a start (in the form of prototypes and demonstration programs) is being made. (MJJ)

  13. Solar Energy: Heat Storage.

    Science.gov (United States)

    Knapp, Henry H., III

    This module on heat storage is one of six in a series intended for use as supplements to currently available materials on solar energy and energy conservation. Together with the recommended texts and references (sources are identified), these modules provide an effective introduction to energy conservation and solar energy technologies. The module…

  14. Solar thermal power plants

    International Nuclear Information System (INIS)

    Schnatbaum, L.

    2009-01-01

    The solar thermal power plant technology, the opportunities it presents and the developments in the market are outlined. The focus is on the technology of parabolic trough power plants, a proven technology for solar power generation on a large scale. In a parabolic trough power plant, trough-shaped mirrors concentrate the solar irradiation onto a pipe in the focal line of the collector. The thermal energy thus generated is used for electricity generation in a steam turbine. Parabolic trough plants can be combined with thermal storage and fossil or biomass fired heat exchangers to generate electricity even when the sun is not shining. Solar Millennium AG in Erlangen has developed the first power plant of this kind in Europe. After two years of construction the plant started operation in Southern Spain in 2008. This one and its sister projects are important steps leading the way for the whole market. The paper also covers the technological challenges, the key components used and the research and development activities concerning this technology. Solar thermal power plants are ideal for covering peak and medium loads in power grids. In hybrid operation they can also cover base-load. The Solar Chimney power plant, another striking technology for the conversion of solar into electric energy, is described briefly. The paper concludes with a look at the future - the import of solar energy from the deserts of North Africa to central Europe. (author)

  15. Solar collector overheating protection

    NARCIS (Netherlands)

    Slaman, M.J.; Griessen, R.P.

    Prismatic structures in a thermal solar collector are used as overheating protection. Such structures reflect incoming light efficiently back whenever less thermal power is extracted from the solar collector. Maximum thermal power is generated when the prismatic structure is surrounded by a

  16. Solar Technology Curriculum, 1980.

    Science.gov (United States)

    Seward County Community Coll., Liberal, KS.

    This curriculum guide contains lecture outlines and handouts for training solar technicians in the installation, maintenance, and repair of solar energy hot water and space heating systems. The curriculum consists of four modular units developed to provide a model through which community colleges and area vocational/technical schools can respond…

  17. MEMS Solar Generators

    OpenAIRE

    Grbovic, Dragoslav; Osswald, Sebastian

    2011-01-01

    Approved for public release; distribution is unlimited Using MEMS bimaterial structures to build highly efficient solar energy generators. This is a novel approach that utilizes developments in the area of bimaterial sensors and applies them in the field of solar energy harvesting.

  18. Solar air conditioning. Dresden colloquium; Solare Klimatisierung. Dresdner Kolloquium

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    Subjects: R + D activities in solar air conditioning; dessicative and evaporative cooling (DEC) - systems and components; Chances of solar air conditioning in Europe; Practical experience with solar-assisted air conditioning; Performance of a solar system at Lissabon; DEC system in the Alsenblock building, Berlin; Does solar air conditioning require specially designed buildings; Performance of solar heated adsorption refrigerators; Low-capacity absacity absorption systems for solar air conditioning. [German] Die Kolloquiumsschrift beinhaltet Unterlagen ueber die abgehandelten Themen. Sie lauten: F and E-Aktivitaeten im Bereich Solare Klimatisierung; SGK(DEC-Technik) - ausgefuehrte Anlagen und deren Komponenten; Chancen der solaren Klimatisierung in Europa; Erfahrungen mit der solarunterstuetzten Klimatisierung; Energieverbrauch und Regelung von SGK-Anlagen; Betriebserfahrungen einer Solaranlage in Lissabon; Realisierung der SGK im Alsenblock Berlin; Erfordert die solare Klimatisierung besondere Gebaeude?; Betriebserfahrungen mit solar beheizten Adsorptionskaeltemaschinen; Absorptionsanlagen kleiner Leistung fuer solare Klimatisierung. (orig.)

  19. The solarPACES strategy for the solar thermal breakthrough

    International Nuclear Information System (INIS)

    Burch, G.D.; Grasse, W.

    1997-01-01

    IEA(International Energy Agency)/SolarPACES(Solar Power and Chemical Energy systems)represents a world wide coalition for information sharing and collaboration on applications of concentrated solar energy. The current SolarPACES community has built up solar thermal system know-how over 15 years, is operating the three main solar test centres in the world. Its main activities are in the following four fields: solar thermal electric power systems, solar chemistry, solar technology and advanced applications and non-technical activities. The article presents the talk on the strategy of solarPACES given at the International Workshop on applied solar energy held in Tashkent(Uzbekistan) in June 1997. (A.A.D.)

  20. Solar Power System Design for the Solar Probe+ Mission

    Science.gov (United States)

    Landis, Geoffrey A.; Schmitz, Paul C.; Kinnison, James; Fraeman, Martin; Roufberg, Lew; Vernon, Steve; Wirzburger, Melissa

    2008-01-01

    Solar Probe+ is an ambitious mission proposed to the solar corona, designed to make a perihelion approach of 9 solar radii from the surface of the sun. The high temperature, high solar flux environment makes this mission a significant challenge for power system design. This paper summarizes the power system conceptual design for the solar probe mission. Power supplies considered included nuclear, solar thermoelectric generation, solar dynamic generation using Stirling engines, and solar photovoltaic generation. The solar probe mission ranges from a starting distance from the sun of 1 AU, to a minimum distance of about 9.5 solar radii, or 0.044 AU, from the center of the sun. During the mission, the solar intensity ranges from one to about 510 times AM0. This requires power systems that can operate over nearly three orders of magnitude of incident intensity.

  1. DOE facilities solar design handbook

    Energy Technology Data Exchange (ETDEWEB)

    Hunn, Bruce D.; Balcomb, J. Douglas

    1978-01-01

    This handbook covers design of solar heating systems for commercial and laboratory buildings at Department of Energy Facilities. It includes discussions of solar energy fundamentals, solar heating and cooling technology, systems, and components, as well as a discussion of solar system economics. Quantitative analysis, with generalized design and sizing curves, is presented for solar heating so that collector and other system parameters can be cost-economically sized without a computer simulation. Solar system design considerations and guidelines, as well as guidelines for developing subsystem specifications, are presented. Thus this handbook is both a primer for the solar novice and a reference manual for the solar system designer.

  2. The SWAP Upper Atmosphere Expansion Benchmark: Updates and Challenges

    Science.gov (United States)

    Fuller-Rowell, T. J.

    2017-12-01

    Atmospheric expansion during extreme events refers to the response of the upper atmosphere to an injection of energy from solar or magnetospheric sources, and the subsequent increase in temperature. The resulting thermal expansion causes neutral density to increase at low-Earth orbit altitudes, which poses two distinct risks to operational spacecraft. The first is the direct effect of enhanced drag on the spacecraft, changing its orbit, increasing the uncertainty of its position, and reducing the orbital lifetime. The second is the indirect effect on the ability to monitor the trajectories of debris for collision avoidance. Three different energy injection scenarios are considered: 1) An increase in solar UV and EUV radiation for a number of days; 2) An extreme enhancement in the solar X-rays and EUV radiation associated with a flare; and 3) An extreme CME driving a geomagnetic storm. The first scenario is reasonably well defined and can be addressed based on predictions from empirical models. The second can be estimated by extrapolating from an observed response. The third scenario is more complex and requires simulations of physical models. The question is, if an 1859 Carrington-level CME hit Earth, how might the thermosphere respond? A physical model simulation predicts neutral atmosphere horizontal winds exceeding 2000 m/s, modulating in-track apparent density, vertical winds exceeding 150 m/s, neutral temperature exceeding 4000 K, and large increases in neutral density. The "top" of the thermosphere, the exobase, which is normally around 600 km would rise to well above 1000 km, creating significant satellite drag to much higher altitudes. The neutral density in low-Earth orbit would be expected to exceed the response to the Bastille or Halloween-like storm by a factor of five. In addition, electrodynamic transport of plasma could also raise the total density experienced by spacecraft at the higher altitudes. Several studies would need to be conducted to

  3. Acceleration of runaway electrons and Joule heating in solar flares

    Science.gov (United States)

    Holman, G. D.

    1985-01-01

    The electric field acceleration of electrons out of a thermal plasma and the simultaneous Joule heating of the plasma are studied. Acceleration and heating timescales are derived and compared, and upper limits are obtained on the acceleration volume and the rate at which electrons can be accelerated. These upper limits, determined by the maximum magnetic field strength observed in flaring regions, place stringent restrictions upon the acceleration process. The role of the plasma resistivity in these processes is examined, and possible sources of anomalous resistivity are summarized. The implications of these results for the microwave and hard X-ray emission from solar flares are examined.

  4. Solar response in tropical stratospheric ozone: a 3-D chemical transport model study using ERA reanalyses

    Directory of Open Access Journals (Sweden)

    S. Dhomse

    2011-12-01

    Full Text Available We have used an off-line 3-D chemical transport model (CTM to investigate the 11-yr solar cycle response in tropical stratospheric ozone. The model is forced with European Centre for Medium-Range Weather Forecasts (ECMWF (reanalysis (ERA-40/operational and ERA-Interim data for the 1979–2005 time period. We have compared the modelled solar response in ozone to observation-based data sets that are constructed using satellite instruments such as Total Ozone Mapping Spectrometer (TOMS, Solar Backscatter UltraViolet instrument (SBUV, Stratospheric Aerosol and Gas Experiment (SAGE and Halogen Occultation Experiment (HALOE. A significant difference is seen between simulated and observed ozone during the 1980s, which is probably due to inhomogeneities in the ERA-40 reanalyses. In general, the model with ERA-Interim dynamics shows better agreement with the observations from 1990 onwards than with ERA-40. Overall both standard model simulations are partially able to simulate a "double peak"-structured ozone solar response with a minimum around 30 km, and these are in better agreement with HALOE than SAGE-corrected SBUV (SBUV/SAGE or SAGE-based data sets. In the tropical lower stratosphere (TLS, the modelled solar response with time-varying aerosols is amplified through aliasing with a volcanic signal, as the model overestimates ozone loss during high aerosol loading years. However, the modelled solar response with fixed dynamics and constant aerosols shows a positive signal which is in better agreement with SBUV/SAGE and SAGE-based data sets in the TLS. Our model simulations suggests that photochemistry contributes to the ozone solar response in this region. The largest model-observation differences occur in the upper stratosphere where SBUV/SAGE and SAGE-based data show a significant (up to 4% solar response whereas the standard model and HALOE do not. This is partly due to a positive solar response in the ECMWF upper stratospheric temperatures which

  5. Six upper incisors: what's next?

    Science.gov (United States)

    Berneburg, Mirjam; Meller, Christian

    2016-01-01

    This case report describes our therapeutic approach taken in a girl with eruption disturbance of the upper anterior teeth. Two supernumerary teeth were involved, which required a combination of orthodontic and surgical treatment. The initial situation in the upper anterior segment was characterized by two supernumerary mesial incisors, ectopic eruption of the distally located lateral incisors, and crowded tooth buds in the canine areas. Key decisions had to be made as to whether any teeth needed to be extracted and, if so, regarding the timing and sites of extraction. Removing teeth too early would have preempted a complete assessment of tooth quality, whereas late extraction would have carried a risk of eruption disturbance. Once the distal lateral incisors had erupted, the supernumerary mesial incisors were extracted and the central incisors (initially located in between) mesialized with a bracket appliance. Following space closure and mesialization of the lateral incisors, a functional appliance was used. Tooth 13 was erupting, while tooth 23 was displaced and subsequently aligned as part of the final bracket treatment. To successfully treat eruption disturbances, a careful diagnostic workup is essential, including informative radiographs, personalized treatment planning, and correct decision-making as to whether teeth need to be extracted and regarding the timing and sites of extraction. Finally, the eruption of the canines should be monitored.

  6. Solar cell shingle

    Science.gov (United States)

    Forestieri, A. F.; Ratajczak, A. F.; Sidorak, L. G. (Inventor)

    1977-01-01

    A solar cell shingle was made of an array of solar cells on a lower portion of a substantially rectangular shingle substrate made of fiberglass cloth or the like. The solar cells may be encapsulated in flourinated ethylene propylene or some other weatherproof translucent or transparent encapsulant to form a combined electrical module and a roof shingle. The interconnected solar cells were connected to connectors at the edge of the substrate through a connection to a common electrical bus or busses. An overlap area was arranged to receive the overlap of a cooperating similar shingle so that the cell portion of the cooperating shingle may overlie the overlap area of the roof shingle. Accordingly, the same shingle serves the double function of an ordinary roof shingle which may be applied in the usual way and an array of cooperating solar cells from which electrical energy may be collected.

  7. A Little Solar Story

    DEFF Research Database (Denmark)

    Ahmad, Bashir

    1997-01-01

    Experiences from use of solar cookers in India and many other places are different. But the story which is based on a field study in Gujarat state of India shows that during last twenty years there has been a tendency that many families do not continue to use their solar cookers. The study shows...... that the tendency is related with the lack of compatibility of this new technology (solar cooker) with the everyday real-life conditions of the families. In principle the findings are supported by an evaluation report on a solar cooker project in Burkina Faso. The conclusion is that the user should be involved...... in the solar cooker technological development process....

  8. Risks of solar electricity

    Energy Technology Data Exchange (ETDEWEB)

    Pop-Jordanov, J. [Macedonian Academy of Sciences and Arts, Skopje (Yugoslavia)

    1993-12-31

    The main objectives of the study were to provide scientific bases for the definition of the possible role of solar electricity in the future national energy program and in particular for the establishment of an experimental solar electrostation at MASA. The national long term interest in solar electricity is justified by the environmental impacts of coal, the lack of other domestic energy sources and the favourable climate conditions. For decision-making purposes, a comparative risk analysis including some specific solar electricity characteristics was undertaken. Detailed methodological investigations have shown that the standard approach does not fully appreciate the energy cycle boundaries nor the time dependence of the consequence and that it omits to include the psychosomatic and psychological indicators. The proper accounting of the above factors leads to comparatively more favorable results for the solar electricity option. (author) 4 figs., 20 refs.

  9. Solar combi systems

    DEFF Research Database (Denmark)

    Andersen, Elsa

    2007-01-01

    The focus in the present Ph.D. thesis is on the active use of solar energy for domestic hot water and space heating in so-called solar combi systems. Most efforts have been put into detailed investigations on the design of solar combi systems and on devices used for building up thermal...... the thermal behaviour of different components, and the theoretical investigations are used to study the influence of the thermal behaviour on the yearly thermal performance of solar combi systems. The experimental investigations imply detailed temperature measurements and flow visualization with the Particle...... Image Velocimetry measurement method. The theoretical investigations are based on the transient simulation program TrnSys and Computational Fluid Dynamics. The Ph.D. thesis demonstrates the influence on the thermal performance of solar combi systems of a number of different parameters...

  10. On the observed changes in upper stratospheric and mesospheric temperatures from UARS HALOE

    Directory of Open Access Journals (Sweden)

    E. Remsberg

    2008-05-01

    Full Text Available Temperature versus pressure or T(p time series from the Halogen Occultation Experiment (HALOE of the Upper Atmosphere Research Satellite (UARS have been extended and re-analyzed for the period of 1991–2005 and for the upper stratosphere and mesosphere in 10-degree wide latitude zones from 60 S to 60 N. Even though sampling from a solar occultation experiment is somewhat limited, it is shown to be quite adequate for developing both the seasonal and longer-term variations in T(p. Multiple linear regression (MLR techniques were used in the re-analyses for the seasonal and the significant interannual, solar cycle (SC-like or decadal-scale, and linear trend terms. Plots of the amplitudes and phases for the interannual (QBO and subbiennial terms are provided. A simple SC-like term of 11-yr period was fitted to the time series residuals after accounting for the seasonal and interannual terms. Highly significant SC-like responses were found for both the upper mesosphere and the upper stratosphere. The phases of these SC-like terms were checked for their continuity with latitude and pressure-altitude; the larger amplitude responses are directly in-phase with that of standard proxies for the solar flux variations. The analyzed, max minus min, responses at low latitudes are of order 0.5 to 1 K, while at middle latitudes they are as large as 3 K in the upper mesosphere. Highly significant, linear cooling trends were found at middle latitudes of the middle to upper mesosphere (−1.5 to −2.0 K/decade, at tropical latitudes of the lower mesosphere (about −0.5 K/decade, and at 2 hPa (of order −1 K/decade. Both the diagnosed solar cycle responses and trends from HALOE for the mid to upper mesosphere at middle latitudes are larger than simulated with most models, perhaps an indication of decadal-scale dynamical forcings that are not being simulated so well.

  11. On the observed changes in upper stratospheric and mesospheric temperatures from UARS HALOE

    Directory of Open Access Journals (Sweden)

    E. Remsberg

    2008-05-01

    Full Text Available Temperature versus pressure or T(p time series from the Halogen Occultation Experiment (HALOE of the Upper Atmosphere Research Satellite (UARS have been extended and re-analyzed for the period of 1991–2005 and for the upper stratosphere and mesosphere in 10-degree wide latitude zones from 60 S to 60 N. Even though sampling from a solar occultation experiment is somewhat limited, it is shown to be quite adequate for developing both the seasonal and longer-term variations in T(p. Multiple linear regression (MLR techniques were used in the re-analyses for the seasonal and the significant interannual, solar cycle (SC-like or decadal-scale, and linear trend terms. Plots of the amplitudes and phases for the interannual (QBO and subbiennial terms are provided. A simple SC-like term of 11-yr period was fitted to the time series residuals after accounting for the seasonal and interannual terms. Highly significant SC-like responses were found for both the upper mesosphere and the upper stratosphere. The phases of these SC-like terms were checked for their continuity with latitude and pressure-altitude; the larger amplitude responses are directly in-phase with that of standard proxies for the solar flux variations. The analyzed, max minus min, responses at low latitudes are of order 0.5 to 1 K, while at middle latitudes they are as large as 3 K in the upper mesosphere. Highly significant, linear cooling trends were found at middle latitudes of the middle to upper mesosphere (−1.5 to −2.0 K/decade, at tropical latitudes of the lower mesosphere (about −0.5 K/decade, and at 2 hPa (of order −1 K/decade. Both the diagnosed solar cycle responses and trends from HALOE for the mid to upper mesosphere at middle latitudes are larger than simulated with most models, perhaps an indication of decadal-scale dynamical forcings that are not being simulated so well.

  12. Solar power water distillation unit

    Science.gov (United States)

    Hameed, Kamran; Muzammil Khan, Muhammad; Shahrukh Ateeq, Ijlal; Omair, Syed Muhammad; Ahmer, Muhammad; Wajid, Abdul

    2013-06-01

    Clean drinking water is the basic necessity for every human being, but about 1.1 billion people in the world lacked proper drinking water. There are many different types of water purification processes such as filtration, reverse osmosis, ultraviolet radiation, carbon absorption, but the most reliable processes are distillation and boiling. Water purification, such as distillation, is especially important in regions where water resources or tap water is not suitable for ingesting without boiling or chemical treatment. In design project It treats the water by combining different methods such as Filtration, Distillation and a technique called concentrated solar power (CSP). Distillation is literally the method seen in nature, whereby: the sun heats the water on the earth's surface, the water is turned into a vapor (evaporation) and rises, leaving contaminants behind, to form clouds. As the upper atmosphere drops in temperature the vapors cool and convert back to water to form water. In this project distillation is achieved by using a parabolic mirror which boils water at high temperature. Filtration is done by sand filter and carbon filter. First sand filter catches the sand particles and the carbon filter which has granules of active carbon is used to remove odor dissolved gases from water. This is the Pre-treatment of water. The filtered water is then collected in a water container at a focus of parabolic mirror where distillation process is done. Another important feature of designed project is the solar tracking of a parabolic mirror which increases the efficiency of a parabolic mirror [1],[2].

  13. Solar power water distillation unit

    International Nuclear Information System (INIS)

    Hameed, Kamran; Khan, Muhammad Muzammil; Ateeq, Ijlal Shahrukh; Omair, Syed Muhammad; Ahmer, Muhammad; Wajid, Abdul

    2013-01-01

    Clean drinking water is the basic necessity for every human being, but about 1.1 billion people in the world lacked proper drinking water. There are many different types of water purification processes such as filtration, reverse osmosis, ultraviolet radiation, carbon absorption, but the most reliable processes are distillation and boiling. Water purification, such as distillation, is especially important in regions where water resources or tap water is not suitable for ingesting without boiling or chemical treatment. In design project It treats the water by combining different methods such as Filtration, Distillation and a technique called concentrated solar power (CSP). Distillation is literally the method seen in nature, whereby: the sun heats the water on the earth's surface, the water is turned into a vapor (evaporation) and rises, leaving contaminants behind, to form clouds. As the upper atmosphere drops in temperature the vapors cool and convert back to water to form water. In this project distillation is achieved by using a parabolic mirror which boils water at high temperature. Filtration is done by sand filter and carbon filter. First sand filter catches the sand particles and the carbon filter which has granules of active carbon is used to remove odor dissolved gases from water. This is the Pre-treatment of water. The filtered water is then collected in a water container at a focus of parabolic mirror where distillation process is done. Another important feature of designed project is the solar tracking of a parabolic mirror which increases the efficiency of a parabolic mirror [1],[2].

  14. Emerging Solar Technologies: Perovskite Solar Cell

    Indian Academy of Sciences (India)

    Organic–inorganic halide perovskite, a newcomerin the solar cell industry has proved its potential forincreasing efficiency rapidly from 3.8% in 2009 to 22.1% in2016. High efficiency, flexibility, and cell architecture of theemerging hybrid halide perovskite have caught the attentionof researchers and technologists in the field.

  15. Delft's solar car wins Solar Challenge 2003

    NARCIS (Netherlands)

    Ockels, J.W.; Van Kasteren, J.

    2003-01-01

    There were remarkable scenes in Adelaide, Australia,on the afternoon of Wednesday 22 October 2003 when a swathe of orange spilled through the city. Barely visible at the heart of this burst of colour was the Nuna II, a futuristic vehicle which had just won the Solar Challenge 2003, a four-day

  16. Solar thermal and concentrated solar power barometer

    International Nuclear Information System (INIS)

    2013-01-01

    The European concentrated solar power plant market is steeling itself for tough time ahead. The number of projects under construction is a pittance compared with 2012 that was an excellent year for installations (an additional 802.5 MW of capacity recorded). This drop is the result of the moratorium on renewable energy power plants introduced by the Spanish government. The European solar thermal market is hardly any more encouraging . EurObserv'ER holds that it slipped for the fourth year in a row (it dropped 5.5% between 2011 and 2012). The newly-installed solar thermal collector surface area in the EU now stands at 3.4 million m 2 , far short of its 2008 installation record of 4.6 million m 2 . The EU's solar thermal base to date at the end of 2012 is 29.6 GWth with 2.4 GWth installed during the year 2012. This article gives tables gathering the figures of the production for every European country for 2012 and describes the market and the general trend for every EU member

  17. Emerging Solar Technologies: Perovskite Solar Cell

    Indian Academy of Sciences (India)

    High efficiency, flexibility, and cell architecture of the emerging hybrid halide perovskite have caught the attention of researchers and technologists in the field. This article fo- cuses on the emergence, properties, and current research sta- tus of hybrid perovskite solar cells. 1. Introduction. Gradually, primary energy resources ...

  18. The Effects of Solar Irradience and Ambient Temperature on Solar ...

    African Journals Online (AJOL)

    Solar energy is abundant. It is however low grade energy and cannot be easily used in the form it occurs for work. Converting solar energy directly to electricity, using solar photovoltaic (PV) modules is however a low efficiency process. Optimizing this conversion, especially in the face of the high cost of solar panels, is thus ...

  19. Performances of solar water pumping station with solar tracker

    International Nuclear Information System (INIS)

    Buniatyan, V.V.; Vardanyan, A.A.

    2011-01-01

    For the solar water pumping stations ? solar tracking system with phototransistor is developed. On the basis of the experimental investigations the utility and efficiency of the PV water pumping station with solar tracker under different conditions of varying solar radiation in Armenia is shown

  20. Estimation of global solar radiation using solar PV and its ...

    African Journals Online (AJOL)

    Solar energy is the prime energy source of hydrologic parameter such as evapotranspiration and aerodynamic parameter like wind. Knowledge of daily global solar radiation is important to estimate all solar energy related parameters. In this study, mean daily global solar radiation at Haramaya University (HU) and Dire ...

  1. Solar weather monitoring

    Directory of Open Access Journals (Sweden)

    J.-F. Hochedez

    2005-11-01

    Full Text Available Space Weather nowcasting and forecasting require solar observations because geoeffective disturbances can arise from three types of solar phenomena: coronal mass ejections (CMEs, flares and coronal holes. For each, we discuss their definition and review their precursors in terms of remote sensing and in-situ observations. The objectives of Space Weather require some specific instrumental features, which we list using the experience gained from the daily operations of the Solar Influences Data analysis Centre (SIDC at the Royal Observatory of Belgium. Nowcasting requires real-time monitoring to assess quickly and reliably the severity of any potentially geoeffective solar event. Both research and forecasting could incorporate more observations in order to feed case studies and data assimilation respectively. Numerical models will result in better predictions of geomagnetic storms and solar energetic particle (SEP events. We review the data types available to monitor solar activity and interplanetary conditions. They come from space missions and ground observatories and range from sequences of dopplergrams, magnetograms, white-light, chromospheric, coronal, coronagraphic and radio images, to irradiance and in-situ time-series. Their role is summarized together with indications about current and future solar monitoring instruments.

  2. Updates on upper eyelid blepharoplasty

    Directory of Open Access Journals (Sweden)

    Kasturi Bhattacharjee

    2017-01-01

    Full Text Available The human face is composed of small functional and cosmetic units, of which the eyes and periocular region constitute the main point of focus in routine face-to-face interactions. This dynamic region plays a pivotal role in the expression of mood, emotion, and character, thus making it the most relevant component of the facial esthetic and functional unit. Any change in the periocular unit leads to facial imbalance and functional disharmony, leading both the young and the elderly to seek consultation, thus making blepharoplasty the surgical procedure of choice for both cosmetic and functional amelioration. The applied anatomy, indications of upper eyelid blepharoplasty, preoperative workup, surgical procedure, postoperative care, and complications would be discussed in detail in this review article.

  3. Pointing stability of Hinode and requirements for the next Solar mission Solar-C

    Science.gov (United States)

    Katsukawa, Y.; Masada, Y.; Shimizu, T.; Sakai, S.; Ichimoto, K.

    2017-11-01

    It is essential to achieve fine pointing stability in a space mission aiming for high resolutional observations. In a future Japanese solar mission SOLAR-C, which is a successor of the HINODE (SOLAR-B) mission, we set targets of angular resolution better than 0.1 arcsec in the visible light and better than 0.2 - 0.5 arcsec in EUV and X-rays. These resolutions are twice to five times better than those of corresponding instruments onboard HINODE. To identify critical items to achieve the requirements of the pointing stability in SOLAR-C, we assessed in-flight performance of the pointing stability of HINODE that achieved the highest pointing stability in Japanese space missions. We realized that one of the critical items that have to be improved in SOLAR-C is performance of the attitude stability near the upper limit of the frequency range of the attitude control system. The stability of 0.1 arcsec (3σ) is required in the EUV and X-ray telescopes of SOLAR-C while the HINODE performance is slightly worse than the requirement. The visible light telescope of HINODE is equipped with an image stabilization system inside the telescope, which achieved the stability of 0.03 arcsec (3σ) by suppressing the attitude jitter in the frequency range lower than 10 Hz. For further improvement, it is expected to suppress disturbances induced by resonance between the telescope structures and disturbances of momentum wheels and mechanical gyros in the frequency range higher than 100 Hz.

  4. Climate of the upper atmosphere

    Directory of Open Access Journals (Sweden)

    Christoph Jacobi

    2009-06-01

    Full Text Available

    In the frame of the European COST 296 project (Mitigation of Ionospheric Effects on Radio Systems, MIERS

    investigations of the climate of the upper atmosphere have been carried out during the last four years to obtain

    new information on the upper atmosphere. Mainly its ionospheric part has been analysed as the ionosphere

    most essential for the propagation of radio waves. Due to collaboration between different European partners

    many new results have been derived in the fields of long-term trends of different ionospheric and related atmospheric

    parameters, the investigations of different types of atmospheric waves and their impact on the ionosphere,

    the variability of the ionosphere, and the investigation of some space weather effects on the ionosphere.


  5. Solar housing construction. Thousands of solar cells form the facade of a living project for homeless people in Paris; Solarer Wohnungsbau. Tausende von Solarzellen bilden die Fassade eines Wohnprojekts fuer Obdachlose in Paris

    Energy Technology Data Exchange (ETDEWEB)

    Korn, Stefan

    2013-02-15

    A house on the banks of the historic channel Saint Martin in Paris in the elegant tenth arrondissement attracts attention: An emerald-colored solar facade extends from the roof to the ground floor between town palaces. But the spectacular front of the building does not cover luxury condominiums for the Parisian upper class, but a social housing project for families in need.

  6. On the relation between ionospheric winter anomalies and solar wind

    International Nuclear Information System (INIS)

    Rumi, G.C.

    2001-01-01

    There are two different winter anomalies. A small one that appears in connection with ionization at relatively low latitudes in the bottom of the D-region of the ionosphere. There, the electron densities in the winter happen to be less than should be expected. On the other hand, the classic winter anomaly is present when in the winter the upper D-region, again at relatively low latitudes, has more ionization than should be expected. Both these effects are due to the slant compression of the geomagnetic field produced by the solar wind in the wind in the winter season (which is, of course, the summer season when reference is made to events in the other hemisphere). It is shown that the small winter anomaly is a consequence of a hemispheric imbalance in the flux of galactic cosmic rays determined by the obliquely distorted geomagnetic field. It is shown that the standard winter anomaly can be ascribed to the influx of a super solar wind, which penetrates into the Earth's polar atmosphere down to E-region, heights and, duly concentrated through a funneling action at the winter pole of the distorted geomagnetic field, slows down the winter polar vortex. An equatorward motion of the polar air with its content of nitric oxide brings about the excess of ionization in the upper D-region at lower latitudes. The experimentally observed rhythmic recurrence of the upper winter anomaly is correlated to a possible rhythmic recurrence of the super solar wind. The actual detection of the upper winter anomaly could yield some information on the velocity of the basic solar wind. A by-product of the present analysis, the determination of Γ, the coefficient of collisional detachment of the electrons from the O 2 - ions, is presented in the Appendix

  7. Iron sulphide solar cells

    Science.gov (United States)

    Ennaoui, A.; Tributsch, H.

    1984-12-01

    The abundant, naturally occurring natural compound pyrite (FeS2) can be used as a semiconducting material for photoelectrochemical and photovoltaic solar cells. Unlike most of the intensively studied photoactive materials, pyrite solar cell production would never be limited by the availability of the elements or by their compatibility with the environment. An energy gap of 0.95 eV has been determined for pyrite, and it is noted that the theoretical efficiency limit for solar energy conversion in this material is of the order of 15-20 percent.

  8. Quantum dot solar cells

    CERN Document Server

    Wu, Jiang

    2013-01-01

    The third generation of solar cells includes those based on semiconductor quantum dots. This sophisticated technology applies nanotechnology and quantum mechanics theory to enhance the performance of ordinary solar cells. Although a practical application of quantum dot solar cells has yet to be achieved, a large number of theoretical calculations and experimental studies have confirmed the potential for meeting the requirement for ultra-high conversion efficiency. In this book, high-profile scientists have contributed tutorial chapters that outline the methods used in and the results of variou

  9. Protetores solares Sunscreens

    Directory of Open Access Journals (Sweden)

    Juliana Flor

    2007-02-01

    Full Text Available Health problems related to UV radiation can be minimized by the appropriate use of sunscreens. Different kinds of sunscreens are reported in the literature, even though there is a misleading denomination among them and few discussions are presented about how they work. This paper describes some important aspects in order to understand sunscreen phenomena such as: solar radiation effect, type of solar filters, protection mechanism, formulations and solar protection factor (SPF. Moreover the importance of Chemistry and the interdisciplinary studies related to sunscreens and cosmetic researches are emphasized.

  10. Solar powered Stirling engine

    Energy Technology Data Exchange (ETDEWEB)

    Meijer, R.J.

    1987-11-24

    In a solar dish module which comprises a dish which receives incident solar rays and reflects them to a focus at which is located the combination of a receiver and a heat engine organized and arranged so that the heat energy of the reflected solar rays collected at the receiver powers the engine, and wherein the receiver and heat engine are supported from the dish by a framework, the improvement is described which comprises journal means for journaling at least the engine on the framework to maintain certain predetermined spatial orientation for the engine in relation to the direction of gravity irrespective of spatial orientation of the dish.

  11. Solar cell array interconnects

    Science.gov (United States)

    Carey, Paul G.; Thompson, Jesse B.; Colella, Nicolas J.; Williams, Kenneth A.

    1995-01-01

    Electrical interconnects for solar cells or other electronic components using a silver-silicone paste or a lead-tin (Pb-Sn) no-clean fluxless solder cream, whereby the high breakage of thin (copper strips which are secured to the solar cells by a silver-silicone conductive paste which can be used at room temperature, or by a Pb-Sn solder cream which eliminates undesired residue on the active surfaces of the solar cells. Electrical testing using the interconnects of this invention has shown that no degradation of the interconnects developed under high current testing, while providing a very low contact resistance value.

  12. Can solar power deliver?

    Science.gov (United States)

    Nelson, Jenny; Emmott, Christopher J M

    2013-08-13

    Solar power represents a vast resource which could, in principle, meet the world's needs for clean power generation. Recent growth in the use of photovoltaic (PV) technology has demonstrated the potential of solar power to deliver on a large scale. Whilst the dominant PV technology is based on crystalline silicon, a wide variety of alternative PV materials and device concepts have been explored in an attempt to decrease the cost of the photovoltaic electricity. This article explores the potential for such emerging technologies to deliver cost reductions, scalability of manufacture, rapid carbon mitigation and new science in order to accelerate the uptake of solar power technologies.

  13. Exploring the solar system

    CERN Document Server

    Bond, Peter

    2012-01-01

    The exploration of our solar system is one of humanity's greatest scientific achievements. The last fifty years in particular have seen huge steps forward in our understanding of the planets, the sun, and other objects in the solar system. Whilst planetary science is now a mature discipline - involving geoscientists, astronomers, physicists, and others - many profound mysteries remain, and there is indeed still the tantalizing possibility that we may find evidence of life on another planet in our system.Drawing upon the latest results from the second golden age of Solar System exploration, aut

  14. Analysis of Flat-Plate Solar Array and Solar Lantern

    OpenAIRE

    P. L. N. V. Aashrith; M. Sameera Sarma

    2014-01-01

    A very detailed theortical analysis of a solar array has been carried out based on established values of solar radiation data to predict the performance of solar lamp . The analysis is based on established theory about flat-plate collectors. Top heat loss coefficient (Ut), Bottom heat loss coefficient (Ub), Overall heat loss coefficient (Ul), Useful energy (Qu), efficiency (hp) of the flat-plate solar array and efficiency (hl) of the solar lantern has been calculated.

  15. Connective power: Solar electrification and social change in Kenya

    Science.gov (United States)

    Jacobson, Arne Edward

    Household solar photovoltaic systems have emerged as a key alternative to grid-based rural electrification in many developing countries. This may seem a victory for appropriate technology advocates, but my research indicates that the social significance of solar electrification in Kenya, which is among the largest developing country solar markets per capita, is far removed from the classic "small is beautiful" neo-populist vision of building small-scale alternatives to global capitalism. Instead, solar electrification is more closely connected to neo-liberal goals of market-based service provision and economic integration. In this study I combine quantitative and qualitative methods, including surveys, intra-household energy allocation studies, and historical analysis, to analyze the social significance of solar electrification in Kenya. I find that "connective" applications, including television, radio, and cellphones, are centrally important. Television is especially notable; the expansion of TV broadcasting to rural areas was a key condition for solar market development. Solar electricity is also used for lighting. In Kenya, income and work related uses of solar lighting are modest, while education uses are more significant. However, in many households, especially those with small systems, intra-household dynamics constrain key social uses (e.g. children's studying), as the energy is allocated to other uses. Social use patterns combine with access dynamics in Kenya's unsubsidized market to shape the social significance of solar electrification. Solar ownership is dominated by the rural upper and middle classes. Thus, productivity and education uses make small contributions to differentiation and middle class formation. Additionally, solar electrification's role in supporting rural television and radio use improves business advertisers' ability to expand consumer goods markets. These findings link solar electrification to important processes of rural development

  16. Pyramid solar micro-grid

    Science.gov (United States)

    Huang, Bin-Juine; Hsu, Po-Chien; Wang, Yi-Hung; Tang, Tzu-Chiao; Wang, Jia-Wei; Dong, Xin-Hong; Hsu, Hsin-Yi; Li, Kang; Lee, Kung-Yen

    2018-03-01

    A novel pyramid solar micro-grid is proposed in the present study. All the members within the micro-grid can mutually share excess solar PV power each other through a binary-connection hierarchy. The test results of a 2+2 pyramid solar micro-grid consisting of 4 individual solar PV systems for self-consumption are reported.

  17. Four-cell solar tracker

    Science.gov (United States)

    Berdahl, C. M.

    1981-01-01

    Forty cm Sun tracker, consisting of optical telescope and four solar cells, stays pointed at Sun throughout day for maximum energy collection. Each solar cell generates voltage proportional to part of solar image it receives; voltages drive servomotors that keep image centered. Mirrored portion of cylinder extends acquisition angle of device by reflecting Sun image back onto solar cells.

  18. Solar Twins and the Barium Puzzle

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, Arumalla B. S.; Lambert, David L., E-mail: bala@astro.as.utexas.edu [W.J. McDonald Observatory and Department of Astronomy, The University of Texas at Austin, Austin, TX 78712-1205 (United States)

    2017-08-20

    Several abundance analyses of Galactic open clusters (OCs) have shown a tendency for Ba but not for other heavy elements (La−Sm) to increase sharply with decreasing age such that Ba was claimed to reach [Ba/Fe] ≃ +0.6 in the youngest clusters (ages < 100 Myr) rising from [Ba/Fe] = 0.00 dex in solar-age clusters. Within the formulation of the s -process, the difficulty to replicate higher Ba abundance and normal La−Sm abundances in young clusters is known as the barium puzzle. Here, we investigate the barium puzzle using extremely high-resolution and high signal-to-noise spectra of 24 solar twins and measured the heavy elements Ba, La, Ce, Nd, and Sm with a precision of 0.03 dex. We demonstrate that the enhanced Ba ii relative to La−Sm seen among solar twins, stellar associations, and OCs at young ages (<100 Myr) is unrelated to aspects of stellar nucleosynthesis but has resulted from overestimation of Ba by standard methods of LTE abundance analysis in which the microturbulence derived from the Fe lines formed deep in the photosphere is insufficient to represent the true line broadening imposed on Ba ii lines by the upper photospheric layers from where the Ba ii lines emerge. Because the young stars have relatively active photospheres, Ba overabundances most likely result from the adoption of a too low value of microturbulence in the spectrum synthesis of the strong Ba ii lines but the change of microturbulence in the upper photosphere has only a minor affect on La−Sm abundances measured from the weak lines.

  19. Variations in meteor heights at 22.7°S during solar cycle 23

    Science.gov (United States)

    Lima, L. M.; Araújo, L. R.; Alves, E. O.; Batista, P. P.; Clemesha, B. R.

    2015-10-01

    The meteor radar measurements obtained at Cachoeira Paulista (22.7°S), Brazil, have been used to study a possible relationship between meteor echo height variations and solar flux during solar cycle 23. A good concordance between the normalized values of the annual mean of the meteor peak heights and F10.7 solar radio flux and Mg_II solar indexes have been observed during declining phase of the solar cycle 23. After eliminating the solar activity influence, the annual mean of the meteor echo peak heights showed a linear decrease of 30 m/year when Mg_II solar index is used and 38 m/year when F10.7 solar radio flux is used. When the trend is eliminated the relationship between meteor peak heights and F10.7 solar flux indicate a trend of 672 m/100 sfu (sfu-solar flux unit). The meteor amplitude signals and the decay time drops after mid-2004, which may be attributed to the decreasing of the electron density in the meteor trails. The meteor echo peak height decrease has been interpreted as being caused by a reduction in air density in the upper atmosphere.

  20. Solar forcing for CMIP6 (v3.2

    Directory of Open Access Journals (Sweden)

    K. Matthes

    2017-06-01

    the CMIP6 solar forcing dataset to its CMIP5 predecessor by using time-slice experiments of two chemistry–climate models and a reference radiative transfer model. The differences in the long-term mean SSI in the CMIP6 dataset, compared to CMIP5, impact on climatological stratospheric conditions (lower shortwave heating rates of −0.35 K day−1 at the stratopause, cooler stratospheric temperatures (−1.5 K in the upper stratosphere, lower ozone abundances in the lower stratosphere (−3 %, and higher ozone abundances (+1.5 % in the upper stratosphere and lower mesosphere. Between the maximum and minimum phases of the 11-year solar cycle, there is an increase in shortwave heating rates (+0.2 K day−1 at the stratopause, temperatures ( ∼  1 K at the stratopause, and ozone (+2.5 % in the upper stratosphere in the tropical upper stratosphere using the CMIP6 forcing dataset. This solar-cycle response is slightly larger, but not statistically significantly different from that for the CMIP5 forcing dataset.CMIP6 models with a well-resolved shortwave radiation scheme are encouraged to prescribe SSI changes and include solar-induced stratospheric ozone variations, in order to better represent solar climate variability compared to models that only prescribe TSI and/or exclude the solar-ozone response. We show that monthly-mean solar-induced ozone variations are implicitly included in the SPARC/CCMI CMIP6 Ozone Database for historical simulations, which is derived from transient chemistry–climate model simulations and has been developed for climate models that do not calculate ozone interactively. CMIP6 models without chemistry that perform a preindustrial control simulation with time-varying solar forcing will need to use a modified version of the SPARC/CCMI Ozone Database that includes solar variability. CMIP6 models with interactive chemistry are also encouraged to use the particle forcing datasets, which will allow the potential long

  1. Solar forcing for CMIP6 (v3.2)

    Science.gov (United States)

    Matthes, Katja; Funke, Bernd; Andersson, Monika E.; Barnard, Luke; Beer, Jürg; Charbonneau, Paul; Clilverd, Mark A.; Dudok de Wit, Thierry; Haberreiter, Margit; Hendry, Aaron; Jackman, Charles H.; Kretzschmar, Matthieu; Kruschke, Tim; Kunze, Markus; Langematz, Ulrike; Marsh, Daniel R.; Maycock, Amanda C.; Misios, Stergios; Rodger, Craig J.; Scaife, Adam A.; Seppälä, Annika; Shangguan, Ming; Sinnhuber, Miriam; Tourpali, Kleareti; Usoskin, Ilya; van de Kamp, Max; Verronen, Pekka T.; Versick, Stefan

    2017-06-01

    5 predecessor by using time-slice experiments of two chemistry-climate models and a reference radiative transfer model. The differences in the long-term mean SSI in the CMIP6 dataset, compared to CMIP5, impact on climatological stratospheric conditions (lower shortwave heating rates of -0.35 K day-1 at the stratopause), cooler stratospheric temperatures (-1.5 K in the upper stratosphere), lower ozone abundances in the lower stratosphere (-3 %), and higher ozone abundances (+1.5 % in the upper stratosphere and lower mesosphere). Between the maximum and minimum phases of the 11-year solar cycle, there is an increase in shortwave heating rates (+0.2 K day-1 at the stratopause), temperatures ( ˜ 1 K at the stratopause), and ozone (+2.5 % in the upper stratosphere) in the tropical upper stratosphere using the CMIP6 forcing dataset. This solar-cycle response is slightly larger, but not statistically significantly different from that for the CMIP5 forcing dataset.CMIP6 models with a well-resolved shortwave radiation scheme are encouraged to prescribe SSI changes and include solar-induced stratospheric ozone variations, in order to better represent solar climate variability compared to models that only prescribe TSI and/or exclude the solar-ozone response. We show that monthly-mean solar-induced ozone variations are implicitly included in the SPARC/CCMI CMIP6 Ozone Database for historical simulations, which is derived from transient chemistry-climate model simulations and has been developed for climate models that do not calculate ozone interactively. CMIP6 models without chemistry that perform a preindustrial control simulation with time-varying solar forcing will need to use a modified version of the SPARC/CCMI Ozone Database that includes solar variability. CMIP6 models with interactive chemistry are also encouraged to use the particle forcing datasets, which will allow the potential long-term effects of particles to be addressed for the first time. The consideration of

  2. Space Launch System Upper Stage Technology Assessment

    Science.gov (United States)

    Holladay, Jon; Hampton, Bryan; Monk, Timothy

    2014-01-01

    The Space Launch System (SLS) is envisioned as a heavy-lift vehicle that will provide the foundation for future beyond low-Earth orbit (LEO) exploration missions. Previous studies have been performed to determine the optimal configuration for the SLS and the applicability of commercial off-the-shelf in-space stages for Earth departure. Currently NASA is analyzing the concept of a Dual Use Upper Stage (DUUS) that will provide LEO insertion and Earth departure burns. This paper will explore candidate in-space stages based on the DUUS design for a wide range of beyond LEO missions. Mission payloads will range from small robotic systems up to human systems with deep space habitats and landers. Mission destinations will include cislunar space, Mars, Jupiter, and Saturn. Given these wide-ranging mission objectives, a vehicle-sizing tool has been developed to determine the size of an Earth departure stage based on the mission objectives. The tool calculates masses for all the major subsystems of the vehicle including propellant loads, avionics, power, engines, main propulsion system components, tanks, pressurization system and gases, primary structural elements, and secondary structural elements. The tool uses an iterative sizing algorithm to determine the resulting mass of the stage. Any input into one of the subsystem sizing routines or the mission parameters can be treated as a parametric sweep or as a distribution for use in Monte Carlo analysis. Taking these factors together allows for multi-variable, coupled analysis runs. To increase confidence in the tool, the results have been verified against two point-of-departure designs of the DUUS. The tool has also been verified against Apollo moon mission elements and other manned space systems. This paper will focus on trading key propulsion technologies including chemical, Nuclear Thermal Propulsion (NTP), and Solar Electric Propulsion (SEP). All of the key performance inputs and relationships will be presented and

  3. Data on incident solar energy

    Science.gov (United States)

    Thekaekara, M. P.

    1974-01-01

    Instrumentation for solar irradiance monitoring, and radiation scales are discussed in a survey of incident solar energy data. The absolute accuracy and intrinsic reliability of the values of the solar constant and zero air mass solar spectrum proposed by the Institute of Environmental Sciences as an ASTM standard are evaluated. Extraterrestrial observations are used for deriving solar irradiance data at ground level for widely varying atmospheric parameters, with special reference to air pollution. The effects of diffuse sky radiance and those of varying slopes of the solar energy collecting surface are examined. Average values of solar energy available at different locations in the United States are included.

  4. UV solar irradiance in observations and the NRLSSI and SATIRE-S models

    Science.gov (United States)

    Yeo, K. L.; Ball, W. T.; Krivova, N. A.; Solanki, S. K.; Unruh, Y. C.; Morrill, J.

    2015-08-01

    Total solar irradiance and UV spectral solar irradiance has been monitored since 1978 through a succession of space missions. This is accompanied by the development of models aimed at replicating solar irradiance by relating the variability to solar magnetic activity. The Naval Research Laboratory Solar Spectral Irradiance (NRLSSI) and Spectral And Total Irradiance REconstruction for the Satellite era (SATIRE-S) models provide the most comprehensive reconstructions of total and spectral solar irradiance over the period of satellite observation currently available. There is persistent controversy between the various measurements and models in terms of the wavelength dependence of the variation over the solar cycle, with repercussions on our understanding of the influence of UV solar irradiance variability on the stratosphere. We review the measurement and modeling of UV solar irradiance variability over the period of satellite observation. The SATIRE-S reconstruction is consistent with spectral solar irradiance observations where they are reliable. It is also supported by an independent, empirical reconstruction of UV spectral solar irradiance based on Upper Atmosphere Research Satellite/Solar Ultraviolet Spectral Irradiance Monitor measurements from an earlier study. The weaker solar cycle variability produced by NRLSSI between 300 and 400 nm is not evident in any available record. We show that although the method employed to construct NRLSSI is principally sound, reconstructed solar cycle variability is detrimentally affected by the uncertainty in the SSI observations it draws upon in the derivation. Based on our findings, we recommend, when choosing between the two models, the use of SATIRE-S for climate studies.

  5. Magnetohydrodynamic process in solar activity

    Directory of Open Access Journals (Sweden)

    Jingxiu Wang

    2014-01-01

    Full Text Available Magnetohydrodynamics is one of the major disciplines in solar physics. Vigorous magnetohydrodynamic process is taking place in the solar convection zone and atmosphere. It controls the generating and structuring of the solar magnetic fields, causes the accumulation of magnetic non-potential energy in the solar atmosphere and triggers the explosive magnetic energy release, manifested as violent solar flares and coronal mass ejections. Nowadays detailed observations in solar astrophysics from space and on the ground urge a great need for the studies of magnetohydrodynamics and plasma physics to achieve better understanding of the mechanism or mechanisms of solar activity. On the other hand, the spectacular solar activity always serves as a great laboratory of magnetohydrodynamics. In this article, we reviewed a few key unresolved problems in solar activity studies and discussed the relevant issues in solar magnetohydrodynamics.

  6. Solar Installation Labor Market Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Friedman, B.; Jordan, P.; Carrese, J.

    2011-12-01

    The potential economic benefits of the growing renewable energy sector have led to increased federal, state, and local investments in solar industries, including federal grants for expanded workforce training for U.S. solar installers. However, there remain gaps in the data required to understand the size and composition of the workforce needed to meet the demand for solar power. Through primary research on the U.S. solar installation employer base, this report seeks to address that gap, improving policymakers and other solar stakeholders understanding of both the evolving needs of these employers and the economic opportunity associated with solar market development. Included are labor market data covering current U.S. employment, expected industry growth, and employer skill preferences for solar installation-related occupations. This study offers an in-depth look at the solar installation sectors. A study published by the Solar Foundation in October 2011 provides a census of labor data across the entire solar value chain.

  7. Non-LTE models of Titan's upper atmosphere

    Science.gov (United States)

    Yelle, Roger V.

    1991-01-01

    Models for the thermal structure of Titan's upper atmosphere, between 0.1 mbar and 0.01 nbar are presented. The calculations include non-LTE heating/cooling in the rotation-vibration bands of CH4, C2H2, and C2H6, absorption of solar IR radiation in the near-IR bands of CH4 and subsequent cascading to the nu-4 band of CH4, absorption of solar EUV and UV radiation, thermal conduction and cooling by HCN rotational lines. Unlike earlier models, the calculated exospheric temperature agrees well with observations, because of the importance of HCN cooling. The calculations predict a well-developed mesopause with a temperature of 135-140 K at an altitude of approximately 600 km and pressure of about 0.1 microbar. The mesopause is at a higher pressure than predicted by earlier calculations because non-LTE radiative transfer in the rotation-vibration bands of CH4, C2H2, and C2H6 is treated in an accurate manner. The accuracy of the LTE approximation for source functions and heating rates is discussed.

  8. Diagnosis and treatment of upper limb apraxia

    OpenAIRE

    Dovern, A.; Fink, G. R.; Weiss, P. H.

    2012-01-01

    Upper limb apraxia, a disorder of higher motor cognition, is a common consequence of left-hemispheric stroke. Contrary to common assumption, apraxic deficits not only manifest themselves during clinical testing but also have delirious effects on the patients’ everyday life and rehabilitation. Thus, a reliable diagnosis and efficient treatment of upper limb apraxia is important to improve the patients’ prognosis after stroke. Nevertheless, to date, upper limb apraxia is still an underdiagnosed...

  9. Molybdenum solar neutrino experiment

    International Nuclear Information System (INIS)

    Wolfsberg, K.; Cowan, G.A.; Bryant, E.A.

    1984-01-01

    The goal of the molybdenum solar neutrino experiment is to deduce the 8 B solar neutrino flux, averaged over the past several million years, from the concentration of 98 Tc in a deeply buried molybdenum deposit. The experiment is important to an understanding of stellar processes because it will shed light on the reason for the discrepancy between theory and observation of the chlorine solar neutrino experiment. Possible reasons for the discrepancy may lie in the properties of neutrinos (neutrino oscillations or massive neutrinos) or in deficiencies of the standard solar model. The chlorine experiment only measures the 8 B neutrino flux in current times and does not address possible temporal variations in the interior of the sun, which are also not considered in the standard model. In the molybdenum experiment, we plan to measure 98 Tc (4.2 Myr), also produced by 8 B neutrinos, and possibly 97 Tc (2.6 Myr), produced by lower energy neutrinos

  10. Solar Imagery - GONG

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Global Oscillation Network Group (GONG) is a network of 6 globally-spaced solar observatories that the NOAA Space Weather Prediction Center uses to monitor the...

  11. Solar cell radiation handbook

    Science.gov (United States)

    Tada, H. Y.; Carter, J. R., Jr.; Anspaugh, B. E.; Downing, R. G.

    1982-01-01

    The handbook to predict the degradation of solar cell electrical performance in any given space radiation environment is presented. Solar cell theory, cell manufacturing and how they are modeled mathematically are described. The interaction of energetic charged particles radiation with solar cells is discussed and the concept of 1 MeV equivalent electron fluence is introduced. The space radiation environment is described and methods of calculating equivalent fluences for the space environment are developed. A computer program was written to perform the equivalent fluence calculations and a FORTRAN listing of the program is included. Data detailing the degradation of solar cell electrical parameters as a function of 1 MeV electron fluence are presented.

  12. Solar ENA Imaging Coronagraph

    Data.gov (United States)

    National Aeronautics and Space Administration — Observations of energetic neutral atoms (ENAs) provide the only way to observe solar energetic particles (SEPs) where they are accelerated. The one observation of...

  13. Conjugated Polymer Solar Cells

    National Research Council Canada - National Science Library

    Paraschuk, Dmitry Y

    2006-01-01

    This report results from a contract tasking Moscow State University as follows: Conjugated polymers are promising materials for many photonics applications, in particular, for photovoltaic and solar cell devices...

  14. Solar energy policy review

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-08-17

    A number of memoranda and reports are collected which deal with evaluations of solar energy policy options, including direct and indirect labor impacts and costs of different options and consumer protection. (LEW)

  15. Solar system sputtering

    Science.gov (United States)

    Tombrello, T. A.

    1982-01-01

    The sites and materials involved in solar system sputtering of planetary surfaces are reviewed, together with existing models for the processes of sputtering. Attention is given to the interaction of the solar wind with planetary atmospheres in terms of the role played by the solar wind in affecting the He-4 budget in the Venus atmosphere, and the erosion and differentiation of the Mars atmosphere by solar wind sputtering. The study is extended to the production of isotopic fractionation and anomalies in interplanetary grains by irradiation, and to erosion effects on planetary satellites with frozen volatile surfaces, such as with Io, Europa, and Ganymede. Further measurements are recommended of the molecular form of the ejected material, the yields and energy spectra of the sputtered products, the iosotopic fractionation sputtering causes, and the possibility of electronic sputtering enhancement with materials such as silicates.

  16. Solar system fault detection

    Science.gov (United States)

    Farrington, R.B.; Pruett, J.C. Jr.

    1984-05-14

    A fault detecting apparatus and method are provided for use with an active solar system. The apparatus provides an indication as to whether one or more predetermined faults have occurred in the solar system. The apparatus includes a plurality of sensors, each sensor being used in determining whether a predetermined condition is present. The outputs of the sensors are combined in a pre-established manner in accordance with the kind of predetermined faults to be detected. Indicators communicate with the outputs generated by combining the sensor outputs to give the user of the solar system and the apparatus an indication as to whether a predetermined fault has occurred. Upon detection and indication of any predetermined fault, the user can take appropriate corrective action so that the overall reliability and efficiency of the active solar system are increased.

  17. Photovoltaic solar cell

    Science.gov (United States)

    Nielson, Gregory N; Okandan, Murat; Cruz-Campa, Jose Luis; Resnick, Paul J

    2013-11-26

    A photovoltaic solar cell for generating electricity from sunlight is disclosed. The photovoltaic solar cell comprises a plurality of spaced-apart point contact junctions formed in a semiconductor body to receive the sunlight and generate the electicity therefrom, the plurality of spaced-apart point contact junctions having a first plurality of regions having a first doping type and a second plurality of regions having a second doping type. In addition, the photovoltaic solar cell comprises a first electrical contact electrically connected to each of the first plurality of regions and a second electrical contact electrically connected to each of the second plurality of regions, as well as a passivation layer covering major surfaces and sidewalls of the photovoltaic solar cell.

  18. Concentrating Solar Power

    Energy Technology Data Exchange (ETDEWEB)

    Weinstein, Lee A.; Loomis, James; Bhatia, Bikram; Bierman, David M.; Wang, Evelyn N.; Chen, Gang

    2015-12-09

    Solar energy is a bountiful renewable energy resource: the energy in the sunlight that reaches Earth in an hour exceeds the energy consumed by all of humanity in a year.(1) While the phrase “solar energy conversion” probably brings photovoltaic (PV) cells to mind first, PV is not the only option for generating electricity from sunlight. Another promising technology for solar energy conversion is solar–thermal conversion, commonly referred to as concentrating solar power (CSP).(2) The first utility-scale CSP plants were constructed in the 1980s, but in the two decades that followed, CSP saw little expansion.(3, 4) More recent years, however, have seen a CSP renaissance due to unprecedented growth in the adoption of CSP.(3, 5) Photographs of two operating CSP plants, a parabolic trough collector plant and a central receiver (or “power tower”), are shown here.

  19. Solar-Terrestrial Interactions

    National Research Council Canada - National Science Library

    Kahler, Stephen W

    2008-01-01

    This report covers a basic research (6.1 level) task on solar-terrestrial interactions carried out in the Space Weather Center of Excellence over an 11-year period for the Air Force Office of Scientific Research...

  20. Tanzania - Kigoma Solar

    Data.gov (United States)

    Millennium Challenge Corporation — The performance evaluation of the Kigoma solar activity was designed to answer questions about the implementation of the program and about outcomes that may have...

  1. Solar chemical heat pipe

    International Nuclear Information System (INIS)

    Levy, M.; Levitan, R.; Rosin, H.; Rubin, R.

    1991-08-01

    The performance of a solar chemical heat pipe was studied using CO 2 reforming of methane as a vehicle for storage and transport of solar energy. The endothermic reforming reaction was carried out in an Inconel reactor, packed with a Rh catalyst. The reactor was suspended in an insulated box receiver which was placed in the focal plane of the Schaeffer Solar Furnace of the Weizman Institute of Science. The exothermic methanation reaction was run in a 6-stage adiabatic reactor filled with the same Rh catalyst. Conversions of over 80% were achieved for both reactions. In the closed loop mode the products from the reformer and from the metanator were compressed into separate storage tanks. The two reactions were run either separately or 'on-line'. The complete process was repeated for over 60 cycles. The overall performance of the closed loop was quite satisfactory and scale-up work is in progress in the Solar Tower. (authors). 35 refs., 2 figs

  2. Solar results purchasing

    International Nuclear Information System (INIS)

    Sanders, J.

    2001-01-01

    Solar Thermal water heating has made little market penetration in some European countries. The main barriers to market development are: Long payback periods for the technology; Difficulties for the end-user in meeting the initial capital costs of the installation; Lack of confidence in the delivered energy that can be expected from the technology. The third barrier has been addressed using the concept of Guaranteed Solar Results (GSR). This project has addressed the other two main barriers using the concept of Solar Results Purchasing, (SRP) which combines GSR with Third Party Financing. The work was carried out in the UK, France, and Spain. The project used a uniform approach across the three countries. Each team calculated solar performance using an English version of the SOLO programme developed by TECSOL in France to encode the methodology for GSR model contracts. (author)

  3. Solar Indices Bulletin

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Solar Indices Bulletin is a prompt monthly information product that is distributed within two weeks after the observation month closes. For the month just ended,...

  4. Solar Imagery - GONG (Magnetogram)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Global Oscillation Network Group (GONG) is a network of 6 globally-spaced solar observatories that the NOAA Space Weather Prediction Center uses to monitor the...

  5. Tanzania - Kigoma Solar Activity

    Data.gov (United States)

    Millennium Challenge Corporation — The performance evaluation of the Kigoma solar activity was designed to answer questions about the implementation of the program and about outcomes that may have...

  6. Solar Surface Convection

    Directory of Open Access Journals (Sweden)

    Nordlund Åke

    2009-04-01

    Full Text Available We review the properties of solar convection that are directly observable at the solar surface, and discuss the relevant underlying physics, concentrating mostly on a range of depths from the temperature minimum down to about 20 Mm below the visible solar surface.The properties of convection at the main energy carrying (granular scales are tightly constrained by observations, in particular by the detailed shapes of photospheric spectral lines and the topology (time- and length-scales, flow velocities, etc. of the up- and downflows. Current supercomputer models match these constraints very closely, which lends credence to the models, and allows robust conclusions to be drawn from analysis of the model properties.At larger scales the properties of the convective velocity field at the solar surface are strongly influenced by constraints from mass conservation, with amplitudes of larger scale horizontal motions decreasing roughly in inverse proportion to the scale of the motion. To a large extent, the apparent presence of distinct (meso- and supergranulation scales is a result of the folding of this spectrum with the effective “filters” corresponding to various observational techniques. Convective motions on successively larger scales advect patterns created by convection on smaller scales; this includes patterns of magnetic field, which thus have an approximately self-similar structure at scales larger than granulation.Radiative-hydrodynamical simulations of solar surface convection can be used as 2D/3D time-dependent models of the solar atmosphere to predict the emergent spectrum. In general, the resulting detailed spectral line profiles agree spectacularly well with observations without invoking any micro- and macroturbulence parameters due to the presence of convective velocities and atmosphere inhomogeneities. One of the most noteworthy results has been a significant reduction in recent years in the derived solar C, N, and O abundances with

  7. COLOR- SENSITIZED SOLAR ELEMENTS

    OpenAIRE

    Gish R. A.; Ranabkhat K.; Yatsenko A. N.

    2016-01-01

    Photovoltaic devices are a promising solution to the energy crisis, because they generate electricity directly from sunlight, without producing CO2. While color-sensitized batteries are the most studied element, mainly due to its low cost and high efficiency solar energy conversion into electricity. Until recently, the color-sensitized solar cells performance was less than 1%, however, the use of titanium dioxide as the anode material have greatly raised their efficiency. The advantages of ti...

  8. The solar system

    International Nuclear Information System (INIS)

    Ryan, P.

    1981-01-01

    A comprehensive review is given of the most recent findings on the solar system. The physical processes in the sun are presented, their interactions in the interplanetary space, and the planets and moons of the solar system. The sun and its moon are discussed in great detail. The text is supplemented by excellent satellite pictures, including the latest pictures of Jupiter, Saturn, and their moons. (HM) [de

  9. Photovoltaic Solar Energy

    International Nuclear Information System (INIS)

    Gonzalez N, J.C.; Leal C, H.

    1998-01-01

    A short historical review of the technological advances; the current state and the perspectives of the materials for photovoltaic applications is made. Thereinafter, the general aspects of the physical principles and fundamental parameters that govern the operation of the solar cells are described. To way of the example, a methodology for the design and facilities size of a photovoltaic system is applied. Finally, the perspectives of photovoltaic solar energy in relationship to the market and political of development are mentioned

  10. Solar wind stream evolution

    International Nuclear Information System (INIS)

    Gosling, J.T.

    1978-01-01

    Highlights of the recent progress in understanding the problem of high speed stream evolution with increasing heliocentric distance are reviewed. Crucial to this understanding are the measurements made in the inner solar system by Helios and the outer solar system by Pioneers 10 and 11. When coupled with observations at 1 AU these measurements allow a testing of current theoretical models of stream evolution. 21 references

  11. Solar fuels generator

    Science.gov (United States)

    Lewis, Nathan S.; Spurgeon, Joshua M.

    2016-10-25

    The solar fuels generator includes an ionically conductive separator between a gaseous first phase and a second phase. A photoanode uses one or more components of the first phase to generate cations during operation of the solar fuels generator. A cation conduit is positioned provides a pathway along which the cations travel from the photoanode to the separator. The separator conducts the cations. A second solid cation conduit conducts the cations from the separator to a photocathode.

  12. Digital solar edge tracker for the Halogen Occultation Experiment

    Science.gov (United States)

    Mauldin, L. E., III; Moore, A. S.; Stump, C. W.; Mayo, L. S.

    1987-01-01

    The optical and electronic design of the Halogen Occultation Experiment (Haloe) elevation sun sensor is described. The Haloe instrument is a gas-correlation radiometer now being developed at NASA Langley for the Upper Atmosphere Research Satellite. The system uses a Galilean telescope to form a solar image on a linear silicon photodiode array. The array is a self-scanned monolithic CCD. The addresses of both solar edges imaged on the array are used by the control/pointing system to scan the Haloe science instantaneous field of view (IFOV) across the vertical solar diameter during instrument calibration and then to maintain the science IFOV 4 arcmin below the top edge during the science data occultation event. Vertical resolution of 16 arcsec and a radiometric dynamic range of 100 are achieved at the 700-nm operating wavelength. The design provides for loss of individual photodiode elements without loss of angular tracking capability.

  13. Smartphone supported upper limb prosthesis

    Directory of Open Access Journals (Sweden)

    Hepp D.

    2015-09-01

    Full Text Available State of the art upper limb prostheses offer up to six active DoFs (degrees of freedom and are controlled using different grip patterns. This low number of DoFs combined with a machine-human-interface which does not provide control over all DoFs separately result in a lack of usability for the patient. The aim of this novel upper limb prosthesis is both offering simplified control possibilities for changing grip patterns depending on the patients’ priorities and the improvement of grasp capability. Design development followed the design process requirements given by the European Medical Device Directive 93/42 ECC and was structured into the topics mechanics, software and drive technology. First user needs were identified by literature research and by patient feedback. Consequently, concepts were evaluated against technical and usability requirements. A first evaluation prototype with one active DoF per finger was manufactured. In a second step a test setup with two active DoF per finger was designed. The prototype is connected to an Android based smartphone application. Two main grip patterns can be preselected in the software application and afterwards changed and used by the EMG signal. Three different control algorithms can be selected: “all-day”, “fine” and “tired muscle”. Further parameters can be adjusted to customize the prosthesis to the patients’ needs. First patient feedback certified the prosthesis an improved level of handling compared to the existing devices. Using the two DoF test setup, the possibilities of finger control with a neural network are evaluated at the moment. In a first user feedback test, the smartphone based software application increased the device usability, e.g. the change within preselected grip patterns and the “tired muscle” algorithm. Although the overall software application was positively rated, the handling of the prosthesis itself needs to be proven within a patient study to be

  14. Heating solar coronal holes

    Science.gov (United States)

    Parker, E. N.

    1991-01-01

    It has been shown that the coronal hole, and the associated high-speed stream in the solar wind, are powered by a heat input of the order of 500,000 ergs/sq cm s, with most of the heat injected in the first 1-2 solar radii, and perhaps 100,000 ergs/sq cm s introduced at distances of several solar radii to provide the high speed of the issuing solar wind. The traditional view has been that this energy is obtained from Alfven waves generated in the subphotospheric convection, which dissipate as they propagate outward, converting the wave energy into heat. This paper reviews the generation of waves and the known wave dissipation mechanisms, to show that the necessary Alfven waves are not produced under the conditions presently understood to exist in the sun, nor would such waves dissipate significantly in the first 1-2 solar radii if they existed. Wave dissipation occurs only over distances of the order of 5 solar radii or more.

  15. Solar History An Introduction

    CERN Document Server

    Vita-Finzi, Claudio

    2013-01-01

    Beyond the four centuries of sunspot observation and the five decades during which artificial satellites have monitored the Sun – that is to say for 99.99999% of the Sun’s existence – our knowledge of solar history depends largely on analogy with kindred main sequence stars, on the outcome of various kinds of modelling, and on indirect measures of solar activity. They include the analysis of lunar rocks and meteorites for evidence of solar flares and other components of the solar cosmic-ray (SCR) flux, and the measurement of cosmogenic isotopes in wood, stratified ice and marine sediments to evaluate changes in the galactic cosmic-ray (GCR) flux and thus infer changes in the sheltering magnetic fields of the solar wind. In addition, shifts in the global atmospheric circulation which appear to result from cyclic fluctuations in solar irradiance have left their mark in river sediments and in the isotopic composition of cave deposits. In this volume the results these sources have already produced have bee...

  16. Advanced Solar Panel Designs

    Science.gov (United States)

    Ralph, E. L.; Linder, E. B.

    1995-01-01

    Solar panel designs that utilize new high-efficiency solar cells and lightweight rigid panel technologies are described. The resulting designs increase the specific power (W/kg) achievable in the near-term and are well suited to meet the demands of higher performance small satellites (smallsats). Advanced solar panel designs have been developed and demonstrated on two NASA SBIR contracts at Applied Solar. The first used 19% efficient, large area (5.5 cm x 6.5 cm) GaAs/Ge solar cells with a lightweight rigid graphite epoxy isogrid substrate configuration. A 1,445 sq cm coupon was fabricated and tested to demonstrate 60 W/kg with a high potential of achieving 80 W/kg. The second panel design used new 22% efficiency, dual-junction GaInP2/GaAs/Ge solar cells combined with a lightweight aluminum core/graphite fiber mesh facesheet substrate. A 1,445 sq cm coupon was fabricated and tested to demonstrate 105 W/kg with the potential of achieving 115 W/kg.

  17. Solar powered dugout aeration

    International Nuclear Information System (INIS)

    Murrell, S.

    2001-10-01

    Pasture dugouts are a significant source of water for livestock on the Canadian Prairies and as such, must maintain the best water quality possible. Aeration improves the water quality and is part of a good management plan to reduce overall water treatment costs. Although dugouts can be aerated naturally through wind and wave action and photosynthesis, this generally aerates only the top portion of the dugout. Artificial aeration by air injection into the lowest point of the dugout ensures that the water is oxygenated throughout the entire dugout. Solar aeration can be used in remote areas where grid power is not practical. With solar powered aeration systems, solar panels are used to generate the electrical power needed to run the compressor while storing excess energy in batteries. A solar aeration system includes solar panels, deep cycle batteries to store excess power, a control board with a regulator, a compressor, a weighed feeder hose, and an air diffuser. This publication presented the design of a solar aeration system and its cost. 1 tab., 3 figs

  18. The Solar Cycle

    Directory of Open Access Journals (Sweden)

    David H. Hathaway

    2015-09-01

    Full Text Available The solar cycle is reviewed. The 11-year cycle of solar activity is characterized by the rise and fall in the numbers and surface area of sunspots. A number of other solar activity indicators also vary in association with the sunspots including; the 10.7 cm radio flux, the total solar irradiance, the magnetic field, flares and coronal mass ejections, geomagnetic activity, galactic cosmic ray fluxes, and radioisotopes in tree rings and ice cores. Individual solar cycles are characterized by their maxima and minima, cycle periods and amplitudes, cycle shape, the equatorward drift of the active latitudes, hemispheric asymmetries, and active longitudes. Cycle-to-cycle variability includes the Maunder Minimum, the Gleissberg Cycle, and the Gnevyshev–Ohl (even-odd Rule. Short-term variability includes the 154-day periodicity, quasi-biennial variations, and double-peaked maxima. We conclude with an examination of prediction techniques for the solar cycle and a closer look at cycles 23 and 24.

  19. Solar effects on communications

    International Nuclear Information System (INIS)

    Cleveland, F.; Malcolm, W.; Nordell, D.E.; Zirker, J.

    1991-01-01

    When people involved in the power industry think of Solar Magnetic Disturbances (SMD), they normally consider the potential for disrupting power transmission which results form solar-induced disturbances to the earth's magnetic field known as geomagnetic storms. However, in addition to the disruption of power transmission, solar phenomena can interfere with utility communication systems. Utilities use many different types of communication media, some of which can be affected by various solar phenomena. These include wire-based facilities (metallic cables and power line carrier), radio systems (HF, VHF, UHF mobile radio, microwave networks, and satellite transmissions), and fiber optic systems. This paper reports that the solar flares and other solar phenomena can affect these media through different mechanisms: Radio communications can be disturbed by flare-induced changes in the ionispheric layer of the atmosphere; Cable communications can be disrupted by the flare-induced changes in the magnetosphere which surrounds the earth. These changes, in turn, induce currents in the power equipment that energizes long communications cables; Satellite communications can be disrupted by the flare-induced perturbations of satellite orbits and equipment

  20. Solar electron source and thermionic solar cell

    Directory of Open Access Journals (Sweden)

    Parham Yaghoobi

    2012-12-01

    Full Text Available Common solar technologies are either photovoltaic/thermophotovoltaic, or use indirect methods of electricity generation such as boiling water for a steam turbine. Thermionic energy conversion based on the emission of electrons from a hot cathode into vacuum and their collection by an anode is also a promising route. However, thermionic solar conversion is extremely challenging as the sunlight intensity is too low for heating a conventional cathode to thermionic emission temperatures in a practical manner. Therefore, compared to other technologies, little has been done in this area, and the devices have been mainly limited to large experimental apparatus investigated for space power applications. Based on a recently observed “Heat Trap” effect in carbon nanotube arrays, allowing their efficient heating with low-power light, we report the first compact thermionic solar cell. Even using a simple off-the-shelf focusing lens, the device delivered over 1 V across a load. The device also shows intrinsic storage capacity.

  1. Simulations of Solar Jets

    Science.gov (United States)

    Kohler, Susanna

    2017-02-01

    Formation of a coronal jet from twisted field lines that have reconnected with the ambient field. The colors show the radial velocity of the plasma. [Adapted from Szente et al. 2017]How do jets emitted from the Suns surface contribute to its corona and to the solar wind? In a recent study, a team of scientists performed complex three-dimensional simulations of coronal jets to answer these questions.Small ExplosionsCoronal jets are relatively small eruptions from the Suns surface, with heights of roughly 100 to 10,000 km, speeds of 10 to 1,000 km/s, and lifetimes of a few minutes to around ten hours. These jets are constantly present theyre emitted even from the quiet Sun, when activity is otherwise low and weve observed them with a fleet of Sun-watching space telescopes spanning the visible, extreme ultraviolet (EUV), and X-ray wavelength bands.A comparison of simulated observations based on the authors model (left panels) to actual EUV and X-ray observations of jets (right panels). [Szente et al. 2017]Due to their ubiquity, we speculate that these jets might contribute to heating the global solar corona (which is significantly hotter than the surface below it, a curiosity known as the coronal heating problem). We can also wonder what role these jets might play in driving the overall solar wind.Launching a JetLed by Judit Szente (University of Michigan), a team of scientists has explored the impact of coronal jets on the global corona and solar wind with a series of numerical simulations. Szente and collaborators used three-dimensional, magnetohydrodynamic simulations that provide realistic treatment of the solar atmosphere, the solar wind acceleration, and the complexities of heat transfer throughout the corona.In the authors simulations, a jet is initiated as a magnetic dipole rotates at the solar surface, winding up field lines. Magnetic reconnection between the twisted lines and the background field then launches the jet from the dense and hot solar

  2. Adolescent pregnancy in Upper Egypt.

    Science.gov (United States)

    Rasheed, Salah; Abdelmonem, Allam; Amin, Magdy

    2011-01-01

    To determine the reasons for adolescent pregnancy in Upper Egypt and to evaluate maternal, fetal, and neonatal outcomes. All primigravidae under 30 years of age who attended the labor/delivery ward at Sohag University Hospital, Sohag, Egypt, between December 31, 2005, and December 31, 2009, were invited to participate. Participants were allocated to the study group (up to 19 years of age at first pregnancy) or the control group (20-30 years of age at first pregnancy). Maternal, obstetric, fetal, and neonatal complications were compared between the groups, and adolescent participants completed a questionnaire to identify the reasons for pregnancy. In total, 58.2% had married seeking motherhood. Rates of ectopic pregnancy, pre-eclampsia, eclampsia, premature rupture of membranes, preterm labor, and cesarean were significantly higher among adolescents younger than 15 years of age; the risk then decreased steadily with age and became comparable to the control group after 16 years of age. Adolescent pregnancy increases the risk of ectopic pregnancy, pre-eclampsia, eclampsia, premature rupture of membranes, preterm labor, and cesarean among mothers up to 16 years of age. After 16 years of age, pregnancy is not associated with increased risk of obstetric or neonatal complications. Copyright © 2010 International Federation of Gynecology and Obstetrics. Published by Elsevier Ireland Ltd. All rights reserved.

  3. Assessment of integrated solar ultraviolet radiation by PM-355 detectors

    International Nuclear Information System (INIS)

    Abu-Jarad, F.; Al-Jarallah, M.I.; Elhadidy, M.A.; Shaahid, S.M.; Fazal-ur-Rehman

    2000-01-01

    The increase in environmental solar UV radiation due to depletion of ozone layer is a recent challenge to human health (skin cancer and eye effects) in countries having clear skies. Therefore, applying integrated, passive and inexpensive techniques to assess solar UV radiation is very much essential. Measurements of environmental solar UV radiation in Dhahran, Saudi Arabia area were carried out for a period of two months in the summer period in 1996 using two techniques in parallel namely: passive nuclear track detectors and active solar UV radiometers. Some of the nuclear track detectors were mounted in different conditions such as: under shadow band, on solar tracking mechanism following the solar rays. Others were mounted on perpendicular, tilted and horizontal surfaces in sunlight. All detectors were attached to a wooden background of the same thickness (0.5 cm) to eliminate interference of the heat effect of various support materials and have uniformity of the support materials. The assessment was carried out for different periods extending from two to nine weeks continuously. The investigated period covered the hottest months in Saudi Arabia (July and August) when the sky was clear of clouds. The results indicate linear correlation between alpha track diameters and the integrated exposure to solar UV as measured by the solar UV radiometer for all nuclear track detector positions and orientations. The highest slope has been observed for the detectors placed on solar tracking mechanism following the solar rays and the lowest from detectors oriented under the shadow band on horizontal position (measuring the diffused UV radiation only). The results show that most of the measured UV radiation (60%) were from the diffused UV radiation. The characteristics of the upper layer of the detectors are changed after chemical etching very quickly, with increase in the exposure time to UV solar radiation at certain orientation. The results encourage the use of nuclear track

  4. Design review of the Brazilian Experimental Solar Telescope

    Science.gov (United States)

    Dal Lago, A.; Vieira, L. E. A.; Albuquerque, B.; Castilho, B.; Guarnieri, F. L.; Cardoso, F. R.; Guerrero, G.; Rodríguez, J. M.; Santos, J.; Costa, J. E. R.; Palacios, J.; da Silva, L.; Alves, L. R.; Costa, L. L.; Sampaio, M.; Dias Silveira, M. V.; Domingues, M. O.; Rockenbach, M.; Aquino, M. C. O.; Soares, M. C. R.; Barbosa, M. J.; Mendes, O., Jr.; Jauer, P. R.; Branco, R.; Dallaqua, R.; Stekel, T. R. C.; Pinto, T. S. N.; Menconi, V. E.; Souza, V. M. C. E. S.; Gonzalez, W.; Rigozo, N.

    2015-12-01

    The Brazilian's National Institute for Space Research (INPE), in collaboration with the Engineering School of Lorena/University of São Paulo (EEL/USP), the Federal University of Minas Gerais (UFMG), and the Brazilian's National Laboratory for Astrophysics (LNA), is developing a solar vector magnetograph and visible-light imager to study solar processes through observations of the solar surface magnetic field. The Brazilian Experimental Solar Telescope is designed to obtain full disk magnetic field and line-of-sight velocity observations in the photosphere. Here we discuss the system requirements and the first design review of the instrument. The instrument is composed by a Ritchey-Chrétien telescope with a 500 mm aperture and 4000 mm focal length. LCD polarization modulators will be employed for the polarization analysis and a tuning Fabry-Perot filter for the wavelength scanning near the Fe II 630.25 nm line. Two large field-of-view, high-resolution 5.5 megapixel sCMOS cameras will be employed as sensors. Additionally, we describe the project management and system engineering approaches employed in this project. As the magnetic field anchored at the solar surface produces most of the structures and energetic events in the upper solar atmosphere and significantly influences the heliosphere, the development of this instrument plays an important role in advancing scientific knowledge in this field. In particular, the Brazilian's Space Weather program will benefit most from the development of this technology. We expect that this project will be the starting point to establish a strong research program on Solar Physics in Brazil. Our main aim is to progressively acquire the know-how to build state-of-art solar vector magnetograph and visible-light imagers for space-based platforms.

  5. Education and solar conversion. Demonstrating electron transfer

    Energy Technology Data Exchange (ETDEWEB)

    Smestad, Greg P. [Institute of Physical Chemistry, ICP-2, Swiss Federal Institute of Technology, EPFL, CH-1015 Lausanne (Switzerland)

    1998-07-23

    A simplified solar cell fabrication procedure is presented that uses natural anthocyanin or chlorophyll dyes extracted from plants. This procedure illustrates how interdisciplinary science can be taught at lower division university and upper division high school levels for an understanding of renewable energy as well as basic science concepts. Electron transfer occurs on the Earth in the mitochondrial membranes found in living cells, and in the thylakoid membranes found in the photosynthetic cells of green plants. Since we depend on the results of this electron and energy transfer, e.g. in our use of petroleum and agricultural products, it is desirable to understand and communicate how the electron transfer works. The simplified solar cell fabrication procedure, based on nanocrystalline dye-sensitized solar cells, has therefore been developed so that it can be inexpensively reproduced and utilized in the teaching of basic principles in biology, chemistry, physics, and environmental science. A water-based solution of commercial nanocrystalline titanium dioxide (TiO{sub 2}) powder is used to deposit a highly porous semiconductor electron acceptor. This acceptor couples the light-driven processes occurring at an organic dye to the macroscopic world and an external electrical circuit. Materials science and semiconductor physics are emphasized during the deposition of the sintered TiO{sub 2} nanocrystalline ceramic film. Chelation, complexation and molecular self-assembly are demonstrated during the attachment of the dye molecule to the surface of the TiO{sub 2} semiconductor particles. Environmental chemistry and energy conversion can be linked to these concepts via the regenerative oxidation and reduction cycle found in the cell. The resulting device, made in under 3 h, can be used as a light detector or power generator that produces 0.4-0.5 V at open circuit, and 1-2 mA per square cm under solar illumination

  6. Isoperimetric upper bounds for the first eigenvalue

    Indian Academy of Sciences (India)

    [5] Buser P and Karcher H, Gromov's almost flat manifolds, Société mathématique de. France (1981). [6] Grosjean J F, Upper bounds for the first eigenvalue of the Laplacian on compact submanifolds, Pacific. J. Math. 206 (2002) 93–112. [7] Heintze Ernst, Extinsic upper bounds for λ1, Math. Ann. 280 (1988) 389–402.

  7. Appropriateness of Referrals for Upper Gastrointestinal Endoscopy ...

    African Journals Online (AJOL)

    Background: Uncomplicated dyspepsia has a low predictive value in diagnosing upper gastrointestinal organic disease making early endoscopy essential. Objective: To assess the reliability of clinical information in the diagnosis of organic disease in patients referred for upper gastrointestinal endoscopy. Methods: Patients ...

  8. Unsedated Flexible Upper Gastrointestinal Endoscopy: Need for ...

    African Journals Online (AJOL)

    Background: To determine the incidence of oxygen desaturation and whether routine oxygen monitoring is necessary during unsedated diagnostic flexible upper gastrointestinal endoscopy. Methods: A prospective study involving 54 consecutive in and out patients who had diagnostic upper gastrointestinal endoscopy at ...

  9. The Upper Class in Higher Education

    Science.gov (United States)

    Useem, Michael; Miller, S. M.

    1977-01-01

    The college education of upper-class youth facilitates the renewal of the upper class, since colleges give their students the personality, values, and personal contacts needed to manage the modern corporation. Higher education should equalize both cognitive and noncognitive gains for all social classes. (Author/JM)

  10. Upper High School Students' Understanding of Electromagnetism

    Science.gov (United States)

    Saglam, Murat; Millar, Robin

    2006-01-01

    Although electromagnetism is an important component of upper secondary school physics syllabuses in many countries, there has been relatively little research on students' understanding of the topic. A written test consisting of 16 diagnostic questions was developed and used to survey the understanding of electromagnetism of upper secondary school…

  11. Upper gastrointestinal fiberoptic endoscopy in pediatric patients.

    Science.gov (United States)

    Prolla, J C; Diehl, A S; Bemvenuti, G A; Loguercio, S V; Magalhães, D S; Silveira, T R

    1983-11-01

    Upper gastrointestinal fiberendoscopy in pediatric patients is done safely and under local anesthesia in most instances. This study of 47 children confirmed the value of fiberendoscopy in establishing the etiology of upper gastrointestinal hemorrhage and the presence of esophageal varices. It also contributed significantly to the management of patients with disphagia, pyrosis, epigastric pain, and ingestion of foreign bodies. No significant morbidity was caused.

  12. Astroparticle physics with solar neutrinos.

    Science.gov (United States)

    Nakahata, Masayuki

    2011-01-01

    Solar neutrino experiments observed fluxes smaller than the expectations from the standard solar model. This discrepancy is known as the "solar neutrino problem". Flux measurements by Super-Kamiokande and SNO have demonstrated that the solar neutrino problem is due to neutrino oscillations. Combining the results of all solar neutrino experiments, parameters for solar neutrino oscillations are obtained. Correcting for the effect of neutrino oscillations, the observed neutrino fluxes are consistent with the prediction from the standard solar model. In this article, results of solar neutrino experiments are reviewed with detailed descriptions of what Kamiokande and Super-Kamiokande have contributed to the history of astroparticle physics with solar neutrino measurements. (Communicated by Toshimitsu Yamazaki, M.J.A.).

  13. Astroparticle physics with solar neutrinos

    Science.gov (United States)

    NAKAHATA, Masayuki

    2011-01-01

    Solar neutrino experiments observed fluxes smaller than the expectations from the standard solar model. This discrepancy is known as the “solar neutrino problem”. Flux measurements by Super-Kamiokande and SNO have demonstrated that the solar neutrino problem is due to neutrino oscillations. Combining the results of all solar neutrino experiments, parameters for solar neutrino oscillations are obtained. Correcting for the effect of neutrino oscillations, the observed neutrino fluxes are consistent with the prediction from the standard solar model. In this article, results of solar neutrino experiments are reviewed with detailed descriptions of what Kamiokande and Super-Kamiokande have contributed to the history of astroparticle physics with solar neutrino measurements. PMID:21558758

  14. Variation of the Solar Microwave Spectrum in the Last Half Century

    Science.gov (United States)

    Shimojo, Masumi; Iwai, Kazumasa; Asai, Ayumi; Nozawa, Satoshi; Minamidani, Tetsuhiro; Saito, Masao

    2017-10-01

    The total solar fluxes at 1, 2, 3.75, and 9.4 GHz were observed continuously from 1957 to 1994 at Toyokawa, Japan, and from 1994 until now at Nobeyama, Japan, with the current Nobeyama Radio Polarimeters. We examined the multi-frequency and long-term data sets, and found that not only the microwave solar flux but also its monthly standard deviation indicate the long-term variation of solar activity. Furthermore, we found that the microwave spectra at the solar minima of Cycles 20-24 agree with each other. These results show that the average atmospheric structure above the upper chromosphere in the quiet-Sun has not varied for half a century, and suggest that the energy input for atmospheric heating from the sub-photosphere to the corona have not changed in the quiet-Sun despite significantly differing strengths of magnetic activity in the last five solar cycles.

  15. The Upper Mississippi River System—Topobathy

    Science.gov (United States)

    Stone, Jayme M.; Hanson, Jenny L.; Sattler, Stephanie R.

    2017-03-23

    The Upper Mississippi River System (UMRS), the navigable part of the Upper Mississippi and Illinois Rivers, is a diverse ecosystem that contains river channels, tributaries, shallow-water wetlands, backwater lakes, and flood-plain forests. Approximately 10,000 years of geologic and hydrographic history exist within the UMRS. Because it maintains crucial wildlife and fish habitats, the dynamic ecosystems of the Upper Mississippi River Basin and its tributaries are contingent on the adjacent flood plains and water-level fluctuations of the Mississippi River. Separate data for flood-plain elevation (lidar) and riverbed elevation (bathymetry) were collected on the UMRS by the U.S. Army Corps of Engineers’ (USACE) Upper Mississippi River Restoration (UMRR) Program. Using the two elevation datasets, the U.S. Geological Survey (USGS) Upper Midwest Environmental Sciences Center (UMESC) developed a systemic topobathy dataset.

  16. A High Rated Solar Water Distillation Unit for Solar Homes

    Directory of Open Access Journals (Sweden)

    Abhishek Saxena

    2016-01-01

    Full Text Available India is presently focusing on complete utilization of solar energy and saving fossil fuels, which are limited. Various solar energy systems like solar cookers, solar water heaters, solar lanterns, solar PV lights, and solar lamps are continuously availing by the people of India at a low cost and on good subsidies. Apart from this, India is a solar energy promising country with a good number of solar homes (carrying solar energy systems in its various locations. The present paper focuses on a unique combination of solar dish cooker (SDC and solar water heater (SWH to produce distilled water with a high distillate and a high daily productivity. The procedure has been discussed on the basis of experimental testing to produce distilled water by combining an evacuated type SWH and a SDC. Experimentation has been carried out in MIT, Moradabad (longitude, 28.83°N, and latitude, 78.78°E by developing the same experimental setup on behalf of solar homes. The daily productivity of distilled water was found around 3.66 litres per day in full sunshine hours for an approximated pH value of 7.7 and a ppm value of 21. The payback period (PBP has been estimated around 1.16 years of the present system.

  17. Characterisation and outcomes of upper extremity amputations.

    Science.gov (United States)

    Tennent, David J; Wenke, Joseph C; Rivera, Jessica C; Krueger, Chad A

    2014-06-01

    The purpose of this study is to characterise the injuries, outcomes, and disabling conditions of the isolated, combat-related upper extremity amputees in comparison to the isolated lower extremity amputees and the general amputee population. A retrospective study of all major extremity amputations sustained by the US military service members from 1 October 2001 to 30 July 2011 was conducted. Data from the Department of Defense Trauma Registry, the Armed Forces Health Longitudinal Technology Application, and the Physical Evaluation Board Liaison Offices were queried in order to obtain injury characteristics, demographic information, treatment characteristics, and disability outcome data. A total of 1315 service members who sustained 1631 amputations were identified; of these, 173 service members were identified as sustaining an isolated upper extremity amputation. Isolated upper extremity and isolated lower extremity amputees had similar Injury Severity Scores (21 vs. 20). There were significantly more non-battle-related upper extremity amputees than the analysed general amputation population (39% vs. 14%). Isolated upper extremity amputees had significantly greater combined disability rating (82.9% vs. 62.3%) and were more likely to receive a disability rating >80% (69% vs. 53%). No upper extremity amputees were found fit for duty; only 12 (8.3%) were allowed continuation on active duty; and significantly more upper extremity amputees were permanently retired than lower extremity amputees (82% vs. 74%). The most common non-upper extremity amputation-related disabling condition was post-traumatic stress disorder (PTSD) (17%). Upper extremity amputees were significantly more likely to have disability from PTSD, 13% vs. 8%, and loss of nerve function, 11% vs. 6%, than the general amputee population. Upper extremity amputees account for 14% of all amputees during the Operation Enduring Freedom and Operation Iraqi Freedom conflicts. These amputees have significant

  18. Community Solar Value Project

    Energy Technology Data Exchange (ETDEWEB)

    Powers, John T [Extensible Energy; Cliburn, Jill [Cliburn and Associates

    2017-11-30

    The Community Solar Value Project (CSVP) is designed to assist electric utilities in designing better community solar programs. Better programs seek new sources of value to promote “win-win” solutions between utilities and their customers. The CSVP focused on five “challenge areas” in identifying new sources of value: - Strategic solar design for community solar projects (including technology choices, siting, orientation, and related issues) - Market research and targeted marketing approaches (for program design and for customer recruitment) - Procurement and financing (for establishing best practices that can bring economies of scale and economies of expertise) - Integration of “companion measures” (such as storage and demand-response options that can benefit customer and utility net load shapes) - Pricing in program design (including best practices for integration of identified value in program prices or credits) The CSVP directly engaged the Sacramento Municipal Utility District (SMUD), the Public Service Company of New Mexico (PNM), and more than a dozen other utilities to develop improved community solar program designs. The outcomes include a plan at SMUD for over 100 MW or more of community and shared solar and support for new or expanded programs at 15 other utilities so far. Resulting best-practice solutions have not only informed program applications, but also have generated discussion among experts and industry associations about the new opportunities and challenges CSVP has brought forth. In these ways, the CSVP has impacted community solar programs and DER plans, competitive innovations and policies nationwide. The CSVP team has been led by Extensible Energy under John Powers, President and CEO. Jill Cliburn, of Santa Fe, NM-based Cliburn and Associates, has served as Principal Investigator. The team also benefitted from expertise from Navigant, Olivine Inc. and Millennium Energy, LLC, in addition to the collaborative and cost

  19. Large-scale solar purchasing

    International Nuclear Information System (INIS)

    1999-01-01

    The principal objective of the project was to participate in the definition of a new IEA task concerning solar procurement (''the Task'') and to assess whether involvement in the task would be in the interest of the UK active solar heating industry. The project also aimed to assess the importance of large scale solar purchasing to UK active solar heating market development and to evaluate the level of interest in large scale solar purchasing amongst potential large scale purchasers (in particular housing associations and housing developers). A further aim of the project was to consider means of stimulating large scale active solar heating purchasing activity within the UK. (author)

  20. Electrostatic upper-hybrid waves and energetic electrons in the Earth's radiation belt

    Science.gov (United States)

    Hwang, J.; Shin, D. K.; Yoon, P. H.

    2016-12-01

    Electrostatic fluctuations near upper-hybrid frequency, which are sometimes accompanied by multiple-harmonic electron cyclotron frequencies above and below the upper-hybrid frequency, are common occurrences in the Earth's radiation belt, as revealed through Van Allen Probe observations. Such a feature is analogous to the quasi-thermal noise, or enhanced Langmuir frequency fluctuations, detected in the solar wind. Generally upper-hybrid emissions are used for estimating the background electron density, but the physical mechanism for generating such fluctuations or their possible influence on the energetic electrons has not been discussed in detail. The present paper carries out detailed analyses of data from the Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) suite onboard Van Allen Probes, as well as theoretical calculation of spontaneous thermal emission. It is found that peak intensity associated with the upper-hybrid fluctuations is determined largely by tenuous energetic electrons, and that dense background electrons do not contribute much to the peak intensity. This finding implies that upper-hybrid fluctuations may not only be useful for electron density measurement, but also such a spectrum of electrostatic fluctuations may contribute to the steady-state energy spectrum of radiation belt electrons via wave-particle resonant interaction.

  1. Solar tomography adaptive optics.

    Science.gov (United States)

    Ren, Deqing; Zhu, Yongtian; Zhang, Xi; Dou, Jiangpei; Zhao, Gang

    2014-03-10

    Conventional solar adaptive optics uses one deformable mirror (DM) and one guide star for wave-front sensing, which seriously limits high-resolution imaging over a large field of view (FOV). Recent progress toward multiconjugate adaptive optics indicates that atmosphere turbulence induced wave-front distortion at different altitudes can be reconstructed by using multiple guide stars. To maximize the performance over a large FOV, we propose a solar tomography adaptive optics (TAO) system that uses tomographic wave-front information and uses one DM. We show that by fully taking advantage of the knowledge of three-dimensional wave-front distribution, a classical solar adaptive optics with one DM can provide an extra performance gain for high-resolution imaging over a large FOV in the near infrared. The TAO will allow existing one-deformable-mirror solar adaptive optics to deliver better performance over a large FOV for high-resolution magnetic field investigation, where solar activities occur in a two-dimensional field up to 60'', and where the near infrared is superior to the visible in terms of magnetic field sensitivity.

  2. Solar structure without computers

    International Nuclear Information System (INIS)

    Clayton, D.D.

    1986-01-01

    We derive succinctly the equations of solar structure. We first present models of objects in hydrostatic equilibrium that fail as models of the sun in order to illustrate important physical requirements. Then by arguing physically that the pressure gradient can be matched to the simple function dP/dr = -kre/sup( -r//a) 2 , we derive a complete analytic representation of the solar interior in terms of a one-parameter family of models. Two different conditions are then used to select the appropriate value of the parameter specifying the best model within the family: (1) the solar luminosity is equated to the thermonuclear power generated near the center and/or (2) the solar luminosity is equated to the radiative diffusion of energy from a central region. The two methods of selecting the parameter agree to within a few percent. The central conditions of the sun are well calculated by these analytic formulas, all without aid of a computer. This is an original treatment, yielding much the best description of the solar center to be found by methods of differential and integral calculus, rendering it an excellent laboratory for applied calculus

  3. The outer solar system

    Directory of Open Access Journals (Sweden)

    Encrenaz T.

    2009-02-01

    Full Text Available The outer solar system extends beyond a heliocentric distance of 5 AU. It contains the giant planets and their systems (rings and satellites, the Kuiper belt, the comets (except those which approach episodically the inner solar system and, at its outer edge, the Oort cloud. The outer solar system physically corresponds to the region located outside the « snow line » which corresponded to the distance of ice condensation in the protodolar disk, and thus made the frontier between the terrestrial and the giant planets at the time of the planets’ formation. The outer solar system is charaterized by a very large variety of ob jects, even within a given class of ob jects. Each of the giant planet has its own properties, as well as each of the outer satellites and the ring systems ; all are the products of specific conditions which determined their formation and evolution processes. The existence of the Kuiper belt, suspected on theoretical bases since the 1940s, has been confirmed since 1992 with the observation of over 1200 trans-neptunian ob jects. Thanks to the the developments of more and more performing groundbased instrumentation and the use of large telescopes, these ob jects are now studies in a statistical way, both dynamically and physically, and these studies are precious for constraining the early formation models of the solar system.

  4. Nanocrystal Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Gur, Ilan [Univ. of California, Berkeley, CA (United States)

    2006-01-01

    This dissertation presents the results of a research agenda aimed at improving integration and stability in nanocrystal-based solar cells through advances in active materials and device architectures. The introduction of 3-dimensional nanocrystals illustrates the potential for improving transport and percolation in hybrid solar cells and enables novel fabrication methods for optimizing integration in these systems. Fabricating cells by sequential deposition allows for solution-based assembly of hybrid composites with controlled and well-characterized dispersion and electrode contact. Hyperbranched nanocrystals emerge as a nearly ideal building block for hybrid cells, allowing the controlled morphologies targeted by templated approaches to be achieved in an easily fabricated solution-cast device. In addition to offering practical benefits to device processing, these approaches offer fundamental insight into the operation of hybrid solar cells, shedding light on key phenomena such as the roles of electrode-contact and percolation behavior in these cells. Finally, all-inorganic nanocrystal solar cells are presented as a wholly new cell concept, illustrating that donor-acceptor charge transfer and directed carrier diffusion can be utilized in a system with no organic components, and that nanocrystals may act as building blocks for efficient, stable, and low-cost thin-film solar cells.

  5. MAGNETIC ROSSBY WAVES IN THE SOLAR TACHOCLINE AND RIEGER-TYPE PERIODICITIES

    International Nuclear Information System (INIS)

    Zaqarashvili, Teimuraz V.; Carbonell, Marc; Oliver, Ramon; Ballester, Jose Luis

    2010-01-01

    Apart from the eleven-year solar cycle, another periodicity around 155-160 days was discovered during solar cycle 21 in high-energy solar flares, and its presence in sunspot areas and strong magnetic flux has been also reported. This periodicity has an elusive and enigmatic character, since it usually appears only near the maxima of solar cycles, and seems to be related with a periodic emergence of strong magnetic flux at the solar surface. Therefore, it is probably connected with the tachocline, a thin layer located near the base of the solar convection zone, where a strong dynamo magnetic field is stored. We study the dynamics of Rossby waves in the tachocline in the presence of a toroidal magnetic field and latitudinal differential rotation. Our analysis shows that the magnetic Rossby waves are generally unstable and that the growth rates are sensitive to the magnetic field strength and to the latitudinal differential rotation parameters. Variation of the differential rotation and the magnetic field strength throughout the solar cycle enhance the growth rate of a particular harmonic in the upper part of the tachocline around the maximum of the solar cycle. This harmonic is symmetric with respect to the equator and has a period of 155-160 days. A rapid increase of the wave amplitude could give rise to a magnetic flux emergence leading to observed periodicities in solar activity indicators related to magnetic flux.

  6. Solar sphere viewed through the Skylab solar physics experiment

    Science.gov (United States)

    1973-01-01

    The solar sphere viewed through the Skylab solar physics experiment (S082) Extreme Ultraviolet Spectroheliographis seen in this photographic reproduction taken from a color television transmission made by a TV camera aboard the Skylab space station in Earth orbit. The solar chromosphere and lower corona are much hotter than the surface of the Sun characterized by the white light emissions. This image was recorded during the huge solar prominence which occurred on August 21, 1973.

  7. Winnebago Tribe Solar Project

    Energy Technology Data Exchange (ETDEWEB)

    Nieman, Autumn [Winnebago Tribe of Nebraska Solar Project (United States)

    2016-02-26

    The strategy of the Solar Project was to reduce fuel use within two years by a roof mounted photovoltaic system. The police/fire building is completely powered by electricity. The renewable energy system we have selected has a power capacity of 23kW and the ability to export 44.3 MWh. We anticipate 32.55% kWh energy savings, an excess of the required 30% reduction, in the building’s total fuel use based on the most current 12 months of data (2012). The solar electric system is a grid-tie, ballast mounted on a flat roof over the police/fire station. The solar electric system includes 280 Watt modules for a nominal total of 22.80 kW. Approximately 84 modules are ballast mounted to the flat roof facing south.

  8. Proton solar flares

    International Nuclear Information System (INIS)

    Shaposhnikova, E.F.

    1979-01-01

    The observations of proton solar flares have been carried out in 1950-1958 using the extrablackout coronograph of the Crimea astrophysical observatory. The experiments permit to determine two characteristic features of flares: the directed motion of plasma injection flux from the solar depths and the appearance of a shock wave moving from the place of the injection along the solar surface. The appearance of the shock wave is accompanied by some phenomena occuring both in the sunspot zone and out of it. The consistent flash of proton flares in the other groups of spots, the disappearance of fibres and the appearance of eruptive prominences is accomplished in the sunspot zone. Beyond the sunspot zone the flares occur above spots, the fibres disintegrate partially or completely and the eruptive prominences appear in the regions close to the pole

  9. Solar maximum observatory

    International Nuclear Information System (INIS)

    Rust, D.M.

    1984-01-01

    The successful retrieval and repair of the Solar Maximum Mission (SMM) satellite by Shuttle astronauts in April 1984 permitted continuance of solar flare observations that began in 1980. The SMM carries a soft X ray polychromator, gamma ray, UV and hard X ray imaging spectrometers, a coronagraph/polarimeter and particle counters. The data gathered thus far indicated that electrical potentials of 25 MeV develop in flares within 2 sec of onset. X ray data show that flares are composed of compressed magnetic loops that have come too close together. Other data have been taken on mass ejection, impacts of electron beams and conduction fronts with the chromosphere and changes in the solar radiant flux due to sunspots. 13 references

  10. Photovoltaic solar energy conversion

    CERN Document Server

    Bauer, Gottfried H

    2015-01-01

    This concise primer on photovoltaic solar energy conversion invites readers to reflect on the conversion of solar light into energy at the most fundamental level and encourages newcomers to the field to help find meaningful answers on how photovoltaic solar energy conversion can work (better), eventually contributing to its ongoing advancement. The book is based on lectures given to graduate students in the Physics Department at the University of Oldenburg over the last two decades, yet also provides an easy-to-follow introduction for doctoral and postdoctoral students from related disciplines such as the materials sciences and electrical engineering. Inspired by classic textbooks in the field, it reflects the author’s own ideas on how to understand, visualize and eventually teach the microscopic physical mechanisms and effects, while keeping the text as concise as possible so as to introduce interested readers to the field and balancing essential knowledge with open questions.

  11. The solar element

    DEFF Research Database (Denmark)

    Kragh, Helge

    2009-01-01

    of the nineteenth century. In the modest form of a yellow spectral line known as D3, 'helium' was sometimes supposed to exist in the Sun's atmosphere, an idea which is traditionally ascribed to J. Norman Lockyer. Did Lockyer discover helium as a solar element? How was the suggestion received by chemists, physicists...... and astronomers in the period until the spring of 1895, when William Ramsay serendipitously found the gas in uranium minerals? The hypothetical element helium was fairly well known, yet Ramsay's discovery owed little or nothing to Lockyer's solar element. Indeed, for a brief while it was thought that the two...... elements might be different. The complex story of how helium became established as both a solar and terrestrial element involves precise observations as well as airy speculations. It is a story that is unique among the discovery histories of the chemical elements....

  12. Solar bowl component efficiencies

    International Nuclear Information System (INIS)

    O'Hair, E.A.; Green, B.L.

    1992-01-01

    Battelle Pacific Northwest Laboratory has published two volumes on the economic evaluation of various proposed configurations and plant sizes for the four solar thermal technologies. These are the latest in a series of publications sponsored by the Department of Energy (DOE) on plant and operational costs and are more complete in that they include calculations of electrical output. These latest Battelle volumes use the 1976 solar data from Barstow, Calif., and by calculating or estimating the energy conversion efficiency of each element in the process from sun to electricity predict the output and cost of electricity from different plant sizes for each of the four technologies. In this paper a comparison is presented of the component efficiencies developed by Battelle and those of the solar bowl at Crosbyton, Tex

  13. International solar refrigeration system

    International Nuclear Information System (INIS)

    Jilavi, A.; Khalagi Asadi, M.

    2001-01-01

    An intermittent solar refrigeration system using ammonia as refrigerant and water as absorbent, is fabricated and tested in the Center for Renewable Energy Research and Application. In this system, using solar flat plate collectors, ammonia is separated from the water-ammonia solution with quality 60%, during the day and its cooling effect happens during the night time. The system can be used in areas with high solar intensity in Iran. A comparison between the theoretical and experimental results shows that the average amount of coefficient of performance are close (COP the =0.485, COP exp =0.432). This result represents the potent rol accessibility to temperature below 10 d eg C, while the ambient temperature is about 30 d eg C

  14. Large Scale Solar Heating

    DEFF Research Database (Denmark)

    Heller, Alfred

    2001-01-01

    The main objective of the research was to evaluate large-scale solar heating connected to district heating (CSDHP), to build up a simulation tool and to demonstrate the application of the simulation tool for design studies and on a local energy planning case. The evaluation was mainly carried out...... based on measurements on the Marstal plant, Denmark, and through comparison with published and unpublished data from other plants. Evaluations on the thermal, economical and environmental performance are repored, based on experiences from the last decade. For detailed designing, a computer simulation...... model is designed and validated on the Marstal case. Applying the Danish Reference Year, a design tool is presented. The simulation tool is used for proposals for application of alternative designs, including high-performance solar collector types (trough solar collectors, vaccum pipe collectors...

  15. Solar thermal energy receiver

    Science.gov (United States)

    Baker, Karl W. (Inventor); Dustin, Miles O. (Inventor)

    1992-01-01

    A plurality of heat pipes in a shell receive concentrated solar energy and transfer the energy to a heat activated system. To provide for even distribution of the energy despite uneven impingement of solar energy on the heat pipes, absence of solar energy at times, or failure of one or more of the heat pipes, energy storage means are disposed on the heat pipes which extend through a heat pipe thermal coupling means into the heat activated device. To enhance energy transfer to the heat activated device, the heat pipe coupling cavity means may be provided with extensions into the device. For use with a Stirling engine having passages for working gas, heat transfer members may be positioned to contact the gas and the heat pipes. The shell may be divided into sections by transverse walls. To prevent cavity working fluid from collecting in the extensions, a porous body is positioned in the cavity.

  16. Solar ventilation and tempering

    Science.gov (United States)

    Adámek, Karel; Pavlů, Miloš; Bandouch, Milan

    2014-08-01

    The paper presents basic information about solar panels, designed, realized and used for solar ventilation of rooms. Used method of numerical flow simulation gives good overview about warming and flowing of the air in several kinds of realized panels (window, facade, chimney). Yearlong measurements give a good base for calculations of economic return of invested capital. The operation of the system in transient period (spring, autumn) prolongs the period without classical heating of the room or building, in winter the classical heating is supported. In the summer period the system, furnished with chimney, can exhaust inner warm air together with necessary cooling of the system by gravity circulation, only. System needs not any invoiced energy source; it is supplied entirely by solar energy. Large building systems are supported by classical electric fan respectively.

  17. Equatorial Magnetohydrodynamic Shallow Water Waves in the Solar Tachocline

    Science.gov (United States)

    Zaqarashvili, Teimuraz

    2018-03-01

    The influence of a toroidal magnetic field on the dynamics of shallow water waves in the solar tachocline is studied. A sub-adiabatic temperature gradient in the upper overshoot layer of the tachocline causes significant reduction of surface gravity speed, which leads to trapping of the waves near the equator and to an increase of the Rossby wave period up to the timescale of solar cycles. Dispersion relations of all equatorial magnetohydrodynamic (MHD) shallow water waves are obtained in the upper tachocline conditions and solved analytically and numerically. It is found that the toroidal magnetic field splits equatorial Rossby and Rossby-gravity waves into fast and slow modes. For a reasonable value of reduced gravity, global equatorial fast magneto-Rossby waves (with the spatial scale of equatorial extent) have a periodicity of 11 years, matching the timescale of activity cycles. The solutions are confined around the equator between latitudes ±20°–40°, coinciding with sunspot activity belts. Equatorial slow magneto-Rossby waves have a periodicity of 90–100 yr, resembling the observed long-term modulation of cycle strength, i.e., the Gleissberg cycle. Equatorial magneto-Kelvin and slow magneto-Rossby-gravity waves have the periodicity of 1–2 years and may correspond to observed annual and quasi-biennial oscillations. Equatorial fast magneto-Rossby-gravity and magneto-inertia-gravity waves have periods of hundreds of days and might be responsible for observed Rieger-type periodicity. Consequently, the equatorial MHD shallow water waves in the upper overshoot tachocline may capture all timescales of observed variations in solar activity, but detailed analytical and numerical studies are necessary to make a firm conclusion toward the connection of the waves to the solar dynamo.

  18. Solar potential in Turkey

    International Nuclear Information System (INIS)

    Soezen, Adnan; Arcaklioglu, Erol

    2005-01-01

    Most of the locations in Turkey receive abundant solar-energy, because Turkey lies in a sunny belt between 36 deg. and 42 deg. N latitudes. Average annual temperature is 18 to 20 deg. C on the south coast, falls to 14-16 deg. C on the west coat, and fluctuates between 4 and 18 deg. C in the central parts. The yearly average solar-radiation is 3.6 kW h/m 2 day, and the total yearly radiation period is ∼2610 h. In this study, a new formulation based on meteorological and geographical data was developed to determine the solar-energy potential in Turkey using artificial neural-networks (ANNs). Scaled conjugate gradient (SCG), Pola-Ribiere conjugate gradient (CGP), and Levenberg-Marquardt (LM) learning algorithms and logistic sigmoid (logsig) transfer function were used in the networks. Meteorological data for last four years (2000-2003) from 12 cities (Canakkale, Kars, Hakkari, Sakarya, Erzurum, Zonguldak, Balikesir, Artvin, Corum, Konya, Siirt, and Tekirdag) spread over Turkey were used in order to train the neural-network. Meteorological and geographical data (latitude, longitude, altitude, month, mean sunshine-duration, and mean temperature) are used in the input layer of the network. Solar-radiation is in the output layer. The maximum mean absolute percentage error was found to be less than 3.832% and R 2 values to be about 99.9738% for the selected stations. The ANN models show greater accuracy for evaluating solar-resource possibilities in regions where a network of monitoring stations has not been established in Turkey. This study confirms the ability of the ANN to predict solar-radiation values accurately

  19. Solar electricity potentials and optimal angles for mounting solar ...

    African Journals Online (AJOL)

    The need for harnessing solar energy using solar panels mounted at optimal inclination angles in the six geopolitical zones of Nigeria is presented. The optimal angle for mounting solar panels as presented by Photovoltaic Geographic Information System (PVGIS) ranges from 11º to 14º in the Southern zone and 13º to 16º ...

  20. Solar energy in Uruguay. Increase the use of solar panels

    International Nuclear Information System (INIS)

    Matos, V.

    2010-01-01

    This article is about the future of the solar energy in Uruguay. The main aspects of this kind of energy are solar thermic which is used for cooking food and heating water through solar collectors as well as the photovoltaics which allows the generation of electricity

  1. FORMING CHONDRITES IN A SOLAR NEBULA WITH MAGNETICALLY INDUCED TURBULENCE

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, Yasuhiro; Turner, Neal J.; Masiero, Joseph [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Wakita, Shigeru; Matsumoto, Yuji; Oshino, Shoichi, E-mail: yasuhiro@caltech.edu [Center for Computational Astrophysics, National Astronomical Observatory of Japan, Osawa, Mitaka, Tokyo 181-8588 (Japan)

    2016-03-20

    Chondritic meteorites provide valuable opportunities to investigate the origins of the solar system. We explore impact jetting as a mechanism of chondrule formation and subsequent pebble accretion as a mechanism of accreting chondrules onto parent bodies of chondrites, and investigate how these two processes can account for the currently available meteoritic data. We find that when the solar nebula is ≤5 times more massive than the minimum-mass solar nebula at a ≃ 2–3 au and parent bodies of chondrites are ≤10{sup 24} g (≤500 km in radius) in the solar nebula, impact jetting and subsequent pebble accretion can reproduce a number of properties of the meteoritic data. The properties include the present asteroid belt mass, the formation timescale of chondrules, and the magnetic field strength of the nebula derived from chondrules in Semarkona. Since this scenario requires a first generation of planetesimals that trigger impact jetting and serve as parent bodies to accrete chondrules, the upper limit of parent bodies’ masses leads to the following implications: primordial asteroids that were originally ≥10{sup 24} g in mass were unlikely to contain chondrules, while less massive primordial asteroids likely had a chondrule-rich surface layer. The scenario developed from impact jetting and pebble accretion can therefore provide new insights into the origins of the solar system.

  2. Vortex flows in the solar chromosphere. I. Automatic detection method

    Science.gov (United States)

    Kato, Y.; Wedemeyer, S.

    2017-05-01

    Solar "magnetic tornadoes" are produced by rotating magnetic field structures that extend from the upper convection zone and the photosphere to the corona of the Sun. Recent studies show that these kinds of rotating features are an integral part of atmospheric dynamics and occur on a large range of spatial scales. A systematic statistical study of magnetic tornadoes is a necessary next step towards understanding their formation and their role in mass and energy transport in the solar atmosphere. For this purpose, we develop a new automatic detection method for chromospheric swirls, meaning the observable signature of solar tornadoes or, more generally, chromospheric vortex flows and rotating motions. Unlike existing studies that rely on visual inspections, our new method combines a line integral convolution (LIC) imaging technique and a scalar quantity that represents a vortex flow on a two-dimensional plane. We have tested two detection algorithms, based on the enhanced vorticity and vorticity strength quantities, by applying them to three-dimensional numerical simulations of the solar atmosphere with CO5BOLD. We conclude that the vorticity strength method is superior compared to the enhanced vorticity method in all aspects. Applying the method to a numerical simulation of the solar atmosphere reveals very abundant small-scale, short-lived chromospheric vortex flows that have not been found previously by visual inspection.

  3. The solar system barometer

    International Nuclear Information System (INIS)

    Anon.

    1999-01-01

    Not all solar eclipses are fascinating visual spectacles. The 'eclipse' that the thermal solar sector underwent between the 1984 oil price's collapse and the beginning of the 90's almost succeeded in sending it straight into a 'black hole'. Luckily, the steadfastness of some sector professionals and the intrinsic qualities of an energy which can be adapted to a great number of different situations got the better of this difficult period. After ten lean years, the sector has been experiencing a new youth for the past four years now. (author)

  4. Solar industrial process heat

    Energy Technology Data Exchange (ETDEWEB)

    Lumsdaine, E.

    1981-04-01

    The aim of the assessment reported is to candidly examine the contribution that solar industrial process heat (SIPH) is realistically able to make in the near and long-term energy futures of the United States. The performance history of government and privately funded SIPH demonstration programs, 15 of which are briefly summarized, and the present status of SIPH technology are discussed. The technical and performance characteristics of solar industrial process heat plants and equipment are reviewed, as well as evaluating how the operating experience of over a dozen SIPH demonstration projects is influencing institutional acceptance and economoc projections. Implications for domestic energy policy and international implications are briefly discussed. (LEW)

  5. Solar energy conversion

    CERN Document Server

    Likhtenshtein, Gertz I

    2012-01-01

    Finally filling a gap in the literature for a text that also adopts the chemist?s view of this hot topic, Prof Likhtenshtein, an experienced author and internationally renowned scientist, considers different physical and engineering aspects in solar energy conversion. From theory to real-life systems, he shows exactly which chemical reactions take place when converting light energy, providing an overview of the chemical perspective from fundamentals to molecular harvesting systems and solar cells. This essential guide will thus help researchers in academia and industry better understa

  6. Characterization of solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Haerkoenen, J.; Tuominen, E.; Nybergh, K.; Ezer, Y.; Yli-Koski, M.; Sinkkonen, J. [Helsinki Univ. of Technology, Otaniemi (Finland). Dept. of Electrical and Communications Engineering

    1998-10-01

    Photovoltaic research in the Electron Physics Laboratory started in 1993, when laboratory joined the national TEKES/NEMO 2 research program. Since the beginning of the project, characterization as well as experimentally orientated development of the fabrication process of the solar cells were carried out parallery. The process development research started by the initiatives of the Finnish industry. At the moment a large amount of the laboratory personnel works on solar cell research and the financing comes mainly from external projects. The funding for the research has come from TEKES, Ministry of Education, Finnish Academy, GETA graduate school, special equipment grants of the university, and from the laboratory

  7. Solar reflection panels

    Science.gov (United States)

    Diver, Jr., Richard B.; Grossman, James W [Albuquerque, NM; Reshetnik, Michael [Boulder, CO

    2006-07-18

    A solar collector comprising a glass mirror, and a composite panel, wherein the back of the mirror is affixed to a front surface of the composite panel. The composite panel comprises a front sheet affixed to a surface of a core material, preferably a core material comprising a honeycomb structure, and a back sheet affixed to an opposite surface of the core material. The invention may further comprise a sealing strip, preferably comprising EPDM, positioned between the glass mirror and the front surface of the composite panel. The invention also is of methods of making such solar collectors.

  8. Solar energy in practice

    International Nuclear Information System (INIS)

    Eijpe, H.A.

    1996-01-01

    One of the Dutch energy distribution companies (REMU) applies integrated passive, thermal and photovoltaic solar energy systems in fifty newly built dwellings in Amersfoort, Netherlands. The houses are equipped with a combi-boiler (solar energy and natural gas) and 22.5m 2 photovoltaic panels to produce electricity. Six houses are equipped with an electric heat pump, while the other 44 houses have a high-efficiency low-NO x combi-boiler. The experiences with the project so-far are outlined. 6 figs., 1 tab., 10 refs

  9. Solar noise storms

    CERN Document Server

    Elgaroy, E O

    2013-01-01

    Solar Noise Storms examines the properties and features of solar noise storm phenomenon. The book also presents some theories that can be used to gain a better understanding of the phenomenon. The coverage of the text includes topics that cover the features and behavior of noise storms, such as the observable features of noise storms; the relationship between noise storms and the observable features on the sun; and ordered behavior of storm bursts in the time-frequency plane. The book also covers the spectrum, polarization, and directivity of noise storms. The text will be of great use to astr

  10. Manhattan Solar Cannon

    Science.gov (United States)

    Treffers, Richard R.; Loisos, George; Ubbelohde, Susan; Douglas, Susanna; Pintos, Eduardo; Mulherin, James; Pasley, David

    2015-01-01

    We describe a 2.4 m hexagonal solar collector atop a Manhattan office building used for a solar / arts project. The collector uses an afocal design to concentrate the sunlight into a 0.6 m diameter beam which is directed by mirrors into a 80 m long fiber optic sculpture which descends an interior stairwell. The collector is fully steerable and follows the sun each day robotically. The control system and the optical design of the collector as well as the fiber optic sculpture will be discussed.

  11. Drainback solar thermal systems

    DEFF Research Database (Denmark)

    Botpaev, R.; Louvet, Y.; Perers, Bengt

    2016-01-01

    Although solar drainback systems have been used for a long time, they are still generating questions regarding smooth functioning. This paper summarises publications on drainback systems and compiles the current knowledge, experiences, and ideas on the technology. The collective research exhibits...... of this technology has been developed, with a brief description of each hydraulic typology. The operating modes have been split into three stages: filling, operation, and draining, which have been studied separately. A difference in the minimal filling velocities for a siphon development in the solar loop has been...

  12. Nanomaterials for solar energy

    KAUST Repository

    Revaprasadu, Neerish

    2013-01-01

    Nanostructured metal chalcogenides of the elements copper, iron, tin, lead and cadmium have attracted interest in their use as colloidal nanocrystal inks for solar cells. Some of these materials have the advantages of being available in abundance and having low toxicity. Developing methods for the combination of the elements to produce binary, ternary and quaternary compounds has dominated research in the field. This chapter will provide the most recent developments (from year 2012 onwards) for the synthesis and use of colloidal nanocrystal inks for solar cell applications. © The Royal Society of Chemistry 2014.

  13. Future Directions in Solar Physics

    Science.gov (United States)

    Rabin, Douglas

    2010-01-01

    I will discuss scientific opportunities for space-based solar physics instruments in the coming decade and their synergy with major new ground-based telescopes. l will also discuss ( pow small satellites may complement larger solar physics missions.

  14. Solar Week: Learning from Experience

    Science.gov (United States)

    Alexander, D.; Hauck, K.

    2003-12-01

    Solar Week is a week-long set of games and activities allowing students to interact directly with solar science and solar scientists. Solar Week was developed as a spin-off of the highly successful Yohkoh Public Outreach Project (YPOP). While YPOP provided access to solar images, movies and activities, the main goal of Solar Week was to enhance the participation of women, who are under-represented in the physical sciences. Solar Week achieves this by providing young women, primarily in grades 6-8, with access to role models in the sciences. The scientists participating in Solar Week are women from a variety of backgrounds and with a variety of scientific expertise. In this paper, our aim is to provide some insight into developing activity-based space science for the web and to discuss the lessons-learned from tailoring to a specific group of participants.

  15. Silicon Solar Cell Turns 50

    Energy Technology Data Exchange (ETDEWEB)

    Perlin, J.

    2004-08-01

    This short brochure describes a milestone in solar (or photovoltaic, PV) research-namely, the 50th anniversary of the invention of the first viable silicon solar cell by three researchers at Bell Laboratories.

  16. Solar Leasing Summary, Houston Texas

    Energy Technology Data Exchange (ETDEWEB)

    Hammer, Mary [City of San Antonio, TX (United States)

    2013-02-14

    A relatively new option for homeowners looking to add solar to their home is the solar lease. At present, the solar lease option can be found in California, Arizona, Texas, Colorado, Hawaii, New York and Oregon. The most active companies currently offering solar leases are NRG Energy, Sungevity, Solar City and Sun Run. With the uncertainty and/or lack of subsidies the states participating in these programs have ebbed and flowed over the last few years. However, there is an expectation that in the current market solar leasing will make solar viable without the utility and federal subsidies. NRG Energy is currently testing this expectation in Houston, TX where currently no subsidies or incentives beyond the federal tax incentives, exist. Following is an explanation on the state of solar leasing in Houston, TX and explanation of the current financing options.

  17. Skylab 2 Solar Physics Experiment

    Science.gov (United States)

    1973-01-01

    Skylab 2 Solar Physics Experiment. This black and white view of a solar flare was taken from the skylab remote solar experiment module mounted on top of the vehicle and worked automatically without any interaction from the crew. Solar flares or sunspots are eruptions on the sun's surface and appear to occur in cycles. When these cycles occur, there is worldwide electromagnetic interference affecting radio and television transmission.

  18. Solar collector manufacturing activity, 1990

    International Nuclear Information System (INIS)

    1992-01-01

    The Solar Collector Manufacturing Activity 1990 report prepared by the Energy Information Administration (EIA) presents summary and detailed data provided by domestic manufacturers on shipments of solar thermal collectors and photovoltaic cells and modules. Summary data on solar thermal collector shipments are presented for the period 1974 through 1990. Summary data on photovoltaic cell and module shipments are presented for the period 1982 through 1990. Detailed information for solar thermal collectors and photovoltaic cells and modules are presented for 1990

  19. Million Solar Roofs Flyer (Revision)

    Energy Technology Data Exchange (ETDEWEB)

    2000-11-01

    The Million Solar Roofs Initiative, announced in June 1997, assists businesses and communities in installing solar energy systems on one million buildings across the United States by 2010. The US Department of Energy leads this trailblazing initiative by partnering with the building industry, local governments, state agencies, the solar industry, electric service providers, and non-governmental organizations to remove barriers and strengthen the demand for solar technologies.

  20. Measuring Solar Coronal Magnetism during the Total Solar Eclipse of 2017

    Science.gov (United States)

    Gibson, K. L.; Tomczyk, S.

    2017-12-01

    The total solar eclipse on August 21, 2017 provided a notable opportunity to measure the solar corona at specific emission wavelengths to gain information about coronal magnetic fields. Solar magnetic fields are intimately related to the generation of space weather and its effects on the earth, and the infrared imaging and polarization information collected on coronal emission lines here will enhance the scientific value of several other ongoing experiments, as well as benefit the astrophysics and upper atmosphere communities. Coronal measurements were collected during the 2 minute and 24 second totality period from Casper Mountain, WY. Computer-controlled telescopes automatically inserted four different narrow band pass filters to capture images in the visible range on a 4D PolCam, and in the infrared range on the FLIR 8501c camera. Each band pass filter selects a specific wavelength range that corresponds to a known coronal emission line possessing magnetic sensitivity. The 4D PolCam incorporated a novel grid of linear polarizers precisely aligned with the micron scale pixels. This allowed for direct measurement of the degree of linear polarization in a very small instrument with no external moving parts as is typically required. The FLIR offers short exposure times to freeze motion and output accurate thermal measurements. This allowed a new observation of the sun's corona using thermo infrared technology.

  1. Nanostructures for Organic Solar Cells

    DEFF Research Database (Denmark)

    Goszczak, Arkadiusz Jarosław

    2016-01-01

    The experimental work in this thesis is focused on the fabrication of nanostructures that can be implemented in organic solar cell (OSC) architecture for enhancement of the device performance. Solar devices made from organic material are gaining increased attention, compared to their inorganic...... for organic solar cell applications, opening new patterning possibilities....

  2. Strong increase of solar panels

    International Nuclear Information System (INIS)

    Segers, R.; Janssen, S.

    2012-01-01

    The number of installed solar panels in 2011 has increased again. 40 megawatt of new panels have been installed. This increase is twice as high as the year before. The production of solar power increased to 90 million kWh in 2011 as a result of this expansion. However, the share of solar power in total energy use is still very limited. [nl

  3. The solar energy in Israel

    International Nuclear Information System (INIS)

    Bocquet, L.

    2004-05-01

    The solar energy is an important characteristic of Israel, listed in its history and its development. This document presents the solar energy applications in the country in many domains: the solar energy for residential houses, the applications in the agricultural and industrial sectors and the research and development programs. (A.L.B.)

  4. Guide for solar electricity projects

    International Nuclear Information System (INIS)

    Jol, J.C.; Kil, A.J.; Van Schalkwijk, M.; De Vos, R.C.J.

    2003-04-01

    A large number of solar electricity projects are presented in this guideline to inform interested parties on the use of solar electricity in the built environment. The guideline shows the phases in the building process while for each phase (planning, design, contracting, realization, sale and usage) the most important aspects for the realization of a solar electricity project are discussed [nl

  5. When the solar energy pays

    International Nuclear Information System (INIS)

    Laramee, V.

    1997-01-01

    In the californian desert of Mojave, the three biggest solar power plants in the world produce 90% of world solar electric power. They have been operating for ten years, and their managers go on to improve them. These installations beat the productivity record every year, proving that the thermal solar energy can be competitive. (N.C.)

  6. Solar energy technical training directory

    Energy Technology Data Exchange (ETDEWEB)

    Corcoleotes, G; Kramer, K; O& #x27; Connor, K

    1979-06-01

    Available solar energy offerings in the technical training area are presented. Institutions are listed alphabetically by state. Each listing includes an institution address and phone number, solar programs or curricula offered, and detailed solar couse information. An alphabetical index of institutions in included. (MHR)

  7. 2010 Solar Technologies Market Report

    Energy Technology Data Exchange (ETDEWEB)

    2011-11-01

    The U.S. Department of Energy (DOE) 2010 Solar Technologies Market Report details the market conditions and trends for photovoltaic (PV) and concentrating solar power (CSP) technologies. Produced by the National Renewable Energy Laboratory (NREL), the report provides a comprehensive overview of the solar electricity market and identifies successes and trends within the market from both global and national perspectives.

  8. Job creation potential of solar

    International Nuclear Information System (INIS)

    McMonagle, R.

    2005-01-01

    This document defines the size of the job market within Canada's solar industry and presents a preliminary forecast of the employment opportunities through to 2025. The issue of job potential within Canada's solar technologies is complicated by the wide range of different fields and technologies within the solar industry. The largest energy generator of the solar technologies is passive solar, but the jobs in this sector are generally in the construction trades and window manufacturers. The Canadian Solar Industries Association estimates that there are about 360 to 500 firms in Canada with the primary business of solar technologies, employing between 900 to 1,200 employees. However, most solar manufacturing jobs in Canada are for products exports as demonstrated by the 5 main solar manufacturers in Canada who estimate that 50 to 95 per cent of their products are exported. The main reason for their high export ratio is the lack of a Canadian market for their products. The 3 categories of job classifications within the solar industry include manufacturing, installation, and operations and maintenance. The indirect jobs include photovoltaic system hardware, solar hot water heating, solar air ventilation, and glass/metal framing. 17 refs., 3 tabs., 2 figs

  9. Furniture dimensions and postural overload for schoolchildren's head, upper back and upper limbs.

    Science.gov (United States)

    Batistão, Mariana Vieira; Sentanin, Anna Cláudia; Moriguchi, Cristiane Shinohara; Hansson, Gert-Åke; Coury, Helenice Jane Cote Gil; de Oliveira Sato, Tatiana

    2012-01-01

    The aim of this study was to evaluate how the fixed furniture dimensions match with students' anthropometry and to describe head, upper back and upper limbs postures and movements. Evaluation was performed in 48 students from a Brazilian state school. Furniture dimensions were measured with metric tape, movements and postures by inclinometers (Logger Tecknologi, Åkarp, Sweden). Seat height was high for 21% and low for 36% of the students; seat length was short for 45% and long for 9% and table height was high for 53% and low for 28%. Regression analysis showed that seat/popliteal height quotient is explained by 90th percentile of upper back inclination (β=0.410) and 90th percentile of right upper arm elevation (β=-0.293). For seat/thigh length quotient the significant variables were 90th percentile of upper back velocity (β=-0.282) and 90th percentile of right upper arm elevation (β=0.410). This study showed a relationship between furniture mismatch and postural overload. When the seat height is low students increase upper back left inclination and right upper arm elevation; when the seat is short students decrease the upper back flexion velocity and increase right upper arm elevation.

  10. Delaware River and Upper Bay Sediment Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The area of coverage consists of 192 square miles of benthic habitat mapped from 2005 to 2007 in the Delaware River and Upper Delaware Bay. The bottom sediment map...

  11. Dirichlet problem on the upper half space

    Indian Academy of Sciences (India)

    Abstract. In this paper, a solution of the Dirichlet problem on the upper half space for a fast growing continuous boundary function is constructed by the generalized Dirichlet integral with this boundary function.

  12. Confusing or Ambiguous Upper Gut Symptoms

    Science.gov (United States)

    ... reports Industry Council Contact Us IFFGD Twitter Facebook YouTube Search Search ... GI Disorders Functional GI Disorders Motility Disorders Upper GI Disorders Lower GI Disorders Other Disorders Kids & Teens Manage Your Health Finding a Doctor The ...

  13. Unusual foreign bodies of upper gastrointestinal tract.

    Science.gov (United States)

    Nijhawan, S; Rai, R R; Agarwal, S; Vijayvergiya, R

    1995-01-01

    We report management of unusual foreign bodies of upper gastrointestinal tract, namely beer bottle cap, raisins and pistachu, mango peel, betelnut and plum seed at a university hospital in Northern India.

  14. Rock glaciers, Upper Engadin, Switzerland, Version 1

    Data.gov (United States)

    National Aeronautics and Space Administration — The investigated region is called Upper Engadin and is situated in the Eastern part of the Swiss Alps. The area is characterized by a high situated valley floor with...

  15. Saline Nasal Irrigation for Upper Respiratory Conditions

    Science.gov (United States)

    2009-01-01

    Acute and chronic upper respiratory conditions are common and expensive disorders with enormous impact on patient quality of life and society at large. Saline nasal irrigation (SNI), a therapy with roots in Ayurvedic medicine that bathes the nasal mucosa with in spray or liquid saline, has been used as adjunctive care for upper respiratory conditions. In liquid form, SNI has been found to be effective adjunctive care by the Cochrane Collaboration for symptoms associated with chronic rhinosinusitis. Less conclusive clinical trial evidence supports its use in spray and liquid forms as adjunctive treatment for mild-to-moderate allergic rhinitis and acute upper respiratory infections. Consensus or expert opinion recommendations exist for SNI as a treatment for a variety of other conditions including rhinitis of pregnancy. SNI appears safe; side effects are minimal and transient. It can be recommended by clinicians to interested patients with a range of upper respiratory conditions in the context of patient education and printed instructional handouts. PMID:19904896

  16. NASA Facts, Solar Cells.

    Science.gov (United States)

    National Aeronautics and Space Administration, Washington, DC.

    The design and function of solar cells as a source of electrical power for unmanned space vehicles is described in this pamphlet written for high school physical science students. The pamphlet is one of the NASA Facts Science Series (each of which consists of four pages) and is designed to fit in the standard size three-ring notebook. Review…

  17. Solar 79 Northwest

    Energy Technology Data Exchange (ETDEWEB)

    King, S [ed.

    1979-01-01

    The highlights of the many public programs are described and summaries of plenary session speeches are included. Names, addresses, and solar interest codes of conference registrants are included. Eleven technical papers or summaries are included. A separate citation was prepared for each one. (MHR)

  18. Probing the Solar Interior

    Indian Academy of Sciences (India)

    and is invisible to powerful telescopes in visible, X-ray or radio wavelengths. Photospheric features such as ..... gaps. 3000. 3100. 3200. GENERAL I ARTICLE which the light from entire solar disk is mixed together. In such observations, the Doppler shifts corresponding to the high degree modes, which have small structures ...

  19. Junior Solar Sprint.

    Science.gov (United States)

    O'Shea, Aisling

    1997-01-01

    Reports on a project sponsored by the United States Department of Energy (DOE) that engages students in building solar cars in groups with kits that include a three volt panel. The design and engineering decisions are made by the students using pertinent information. (DDR)

  20. Solar absorption surface panel

    Science.gov (United States)

    Santala, Teuvo J.

    1978-01-01

    A composite metal of aluminum and nickel is used to form an economical solar absorption surface for a collector plate wherein an intermetallic compound of the aluminum and nickel provides a surface morphology with high absorptance and relatively low infrared emittance along with good durability.

  1. Generating inexpensive solar heat

    Energy Technology Data Exchange (ETDEWEB)

    Berner, Joachim

    2011-07-01

    In the last few years the solar thermal industry has invested quite a lot in the optimisation of their manufacturing. Rising material and raw material costs have negated the effects of lower production costs, however. The sector is now calling for better research support in a new strategy paper. (orig.)

  2. Solar Coronal Plumes

    Directory of Open Access Journals (Sweden)

    Giannina Poletto

    2015-12-01

    Full Text Available Polar plumes are thin long ray-like structures that project beyond the limb of the Sun polar regions, maintaining their identity over distances of several solar radii. Plumes have been first observed in white-light (WL images of the Sun, but, with the advent of the space era, they have been identified also in X-ray and UV wavelengths (XUV and, possibly, even in in situ data. This review traces the history of plumes, from the time they have been first imaged, to the complex means by which nowadays we attempt to reconstruct their 3-D structure. Spectroscopic techniques allowed us also to infer the physical parameters of plumes and estimate their electron and kinetic temperatures and their densities. However, perhaps the most interesting problem we need to solve is the role they cover in the solar wind origin and acceleration: Does the solar wind emanate from plumes or from the ambient coronal hole wherein they are embedded? Do plumes have a role in solar wind acceleration and mass loading? Answers to these questions are still somewhat ambiguous and theoretical modeling does not provide definite answers either. Recent data, with an unprecedented high spatial and temporal resolution, provide new information on the fine structure of plumes, their temporal evolution and relationship with other transient phenomena that may shed further light on these elusive features.

  3. Solar thermal barometer

    International Nuclear Information System (INIS)

    Anon.

    2010-01-01

    In 2008, the European solar thermal market put on a strong spurt only to mark time in 2009 with about 4.2 million m 2 installed, which is 450000 m 2 less year-on-year. The main reasons of the decrease is the financial crisis and the low oil price, other reasons more specific to the country exist, for instance the property crisis has dragged the Spanish market down. In 2009, the solar thermal collector surface area in service in the European Union is of the magnitude of 32.6 million m 2 , equivalent to a capacity of 22.8 GWTh. The solar thermal sector is one of the renewable sectors that creates the highest number of jobs and wealth, partly because the vast majority of the system components sold in Europe are produced in Europe and partly because the sale, installation fitting and maintenance are labour-intensive. In 2009, there were 50000 direct or indirect jobs in the European solar thermal sector. The main European actors in this sector are GREENoneTEC, Bosch-Thermotechnik, Viessmann, Vaillant and Solvis. No clear recovery is expected before 2011. (A.C.)

  4. Solar System Dynamics

    Science.gov (United States)

    Wisdom, Jack

    2002-01-01

    In these 18 years, the research has touched every major dynamical problem in the solar system, including: the effect of chaotic zones on the distribution of asteroids, the delivery of meteorites along chaotic pathways, the chaotic motion of Pluto, the chaotic motion of the outer planets and that of the whole solar system, the delivery of short period comets from the Kuiper belt, the tidal evolution of the Uranian arid Galilean satellites, the chaotic tumbling of Hyperion and other irregular satellites, the large chaotic variations of the obliquity of Mars, the evolution of the Earth-Moon system, and the resonant core- mantle dynamics of Earth and Venus. It has introduced new analytical and numerical tools that are in widespread use. Today, nearly every long-term integration of our solar system, its subsystems, and other solar systems uses algorithms that was invented. This research has all been primarily Supported by this sequence of PGG NASA grants. During this period published major investigations of tidal evolution of the Earth-Moon system and of the passage of the Earth and Venus through non-linear core-mantle resonances were completed. It has published a major innovation in symplectic algorithms: the symplectic corrector. A paper was completed on non-perturbative hydrostatic equilibrium.

  5. Perovskite Solar Cell

    Indian Academy of Sciences (India)

    Organic–inorganic halide perovskite, a newcomerin the solar cell industry has proved its potential forincreasing efficiency rapidly from 3.8% in 2009 to 22.1% in2016. High efficiency, flexibility, and cell architecture of theemerging hybrid halide perovskite have caught the attentionof researchers and technologists in the field.

  6. Solar Magnetic Flux Ropes

    Indian Academy of Sciences (India)

    2016-01-27

    weather were associated with huge ejections of plasma from the solar corona, which took the form of magnetic clouds when moved from the Sun. It is the collisions of the magnetic clouds with the Earth's magnetosphere that lead to ...

  7. Concentrating solar power

    International Nuclear Information System (INIS)

    Metelli, Enzo; Vignolini, Mauro

    2005-01-01

    Solar energy can be used instead of fossil fuels to produce high-temperature heat for use in many industrial processes and in electricity generation. If carried out on a large scale, the replacement would make it possible to reduce harmful emissions and stabilise the global climate over the long term. ENEA has an innovative project in this sector [it

  8. solar neutrino oscillation phenomenology

    Indian Academy of Sciences (India)

    measurements can also provide information on direction and energy of the incoming neutrinos. The electron scattering reaction used in sK and sNO has excellent directional sensitivity. In fact through this reaction the Kamiokande experiment first demonstrated the solar origin of the neutrinos. The left panel in figure 1 plots ...

  9. Solar Photovoltaic Energy.

    Science.gov (United States)

    Ehrenreich, Henry; Martin, John H.

    1979-01-01

    The goals of solar photovoltaic technology in contributing to America's future energy needs are presented in this study conducted by the American Physical Society. Although the time needed for photovoltaics to become popular is several decades away, according to the author, short-range applications are given. (Author/SA)

  10. Probing the Solar Interior

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 3; Issue 3. Probing the Solar Interior Hearing the Heartbeats of the Sun. Ashok Ambastha. General Article Volume 3 Issue 3 March 1998 pp 18-31. Fulltext. Click here to view fulltext PDF. Permanent link:

  11. Simulating solar MHD

    Directory of Open Access Journals (Sweden)

    M. Schüssler

    Full Text Available Two aspects of solar MHD are discussed in relation to the work of the MHD simulation group at KIS. Photospheric magneto-convection, the nonlinear interaction of magnetic field and convection in a strongly stratified, radiating fluid, is a key process of general astrophysical relevance. Comprehensive numerical simulations including radiative transfer have significantly improved our understanding of the processes and have become an important tool for the interpretation of observational data. Examples of field intensification in the solar photosphere ('convective collapse' are shown. The second line of research is concerned with the dynamics of flux tubes in the convection zone, which has far-reaching implications for our understanding of the solar dynamo. Simulations indicate that the field strength in the region where the flux is stored before erupting to form sunspot groups is of the order of 105 G, an order of magnitude larger than previous estimates based on equipartition with the kinetic energy of convective flows.

    Key words. Solar physics · astrophysics and astronomy (photosphere and chromosphere; stellar interiors and dynamo theory; numerical simulation studies.

  12. Solar water disinfection

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, R. [Universal Recycled Water Systems, Orlando, FL (United States); Collier, R. [Enerscope, Inc., Merritt Island, FL (United States)

    1996-11-01

    Non-potable drinking water is a major problem for much of the world`s population. It has been estimated that from 15 to 20 million children under the age of 5 die from diarrheal conditions brought on by infected drinking water every year. This is equivalent to a fully-loaded DC-10 crashing every ten minutes of every day, 365 days a year. Heat is one of the most effective methods of disinfecting drinking water. Using conventional means of heating water (heating on an open-flamed stove) results in an extremely energy-intensive process. The main obstacle is that for areas of the world where potable water is a problem, fuel supplies are either too expensive, not available, or the source of devastating environmental problems (deforestation). The apparatus described is a solar-powered water disinfection device that can overcome most if not all of the barriers that presently limit technological solutions to drinking water problems. It uses a parabolic trough solar concentrator with a receiver tube that is also a counterflow heat exchanger. The system is totally self-contained utilizing a photovoltaic-powered water pump, and a standard automotive thermostat for water flow control. The system is designed for simplicity, reliability and the incorporation of technology readily accessible in most areas of the world. Experiments at the Florida Solar Energy Center have demonstrated up to 2,500 liters of safe drinking water per day with 28 square meters of solar concentrator.

  13. Solar extreme events

    Science.gov (United States)

    Hudson, Hugh S.

    2015-08-01

    Solar flares and CMEs have a broad range of magnitudes. This review discusses the possibility of “extreme events,” defined as those with magnitudes greater than have been seen in the existing historical record. For most quantitative measures, this direct information does not extend more than a century and a half into the recent past. The magnitude distributions (occurrence frequencies) of solar events (flares/CMEs) typically decrease with the parameter measured or inferred (peak flux, mass, energy etc. Flare radiation fluxes tend to follow a power law slightly flatter than S-2, where S represents a peak flux; solar particle events (SPEs) follow a still flatter power law up to a limiting magnitude, and then appear to roll over to a steeper distribution, which may take an exponential form or follow a broken power law. This inference comes from the terrestrial 14C record and from the depth dependence of various radioisotope proxies in the lunar regolith and in meteorites. Recently major new observational results have impacted our use of the relatively limited historical record in new ways: the detection of actual events in the 14C tree-ring records, and the systematic observations of flares and “superflares” by the Kepler spacecraft. I discuss how these new findings may affect our understanding of the distribution function expected for extreme solar events.

  14. Solar Curriculum Guides, 1980.

    Science.gov (United States)

    Seward County Community Coll., Liberal, KS.

    This document contains an outline for a curriculum to train solar energy technicians in community colleges. The guide contains eight courses, each of which is divided into one to five modules. Modules, in turn, are divided into units, and units contain student handouts appropriate to the material. The following eight courses are included in this…

  15. Probing the Solar System

    Science.gov (United States)

    Wilkinson, John

    2013-01-01

    Humans have always had the vision to one day live on other planets. This vision existed even before the first person was put into orbit. Since the early space missions of putting humans into orbit around Earth, many advances have been made in space technology. We have now sent many space probes deep into the Solar system to explore the planets and…

  16. Solar Fuel Generator

    Science.gov (United States)

    Lewis, Nathan S. (Inventor); West, William C. (Inventor)

    2017-01-01

    The disclosure provides conductive membranes for water splitting and solar fuel generation. The membranes comprise an embedded semiconductive/photoactive material and an oxygen or hydrogen evolution catalyst. Also provided are chassis and cassettes containing the membranes for use in fuel generation.

  17. The New Solar System

    Science.gov (United States)

    Wilkinson, John

    2009-01-01

    Since 2006, the details of bodies making up our solar system have been revised. This was largely as a result of new discoveries of a number of planet-like objects beyond the orbit of Pluto. The International Astronomical Union redefined what constituted a planet and established two new classifications--dwarf planets and plutoids. As a result, the…

  18. The Nano Solar Case

    DEFF Research Database (Denmark)

    Hollensen, Svend; Lindgren, Peter

    2011-01-01

    ISO PAINT Nordic A/S produces roof coatings, facade painting as well as specialised products for surface treatments. The company decided that they would develop a nano solar ICT based project having the capacity to change the whole cost structure of a building, for example by a nano roof coating...

  19. Solar Energy Now.

    Science.gov (United States)

    Rose, Harvey, Ed.

    Twenty articles addressing different aspects of solar energy are compiled in this book. They represent the views of different governmental and non-governmental organizations, members of congress, and other individuals including, for example, Barry Commoner and Amory Lovins. Topics discussed include the need for federal support, passive solar…

  20. Nature's Solar Cell

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 1; Issue 2. Nature's Solar Cell. Stephen Suresh Gautham Nadig. Research News Volume 1 Issue 2 February 1996 pp 102-104. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/001/02/0102-0104 ...

  1. solar neutrino oscillation phenomenology

    Indian Academy of Sciences (India)

    sRUBABATI GOsWAMI. Harish-Chandra Research Institute, Chhatnag Road, Jhusi, Allahabad 211 019, India. Email: sruba@mri.ernet.in. Abstract. This article summarises the status of the solar neutrino oscillation phe- nomenology at the end of 2002 in the light of the SNO and KamLAND results. We first present the allowed ...

  2. Solar Thermal Power.

    Science.gov (United States)

    McDaniels, David K.

    The different approaches to the generation of power from solar energy may be roughly divided into five categories: distributed collectors; central receivers; biomass; ocean thermal energy conversion; and photovoltaic devices. The first approach (distributed collectors) is the subject of this module. The material presented is designed to…

  3. Solar Sea Power

    Science.gov (United States)

    Zener, Clarence

    1976-01-01

    In their preoccupation with highly complex new energy systems, scientists and statesmen may be overlooking the possibilities of Ocean Thermal Energy Conversion (OTEC). That is the view of a Carnegie-Mellon University physicist who is in the forefront of solar sea power investigation. (Author/BT)

  4. Solar System Update

    CERN Document Server

    Blondel, Philippe

    2006-01-01

    This book, the first in a series of forthcoming volumes, consists of topical and timely reviews of a number of carefully selected topics in solar systemn science. Contributions, in form of up-to-date reviews, are mainly aimed at professional astronomers and planetary scientists wishing to inform themselves about progress in fields closely related to their own field of expertise.

  5. Little Eyes on Large Solar Motions

    Science.gov (United States)

    Kohler, Susanna

    2017-10-01

    Images taken during the solar eclipse in 2012. The central color composite of the eclipsed solar surface was captured by SDO, the white-light view of the solar corona around it was taken by the authors, and the background, wide-field black-and-white view is from LASCO. The white arrows mark the atypical structure. [Alzate et al. 2017]It seems like science is increasingly being done with advanced detectors on enormous ground- and space-based telescopes. One might wonder: is there anything left to learn from observations made with digital cameras mounted on 10-cm telescopes?The answer is yes plenty! Illustrating this point, a new study using such equipment recently reports on the structure and dynamics of the Suns corona during two solar eclipses.A Full View of the CoronaThe solar corona is the upper part of the Suns atmosphere, extending millions of kilometers into space. This plasma is dynamic, with changing structures that arise in response to activity on the Suns surface such as enormous ejections of energy known as coronal mass ejections (CMEs). Studying the corona is therefore important for understanding what drives its structure and how energy is released from the Sun.Though there exist a number of space-based telescopes that observe the Suns corona, they often have limited fields of view. The Solar Dynamics Observatory AIA, for instance, has spectacular resolution but only images out to 1/3 of a solar radius above the Suns limb. The space-based coronagraph LASCO C2, on the other hand, provides a broad view of the outer regions of the corona, but it only images down to 2.2 solar radii above the Suns limb. Piecing together observations from these telescopes therefore leaves a gap that prevents a full picture of the large-scale corona and how it connects to activity at the solar surface.Same as the previous figure, but for the eclipse in 2013. [Alzate et al. 2017]To provide this broad, continuous picture, a team of scientists used digital cameras mounted on 10

  6. Solar Power Sources: PV, Concentrated PV, and Concentrated Solar Power

    DEFF Research Database (Denmark)

    Kim, Katherine A.; Mentesidi, Konstantina; Yang, Yongheng

    2017-01-01

    Solar power is highly abundant, relatively reliable, and not limited to a geographic region, making it one of the most important renewable energy sources. Catering for a clean and green energy system, solar energy will be an active player in the future mixed power grid that is also undergoing...... a significant change. Beyond this energy transition, the still declining cost of the solar technology has become an important driving force for more solar-powered systems. However, high penetration of solar-powered systems also brings technical challenges to the entire energy systems. In order to fully address...... those issues, the technological properties of solar power should be investigated. Thus, the basics of solar power technology will be introduced and discussed in this chapter....

  7. Solar Power Sources: PV, Concentrated PV, and Concentrated Solar Power

    DEFF Research Database (Denmark)

    Kim, Katherine A.; Mentesidi, Konstantina; Yang, Yongheng

    2017-01-01

    a significant change. Beyond this energy transition, the still declining cost of the solar technology has become an important driving force for more solar-powered systems. However, high penetration of solar-powered systems also brings technical challenges to the entire energy systems. In order to fully address......Solar power is highly abundant, relatively reliable, and not limited to a geographic region, making it one of the most important renewable energy sources. Catering for a clean and green energy system, solar energy will be an active player in the future mixed power grid that is also undergoing...... those issues, the technological properties of solar power should be investigated. Thus, the basics of solar power technology will be introduced and discussed in this chapter....

  8. Monitoring of the solar activity and solar energetic particles

    International Nuclear Information System (INIS)

    Akioka, Maki; Kubo, Yuki; Nagatsuma, Tsutomu; Ohtaka, Kazuhiro

    2009-01-01

    Solar activity is the source of various space weather phenomena in geospace and deep space. Solar X-ray radiation in flare, energetic particles, coronal mass ejection (CME) can cause various kind of disturbance near earth space. Therefore, detailed monitoring of the solar activity and its propagation in the interplanetary space is essential task for space weather. For example, solar energetic particle which sometimes affect spacecraft operation and manned space flight, is considered to be produced by solar flares and travelling shockwave caused by flares and CME. The research and development of monitoring technique and system for various solar activity has been an important topic of space weather forecast program in NICT. In this article, we will introduce the real time data acquisitions of STEREO and optical and radio observations of the Sun at Hiraiso Solar Observatory. (author)

  9. Smart solar tanks for small solar domestic hot water systems

    DEFF Research Database (Denmark)

    Furbo, Simon; Andersen, Elsa; Knudsen, Søren

    2005-01-01

    Investigation of small SDHW systems based on smart solar tanks are presented. The domestic water in a smart solar tank can be heated both by solar collectors and by means of an auxiliary energy supply system. The auxiliary energy supply system – in this study electric heating elements – heats up...... systems, based on differently designed smart solar tanks and a traditional SDHW system were investigated by means of laboratory experiments and theoretical calculations. The investigations showed that the yearly thermal performance of SDHW systems with smart solar tanks is 5-35% higher than the thermal...... performance of traditional SDHW systems. Estimates indicate that the performance/cost ratio can be improved by up to 25% by using a smart solar tank instead of a traditional tank when the backup energy system is electric heating elements. Further, smart solar tanks are suitable for unknown, variable, large...

  10. Experimental Analysis of Thermoelectric Heat Exchanger for Power Generation from Salinity Gradient Solar Pond Using Low-Grade Heat

    Science.gov (United States)

    Singh, Baljit; Baharin, Nuraida `Aadilia; Remeli, Muhammad Fairuz; Oberoi, Amandeep; Date, Abhijit; Akbarzadeh, Aliakbar

    2017-05-01

    Salinity gradient solar ponds act as an integrated thermal solar energy collector and storage system. The temperature difference between the upper convective zone and the lower convective zone of a salinity gradient solar pond can be in the range of 40-60°C. The temperature at the bottom of the pond can reach up to 90°C. Low-grade heat (solar ponds is currently converted into electricity by organic Rankine cycle engines. Thermoelectric generators can operate at very low temperature differences and can be a good candidate to replace organic Rankine cycle engines for power generation from salinity gradient solar ponds. The temperature difference in a solar pond can be used to power thermoelectric generators for electricity production. This paper presents an experimental investigation of a thermoelectric generators heat exchanger system designed to be powered by the hot water from the lower convective zone of a solar pond, and cold water from the upper convective zone of a solar pond. The results obtained have indicated significant prospects of such a system to generate power from low-grade heat for remote area power supply systems.

  11. Comparative analyses on dynamic performances of photovoltaic–thermal solar collectors integrated with phase change materials

    International Nuclear Information System (INIS)

    Su, Di; Jia, Yuting; Alva, Guruprasad; Liu, Lingkun; Fang, Guiyin

    2017-01-01

    Highlights: • The dynamic model of photovoltaic–thermal collector with phase change material was developed. • The performances of photovoltaic–thermal collector are performed comparative analyses. • The performances of photovoltaic–thermal collector with phase change material were evaluated. • Upper phase change material mode can improve performances of photovoltaic–thermal collector. - Abstract: The operating conditions (especially temperature) of photovoltaic–thermal solar collectors have significant influence on dynamic performance of the hybrid photovoltaic–thermal solar collectors. Only a small percentage of incoming solar radiation can be converted into electricity, and the rest is converted into heat. This heat leads to a decrease in efficiency of the photovoltaic module. In order to improve the performance of the hybrid photovoltaic–thermal solar collector, we performed comparative analyses on a hybrid photovoltaic–thermal solar collector integrated with phase change material. Electrical and thermal parameters like solar cell temperature, outlet temperature of air, electrical power, thermal power, electrical efficiency, thermal efficiency and overall efficiency are simulated and analyzed to evaluate the dynamic performance of the hybrid photovoltaic–thermal collector. It is found that the position of phase change material layer in the photovoltaic–thermal collector has a significant effect on the performance of the photovoltaic–thermal collector. The results indicate that upper phase change material mode in the photovoltaic–thermal collector can significantly improve the thermal and electrical performance of photovoltaic–thermal collector. It is found that overall efficiency of photovoltaic–thermal collector in ‘upper phase change material’ mode is 10.7% higher than that in ‘no phase change material’ mode. Further, for a photovoltaic–thermal collector with upper phase change material, it is verified that 3 cm

  12. Long-term evolution of upper stratospheric ozone at selected stations of the Network for the Detection of Stratospheric Change (NDSC)

    NARCIS (Netherlands)

    Steinbrecht, W; Claude, H; Schönenborn, F; McDermid, I S; Leblanc, T; Godin, S; Song, T; Swart, D P J; Meijer, Y J; Bodeker, G E; Connor, B J; Kämpfer, N; Hocke, K; Calisesi, Y; Schneider, N; Noë, J de la; Parrish, A D; Boyd, I S; Brühl, C; Steil, B; Giorgetta, M A; Manzini, E; Thomason, L W; Zawodny, J M; McCormick, M P; Russell, J M; Bhartia, P K; Stolarski, R S; Hollandsworth-Frith, S M

    2006-01-01

    The long-term evolution of upper stratospheric ozone has been recorded by lidars and microwave radiometers within the ground-based Network for the Detection of Stratospheric Change (NDSC), and by the space-borne Solar Backscatter Ultra-Violet instruments (SBUV), Stratospheric Aerosol and Gas

  13. A proposed new method for the determination of the solar irradiance at EUV wavelength range

    Science.gov (United States)

    Feldman, Uri; Doschek, G. A.; Seely, J. F.; Landi, E.; Dammasch, I.

    The solar irradiance in the far ultraviolet (FUV) and extreme ultraviolet (EUV) and its time variability are important inputs to geospace models. It provides the primary mechanism for heating the earth's upper atmosphere and creating the ionosphere. Understanding various space weather phenomena requires reliable detailed knowledge of the solar EUV irradiance. Ideally one would like to have a single well-calibrated, high-resolution spectrometer that can continuously monitor the solar irradiance over the relevant wavelengths range. Since this is much too difficult to accomplish, a number of monitoring instruments were constructed in the past, each covering a fraction of the required wavelength range. Assembling solar irradiance from measurements by a number of instruments is extremely difficult and is usually plagued by large uncertainties. To overcome some of the difficulties resulting from such procedures, empirical models have been developed that rely in large part on solar activity levels as proxies. In recent years a different approach has been established for the determination of the solar irradiance, an approach independent of irradiance observations. The new approach is based on the line intensities calculated from emission measure (EM) distributions across the solar surface. The EM distributions are derived from spatially and spectrally resolved measurements of line intensities and describe the temperature and density structure of the basic large scale features of the solar atmosphere, specifically coronal holes, quiet Sun, and active regions. Recently, as a result of detailed analysis of solar upper atmosphere (SUA) spectra recorded by SUMER/SoHO it was discovered that, in contrast to earlier beliefs, the solar EM in 3x105 -4x106 K plasmas does not appear to vary continuously with temperature as previously assumed. Instead it appears to be composed of isothermal structures where each can attain but one of the following four main temperatures: 5x105 , 9x105

  14. Solar-assisted hemodialysis.

    Science.gov (United States)

    Agar, John W M; Perkins, Anthony; Tjipto, Alwie

    2012-02-01

    Hemodialysis resource use-especially water and power, smarter processing and reuse of postdialysis waste, and improved ecosensitive building design, insulation, and space use-all need much closer attention. Regarding power, as supply diminishes and costs rise, alternative power augmentation for dialysis services becomes attractive. The first 12 months of a solar-assisted dialysis program in southeastern Australia is reported. A 24-m(2), 3-kWh rated solar array and inverter-total cost of A$16,219-has solar-assisted the dialysis-related power needs of a four-chair home hemodialysis training service. All array-created, grid-donated power and all grid-drawn power to the four hemodialysis machines and minireverse osmosis plant pairings are separately metered. After the grid-drawn and array-generated kilowatt hours have been billed and reimbursed at their respective commercial rates, financial viability, including capital repayment, can be assessed. From July of 2010 to July of 2011, the four combined equipment pairings used 4166.5 kWh, 9% more than the array-generated 3811.0 kWh. Power consumption at 26.7 c/kWh cost A$1145.79. Array-generated power reimbursements at 23.5 c/kWh were A$895.59. Power costs were, thus, reduced by 76.5%. As new reimbursement rates (60 c/kWh) take effect, system reimbursements will more than double, allowing both free power and potential capital pay down over 7.7 years. With expected array life of ∼30 years, free power and an income stream should accrue in the second and third operative decades. Solar-assisted power is feasible and cost-effective. Dialysis services should assess their local solar conditions and determine whether this ecosensitive power option might suit their circumstance.

  15. Solar Walls in tsbi3

    DEFF Research Database (Denmark)

    Wittchen, Kim Bjarne

    tsbi3 is a user-friendly and flexible computer program, which provides support to the design team in the analysis of the indoor climate and the energy performance of buildings. The solar wall module gives tsbi3 the capability of simulating solar walls and their interaction with the building....... This version, C, of tsbi3 is capable of simulating five types of solar walls say: mass-walls, Trombe-walls, double Trombe-walls, internally ventilated walls and solar walls for preheating ventilation air. The user's guide gives a description of the capabilities and how to simulate solar walls in tsbi3....

  16. Transparent solar cell window module

    Energy Technology Data Exchange (ETDEWEB)

    Chau, Joseph Lik Hang; Chen, Ruei-Tang; Hwang, Gan-Lin; Tsai, Ping-Yuan [Nanopowder and Thin Film Technology Center, ITRI South, Industrial Technology Research Institute, Tainan County 709 (China); Lin, Chien-Chu [I-Lai Acrylic Corporation, Tainan City (China)

    2010-03-15

    A transparent solar cell window module based on the integration of traditional silicon solar cells and organic-inorganic nanocomposite material was designed and fabricated. The transparent solar cell window module was composed of a nanocomposite light-guide plate and traditional silicon solar cells. The preparation of the nanocomposite light-guide plate is easy without modification of the traditional casting process, the nanoparticles sol can be added directly to the polymethyl methacrylate (PMMA) monomer syrup during the process. The solar energy collected by this window can be used to power up small household electrical appliances. (author)

  17. The sun and solar flares

    International Nuclear Information System (INIS)

    McKenna-Lawlor, S.

    1982-01-01

    The subject is discussed under the headings: the sun's core (thermonuclear reactions, energy transfer from core through radiation zone, convection zone, photosphere, chromosphere and corona); the photosphere (convection, granulation, sunspots, magnetic fields, solar cycle, rotation of the sun); solar variability and paleoclimatic records (correlation of low solar activity with increased 14 C production in atmosphere); the chromosphere and corona (turbulence, temperature, coronal streamers, energy transfer); solar flares (cosmic rays, aurorae, spectra, velocity of flares, prominences, mechanisms of flares); the solar wind. (U.K.)

  18. Solar energy research and utilization

    Science.gov (United States)

    Cherry, W. R.

    1974-01-01

    The role of solar energy is visualized in the heating and cooling of buildings, in the production of renewable gaseous, liquid and solid fuels, and in the production of electric power over the next 45 years. Potential impacts of solar energy on various energy markets, and estimated costs of such solar energy systems are discussed. Some typical solar energy utilization processes are described in detail. It is expected that at least 20% of the U.S. total energy requirements by 2020 will be delivered from solar energy.

  19. Implementing Solar Technologies at Airports

    Energy Technology Data Exchange (ETDEWEB)

    Kandt, A.; Romero, R.

    2014-07-01

    Federal agencies, such as the Department of Defense and Department of Homeland Security, as well as numerous private entities are actively pursuing the installation of solar technologies to help reduce fossil fuel energy use and associated emissions, meet sustainability goals, and create more robust or reliable operations. One potential approach identified for siting solar technologies is the installation of solar energy technologies at airports and airfields, which present a significant opportunity for hosting solar technologies due to large amounts of open land. This report focuses largely on the Federal Aviation Administration's (FAA's) policies toward siting solar technologies at airports.

  20. a Study of High Efficiency Thin Thermophotovoltaic Solar Cells.

    Science.gov (United States)

    Vera, Eduardo Sobrino

    1982-05-01

    High conversion efficiency of solar energy into electrical energy is possible if the incident radiation is first absorbed by an intermediate absorber and then re-emitted onto a photovoltaic (PV) solar cell. This mode of operation is known as solar thermophotovoltaic (TPV) energy conversion. This thesis explores the limits on performance of TPV systems based on germanium in which the source temperature and the opto-electronic structure of the germanium PV cell are varied and optimized with respect to overall radiant energy conversion efficiency. The principal characteristic of the optimized high efficiency TPV germanium cells is that they are thin p-n junction solar cells which incorporate minority carrier mirrors (MCM) and optical mirrors (OM) at the front and back surfaces of the device examined. In this study, the role of MCM and OM is studied theoretically by solving the minority carrier diffusion equation in the n- and p-type quasineutral regions of the cell with the appropriate boundary conditions at the end of these regions and an appropriate minority carrier generation function. The high theoretical efficiency calculated for these thin structures derives from the simultaneous use of optical and electronic reflection. The calculations presented here determine the theoretical upper limit to TPV conversion efficiency and show the dependence of this limit on cell geometry, resistivity, surface recombination and input density. In addition, TPV systems based on more than one PV cell, each utilizing a different photovoltaically active semiconductor are also considered. A number of possible TPV systems are treated within this theoretical framework. When blackbody thermal radiation sources having temperatures in the range 1500-2000 C are considered, the upper limit efficiency is found to be about 22% for an optimum design germanium cell 90 microns thick and about 26% for a two-junction silicon-germanium tandem cell arrangement 50 and 90 microns thick, respectively