WorldWideScience

Sample records for non-enzymatically glycated peptides

  1. Monitoring the progress of non-enzymatic glycation in vitro

    International Nuclear Information System (INIS)

    Shaw, S.M.; Crabbe, M.J.

    1994-01-01

    The progress of in vitro non-enzymatic glycation of bovine serum albumin was followed by using 14 C-glucose and a nitroblue tetrazolium assay, absorption and fluorescence spectroscopy, SDS gel electrophoresis and protease digestion. The number of adducts detectable using both 14 C-tracers and a fructosamine assay remained low at physiological glucose concentrations, fewer than five adducts being detectable. When glucose concentrations > 1.0 M were used the number of adducts was found to greatly exceed the number of lysyl residues available in BSA, indicative of cross-linking between Maillard products. Incubation of BSA with glucose concentrations of up to 160 mM for one month produced no observable increase in molecular weight by SDS gel electrophoresis, showing that at physiological glucose concentrations, increases in molecular weight were minimal for short incubation periods. Increases in absorption were proportial to both the glucose concentration and the incubation time. Several absorption peaks, at 370, 488 and 554 nm, were consistent in appearance throughout the course of each incubation. Fluorescence spectroscopy of the modified proteins showed a disappearance of the fluorescence associated with peptide bonds and aromatic residues and the appearance of a broad peak at longer wavelengths due to the wide range of absorptive/fluorescent wavelengths of the developing Maillard products. Protease digestion gave similar patterns with non-glycated and glycated protein, suggesting that glycation did not block digestion sites, and that partial digestion did not cause significant further exposure of susceptible sites. Our results show that while glycation ultimately results in protein conformational changes and the formation of large molecular weight species, these occur at a relatively late stage in the maturation of protein Maillard products, after ≥ nine months of incubation with glucose concentration of ≥ 20 mM. Monitoring of AGE maturation in vitro is better

  2. Effects of non-enzymatic glycation in human serum albumin. Spectroscopic analysis

    Science.gov (United States)

    Szkudlarek, A.; Sułkowska, A.; Maciążek-Jurczyk, M.; Chudzik, M.; Równicka-Zubik, J.

    2016-01-01

    Human serum albumin (HSA), transporting protein, is exposed during its life to numerous factors that cause its functions become impaired. One of the basic factors - glycation of HSA - occurs in diabetes and may affect HSA-drug binding. Accumulation of advanced glycation end-products (AGEs) leads to diseases e.g. diabetic and non-diabetic cardiovascular diseases, Alzheimer disease, renal disfunction and in normal aging. The aim of the present work was to estimate how non-enzymatic glycation of human serum albumin altered its tertiary structure using fluorescence technique. We compared glycated human serum albumin by glucose (gHSAGLC) with HSA glycated by fructose (gHSAFRC). We focused on presenting the differences between gHSAFRC and nonglycated (HSA) albumin used acrylamide (Ac), potassium iodide (KI) and 2-(p-toluidino)naphthalene-6-sulfonic acid (TNS). Changes of the microenvironment around the tryptophan residue (Trp-214) of non-glycated and glycated proteins was investigated by the red-edge excitation shift method. Effect of glycation on ligand binding was examined by the binding of phenylbutazone (PHB) and ketoprofen (KP), which a primary high affinity binding site in serum albumin is subdomain IIA and IIIA, respectively. At an excitation and an emission wavelength of λex 335 nm and λem 420 nm, respectively the increase of fluorescence intensity and the blue-shift of maximum fluorescence was observed. It indicates that the glycation products decreases the polarity microenvironment around the fluorophores. Analysis of red-edge excitation shift method showed that the red-shift for gHSAFRC is higher than for HSA. Non-enzymatic glycation also caused, that the Trp residue of gHSAFRC becomes less accessible for the negatively charged quencher (I-), KSV value is smaller for gHSAFRC than for HSA. TNS fluorescent measurement demonstrated the decrease of hydrophobicity in the glycated albumin. KSV constants for gHSA-PHB systems are higher than for the unmodified serum

  3. Destructive effect of non-enzymatic glycation on catalase and remediation via curcumin.

    Science.gov (United States)

    Mofidi Najjar, Fayezeh; Taghavi, Fereshteh; Ghadari, Rahim; Sheibani, Nader; Moosavi-Movahedi, Ali Akbar

    2017-09-15

    Non-enzymatic glycation of proteins is a post-translational modification that is produced by a covalent binding between reducing sugars and amino groups of lysine and arginine residues. In this paper the effect of pathological conditions, derived from hyperglycemia on bovine liver catalase (BLC) as a model protein was considered by measuring enzyme activity, reactive oxygen species (ROS) generation, and changes in catalase conformational properties. We observed that in the presence of glucose, the catalase activity gradually decreased. ROS generation was also involved in the glycation process. Thus, decreased BLC activity was partly considered as a result of ROS generation through glycation. However, in the presence of curcumin the amount of ROS was reduced resulting in increased activity of the glycated catalase. The effect of high glucose level and the potential inhibitory effect of curcumin on aggregation and structural changes of catalase were also investigated. Molecular dynamic simulations also showed that interaction of catalase with curcumin resulted in changes in accessible surface area (ASA) and pKa, two effective parameters of glycation, in potential glycation lysine residues. Thus, the decrease in ASA and increase in pKa of important lysine residues were considered as predominant factors in decreased glycation of BLC by curcumin. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Comprehensive Identification of Glycated Peptides and Their Glycation Motifs in Plasma and Erythrocytes of Control and Diabetic Subjects

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Qibin; Monroe, Matthew E.; Schepmoes, Athena A.; Clauss, Therese RW; Gritsenko, Marina A.; Meng, Da; Petyuk, Vladislav A.; Smith, Richard D.; Metz, Thomas O.

    2011-07-01

    Non-enzymatic glycation of proteins is implicated in diabetes mellitus and its related complications. In this report, we extend our previous development and refinement of proteomics-based methods for the analysis of non-enzymatically glycated proteins to comprehensively identify glycated proteins in normal and diabetic human plasma and erythrocytes. Using immunodepletion, enrichment, and fractionation strategies, we identified 7749 unique glycated peptides, corresponding to 3742 unique glycated proteins. Semi-quantitative comparisons revealed a number of proteins with glycation levels significantly increased in diabetes relative to control samples and that erythrocyte proteins are more extensively glycated than plasma proteins. A glycation motif analysis revealed amino acids that are favored more than others in the protein primary structures in the vicinity of the glycation sites in both sample types. The glycated peptides and corresponding proteins reported here provide a foundation for the potential identification of novel markers for diabetes, glycemia, or diabetic complications.

  5. Glycated Lysine Residues: A Marker for Non-Enzymatic Protein Glycation in Age-Related Diseases

    Directory of Open Access Journals (Sweden)

    Nadeem A. Ansari

    2011-01-01

    Full Text Available Nonenzymatic glycosylation or glycation of macromolecules, especially proteins leading to their oxidation, play an important role in diseases. Glycation of proteins primarily results in the formation of an early stage and stable Amadori-lysine product which undergo further irreversible chemical reactions to form advanced glycation endproducts (AGEs. This review focuses these products in lysine rich proteins such as collagen and human serum albumin for their role in aging and age-related diseases. Antigenic characteristics of glycated lysine residues in proteins together with the presence of serum autoantibodies to the glycated lysine products and lysine-rich proteins in diabetes and arthritis patients indicates that these modified lysine residues may be a novel biomarker for protein glycation in aging and age-related diseases.

  6. Glycated Lysine Residues: A Marker for Non-Enzymatic Protein Glycation in Age-Related Diseases

    OpenAIRE

    Ansari, Nadeem A.; Moinuddin,; Ali, Rashid

    2011-01-01

    Nonenzymatic glycosylation or glycation of macromolecules, especially proteins leading to their oxidation, play an important role in diseases. Glycation of proteins primarily results in the formation of an early stage and stable Amadori-lysine product which undergo further irreversible chemical reactions to form advanced glycation endproducts (AGEs). This review focuses these products in lysine rich proteins such as collagen and human serum albumin for their role in aging and age-related dise...

  7. Vanillin restrains non-enzymatic glycation and aggregation of albumin by chemical chaperone like function.

    Science.gov (United States)

    Awasthi, Saurabh; Saraswathi, N T

    2016-06-01

    Vanillin a major component of vanilla bean extract is commonly used a natural flavoring agent. Glycation is known to induce aggregation and fibrillation of globular proteins such as albumin, hemoglobin. Here we report the inhibitory potential of vanillin toward early and advanced glycation modification and amyloid like aggregation of albumin based on the determination of both early and advanced glycation and conformational changes in albumin using circular dichroism. Inhibition of aggregation and fibrillation of albumin was determined based on amyloid specific dyes i.e., Congo red and Thioflavin T and microscopic imaging. It was evident that vanillin restrains glycation of albumin and exhibits protective effect toward its native conformation. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Application of Ni(II-assisted peptide bond hydrolysis to non-enzymatic affinity tag removal.

    Directory of Open Access Journals (Sweden)

    Edyta Kopera

    Full Text Available In this study, we demonstrate a non-enzymatic method for hydrolytic peptide bond cleavage, applied to the removal of an affinity tag from a recombinant fusion protein, SPI2-SRHWAP-His(6. This method is based on a highly specific Ni(II reaction with (S/TXHZ peptide sequences. It can be applied for the protein attached to an affinity column or to the unbound protein in solution. We studied the effect of pH, temperature and Ni(II concentration on the efficacy of cleavage and developed an analytical protocol, which provides active protein with a 90% yield and ∼100% purity. The method works well in the presence of non-ionic detergents, DTT and GuHCl, therefore providing a viable alternative for currently used techniques.

  9. Bimolecular interaction of argpyrimidine (a Maillard reaction product) in in vitro non-enzymatic protein glycation model and its potential role as an antiglycating agent.

    Science.gov (United States)

    Bhattacherjee, Abhishek; Dhara, Kaliprasanna; Chakraborti, Abhay Sankar

    2017-09-01

    Non- enzymatic glycation, also known as Maillard reaction, is one of the most important and investigated reactions in biochemistry. Maillard reaction products (MRPs) like protein-derived advanced glycation end products (AGEs) are often referred to cause pathophysiological complications in human systems. On contrary, several MRPs are exogenously used as antioxidant, antimicrobial and flavouring agents. In the preset study, we have shown that argpyrimidine, a well-established AGE, interacts with bovine serum albumin (BSA) and glucose individually in standard BSA-glucose model system and successfully inhibits glycation of the protein. Bimolecular interaction of argpyrimidine with glucose or BSA has been studied independently. Chromatographic purification, different spectroscopic studies and molecular modeling have been used to evaluate the nature and pattern of interactions. Binding of argpyrimidine with BSA prevents incorporation of glucose inside the native protein. Argpyrimidine can also directly entrap glucose. Both these interactions may be associated with the antiglycation potential of argpyrimidine, indicating a beneficial function of an AGE. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Effects of parathyroid hormone on cortical porosity, non-enzymatic glycation and bone tissue mechanics in rats with type 2 diabetes mellitus.

    Science.gov (United States)

    Campbell, G M; Tiwari, S; Hofbauer, C; Picke, A-K; Rauner, M; Huber, G; Peña, J A; Damm, T; Barkmann, R; Morlock, M M; Hofbauer, L C; Glüer, C-C

    2016-01-01

    Type 2 diabetes mellitus increases skeletal fragility; however, the contributing mechanisms and the efficacy of bone-forming agents are unclear. We studied diabetes and parathyroid hormone (PTH) treatment effects on cortical porosity (Ct.Po), non-enzymatic glycation (NEG) and bone mechanics in Zucker diabetic fatty (ZDF) rats. Eleven-week old ZDF diabetic (DB) and non-diabetic (ND) rats were given 75μg/kg PTH (1-84) or vehicle 5days per week over 12weeks. The right femora and L4 vertebrae were excised, micro-CT scanned, and tested in 3-point bending and uniaxial compression, respectively. NEG of the samples was determined using fluorescence. Diabetes increased Ct.Po (vertebra (vert): +40.6%, femur (fem): +15.5% vs. ND group, pbone tissue mechanics where reductions in vertebral maximum strain (-22%) and toughness (-42%) were observed in the DB vs. ND group (pbone mechanics, which were not improved with PTH treatment. PTH therapy alone may worsen diabetic bone mechanics through formation of new bone with high AGEs cross-linking. Optimal treatment regimens must address both improvements of bone mass and glycemic control in order to successfully reduce diabetic bone fragility. This article is part of a Special Issue entitled "Bone and diabetes". Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Effects of insulin therapy on porosity, non-enzymatic glycation and mechanical competence in the bone of rats with type 2 diabetes mellitus.

    Science.gov (United States)

    Campbell, G M; Tiwari, S; Picke, A-K; Hofbauer, C; Rauner, M; Morlock, M M; Hofbauer, L C; Glüer, C-C

    2016-10-01

    Type 2 diabetes mellitus increases skeletal fragility; however, the contributing mechanisms and optimal treatment strategies remain unclear. We studied the effects of diabetes and insulin therapy on non-enzymatic glycation (NEG), cortical porosity (Ct.Po) and biomechanics of the bone tissue in Zucker Diabetic Fatty (ZDF) rats. Eleven-week old ZDF diabetic and non-diabetic rats were given insulin to achieve glycaemic control or vehicle seven days per week over twelve weeks (insulin dose adapted individually 0.5 international units (IU) at week 1 to 13.0IU at week 12). The right femora were excised, micro-CT scanned, and tested in 3-point bending to measure biomechanics. NEG of the midshaft was determined from bulk fluorescence. Diabetes led to increased NEG (+50.1%, p=0.001) and Ct.Po (+22.9%, p=0.004), as well as to reduced mechanical competence (max. stress: -14.2%, p=0.041, toughness: -29.7%, p=0.016) in the bone tissue. NEG and Ct.Po both correlated positively to serum glucose (NEG: R(2)=0.41, p1, Ct.Po: R(2)=0.34, p=0.003) and HbA1c (NEG: R(2)=0.42, p1, Ct.Po: R(2)=0.28, p=0.008) levels, while NEG correlated negatively with bone biomechanics (elastic modulus: R(2)=0.21, p=0.023, yield stress: R(2)=0.17, p=0.047). Twelve weeks of insulin therapy had no significant effect on NEG or Ct.Po, and was unable to improve the mechanical competence of the bone tissue. A reduction of mechanical competence was observed in the bone tissue of the diabetic rats, which was explained in part by increased collagen NEG. Twelve weeks of insulin therapy did not alter NEG, Ct.Po or bone biomechanics. However, significant correlations between NEG and serum glucose and HbA1c were observed, both of which were reduced with insulin therapy. This suggests that a longer duration of insulin therapy may be required to reduce the NEG of the bone collagen and restore the mechanical competence of diabetic bone. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. PSEUDOAFFINITY CHROMATOGRAPHY ENRICHMENT OF GLYCATED PEPTIDES FOR MONITORING ADVANCED GLYCATION END PRODUCTS (AGES IN METABOLIC DISORDERS

    Directory of Open Access Journals (Sweden)

    Rajasekar R. Prasanna

    2016-09-01

    Full Text Available Advanced Glycation End (AGE products are produced due to diabetic progression and they are responsible for many complications in the diabetic disorder. The diabetic progression is measured, particularly following glycated hemoglobin using specific antibodies. However, the most abundant protein in blood, human serum albumin, is also found to be glycated which has a much shorter half life and gives information on short term glycemic control. In addition, glycated albumins are considered as markers of diabetic complications such as nephropathy, peripheral vascular calcification and also in Alzheimer’s disease. The glycation proceeds from the interaction between aldehyde group of sugar and the free amino group of the protein, resulting in the formation of Schiff’s base, which undergoes a series of modifications leading to generation of imidazoyl derivatives of amino acids known as Amadori rearrangement products. The imidazoyl derivatives from arginine and lysine are the most prominent modifications observed in proteins in the presence of reducing sugar and these imidazoyl derivatives have an affinity towards certain transition metal ions. Based on our earlier exhaustive work on trapping the histidine peptides using transition metal ion, Cu(II linked to imino-diacetate complex, we explored Cu(II immobilized metal affinity chromatography (IMAC as a potential tool for specific detection of glycated peptides of human serum albumin. Our results clearly demonstrate that Cu(II IMAC is able to detect glycated peptides very efficiently while the non-glycated forms were not retained on the Cu (II column as confirmed by LC-MS/MS analysis. We further discuss the utility of IMAC technology to enrich the detection of AGE products in plasma. We anticipate that these studies may provide valuable information on understanding disease pathologies and the potential of AGE products as biomarkers of various diseases including neurodegenerative, renal and

  13. Betanin reduces the accumulation and cross-links of collagen in high-fructose-fed rat heart through inhibiting non-enzymatic glycation.

    Science.gov (United States)

    Han, Junyan; Tan, Chang; Wang, Yiheng; Yang, Shaobin; Tan, Dehong

    2015-02-05

    We attempted to determine whether betanin (from natural pigments) that has antioxidant properties would be protective against fructose-induced diabetic cardiac fibrosis in Sprague-Dawley rats. Fructose water solution (30%) was accessed freely, and betanin (25 and 100 mg/kg/d) was administered by intra-gastric gavage continuously for 60 d. Rats were sacrificed after overnight fast. The rat blood and left ventricle were collected. In vitro antiglycation assay in bovine serum albumin/fructose system was also performed. In rats treated only with fructose, levels of plasma markers: glucose, insulin, HOMA and glycated hemoglobin rised, left ventricle collagen accumulated and cross-linked, profibrotic factor-transforming growth factor (TGF)-β1 and connective tissue growth factor (CTGF) protein expression increased, and soluble collagen decreased, compared with those in normal rats, showing fructose induces diabetic cardiac fibrosis. Treatment with betanin antagonized the changes of these parameters, demonstrating the antifibrotic role of betanin in the selected diabetic models. In further mechanistic study, betanin decreased protein glycation indicated by the decreased levels of protein glycation reactive intermediate (methylglyoxal), advanced glycation end product (N(ε)-(carboxymethyl) lysine) and receptors for advanced glycation end products (AGEs), antagonized oxidative stress and nuclear factor-κB activation elicited by fructose feeding, suggesting inhibition of glycation, oxidative stress and nuclear factor-κB activation may be involved in the antifibrotic mechanisms. Betanin also showed anitglycative effect in BSA/fructose system, which supported that anitglycation was involved in betanin's protective roles in vivo. Taken together, the potential for using betanin as an auxillary therapy for diabetic cardiomyopathy deserves to be explored further. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  14. A Perspective on Reagent Diversity and Non-covalent Binding of Reactive Carbonyl Species (RCS and Effector Reagents in Non-enzymatic Glycation (NEG: Mechanistic Considerations and Implications for Future Research

    Directory of Open Access Journals (Sweden)

    Kenneth J. Rodnick

    2017-06-01

    Full Text Available This perspective focuses on illustrating the underappreciated connections between reactive carbonyl species (RCS, initial binding in the nonenzymatic glycation (NEG process, and nonenzymatic covalent protein modification (here termed NECPM. While glucose is the central species involved in NEG, recent studies indicate that the initially-bound glucose species in the NEG of human hemoglobin (HbA and human serum albumin (HSA are non-RCS ring-closed isomers. The ring-opened glucose, an RCS structure that reacts in the NEG process, is most likely generated from previously-bound ring-closed isomers undergoing concerted acid/base reactions while bound to protein. The generation of the glucose RCS can involve concomitantly-bound physiological species (e.g., inorganic phosphate, water, etc.; here termed effector reagents. Extant NEG schemes do not account for these recent findings. In addition, effector reagent reactions with glucose in the serum and erythrocyte cytosol can generate RCS (e.g., glyoxal, glyceraldehyde, etc.. Recent research has shown that these RCS covalently modify proteins in vivo via NECPM mechanisms. A general scheme that reflects both the reagent and mechanistic diversity that can lead to NEG and NECPM is presented here. A perspective that accounts for the relationships between RCS, NEG, and NECPM can facilitate the understanding of site selectivity, may help explain overall glycation rates, and may have implications for the clinical assessment/control of diabetes mellitus. In view of this perspective, concentrations of ribose, fructose, Pi, bicarbonate, counter ions, and the resulting RCS generated within intracellular and extracellular compartments may be of importance and of clinical relevance. Future research is also proposed.

  15. Evaluation of the site specific protein glycation and antioxidant capacity of rare sugar-protein/peptide conjugates.

    Science.gov (United States)

    Sun, Yuanxia; Hayakawa, Shigeru; Ogawa, Masahiro; Izumori, Ken

    2005-12-28

    Protein-sugar conjugates generated in nonenzymatic glycation of alpha-lactalbumin (LA) with rare sugars [D-allose (All) and D-psicose (Psi)] and alimentary sugars as controls [D-glucose (Glc) and D-fructose (Fru)] were qualitatively determined by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). Mass spectra revealed that the extent of glycation at lysine residues on LA with D-aldose molecules was very much higher than that of glycation with d-ketose molecules. To identify the specific site of glycation, the peptide mapping was established from protease V8 digestion, using a combination of computational cutting of proteins and MALDI-TOF-MS. As compared to peptide mapping, three and seven glycation sites were located in the primary structure of LA-ketose and LA-aldose conjugates, respectively. On the other hand, the antioxidant activities of protein-sugar conjugates and their peptic hydrolysates were investigated by 1,1-diphenyl-2-picrylhydrazyl radical scavenging method. The antioxidant activities of proteins/peptides glycated with rare sugars were significantly higher than those modified with the control sugars. The results indicated that the glycation degree and position were not markedly different between rare sugar and corresponding control sugar, but the antioxidant properties of protein and its hydrolysate were significantly enhanced by modifying with rare sugar.

  16. A new peptide (Ruviprase) purified from the venom of Daboia russelii russelii shows potent anticoagulant activity via non-enzymatic inhibition of thrombin and factor Xa.

    Science.gov (United States)

    Thakur, Rupamoni; Kumar, Ashok; Bose, Biplab; Panda, Dulal; Saikia, Debashree; Chattopadhyay, Pronobesh; Mukherjee, Ashis K

    2014-10-01

    Compounds showing dual inhibition of thrombin and factor Xa (FXa) are the subject of great interest owing to their broader specificity for effective anticoagulation therapy against cardiovascular disorders. This is the first report on the functional characterization and assessment of therapeutic potential of a 4423.6 Da inhibitory peptide (Ruviprase) purified from Daboia russelii russelii venom. The secondary structure of Ruviprase is composed of α-helices (61.9%) and random coils (38.1%). The partial N-terminal sequence (E(1)-V(2)-X(3)-W(4)-W(5)-W(6)-A(7)-Q(8)-L(9)-S(10)) of Ruviprase demonstrated significant similarity (80.0%) with an internal sequence of apoptosis-stimulating protein reported from the venom of Ophiophagus hannah and Python bivittatus; albeit Ruviprase did not show sequence similarity with existing thrombin/FXa inhibitors, suggesting its uniqueness. Ruviprase demonstrated a potent in vitro anticoagulant property and inhibited both thrombin and FXa following slow binding kinetics. Ruviprase inhibited thrombin by binding to its active site via an uncompetitive mechanism with a Ki value and dissociation constant (KD) of 0.42 μM and 0.46 μM, respectively. Conversely, Ruviprase demonstrated mixed inhibition (Ki = 0.16 μM) of FXa towards its physiological substrate prothrombin. Furthermore, the biological properties of Ruviprase could not be neutralized by commercial polyvalent or monovalent antivenom. Ruviprase at a dose of 2.0 mg/kg was non-toxic and showed potent in vivo anticoagulant activity after 6 h of intraperitoneal treatment in mice. Because of the potent anticoagulant property as well as non-toxic nature of Ruviprase, the possible application of the peptide as an antithrombotic agent for combating thrombosis-associated ailments appears promising. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  17. Posttranslational nitro-glycative modifications of albumin in Alzheimer's disease: implications in cytotoxicity and amyloid-β peptide aggregation.

    Science.gov (United States)

    Ramos-Fernández, Eva; Tajes, Marta; Palomer, Ernest; Ill-Raga, Gerard; Bosch-Morató, Mònica; Guivernau, Biuse; Román-Dégano, Irene; Eraso-Pichot, Abel; Alcolea, Daniel; Fortea, Juan; Nuñez, Laura; Paez, Antonio; Alameda, Francesc; Fernández-Busquets, Xavier; Lleó, Alberto; Elosúa, Roberto; Boada, Mercé; Valverde, Miguel A; Muñoz, Francisco J

    2014-01-01

    Glycation and nitrotyrosination are pathological posttranslational modifications that make proteins prone to losing their physiological properties. Since both modifications are increased in Alzheimer's disease (AD) due to amyloid-β peptide (Aβ) accumulation, we have studied their effect on albumin, the most abundant protein in cerebrospinal fluid and blood. Brain and plasmatic levels of glycated and nitrated albumin were significantly higher in AD patients than in controls. In vitro turbidometry and electron microscopy analyses demonstrated that glycation and nitrotyrosination promote changes in albumin structure and biochemical properties. Glycated albumin was more resistant to proteolysis and less uptake by hepatoma cells occurred. Glycated albumin also reduced the osmolarity expected for a solution containing native albumin. Both glycation and nitrotyrosination turned albumin cytotoxic in a cell type-dependent manner for cerebral and vascular cells. Finally, of particular relevance to AD, these modified albumins were significantly less effective in avoiding Aβ aggregation than native albumin. In summary, nitrotyrosination and especially glycation alter albumin structural and biochemical properties, and these modifications might contribute for the progression of AD.

  18. Glucagon-like peptide-1 counteracts the detrimental effects of Advanced Glycation End-Products in the pancreatic beta cell line HIT-T 15

    International Nuclear Information System (INIS)

    Puddu, A.; Storace, D.; Durante, A.; Odetti, P.; Viviani, G.L.

    2010-01-01

    Research highlights: → GLP-1 prevents AGEs-induced cell death. → GLP-1 prevents AGEs-induced oxidative stress. → GLP-1 ameliorated AGEs-induced cell dysfunction. → GLP-1 attenuates AGEs-induced RAGE increment. → GLP-1 counteracts AGEs-induced pancreatic cell death and dysfunction. -- Abstract: Advanced Glycation End-Products (AGEs), a group of compounds resulting from the non-enzymatic reaction of reducing sugars with the free amino group of proteins, are implicated in diabetic complications. We previously demonstrated that exposure of the pancreatic islet cell line HIT-T 15 to high concentrations of AGEs significantly decreases cell proliferation and insulin secretion, and affects transcription factors regulating insulin gene transcription. The glucagon-like peptide-1 (GLP-1) is an incretin hormone that increases proinsulin biosynthesis, stimulates insulin secretion, and improves pancreatic beta-cell viability. The aim of this work was to investigate the effects of GLP-1 on the function and viability of HIT-T 15 cells cultured with AGEs. HIT-T 15 cells were cultured for 5 days in presence of AGEs alone, or supplemented with 10 nmol/l GLP-1. Cell viability, insulin secretion, redox balance, and expression of the AGEs receptor (RAGE) were then determined. The results showed that GLP-1 protected beta cell against AGEs-induced cell death preventing both apoptosis and necrosis. Moreover, addition of GLP-1 to the AGEs culture medium restored the redox balance, improved the responsiveness to glucose, and attenuated AGEs-induced RAGE expression. These findings provide evidence that GLP-1 protects beta cells from the dangerous effects of AGEs.

  19. A novel monoclonal antibody targeting carboxymethyllysine, an advanced glycation end product in atherosclerosis and pancreatic cancer.

    Directory of Open Access Journals (Sweden)

    Ulrika Wendel

    Full Text Available Advanced glycation end products are formed by non-enzymatic reactions between proteins and carbohydrates, causing irreversible lysine and arginine alterations that severely affect protein structure and function. The resulting modifications induce inflammation by binding to scavenger receptors. An increase in advanced glycation end products is observed in a number of diseases e.g. atherosclerosis and cancer. Since advanced glycation end products also are present in healthy individuals, their detection and quantification are of great importance for usage as potential biomarkers. Current methods for advanced glycation end product detection are though limited and solely measure total glycation. This study describes a new epitope-mapped single chain variable fragment, D1-B2, against carboxymethyllysine, produced from a phage library that was constructed from mouse immunizations. The phage library was selected against advanced glycation end product targets using a phage display platform. Characterization of its binding pattern was performed using large synthetic glycated peptide and protein libraries displayed on microarray slides. D1-B2 showed a preference for an aspartic acid, three positions N-terminally from a carboxymethyllysine residue and also bound to a broad collection of glycated proteins. Positive immunohistochemical staining of mouse atherosclerotic plaques and of a tissue microarray of human pancreatic tumors confirmed the usability of the new scFv for advanced glycation end product detection in tissues. This study demonstrates a promising methodology for high-throughput generation of epitope-mapped monoclonal antibodies against AGE.

  20. Development of Diagnostic Fragment Ion Library for Glycated Peptides of Human Serum Albumin: Targeted Quantification in Prediabetic, Diabetic, and Microalbuminuria Plasma by Parallel Reaction Monitoring, SWATH, and MSE*

    OpenAIRE

    Korwar, Arvind M.; Vannuruswamy, Garikapati; Jagadeeshaprasad, Mashanipalya G.; Jayaramaiah, Ramesha H.; Bhat, Shweta; Regin, Bhaskaran S.; Ramaswamy, Sureshkumar; Giri, Ashok P.; Mohan, Viswanathan; Balasubramanyam, Muthuswamy; Kulkarni, Mahesh J.

    2015-01-01

    Human serum albumin is one of the most abundant plasma proteins that readily undergoes glycation, thus glycated albumin has been suggested as an additional marker for monitoring glycemic status. Hitherto, only Amadori-modified peptides of albumin were quantified. In this study, we report the construction of fragment ion library for Amadori-modified lysine (AML), N(ε)-(carboxymethyl)lysine (CML)-, and N(ε)-(carboxyethyl)lysine (CEL)-modified peptides of the corresponding synthetically modified...

  1. Glycation precedes lens crystallin aggregation

    International Nuclear Information System (INIS)

    Swamy, M.S.; Perry, R.E.; Abraham, E.C.

    1987-01-01

    Non-enzymatic glycosylation (glycation) seems to have the potential to alter the structure of crystallins and make them susceptible to thiol oxidation leading to disulfide-linked high molecular weight (HMW) aggregate formation. They used streptozotocin diabetic rats during precataract and cataract stages and long-term cell-free glycation of bovine lens crystallins to study the relationship between glycation and lens crystallin aggregation. HMW aggregates and other protein components of the water-soluble (WS) and urea-soluble (US) fractions were separated by molecular sieve high performance liquid chromatography. Glycation was estimated by both [ 3 H]NaBH 4 reduction and phenylboronate agarose affinity chromatography. Levels of total glycated protein (GP) in the US fractions were about 2-fold higher than in the WS fractions and there was a linear increase in GP in both WS and US fractions. This increase was parallelled by a corresponding increase in HMW aggregates. Total GP extracted by the affinity method from the US fraction showed a predominance of HMW aggregates and vice versa. Cell-free glycation studies with bovine crystallins confirmed the results of the animals studies. Increasing glycation caused a corresponding increase in protein insolubilization and the insoluble fraction thus formed also contained more glycated protein. It appears that lens protein glycation, HMW aggregate formation, and protein insolubilization are interrelated

  2. Glycation and transglutaminase mediated glycosylation of fish gelatin peptides with glucosamine enhance bioactivity.

    Science.gov (United States)

    Hong, Pui Khoon; Gottardi, Davide; Ndagijimana, Maurice; Betti, Mirko

    2014-01-01

    A mixture of novel glycopeptides from glycosylation between cold water fish skin gelatin hydrolysates and glucosamine (GlcN) via transglutaminase (TGase), as well as glycation between fish gelatin hydrolysate and GlcN were identified by their pattern of molecular distribution using MALDI-TOF-MS. Glycated/glycosylated hydrolysates showed superior bioactivity to their original hydrolysates. Alcalase-derived fish skin gelatin hydrolysate glycosylated with GlcN in the presence of TGase at 25°C (FAT25) possessed antioxidant activity when tested in a linoleic acid oxidation system, when measured according to its 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity and when tested at the cellular level with human hepatocarcinoma (HepG2) cells as target cells. In addition, Alcalase-derived glycosylated hydrolysates showed specificity toward the inhibition of Escherichia coli (E. coli). The Flavourzyme-derived glycopeptides prepared at 37°C (FFC37 and FFT37) showed better DPPH scavenging activity than their native hydrolysates. The glycated Flavourzyme-derived hydrolysates were found to act as potential antimicrobial agents when incubated with E. coli and Bacillus subtilis. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Advanced glycation end products in clinical nephrology.

    Science.gov (United States)

    Kalousová, M; Zima, T; Tesar, V; Stípek, S; Sulková, S

    2004-01-01

    As a result of oxidative and carbonyl stress, advanced glycation end products (AGEs) are involved in the pathogenesis of severe and frequent diseases and their fatal vascular/cardiovascular complications, i.e. diabetes mellitus and its complications (nephropathy, angiopathy, neuropathy and retinopathy, renal failure and uremic and dialysis-associated complications), atherosclerosis and dialysis-related amyloidosis, neurodegenerative diseases, and rheumatoid arthritis. They are formed via non-enzymatic glycation which is specifically enhanced through the presence of oxidative and carbonyl stress, and their ability to form glycoxidation products in peptide and protein structures finally modulating or inducing biological reactivity. Food can be another source of AGEs; however, high serum AGEs in hemodialysis patients might reflect nutritional status better. Several methods of renal replacement therapy have been studied in connection with the AGE removal, but unfortunately the possibilities are still unsatisfactory even if high flux dialysis, hemofiltration, or hemodiafiltration give better results than conventional low flux dialysis. AGEs are currently being studied in the patients on peritoneal dialysis as their precursors can be formed in the dialysis fluid. AGEs can cause damage to the peritoneum and so a loss of ultrafiltration capacity. Many compounds give promising results in AGE inhibition (inhibition of formation of AGEs, inhibition of their action or degradation of AGEs), are tested for these properties, and eventually undergo clinical studies (e.g. aminoguanidine, OPB-9195, pyridoxamine, antioxidants, N-phenacylthiazolium bromide, antihypertensive drugs, angiotensin-converting enzyme inhibitors and angiotensin II receptor-1 antagonists). Copyright 2004 S. Karger AG, Basel

  4. Electrochemical non-enzymatic glucose sensors

    International Nuclear Information System (INIS)

    Park, Sejin; Boo, Hankil; Chung, Taek Dong

    2006-01-01

    The electrochemical determination of glucose concentration without using enzyme is one of the dreams that many researchers have been trying to make come true. As new materials have been reported and more knowledge on detailed mechanism of glucose oxidation has been unveiled, the non-enzymatic glucose sensor keeps coming closer to practical applications. Recent reports strongly imply that this progress will be accelerated in 'nanoera'. This article reviews the history of unraveling the mechanism of direct electrochemical oxidation of glucose and making attempts to develop successful electrochemical glucose sensors. The electrochemical oxidation of glucose molecules involves complex processes of adsorption, electron transfer, and subsequent chemical rearrangement, which are combined with the surface reactions on the metal surfaces. The information about the direct oxidation of glucose on solid-state surfaces as well as new electrode materials will lead us to possible breakthroughs in designing the enzymeless glucose sensing devices that realize innovative and powerful detection. An example of those is to introduce nanoporous platinum as an electrode, on which glucose is oxidized electrochemically with remarkable sensitivity and selectivity. Better model of such glucose sensors is sought by summarizing and revisiting the previous reports on the electrochemistry of glucose itself and new electrode materials

  5. High volumetric power density, non-enzymatic, glucose fuel cells.

    Science.gov (United States)

    Oncescu, Vlad; Erickson, David

    2013-01-01

    The development of new implantable medical devices has been limited in the past by slow advances in lithium battery technology. Non-enzymatic glucose fuel cells are promising replacement candidates for lithium batteries because of good long-term stability and adequate power density. The devices developed to date however use an "oxygen depletion design" whereby the electrodes are stacked on top of each other leading to low volumetric power density and complicated fabrication protocols. Here we have developed a novel single-layer fuel cell with good performance (2 μW cm⁻²) and stability that can be integrated directly as a coating layer on large implantable devices, or stacked to obtain a high volumetric power density (over 16 μW cm⁻³). This represents the first demonstration of a low volume non-enzymatic fuel cell stack with high power density, greatly increasing the range of applications for non-enzymatic glucose fuel cells.

  6. Non-enzymatic palladium recovery on microbial and synthetic surfaces

    DEFF Research Database (Denmark)

    Rotaru, Amelia-Elena; Jiang, Wei; Finster, Kai

    2012-01-01

    in the presence of cells as compared to cell-free controls. We found no difference between native (untreated) and autoclaved cells, and could demonstrate that even a non-enzymatic protein (bovine serum albumin) stimulated Pd(II) reduction as efficiently as bacterial cells. Amine groups readily interact with Pd......(II), and to specifically test their role in surface-assisted Pd(II) reduction by formate, we replaced bacterial cells with polystyrene microparticles functionalized with amine or carboxyl groups. Amine-functionalized microparticles had the same effect on Pd(II) reduction as bacterial cells, and the effect could...... be hampered if the amine groups were blocked by acetylation. The interaction with amine groups was confirmed by infrared spectroscopy on whole cells and amine-functionalized microparticles. In conclusion, bio-supported Pd(II) reduction on microbial surfaces is possibly mediated by a non-enzymatic mechanism...

  7. Metal nanostructures for non-enzymatic glucose sensing

    International Nuclear Information System (INIS)

    Tee, Si Yin; Teng, Choon Peng; Ye, Enyi

    2017-01-01

    This review covers the recent development of metal nanostructures in electrochemical non-enzymatic glucose sensing. It highlights a variety of nanostructured materials including noble metals, other transition metals, bimetallic systems, and their hybrid with carbon-based nanomaterials. Particularly, attention is devoted to numerous approaches that have been implemented for improving the sensors performance by tailoring size, shape, composition, effective surface area, adsorption capability and electron-transfer properties. The correlation of the metal nanostructures to the glucose sensing performance is addressed with respect to the linear concentration range, sensitivity and detection limit. In overall, this review provides important clues from the recent scientific achievements of glucose sensor nanomaterials which will be essentially useful in designing better and more effective electrocatalysts for future electrochemical sensing industry. - Highlights: • Overview of recent development of metal nanostructures in electrochemical non-enzymatic glucose sensing. • Special attention is focussed on noble metals, other transition metals, bimetallic systems, and their hybrid with carbon-based nanomaterials. • Merits and limitations of various metal nanostructures in electrochemical non-enzymatic glucose sensing. • Strategies to improve the glucose sensing performance of metal nanostructures as electrocatalysts.

  8. Non-enzymatic glucose detection using magnetic nanoemulsions

    International Nuclear Information System (INIS)

    Mahendran, V.; Philip, John

    2014-01-01

    We probe the optical properties and intermolecular interactions in magnetically responsive nanoemulsions in the presence of glucose. The equilibrium interdroplet distance between the emulsion droplets in an one-dimensional array increases by several nanometers in the presence of glucose because of intermolecular hydrogen bonding with sodium dodecyl sulphate molecules at the oil-water interface that gives rise to stretched lamellae-like structure. The observed large red shift in the diffracted Bragg peak (∼50–100 nm) and the linear response in the glucose concentration range of 0.25–25 mM offer a simple, fast, and cost effective non-enzymatic approach for glucose detection.

  9. [Non-enzymatic glycosylation of dietary protein in vitro].

    Science.gov (United States)

    Bednykh, B S; Evdokimov, I A; Sokolov, A I

    2015-01-01

    Non-enzymatic glycosylation of proteins, based on discovered by Mayarn reaction of carbohydrate aldehyde group with a free amino group of a protein molecule, is well known to experts in biochemistry of food industry. Generated brown solid in some cases give the product marketable qualities--crackling bread--in others conversely, worsen the product. The biological effects of far-advanced products of non-enzymatic protein glycosylation reaction have not been studied enough, although it was reported previously that they are not split by digestive enzymes and couldn't be absorbed by animals. The objective of this work was to compare the depth of glycosylation of different food proteins of animal and vegetable origin. The objects of the study were proteins of animal (casein, lactoglobulin, albumin) and vegetable (soy isolate, proteins of rice flour, buckwheat, oatmeal) origin, glucose and fructose were selected as glycosylation agents, exposure 15 days at 37 degrees C. Lactoglobulin was glycosylated to a lesser extent among the proteins of animal origin while protein of oatmeal was glycosylated in the least degree among vegetable proteins. Conversely, such proteins as casein and soya isolate protein bound rather large amounts of carbohydrates. Fructose binding with protein was generally higher than the binding of glucose. The only exception was a protein of oatmeal. When of glucose and fructose simultaneously presented in the incubation medium, glucose binding usually increased while binding of fructose, in contrast, reduced. According to the total amount of carbohydrate (mcg), which is able to attach a protein (mg) the studied food proteins located in the following order: albumin (38) > soy protein isolate (23) > casein (15,) > whey protein rice flour protein (6) > protein from buckwheat flour (3) > globulin (2) > protein of oatmeal (0.3). The results obtained are to be used to select the optimal combination of proteins and carbohydrates, in which the glycosylation

  10. Non-enzymatic palladium recovery on microbial and synthetic surfaces.

    Science.gov (United States)

    Rotaru, Amelia-Elena; Jiang, Wei; Finster, Kai; Skrydstrup, Troels; Meyer, Rikke Louise

    2012-08-01

    The use of microorganisms as support for reduction of dissolved Pd(II) to immobilized Pd(0) nanoparticles is an environmentally friendly approach for Pd recovery from waste. To better understand and engineer Pd(0) nanoparticle synthesis, one has to consider the mechanisms by which Pd(II) is reduced on microbial surfaces. Escherichia coli, Shewanella oneidensis, and Pseudomonas putida were used as model organisms in order to elucidate the role of microbial cells in Pd(II) reduction under acidic conditions. Pd(II) was reduced by formate under acidic conditions, and the process occurred substantially faster in the presence of cells as compared to cell-free controls. We found no difference between native (untreated) and autoclaved cells, and could demonstrate that even a non-enzymatic protein (bovine serum albumin) stimulated Pd(II) reduction as efficiently as bacterial cells. Amine groups readily interact with Pd(II), and to specifically test their role in surface-assisted Pd(II) reduction by formate, we replaced bacterial cells with polystyrene microparticles functionalized with amine or carboxyl groups. Amine-functionalized microparticles had the same effect on Pd(II) reduction as bacterial cells, and the effect could be hampered if the amine groups were blocked by acetylation. The interaction with amine groups was confirmed by infrared spectroscopy on whole cells and amine-functionalized microparticles. In conclusion, bio-supported Pd(II) reduction on microbial surfaces is possibly mediated by a non-enzymatic mechanism. We therefore suggest the use of amine-rich biomaterials rather than intact cells for Pd bio-recovery from waste. Copyright © 2012 Wiley Periodicals, Inc.

  11. Glucagon-Like Peptide-1 Secreting Cell Function as well as Production of Inflammatory Reactive Oxygen Species Is Differently Regulated by Glycated Serum and High Levels of Glucose

    Directory of Open Access Journals (Sweden)

    Alessandra Puddu

    2014-01-01

    Full Text Available Glucagon-like peptide-1 (GLP-1, an intestinal hormone contributing to glucose homeostasis, is synthesized by proglucagon and secreted from intestinal neuroendocrine cells in response to nutrients. GLP-1 secretion is impaired in type 2 diabetes patients. Here, we aimed at investigating whether diabetic toxic products (glycated serum (GS or high levels of glucose (HG may affect viability, function, and insulin sensitivity of the GLP-1 secreting cell line GLUTag. Cells were cultured for 5 days in presence or absence of different dilutions of GS or HG. GS and HG (alone or in combination increased reactive oxygen species (ROS production and upregulated proglucagon mRNA expression as compared to control medium. Only HG increased total production and release of active GLP-1, while GS alone abrogated secretion of active GLP-1. HG-mediated effects were associated with the increased cell content of the prohormone convertase 1/3 (PC 1/3, while GS alone downregulated this enzyme. HG upregulated Glucokinase (GK and downregulated SYNTHAXIN-1. GS abrogated SYNTHAXIN-1 and SNAP-25. Finally, high doses of GS alone or in combination with HG reduced insulin-mediated IRS-1 phosphorylation. In conclusion, we showed that GS and HG might regulate different pathways of GLP-1 production in diabetes, directly altering the function of neuroendocrine cells secreting this hormone.

  12. Advanced glycation end-products (AGES) and heart failure : Pathophysiology and clinical implications

    NARCIS (Netherlands)

    Hartog, Jasper W. L.; Voors, Adriaan A.; Bakker, Stephan J. L.; Smit, Andries J.; van Veldhuisen, Dirk J.

    2007-01-01

    Advanced glycation end-products (AGEs) are molecules formed during a non-enzymatic reaction between proteins and sugar residues, called the Maillard reaction. AGEs accumulate in the human body with age, and accumulation is accelerated in the presence of diabetes mellitus. In patients with diabetes,

  13. Non-enzymatic U(VI) interactions with biogenic mackinawite

    Science.gov (United States)

    Veeramani, H.; Qafoku, N. P.; Kukkadapu, R. K.; Murayama, M.; Hochella, M. F.

    2011-12-01

    Reductive immobilization of hexavalent uranium [U(VI)] by stimulation of dissimilatory metal and/or sulfate reducing bacteria (DMRB or DSRB) has been extensively researched as a remediation strategy for subsurface U(VI) contamination. These bacteria derive energy by reducing oxidized metals as terminal electron acceptors, often utilizing organic substrates as electron donors. Thus, when evaluating the potential for in-situ uranium remediation in heterogeneous subsurface media, it is important to understand how the presence of alternative electron acceptors such as Fe(III) and sulfate affect U(VI) remediation and the long term behavior and reactivity of reduced uranium. Iron, an abundant subsurface element, represents a substantial sink for electrons from DMRB, and the reduction of Fe(III) leads to the formation of dissolved Fe(II) or to reactive biogenic Fe(II)- and mixed Fe(II)/Fe(III)- mineral phases. Consequently, abiotic U(VI) reduction by reactive forms of biogenic Fe(II) minerals could be a potentially important process for uranium immobilization. In our study, the DMRB Shewanella putrefaciens CN32 was used to synthesize a biogenic Fe(II)-bearing sulfide mineral: mackinawite, that has been characterized by XRD, SEM, HRTEM and Mössbauer spectroscopy. Batch experiments involving treated biogenic mackinawite and uranium (50:1 molar ratio) were carried out at room temperature under strict anoxic conditions. Following complete removal of uranium from solution, the biogenic mackinawite was analyzed by a suite of analytical techniques including XAS, HRTEM and Mössbauer spectroscopy to determine the speciation of uranium and investigate concomitant Fe(II)-phase transformation. Determining the speciation of uranium is critical to success of a remediation strategy. The present work elucidates non-enzymatic/abiotic molecular scale redox interactions between biogenic mackinawite and uranium.

  14. THE EFFECTS OF GLYCATION ON THE BINDING OF HUMAN SERUM ALBUMIN TO WARFARIN AND L-TRYPTOPHAN

    OpenAIRE

    Joseph, K.S.; Hage, David S.

    2010-01-01

    Diabetes leads to elevated levels of glucose in blood which, in turn, can lead to the non-enzymatic glycation of serum proteins such as human serum albumin (HSA). It has been suggested that this increase in glycation can alter the ability of HSA to bind to drugs and other small solutes. This study used high-performance affinity chromatography (HPAC) to see if there is any significant change related to glycation in the binding of HSA to warfarin and L-tryptophan, which are often used as probe ...

  15. Selective detection of carbohydrates and their peptide conjugates by ESI-MS using synthetic quaternary ammonium salt derivatives of phenylboronic acids.

    Science.gov (United States)

    Kijewska, Monika; Kuc, Adam; Kluczyk, Alicja; Waliczek, Mateusz; Man-Kupisinska, Aleksandra; Lukasiewicz, Jolanta; Stefanowicz, Piotr; Szewczuk, Zbigniew

    2014-06-01

    We present new tags based on the derivatives of phenylboronic acid and apply them for the selective detection of sugars and peptide-sugar conjugates in mass spectrometry. We investigated the binding of phenylboronic acid and its quaternary ammonium salt (QAS) derivatives to carbohydrates and peptide-derived Amadori products by HR-MS and MS/MS experiments. The formation of complexes between sugar or sugar-peptide conjugates and synthetic tags was confirmed on the basis of the unique isotopic distribution resulting from the presence of boron atom. Moreover, incorporation of a quaternary ammonium salt dramatically improved the efficiency of ionization in mass spectrometry. It was found that the formation of a complex with phenylboronic acid stabilizes the sugar moiety in glycated peptides, resulting in simplification of the fragmentation pattern of peptide-derived Amadori products. The obtained results suggest that derivatization of phenylboronic acid as QAS is a promising method for sensitive ESI-MS detection of carbohydrates and their conjugates formed by non-enzymatic glycation or glycosylation.

  16. Carpatizine, a novel bridged oxazine derivative generated by non-enzymatic reactions.

    Science.gov (United States)

    Fu, Peng; MacMillan, John B

    2017-06-27

    Carpatizine (1), a new bridged oxazine derivative, was isolated from a marine-derived Streptomyces strain SNE-011. The structure was fully determined by spectroscopic analysis, ECD calculations and chemical methods. A plausible non-enzymatic reaction mechanism from daryamide D leading to carpatizine was presented, which was confirmed by chemical transformation.

  17. Ketone Body Acetoacetate Buffers Methylglyoxal via a Non-enzymatic Conversion during Diabetic and Dietary Ketosis

    DEFF Research Database (Denmark)

    Salomon, Trine; Sibbersen, Christian; Hansen, Jakob

    2017-01-01

    now demonstrate that during ketosis, another meta- bolic route is operative via direct non-enzymatic aldol reaction between methylglyoxal and the ke- tone body acetoacetate, leading to 3-hydroxyhex- ane-2,5-dione. This novel metabolite is present at a concentration of 10%–20% of the methylglyoxal...

  18. Non-enzymatic depolymerization of cotton cellulose by fungal mimicking metabolites

    Science.gov (United States)

    Anne Christine Steenkjaer Hastrup; Caitlin Howell; Bo Jensen; Frederick Green

    2011-01-01

    Small, low molecular weight, non-enzymatic compounds have been linked to the early stages of brown rot decay as the enzymes involved with holocellulose degradation are too large to penetrate the S3 layer of intact wood cells. We investigated the most notable of these compounds, i.e. hydrogen peroxide, iron, and oxalic acid. The former two are involved in the Fenton...

  19. Exploring the antioxidant property of bioflavonoid quercetin in preventing DNA glycation: A calorimetric and spectroscopic study

    International Nuclear Information System (INIS)

    Sengupta, Bidisa; Uematsu, Takashi; Jacobsson, Per; Swenson, Jan

    2006-01-01

    Reducing sugars for example glucose, fructose, etc., and their phosphate derivatives non-enzymatically glycate biological macromolecules (e.g., proteins, DNA and lipids) and is related to the production of free radicals. Here we present a novel study, using differential scanning calorimetry (DSC) along with UV/Vis absorption and photon correlation spectroscopy (PCS), on normal and glycated human placenta DNA and have explored the antioxidant property of the naturally occurring polyhydroxy flavone quercetin (3,3',4',5,7-pentahydroxyflavone) in preventing the glycation. The decrease in the absorption intensity of DNA in presence of sugars clearly indicates the existence of sugar molecules between the two bases of a base pair in the duplex DNA molecule. Variations were perceptible in the PCS relaxation profiles of normal and glycated DNA. The melting temperature of placenta DNA was decreased when glycated suggesting a decrease in the structural stability of the double-stranded glycated DNA. Our DSC and PCS data showed, for the first time, that the dramatic changes in the structural properties of glycated DNA can be prevented to a significant extent by adding quercetin. This study provides valuable insights regarding the structure, function, and dynamics of normal and glycated DNA molecules, underlying the manifestation of free radical mediated diseases, and their prevention using therapeutically active naturally occurring flavonoid quercetin

  20. Effect of glycation on α-crystallin structure and chaperone-like function

    Science.gov (United States)

    Kumar, P. Anil; Kumar, M. Satish; Reddy, G. Bhanuprakash

    2007-01-01

    The chaperone-like activity of α-crystallin is considered to play an important role in the maintenance of the transparency of the eye lens. However, in the case of aging and in diabetes, the chaperone function of α-crystallin is compromized, resulting in cataract formation. Several post-translational modifications, including non-enzymatic glycation, have been shown to affect the chaperone function of α-crystallin in aging and in diabetes. A variety of agents have been identified as the predominant sources for the formation of AGEs (advanced glycation end-products) in various tissues, including the lens. Nevertheless, glycation of α-crystallin with various sugars has resulted in divergent results. In the present in vitro study, we have investigated the effect of glucose, fructose, G6P (glucose 6-phosphate) and MGO (methylglyoxal), which represent the major classes of glycating agents, on the structure and chaperone function of α-crystallin. Modification of α-crystallin with all four agents resulted in the formation of glycated protein, increased AGE fluorescence, protein cross-linking and HMM (high-molecular-mass) aggregation. Interestingly, these glycation-related profiles were found to vary with different glycating agents. For instance, CML [Nϵ-(carboxymethyl)lysine] was the predominant AGE formed upon glycation of α-crystallin with these agents. Although fructose and MGO caused significant conformational changes, there were no significant structural perturbations with glucose and G6P. With the exception of MGO modification, glycation with other sugars resulted in decreased chaperone activity in aggregation assays. However, modification with all four sugars led to the loss of chaperone activity as assessed using an enzyme inactivation assay. Glycation-induced loss of α-crystallin chaperone activity was associated with decreased hydrophobicity. Furthermore, α-crystallin isolated from glycated TSP (total lens soluble protein) had also increased AGE

  1. Protein Glycation in Diabetes as Determined by Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Annunziata Lapolla

    2013-01-01

    Full Text Available Diabetes is a common endocrine disorder characterized by hyperglycemia leading to nonenzymatic glycation of proteins, responsible for chronic complications. The development of mass spectrometric techniques able to give highly specific and reliable results in proteome field is of wide interest for physicians, giving them new tools to monitor the disease progression and the possible complications related to diabetes, as well as the effectiveness of therapeutic treatments. This paper reports and discusses some of the data pertaining protein glycation in diabetic subjects obtained by matrix-assisted laser desorption ionization (MALDI mass spectrometry (MS. The preliminary studies carried out by in vitro protein glycation experiments show clear differences in molecular weight of glycated and unglycated proteins. Then, the attention was focused on plasma proteins human serum albumin (HSA and immunoglobulin G (IgG. Enzymatic degradation products of in vitro glycated HSA were studied in order to simulate the in vivo enzymatic digestion of glycated species by the immunological system leading to the highly reactive advanced glycation end-products (AGEs peptides. Further studies led to the evaluation of glycated Apo A-I and glycated haemoglobin levels. A different MALDI approach was employed for the identification of markers of disease in urine samples of healthy, diabetic, nephropathic, and diabetic-nephropathic subjects.

  2. The Effect of Irradiation Treatment on the Non-Enzymatic Browning Reaction in Legume Seeds

    International Nuclear Information System (INIS)

    El-Niely, H.F.G.

    2013-01-01

    The present study was conducted to evaluate the effects of gamma irradiation treatment, at room temperature, on the non-enzymatic browning reaction (Millerd reaction products, MRPs) generated in soybeans, broad beans and dried peas seeds at dose levels of 10, 30 and 60 kGy and their effects on the chemical constituents, soluble protein, available lysine and in vitro protein digestibility. The formation of MRPs in the studied legumes was assayed by monitoring the formation of brown pigments (browning intensity) by spectrophotometric method. The results revealed that the chemical composition of irradiated legumes showed non-significant differences relative to the raw one. A dose dependent decrease in soluble proteins and available lysine in the three legumes were observed. The non-enzymatic browning reaction was significantly increased with increasing the radiation dose, which was proved by changes in browning index tests. At the same time, the in vitro protein digestibility was increased after irradiation up to 60 kGy. Irradiation of dried peas with 60 kGy produced higher browning index than the other legumes. A positive correlation was observed between the radiation dose and the browning index for soybeans (R2= 0.96), broad beans (R2 = 0.81) and dried peas (R2 = 0.97) which means that 96%, 81% and 97 of the variation in the incidence of non-enzymatic browning reaction in soybean, broad bean and dried peas, respectively, are due to the effect of irradiation treatments. The present study suggests that the formation of non-enzymatic browning reaction did not impair the nutritional quality of legumes, therefore, the process of irradiation was helpful in increasing the in vitro protein digestibility of studied legumes. These results clearly indicated that gamma irradiation processing at the studied doses can add valuable effects to the studied legumes

  3. Nickel-functionalized reduced graphene oxide with polyaniline for non-enzymatic glucose sensing

    International Nuclear Information System (INIS)

    Zhang, Bing; He, Yu; Liu, Bingqian; Tang, Dianping

    2015-01-01

    We have developed a new class of organic–inorganic hybrid nanostructures based on the use of reduced graphene oxide (rGO), polyaniline, and a nickel metal nanostructure. It was applied to efficient non-enzymatic sensing of glucose based on its electrocatalytic oxidation. Scanning electron microscopy and energy-dispersive X-Ray were employed to characterize the material. It is shown that the doped polyaniline plays an important role in the formation of the hybrid nanostructures. Improved analytical performance is found when the hybrid nanostructures were placed on a glassy carbon electrode and used for non-enzymatic sensing of glucose at a typical working potential of +450 mV and a pH value of 13. Features include a fast response (∼2 s), high sensitivity (6,050 μA mM −1 cm −2 ), a linear range from 0.1 μM to 1.0 mM, and a low detection limit (0.08 μM). The response to glucose follows a Michaelis-Menten kinetic behavior, and the K M value was determined to be 0.241 μM. Reproducibility and specificity are acceptable. Fructose and maltose do not interfere significantly. Importantly, the methodology was validated and evaluated for the analysis of 15 spiked human serum specimens, receiving in a good accordance with the results obtained by the non-enzymatic glucose sensing and the commercialized personal glucose meter. (author)

  4. Fabrication of Nickel/nanodiamond/boron-doped diamond electrode for non-enzymatic glucose biosensor

    International Nuclear Information System (INIS)

    Dai, Wei; Li, Mingji; Gao, Sumei; Li, Hongji; Li, Cuiping; Xu, Sheng; Wu, Xiaoguo; Yang, Baohe

    2016-01-01

    Highlights: • Nanodiamonds (NDs) were electrophoretically deposited on the BDD film. • The NDs significantly extended the potential window. • Ni/NDs/BDD electrode was prepared by electrodeposition. • The electrode shows good catalytic activity for glucose oxidation. - Abstract: A stable and sensitive non-enzymatic glucose sensor was prepared by modifying a boron-doped diamond (BDD) electrode with nickel (Ni) nanosheets and nanodiamonds (NDs). The NDs were electrophoretically deposited on the BDD surface, and acted as nucleation sites for the subsequent electrodeposition of Ni. The morphology and composition of the modified BDD electrodes were characterized by field-emission scanning electron microscopy and energy-dispersive X-ray spectroscopy, respectively. The Ni nanosheet-ND modified BDD electrode exhibited good current response towards the non-enzymatic oxidation of glucose in alkaline media. The NDs significantly extended the potential window. The response to glucose was linear over the 0.2–1055.4-μM range. The limit of detection was 0.05 μM, at a signal-to-noise ratio of 3. The Ni nanosheet-ND/BDD electrode exhibited good selectivity, reproducibility and stability. Its electrochemical performance, low cost and simple preparation make it a promising non-enzymatic glucose sensor.

  5. Advanced glycation end products induce differential structural modifications and fibrillation of albumin

    Science.gov (United States)

    Awasthi, Saurabh; Sankaranarayanan, Kamatchi; Saraswathi, N. T.

    2016-06-01

    Glycation induced amyloid fibrillation is fundamental to the development of many neurodegenerative and cardiovascular complications. Excessive non-enzymatic glycation in conditions such as hyperglycaemia results in the increased accumulation of advanced glycation end products (AGEs). AGEs are highly reactive pro-oxidants, which can lead to the activation of inflammatory pathways and development of oxidative stress. Recently, the effect of non-enzymatic glycation on protein structure has been the major research area, but the role of specific AGEs in such structural alteration and induction of fibrillation remains undefined. In this study, we determined the specific AGEs mediated structural modifications in albumin mainly considering carboxymethyllysine (CML), carboxyethyllysine (CEL), and argpyrimidine (Arg-P) which are the major AGEs formed in the body. We studied the secondary structural changes based on circular dichroism (CD) and spectroscopic analysis. The AGEs induced fibrillation was determined by Congo red binding and examination of scanning and transmission electron micrographs. The amyloidogenic regions in the sequence of BSA were determined using FoldAmyloid. It was observed that CEL modification of BSA leads to the development of fibrillar structures, which was evident from both secondary structure changes and TEM analysis.

  6. Non-enzymatic N-acetylation of Lysine Residues by AcetylCoA Often Occurs via a Proximal S-acetylated Thiol Intermediate Sensitive to Glyoxalase II

    Directory of Open Access Journals (Sweden)

    Andrew M. James

    2017-02-01

    Full Text Available Summary: Acetyl coenzyme A (AcCoA, a key intermediate in mitochondrial metabolism, N-acetylates lysine residues, disrupting and, in some cases, regulating protein function. The mitochondrial lysine deacetylase Sirtuin 3 (Sirt3 reverses this modification with benefits reported in diabetes, obesity, and aging. We show that non-enzymatic lysine N-acetylation by AcCoA is greatly enhanced by initial acetylation of a cysteine residue, followed by SN-transfer of the acetyl moiety to a nearby lysine on mitochondrial proteins and synthetic peptides. The frequent occurrence of an S-acetyl intermediate before lysine N-acetylation suggests that proximity to a thioester is a key determinant of lysine susceptibility to acetylation. The thioesterase glyoxalase II (Glo2 can limit protein S-acetylation, thereby preventing subsequent lysine N-acetylation. This suggests that the hitherto obscure role of Glo2 in mitochondria is to act upstream of Sirt3 in minimizing protein N-acetylation, thus limiting protein dysfunction when AcCoA accumulates. : James et al. show that the non-enzymatic N-acetylation of lysine residues in mitochondrial proteins frequently occurs via a proximal S-acetylated thiol intermediate. Glutathione equilibrates with this intermediate, allowing the thioesterase glyoxalase II to limit protein lysine N-acetylation. These findings expand our understanding of how protein acetylation arises. Keywords: AcetylCoA, lysine acetylation, glyoxalase

  7. In situ characterization of advanced glycation end products (AGEs) in collagen and model extracellular matrix by solid state NMR.

    Science.gov (United States)

    Li, R; Rajan, R; Wong, W C V; Reid, D G; Duer, M J; Somovilla, V J; Martinez-Saez, N; Bernardes, G J L; Hayward, R; Shanahan, C M

    2017-12-14

    Non-enzymatic glycation of extracellular matrix with (U- 13 C 5 )-d-ribose-5-phosphate (R5P), enables in situ 2D ssNMR identification of many deleterious protein modifications and crosslinks, including previously unreported oxalamido and hemiaminal (CH 3 -CH(OH)NHR) substructures. Changes in charged residue proportions and distribution may be as important as crosslinking in provoking and understanding harmful tissue changes.

  8. Evaluation of Structure, Chaperone-Like Activity and Allergenicity of Reduced Glycated Adduct of Bovine β-casein.

    Science.gov (United States)

    Yousefi, Reza; Ferdowsi, Leila; Tavaf, Zohreh; Sadeghian, Tanaz; Tamaddon, Ali M; Moghtaderi, Mozhgan; Pourpak, Zahra

    2017-01-01

    Milk has a potent reducing environment with an important quantity of sugar levels. In the current study β-casein was glycated in the presence of D-glucose and sodium cyanoborohydride as a reducing agent. Then, the reduced glucitol adduct of β-casein was used for the structural and functional analyses using different spectroscopic techniques. The results of fluorescence and far ultraviolet circular dichroism assessments suggest important structural alteration upon non-enzymatic glycation of β-casein. In addition, the chaperone activity, micellization properties and antioxidant activity of this protein were altered upon glucose modification. Also, as a result of reduced glycation, the allergenicity profile of this protein remained largely unchanged. Additional to its energetic and nutritional values, β-casein has important functional properties. The native structure of this protein is important to perform accurately its biological functions. Non-enzymatic glycation under reducing state was capable to alter both structural and functional aspects of β-casein. Due to effective reducing environment and significant quantity of reducing sugar of human milk, similar structural and functional alterations are most likely to occur upon reducing glycation of β-casein in vivo. Also, these changes might be even intensified during chronic hyperglycemia in diabetic mothers. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  9. Highly ordered Ni–Ti–O nanotubes for non-enzymatic glucose detection

    Energy Technology Data Exchange (ETDEWEB)

    Hang, Ruiqiang, E-mail: hangruiqiang@tyut.edu.cn [Research Institute of Surface Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Liu, Yanlian [Research Institute of Surface Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Gao, Ang [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China); Bai, Long; Huang, Xiaobo; Zhang, Xiangyu; Lin, Naiming [Research Institute of Surface Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Tang, Bin, E-mail: tangbin@tyut.edu.cn [Research Institute of Surface Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Chu, Paul K. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China)

    2015-06-01

    Anodization is used to fabricate Ni–Ti–O nanotube (NT) electrodes for non-enzymatic glucose detection. The morphology, microstructure and composition of the materials are characterized by field emission scanning electron microscopy (FE-SEM), high resolution transmission electron microscopy (HR-TEM) and X-ray photoelectron spectroscopy (XPS). Our results show amorphous and highly ordered NTs with diameter of 50 nm, length of 800 nm, and Ni/Ti ratio (at %) of 0.35 can be fabricated in ethylene glycol electrolyte supplemented with 0.2 wt.% NH{sub 4}F and 0.5 vol.% H{sub 2}O at 30 °C and 25 V for 1 h. Electrochemical experiments indicate that at an applied potential of 0.60 V vs. Ag/AgCl, the electrode exhibits a linear response window for glucose concentrations from 0.002 mM to 0.2 mM with a response time of 10 s, detection limit of 0.13 μM (S/N = 3), and sensitivity of 83 μA mM{sup −1} cm{sup −2}. The excellent performance of the electrode is attributed to its large specific area and fast electron transfer between the NT walls. The good electrochemical performance of the Ni–Ti–O NTs as well as their simple and low-cost preparation method make the strategy promising in non-enzymatic glucose detection. - Highlights: • Highly ordered Ni–Ti–O nanotubes have been fabricated by one-step anodization. • We find H{sub 2}O contents in the electrolyte is critical to successful fabrication of the NTs. • The Ni–Ti–O nanotubes are ideal electrode materials for non-enzymatic glucose detection.

  10. Using Serum Advanced Glycation End Products-Peptides to Improve the Efficacy of World Health Organization Fasting Plasma Glucose Criterion in Screening for Diabetes in High-Risk Chinese Subjects.

    Directory of Open Access Journals (Sweden)

    Zilin Sun

    Full Text Available The efficacy of using fasting plasma glucose (FPG alone as a preferred screening test for diabetes has been questioned. This study was aimed to evaluate whether the use of serum advanced glycation end products-peptides (sAGEP would help to improve the efficacy of FPG in diabetes screening among high-risk Chinese subjects with FPG <7.0 mmol/L. FPG, 2-h plasma glucose (2h-PG, serum glycated haemoglobin A1c (HbA1c, and sAGEP were measured in 857 Chinese subjects with risk factors for diabetes. The areas under receiver operating characteristic (ROC curves generated by logistic regression models were assessed and compared to find the best model for diabetes screening in subjects with FPG <7.0 mmol/L. The optimal critical line was determined by maximizing the sum of sensitivity and specificity. Among the enrolled subjects, 730 of them had FPG <7.0 mmol/L, and only 41.7% new diabetes cases were identified using the 1999 World Health Organization FPG criterion (FPG ≥7.0 mmol/L. The area under ROC curves generated by the model on FPG-sAGEP was the largest compared with that on FPG-HbA1c, sAGEP, HbA1c or FPG in subjects with FPG <7.0 mmol/L. By maximizing the sum of sensitivity and specificity, the optimal critical line was determined as 0.69×FPG + 0.14×sAGEP = 7.03, giving a critical sensitivity of 91.2% in detecting 2h-PG ≥11.1 mmol/L, which was significantly higher than that of FPG-HbA1c or HbA1c. The model on FPG-sAGEP improves the efficacy of using FPG alone in detecting diabetes among high-risk Chinese subjects with FPG <7.0 mmol/L, and is worth being promoted for future diabetes screening.

  11. Non-enzymatic glucose detection based on phenylboronic acid modified optical fibers

    Science.gov (United States)

    Sun, Xiaolan; Li, Nana; Zhou, Bin; Zhao, Wei; Liu, Liyuan; Huang, Chao; Ma, Longfei; Kost, Alan R.

    2018-06-01

    A non-enzymatic, sensitive glucose sensor was fabricated based on an evanescent wave absorbing optical fiber probe. The optical fiber sensor was functionalized by fixing a poly (phenylboronic acid) (polyPBA) film onto the conical region of the single mode fiber. The reflected light intensity of the polyPBA-functionalized fiber sensor increased proportionally with glucose concentration in the range of 0-60 mM, and the sensor showed good reproducibility and stability. The developed sensor possessed a high sensitivity of 0.1787%/mM and good linearity. The measurement of glucose concentration in human serum was also demonstrated.

  12. Advanced glycation end products impair glucose-induced insulin secretion from rat pancreatic β-cells.

    Science.gov (United States)

    Hachiya, Hiroyuki; Miura, Yoshikazu; Inoue, Ken-Ichi; Park, Kyung Hwa; Takeuchi, Masayoshi; Kubota, Keiichi

    2014-02-01

    Advanced glycation end products (AGEs) are derivative compounds generated from non-enzymatic glycosylation and oxidation. In comparison with glucose-derived AGEs (Glu-AGEs), glyceraldehyde-derived AGEs (Glycer-AGEs) have stronger toxicity to living systems. In this study, we compared the effects of Glu-AGE and Glycer-AGE on insulin secretion. Rat pancreatic islets were isolated by collagenase digestion and primary-cultured in the presence of 0.1 mg/ml bovine serum albumin (BSA) or 0.1 mg/ml Glu-AGE or Glycer-AGE-albumin. After 48 h of culture, we performed an insulin secretion test and identified the defects by a battery of rescue experiments [corrected]. Also, mRNA expression of genes associated with insulin secretion was measured. Insulin secretion induced by a high glucose concentration was 164.1 ± 6.0, 124.4 ± 4.4 (P < 0.05) and 119.8 ± 7.1 (P < 0.05) μU/3 islets/h in the presence of BSA, Glu-AGE, and Glycer-AGE, respectively. Inhibition of insulin secretion by Glu-AGE or Glycer-AGE was rescued by a high extracellular potassium concentration, tolbutamide and α-ketoisocaproic acid, but not by glyceraldehyde, dihydroxacetone, methylpyruvate, glucagon-like peptide-1 and acetylcholine. Glu-AGE or Glycer-AGE reduced the expression of the malate dehydrogenase (Mdh1/2) gene, which plays a critical role in the nicotinamide adenine dinucleotide (NADH) shuttle. Despite its reported cytotoxicity, the effects of Glycer-AGE on insulin secretion are similar to those of Glu-AGE. © 2013 Japanese Society of Hepato-Biliary-Pancreatic Surgery.

  13. Facile synthesis of a silver nanoparticles/polypyrrole nanocomposite for non-enzymatic glucose determination.

    Science.gov (United States)

    Poletti Papi, Maurício A; Caetano, Fabio R; Bergamini, Márcio F; Marcolino-Junior, Luiz H

    2017-06-01

    The present work describes the synthesis of a new conductive nanocomposite based on polypyrrole (PPy) and silver nanoparticles (PPy-AgNP) based on a facile reverse microemulsion method and its application as a non-enzymatic electrochemical sensor for glucose detection. Focusing on the best sensor performance, all experimental parameters used in the synthesis of nanocomposite were optimized based on its electrochemical response for glucose. Characterization of the optimized material by FT-IR, cyclic voltammetry, and DRX measurements and TEM images showed good monodispersion of semispherical Ag nanoparticles capped by PPy structure, with size average of 12±5nm. Under the best analytical conditions, the proposed sensor exhibited glucose response in linear dynamic range of 25 to 2500μmolL -1 , with limit of detection of 3.6μmolL -1 . Recovery studies with human saliva samples varying from 99 to 105% revealed the accuracy and feasibility of a non-enzymatic electrochemical sensor for glucose determination by easy construction and low-cost. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Non-Enzymatic Glucose Sensor Composed of Carbon-Coated Nano-Zinc Oxide

    Directory of Open Access Journals (Sweden)

    Ren-Jei Chung

    2017-02-01

    Full Text Available Nowadays glucose detection is of great importance in the fields of biological, environmental, and clinical analyzes. In this research, we report a zinc oxide (ZnO nanorod powder surface-coated with carbon material for non-enzymatic glucose sensor applications through a hydrothermal process and chemical vapor deposition method. A series of tests, including crystallinity analysis, microstructure observation, and electrochemical property investigations were carried out. For the cyclic voltammetric (CV glucose detection, the low detection limit of 1 mM with a linear range from 0.1 mM to 10 mM was attained. The sensitivity was 2.97 μA/cm2mM, which is the most optimized ever reported. With such good analytical performance from a simple process, it is believed that the nanocomposites composed of ZnO nanorod powder surface-coated with carbon material are promising for the development of cost-effective non-enzymatic electrochemical glucose biosensors with high sensitivity.

  15. A Highly Sensitive Electrochemical Glucose Sensor By Nickel-Epoxy Electrode With Non-Enzymatic Sensor

    Directory of Open Access Journals (Sweden)

    Riyanto Riyanto

    2016-03-01

    Full Text Available The preparation of new sensor for glucose was based on the fact that glucose can be determined by non-enzymatic glucose oxidase. The Ni metals (99.98% purity, 0.5 mm thick, Aldrich Chemical Company was used to prepare Ni-Epoxy electrode. The Ni-epoxy electrodes were prepared in square cut of 1 cm and 1 mm by length and wide respectively. The Ni metal electrodes were connected to silver wire with silver conducting paint prior covered with epoxy gum. The prepared of nickel-epoxy modified electrode showed outstanding electro catalytic activity toward the oxidation of glucose in alkaline solution. The result from this research are correlation of determination using Nickel-Epoxyelectrode for electroanalysis of glucose in NaOH was R2 = 0.9984. LOQ, LOD and recovery of the Nickel-Epoxy electrode towards glucose were found to be 4.4 μM, 1.48 μM and 98.19%, respectively. The Nickel-Epoxy wire based electrochemical glucose sensor demonstrates good sensitivity, wide linear range, outstanding detection limit, attractive selectivity, good reproducibility, high stability as well as prominent feasibility use of non-enzymatic sensor for monitoring glucose in human urine owing to its advantages of low cost, simple preparation and excellent properties for glucose detection.

  16. Dietary Advanced Glycation End Products and Aging

    Directory of Open Access Journals (Sweden)

    Karen Chapman-Novakofski

    2010-12-01

    Full Text Available Advanced glycation end products (AGEs are a heterogeneous, complex group of compounds that are formed when reducing sugar reacts in a non-enzymatic way with amino acids in proteins and other macromolecules. This occurs both exogenously (in food and endogenously (in humans with greater concentrations found in older adults. While higher AGEs occur in both healthy older adults and those with chronic diseases, research is progressing to both quantify AGEs in food and in people, and to identify mechanisms that would explain why some human tissues are damaged, and others are not. In the last twenty years, there has been increased evidence that AGEs could be implicated in the development of chronic degenerative diseases of aging, such as cardiovascular disease, Alzheimer’s disease and with complications of diabetes mellitus. Results of several studies in animal models and humans show that the restriction of dietary AGEs has positive effects on wound healing, insulin resistance and cardiovascular diseases. Recently, the effect of restriction in AGEs intake has been reported to increase the lifespan in animal models. This paper will summarize the work that has been published for both food AGEs and in vivo AGEs and their relation with aging, as well as provide suggestions for future research.

  17. The effect of irradiation temperature on the non-enzymatic browning reaction in cooked rice

    International Nuclear Information System (INIS)

    Lee, Ju-Woon; Oh, Sang-Hee; Kim, Jae-Hun; Byun, Eui-Hong; Ree Kim, Mee; Baek, Min; Byun, Myung-Woo

    2007-01-01

    The effect of irradiation temperature on the non-enzymatic browning reaction in a sugar-glycine solution and cooked rice generated by gamma irradiation was evaluated in the present study. When the sugar-glycine solution and cooked rice were irradiated at room temperature, the browning reaction was dramatically increased during the post-irradiation period. In the case of irradiation at below the freezing point, the browning by irradiation was retarded during not only irradiation but also a post-irradiation period. The changes of the sugar profile, such as a sugar loss or reducing power of the irradiated sugar-glycine solution and the electron spin resonance signal intensity of the irradiated cooked rice were also decreased with lower irradiation temperature. The present results may suggest that the production of free radicals and a radiolysis product is inhibited during gamma irradiation in the frozen state and it may prevent the browning reaction generated by gamma irradiation from occurring

  18. The effect of irradiation temperature on the non-enzymatic browning reaction in cooked rice

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ju-Woon [Radiation Application Research Division, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, PO Box 1266, Jeongeup, Jeonbuk 580-185 (Korea, Republic of); Oh, Sang-Hee [Radiation Application Research Division, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, PO Box 1266, Jeongeup, Jeonbuk 580-185 (Korea, Republic of); Kim, Jae-Hun [Radiation Application Research Division, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, PO Box 1266, Jeongeup, Jeonbuk 580-185 (Korea, Republic of); Byun, Eui-Hong [Radiation Application Research Division, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, PO Box 1266, Jeongeup, Jeonbuk 580-185 (Korea, Republic of); Ree Kim, Mee [Department of Food and Nutrition, Chungnam National University, Gung-Dong 220, Yuseong, Daejeon 305-764 (Korea, Republic of); Baek, Min [Atomic Energy Policy Division, Ministry of Science and Technology, Government Complex-Gwacheon, Kyunggi 427-715 (Korea, Republic of); Byun, Myung-Woo [Radiation Application Research Division, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, PO Box 1266, Jeongeup, Jeonbuk 580-185 (Korea, Republic of)]. E-mail: mwbyun@kaeri.re.kr

    2007-05-15

    The effect of irradiation temperature on the non-enzymatic browning reaction in a sugar-glycine solution and cooked rice generated by gamma irradiation was evaluated in the present study. When the sugar-glycine solution and cooked rice were irradiated at room temperature, the browning reaction was dramatically increased during the post-irradiation period. In the case of irradiation at below the freezing point, the browning by irradiation was retarded during not only irradiation but also a post-irradiation period. The changes of the sugar profile, such as a sugar loss or reducing power of the irradiated sugar-glycine solution and the electron spin resonance signal intensity of the irradiated cooked rice were also decreased with lower irradiation temperature. The present results may suggest that the production of free radicals and a radiolysis product is inhibited during gamma irradiation in the frozen state and it may prevent the browning reaction generated by gamma irradiation from occurring.

  19. Non-Enzymatic Detection of Bacterial Genomic DNA Using the Bio-Barcode Assay

    Science.gov (United States)

    Hill, Haley D.; Vega, Rafael A.; Mirkin, Chad A.

    2011-01-01

    The detection of bacterial genomic DNA through a non-enzymatic nanomaterials based amplification method, the bio-barcode assay, is reported. The assay utilizes oligonucleotide functionalized magnetic microparticles to capture the target of interest from the sample. A critical step in the new assay involves the use of blocking oligonucleotides during heat denaturation of the double stranded DNA. These blockers bind to specific regions of the target DNA upon cooling, and prevent the duplex DNA from re-hybridizing, which allows the particle probes to bind. Following target isolation using the magnetic particles, oligonucleotide functionalized gold nanoparticles act as target recognition agents. The oligonucleotides on the nanoparticle (barcodes) act as amplification surrogates. The barcodes are then detected using the Scanometric method. The limit of detection for this assay was determined to be 2.5 femtomolar, and this is the first demonstration of a barcode type assay for the detection of double stranded, genomic DNA. PMID:17927207

  20. Non-Enzymatic Wearable Sensor for Electrochemical Analysis of Perspiration Glucose.

    Science.gov (United States)

    Zhu, Xiaofei; Ju, Yinhui; Chen, Jian; Liu, Deye; Liu, Hong

    2018-05-16

    We report a non-enzymatic wearable sensor for electrochemical analysis of perspiration glucose. Multi-potential steps are applied on a Au electrode, including a high negative pretreatment potential step for proton reduction which produc-es a localized alkaline condition, a moderate potential step for electrocatalytic oxidation of glucose under the alkaline condi-tion, and a positive potential step to clean and reactivate the electrode surface for the next detection. Fluorocarbon-based materials were coated on the Au electrode for improving the selectivity and robustness of the sensor. A fully integrated wrist-band is developed for continuous real-time monitoring of perspiration glucose during physical activities, and uploading the test result to a Smartphone App via Bluetooth.

  1. Role of enzymatic and non enzymatic antioxidant in ameliorating salinity induced damage in nostoc muscorum

    International Nuclear Information System (INIS)

    Hend, A.; Abeer, A.; Allah, A.

    2015-01-01

    Presence of high salt concentration in the growth medium adversely affected the plant growth and productivity by altering its metabolic activities. Experiments were conducted on cyanobacteriaum Nostoc muscorum grown in nitrogen free medium supplemented with 250 mM NaCl to evaluate the salt stress induced changes in growth, antioxidants and lipid composition. Salt stress significantly reduced the growth and physio-biochemical attributes. Salt stress increased malonaldehyde content thereby causing alterations in the lipid fraction. Significant reduction in polyunsaturated fatty acids including phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylglycerol (PG), phosphatidylinositol (PI) and phosphatidylserine (PS) was observed. Where as diacylglycerol, sterol ester and non-esterified fatty acids were increased. Activities of antioxidant enzymes and contents of non-enzymatic antioxidants including glutathione enhanced due to salt stress. An increase in accumulation of proline was also observed. Hence increased activity of antioxidants and altered fatty acid composition was observed in salt stressed Nostoc muscorum. (author)

  2. Enhanced non-enzymatic glucose sensing based on copper nanoparticles decorated nitrogen-doped graphene.

    Science.gov (United States)

    Jiang, Ding; Liu, Qian; Wang, Kun; Qian, Jing; Dong, Xiaoya; Yang, Zhenting; Du, Xiaojiao; Qiu, Baijing

    2014-04-15

    Copper nanoparticles (NPs) decorated nitrogen-doped graphene (Cu-N-G) was prepared by a facile thermal treatment, and further employed as a novel sensing material for fabricating the sensitive non-enzymatic glucose sensor. Compared with pure Cu NPs, the Cu-N-G showed enhanced electrocatalytic activity to glucose oxidation due to the integration of N-G, which exhibited the oxidation peak current of glucose ca. 23-fold higher than that of pure Cu NPs. The presented sensor showed excellent performances for glucose detection including wide linear range of 0.004-4.5 mM, low detection limit (1.3 μM, S/N=3), high sensitivity (48.13 μA mM(-1)), fast response time (doped graphene as enhanced materials in fabricating sensors for chemical and biochemical analysis. © 2013 Published by Elsevier B.V.

  3. Investigation of lipid oxidation and non-enzymatic browning reactions in marine PL emulsions

    DEFF Research Database (Denmark)

    Lu, Henna Fung Sieng; Nielsen, Nina Skall; Baron, Caroline P.

    Marine phospholipids (PL) have received much attention recently due to their numerous advantages. One of these advantages is their better resistance towards oxidation as compared to fish oil. In addition to the antioxidative properties of α-tocopherol and phospholipids, the better oxidative...... stability of marine PL might be attributed to antioxidative properties of pyrroles formed between oxidised lipids with amine groups from phosphatidylethanolamine (PE) or residues amino acids that are present in marine PL. The main objective of this study was to investigate if the presence of amine group...... of amino acids (leucine, methionine and lysine) from 2 authentic standards (PC and PE) and 2 purified marine PL (LC and MPL) through sonication method. Emulsions were incubated at 60 ºC for 0, 2, 4 and 6 days. Non-enzymatic browning reactions were investigated through measurement of i) Strecker aldehydes...

  4. Non-Enzymatic Glucose Biosensor Based on CuO-Decorated CeO2 Nanoparticles

    Directory of Open Access Journals (Sweden)

    Panpan Guan

    2016-08-01

    Full Text Available Copper oxide (CuO-decorated cerium oxide (CeO2 nanoparticles were synthesized and used to detect glucose non-enzymatically. The morphological characteristics and structure of the nanoparticles were characterized through transmission electron microscopy, X-ray photoelectron spectroscopy, and X-ray diffraction. The sensor responses of electrodes to glucose were investigated via an electrochemical method. The CuO/CeO2 nanocomposite exhibited a reasonably good sensitivity of 2.77 μA mM−1cm−2, an estimated detection limit of 10 μA, and a good anti-interference ability. The sensor was also fairly stable under ambient conditions.

  5. Archetypal sandwich-structured CuO for high performance non-enzymatic sensing of glucose

    Science.gov (United States)

    Meher, Sumanta Kumar; Rao, G. Ranga

    2013-02-01

    In the quest to enhance the selectivity and sensitivity of novel structured metal oxides for electrochemical non-enzymatic sensing of glucose, we report here a green synthesis of unique sandwich-structured CuO on a large scale under microwave mediated homogeneous precipitation conditions. The physicochemical studies carried out by XRD and BET methods show that the monoclinic CuO formed via thermal decomposition of Cu2(OH)2CO3 possesses monomodal channel-type pores with largely improved surface area (~43 m2 g-1) and pore volume (0.163 cm3 g-1). The fascinating surface morphology and pore structure of CuO is formulated due to homogeneous crystallization and microwave induced self assembly during synthesis. The cyclic voltammetry and chronoamperometry studies show diffusion controlled glucose oxidation at ~0.6 V (vs. Ag/AgCl) with extremely high sensitivity of 5342.8 μA mM-1 cm-2 and respective detection limit and response time of ~1 μM and ~0.7 s, under a wide dynamic concentration range of glucose. The chronoamperometry measurements demonstrate that the sensitivity of CuO to glucose is unaffected by the absence of dissolved oxygen and presence of poisoning chloride ions in the reaction medium, which essentially implies high poison resistance activity of the sandwich-structured CuO. The sandwich-structured CuO also shows insignificant interference/significant selectivity to glucose, even in the presence of high concentrations of other sugars as well as reducing species. In addition, the sandwich-structured CuO shows excellent reproducibility (relative standard deviation of ~2.4% over ten identically fabricated electrodes) and outstanding long term stability (only ~1.3% loss in sensitivity over a period of one month) during non-enzymatic electrochemical sensing of glucose. The unique microstructure and suitable channel-type pore architecture provide structural stability and maximum accessible electroactive surface for unimpeded mobility of glucose as well as the

  6. Glycation of extracellular matrix proteins and its role in atherosclerosis 

    Directory of Open Access Journals (Sweden)

    Aleksandra Kuzan

    2012-10-01

    Full Text Available Glycation consists in formation of advanced glycation end-products (AGE during non-enzymatic reaction between reducing sugars and proteins, lipids or nucleic acids. This review is focused mainly on glycation of collagen and its role in acceleration of vascular disease. Collagen is an extracellular matrix protein characterized by unique structure forming fibrils with great anti-tensile and anti-breaking strength. The protein builds the connective tissue and is responsible for biomechanical properties of blood vessels. It is reported that higher content of glycated collagen correlates with lower elasticity and greater toughness of the vessel walls and, as a consequence, a faster rate of atherosclerosis development. Numerous mechanisms connected with AGE formation are involved in atherogenesis, among others: receptor-mediated production of free radicals, triggering an inflammatory process, activation of leukocytes and thrombocytes, facilitation of LDL binding, change in level of growth factors, adhesion molecules, MMP and some other proteins’ expression. The coverages allow the development of therapeutic strategies to prevent or slow down the pathological processes connected with glycation of collagen and other proteins in the artery wall. The main strategies are based on limitation of exogenous AGE, consumption of products which contain rutin, treatment with drugs which inhibit AGE formation, such aspyridoxamine, and chemicals which are able to cleave already formed AGE protein-protein crosslinks, such as ALT-711.

  7. Anti-glycated and antiradical activities in vitro of polysaccharides from Ganoderma capense.

    Science.gov (United States)

    Yan, Chunyan; Kong, Fansheng; Zhang, Dezhi; Cui, Jiangxia

    2013-01-01

    Ganoderma capense is a Ganoderma species and is widely used, especially in Asia, as a well-known medicinal mushroom for health-promoting effect and for treatment of chronic diseases, such as diabetes, aging, etc. G. capense is rich of polysaccharide. To isolate the polysaccharides from G. capense and evaluate their anti-glycated and antiradical activities in vitro. The dried powder of submerged fermentation culturing mycelium of G. capense was defatted, extracted with water/alkaline water followed by ethanol precipitation and deproteinated. And four crude polysaccharides, named as GC50, GC70, GC90 and GCB, were obtained. For the first time, the in vitro anti-glycated activities of the four samples were studied by non-enzymatic glycation reaction. Then, the DPPH radical and hydroxyl radical assays were established to estimate the antiradical capacity of the four samples. Meanwhile the contents of polysaccharides were determined by phenol-sulphuric acid colorimetry. Preliminary antiradical in vitro studies indicated that the four crude polysaccharides showed concentration-dependent scavenging abilities on DPPH and hydroxyl radicals. The evaluation of anti-glycation activity suggested that GC70 had good potential for inhibiting the formation of advanced glycation end products. Time- and dose-dependent effects were also observed for all GC70 samples.

  8. Effect of temperature towards lipid oxidation and non-enzymatic browning reactions in krill oil upon storage

    DEFF Research Database (Denmark)

    Lu, Henna Fung Sieng; Bruheim, I.; Haugsgjerd, B.O.

    2014-01-01

    was assessed by peroxide value and anisidine value, measurement of lipid derived volatiles, lipid classes and antioxidants. The non-enzymatic browning reactions were assessed through the measurement of pyrroles, free amino acids content and Strecker-derived volatiles. The increase of incubation temperature......The main objective of this study was to investigate the effect of temperature towards lipid oxidation and non-enzymatic browning reactions in krill oil upon storage. Krill oil was incubated at two different temperatures (20 and 40°C) for 28 or 42 days. The oxidative stability of krill oil...

  9. Anti-glycation and anti-oxidation properties of Capsicum frutescens and Curcuma longa fruits: possible role in prevention of diabetic complication.

    Science.gov (United States)

    Khan, Ibrar; Ahmad, Haroon; Ahmad, Bashir

    2014-09-01

    The accumulation of advanced glycationend products (AGE's) in the body, due to the non-enzymatic glycation of proteins is associated with several pathological conditions like aging and diabetes mellitus. Hence a plant having anti-glycation and anti-oxidation potentials may serve as therapeutic agent for diabetic complications and aging. In this study the anti-glycation and anti-oxidation properties of crude methanolic extracts of fruits of Capsicum frutescens and Curcuma longa were investigated. Among the two C. frutescens had more anti-glycation ability with a minimum inhibitory concentration (MIC50) of 90βg/mLas compared to 324βg/mL MIC50 of C. longa. Curcuma longa had the more anti-oxidation potential i.e. 35.01, 30.83 and 28.08% at 0.5mg, 0.25mg and 0.125mg respectively.

  10. Changes in non-enzymatic antioxidant capacity and lipid peroxidation during germination of white, yellow and purple maize seeds

    International Nuclear Information System (INIS)

    Deng, B.; Zhang, Y.; Yang, K.

    2016-01-01

    In this study, the changes in non-enzymatic antioxidant capacity and lipid peroxidation during the germination process of purple, yellow and white maize seeds were compared, under favorable conditions. Results showed that germination can increase non-enzymatic antioxidant capacity (evaluated with ferric reducing power and 2, 2-diphenyl-1-picryl-hydrazyl-hydrate radical scavenging capacity) and lipid peroxidation levels for all these seeds. In addition, non-enzymatic antioxidant capacity observed in the germinating seeds were in the order of purple > yellow > white. However, the highest and lowest levels of lipid peroxidation could be seen during the germination processes of the white and purple seeds, respectively. In addition, the germination rates of the seeds followed the order of white > yellow > purple. Further studies showed that H/sub 2/O/sub 2/ treatment can significantly promote seed germination, especially for purple seeds. In addition, DMTU (dimethylthiourea), a specific scavenger for H/sub 2/O/sub 2/, could slightly but significantly arrest dormancy release. Data analysis showed that a high negative correlation (R/sup 2/ = -0.955) existed between non-enzymatic antioxidant capacity and germination rates. However, a high positive correlation (R/sup 2/ = 0.860) could be detected between lipid peroxidation and germination rates. Finally, lipid peroxidation as a possible novel signaling mechanism for seed germination has been discussed under stress-free conditions. (author)

  11. Consequential secondary structure alterations and aggregation during prolonged casein glycation.

    Science.gov (United States)

    Jindal, Supriya; Naeem, Aabgeena

    2013-05-01

    Non-enzymatic glycosylation (glycation) of casein is a process used not just to ameliorate the quality of dairy products but also to increase the shelf life of canned foods, including baby milk supplements. Incubation of κ-casein with reducing sugars for 15 days at physiological temperature showed the formation of a molten globule state at day 9 and 12 during fructation and glucation respectively. This state exhibits substantial secondary structure and maximum ANS binding. Later on, glycation resulted in the formation of aggregates at day 12 in presence of fructose and day 15 in presence of glucose. Aggregates possess extensive β-sheet structure as revealed by far-UV CD and FTIR. These aggregates showed altered tryptophan environment, decrease ANS binding relative to molten globule state and increase in Thioflavin T fluorescence. Aggregates were also accompanied by the accumulation of AGEs, indicative of structural damage to the protein and formation of potentially harmful species at the physiological level. Fructose was more reactive than glucose and thus caused early and significant changes in the protein. From our studies, we conclude that controlling the extent of the Maillard reaction in the food industry is essential to counter its negative effects and expand its safety spectrum.

  12. Products by Glycation Process

    Directory of Open Access Journals (Sweden)

    Liliana Ortega

    2015-01-01

    Full Text Available The antioxidant properties of sweet and acid whey products were incremented by polymerization of their proteins by glycation of whey protein concentrates (WPC and their hydrolyzates (WPCH with ribose and glucose in individual experiments under similar concentration. Heating at 50°C during 20 h maximum and pH 7 and pH 9 were used in all tests. The higher activity was found in WPC glycosylates products with ribose at pH 7 and heating during 10–15 h. In comparable form, antioxidant activity in WPCH was incremented by prior hydrolysis to glycation with 25–45% of hydrolysis degree. Further functional properties of whey proteins (solubility, emulsion, and foam were also improved by the polymerization with ribose. The color of polymerized products due to Maillard reactions was associated with antioxidant activity of each compound; however comparative color in glycosylates products with glucose and ribose did not show this effect.

  13. Synthesis of novel CuO nanosheets and their non-enzymatic glucose sensing applications.

    Science.gov (United States)

    Ibupoto, Zafar Hussain; Khun, Kimleang; Beni, Valerio; Liu, Xianjie; Willander, Magnus

    2013-06-20

    In this study, we have developed a sensitive and selective glucose sensor using novel CuO nanosheets which were grown on a gold coated glass substrate by a low temperature growth method. X-ray differaction (XRD) and scanning electron microscopy (SEM) techniques were used for the structural characterization of CuO nanostructures. CuO nanosheets are highly dense, uniform, and exhibited good crystalline array structure. X-ray photoelectron spectroscopy (XPS) technique was applied for the study of chemical composition of CuO nanosheets and the obtained information demonstrated pure phase CuO nanosheets. The novel CuO nanosheets were employed for the development of a sensitive and selective non-enzymatic glucose sensor. The measured sensitivity and a correlation coefficient are in order 5.20 × 10² µA/mMcm² and 0.998, respectively. The proposed sensor is associated with several advantages such as low cost, simplicity, high stability, reproducibility and selectivity for the quick detection of glucose.

  14. Synthesis of Novel CuO Nanosheets and Their Non-Enzymatic Glucose Sensing Applications

    Directory of Open Access Journals (Sweden)

    Magnus Willander

    2013-06-01

    Full Text Available In this study, we have developed a sensitive and selective glucose sensor using novel CuO nanosheets which were grown on a gold coated glass substrate by a low temperature growth method. X-ray differaction (XRD and scanning electron microscopy (SEM techniques were used for the structural characterization of CuO nanostructures. CuO nanosheets are highly dense, uniform, and exhibited good crystalline array structure. X-ray photoelectron spectroscopy (XPS technique was applied for the study of chemical composition of CuO nanosheets and the obtained information demonstrated pure phase CuO nanosheets. The novel CuO nanosheets were employed for the development of a sensitive and selective non-enzymatic glucose sensor. The measured sensitivity and a correlation coefficient are in order 5.20 × 102 µA/mMcm2 and 0.998, respectively. The proposed sensor is associated with several advantages such as low cost, simplicity, high stability, reproducibility and selectivity for the quick detection of glucose.

  15. MWCNT-ruthenium oxide composite paste electrode as non-enzymatic glucose sensor.

    Science.gov (United States)

    Tehrani, Ramin M A; Ab Ghani, Sulaiman

    2012-01-01

    A non-enzymatic glucose sensor of multi-walled carbon nanotube-ruthenium oxide/composite paste electrode (MWCNT-RuO(2)/CPE) was developed. The electrode was characterized by using XRD, SEM, TEM and EIS. Meanwhile, cyclic voltammetry and amperometry were used to check on the performances of the MWCNT-RuO(2)/CPE towards glucose. The proposed electrode has displayed a synergistic effect of RuO(2) and MWCNT on the electrocatalytic oxidation of glucose in 3M NaOH. This was possible via the formation of transitions of two redox pairs, viz. Ru(VI)/Ru(IV) and Ru(VII)/Ru(VI). A linear range of 0.5-50mM glucose and a limit of detection of 33 μM glucose (S/N=3) were observed. There was no significant interference observable from the traditional interferences, viz. ascorbic acid and uric acid. Indeed, results so obtained have indicated that the developed MWCNT-RuO(2)/CPE would pave the way for a better future to glucose sensor development as its fabrication was without the use of any enzyme. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Non-Enzymatic Glucose Sensing Using Carbon Quantum Dots Decorated with Copper Oxide Nanoparticles

    Directory of Open Access Journals (Sweden)

    Houcem Maaoui

    2016-10-01

    Full Text Available Perturbations in glucose homeostasis is critical for human health, as hyperglycemia (defining diabetes leads to premature death caused by macrovascular and microvascular complications. However, the simple and accurate detection of glucose in the blood at low cost remains a challenging task, although it is of great importance for the diagnosis and therapy of diabetic patients. In this work, carbon quantum dots decorated with copper oxide nanostructures (CQDs/Cu2O are prepared by a simple hydrothermal approach, and their potential for electrochemical non-enzymatic glucose sensing is evaluated. The proposed sensor exhibits excellent electrocatalytic activity towards glucose oxidation in alkaline solutions. The glucose sensor is characterized by a wide concentration range from 6 µM to 6 mM, a sensitivity of 2.9 ± 0.2 µA·µM−1·cm−2, and a detection limit of 6 µM at a signal-to-noise ratio S/N = 3. The sensors are successfully applied for glucose determination in human serum samples, demonstrating that the CQDs/Cu2O-based glucose sensor satisfies the requirements of complex sample detection with adapted potential for therapeutic diagnostics.

  17. Synthesis of carbon nanosheet from barley and its use as non-enzymatic glucose biosensor

    Directory of Open Access Journals (Sweden)

    Soma Das

    2014-12-01

    Full Text Available In this work, carbon nanosheet (CNS based electrode was designed for electrochemical biosensing of glucose. CNS has been obtained by the pyrolysis of barley at 600–750 °C in a muffle furnace; it was then purified and functionalized. The CNS has been characterized by scanning electron microscopy (SEM, X-ray diffraction (XRD and Raman spectroscopic techniques. The electrochemical activity of CNS-based electrode was investigated by linear sweep voltammetry (LSV and square wave voltammetry (SWV, for the oxidation of glucose in 0.001 M H2SO4 (pH 6.0. The linear range of the sensor was found to be 10−4–10−6 M (1–100 µM within the response time of 4 s. Interestingly, its sensitivity reached as high as ~26.002±0.01 μA/μM cm2. Electrochemical experiments revealed that the proposed electrode offered an excellent electrochemical activity towards the oxidation of glucose and could be applied for the construction of non-enzymatic glucose biosensors. Keywords: Carbon nanosheet, β-d glucose, Linear sweep voltammetry, Square wave voltammetry, Pharmaceutical analysis

  18. Non-enzymatic electrochemical immunoassay using noble metal nanoparticles: a review

    International Nuclear Information System (INIS)

    Tang, Juan; Tang, Dianping

    2015-01-01

    Electrochemical immunodetection has attracted considerable attention due to its high sensitivity, low cost and simplicity. Large efforts have recently made in order to design ultrasensitive assays. Noble metal nanoparticles (NM-NPs) offer advantages such as high conductivity and large surface-to-volume ratio. NM-NPs therefore are excellent candidates for developing electrochemical platforms for immunodetection and as signal tags. The use of biofunctionalized NM-NPs often results in amplified recognition via stronger loading of signal tags, and also in enhanced signal. This review (with 87 references) gives an overview on the current state in the use of NM-NPs in Non-enzymatic electrochemical immunosensing. We discuss the application of NM-NPs as electrode matrices and as electroactive labels (either as a carrier or as electrocatalytic labels), and compare the materials (mainly nanoparticles of gold, platinum, or of bimetallic materials) in terms of performance (for example by increasing sensitivity via label amplification or via high densities of capture molecules). A conclusion covers current challenges and gives an outlook. Rather than being exhaustive, the review focuses on representative examples that illustrate novel concepts and promising applications. NM-NPs based immunosensing opens a series of concepts for basic research and offers new tools for determination of trace amounts of protein-related analytes in environment and clinical applications. (author)

  19. Changes in Non-Enzymatic Antioxidants in the Blood Following Anaerobic Exercise in Men and Women

    Science.gov (United States)

    Wiecek, Magdalena; Kantorowicz, Malgorzata

    2015-01-01

    Purpose The aim of this study was to compare changes in total oxidative status (TOS), total antioxidative capacity (TAC) and the concentration of VitA, VitE, VitC, uric acid (UA), reduced (GSH) and oxidized glutathione (GSSG) in blood within 24 hours following anaerobic exercise (AnEx) among men and women. Methods 10 women and 10 men performed a 20-second bicycle sprint (AnEx). Concentrations of oxidative stress indicators were measured before AnEx and 3, 15 and 30 minutes and 1 hour afterwards. UA, GSH and GSSH were also measured 24 hours after AnEx. Lactate and H+ concentrations were measured before and 3 minutes after AnEx. Results The increase in lactate and H+ concentrations following AnEx was similar in both sexes. Changes in the concentrations of all oxidative stress indicators were significant and did not differ between men and women. In both sexes, TOS, TAC, TOS/TAC and VitA and VitE concentrations were the highest 3 minutes, VitC concentration was the highest 30 minutes, and UA concentration was the highest 1 hour after AnEx. GSH concentration was significantly lower than the initial concentration from 15 minutes to 24 hour after AnEx. GSSG concentration was significantly higher, while the GSH/GSSG ratio was significantly lower than the initial values 1 hour and 24 hour after AnEx. Conclusions With similar changes in lactate and H+ concentrations, AnEx induces the same changes in TAC, TOS, TOS/TAC and non-enzymatic antioxidants of low molecular weight in men and women. Oxidative stress lasted at least 24 hours after AnEx. PMID:26600020

  20. Non-enzymatic N-acetylation of Lysine Residues by AcetylCoA Often Occurs via a Proximal S-acetylated Thiol Intermediate Sensitive to Glyoxalase II.

    Science.gov (United States)

    James, Andrew M; Hoogewijs, Kurt; Logan, Angela; Hall, Andrew R; Ding, Shujing; Fearnley, Ian M; Murphy, Michael P

    2017-02-28

    Acetyl coenzyme A (AcCoA), a key intermediate in mitochondrial metabolism, N-acetylates lysine residues, disrupting and, in some cases, regulating protein function. The mitochondrial lysine deacetylase Sirtuin 3 (Sirt3) reverses this modification with benefits reported in diabetes, obesity, and aging. We show that non-enzymatic lysine N-acetylation by AcCoA is greatly enhanced by initial acetylation of a cysteine residue, followed by SN-transfer of the acetyl moiety to a nearby lysine on mitochondrial proteins and synthetic peptides. The frequent occurrence of an S-acetyl intermediate before lysine N-acetylation suggests that proximity to a thioester is a key determinant of lysine susceptibility to acetylation. The thioesterase glyoxalase II (Glo2) can limit protein S-acetylation, thereby preventing subsequent lysine N-acetylation. This suggests that the hitherto obscure role of Glo2 in mitochondria is to act upstream of Sirt3 in minimizing protein N-acetylation, thus limiting protein dysfunction when AcCoA accumulates. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  1. The effect of Cerasus avium stalk extract on albumin glycation reaction

    Directory of Open Access Journals (Sweden)

    Mohadeseh Abdoli

    2014-10-01

    Full Text Available Background: Non-enzymatic glycosylation of proteins is the major cause of diabetic complications. The inhibition of glycation process can reduce complications of diabetes. In the Iranian traditional medicine, the decoction (boiled extraction of Cerasus avium stalk is used as a hypoglycemic agent. The aim of this study was to investigate the in vitro inhibitory effects of decoction and ethanolic and aqueous extracts of Cerasus avium stalk on albumin glycation reaction. Methods: In this experimental study, first, the ethanolic, aqueous and decoction extracts of Cerasus avium stalk were prepared. Then, different concentrations of these extracts were prepared and added to albumin and glucose solutions. Finally, compared to control group that was not treated with any extracts, the albumin glycation rate in the groups treated with various concentrations of extracts was evaluated using TBA (thio-barbituric acid method. Results: The results showed that compared to control group, decoction of Cerasus avium stalk in the concentrations of 20, 10 and 2 mg/dl could reduce albumin glycation to 85.10±1.55, 72.35±1.75 and 51.25±1.22 %, respectively (P>0.001. Moreover, in the concentration of 20 mg/dl, the inhibitory effect of decoction of Cerasus avium stalk on the albumin glycation reaction was higher than those of aqueous (P=0.021 and ethanolic (P=0.009 extracts. Conclusion: The findings showed that the extracs of Cerasus avium stalk, in particular in the decoction form, could significantly reduce the rate of albumin glycation; therefore, it can be used for decreasing diabetes mellitus complications.

  2. Non-enzymatic glucose sensing platform using self assembled cobalt oxide/graphene nanocomposites immobilized graphite modified electrode

    DEFF Research Database (Denmark)

    Vivekananth, R.; Babu, R. Suresh; Prasanna, K.

    2018-01-01

    A new strategy to prepare the densely packed cobalt oxide (Co3O4)/graphene nanocomposites by a self-assembly method were adopted in this work. A new non-enzymatic glucose determination has been fabricated by using Co3O4/graphene nanocomposites modified electrode as a sensing material. The nanocom...... of the modified electrode for glucose determination has been evaluated in urine samples....

  3. Comparison of the role that entropy has played in processes of non-enzymatic and enzymatic catalysis

    International Nuclear Information System (INIS)

    Dixon Pineda, Manuel Tomas

    2012-01-01

    The function that entropy has played is compared in processes of non-enzymatic and enzymatic catalysis. The processes followed are showed: the kinetics of the acid hydrolysis of 3-pentyl acetate and cyclopentyl acetate catalyzed by hydrochloric acid and enzymatic hydrolysis of ethyl acetate and γ-butyrolactone catalyzed by pig liver esterase. The activation parameters of Eyring were determined for each process and interpreted the contribution of the entropy of activation for catalysis in this type of model reactions. (author) [es

  4. The browning kinetics of the non-enzymatic browning reaction in L-ascorbic acid/basic amino acid systems

    Directory of Open Access Journals (Sweden)

    Ai-Nong YU

    Full Text Available Abstract Under the conditions of weak basis and the reaction temperature range of 110-150 °C, lysine, arginine and histidine were reacted with L-ascorbic acid at equal amount for 30-150 min, respectively and the formation of browning products was monitored with UV–vis spectrometry. The kinetic characteristics of their non-enzymatic browning reaction were investigated. The study results indicated that the non-enzymatic browning reaction of these three amino acids with L-ascorbic acid to form browning products was zero-order reaction. The apparent activation energies for the formation of browning products from L-ascorbic acid/lysine, L-ascorbic acid/arginine and L-ascorbic acid/histidine systems were 54.94, 50.08 and 35.31kJ/mol. The activation energy data indicated the degree of effects of reaction temperature on non-enzymatic browning reaction. Within the temperature range of 110-150 °C, the reaction rate of L-ascorbic acid/lysine system was the fastest one, followed by that of the L-ascorbic acid/arginine system. The reaction rate of L-ascorbic acid/histidine system was the slowest one. Based on the observed kinetic data, the formation mechanisms of browning products were proposed.

  5. CuO nanoparticles supported on nitrogen and sulfur co-doped graphene nanocomposites for non-enzymatic glucose sensing

    Energy Technology Data Exchange (ETDEWEB)

    Li, Meixia [Hebei University of Engineering, Faculty of Material Science and Engineering (China); Guo, Qingbin, E-mail: guoqingbinhue@163.com [Hebei University of Engineering, Academic Affairs office (China); Xie, Juan; Li, Yongde; Feng, Yapeng [Hebei University of Engineering, Faculty of Material Science and Engineering (China)

    2017-01-15

    Developing highly active catalysts to promote the electrocatalytic glucose oxidation (EGO) is a crucial demand for non-enzymatic glucose sensing. Herein, we reported the use of nitrogen and sulfur co-doped graphene (NSG) as a novel support material for anchoring CuO nanoparticles and obtained CuO/NSG was employed as an efficient EGO catalyst for non-enzymatic glucose sensing. The results showed that the NSG endowed the CuO/NSG with large surface area, increased structural defects, improved conductivity, and strong covalent coupling between NSG and CuO. Owing to the significant contribution of NSG and the synergistic effect of NSG and CuO, the CuO/NSG exhibited a remarkably higher EGO activity than CuO and CuO/reduced graphene oxide. The CuO/NSG-based sensor displayed excellent glucose sensing performances with a considerably low detection limit of 0.07 μM. These findings elucidate that the NSG is a promising support material for non-enzymatic glucose detection.

  6. Dietary advanced glycation endproducts

    DEFF Research Database (Denmark)

    Poulsen, Malene Wibe

    High heat cooking induces flavor, aroma, and color of food, but leads to formation of advanced glycation endproducts (AGEs) by the Maillard reaction. In addition to the formation in food, AGEs are also formed in vivo, and increased endogenous formation of AGEs has been linked to diabetic...... on postprandial subjective appetite sensations, appetite hormones, and markers of inflammation of two cooking methods that respectively induce or limit AGE formation were investigated in healthy overweight individuals. It was concluded that the meals affected subjective appetite sensations similarly, but the high...... sensitivity of cooking methods that induce or limit AGE formation were investigated in healthy overweight women. It was concluded that insulin sensitivity was improved with use of low heat cooking methods, compared with high heat cooking methods. In a rat study, effects on expression of AGE receptors, insulin...

  7. Non-enzymatic antioxidant accumulations in BR-deficient and BR-insensitive barley mutants under control and drought conditions.

    Science.gov (United States)

    Gruszka, Damian; Janeczko, Anna; Dziurka, Michal; Pociecha, Ewa; Fodor, Jozsef

    2017-12-07

    Drought is one of the most adverse stresses that affect plant growth and yield. Disturbances in metabolic activity resulting from drought cause overproduction of reactive oxygen species. It is postulated that brassinosteroids (BRs) regulate plant tolerance to the stress conditions, but the underlying mechanisms remain largely unknown. An involvement of endogenous BRs in regulation of the antioxidant homeostasis is not fully clarified either. Therefore, the aim of this study was to elucidate the role of endogenous BRs in regulation of non-enzymatic antioxidants in barley (Hordeum vulgare) under control and drought conditions. The plant material included the 'Bowman' cultivar and a group of semi-dwarf near-isogenic lines (NILs), representing mutants deficient in BR biosynthesis or signaling. In general, accumulations of 11 compounds representing various types of non-enzymatic antioxidants were analyzed under both conditions. The analyses of accumulations of reduced and oxidized forms of ascorbate indicated that the BR mutants contain significantly higher contents of dehydroascorbic acid under drought conditions when compared with the 'Bowman' cultivar. The analysis of glutathione accumulation indicated that under the control conditions the BR-insensitive NILs contained significantly lower concentrations of this antioxidant when compared with the rest of genotypes. Therefore, we postulate that BR sensitivity is required for normal accumulation of glutathione. A complete accumulation profile of various tocopherols indicated that functional BR biosynthesis and signaling are required for their normal accumulation under both conditions. Results of this study provided an insight into the role of endogenous BRs in regulation of the non-enzymatic antioxidant homeostasis. © 2017 Scandinavian Plant Physiology Society.

  8. A reagentless non-enzymatic hydrogen peroxide sensor presented using electrochemically reduced graphene oxide modified glassy carbon electrode

    International Nuclear Information System (INIS)

    Mutyala, Sankararao; Mathiyarasu, Jayaraman

    2016-01-01

    Herein, we report a simple, facile and reproducible non-enzymatic hydrogen peroxide (H 2 O 2 ) sensor using electrochemically reduced graphene oxide (ERGO) modified glassy carbon electrode (GCE). The modified electrode was characterized by Fourier transform infrared (FT-IR), UV–Visible, scanning electron microscopy (SEM) and atomic force microscopy (AFM) techniques. Cyclic voltammetric (CV) analysis revealed that ERGO/GCE exhibited virtuous charge transfer properties for a standard redox systems and showed excellent performance towards electroreduction of H 2 O 2 . Amperometric study using ERGO/GCE showed high sensitivity (0.3 μA/μM) and faster response upon the addition of H 2 O 2 at an applied potential of − 0.25 V vs. Ag/AgCl. The detection limit is assessed to be 0.7 μM (S/N = 3) and the time to reach a stable study state current is < 3 s for a linear range of H 2 O 2 concentration (1–16 μM). In addition, the modified electrode exhibited good reproducibility and long-term stability. - Graphical abstract: We presented a reagentless non-enzymatic hydrogen peroxide sensor using electrochemically reduced graphene oxide material. - Highlights: • A facile green procedure proposed for high quality graphene synthesis using electrochemical reduction of graphene oxide • A simple, facile and reagentless non-enzymatic hydrogen peroxide sensor developed using ERGO/GCE. • ERGO/GCE exhibited high sensitivity, selectivity and finite limit of detection for H 2 O 2 sensing at low overpotential. • ERGO/GCE exhibited long term stability and good reproducibility.

  9. A reagentless non-enzymatic hydrogen peroxide sensor presented using electrochemically reduced graphene oxide modified glassy carbon electrode

    Energy Technology Data Exchange (ETDEWEB)

    Mutyala, Sankararao; Mathiyarasu, Jayaraman, E-mail: al_mathi@yahoo.com

    2016-12-01

    Herein, we report a simple, facile and reproducible non-enzymatic hydrogen peroxide (H{sub 2}O{sub 2}) sensor using electrochemically reduced graphene oxide (ERGO) modified glassy carbon electrode (GCE). The modified electrode was characterized by Fourier transform infrared (FT-IR), UV–Visible, scanning electron microscopy (SEM) and atomic force microscopy (AFM) techniques. Cyclic voltammetric (CV) analysis revealed that ERGO/GCE exhibited virtuous charge transfer properties for a standard redox systems and showed excellent performance towards electroreduction of H{sub 2}O{sub 2}. Amperometric study using ERGO/GCE showed high sensitivity (0.3 μA/μM) and faster response upon the addition of H{sub 2}O{sub 2} at an applied potential of − 0.25 V vs. Ag/AgCl. The detection limit is assessed to be 0.7 μM (S/N = 3) and the time to reach a stable study state current is < 3 s for a linear range of H{sub 2}O{sub 2} concentration (1–16 μM). In addition, the modified electrode exhibited good reproducibility and long-term stability. - Graphical abstract: We presented a reagentless non-enzymatic hydrogen peroxide sensor using electrochemically reduced graphene oxide material. - Highlights: • A facile green procedure proposed for high quality graphene synthesis using electrochemical reduction of graphene oxide • A simple, facile and reagentless non-enzymatic hydrogen peroxide sensor developed using ERGO/GCE. • ERGO/GCE exhibited high sensitivity, selectivity and finite limit of detection for H{sub 2}O{sub 2} sensing at low overpotential. • ERGO/GCE exhibited long term stability and good reproducibility.

  10. DAF in diabetic patients is subject to glycation/inactivation at its active site residues.

    Science.gov (United States)

    Flückiger, Rudolf; Cocuzzi, Enzo; Nagaraj, Ram H; Shoham, Menachem; Kern, Timothy S; Medof, M Edward

    2018-01-01

    Decay accelerating factor (DAF or CD55) is a cell associated C3 and C5 convertase regulator originally described in terms of protection of self-cells from systemic complement but now known to modulate adaptive T cell responses. It is expressed on all cell types. We investigated whether nonenzymatic glycation could impair its function and potentially be relevant to complications of diabetes mellitus and other conditions that result in nonenzymatic glycation including cancer, Alzheimer's disease, and aging. Immunoblots of affinity-purified DAF from erythrocytes of patients with diabetes showed pentosidine, glyoxal-AGEs, carboxymethyllysine, and argpyrimidine. HPLC/MS analyses of glucose modified DAF localized the sites of AGE modifications to K 125 adjacent to K 126 , K 127 at the junction of CCPs2-3 and spatially near R 96 , and R 100 , all identified as being critical for DAF's function. Functional analyses of glucose or ribose treated DAF protein showed profound loss of its regulatory activity. The data argue that de-regulated activation of systemic complement and de-regulated activation of T cells and leukocytes could result from non-enzymatic glycation of DAF. Copyright © 2017. Published by Elsevier Ltd.

  11. Synthesis of CdS quantum dots decorated graphene nanosheets and non-enzymatic photoelectrochemical detection of glucose

    International Nuclear Information System (INIS)

    Zhang, Xuyan; Xu, Fang; Zhao, Bingqing; Ji, Xin; Yao, Yanwen; Wu, Dapeng; Gao, Zhiyong; Jiang, Kai

    2014-01-01

    Graphical abstract: - Highlights: • Graphene-CdS hybrid materials were prepared via one-step hydrothermal method. • Graphene-CdS was used as non-enzymatic photoelectrochemical sensor to detect glucose. • Glucose in real sample was detected and showed good specificity and sensitivity. - ABSTRACT: Graphene-CdS quantum dots (QDs) hybrid materials were successfully prepared via one-step hydrothermal method. CdS QDs with average size of ∼6 nm were dispersed on graphene sheets with high coverage through non-covalent bonding. Photocurrent and electrochemical impedance spectroscopy (EIS) results suggested that the best dosage of graphene oxide for graphene-CdS hybrid materials is 0.5% (G0.5-CdS). When G0.5-CdS QDs was used as photoanode materials in non-enzymatic sensor, and the sensor was used to detect glucose and displayed satisfactory analytical performance with good linear range from 0.1∼4 mmol dm −3 with a detection limit of 7 μmol dm −3 at a signal-to-noise ratio of 3. The sensor also possessed high selectivity and durability in trace detection of glucose

  12. Non-enzymatic lipid oxidation products in biological systems: assessment of the metabolites from polyunsaturated fatty acids.

    Science.gov (United States)

    Vigor, Claire; Bertrand-Michel, Justine; Pinot, Edith; Oger, Camille; Vercauteren, Joseph; Le Faouder, Pauline; Galano, Jean-Marie; Lee, Jetty Chung-Yung; Durand, Thierry

    2014-08-01

    Metabolites of non-enzymatic lipid peroxidation of polyunsaturated fatty acids notably omega-3 and omega-6 fatty acids have become important biomarkers of lipid products. Especially the arachidonic acid-derived F2-isoprostanes are the classic in vivo biomarker for oxidative stress in biological systems. In recent years other isoprostanes from eicosapentaenoic, docosahexaenoic, adrenic and α-linolenic acids have been evaluated, namely F3-isoprostanes, F4-neuroprostanes, F2-dihomo-isoprostanes and F1-phytoprostanes, respectively. These have been gaining interest as complementary specific biomarkers in human diseases. Refined extraction methods, robust analysis and elucidation of chemical structures have improved the sensitivity of detection in biological tissues and fluids. Previously the main reliable instrumentation for measurement was gas chromatography-mass spectrometry (GC-MS), but now the use of liquid chromatography-tandem mass spectrometry (LC-MS/MS) and immunological techniques is gaining much attention. In this review, the types of prostanoids generated from non-enzymatic lipid peroxidation of some important omega-3 and omega-6 fatty acids and biological samples that have been determined by GC-MS and LC-MS/MS are discussed. Copyright © 2014. Published by Elsevier B.V.

  13. Fabrication and Optimization of a Nanoporous Platinum Electrode and a Non-enzymatic Glucose Micro-sensor on Silicon

    Directory of Open Access Journals (Sweden)

    Younghun Kim

    2008-10-01

    Full Text Available In this paper, optimal conditions for fabrication of nanoporous platinum (Pt were investigated in order to use it as a sensitive sensing electrode for silicon CMOS integrable non-enzymatic glucose micro-sensor applications. Applied charges, voltages, and temperatures were varied during the electroplating of Pt into the formed nonionic surfactant C16EO8 nano-scaled molds in order to fabricate nanoporous Pt electrodes with large surface roughness factor (RF, uniformity, and reproducibility. The fabricated nanoporous Pt electrodes were characterized using atomic force microscopy (AFM and electrochemical cyclic voltammograms. Optimal electroplating conditions were determined to be an applied charge of 35 mC/mm2, a voltage of -0.12 V, and a temperature of 25 °C, respectively. The optimized nanoporous Pt electrode had an electrochemical RF of 375 and excellent reproducibility. The optimized nanoporous Pt electrode was applied to fabricate non-enzymatic glucose micro-sensor with three electrode systems. The fabricated sensor had a size of 3 mm x 3 mm, air gap of 10 µm, working electrode (WE area of 4.4 mm2, and sensitivity of 37.5 µA•L/mmol•cm2. In addition, it showed large detection range from 0.05 to 30 mmolL-1 and stable recovery responsive to the step changes in glucose concentration.

  14. Enhanced sensitivity in non-enzymatic glucose detection by improved growth kinetics of Ni-based nanostructures

    Science.gov (United States)

    Urso, M.; Pellegrino, G.; Strano, V.; Bruno, E.; Priolo, F.; Mirabella, S.

    2018-04-01

    Ni-based nanostructures are attractive catalytic materials for many electrochemical applications, among which are non-enzymatic sensing, charge storage, and water splitting. In this work, we clarify the synthesis kinetics of Ni(OH)2/NiOOH nanowalls grown by chemical bath deposition at room temperature and at 50 °C. We applied the results to non-enzymatic glucose sensing, reaching a highest sensitivity of 31 mA cm-2mM-1. Using scanning electron microscopy, x-ray diffraction analysis and Rutherford backscattering spectrometry we found that the growth occurs through two regimes: first, a quick random growth leading to disordered sheets of Ni oxy-hydroxide, followed by a slower growth of well-aligned sheets of Ni hydroxide. A high growth temperature (50 °C), leading mainly to well-aligned sheets, offers superior electrochemical properties in terms of charge storage, charge carrier transport and catalytic action, as confirmed by cyclic voltammetry and electrochemical impedance spectroscopy analyses. The reported results on the optimization and application of low-cost synthesis of these Ni-based nanostructures have a large potential for application in catalysis, (bio)sensing, and supercapacitors areas.

  15. A high performance non-enzymatic glucose sensor based on nickel hydroxide modified nitrogen-incorporated nanodiamonds.

    Science.gov (United States)

    Ko, Chih-Yu; Huang, Jin-Hua; Raina, Supil; Kang, Weng P

    2013-06-07

    A highly selective, sensitive, and stable non-enzymatic glucose sensor based on Ni hydroxide modified nitrogen-incorporated nanodiamonds (Ni(OH)2-NND) was developed. The sensor was fabricated by e-beam evaporation of a thin Ni film on NND followed by the growth of Ni(OH)2 using an electrochemical process. It was found that the Ni film thickness greatly affects the morphology and electro-catalytic activity of the as-synthesized electrode for non-enzymatic glucose oxidation. Owing to its nanostructure characteristics, the best sensor fabricated by 150 nm Ni deposition showed two wide response ranges, namely, 0.02-1 mM and 1-9 mM, with sensitivities of 3.20 and 1.41 mA mM(-1) cm(-2), respectively, and a detection limit of 1.2 μM (S/N = 3). The sensor also showed good long-term stability as well as high selectivity in the presence of interferences such as ascorbic acid, acetaminophen, and uric acid. This finding reveals the possibility of exploiting the NND as an electrochemical biosensor platform where high performance addressable sensor arrays could be built.

  16. Correlation of advanced glycation end products to Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Zong-yan MA

    2018-04-01

    Full Text Available Alzheimer's disease (AD is a common retrograde neurodegenerative disease of the central nervous system, as well as the most common type of dementia in the aged, the main manifestations of AD are progressive decline of cognitive function and daily life ability. AD seriously affects the quality of life and physical and mental health of the aged, and increased the burden of family and society. The etiology and pathogenesis of AD remain unclear nowadays, and there is no objective and specific biological marker to help the early diagnosis and effective treatment. Advanced glycation end products (AGEs are stable end products formed by non enzymatic reaction between the free amino groups of proteins, lipids, nucleic acids macromolecules and the carbonyls of glucose or other reduced sugars. Recent years, more and more studies have focused on the correlation between AGEs and its receptors (RAGE in patients with cognitive impairment, however, the role played by AGEs in the pathogenesis of AD remains unclear. The present paper will give an overview from three aspects: the structure and characteristics of AGEs, the relationship between the occurrence and development of AD and AGEs and the relationship between AGEs and prognosis of cognitive impairment which we've known so far. DOI: 10.11855/j.issn.0577-7402.2018.01.16

  17. Glycation Reactions of Casein Micelles.

    Science.gov (United States)

    Moeckel, Ulrike; Duerasch, Anja; Weiz, Alexander; Ruck, Michael; Henle, Thomas

    2016-04-13

    After suspensions of micellar casein or nonmicellar sodium caseinate had been heated, respectively, in the presence and absence of glucose for 0-4 h at 100 °C, glycation compounds were quantitated. The formation of Amadori products as indicators for the "early" Maillard reaction were in the same range for both micellar and nonmicellar caseins, indicating that reactive amino acid side chains within the micelles are accessible for glucose in a comparable way as in nonmicellar casein. Significant differences, however, were observed concerning the formation of the advanced glycation end products (AGEs), namely, N(ε)-carboxymethyllysine (CML), pyrraline, pentosidine, and glyoxal-lysine dimer (GOLD). CML could be observerd in higher amounts in nonmicellar casein, whereas in the micelles the pyrraline formation was increased. Pentosidine and GOLD were formed in comparable amounts. Furthermore, the extent of protein cross-linking was significantly higher in the glycated casein micelles than in the nonmicellar casein samples. Dynamic light scattering and scanning electron microscopy showed that glycation has no influence on the size of the casein micelles, indicating that cross-linking occurs only in the interior of the micelles, but altered the surface morphology. Studies on glycation and nonenzymatic cross-linking can contribute to the understanding of the structure of casein micelles.

  18. Effect of Cadmium Stress on Non-enzymatic Antioxidant and Nitric Oxide Levels in Two Varieties of Maize (Zea mays).

    Science.gov (United States)

    Akinyemi, Ayodele Jacob; Faboya, Oluwabamise Lekan; Olayide, Israel; Faboya, Opeyemi Ayodeji; Ijabadeniyi, Tosin

    2017-06-01

    Cadmium (Cd) is one of the most toxic heavy metals that inhibit physiological processes of plants. Hence, the present study sought to investigate the effect of cadmium-contaminated seeds from two varieties of maize (Zea mays) on non-enzymatic antioxidant and nitric oxide levels. Seeds of yellow and white maize were exposed to different concentrations of Cd (0, 1, 3 and 5 ppm) for two weeks. The results from this study revealed that both varieties of maize bio-accumulate Cd in leaves in a dose-dependent manner. In addition, Cd exposure caused a significant (p < 0.05) decrease in total phenolic, GSH and nitric oxide (NO) levels at the highest concentration tested when compared with control. Therefore, the observed decrease in NO and endogenous antioxidant status by Cd treatment in maize plants could suggest some possible mechanism of action for Cd-induced oxidative stress and counteracting effect of the plants against Cd toxicity.

  19. Regenerative, Highly-Sensitive, Non-Enzymatic Dopamine Sensor and Impact of Different Buffer Systems in Dopamine Sensing

    Directory of Open Access Journals (Sweden)

    Saumya Joshi

    2018-01-01

    Full Text Available Carbon nanotube field-effect transistors are used extensively in ultra-sensitive biomolecule sensing applications. Along with high sensitivity, the possibility of regeneration is highly desired in bio-sensors. An important constituent of such bio-sensing systems is the buffer used to maintain pH and provide an ionic conducting medium, among its other properties. In this work, we demonstrate highly-sensitive regenerative dopamine sensors and the impact of varying buffer composition and type on the electrolyte gated field effect sensors. The role of the buffer system is an often ignored condition in the electrical characterization of sensors. Non-enzymatic dopamine sensors are fabricated and regenerated in hydrochloric acid (HCl solution. The sensors are finally measured against four different buffer solutions. The impact of the nature and chemical structure of buffer molecules on the dopamine sensors is shown, and the appropriate buffer systems are demonstrated.

  20. One-pot non-enzymatic formation of firefly luciferin in a neutral buffer from p-benzoquinone and cysteine.

    Science.gov (United States)

    Kanie, Shusei; Nishikawa, Toshio; Ojika, Makoto; Oba, Yuichi

    2016-04-21

    Firefly luciferin, the substrate for the bioluminescence reaction of luminous beetles, possesses a benzothiazole ring, which is rare in nature. Here, we demonstrate a novel one-pot reaction to give firefly luciferin in a neutral buffer from p-benzoquinone and cysteine without any synthetic reagents or enzymes. The formation of firefly luciferin was low in yield in various neutral buffers, whereas it was inhibited or completely prevented in acidic or basic buffers, in organic solvents, or under a nitrogen atmosphere. Labelling analysis of the firefly luciferin using stable isotopic cysteines showed that the benzothiazole ring was formed via the decarboxylation and carbon-sulfur bond rearrangement of cysteine. These findings imply that the biosynthesis of firefly luciferin can be developed/evolved from the non-enzymatic production of firefly luciferin using common primary biosynthetic units, p-benzoquinone and cysteine.

  1. Inhibition of protein glycation and advanced glycation end products ...

    African Journals Online (AJOL)

    Fatima

    2012-06-26

    Jun 26, 2012 ... acid (AA) can react with proteins, including hemoglobin and possibly interfere with protein glycation process. .... 50 mM) and AA (100, 200, 300 and 400 mM) at 37°C for five weeks ... drops were removed by patting the plate over a paper towel. The .... adults participating in the Beaver Dam Eye Study. In.

  2. Inhibition of protein glycation and advanced glycation end products ...

    African Journals Online (AJOL)

    Advanced glycation end products (AGEs) formation is increased in diabetes mellitus, leading to microvascular and macrovascular complications. Recently, much attention has been focused on natural and synthetic inhibitors to delay the onset or progression of diabetes and its comorbidities. Ascorbic acid (AA) can react with ...

  3. Phosphomolybdic acid functionalized graphene loading copper nanoparticles modified electrodes for non-enzymatic electrochemical sensing of glucose

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Jiaoyan; Cao, Xiyue [College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Collaborative Innovation Center for Marine Biomass Fiber Materials and Textiles, Laboratory of Fiber Materials and Modern Textile, The Growing Base for State Key Laboratory, Qingdao University, Qingdao 266071 (China); Xia, Jianfei, E-mail: xiajianfei@126.com [College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Collaborative Innovation Center for Marine Biomass Fiber Materials and Textiles, Laboratory of Fiber Materials and Modern Textile, The Growing Base for State Key Laboratory, Qingdao University, Qingdao 266071 (China); Gong, Shida [College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Collaborative Innovation Center for Marine Biomass Fiber Materials and Textiles, Laboratory of Fiber Materials and Modern Textile, The Growing Base for State Key Laboratory, Qingdao University, Qingdao 266071 (China); Wang, Zonghua, E-mail: wangzonghua@qdu.edu.cn [College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Collaborative Innovation Center for Marine Biomass Fiber Materials and Textiles, Laboratory of Fiber Materials and Modern Textile, The Growing Base for State Key Laboratory, Qingdao University, Qingdao 266071 (China); Lu, Lin [College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Collaborative Innovation Center for Marine Biomass Fiber Materials and Textiles, Laboratory of Fiber Materials and Modern Textile, The Growing Base for State Key Laboratory, Qingdao University, Qingdao 266071 (China); Zibo Normal College, Zibo, Shandong 255100 (China)

    2016-08-31

    A sensitive non-enzymatic glucose electrochemical biosensor (Cu/PMo{sub 12}-GR/GCE) was developed based on the combination of copper nanoparticles (CuNPs) and phosphomolybdic acid functionalized graphene (PMo{sub 12}-GR). PMo{sub 12}-GR films were modified on the surface of glassy carbon electrode (GCE) through electrostatic self-assembly with the aid of poly diallyl dimethyl ammonium chloride (PDDA). Then CuNPs were successfully decorated onto the PMo{sub 12}-GR modified GCE through electrodeposition. The morphology of Cu/PMo{sub 12}-GR/GCE was characterized by scanning electron microscope (SEM). Cyclic voltammetry (CV) and chronoamperometry were used to investigate the electrochemical performances of the biosensor. The results indicated that the modified electrode displayed a synergistic effect of PMo{sub 12}-GR sheets and CuNPs towards the electro-oxidation of glucose in the alkaline solution. At the optimal detection potential of 0.50 V, the response towards glucose presented a linear response ranging from 0.10 μM to 1.0 mM with a detection limit of 3.0 × 10{sup −2} μM (S/N = 3). In addition, Cu/PMo{sub 12}-GR/GCE possessed a high selectivity, good reproducibility, excellent stability and acceptable recovery, which indicating the potential application in clinical field. - Highlights: • Cu/PMo{sub 12}-GR/GCE as a non-enzymatic glucose electrochemical sensor. • PMo{sub 12} is efficient for the uniform growth of Cu-NPs and electron transport. • The sensor exhibits good sensitivity and specificity towards glucose.

  4. Fucoidan as an inhibitor of thermally induced collagen glycation examined by acetate electrophoresis.

    Science.gov (United States)

    Pielesz, Anna; Paluch, Jadwiga

    2014-08-01

    Non-enzymatic glycation (Maillard reaction) in vitro could be a simple method to obtain glycoconjugates for studying their biological properties. Hence, fucoidan was retained by acetate electrophoresis indicating a strong interaction with the protein. A loss of colour in fucoidan bands was found for samples incubated with collagen as compared with samples of free fucoidan. Also under in vitro conditions at 100°C - simulating a sudden burn incident - fucoidan binds with collagen as a result of the Maillard reaction. In contrast, the colour of the fucoidan bands intensified for samples incubated with collagen, with the addition of glucose. Electrophoretic analyses were carried out after heating the samples to a temperature simulating a burn incident. The bands were found to intensify for samples incubated with collagen during a 30-day-long incubation. Thus, spontaneous in vitro glycation - i.e. without the addition of glucose - was confirmed. This process is highly intensified both by the temperature and time of incubation. For a sample incubated in vitro in a fucoidan solution containing glucose, glycation was confirmed in a preliminary FTIR and acetate electrophoresis examinations, occurring in collagen obtained from chicken skins. In particular, a new band emerging around 1746 cm(-1) was observed for above samples, as was its increasing intensity, as compared with samples without the addition of glucose. In the collagen glycation assay, while glucose reacts with collagen and forms cross-linked aggregates, fucoidan decreases the process of aggregation and recovery of native collagen. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Oxidative degradation and non-enzymatic browning due to the interaction between oxidised lipids and primary amine groups in different marine PL emulsions

    DEFF Research Database (Denmark)

    Lu, Henna Fung Sieng; Nielsen, Nina Skall; Baron, Caroline P.

    2012-01-01

    investigated through the measurement of secondary volatile compounds by solid-phase microextraction (SPME) and dynamic headspace (DHS) connected to gas chromatography (GC–MS). Non-enzymatic browning reactions were investigated through the measurement of Strecker derived volatiles, colour changes and pyrrole...

  6. Binderless solution processed Zn doped Co3O4 film on FTO for rapid and selective non-enzymatic glucose detection

    CSIR Research Space (South Africa)

    Chowdhury, M

    2016-09-01

    Full Text Available A simple solution based deposition process has been used to fabricate Zn doped Co(sub3)O(sub4) electrode as an electrocatalyst for non-enzymatic oxidation of glucose. XRD, HRTEM, SEM, EELS, AFM, EIS was used to characterise the electrode...

  7. Standardization and quality control in quantifying non-enzymatic oxidative protein modifications in relation to ageing and disease: Why is it important and why is it hard?

    DEFF Research Database (Denmark)

    Nedić, Olgica; Rogowska-Wrzesinska, Adelina; Rattan, Suresh

    2015-01-01

    Post-translational modifications (PTM) of proteins determine the activity, stability, specificity, transportability and lifespan of a protein. Some PTM are highly specific and regulated involving various enzymatic pathways, but there are other non-enzymatic PTM (nePTM), which occur stochastically...

  8. The specific localization of advanced glycation end-products (AGEs) in rat pancreatic islets.

    Science.gov (United States)

    Morioka, Yuta; Teshigawara, Kiyoshi; Tomono, Yasuko; Wang, Dengli; Izushi, Yasuhisa; Wake, Hidenori; Liu, Keyue; Takahashi, Hideo Kohka; Mori, Shuji; Nishibori, Masahiro

    2017-08-01

    Advanced glycation end-products (AGEs) are produced by non-enzymatic glycation between protein and reducing sugar such as glucose. Although glyceraldehyde-derived AGEs (Glycer-AGEs), one of the AGEs subspecies, have been reported to be involved in the pathogenesis of various age-relating diseases such as diabetes mellitus or arteriosclerosis, little is known about the pathological and physiological mechanism of AGEs in vivo. In present study, we produced 4 kinds of polyclonal antibodies against AGEs subspecies and investigated the localization of AGEs-modified proteins in rat peripheral tissues, making use of these antibodies. We found that Glycer-AGEs and methylglyoxal-derived AGEs (MGO-AGEs) were present in pancreatic islets of healthy rats, distinguished clearly into the pancreatic α and β cells, respectively. Although streptozotocin-induced diabetic rats suffered from remarkable impairment of pancreatic islets, the localization and deposit levels of the Glycer- and MGO-AGEs were not altered in the remaining α and β cells. Remarkably, the MGO-AGEs in pancreatic β cells were localized into the insulin-secretory granules. These results suggest that the cell-specific localization of AGEs-modified proteins are presence generally in healthy peripheral tissues, involved in physiological intracellular roles, such as a post-translational modulator contributing to the secretory and/or maturational functions of insulin. Copyright © 2017 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  9. Implication of advanced glycation end products (Ages) and their receptor (Rage) on myocardial contractile and mitochondrial functions.

    Science.gov (United States)

    Neviere, Remi; Yu, Yichi; Wang, Lei; Tessier, Frederic; Boulanger, Eric

    2016-08-01

    Advanced glycation end products (AGEs) play an important role for the development and/or progression of cardiovascular diseases, mainly through induction of oxidative stress and inflammation. AGEs are a heterogeneous group of molecules formed by non-enzymatic reaction of reducing sugars with amino acids of proteins, lipids and nucleic acids. AGEs are mainly formed endogenously, while recent studies suggest that diet constitutes an important exogenous source of AGEs. The presence and accumulation of AGEs in various cardiac cell types affect extracellular and intracellular structure and function. AGEs contribute to a variety of microvascular and macrovascular complications through the formation of cross-links between molecules in the basement membrane of the extracellular matrix and by engaging the receptor for advanced glycation end products (RAGE). Activation of RAGE by AGEs causes up regulation of the transcription factor nuclear factor-κB and its target genes. of the RAGE engagement stimulates oxidative stress, evokes inflammatory and fibrotic reactions, which all contribute to the development and progression of devastating cardiovascular disorders. This review discusses potential targets of glycation in cardiac cells, and underlying mechanisms that lead to heart failure with special interest on AGE-induced mitochondrial dysfunction in the myocardium.

  10. Non-enzymatic detection of glucose in fruits using TiO2-Mn3O4 hybrid nano interface

    Science.gov (United States)

    Jayanth Babu, K.; Sasya, Madhurantakam; Nesakumar, Noel; Shankar, Prabakaran; Gumpu, Manju Bhargavi; Ramachandra, Bhat Lakshmishri; Kulandaisamy, Arockia Jayalatha; Rayappan, John Bosco Balaguru

    2017-08-01

    Consumption of fruits leads to increase in glucose level in blood for diabetic patients, which in turn leads to peripheral, vascular, ocular complications and cardiac diseases. In this context, a non-enzymatic hybrid glucose biosensor was fabricated for the first time to detect glucose by immobilizing titanium oxide-manganese oxide (TiO2-Mn3O4) nanocomposite and chitosan membrane on to the surface of Pt working electrode (Pt/TiO2-Mn3O4/chitosan). TiO2-Mn3O4 nanocomposite catalyzed the oxidation of glucose to gluconolactone in the absence of glucose oxidase enzyme with high electron transfer rate, good biocompatibility and large surface coverage. Electrochemical measurements revealed the excellent sensing response of the developed biosensor towards glucose with a high sensitivity of 7.073 µA mM-1, linearity of 0.01-0.1 mM, low detection limit of 0.01 µM, reproducibility of 1.5% and stability of 98.8%. The electrochemical parameters estimated from the anodic process were subjected to linear regression models for the detection of unknown concentration of glucose in different fruit samples.

  11. Non-enzymatic browning in citrus juice: chemical markers, their detection and ways to improve product quality.

    Science.gov (United States)

    Bharate, Sonali S; Bharate, Sandip B

    2014-10-01

    Citrus juices are widely consumed due to their nutritional benefits and variety of pharmacological properties. Non-enzymatic browning (NEB) is one of the most important chemical reactions responsible for quality and color changes during the heating or prolonged storage of citrus products. The present review covers various aspects of NEB in citrus juice viz. chemistry of NEB, identifiable markers of NEB, analytical methods to identify NEB markers and ways to improve the quality of citrus juice. 2,5-Dimethyl-4-hydroxy-3(2H)-furanone (DMHF) is one of the promising marker formed during browning process with number of analytical methods reported for its analysis; therefore it can be used as an indicator for NEB process. Amongst analytical methods reported, RP-HPLC is more sensitive and accurate method, which can be used as analytical tool. NEB can be prevented by removal of amino acids/ proteins (via ion exchange treatment) or by targeting NEB reactions (e.g. blockage of furfural/ HMF by sulphiting agent).

  12. Novel synthesis and characterization of Ag@TiO2 core shell nanostructure for non-enzymatic glucose sensor

    Science.gov (United States)

    T, Dayakar; Venkateswara Rao, K.; Vinodkumar, M.; Bikshalu, K.; Chakradhar, B.; Ramachandra Rao, K.

    2018-03-01

    Ag@TiO2 core-shell nano composite (ATCSNC) were synthesized by using Ocimum tenuiflorum leaves extract through a simple one-step hydrothermal route for Non-enzymatic glucose sensing material. The prepared NCs were characterized and found high crystallinity, red shift absorbance, interface-bonding parameters, rough surface and network like microstructure through XRD, Uv-vis, FTIR, SEM, and TEM. The prepared ATCSNC have been used for fabrication of glassy carbon electrode (GCE) and the same was applied to test its electro catalytic activity of glucose in 0.1 M NaOH. The promising results were recorded for ATCSNC/GCE with a high sensitivity (1968.72 μAm M-1cm-2), wide linear range (1 μM-8.1 mM), good response time (3 s), and excellent low detection limit (0.19 μM, S/N = 3). Furthermore, the designed sensor exhibits admirable stability and reproducibility, as well as attractive achievability for real sample analysis. As such, the proposed ATCSNC could be highly beneficial in the development of sustainable and eco-friendly glucose sensing devices.

  13. DNA-dispersed graphene/NiO hybrid materials for highly sensitive non-enzymatic glucose sensor

    International Nuclear Information System (INIS)

    Lv Wei; Jin Fengmin; Guo Quangui; Yang Quanhong; Kang Feiyu

    2012-01-01

    Highlights: ► We investigated the potential of GNS/NiO/DNA hybrid used as a nonenzymatic sensor. ► DNA is a highly efficient disperse agent for GNS/NiO hybrid than ionic surfactants. ► GNS/NiO/DNA hybrid shows fast electron transfer in the electrochemical reaction. ► GNS/NiO/DNA hybrid shows good detection performance towards glucose. - Abstract: We demonstrate graphene nanosheet/NiO hybrids (GNS/NiO) as the active material for high-performance non-enzymatic glucose sensors. Such sensors are fabricated by DNA-dispersed GNS/NiO suspension deposited on glassy carbon electrodes. ss-DNA shows strong dispersing ability for the GNS/NiO hybrid materials resulting in stable water-dispersible GNS/NiO/DNA hybrids with fully separated layers. The GNS/NiO/DNA hybrids show enhanced electron transfer in the electrocatalytic reaction process, and accordingly, such hybrids modified electrodes show good sensing performance towards glucose and are characterized by large detection ranges, short response periods, low detection limit and high sensitivity and stability.

  14. Cell-cycle regulation of non-enzymatic functions of the Drosophila methyltransferase PR-Set7.

    Science.gov (United States)

    Zouaz, Amel; Fernando, Céline; Perez, Yannick; Sardet, Claude; Julien, Eric; Grimaud, Charlotte

    2018-04-06

    Tight cell-cycle regulation of the histone H4-K20 methyltransferase PR-Set7 is essential for the maintenance of genome integrity. In mammals, this mainly involves the interaction of PR-Set7 with the replication factor PCNA, which triggers the degradation of the enzyme by the CRL4CDT2 E3 ubiquitin ligase. PR-Set7 is also targeted by the SCFβ-TRCP ligase, but the role of this additional regulatory pathway remains unclear. Here, we show that Drosophila PR-Set7 undergoes a cell-cycle proteolytic regulation, independently of its interaction with PCNA. Instead, Slimb, the ortholog of β-TRCP, is specifically required for the degradation of the nuclear pool of PR-Set7 prior to S phase. Consequently, inactivation of Slimb leads to nuclear accumulation of PR-Set7, which triggers aberrant chromatin compaction and G1/S arrest. Strikingly, these phenotypes result from non-enzymatic PR-Set7 functions that prevent proper histone H4 acetylation independently of H4K20 methylation. Altogether, these results identify the Slimb-mediated PR-Set7 proteolysis as a new critical regulatory mechanism required for proper interphase chromatin organization at G1/S transition.

  15. Non-enzymatic amperometric sensor for hydrogen peroxide based on a biocomposite made from chitosan, hemoglobin, and silver nanoparticles

    International Nuclear Information System (INIS)

    Tian, L.; Feng, Y.; Qi, Y.; Wang, B.; Chen, Y.; Fu, X.

    2012-01-01

    We report on a novel non-enzymatic sensor for hydrogen peroxide (HP) that is based on a biocomposite made up from chitosan (CS), hemoglobin (Hb), and silver nanoparticles (AgNPs). The AgNPs were prepared in the presence of CS and glucose in an ultrasonic bath, and CS is found to act as a stabilizing agent. They were then combined with Hb and CS to construct a carbon paste biosensor. The resulting electrode gave a well-defined redox couple for Hb, with a formal potential of about -0.17 V (vs. SCE) at pH 6. 86 and exhibited a remarkable electrocatalytic activity for the reduction of HP. The sensor was used to detect HP by flow injection analysis, and a linear response is obtained in the 0. 08 to 250 μM concentration range. The detection limit is 0.05 μM (at S/N = 3). These characteristics, along with its long-term stability make the sensor highly promising for the amperometric determination of HP. (author)

  16. Enhancement of fermentable sugar yield by competitive adsorption of non-enzymatic substances from yeast and cellulase on lignin.

    Science.gov (United States)

    Tang, Yong; Lei, Fuhou; Cristhian, Carrasco; Liu, Zuguang; Yu, Hailong; Jiang, Jianxin

    2014-03-20

    Enhancement of enzymatic digestibility by some supplementations could reduce enzyme loading and cost, which is still too high to realize economical production of lignocellulosic biofuels. A recent study indicates that yeast hydrolysates (YH) have improved the efficiency of cellulases on digestibility of furfural residues (FR). In the current work, the components of YH were separated by centrifugation and size exclusion chromatography and finally characterized in order to better understand this positive effect. A 60.8% of nitrogen of yeast cells was remained in the slurry (YHS) after hydrothermal treatment. In the supernatant of YH (YHL), substances of high molecular weight were identified as proteins and other UV-absorbing compounds, which showed close molecular weight to components of cellulases. Those substances attributed to a synergetic positive effect on enzymatic hydrolysis of FR. The fraction of YHL ranged from 1.19 to 2.19 mL (elution volume) contained over 50% of proteins in YHL and had the best performance in stimulating the release of glucose. Experiment results proved the adsorption of proteins in YHL on lignin. Supplementation of cellulases with YH enhances enzymatic digestibility of FR mainly by a competitive adsorption of non-enzymatic substances on lignin. The molecular weight of these substances has a significant impact on their performance. Different strategies can be used for a good utilization of yeast cells in terms of biorefinery concept.

  17. The Development of Non-Enzymatic Glucose Biosensors Based on Electrochemically Prepared Polypyrrole–Chitosan–Titanium Dioxide Nanocomposite Films

    Directory of Open Access Journals (Sweden)

    Ali M. A. Abdul Amir AL-Mokaram

    2017-05-01

    Full Text Available The performance of a modified electrode of nanocomposite films consisting of polypyrrole–chitosan–titanium dioxide (Ppy-CS-TiO2 has been explored for the developing a non-enzymatic glucose biosensors. The synergy effect of TiO2 nanoparticles (NPs and conducting polymer on the current responses of the electrode resulted in greater sensitivity. The incorporation of TiO2 NPs in the nanocomposite films was confirmed by X-ray photoelectron spectroscopy (XPS spectra. FE-SEM and HR-TEM provided more evidence for the presence of TiO2 in the Ppy-CS structure. Glucose biosensing properties were determined by amperommetry and cyclic voltammetry (CV. The interfacial properties of nanocomposite electrodes were studied by electrochemical impedance spectroscopy (EIS. The developed biosensors showed good sensitivity over a linear range of 1–14 mM with a detection limit of 614 μM for glucose. The modified electrode with Ppy-CS nanocomposite also exhibited good selectivity and long-term stability with no interference effect. The Ppy-CS-TiO2 nanocomposites films presented high electron transfer kinetics. This work shows the role of nanomaterials in electrochemical biosensors and describes the process of their homogeneous distribution in composite films by a one-step electrochemical process, where all components are taken in a single solution in the electrochemical cell.

  18. Effect of Thermal Processing towards Lipid Oxidation and Non-enzymatic Browning Reactions of Antartic Krill (Euphausia superba) Meal.

    Science.gov (United States)

    Liu, Yanzi; Cong, Peixu; Li, Beijia; Song, Yu; Liu, Yanjun; Xu, Jie; Xue, Changhu

    2018-04-13

    Antarctic krill is a huge source of biomass and prospective high-quality lipid source. Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), nutritionally important lipid components with poor oxidative stability, were used as markers of oxidation during thermal processing of Antarctic krill (Euphausia superba) meal by evaluating the lipolysis, lipid oxidation, and non-enzymatic browning reactions. Liquid chromatography-mass spectrometry of the phospholipids (PLs) and the main oxidation products of free fatty acids (FFAs) and phosphatidylcholine (PC) was effective for evaluating the oxidation of EPA and DHA. During boiling, oxidation of EPA and DHA in the FFA and PC fractions and hydrolysis of the fatty acids at the sn-2 position of the PLs were predominant. The changes in PC during drying were mainly attributed to the oxidation of EPA and DHA. Heat treatment increased the oxidation products and concentration of hydrophobic pyrrole owing to pyrrolization between phosphatidylethanolamine (PE) and the lipid oxidation products. The lipid oxidation level of Antarctic krill increased after drying, owing to prolonged heating under the severe conditions. This article is protected by copyright. All rights reserved.

  19. Non-Enzymatic Decomposition of Collagen Fibers by a Biglycan Antibody and a Plausible Mechanism for Rheumatoid Arthritis

    Energy Technology Data Exchange (ETDEWEB)

    Antipova, Olga; Orgel, Joseph P.R.O. (IIT)

    2013-04-08

    Rheumatoid arthritis (RA) is a systemic autoimmune inflammatory and destructive joint disorder that affects tens of millions of people worldwide. Normal healthy joints maintain a balance between the synthesis of extracellular matrix (ECM) molecules and the proteolytic degradation of damaged ones. In the case of RA, this balance is shifted toward matrix destruction due to increased production of cleavage enzymes and the presence of (autoimmune) immunoglobulins resulting from an inflammation induced immune response. Herein we demonstrate that a polyclonal antibody against the proteoglycan biglycan (BG) causes tissue destruction that may be analogous to that of RA affected tissues. The effect of the antibody is more potent than harsh chemical and/or enzymatic treatments designed to mimic arthritis-like fibril de-polymerization. In RA cases, the immune response to inflammation causes synovial fibroblasts, monocytes and macrophages to produce cytokines and secrete matrix remodeling enzymes, whereas B cells are stimulated to produce immunoglobulins. The specific antigen that causes the RA immune response has not yet been identified, although possible candidates have been proposed, including collagen types I and II, and proteoglycans (PG's) such as biglycan. We speculate that the initiation of RA associated tissue destruction in vivo may involve a similar non-enzymatic decomposition of collagen fibrils via the immunoglobulins themselves that we observe here ex vivo.

  20. N-doped graphene-carbon nanotube hybrid networks attaching with gold nanoparticles for glucose non-enzymatic sensor.

    Science.gov (United States)

    Jeong, Hun; Nguyen, Dang Mao; Lee, Min Sang; Kim, Hong Gun; Ko, Sang Cheol; Kwac, Lee Ku

    2018-09-01

    Herein, we successfully developed a novel three dimensional (3D) opened networks based on nitrogen doped graphene‑carbon nanotubes attaching with gold nanoparticles (N-GR-CNTs/AuNPs) to apply for non-enzymatic glucose determination. It was demonstrated that the N-GR-CNTs/AuNPs modified electrode exhibited good behavior for glucose detection with a long linear range of 2 μM to 19.6 mM, high sensitivity of 0.9824 μA·mM -1 ·cm -2 , low detection limit of 500 nM, and negligible interference effect. The high performance of the N-GR-CNTs/AuNPs based sensor was assumed due to the outstanding catalytic activity of AuNPs well dispersing on N-GR-CNTs networks, which exhibited as a perfect supporting scaffold due to the enhanced electrical conductivity and large surface area. The obtained results indicated that the N-GR-CNTs/AuNPs hybrid is highly promising for sensitive and selective detection of glucose in sensor application. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. A high throughput screening assay for identifying glycation inhibitors on MALDI-TOF target.

    Science.gov (United States)

    Zhang, Qiuting; Tu, Zongcai; Wang, Hui; Fan, Liangliang; Huang, Xiaoqin; Xiao, Hui

    2015-03-01

    The Maillard reaction plays an important role in the food industry, however, the deleterious effects generated by the advanced glycation end-products (AGEs) have been well recognized. Many efforts have been made to seek new AGE inhibitors, in particular those natural ones without adverse effect. We have developed a rapid, mass spectrometry based, on-plate screening assay for novel AGE inhibitors. The glycation reaction, inhibition feedback as well as the subsequent MALDI mass spectrometric analysis occurred on one single MALDI plate. At 1:10 M ratio of peptide to sugar, as little as 4h incubation time allowed the screening test to be ready for analysis. DSP, inhibition and IC50 were calculated to evaluate selected inhibitors and resulting inhibition efficiencies were consistent with available references. We demonstrated that this method provide a potential high throughput screening assay to analyze and identify the anti-glycation agents. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Deamidation of asparagine and glutamine residues in proteins and peptides: structural determinants and analytical methodology

    NARCIS (Netherlands)

    Bischoff, Rainer; Kolbe, H.V.

    1994-01-01

    Non-enzymatic deamidation of asparagine and glutamine residues in proteins and peptides are reviewed by first outlining the well-described reaction mechanism involving cyclic imide intermediates, followed by a discussion of structural features which influence the reaction rate. The second and major

  3. One-step preparation of silver–polyaniline nanotube composite for non-enzymatic hydrogen peroxide detection

    Energy Technology Data Exchange (ETDEWEB)

    Lorestani, Farnaz, E-mail: Farnaz.lorestani@siswa.um.edu.my; Shahnavaz, Zohreh; Nia, Pooria Moozarm; Alias, Y.; Manan, Ninie S.A., E-mail: niniemanan@um.edu.my

    2015-08-30

    Graphical abstract: - Highlights: • Silver nanoparticle-decorated polyaniline nanotube composites (AgNPs–PANINTs) have been fabricated through a one step modified method without adding any extra acids, template and surface modifier. • The sensor showed excellent selectivity, reproducibility, and stability properties. • The AgNPs–PANINTs composite that prepared with silver ammonia solution (Ag(NH{sub 3}){sub 2}OH) exhibits better electrochemical performance than the AgNPs–PANINTs composite that was prepared with silver nitrite (AgNO{sub 3}) due to smaller size and higher surface area of silver nanoparticle (AgNPs) in the composite. • The electrocatalytic activity for the reduction was strongly affected by the concentration of silver ammonia solution in the nanocomposites, with the best electrocatalytic activity observed for the composite of 6:1 volume ratios of PANI to Ag(NH{sub 3}){sub 2}OH (0.04 M). - Abstract: A modified glassy carbon electrode with silver nanoparticles–polyaniline nanotubes (AgNPs–PANINTs) composite is used as a non-enzymatic nanobiosensor for detecting hydrogen peroxide (H{sub 2}O{sub 2}). The electrocatalytic activity for the reduction was strongly affected by the concentration of silver ammonia solution in the nanocomposites, with the best electrocatalytic activity observed for the composite of 6:1 volume ratios of PANI to Ag(NH{sub 3}){sub 2}OH (0.04 M). Field emission scanning electron microscope images and their size distribution diagrams indicated that using the silver ammonia complex instead of silver nitrate caused uniform distribution of nanometer-sized silver nanoparticles with a narrow size distribution in the composite. The corresponding calibration curve for the current response showed a linear detection range of 0.1–90 mM (R{sup 2} = 0.9986), while the limit of detection was estimated to be 0.2 μM at the signal to noise ratio of 3.

  4. Vertically grown zinc oxide nanorods functionalized with ferric oxide for in vivo and non-enzymatic glucose detection

    Science.gov (United States)

    Marie, Mohammed; Manoharan, Anishkumar; Kuchuk, Andrian; Ang, Simon; Manasreh, M. O.

    2018-03-01

    An enzyme-free glucose sensor based on vertically grown zinc oxide nanorods (NRs) functionalized with ferric oxide (Fe2O3) is investigated. The well-aligned and high density ZnO NRs were synthesized on an FTO/glass substrate by a sol-gel and hydrothermal growth method. A dip-coating technique was utilized to modify the surface of the as-grown ZnO NRs with Fe2O3. The immobilized surface was coated with a layer of nafion membrane. The fabricated glucose sensor was characterized amperometrically at room temperature using three electrodes stationed in the phosphate buffer solution, where ZnO NRs/Fe2O3/nafion membrane was the sensing or working electrode, and platinum plate and silver/silver chloride were used as the counter and reference electrodes, respectively. The proposed non-enzymatic and modified glucose sensor exhibited a high sensitivity in the order of 0.052 μA cm-2 (mg/dL)-1, a lower detection limit of around 0.95 mmol L-1, a sharp and fast response time of ˜1 s, and a linear response to changes in glucose concentrations from 100-400 mg dL-1. The linear amperometric response of the sensor covers the physiological and clinical interest of glucose levels for diabetic patients. The device continues to function accurately after multiple measurements with a good reproducibility. The proposed glucose sensor is expected to be used clinically for in vivo monitoring of glucose.

  5. Electrodeposition of flower-like platinum on electrophoretically grown nitrogen-doped graphene as a highly sensitive electrochemical non-enzymatic biosensor for hydrogen peroxide detection

    Energy Technology Data Exchange (ETDEWEB)

    Tajabadi, M.T. [University Malaya Centre for Ionic Liquids, Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603 (Malaysia); Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603 (Malaysia); Sookhakian, M., E-mail: m.sokhakian@gmail.com [University Malaya Centre for Ionic Liquids, Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603 (Malaysia); Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603 (Malaysia); Department of Mechanical Convergence Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 133-791, Korea (Korea, Republic of); Zalnezhad, E., E-mail: erfan@hanyang.ac.kr [Department of Mechanical Convergence Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 133-791, Korea (Korea, Republic of); Yoon, G.H. [Department of Mechanical Convergence Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 133-791, Korea (Korea, Republic of); Hamouda, A.M.S. [Mechanical and Industrial Engineering Department, College of Engineering, Qatar University, 2713, Doha (Qatar); Azarang, Majid [Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603 (Malaysia); Basirun, W.J. [Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603 (Malaysia); Institute of Nanotechnology & Catalysis Research, Institute of Postgraduate Studies, University Malaya, 50603 Kuala Lumpur (Malaysia); Alias, Y., E-mail: yatimah70@um.edu.my [University Malaya Centre for Ionic Liquids, Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603 (Malaysia); Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603 (Malaysia)

    2016-11-15

    Highlights: • Nitrogen doped graphene with different thickness by electrophoretic deposition. • The conductivity of N-graphene layer depends on the tickness. • Support of platinum shows efficient electrocatalytic performance for biosensor. • CV curves and amperometric responses improved and optimized in the presence of N-graphene. - Abstract: An efficient non-enzymatic biosensor electrode consisting of nitrogen-doped graphene (N-graphene) and platinum nanoflower (Pt NF) with different N-graphene loadings were fabricated on indium tin oxide (ITO) glass using a simple layer-by-layer electrophoretic and electrochemical sequential deposition approach. N-graphene was synthesized by annealing graphene oxide with urea at 900 °C. The structure and morphology of the as-fabricated non-enzymatic biosensor electrodes were determined using X-ray diffraction, field emission electron microscopy, transmission electron microscopy, Raman and X-ray photoelectron spectra. The as-fabricated Pt NF-N-graphene-modified ITO electrodes with different N-graphene loadings were utilized as a non-enzymatic biosensor electrode for the detection of hydrogen peroxide (H{sub 2}O{sub 2}). The behaviors of the hybrid electrodes towards H{sub 2}O{sub 2} reduction were assessed using chronoamperometry, cyclic voltammetry and electrochemical impedance spectroscopy analysis. The Pt NF-N-graphene-modified ITO electrode with a 0.05 mg ml{sup −1} N-graphene loading exhibited the lowest detection limit, fastest amperometric sensing, a wide linear response range, excellent stability and reproducibility for the non-enzymatic H{sub 2}O{sub 2} detection, due to the synergistic effect between the electrocatalytic activity of the Pt NF and the high conductivity and large surface area of N-graphene.

  6. Electrodeposition of flower-like platinum on electrophoretically grown nitrogen-doped graphene as a highly sensitive electrochemical non-enzymatic biosensor for hydrogen peroxide detection

    International Nuclear Information System (INIS)

    Tajabadi, M.T.; Sookhakian, M.; Zalnezhad, E.; Yoon, G.H.; Hamouda, A.M.S.; Azarang, Majid; Basirun, W.J.; Alias, Y.

    2016-01-01

    Highlights: • Nitrogen doped graphene with different thickness by electrophoretic deposition. • The conductivity of N-graphene layer depends on the tickness. • Support of platinum shows efficient electrocatalytic performance for biosensor. • CV curves and amperometric responses improved and optimized in the presence of N-graphene. - Abstract: An efficient non-enzymatic biosensor electrode consisting of nitrogen-doped graphene (N-graphene) and platinum nanoflower (Pt NF) with different N-graphene loadings were fabricated on indium tin oxide (ITO) glass using a simple layer-by-layer electrophoretic and electrochemical sequential deposition approach. N-graphene was synthesized by annealing graphene oxide with urea at 900 °C. The structure and morphology of the as-fabricated non-enzymatic biosensor electrodes were determined using X-ray diffraction, field emission electron microscopy, transmission electron microscopy, Raman and X-ray photoelectron spectra. The as-fabricated Pt NF-N-graphene-modified ITO electrodes with different N-graphene loadings were utilized as a non-enzymatic biosensor electrode for the detection of hydrogen peroxide (H_2O_2). The behaviors of the hybrid electrodes towards H_2O_2 reduction were assessed using chronoamperometry, cyclic voltammetry and electrochemical impedance spectroscopy analysis. The Pt NF-N-graphene-modified ITO electrode with a 0.05 mg ml"−"1 N-graphene loading exhibited the lowest detection limit, fastest amperometric sensing, a wide linear response range, excellent stability and reproducibility for the non-enzymatic H_2O_2 detection, due to the synergistic effect between the electrocatalytic activity of the Pt NF and the high conductivity and large surface area of N-graphene.

  7. Technical Report for a Study on the Mechanism and Control of Non-Enzymatic Browning Reaction in Gamma-Irradiated Food

    Energy Technology Data Exchange (ETDEWEB)

    Byun, Myung Woo; Lee, Ju Woon; Kim, Jae Hun

    2007-01-15

    Gamma irradiation leads to a non-enzymatic browning reaction (carbonyl -amine reaction) in an aqueous system similar to those induced in a heated one. This reaction may influence the changes of the color in irradiated foods. The intensity of the reaction was dependent on the type of the sugar, if the occurrence is by irradiation or by heating. There was a difference in the browning reaction between irradiation and heating. Although no browning was observed in the heated solution of the non-reducing sugar, the formation of colored products was observed in the irradiated sucrose-lysine solution. It could be explained on the basis that irradiation promotes the breakdown of the glycosidic linkages of the disaccharide, sucrose and the produce of a reducing power. The high molecular weight melanoidin (> MW 12,000-14,000 Da) was produced by gamma irradiation from the non-enzymatic browning reaction between glucose and glycine. The structure of melanoidin was similar to melanodin from heat processing. The results suggested that gamma-irradiation occurred the non-enzymatic browning reaction that is similar the reaction by heat processing. Non-enzymatic browning reaction during gamma-irradiation processing was greatly influenced by pH and medium of reaction system. The brown color development of irradiated sugar solutions with and without glycine is more increased in buffer system especially with alkaline pH than DDW. When food is irradiated, off-color such as browning can be produced due to the non-enzymatic browning reaction and it is influenced by other ions and/or pH of system. This suggests that the browning of irradiated food might be retarded by lowering the pH of the system. Gamma-irradiation produce the free radical and the radiolysis products of sugar and glycine and then they may be condensed to colored products during post-irradiation. However, when the food is irradiated in frozen state, the production of free radical and radiolysis product is inhibited and it

  8. Technical Report for a Study on the Mechanism and Control of Non-Enzymatic Browning Reaction in Gamma-Irradiated Food

    International Nuclear Information System (INIS)

    Byun, Myung Woo; Lee, Ju Woon; Kim, Jae Hun

    2007-01-01

    Gamma irradiation leads to a non-enzymatic browning reaction (carbonyl -amine reaction) in an aqueous system similar to those induced in a heated one. This reaction may influence the changes of the color in irradiated foods. The intensity of the reaction was dependent on the type of the sugar, if the occurrence is by irradiation or by heating. There was a difference in the browning reaction between irradiation and heating. Although no browning was observed in the heated solution of the non-reducing sugar, the formation of colored products was observed in the irradiated sucrose-lysine solution. It could be explained on the basis that irradiation promotes the breakdown of the glycosidic linkages of the disaccharide, sucrose and the produce of a reducing power. The high molecular weight melanoidin (> MW 12,000-14,000 Da) was produced by gamma irradiation from the non-enzymatic browning reaction between glucose and glycine. The structure of melanoidin was similar to melanodin from heat processing. The results suggested that gamma-irradiation occurred the non-enzymatic browning reaction that is similar the reaction by heat processing. Non-enzymatic browning reaction during gamma-irradiation processing was greatly influenced by pH and medium of reaction system. The brown color development of irradiated sugar solutions with and without glycine is more increased in buffer system especially with alkaline pH than DDW. When food is irradiated, off-color such as browning can be produced due to the non-enzymatic browning reaction and it is influenced by other ions and/or pH of system. This suggests that the browning of irradiated food might be retarded by lowering the pH of the system. Gamma-irradiation produce the free radical and the radiolysis products of sugar and glycine and then they may be condensed to colored products during post-irradiation. However, when the food is irradiated in frozen state, the production of free radical and radiolysis product is inhibited and it

  9. MnO_x/C nanocomposite: An insight on high-performance supercapacitor and non-enzymatic hydrogen peroxide detection

    International Nuclear Information System (INIS)

    Ahuja, Preety; Kumar Ujjain, Sanjeev; Kanojia, Rajni

    2017-01-01

    Graphical abstract: In-situ inclusion of carbon matrix during growth of MnO_x nanoparticles resulted in MnO_x/C nanocomposite with enhanced electronic diffusion leading to high energy/power densities supercapacitor and highly sensitive H_2O_2 sensor. - Highlights: • MnO_x/C, synthesized via microemulsion method, is electrochemically investigated towards supercapacitor and sensing applications. • In-situ inclusion of conducting carbon in manganese oxide enhances the network conductivity facilitating the charge transfer process. • It provides high energy and power density, 31.6 Wh kg"−"1 and 3.8 kW kg"−"1 respectively, with short relaxation time ∼3 ms for fabricated cell. • MnO_x/C as sensor, exhibits excellent catalytic activity toward H_2O_2 oxidation and offer high sensitivity with low detection limit. - Abstract: In this work, we have used microemulsion method for synthesis of MnO_x/C nanocomposite and investigated its electrochemical properties via fabrication of supercapacitor and non-enzymatic hydrogen peroxide (H_2O_2) sensor. In-situ inclusion of conducting carbon in manganese oxide (MnO_x/C) enhances the network conductivity facilitating the charge transfer process which is beneficial for supercapacitor and sensing applications. MnO_x/C provides high energy and power density, 31.6 Wh kg"−"1 and 3.8 kW kg"−"1 respectively and short relaxation time ∼3 ms for fabricated cell (MnO_x/C//MnO_x/C) endowing excellent power delivery capacity. Furthermore, MnO_x/C as sensor, exhibits excellent catalytic activity toward the oxidation of H_2O_2 and shows high sensitivity (0.37 mA mM"−"1 cm"−"2) with low detection limit (0.5 μM at an S/N of 3). Hence, this study provides new avenue for high performance supercapacitor and H_2O_2 detection.

  10. Synthesis of highly dispersed Pt nanoclusters anchored graphene composites and their application for non-enzymatic glucose sensing

    International Nuclear Information System (INIS)

    Chang, Gang; Shu, Honghui; Huang, Qiwei; Oyama, Munetaka; Ji, Kai; Liu, Xiong; He, Yunbin

    2015-01-01

    Highlights: • PtNCs/graphene (PVP) composites were obtained by a clean and facile method. • The addition of graphene effectively promotes the catalytic performance of composites. • The highly dispersed PtNCs show superior electrocatalytic activity to glucose oxidation. • PtNCs/graphene (PVP) composites exhibit excellent stability and selectivity for nonenzymatic glucose detection. - Abstract: A facile and clean method by using ascorbic acid as mild reductant was developed to synthesize nanocomposites of graphene and platinum nanoclusters (PtNCs/graphene), in which Polyvinyl-Pyrrolidone (PVP) was added during the one-step reductive process so as to improve the dispersity of PtNCs on the graphene and decrease the size of PtNCs. By several characterization methods such as X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS), we demonstrated that Pt nanoclusters have successfully anchored on the surface of graphene sheets with average diameter of 22 nm. It was found that with the assistant of PVP, Pt nanoclusters appeared with smaller particle size and narrower particle size distribution. Cyclic voltammetry and amperometric methods were used to evaluate the electro-catalytic activity of the synthesized nanocomposites toward the oxidation of glucose in neutral media (0.1 M PBS, pH 7.4). The PtNCs/graphene exhibited a rapid response time (about 3 s), a broad linear range (1 mM to 25 mM), good stability, and sensitivity estimated to be 1.21 μA cm −2 mM −1 (R = 0.995, 71.9 μA cm −2 mM −1 vs. geometric area). Additionally, the impact from the oxidation of interferences can be effectively limited by choosing the appropriate detection potential. These results indicated a great potential of PtNCs/graphene in fabricating novel non-enzymatic glucose sensors with high performance

  11. Synthesis of new copper nanoparticle-decorated anchored type ligands: Applications as non-enzymatic electrochemical sensors for hydrogen peroxide

    Energy Technology Data Exchange (ETDEWEB)

    Ensafi, Ali A., E-mail: Ensafi@cc.iut.ac.ir; Zandi-Atashbar, N.; Ghiaci, M.; Taghizadeh, M.; Rezaei, B.

    2015-02-01

    In this work, copper nanoparticles (CuNPs) decorated on two new anchored type ligands were utilized to prepare two electrochemical sensors. These ligands are made from bonding amine chains to silica support including SiO{sub 2}–pro–NH{sub 2} (compound I) and SiO{sub 2}–pro–NH–cyanuric–NH{sub 2} (compound II). The morphology of synthesized CuNPs was characterized by transmission electron microscopy (TEM). The nano-particles were in the range of 13–37 nm with the average size of 23 nm. These materials were used to modify carbon paste electrode. Different electrochemical techniques, including cyclic voltammetry, electrochemical impedance spectroscopy and hydrodynamic chronoamperometry, were used to study the sensor behavior. These electrochemical sensors were used as a model for non-enzymatic detection of hydrogen peroxide (H{sub 2}O{sub 2}). To evaluate the abilities of the modified electrodes for H{sub 2}O{sub 2} detection, the electrochemical signals were compared in the absence and presence of H{sub 2}O{sub 2}. From them, two modified electrodes showed significant responses vs. H{sub 2}O{sub 2} addition. The amperograms illustrated that the sensors were selective for H{sub 2}O{sub 2} sensing with linear ranges of 5.14–1250 μmol L{sup −1} and 1.14–1120 μmol L{sup −1} with detection limits of 0.85 and 0.27 μmol L{sup −1} H{sub 2}O{sub 2}, sensitivities of 3545 and 11,293 μA mmol{sup −1} L and with response times less than 5 s for I/CPE and II/CPE, respectively. As further verification of the selected sensor, H{sub 2}O{sub 2} contained in milk sample was analyzed and the obtained results were comparable with the ones from classical control titration method. - Highlights: • Copper nanoparticles decorating on two new anchored type ligands were prepared. • Ligands are bonding to silica support as SiO{sub 2}–pro–NH{sub 2} and SiO{sub 2}–pro–NH–cyanuric–NH{sub 2}. • These materials were used as electrochemical sensors for H

  12. Biological variability of glycated hemoglobin.

    Science.gov (United States)

    Braga, Federica; Dolci, Alberto; Mosca, Andrea; Panteghini, Mauro

    2010-11-11

    The measurement of glycated hemoglobin (HbA(1c)) has a pivotal role in monitoring glycemic state in diabetic patients. Furthermore, the American Diabetes Association has recently recommended the use of HbA(1c) for diabetes diagnosis, but a clear definition of the clinically allowable measurement error is still lacking. Information on biological variability of the analyte can be used to achieve this goal. We systematically reviewed the published studies on the biological variation of HbA(1c) to check consistency of available data in order to accurately define analytical goals. The nine recruited studies were limited by choice of analytic methodology, population selection, protocol application and statistical analyses. There is an urgent need to determine biological variability of HbA(1c) using a specific and traceable assay, appropriate protocol and appropriate statistical evaluation of data. 2010 Elsevier B.V. All rights reserved.

  13. Glycated albumin: from biochemistry and laboratory medicine to clinical practice.

    Science.gov (United States)

    Dozio, Elena; Di Gaetano, Nicola; Findeisen, Peter; Corsi Romanelli, Massimiliano Marco

    2017-03-01

    This review summarizes current knowledge about glycated albumin. We review the changes induced by glycation on the properties of albumin, the pathological implications of high glycated albumin levels, glycated albumin quantification methods, and the use of glycated albumin as a complementary biomarker for diabetes mellitus diagnosis and monitoring and for dealing with long-term complications. The advantages and limits of this biomarker in different clinical settings are also discussed.

  14. Relationship between glycated haemoglobin and fasting plasma ...

    African Journals Online (AJOL)

    Emmanuel Musenge

    2016-07-30

    Jul 30, 2016 ... Relationship between glycated haemoglobin and fasting plasma glucose ... major stakeholders in the management of diabetes mellitus to consider FPG as an ..... HbA1c among customers of health examination services.

  15. The ethylene glycol template assisted hydrothermal synthesis of Co3O4 nanowires; structural characterization and their application as glucose non-enzymatic sensor

    International Nuclear Information System (INIS)

    Khun, K.; Ibupoto, Z.H.; Liu, X.; Beni, V.; Willander, M.

    2015-01-01

    Highlights: • Ethylene glycol assisted Co 3 O 4 nanowires were synthesized by hydrothermal method. • The grown Co 3 O 4 nanowires were used for sensitive non-enzymatic glucose sensor. • The proposed glucose sensor shows a wide linear range with fast response. • The Co 3 O 4 modified electrode is a highly specific enzyme-less glucose sensor. - Abstract: In the work reported herein the ethylene glycol template assisted hydrothermal synthesis, onto Au substrate, of thin and highly dense cobalt oxide (Co 3 O 4 ) nanowires and their characterization and their application for non-enzymatic glucose sensing are reported. The structure and composition of Co 3 O 4 nanowires have been fully characterized using scanning electron microscopy, X-ray diffraction, high resolution transmission electron microscopy and X-ray photoelectron spectroscopy. The synthesized Co 3 O 4 nanowires resulted to have high purity and showed diameter of approximately 10 nm. The prepared Co 3 O 4 nanowires coated gold electrodes were applied to the non-enzymatic detection of glucose. The developed sensor showed high sensitivity (4.58 × 10 1 μA mM −1 cm −2 ), a wide linear range of concentration (1.00 × 10 −4 –1.2 × 10 1 mM) and a detection limit of 2.65 × 10 −5 mM. The developed glucose sensor has also shown to be very stable and selective over interferents such as uric acid and ascorbic acid. Furthermore, the proposed fabrication process was shown to be highly reproducible response (over nine electrodes)

  16. Non-enzymatic hydrogen peroxide biosensor based on rose-shaped FeMoO4 nanostructures produced by convenient microwave-hydrothermal method

    International Nuclear Information System (INIS)

    Liu, Hongying; Gu, Chunchuan; Li, Dujuan; Zhang, Mingzhen

    2015-01-01

    Graphical abstract: A non-enzymatic H 2 O 2 sensor with high selectivity and sensitivity based on rose-shaped FeMoO 4 synthesized by the convenient microwave-assisted hydrothermal method, was fabricated. - Highlights: • Rose-shaped FeMoO 4 is synthesized within 10 min via microwave-assisted hydrothermal approach. • Non-enzymatic hydrogen peroxide biosensor based on FeMoO 4 nanomaterials is fabricated. • The biosensor exhibits good performance. - Abstract: In this work, we demonstrated a simple, rapid and reliable microwave-assisted hydrothermal approach to synthesize the uniform rose-shaped FeMoO 4 within 10 min. The morphologies of the synthesized materials were characterized by X-ray powder diffraction and scanning electron microscopy. Moreover, a non-enzymatic amperometric sensor for the detection of hydrogen peroxide (H 2 O 2 ) was fabricated on the basis of the FeMoO 4 as electrocatalysis. The resulting FeMoO 4 exhibited high sensitivity and good stability for the detection of H 2 O 2 , which may be attributed to the rose-shaped structure of the material and the catalytic property of FeMoO 4 . Amperometric response showed that the modified electrode had a good response for H 2 O 2 with a linear range from 1 μM to 1.6 mM, a detection limit of 0.5 μM (S/N = 3), high selectivity and short response time. Additionally, good recoveries of analytes in real milk samples confirm the reliability of the prepared sensor in practical applications

  17. Dual functional rhodium oxide nanocorals enabled sensor for both non-enzymatic glucose and solid-state pH sensing.

    Science.gov (United States)

    Dong, Qiuchen; Huang, Yikun; Song, Donghui; Wu, Huixiang; Cao, Fei; Lei, Yu

    2018-07-30

    Both pH-sensitive and glucose-responsive rhodium oxide nanocorals (Rh 2 O 3 NCs) were synthesized through electrospinning followed by high-temperature calcination. The as-prepared Rh 2 O 3 NCs were systematically characterized using various advanced techniques including scanning electron microscopy, X-ray powder diffraction and Raman spectroscopy, and then employed as a dual functional nanomaterial to fabricate a dual sensor for both non-enzymatic glucose sensing and solid-state pH monitoring. The sensing performance of the Rh 2 O 3 NCs based dual sensor toward pH and glucose was evaluated using open circuit potential, cyclic voltammetry and amperometric techniques, respectively. The results show that the as-prepared Rh 2 O 3 NCs not only maintain accurate and reversible pH sensitivity of Rh 2 O 3 , but also demonstrate a good electrocatalytic activity toward glucose oxidation in alkaline medium with a sensitivity of 11.46 μA mM -1 cm -2 , a limit of detection of 3.1 μM (S/N = 3), and a reasonable selectivity against various interferents in non-enzymatic glucose detection. Its accuracy in determining glucose in human serum samples was further demonstrated. These features indicate that the as-prepared Rh 2 O 3 NCs hold great promise as a dual-functional sensing material in the development of a high-performance sensor forManjakkal both solid-state pH and non-enzymatic glucose sensing. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Non-enzymatic hydrogen peroxide biosensor based on rose-shaped FeMoO{sub 4} nanostructures produced by convenient microwave-hydrothermal method

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hongying, E-mail: liuhongying@hdu.edu.cn [College of Life Information Science & Instrument Engineering, Hangzhou Dianzi University, Zhejiang, Hangzhou 310018 (China); Gu, Chunchuan [Department of Clinical Laboratory, Hangzhou Cancer Hospital, Zhejiang, Hangzhou 310002 (China); Li, Dujuan; Zhang, Mingzhen [College of Life Information Science & Instrument Engineering, Hangzhou Dianzi University, Zhejiang, Hangzhou 310018 (China)

    2015-04-15

    Graphical abstract: A non-enzymatic H{sub 2}O{sub 2} sensor with high selectivity and sensitivity based on rose-shaped FeMoO{sub 4} synthesized by the convenient microwave-assisted hydrothermal method, was fabricated. - Highlights: • Rose-shaped FeMoO{sub 4} is synthesized within 10 min via microwave-assisted hydrothermal approach. • Non-enzymatic hydrogen peroxide biosensor based on FeMoO{sub 4} nanomaterials is fabricated. • The biosensor exhibits good performance. - Abstract: In this work, we demonstrated a simple, rapid and reliable microwave-assisted hydrothermal approach to synthesize the uniform rose-shaped FeMoO{sub 4} within 10 min. The morphologies of the synthesized materials were characterized by X-ray powder diffraction and scanning electron microscopy. Moreover, a non-enzymatic amperometric sensor for the detection of hydrogen peroxide (H{sub 2}O{sub 2}) was fabricated on the basis of the FeMoO{sub 4} as electrocatalysis. The resulting FeMoO{sub 4} exhibited high sensitivity and good stability for the detection of H{sub 2}O{sub 2}, which may be attributed to the rose-shaped structure of the material and the catalytic property of FeMoO{sub 4}. Amperometric response showed that the modified electrode had a good response for H{sub 2}O{sub 2} with a linear range from 1 μM to 1.6 mM, a detection limit of 0.5 μM (S/N = 3), high selectivity and short response time. Additionally, good recoveries of analytes in real milk samples confirm the reliability of the prepared sensor in practical applications.

  19. The ethylene glycol template assisted hydrothermal synthesis of Co{sub 3}O{sub 4} nanowires; structural characterization and their application as glucose non-enzymatic sensor

    Energy Technology Data Exchange (ETDEWEB)

    Khun, K., E-mail: kimleang.khun@liu.se [Department of Science and Technology, Linköping University, SE-60174 Norrköping (Sweden); Ibupoto, Z.H. [Dr M.A. Kazi Institute of Chemistry, University of Sindh Jamshoro, Sindh Jamshoro (Pakistan); Liu, X. [Department of Physics, Chemistry and Biology, Linköping University, 58183 Linköping (Sweden); Beni, V. [Biosensors and Biolelectronics Centre, Department of Physics, Chemistry and Biology, Linköping University, 58183 Linköping (Sweden); Willander, M. [Department of Science and Technology, Linköping University, SE-60174 Norrköping (Sweden)

    2015-04-15

    Highlights: • Ethylene glycol assisted Co{sub 3}O{sub 4} nanowires were synthesized by hydrothermal method. • The grown Co{sub 3}O{sub 4} nanowires were used for sensitive non-enzymatic glucose sensor. • The proposed glucose sensor shows a wide linear range with fast response. • The Co{sub 3}O{sub 4} modified electrode is a highly specific enzyme-less glucose sensor. - Abstract: In the work reported herein the ethylene glycol template assisted hydrothermal synthesis, onto Au substrate, of thin and highly dense cobalt oxide (Co{sub 3}O{sub 4}) nanowires and their characterization and their application for non-enzymatic glucose sensing are reported. The structure and composition of Co{sub 3}O{sub 4} nanowires have been fully characterized using scanning electron microscopy, X-ray diffraction, high resolution transmission electron microscopy and X-ray photoelectron spectroscopy. The synthesized Co{sub 3}O{sub 4} nanowires resulted to have high purity and showed diameter of approximately 10 nm. The prepared Co{sub 3}O{sub 4} nanowires coated gold electrodes were applied to the non-enzymatic detection of glucose. The developed sensor showed high sensitivity (4.58 × 10{sup 1} μA mM{sup −1} cm{sup −2}), a wide linear range of concentration (1.00 × 10{sup −4}–1.2 × 10{sup 1} mM) and a detection limit of 2.65 × 10{sup −5} mM. The developed glucose sensor has also shown to be very stable and selective over interferents such as uric acid and ascorbic acid. Furthermore, the proposed fabrication process was shown to be highly reproducible response (over nine electrodes)

  20. Non-enzymatic glycosylation of a type I collagen matrix: effects on osteoblastic development and oxidative stress

    Directory of Open Access Journals (Sweden)

    Barrio Daniel A

    2001-08-01

    Full Text Available Abstract Background The tissue accumulation of protein-bound advanced glycation endproducts (AGE may be involved in the etiology of diabetic chronic complications, including osteopenia. The aim of this study was to investigate the effect of an AGE-modified type I collagen substratum on the adhesion, spreading, proliferation and differentiation of rat osteosarcoma UMR106 and mouse non-transformed MC3T3E1 osteoblastic cells. We also studied the role of reactive oxygen species (ROS and nitric oxide synthase (NOS expression on these AGE-collagen mediated effects. Results AGE-collagen decreased the adhesion of UMR106 cells, but had no effect on the attachment of MC3T3E1 cells. In the UMR106 cell line, AGE-collagen also inhibited cellular proliferation, spreading and alkaline phosphatase (ALP activity. In preosteoblastic MC3T3E1 cells (24-hour culture, proliferation and spreading were significantly increased by AGE-collagen. After one week of culture (differentiated MC3T3E1 osteoblasts AGE-collagen inhibited ALP activity, but had no effect on cell number. In mineralizing MC3T3E1 cells (3-week culture AGE-collagen induced a decrease in the number of surviving cells and of extracellular nodules of mineralization, without modifying their ALP activity. Intracellular ROS production, measured after a 48-hour culture, was decreased by AGE-collagen in MC3T3E1 cells, but was increased by AGE-collagen in UMR106 cells. After a 24-hour culture, AGE-collagen increased the expression of endothelial and inducible NOS, in both osteoblastic cell lines. Conclusions These results suggest that the accumulation of AGE on bone extracellular matrix could regulate the proliferation and differentiation of osteoblastic cells. These effects appear to depend on the stage of osteoblastic development, and possibly involve the modulation of NOS expression and intracellular ROS pathways.

  1. Non-enzymatic N -acetylation of Lysine Residues by AcetylCoA Often Occurs via a Proximal S -acetylated Thiol Intermediate Sensitive to Glyoxalase II

    OpenAIRE

    James, Andrew M.; Hoogewijs, Kurt; Logan, Angela; Hall, Andrew R.; Ding, Shujing; Fearnley, Ian M.; Murphy, Michael P.

    2017-01-01

    Summary: Acetyl coenzyme A (AcCoA), a key intermediate in mitochondrial metabolism, N-acetylates lysine residues, disrupting and, in some cases, regulating protein function. The mitochondrial lysine deacetylase Sirtuin 3 (Sirt3) reverses this modification with benefits reported in diabetes, obesity, and aging. We show that non-enzymatic lysine N-acetylation by AcCoA is greatly enhanced by initial acetylation of a cysteine residue, followed by SN-transfer of the acetyl moiety to a nearby lysin...

  2. Plasma disappearance of glycated and non-glycated albumin in type 1 (insulin-dependent) diabetes mellitus

    DEFF Research Database (Denmark)

    Bent-Hansen, L; Feldt-Rasmussen, B; Kverneland, Arne

    1993-01-01

    transport ratio) was determined from the disappearance data. The index was high in control subjects (1.021 +/- 0.0057 (SEM)). This reflects a mean difference between the two escape rates of 2.1% per hour (for comparison the mean of the fractional escape rate of non-glycated albumin of the normal control......The fractional plasma escape rates of glycated and non-glycated albumin have earlier been measured in groups of Type 1 (insulin-dependent) diabetic patients and control subjects. The escape of non-glycated albumin was similar in control subjects and normoalbuminuric patients, but elevated...... in patients with micro or macroalbuminuria. In all groups the escape rate of glycated albumin was lower than that of non-glycated albumin. Glycation increases the anionic charge of albumin. To assay for charge-dependent alterations of transport a selectivity index (non-glycated albumin/glycated albumin...

  3. Construction of a non-enzymatic sensor based on the poly(o-phenylenediamine)/Ag-NPs composites for detecting glucose in blood

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jinxiang; Wang, Meirong [College of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Environmental Engineering and Monitoring, Yangzhou University, 180 Si–Wang–Ting Road, Yangzhou 225002 (China); Guan, Jun [Clinical Medical College of Yangzhou University, Subei People' s Hospital of Jiangsu Province, Yangzhou 225002 (China); Wang, Chengyin, E-mail: wangcy@yzu.edu.cn [College of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Environmental Engineering and Monitoring, Yangzhou University, 180 Si–Wang–Ting Road, Yangzhou 225002 (China); Wang, Guoxiu [School of Mathematical and Physical Sciences, University of Technology Sydney, City Campus, Broadway, Sydney, NSW 2007 (Australia)

    2017-02-01

    A non-enzymatic glucose sensor, based on the silver nanoparticles (Ag-NPs)/poly (o-phenylenediamine) (PoPD) composites, is developed by the electrochemical polymerization of o-phenylenediamine and electrodeposition of silver nanoparticles on an indium tin oxide electrode. The Ag-NPs/PoPD composites are characterized by atomic force microscopy, scanning electronic microscopy and energy dispersive spectrometer. Under the optimized experimental conditions, the proposed glucose sensor demonstrates a wide linear range from 0.15 to 13 mmol L{sup −1} with a correlation coefficient of 0.998. The proposed glucose sensor can be used to detect glucose in blood sample with a satisfactory result. In addition, the proposed sensor presents the advantages, such as facile preparation, low cost, high sensitivity and fast response time. It also exhibits good anti-interference performance and stability. - Highlights: • A facile AgNPs/PoPD/ITO modified sensor was developed for the first time. • The non-enzymatic sensor can detect glucose in human blood directly with a wide detection range. • This sensor is of rapid response, low cost, high sensitivity, and long-time stability.

  4. A CuNi/C Nanosheet Array Based on a Metal-Organic Framework Derivate as a Supersensitive Non-Enzymatic Glucose Sensor

    Science.gov (United States)

    Zhang, Li; Ye, Chen; Li, Xu; Ding, Yaru; Liang, Hongbo; Zhao, Guangyu; Wang, Yan

    2018-06-01

    Bimetal catalysts are good alternatives for non-enzymatic glucose sensors owing to their low cost, high activity, good conductivity, and ease of fabrication. In the present study, a self-supported CuNi/C electrode prepared by electrodepositing Cu nanoparticles on a Ni-based metal-organic framework (MOF) derivate was used as a non-enzymatic glucose sensor. The porous construction and carbon scaffold inherited from the Ni-MOF guarantee good kinetics of the electrode process in electrochemical glucose detection. Furthermore, Cu nanoparticles disturb the array structure of MOF derived films and evidently enhance their electrochemical performances in glucose detection. Electrochemical measurements indicate that the CuNi/C electrode possesses a high sensitivity of 17.12 mA mM-1 cm-2, a low detection limit of 66.67 nM, and a wider linearity range from 0.20 to 2.72 mM. Additionally, the electrode exhibits good reusability, reproducibility, and stability, thereby catering to the practical use of glucose sensors. Similar values of glucose concentrations in human blood serum samples are detected with our electrode and with the method involving glucose-6-phosphate dehydrogenase; the results further demonstrate the practical feasibility of our electrode.

  5. A green synthetic strategy of nickel hexacyanoferrate nanoparticals supported on the graphene substrate and its non-enzymatic amperometric sensing application

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Zhonghua, E-mail: xzh@nwnu.edu.cn [Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou 730070 (China); He, Nan [Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou 730070 (China); Rao, Honghong [College of Chemistry and Chemical Engineering, Lanzhou City University, Lanzhou, 730070 (China); Hu, Chenxian; Wang, Xiaofen; Wang, Hui; Liu, Xiuhui [Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou 730070 (China); Lu, Xiaoquan, E-mail: luxq@nwnu.edu.cn [Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou 730070 (China)

    2017-02-28

    Highlights: • A sensitive non-enzymatic glucose sensor was explored by using a facile and green strategy. • Well dispersed and uniform NiHCF nanoparticles can be effectively produced by the introduction of electrochemical reduction graphene oxide films. • Metal hexacyanoferrate as a potential electron mediator was proposed and applied into non-enzymatic sensing. - Abstract: Rapid glucose detection is a key requirement for both diagnosis and treatment of diabetes. A facile and green strategy to achieve spherical-shaped nickel hexacyanoferrate (NiHCF) nanoparticals supported on electrochemical reduction graphene oxide by using electrochemical cyclic voltammetry is explored. As a sensing substrate, electrochemical reduction graphene oxide deposited on a glassy carbon electrode surface exhibited obvious positive effect on the electrodeposition of NiHCF nanoparticals with spherical structure and thus effectively improved the electrical conductivity and electrochemical sensing of the proposed amperometric sensor. Proof-concept experiments demonstrated that the proposed nanocomposites modified electrode exhibited excellent sensitivity toward glucose oxidation as well as with a satisfying detection limit of 0.11 μM. More importantly, we also explore that as a simple, green and facile method, electrochemical technology can be employed and provide a new strategy for developing GO and metal hexacyanoferrate based amperometric sensing platform toward glucose and other biomolecules.

  6. Effect of topical application of fluoride gel NaF 2% on enzymatic and non-enzymatic antioxidant parameters of saliva.

    Science.gov (United States)

    Leite, Mariana Ferreira; Ferreira, Nayara Ferraz D'Assumpção; Shitsuka, Caleb David Willy Moreira; Lima, Amanda Martins; Masuyama, Mônica Miyuki; Sant'Anna, Giselle Rodrigues; Yamaguti, Paula Mochidome; Polotow, Tatiana G; de Barros, Marcelo Paes

    2012-06-01

    The aim of the study was to evaluate the effect of topical fluoride gel NaF 2% application on antioxidant parameters of whole saliva from children. The saliva mechanically stimulated with parafilm was collected from 25 children (6-12 years) attending the Clinic of Paediatric Dentistry of Universidade Cruzeiro do Sul, São Paulo, Brazil, before (control group) and immediately after application of neutral fluoride gel NaF 2% (fluoride-gel group), according to the Standards for Research Using Human Subjects, Resolution 196/96 of the USA National Health Council of 10/10/1996. Afterwards, pre-post ferric-reducing antioxidant power (FRAP), trolox-equivalent antioxidant capacity (TEAC), uric acid, reduced/oxidised glutathione content (GSH/GSSG) and total peroxidase activity (TPO) were evaluated in whole saliva of both groups. All non-enzymatic antioxidant parameters were augmented by fluoride-gel NaF 2% application, whereas a notable reduction (31%) of peroxidase activity was concomitantly observed in the children's saliva (p ≤ 0.05). Nevertheless, the reducing power of saliva was kept unaltered under these circumstances (p ≤ 0.05). Despite the reduced activity of peroxidase (an important antimicrobial and antioxidant enzyme), the topical fluoride gel NaF 2% favourably stimulated the release of non-enzymatic antioxidant components of saliva, sustaining the reducing power of saliva and the natural defences of the oral cavity. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. A green synthetic strategy of nickel hexacyanoferrate nanoparticals supported on the graphene substrate and its non-enzymatic amperometric sensing application

    International Nuclear Information System (INIS)

    Xue, Zhonghua; He, Nan; Rao, Honghong; Hu, Chenxian; Wang, Xiaofen; Wang, Hui; Liu, Xiuhui; Lu, Xiaoquan

    2017-01-01

    Highlights: • A sensitive non-enzymatic glucose sensor was explored by using a facile and green strategy. • Well dispersed and uniform NiHCF nanoparticles can be effectively produced by the introduction of electrochemical reduction graphene oxide films. • Metal hexacyanoferrate as a potential electron mediator was proposed and applied into non-enzymatic sensing. - Abstract: Rapid glucose detection is a key requirement for both diagnosis and treatment of diabetes. A facile and green strategy to achieve spherical-shaped nickel hexacyanoferrate (NiHCF) nanoparticals supported on electrochemical reduction graphene oxide by using electrochemical cyclic voltammetry is explored. As a sensing substrate, electrochemical reduction graphene oxide deposited on a glassy carbon electrode surface exhibited obvious positive effect on the electrodeposition of NiHCF nanoparticals with spherical structure and thus effectively improved the electrical conductivity and electrochemical sensing of the proposed amperometric sensor. Proof-concept experiments demonstrated that the proposed nanocomposites modified electrode exhibited excellent sensitivity toward glucose oxidation as well as with a satisfying detection limit of 0.11 μM. More importantly, we also explore that as a simple, green and facile method, electrochemical technology can be employed and provide a new strategy for developing GO and metal hexacyanoferrate based amperometric sensing platform toward glucose and other biomolecules.

  8. Fabrication and electrochemistry characteristics of nickel-doped diamond-like carbon film toward applications in non-enzymatic glucose detection

    Science.gov (United States)

    Liu, Chi-Wen; Chen, Wei-En; Sun, Yin Tung Albert; Lin, Chii-Ruey

    2018-04-01

    This research work focused on the fabrication of nickel-doped diamond-like carbon (DLC) films and their characteristics including of surface morphology, microstructure, and electrochemical aiming at applications in non-enzymatic glucose detection. Novel nanodiamond target was employed in unbalanced magnetron radio-frequency co-sputtering process to prepared high quality Ni-doped DLC thin film at room temperature. TEM analysis reveals a highly uniform distribution of Ni crystallites in amorphous carbon matrix with fraction ranged from 3 to 11.5 at.% which is considered as active sites for the glucose detection. Our cyclic voltammetry measurements using 0.1 M H2SO4 solution demonstrated that the as-prepared Ni-doped DLC films possess large electrochemical potential window of 2.12 V, and this was also observed to be significantly reduced at high Ni doping level owing to lower sp3 fraction. The non-enzymatic glucose detection investigation indicates that the Ni-doped DLC thin film electrode prepared under 7 W of DC sputtering power on Ni target possesses good detecting performance, high stability, and high sensitivity to glucose concentration up to 10 mM, even with the existence of uric acid and ascorbic acid. The peak current was observed to be proportional to glucose concentration and scanning rate, demonstrating highly reversibility redox process of the film electrode and glucose.

  9. Protective Effect of Slforafin on the Non-Enzymatic Antioxidants and Chromosomal Aberrations When Injected with Tc "9"9"m Tin colloid in Mice

    International Nuclear Information System (INIS)

    Alwan, I.F.; Abd-Karim, H.M.; Ahmood, A.M.; Mohamad, H.A.

    2015-01-01

    Study aims to evaluated the preventive effect of (Slforafin ) compound extracted from Broccoli plant to effect on Technetium"9"9"m irradiated isotope user to labeled Tin colloid and used in prevent several Tin colloid changes , antioxidant Non-Enzymatic ( vitamin A,E,C ) and some of the basic elements in serum , such as (Zn, Mn, Se, Mg and Cu) and (Chromosomal Aberrations ) in the bone marrow genes of laboratory animals .Slforafin compound was analyzed by High-performance liquid chromatography technique HPLC. Treated the laboratory animals daily with, concentration (200 mg / kg) of Slforafin Broccoli extract material through mouth for one week ,then were injected with (500 μci / 0.1 ml) doses of preparation Tc"9"9"m Tin colloidal.The results indicated that there are significant differences (p< 0.05) at the deviation level of Non- enzymatic changes and chromosomal genes and some of the basic elements in serum of the Non –treated laboratory animals with Slforafin compound compared with the group of animals treated with (Slforafin) and injected with the same radiation dose compared with the control laboratory animal groups .

  10. Recent advances in α-synuclein functions, advanced glycation, and toxicity: implications for Parkinson's disease.

    Science.gov (United States)

    Guerrero, Erika; Vasudevaraju, P; Hegde, Muralidhar L; Britton, G B; Rao, K S

    2013-04-01

    The toxicity of α-synuclein in the neuropathology of Parkinson's disease which includes its hallmark aggregation has been studied scrupulously in the last decade. Although little is known regarding the normal functions of α-synuclein, its association with membrane phospholipids suggests its potential role in signaling pathways. Following extensive evidences for its nuclear localization, we and others recently demonstrated DNA binding activity of α-synuclein that modulates its conformation as well as aggregation properties. Furthermore, we also underscored the similarities among various amyloidogenic proteins involved in neurodegenerative diseases including amyloid beta peptides and tau. Our more recent studies show that α-synuclein is glycated and glycosylated both in vitro and in neurons, significantly affecting its folding, oligomeric, and DNA binding properties. Glycated α-synuclein causes increased genome damage both via its direct interaction with DNA and by increased generation of reactive oxygen species as glycation byproduct. In this review, we discuss the mechanisms of glycation and other posttranslational modifications of α-synuclein, including phosphorylation and nitration, and their role in neuronal death in Parkinson's disease.

  11. Hepatocyte growth factor protects human endothelial cells against advanced glycation end products-induced apoposis

    International Nuclear Information System (INIS)

    Zhou Yijun; Wang Jiahe; Zhang Jin

    2006-01-01

    Advanced glycation end products (AGEs) form by a non-enzymatic reaction between reducing sugars and biological proteins, which play an important role in the pathogenesis of atherosclerosis. In this study, we assessed AGEs effects on human umbilical vein endothelial cells (HUVECs) growth, proliferation and apoptosis. Additionally, we investigated whether hepatocyte growth factor (HGF), an anti-apoptotic factor for endothelial cells, prevents AGEs-induced apoptosis of HUVECs. HUVECs were treated with AGEs in the presence or absence of HGF. Treatment of HUVECs with AGEs changed cell morphology, decreased cell viability, and induced DNA fragmentation, leading to apoptosis. Apoptosis was induced by AGEs in a dose- and time-dependent fashion. AGEs markedly elevated Bax and decreased NF-κB, but not Bcl-2 expression. Additionally, AGEs significantly inhibited cell growth through a pro-apoptotic action involving caspase-3 and -9 activations in HUVECs. Most importantly, pretreatment with HGF protected against AGEs-induced cytotoxicity in the endothelial cells. HGF significantly promoted the expression of Bcl-2 and NF-κB, while decreasing the activities of caspase-3 and -9 without affecting Bax level. Our data suggest that AGEs induce apoptosis in endothelial cells. HGF effectively attenuate AGEs-induced endothelial cell apoptosis. These findings provide new perspectives in the role of HGF in cardiovascular disease

  12. Advanced glycation end products and sorbitol in blood from differently compensated diabetic dogs.

    Science.gov (United States)

    Comazzi, S; Bertazzolo, W; Bonfanti, U; Spagnolo, V; Sartorelli, P

    2008-06-01

    Canine diabetes mellitus (DM) is a common metabolic disorder with long term complications, most of which are caused by glycosylation of structural proteins, decreases in antioxidant concentrations, altered osmotic balance and hypoxia due to impaired oxygen transport. Previous studies have demonstrated that under hyperglycemic conditions canine erythrocytes undergo swelling, probably due to activation of the polyol pathway. The present work aimed to assess the plasma concentration of advanced glycation end (AGE) products, stable Amadori-products generated by non-enzymatic glycosylation of proteins and the intracellular concentration of sorbitol, produced by the activation of polyol pathway in 34 blood samples from diabetic dogs and in 14 controls. AGE products were significantly higher (pdogs compared with control animals. The sorbitol concentration in erythrocytes was also significantly higher in diabetic dogs and, in particular, in poorly compensated animals and in dogs with ketonuria. In five cases that were analysed before and after clinical improvement, sorbitol concentration was found to correlate with improvement. These results suggest that non-specific glycosylation is increased and that the polyol pathway is activated in diabetic dogs in a manner that is proportionate to the severity of disease. Moreover, the concentration of AGE products and sorbitol may be useful for monitoring the onset of diabetic complications and assessing the most appropriate therapeutic approaches for management of canine DM.

  13. Advanced glycation endproducts form during ovalbumin digestion in the presence of fructose: Inhibition by chlorogenic acid.

    Science.gov (United States)

    Bains, Yasmin; Gugliucci, Alejandro; Caccavello, Russell

    2017-07-01

    One mechanism by which fructose could exert deleterious effects is through intestinal formation and absorption of pro-inflammatory advanced glycation endproducts via the Maillard reaction. We employed simulated stomach and duodenum digestion of ovalbumin (OVA) to test the hypothesis that advanced glycation endproducts (AGEs) are formed by fructose during simulated digestion of a ubiquitous food protein under model physiological conditions. OVA was subjected to simulated gastric and intestinal digestion using standard models, in presence of fructose or glucose (0-100mM). Peptide fractions were analyzed by fluorescence spectroscopy and intensity at Excitation: λ370nm, Emission: λ 440nm. AGE adducts formed between fructose and OVA, evidenced by the peptide fractions (fructose-AGE formation on a ubiquitous dietary protein under model physiological conditions. Our study also suggests ways to decrease the damage: enteral fructose-AGE formation may be partially inhibited by co-intake of beverages, fruits and vegetables with concentrations of phenolics high enough to serve as anti-glycation agents. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Open tubular capillary electrochromatography: A useful microreactor for collagen I glycation and interaction studies with low-density lipoprotein particles

    International Nuclear Information System (INIS)

    D'Ulivo, Lucia; Witos, Joanna; Ooerni, Katariina; Kovanen, Petri T.; Riekkola, Marja-Liisa

    2010-01-01

    Diabetes, a multifunctional disease and a major cause of morbidity and mortality in the industrialized countries, strongly associates with the development and progression of atherosclerosis. One of the consequences of high level of glucose in the blood circulation is glycation of long-lived proteins, such as collagen I, the most abundant component of the extracellular matrix (ECM) in the arterial wall. Glycation is a long-lasting process that involves the reaction between a carbonyl group of the sugar and an amino group of the protein, usually a lysine residue. This reaction generates an Amadori product that may evolve in advanced glycation end products (AGEs). AGEs, as reactive molecules, can provoke cross-linking of collagen I fibrils. Since binding of low-density lipoproteins (LDLs) to the ECM of the inner layer of the arterial wall, the intima, has been implicated to be involved in the onset of the development of an atherosclerotic plaque, collagen modifications, which can affect the affinity of native and oxidized LDL for collagen I, can promote the entrapment of LDLs in the intima and accelerate the progression of atherosclerosis. In this study, open tubular capillary electrochromatography is proposed as a new microreactor to study in situ glycation of collagen I. The kinetics of glycation was first investigated in a fused silica collagen I-coated capillary. Dimethyl sulphoxide, injected as an electroosmotic flow marker, gave information about the charge of coating. Native and oxidized LDL, and selected peptide fragments from apolipoprotein B-100, the protein covering LDL particles, were injected as marker compounds to clarify the interactions between LDLs and the glycated collagen I coating. The method proposed is simple and inexpensive, since only small amounts of collagen and LDL are required. Atomic force microscopy images complemented our studies, highlighting the difference between unmodified and glycated collagen I surfaces.

  15. Open tubular capillary electrochromatography: A useful microreactor for collagen I glycation and interaction studies with low-density lipoprotein particles

    Energy Technology Data Exchange (ETDEWEB)

    D' Ulivo, Lucia; Witos, Joanna [Laboratory of Analytical Chemistry, Department of Chemistry, P.O. Box 55, FIN-00014 University of Helsinki (Finland); Ooerni, Katariina; Kovanen, Petri T. [Wihuri Research Institute, Kalliolinnantie 4, FIN-00140, Helsinki (Finland); Riekkola, Marja-Liisa, E-mail: marja-liisa.riekkola@helsinki.fi [Laboratory of Analytical Chemistry, Department of Chemistry, P.O. Box 55, FIN-00014 University of Helsinki (Finland)

    2010-04-07

    Diabetes, a multifunctional disease and a major cause of morbidity and mortality in the industrialized countries, strongly associates with the development and progression of atherosclerosis. One of the consequences of high level of glucose in the blood circulation is glycation of long-lived proteins, such as collagen I, the most abundant component of the extracellular matrix (ECM) in the arterial wall. Glycation is a long-lasting process that involves the reaction between a carbonyl group of the sugar and an amino group of the protein, usually a lysine residue. This reaction generates an Amadori product that may evolve in advanced glycation end products (AGEs). AGEs, as reactive molecules, can provoke cross-linking of collagen I fibrils. Since binding of low-density lipoproteins (LDLs) to the ECM of the inner layer of the arterial wall, the intima, has been implicated to be involved in the onset of the development of an atherosclerotic plaque, collagen modifications, which can affect the affinity of native and oxidized LDL for collagen I, can promote the entrapment of LDLs in the intima and accelerate the progression of atherosclerosis. In this study, open tubular capillary electrochromatography is proposed as a new microreactor to study in situ glycation of collagen I. The kinetics of glycation was first investigated in a fused silica collagen I-coated capillary. Dimethyl sulphoxide, injected as an electroosmotic flow marker, gave information about the charge of coating. Native and oxidized LDL, and selected peptide fragments from apolipoprotein B-100, the protein covering LDL particles, were injected as marker compounds to clarify the interactions between LDLs and the glycated collagen I coating. The method proposed is simple and inexpensive, since only small amounts of collagen and LDL are required. Atomic force microscopy images complemented our studies, highlighting the difference between unmodified and glycated collagen I surfaces.

  16. Glycation inhibits trichloroacetic acid (TCA)-induced whey protein precipitation

    Science.gov (United States)

    Four different WPI saccharide conjugates were successfully prepared to test whether glycation could inhibit WPI precipitation induced by trichloroacetic acid (TCA). Conjugates molecular weights after glycation were analyzed with SDS-PAGE. No significant secondary structure change due to glycation wa...

  17. Impacts of dissolved organic matter on aqueous behavior of nano/micron-titanium nitride and their induced enzymatic/non-enzymatic antioxidant activities in Scenedesmus obliquus.

    Science.gov (United States)

    Zhang, Xin; Wang, Zhuang; Wang, Se; Fang, Hao; Zhang, Fan; Wang, De-Gao

    2017-01-02

    Freshwater dispersion stability and ecotoxicological effects of titanium nitride (TiN) with particle size of 20 nm, 50 nm, and 2-10 μm in the presence of dissolved organic matter (DOM) at various concentrations were studied. The TiN particles that had a more negative zeta potential and smaller hydrodynamic size showed more stable dispersion in an aqueous medium when DOM was present than when DOM was absent. Biochemical assays indicated that relative to the control, the TiN particles in the presence of DOM alleviated to some extent the antioxidative stress enzyme activity in Scenedesmus obliquus. In addition, it was found that the TiN with a primary size of 50 nm at a high concentration presented a significant impact on non-enzymatic antioxidant defense in algal cells.

  18. Impact of primary amine group from aminophospholipids and amino acids on marine phospholipids stability: Non-enzymatic browning and lipid oxidation

    DEFF Research Database (Denmark)

    Lu, Henna Fung Sieng; Nielsen, Nina Skall; Baron, Caroline P.

    2013-01-01

    The main objective of this study was to investigate the oxidative stability and non-enzymatic browning reactions of marine PL in the presence or in the absence of primary amine group from aminophospholipids and amino acids. Marine phospholipids liposomal dispersions were prepared from two authentic......) Strecker derived volatiles, (ii) yellowness index (YI), (iii) hydrophobic and (iv) hydrophilic pyrroles content. The oxidative stability of the samples was assessed through measurement of secondary lipid derived volatile oxidation products. The result showed that the presence of PE and amino acids caused...... the formation of pyrroles, generated Strecker derived volatiles, decreased the YI development and lowered lipid oxidation. The lower degree of lipid oxidation in liposomal dispersions containing amino acids might be attributed to antioxidative properties of pyrroles or amino acids....

  19. Non-Enzymatic-Browning-Reaction: A Versatile Route for Production of Nitrogen-Doped Carbon Dots with Tunable Multicolor Luminescent Display

    Science.gov (United States)

    Wei, Weili; Xu, Can; Wu, Li; Wang, Jiasi; Ren, Jinsong; Qu, Xiaogang

    2014-01-01

    The non-enzymatic browning, namely Maillard reaction is commonly invoked to account for abiotic chemical transformations of organic matter. Here we report a new reaction pathway via the Maillard reaction to systematically synthesize a series of nitrogen-doped carbon dots (C-dots) with superhigh quantum yield (QY) and tunable multicolor luminescent displayment. The starting materials are glucose and the serial amino acid analogues which allow systemically controlling luminescent and physicochemical properties of C-dots at will. Unexpectedly, the as-prepared C-dots possess bright photoluminescence with QY up to 69.1% which is almost the highest ever reported, favorable biocompatibility, excellent aqueous and nonaqueous dispersibility, ultrahigh photostability, and readily functionalization. We have demonstrated that they are particularly suitable for multicolor luminescent display and long-term and real-time cellular imaging. Furthermore, the methodology is readily scalable to large yield, and can provide sufficient amount of C-dots for practical demands.

  20. PENGARUH SORPSI AIR DAN SUHU TRANSISI GELAS TERHADAP LAJU PENCOKLATAN NON-ENZIMATIS PADA PANGAN MODEL [The Effect of Water Sorption and Glass Transition Temperature on Non-Enzymatic Browning Reaction of Food Models

    Directory of Open Access Journals (Sweden)

    Dede R Adawiyah1

    2005-12-01

    Full Text Available This research was aimer/ to study the extend of non enzymatic browning reaction in food models containing the mixture of tapioca starch, casein, sucrose and oh at different moisture contents (2.55%, 5.26%, 7.54%, 15.20%. 15.93% and 23.99% and storage temperatures (30, 55 and 700C. The non-enzymatic browning reaction was detected from brown color intensity measured by spechtrophotometer and colorimetric methods. The non-enzymatic browning reaction or food model follow pseudo-zero order reaction, suggesting that browning reaction occurred at moisture content above monolayer zone. T-Tg (T storage - Tg prediction and reaction rate constant (k plots showed that browning reaction occurred at temperature around glass transition and increased significantly at 150 above Tg of casein. Tapioca starch in the food model was under glassy condition. The mobility of substrate increased and diffused at amorphous matrix.

  1. 3D-copper oxide and copper oxide/few-layer graphene with screen printed nanosheet assembly for ultrasensitive non-enzymatic glucose sensing

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhimei [Tianjin Key Laboratory of Film Electronic and Communicate Devices, School of Electronics Information Engineering, Tianjin University of Technology, Tianjin, 300384 (China); Advanced Materials and Printed Electronics Center, School of Electronics Information Engineering, Tianjin University of Technology, Tianjin, 300384 (China); Pan, Peng, E-mail: panpeny@163.com [Tianjin Key Laboratory of Film Electronic and Communicate Devices, School of Electronics Information Engineering, Tianjin University of Technology, Tianjin, 300384 (China); Advanced Materials and Printed Electronics Center, School of Electronics Information Engineering, Tianjin University of Technology, Tianjin, 300384 (China); Liu, Xuewen [Tianjin Key Laboratory of Film Electronic and Communicate Devices, School of Electronics Information Engineering, Tianjin University of Technology, Tianjin, 300384 (China); Advanced Materials and Printed Electronics Center, School of Electronics Information Engineering, Tianjin University of Technology, Tianjin, 300384 (China); Yang, Zhengchun; Wei, Jun [Advanced Materials and Printed Electronics Center, School of Electronics Information Engineering, Tianjin University of Technology, Tianjin, 300384 (China); Wei, Zhen, E-mail: weizhenxinxi@163.com [Tianjin Key Laboratory of Film Electronic and Communicate Devices, School of Electronics Information Engineering, Tianjin University of Technology, Tianjin, 300384 (China); Advanced Materials and Printed Electronics Center, School of Electronics Information Engineering, Tianjin University of Technology, Tianjin, 300384 (China)

    2017-02-01

    Screen-printed copper oxide (CuO) and CuO/few-layer graphene on graphite electrodes were used to fabricate the ultrasensitive nonenzymatic glucose biosensors. Flower-like CuO and flower-like CuO/few-layer graphene composites were prepared by screen-printing method and characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), and high-resolution transmission electron microscopy (HETEM). On the basis of their cyclic voltammetry (CV) and chronoamperometry results, it was concluded that the addition of graphene to CuO significantly improved the performance of the fabricated glucose sensors, exhibiting high and reproducible sensitivity of 3120 μAmM{sup −1} cm{sup −2} with three linear ranges from 4 μM to 13.5 mM and the detection limit of 4 μM (S/N = 3) in a fast response time of 2 s. In addition, the fabricated sensors could effectively avoid the disturbance by interferents, such as Ascorbic Acid (AA), Uric Acid (UA), and Dopamine (DA). Most importantly, the testing results of real blood serum samples demonstrated that the electrodes were applicable and acceptable for the determination of glucose concentrations in human serum. The efficiencies of two non-enzymatic glucose biosensors for glucose determination were comparable with that of a commercial enzymatic sensor. - Highlights: • The method 2D nanosheet turns to 3D microflower by using screen printing was proposed. • Few-layer graphene added improved the sensor’s performance on base of CuO functional material. • Two ultrasensitive non-enzymatic glucose sensors were successfully fabricated. • The proposed sensor shows a high sensitivity of 3120 μA mM{sup −1} cm{sup −2}.

  2. Non-enzymatic hydrogen peroxide detection at NiO nanoporous thin film- electrodes prepared by physical vapor deposition at oblique angles

    International Nuclear Information System (INIS)

    Salazar, Pedro; Rico, Victor; González-Elipe, Agustín R.

    2017-01-01

    Highlights: • A non-enzymatic sensor for H 2 O 2 detection based on nickel thin film is reported. • Nanostructured nickel thin films are prepared by physical vapor deposition at oblique angles. • Main analytical parameters were obtained under optimal operation conditions. • Sensors depict an outstanding selectivity and a high stability. • Sensors are successfully used to determine H 2 O 2 in antiseptic solutions. - Abstract: In this work we report a non-enzymatic sensor for hydrogen peroxide (H 2 O 2 ) detection based on nanostructured nickel thin films prepared by physical vapor deposition at oblique angles. Porous thin films deposited on ITO substrates were characterized by X-ray diffraction analysis, scanning electron microcopy (SEMs), X-ray photoelectron spectroscopy (XPS) and electrochemical techniques such as Cyclic Voltammetry (CV) and Constant Potential Amperometry (CPA). The microstructure of the thin films consisted of inclined and separated Ni nanocolumns forming a porous thin layer of about 500 nm thickness. Prior to their use, the films surface was electrochemically modified and the chemical state studied by CV and XPS analysis. These techniques also showed that Ni 2+ /Ni 3+ species were involved in the electrochemical oxidation and detection of H 2 O 2 in alkaline medium. Main analytical parameters such as sensitivity (807 mA M −1 cm −2 ), limit of detection (3.22 μM) and linear range (0.011–2.4 mM) were obtained under optimal operation conditions. Sensors depicted an outstanding selectivity and a high stability and they were successfully used to determine H 2 O 2 concentration in commercial antiseptic solutions.

  3. A facile route to glycated albumin detection.

    Science.gov (United States)

    Bohli, Nadra; Meilhac, Olivier; Rondeau, Philippe; Gueffrache, Syrine; Mora, Laurence; Abdelghani, Adnane

    2018-07-01

    In this paper we propose an easy way to detect the glycated form of human serum albumin which is biomarker for several diseases such as diabetes and Alzheimer. The detection platform is a label free impedimetric immunosensor, in which we used a monoclonal human serum albumin antibody as a bioreceptor and electrochemical impedance as a transducing method. The antibody was deposited onto a gold surface by simple physisorption technique. Bovine serum albumin was used as a blocking agent for non-specific binding interactions. Cyclic voltammetry and electrochemical impedance spectroscopy were used for the characterization of each layer. Human serum albumin was glycated at different levels with several concentrations of glucose ranging from 0 mM to 500 mM representing physiological, pathological (diabetic albumin) and suprapathological concentration of glucose. Through the calibration curves, we could clearly distinguish between two different areas related to physiological and pathological albumin glycation levels. The immunosensor displayed a linear range from 7.49% to 15.79% of glycated albumin to total albumin with a good sensitivity. Surface plasmon resonance imaging was also used to characterize the developed immunosensor. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Two acidic, anticoagulant PLA2 isoenzymes purified from the venom of monocled cobra Naja kaouthia exhibit different potency to inhibit thrombin and factor Xa via phospholipids independent, non-enzymatic mechanism.

    Directory of Open Access Journals (Sweden)

    Ashis K Mukherjee

    Full Text Available The monocled cobra (Naja kaouthia is responsible for snakebite fatality in Indian subcontinent and in south-western China. Phospholipase A2 (PLA2; EC 3.1.1.4 is one of the toxic components of snake venom. The present study explores the mechanism and rationale(s for the differences in anticoagulant potency of two acidic PLA2 isoenzymes, Nk-PLA2α (13463.91 Da and Nk-PLA2β (13282.38 Da purified from the venom of N. kaouthia.By LC-MS/MS analysis, these PLA2s showed highest similarity (23.5% sequence coverage with PLA2 III isolated from monocled cobra venom. The catalytic activity of Nk-PLA2β exceeds that of Nk-PLA2α. Heparin differentially regulated the catalytic and anticoagulant activities of these Nk-PLA2 isoenzymes. The anticoagulant potency of Nk-PLA2α was comparable to commercial anticoagulants warfarin, and heparin/antithrombin-III albeit Nk-PLA2β demonstrated highest anticoagulant activity. The anticoagulant action of these PLA2s was partially contributed by a small but specific hydrolysis of plasma phospholipids. The strong anticoagulant effect of Nk-PLA2α and Nk-PLA2β was achieved via preferential, non-enzymatic inhibition of FXa (Ki = 43 nM and thrombin (Ki = 8.3 nM, respectively. Kinetics study suggests that the Nk-PLA2 isoenzymes inhibit their "pharmacological target(s" by uncompetitive mechanism without the requirement of phospholipids/Ca(2+. The anticoagulant potency of Nk-PLA2β which is higher than that of Nk-PLA2α is corroborated by its superior catalytic activity, its higher capacity for binding to phosphatidylcholine, and its greater strength of thrombin inhibition. These PLA2 isoenzymes thus have evolved to affect haemostasis by different mechanisms. The Nk-PLA2β partially inhibited the thrombin-induced aggregation of mammalian platelets suggesting its therapeutic application in the prevention of unwanted clot formation.In order to develop peptide-based superior anticoagulant therapeutics, future application of Nk-PLA2

  5. Characterization and cytological effects of a novel glycated gelatine substrate

    International Nuclear Information System (INIS)

    Boonkaew, Benjawan; Supaphol, Pitt; Tompkins, Kevin; Manokawinchoke, Jeeranan; Pavasant, Prasit

    2014-01-01

    Hyperglycemia in diabetes results in the glycation of long-lived proteins. Protein glycation leads to the formation of advanced glycation end products (AGEs), which are implicated in delayed wound healing and other diabetes-associated pathologies, one of which is periodontal disease. Research into the mechanisms by which glycated long-lived proteins such as collagen exert their effects can allow for the understanding of diabetic pathologies and the development of appropriate treatments. However, the high cost of purified protein can be a limitation for many laboratories around the world. The objective of this study was to develop a low-cost in vitro model of glycated gelatine as an alternative to the glycated collagen model. We investigated the glycation of gelatine type A, a denatured form of collagen, which is low-cost and abundantly available. In this study, gelatine was incubated for 7 days with ribose or methylglyoxal (MG). Cross-linking, autofluorescence and UV–Vis spectrophotometry assays were performed and indicated a dose-dependent linear increase in cross-linking and autofluorescence of gelatine by ribose and MG. MG produced more cross-linking compared to ribose at the same concentrations. The UV–Vis spectra of the glycated gelatines confirmed the presence of AGE fluorophores. Because diabetes is a risk factor for periodontal disease, the effect of the glycated substrates on the basic behaviour of human periodontal ligament (HPDL) cells was evaluated. Glycation dose dependently reduced HPDL attachment and cell spreading, indicating that the novel glycated gelatine substrate affects cell behaviour. These results show that gelatine glycated with ribose or MG can be used as low-cost in vitro models to study the effects of protein glycation on cell behaviour in diabetes and ageing. (paper)

  6. The mechanism of reduced IgG/IgE-binding of β-lactoglobulin by pulsed electric field pretreatment combined with glycation revealed by ECD/FTICR-MS.

    Science.gov (United States)

    Yang, Wenhua; Tu, Zongcai; Wang, Hui; Zhang, Lu; Kaltashov, Igor A; Zhao, Yunlong; Niu, Chendi; Yao, Honglin; Ye, Wenfeng

    2018-01-24

    Bovine β-lactoglobulin (β-Lg) is a major allergen existing in milk and causes about 90% of IgE-mediated cow's milk allergies. Previous studies showed that pulsed electric field (PEF) treatment could partially unfold the protein, which may contribute to the improvement of protein glycation. In this study, the effect of PEF pretreatment combined with glycation on the IgG/IgE-binding ability and the structure of β-Lg was investigated. The result showed that PEF pretreatment combined with glycation significantly reduced the IgG and IgE binding abilities, which was attributed to the changes of secondary and tertiary structure and the increase in glycation sites and degree of substitution per peptide (DSP) value determined by electron capture dissociation Fourier transform ion cyclotron resonance mass spectrometry (ECD/FTICR-MS). Unexpectedly, glycation sites (K47, K91 and K135) added by two mannose molecules were identified in glycated β-Lg with PEF pretreatment. Moreover, the results indicated that PEF pretreatment at 25 kV cm -1 for 60 μs promoted the reduction of IgG/IgE-binding capacity by increasing the glycation degree of β-Lg, whereas single PEF treatment under the same conditions markedly enhanced the IgG/IgE-binding ability by partially unfolding the structure of β-Lg. The results suggested that ECD/FTICR-MS could help us to understand the mechanism of reduction in the IgG/IgE-binding of β-Lg by structural characterization at the molecular level. Therefore, PEF pretreatment combined with glycation may provide an alternative method for β-Lg desensitization.

  7. A novel reduction approach to fabricate quantum-sized SnO₂-conjugated reduced graphene oxide nanocomposites as non-enzymatic glucose sensors.

    Science.gov (United States)

    Ye, Yixing; Wang, Panpan; Dai, Enmei; Liu, Jun; Tian, Zhenfei; Liang, Changhao; Shao, Guosheng

    2014-05-21

    Quantum-sized SnO2 nanocrystals can be well dispersed on reduced graphene oxide (rGO) nanosheets through a convenient one-pot in situ reduction route without using any other chemical reagent or source. Highly reactive metastable tin oxide (SnO(x)) nanoparticles (NPs) were used as reducing agents and composite precursors derived by the laser ablation in liquid (LAL) technique. Moreover, the growth and phase transition of LAL-induced SnO(x) NPs and graphene oxide (GO) were examined by optical absorption, X-ray diffraction, X-ray photoelectron spectroscopy, Raman spectroscopy and high-resolution transmission electron microscopy. Highly dispersed SnO(x) NPs can also prevent rGO from being restacked into a multilayer structure during GO reduction. Given the good electron transfer ability and unsaturated dangling bonds of rGO, as well as the ample electrocatalytic active sites of quantum-sized SnO2 NPs on unfolded rGO sheets, the fabricated SnO2-rGO nanocomposite exhibited excellent performance in the non-enzymatic electrochemical detection of glucose molecules. The use of LAL-induced reactive NPs for in situ GO reduction is also expected to be a universal and environmentally friendly approach for the formation of various rGO-based nanocomposites.

  8. An Investigation of the Changes in Enzymatic and Non-Enzymatic Salivary Antioxidants Caused by Exhausting Aerobic Activity in Non-Athletic Men

    Directory of Open Access Journals (Sweden)

    Yazgaldi Nazari

    2016-12-01

    Full Text Available Background and Objectives: In the present study, the effect of acute aerobic exercise on enzymatic and non-enzymatic salivary antioxidants variations in non-athlete men, was investigated. Methods: In this experimental study, 25 male non-athlete collegiates (age, 21.2±1.6 years; weight, 68.62±10.1kg; body fat, 16.75±2.9%; and Vo2 max, 37.54±2.4ml/kg/min participated voluntarily in this study. Saliva samples were collected in three phases (before, immediately, and 1 hour after running on treadmill according to Astrand test. The activity of peroxidase and catalase, and concentration of uric acid were measured by laboratory methods. Then, to assess the obtained changes, repeated measures statistical test, and in case of significance, post-hoc Bonferroni test were used for pairwise comparing of the measuring phases at the significance level of p≤0.05 used.  Results: The activity of peroxidase significantly increased immediately and 1 hour after exercise compared to the baseline; Also, the concentration of uric acid significantly increased after aerobic exercise, but catalase enzyme activity significantly decreased after aerobic exercise (p<0.05. No significant change was observed in saliva flow rate after exercise. Conclusion: According to the findings of this study, aerobic exercise causes the production of free radicals, and salivary antioxidant system increases as the body biological response to neutralize and counteract the damaging effects of free radicals.

  9. Comparison of NiS2 and α-NiS hollow spheres for supercapacitors, non-enzymatic glucose sensors and water treatment.

    Science.gov (United States)

    Wei, Chengzhen; Cheng, Cheng; Cheng, Yanyan; Wang, Yan; Xu, Yazhou; Du, Weimin; Pang, Huan

    2015-10-21

    NiS2 hollow spheres are successfully prepared by a one-step template free method. Meanwhile, α-NiS hollow spheres can also be synthesized via the calcination of the pre-obtained NiS2 hollow spheres at 400 °C for 1 h in air. The electrochemical performances of the as-prepared NiS2 and α-NiS hollow sphere products are evaluated. When used for supercapacitors, compared with NiS2 hollow spheres, the α-NiS hollow sphere electrode shows a large specific capacitance of 717.3 F g(-1) at 0.6 A g(-1) and a good cycle life. Furthermore, NiS2 and α-NiS hollow spheres are successfully applied to fabricate non-enzymatic glucose sensors. In particular, the α-NiS hollow spheres exhibit good catalytic activity for the oxidation of glucose, a fast amperometric response time of less than 5 s, and the detection limit is estimated to be 0.08 μM. More importantly, compared with other normally co-existing interfering species, such as ascorbic acid, uric acid and dopamine, the electrode modified with α-NiS hollow spheres shows good selectivity. Moreover, the α-NiS hollow spheres also present good capacity to remove Congo red organic pollutants from wastewater by their surface adsorption ability.

  10. Fabrication of Stretchable Copper Coated Carbon Nanotube Conductor for Non-Enzymatic Glucose Detection Electrode with Low Detection Limit and Selectivity

    Directory of Open Access Journals (Sweden)

    Dawei Jiang

    2018-03-01

    Full Text Available The increasing demand for wearable glucose sensing has stimulated growing interest in stretchable electrodes. The development of the electrode materials having large stretchability, low detection limit, and good selectivity is the key component for constructing high performance wearable glucose sensors. In this work, we presented fabrication of stretchable conductor based on the copper coated carbon nanotube sheath-core fiber, and its application as non-enzymatic electrode for glucose detection with high stretchability, low detection limit, and selectivity. The sheath-core fiber was fabricated by coating copper coated carbon nanotube on a pre-stretched rubber fiber core followed by release of pre-stretch, which had a hierarchically buckled structure. It showed a small resistance change as low as 27% as strain increasing from 0% to 500% strain, and a low resistance of 0.4 Ω·cm−1 at strain of 500%. This electrode showed linear glucose concentration detection in the range between 0.05 mM and 5 mM and good selectivity against sucrose, lactic acid, uric acid, acrylic acid in phosphate buffer saline solution, and showed stable signal in high salt concentration. The limit of detection (LOD was 0.05 mM, for the range of 0.05–5 mM, the sensitivity is 46 mA·M−1. This electrode can withstand large strain of up to 60% with negligible influence on its performance.

  11. Effect of formulation and baking conditions on the structure and development of non-enzymatic browning in biscuit models using images.

    Science.gov (United States)

    Leiva-Valenzuela, Gabriel A; Quilaqueo, Marcela; Lagos, Daniela; Estay, Danilo; Pedreschi, Franco

    2018-04-01

    The aim of this research was to determine the effect of composition (dietary fiber = DF, fat = F, and gluten = G) and baking time on the target microstructural parameters that were observed using images of potato and wheat starch biscuits. Microstructures were studied Scanning Electron Microscope (SEM). Non-enzymatic browning (NEB) was assessed using color image analysis. Texture and moisture analysis was performed to have a better understanding of the baking process. Analysis of images revealed that the starch granules retained their native form at the end of baking, suggesting their in complete gelatinization. Granules size was similar at several different baking times, with an average equivalent diameter of 9 and 27 µm for wheat and potato starch, respectively. However, samples with different levels of DF and G increased circularity during baking to more than 30%, and also increasing hardness. NEB developed during baking, with the maximum increase observed between 13 and 19 min. This was reflected in decreased luminosity (L*) values due to a decrease in moisture levels. After 19 min, luminosity did not vary significantly. The ingredients that are used, as well as their quantities, can affect sample L* values. Therefore, choosing the correct ingredients and quantities can lead to different microstructures in the biscuits, with varying amounts of NEB products.

  12. Co3O4 based non-enzymatic glucose sensor with high sensitivity and reliable stability derived from hollow hierarchical architecture

    Science.gov (United States)

    Tian, Liangliang; He, Gege; Cai, Yanhua; Wu, Shenping; Su, Yongyao; Yan, Hengqing; Yang, Cong; Chen, Yanling; Li, Lu

    2018-02-01

    Inspired by kinetics, the design of hollow hierarchical electrocatalysts through large-scale integration of building blocks is recognized as an effective approach to the achievement of superior electrocatalytic performance. In this work, a hollow, hierarchical Co3O4 architecture (Co3O4 HHA) was constructed using a coordinated etching and precipitation (CEP) method followed by calcination. The resulting Co3O4 HHA electrode exhibited excellent electrocatalytic activity in terms of high sensitivity (839.3 μA mM-1 cm-2) and reliable stability in glucose detection. The high sensitivity could be attributed to the large specific surface area (SSA), ample unimpeded penetration diffusion paths and high electron transfer rate originating from the unique two-dimensional (2D) sheet-like character and hollow porous architecture. The hollow hierarchical structure also affords sufficient interspace for accommodation of volume change and structural strain, resulting in enhanced stability. The results indicate that Co3O4 HHA could have potential for application in the design of non-enzymatic glucose sensors, and that the construction of hollow hierarchical architecture provides an efficient way to design highly active, stable electrocatalysts.

  13. Effect of abscisic acid on biochemical constituents, enzymatic and non enzymatic antioxidant status of lettuce (Lactuca sativa L. under varied irrigation regimes

    Directory of Open Access Journals (Sweden)

    Mohamed A. Al Muhairi

    2015-12-01

    Full Text Available Economically important vegetable crop lettuce (Lactuca sativa L. of family Asteraceae was selected for the present investigation. It is being cultivated in UAE due to its commercial importance. In lettuce cultivation, the major problem is the requirement of large quantities of irrigation water. The present study was aimed to reduce the water consumption of lettuce cultivation; for that, a varied irrigation regime was used with the application of abscisic acid (ABA. The parameters studied were biochemical constituents, antioxidant potential and antioxidant enzymes’ activities in lettuce plants under drought stress and its response to ABA under stress. Drought stress caused an increase in the biochemical constituents like proline and amino acid contents when compared with control and also increased under individual ABA treatments and treatments under drought stress. The non-enzymatic antioxidant molecules like ascorbate and α-tocopherol showed significant increase under drought condition in lettuce. ABA slightly reduced these contents. The antioxidant enzymes like superoxide dismutase, catalase and peroxidase showed significant increase under drought condition and ABA caused significant enhancement in these antioxidant enzymes under drought stress and also in unstressed conditions, thereby protecting the plants from the deleterious effects of drought stress. From the results of this investigation, it can be concluded that ABA in 10 mg g−1 can be used as a potential tool to minimise the drought stress effects in lettuce cultivation.

  14. Ex vivo instability of glycated albumin: A role for autoxidative glycation.

    Science.gov (United States)

    Jeffs, Joshua W; Ferdosi, Shadi; Yassine, Hussein N; Borges, Chad R

    2017-09-01

    Ex vivo protein modifications occur within plasma and serum (P/S) samples due to prolonged exposure to the thawed state-which includes temperatures above -30 °C. Herein, the ex vivo glycation of human serum albumin from healthy and diabetic subjects was monitored in P/S samples stored for hours to months at -80 °C, -20 °C, and room temperature, as well as in samples subjected to multiple freeze-thaw cycles, incubated at different surface area-to-volume ratios or under different atmospheric compositions. A simple dilute-and-shoot method utilizing trap-and-elute LC-ESI-MS was employed to determine the relative abundances of the glycated forms of albumin-including forms of albumin bearing more than one glucose molecule. Significant increases in glycated albumin were found to occur within hours at room temperature, and within days at -20 °C. These increases continued over a period of 1-2 weeks at room temperature and over 200 days at -20 °C, ultimately resulting in a doubling of glycated albumin in both healthy and diabetic patients. It was also shown that samples stored at lower surface area-to-volume ratios or incubated under a nitrogen atmosphere experienced less rapid glucose adduction of albumin-suggesting a role for oxidative glycation in the ex vivo glycation of albumin. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. A non-enzymatic hydrogen peroxide sensor based on a glassy carbon electrode modified with cuprous oxide and nitrogen-doped graphene in a nafion matrix

    International Nuclear Information System (INIS)

    Jiang, Bin-Bin; Wei, Xian-Wen; Wu, Fang-Hui; Chen, Le; Yuan, Guo-Zan; Wu, Kong-Lin; Dong, Chao; Ye, Yin

    2014-01-01

    We have modified a glassy carbon electrode (GCE) with copper(I) oxide nanoparticles (NPs), nitrogen-doped graphene (N-graphene) and Nafion to obtain a novel sensing platform for the non-enzymatic detection of hydrogen peroxide. The deposition of the Cu 2 O NPs on N-graphene was accomplished by single-step chemical reduction. The nanocomposite was characterized by using X-ray diffraction and scanning electron microscopy which revealed the successful attachment of monodispersed Cu 2 O NPs to the N-graphene. Electrochemical studies revealed that the composite possesses excellent electrocatalytic activity toward the reduction of H 2 O 2 in pH 7.4 phosphate buffer solution at a working potential of −0.60 V. Nafion obviously enhances the stability of the modified GCE and repels any negatively charged species. Compared to a conventional Cu 2 O/Nafion-modified GCE, the modified GCE presented here exhibits (a) a higher catalytic activity for the reduction of H 2 O 2 (1.94 times), (b) a wider linear range (from 5.0 μM to 3.57 mM), (c) a lower detection limit (0.8 μM at an S/N of 3), (d) higher sensitivity (26.67 μA mM −1 ) and (e) a shorter response time (2 s). Moreover, the new GCE exhibits good selectivity and stability. These properties make the new hybrid electrode a promising tool for to the development of electrochemical sensors, molecular bioelectronic devices, biosensors, and biofuel cells. (author)

  16. Graphene oxide directed in-situ synthesis of Prussian blue for non-enzymatic sensing of hydrogen peroxide released from macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Weiwei; Zhu, Qionghua; Gao, Fei; Gao, Feng [College of Chemistry and Environment, Fujian Province Key Laboratory of Morden Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000 (China); Huang, Jiafu; Pan, Yutian [College of Biological Science and Technology, Minnan Normal University, Zhangzhou 363000 (China); Wang, Qingxiang, E-mail: axiang236@126.com [College of Chemistry and Environment, Fujian Province Key Laboratory of Morden Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000 (China)

    2017-03-01

    A novel electrochemical non-enzymatic hydrogen peroxide (H{sub 2}O{sub 2}) sensor has been developed based on Prussian blue (PB) and electrochemically reduced graphene oxide (ERGO). The GO was covalently modified on glassy carbon electrode (GCE), and utilized as a directing platform for in-situ synthesis of electroactive PB. Then the GO was electrochemically treated to reduction form to improve the effective surface area and electroactivity of the sensing interface. The fabrication process was characterized by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX) and atomic force microscopy (AFM). The results showed that the rich oxygen containing groups play a crucial role for the successful synthesis of PB, and the obtained PB layer on the covalently immobilized GO has good stability. Electrochemical sensing assay showed that the modified electrode had tremendous electrocatalytic property for the reduction of H{sub 2}O{sub 2}. The steady-state current response increased linearly with H{sub 2}O{sub 2} concentrations from 5 μM to 1 mM with a fast response time (less than 3 s). The detection limit was estimated to be 0.8 μM. When the sensor was applied for determination of H{sub 2}O{sub 2} released from living cells of macrophages, satisfactory results were achieved. - Highlights: • Covalent method was applied for immobilization of GO on glassy carbon electrode. • GO directed in-situ synthesis of electroactive PB. • PB-ERGO composite shows high electrocatalytic activity toward H{sub 2}O{sub 2}. • The modified biosensor is capable of detecting H{sub 2}O{sub 2} released from living macrophages.

  17. Unraveling the mechanism responsible for the contrasting tolerance of Synechocystis and Synechococcus to Cr(VI): Enzymatic and non-enzymatic antioxidants

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Alka [Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Ballal, Anand, E-mail: aballal@barc.gov.in [Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 40085 (India)

    2015-07-15

    Highlights: • Cr(VI) accumulation generates higher ROS in Synechocystis than in Synechococcus. • Synechococcus exhibits better photosynthetic activity in response to Cr(VI). • Synechococcus has higher enzymatic/non-enzymatic antioxidants than Synechocystis. • Synechococcus shows better tolerance to other oxidative stresses than Synechocystis. • Differential detoxification of ROS is responsible for the contrasting tolerance to Cr(VI) - Abstract: Two unicellular cyanobacteria, Synechocystis and Synechococcus, showed contrasting tolerance to Cr(VI); with Synechococcus being 12-fold more tolerant than Synechocystis to potassium dichromate. The mechanism responsible for this differential sensitivity to Cr(VI) was explored in this study. Total content of photosynthetic pigments as well as photosynthetic activity decreased at lower concentration of Cr(VI) in Synechocystis as compared to Synechococcus. Experiments with {sup 51}Cr showed Cr to accumulate intracellularly in both the cyanobacteria. At lower concentrations, Cr(VI) caused excessive ROS generation in Synechocystis as compared to that observed in Synechococcus. Intrinsic levels of enzymatic antioxidants, i.e., superoxide dismutase, catalase and 2-Cys-peroxiredoxin were considerably higher in Synechococcus than Synechocystis. Content of total thiols (both protein as well as non-protein) and reduced glutathione (GSH) was also higher in Synechococcus as compared to Synechocystis. This correlated well with higher content of carbonylated proteins observed in Synechocystis than Synechococcus. Additionally, in contrast to Synechocystis, Synechococcus exhibited better tolerance to other oxidative stresses like high intensity light and H{sub 2}O{sub 2}. The data indicate that the disparity in the ability to detoxify ROS could be the primary mechanism responsible for the differential tolerance of these cyanobacteria to Cr(VI)

  18. Evaluation of a reference material for glycated haemoglobin

    NARCIS (Netherlands)

    Weykamp, CW; Penders, TJ; Muskiet, FAJ; vanderSlik, W

    The use of lyophilized blood as a reference material for glycated haemoglobin was investigated with respect to IFCC criteria for calibrators and control materials. Ninety-two laboratories, using 11 methods, detected no changes in glycated haemoglobin content when the lyophilizate was stored for one

  19. Nonenzymatic glycation of phosphatidylethanolamine in erythrocyte vesicles

    International Nuclear Information System (INIS)

    Patkowska, M.J.; Horowitz, M.I.

    1986-01-01

    Unsealed inside-out and right-side out vesicles were prepared from human red cells. The vesicles were incubated with D-glucose [ 14 C(U)] and sodium cyanoborohydride in phosphate buffer, pH 7.4. After incubation, lipids were extracted with 1-butanol and non-lipid contaminants removed by Sephadex G-25 chromatography. Phosphatidylethanolamine-sorbitol was purified by chromatography on columns of silicic acid and phenylboronate agarose gel. Phospholipase C (B. cereus) liberated phosphoethanolamine-sorbitol (I) which comigrated on TLC with synthetic I prepared by reductive condensation of phosphoethanolamine and D-glucose and also with the product of phospholipase C (B. cereus) hydrolysis of reference phosphatidylethanolamine-sorbitol. Exposure of I to alkaline phosphatase (E. coli) gave P/sub i/ and ethanolamine-sorbitol (II) which comigrated on TLC with synthetic II prepared by reductive condensation of ethanolamine and D-glucose or by phospholipase D hydrolysis of reference phosphatidylethanolamine-sorbitol. These studies demonstrate that vesicular phosphatidylethanolamine can be reductively glycated and illustrate the applicability of both phospholipase C and phospholipase D in characterizing glycated phosphoglycerides

  20. A Cuprous Oxide Thin Film Non-Enzymatic Glucose Sensor Using Differential Pulse Voltammetry and Other Voltammetry Methods and a Comparison to Different Thin Film Electrodes on the Detection of Glucose in an Alkaline Solution

    Directory of Open Access Journals (Sweden)

    Yifan Dai

    2018-01-01

    Full Text Available A cuprous oxide (Cu2O thin layer served as the base for a non-enzymatic glucose sensor in an alkaline medium, 0.1 NaOH solution, with a linear range of 50–200 mg/dL using differential pulse voltammetry (DPV measurement. An X-ray photoelectron spectroscopy (XPS study confirmed the formation of the cuprous oxide layer on the thin gold film sensor prototype. Quantitative detection of glucose in both phosphate-buffered saline (PBS and undiluted human serum was carried out. Neither ascorbic acid nor uric acid, even at a relatively high concentration level (100 mg/dL in serum, interfered with the glucose detection, demonstrating the excellent selectivity of this non-enzymatic cuprous oxide thin layer-based glucose sensor. Chronoamperometry and single potential amperometric voltammetry were used to verify the measurements obtained by DPV, and the positive results validated that the detection of glucose in a 0.1 M NaOH alkaline medium by DPV measurement was effective. Nickel, platinum, and copper are commonly used metals for non-enzymatic glucose detection. The performance of these metal-based sensors for glucose detection using DPV were also evaluated. The cuprous oxide (Cu2O thin layer-based sensor showed the best sensitivity for glucose detection among the sensors evaluated.

  1. MnO{sub x}/C nanocomposite: An insight on high-performance supercapacitor and non-enzymatic hydrogen peroxide detection

    Energy Technology Data Exchange (ETDEWEB)

    Ahuja, Preety, E-mail: drpreetyahuja@gmail.com [Department of Chemistry, Jamia Hamdard, Delhi 110062 (India); Kumar Ujjain, Sanjeev [Department of Physics, Indian Institute of Technology, Kanpur, UP 208016 (India); Kanojia, Rajni [Department of Chemistry, Shivaji College, University of Delhi, Delhi 110027 (India)

    2017-05-15

    Graphical abstract: In-situ inclusion of carbon matrix during growth of MnO{sub x} nanoparticles resulted in MnO{sub x}/C nanocomposite with enhanced electronic diffusion leading to high energy/power densities supercapacitor and highly sensitive H{sub 2}O{sub 2} sensor. - Highlights: • MnO{sub x}/C, synthesized via microemulsion method, is electrochemically investigated towards supercapacitor and sensing applications. • In-situ inclusion of conducting carbon in manganese oxide enhances the network conductivity facilitating the charge transfer process. • It provides high energy and power density, 31.6 Wh kg{sup −1} and 3.8 kW kg{sup −1} respectively, with short relaxation time ∼3 ms for fabricated cell. • MnO{sub x}/C as sensor, exhibits excellent catalytic activity toward H{sub 2}O{sub 2} oxidation and offer high sensitivity with low detection limit. - Abstract: In this work, we have used microemulsion method for synthesis of MnO{sub x}/C nanocomposite and investigated its electrochemical properties via fabrication of supercapacitor and non-enzymatic hydrogen peroxide (H{sub 2}O{sub 2}) sensor. In-situ inclusion of conducting carbon in manganese oxide (MnO{sub x}/C) enhances the network conductivity facilitating the charge transfer process which is beneficial for supercapacitor and sensing applications. MnO{sub x}/C provides high energy and power density, 31.6 Wh kg{sup −1} and 3.8 kW kg{sup −1} respectively and short relaxation time ∼3 ms for fabricated cell (MnO{sub x}/C//MnO{sub x}/C) endowing excellent power delivery capacity. Furthermore, MnO{sub x}/C as sensor, exhibits excellent catalytic activity toward the oxidation of H{sub 2}O{sub 2} and shows high sensitivity (0.37 mA mM{sup −1} cm{sup −2}) with low detection limit (0.5 μM at an S/N of 3). Hence, this study provides new avenue for high performance supercapacitor and H{sub 2}O{sub 2} detection.

  2. Signal Diversity of Receptor for Advanced Glycation End Products.

    Science.gov (United States)

    Sakaguchi, Masakiyo; Kinoshita, Rie; Putranto, Endy Widya; Ruma, I Made Winarsa; Sumardika, I Wayan; Youyi, Chen; Tomonobu, Naoko; Yamamoto, Ken-Ichi; Murata, Hitoshi

    2017-12-01

    The receptor for advanced glycation end products (RAGE) is involved in inflammatory pathogenesis. It functions as a receptor to multiple ligands such as AGEs, HMGB1 and S100 proteins, activating multiple intracellular signaling pathways with each ligand binding. The molecular events by which ligand-activated RAGE controls diverse signaling are not well understood, but some progress was made recently. Accumulating evidence revealed that RAGE has multiple binding partners within the cytoplasm and on the plasma membrane. It was first pointed out in 2008 that RAGE's cytoplasmic tail is able to recruit Diaphanous-1 (Dia-1), resulting in the acquisition of increased cellular motility through Rac1/Cdc42 activation. We also observed that within the cytosol, RAGE's cytoplasmic tail behaves similarly to a Toll-like receptor (TLR4)-TIR domain, interacting with TIRAP and MyD88 adaptor molecules that in turn activate multiple downstream signals. Subsequent studies demonstrated the presence of an alternative adaptor molecule, DAP10, on the plasma membrane. The coupling of RAGE with DAP10 is critical for enhancing the RAGE-mediated survival signal. Interestingly, RAGE interaction on the membrane was not restricted to DAP10 alone. The chemotactic G-protein-coupled receptors (GPCRs) formyl peptide receptors1 and 2 (FPR1 and FPR2) also interacted with RAGE on the plasma membrane. Binding interaction between leukotriene B4 receptor 1 (BLT1) and RAGE was also demonstrated. All of the interactions affected the RAGE signal polarity. These findings indicate that functional interactions between RAGE and various molecules within the cytoplasmic area or on the membrane area coordinately regulate multiple ligand-mediated RAGE responses, leading to typical cellular phenotypes in several pathological settings. Here we review RAGE's signaling diversity, to contribute to the understanding of the elaborate functions of RAGE in physiological and pathological contexts.

  3. Open-tubular capillary electrochromatography with bare gold nanoparticles-based stationary phase applied to separation of trypsin digested native and glycated proteins

    Czech Academy of Sciences Publication Activity Database

    Mikšík, Ivan; Lacinová, Kateřina; Zmatlíková, Zdeňka; Sedláková, Pavla; Král, V.; Sýkora, D.; Řezanka, P.; Kašička, Václav

    2012-01-01

    Roč. 35, č. 8 (2012), s. 994-1002 ISSN 1615-9306 R&D Projects: GA ČR(CZ) GA203/09/0675; GA ČR(CZ) GA203/08/1428 Institutional research plan: CEZ:AV0Z50110509; CEZ:AV0Z40550506 Keywords : capillary electrochromatography * gold nanoparticles * glycation * peptide maps * proteins Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 2.591, year: 2012

  4. Lack of association of glycated haemoglobin with blood pressure ...

    African Journals Online (AJOL)

    2013-04-12

    Apr 12, 2013 ... Therefore, we examined the relationships of fasting glucose and glycated ... but factors that did associate significantly were age, male gender, rural location, abdominal obesity, alcohol intake .... in continuous variables were.

  5. Commercial processed soy-based food product contains glycated and glycoxidated lunasin proteoforms.

    Science.gov (United States)

    Serra, Aida; Gallart-Palau, Xavier; See-Toh, Rachel Su-En; Hemu, Xinya; Tam, James P; Sze, Siu Kwan

    2016-05-18

    Nutraceuticals have been proposed to exert positive effects on human health and confer protection against many chronic diseases. A major bioactive component of soy-based foods is lunasin peptide, which has potential to exert a major impact on the health of human consumers worldwide, but the biochemical features of dietary lunasin still remain poorly characterized. In this study, lunasin was purified from a soy-based food product via strong anion exchange solid phase extraction and then subjected to top-down mass spectrometry analysis that revealed in detail the molecular diversity of lunasin in processed soybean foods. We detected multiple glycated proteoforms together with potentially toxic advanced glycation end products (AGEs) derived from lunasin. In both cases, modification sites were Lys24 and Lys29 located at the helical region that shows structural homology with a conserved region of chromatin-binding proteins. The identified post-translational modifications may have an important repercussion on lunasin epigenetic regulatory capacity. Taking together, our results demonstrate the importance of proper chemical characterization of commercial processed food products to assess their impact on consumer's health and risk of chronic diseases.

  6. Serum glycated albumin as a new glycemic marker in pediatric diabetes

    Directory of Open Access Journals (Sweden)

    Ji Woo Lee

    2013-12-01

    Full Text Available PurposeSerum glycated albumin (GA has been recently used as another glycemic marker that reflects shorter term glycemic control than glycated hemoglobin (HbA1c. Insulin secretory function and glycemic fluctuation might be correlated with the ratio of GA to HbA1c (GA/HbA1c in diabetic adult patients. This study investigated the association of GA and GA/HbA1c ratio with the levels of fasting C-peptide, fasting plasma glucose in type 1 and type 2 pediatric diabetes.MethodsTotal 50 cases from 42 patients were included. The subjects were classified into type 1 diabetes mellitus (T1DM (n=30 and type 2 diabetes mellitus (T2DM (n=20 group. The associations among HbA1c, GA, and GA/HbA1c ratio were examined. The relationship between the three glycemic indices and fasting glucose, fasting C-peptide were analyzed.ResultsMean values of GA, the GA/HbA1c ratio were significantly higher in T1DM than T2DM. GA (r=0.532, P=0.001, HbA1c (r=0.519, P=0.002 and the GA/HbA1c ratio (r=0.409, P=0.016 were correlated with the fasting plasma glucose. Fasting C-peptide level arranged 4.22±3.22 ng/mL in T2DM, which was significantly above the values in T1DM (0.26±0.49 ng/mL. There were no significant correlation between HbA1c and fasting C-peptide level. However, GA and the GA/HbA1c ratio exhibited inverse correlations with fasting C-peptide level (r=-0.214, P=0.002; r=-0.516, P<0.001.ConclusionGA seems to more accurately reflects fasting plasma glucose level than HbA1c. GA, GA/HbA1c ratio appear to reflect insulin secretory function.

  7. Assessment of nonenzymatic glycation in protein by FTIR spectroscopy

    Science.gov (United States)

    Otero de Joshi, Virginia; Joshi, Narahari V.; Gil, Herminia; Velasquez, William; Contreras, Silvia; Marquez, Glevis

    1999-04-01

    Detection of nonenzymatic glycated proteins is a very significant feature in diabetes, aging and related diseases, therefore we have carried out an FTIR spectroscopic study for glycated and native proteins such as (gamma) -globulin, human serum albumin. For this purpose, commercially available proteins were glycated by a usual procedure and their FTIR spectra were recorded together with that of the native ones. In order to follow the changes in time, (gamma) -globulin was glycated during 1, 2, 3, 5 and 8 weeks and their spectra were recorded. Direct verification was obtained by examining a model unit where the -NH2 group was attached to glucose. The spectrum shows a strong peak at 3500 cm-1 confirming the observed variation in time dependent spectra. The general features of the spectra are very similar and there was no additional structure or change in the peaks. This is understandable as not all the lysine residues are glycated, only a small fraction. Glucose is attached to the (epsilon) -amino group of lysine to form Amadori products, and therefore, the vibrational modes corresponding to the (epsilon) -NH2 unit of lysine are expected to be altered. This region exactly lies in the Amide I region of protein structure. Careful investigation of this part, indeed, shows a complex structure originated from alternations of -NH2 group. Thus, the present investigation indicates that an optical approach could be a rapid and effective method to identify the nonenzymatic glycation process.

  8. High-performance non-enzymatic catalysts based on 3D hierarchical hollow porous Co3O4 nanododecahedras in situ decorated on carbon nanotubes for glucose detection and biofuel cell application.

    Science.gov (United States)

    Wang, Shiyue; Zhang, Xiaohua; Huang, Junlin; Chen, Jinhua

    2018-03-01

    In this work, high-performance non-enzymatic catalysts based on 3D hierarchical hollow porous Co 3 O 4 nanododecahedras in situ decorated on carbon nanotubes (3D Co 3 O 4 -HPND/CNTs) were successfully prepared via direct carbonizing metal-organic framework-67 in situ grown on carbon nanotubes. The morphology, microstructure, and composite of 3D Co 3 O 4 -HPND/CNTs were characterized by scanning electron microscopy, transmission electron microscopy, micropore and chemisorption analyzer, and X-ray diffraction. The electrochemical characterizations indicated that 3D Co 3 O 4 -HPND/CNTs present considerably catalytic activity toward glucose oxidation and could be promising for constructing high-performance electrochemical non-enzymatic glucose sensors and glucose/O 2 biofuel cell. When used for non-enzymatic glucose detection, the 3D Co 3 O 4 -HPND/CNTs modified glassy carbon electrode (3D Co 3 O 4 -HPND/CNTs/GCE) exhibited excellent analytical performance with high sensitivity (22.21 mA mM -1  cm -2 ), low detection limit of 0.35 μM (S/N = 3), fast response (less than 5 s) and good stability. On the other hand, when the 3D Co 3 O 4 -HPND/CNTs/GCE worked as an anode of a biofuel cell, a maximum power density of 210 μW cm -2 at 0.15 V could be obtained, and the open circuit potential was 0.68 V. The attractive 3D hierarchical porous structural features, the large surface area, and the excellent conductivity based on the continuous and effective electron transport network in 3D Co 3 O 4 -HPND/CNTs endow 3D Co 3 O 4 -HPND/CNTs with the enhanced electrochemical performance and promising applications in electrochemical sensing, biofuel cell, and other energy storage and conversion devices such as supercapacitor. Graphical abstract High-performance non-enzymatic catalysts for enzymeless glucose sensing and biofuel cell based on 3D hierarchical hollow porous Co 3 O 4 nanododecahedras anchored on carbon nanotubes were successfully prepared via direct carbonizing

  9. Peptide dendrimers

    Czech Academy of Sciences Publication Activity Database

    Niederhafner, Petr; Šebestík, Jaroslav; Ježek, Jan

    2005-01-01

    Roč. 11, - (2005), 757-788 ISSN 1075-2617 R&D Projects: GA ČR(CZ) GA203/03/1362 Institutional research plan: CEZ:AV0Z40550506 Keywords : multiple antigen peptides * peptide dendrimers * synthetic vaccine * multipleantigenic peptides Subject RIV: CC - Organic Chemistry Impact factor: 1.803, year: 2005

  10. Relationship between advanced glycation end-products with the severity of chronic heart failure in 85 patients

    Directory of Open Access Journals (Sweden)

    Amir Farhang Zand Parsa

    2013-12-01

    Full Text Available Background: Advanced glycation end-products (AGEs came up with the recent researches regarding new biomarkers for the diagnosis of heart failure. AGEs are the end products of non-enzymatic glycation and oxidation of proteins, lipids and nucleotides during Maillard biochemical reaction. Although it has been known that AGEs have a role in the pathogenesis of chronic heart failure (CHF, information regarding its role and its pathogenetic mechanism is very limited. The aim of this study was to find any relationship between AGEs with the etiology and severity of chronic heart failure.Methods: This study is a prospective cross sectional study that enrolled 85 patients with chronic heart failure. Measurement of left ventricle ejection fraction (LVEF was done by echocardiography. Blood samples were collected for measuring AGEs just before or after echocardiography assessment (in the same session. Measurement of AGEs was done by the enzyme-linked immunosorbent assay (ELISA method. The relationship between AGEs with the severity of CHF and as well as the etiology of CHF were evaluated via SPSS-15.Results: Of 85 patients 48 (56.5% patients were male and 37 (43.5% were female; Mean±SD of their ages was 55.8±13.4 years old (ranges from 27 to 84 years. Correlation coefficient between LVEF and AGEs was 0.269 (P=0.013. Mean of AGEs in patients with and without ischemic etiology of their heart failure were 16.8±9.8µg/ml and 11.6±7.3 µg/ml, respectively. Although trend was in favor of ischemic heart failure, the difference between two groups was not statistically significant (P= 0.141.Conclusion: According to this study the rate of AGES could be helpful in the diagnosis and assessment of severity of CHF. Based on our findings, higher blood levels of AGEs in the ischemic CHF cases, also it could be concluded that in the future this marker may be used for etiologic differentiation of heart failure syndrome.

  11. The narrow therapeutic window of glycated hemoglobin and assay variability.

    Science.gov (United States)

    Hosseini, S S; Bibler, I; Charles, M A

    1999-12-01

    Glycated hemoglobin is measured by a variety of assays, each of which has a unique normal level. Our purpose is to show that among the different assays available in the United States, using the same patient's blood sample, assay results may vary widely and may more or less easily achieve a glycated hemoglobin value within the normal range. The following assays were compared using the same patient's blood sample for each pair of assays: glycohemoglobin affinity assay (GHB Reader; Isolab, Akron, OH) versus gel electrophoresis assay (n = 76); Isolab versus ion capture assay (IMX; Abbott Laboratories, Irving, TX) (n = 57); monoclonal antibody assay (DCA2000; Bayer Diagnostics, Pittsburgh, PA) versus IMX (n = 100); and high-performance liquid chromatography (HPLC) assay (Bio-Rad Variant A1c; Bio-Rad Laboratories, Richmond, CA) versus IMX assay (n = 55). Our analyses indicate that a relative ranking can be established for the ease of achieving a normal glycated hemoglobin level. The ranking indicates that the most stringent or difficult assays for achieving a normal level are the Isolab and DCA2000 assays. The intermediate assays are the IMX and Bio-Rad Variant, and the easiest method for achieving a normal value is the gel electrophoresis assay. Our results indicate that various glycated hemoglobin assays vary widely and are associated with more or less difficulty for an individual patient to achieve a glycated hemoglobin level within the normal range. These results are especially significant with respect to (1) the clinically narrow therapeutic window of glycated hemoglobin values in type 1 diabetes to avoid rapidly advancing severe hypoglycemia rates and chronic microvascular complication rates, and (2) the glycated hemoglobin threshold for rapidly advancing macrovascular disease in both type 1 and type 2 patients.

  12. Effects of thyroid status on glycated hemoglobin

    Directory of Open Access Journals (Sweden)

    Rana Bhattacharjee

    2017-01-01

    Full Text Available Introduction: Glycated hemoglobin (HbA1c can be altered in different conditions. We hypothesize that HbA1c levels may change due to altered thyroid status, possibly due to changes in red blood cell (RBC turnover. Objectives: The objective of this study was to determine the effects of altered thyroid status on HbA1c levels in individuals without diabetes, with overt hyper- and hypo-thyroidism, and if present, whether such changes in HbA1c are reversed after achieving euthyroid state. Methods: Euglycemic individuals with overt hypo- or hyper-thyroidism were selected. Age- and sex-matched controls were recruited. Baseline HbA1c and reticulocyte counts (for estimation of RBC turnover were estimated in all the patients and compared. Thereafter, stable euthyroidism was achieved in a randomly selected subgroup and HbA1c and reticulocyte count was reassessed. HbA1c values and reticulocyte counts were compared with baseline in both the groups. Results: Hb A1c in patients initially selected was found to be significantly higher in hypothyroid group. HbA1c values in hyperthyroid patients were not significantly different from controls. HbA1c reduction and rise in reticulocyte count were significant in hypothyroid group following treatment without significant change in glucose level. Hb A1c did not change significantly following treatment in hyperthyroid group. The reticulocyte count, however, decreased significantly. Conclusion: Baseline HbA1c levels were found to be significantly higher in hypothyroid patients, which reduced significantly after achievement of euthyroidism without any change in glucose levels. Significant baseline or posttreatment change was not observed in hyperthyroid patients. Our study suggests that we should be cautious while interpreting HbA1c data in patients with hypothyroidism.

  13. Inhibition of Nonenzymatic Protein Glycation by Pomegranate and Other Fruit Juices

    Science.gov (United States)

    Dorsey, Pamela Garner; Greenspan, Phillip

    2014-01-01

    Abstract The nonenzymatic glycation of proteins and the formation of advanced glycation endproducts in diabetes leads to the crosslinking of proteins and disease complications. Our study sought to demonstrate the effect of commonly consumed juices (pomegranate, cranberry, black cherry, pineapple, apple, and Concord grape) on the fructose-mediated glycation of albumin. Albumin glycation decreased by 98% in the presence of 10 μL of pomegranate juice/mL; other juices inhibited glycation by only 20%. Pomegranate juice produced the greatest inhibition on protein glycation when incubated at both the same phenolic concentration and the same antioxidant potential. Both punicalagin and ellagic acid significantly inhibited the glycation of albumin by ∼90% at 5 μg/mL. Sodium dodecyl sulfate–polyacrylamide gel electrophoresis revealed that pomegranate, but not apple juice, protected albumin from modification. These results demonstrate that pomegranate juice and two of its major constituents are potent inhibitors of fructose-mediated protein glycation. PMID:24433074

  14. Advanced glycation end products in the skin are enhanced in COPD

    NARCIS (Netherlands)

    Hoonhorst, Susan J. M.; Loi, Adele T. Lo Tam; Hartman, Jorine E.; Telenga, Eef D.; van den Berge, Maarten; Koenderman, Leo; Lammers, Jan Willem J.; Boezen, H. Marike; Postma, Dirkje S.; ten Hacken, Nick H. T.

    Background. Cigarette smoking is the main cause of chronic obstructive pulmonary disease (COPD) inducing oxidative stress and local tissue injury, resulting in pulmonary inflammation. Advanced glycation end products (AGEs) are produced by glycation and oxidation processes and their formation is

  15. Coptis chinensis Polysaccharides Inhibit Advanced Glycation End Product Formation.

    Science.gov (United States)

    Yang, Ye; Li, Yun; Yin, Dengke; Chen, Song; Gao, Xiangdong

    2016-06-01

    Coptis chinensis Franch (Huanglian) is commonly used to treat diabetes in China. In this study, the effects of the C. chinensis Franch polysaccharides (CCP) on advanced glycation end product (AGE) formation in vitro and in streptozotocin-induced diabetic mice were investigated. CCP significantly inhibited all the three periods of nonenzymatic protein glycation in vitro, including Amadori product, dicarbonyl compound, and AGE formation (P < .01). In diabetic mice, the administration of CCP not only improved both bodyweight and serum insulin and decreased fasting blood glucose and glycated serum protein concentrations but also decreased the AGE accumulations and morphological abnormalities in pancreas and liver. The inhibitory effects of CCP on AGE formation afford a potential therapeutic use in the prevention and treatment of diabetes.

  16. Raman Spectroscopy Provides a Powerful Diagnostic Tool for Accurate Determination of Albumin Glycation

    OpenAIRE

    Dingari, Narahara Chari; Kang, Jeon Woong; Dasari, Ramachandra R.; Barman, Ishan; Horowitz, Gary Leigh

    2012-01-01

    We present the first demonstration of glycated albumin detection and quantification using Raman spectroscopy without the addition of reagents. Glycated albumin is an important marker for monitoring the long-term glycemic history of diabetics, especially as its concentrations, in contrast to glycated hemoglobin levels, are unaffected by changes in erythrocyte life times. Clinically, glycated albumin concentrations show a strong correlation with the development of serious diabetes complications...

  17. Effect of Temperature on Tolbutamide Binding to Glycated Serum Albumin

    Directory of Open Access Journals (Sweden)

    Agnieszka Szkudlarek

    2017-03-01

    Full Text Available Glycation process occurs in protein and becomes more pronounced in diabetes when an increased amount of reducing sugar is present in bloodstream. Glycation of protein may cause conformational changes resulting in the alterations of its binding properties even though they occur at a distance from the binding sites. The changes in protein properties could be related to several pathological consequences such as diabetic and nondiabetic cardiovascular diseases, cataract, renal dysfunction and Alzheimer’s disease. The experiment was designed to test the impact of glycation process on sulfonylurea drug tolbutamide-albumin binding under physiological (T = 309 K and inflammatory (T = 311 K and T = 313 K states using fluorescence and UV-VIS spectroscopies. It was found in fluorescence analysis experiments that the modification of serum albumin in tryptophanyl and tyrosyl residues environment may affect the tolbutamide (TB binding to albumin in subdomain IIA and/or IIIA (Sudlow’s site I and/or II, and also in subdomains IB and IIB. We estimated the binding of tolbutamide to albumin described by a mixed nature of interaction (specific and nonspecific. The association constants Ka (L∙mol−1 for tolbutamide at its high affinity sites on non-glycated albumin were in the range of 1.98–7.88 × 104 L∙mol−1 (λex = 275 nm, 1.20–1.64 × 104 L∙mol−1 (λex = 295 nm and decreased to 1.24–0.42 × 104 L∙mol−1 at λex = 275 nm (T = 309 K and T = 311 K and increased to 2.79 × 104 L∙mol−1 at λex = 275 nm (T = 313 K and to 4.43–6.61 × 104 L∙mol−1 at λex = 295 nm due to the glycation process. Temperature dependence suggests the important role of van der Waals forces and hydrogen bonding in hydrophobic interactions between tolbutamide and both glycated and non-glycated albumin. We concluded that the changes in the environment of TB binding of albumin in subdomain IIA and/or IIIA as well as in subdomains IB and IIB influence on

  18. Human Achilles tendon glycation and function in diabetes

    DEFF Research Database (Denmark)

    Couppe, Christian; Svensson, Rene Brüggebusch; Kongsgaard, Mads

    2016-01-01

    Diabetic patients have an increased risk of foot ulcers, and glycation of collagen may increase tissue stiffness. We hypothesized that the level of glycemic control (glycation) may affect Achilles tendon stiffness, which can influence gait pattern. We therefore investigated the relationship between...... tissue cross-linking were greater in diabetic patients compared to controls. The higher foot pressure indicates that material stiffness of tendon and other tissue (e.g skin and joint capsule) may influence on foot gait. The difference in foot pressure distribution may contribute to the development...... of foot ulcers in diabetic patients....

  19. Determination of the glycation sites of Bacillus anthracis neoglycoconjugate vaccine by MALDI-TOF/TOF-CID-MS/MS and LC-ESI-QqTOF-tandem mass spectrometry

    Science.gov (United States)

    Jahouh, Farid; Hou, Shu-jie; Kováč, Pavol; Banoub, Joseph H.

    2012-01-01

    We present herein an efficient mass spectrometric method for the localization of the glycation sites of a model neoglycoconjugate vaccine formed by a construct of the tetrasaccharide side chain of the Bacillus anthracis exosporium and the protein carrier bovine serum albumin. The glycoconjugate was digested with both trypsin and GluC V8 endoproteinases, and the digests were then analyzed by MALDI-TOF/TOF-CID-MS/MS and nano-LC-ESI-QqTOF-CID-MS/MS. The sequences of the unknown peptides analyzed by MALDI-TOF/TOF-CID-MS/MS, following digestion with the GluC V8 endoproteinase, allowed us to recognize three glycopeptides whose glycation occupancies were, respectively, on Lys 235, Lys 420, and Lys 498. Similarly, the same analysis was performed on the tryptic digests, which permitted us to recognize two glycation sites on Lys 100 and Lys 374. In addition, we have also used LC-ESI-QqTOF-CID-MS/MS analysis for the identification of the tryptic digests. However, this analysis identified a higher number of glycopeptides than would be expected from a glycoconjugate composed of a carbohydrate–protein ratio of 5.4:1, which would have resulted in glycation occupancies of 18 specific sites. This discrepancy was due to the large number of glycoforms formed during the synthetic carbohydrate–spacer–carrier protein conjugation. Likewise, the LC-ESI-QqTOF-MS/MS analysis of the GluC V8 digest also identified 17 different glycation sites on the synthetic glycoconjugate. PMID:22012665

  20. Direct growth of metal-organic frameworks thin film arrays on glassy carbon electrode based on rapid conversion step mediated by copper clusters and hydroxide nanotubes for fabrication of a high performance non-enzymatic glucose sensing platform.

    Science.gov (United States)

    Shahrokhian, Saeed; Khaki Sanati, Elnaz; Hosseini, Hadi

    2018-07-30

    The direct growth of self-supported metal-organic frameworks (MOFs) thin film can be considered as an effective strategy for fabrication of the advanced modified electrodes in sensors and biosensor applications. However, most of the fabricated MOFs-based sensors suffer from some drawbacks such as time consuming for synthesis of MOF and electrode making, need of a binder or an additive layer, need of expensive equipment and use of hazardous solvents. Here, a novel free-standing MOFs-based modified electrode was fabricated by the rapid direct growth of MOFs on the surface of the glassy carbon electrode (GCE). In this method, direct growth of MOFs was occurred by the formation of vertically aligned arrays of Cu clusters and Cu(OH) 2 nanotubes, which can act as both mediator and positioning fixing factor for the rapid formation of self-supported MOFs on GCE surface. The effect of both chemically and electrochemically formed Cu(OH) 2 nanotubes on the morphological and electrochemical performance of the prepared MOFs were investigated. Due to the unique properties of the prepared MOFs thin film electrode such as uniform and vertically aligned structure, excellent stability, high electroactive surface area, and good availability to analyte and electrolyte diffusion, it was directly used as the electrode material for non-enzymatic electrocatalytic oxidation of glucose. Moreover, the potential utility of this sensing platform for the analytical determination of glucose concentration was evaluated by the amperometry technique. The results proved that the self-supported MOFs thin film on GCE is a promising electrode material for fabricating and designing non-enzymatic glucose sensors. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Glycation inhibitors extend yeast chronological lifespan by reducing advanced glycation end products and by back regulation of proteins involved in mitochondrial respiration.

    Science.gov (United States)

    Kazi, Rubina S; Banarjee, Reema M; Deshmukh, Arati B; Patil, Gouri V; Jagadeeshaprasad, Mashanipalya G; Kulkarni, Mahesh J

    2017-03-06

    Advanced Glycation End products (AGEs) are implicated in aging process. Thus, reducing AGEs by using glycation inhibitors may help in attenuating the aging process. In this study using Saccharomyces cerevisiae yeast system, we show that Aminoguanidine (AMG), a well-known glycation inhibitor, decreases the AGE modification of proteins in non-calorie restriction (NR) (2% glucose) and extends chronological lifespan (CLS) similar to that of calorie restriction (CR) condition (0.5% glucose). Proteomic analysis revealed that AMG back regulates the expression of differentially expressed proteins especially those involved in mitochondrial respiration in NR condition, suggesting that it switches metabolism from fermentation to respiration, mimicking CR. AMG induced back regulation of differentially expressed proteins could be possibly due to its chemical effect or indirectly by glycation inhibition. To delineate this, Metformin (MET), a structural analog of AMG and a mild glycation inhibitor and Hydralazine (HYD), another potent glycation inhibitor but not structural analog of AMG were used. HYD was more effective than MET in mimicking AMG suggesting that glycation inhibition was responsible for restoration of differentially expressed proteins. Thus glycation inhibitors particularly AMG, HYD and MET extend yeast CLS by reducing AGEs, modulating the expression of proteins involved in mitochondrial respiration and possibly by scavenging glucose. This study reports the role of glycation in aging process. In the non-caloric restriction condition, carbohydrates such as glucose promote protein glycation and reduce CLS. While, the inhibitors of glycation such as AMG, HYD, MET mimic the caloric restriction condition by back regulating deregulated proteins involved in mitochondrial respiration which could facilitate shift of metabolism from fermentation to respiration and extend yeast CLS. These findings suggest that glycation inhibitors can be potential molecules that can be used

  2. Relationship Between Glycated Haemoglobin and Body Mass Index ...

    African Journals Online (AJOL)

    Blood pressure, Height, Weight were all measured and body mass index (BMI) calculated as weight (in kilograms) divided by height (in meters squared). Glycated haemoglobin was estimated using the ion exchange chromatography method. Result: A total of 100 healthy subjects, 50 males and 50 females, ages ranging ...

  3. Effect of some high consumption spices on hemoglobin glycation.

    Science.gov (United States)

    Naderi, G H; Dinani, Narges J; Asgary, S; Taher, M; Nikkhoo, N; Boshtam, M

    2014-01-01

    Formation of glycation products is major factor responsible in complications of diabetes. Worldwide trend is toward the use of natural additives in reducing the complications of diseases. Therefore, there is a growing interest in natural antiglycation found in plants. Herbs and spices are one of the most important targets to search for natural antiglycation from the point of view of safety. This study investigated the ability of some of the spices to inhibit glycation process in a hemoglobin/glucose model system and compared their potency with each other. For this subject the best concentration and time to incubate glucose with hemoglobin was investigated. Then the glycosylation degree of hemoglobin in the presence of extracts by the three concentrations 0.25, 0.5 and 1 μg/ml was measured colorimetrically at 520 nm. Results represent that some of extracts such as wild caraway, turmeric, cardamom and black pepper have inhibitory effects on hemoglobin glycation. But some of the extracts such as anise and saffron have not only inhibitory effects but also aggravated this event and have proglycation properties. In accordance with the results obtained we can conclude that wild caraway, turmeric, cardamom and black pepper especially wild caraway extracts are potent antiglycation agents, which can be of great value in the preventive glycation-associated complications in diabetes.

  4. Glycated Hemoglobin Measurement and Prediction of Cardiovascular Disease

    DEFF Research Database (Denmark)

    Di Angelantonio, Emanuele; Gao, Pei; Khan, Hassan

    2014-01-01

    IMPORTANCE: The value of measuring levels of glycated hemoglobin (HbA1c) for the prediction of first cardiovascular events is uncertain. OBJECTIVE: To determine whether adding information on HbA1c values to conventional cardiovascular risk factors is associated with improvement in prediction of c...

  5. A study on human serum albumin influence on glycation of fibrinogen

    International Nuclear Information System (INIS)

    Kielmas, Martyna; Szewczuk, Zbigniew; Stefanowicz, Piotr

    2013-01-01

    Highlights: •The glycation of fibrinogen was investigated by isotopic labeling method. •The potential glycation sites in fibrinogen were identified. •Human serum albumin (HSA) inhibits the glycation of fibrinogen. •The effect of HSA on fibrinogen glycation is sequence-dependent. -- Abstract: Although in vivo glycation proceeds in complex mixture of proteins, previous studies did not take in consideration the influence of protein–protein interaction on Maillard reaction. The aim of our study was to test the influence of human serum albumin (HSA) on glycation of fibrinogen. The isotopic labeling using [ 13 C 6 ] glucose combined with LC-MS were applied as tool for identification possible glycation sites in fibrinogen and for evaluation the effect of HSA on the glycation level of selected amino acids in fibrinogen. The obtained data indicate that the addition of HSA protects the fibrinogen from glycation. The level of glycation in presence of HSA is reduced by 30–60% and depends on the location of glycated residue in sequence of protein

  6. A study on human serum albumin influence on glycation of fibrinogen

    Energy Technology Data Exchange (ETDEWEB)

    Kielmas, Martyna; Szewczuk, Zbigniew; Stefanowicz, Piotr, E-mail: Piotr.stefanowicz@chem.uni.wroc.pl

    2013-09-13

    Highlights: •The glycation of fibrinogen was investigated by isotopic labeling method. •The potential glycation sites in fibrinogen were identified. •Human serum albumin (HSA) inhibits the glycation of fibrinogen. •The effect of HSA on fibrinogen glycation is sequence-dependent. -- Abstract: Although in vivo glycation proceeds in complex mixture of proteins, previous studies did not take in consideration the influence of protein–protein interaction on Maillard reaction. The aim of our study was to test the influence of human serum albumin (HSA) on glycation of fibrinogen. The isotopic labeling using [{sup 13}C{sub 6}] glucose combined with LC-MS were applied as tool for identification possible glycation sites in fibrinogen and for evaluation the effect of HSA on the glycation level of selected amino acids in fibrinogen. The obtained data indicate that the addition of HSA protects the fibrinogen from glycation. The level of glycation in presence of HSA is reduced by 30–60% and depends on the location of glycated residue in sequence of protein.

  7. Non-enzymatic posttranslational modifications of bovine serum albumin by oxo-compounds investigated by high-performance liquid chromatography–mass spectrometry and capillary zone electrophoresis–mass spektrometry

    Czech Academy of Sciences Publication Activity Database

    Zmatlíková, Zdeňka; Sedláková, Pavla; Lacinová, Kateřina; Eckhardt, Adam; Pataridis, Statis; Mikšík, Ivan

    2010-01-01

    Roč. 1217, č. 51 (2010), s. 8009-8015 ISSN 0021-9673 R&D Projects: GA MŠk(CZ) 1M0510; GA ČR(CZ) GA203/08/1428; GA ČR(CZ) GA203/09/0675 Institutional research plan: CEZ:AV0Z50110509 Keywords : glycation * HPLC-MS * CE-MS Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 4.194, year: 2010

  8. Influence of storage and heating on protein glycation levels of processed lactose-free and regular bovine milk products.

    Science.gov (United States)

    Milkovska-Stamenova, Sanja; Hoffmann, Ralf

    2017-04-15

    Thermal treatment preserves the microbiological safety of milk, but also induces Maillard reactions modifying for example proteins. The purpose of this study was evaluating the influence of consumer behaviors (storage and heating) on protein glycation degrees in bovine milk products. Lactosylation and hexosylation sites were identified in ultra-high temperature (UHT), lactose-free pasteurized, and lactose-free UHT milk (ULF) and infant formula (IF) using tandem mass spectrometry (electron transfer dissociation). Overall, 303 lactosylated and 199 hexosylated peptides were identified corresponding to 170 lactosylation (31 proteins) and 117 hexosylation sites (25 proteins). In quantitative terms, storage increased lactosylation up to fourfold in UHT and IF and hexosylation up to elevenfold in ULF and threefold in IF. These levels increased additionally twofold when the stored samples were heated (40°C). In conclusion, storage and heating appear to influence protein glycation levels in milk at similar or even higher degrees than industrial processing. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. SERUM MAGNESIUM, LIPID PROFILE AND GLYCATED HAEMOGLOBIN IN DIABETIC RETINOPATHY

    Directory of Open Access Journals (Sweden)

    Sunanda Vusikala

    2016-07-01

    Full Text Available BACKGROUND Diabetic retinopathy is one of the important microvascular complications of diabetes mellitus of long duration. Alterations in trace metals like magnesium and lipid profile was observed in diabetic retinopathy with hyperglycaemic status. AIM The study was taken up to assess the role of magnesium, lipid profile and glycated haemoglobin in diabetic retinopathy. MATERIALS AND METHODS A total of 80 subjects between 40-65 years were included in the study. Group 1 includes 20 age and sex matched healthy controls. Group 2 includes 30 cases of Diabetes mellitus without retinopathy. Group 3 includes 30 cases of Diabetes mellitus with retinopathy. RESULTS Magnesium was found to be significantly low in the diabetic group with retinopathy. Serum cholesterol and triglycerides were significantly elevated in the diabetic group with retinopathy. Fasting and Postprandial plasma glucose and glycated haemoglobin (HbA1c levels confirmed the glycaemic status of each of the groups. CONCLUSIONS Hypomagnesemia, hypercholesterolaemia, hypertriglyceridemia was observed in diabetic retinopathy along with increased levels of glycated haemoglobin in our study.

  10. Ovalbumin with Glycated Carboxyl Groups Shows Membrane-Damaging Activity

    Directory of Open Access Journals (Sweden)

    Ching-Chia Tang

    2017-02-01

    Full Text Available The aim of the present study was to investigate whether glycated ovalbumin (OVA showed novel activity at the lipid-water interface. Mannosylated OVA (Man-OVA was prepared by modification of the carboxyl groups with p-aminophenyl α-dextro (d-mannopyranoside. An increase in the number of modified carboxyl groups increased the membrane-damaging activity of Man-OVA on cell membrane-mimicking vesicles, whereas OVA did not induce membrane permeability in the tested phospholipid vesicles. The glycation of carboxyl groups caused a notable change in the gross conformation of OVA. Moreover, owing to their spatial positions, the Trp residues in Man-OVA were more exposed, unlike those in OVA. Fluorescence quenching studies suggested that the Trp residues in Man-OVA were located on the interface binds with the lipid vesicles, and their microenvironment was abundant in positively charged residues. Although OVA and Man-OVA showed a similar binding affinity for lipid vesicles, the lipid-interacting feature of Man-OVA was distinct from that of OVA. Chemical modification studies revealed that Lys and Arg residues, but not Trp residues, played a crucial role in the membrane-damaging activity of Man-OVA. Taken together, our data suggest that glycation of carboxyl groups causes changes in the structural properties and membrane-interacting features of OVA, generating OVA with membrane-perturbing activities at the lipid-water interface.

  11. Multicenter evaluation of an enzymatic method for glycated albumin.

    Science.gov (United States)

    Paleari, Renata; Bonetti, Graziella; Callà, Cinzia; Carta, Mariarosa; Ceriotti, Ferruccio; Di Gaetano, Nicola; Ferri, Marilisa; Guerra, Elena; Lavalle, Gabriella; Cascio, Claudia Lo; Martino, Francesca Gabriela; Montagnana, Martina; Moretti, Marco; Santini, Gabriele; Scribano, Donata; Testa, Roberto; Vero, Anna; Mosca, Andrea

    2017-06-01

    The use of glycated albumin (GA) has been proposed as an additional glycemic control marker particularly useful in intermediate-term monitoring and in situation when HbA 1c test is not reliable. We have performed the first multicenter evaluation of the analytical performance of the enzymatic method quantILab Glycated Albumin assay implemented on the most widely used clinical chemistry analyzers (i.e. Abbott Architect C8000, Beckman Coulter AU 480 and 680, Roche Cobas C6000, Siemens ADVIA 2400 and 2400 XPT). The repeatability of the GA measurement (expressed as CV, %) implemented in the participating centers ranged between 0.9% and 1.2%. The within-laboratory CVs ranged between 1.2% and 1.6%. A good alignment between laboratories was found, with correlation coefficients from 0.996 to 0.998. Linearity was confirmed in the range from 7.6 to 84.7%. The new enzymatic method for glycated albumin evaluated by our investigation is suitable for clinical use. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Influences of conformations of peptides on stereoinversions and/or isomerizations of aspartic acid residues.

    Science.gov (United States)

    Oda, Akifumi; Nakayoshi, Tomoki; Fukuyoshi, Shuichi; Kurimoto, Eiji; Takahashi, Ohgi

    2018-07-01

    Recently, non-enzymatic stereoinversions of aspartic acid (Asp) residues in proteins and peptides have been reported. Here, we performed replica exchange molecular dynamics (REMD) simulations of model peptides (exon 6, 26A-1, and 26A-2) extracted from elastin to investigate their structural features, thereby revealing the factor that influences stereoinversions. For REMD trajectories, we calculated distances between carboxyl carbon in Asp and amide nitrogen in the (n + 1) residue (CN distances). Because bond formation between carbon and nitrogen is indispensable to the formation of a succinimide intermediate the distance between them seems to play an important role in stereoinversion. Moreover, we calculated polar surface areas (PSAs) for the trajectories, finding that CN distances and PSA were different for each peptide, with the longest CN distance and smallest PSA observed for exon 6 peptide, where stereoinversion of Asp is the slowest. Although the average CN distance was shorter for exon 26A-1 peptide than for exon 26A-2 peptide, the number of conformations with CN distances acids: biology in the mirror, edited by Dr. Loredano Pollegioni, Dr. Jean-Pierre Mothet and Dr. Molla Gianluca. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Cross-Linking in Collagen by Nonenzymatic Glycation Increases the Matrix Stiffness in Rabbit Achilles Tendon

    OpenAIRE

    Reddy, G. Kesava

    2004-01-01

    Nonenzymatic glycation of connective tissue matrix proteins is a major contributor to the pathology of diabetes and aging. Previously the author and colleagues have shown that nonenzymatic glycation significantly enhances the matrix stability in the Achilles tendon (Reddy et al., 2002, Arch. Biochem. Biophys., 399, 174–180). The present study was designed to gain further insight into glycation-induced collagen cross-linking and its relationship to matrix stiffness in the rabbit Achilles tendo...

  14. Co-localisation of advanced glycation end products and D-β-aspartic acid-containing proteins in gelatinous drop-like corneal dystrophy.

    Science.gov (United States)

    Kaji, Yuichi; Oshika, Tetsuro; Takazawa, Yutaka; Fukayama, Masashi; Fujii, Noriko

    2012-08-01

    Gelatinous drop-like corneal dystrophy (GDLD), also known as familial subepithelial corneal amyloidosis, is an autosomal recessive disorder that causes progressive corneal opacity due to accumulation of amyloid fibrils in the corneal stroma. Genetic analyses have revealed that a mutation in membrane component chromosome 1 surface marker 1 gene is responsible for GDLD. However, the mechanism of amyloid formation in the corneal stroma remains unclear. The present study attempted to reveal the role of advanced glycation end products (AGE) and d-amino acids in amyloid formation in GDLD. Informed consent was obtained from five patients with GDLD, three patients with bullous keratopathy and three patients with interstitial keratitis and all the specimens were analysed. Localisation of amyloid fibrils was analysed using Congo-red and thioflavin T staining. In addition, the localisation of AGE (N(ε)-carboxy(methyl)-L-lysine, pyrraline and pentosidine) and D-β-aspartic acid-containing proteins, a major form of d-amino acid-containing proteins, was analysed immunohistochemically. In all GDLD specimens, strong immunoreactivity to AGE and D-β-aspartic acid-containing proteins was detected in the subepithelial amyloid-rich region. In contrast, amyloid fibrils, AGE, or D-amino acid-containing proteins were slightly detected in the corneal stroma of patients with bullous keratopathy and interstitial keratitis. Abnormally accumulated proteins rich in AGE and D-β-aspartic acid co-localise in the amyloid lesions in GDLD. These results indicate that non-enzymatic post-translational modifications of proteins, including AGE formation and isomerisation of aspartyl residues, will be the cause as well as the result of amyloid fibril formations in GDLD.

  15. Liraglutide attenuates the migration of retinal pericytes induced by advanced glycation end products.

    Science.gov (United States)

    Lin, Wen-Jian; Ma, Xue-Fei; Hao, Ming; Zhou, Huan-Ran; Yu, Xin-Yang; Shao, Ning; Gao, Xin-Yuan; Kuang, Hong-Yu

    2018-07-01

    Retinal pericyte migration represents a novel mechanism of pericyte loss in diabetic retinopathy (DR), which plays a crucial role in the early impairment of the blood-retinal barrier (BRB). Glucagon-like peptide-1 (GLP-1) has been shown to protect the diabetic retina in the early stage of DR; however, the relationship between GLP-1 and retinal pericytes has not been discussed. In this study, advanced glycation end products (AGEs) significantly increased the migration of primary bovine retinal pericytes without influencing cell viability. AGEs also significantly enhanced phosphatidylinositol 3-kinase (PI3K)/Akt activation, and changed the expressions of migration-related proteins, including phosphorylated focal adhesion kinase (p-FAK), matrix metalloproteinase (MMP)-2 and vinculin. PI3K inhibition significantly attenuated the AGEs-induced migration of retinal pericytes and reversed the overexpression of MMP-2. Glucagon-like peptide-1 receptor (Glp1r) was expressed in retinal pericytes, and liraglutide, a GLP-1 analog, significantly attenuated the migration of pericytes by Glp1r and reversed the changes in p-Akt/Akt, p-FAK/FAK, vinculin and MMP-2 levels induced by AGEs, indicating that the protective effect of liraglutide was associated with the PI3K/Akt pathway. These results provided new insights into the mechanism underlying retinal pericyte migration. The early use of liraglutide exerts a potential bebefical effect on regulating pericyte migration, which might contribute to mechanisms that maintain the integrity of vascular barrier and delay the development of DR. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Calorimetric investigation of diclofenac drug binding to a panel of moderately glycated serum albumins.

    Science.gov (United States)

    Indurthi, Venkata S K; Leclerc, Estelle; Vetter, Stefan W

    2014-08-01

    Glycation alters the drug binding properties of serum proteins and could affect free drug concentrations in diabetic patients with elevated glycation levels. We investigated the effect of bovine serum albumin glycation by eight physiologically relevant glycation reagents (glucose, ribose, carboxymethyllysine, acetoin, methylglyoxal, glyceraldehyde, diacetyl and glycolaldehyde) on diclofenac drug binding. We used this non-steroidal anti-inflammatory drug diclofenac as a paradigm for acidic drugs with high serum binding and because of its potential cardiovascular risks in diabetic patients. Isothermal titration calorimetry showed that glycation reduced the binding affinity Ka of serum albumin and diclofenac 2 to 6-fold by reducing structural rigidity of albumin. Glycation affected the number of drug binding sites in a glycation reagent dependent manner and lead to a 25% decrease for most reagent, expect for ribose, with decreased by 60% and for the CML-modification, increased the number of binding sites by 60%. Using isothermal titration calorimetry and differential scanning calorimetry we derived the complete thermodynamic characterization of diclofenac binding to all glycated BSA samples. Our results suggest that glycation in diabetic patients could significantly alter the pharmacokinetics of the widely used over-the-counter NSDAI drug diclofenac and with possibly negative implications for patients. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Extracellular matrix glycation and receptor for advanced glycation end-products activation: a missing piece in the puzzle of the association between diabetes and cancer.

    Science.gov (United States)

    Rojas, Armando; Añazco, Carolina; González, Ileana; Araya, Paulina

    2018-04-05

    A growing body of epidemiologic evidence suggests that people with diabetes are at a significantly higher risk of many forms of cancer. However, the molecular mechanisms underlying this association are not fully understood. Cancer cells are surrounded by a complex milieu, also known as tumor microenvironment, which contributes to the development and metastasis of tumors. Of note, one of the major components of this niche is the extracellular matrix (ECM), which becomes highly disorganized during neoplastic progression, thereby stimulating cancer cell transformation, growth and spread. One of the consequences of chronic hyperglycemia, the most frequently observed sign of diabetes and the etiological source of diabetes complications, is the irreversible glycation and oxidation of proteins and lipids leading to the formation of the advanced glycation end-products (AGEs). These compounds may covalently crosslink and biochemically modify structure and functions of many proteins, and AGEs accumulation is particularly high in long-living proteins with low biological turnover, features that are shared by most, if not all, ECM proteins. AGEs-modified proteins are recognized by AGE-binding proteins, and thus glycated ECM components have the potential to trigger Receptor for advanced glycation end-products-dependent mechanisms. The biological consequence of receptor for advanced glycation end-products activation mechanisms seems to be connected, in different ways, to drive some hallmarks of cancer onset and tumor growth. The present review intends to highlight the potential impact of ECM glycation on tumor progression by triggering receptor for advanced glycation end-products-mediated mechanisms.

  18. Transcapillary escape rate and relative metabolic clearance of glycated and non-glycated albumin in type 1 (insulin-dependent) diabetes mellitus

    DEFF Research Database (Denmark)

    Bent-Hansen, L; Feldt-Rasmussen, B; Kverneland, A

    1987-01-01

    The transcapillary escape rate and relative plasma disappearance of glycated and non-glycated albumin were measured in 25 male Type 1 (insulin-dependent) diabetic patients using a double tracer technique. The patients were divided into three groups on the basis of their urinary albumin excretion......: group 1, normal albumin excretion (less than 30 mg/24 h) (n = 8); group 2, microalbuminuria (30-300 mg/24 h) (n = 9); and group 3, clinical nephropathy (greater than 300 mg/24 h) (n = 8). Six male age-matched non-diabetic persons served as control subjects. The transcapillary escape rate of glycated...... significant role in the development of late diabetic microvascular complications....

  19. Peptide chemistry toolbox - Transforming natural peptides into peptide therapeutics.

    Science.gov (United States)

    Erak, Miloš; Bellmann-Sickert, Kathrin; Els-Heindl, Sylvia; Beck-Sickinger, Annette G

    2018-06-01

    The development of solid phase peptide synthesis has released tremendous opportunities for using synthetic peptides in medicinal applications. In the last decades, peptide therapeutics became an emerging market in pharmaceutical industry. The need for synthetic strategies in order to improve peptidic properties, such as longer half-life, higher bioavailability, increased potency and efficiency is accordingly rising. In this mini-review, we present a toolbox of modifications in peptide chemistry for overcoming the main drawbacks during the transition from natural peptides to peptide therapeutics. Modifications at the level of the peptide backbone, amino acid side chains and higher orders of structures are described. Furthermore, we are discussing the future of peptide therapeutics development and their impact on the pharmaceutical market. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Raman spectroscopy provides a powerful diagnostic tool for accurate determination of albumin glycation.

    Science.gov (United States)

    Dingari, Narahara Chari; Horowitz, Gary L; Kang, Jeon Woong; Dasari, Ramachandra R; Barman, Ishan

    2012-01-01

    We present the first demonstration of glycated albumin detection and quantification using Raman spectroscopy without the addition of reagents. Glycated albumin is an important marker for monitoring the long-term glycemic history of diabetics, especially as its concentrations, in contrast to glycated hemoglobin levels, are unaffected by changes in erythrocyte life times. Clinically, glycated albumin concentrations show a strong correlation with the development of serious diabetes complications including nephropathy and retinopathy. In this article, we propose and evaluate the efficacy of Raman spectroscopy for determination of this important analyte. By utilizing the pre-concentration obtained through drop-coating deposition, we show that glycation of albumin leads to subtle, but consistent, changes in vibrational features, which with the help of multivariate classification techniques can be used to discriminate glycated albumin from the unglycated variant with 100% accuracy. Moreover, we demonstrate that the calibration model developed on the glycated albumin spectral dataset shows high predictive power, even at substantially lower concentrations than those typically encountered in clinical practice. In fact, the limit of detection for glycated albumin measurements is calculated to be approximately four times lower than its minimum physiological concentration. Importantly, in relation to the existing detection methods for glycated albumin, the proposed method is also completely reagent-free, requires barely any sample preparation and has the potential for simultaneous determination of glycated hemoglobin levels as well. Given these key advantages, we believe that the proposed approach can provide a uniquely powerful tool for quantification of glycation status of proteins in biopharmaceutical development as well as for glycemic marker determination in routine clinical diagnostics in the future.

  1. Raman Spectroscopy Provides a Powerful Diagnostic Tool for Accurate Determination of Albumin Glycation

    Science.gov (United States)

    Dingari, Narahara Chari; Horowitz, Gary L.; Kang, Jeon Woong; Dasari, Ramachandra R.; Barman, Ishan

    2012-01-01

    We present the first demonstration of glycated albumin detection and quantification using Raman spectroscopy without the addition of reagents. Glycated albumin is an important marker for monitoring the long-term glycemic history of diabetics, especially as its concentrations, in contrast to glycated hemoglobin levels, are unaffected by changes in erythrocyte life times. Clinically, glycated albumin concentrations show a strong correlation with the development of serious diabetes complications including nephropathy and retinopathy. In this article, we propose and evaluate the efficacy of Raman spectroscopy for determination of this important analyte. By utilizing the pre-concentration obtained through drop-coating deposition, we show that glycation of albumin leads to subtle, but consistent, changes in vibrational features, which with the help of multivariate classification techniques can be used to discriminate glycated albumin from the unglycated variant with 100% accuracy. Moreover, we demonstrate that the calibration model developed on the glycated albumin spectral dataset shows high predictive power, even at substantially lower concentrations than those typically encountered in clinical practice. In fact, the limit of detection for glycated albumin measurements is calculated to be approximately four times lower than its minimum physiological concentration. Importantly, in relation to the existing detection methods for glycated albumin, the proposed method is also completely reagent-free, requires barely any sample preparation and has the potential for simultaneous determination of glycated hemoglobin levels as well. Given these key advantages, we believe that the proposed approach can provide a uniquely powerful tool for quantification of glycation status of proteins in biopharmaceutical development as well as for glycemic marker determination in routine clinical diagnostics in the future. PMID:22393405

  2. Evidence for Consistency of the Glycation Gap in Diabetes

    OpenAIRE

    Nayak, Ananth U.; Holland, Martin R.; Macdonald, David R.; Nevill, Alan; Singh, Baldev M.

    2011-01-01

    OBJECTIVE Discordance between HbA1c and fructosamine estimations in the assessment of glycemia is often encountered. A number of mechanisms might explain such discordance, but whether it is consistent is uncertain. This study aims to coanalyze paired glycosylated hemoglobin (HbA1c)-fructosamine estimations by using fructosamine to determine a predicted HbA1c, to calculate a glycation gap (G-gap) and to determine whether the G-gap is consistent over time. RESEARCH DESIGN AND METHODS We include...

  3. Upregulation of α7 Nicotinic Receptors by Acetylcholinesterase C-Terminal Peptides

    Science.gov (United States)

    Bond, Cherie E.; Zimmermann, Martina; Greenfield, Susan A.

    2009-01-01

    Background The alpha-7 nicotinic acetylcholine receptor (α7-nAChR) is well known as a potent calcium ionophore that, in the brain, has been implicated in excitotoxicity and hence in the underlying mechanisms of neurodegenerative disorders such as Alzheimer's disease. Previous research implied that the activity of this receptor may be modified by exposure to a peptide fragment derived from the C-terminal region of the enzyme acetylcholinesterase. This investigation was undertaken to determine if the functional changes observed could be attributed to peptide binding interaction with the α7-nAChR, or peptide modulation of receptor expression. Methodology/Principal Findings This study provides evidence that two peptides derived from the C-terminus of acetylcholinesterase, not only selectively displace specific bungarotoxin binding at the α7-nAChR, but also alter receptor binding properties for its familiar ligands, including the alternative endogenous agonist choline. Of more long-term significance, these peptides also induce upregulation of α7-nAChR mRNA and protein expression, as well as enhancing receptor trafficking to the plasma membrane. Conclusions/Significance The results reported here demonstrate a hitherto unknown relationship between the α7-nAChR and the non-enzymatic functions of acetylcholinesterase, mediated independently by its C-terminal domain. Such an interaction may prove valuable as a pharmacological tool, prompting new approaches for understanding, and combating, the process of neurodegeneration. PMID:19287501

  4. Accumulation of advanced glycation endproducts reduces chondrocyte-mediated extracellular matrix turnover in human articular cartilage

    NARCIS (Netherlands)

    Degroot, J.; Verzijl, N.; Jacobs, K. M.; Budde, M.; Bank, R. A.; Bijlsma, J. W.; TeKoppele, J. M.; Lafeber, F. P.

    2001-01-01

    The prevalence of osteoarthritis (OAs) increases with age and coincides with the accumulation of advanced glycation endproducts (AGEs) in articular cartilage, suggesting that accumulation of glycation products may be involved in the development of OA. This study was designed to examine the effects

  5. Glycated haemoglobin may in future be reported as estimated mean blood glucose concentration--secondary publication

    DEFF Research Database (Denmark)

    Borg, R.; Nerup, J.; Nathan, D.M.

    2009-01-01

    Glycated haemoglobin (HbA 1c ) is widely used to determine levels of chronic glycaemia, to judge the adequacy of diabetes treatment and to adjust therapy. HbA 1c results are expressed as the percentage of HbA that is glycated. Day-to-day management is guided by self-monitoring of capillary glucose...

  6. "STUDY ON THE EFFECT OF GARLIC ON THE IN VITRO ALBUMIN GLYCATION REACTION"

    Directory of Open Access Journals (Sweden)

    N. Sheikh

    2004-05-01

    Full Text Available Garlic, an antioxidant plant, can react with amino groups of proteins to form Schiff bases. As diabetes leads to glycation of various proteins and this in turn has some effects on the structure of proteins and biochemical activity of them, the inhibition of this process seems very vital. For several years researchers in this field have done their best to recognize the antidiabetic compounds. The aim of this study is to determine the effects of garlic on albumin glycation in vitro.In the presence of various concentrations of garlic, albumin was glycated and evaluated using TBA (thio-barbituric acid method. The results showed that garlic has a statistically significant (P<0.05 effect in inhibiting or decreasing the reaction of albumin glycation. The findings of this research shows that garlic probably inhibits the reaction of glycation and decreases complications occurring in diabetes.

  7. Yeast Metabolites of Glycated Amino Acids in Beer.

    Science.gov (United States)

    Hellwig, Michael; Beer, Falco; Witte, Sophia; Henle, Thomas

    2018-06-01

    Glycation reactions (Maillard reactions) during the malting and brewing processes are important for the development of the characteristic color and flavor of beer. Recently, free and protein-bound Maillard reaction products (MRPs) such as pyrraline, formyline, and maltosine were found in beer. Furthermore, these amino acid derivatives are metabolized by Saccharomyces cerevisiae via the Ehrlich pathway. In this study, a method was developed for quantitation of individual Ehrlich intermediates derived from pyrraline, formyline, and maltosine. Following synthesis of the corresponding reference material, the MRP-derived new Ehrlich alcohols pyrralinol (up to 207 μg/L), formylinol (up to 50 μg/L), and maltosinol (up to 6.9 μg/L) were quantitated for the first time in commercial beer samples by reverse phase high performance liquid chromatography tandem mass spectrometry in the multiple reaction monitoring mode. This is equivalent to ca. 20-40% of the concentrations of the parent glycated amino acids. The metabolites were almost absent from alcohol-free beers and malt-based beverages. Two previously unknown valine-derived pyrrole derivatives were characterized and qualitatively identified in beer. The metabolites investigated represent new process-induced alkaloids that may influence brewing yeast performance due to structural similarities to quorum sensing and metal-binding molecules.

  8. d-Ribose as a Contributor to Glycated Haemoglobin

    Directory of Open Access Journals (Sweden)

    Xixi Chen

    2017-11-01

    Full Text Available Glycated haemoglobin (HbA1c is the most important marker of hyperglycaemia in diabetes mellitus. We show that d-ribose reacts with haemoglobin, thus yielding HbA1c. Using mass spectrometry, we detected glycation of haemoglobin with d-ribose produces 10 carboxylmethyllysines (CMLs. The first-order rate constant of fructosamine formation for d-ribose was approximately 60 times higher than that for d-glucose at the initial stage. Zucker Diabetic Fatty (ZDF rat, a common model for type 2 diabetes mellitus (T2DM, had high levels of d-ribose and HbA1c, accompanied by a decrease of transketolase (TK in the liver. The administration of benfotiamine, an activator of TK, significantly decreased d-ribose followed by a decline in HbA1c. In clinical investigation, T2DM patients with high HbA1c had a high level of urine d-ribose, though the level of their urine d-glucose was low. That is, d-ribose contributes to HbA1c, which prompts future studies to further explore whether d-ribose plays a role in the pathophysiological mechanism of T2DM.

  9. Relationship between Advanced Glycation End Products and Steroidogenesis in PCOS.

    Science.gov (United States)

    Garg, Deepika; Merhi, Zaher

    2016-10-21

    Women with PCOS have elevated levels of the harmful Advanced Glycation End Products (AGEs), which are highly reactive molecules formed after glycation of lipids and proteins. Additionally, AGEs accumulate in the ovaries of women with PCOS potentially contributing to the well-documented abnormal steroidogenesis and folliculogenesis. A systematic review of articles and abstracts available in PubMed was conducted and presented in a systemic manner. This article reports changes in steroidogenic enzyme activity in granulosa and theca cells in PCOS and PCOS-models. It also described the changes in AGEs and their receptors in the ovaries of women with PCOS and presents the underlying mechanism(s) whereby AGEs could be responsible for the PCOS-related changes in granulosa and theca cell function thus adversely impacting steroidogenesis and follicular development. AGEs are associated with hyperandrogenism in PCOS possibly by altering the activity of various enzymes such as cholesterol side-chain cleavage enzyme cytochrome P450, steroidogenic acute regulatory protein, 17α-hydroxylase, and 3β-hydroxysteroid dehydrogenase. AGEs also affect luteinizing hormone receptor and anti-Mullerian hormone receptor expression as well as their signaling pathways in granulosa cells. A better understanding of how AGEs alter granulosa and theca cell function is likely to contribute meaningfully to a conceptual framework whereby new interventions to prevent and/or treat ovarian dysfunction in PCOS can ultimately be developed.

  10. Hair cortisol concentration and glycated hemoglobin in African American adults.

    Science.gov (United States)

    Lehrer, H Matthew; Dubois, Susan K; Maslowsky, Julie; Laudenslager, Mark L; Steinhardt, Mary A

    2016-10-01

    African Americans have higher diabetes prevalence compared to Whites. They also have elevated cortisol levels - indicating possible HPA axis dysregulation - which may raise blood glucose as part of the biological response to physiological and psychosocial stress. Little is known about chronic cortisol levels in African Americans, and even less about the role of chronically elevated cortisol in type 2 diabetes development in this racial group. We used analysis of cortisol in hair to examine associations of long-term (∼3months) cortisol levels with glycated hemoglobin (HbA1c) in a group of African American adults. In exploratory analyses, we also studied the relationship of hair dehydroepiandrosterone (DHEA) with HbA1c. Participants were 61 community-dwelling African American adults (85% female; mean age 54.30 years). The first 3cm of scalp-near hair were analyzed for cortisol and DHEA concentration using enzyme-linked immunoassay analysis. Glycated hemoglobin was assessed, and regression analyses predicting HbA1c from hair cortisol and DHEA were performed in the full sample and in a subsample of participants (n=20) meeting the National Institute of Diabetes and Digestive Kidney Disease (NIDDK) criteria for type 2 diabetes (HbA1c≥6.5%). In the full sample, HbA1c increased with hair cortisol level (β=0.22, p=0.04, f(2)=0.10), independent of age, sex, chronic health conditions, diabetes medication use, exercise, and depressive symptoms. In the subsample of participants with an HbA1c≥6.5%, hair cortisol was also positively related to HbA1c (β=0.45, p=0.04, f(2)=0.32), independent of diabetes medication use. Glycated hemoglobin was unrelated to hair DHEA in both the full sample and HbA1c≥6.5% subsample. Long-term HPA axis dysregulation in the form of elevated hair cortisol is associated with elevated HbA1c in African American adults. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Beyond genetic factors in familial amyloidotic polyneuropathy: protein glycation and the loss of fibrinogen's chaperone activity.

    Directory of Open Access Journals (Sweden)

    Gonçalo da Costa

    Full Text Available Familial amyloidotic polyneuropathy (FAP is a systemic conformational disease characterized by extracellular amyloid fibril formation from plasma transthyretin (TTR. This is a crippling, fatal disease for which liver transplantation is the only effective therapy. More than 80 TTR point mutations are associated with amyloidotic diseases and the most widely accepted disease model relates TTR tetramer instability with TTR point mutations. However, this model fails to explain two observations. First, native TTR also forms amyloid in systemic senile amyloidosis, a geriatric disease. Second, age at disease onset varies by decades for patients bearing the same mutation and some mutation carrier individuals are asymptomatic throughout their lives. Hence, mutations only accelerate the process and non-genetic factors must play a key role in the molecular mechanisms of disease. One of these factors is protein glycation, previously associated with conformational diseases like Alzheimer's and Parkinson's. The glycation hypothesis in FAP is supported by our previous discovery of methylglyoxal-derived glycation of amyloid fibrils in FAP patients. Here we show that plasma proteins are differentially glycated by methylglyoxal in FAP patients and that fibrinogen is the main glycation target. Moreover, we also found that fibrinogen interacts with TTR in plasma. Fibrinogen has chaperone activity which is compromised upon glycation by methylglyoxal. Hence, we propose that methylglyoxal glycation hampers the chaperone activity of fibrinogen, rendering TTR more prone to aggregation, amyloid formation and ultimately, disease.

  12. Effect of glycation of albumin on its renal clearance in normal and diabetic rats

    International Nuclear Information System (INIS)

    Layton, G.J.; Jerums, G.

    1988-01-01

    Two independent techniques have been used to study the renal clearances of nonenzymatically glycated albumin and nonglycated albumin in normal and streptozotocin-induced diabetic rats, 16 to 24 weeks after the onset of diabetes. In the first technique, serum and urinary endogenous glycated and nonglycated albumin were separated using m-aminophenylboronate affinity chromatography and subsequently quantified by radioimmunoassay. Endogenous glycated albumin was cleared approximately twofold faster than nonglycated albumin in normal and diabetic rats. However, no difference was observed in the glycated albumin/nonglycated albumin clearance ratios (Cga/Calb) in normal and diabetic rats, respectively (2.18 +/- 0.39 vs 1.83 +/- 0.22, P greater than 0.05). The second technique measured the renal clearance of injected 125I-labelled glycated albumin and 125I-labelled albumin. The endogenous results were supported by the finding that 125I-labelled glycated albumin was cleared more rapidly than 125I-labelled albumin in normal (P less than 0.01) and diabetic (P less than 0.05) rats. The Cga/Calb ratio calculated for the radiolabelled albumins was 1.4 and 2.0 in normal and diabetic rats, respectively. This evidence suggests that nonenzymatic glycation of albumin increases its renal clearance to a similar degree in normal and diabetic rats

  13. Glycation alters ligand binding, enzymatic, and pharmacological properties of human albumin.

    Science.gov (United States)

    Baraka-Vidot, Jennifer; Planesse, Cynthia; Meilhac, Olivier; Militello, Valeria; van den Elsen, Jean; Bourdon, Emmanuel; Rondeau, Philippe

    2015-05-19

    Albumin, the major circulating protein in blood plasma, can be subjected to an increased level of glycation in a diabetic context. Albumin exerts crucial pharmacological activities through its drug binding capacity, i.e., ketoprofen, and via its esterase-like activity, allowing the conversion of prodrugs into active drugs. In this study, the impact of the glucose-mediated glycation on the pharmacological and biochemical properties of human albumin was investigated. Aggregation product levels and the redox state were quantified to assess the impact of glycation-mediated changes on the structural properties of albumin. Glucose-mediated changes in ketoprofen binding properties and esterase-like activity were evaluated using fluorescence spectroscopy and p-nitrophenyl acetate hydrolysis assays, respectively. With the exception of oxidative parameters, significant dose-dependent alterations in biochemical and functional properties of in vitro glycated albumin were observed. We also found that the dose-dependent increase in levels of glycation and protein aggregation and average molecular mass changes correlated with a gradual decrease in the affinity of albumin for ketoprofen and its esterase-like property. In parallel, significant alterations in both pharmacological properties were also evidenced in albumin purified from diabetic patients. Partial least-squares regression analyses established a significant correlation between glycation-mediated changes in biochemical and pharmacological properties of albumin, highlighting the important role for glycation in the variability of the drug response in a diabetic situation.

  14. Cross-linking in collagen by nonenzymatic glycation increases the matrix stiffness in rabbit achilles tendon.

    Science.gov (United States)

    Reddy, G Kesava

    2004-01-01

    Nonenzymatic glycation of connective tissue matrix proteins is a major contributor to the pathology of diabetes and aging. Previously the author and colleagues have shown that nonenzymatic glycation significantly enhances the matrix stability in the Achilles tendon (Reddy et al., 2002, Arch. Biochem. Biophys., 399, 174-180). The present study was designed to gain further insight into glycation-induced collagen cross-linking and its relationship to matrix stiffness in the rabbit Achilles tendon. The glycation process was initiated by incubating the Achilles tendons (n = 6) in phosphate-buffered saline containing ribose, whereas control tendons (n = 6) were incubated in phosphate-buffered saline without ribose. Eight weeks following glycation, the biomechanical attributes as well as the degree of collagen cross-linking were determined to examine the potential associations between matrix stiffness and molecular properties of collagen. Compared to nonglycated tendons, the glycated tendons showed increased maximum load, stress, strain, Young's modulus of elasticity, and toughness indicating that glycation increases the matrix stiffness in the tendons. Glycation of tendons resulted in a considerable decrease in soluble collagen content and a significant increase in insoluble collagen and pentosidine. Analysis of potential associations between the matrix stiffness and degree of collagen cross-linking showed that both insoluble collagen and pentosidine exhibited a significant positive correlation with the maximum load, stress, and strain, Young's modulus of elasticity, and toughness (r values ranging from.61 to.94) in the Achilles tendons. However, the soluble collagen content present in neutral salt buffer, acetate buffer, and acetate buffer containing pepsin showed an inverse relation with the various biomechanical attributes tested (r values ranging from.22 to.84) in the Achilles tendons. The results of the study demonstrate that glycation-induced collagen cross

  15. Determination of advanced glycation endproducts in cooked meat products.

    Science.gov (United States)

    Chen, Gengjun; Smith, J Scott

    2015-02-01

    Advanced glycation endproducts (AGEs), a pathogenic factor implicated in diabetes and other chronic diseases, are produced in cooked meat products. The objective of this study was to determine the AGE content, as measured by Nε-carboxymethyllysine (CML) levels, in cooked chicken, pork, beef and fish (salmon and tilapia) prepared by three common cooking methods used by U.S. consumers: frying, baking, and broiling. The CML was detected in all the cooked samples, but the levels were dependent on types of meat, cooking conditions, and the final internal temperature. Broiling and frying at higher cooking temperature produced higher levels of CML, and broiled beef contained the highest CML content (21.8μg/g). Baked salmon (8.6μg/g) and baked tilapia (9.7μg/g) contained less CML as compared to the other muscle food samples. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Advanced glycation endproducts in food and their effects on health

    DEFF Research Database (Denmark)

    Poulsen, Malene Wibe; Hedegaard, Rikke Susanne Vingborg; Andersen, Jeanette Marker

    2013-01-01

    of AGEs. Some AGEs interact with specific pro- or anti-inflammatory receptors. Most studies on the biological effects of AGEs have been carried out by administering heated foods. The pro-inflammatory and deteriorating biological effects of AGEs in these studies, therefore, need further confirmation......Advanced glycation endproducts (AGEs) form by Maillard-reactions after initial binding of aldehydes with amines or amides in heated foods or in living organisms. The mechanisms of formation may include ionic as well as oxidative and radical pathways. The reactions may proceed within proteins...... to form high-molecular weight (HMW) AGEs or among small molecules to form low-molecular weight (LMW) AGEs. All free amino acids form AGEs, but lysine or arginine side chains dominate AGE formation within proteins. The analysis of AGEs in foods and body fluids is most often performed by ELISA or LC...

  17. Targeted reduction of advanced glycation improves renal function in obesity

    DEFF Research Database (Denmark)

    Harcourt, Brooke E; Sourris, Karly C; Coughlan, Melinda T

    2011-01-01

    -lowering pharmaceutical, alagebrium, and mice in which the receptor for AGE (RAGE) was deleted. Obesity, resulting from a diet high in both fat and AGE, caused renal impairment; however, treatment of the RAGE knockout mice with alagebrium improved urinary albumin excretion, creatinine clearance, the inflammatory profile...... if treatments that lower tissue AGE burden in patients and mice would improve obesity-related renal dysfunction. Overweight and obese individuals (body mass index (BMI) 26-39¿kg/m(2)) were recruited to a randomized, crossover clinical trial involving 2 weeks each on a low- and a high-AGE-containing diet. Renal......, and renal oxidative stress. Alagebrium treatment, however, resulted in decreased weight gain and improved glycemic control compared with wild-type mice on a high-fat Western diet. Thus, targeted reduction of the advanced glycation pathway improved renal function in obesity....

  18. Activity of glycated chitosan and other adjuvants to PDT vaccines

    Science.gov (United States)

    Korbelik, Mladen; Banáth, Judit; Čiplys, Evaldas; Szulc, Zdzislaw; Bielawska, Alicja; Chen, Wei R.

    2015-03-01

    Glycated chitosan (GC), a water soluble galactose-conjugated natural polysaccharide, has proven to be an effective immunoadjuvant for treatment of tumors based on laser thermal therapy. It was also shown to act as adjuvant for tumor therapy with high-intensity ultrasound and in situ photodynamic therapy (PDT). In the present study, GC was examined as potential adjuvant to PDT-generated cancer vaccine. Two other agents, pure calreticulin protein and acid ceramidase inhibitor LCL521, were also tested as prospective adjuvants for use in conjunction with PDT vaccines. Single treatment with GC, included with PDT vaccine cells suspension, improved the therapeutic efficacy when compared to vaccine alone. This attractive prospect of GC application remains to be carefully optimized and mechanistically elucidated. Both calreticulin and LCL521 proved also effective adjuvants when combined with PDT vaccine tumor treatment.

  19. Glucosilación no enzimática y complicaciones crónicas de la diabetes mellitus Non-enzymatic glycosylation and chronic complications of diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Jeddú Cruz Hernández

    2010-08-01

    diabetes mellitus.INTRODUCTION: hyperglycemia is nowadays considered as a fundamental pathogenic factor for development of diabetic neurovascular complications and, specifically, plays a prevailing role in phenomenon of non-enzymatic glycosylation and the formation of end-products of advanced glycosylation. OBJECTIVES: to describe the mechanisms of end-products of advanced glycosylation and its relation to complications of diabetes mellitus. DEVELOPMENT: the above mentioned end-products are produced by the non-enzymatic reaction of glucose and other derivatives including glioxal, methylglioxal and 3-desoxiblucosone with amines groups of long-life proteins. The glycosylation changes the structure, the physical-chemical properties and the function of intracellular and extracellular proteins. In basal membrane of small vessels it is produced a thickening and a structure distortion provoking the elasticity of the vascular wall and its abnormal permeability to proteins (endothelial dysfunction, as well as an increase of genesis of oxygen-reactive species. The link of end-products of advanced glycosylation with its membrane receptors favor the production of cytokines and growth factors by macrophages and mesangial cells. All above mentioned favor the development of atherosclerosis. CONCLUSIONS: the end-products of advanced glycosylation play a significant role in the development of microvascular and macrovascular complications in the diabetic patient. The strict metabolic control of glycemia and at present time, the pharmacologic therapeutics including agents inhibiting the formation of end-products of the advanced glycosylation have antioxidant action or are therapeutical alternatives for prevention and solution of the problem related to chronic complications of diabetes mellitus.

  20. Human peptide transporters

    DEFF Research Database (Denmark)

    Nielsen, Carsten Uhd; Brodin, Birger; Jørgensen, Flemming Steen

    2002-01-01

    Peptide transporters are epithelial solute carriers. Their functional role has been characterised in the small intestine and proximal tubules, where they are involved in absorption of dietary peptides and peptide reabsorption, respectively. Currently, two peptide transporters, PepT1 and PepT2, wh...

  1. The Glycated Albumin to Glycated Hemoglobin Ratio Might Not Be Associated with Carotid Atherosclerosis in Patients with Type 1 Diabetes

    Directory of Open Access Journals (Sweden)

    Wonjin Kim

    2014-12-01

    Full Text Available BackgroundThe ratio of glycated albumin to glycated hemoglobin (GA/A1c is known to be elevated in subjects with type 2 diabetes mellitus (T2DM who had decreased insulin secretion. Additionally, the carotid intima media thickness (IMT is greater in T2DM patients with higher GA/A1c ratios. We investigated whether increased GA/A1c ratio and IMT are also associated in type 1 diabetes mellitus (T1DM, which is characterized by lack of insulin secretory capacity.MethodsIn this cross-sectional study, we recruited 81 T1DM patients (33 men, 48 women; mean age 44.1±13.0 years who underwent carotid IMT, GA, and HbA1c measurements.ResultsThe mean GA/A1c ratio was 2.90. Based on these results, we classified the subjects into two groups: group I (GA/A1c ratio <2.90, n=36 and group II (GA/A1c ratio ≥2.90, n=45. Compared with group I, the body mass indexes (BMIs, waist circumferences, and IMTs were lower in group II. GA/A1c ratio was negatively correlated with BMI, urine albumin to creatinine ratio (P<0.001 for both, and both the mean and maximal IMT (P=0.001, both. However, after adjusting the confounding factors, we observed that IMT was no longer associated with GA/A1c ratio.ConclusionIn contrast to T2DM, IMT was not significantly related to GA/A1c ratio in the subjects with T1DM. This suggests that the correlations between GA/A1c ratio and the parameters known to be associated with atherosclerosis in T2DM could be manifested differently in T1DM. Further studies are needed to investigate these relationships in T1DM.

  2. Characterisation of advanced glycation endproducts in saliva from patients with diabetes mellitus

    International Nuclear Information System (INIS)

    Yoon, Min-Sung; Jankowski, Vera; Montag, Susanne; Zidek, Walter; Henning, Lars; Schlueter, Hartmut; Tepel, Martin; Jankowski, Joachim

    2004-01-01

    Patients with diabetes mellitus are prone to develop increased advanced glycation endproducts causing local complications and increased overall morbidity and mortality. Nuclear magnetic resonance spectra were determined in saliva of 52 consecutive patients with diabetes mellitus and 47 age-matched healthy control subjects. Resonance spectra showed specific peaks at 2.3, 7.3, and 8.4 ppm in saliva from patients with diabetes mellitus. These peaks could be generated by incubation of saliva from healthy control subjects with hypochloric acid in vitro, indicating the presence of advanced glycation endproducts. The presence of advanced glycation endproducts in patients with diabetes mellitus was associated with approximal plaque index, indicating increased periodontal damage. The study indicates that increased advanced glycation endproducts are involved in the pathogenesis of diabetic complications

  3. Neurite regeneration in adult rat retinas exposed to advanced glycation end-products and regenerative effects of neurotrophin-4.

    Science.gov (United States)

    Bikbova, Guzel; Oshitari, Toshiyuki; Yamamoto, Shuichi

    2013-10-09

    The purpose of this study was to determine the effect of low concentrations of advanced glycation end-products on neurite regeneration in isolated rat retinas, and to determine the effects of neurotrophin-4 on regeneration in advanced glycation end-products exposed retinas. Retinal explants of 4 adult Sprague-Dawley rats were cultured on collagen gel and were incubated in; (1) serum-free control culture media, (2) glucose-advanced glycation end-products-bovine serum albumin media, (3) glycolaldehyde-advanced glycation end-products-bovine serum albumin media, (4) glyceraldehyde-advanced glycation end-products-bovine serum albumin media, (5) glucose-advanced glycation end-products+neurotrophin-4 media, (6) glycolaldehyde-advanced glycation end-products+neurotrophin-4 media, or (7) glyceraldehyde-advanced glycation end-products+neurotrophin-4 supplemented culture media. After 7 days, the number of regenerating neurites from the explants was counted. Then, explants were fixed, cryosectioned, and stained for TUNEL. The ratio of TUNEL-positive cells to all cells in the ganglion cell layer was determined. Immunohistochemical examinations for the active-form of caspase-9 and apoptosis-inducing factor were performed. In retinas incubated with advanced glycation end-products containing media, the number of regenerating neurites were fewer than in retinas without advanced glycation end-products, and the number of TUNEL-positive cells and caspase-9- and apoptosis-inducing factor-immunopositive cells was significantly higher than in control media. Neurotrophin-4 supplementation increased the numbers of regenerating neuritis, and the number of TUNEL-positives, caspase-9-, and apoptosis-inducing factor-immunopositive cells were significantly fewer than that in advanced glycation end-products without neurotrophin-4 media. Low doses of advanced glycation end-products impede neurite regeneration in the rat retinas. Neurotrophin-4 significantly enhances neurite regeneration in

  4. Monotopic modifications derived from in vitro glycation of albumin with ribose

    Czech Academy of Sciences Publication Activity Database

    Pataridis, Statis; Šťastná, Zdeňka; Sedláková, Pavla; Mikšík, Ivan

    2013-01-01

    Roč. 34, č. 12 (2013), s. 1757-1763 ISSN 0173-0835 R&D Projects: GA ČR(CZ) GAP206/12/0453; GA ČR(CZ) GA203/08/1428 Institutional support: RVO:67985823 Keywords : advanced glycation end product (AGE) * albumin * CE-MS * glycation * LC-MS/MS Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.161, year: 2013

  5. Inhibitory effect of alliin from Allium sativum on the glycation of superoxide dismutase.

    Science.gov (United States)

    Anwar, Shehwaz; Younus, Hina

    2017-10-01

    Inhibition of glycation is an important approach for alleviating diabetic complications. Alliin, the most abundant sulphur compound in garlic has been demonstrated to possess antidiabetic activity. However, there is no scientific evidence supporting its antiglycating activity. The objective of this study was to determine the inhibitory effect of alliin on glucose and methyglyoxal (MG)-induced glycation of an important antioxidant enzyme, superoxide dismutase (SOD). Glycation of SOD resulted in a decrease in enzyme activity, fragmentation/cross-linking, reduced cross-reactivity with anti-SOD antibodies, both tertiary and secondary structural changes, and formation of AGEs and fibrils. Alliin offered protection against glucose or MG induced glycation of SOD. The antiglycating potential of alliin appears to be comparable with that of quercetin which is reported to be a potent natural inhibitor of glycation. Alliin has a good antiglycating effect and hence is expected to have therapeutic potential in the prevention of glycation-mediated diabetic complications. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Glycation induces formation of amyloid cross-beta structure in albumin.

    Science.gov (United States)

    Bouma, Barend; Kroon-Batenburg, Loes M J; Wu, Ya-Ping; Brünjes, Bettina; Posthuma, George; Kranenburg, Onno; de Groot, Philip G; Voest, Emile E; Gebbink, Martijn F B G

    2003-10-24

    Amyloid fibrils are components of proteinaceous plaques that are associated with conformational diseases such as Alzheimer's disease, transmissible spongiform encephalopathies, and familial amyloidosis. Amyloid polypeptides share a specific quarternary structure element known as cross-beta structure. Commonly, fibrillar aggregates are modified by advanced glycation end products (AGE). In addition, AGE formation itself induces protein aggregation. Both amyloid proteins and protein-AGE adducts bind multiligand receptors, such as receptor for AGE, CD36, and scavenger receptors A and B type I, and the serine protease tissue-type plasminogen activator (tPA). Based on these observations, we hypothesized that glycation induces refolding of globular proteins, accompanied by formation of cross-beta structure. Using transmission electron microscopy, we demonstrate here that glycated albumin condensates into fibrous or amorphous aggregates. These aggregates bind to amyloid-specific dyes Congo red and thioflavin T and to tPA. In contrast to globular albumin, glycated albumin contains amino acid residues in beta-sheet conformation, as measured with circular dichroism spectropolarimetry. Moreover, it displays cross-beta structure, as determined with x-ray fiber diffraction. We conclude that glycation induces refolding of initially globular albumin into amyloid fibrils comprising cross-beta structure. This would explain how glycated ligands and amyloid ligands can bind to the same multiligand "cross-beta structure" receptors and to tPA.

  7. Glycated albumin as a marker of glycemia in diabetes and its vascular complications

    Directory of Open Access Journals (Sweden)

    Maria Warwas

    2015-05-01

    Full Text Available Effective glycemic control is very important to prevent the onset and the progression of chronic complications in diabetic patients. It is known that glycation of various proteins is increased in diabetic patients compared with non-diabetics. Among these glycated proteins, glycated hemoglobin (HbA1c is commonly used as a gold standard index of glycemic control in the clinical setting. However, it can be unreliable in conditions affecting the lifespan of erythrocytes (120 days as well as in the clinical state in which glycemic control alleviates or deteriorates in a short period. By overcoming the shortcomings of HbA1c, glycated albumin (GA has gained interest as a useful index for an intermediate glycation period (2 weeks and pathogenic protein.After giving a brief overview of the key role of HbA1c as a long-term glycemic marker, this review focuses on (a glycation of human albumin and its main properties, (b methods of GA determination, (c the recent clinical status of GA as a glycemic index in diabetic patients and its association with vascular complications. Finally, conditions with a possible inaccurate GA level are also mentioned.

  8. Glycation of polyclonal IgGs: Effect of sugar excipients during stability studies.

    Science.gov (United States)

    Leblanc, Y; Bihoreau, N; Jube, M; Andre, M-H; Tellier, Z; Chevreux, G

    2016-05-01

    A number of intravenous immunoglobulin preparations are stabilized with sugar additives that may lead over time to undesirable glycation reactions especially in liquid formulation. This study aimed to evaluate the reactivity of sugar excipients on such preparations in condition of temperature, formulation and concentration commonly used for pharmaceutical products. Through an innovative LC-MS method reported to characterize post-translational modifications of IgGs Fc/2 fragments, a stability study of IVIg formulated with reducing and non-reducing sugars has been undertaken. The rate of polyclonal IgGs glycation was investigated during 6months at 5, 25, 30 and 40°C. High levels of glycation were observed with reducing sugars such as glucose and maltose in the first months of the stability study from 25°C. Non-reducing sugars presented a low reactivity even at the highest tested temperature (40°C). Furthermore, a site by site analysis was performed by MS/MS to determine the glycation sites which were mainly identified at Lys246, Lys248 and Lys324. This work points out the high probability of glycation reactions in some commercialized products and describes a useful method to characterize IVIg glycated products issued from reducing sugar excipients. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  9. Fluorescence lifetime measurements of native and glycated human serum albumin and bovine serum albumin

    Science.gov (United States)

    Joshi, Narahari V.; Joshi, Virgina O. d.; Contreras, Silvia; Gil, Herminia; Medina, Honorio; Siemiarczuk, Aleksander

    1999-05-01

    Nonenzymatic glycation, also known as Maillard reaction, plays an important role in the secondary complications of the diabetic pathology and aging, therefore, human serum albumin (HSA) and bovine serum albumin (BSA) were glycated by a conventional method in our laboratory using glucose as the glycating agent. Fluorescence lifetime measurements were carried out with a laser strobe fluorometer equipped with a nitrogen/dye laser and a frequency doubler as a pulsed excitation source. The samples were excited at 295 nm and the emission spectra were recorded at 345 nm. The obtained decay curves were tried for double and triple exponential functions. It has been found that the shorter lifetime increases for glycated proteins as compared with that of the native ones. For example, in the case of glycated BSA the lifetime increased from 1.36 ns to 2.30 ns. Similarly, for HSA, the lifetime increases from 1.58 ns to 2.26 ns. Meanwhile, the longer lifetime changed very slightly for both proteins (from 6.52 ns to 6.72 ns). The increase in the lifetime can be associated with the environmental effect; originated from the attachment of glucose to some lysine residues. A good example is Trp 214 which is in the cage of Lys 225, Lys 212, Lys 233, Lys 205, Lys 500, Lys 199 and Lys 195. If fluorescence lifetime technique is calibrated and properly used it could be employed for assessing glycation of proteins.

  10. Prediction of post translational modifications in avicennia marina Cu-Zn superoxide dismutase: implication of glycation on the enzyme structure

    International Nuclear Information System (INIS)

    Jabeen, U.; Salim, A.; Abbasi, A.

    2012-01-01

    3D homology model of Cu-Zn superoxide dismutase (SOD) from Avicennia marina (AMSOD) was constructed using the structural coordinates of Spinach SOD (SSOD). Prediction of post translational modification was done by PROSITE. The predicted sites were examined in the 3D model. AMSOD model was glycated using modeling software and changes in the structure was analyzed after glycation. The analysis revealed some potential sites and structural changes after glycation. (author)

  11. Glycation of human cortical and cancellous bone captures differences in the formation of Maillard reaction products between glucose and ribose.

    Directory of Open Access Journals (Sweden)

    Grażyna E Sroga

    Full Text Available To better understand some aspects of bone matrix glycation, we used an in vitro glycation approach. Within two weeks, our glycation procedures led to the formation of advanced glycation end products (AGEs at the levels that corresponded to approx. 25-30 years of the natural in vivo glycation. Cortical and cancellous bones from human tibias were glycated in vitro using either glucose (glucosylation or ribose (ribosylation. Both glucosylation and ribosylation led to the formation of higher levels of AGEs and pentosidine (PEN in cancellous than cortical bone dissected from all tested donors (young, middle-age and elderly men and women. More efficient glycation of bone matrix proteins in cancellous bone most likely depended on the higher porosity of this tissue, which facilitated better accessibility of the sugars to the matrix proteins. Notably, glycation of cortical bone from older donors led to much higher AGEs levels as compared to young donors. Such efficient in vitro glycation of older cortical bone could result from aging-related increase in porosity caused by the loss of mineral content. In addition, more pronounced glycation in vivo would be driven by elevated oxidation processes. Interestingly, the levels of PEN formation differed pronouncedly between glucosylation and ribosylation. Ribosylation generated very high levels of PEN (approx. 6- vs. 2.5-fold higher PEN level than in glucosylated samples. Kinetic studies of AGEs and PEN formation in human cortical and cancellous bone matrix confirmed higher accumulation of fluorescent crosslinks for ribosylation. Our results suggest that in vitro glycation of bone using glucose leads to the formation of lower levels of AGEs including PEN, whereas ribosylation appears to support a pathway toward PEN formation. Our studies may help to understand differences in the progression of bone pathologies related to protein glycation by different sugars, and raise awareness for excessive sugar

  12. Determination of glycated hemoglobin in patients with advanced liver disease

    Science.gov (United States)

    Lahousen, Theresa; Hegenbarth, Karin; Ille, Rottraut; Lipp, Rainer W.; Krause, Robert; Little, Randie R.; Schnedl, Wolfgang J.

    2004-01-01

    AIM: To evaluate the glycated hemoglobin (HbA 1c) determination methods and to determine fructosamine in patients with chronic hepatitis, compensated cirrhosis and in patients with chronic hepatitis treated with ribavirin. METHODS: HbA1c values were determined in 15 patients with compensated liver cirrhosis and in 20 patients with chronic hepatitis using the ion-exchange high performance liquid chromatography and the immunoassay methods. Fructosamine was determined using nitroblue tetrazolium. RESULTS: Forty percent of patients with liver cirrhosis had HbA1c results below the non-diabetic reference range by at least one HbA1c method, while fructosamine results were either within the reference range or elevated. Twenty percent of patients with chronic hepatitis (hepatic fibrosis) had HbA1c results below the non -diabetic reference range by at least one HbA1c method. In patients with chronic hepatitis treated with ribavirin, 50% of HbA1c results were below the non-diabetic reference using at least one of the HbA1c methods. CONCLUSION: Only evaluated in context with all liver function parameters as well as a red blood count including reticulocytes, HbA 1c results should be used in patients with advanced liver disease. HbA 1c and fructosamine measurements should be used with caution when evaluating long-term glucose control in patients with hepatic cirrhosis or in patients with chronic hepatitis and ribavirin treatment. PMID:15259084

  13. Dietary Advanced Glycation End Products and Cardiometabolic Risk.

    Science.gov (United States)

    Luévano-Contreras, Claudia; Gómez-Ojeda, Armando; Macías-Cervantes, Maciste Habacuc; Garay-Sevilla, Ma Eugenia

    2017-08-01

    This report analyzes emerging evidence about the role of dietary advanced glycation end products (AGEs) as a cardiometabolic risk factor. Two important aspects are discussed: First, the modulation of AGE load by dietary AGEs; second, if the evidence of clinical and observational studies is enough to make dietary recommendations towards lowering AGE intake. Clinical studies in subjects with diabetes mellitus have shown that high intake of dietary AGEs increases inflammation markers, oxidative stress, and could impair endothelial function. In subjects at risk for cardiometabolic diseases (with overweight, obesity, or prediabetes), dietary AGE restriction decreases some inflammatory molecules and improves insulin sensitivity. However, studies in healthy subjects are limited, and not all of the studies have shown a decrease in circulating AGEs. Therefore, it is still unclear if dietary AGEs represent a health concern for people potentially at risk for cardiometabolic diseases. The evidence shows that dietary AGEs are bioavailable and absorbed, and the rate of excretion depends on dietary intake. The metabolic fate of most dietary AGEs remains unknown. Regardless, most studies have shown that by diminishing AGE intake, circulating levels will also decrease. Thus, dietary AGEs can modulate the AGE load at least in patients with DM, overweight, or obesity. Studies with specific clinical outcomes and large-scale observational studies are needed for a better risk assessment of dietary AGEs and to establish dietary recommendations accordingly.

  14. Acute insulin resistance mediated by advanced glycation endproducts in severely burned rats.

    Science.gov (United States)

    Zhang, Xing; Xu, Jie; Cai, Xiaoqing; Ji, Lele; Li, Jia; Cao, Bing; Li, Jun; Hu, Dahai; Li, Yan; Wang, Haichang; Xiong, Lize; Xiao, Ruiping; Gao, Feng

    2014-06-01

    Hyperglycemia often occurs in severe burns; however, the underlying mechanisms and importance of managing postburn hyperglycemia are not well recognized. This study was designed to investigate the dynamic changes of postburn hyperglycemia and the underlying mechanisms and to evaluate whether early glycemic control is beneficial in severe burns. Prospective, randomized experimental study. Animal research laboratory. Sprague-Dawley rats. Anesthetized rats were subjected to a full-thickness burn injury comprising 40% of the total body surface area and were randomized to receive vehicle, insulin, and a soluble form of receptor for advanced glycation endproducts treatments. An in vitro study was performed on cultured H9C2 cells subjected to vehicle or carboxymethyllysine treatment. We found that blood glucose change presented a distinct pattern with two occurrences of hyperglycemia at 0.5- and 3-hour postburn, respectively. Acute insulin resistance evidenced by impaired insulin signaling and glucose uptake occurred at 3-hour postburn, which was associated with the second hyperglycemia and positively correlated with mortality. Mechanistically, we found that serum carboxymethyllysine, a dominant species of advanced glycation endproducts, increased within 1-hour postburn, preceding the occurrence of insulin resistance. More importantly, treatment of animals with soluble form of receptor for advanced glycation endproducts, blockade of advanced glycation endproducts signaling, alleviated severe burn-induced insulin resistance. In addition, early hyperglycemic control with insulin not only reduced serum carboxymethyllysine but also blunted postburn insulin resistance and reduced mortality. These findings suggest that severe burn-induced insulin resistance is partly at least mediated by serum advanced glycation endproducts and positively correlated with mortality. Early glycemic control with insulin or inhibition of advanced glycation endproducts with soluble form of receptor

  15. PeptideAtlas

    Data.gov (United States)

    U.S. Department of Health & Human Services — PeptideAtlas is a multi-organism, publicly accessible compendium of peptides identified in a large set of tandem mass spectrometry proteomics experiments. Mass...

  16. Produtos da glicação avançada dietéticos e as complicações crônicas do diabetes Dietetics advanced glycation end-products and chronic complications of diabetes

    Directory of Open Access Journals (Sweden)

    Júnia Helena Porto Barbosa

    2009-02-01

    a conduta terapêutica, concorrendo para a melhoria da qualidade de vida dos portadores dessa enfermidade.The generation of advanced glycation end products is one of the principal mechanisms that lead to the pathologies associated with diabetes mellitus, which include cardiopathy, retinopathy, neuropathy and nephropathy. The objective of this revision is to analyse the role of the advanced glycation end products present in food as intermediaries of diabetic complications, presenting strategies to reduce their ingestion. For this purpose, research was carried out in databases of publications of the area, for the last 15 years, taking into account revision, experimental and clinical studies. Advanced glycation end products are a heterogenous group of molecules coming from non-enzymatic reactions between amino and carbonyl groups, examples being carboxymethyllisine and pentosidine found in food and in vivo. The advanced glycation end products ingested are absorbed and, along with endogenous advanced glycation end-products, promote the progression of the complications of diabetes. There is a direct correlation between advanced glycation end products consumption and blood concentration. Their restriction in food results in the suppression of serum levels of the markers of vascular disease and the intermediaries of inflammation directly involved in the development of diabetic degenerations. The current dietary orientations are concentrated on the proportion of nutrients and on energetic restriction. The risk of ingestion of advanced glycation end products formed during the processing of food should be taken in consideration. It is simply recommended that in the preparation of food, the use of low temperatures for short periods, in the presence of water, has important effects in the prevention of the complications of diabetes. The study of the mechanisms involved in the generation of advanced glycation end products and the antiglycation properties of compounds presented in

  17. Peptide-Carrier Conjugation

    DEFF Research Database (Denmark)

    Hansen, Paul Robert

    2015-01-01

    To produce antibodies against synthetic peptides it is necessary to couple them to a protein carrier. This chapter provides a nonspecialist overview of peptide-carrier conjugation. Furthermore, a protocol for coupling cysteine-containing peptides to bovine serum albumin is outlined....

  18. PH dependent adhesive peptides

    Science.gov (United States)

    Tomich, John; Iwamoto, Takeo; Shen, Xinchun; Sun, Xiuzhi Susan

    2010-06-29

    A novel peptide adhesive motif is described that requires no receptor or cross-links to achieve maximal adhesive strength. Several peptides with different degrees of adhesive strength have been designed and synthesized using solid phase chemistries. All peptides contain a common hydrophobic core sequence flanked by positively or negatively charged amino acids sequences.

  19. Peptide Nucleic Acids

    DEFF Research Database (Denmark)

    2003-01-01

    A novel class of compounds, known as peptide nucleic acids, bind complementary ssDNA and RNA strands more strongly than a corresponding DNA. The peptide nucleic acids generally comprise ligands such as naturally occurring DNA bases attached to a peptide backbone through a suitable linker....

  20. Peptide Nucleic Acids

    DEFF Research Database (Denmark)

    1998-01-01

    A novel class of compounds, known as peptide nucleic acids, bind complementary ssDNA and RNA strands more strongly than a corresponding DNA. The peptide nucleic acids generally comprise ligands such as naturally occurring DNA bases attached to a peptide backbone through a suitable linker....

  1. Peptide Nucleic Acids (PNA)

    DEFF Research Database (Denmark)

    2002-01-01

    A novel class of compounds, known as peptide nucleic acids, bind complementary ssDNA and RNA strands more strongly than a corresponding DNA. The peptide nucleic acids generally comprise ligands such as naturally occurring DNA bases attached to a peptide backbone through a suitable linker....

  2. Peptide Nucleic Acid Synthons

    DEFF Research Database (Denmark)

    2004-01-01

    A novel class of compounds, known as peptide nucleic acids, bind complementary ssDNA and RNA strands more strongly than a corresponding DNA. The peptide nucleic acids generally comprise ligands such as naturally occurring DNA bases attached to a peptide backbone through a suitable linker....

  3. Antimicrobial Peptides in 2014

    Directory of Open Access Journals (Sweden)

    Guangshun Wang

    2015-03-01

    Full Text Available This article highlights new members, novel mechanisms of action, new functions, and interesting applications of antimicrobial peptides reported in 2014. As of December 2014, over 100 new peptides were registered into the Antimicrobial Peptide Database, increasing the total number of entries to 2493. Unique antimicrobial peptides have been identified from marine bacteria, fungi, and plants. Environmental conditions clearly influence peptide activity or function. Human α-defensin HD-6 is only antimicrobial under reduced conditions. The pH-dependent oligomerization of human cathelicidin LL-37 is linked to double-stranded RNA delivery to endosomes, where the acidic pH triggers the dissociation of the peptide aggregate to release its cargo. Proline-rich peptides, previously known to bind to heat shock proteins, are shown to inhibit protein synthesis. A model antimicrobial peptide is demonstrated to have multiple hits on bacteria, including surface protein delocalization. While cell surface modification to decrease cationic peptide binding is a recognized resistance mechanism for pathogenic bacteria, it is also used as a survival strategy for commensal bacteria. The year 2014 also witnessed continued efforts in exploiting potential applications of antimicrobial peptides. We highlight 3D structure-based design of peptide antimicrobials and vaccines, surface coating, delivery systems, and microbial detection devices involving antimicrobial peptides. The 2014 results also support that combination therapy is preferred over monotherapy in treating biofilms.

  4. The Effect of Turmeric , Cardamom and Ginger on in vitro Albumin Glycation

    Directory of Open Access Journals (Sweden)

    N. Sheikh

    2004-01-01

    Full Text Available Diabetes mellitus is one of the most common disease in the world that imposes a tremendous health and societal burden whether that burden is measured in terms of sickness , use of health systems resources or costs. Hyperglycemia is the most important clinical sign of diabetes leading to glycation of the various proteins in the body that leads to change in their nature , structure and biochemical activity. One of the probable methods in the treatment of diabetes mellitus is decrease or inhibition of this reaction. It seems that Turmeric , Cardamom and Ginger are useful for this purpose. The main goal of this research is to determine the effect of above agents on in vitro albumin glycation. In the presence of various concentration of these agents , albumin was glycated and evaluated using TBA method. Results showed that these food additives have inhibitory effects on albumin glycation reaction with the concentraction of 1 g/dl , 0.2 g/dl and 0.1 g/dl. Among these agents , Ginger had the most inhibitory effect (78% with the concentration of 1 g/dl. The sequence of effect is : Ginger > Cardamom > Turmeric These findings showed that these agents decrease albumin glycation reaction.

  5. Fisetin lowers methylglyoxal dependent protein glycation and limits the complications of diabetes.

    Directory of Open Access Journals (Sweden)

    Pamela Maher

    Full Text Available The elevated glycation of macromolecules by the reactive dicarbonyl and α-oxoaldehyde methylglyoxal (MG has been associated with diabetes and its complications. We have identified a rare flavone, fisetin, which increases the level and activity of glyoxalase 1, the enzyme required for the removal of MG, as well as the synthesis of its essential co-factor, glutathione. It is shown that fisetin reduces two major complications of diabetes in Akita mice, a model of type 1 diabetes. Although fisetin had no effect on the elevation of blood sugar, it reduced kidney hypertrophy and albuminuria and maintained normal levels of locomotion in the open field test. This correlated with a reduction in proteins glycated by MG in the blood, kidney and brain of fisetin-treated animals along with an increase in glyoxalase 1 enzyme activity and an elevation in the expression of the rate-limiting enzyme for the synthesis of glutathione, a co-factor for glyoxalase 1. The expression of the receptor for advanced glycation end products (RAGE, serum amyloid A and serum C-reactive protein, markers of protein oxidation, glycation and inflammation, were also increased in diabetic Akita mice and reduced by fisetin. It is concluded that fisetin lowers the elevation of MG-protein glycation that is associated with diabetes and ameliorates multiple complications of the disease. Therefore, fisetin or a synthetic derivative may have potential therapeutic use for the treatment of diabetic complications.

  6. Fisetin Lowers Methylglyoxal Dependent Protein Glycation and Limits the Complications of Diabetes

    Science.gov (United States)

    Maher, Pamela; Dargusch, Richard; Ehren, Jennifer L.; Okada, Shinichi; Sharma, Kumar; Schubert, David

    2011-01-01

    The elevated glycation of macromolecules by the reactive dicarbonyl and α-oxoaldehyde methylglyoxal (MG) has been associated with diabetes and its complications. We have identified a rare flavone, fisetin, which increases the level and activity of glyoxalase 1, the enzyme required for the removal of MG, as well as the synthesis of its essential co-factor, glutathione. It is shown that fisetin reduces two major complications of diabetes in Akita mice, a model of type 1 diabetes. Although fisetin had no effect on the elevation of blood sugar, it reduced kidney hypertrophy and albuminuria and maintained normal levels of locomotion in the open field test. This correlated with a reduction in proteins glycated by MG in the blood, kidney and brain of fisetin-treated animals along with an increase in glyoxalase 1 enzyme activity and an elevation in the expression of the rate-limiting enzyme for the synthesis of glutathione, a co-factor for glyoxalase 1. The expression of the receptor for advanced glycation end products (RAGE), serum amyloid A and serum C-reactive protein, markers of protein oxidation, glycation and inflammation, were also increased in diabetic Akita mice and reduced by fisetin. It is concluded that fisetin lowers the elevation of MG-protein glycation that is associated with diabetes and ameliorates multiple complications of the disease. Therefore, fisetin or a synthetic derivative may have potential therapeutic use for the treatment of diabetic complications. PMID:21738623

  7. Oncocalyxone A functions as an anti-glycation agent in vitro.

    Directory of Open Access Journals (Sweden)

    Ingrid Sofia Vieira de Melo

    Full Text Available Advanced glycation endproducts (AGE are the result of post-translational changes to proteins, which ultimately compromise their structure and/or function. The identification of methods to prevent the formation of these compounds holds great promise in the development of alternative therapies for diseases such as diabetes. Plants used in traditional medicine are often rich sources of anti-glycation agents. Therefore, in this study, we investigated the anti-glycation activity of one such compound, Oncocalyxone A (Onco A. Using spectrofluorimetric techniques, we determined that Onco A inhibits AGE formation in a concentration-dependent manner. Its IC50 value (87.88 ± 3.08 μM was almost two times lower than the standard anti-glycation compound aminoguanidine (184.68 ± 4.85 μM. The excellent anti-glycation activity of Onco A makes it an exciting candidate for the treatment of diseases associated with excessive accumulation of AGE. However, additional studies are necessary to identify its mechanism of action, as well as the in vivo response in suitable model organisms.

  8. RAGE, receptor of advanced glycation endoproducts, negatively regulates chondrocytes differentiation.

    Directory of Open Access Journals (Sweden)

    Tatsuya Kosaka

    Full Text Available RAGE, receptor for advanced glycation endoproducts (AGE, has been characterized as an activator of osteoclastgenesis. However, whether RAGE directly regulates chondrocyte proliferation and differentiation is unclear. Here, we show that RAGE has an inhibitory role in chondrocyte differentiation. RAGE expression was observed in chondrocytes from the prehypertrophic to hypertrophic regions. In cultured cells, overexpression of RAGE or dominant-negative-RAGE (DN-RAGE demonstrated that RAGE inhibited cartilaginous matrix production, while DN-RAGE promoted production. Additionally, RAGE regulated Ihh and Col10a1 negatively but upregulated PTHrP receptor. Ihh promoter analysis and real-time PCR analysis suggested that downregulation of Cdxs was the key for RAGE-induced inhibition of chondrocyte differentiation. Overexpression of the NF-κB inhibitor I-κB-SR inhibited RAGE-induced NF-κB activation, but did not influence inhibition of cartilaginous matrix production by RAGE. The inhibitory action of RAGE was restored by the Rho family GTPases inhibitor Toxin B. Furthermore, inhibitory action on Ihh, Col10a1 and Cdxs was reproduced by constitutively active forms, L63RhoA, L61Rac, and L61Cdc42, but not by I-κB-SR. Cdx1 induced Ihh and Col10a1 expressions and directly interacted with Ihh promoter. Retinoic acid (RA partially rescued the inhibitory action of RAGE. These data combined suggests that RAGE negatively regulates chondrocyte differentiation at the prehypertrophic stage by modulating NF-κB-independent and Rho family GTPases-dependent mechanisms.

  9. Effect of dietary advanced glycation end products on mouse liver.

    Directory of Open Access Journals (Sweden)

    Raza Patel

    Full Text Available UNLABELLED: The exact pathophysiology of non-alcoholic steatohepatitis (NASH is not known. Previous studies suggest that dietary advanced glycation end products (AGEs can cause oxidative stress in liver. We aim to study the effects of dietary AGEs on liver health and their possible role in the pathogenesis of NASH. METHODS: Two groups of mice were fed the same diet except the AGE content varied. One group was fed a high AGE diet and the second group was fed a regular AGE diet. Liver histology, alanine aminotransferase, aspartate aminotransferase, fasting glucose, fasting insulin, insulin resistance and glucose tolerance were assessed. RESULTS: Histology revealed that neutrophil infiltration occurred in the livers of the high AGE group at week 26; steatosis did not accompany liver inflammation. At week 39 livers from both groups exhibited macro- or micro-steatosis, yet no inflammation was detected. Higher insulin levels were detected in the regular AGE group at week 26 (P = 0.034, compared to the high AGE group. At week 39, the regular AGE group showed higher levels of alanine aminotransferase (P<0.01 and aspartate aminotransferase (P = 0.02 than those of the high AGE group. CONCLUSIONS: We demonstrate that a high AGE diet can cause liver inflammation in the absence of steatosis. Our results show that dietary AGEs could play a role in initiating liver inflammation contributing to the disease progression of NASH. Our observation that the inflammation caused by high AGE alone did not persist suggests interesting future directions to investigate how AGEs contribute to pro-oxidative and anti-oxidative pathways in the liver.

  10. Advanced glycation end products and RAGE: a common thread in aging, diabetes, neurodegeneration, and inflammation.

    Science.gov (United States)

    Ramasamy, Ravichandran; Vannucci, Susan J; Yan, Shirley Shi Du; Herold, Kevan; Yan, Shi Fang; Schmidt, Ann Marie

    2005-07-01

    The products of nonenzymatic glycation and oxidation of proteins and lipids, the advanced glycation end products (AGEs), accumulate in a wide variety of environments. AGEs may be generated rapidly or over long times stimulated by a range of distinct triggering mechanisms, thereby accounting for their roles in multiple settings and disease states. A critical property of AGEs is their ability to activate receptor for advanced glycation end products (RAGE), a signal transduction receptor of the immunoglobulin superfamily. It is our hypothesis that due to such interaction, AGEs impart a potent impact in tissues, stimulating processes linked to inflammation and its consequences. We hypothesize that AGEs cause perturbation in a diverse group of diseases, such as diabetes, inflammation, neurodegeneration, and aging. Thus, we propose that targeting this pathway may represent a logical step in the prevention/treatment of the sequelae of these disorders.

  11. Effect of Maillard induced glycation on protein hydrolysis by lysine/arginine and non-lysine/arginine specific proteases

    NARCIS (Netherlands)

    Deng, Y.; Wierenga, P.A.; Schols, H.A.; Sforza, S.; Gruppen, H.

    2017-01-01

    Enzymatic protein hydrolysis is sensitive to modifications of protein structure, e.g. Maillard reaction. In early stages of the reaction glycation takes place, modifying the protein primary structure. In later stages protein aggregation occurs. The specific effect of glycation on protein

  12. Effects of alagebrium, an advanced glycation endproduct breaker, on exercise tolerance and cardiac function in patients with chronic heart failure

    NARCIS (Netherlands)

    Hartog, Jasper W. L.; Willemsen, Suzan; van Veldhuisen, Dirk J.; Posma, Jan L.; van Wijk, Leen M.; Hummel, Yoran M.; Hillege, Hans L.; Voors, Adriaan A.

    Aims Advanced glycation endproducts (AGEs) have been associated with the development and progression of chronic heart failure (CHF). Advanced glycation endproducts-crosslink breakers might be of benefit in HF, but only small-scale and uncontrolled data are available. Our aim was to conduct a

  13. Skin advanced glycation end products in HIV infection are increased and predictive of development of cardiovascular events

    NARCIS (Netherlands)

    Sprenger, Herman G.; Bierman, Wouter F.; Martes, Melanie I.; Graaff, Reindert; van der Werf, Tjip S.; Smit, Andries J.

    2017-01-01

    Objective: HIV-1 infection is associated with an increased cardiovascular disease (CVD) risk. Advanced glycation end products are formed as stable markers of glycaemic and oxidative stress. Skin autofluorescence (SAF) as marker of accumulated advanced glycation end products is increased and

  14. Reference values for the Chinese population of skin autofluorescence as a marker of advanced glycation end products accumulated in tissue

    NARCIS (Netherlands)

    Yue, X.; Hu, H.; Koetsier, M.; Graaff, R.; Han, C.

    Aim Advanced glycation end products play an important role in the pathophysiology of several chronic and age-related diseases, especially diabetes mellitus. Skin autofluorescence is a non-invasive method for assessing levels of tissue advanced glycation end products. This study aims to establish the

  15. The Preventive Effect of L-Lysine on Lysozyme Glycation in Type 2 Diabetes

    Directory of Open Access Journals (Sweden)

    Hossein Mirmiranpour

    2016-01-01

    Full Text Available Lysozyme is a bactericidal enzyme whose structure and functions change in diabetes. Chemical chaperones are small molecules including polyamines (e.g. spermine, amino acids (e.g. L-lysine and polyols (e.g. glycerol. They can improve protein conformation in several stressful conditions such as glycation. In this study, the authors aimed to observe the effect of L-lysine as a chemical chaperone on structure and function of glycated lysozyme. In this study, in vitro and in vivo effects of L-lysine on lysozyme glycation were investigated. Lysozyme was incubated with glucose and/or L-lysine, followed by an investigation of its structure by electrophoresis, fluorescence spectroscopy, and circular dichroism spectroscopy and also assessment of its bactericidal activity against M. lysodeikticus. In the clinical trial, patients with type 2 diabetes mellitus (T2DM were randomly divided into two groups of 25 (test and control. All patients received metformin and glibenclamide for a three months period. The test group was supplemented with 3 g/day of L-lysine. The quantity and activity of lysozyme and other parameters were then measured. Among the test group, L-lysine was found to reduce the advanced glycation end products (AGEs in the sera of patients with T2DM and in vitro condition. This chemical chaperone reversed the alteration in lysozyme structure and function due to glycation and resulted in increased lysozyme activity. Structure and function of glycated lysozyme are significantly improved by l-lysine; therefore it can be considered an effective therapeutic supplementation in T2DM, decreasing the risk of infection in these patients.

  16. Inhibitory effect of gold nanoparticles on the D-ribose glycation of bovine serum albumin

    Directory of Open Access Journals (Sweden)

    Liu W

    2014-11-01

    Full Text Available Weixi Liu,1 Menashi A Cohenford,1–3 Leslie Frost,3 Champika Seneviratne,4 Joel A Dain1 1Department of Chemistry, University of Rhode Island, Kingston, RI, USA; 2Department of Integrated Science and Technology, 3Department of Chemistry, Marshall University, Huntington, WV, USA; 4Department of Chemistry, College of the North Atlantic, Labrador, NL, Canada Abstract: Formation of advanced glycation end products (AGEs by nonenzymatic glycation of proteins is a major contributory factor to the pathophysiology of diabetic conditions including senile dementia and atherosclerosis. This study describes the inhibitory effect of gold nanoparticles (GNPs on the D-ribose glycation of bovine serum albumin (BSA. A combination of analytical methods including ultraviolet–visible spectrometry, high performance liquid chromatography, circular dichroism, and matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF mass spectrometry were used to determine the extent of BSA glycation in the presence of citrate reduced spherical GNPs of various sizes and concentrations. GNPs of particle diameters ranging from 2 nm to 20 nm inhibited BSA’s AGE formation. The extent of inhibition correlated with the total surface area of the nanoparticles. GNPs of highest total surface area yielded the most inhibition whereas those with the lowest total surface area inhibited the formation of AGEs the least. Additionally, when GNPs’ total surface areas were set the same, their antiglycation activities were similar. This inhibitory effect of GNPs on BSA’s glycation by D-ribose suggests that colloidal particles may have a therapeutic application for the treatment of diabetes and conditions that promote hyperglycemia. Keywords: gold nanoparticles, glycation, AGEs, GNPs, BSA

  17. [Plant signaling peptides. Cysteine-rich peptides].

    Science.gov (United States)

    Ostrowski, Maciej; Kowalczyk, Stanisław

    2015-01-01

    Recent bioinformatic and genetic analyses of several model plant genomes have revealed the existence of a highly abundant group of signaling peptides that are defined as cysteine-rich peptides (CRPs). CRPs are usually in size between 50 and 90 amino acid residues, they are positively charged, and they contain 4-16 cysteine residues that are important for the correct conformational folding. Despite the structural differences among CRP classes, members from each class have striking similarities in their molecular properties and function. The present review presents the recent progress in research on signaling peptides from several families including: EPF/EPFL, SP11/SCR, PrsS, RALF, LURE, and some other peptides belonging to CRP group. There is convincing evidence indicating multiple roles for these CRPs as signaling molecules during the plant life cycle, ranging from stomata development and patterning, self-incompatibility, pollen tube growth and guidance, reproductive processes, and nodule formation.

  18. Boronate-Modified Interdigitated Electrode Array for Selective Impedance-Based Sensing of Glycated Hemoglobin

    DEFF Research Database (Denmark)

    Boonyasit, Yuwadee; Laiwattanapaisal, Wanida; Chailapakul, Orawon

    2016-01-01

    An impedance-based label-free affinity sensor was developed for the recognition of glycated hemoglobin (HbA1c). Interdigitated gold microelectrode arrays (IDA) were first modified with a self-assembled monolayer of cysteamine followed by cross-linking with glutaraldehyde and subsequent binding of 3......-aminophenylboronic acid (APBA), which selectively binds HbA1c via cis-diol interactions. Impedance sensing was demonstrated to be highly responsive to the clinically relevant HbA1c levels (0.1%-8.36%) with a detection limit of 0.024% (3σ). The specificity of the assay was evaluated with non-glycated hemoglobin (Hb...

  19. Accumulation of glycation products in. cap alpha. -H pig lens crystallin and its bearing to diabetic cataract genesis

    Energy Technology Data Exchange (ETDEWEB)

    Vidal, P; Cabezas-Cerrato, J

    1988-01-01

    The incorporation of /sup 11/C-glucose in native pig crystalline by in vitro incubation was found, after subsequent dialysis, to affect all 5 classes of crystallin separated by Sepharose CL-6B column chromatography. Though the radioactivity of the ..cap alpha..-H fraction was three times greater than that of any of the others, autoradiographs of SDS-PAGE gels showed /sup 11/C-glucose adducts to be present in all soluble protein subunits, without there being any evidence of preferential glycation of the ..cap alpha..-H subunits. The concentration of stable glycation products in the ..cap alpha..-H chromatographic fraction of soluble crystallins is suggested to be due the addition of glycated material to this fraction as result of glycation-induced hyperaggregation, and not because the ..cap alpha..-H subunits were especially susceptible to glycation.

  20. Peptides in melanoma therapy.

    Science.gov (United States)

    Mocellin, Simone

    2012-01-01

    Peptides derived from tumor associated antigens can be utilized to elicit a therapeutically effective immune response against melanoma in experimental models. However, patient vaccination with peptides - although it is often followed by the induction of melanoma- specific T lymphocytes - is rarely associated with tumor response of clinical relevance. In this review I summarize the principles of peptide design as well as the results so far obtained in the clinical setting while treating cutaneous melanoma by means of this active immunotherapy strategy. I also discuss some immunological and methodological issues that might be helpful for the successful development of peptide-based vaccines.

  1. Antimicrobial Peptides in Reptiles

    Science.gov (United States)

    van Hoek, Monique L.

    2014-01-01

    Reptiles are among the oldest known amniotes and are highly diverse in their morphology and ecological niches. These animals have an evolutionarily ancient innate-immune system that is of great interest to scientists trying to identify new and useful antimicrobial peptides. Significant work in the last decade in the fields of biochemistry, proteomics and genomics has begun to reveal the complexity of reptilian antimicrobial peptides. Here, the current knowledge about antimicrobial peptides in reptiles is reviewed, with specific examples in each of the four orders: Testudines (turtles and tortosises), Sphenodontia (tuataras), Squamata (snakes and lizards), and Crocodilia (crocodilans). Examples are presented of the major classes of antimicrobial peptides expressed by reptiles including defensins, cathelicidins, liver-expressed peptides (hepcidin and LEAP-2), lysozyme, crotamine, and others. Some of these peptides have been identified and tested for their antibacterial or antiviral activity; others are only predicted as possible genes from genomic sequencing. Bioinformatic analysis of the reptile genomes is presented, revealing many predicted candidate antimicrobial peptides genes across this diverse class. The study of how these ancient creatures use antimicrobial peptides within their innate immune systems may reveal new understandings of our mammalian innate immune system and may also provide new and powerful antimicrobial peptides as scaffolds for potential therapeutic development. PMID:24918867

  2. Characterisation of Maillard reaction products derived from LEKFD--a pentapeptide found in β-lactoglobulin sequence, glycated with glucose--by tandem mass spectrometry, molecular orbital calculations and gel filtration chromatography coupled with continuous photodiode array.

    Science.gov (United States)

    Yamaguchi, Keiko; Homma, Takeshi; Nomi, Yuri; Otsuka, Yuzuru

    2014-02-15

    Maillard reaction peptides (MRPs) contribute to taste, aroma, colour, texture and biological activity. However, peptide degradation or the cross-linking of MRPs in the Maillard reaction has not been investigated clearly. A peptide of LEKFD, a part of β-lactoglobulin, was heated at 110 °C for 24h with glucose and the reaction products were analysed by HPLC with ODS, ESI-MS, ESI-MS/MS and HPLC with gel-filtration column and DAD detector. In the HPLC fractions, an imminium ion of LEK*FD, a pyrylium ion or a hydroxymethyl furylium ion of LEK*FD, and KFD and EK were detected by ESI-MS. Therefore, those products may be produced by the Maillard reaction. The molecular orbital of glycated LEKFD at the lysine epsilon-amino residue with Schiff base form was calculated by MOPAC. HPLC with gel-filtration column showed cross-linking and degradation of peptides. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Role of protein-bound carbonyl groups in the formation of advanced glycation endproducts.

    Science.gov (United States)

    Liggins, J; Furth, A J

    1997-08-22

    Several mechanisms have been postulated for the formation of advanced glycation endproducts (AGEs) from glycated proteins; they all feature protein-bound carbonyl intermediates. Using 2,4-dinitrophenylhydrazine (DNPH), we have detected these intermediates on bovine serum albumin, lysozyme and beta-lactoglobulin after in vitro glycation by glucose or fructose. Carbonyls were formed in parallel with AGE-fluorophores, via oxidative Maillard reactions. Neither Amadori nor Heyns products contributed to the DNPH reaction. Fluorophore and carbonyl yields were much enhanced in lipid-associated proteins, but both groups could also be detected in lipid-free proteins. When pre-glycated proteins were incubated in the absence of free sugar, carbonyl groups were rapidly lost in a first-order reaction, while fluorescence continued to develop beyond the 21 days of incubation. Another unexpected finding was that not all carbonyl groups were blocked by aminoguanidine, although there was complete inhibition of reactions leading to AGE-fluorescence. It is suggested that carbonyls acting as fluorophore precursors react readily with aminoguanidine, while others are resistant to this hydrazine, possibly because they are involved in ring closure. Factors influencing the relative rates of acyclisation and hydrazone formation are discussed, together with possible implications for antiglycation therapy.

  4. In Vitro Inhibitory Activity of Acca sellowiana Fruit Extract on End Products of Advanced Glycation.

    Science.gov (United States)

    Muñiz, Alethia; Garcia, Abraham H; Pérez, Rosa M; García, Efren V; González, Daphne E

    2018-02-01

    Hyperglycemia plays an important role in the pathogenesis of diabetic complications, as it increases protein glycation, as well as the progressive accumulation of advanced glycation end products (AGEs), which are complex structures that produce fluorescence. The glycation reaction raises the levels of protein carbonyl, N ε -(carboxymethyl)lysine (CML), and fructosamine and decreases the level of thiol groups. In the present study, the antiglycation activity was determined by fluorescence intensity using the bovine serum albumin (BSA)/glucose, CML method, and the level of fructosamine. The oxidation of proteins was determined by the carbonyl protein content and thiol groups. The results show that the hexane extract of Acca sellowiana (FOH) at different concentrations (0.30-5 mg/ml) significantly inhibited the formation of AGEs in the BSA/glucose model during the 4 weeks of the study. FOH reduced the levels of fructosamine and CML. Our results showed a significant effect of FOH in the prevention of oxidative damage of proteins, as well as an effect on the oxidation of thiol groups and carbonyl proteins. The present study indicates that FOH is effective in inhibiting the glycation of proteins in vitro, so it can prevent or ameliorate the chronic conditions of diabetes associated with the formation of AGEs.

  5. Nutrient Patterns Associated with Fasting Glucose and Glycated Haemoglobin Levels in a Black South African Population

    NARCIS (Netherlands)

    Chikowore, T.; Pisa, P.T.; Zyl, van Tertia; Feskens, E.J.M.; Wentzel-Viljoen, E.; Conradie, K.R.

    2017-01-01

    Type 2 diabetes (T2D) burden is increasing globally. However, evidence regarding nutrient patterns associated with the biomarkers of T2D is limited. This study set out to determine the nutrient patterns associated with fasting glucose and glycated haemoglobin the biomarkers of T2D. Factor analysis

  6. Receptor for advanced glycation end product polymorphisms and type 2 diabetes: the CODAM study

    NARCIS (Netherlands)

    Gaens, K.H.; Kallen, C.J.; Greevenboek, van M.M.; Feskens, E.J.M.; Stehouwer, C.D.; Schalkwijk, C.G.

    2008-01-01

    Genetic variation in the receptor for advanced glycation end products (RAGE) gene may alter the expression and function of RAGE and affect disease development and outcome. We investigated whether single nucleotide polymorphisms (SNPs) in RAGE were associated with diabetes and parameters of glucose

  7. Total soluble and endogenous secretory receptor for advanced glycation endproducts (RAGE) in IBD

    NARCIS (Netherlands)

    Meijer, Berrie; Hoskin, Teagan; Ashcroft, Anna; Burgess, Laura; Keenan, Jacqueline I.; Falvey, James; Gearry, Richard B.; Day, Andrew S.

    2014-01-01

    Recruitment and activation of neutrophils, with release of specific proteins such as S100 proteins, is a feature of inflammatory bowel disease (IBD). Soluble forms of the receptor for advanced glycation endproducts (sRAGE), and variants such as endogenous secretory (esRAGE), can act as decoy

  8. The clinical relevance of assessing advanced glycation endproducts accumulation in diabetes

    NARCIS (Netherlands)

    Meerwaldt, Robbert; Links, Thera; Zeebregts, Clark; Tio, Rene; Hillebrands, Jan-Luuk; Smit, Andries

    2008-01-01

    Cardiovascular disease is the major cause of morbidity and mortality associated with diabetes. There is increasing evidence that advanced glycation endproducts (AGEs) play a pivotal role in atherosclerosis, in particular in diabetes. AGE accumulation is a measure of cumulative metabolic and

  9. Genetic determinants of glycated hemoglobin levels in the Greenlandic Inuit population

    DEFF Research Database (Denmark)

    Appel, Emil V R; Moltke, Ida; Jørgensen, Marit E

    2018-01-01

    We previously showed that a common genetic variant leads to a remarkably increased risk of type 2 diabetes (T2D) in the small and historically isolated Greenlandic population. Motivated by this, we aimed at discovering novel genetic determinants for glycated hemoglobin (HbA1C) and at estimating...

  10. Effect of collagen turnover on the accumulation of advanced glycation end products

    NARCIS (Netherlands)

    Verzijl, N.; Degroot, J.; Thorpe, S. R.; Bank, R. A.; Shaw, J. N.; Lyons, T. J.; Bijlsma, J. W.; Lafeber, F. P.; Baynes, J. W.; TeKoppele, J. M.

    2000-01-01

    Collagen molecules in articular cartilage have an exceptionally long lifetime, which makes them susceptible to the accumulation of advanced glycation end products (AGEs). In fact, in comparison to other collagen-rich tissues, articular cartilage contains relatively high amounts of the AGE

  11. Short-term effects of dietary advanced glycation end products in rats

    DEFF Research Database (Denmark)

    Poulsen, Malene Wibe; Andersen, Jeanette Marker; Hedegaard, Rikke Susanne Vingborg

    2016-01-01

    Dietary advanced glycation end products (AGE) formed during heating of food have gained interest as potential nutritional toxins with adverse effects on inflammation and glucose metabolism. In the present study, we investigated the short-term effects of high and low molecular weight (HMW and LMW)...

  12. Current therapeutic interventions in the glycation pathway: evidence from clinical studies.

    Science.gov (United States)

    Engelen, L; Stehouwer, C D A; Schalkwijk, C G

    2013-08-01

    The increased formation of advanced glycation endproducts (AGEs) constitutes a potential mechanism of hyperglycaemia-induced micro- and macrovascular disease in diabetes. In vitro and animal experiments have shown that various interventions can inhibit formation and/or actions of AGEs, in particular the specific AGE inhibitor aminoguanidine and the AGEs crosslink breaker alagebrium, and the B vitamins pyridoxamine and thiamine, and the latter's synthetic derivative, benfotiamine. The potential clinical value of these interventions, however, remains to be established. The present review provides, from the clinical point of view, an overview of current evidence on interventions in the glycation pathway relating to (i) the clinical benefits of specific AGE inhibitors and AGE breakers and (ii) the potential AGE-inhibiting effects of therapies developed for purposes unrelated to the glycation pathway. We found that safety and/or efficacy in clinical studies with the specific AGE inhibitor, aminoguanidine and the AGE breaker, alagebrium, appeared to be a concern. The clinical evidence on the potential AGE-inhibiting effects of B vitamins is still limited. Finally, current evidence for AGE inhibition by therapies developed for purposes unrelated to glycation is limited due to a large heterogeneity in study designs and/or measurement techniques, which have often been sub-optimal. We conclude that, clinical evidence on interventions to inhibit formation and/or action of AGEs is currently weak and unconvincing. © 2012 Blackwell Publishing Ltd.

  13. Association between Fluorescent Advanced Glycation End-Products and Vascular Complications in Type 2 Diabetic Patients

    Directory of Open Access Journals (Sweden)

    Alexis Guerin-Dubourg

    2017-01-01

    Full Text Available Objectives. Diabetes is a major health problem associated with hyperglycemia and chronically increased oxidative stress and enhanced formation of advanced glycation end-products (AGEs. The aim of this study was to determine whether oxidative plasma biomarkers in diabetic patients could be evidenced and associated with vascular complications. Methods. Oxidative stress biomarkers such as thiols, ischemia-modified albumin (IMA, glycated albumin (GA, fructosamine, and AGEs were measured in 75 patients with poorly controlled type 2 diabetes (HbA1c > 7.5% with (44 or without (31 vascular disease and in 31 nondiabetic controls. Results. Most biomarkers of oxidation and glycation were significantly increased in diabetic patients in comparison with nondiabetics. Fructosamines, GA, IMA, and AGEs were positively correlated and levels of fluorescent AGEs were significantly increased in the plasma from patients presenting vascular complication. Conclusions. These results bring new evidence for the potential interest of glycated albumin, oxidative stress, and glycoxidation parameters in the monitoring of type 2 diabetic patients. Furthermore, it emphasizes fluorescent AGEs as a putative indicator for vascular event prediction in diabetic patients.

  14. Ascorbic acid glycation of lens proteins produces UVA sensitizers similar to those in human lens

    International Nuclear Information System (INIS)

    Ortwerth, B.J.; Linetsky, Mikhail; Olesen, P.R.

    1995-01-01

    Soluble calf lens proteins were extensively glycated during a 4 week incubation with ascorbic acid in the presence of oxygen. Amino acids analysis of the dialyzed proteins removed at weekly intervals showed an increasing loss of lysine, arginine and histidine, consistent with the extensive protein cross-linking observed. Irradiation of the dialyzed samples with UVA light (1.0 kJ/cm 2 total illumination through a 338 nm cutoff filter) caused an increasing loss of tryptophan, an additional loss of histidine and the production of micromolar concentrations of hydrogen peroxide. No alteration in amino acid content and no photolytic effects were seen in proteins incubated without ascorbic acid in proteins incubated with glucose for 4 weeks. The rate of hydrogen peroxide formation was linear with each glycated sample with a maximum production of 25 nmol/mg protein illuminated. The possibility that the sensitizer activity was due to an ascorbate-induced oxidation of tryptophan was eliminated by the presence of a heavy metal ion chelator during the incubation and by showing equivalent effects with ascorbate-incubated ribonuclease A, which is devoid of tryptophan. The ascorbate-incubated samples displayed increasing absorbance at wavelengths above 300 nm and increasing fluorescence (340/430) as glycation proceeded. The spectra of the 4 week glycated proteins were identical to those obtained with a solubilized water-insoluble fraction from human lens, which is known to have UVA sensitizer activity. (Author)

  15. The Receptor for Advanced Glycation End Products Impairs Host Defense in Pneumococcal Pneumonia

    NARCIS (Netherlands)

    van Zoelen, Marieke A. D.; Schouten, Marcel; de Vos, Alex F.; Florquin, Sandrine; Meijers, Joost C. M.; Nawroth, Peter P.; Bierhaus, Angelika; van der Poll, Tom

    2009-01-01

    Streptococcus pneumoniae is the most common cause of community-acquired pneumonia. The receptor for advanced glycation end products (RAGE) is a multiligand receptor that is expressed ubiquitously in the lungs. Engagement of RAGE leads to activation of multiple intracellular signaling pathways,

  16. Temperature effect on formation of advanced glycation end products in infant formula milk powder

    DEFF Research Database (Denmark)

    Zhu, Ru-Gang; Cheng, Hong; Li, Li

    2018-01-01

    For a standard infant formula milk powder, browning reactions were shown to become limiting for shelflife for storage at higher temperature rather than lipid oxidation. Advanced glycation end (AGE) products were found in the temperature range 65e115 C to have an energy of activation...

  17. Inhibitory effect of Piper betle Linn. leaf extract on protein glycation--quantification and characterization of the antiglycation components.

    Science.gov (United States)

    Bhattacherjee, Abhishek; Chakraborti, Abhay Sankar

    2013-12-01

    Piper betle Linn. is a Pan-Asiatic plant having several beneficial properties. Protein glycation and advanced glycation end products (AGEs) formation are associated with different pathophysiological conditions, including diabetes mellitus. Our study aims to find the effect of methanolic extract of P. betle leaves on in vitro protein glycation in bovine serum albumin (BSA)-glucose model. The extract inhibits glucose-induced glycation, thiol group modification and carbonyl formation in BSA in dose-dependent manner. It inhibits different stages of protein glycation, as demonstrated by using glycation models: hemoglobin-delta-gluconolactone (for early stage, Amadori product formation), BSA-methylglyoxal (for middle stage, formation of oxidative cleavage products) and BSA-glucose (for last stage, formation of AGEs) systems. Several phenolic compounds are isolated from the extract. Considering their relative amounts present in the extract, rutin appears to be the most active antiglycating agent. The extract of P. betle leaf may thus have beneficial effect in preventing protein glycation and associated complications in pathological conditions.

  18. Insulin C-peptide test

    Science.gov (United States)

    C-peptide ... the test depends on the reason for the C-peptide measurement. Ask your health care provider if ... C-peptide is measured to tell the difference between insulin the body produces and insulin someone injects ...

  19. Using an enzymatic galactose assay to detect lactose glycation extents of two proteins caseinate and soybean protein isolate via the Maillard reaction.

    Science.gov (United States)

    Wang, Xiao-Peng; Zhao, Xin-Huai

    2017-06-01

    Glycation of food proteins via the Maillard reaction has been widely studied in the recent years; however, the amount of saccharide connected to proteins is usually not determined. An enzymatic galactose assay was proposed firstly in this study to detect lactose glycation extents of caseinate and soybean protein isolate (SPI) during the Maillard reaction at two temperatures and different times. The separated glycated proteins were hydrolysed to release galactose necessary for the enzymatic assay and glycation calculation. Caseinate and SPI both obtained the highest lactose glycation extents at 100 °C or 121 °C by a reaction time of 180 or 20 min. Short- and long-time reaction resulted in lower glycation extents. During the reaction, three chemical indices (absorbences at 294/490 nm and fluorescence intensities) of reaction mixtures increased continually, but another index reactable NH 2 of glycated proteins showed the opposite trend. In general, changing profiles of the four indices were inconsistent with those profiles of lactose glycation extents of glycated proteins, implying practical limitation of the four indices in studies. This proposed enzymatic assay could directly detect lactose glycation of the two proteins, and thus was more useful than the four chemical indices to monitor glycation of the two proteins. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  20. Receptor for advanced glycation end products mediates sepsis-triggered amyloid-β accumulation, Tau phosphorylation, and cognitive impairment.

    Science.gov (United States)

    Gasparotto, Juciano; Girardi, Carolina S; Somensi, Nauana; Ribeiro, Camila T; Moreira, José C F; Michels, Monique; Sonai, Beatriz; Rocha, Mariane; Steckert, Amanda V; Barichello, Tatiana; Quevedo, João; Dal-Pizzol, Felipe; Gelain, Daniel P

    2018-01-05

    Patients recovering from sepsis have higher rates of CNS morbidities associated with long-lasting impairment of cognitive functions, including neurodegenerative diseases. However, the molecular etiology of these sepsis-induced impairments is unclear. Here, we investigated the role of the receptor for advanced glycation end products (RAGE) in neuroinflammation, neurodegeneration-associated changes, and cognitive dysfunction arising after sepsis recovery. Adult Wistar rats underwent cecal ligation and perforation (CLP), and serum and brain (hippocampus and prefrontal cortex) samples were obtained at days 1, 15, and 30 after the CLP. We examined these samples for systemic and brain inflammation; amyloid-β peptide (Aβ) and Ser-202-phosphorylated Tau (p-Tau Ser-202 ) levels; and RAGE, RAGE ligands, and RAGE intracellular signaling. Serum markers associated with the acute proinflammatory phase of sepsis (TNFα, IL-1β, and IL-6) rapidly increased and then progressively decreased during the 30-day period post-CLP, concomitant with a progressive increase in RAGE ligands (S100B, N ϵ-[carboxymethyl]lysine, HSP70, and HMGB1). In the brain, levels of RAGE and Toll-like receptor 4, glial fibrillary acidic protein and neuronal nitric-oxide synthase, and Aβ and p-Tau Ser-202 also increased during that time. Of note, intracerebral injection of RAGE antibody into the hippocampus at days 15, 17, and 19 post-CLP reduced Aβ and p-Tau Ser-202 accumulation, Akt/mechanistic target of rapamycin signaling, levels of ionized calcium-binding adapter molecule 1 and glial fibrillary acidic protein, and behavioral deficits associated with cognitive decline. These results indicate that brain RAGE is an essential factor in the pathogenesis of neurological disorders following acute systemic inflammation. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Glycation, oxidation and glycoxidation of IgG: a biophysical, biochemical, immunological and hematological study.

    Science.gov (United States)

    Islam, Sidra; Moinuddin; Mir, Abdul Rouf; Raghav, Alok; Habib, Safia; Alam, Khursheed; Ali, Asif

    2017-09-12

    Glycation and oxidation induce structural alterations in the proteins in an interdependent manner with consequent pathological implications. The published literature presents wide range of modifications in conformational characteristics of proteins by glycation and oxidation; however, there is little data that could elaborate the cumulative effect of both the processes. This study has analysed the modifications in IgG by methylglyoxal (MG) (glycative stress), hydroxyl radical ([Formula: see text]) (oxidative stress) and by their combined action i.e. [Formula: see text] treatment of MG glycated IgG (glycoxidation). It further addresses the implications of the altered structural integrity of IgG on its immunological characteristics and impact on haematological parameters in rabbits. Using circular dichroism, FTIR, SDS-PAGE analysis, thioflavin-T fluorescence assay, congo red absorbance analysis, dynamic light scattering, transmission electron microscopy, ELISA, blood cell counts and rectal temperature studies, we report that the glycoxidative modification caused maximum alteration in the IgG as compared to the glycatively and oxidatively modified protein. Far-UV CD results confirmed the highest decline in the beta-pleated sheet content of the protein by glycoxidation. The damage led to the reduced flexibility and enhanced electronic interactions in IgG as observed by near-UV CD. Modifications caused cross-linking and adduct formation in the serum protein. The electron micrograph confirmed amorphous aggregation in modified IgG. The modifications increased the hydrodynamic radius of IgG by allowing the attachment of [Formula: see text] and MG residues. The glycoxidatively modified IgG induced the maximum antibody titres that showed high specificity towards the altered IgG. The glycoxidation of IgG leads to activation of inflammatory pathways.

  2. Analysis of glycation induced protein cross-linking inhibitory effects of some antidiabetic plants and spices.

    Science.gov (United States)

    Perera, Handunge Kumudu Irani; Handuwalage, Charith Sandaruwan

    2015-06-09

    Protein cross-linking which occurs towards the latter part of protein glycation is implicated in the development of chronic diabetic complications. Glycation induced protein cross-linking inhibitory effects of nine antidiabetic plants and three spices were evaluated in this study using a novel, simple, electrophoresis based method. Methanol extracts of thirteen plants including nine antidiabetic plants and three spices were used. Lysozyme and fructose were incubated at 37 °C in the presence or absence of different concentrations of plant extracts up to 31 days. Standard glycation inhibitor aminoguanidine and other appropriate controls were included. A recently established sodium dodecyl polyacrylamide gel electrophoresis (SDS-PAGE) method was used to detect the products of protein cross-linking in the incubation mixtures. High molecular weight protein products representing the dimer, trimer and tetramer of lysozyme were detected in the presence of fructose. Among the nine antidiabetic plants, seven showed glycation induced protein cross-linking inhibitory effects namely Ficus racemosa (FR) stem bark, Gymnema sylvestre (GS) leaves, Musa paradisiaca (MP) yam, Phyllanthus debilis (PD) whole plant, Phyllanthus emblica (PE) fruit, Pterocarpus marsupium (PM) latex and Tinospora cordifolia (TC) leaves. Inhibition observed with Coccinia grandis (CG) leaves and Strychnos potatorum (SP) seeds were much low. Leaves of Gymnema lactiferum (GL), the plant without known antidiabetic effects showed the lowest inhibition. All three spices namely Coriandrum sativum (CS) seeds, Cinnamomum zeylanicum (CZ) bark and Syzygium aromaticum (SA) flower buds showed cross-link inhibitory effects with higher effects in CS and SA. PD, PE, PM, CS and SA showed almost complete inhibition on the formation of cross-linking with 25 μg/ml extracts. Methanol extracts of PD, PE, PM, CS and SA have shown promising inhibitory effects on glycation induced protein cross-linking.

  3. Biosynthetic Tailoring of Microcin E492m: Post-Translational Modification Affords an Antibacterial Siderophore-Peptide Conjugate

    Science.gov (United States)

    Nolan, Elizabeth M.; Fischbach, Michael A.; Koglin, Alexander; Walsh, Christopher T.

    2008-01-01

    The present work reveals that four proteins, MceCDIJ, encoded by the MccE492 gene cluster are responsible for the remarkable post-translational tailoring of Microcin E492 (MccE492), an 84-residue protein toxin secreted by Klebsiella pneumonaie RYC492 that targets neighboring gram-negative species. This modification results in attachment of a linearized and monoglycosylated derivative of enterobactin, a nonribosomal peptide and iron scavenger (siderophore), to the MccE492m C-terminus. MceC and MceD derivatize enterobactin by C-glycosylation at the C5 position of a N-(2,3-dihydroxybenzoyl) serine (DHB-Ser) moiety and regiospecific hydrolysis of an ester linkage in the trilactone scaffold, respectively. MceI and MceJ form a protein complex that attaches C-glycosylated enterobactins to the C-terminal serine residue of both aC10 model peptide and full-length MccE492. In the enzymatic product, the terminal serine residue is covalently attached to the C4′ oxygen of the glucose moiety. Non-enzymatic and base-catalyzed migration of the peptide to the C6′ position affords the C6′ glycosyl ester linkage observed in the mature toxin, MccE492m, isolated from bacterial cultures. PMID:17973380

  4. Peptide Vaccines for Leishmaniasis

    Directory of Open Access Journals (Sweden)

    Rory C. F. De Brito

    2018-05-01

    Full Text Available Due to an increase in the incidence of leishmaniases worldwide, the development of new strategies such as prophylactic vaccines to prevent infection and decrease the disease have become a high priority. Classic vaccines against leishmaniases were based on live or attenuated parasites or their subunits. Nevertheless, the use of whole parasite or their subunits for vaccine production has numerous disadvantages. Therefore, the use of Leishmania peptides to design more specific vaccines against leishmaniases seems promising. Moreover, peptides have several benefits in comparison with other kinds of antigens, for instance, good stability, absence of potentially damaging materials, antigen low complexity, and low-cost to scale up. By contrast, peptides are poor immunogenic alone, and they need to be delivered correctly. In this context, several approaches described in this review are useful to solve these drawbacks. Approaches, such as, peptides in combination with potent adjuvants, cellular vaccinations, adenovirus, polyepitopes, or DNA vaccines have been used to develop peptide-based vaccines. Recent advancements in peptide vaccine design, chimeric, or polypeptide vaccines and nanovaccines based on particles attached or formulated with antigenic components or peptides have been increasingly employed to drive a specific immune response. In this review, we briefly summarize the old, current, and future stands on peptide-based vaccines, describing the disadvantages and benefits associated with them. We also propose possible approaches to overcome the related weaknesses of synthetic vaccines and suggest future guidelines for their development.

  5. Peptide Vaccines for Leishmaniasis.

    Science.gov (United States)

    De Brito, Rory C F; Cardoso, Jamille M De O; Reis, Levi E S; Vieira, Joao F; Mathias, Fernando A S; Roatt, Bruno M; Aguiar-Soares, Rodrigo Dian D O; Ruiz, Jeronimo C; Resende, Daniela de M; Reis, Alexandre B

    2018-01-01

    Due to an increase in the incidence of leishmaniases worldwide, the development of new strategies such as prophylactic vaccines to prevent infection and decrease the disease have become a high priority. Classic vaccines against leishmaniases were based on live or attenuated parasites or their subunits. Nevertheless, the use of whole parasite or their subunits for vaccine production has numerous disadvantages. Therefore, the use of Leishmania peptides to design more specific vaccines against leishmaniases seems promising. Moreover, peptides have several benefits in comparison with other kinds of antigens, for instance, good stability, absence of potentially damaging materials, antigen low complexity, and low-cost to scale up. By contrast, peptides are poor immunogenic alone, and they need to be delivered correctly. In this context, several approaches described in this review are useful to solve these drawbacks. Approaches, such as, peptides in combination with potent adjuvants, cellular vaccinations, adenovirus, polyepitopes, or DNA vaccines have been used to develop peptide-based vaccines. Recent advancements in peptide vaccine design, chimeric, or polypeptide vaccines and nanovaccines based on particles attached or formulated with antigenic components or peptides have been increasingly employed to drive a specific immune response. In this review, we briefly summarize the old, current, and future stands on peptide-based vaccines, describing the disadvantages and benefits associated with them. We also propose possible approaches to overcome the related weaknesses of synthetic vaccines and suggest future guidelines for their development.

  6. Peptide Nucleic Acids

    DEFF Research Database (Denmark)

    2004-01-01

    A novel class of compounds known as peptide nucleic acids, bind complementary DNA and RNA strands, and generally do so more strongly than the corresponding DNA or RNA strands while exhibiting increased sequence specificity and solubility. The peptide nucleic acids comprise ligands selected from...

  7. Aspirin-mediated acetylation of haemoglobin increases in presence of high glucose concentration and decreases protein glycation

    Directory of Open Access Journals (Sweden)

    Francesco Finamore

    2015-09-01

    Full Text Available Glycation represents the first stage in the development of diabetic complications. Aspirin was shown to prevent sugars reacting with proteins, but the exact mechanism of this interaction was not well defined. We performed a quantitative analysis to calculate the levels of acetylation and glycation of haemoglobin, among others red blood cell (RBC proteins, using a label free approach. After glucose incubation, increases in the acetylation levels were seen for several haemoglobin subunits, while a parallel decrease of their glycation levels was observed after aspirin incubation. These results suggest that, a mutual influence between these two modifications, occur at protein level.

  8. Maillard Proteomics: Opening New Pages

    Directory of Open Access Journals (Sweden)

    Alena Soboleva

    2017-12-01

    Full Text Available Protein glycation is a ubiquitous non-enzymatic post-translational modification, formed by reaction of protein amino and guanidino groups with carbonyl compounds, presumably reducing sugars and α-dicarbonyls. Resulting advanced glycation end products (AGEs represent a highly heterogeneous group of compounds, deleterious in mammals due to their pro-inflammatory effect, and impact in pathogenesis of diabetes mellitus, Alzheimer’s disease and ageing. The body of information on the mechanisms and pathways of AGE formation, acquired during the last decades, clearly indicates a certain site-specificity of glycation. It makes characterization of individual glycation sites a critical pre-requisite for understanding in vivo mechanisms of AGE formation and developing adequate nutritional and therapeutic approaches to reduce it in humans. In this context, proteomics is the methodology of choice to address site-specific molecular changes related to protein glycation. Therefore, here we summarize the methods of Maillard proteomics, specifically focusing on the techniques providing comprehensive structural and quantitative characterization of glycated proteome. Further, we address the novel break-through areas, recently established in the field of Maillard research, i.e., in vitro models based on synthetic peptides, site-based diagnostics of metabolism-related diseases (e.g., diabetes mellitus, proteomics of anti-glycative defense, and dynamics of plant glycated proteome during ageing and response to environmental stress.

  9. The association between various smoking behaviors, cotinine biomarkers and skin autofluorescence, a marker for advanced glycation end product accumulation

    NARCIS (Netherlands)

    van Waateringe, Robert P.; Mook-Kanamori, Marjonneke J.; Slagter, Sandra N.; van der Klauw, Melanie M.; van Vliet-Ostaptchouk, Jana V.; Graaff, Reindert; Lutgers, Helen L.; Suhre, Karsten; Selim, Mohammed M. El-Din; Mook-Kanamori, Dennis O.; Wolffenbuttel, Bruce H. R.

    2017-01-01

    BACKGROUND: Skin autofluorescence, a biomarker for advanced glycation end products (AGEs) accumulation, has been shown to predict diabetes-related cardiovascular complications and is associated with several environmental and lifestyle factors. In the present study, we examined the association

  10. Improved glucose control and reduced body weight in rodents with dual mechanism of action peptide hybrids.

    Directory of Open Access Journals (Sweden)

    James L Trevaskis

    Full Text Available Combination therapy is being increasingly used as a treatment paradigm for metabolic diseases such as diabetes and obesity. In the peptide therapeutics realm, recent work has highlighted the therapeutic potential of chimeric peptides that act on two distinct receptors, thereby harnessing parallel complementary mechanisms to induce additive or synergistic benefit compared to monotherapy. Here, we extend this hypothesis by linking a known anti-diabetic peptide with an anti-obesity peptide into a novel peptide hybrid, which we termed a phybrid. We report on the synthesis and biological activity of two such phybrids (AC164204 and AC164209, comprised of a glucagon-like peptide-1 receptor (GLP1-R agonist, and exenatide analog, AC3082, covalently linked to a second generation amylin analog, davalintide. Both molecules acted as full agonists at their cognate receptors in vitro, albeit with reduced potency at the calcitonin receptor indicating slightly perturbed amylin agonism. In obese diabetic Lep(ob/Lep (ob mice sustained infusion of AC164204 and AC164209 reduced glucose and glycated haemoglobin (HbA1c equivalently but induced greater weight loss relative to exenatide administration alone. Weight loss was similar to that induced by combined administration of exenatide and davalintide. In diet-induced obese rats, both phybrids dose-dependently reduced food intake and body weight to a greater extent than exenatide or davalintide alone, and equal to co-infusion of exenatide and davalintide. Phybrid-mediated and exenatide + davalintide-mediated weight loss was associated with reduced adiposity and preservation of lean mass. These data are the first to provide in vivo proof-of-concept for multi-pathway targeting in metabolic disease via a peptide hybrid, demonstrating that this approach is as effective as co-administration of individual peptides.

  11. Diversity-oriented peptide stapling

    DEFF Research Database (Denmark)

    Tran, Thu Phuong; Larsen, Christian Ørnbøl; Røndbjerg, Tobias

    2017-01-01

    as a powerful method for peptide stapling. However, to date CuAAC stapling has not provided a simple method for obtaining peptides that are easily diversified further. In the present study, we report a new diversity-oriented peptide stapling (DOPS) methodology based on CuAAC chemistry. Stapling of peptides...

  12. Effect of dietary advanced glycation end products on postprandial appetite, inflammation, and endothelial activation in healthy overweight individuals

    DEFF Research Database (Denmark)

    Poulsen, Malene Wibe; Bak, Monika Judyta; Andersen, Jeanette Marker

    2014-01-01

    Advanced glycation end products (AGEs) formed in food during high-heat cooking may induce overeating and inflammation. We investigated whether AGE contents in a single meal affect postprandial appetite and markers of inflammation, endothelial activation, and oxidative stress.......Advanced glycation end products (AGEs) formed in food during high-heat cooking may induce overeating and inflammation. We investigated whether AGE contents in a single meal affect postprandial appetite and markers of inflammation, endothelial activation, and oxidative stress....

  13. PNA Peptide chimerae

    DEFF Research Database (Denmark)

    Koch, T.; Næsby, M.; Wittung, P.

    1995-01-01

    Radioactive labelling of PNA has been performed try linking a peptide segment to the PNA which is substrate for protein kinase A. The enzymatic phosphorylation proceeds in almost quantitative yields....

  14. Tumor penetrating peptides

    Directory of Open Access Journals (Sweden)

    Tambet eTeesalu

    2013-08-01

    Full Text Available Tumor-homing peptides can be used to deliver drugs into tumors. Phage library screening in live mice has recently identified homing peptides that specifically recognize the endothelium of tumor vessels, extravasate, and penetrate deep into the extravascular tumor tissue. The prototypic peptide of this class, iRGD (CRGDKGPDC, contains the integrin-binding RGD motif. RGD mediates tumor homing through binding to αv integrins, which are selectively expressed on various cells in tumors, including tumor endothelial cells. The tumor-penetrating properties of iRGD are mediated by a second sequence motif, R/KXXR/K. This C-end Rule (or CendR motif is active only when the second basic residue is exposed at the C-terminus of the peptide. Proteolytic processing of iRGD in tumors activates the cryptic CendR motif, which then binds to neuropilin-1 activating an endocytic bulk transport pathway through tumor tissue. Phage screening has also yielded tumor-penetrating peptides that function like iRGD in activating the CendR pathway, but bind to a different primary receptor. Moreover, novel tumor-homing peptides can be constructed from tumor-homing motifs, CendR elements and protease cleavage sites. Pathologies other than tumors can be targeted with tissue-penetrating peptides, and the primary receptor can also be a vascular zip code of a normal tissue. The CendR technology provides a solution to a major problem in tumor therapy, poor penetration of drugs into tumors. The tumor-penetrating peptides are capable of taking a payload deep into tumor tissue in mice, and they also penetrate into human tumors ex vivo. Targeting with these peptides specifically increases the accumulation in tumors of a variety of drugs and contrast agents, such as doxorubicin, antibodies and nanoparticle-based compounds. Remarkably the drug to be targeted does not have to be coupled to the peptide; the bulk transport system activated by the peptide sweeps along any compound that is

  15. Fluorescent eosin probe in investigations of structural changes in glycated proteins

    Science.gov (United States)

    Pravdin, A. B.; Kochubey, V. I.; Mel'Nikov, A. G.

    2010-08-01

    The possibility of using the luminescent-kinetic probe method to investigate structural changes in bovine serum albumin (BSA) upon nonenzymatic thermal glycation is studied. An increase in the glycation time lead to a decrease in the intensity of the probe (eosin) fluorescence and to a long-wavelength shift of its maximum, as well as to an increase in the eosin phosphorescence intensity, which indicates that eosin binds to hydrophobic regions of protein at any times of incubation of BSA with glucose. From a decrease in the rate constant of the triplet-triplet energy transfer between the donor (eosin) and acceptor (anthracene) bound to proteins, it is found that the changes observed in the spectral characteristics of eosin are caused by structural changes in albumin globules as a result of glycosylation.

  16. Advanced glycation end products overload might explain intracellular cobalamin deficiency in renal dysfunction, diabetes and aging.

    Science.gov (United States)

    Obeid, Rima; Shannan, Batool; Herrmann, Wolfgang

    2011-11-01

    Advanced glycation end products (AGEs) contribute to aging. Cobalamin (Cbl) is required for cell growth and functions, and its deficiency causes serious complications. Diabetics and renal patients show high concentrations of Cbl, but metabolic evidence of Cbl deficiency that is reversible after Cbl treatment. Cbl might be sequestered in blood and cannot be delivered to the cell. Megalin mediates the uptake of transcobalamin-Cbl complex into the proximal tubule cells. Megalin is involved in the uptake and degradation of AGEs. In aging, diabetes or renal dysfunction, AGEs might overload megalin thus lowering Cbl uptake. Transcobalamin-Cbl might retain in blood. Shedding of megalin and transcobalamin receptor under glycation conditions is also a possible mechanism of this phenomenon. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Soluble Receptor for Advanced Glycation End Product: A Biomarker for Acute Coronary Syndrome

    Directory of Open Access Journals (Sweden)

    Louise J. N. Jensen

    2015-01-01

    Full Text Available The receptor of advanced glycation end products (RAGE and its ligands are linked to the pathogenesis of coronary artery disease (CAD, and circulating soluble receptor of advanced glycation end products (sRAGE, reflecting the RAGE activity, is suggested as a potential biomarker. Elevated sRAGE levels are reported in relation to acute ischemia and this review focuses on the role of sRAGE as a biomarker for the acute coronary syndrome (ACS. The current studies demonstrated that sRAGE levels are elevated in relation to ACS, however during a very narrow time period, indicating that the time of sampling needs attention. Interestingly, activation of RAGE may influence the pathogenesis and reflection in sRAGE levels in acute and stable CAD differently.

  18. Characteristics and enhanced antioxidant activity of glycated Morchella esculenta protein isolate

    Directory of Open Access Journals (Sweden)

    Qiang ZHANG

    Full Text Available Abstract Morchella esculenta (L Pers. is a highly valued edible and medicinal fungus that remains underutilized. For this study, the effects of glycation treatment on antioxidant activity and characteristics of the M. esculenta protein isolate (MPI were investigated via the Maillard reaction. Conjugation between MPI and xylose was proven via UV-vis, FT-IR, intrinsic fluorescence analysis, and SDS-PAGE. Amino acid analysis revealed involvement of lysine, arginine and tyrosine in MPI, forming a covalent cross-link with xylose. Differential scanning calorimetry (DSC results showed that glycated MPI (MPIG possesses a more favorable thermal stability compared to native MPI (MPIN, heated MPI (MPIH and an unheated mixture of MPI and xylose (MPI-XM. MPIG exhibited significantly enhanced antioxidant activity compared to MPIN, MPIH, and MPI-XM. These results indicate MPIG can serve as a promising novel source of nutraceutical and functional ingredients that exert antioxidant activity.

  19. Ebselen exhibits glycation-inhibiting properties and protects against osmotic fragility of human erythrocytes in vitro.

    Science.gov (United States)

    Soares, Julio C M; Folmer, Vanderlei; Da Rocha, João B T; Nogueira, Cristina W

    2014-05-01

    Diabetic status is associated with an increase on oxidative stress markers in humans and animal models. We have investigated the in vitro effects of high concentrations of glucose on the profile of oxidative stress and osmotic fragility of blood from control and diabetic patients; we considered whether its antioxidant properties could afford some protection against glucose-induced osmotic fragility, and whether ebselen could act as an inhibitor of hemoglobin glycation. Raising blood glucose to 5-100 mmol/L resulted in a concentration-dependent increase of glycated hemoglobin (HbA1c; P Ebselen significantly reduced the glucose-induced increase in osmotic fragility and inhibited HbA1c formation (P < 0.0001). These results indicate that blood from patients with uncontrolled diabetes are more sensitive to osmotic shock than from patients with controlled diabetes and control subjects in relation to increased production of free radicals in vivo. © 2014 International Federation for Cell Biology.

  20. Advanced glycation end-products: a biological consequence of lifestyle contributing to cancer disparity

    OpenAIRE

    Turner, David P.

    2015-01-01

    Low income, poor diet, obesity and a lack of exercise are inter-related lifestyle factors that can profoundly alter our biological make-up to increase cancer risk, growth and development. We recently reported a potential mechanistic link between carbohydrate derived metabolites and cancer which may provide a biological consequence of lifestyle that can directly impact tumor biology. Advanced glycation end-products (AGEs) are reactive metabolites produced as a by-product of sugar metabolism. F...

  1. Fluorescent advanced glycation end products in the detection of factual stages of cartilage degeneration

    Czech Academy of Sciences Publication Activity Database

    Handl, M.; Filová, Eva; Kubala, M.; Lánský, Z.; Koláčná, Lucie; Vorlíček, Jaroslav; Trč, T.; Amler, Evžen

    2007-01-01

    Roč. 56, č. 2 (2007), s. 235-242 ISSN 0862-8408 R&D Projects: GA AV ČR(CZ) 1ET400110403; GA AV ČR(CZ) IAA500390702 Institutional research plan: CEZ:AV0Z50390512; CEZ:AV0Z50110509 Keywords : Nonenzymic glycation * Cartilage * Knee joint Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.505, year: 2007

  2. Anti-glycated and antiradical activities in vitro of polysaccharides from Ganoderma capense

    OpenAIRE

    Yan, Chunyan; Kong, Fansheng; Zhang, Dezhi; Cui, Jiangxia

    2013-01-01

    Background : Ganoderma capense is a Ganoderma species and is widely used, especially in Asia, as a well-known medicinal mushroom for health-promoting effect and for treatment of chronic diseases, such as diabetes, aging, etc. G. capense is rich of polysaccharide. Objective: To isolate the polysaccharides from G. capense and evaluate their anti-glycated and antiradical activities in vitro. Materials and Methods : The dried powder of submerged fermentation culturing mycelium of G. capense was d...

  3. Analysis of glycated hemoglobin A1c by capillary electrophoresis and capillary isoelectric focusing

    Czech Academy of Sciences Publication Activity Database

    Koval, Dušan; Kašička, Václav; Cottet, H.

    2011-01-01

    Roč. 413, č. 1 (2011), s. 8-15 ISSN 0003-2697 R&D Projects: GA ČR GP203/09/P485; GA ČR(CZ) GA203/08/1428 Institutional research plan: CEZ:AV0Z40550506 Keywords : capillary zone electrophoresis * capillary isoelectric focusing * glycated hemoglobin HbA1c Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 2.996, year: 2011

  4. Rifampicin reduces advanced glycation end products and activates DAF-16 to increase lifespan in Caenorhabditis elegans.

    Science.gov (United States)

    Golegaonkar, Sandeep; Tabrez, Syed S; Pandit, Awadhesh; Sethurathinam, Shalini; Jagadeeshaprasad, Mashanipalya G; Bansode, Sneha; Sampathkumar, Srinivasa-Gopalan; Kulkarni, Mahesh J; Mukhopadhyay, Arnab

    2015-06-01

    Advanced glycation end products (AGEs) are formed when glucose reacts nonenzymatically with proteins; these modifications are implicated in aging and pathogenesis of many age-related diseases including type II diabetes, atherosclerosis, and neurodegenerative disorders. Thus, pharmaceutical interventions that can reduce AGEs may delay age-onset diseases and extend lifespan. Using LC-MS(E), we show that rifampicin (RIF) reduces glycation of important cellular proteins in vivo and consequently increases lifespan in Caenorhabditis elegans by up to 60%. RIF analog rifamycin SV (RSV) possesses similar properties, while rifaximin (RMN) lacks antiglycation activity and therefore fails to affect lifespan positively. The efficacy of RIF and RSV as potent antiglycating agents may be attributed to the presence of a p-dihydroxyl moiety that can potentially undergo spontaneous oxidation to yield highly reactive p-quinone structures, a feature absent in RMN. We also show that supplementing rifampicin late in adulthood is sufficient to increase lifespan. For its effect on longevity, rifampicin requires DAF-18 (nematode PTEN) as well as JNK-1 and activates DAF-16, the FOXO homolog. Interestingly, the drug treatment modulates transcription of a different subset of DAF-16 target genes, those not controlled by the conserved Insulin-IGF-1-like signaling pathway. RIF failed to increase the lifespan of daf-16 null mutant despite reducing glycation, showing thereby that DAF-16 may not directly affect AGE formation. Together, our data suggest that the dual ability to reduce glycation in vivo and activate prolongevity processes through DAF-16 makes RIF and RSV effective lifespan-extending interventions. © 2015 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  5. Peptide aldehyde inhibitors of bacterial peptide deformylases.

    Science.gov (United States)

    Durand, D J; Gordon Green, B; O'Connell, J F; Grant, S K

    1999-07-15

    Bacterial peptide deformylases (PDF, EC 3.5.1.27) are metalloenzymes that cleave the N-formyl groups from N-blocked methionine polypeptides. Peptide aldehydes containing a methional or norleucinal inhibited recombinant peptide deformylase from gram-negative Escherichia coli and gram-positive Bacillus subtilis. The most potent inhibitor was calpeptin, N-CBZ-Leu-norleucinal, which was a competitive inhibitor of the zinc-containing metalloenzymes, E. coli and B. subtilis PDF with Ki values of 26.0 and 55.6 microM, respectively. Cobalt-substituted E. coli and B. subtilis deformylases were also inhibited by these aldehydes with Ki values for calpeptin of 9.5 and 12.4 microM, respectively. Distinct spectral changes were observed upon binding of calpeptin to the Co(II)-deformylases, consistent with the noncovalent binding of the inhibitor rather than the formation of a covalent complex. In contrast, the chelator 1,10-phenanthroline caused the time-dependent inhibition of B. subtilis Co(II)-PDF activity with the loss of the active site metal. The fact that calpeptin was nearly equipotent against deformylases from both gram-negative and gram-positive bacterial sources lends further support to the idea that a single deformylase inhibitor might have broad-spectrum antibacterial activity. Copyright 1999 Academic Press.

  6. The in vitro effects of advanced glycation end products on basophil functions.

    Science.gov (United States)

    Han, Kaiyu; Suzukawa, Maho; Yamaguchi, Masao; Sugimoto, Naoya; Nakase, Yuko; Toda, Takako; Nagase, Hiroyuki; Ohta, Ken

    2011-01-01

    Basophils are thought to play pivotal roles in the pathogenesis of allergic reactions, but their roles in inflammation associated with systemic abnormalities such as metabolic disorders remain largely unknown. Advanced glycation end products (AGEs) are potentially important substances produced in high-glucose disease conditions. In this in vitro study, we investigated whether the biological functions of human basophils can be influenced by AGEs. We analyzed the effects of AGEs on various functions and markers of human basophils, including CD11b expression, apoptosis, degranulation, and cytokine production. Flow cytometric analysis indicated that the level of the receptor for AGEs (RAGE) on the surface of freshly isolated basophils was very low but was clearly upregulated by IL-3. Apoptosis of basophils was induced by high concentrations of glycated albumin. Although glycated albumin failed to affect the level of surface CD11b expression or to trigger degranulation or production of IL-4 and IL-13 in basophils, it dose-dependently induced IL-6 and IL-8 secretion. AGEs seem to act on human basophils; they suppress the cells' longevity but elicit secretion of inflammatory cytokines. Through these biological changes, basophils might play some roles in inflammatory conditions associated with metabolic disorders presenting elevated levels of AGEs. Copyright © 2011 S. Karger AG, Basel.

  7. Glutamine reduces postprandial glycemia and augments the glucagon-like peptide-1 response in type 2 diabetes patients

    DEFF Research Database (Denmark)

    Samocha-Bonet, Dorit; Wong, Olivia; Synnott, Emma-Leigh

    2011-01-01

    Impaired glucagon-like peptide (GLP-1) secretion or response may contribute to ineffective insulin release in type 2 diabetes. The conditionally essential amino acid glutamine stimulates GLP-1 secretion in vitro and in vivo. In a randomized, crossover study, we evaluated the effect of oral...... glutamine, with or without sitagliptin (SIT), on postprandial glycemia and GLP-1 concentration in 15 type 2 diabetes patients (glycated hemoglobin 6.5 ± 0.6%). Participants ingested a low-fat meal (5% fat) after receiving either water (control), 30 g l-glutamine (Gln-30), 15 g L-glutamine (Gln-15), 100 mg...... concentration and limiting postprandial glycemia in type 2 diabetes....

  8. The effect of glycation on bovine serum albumin conformation and ligand binding properties with regard to gliclazide

    Science.gov (United States)

    Żurawska-Płaksej, Ewa; Rorbach-Dolata, Anna; Wiglusz, Katarzyna; Piwowar, Agnieszka

    2018-01-01

    Albumin, the major serum protein, plays a variety of functions, including binding and transporting endogenous and exogenous ligands. Its molecular structure is sensitive to different environmental modifiers, among which glucose is one of the most significant. In vivo albumin glycation occurs under physiological conditions, but it is increased in diabetes. Since bovine serum albumin (BSA) may serve as a model protein in in vitro experiments, we aimed to investigate the impact of glucose-mediated BSA glycation on the binding capacity towards gliclazide, as well as the ability of this drug to prevent glycation of the BSA molecule. To reflect normo- and hyperglycemia, the conditions of the glycation process were established. Structural changes of albumin after interaction with gliclazide (0-14 μM) were determined using fluorescence quenching and circular dichroism spectroscopy. Moreover, thermodynamic parameters as well as energy transfer parameters were determined. Calculated Stern-Volmer quenching constants, as well as binding constants for the BSA-gliclazide complex, were lower for the glycated form of albumin than for the unmodified protein. The largest, over 2-fold, decrease in values of binding parameters was observed for the sample with 30 mM of glucose, reflecting the poorly controlled diabetic state, which indicates that the degree of glycation had a critical influence on binding with gliclazide. In contrast to significant changes in the tertiary structure of BSA upon binding with gliclazide, only slight changes in the secondary structure were observed, which was reflected by about a 3% decrease of the α-helix content of glycated BSA (regardless of glucose concentration) in comparison to unmodified BSA. The presence of gliclazide during glycation did not affect its progress. The results of this study indicate that glycation significantly changed the binding ability of BSA towards gliclazide and the scale of these changes depended on glucose concentration. It

  9. Effect of methylglyoxal on the physico-chemical and biological properties of low-density lipoprotein

    NARCIS (Netherlands)

    Schalkwijk, C.G.; Vermeer, M.A.; Stehouwer, C.D.A.; Koppele, J. te; Princen, H.M.G.; Hinsbergh, V.W.M. van

    1998-01-01

    In patients with diabetes, non-enzymatic glycation of low-density lipoprotein (LDL) has been suggested to be involved in the development of atherosclerosis. α-Dicarbonyl compounds were identified as intermediates in the non-enzymatic glycation and increased levels were reported in patients with

  10. Skin beautification with oral non-hydrolized versions of carnosine and carcinine: Effective therapeutic management and cosmetic skincare solutions against oxidative glycation and free-radical production as a causal mechanism of diabetic complications and skin aging.

    Science.gov (United States)

    Babizhayev, Mark A; Deyev, Anatoliy I; Savel'yeva, Ekaterina L; Lankin, Vadim Z; Yegorov, Yegor E

    2012-10-01

    Advanced glycation Maillard reaction end products (AGEs) are causing the complications of diabetes and skin aging, primarily via adventitious and cross-linking of proteins. Long-lived proteins such as structural collagen are particularly implicated as pathogenic targets of AGE processes. The formation of α-dicarbonyl compounds represents an important step for cross-linking proteins in the glycation or Maillard reaction. The purpose of this study was to investigate the contribution of glycation coupled to the glycation free-radical oxidation reactions as markers of protein damage in the aging of skin tissue proteins and diabetes. To elucidate the mechanism for the cross-linking reaction, we studied the reaction between a three-carbon α-dicarbonyl compound, methylglyoxal, and amino acids using EPR spectroscopy, a spectrophotometric kinetic assay of superoxide anion production at the site of glycation and a chemiluminescence technique. The transglycating activity, inhibition of transition metal ions peroxidative catalysts, resistance to hydrolysis of carnosine mimetic peptide-based compounds with carnosinase and the protective effects of carnosine, carcinine and related compounds against the oxidative damage of proteins and lipid membranes were assessed in a number of biochemical and model systems. A 4-month randomized, double-blind, controlled study was undertaken including 42 subjects where the oral supplement of non-hydrolized carnosine (Can-C Plus® formulation) was tested against placebo for 3 months followed by a 1-month supplement-free period for both groups to assess lasting effects. Assessment of the age-related skin parameters and oral treatment efficacy measurements included objective skin surface evaluation with Visioscan® VC 98 and visual assessment of skin appearance parameters. The results together confirm that a direct one-electron transfer between a Schiff base methylglyoxal dialkylimine (or its protonated form) and methylglyoxal is responsible for

  11. Peptide Integrated Optics.

    Science.gov (United States)

    Handelman, Amir; Lapshina, Nadezda; Apter, Boris; Rosenman, Gil

    2018-02-01

    Bio-nanophotonics is a wide field in which advanced optical materials, biomedicine, fundamental optics, and nanotechnology are combined and result in the development of biomedical optical chips. Silk fibers or synthetic bioabsorbable polymers are the main light-guiding components. In this work, an advanced concept of integrated bio-optics is proposed, which is based on bioinspired peptide optical materials exhibiting wide optical transparency, nonlinear and electrooptical properties, and effective passive and active waveguiding. Developed new technology combining bottom-up controlled deposition of peptide planar wafers of a large area and top-down focus ion beam lithography provides direct fabrication of peptide optical integrated circuits. Finding a deep modification of peptide optical properties by reconformation of biological secondary structure from native phase to β-sheet architecture is followed by the appearance of visible fluorescence and unexpected transition from a native passive optical waveguiding to an active one. Original biocompatibility, switchable regimes of waveguiding, and multifunctional nonlinear optical properties make these new peptide planar optical materials attractive for application in emerging technology of lab-on-biochips, combining biomedical photonic and electronic circuits toward medical diagnosis, light-activated therapy, and health monitoring. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Antimicrobial Peptides from Plants

    Directory of Open Access Journals (Sweden)

    James P. Tam

    2015-11-01

    Full Text Available Plant antimicrobial peptides (AMPs have evolved differently from AMPs from other life forms. They are generally rich in cysteine residues which form multiple disulfides. In turn, the disulfides cross-braced plant AMPs as cystine-rich peptides to confer them with extraordinary high chemical, thermal and proteolytic stability. The cystine-rich or commonly known as cysteine-rich peptides (CRPs of plant AMPs are classified into families based on their sequence similarity, cysteine motifs that determine their distinctive disulfide bond patterns and tertiary structure fold. Cystine-rich plant AMP families include thionins, defensins, hevein-like peptides, knottin-type peptides (linear and cyclic, lipid transfer proteins, α-hairpinin and snakins family. In addition, there are AMPs which are rich in other amino acids. The ability of plant AMPs to organize into specific families with conserved structural folds that enable sequence variation of non-Cys residues encased in the same scaffold within a particular family to play multiple functions. Furthermore, the ability of plant AMPs to tolerate hypervariable sequences using a conserved scaffold provides diversity to recognize different targets by varying the sequence of the non-cysteine residues. These properties bode well for developing plant AMPs as potential therapeutics and for protection of crops through transgenic methods. This review provides an overview of the major families of plant AMPs, including their structures, functions, and putative mechanisms.

  13. Acylation of Therapeutic Peptides

    DEFF Research Database (Denmark)

    Trier, Sofie; Henriksen, Jonas Rosager; Jensen, Simon Bjerregaard

    ) , which promotes intestinal growth and is used to treat bowel disorders such as inflammatory bowel diseases and short bowel syndrome, and the 32 amino acid salmon calcitonin (sCT), which lowers blood calcium and is employed in the treatment of post-menopausal osteoporosis and hypercalcemia. The two...... peptides are similar in size and structure, but oppositely charged at physiological pH. Both peptides were acylated with linear acyl chains of systematically increasing length, where sCT was furthermore acylated at two different positions on the peptide backbone. For GLP-2, we found that increasing acyl...... remained optimal overall. The results indicate that rational acylation of GLP-2 can increase its in vitro intestinal absorption, alone or in combination with permeation enhancers, and are consistent with the initial project hypothesis. For sCT, an unpredicted effect of acylation largely superseded...

  14. Therapeutic HIV Peptide Vaccine

    DEFF Research Database (Denmark)

    Fomsgaard, Anders

    2015-01-01

    Therapeutic vaccines aim to control chronic HIV infection and eliminate the need for lifelong antiretroviral therapy (ART). Therapeutic HIV vaccine is being pursued as part of a functional cure for HIV/AIDS. We have outlined a basic protocol for inducing new T cell immunity during chronic HIV-1...... infection directed to subdominant conserved HIV-1 epitopes restricted to frequent HLA supertypes. The rationale for selecting HIV peptides and adjuvants are provided. Peptide subunit vaccines are regarded as safe due to the simplicity, quality, purity, and low toxicity. The caveat is reduced immunogenicity...

  15. Descriptors for antimicrobial peptides

    DEFF Research Database (Denmark)

    Jenssen, Håvard

    2011-01-01

    of these are currently being used in quantitative structure--activity relationship (QSAR) studies for AMP optimization. Additionally, some key commercial computational tools are discussed, and both successful and less successful studies are referenced, illustrating some of the challenges facing AMP scientists. Through...... examples of different peptide QSAR studies, this review highlights some of the missing links and illuminates some of the questions that would be interesting to challenge in a more systematic fashion. Expert opinion: Computer-aided peptide QSAR using molecular descriptors may provide the necessary edge...

  16. Advanced glycation endproducts alter functions and promote apoptosis in endothelial progenitor cells through receptor for advanced glycation endproducts mediate overpression of cell oxidant stress.

    Science.gov (United States)

    Chen, Jianfei; Song, Minbao; Yu, Shiyong; Gao, Pan; Yu, Yang; Wang, Hong; Huang, Lan

    2010-02-01

    Endothelial progenitor cells (EPCs) play an important role in preventing atherosclerosis. The factors that regulate the function of EPCs are not completely clear. Increased formation of advanced glycation endproducts (AGEs) is generally regarded as one of the main mechanisms responsible for vascular damage in patients with diabetes and atherosclerosis. AGEs lead to the generation of reactive oxygen species (ROS) and part of the regenerative capacity of EPCs seems to be due to their low baseline ROS levels and reduced sensitivity to ROS-induced cell apoptosis. Therefore, we tested the hypothesis that AGEs can alter functions and promote apoptosis in EPCs through overpress cell oxidant stress. EPCs, isolated from bone marrow, were cultured in the absence or presence of AGEs (50, 100, and 200 microg/ml). A modified Boyden's chamber was used to assess the migration of EPCs and the number of recultured EPCs was counted to measure the adhesiveness function. MTT assay was used to determine the proliferation function. ROS were analyzed using the ROS assay kit. A spectrophotometer was used to assess superoxide dismutase (SOD) and glutathione peroxidase (GSH-PX) activity, and PCR was used to test mRNA expression of SOD and GSH-PX. SiRNA was used to block receptor for advanced glycation endproducts (RAGEs) expression. Apoptosis was evaluated by Annexin V immunostaining and TUNEL staining. Co-culturing with AGEs increases ROS production, decreases anti-oxidant defenses, overpresses oxidant stress, inhibits the proliferation, migration, and adhesion of EPCs, and induces EPCs apoptosis. In addition, these effects were attenuated during block RAGE protein expression by siRNA. AGEs may serve to impair EPCs functions through RAGE-mediate oxidant stress, and promote EPCs sensitivity toward oxidative-stress-mediated apoptosis, which indicates a new pathophysiological mechanism of disturbed vascular adaptation in atherosclerosis and suggests that lower levels of AGEs might improve the

  17. Association of peripheral neuropathy with circulating advanced glycation end products, soluble receptor for advanced glycation end products and other risk factors in patients with type 2 diabetes.

    Science.gov (United States)

    Aubert, C E; Michel, P-L; Gillery, P; Jaisson, S; Fonfrede, M; Morel, F; Hartemann, A; Bourron, O

    2014-11-01

    The pathogenesis of diabetic peripheral neuropathy remains uncertain and nonenzymatic glycoxidation is one of the contributing mechanisms. The aim of this study was to assess the respective relationship of diabetic peripheral neuropathy with glycoxidation, compared with other identified risk factors, in patients with type 2 diabetes. We included 198 patients with type 2 diabetes and high risk for vascular complications. Circulating concentrations of three advanced glycation end products (carboxymethyllysine, methyl-glyoxal-hydroimidazolone-1, pentosidine) and of their soluble receptor (sRAGE) were measured. Peripheral neuropathy was assessed by the neuropathy disability score and by the monofilament test and defined as either an abnormal monofilament test and/or a neuropathy disability score ≥6. Multivariate regression analyses were performed adjusting for potential confounding factors for neuropathy: age, gender, diabetes duration, current smoking, systolic blood pressure, waist circumference, height, peripheral arterial occlusive disease, glycated haemoglobin, estimated glomerular filtration rate and lipid profile. Prevalence of peripheral neuropathy was 20.7%. sRAGE and carboxymethyllysine were independently and positively associated with the presence of peripheral neuropathy. No significant association was found between peripheral neuropathy and methyl-glyoxal-hydroimidazolone-1 or pentosidine. Waist circumference, height and peripheral arterial occlusive disease were independently associated with peripheral neuropathy. Carboxymethyllysine and sRAGE were independently associated with peripheral neuropathy in patients with type 2 diabetes. Although the conclusions are limited by the absence of a healthy control population, this study confirms the relationship between advanced glycoxidation and diabetic peripheral neuropathy, independently of other risk factors. Copyright © 2014 John Wiley & Sons, Ltd.

  18. The advanced glycation end-product Nϵ -carboxymethyllysine promotes progression of pancreatic cancer: implications for diabetes-associated risk and its prevention.

    Science.gov (United States)

    Menini, Stefano; Iacobini, Carla; de Latouliere, Luisa; Manni, Isabella; Ionta, Vittoria; Blasetti Fantauzzi, Claudia; Pesce, Carlo; Cappello, Paola; Novelli, Francesco; Piaggio, Giulia; Pugliese, Giuseppe

    2018-03-13

    Diabetes is an established risk factor for pancreatic cancer (PaC), together with obesity, a Western diet, and tobacco smoking. The common mechanistic link might be the accumulation of advanced glycation end-products (AGEs), which characterizes all of the above disease conditions and unhealthy habits. Surprisingly, however, the role of AGEs in PaC has not been examined yet, despite the evidence of a tumour-promoting role of receptor for advanced glycation end-products (RAGE), the receptor for AGEs. Here, we tested the hypothesis that AGEs promote PaC through RAGE activation. To this end, we investigated the effects of the AGE N ϵ -carboxymethyllysine (CML) in human pancreatic ductal adenocarcinoma (PDA) cell lines and in a mouse model of Kras-driven PaC interbred with a bioluminescent model of proliferation. Tumour growth was monitored in vivo by bioluminescence imaging and confirmed by histology. CML promoted PDA cell growth and RAGE expression, in a concentration-dependent and time-dependent manner, and activated downstream tumourigenic signalling pathways. These effects were counteracted by RAGE antagonist peptide (RAP). Exogenous AGE administration to PaC-prone mice induced RAGE upregulation in pancreatic intraepithelial neoplasias (PanINs) and markedly accelerated progression to invasive PaC. At 11 weeks of age (6 weeks of CML treatment), PaC was observed in eight of 11 (72.7%) CML-treated versus one of 11 (9.1%) vehicle-treated [control (Ctr)] mice. RAP delayed PanIN development in Ctr mice but failed to prevent PaC promotion in CML-treated mice, probably because of competition with soluble RAGE for binding to AGEs and/or compensatory upregulation of the RAGE homologue CD166/ activated leukocyte cell adhesion molecule, which also favoured tumour spread. These findings indicate that AGEs modulate the development and progression of PaC through receptor-mediated mechanisms, and might be responsible for the additional risk conferred by diabetes and other

  19. Antimicrobial Peptides: An Introduction.

    Science.gov (United States)

    Haney, Evan F; Mansour, Sarah C; Hancock, Robert E W

    2017-01-01

    The "golden era" of antibiotic discovery has long passed, but the need for new antibiotics has never been greater due to the emerging threat of antibiotic resistance. This urgency to develop new antibiotics has motivated researchers to find new methods to combat pathogenic microorganisms resulting in a surge of research focused around antimicrobial peptides (AMPs; also termed host defense peptides) and their potential as therapeutics. During the past few decades, more than 2000 AMPs have been identified from a diverse range of organisms (animals, fungi, plants, and bacteria). While these AMPs share a number of common features and a limited number of structural motifs; their sequences, activities, and targets differ considerably. In addition to their antimicrobial effects, AMPs can also exhibit immunomodulatory, anti-biofilm, and anticancer activities. These diverse functions have spurred tremendous interest in research aimed at understanding the activity of AMPs, and various protocols have been described to assess different aspects of AMP function including screening and evaluating the activities of natural and synthetic AMPs, measuring interactions with membranes, optimizing peptide function, and scaling up peptide production. Here, we provide a general overview of AMPs and introduce some of the methodologies that have been used to advance AMP research.

  20. [Therapeutically active dressings--biomaterials in a study of collagen glycation].

    Science.gov (United States)

    Pielesz, Anna; Paluch, Jadwiga

    2012-01-01

    Active dressings (biomaterials, hydrogels) are cross-linked three-dimensional macromolecular networks. One of the most important properties of active dressings, is their ability for controlled uptake, release and retention of molecules. The formation of advanced glycation end products AGEs progressively increases with normal aging. However, AGE products are formed at accelerated rates in age and stress-related diseases (burns, in wound healing) and also in vitro. The aim will be also to develop a series of gels showing ability of controlled uptake, release and retention of molecules. The hydrogels can be used as biologically and therapeutically (antibacterial and anticancer) active biomaterials. The following materials and reagents were used in the examination: dried plants: Equisetum arvense L., Pulmonaria officinalis L., Agropyron repens. Non-defatted films were extracted from the dried plants. The suspension was stirred and extracted. Temperature was controlled using a water bath. The filtrate was vacuum condensed. The gelling precipitate was poured onto Petri plates and dried. The swelling ratio and the percent loading were calculated. The released amount of CaCl2 at different time intervals was determined by measuring the conductivity. The extent of glycation in collagen was measured. Novel types of swelling hydrogels have been prepared from dried plants and alginic acid. The active dressings showed swelling in aqueous medium, swelling characteristics were dependent on the chemical composition of hydrogel. The hydrogels were also loaded with CaCl2 and their potential for release was judged by measuring conductivity. The activity of hydrogels--active dressings on collagen incubated with glucose showed an decrease in glycation. So, hydrogels--active dressings, a known antiglycating agent which have therapeutic role in wound healing.

  1. Non-Enzymatic biopolymerization reactions supported by heterogeneous media

    DEFF Research Database (Denmark)

    Monnard, Pierre-Alain

    2011-01-01

    Heterogeneous media, such as micro-structured aqueous environments, could offer an alternative approach to the synthesis of biopolymers with novel functions. Structured media are here defined as specialized, self-assembled structures that are formed, e.g, by amphiphiles, such as liposomes, emulsion...... compartments and lipid-bilayer lattices. Another kind of media is represented by co-existing, self-assembled phases in the reaction medium, e.g., in water-ice matrices. These media have the capacity to assemble chemical molecules or complex catalytic assemblies into unique configurations that are unstable...

  2. Plasma Ascorbic Acid and Non-Enzymatic Antioxidants Level in ...

    African Journals Online (AJOL)

    Free radicals have been implicated in the pathology of several diseases including cataract. Ascorbic acid functions as the major chain breaking antioxidant vitamin in the aqueous phase. Bilirubin, albumin and uric acid are regarded as natural antioxidants. There are conflicting reports on plasma concentrations of these ...

  3. Non-Enzymatic Oligomerization of 3 ', 5 ' Cyclic AMP

    Czech Academy of Sciences Publication Activity Database

    Costanzo, G.; Pino, S.; Timperio, A.M.; Šponer, Judit E.; Sponer, Jiri; Nováková, Olga; Šedo, O.; Zdráhal, Z.; Di Mauro, E.

    2016-01-01

    Roč. 11, č. 11 (2016), č. článku e0165723. E-ISSN 1932-6203 R&D Projects: GA ČR(CZ) GA14-12010S; GA ČR GBP206/12/G151 Institutional support: RVO:68081707 Keywords : template-directed synthesis * nucleoside phosphorylation * montmorillonite catalysis * molecular-structure Subject RIV: BO - Biophysics Impact factor: 2.806, year: 2016

  4. Non-enzymatic Polymerization of Nucleic Acids from Monomers

    DEFF Research Database (Denmark)

    Dörr, Mark; Löffler, Philipp M. G.; Monnard, Pierre-Alain

    2012-01-01

    synthesis of long nucleic acid polymers or to sequence-specifically amplify nucleic acid polymers, respectively. Starting from molecular requirements, details of the polymerization mechanisms and strategies are first presented and then compared. Finally, we discuss the relevance of these strategies...

  5. Effects of photobleaching on selected advanced glycation end products in the human lens

    DEFF Research Database (Denmark)

    Holm, Thomas; Raghavan, Cibin T; Nahomi, Rooban

    2015-01-01

    at examining the optical and biochemical effects of the proposed treatment.MethodsHuman donor lenses were photobleaced using a 445 nm cw laser. Lens optical quality was assessed before and after photobleaching by light transmission and scattering. The concentration of the advanced glycation end products (AGEs...... of the photobleaching treatment on lens optical parameters but we could not associate the optical findings to a change in the concentration of the AGEs we measured. This finding suggests that other AGEs were responsible for the observed photobleaching of the human lens after laser treatment. The biochemical nature...

  6. Complexity of Advanced Glycation End Products in Foods: Where Are We Now?

    Science.gov (United States)

    Zhu, Yingdong; Snooks, Hunter; Sang, Shengmin

    2018-02-14

    Recent clinical trials indicate that consumption of dietary advanced glycation end products (AGEs) may promote the development of major chronic diseases. However, the outcomes of human studies have proven inconclusive as a result of estimates of the total AGE intake being taken with a single AGE in most of the studies. In this perspective, we summarized the major types of AGEs derived from proteins, nucleic acids, and phospholipids during food processing and suggested a panel of AGEs as markers to better measure the intake of total dietary AGEs in human studies.

  7. The clinical relevance of assessing advanced glycation endproducts accumulation in diabetes

    Directory of Open Access Journals (Sweden)

    Hillebrands Jan-Luuk

    2008-10-01

    Full Text Available Abstract Cardiovascular disease is the major cause of morbidity and mortality associated with diabetes. There is increasing evidence that advanced glycation endproducts (AGEs play a pivotal role in atherosclerosis, in particular in diabetes. AGE accumulation is a measure of cumulative metabolic and oxidative stress, and may so represent the "metabolic memory". Furthermore, increased AGE accumulation is closely related to the development of cardiovascular complications in diabetes. This review article will focus on the clinical relevance of measuring AGE accumulation in diabetic patients by focusing on AGE formation, AGEs as predictors of long-term complications, and interventions against AGEs.

  8. Association of glycated hemoglobin with carotid intimal medial thickness in Asian Indians with normal glucose tolerance.

    Science.gov (United States)

    Venkataraman, Vijayachandrika; Amutha, Anandakumar; Anbalagan, Viknesh Prabu; Deepa, Mohan; Anjana, Ranjit Mohan; Unnikrishnan, Ranjit; Vamsi, Mamilla; Mohan, Viswananthan

    2012-01-01

    To assess the association of glycated hemoglobin (HbA1c) levels with carotid intimal medial thickness (CIMT) in Asian Indians with normal glucose tolerance (NGT). Subjects with NGT were recruited from the Chennai Urban Rural Epidemiology Study carried out on a representative population of Chennai, South India. All subjects had fasting plasma glucose right common carotid artery using high-resolution B-mode ultrasonography. The study group included 1383 NGT subjects, of whom 760 (54.9%) were women. The mean CIMT value in the 1st quartile of HbA1c (5.8) (prights reserved.

  9. Synthesis of 2,4,6-trichlorophenyl hydrazones and their inhibitory potential against glycation of protein.

    Science.gov (United States)

    Khan, Khalid Mohammed; Shah, Zarbad; Ahmad, Viqar Uddin; Khan, Momin; Taha, Muhammad; Rahim, Fazal; Jahan, Humera; Perveen, Shahnaz; Choudhary, M Iqbal

    2011-11-01

    2,4,6-Trichlorophenyl hydrazones 1-35 were synthesized and their in vitro antiglycation potential was evaluated. Compounds 14 (IC50 = 27.2 ± 0.00 μM), and 18 (IC50 = 55.7 ± 0.00 μM) showed an excellent activity against glycation of protein, better than the standard (rutin, IC50 = 70 ± 0.50 μM). This study thus identified a novel series of antiglycation agents. A structure-activity relationship has been studied, and all the compounds were characterized by spectroscopic techniques.

  10. Characterizing harmful advanced glycation end-products (AGEs) and ribosylated aggregates of yellow mustard seed phytocystatin: Effects of different monosaccharides

    Science.gov (United States)

    Ahmed, Azaj; Shamsi, Anas; Bano, Bilqees

    2017-01-01

    Advanced glycation end products (AGEs) are at the core of variety of diseases ranging from diabetes to renal failure and hence gaining wide consideration. This study was aimed at characterizing the AGEs of phytocystatin isolated from mustard seeds (YMP) when incubated with different monosaccharides (glucose, ribose and mannose) using fluorescence, ultraviolet, circular dichroism (CD) spectroscopy and microscopy. Ribose was found to be the most potent glycating agent as evident by AGEs specific fluorescence and absorbance. YMP exists as a molten globule like structure on day 24 as depicted by high ANS fluorescence and altered intrinsic fluorescence. Glycated YMP as AGEs and ribose induced aggregates were observed at day 28 and 32 respectively. In our study we have also examined the anti-aggregative potential of polyphenol, resveratrol. Our results suggested the anti-aggregative behavior of resveratrol as it prevented the in vitro aggregation of YMP, although further studies are required to decode the mechanism by which resveratrol prevents the aggregation.

  11. Utility of glycated albumin for the diagnosis of diabetes mellitus in a Japanese population study: results from the Kyushu and Okinawa Populaiton Study (KOPS)

    Science.gov (United States)

    Glycated albumin is a measure of the mean plasma glucose concentration over approximately 2-3 weeks. We determined reference values for glycated albumin, and assessed its utility for the diagnosis of type 2 diabetes mellitus in the general population. We studied 1,575 men and women (mean age, 49.9 y...

  12. [Distiller Yeasts Producing Antibacterial Peptides].

    Science.gov (United States)

    Klyachko, E V; Morozkina, E V; Zaitchik, B Ts; Benevolensky, S V

    2015-01-01

    A new method of controlling lactic acid bacteria contamination was developed with the use of recombinant Saccharomyces cerevisiae strains producing antibacterial peptides. Genes encoding the antibacterial peptides pediocin and plantaricin with codons preferable for S. cerevisiae were synthesized, and a system was constructed for their secretory expression. Recombinant S. cerevisiae strains producing antibacterial peptides effectively inhibit the growth of Lactobacillus sakei, Pediacoccus pentasaceus, Pediacoccus acidilactici, etc. The application of distiller yeasts producing antibacterial peptides enhances the ethanol yield in cases of bacterial contamination. Recombinant yeasts producing the antibacterial peptides pediocin and plantaricin can successfully substitute the available industrial yeast strains upon ethanol production.

  13. Variables associated with persistence of C-Peptide secretion among patients with Type 1 diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Ibrahim Abbood Zaboon

    2017-01-01

    Full Text Available Background: C-peptide is a reliable method for estimating the beta-cell residual function. The objective of this study to assess the variables associated with persistence of C-peptide secretion among patients with Type 1 diabetes mellitus (T1DM. Patients and Methods: This was a cross-sectional study conducted from October 2015 to September 2016. This study enrolled patients with T1DM with at least 1 year or more duration. Random C-peptide with concomitant plasma glucose at least 144 mg/dl (8 mmol/l was measured and at this cutoff considered as a stimulated value. Variables that were assessed were age at the time of enrollment, age at the diagnosis of diabetes, gender, family history of diabetes, duration of diabetes, frequency of insulin per day, insulin dose (units/kg/day, type of insulin, devices delivery, body mass index (BMI at enrollment, blood pressure, glucose (plasma, lipid profile, glycated hemoglobin (HbA1c, thyrotropin (TSH, and antibodies to glutamic acid decarboxylase (GAD65, thyroid peroxidase antibodies (anti-TPO, and tissue transglutaminase antibodies-IgA (anti-TTG-IgA. Results: A total 324 patients were included in the study. A higher level of C-peptide has been seen if the disease acquired at the age of 18 years and older with detectable C-peptide observed among 17.7% of those diagnosed at age <18 years versus 31.7% for those aged 18 years or above. The more the duration of diabetes, the more is the loss of C-peptide. On logistic regression analysis, only duration of diabetes <6 years, and insulin dose <1 U/kg/day were statistically significantly associated with the detectable level of C-peptide in this cohort of T1DM. Conclusion: Diagnosis of TIDM at a late age, positive family history of diabetes, those requiring <1 U of insulin per kg per day, and higher fasting glucose was associated with higher and more detectable C-peptide. On multivariable analysis, the only duration of diabetes <6 years and insulin dose <1 U of insulin

  14. Ligand-regulated peptide aptamers.

    Science.gov (United States)

    Miller, Russell A

    2009-01-01

    The peptide aptamer approach employs high-throughput selection to identify members of a randomized peptide library displayed from a scaffold protein by virtue of their interaction with a target molecule. Extending this approach, we have developed a peptide aptamer scaffold protein that can impart small-molecule control over the aptamer-target interaction. This ligand-regulated peptide (LiRP) scaffold, consisting of the protein domains FKBP12, FRB, and GST, binds to the cell-permeable small-molecule rapamycin and the binding of this molecule can prevent the interaction of the randomizable linker region connecting FKBP12 with FRB. Here we present a detailed protocol for the creation of a peptide aptamer plasmid library, selection of peptide aptamers using the LiRP scaffold in a yeast two-hybrid system, and the screening of those peptide aptamers for a ligand-regulated interaction.

  15. Biosynthesis of cardiac natriuretic peptides

    DEFF Research Database (Denmark)

    Goetze, Jens Peter

    2010-01-01

    Cardiac-derived peptide hormones were identified more than 25 years ago. An astonishing amount of clinical studies have established cardiac natriuretic peptides and their molecular precursors as useful markers of heart disease. In contrast to the clinical applications, the biogenesis of cardiac...... peptides has only been elucidated during the last decade. The cellular synthesis including amino acid modifications and proteolytic cleavages has proven considerably more complex than initially perceived. Consequently, the elimination phase of the peptide products in circulation is not yet well....... An inefficient post-translational prohormone maturation will also affect the biology of the cardiac natriuretic peptide system. This review aims at summarizing the myocardial synthesis of natriuretic peptides focusing on B-type natriuretic peptide, where new data has disclosed cardiac myocytes as highly...

  16. Radiolabelled peptides for oncological diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Laverman, Peter; Boerman, Otto C.; Oyen, Wim J.G. [Radboud University Nijmegen Medical Centre, Department of Nuclear Medicine, Nijmegen (Netherlands); Sosabowski, Jane K. [Queen Mary University of London, Centre for Molecular Oncology, Barts Cancer Institute, London (United Kingdom)

    2012-02-15

    Radiolabelled receptor-binding peptides targeting receptors (over)expressed on tumour cells are widely under investigation for tumour diagnosis and therapy. The concept of using radiolabelled receptor-binding peptides to target receptor-expressing tissues in vivo has stimulated a large body of research in nuclear medicine. The {sup 111}In-labelled somatostatin analogue octreotide (OctreoScan trademark) is the most successful radiopeptide for tumour imaging, and was the first to be approved for diagnostic use. Based on the success of these studies, other receptor-targeting peptides such as cholecystokinin/gastrin analogues, glucagon-like peptide-1, bombesin (BN), chemokine receptor CXCR4 targeting peptides, and RGD peptides are currently under development or undergoing clinical trials. In this review, we discuss some of these peptides and their analogues, with regard to their potential for radionuclide imaging of tumours. (orig.)

  17. Antioxidative capacity and binding affinity of the complex of green tea catechin and beta-lactoglobulin glycated by the Maillard reaction.

    Science.gov (United States)

    Perusko, Marija; Al-Hanish, Ayah; Mihailovic, Jelena; Minic, Simeon; Trifunovic, Sara; Prodic, Ivana; Cirkovic Velickovic, Tanja

    2017-10-01

    Major green tea catechin, epigallocatechin-3-gallate (EGCG), binds non-covalently to numerous dietary proteins, including beta-lactoglobulin of cow's milk. The effects of glycation of proteins via Maillard reaction on the binding capacity for polyphenols and the antiradical properties of the formed complexes have not been studied previously. Binding constant of BLG glycated by milk sugar lactose to EGCG was measured by the method of fluorophore quenching. Binding of EGCG was confirmed by CD and FTIR. The antioxidative properties of the complexes were examined by measuring ABTS radical scavenging capacity, superoxide anion scavenging capacity and total reducing power assay. Glycation of BLG does not significantly influence the binding constant of EGCG for the protein. Conformational changes were observed for both native and glycated BLG upon complexation with EGCG. Masking effect of polyphenol complexation on the antioxidative potential of the protein was of the similar degree for both glycated BLG and native BLG. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. An advanced glycation endproduct (AGE)-rich diet promotes accumulation of AGEs in Achilles tendon

    DEFF Research Database (Denmark)

    Skovgaard, Dorthe; Svensson, Rene B; Scheijen, Jean

    2017-01-01

    Advanced Glycation Endproducts (AGEs) accumulate in long-lived tissue proteins like collagen in bone and tendon causing modification of the biomechanical properties. This has been hypothesized to raise the risk of orthopedic injury such as bone fractures and tendon ruptures. We evaluated the rela......Advanced Glycation Endproducts (AGEs) accumulate in long-lived tissue proteins like collagen in bone and tendon causing modification of the biomechanical properties. This has been hypothesized to raise the risk of orthopedic injury such as bone fractures and tendon ruptures. We evaluated...... the relationship between AGE content in the diet and accumulation of AGEs in weight-bearing animal Achilles tendon. Two groups of mice (C57BL/6Ntac) were fed with either high-fat diet low in AGEs high-fat diet (HFD) (n = 14) or normal diet high in AGEs (ND) (n = 11). AGE content in ND was six to 50-fold higher...... than HFD The mice were sacrificed at week 40 and Achilles and tail tendons were carefully excised to compare weight and nonweight-bearing tendons. The amount of the AGEs carboxymethyllysine (CML), methylglyoxal-derived hydroimidazolone (MG-H1) and carboxyethyllysine (CEL) in Achilles and tail tendon...

  19. Soft-tissue wound healing by anti-advanced glycation end-products agents.

    Science.gov (United States)

    Chang, P-C; Tsai, S-C; Jheng, Y-H; Lin, Y-F; Chen, C-C

    2014-04-01

    The blocking of advanced glycation end-products (AGE) has been shown to reduce diabetic complications and control periodontitis. This study investigated the pattern of palatal wound-healing after graft harvesting under the administration of aminoguanidine (AG), an AGE inhibitor, or N-phenacylthiazolium bromide (PTB), a glycated cross-link breaker. Full-thickness palatal excisional wounds (5.0 x 1.5 mm(2)) were created in 72 Sprague-Dawley rats. The rats received daily intraperitoneal injections of normal saline (control), AG, or PTB and were euthanized after 4 to 28 days. The wound-healing pattern was assessed by histology, histochemistry for collagen matrix deposition, immunohistochemistry for AGE and the AGE receptor (RAGE), and the expression of RAGE, as well as inflammation- and recovery-associated genes. In the first 14 days following AG or PTB treatments, wound closure, re-epithelialization, and collagen matrix deposition were accelerated, whereas AGE deposition, RAGE-positive cells, and inflammation were reduced. RAGE and tumor necrosis factor-alpha were significantly down-regulated at day 7, and heme oxygenase-1 was persistently down-regulated until day 14. The levels of vascular endothelial growth factor, periostin, type I collagen, and fibronectin were all increased at day 14. In conclusion, anti-AGE agents appeared to facilitate palatal wound-healing by reducing AGE-associated inflammation and promoting the recovery process.

  20. Effect of taurine on advanced glycation end products-induced hypertrophy in renal tubular epithelial cells

    International Nuclear Information System (INIS)

    Huang, J.-S.; Chuang, L.-Y.; Guh, J.-Y.; Yang, Y.-L.; Hsu, M.-S.

    2008-01-01

    Mounting evidence indicates that advanced glycation end products (AGE) play a major role in the development of diabetic nephropathy (DN). Taurine is a well documented antioxidant agent. To explore whether taurine was linked to altered AGE-mediated renal tubulointerstitial fibrosis in DN, we examined the molecular mechanisms of taurine responsible for inhibition of AGE-induced hypertrophy in renal tubular epithelial cells. We found that AGE (but not non-glycated BSA) caused inhibition of cellular mitogenesis rather than cell death by either necrosis or apoptosis. There were no changes in caspase 3 activity, bcl-2 protein expression, and mitochondrial cytochrome c release in BSA, AGE, or the antioxidant taurine treatments in these cells. AGE-induced the Raf-1/extracellular signal-regulated kinase (ERK) activation was markedly blocked by taurine. Furthermore, taurine, the Raf-1 kinase inhibitor GW5074, and the ERK kinase inhibitor PD98059 may have the ability to induce cellular proliferation and cell cycle progression from AGE-treated cells. The ability of taurine, GW5074, or PD98059 to inhibit AGE-induced hypertrophy was verified by the observation that it significantly decreased cell size, cellular hypertrophy index, and protein levels of RAGE, p27 Kip1 , collagen IV, and fibronectin. The results obtained in this study suggest that taurine may serve as the potential anti-fibrotic activity in DN through mechanism dependent of its Raf-1/ERK inactivation in AGE-induced hypertrophy in renal tubular epithelial cells

  1. Definition of the upper reference limit of glycated albumin in blood donors from Italy.

    Science.gov (United States)

    Bellia, Chiara; Zaninotto, Martina; Cosma, Chiara; Agnello, Luisa; Lo Sasso, Bruna; Bivona, Giulia; Plebani, Mario; Ciaccio, Marcello

    2017-11-27

    Glycated Albumin (GA) has been proposed as a short-term indicator of glycemic homeostasis. The aim of this study is to describe the distribution of GA in a large sample of blood donors from Italy to evaluate whether demographic features, namely age and sex, could influence GA levels and define specific reference limits. The study included 1334 Italian blood donors. GA was measured using an enzymatic method (quantILab Glycated Albumin, IL Werfen, Germany). The upper reference limit (URL) was calculated using the non-parametric percentile method. A modest, although significant, increase of GA was observed in relation to age (psex (12% [11.3-12.8] in males; 12.2% [11.4-13.1] in females; p=0.01). After excluding individuals with fasting plasma glucose ≥7 mmol/L, the calculated GA URL was 14.5% (95% CI: 14.3-14.7). Subjects with GA>14.5% presented a mean age of 48.4±12.2 years, 66.7% were males and the mean glucose was 6.88±2.5 mmol/L. GA in Caucasians shows a similar increasing trend at older ages documented in other ethnicities. The definition of the URL in this population could be useful for both clinical studies, which will clarify the role of GA for diagnosing and monitoring diabetes, and will encourage the introduction of GA in clinical practice.

  2. Glycation-assisted synthesized gold nanoparticles inhibit growth of bone cancer cells.

    Science.gov (United States)

    Rahim, Moniba; Iram, Sana; Khan, Mohd Sajid; Khan, M Salman; Shukla, Ankur R; Srivastava, A K; Ahmad, Saheem

    2014-05-01

    This study presents a novel approach to synthesize glycogenic gold nanoparticles (glycogenic GNps) capped with glycated products (Schiff's base, Heyns products, fructosylamine etc.). These glycogenic GNps have been found to be active against human osteosarcoma cell line (Saos-2) with an IC50 of 0.187 mM, while the normal human embryonic lung cell line (L-132) remained unaffected up to 1mM concentration. The size of glycogenic GNps can also be controlled by varying the time of incubation of gold solution. Glycation reactions involving a combination of fructose and HSA (Human Serum Albumin) were found to be effective in the reduction of gold to glycogenic GNps whereas glucose in combination with HSA did not result in the reduction of gold. The progress of the reaction was followed using UV-visible spectroscopy and NBT (Nitroblue tetrazolium) assay. The glycogenic GNps were found to be spherical in shape with an average size of 24.3 nm, in a stable emulsion. These GNps were characterized using UV-visible spectroscopy, zeta potential analysis, transmission electron microscopy (TEM) and scanning electron microscopy (SEM). Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Antioxidant, Anti-Glycation and Anti-Inflammatory Activities of Phenolic Constituents from Cordia sinensis

    Directory of Open Access Journals (Sweden)

    Muhammad Nasir

    2011-12-01

    Full Text Available Nine compounds have been isolated from the ethyl acetate soluble fraction of C. sinensis, namely protocatechuic acid (1, trans-caffeic acid (2, methyl rosmarinate (3, rosmarinic acid (4, kaempferide-3-O-β-D-glucopyranoside (5, kaempferol-3-O-β-D-glucopyranoside (6, quercetin-3-O-β-D-glucopyranoside (7, kaempferide-3-O-α-L-rhamnopyranosyl (1→6-β-D-glucopyranoside (8 and kaempferol-3-O-α-L-rhamno-pyranosyl (1→6-β-D-glucopyranoside (9, all reported for the first time from this species. The structures of these compounds were deduced on the basis of spectroscopic studies, including 1D and 2D NMR techniques. Compounds 1–9 were investigated for biological activity and showed significant anti-inflammatory activity in the carrageen induced rat paw edema test. The antioxidant activities of isolated compounds 1–9 were evaluated by the DPPH radical scavenging test, and compounds 1, 2, 4 and 7–9 exhibited marked scavenging activity compared to the standard BHA. These compounds were further studied for their anti-glycation properties and some compounds showed significant anti-glycation inhibitory activity. The purity of compounds 2–5, 8 and 9 was confirmed by HPLC. The implications of these results for the chemotaxonomic studies of the genus Cordia have also been discussed.

  4. Antioxidant, anti-glycation and anti-inflammatory activities of phenolic constituents from Cordia sinensis.

    Science.gov (United States)

    Al-Musayeib, Nawal; Perveen, Shagufta; Fatima, Itrat; Nasir, Muhammad; Hussain, Ajaz

    2011-12-08

    Nine compounds have been isolated from the ethyl acetate soluble fraction of C. sinensis, namely protocatechuic acid (1), trans-caffeic acid (2), methyl rosmarinate (3), rosmarinic acid (4), kaempferide-3-O-β-D-glucopyranoside (5), kaempferol-3-O-β-D-glucopyranoside (6), quercetin-3-O-β-D-glucopyranoside (7), kaempferide-3-O-α-L-rhamnopyranosyl (1→6)-β-D-glucopyranoside (8) and kaempferol-3-O-α-L-rhamno-pyranosyl (1→6)-β-D-glucopyranoside (9), all reported for the first time from this species. The structures of these compounds were deduced on the basis of spectroscopic studies, including 1D and 2D NMR techniques. Compounds 1-9 were investigated for biological activity and showed significant anti-inflammatory activity in the carrageen induced rat paw edema test. The antioxidant activities of isolated compounds 1-9 were evaluated by the DPPH radical scavenging test, and compounds 1, 2, 4 and 7-9 exhibited marked scavenging activity compared to the standard BHA. These compounds were further studied for their anti-glycation properties and some compounds showed significant anti-glycation inhibitory activity. The purity of compounds 2-5, 8 and 9 was confirmed by HPLC. The implications of these results for the chemotaxonomic studies of the genus Cordia have also been discussed.

  5. Antimicrobial Peptides (AMPs

    Directory of Open Access Journals (Sweden)

    Mehrzad Sadredinamin

    2016-04-01

    Full Text Available Antimicrobial peptides (AMPs are extensive group of molecules that produced by variety tissues of invertebrate, plants, and animal species which play an important role in their immunity response. AMPs have different classifications such as; biosynthetic machines, biological sources, biological functions, molecular properties, covalent bonding patterns, three dimensional structures, and molecular targets.These molecules have multidimensional properties including antimicrobial activity, antiviral activity, antifungal activity, anti-parasite activity, biofilm control, antitumor activity, mitogens activity and linking innate to adaptive immunity that making them promising agents for therapeutic drugs. In spite of this advantage of AMPs, their clinical developments have some limitation for commercial development. But some of AMPs are under clinical trials for the therapeutic purpose such as diabetic foot ulcers, different bacterial infections and tissue damage. In this review, we emphasized on the source, structure, multidimensional properties, limitation and therapeutic applications of various antimicrobial peptides.

  6. Association of grade of non-alcoholic fatty liver disease and glycated albumin to glycated hemoglobin ratio in patients with type 2 diabetes mellitus.

    Science.gov (United States)

    Jung, Chan-Hee; Lee, Bora; Choi, Dug-Hyun; Jung, Sang-Hee; Kim, Bo-Yeon; Kim, Chul-Hee; Kang, Sung-Koo; Mok, Ji-Oh

    2017-03-01

    The aim of this study was to investigate the association between the glycated albumin (GA) to glycated hemoglobin (HbA1c) (GA/HbA1c) ratio and grade of non-alcoholic fatty liver disease (NAFLD) on ultrasonography (US) in patients with type 2 diabetes mellitus (T2DM). This retrospective, cross-sectional study was performed with data obtained from 186 T2DM patients. Participants were assessed for serum GA/HbA1c ratio and fatty liver using US. NAFLD was defined as ultrasonographically detected fatty liver and was graded as normal, mild, moderate, and severe fatty liver. A total of 98 subjects (53%) were diagnosed with NAFLD on US, of which 47 (48%) had moderate-to-severe grade of NAFLD. The mean GA level and GA/HbA1c ratio significantly decreased across increasing NAFLD stages (34% vs. 29% vs. 27% vs. 28%, p=0.023 for trend; 3.1vs. 2.9vs. 2.6vs. 2.7, p=0.001 for trend, respectively), whereas there was no significant difference in HbA1c level among groups (p=0.714 for trend). There was a significant decrease in prevalence of NAFLD across GA/HbA1c ratio tertiles (67% vs. 58% vs. 41%, p for trend=0.007). Multivariate logistic regression analysis showed that individuals with the lowest GA/HbA1c ratio had an odds ratio (OR) of 2.75 (95% CI=1.06-7.13) for having any grade of NAFLD and an OR of 4.48 [1.20-16.74] for moderate-to-severe grade NAFLD compared with the highest GA/HbA1c ratio even after adjustment for confounding factors (p=0.038, p=0.026, respectively). The present study showed that GA/HbA1c ratio was significantly inversely associated with the presence and severity of NAFLD on US. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. Generation of Soluble Advanced Glycation End Products Receptor (sRAGE)-Binding Ligands during Extensive Heat Treatment of Whey Protein/Lactose Mixtures Is Dependent on Glycation and Aggregation

    NARCIS (Netherlands)

    Liu, Fahui; Teodorowicz, Gosia; Wichers, Harry J.; Boekel, van Tiny; Hettinga, Kasper A.

    2016-01-01

    Heating of protein- and sugar-containing materials is considered the primary factor affecting the formation of advanced glycation end products (AGEs). This study aimed to investigate the influence of heating conditions, digestion, and aggregation on the binding capacity of AGEs to the soluble AGE

  8. Skin collagen glycation, glycoxidation, and crosslinking are lower in subjects with long-term intensive versus conventional therapy of type 1 diabetes - Relevance of glycated collagen products versus HbA(1c) as markers of diabetic complications

    NARCIS (Netherlands)

    Monnier, VM; Bautista, O; Kenny, D; Sell, DR; Fogarty, J; Dahms, W; Cleary, PA; Lachin, J; Genuth, S

    The relationships between long-term intensive control of glycemia and indicators of skin collagen glycation (furosine), glycoxidation (pentosidine and N-epsilon-[carboxymethyl]-lysine [CML]), and crosslinking (acid and pepsin solubility) were examined in 216 patients with type 1 diabetes from the

  9. Nephrin expression is reduced in human diabetic nephropathy: evidence for a distinct role for glycated albumin and angiotensin II.

    Science.gov (United States)

    Doublier, Sophie; Salvidio, Gennaro; Lupia, Enrico; Ruotsalainen, Vesa; Verzola, Daniela; Deferrari, Giacomo; Camussi, Giovanni

    2003-04-01

    We studied the distribution of nephrin in renal biopsies from 17 patients with diabetes and nephrotic syndrome (7 type 1 and 10 type 2 diabetes), 6 patients with diabetes and microalbuminuria (1 type 1 and 5 type 2 diabetes), and 10 normal subjects. Nephrin expression was semiquantitatively evaluated by measuring immunofluorescence intensity by digital image analysis. We found an extensive reduction of nephrin staining in both type 1 (67 +/- 9%; P < 0.001) and type 2 (65 +/- 10%; P < 0.001) diabetic patients with diabetes and nephrotic syndrome when compared with control subjects. The pattern of staining shifted from punctate/linear distribution to granular. In patients with microalbuminuria, the staining pattern of nephrin also showed granular distribution and reduction intensity of 69% in the patient with type 1 diabetes and of 62 +/- 4% (P < 0.001) in the patients with type 2 diabetes. In vitro studies on human cultured podocytes demonstrated that glycated albumin and angiotensin II reduced nephrin expression. Glycated albumin inhibited nephrin synthesis through the engagement of receptor for advanced glycation end products, whereas angiotensin II acted on cytoskeleton redistribution, inducing the shedding of nephrin. This study indicates that the alteration in nephrin expression is an early event in proteinuric patients with diabetes and suggests that glycated albumin and angiotensin II contribute to nephrin downregulation.

  10. Accumulation of Advanced Glycation End Products as a Molecular Mechanism for Aging as a Risk Factor in Osteoarthritis

    NARCIS (Netherlands)

    Groot, J. de; Verzijl, N.; Wenting-Wijk, M.J.G. van; Jacobs, K.M.G.; El, B. van; Roermund, P.M. van; Bank, R.A.; Bijlsma, J.W.J.; TeKoppele, J.M.; Lafeber, F.P.J.G.

    2004-01-01

    Objective. Osteoarthritis (OA) is one of the most prevalent and disabling chronic conditions affecting the elderly. Its etiology is largely unknown, but age is the most prominent risk factor. The current study was designed to test whether accumulation of advanced glycation end products (AGEs), which

  11. Skin autofluorescence as a measure of advanced glycation endproduct deposition : a novel risk marker in chronic kidney disease

    NARCIS (Netherlands)

    Smit, Andries J.; Gerrits, Esther G.

    2010-01-01

    Purpose of review Skin autofluorescence (SAF) is a new method to noninvasively assess accumulation of advanced glycation endproducts (AGEs) in a tissue with low turnover. Recent progress in the clinical application of SAF as a risk marker for diabetic nephropathy as well as cardiovascular disease in

  12. Testing isotopic labeling with [¹³C₆]glucose as a method of advanced glycation sites identification.

    Science.gov (United States)

    Kielmas, Martyna; Kijewska, Monika; Stefanowicz, Piotr; Szewczuk, Zbigniew

    2012-12-01

    The Maillard reaction occurring between reducing sugars and reactive amino groups of biomolecules leads to the formation of a heterogeneous mixture of compounds: early, intermediate, and advanced glycation end products (AGEs). These compounds could be markers of certain diseases and of the premature aging process. Detection of Amadori products can be performed by various methods, including MS/MS techniques and affinity chromatography on immobilized boronic acid. However, the diversity of the structures of AGEs makes detection of these compounds more difficult. The aim of this study was to test a new method of AGE identification based on isotope (13)C labeling. The model protein (hen egg lysozyme) was modified with an equimolar mixture of [(12)C(6)]glucose and [(13)C(6)]glucose and then subjected to reduction of the disulfide bridges followed by tryptic hydrolysis. The digest obtained was analyzed by LC-MS. The glycation products were identified on the basis of characteristic isotopic patterns resulting from the use of isotopically labeled glucose. This method allowed identification of 38 early Maillard reaction products and five different structures of the end glycation products. This isotopic labeling technique combined with LC-MS is a sensitive method for identification of advanced glycation end products even if their chemical structure is unknown. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Utilization of the linear mode of MALDI-TOF mass spectrometry in the study of glycation during the malting process

    Czech Academy of Sciences Publication Activity Database

    Laštovičková, Markéta; Mazanec, Karel; Smětalová, Dagmar; Bobálová, Janette

    2010-01-01

    Roč. 116, č. 3 (2010), s. 245-250 ISSN 0046-9750 R&D Projects: GA MŠk 1M0570 Institutional research plan: CEZ:AV0Z40310501 Keywords : barley * brewing * glycation Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 0.897, year: 2010

  14. Effect of Benfotiamine on Advanced Glycation Endproducts and Markers of Endothelial Dysfunction and Inflammation in Diabetic Nephropathy

    NARCIS (Netherlands)

    Alkhalaf, Alaa; Kleefstra, Nanne; Groenier, Klaas H.; Bilo, Henk J. G.; Gans, Reinold O. B.; Heeringa, Peter; Scheijen, Jean L.; Schalkwijk, Casper G.; Navis, Gerjan J.; Bakker, Stephan J. L.

    2012-01-01

    Background: Formation of advanced glycation endproducts (AGEs), endothelial dysfunction, and low-grade inflammation are intermediate pathways of hyperglycemia-induced vascular complications. We investigated the effect of benfotiamine on markers of these pathways in patients with type 2 diabetes and

  15. New Locus for Skin Intrinsic Fluorescence in Type 1 Diabetes Also Associated With Blood and Skin Glycated Proteins

    NARCIS (Netherlands)

    Roshandel, Delnaz; Klein, Ronald; Klein, Barbara E. K.; Wolffenbuttel, Bruce H. R.; van der Klauw, Melanie M.; van Vliet-Ostaptchouk, Jana V.; Atzmon, Gil; Ben-Avraham, Danny; Crandall, Jill P.; Barzilai, Nir; Bull, Shelley B.; Canty, Angelo J.; Hosseini, S. Mohsen; Hiraki, Linda T.; Maynard, John; Sell, David R.; Monnier, Vincent M.; Cleary, Patricia A.; Braffett, Barbara H.; Paterson, Andrew D.

    Skin fluorescence (SF) noninvasively measures advanced glycation end products (AGEs) in the skin and is a risk indicator for diabetes complications. N-acetyltransferase 2 (NAT2) is the only known locus influencing SF. We aimed to identify additional genetic loci influencing SF in type 1 diabetes

  16. The influence of body mass index on the accumulation of advanced glycation end products in hemodialysis patients

    NARCIS (Netherlands)

    Arsov, S.; Trajceska, L.; van Oeveren, W.; Smit, A. J.; Dzekova, P.; Stegmayr, B.; Sikole, A.; Rakhorst, G.; Graaff, R.

    BACKGROUND/OBJECTIVES: The level of skin autofluorescence (AF) at a given moment is an independent predictor of mortality in hemodialysis (HD) patients. Skin AF is a measure of the accumulation of advanced glycation end products (AGEs). The aim of the study was to estimate the influence of nutrition

  17. Biodistribution of the 18F-labelled advanced glycation end products Nε-carboxymethyllysine (CML) and Nε-carboxyethyllysine (CEL)

    International Nuclear Information System (INIS)

    Bergmann, R.; Helling, R.; Henle, T.; Heichert, C.; Scheunemann, M.; Maeding, P.; Wittrisch, H.; Johannsen, B.

    2002-01-01

    After synthesis of fluorine-18 labelled analogues [ 18 F]fluorobenzoylation at the α-amino group, biodistribution and elimination of individual advanced glycation end products, namely N ε -carboxymethyllysine and N ε -carboxyethyllysine, was studied in comparison to lysine in rats after intravenous injection using positron emission tomography. (orig.)

  18. Advanced glycation end products, measured in skin, vs. HbA1c in children with type 1 diabetes mellitus

    NARCIS (Netherlands)

    Banser, Alena; Naafs, Jolanda C.; Hoorweg-Nijman, Jantine J. G.; van de Garde, Ewoudt M. W.; van der Vorst, Marja M. J.

    2016-01-01

    Background and objectiveAdvanced glycation end products (AGEs) are considered major contributors to microvascular and macrovascular complications in adult patients with diabetes mellitus. AGEs can be measured non-invasively with skin autofluorescence (sAF). The primary aim was to determine sAF

  19. Bio-optic signatures for advanced glycation end products in the skin in streptozotocin (STZ) Induced Diabetes (Conference Presentation)

    Science.gov (United States)

    Saidian, Mayer; Ponticorvo, Adrien; Rowland, Rebecca A.; Balbado, Melisa L.; Lentsch, Griffin; Balu, Mihaela; Alexander, Micheal; Shiri, Li; Lakey, Jonathan R. T.; Durkin, Anthony J.; Kohen, Roni; Tromberg, Bruce J.

    2017-02-01

    Type 1diabetes (T1D) is an autoimmune disorder that occurs due to the rapid destruction of insulin-producing beta cells, leading to insulin deficiency and the inability to regulate blood glucose levels and leads to destructive secondary complications. Advanced glycation end (AGEs) products, the result of the cross-linking of reducing sugars and proteins within the tissues, are one of the key causes of major complications associated with diabetes such as renal failure, blindness, nerve damage and vascular changes. Non-invasive techniques to detect AGEs are important for preventing the harmful effects of AGEs during diabetes mellitus. In this study, we utilized multiphoton microscopy to image biopsies taken from control rats and compared them to biopsies taken from streptozotocin (STZ) induced adult male diabetic rats. This was done at two and four weeks after the induction of hyperglycemia (>400 mg/dL) specifically to evaluate the effects of glycation on collagen. We chose to use an in-situ multiphoton microscopy method that combines multiphoton auto-florescence (AF) and second harmonic generation (SHG) to detect the microscopic influence of glycation. Initial results show high auto-florescence levels were present on the collagen, as a result of the accumulation of AGEs only two weeks after the STZ injection and considerably higher levels were present four weeks after the STZ injection. Future projects could involve evaluating advanced glycation end products in a clinical trial of diabetic patients.

  20. Receptor for Advanced Glycation End Products Facilitates Host Defense during Escherichia coli-Induced Abdominal Sepsis in Mice

    NARCIS (Netherlands)

    van Zoelen, Marieke A. D.; Schmidt, Ann-Marie; Florquin, Sandrine; Meijers, Joost C.; de Beer, Regina; de Vos, Alex F.; Nawroth, Peter P.; Bierhaus, Angelika; van der Poll, Tom

    2009-01-01

    Background. The receptor for advanced glycation end products (RAGE) mediates a variety of inflammatory responses. Methods. To determine the role of RAGE in the innate immune response to abdominal sepsis caused by Escherichia coli, RAGE-deficient (RAGE(-/-)) and normal wild-type mice were

  1. Tissue advanced glycation end products are associated with diastolic function and aerobic exercise capacity in diabetic heart failure patients

    NARCIS (Netherlands)

    Willemsen, Suzan; Hartog, Jasper W. L.; Hummel, Yoran M.; van Ruijven, Marieke H. I.; van der Horst, Iwan C. C.; van Veldhuisen, Dirk J.; Voors, Adriaan A.

    Aims Advanced glycation end products (AGEs) are increased in patients with diabetes and are associated with diastolic dysfunction through the formation of collagen crosslinks in the heart. The association among AGEs, diastolic function, and aerobic capacity in heart failure (HF) patients with and

  2. Serum levels of advanced glycation end products are associated with left ventricular diastolic function in patients with type 1 diabetes

    DEFF Research Database (Denmark)

    Berg, T J; Snorgaard, O; Faber, J

    1999-01-01

    Impairment of left ventricular diastolic function, possibly caused by increased collagen cross-linking of the cardiac muscle, is common in patients with type 1 diabetes even without coronary artery disease. Advanced glycation end products (AGEs) cross-link tissue collagen and are found within...

  3. Therapeutic peptides for cancer therapy. Part II - cell cycle inhibitory peptides and apoptosis-inducing peptides.

    Science.gov (United States)

    Raucher, Drazen; Moktan, Shama; Massodi, Iqbal; Bidwell, Gene L

    2009-10-01

    Therapeutic peptides have great potential as anticancer agents owing to their ease of rational design and target specificity. However, their utility in vivo is limited by low stability and poor tumor penetration. The authors review the development of peptide inhibitors with potential for cancer therapy. Peptides that arrest the cell cycle by mimicking CDK inhibitors or induce apoptosis directly are discussed. The authors searched Medline for articles concerning the development of therapeutic peptides and their delivery. Inhibition of cancer cell proliferation directly using peptides that arrest the cell cycle or induce apoptosis is a promising strategy. Peptides can be designed that interact very specifically with cyclins and/or cyclin-dependent kinases and with members of apoptotic cascades. Use of these peptides is not limited by their design, as a rational approach to peptide design is much less challenging than the design of small molecule inhibitors of specific protein-protein interactions. However, the limitations of peptide therapy lie in the poor pharmacokinetic properties of these large, often charged molecules. Therefore, overcoming the drug delivery hurdles could open the door for effective peptide therapy, thus making an entirely new class of molecules useful as anticancer drugs.

  4. Glucagon-like peptide 1: A potential anti-inflammatory pathway in obesity-related asthma.

    Science.gov (United States)

    Nguyen, Dan-Vinh; Linderholm, Angela; Haczku, Angela; Kenyon, Nicholas

    2017-12-01

    Alterations in arginine metabolism and accelerated formation of advanced glycation end-products (AGEs), crucial mechanisms in obesity-related asthma, can be modulated by glucagon-like peptide 1 (GLP-1). l-arginine dysregulation in obesity promotes inflammation and bronchoconstriction. Prolonged hyperglycemia, dyslipidemia, and oxidative stress leads to production of AGEs, that bind to their receptor (RAGE) further potentiating inflammation. By binding to its widely distributed receptor, GLP-1 blunts the effects of RAGE activation and arginine dysregulation. The GLP-1 pathway, while comprehensively studied in the endocrine and cardiovascular literature, is under-recognized in pulmonary research. Insights into GLP-1 and the lung may lead to novel treatments for obesity-related asthma. Published by Elsevier Inc.

  5. Association of subclinical inflammation, glycated hemoglobin and risk for obstructive sleep apnea syndrome.

    Science.gov (United States)

    D'Aurea, Carolina Vicaria Rodrigues; Cerazi, Bruno Gion de Andrade; Laurinavicius, Antonio Gabriele; Janovsky, Carolina Castro Porto Silva; Conceição, Raquel Dilguerian de Oliveira; Santos, Raul D; Bittencourt, Márcio Sommer

    2017-01-01

    To investigate the inter-relation between high sensitivity C-reactive protein and glycated hemoglobin in prediction of risk of obstructive sleep apnea. We included all individuals participating in a check-up program at the Preventive Medicine Center of Hospital Israelita Albert Einstein in 2014. The Berlin questionnaire for risk of obstructive sleep apnea was used, and the high sensitivity C-reactive protein and glycated hemoglobin levels were evaluated. The sample included 7,115 participants (age 43.4±9.6 years, 24.4% women). The Berlin questionnaire showed changes in 434 (6.1%) individuals. This finding was associated with high sensitivity C-reactive protein and glycated hemoglobin levels (papneia obstrutiva do sono. Foram incluídos todos os indivíduos participantes do programa de check-up do Centro de Medicina Preventiva Hospital Israelita Albert Einstein em 2014. Foi aplicado o questionário de Berlin sobre risco de apneia do sono, e avaliadas as dosagens de hemoglobina glicada e proteína C-reativa de alta sensibilidade. Foram incluídos 7.115 participantes (idade 43,4±9,6 anos, 24,4% mulheres). A prevalência de alteração no questionário de Berlin foi de 434 (6,1%). A alteração do questionário de Berlin associou-se positivamente aos resultados da proteína C-reativa de alta sensibilidade e da hemoglobina glicada (papneia obstrutiva do sono, mesmo após ajuste para obesidade e proteína C-reativa. Estes achados sugerem possível ligação fisiopatológica entre alterações na resistência insulínica e a síndrome da apneia obstrutiva do sono, que independe da obesidade ou inflamação de baixo grau.

  6. Solid-phase peptide synthesis

    DEFF Research Database (Denmark)

    Jensen, Knud Jørgen

    2013-01-01

    This chapter provides an introduction to and overview of peptide chemistry with a focus on solid-phase peptide synthesis. The background, the most common reagents, and some mechanisms are presented. This chapter also points to the different chapters and puts them into perspective.......This chapter provides an introduction to and overview of peptide chemistry with a focus on solid-phase peptide synthesis. The background, the most common reagents, and some mechanisms are presented. This chapter also points to the different chapters and puts them into perspective....

  7. Improving Peptide Applications Using Nanotechnology.

    Science.gov (United States)

    Narayanaswamy, Radhika; Wang, Tao; Torchilin, Vladimir P

    2016-01-01

    Peptides are being successfully used in various fields including therapy and drug delivery. With advancement in nanotechnology and targeted delivery carrier systems, suitable modification of peptides has enabled achievement of many desirable goals over-riding some of the major disadvantages associated with the delivery of peptides in vivo. Conjugation or physical encapsulation of peptides to various nanocarriers, such as liposomes, micelles and solid-lipid nanoparticles, has improved their in vivo performance multi-fold. The amenability of peptides to modification in chemistry and functionalization with suitable nanocarriers are very relevant aspects in their use and have led to the use of 'smart' nanoparticles with suitable linker chemistries that favor peptide targeting or release at the desired sites, minimizing off-target effects. This review focuses on how nanotechnology has been used to improve the number of peptide applications. The paper also focuses on the chemistry behind peptide conjugation to nanocarriers, the commonly employed linker chemistries and the several improvements that have already been achieved in the areas of peptide use with the help of nanotechnology.

  8. Committee on Diabetes Mellitus Indices of the Japan Society of Clinical Chemistry-recommended reference measurement procedure and reference materials for glycated albumin determination.

    Science.gov (United States)

    Takei, Izumi; Hoshino, Tadao; Tominaga, Makoto; Ishibashi, Midori; Kuwa, Katsuhiko; Umemoto, Masao; Tani, Wataru; Okahashi, Mikiko; Yasukawa, Keiko; Kohzuma, Takuji; Sato, Asako

    2016-01-01

    Glycated albumin is an intermediate glycaemic control marker for which there are several measurement procedures with entirely different reference intervals. We have developed a reference measurement procedure for the purpose of standardizing glycated albumin measurements. The isotope dilution liquid chromatography/tandem mass spectrometry method was developed as a reference measurement procedure for glycated albumin. The stable isotopes of lysine and fructosyl-lysine, which serve as an internal standard, were added to albumin isolated from serum, followed by hydrogenation. After hydrolysis of albumin with hot hydrochloric acid, the liberated lysine and fructosyl-lysine were measured by liquid chromatography/tandem mass spectrometry, and their concentrations were determined from each isotope ratio. The reference materials (JCCRM611) for determining of glycated albumin were prepared from pooled patient blood samples. The isotope dilution-tandem mass spectrometry calibration curve of fructosyl-lysine and lysine showed good linearity (r = 0.999). The inter-assay and intra-assay coefficient of variation values of glycated albumin measurement were 1.2 and 1.4%, respectively. The glycated albumin values of serum in patients with diabetes assessed through the use of this method showed a good relationship with routine measurement procedures (r = 0.997). The relationship of glycated albumin values of the reference material (JCCRM611) between these two methods was the same as the relationship with the patient serum samples. The Committee on Diabetes Mellitus Indices of the Japan Society of Clinical Chemistry recommends the isotope dilution liquid chromatography/tandem mass spectrometry method as a reference measurement procedure, and JCCRM611 as a certified reference material for glycated albumin measurement. In addition, we recommend the traceability system for glycated albumin measurement. © The Author(s) 2015.

  9. Glyoxalase I reduces glycative and oxidative stress and prevents age-related endothelial dysfunction through modulation of endothelial nitric oxide synthase phosphorylation.

    Science.gov (United States)

    Jo-Watanabe, Airi; Ohse, Takamoto; Nishimatsu, Hiroaki; Takahashi, Masao; Ikeda, Yoichiro; Wada, Takehiko; Shirakawa, Jun-ichi; Nagai, Ryoji; Miyata, Toshio; Nagano, Tetsuo; Hirata, Yasunobu; Inagi, Reiko; Nangaku, Masaomi

    2014-06-01

    Endothelial dysfunction is a major contributor to cardiovascular disease (CVD), particularly in elderly people. Studies have demonstrated the role of glycation in endothelial dysfunction in nonphysiological models, but the physiological role of glycation in age-related endothelial dysfunction has been poorly addressed. Here, to investigate how vascular glycation affects age-related endothelial function, we employed rats systemically overexpressing glyoxalase I (GLO1), which detoxifies methylglyoxal (MG), a representative precursor of glycation. Four groups of rats were examined, namely young (13 weeks old), mid-age (53 weeks old) wild-type, and GLO1 transgenic (WT/GLO1 Tg) rats. Age-related acceleration in glycation was attenuated in GLO1 Tg rats, together with lower aortic carboxymethyllysine (CML) and urinary 8-hydroxydeoxyguanosine (8-OHdG) levels. Age-related impairment of endothelium-dependent vasorelaxation was attenuated in GLO1 Tg rats, whereas endothelium-independent vasorelaxation was not different between WT and GLO1 Tg rats. Nitric oxide (NO) production was decreased in mid-age WT rats, but not in mid-age GLO1 Tg rats. Age-related inactivation of endothelial NO synthase (eNOS) due to phosphorylation of eNOS on Thr495 and dephosphorylation on Ser1177 was ameliorated in GLO1 Tg rats. In vitro, MG increased phosphorylation of eNOS (Thr495) in primary human aortic endothelial cells (HAECs), and overexpression of GLO1 decreased glycative stress and phosphorylation of eNOS (Thr495). Together, GLO1 reduced age-related endothelial glycative and oxidative stress, altered phohphorylation of eNOS, and attenuated endothelial dysfunction. As a molecular mechanism, GLO1 lessened inhibitory phosphorylation of eNOS (Thr495) by reducing glycative stress. Our study demonstrates that blunting glycative stress prevents the long-term impact of endothelial dysfunction on vascular aging. © 2014 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons

  10. Anticancer peptides from bacteria

    Directory of Open Access Journals (Sweden)

    Tomasz M. Karpiński

    2013-08-01

    Full Text Available Cancer is a leading cause of death in the world. The rapid development of medicine and pharmacology allows to create new and effective anticancer drugs. Among modern anticancer drugs are bacterial proteins. Until now has been shown anticancer activity among others azurin and exotoxin A from Pseudomonas aeruginosa, Pep27anal2 from Streptococcus pneumoniae, diphtheria toxin from Corynebacterium diphtheriae, and recently discovered Entap from Enterococcus sp. The study presents the current data regarding the properties, action and anticancer activity of listed peptides.

  11. The receptor for advanced glycation end products (RAGE) and the lung.

    LENUS (Irish Health Repository)

    Buckley, Stephen T

    2010-01-01

    The receptor for advanced glycation end products (RAGE) is a member of the immunoglobulin superfamily of cell surface molecules. As a pattern-recognition receptor capable of binding a diverse range of ligands, it is typically expressed at low levels under normal physiological conditions in the majority of tissues. In contrast, the lung exhibits high basal level expression of RAGE localised primarily in alveolar type I (ATI) cells, suggesting a potentially important role for the receptor in maintaining lung homeostasis. Indeed, disruption of RAGE levels has been implicated in the pathogenesis of a variety of pulmonary disorders including cancer and fibrosis. Furthermore, its soluble isoforms, sRAGE, which act as decoy receptors, have been shown to be a useful marker of ATI cell injury. Whilst RAGE undoubtedly plays an important role in the biology of the lung, it remains unclear as to the exact nature of this contribution under both physiological and pathological conditions.

  12. Glycated Hemoglobin Is Associated With the Growth Rate of Abdominal Aortic Aneurysms

    DEFF Research Database (Denmark)

    Kristensen, Katrine Lawaetz; Dahl, Marie; Rasmussen, Lars Melholt

    2017-01-01

    and HbA1c in the total study population (P=0.002). Both crude and adjusted analyses identified slower growth for the group with the highest HbA1c tertile compared with the lowest HbA1c tertile. After 3 years, the mean difference was 1.8 mm (confidence interval, 0.98–2.64). Similar significant differences......OBJECTIVE—: An inverse association between abdominal aortic aneurysms (AAAs) and diabetes mellitus exists; however, the cause remains unknown. This study aimed to evaluate whether the degree of glycemia is associated with aneurysm growth. APPROACH AND RESULTS—: The study was based on VIVA trial...... (Viborg Vascular), the randomized clinically controlled screening trial for abdominal aortic aneurysm in men aged 65 to 74 years in the Central Denmark Region. The screening included measurement of the abdominal aorta by ultrasound, analysis of glycated hemoglobin (HbA1c), and follow-up for ≤5 years...

  13. An advanced glycation endproduct (AGE)-rich diet promotes accumulation of AGEs in Achilles tendon

    DEFF Research Database (Denmark)

    Skovgaard, Dorthe; Svensson, Rene B; Scheijen, Jean

    2017-01-01

    the relationship between AGE content in the diet and accumulation of AGEs in weight-bearing animal Achilles tendon. Two groups of mice (C57BL/6Ntac) were fed with either high-fat diet low in AGEs high-fat diet (HFD) (n = 14) or normal diet high in AGEs (ND) (n = 11). AGE content in ND was six to 50-fold higher......Advanced Glycation Endproducts (AGEs) accumulate in long-lived tissue proteins like collagen in bone and tendon causing modification of the biomechanical properties. This has been hypothesized to raise the risk of orthopedic injury such as bone fractures and tendon ruptures. We evaluated...... was measured using ultraperformance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) and pentosidine with high-pressure liquid chromatography (HPLC) with fluorescent detection. AGEs in Achilles tendon were higher than in tail tendon for CML (P

  14. The receptor for advanced glycation end products (RAGE contributes to the progression of emphysema in mice.

    Directory of Open Access Journals (Sweden)

    Nisha Sambamurthy

    Full Text Available Several recent clinical studies have implied a role for the receptor for advanced glycation end products (RAGE and its variants in chronic obstructive pulmonary disease (COPD. In this study we have defined a role for RAGE in the pathogenesis of emphysema in mice. RAGE deficient mice (RAGE-/- exposed to chronic cigarette smoke were significantly protected from smoke induced emphysema as determined by airspace enlargement and had no significant reduction in lung tissue elastance when compared to their air exposed controls contrary to their wild type littermates. The progression of emphysema has been largely attributed to an increased inflammatory cell-mediated elastolysis. Acute cigarette smoke exposure in RAGE-/- mice revealed an impaired early recruitment of neutrophils, approximately a 6-fold decrease compared to wild type mice. Hence, impaired neutrophil recruitment with continued cigarette smoke exposure reduces elastolysis and consequent emphysema.

  15. Inactivation of cellular enzymes by carbonyls and protein-bound glycation/glycoxidation products

    DEFF Research Database (Denmark)

    Morgan, Philip E; Dean, Roger T; Davies, Michael Jonathan

    2002-01-01

    products. In this study, we have examined the effect of glucose and carbonyl compounds (methylglyoxal, glyoxal, glycolaldehyde, and hydroxyacetone), and glycation products arising from reaction of these materials with model proteins, on the activity of three key cellular enzymes: glyceraldehyde-3-phosphate...... dehydrogenase (GAPDH), glutathione reductase, and lactate dehydrogenase, both in isolation and in cell lysates. In contrast to glucose (1M, both fresh and aged for 8 weeks), which had no effect, marked inhibition of all three enzymes was observed with methylglyoxal and glyoxal. GAPDH was also inhibited...... by glycolaldehyde and hydroxyacetone. Incubation of these enzymes with proteins that had been preglycated with methylglyoxal, but not glucose, also resulted in significant time- and concentration-dependent inhibition with both isolated enzymes and cell lysates. This inhibition was not metal ion, oxygen, superoxide...

  16. A Perspective on the Maillard Reaction and the Analysis of Protein Glycation by Mass Spectrometry: Probing the Pathogenesis of Chronic Disease

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Qibin; Ames, Jennifer M.; Smith, Richard D.; Baynes, John; Metz, Thomas O.

    2008-12-18

    The Maillard reaction, starting from the glycation of protein and progressing to the formation of advanced glycation end-products (AGEs), is implicated in the development of complications of diabetes mellitus, as well as in the pathogenesis of cardiovascular, renal, and neurodegenerative diseases. In this perspective review, we provide on overview on the relevance of the Maillard reaction in the pathogenesis of chronic disease and discuss traditional approaches and recent developments in the analysis of glycated proteins by mass spectrometry. We propose that proteomics approaches, particularly bottom-up proteomics, will play a significant role in analyses of clinical samples leading to the identification of new markers of disease development and progression.

  17. A perspective on the Maillard reaction and the analysis of protein glycation by mass spectrometry: probing the pathogenesis of chronic disease.

    Science.gov (United States)

    Zhang, Qibin; Ames, Jennifer M; Smith, Richard D; Baynes, John W; Metz, Thomas O

    2009-02-01

    The Maillard reaction, starting from the glycation of protein and progressing to the formation of advanced glycation end-products (AGEs), is implicated in the development of complications of diabetes mellitus, as well as in the pathogenesis of cardiovascular, renal, and neurodegenerative diseases. In this perspective review, we provide an overview on the relevance of the Maillard reaction in the pathogenesis of chronic disease and discuss traditional approaches and recent developments in the analysis of glycated proteins by mass spectrometry. We propose that proteomics approaches, particularly bottom-up proteomics, will play a significant role in analyses of clinical samples leading to the identification of new markers of disease development and progression.

  18. Advanced glycation End-products (AGEs): an emerging concern for processed food industries.

    Science.gov (United States)

    Sharma, Chetan; Kaur, Amarjeet; Thind, S S; Singh, Baljit; Raina, Shiveta

    2015-12-01

    The global food industry is expected to increase more than US $ 7 trillion by 2014. This rise in processed food sector shows that more and more people are diverging towards modern processed foods. As modern diets are largely heat processed, they are more prone to contain high levels of advanced glycation end products (AGEs). AGEs are a group of complex and heterogeneous compounds which are known as brown and fluorescent cross-linking substances such as pentosidine, non-fluorescent cross-linking products such as methylglyoxal-lysine dimers (MOLD), or non-fluorescent, non-cross linking adducts such as carboxymethyllysine (CML) and pyrraline (a pyrrole aldehyde). The chemistry of the AGEs formation, absorption and bioavailability and their patho-biochemistry particularly in relation to different complications like diabetes and ageing discussed. The concept of AGEs receptor - RAGE is mentioned. AGEs contribute to a variety of microvascular and macrovascular complications through the formation of cross-links between molecules in the basement membrane of the extracellular matrix and by engaging the receptor for advanced glycation end products (RAGE). Different methods of detection and quantification along with types of agents used for the treatment of AGEs are reviewed. Generally, ELISA or LC-MS methods are used for analysis of foods and body fluids, however lack of universally established method highlighted. The inhibitory effect of bioactive components on AGEs by trapping variety of chemical moieties discussed. The emerging evidence about the adverse effects of AGEs makes it necessary to investigate the different therapies to inhibit AGEs.

  19. Trend of glycated hemoglobin testing in diabetic patients: to assess compliance with clinical practice guidelines

    International Nuclear Information System (INIS)

    Ghayur, S.; Tariq, H.

    2013-01-01

    Objective: To determine appropriate use of glycated hemoglobin (HbA1c) testing in accordance with current recommended guidelines. Study Design: Descriptive study. Place and Duration of Study: Chemical Pathology Department Shifa International Hospital, Islamabad from Oct 2011 to Oct 2012. Material and Methods: We randomly selected 170 known diabetic patients' data from our Laboratory Information System (LIS) who were retrospective analyzed for HbA1c to check for intervals and test frequency for each patient in one year. Patients with follow-up for at least one year at Shifa International Hospital, Islamabad and having their routine investigations in our chemical pathology laboratory were included. The concentrations of HbA1c for all the specimens were measured immunoturbidimetrically using a microparticle agglutination inhibition method. Four guidelines namely World Health Organization (WHO), American Diabetic Association (ADA), Canadian Diabetic Association (CDA) and National Institute for Health and Clinical Excellence (NICE) about HbA1c testing were utilized for data interpretation. All tests ordered within a 2 months period or more than 6 months following the previous order were labeled as inappropriate. Results: Only 35.8% of the patients were being properly monitored as per guidelines. Out of 64% patients who were inappropriately monitored, 12.9% had repeat orders within 2 months while 51.1% of patients were being monitored at longer interval against recommended guidelines. Conclusions: Glycated hemoglobin is a useful tool to objectively assess the prior glycemic control of patients with type 1 and type 2 diabetes. The study highlights that in large proportion of diabetic patients, HbA1c is not utilized properly as a tool to assess the risk of diabetic complications but in a small proportion is also tested unnecessarily which adds to avoidable health expenditure. (author)

  20. Stability and anti-glycation properties of intermediate moisture apple products fortified with green tea.

    Science.gov (United States)

    Lavelli, Vera; Corey, Mark; Kerr, William; Vantaggi, Claudia

    2011-07-15

    Intermediate moisture products made from blanched apple flesh and green tea extract (about 6mg of monomeric flavan 3-ols added per g of dry apple) or blanched apple flesh (control) were produced, and their quality attributes were investigated over storage for two months at water activity (a(w)) levels of 0.55 and 0.75, at 30°C. Products were evaluated for colour (L(∗), a(∗), and b(∗) Hunter's parameters), phytochemical contents (flavan 3-ols, chlorogenic acid, dihydrochalcones, ascorbic acid and total polyphenols), ferric reducing antioxidant potential, 2,2-diphenyl-1-(2,4,6-trinitrophenyl)hydrazyl radical-scavenging activity and ability to inhibit formation of fructose-induced advanced glycation end-products. During storage of the fortified and unfortified intermediate moisture apples, water availability was sufficient to support various chemical reactions involving phytochemicals, which degraded at different rates: ascorbic acid>flavan 3-ols>dihydrochalcones and chlorogenic acid. Colour variations occurred at slightly slower rates after green tea addition. In the intermediate moisture apple, antioxidant and anti-glycoxidative properties decreased at similar rates (half-life was about 80d at a(w) of 0.75, 30°C). In the green tea-fortified intermediate moisture apple, the antioxidant activity decreased at a slow rate (half-life was 165d at a(w) of 0.75, 30°C) and the anti-glycoxidative properties did not change, indicating that flavan 3-ol degradation involved the formation of derivatives that retained the properties of their parent compounds. Since these properties are linked to oxidative- and advanced glycation end-product-related diseases, these results suggest that green tea fortification of intermediate moisture apple products could be a valuable means of product innovation, to address consumers' nutritional needs. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Synthetic peptides for antibody production

    NARCIS (Netherlands)

    Zegers, N.D.

    1995-01-01

    Synthetic peptides are useful tools for the generation of antibodies. The use of antibodies as specific reagents in inununochemical assays is widely applied. In this chapter, the application of synthetic peptides for the generation of antibodies is described. The different steps that lead to the

  2. Synthetic peptides for antibody production

    NARCIS (Netherlands)

    N.D. Zegers (Netty)

    1995-01-01

    textabstractSynthetic peptides are useful tools for the generation of antibodies. The use of antibodies as specific reagents in inununochemical assays is widely applied. In this chapter, the application of synthetic peptides for the generation of antibodies is described. The different steps

  3. Peptide radiopharmaceuticals in nuclear medicine

    International Nuclear Information System (INIS)

    Blok, D.; Vermeij, P.; Feitsma, R.I.J.; Pauwels, E.J.K.

    1999-01-01

    This article reviews the labelling of peptides that are recognised to be of interest for nuclear medicine or are the subject of ongoing nuclear medicine research. Applications and approaches to the labelling of peptide radiopharmaceuticals are discussed, and drawbacks in their development considered. (orig.)

  4. The Equine PeptideAtlas

    DEFF Research Database (Denmark)

    Bundgaard, Louise; Jacobsen, Stine; Sørensen, Mette Aamand

    2014-01-01

    Progress in MS-based methods for veterinary research and diagnostics is lagging behind compared to the human research, and proteome data of domestic animals is still not well represented in open source data repositories. This is particularly true for the equine species. Here we present a first...... Equine PeptideAtlas encompassing high-resolution tandem MS analyses of 51 samples representing a selection of equine tissues and body fluids from healthy and diseased animals. The raw data were processed through the Trans-Proteomic Pipeline to yield high quality identification of proteins and peptides....... The current release comprises 24 131 distinct peptides representing 2636 canonical proteins observed at false discovery rates of 0.2% at the peptide level and 1.4% at the protein level. Data from the Equine PeptideAtlas are available for experimental planning, validation of new datasets, and as a proteomic...

  5. Vascular targeting with peptide libraries

    Energy Technology Data Exchange (ETDEWEB)

    Pasqualini, R. [La Jolla Cancer Research Center The Burnham Inst., La Jolla CA (United States)

    1999-06-01

    The authors have developed an 'in vivo' selection system in which phage capable of selective homing to different tissues are recovered from a phage display peptide library following intravenous administration. Using this strategy, they have isolate several organ and tumor-homing peptides. They have shown that each of those peptides binds of different receptors that are selectively expressed on the vasculature of the target tissue. The tumor-homing peptides bind to receptors that are up regulated in tumor angiogenic vasculature. Targeted delivery of doxorubicin to angiogenic vasculature using these peptides in animals models decrease toxicity and increased the therapeutic efficacy of the drug. Vascular targeting may facilitate the development of other treatment strategies that rely on inhibition of angio genesis and lead to advances to extend the potential for targeting of drugs, genes and radionuclides in the context of many diseases.

  6. Natriuretic peptides and cerebral hemodynamics

    DEFF Research Database (Denmark)

    Guo, Song; Barringer, Filippa; Zois, Nora Elisabeth

    2014-01-01

    Natriuretic peptides have emerged as important diagnostic and prognostic tools for cardiovascular disease. Plasma measurement of the bioactive peptides as well as precursor-derived fragments is a sensitive tool in assessing heart failure. In heart failure, the peptides are used as treatment...... in decompensated disease. In contrast, their biological effects on the cerebral hemodynamics are poorly understood. In this mini-review, we summarize the hemodynamic effects of the natriuretic peptides with a focus on the cerebral hemodynamics. In addition, we will discuss its potential implications in diseases...... where alteration of the cerebral hemodynamics plays a role such as migraine and acute brain injury including stroke. We conclude that a possible role of the peptides is feasible as evaluated from animal and in vitro studies, but more research is needed in humans to determine the precise response...

  7. Maize Bioactive Peptides against Cancer

    Science.gov (United States)

    Díaz-Gómez, Jorge L.; Castorena-Torres, Fabiola; Preciado-Ortiz, Ricardo E.; García-Lara, Silverio

    2017-06-01

    Cancer is one of the main chronic degenerative diseases worldwide. In recent years, consumption of whole-grain cereals and their derived food products has been associated with reduction risks of various types of cancer. Cereals main biomolecules includes proteins, peptides, and amino acids present in different quantities within the grain. The nutraceutical properties associated with peptides exerts biological functions that promote health and prevent this disease. In this review, we report the current status and advances on maize peptides regarding bioactive properties that have been reported such as antioxidant, antihypertensive, hepatoprotective, and anti-tumour activities. We also highlighted its biological potential through which maize bioactive peptides exert anti-cancer activity. Finally, we analyse and emphasize the possible areas of application for maize peptides.

  8. Purification and use of E. coli peptide deformylase for peptide deprotection in chemoenzymatic peptide synthesis

    NARCIS (Netherlands)

    Di Toma, Claudia; Sonke, Theo; Quaedflieg, Peter J.; Janssen, Dick B.

    Peptide deformylases (PDFs) catalyze the removal of the formyl group from the N-terminal methionine residue in nascent polypeptide chains in prokaryotes. Its deformylation activity makes PDF an attractive candidate for the biocatalytic deprotection of formylated peptides that are used in

  9. Cathepsin-Mediated Cleavage of Peptides from Peptide Amphiphiles Leads to Enhanced Intracellular Peptide Accumulation

    Energy Technology Data Exchange (ETDEWEB)

    Acar, Handan [Institute; Department; Samaeekia, Ravand [Institute; Department; Schnorenberg, Mathew R. [Institute; Department; Medical; Sasmal, Dibyendu K. [Institute; Huang, Jun [Institute; Tirrell, Matthew V. [Institute; Institute; LaBelle, James L. [Department

    2017-08-24

    Peptides synthesized in the likeness of their native interaction domain(s) are natural choices to target protein protein interactions (PPIs) due to their fidelity of orthostatic contact points between binding partners. Despite therapeutic promise, intracellular delivery of biofunctional peptides at concentrations necessary for efficacy remains a formidable challenge. Peptide amphiphiles (PAs) provide a facile method of intracellular delivery and stabilization of bioactive peptides. PAs consisting of biofunctional peptide headgroups linked to hydrophobic alkyl lipid-like tails prevent peptide hydrolysis and proteolysis in circulation, and PA monomers are internalized via endocytosis. However, endocytotic sequestration and steric hindrance from the lipid tail are two major mechanisms that limit PA efficacy to target intracellular PPIs. To address these problems, we have constructed a PA platform consisting of cathepsin-B cleavable PAs in which a selective p53-based inhibitory peptide is cleaved from its lipid tail within endosomes, allowing for intracellular peptide accumulation and extracellular recycling of the lipid moiety. We monitor for cleavage and follow individual PA components in real time using a resonance energy transfer (FRET)-based tracking system. Using this platform, components in real time using a Forster we provide a better understanding and quantification of cellular internalization, trafficking, and endosomal cleavage of PAs and of the ultimate fates of each component.

  10. The effect of an advanced glycation end-product crosslink breaker and exercise training on vascular function in older individuals: a randomized factorial design trial.

    NARCIS (Netherlands)

    Oudegeest-Sander, M.H.; Olde Rikkert, M.G.M.; Smits, P.; Thijssen, D.H.J.; Dijk, A.P.J. van; Levine, B.D.; Hopman, M.T.E.

    2013-01-01

    Aging leads to accumulation of irreversible advanced glycation end-products (AGEs), contributing to vascular stiffening and endothelial dysfunction. When combined with the AGE-crosslink breaker Alagebrium, exercise training reverses cardiovascular aging in experimental animals. This study is the

  11. Risk factors for chronic transplant dysfunction and cardiovascular disease are related to accumulation of advanced glycation end-products in renal transplant recipients

    NARCIS (Netherlands)

    Hartog, Jasper W. L.; de Vries, Aiko P. J.; Bakker, Stephan J. L.; Graaff, Reindert; van Son, Willem J.; van der Heide, Jaap J. Homan; Gans, Reinold O. B.; Wolffenbuttel, Bruce H. R.; de Jong, Paul E.; Smit, Andries J.

    Background. Accumulation of advanced glycation end-products (AGEs) has been implicated in the pathogenesis of chronic transplant dysfunction and cardiovascular disease in renal transplant recipients. We aimed to investigate which factors are associated with tissue AGE accumulation in renal

  12. Risk factors for chronic transplant dysfunction and cardiovascular disease are related to accumulation of advanced glycation end-products in renal transplant recipients

    NARCIS (Netherlands)

    Hartog, Jasper W. L.; de Vries, Aiko P. J.; Bakker, Stephan J. L.; Graaff, Reindert; van Son, Willem J.; Homan van der Heide, Jaap J.; Gans, Reinold O. B.; Wolffenbuttel, Bruce H. R.; de Jong, Paul E.; Smit, Andries J.

    2006-01-01

    Accumulation of advanced glycation end-products (AGEs) has been implicated in the pathogenesis of chronic transplant dysfunction and cardiovascular disease in renal transplant recipients. We aimed to investigate which factors are associated with tissue AGE accumulation in renal transplant

  13. A Perspective on the Maillard Reaction and the Analysis of Protein Glycation by Mass Spectrometry: Probing the Pathogenesis of Chronic Disease

    OpenAIRE

    Zhang, Qibin; Ames, Jennifer M.; Smith, Richard D.; Baynes, John W.; Metz, Thomas O.

    2009-01-01

    The Maillard reaction, starting from the glycation of protein and progressing to the formation of advanced glycation end-products (AGEs), is implicated in the development of complications of diabetes mellitus, as well as in the pathogenesis of cardiovascular, renal, and neurodegenerative diseases. In this perspective review, we provide an overview on the relevance of the Maillard reaction in the pathogenesis of chronic disease and discuss traditional approaches and recent developments in the ...

  14. Radiopharmaceutical development of radiolabelled peptides

    Energy Technology Data Exchange (ETDEWEB)

    Fani, Melpomeni; Maecke, Helmut R. [University Hospital Freiburg, Department of Nuclear Medicine, Freiburg (Germany)

    2012-02-15

    Receptor targeting with radiolabelled peptides has become very important in nuclear medicine and oncology in the past few years. The overexpression of many peptide receptors in numerous cancers, compared to their relatively low density in physiological organs, represents the molecular basis for in vivo imaging and targeted radionuclide therapy with radiolabelled peptide-based probes. The prototypes are analogs of somatostatin which are routinely used in the clinic. More recent developments include somatostatin analogs with a broader receptor subtype profile or with antagonistic properties. Many other peptide families such as bombesin, cholecystokinin/gastrin, glucagon-like peptide-1 (GLP-1)/exendin, arginine-glycine-aspartic acid (RGD) etc. have been explored during the last few years and quite a number of potential radiolabelled probes have been derived from them. On the other hand, a variety of strategies and optimized protocols for efficient labelling of peptides with clinically relevant radionuclides such as {sup 99m}Tc, M{sup 3+} radiometals ({sup 111}In, {sup 86/90}Y, {sup 177}Lu, {sup 67/68}Ga), {sup 64/67}Cu, {sup 18}F or radioisotopes of iodine have been developed. The labelling approaches include direct labelling, the use of bifunctional chelators or prosthetic groups. The choice of the labelling approach is driven by the nature and the chemical properties of the radionuclide. Additionally, chemical strategies, including modification of the amino acid sequence and introduction of linkers/spacers with different characteristics, have been explored for the improvement of the overall performance of the radiopeptides, e.g. metabolic stability and pharmacokinetics. Herein, we discuss the development of peptides as radiopharmaceuticals starting from the choice of the labelling method and the conditions to the design and optimization of the peptide probe, as well as some recent developments, focusing on a selected list of peptide families, including somatostatin

  15. Semi-purification procedures of prions from a prion-infected brain using sucrose has no influence on the nonenzymatic glycation of the disease-associated prion isoform.

    Science.gov (United States)

    Choi, Yeong-Gon; Kim, Jae-Il; Choi, Eun-Kyoung; Carp, Richard I; Kim, Yong-Sun

    2016-01-01

    Previous studies have shown that the Nε-carboxymethyl group is linked to not only one or more N-terminal Lys residues but also to one or more Lys residues of the protease-resistant core region of the pathogenic prion isoform (PrPSc) in prion-infected brains. Using an anti-advanced glycation end product (AGE) antibody, we detected nonenzymatically glycated PrPSc (AGE-PrPSc) in prion-infected brains following concentration by a series of ultracentrifugation steps with a sucrose cushion. In the present study, the levels of in vitro nonenzymatic glycation of PrPSc using sucrose were investigated to determine whether sucrose cushion can artificially and nonenzymatically induce in vitro glycation during ultracentrifugation. The first insoluble pellet fraction following the first ultracentrifugation (PU1st) collected from 263K scrapie-infected brains was incubated with sucrose, glucose or colloidal silica coated with polyvinylpyrrolidone (percoll). None of the compounds in vitro resulted in AGE-PrPSc. Nonetheless, glucose and percoll produced AGEs in vitro from other proteins within PU1st of the infected brains. This reaction could lead to the AGE-modified polymer(s) of nonenzymatic glycation-prone protein(s). This study showed that PrPSc is not nonenzymatically glycated in vitro with sucrose, glucose or percoll and that AGE-modified PrPSc can be isolated and enriched from prion-infected brains.

  16. Combined effect of glycation and sodium carbonate-bicarbonate buffer concentration on IgG binding, IgE binding and conformation of ovalbumin.

    Science.gov (United States)

    Ma, Xiao-juan; Gao, Jin-yan; Chen, Hong-bing

    2013-10-01

    Ovalbumin (OVA) is a major allergen in hen egg. During thermal processing, reducing sugars contained in the hen egg white might easily undergo glycation with OVA, but few studies have been conducted on its corresponding immunoreactivity changes. The aim of the present study was to assess changes of the antigenicity, potential allergenicity and conformation of OVA after glycation in a wet-thermal processing system under different concentrations of sodium carbonate-bicarbonate buffer. IgE binding of the glycated OVA was increased after glycation, and the higher the sodium carbonate-bicarbonate buffer concentration, the higher the IgE binding capacity. The increase in IgE binding of OVA corresponded well with the disruption of the disulfide bond, which exposed the epitopes initially buried. Antigenicity of the glycated OVA was increased, and the amount of the increase varied among samples treated under different buffer concentrations. Glycation increased the allergenic potential for OVA, with the amount of increase varying with different sodium carbonate-bicarbonate buffer concentrations. © 2013 Society of Chemical Industry.

  17. The distribution of advanced glycation end products and their receptor in the gastrointestinal tract in the rats

    DEFF Research Database (Denmark)

    Chen, Pengmin; Zhao, Jingbo; Gregersen, Hans

    2012-01-01

    To investigate the distribution of advanced glycation end products (AGEs) and their receptor (RAGE) in the gastrointestinal (GI) tract to provide a basis for further study of the association between AGE/RAGE and diabetic GI dysfunction. METHODS: The distribution of AGEs [N epsilon-(carboxymethyl)......To investigate the distribution of advanced glycation end products (AGEs) and their receptor (RAGE) in the gastrointestinal (GI) tract to provide a basis for further study of the association between AGE/RAGE and diabetic GI dysfunction. METHODS: The distribution of AGEs [N epsilon......-(carboxymethyl) lysine and N epsilon-(carboxyethyl) lysine] and RAGE were detected in the esopha-geal, gastric, duodenal, jejunal, ileal, colonic and rectal tissues of normal adult Wistar rats using immunohistochemistry. RESULTS: In the esophagus, AGEs and RAGE were mainly distributed in striated muscle cells...

  18. 3-Deoxyglucosone: a potential glycating agent accountable for structural alteration in H3 histone protein through generation of different AGEs.

    Directory of Open Access Journals (Sweden)

    Jalaluddin M Ashraf

    Full Text Available Advanced glycation end-products (AGEs are heterogeneous group of compounds, known to be implicated in diabetic complications. One of the consequences of the Maillard reaction is attributed to the production of reactive intermediate products such as α-oxoaldehydes. 3-deoxyglucosone (3-DG, an α-oxoaldehyde has been found to be involved in accelerating vascular damage during diabetes. In the present study, calf thymus histone H3 was treated with 3-deoxyglucosone to investigate the generation of AGEs (Nε-carboxymethyllysine, pentosidine, by examining the degree of side chain modifications and formation of different intermediates and employing various physicochemical techniques. The results clearly indicate the formation of AGEs and structural changes upon glycation of H3 by 3-deoxyglucosone, which may hamper the normal functioning of H3 histone, that may compromise the veracity of chromatin structures and function in secondary complications of diabetes.

  19. Peptide-LNA oligonucleotide conjugates

    DEFF Research Database (Denmark)

    Astakhova, I Kira; Hansen, Lykke Haastrup; Vester, Birte

    2013-01-01

    properties, peptides were introduced into oligonucleotides via a 2'-alkyne-2'-amino-LNA scaffold. Derivatives of methionine- and leucine-enkephalins were chosen as model peptides of mixed amino acid content, which were singly and doubly incorporated into LNA/DNA strands using highly efficient copper......(i)-catalyzed azide-alkyne cycloaddition (CuAAC) "click" chemistry. DNA/RNA target binding affinity and selectivity of the resulting POCs were improved in comparison to LNA/DNA mixmers and unmodified DNA controls. This clearly demonstrates that internal attachment of peptides to oligonucleotides can significantly...

  20. New vasoactive peptides in cirrhosis

    DEFF Research Database (Denmark)

    Kimer, Nina; Goetze, Jens Peter; Bendtsen, Flemming

    2014-01-01

    BACKGROUND: Patients with cirrhosis have substantial circulatory imbalance between vasoconstrictive and vasodilating forces. The study of circulatory vasoactive peptides may provide important pathophysiological information. This study aimed to assess concentrations, organ extraction and relations...... to haemodynamic changes in the pro-peptides copeptin, proadrenomedullin and pro-atrial natriuretic peptide (proANP) in patients with cirrhosis. MATERIALS AND METHODS: Fifty-four cirrhotic patients and 15 controls were characterized haemodynamically during a liver vein catheterization. Copeptin, proadrenomedullin...... pressure (R=0·32, P0·31, Ppeptide is elevated in cirrhosis. Copeptin, proadrenomedullin and proANP are related to portal pressure and seem associated with systemic haemodynamics. These propeptides may...

  1. Correlation Between Glycated Hemoglobin and Homa Indices in Type 2 Diabetes Mellitus: Prediction of Beta-Cell Function from Glycated Hemoglobin.

    Science.gov (United States)

    Al-Hakeim, Hussein Kadhem; Abdulzahra, Mohammed Saied

    2015-04-01

    The present study aimed to determine the most efficient insulin resistance function related to glycemic control expressed as glycated hemoglobin (HbA1c) in type 2 diabetes mellitus patients (T2DM). The other aim is to derive equations for the prediction of beta cell functions containing HbA1c as a parameter in addition to fasting glucose and insulin. T2DM Patients were grouped according to the following: (1) degree of control (good, fair, and poor control) and (2) insulin resistance as observed in obtained data and significant differences revealed by the homeostasis model assessment (HOMA) of related parameters (insulin resistance = HOMA2IR, beta-cell function = HOMA%B, and insulin sensitivity = HOMA%S) among groups. Correlations and forecasting regression analysis were calculated. HbA1c was found to be correlated with insulin resistance parameters in T2DM subgroups. This correlation was also significantly correlated with HOMA%B and the quantitative insulin sensitivity check index (QUICKI) in fair and poor control groups. Regression analysis was used to predict the forecasting equations for HOMA%B. The best applicable equations were derived for healthy control (HOMA2%B=-1.76*FBG+5.00*Insulin+4.69*HbA1c+189.84) and poor control groups (HOMA2%B=0.001* FBG+0.5*Insulin-8.67*HbA1c+101.96). These equations could be used to predict β-cell function (HOMA%B) after FBG, insulin and HbA1c values were obtained for healthy and poor control groups. In the good and fair control groups, the applicability of the HOMA model fails to yield appropriate results. Beta-cell function is correlated with QUICKI and HbA1c and could be predicted properly from HbA1c, insulin, and glucose in the healthy and poor control groups. New regression equations were established that involve HbA1c.

  2. Dietary intake of advanced glycation endproducts is associated with higher levels of advanced glycation endproducts in plasma and urine: The CODAM study.

    Science.gov (United States)

    Scheijen, Jean L J M; Hanssen, Nordin M J; van Greevenbroek, Marleen M; Van der Kallen, Carla J; Feskens, Edith J M; Stehouwer, Coen D A; Schalkwijk, Casper G

    2018-06-01

    Advanced glycation endproducts (AGEs) are formed by the reaction between reducing sugars and proteins. AGEs in the body have been associated with several age-related diseases. High-heat treated and most processed foods are rich in AGEs. The aim of our study was to investigate whether dietary AGEs, are associated with plasma and urinary AGE levels. In 450 participants of the Cohort on Diabetes and Atherosclerosis Maastricht study (CODAM study) we measured plasma and urine concentrations of the AGEs Nε-(carboxymethyl)lysine (CML), Nε-(1-carboxyethyl)lysine (CEL) and Nδ-(5-hydro-5-methyl-4-imidazolon-2-yl)-ornithine (MG-H1) using UPLC-MS/MS. We also estimated dietary intake of CML, CEL and MG-H1 with the use of a dietary AGE database and a food frequency questionnaire (FFQ). We used linear regression to investigate the association between standardized dietary AGE intake and standardized plasma or urinary AGE levels, after adjustment for age, sex, glucose metabolism status, waist circumference, kidney function, energy- and macro-nutrient intake, smoking status, physical activity, alcohol intake, LDL-cholesterol and markers of oxidative stress. We found that higher intake of dietary CML, CEL and MG-H1 was associated with significantly higher levels of free plasma and urinary CML, CEL and MG-H1 (βCML = 0.253 (95% CI 0.086; 0.415), βCEL = 0.194 (95% CI 0.040; 0.339), βMG-H1 = 0.223 (95% CI 0.069; 0.373) for plasma and βCML = 0.223 (95% CI 0.049; 0.393), βCEL = 0.180 (95% CI 0.019; 0.332), βMG-H1 = 0.196 (95% CI 0.037; 0.349) for urine, respectively). In addition, we observed non-significant associations of dietary AGEs with their corresponding protein bound plasma AGEs. We demonstrate that higher intake of dietary AGEs is associated with higher levels of AGEs in plasma and urine. Our findings may have important implications for those who ingest a diet rich in AGEs. Copyright © 2017 Elsevier Ltd and European Society for Clinical Nutrition and

  3. Aspartic acid functions as carbonyl trapper to inhibit the formation of advanced glycation end products by chemical chaperone activity.

    Science.gov (United States)

    Prasanna, Govindarajan; Saraswathi, N T

    2016-05-01

    Advanced glycation end products (AGEs) were implicated in pathology of numerous diseases. In this study, we present the bioactivity of aspartic acid (Asp) to inhibit the AGEs. Hemoglobin and bovine serum albumin (BSA) were glycated with glucose, fructose, and ribose in the presence and absence of Asp (100-200 μM). HbA1c inhibition was investigated using human blood and characterized by micro-column ion exchange chromatography. The effect of methyl glyoxal (MG) on hemoglobin and BSA was evaluated by fluorescence spectroscopy and gel electrophoresis. The effect of MG on red blood cells morphology was characterized by scanning electron micrographs. Molecular docking was performed on BSA with Asp. Asp is capable of inhibiting the formation of fluorescent AGEs by reacting with the reducing sugars. The presence of Asp as supplement in whole blood reduced the HbA1c% from 8.8 to 6.1. The presence of MG showed an increase in fluorescence and the presence of Asp inhibited the glycation thereby the fluorescence was quenched. MG also affected the electrophoretic mobility of hemoglobin and BSA by forming high molecular weight aggregates. Normal RBCs showed typical biconcave shape. MG modified RBCs showed twisted and elongated shape whereas the presence of ASP tends to protect RBC from twisting. Asp interacted with arginine residues of bovine serum albumin particularly ARG 194, ARG 198, and ARG 217 thereby stabilized the protein complex. We conclude that Asp has dual functions as a chemical chaperone to stabilize protein and as a dicarbonyl trapper, and thereby it can prevent the complications caused by glycation.

  4. A synthetic peptide with the putative iron binding motif of amyloid precursor protein (APP does not catalytically oxidize iron.

    Directory of Open Access Journals (Sweden)

    Kourosh Honarmand Ebrahimi

    Full Text Available The β-amyloid precursor protein (APP, which is a key player in Alzheimer's disease, was recently reported to possess an Fe(II binding site within its E2 domain which exhibits ferroxidase activity [Duce et al. 2010, Cell 142: 857]. The putative ligands of this site were compared to those in the ferroxidase site of ferritin. The activity was indirectly measured using transferrin, which scavenges the Fe(III product of the reaction. A 22-residue synthetic peptide, named FD1, with the putative ferroxidase site of APP, and the E2 domain of APP were each reported to exhibit 40% of the ferroxidase activity of APP and of ceruloplasmin. It was also claimed that the ferroxidase activity of APP is inhibited by Zn(II just as in ferritin. We measured the ferroxidase activity indirectly (i by the incorporation of the Fe(III product of the ferroxidase reaction into transferrin and directly (ii by monitoring consumption of the substrate molecular oxygen. The results with the FD1 peptide were compared to the established ferroxidase activities of human H-chain ferritin and of ceruloplasmin. For FD1 we observed no activity above the background of non-enzymatic Fe(II oxidation by molecular oxygen. Zn(II binds to transferrin and diminishes its Fe(III incorporation capacity and rate but it does not specifically bind to a putative ferroxidase site of FD1. Based on these results, and on comparison of the putative ligands of the ferroxidase site of APP with those of ferritin, we conclude that the previously reported results for ferroxidase activity of FD1 and - by implication - of APP should be re-evaluated.

  5. Modificações do método gravimétrico não enzimático para determinar fibra alimentar solúvel e insolúvel em frutos Modifications in the gravimetric non enzymatic method for determination of soluble and insoluble dietary fiber in fruits

    Directory of Open Access Journals (Sweden)

    Nonete Barbosa Guerra

    2004-03-01

    Full Text Available OBJETIVOS: Modificações do tratamento da amostra e da seqüência operacional do método gravimétrico não enzimático foram realizadas, com vistas a simplificá-lo e permitir a quantificação das frações solúvel e insolúvel da fibra alimentar total. MÉTODOS: A influência da liofilização foi inicialmente avaliada em amostras de goiaba e, posteriormente, em acerola, manga, pinha, sapoti e uva. As modificações inerentes à seqüência metodológica foram testadas nos referidos frutos e em abacaxi, caju, maracujá e morango. RESULTADOS: As médias de fibra alimentar total obtidas para goiaba liofilizada e não liofilizada: 10,47%±1,15 e 10,53 %±0,88, respectivamente, demonstram: boa reprodutibilidade do método e inexistência de diferenças significativas entre os tratamentos aplicados à goiaba e demais frutos. Diferentemente do constatado na determinação da Fibra Alimentar Insolúvel, cujo percentual variou de 99,6% para o caju a 54,0% para a acerola, os dados gerados para a fibra alimentar solúvel foram desconsiderados, dada a dispersibilidade apresentada. CONCLUSÃO: Estes resultados evidenciam que as amostras prescindem da liofilização e que a quantificação da Fibra Alimentar Solúvel requer ajustes na etapa de precipitação.OBJETIVES: Modifications in the treatment of samples and operational sequence of the gravimetric non enzymatic method were carried out in order to simplify it and allow the quantification of soluble and insoluble quantities of the total dietary fiber. METHODS: Lyophilization influence was first evaluated in guava samples and afterward in samples of acerola, mango, sugar apples, sapodilla and grapes. The mentioned fruits and also pineapple, cashew, passion fruit and strawberry were tested for the modifications intrinsic in the methodological sequence. RESULTS: The average total dietary fiber for guava, both lyophilized and non-lyophilized, were: 10.50% ±0.97 and 10.53% ±0.88, respectively

  6. Characterization of synthetic peptides by mass spectrometry

    DEFF Research Database (Denmark)

    Prabhala, Bala Krishna; Mirza, Osman Asghar; Højrup, Peter

    2015-01-01

    Mass spectrometry (MS) is well suited for analysis of the identity and purity of synthetic peptides. The sequence of a synthetic peptide is most often known, so the analysis is mainly used to confirm the identity and purity of the peptide. Here, simple procedures are described for MALDI......-TOF-MS and LC-MS of synthetic peptides....

  7. Advanced glycation end-products inhibition improves endothelial dysfunction in rheumatoid arthritis.

    Science.gov (United States)

    Syngle, Ashit; Vohra, Kanchan; Garg, Nidhi; Kaur, Ladbans; Chand, Prem

    2012-02-01

    Chronic inflammation in rheumatoid arthritis is associated with vascular endothelial dysfunction. The objective was to study the efficacy and safety of advanced glycation end products (AGEs) inhibitor (benfotiamine 50 mg + pyridoxamine 50 mg + methylcobalamin 500 μg, Vonder(®) (ACME Lifescience, Baddi, Himachal Pradesh, India)) on endothelial function in rheumatoid arthritis (RA). Twenty-four patients with established active RA with high disease activity (Disease Activity Score of 28 joints [DAS28 score] > 5.1) despite treatment with stable doses of conventional disease-modifying antirheumatic drugs were investigated. Inflammatory disease activity (DAS28 and Health Assessment Questionnaire-Disability Index [HAQ-DI] scores, erythrocyte sedimentation rate [ESR] and C-reactive protein [CRP]), markers of endothelial dysfunction, serum nitrite concentration and endothelium-dependent and -independent vasodilation of the brachial artery were measured before and after 12 weeks therapy with twice a day oral AGEs inhibitor. After treatment, flow-mediated vasodilation improved from 9.64 ± 0.65% to 15.82 ± 1.02% (P < 0.01), whereas there was no significant change in endothelium-independent vasodilation with nitroglycerin and baseline diameter; serum nitrite concentration significantly reduced from 5.6 ± 0.13 to 5.1 ± 0.14 μmol/L (P = 0.004), ESR from 63.00 ± 3.5 to 28.08 ± 1.5 mm in the first h (P < 0.01) and CRP levels from 16.7 ± 4.1 to 10.74 ± 2.9 mg/dL (P < 0.01). DAS28 and HAQ-DI scores were significantly reduced, from 5.9 ± 0.17 to 3.9 ± 0.17 (P < 0.01) and 4.6 ± 0.17 to 1.7 ± 0.22 (P < 0.01), respectively. Advanced glycation end products inhibitor improves endothelial dysfunction and inflammatory disease activity in RA. In RA, endothelial dysfunction is part of the disease process and is mediated by AGEs-induced inflammation. © 2011 The Authors. International Journal of Rheumatic Diseases © 2011 Asia Pacific League of Associations for Rheumatology and

  8. [Relationship among glycated compounds, superoxide dismutase activities, and other related analytes in diabetic patients classified by ages].

    Science.gov (United States)

    Maehata, E; Shimomura, H; Kiyose, H; Hayashi, A; Sakagishi, Y

    1991-07-01

    Among several glycated compounds (GC) which are based on Maillard reaction, glycated hemoglobin (HbA1c) and fructosamine (FRA) have been utilized widely as a markers of diabetes. Recently, glycated albumin (GA) has been pointed out as a new indicator. For the determination of GA, spectrophotometry combined with an affinity column method has been mainly used, however the procedure is complicated. Recently a two-column HPLC method (ion-exchange column and affinity column) has been developed by Shima. We have evaluated a GA analyzer GAA-2000 based on Shima's method. After a series of fundamental and performance evaluation studies, the GAA-2000 was found to be appropriate for our study. Reference values obtained from this equipment were 10.56-16.87%. Correlation coefficients based on GA using diabetic and diabetic nephropathy patient specimens (n = 87) were: FRA (r = 0.944) greater than HbA1c (r = 0.842) greater than Glucose (r = 0.510) Superoxide dismutase (SOD) and lipid peroxidase (LPO) with are produced in relation to active oxygen did not show a good correlation. Although we tried classify the patients according to juvenile (20-39), middle (40-64) and senile (greater than 65) the method of Asada et al., we could not find any distinct tendencies.

  9. Development of a screen-printed carbon electrode based disposable enzyme sensor strip for the measurement of glycated albumin.

    Science.gov (United States)

    Hatada, Mika; Tsugawa, Wakako; Kamio, Eri; Loew, Noya; Klonoff, David C; Sode, Koji

    2017-02-15

    Glycated proteins, such as glycated hemoglobin (HbA1c) or glycated albumin (GA) in the blood, are essential indicators of glycemic control for diabetes mellitus. Since GA, compared to HbA1c, is more sensitive to short term changes in glycemic levels, GA is expected to be used as an alternative or together with HbA1c as a surrogate marker indicator for glycemic control. In this paper we report the development of a sensing system for measuring GA by combining an enzyme analysis method, which is already used in clinical practice, with electrochemical principles. We used fructosyl amino acid oxidase, hexaammineruthenium(III) chloride as the electron mediator, and an inexpensive and economically attractive screen-printed carbon electrode. We used chronoamperometry to measure protease-digested GA samples. The developed sensor strips were able to measure protease-digested samples containing GA in very small sample volumes (1.3μL) within about 1min. We also prepared enzyme sensor strips suitable for clinical use in which the enzyme and the mediator were deposited and dried on. This sensor system showed a clear correlation between the GA concentration and the resulting current. The strips were stable following 3 months of storage at 37°C. We conclude that this disposable enzyme sensor strip system for measuring GA is suitable for point-of-care test (POCT) applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Marine Peptides: Bioactivities and Applications

    Directory of Open Access Journals (Sweden)

    Randy Chi Fai Cheung

    2015-06-01

    Full Text Available Peptides are important bioactive natural products which are present in many marine species. These marine peptides have high potential nutraceutical and medicinal values because of their broad spectra of bioactivities. Their antimicrobial, antiviral, antitumor, antioxidative, cardioprotective (antihypertensive, antiatherosclerotic and anticoagulant, immunomodulatory, analgesic, anxiolytic anti-diabetic, appetite suppressing and neuroprotective activities have attracted the attention of the pharmaceutical industry, which attempts to design them for use in the treatment or prevention of various diseases. Some marine peptides or their derivatives have high commercial values and had reached the pharmaceutical and nutraceutical markets. A large number of them are already in different phases of the clinical and preclinical pipeline. This review highlights the recent research in marine peptides and the trends and prospects for the future, with special emphasis on nutraceutical and pharmaceutical development into marketed products.

  11. Cardioprotective peptides from marine sources.

    Science.gov (United States)

    Harnedy, Padraigín A; FitzGerald, Richard J

    2013-05-01

    Elevated blood pressure or hypertension is one of the fastest growing health problems worldwide. Although the etiology of essential hypertension has a genetic component, dietary factors play an important role. With the high costs and adverse side-effects associated with synthetic antihypertensive drugs and the awareness of the link between diet and health there has been increased focus on identification of food components that may contribute to cardiovascular health. In recent years special interest has been paid to the cardioprotective activity of peptides derived from food proteins including marine proteins. These peptides are latent within the sequence of the parent protein and only become active when released by proteolytic digestion during gastrointestinal digestion or through food processing. Current data on antihypertensive activity of marine-derived protein hydrolysates/peptides in animal and human studies is reviewed herein. Furthermore, products containing protein hydrolysates/peptides from marine origin with antihypertensive effects are discussed.

  12. Antimicrobial peptides from Capsicum sp.

    African Journals Online (AJOL)

    ajl yemi

    2011-12-30

    Dec 30, 2011 ... Key words: Antimicrobial peptides, Capsicum sp, Capsicum chinense, chili pepper, agronomical options, ..... of this human activity is resumed by the simple phrase: produce .... It will be interesting to scale the AMPs extraction.

  13. Production and characterization of peptide antibodies

    DEFF Research Database (Denmark)

    Trier, Nicole Hartwig; Hansen, Paul Robert; Houen, Gunnar

    2012-01-01

    Proteins are effective immunogens for generation of antibodies. However, occasionally the native protein is known but not available for antibody production. In such cases synthetic peptides derived from the native protein are good alternatives for antibody production. These peptide antibodies...... are powerful tools in experimental biology and are easily produced to any peptide of choice. A widely used approach for production of peptide antibodies is to immunize animals with a synthetic peptide coupled to a carrier protein. Very important is the selection of the synthetic peptide, where factors......, including solid-phase peptide-carrier conjugation and peptide-carrier conjugation in solution. Upon immunization, adjuvants such as Al(OH)(3) are added together with the immunogenic peptide-carrier conjugate, which usually leads to high-titred antisera. Following immunization and peptide antibody...

  14. Electro-activation of sweet defatted whey: Impact on the induced Maillard reaction products and bioactive peptides.

    Science.gov (United States)

    Kareb, Ourdia; Gomaa, Ahmed; Champagne, Claude P; Jean, Julie; Aïder, Mohammed

    2017-04-15

    Electro-activation was used to add value to sweet defatted whey. This study aimed to investigate and to characterize the bioactive compounds formed under different electro-activation conditions by molecular and proteomic approaches. The effects of electric current intensity (400, 500 or 600mA) and whey concentration (7, 14 or 21% (w/v)) as a function of the electro-activation time (0, 15, 30 or 45min) were evaluated. The targeted dependent variables were the formation of Maillard reaction products (MRPs), protein hydrolysates and glycated compounds. It was shown that the MRPs derived from electro-activated whey at a concentration of 14% had the highest potential of biological activity. SDS-PAGE analyses indicated the formation of hydrolysates and glycated compounds with different molecular weight distributions. FTIR indicated the predominance of intermediate MRPs, such as the Schiff base compounds. LC-MS/MS and proteomics analysis showed the production of multi-functional bioactive peptides due to the hydrolysis of whey proteins. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  15. Glycation in human fingernail clippings using ATR-FTIR spectrometry, a new marker for the diagnosis and monitoring of diabetes mellitus.

    Science.gov (United States)

    Coopman, Renaat; Van de Vyver, Thijs; Kishabongo, Antoine Sadiki; Katchunga, Philippe; Van Aken, Elisabeth H; Cikomola, Justin; Monteyne, Tinne; Speeckaert, Marijn M; Delanghe, Joris R

    2017-01-01

    Although HbA1c is a good diagnostic tool for diabetes, the precarity of the health system and the costs limit the use of this biomarker in developing countries. Fingernail clippings contain ±85% of keratins, which are prone to glycation. Nail keratin glycation may reflect the average glycemia over the last months. We explored if attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) can be used as a non-invasive tool for assessing glycation in diabetes. Using ATR-FTIR spectroscopy, glycation and deglycation experiments with fructosamine 3-kinase allowed to identify the spectrum that corresponds with keratin glycation in fingernail clippings. Clippings of 105 healthy subjects and 127 diabetics were subjected to the standardized ATR-FTIR spectroscopy method. In vitro glycation resulted in an increased absorption at 1047cm -1 . Following enzymatic deglycation, this peak diminished significantly, proving that the AUC between 970 and 1140cm -1 corresponded with glycated proteins. Within-run CV of the assay was 3%. Storage of nail clippings at 37°C for 2weeks did not significantly change results. In diabetics, glycated nail protein concentrations (median: 1.51μmol/g protein, IQR: 1.37-1.85μmol/g protein) were significantly higher than in the controls (median: 1.19μmol/g protein, IQR: 1.09-1.26μmol/g protein) (p<0.0001). ROC analysis yielded an AUC of 0.92 at a cut-off point of 1.28μmol/g nail (specificity: 82%; sensitivity: 90%). No correlation was observed between the glycated nail protein concentrations and HbA1c. Protein glycation analysis in fingernails with ATR-FTIR spectroscopy could be an alternative affordable technique for diagnosing and monitoring diabetes. As the test does not consume reagents, and the preanalytical phase is extremely robust, the test could be particularly useful in developing countries. Copyright © 2016 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  16. Comparative LC-MS/MS profiling of free and protein-bound early and advanced glycation-induced lysine modifications in dairy products

    International Nuclear Information System (INIS)

    Hegele, Joerg; Buetler, Timo; Delatour, Thierry

    2008-01-01

    Free and protein-bound forms of early and advanced glycation-induced lysine (Lys) modifications were quantified in dairy products by LC-MS/MS using a stable isotope dilution assay. The glycation profiles for N ε -fructoselysine (FL), N ε -carboxymethyllysine (CML) and pyrraline (Pyr) were monitored in raw and processed cow milk to investigate whether free glycation products could serve as fast and simple markers to assess the extent of protein glycation in dairy products. In all milk samples, the fraction of free glycation adducts was predominantly composed of advanced modifications, e.g. 8.34 ± 3.81 nmol CML per μmol of free Lys (Lys free ) and 81.5 ± 87.8 nmol Pyr μmol -1 Lys free -1 vs. 3.72 ± 1.29 nmol FL μmol -1 Lys free -1 . In contrast, the protein-bound early glycation product FL considerably outweighed the content of CML and Pyr in milk proteins of raw and processed cow milk, whereas severely heat treated milk products, e.g. condensed milk, contained a higher amount of protein-bound advanced glycation adducts. Typical values recorded for milk samples processed under mild conditions were 0.47 ± 0.08 nmol FL μmol -1 of protein-bound Lys (Lys p-b ), 0.04 ± 0.03 nmol CML μmol -1 Lys p-b -1 and 0.06 ± 0.02 nmol Pyr μmol -1 Lys p-b -1 . It was particularly noticeable, however, that mild heat treatment of raw milk, i.e. pasteurization and UHT treatment, did not significantly increase the amount of both free and protein-bound Lys modifications. In conclusion, the profiles of free and protein-bound glycation-induced Lys modifications were found to be different and a screening of free glycation adducts does, therefore, not allow for a conclusion about the protein glycation status of dairy products

  17. Comparative LC-MS/MS profiling of free and protein-bound early and advanced glycation-induced lysine modifications in dairy products

    Energy Technology Data Exchange (ETDEWEB)

    Hegele, Joerg [Nestle Research Centre, Nestec Ltd., Vers-chez-les-Blanc, CH-1000 Lausanne 26 (Switzerland)], E-mail: joerg.hegele@rdls.nestle.com; Buetler, Timo; Delatour, Thierry [Nestle Research Centre, Nestec Ltd., Vers-chez-les-Blanc, CH-1000 Lausanne 26 (Switzerland)

    2008-06-09

    Free and protein-bound forms of early and advanced glycation-induced lysine (Lys) modifications were quantified in dairy products by LC-MS/MS using a stable isotope dilution assay. The glycation profiles for N{sup {epsilon}}-fructoselysine (FL), N{sup {epsilon}}-carboxymethyllysine (CML) and pyrraline (Pyr) were monitored in raw and processed cow milk to investigate whether free glycation products could serve as fast and simple markers to assess the extent of protein glycation in dairy products. In all milk samples, the fraction of free glycation adducts was predominantly composed of advanced modifications, e.g. 8.34 {+-} 3.81 nmol CML per {mu}mol of free Lys (Lys{sub free}) and 81.5 {+-} 87.8 nmol Pyr {mu}mol{sup -1} Lys{sub free}{sup -1} vs. 3.72 {+-} 1.29 nmol FL {mu}mol{sup -1} Lys{sub free}{sup -1}. In contrast, the protein-bound early glycation product FL considerably outweighed the content of CML and Pyr in milk proteins of raw and processed cow milk, whereas severely heat treated milk products, e.g. condensed milk, contained a higher amount of protein-bound advanced glycation adducts. Typical values recorded for milk samples processed under mild conditions were 0.47 {+-} 0.08 nmol FL {mu}mol{sup -1} of protein-bound Lys (Lys{sub p-b}), 0.04 {+-} 0.03 nmol CML {mu}mol{sup -1} Lys{sub p-b}{sup -1} and 0.06 {+-} 0.02 nmol Pyr {mu}mol{sup -1} Lys{sub p-b}{sup -1}. It was particularly noticeable, however, that mild heat treatment of raw milk, i.e. pasteurization and UHT treatment, did not significantly increase the amount of both free and protein-bound Lys modifications. In conclusion, the profiles of free and protein-bound glycation-induced Lys modifications were found to be different and a screening of free glycation adducts does, therefore, not allow for a conclusion about the protein glycation status of dairy products.

  18. Peptides and proteins

    Energy Technology Data Exchange (ETDEWEB)

    Bachovchin, W.W.; Unkefer, C.J.

    1994-12-01

    Advances in magnetic resonance and vibrational spectroscopy make it possible to derive detailed structural information about biomolecular structures in solution. These techniques are critically dependent on the availability of labeled compounds. For example, NMR techniques used today to derive peptide and protein structures require uniformity {sup 13}C-and {sup 15}N-labeled samples that are derived biosynthetically from (U-6-{sup 13}C) glucose. These experiments are possible now because, during the 1970s, the National Stable Isotope Resource developed algal methods for producing (U-6-{sup 13}C) glucose. If NMR techniques are to be used to study larger proteins, we will need sophisticated labelling patterns in amino acids that employ a combination of {sup 2}H, {sup 13}C, and {sup 15}N labeling. The availability of these specifically labeled amino acids requires a renewed investment in new methods for chemical synthesis of labeled amino acids. The development of new magnetic resonance or vibrational techniques to elucidate biomolecular structure will be seriously impeded if we do not see rapid progress in labeling technology. Investment in labeling chemistry is as important as investment in the development of advanced spectroscopic tools.

  19. Matrix-assisted peptide synthesis on nanoparticles.

    Science.gov (United States)

    Khandadash, Raz; Machtey, Victoria; Weiss, Aryeh; Byk, Gerardo

    2014-09-01

    We report a new method for multistep peptide synthesis on polymeric nanoparticles of differing sizes. Polymeric nanoparticles were functionalized via their temporary embedment into a magnetic inorganic matrix that allows multistep peptide synthesis. The matrix is removed at the end of the process for obtaining nanoparticles functionalized with peptides. The matrix-assisted synthesis on nanoparticles was proved by generating various biologically relevant peptides. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.

  20. Material Binding Peptides for Nanotechnology

    Directory of Open Access Journals (Sweden)

    Urartu Ozgur Safak Seker

    2011-02-01

    Full Text Available Remarkable progress has been made to date in the discovery of material binding peptides and their utilization in nanotechnology, which has brought new challenges and opportunities. Nowadays phage display is a versatile tool, important for the selection of ligands for proteins and peptides. This combinatorial approach has also been adapted over the past decade to select material-specific peptides. Screening and selection of such phage displayed material binding peptides has attracted great interest, in particular because of their use in nanotechnology. Phage display selected peptides are either synthesized independently or expressed on phage coat protein. Selected phage particles are subsequently utilized in the synthesis of nanoparticles, in the assembly of nanostructures on inorganic surfaces, and oriented protein immobilization as fusion partners of proteins. In this paper, we present an overview on the research conducted on this area. In this review we not only focus on the selection process, but also on molecular binding characterization and utilization of peptides as molecular linkers, molecular assemblers and material synthesizers.

  1. Advanced glycation end products (AGEs) and their receptor (RAGE) induce apoptosis of periodontal ligament fibroblasts

    International Nuclear Information System (INIS)

    Li, D.X.; Deng, T.Z.; Lv, J.; Ke, J.

    2014-01-01

    Diabetics have an increased prevalence of periodontitis, and diabetes is one of the causative factors of severe periodontitis. Apoptosis is thought to be involved in this pathogenic relationship. The aim of this study was to investigate apoptosis in human periodontal ligament (PDL) fibroblasts induced by advanced glycation end products (AGEs) and their receptor (RAGE). We examined the roles of apoptosis, AGEs, and RAGE during periodontitis in diabetes mellitus using cultured PDL fibroblasts that were treated by AGE-modified bovine serum albumin (AGE-BSA), bovine serum albumin (BSA) alone, or given no treatment (control). Microscopy and real-time quantitative PCR indicated that PDL fibroblasts treated with AGE-BSA were deformed and expressed higher levels of RAGE and caspase 3. Cell viability assays and flow cytometry indicated that AGE-BSA reduced cell viability (69.80±5.50%, P<0.01) and increased apoptosis (11.31±1.73%, P<0.05). Hoechst 33258 staining and terminal-deoxynucleotidyl transferase-mediated nick-end labeling revealed that AGE-BSA significantly increased apoptosis of PDL fibroblasts. The results showed that the changes in PDL fibroblasts induced by AGE-BSA may explain how AGE-RAGE participates in and exacerbates periodontium destruction

  2. Receptor for advanced glycation endproducts (RAGE maintains pulmonary structure and regulates the response to cigarette smoke.

    Directory of Open Access Journals (Sweden)

    Lisa Wolf

    Full Text Available The receptor for advanced glycation endproducts (RAGE is highly expressed in the lung but its physiological functions in this organ is still not completely understood. To determine the contribution of RAGE to physiological functions of the lung, we analyzed pulmonary mechanics and structure of wildtype and RAGE deficient (RAGE-/- mice. RAGE deficiency spontaneously resulted in a loss of lung structure shown by an increased mean chord length, increased respiratory system compliance, decreased respiratory system elastance and increased concentrations of serum protein albumin in bronchoalveolar lavage fluids. Pulmonary expression of RAGE was mainly localized on alveolar epithelial cells and alveolar macrophages. Primary murine alveolar epithelial cells isolated from RAGE-/- mice revealed an altered differentiation and defective barrier formation under in vitro conditions. Stimulation of interferone-y (IFNy-activated alveolar macrophages deficient for RAGE with Toll-like receptor (TLR ligands resulted in significantly decreased release of proinflammatory cytokines and chemokines. Exposure to chronic cigarette smoke did not affect emphysema-like changes in lung parenchyma in RAGE-/- mice. Acute cigarette smoke exposure revealed a modified inflammatory response in RAGE-/- mice that was characterized by an influx of macrophages and a decreased keratinocyte-derived chemokine (KC release. Our data suggest that RAGE regulates the differentiation of alveolar epithelial cells and impacts on the development and maintenance of pulmonary structure. In cigarette smoke-induced lung pathology, RAGE mediates inflammation that contributes to lung damage.

  3. Sesamin Ameliorates Advanced Glycation End Products-Induced Pancreatic β-Cell Dysfunction and Apoptosis

    Directory of Open Access Journals (Sweden)

    Xiang Kong

    2015-06-01

    Full Text Available Advanced glycation end products (AGEs, the direct modulators of β-cells, have been shown to cause insulin-producing β-cell dysfunction and apoptosis through increase of intracellular reactive oxygen species (ROS production. Sesamin has been demonstrated to possess antioxidative activity. This study was designed to investigate whether sesamin protects against AGEs-evoked β-cell damage via its antioxidant property. The effects of sesamin were examined in C57BL/6J mice and MIN6 cell line. In in vivo studies, mice were intraperitoneally injected with AGEs (120 mg/kg and orally treated with sesamin (160 mg/kg for four weeks. Intraperitoneal glucose tolerance and insulin releasing tests were performed. Insulin content, ROS generation and β-cell apoptosis in pancreatic islets were also measured. In in vitro studies, MIN6 cells were pretreated with sesamin (50 or 100 μM and then exposed to AGEs (200 mg/L for 24 h. Insulin secretion, β-cell death, ROS production as well as expression and activity of NADPH oxidase were determined. Sesamin treatment obviously ameliorated AGE-induced β-cell dysfunction and apoptosis both in vivo and in vitro. These effects were associated with decreased ROS production, down-regulated expression of p67phox and p22phox, and reduced NADPH oxidase activity. These results suggest that sesamin protects β-cells from damage caused by AGEs through suppressing NADPH oxidase-mediated oxidative stress.

  4. Measuring glycated haemoglobin in women with gestational diabetes mellitus: How useful is it?

    Science.gov (United States)

    Wong, Vincent W; Chong, Shanley; Mediratta, Sahil; Jalaludin, Bin

    2017-06-01

    Glycated haemoglobin (HbA1c) is an important tool for assessing glycaemic status in patients with diabetes, but its usefulness in gestational diabetes mellitus (GDM), is unclear. The aim of this study is to evaluate whether HbA1c in women with GDM is valuable in predicting adverse pregnancy outcomes. A retrospective review of women with GDM who had HbA1c measured at diagnosis of GDM (GHb-diag) and at 36 weeks gestation (GHb-36 weeks) was conducted. The association between HbA1c and various pregnancy outcomes was assessed RESULTS: Among 1244 women with GDM in our cohort, both GHb-diag and GHb-36 weeks were independent predictors for large-for-gestation (LGA) babies (OR 1.06, P = 0.005 and OR 1.06, P = 0.002, respectively) and neonatal hypoglycaemia (OR 1.10, P 5.4% or 35 mmol/mol) at diagnosis of GDM should be monitored closely during pregnancy. However, there is not enough evidence to suggest that repeating HbA1c toward the end of pregnancy will provide additional information in predicting adverse pregnancy outcomes. © 2016 The Royal Australian and New Zealand College of Obstetricians and Gynaecologists.

  5. Advanced glycation endproducts in 35 types of seafood products consumed in eastern China

    Science.gov (United States)

    Wang, Jing; Li, Zhenxing; Pavase, Ramesh Tushar; Lin, Hong; Zou, Long; Wen, Jie; Lv, Liangtao

    2016-08-01

    Advanced glycation endproducts (AGEs) have been recognized as hazards in processed foods that can induce chronic diseases such as cardiovascular disease, diabetes, and diabetic nephropathy. In this study, we investigated the AGEs contents of 35 types of industrial seafood products that are consumed frequently in eastern China. Total fluorescent AGEs level and Nɛ-carboxymethyl-lysine (CML) content were evaluated by fluorescence spectrophotometry and gas chromatography-mass spectrometry (GC-MS), respectively. The level of total fluorescent AGEs in seafood samples ranged from 39.37 to 1178.3 AU, and was higher in canned and packaged instant aquatic products that were processed at high temperatures. The CML content in seafood samples ranged from 44.8 to 439.1 mg per kg dried sample, and was higher in roasted seafood samples. The total fluorescent AGEs and CML content increased when seafood underwent high-temperature processing, but did not show an obvious correlation. The present study suggested that commonly consumed seafood contains different levels of AGEs, and the seafood processed at high temperatures always displays a high level of either AGEs or CML.

  6. Association between advanced glycation end-products and functional performance in Alzheimer's disease and mixed dementia.

    Science.gov (United States)

    Drenth, Hans; Zuidema, Sytse U; Krijnen, Wim P; Bautmans, Ivan; van der Schans, Cees; Hobbelen, Hans

    2017-09-01

    People with Alzheimer's disease (AD) experience, in addition to the progressive loss of cognitive functions, a decline in functional performance such as mobility impairment and disability in activities of daily living (ADL). Functional decline in dementia is mainly linked to the progressive brain pathology. Peripheral biomechanical changes by advanced glycation end-products (AGEs) have been suggested but have yet to be thoroughly studied. A multi-center, longitudinal, one-year follow-up cohort study was conducted in 144 people with early stage AD or mixed Alzheimer's/Vascular dementia. Linear mixed model analyses was used to study associations between AGE-levels (AGE reader) and mobility (Timed Up and Go), and ADL (Groningen Activity Restriction Scale and Barthel index), respectively. A significant association between AGE levels and mobility (β = 3.57, 95%CI: 1.43-5.73) was revealed; however, no significant association between AGE levels and ADL was found. Over a one-year time span, mean AGE levels significantly increased, and mobility and ADL performance decreased. Change in AGE levels was not significantly correlated with change in mobility. This study indicates that high AGE levels could be a contributing factor to impaired mobility but lacks evidence for an association with ADL decline in people with early stage AD or mixed dementia. Future research is necessary on the reduction of functional decline in dementia regarding the effectiveness of interventions such as physical activity programs and dietary advice possibly in combination with pharmacologic strategies targeting AGE accumulation.

  7. Enhanced Formation of Methylglyoxal-Derived Advanced Glycation End Products in Arabidopsis Under Ammonium Nutrition

    Directory of Open Access Journals (Sweden)

    Klaudia Borysiuk

    2018-05-01

    Full Text Available Nitrate (NO3– and ammonium (NH4+ are prevalent nitrogen (N sources for plants. Although NH4+ should be the preferred form of N from the energetic point of view, ammonium nutrition often exhibits adverse effects on plant physiological functions and induces an important growth-limiting stress referred as ammonium syndrome. The effective incorporation of NH4+ into amino acid structures requires high activity of the mitochondrial tricarboxylic acid cycle and the glycolytic pathway. An unavoidable consequence of glycolytic metabolism is the production of methylglyoxal (MG, which is very toxic and inhibits cell growth in all types of organisms. Here, we aimed to investigate MG metabolism in Arabidopsis thaliana plants grown on NH4+ as a sole N source. We found that changes in activities of glycolytic enzymes enhanced MG production and that markedly elevated MG levels superseded the detoxification capability of the glyoxalase pathway. Consequently, the excessive accumulation of MG was directly involved in the induction of dicarbonyl stress by introducing MG-derived advanced glycation end products (MAGEs to proteins. The severe damage to proteins was not within the repair capacity of proteolytic enzymes. Collectively, our results suggest the impact of MG (mediated by MAGEs formation in proteins in the contribution to NH4+ toxicity symptoms in Arabidopsis.

  8. The Inhibitory Effect of Prunella vulgaris L. on Aldose Reductase and Protein Glycation

    Directory of Open Access Journals (Sweden)

    Hong Mei Li

    2012-01-01

    Full Text Available To evaluate the aldose reductase (AR enzyme inhibitory ability of Prunella vulgaris L. extract, six compounds were isolated and tested for their effects. The components were subjected to in vitro bioassays to investigate their inhibitory assays using rat lens aldose reductase (rAR and human recombinant AR (rhAR. Among them, caffeic acid ethylene ester showed the potent inhibition, with the IC50 values of rAR and rhAR at 3.2±0.55 μM and 12.58±0.32 μM, respectively. In the kinetic analyses using Lineweaver-Burk plots of 1/velocity and 1/concentration of substrate, this compound showed noncompetitive inhibition against rhAR. Furthermore, it inhibited galactitol formation in a rat lens incubated with a high concentration of galactose. Also it has antioxidative as well as advanced glycation end products (AGEs inhibitory effects. As a result, this compound could be offered as a leading compound for further study as a new natural products drug for diabetic complications.

  9. Total soluble and endogenous secretory receptor for advanced glycation endproducts (RAGE) in IBD.

    Science.gov (United States)

    Meijer, Berrie; Hoskin, Teagan; Ashcroft, Anna; Burgess, Laura; Keenan, Jacqueline I; Falvey, James; Gearry, Richard B; Day, Andrew S

    2014-06-01

    Recruitment and activation of neutrophils, with release of specific proteins such as S100 proteins, is a feature of inflammatory bowel disease (IBD). Soluble forms of the receptor for advanced glycation endproducts (sRAGE), and variants such as endogenous secretory (esRAGE), can act as decoy receptors by binding ligands, including S100A12. The aims of this study were to determine total sRAGE and esRAGE concentrations in patients with IBD and correlate these with C-reactive protein (CRP), endoscopic scores and clinical disease activity scores. EDTA-plasma was collected from patients undergoing colonoscopy including those with Crohn's disease (CD: n=125), ulcerative colitis (UC: n=79) and control patients without endoscopic signs of inflammation (non-IBD: n=156). Concentrations of sRAGE and esRAGE were determined by enzyme-linked immunosorbent assay and plasma CRP concentrations measured. Standard clinical disease activity and endoscopic severity scores were defined for all subjects. Plasma sRAGE concentrations were lower in UC (but not CD) than non-IBD subjects (pdefine the significance of sRAGE and esRAGE in IBD. Copyright © 2013 European Crohn's and Colitis Organisation. Published by Elsevier B.V. All rights reserved.

  10. Elevated glycated hemoglobin predicts macrosomia among Asian Indian pregnant women (WINGS-9).

    Science.gov (United States)

    Bhavadharini, Balaji; Mahalakshmi, Manni Mohanraj; Deepa, Mohan; Harish, Ranjani; Malanda, Belma; Kayal, Arivudainambi; Belton, Anne; Saravanan, Ponnusamy; Ranjit, Unnikrishnan; Uma, Ram; Anjana, Ranjit Mohan; Mohan, Viswanathan

    2017-01-01

    The aim of this study was to determine the optimal glycated hemoglobin (HbA1c) cut point for diagnosis of gestational diabetes mellitus (GDM) and to evaluate the usefulness of HbA1c as a prognostic indicator for adverse pregnancy outcomes. HbA1c estimations were carried out in 1459 pregnant women attending antenatal care centers in urban and rural Tamil Nadu in South India. An oral glucose tolerance test was carried out using 75 g anhydrous glucose, and GDM was diagnosed using the International Association of the Diabetes and Pregnancy Study Groups criteria. GDM was diagnosed in 195 women. Receiver operating curves showed a HbA1c cut point of ≥ 5.0% (≥31 mmol/mol) have a sensitivity of 66.2% and specificity of 56.2% for identifying GDM (area under the curve 0.679, confidence interval [CI]: 0.655-0.703). Women with HbA1c ≥ 5.0% (≥31 mmol/mol) were significantly older and had higher body mass index, greater history of previous GDM, and a higher prevalence of macrosomia compared to women with HbA1c Indian pregnant women, a HbA1c of 5.0% (31 mmol/mol) or greater is associated with increased risk of macrosomia.

  11. Advanced glycation end-products: a biological consequence of lifestyle contributing to cancer disparity.

    Science.gov (United States)

    Turner, David P

    2015-05-15

    Low income, poor diet, obesity, and a lack of exercise are interrelated lifestyle factors that can profoundly alter our biologic make up to increase cancer risk, growth, and development. We recently reported a potential mechanistic link between carbohydrate-derived metabolites and cancer, which may provide a biologic consequence of lifestyle that can directly affect tumor biology. Advanced glycation end-products (AGE) are reactive metabolites produced as a by-product of sugar metabolism. Failure to remove these highly reactive metabolites can lead to protein damage, aberrant cell signaling, increased stress responses, and decreased genetic fidelity. Critically, AGE accumulation is also directly affected by our lifestyle choices and shows a race-specific, tumor-dependent pattern of accumulation in cancer patients. This review will discuss the contribution of AGEs to the cancer phenotype, with a particular emphasis on their biologic links with the socioeconomic and environmental risk factors that drive cancer disparity. Given the potential benefits of lifestyle changes and the potential biologic role of AGEs in promoting cancer, opportunities exist for collaborations affecting basic, translational, epidemiologic, and cancer prevention initiatives. ©2015 American Association for Cancer Research.

  12. Advanced glycation end products assessed by skin autofluorescence: a new marker of diabetic foot ulceration.

    Science.gov (United States)

    Vouillarmet, Julien; Maucort-Boulch, Delphine; Michon, Paul; Thivolet, Charles

    2013-07-01

    Accumulation of advanced glycation end products (AGEs) may contribute to diabetic foot ulceration (DFU). Our goal was to determine whether AGEs measurement by skin autofluorescence (SAF) would be an additional marker for DFU management. We performed SAF analysis in 66 patients with a history of DFU prospectively included and compared the results with those of 84 control patients with diabetic peripheral neuropathy without DFU. We then assessed the prognostic value of SAF levels on the healing rate in the DFU group. Mean SAF value was significantly higher in the DFU group in comparison with the control group, even after adjustment for other diabetes complications (3.2±0.6 arbitrary units vs. 2.9±0.6 arbitrary units; P=0.001). In the DFU group, 58 (88%) patients had an active wound at inclusion. The mean DFU duration was 14±13 weeks. The healing rate was 47% after 2 months of appropriate foot care. A trend for a correlation between SAF levels and healing time in DFU subjects was observed but was not statistically significant (P=0.06). Increased SAF levels are associated with neuropathic foot complications in diabetes. Use of SAF measurement to assess foot vulnerability and to predict DFU events in high-risk patients appears to be promising.

  13. Update on Mechanisms of Renal Tubule Injury Caused by Advanced Glycation End Products

    Directory of Open Access Journals (Sweden)

    Hong Sun

    2016-01-01

    Full Text Available Diabetic nephropathy (DN caused by advanced glycation end products (AGEs may be associated with lipid accumulation in the kidneys. This study was designed to investigate whether Nε-(carboxymethyl lysine (CML, a member of the AGEs family increases lipid accumulation in a human renal tubular epithelial cell line (HK-2 via increasing cholesterol synthesis and uptake and reducing cholesterol efflux through endoplasmic reticulum stress (ERS. Our results showed that CML disrupts cholesterol metabolism in HK-2 cells by activating sterol regulatory element-binding protein 2 (SREBP-2 and liver X receptor (LXR, followed by an increase in 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG-CoAR mediated cholesterol synthesis and low density lipoprotein receptor (LDLr mediated cholesterol uptake and a reduction in ATP-binding cassette transporter A1 (ABCA1 mediated cholesterol efflux, ultimately causing lipid accumulation in HK-2 cells. All of these responses could be suppressed by an ERS inhibitor, which suggests that CML causes lipid accumulation in renal tubule cells through ERS and that the inhibition of ERS is a potential novel approach to treating CML-induced renal tubular foam cell formation.

  14. Evidence that L-Arginine inhibits glycation of human serum albumin (HSA) in vitro

    International Nuclear Information System (INIS)

    Servetnick, D.A.; Wiesenfeld, P.L.; Szepesi, B.

    1990-01-01

    Previous work by Brownlee has shown that glycation of bovine serum albumin can be reduced in the presence of aminoguanidine (AG). Presumably, the guanidinium group on AG interferes with further rearrangement of amadori products to advanced glycosylated end products (AGE). Since L-arginine (ARG) also contains a guanidinium group, its ability to inhibit the formation of AGE products was investigated. HSA was incubated at 37 degrees C in the presence or absence of glucose; with glucose and fructose; or with sugars in the presence or absence of ARG or AG. A tracer amount of U- 14 C-glucose was added to each tube containing sugars. Protein bound glucose was separated from unreacted glucose by gel filtration. Radioactivity, total protein, fluorescence, and glucose concentration were measured. Preliminary data show enhanced binding of 14 C-glucose to HSA with fructose at all time points. A 30-40% decrease in 14 C-glucose incorporation was observed when ARG or AG as present. ARG and AG were equally effective in inhibiting incorporation of 14 C-glucose. FPLC analysis is in progress to determine the type and degree of HSA crosslinking during the 2 week incubation period

  15. Advanced glycation end products affect cholesterol homeostasis by impairing ABCA1 expression on macrophages.

    Science.gov (United States)

    Kamtchueng Simo, Olivier; Ikhlef, Souade; Berrougui, Hicham; Khalil, Abdelouahed

    2017-08-01

    Reverse cholesterol transport (RCT), which is intimately linked to high-density lipoproteins (HDLs), plays a key role in cholesterol homeostasis and the prevention of atherosclerosis. The goal of the present study was to investigate the effect of aging and advanced glycation end products (AGEs) on RCT as well as on other factors that may affect the antiatherogenic property of HDLs. The transfer of macrophage-derived cholesterol to the plasma and liver and then to the feces for elimination was significantly lower in aged mice than in young mice. Chronic injection of d -galactose (D-gal) or AGEs also significantly reduced RCT (65.3% reduction in [ 3 H]cholesterol levels in the plasma of D-gal-treated mice after 48 h compared with control mice, P cholesterol levels in the plasma, although the levels were lower than those of control mice. The in vitro incubation of HDLs with dicarbonyl compounds increased the carbonyl and conjugated diene content of HDLs and significantly reduced PON1 paraoxonase activity (87.4% lower than control HDLs, P cholesterol (69.1% decrease, P < 0.0001). Our results showed, for the first time, that RCT is altered with aging and that AGEs contribute significantly to this alteration.

  16. Association between blood glucose level derived using the oral glucose tolerance test and glycated hemoglobin level.

    Science.gov (United States)

    Kim, Hyoung Joo; Kim, Young Geon; Park, Jin Soo; Ahn, Young Hwan; Ha, Kyoung Hwa; Kim, Dae Jung

    2016-05-01

    Glycated hemoglobin (HbA1c) is widely used as a marker of glycemic control. Translation of the HbA1c level to an average blood glucose level is useful because the latter figure is easily understood by patients. We studied the association between blood glucose levels revealed by the oral glucose tolerance test (OGTT) and HbA1c levels in a Korean population. A total of 1,000 subjects aged 30 to 64 years from the Cardiovascular and Metabolic Diseases Etiology Research Center cohort were included. Fasting glucose levels, post-load glucose levels at 30, 60, and 120 minutes into the OGTT, and HbA1c levels were measured. Linear regression of HbA1c with mean blood glucose levels derived using the OGTT revealed a significant correlation between these measures (predicted mean glucose [mg/dL] = 49.4 × HbA1c [%] - 149.6; R (2) = 0.54, p Glucose (ADAG) study and Diabetes Control and Complications Trial (DCCT) cohort. Discrepancies between our results and those of the ADAG study and DCCT cohort may be attributable to differences in the test methods used and the extent of insulin secretion. More studies are needed to evaluate the association between HbA1c and self monitoring blood glucose levels.

  17. Advanced glycation end products delay corneal epithelial wound healing through reactive oxygen species generation.

    Science.gov (United States)

    Shi, Long; Chen, Hongmei; Yu, Xiaoming; Wu, Xinyi

    2013-11-01

    Delayed healing of corneal epithelial wounds is a serious complication in diabetes. Advanced glycation end products (AGEs) are intimately associated with the diabetic complications and are deleterious to the wound healing process. However, the effect of AGEs on corneal epithelial wound healing has not yet been evaluated. In the present study, we investigated the effect of AGE-modified bovine serum albumin (BSA) on corneal epithelial wound healing and its underlying mechanisms. Our data showed that AGE-BSA significantly increased the generation of intracellular ROS in telomerase-immortalized human corneal epithelial cells. However, the generation of intracellular ROS was completely inhibited by antioxidant N-acetylcysteine (NAC), anti-receptor of AGEs (RAGE) antibodies, or the inhibitor of NADPH oxidase. Moreover, AGE-BSA increased NADPH oxidase activity and protein expression of NADPH oxidase subunits, p22phox and Nox4, but anti-RAGE antibodies eliminated these effects. Furthermore, prevention of intracellular ROS generation using NAC or anti-RAGE antibodies rescued AGE-BSA-delayed epithelial wound healing in porcine corneal organ culture. In conclusion, our results demonstrated that AGE-BSA impaired corneal epithelial wound healing ex vivo. AGE-BSA increased intracellular ROS generation through NADPH oxidase activation, which accounted for the delayed corneal epithelial wound healing. These results may provide better insights for understanding the mechanism of delayed healing of corneal epithelial wounds in diabetes.

  18. Glycated albumin is set lower in relation to plasma glucose levels in patients with Cushing's syndrome.

    Science.gov (United States)

    Kitamura, Tetsuhiro; Otsuki, Michio; Tamada, Daisuke; Tabuchi, Yukiko; Mukai, Kosuke; Morita, Shinya; Kasayama, Soji; Shimomura, Iichiro; Koga, Masafumi

    2013-09-23

    Glycated albumin (GA) is an indicator of glycemic control, which has some specific characters in comparison with HbA1c. Since glucocorticoids (GC) promote protein catabolism including serum albumin, GC excess state would influence GA levels. We therefore investigated GA levels in patients with Cushing's syndrome. We studied 16 patients with Cushing's syndrome (8 patients had diabetes mellitus and the remaining 8 patients were non-diabetic). Thirty-two patients with type 2 diabetes mellitus and 32 non-diabetic subjects matched for age, sex and BMI were used as controls. In the patients with Cushing's syndrome, GA was significantly correlated with HbA1c, but the regression line shifted downwards as compared with the controls. The GA/HbA1c ratio in the patients with Cushing's syndrome was also significantly lower than the controls. HbA1c in the non-diabetic patients with Cushing's syndrome was not different from the non-diabetic controls, whereas GA was significantly lower. In 7 patients with Cushing's syndrome who performed self-monitoring of blood glucose, the measured HbA1c was matched with HbA1c estimated from mean blood glucose, whereas the measured GA was significantly lower than the estimated GA. We clarified that GA is set lower in relation to plasma glucose levels in patients with Cushing's syndrome. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Clearance kinetics and matrix binding partners of the receptor for advanced glycation end products.

    Directory of Open Access Journals (Sweden)

    Pavle S Milutinovic

    Full Text Available Elucidating the sites and mechanisms of sRAGE action in the healthy state is vital to better understand the biological importance of the receptor for advanced glycation end products (RAGE. Previous studies in animal models of disease have demonstrated that exogenous sRAGE has an anti-inflammatory effect, which has been reasoned to arise from sequestration of pro-inflammatory ligands away from membrane-bound RAGE isoforms. We show here that sRAGE exhibits in vitro binding with high affinity and reversibly to extracellular matrix components collagen I, collagen IV, and laminin. Soluble RAGE administered intratracheally, intravenously, or intraperitoneally, does not distribute in a specific fashion to any healthy mouse tissue, suggesting against the existence of accessible sRAGE sinks and receptors in the healthy mouse. Intratracheal administration is the only effective means of delivering exogenous sRAGE to the lung, the organ in which RAGE is most highly expressed; clearance of sRAGE from lung does not differ appreciably from that of albumin.

  20. K88 Fimbrial Adhesin Targeting of Microspheres Containing Gentamicin Made with Albumin Glycated with Lactose

    Directory of Open Access Journals (Sweden)

    Andre-i Sarabia-Sainz

    2015-09-01

    Full Text Available The formulation and characterization of gentamicin-loaded microspheres as a delivery system targeting enterotoxigenic Escherichia coli K88 (E. coli K88 was investigated. Glycated albumin with lactose (BSA-glucose-β (4-1 galactose was used as the microsphere matrix (MS-Lac and gentamicin included as the transported antibiotic. The proposed target strategy was that exposed galactoses of MS-Lac could be specifically recognized by E. coli K88 adhesins, and the delivery of gentamicin would inhibit bacterial growth. Lactosylated microspheres (MS-Lac1, MS-Lac2 and MS-Lac3 were obtained using a water-in-oil emulsion, containing gentamicin, followed by crosslinking with different concentrations of glutaraldehyde. Electron microscopy displayed spherical particles with a mean size of 10–17 µm. In vitro release of gentamicin from MS-Lac was best fitted to a first order model, and the antibacterial activity of encapsulated and free gentamicin was comparable. MS-Lac treatments were recognized by plant galactose-specific lectins from Ricinus communis and Sophora japonica and by E. coli K88 adhesins. Results indicate MS-Lac1, produced with 4.2 mg/mL of crosslinker, as the best treatment and that lactosylated microsphere are promising platforms to obtain an active, targeted system against E. coli K88 infections.

  1. Isotope effects in the non enzymic glycation of hemoglobin catalyzed by DPG

    International Nuclear Information System (INIS)

    Gil, Herminia; Uzcategui, Jorge

    1993-01-01

    The paradigmatic reaction of glucose with hemoglobin (Hb A o ) has been studied and is known to occur most rapidly at the N-terminal valine of the β-subunit. An initial, rapid imine formation is succeeded by slower Amadori rearrangement. Non enzymic glycation of Hb A o was studied in vitro in buffer Tris 10 mM in H 2 O and D 2 O, pH 7.3, pD 7.8 at 37 deg C at a fixed concentration of 2,3 diphosphoglycerate (DPG). The reaction exhibits identical rates in protium and deuterium oxides. When D-glucose-2-h is compared with D-glucose-2-d, the kinetic isotope effect for the DPG-dependent rate is 2.1 ± 0.3, while the DPG-independent rate constant shows no isotope effect (1.1 ± 0.1). The absence of a rate in isotopic water solvents shows that proton donation for solvent, lyons or DPG does not limit the rate. The substrate isotope effect of around 2 for the DPG kinetic term indicates that the proton abstraction step of the Amadori rearrangement by DPG is wholly or partially rate-limiting for this reaction. (author)

  2. Stability and reliability of glycated haemoglobin measurements in blood samples stored at -20°C.

    Science.gov (United States)

    Venkataraman, Vijayachandrika; Anjana, Ranjit Mohan; Pradeepa, Rajendra; Deepa, Mohan; Jayashri, Ramamoorthy; Anbalagan, Viknesh Prabu; Akila, Bridgitte; Madhu, Sri Venkata; Lakshmy, Ramakrishnan; Mohan, Viswanathan

    2016-01-01

    To validate the stability of glycated haemoglobin (HbA1c) measurements in blood samples stored at -20°C for up to one month. The study group comprised 142 type 2 diabetic subjects visiting a tertiary centre for diabetes at Chennai city in south India. The HbA1c assay was done on a fasting blood sample using the Bio-Rad Variant machine on Day 0 (day of blood sample collection). Several aliquots were stored at -20°C and the assay was repeated on the 3rd, 7th, 15th, and 30th day after the sample collection. Bland-Altman plots were constructed and variation in the HbA1c levels on the different days was compared with the day 0 level. The median differences between HbA1c levels measured on Day 0 and the 3rd, 7th, 15th, and 30th day after blood collection were 0.0%, 0.2%, 0.3% and 0.5% respectively. Bland-Altman plot analysis showed that the differences between the day '0' and the different time points tend to get larger with time, but these were not clinically significant. HbA1c levels are relatively stable up to 2weeks, if blood samples are stored at -20°C. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Activation of NLRP3 Inflammasome by Advanced Glycation End Products Promotes Pancreatic Islet Damage

    Directory of Open Access Journals (Sweden)

    Xiang Kong

    2017-01-01

    Full Text Available Accumulation of advanced glycation end products (AGEs contributes to ageing and age-related diseases, especially type 2 diabetes. The NLRP3 inflammasome, as a vital component of the innate immune system, is implicated in the pathogenesis of type 2 diabetes. However, the role of the NLRP3 inflammasome in AGE-induced pancreatic islet damage remains largely unclear. Results showed that administration of AGEs (120 mg/kg for 6 weeks in C57BL/6J mice induced an abnormal response to glucose (as measured by glucose tolerance and insulin release, pancreatic β-cell ultrastructural lesion, and cell death. These effects were associated with an excessive superoxide anion level, significant increased protein expression levels for NADPH oxidase 2 (NOX2, thioredoxin-interacting protein (TXNIP, NLRP3, and cleaved IL-1β, enhanced caspase-1 activity, and a significant increase in the levels of TXNIP–NLRP3 protein interaction. Ablation of the NLRP3 inflammasome or treatment with antioxidant N-acetyl-cysteine (NAC clearly ameliorated these effects. In conclusion, our results reveal a possible mechanism for AGE-induced pancreatic islet damage upon NLRP3 inflammasome activation.

  4. Enhanced Formation of Methylglyoxal-Derived Advanced Glycation End Products in Arabidopsis Under Ammonium Nutrition

    Science.gov (United States)

    Borysiuk, Klaudia; Ostaszewska-Bugajska, Monika; Vaultier, Marie-Noëlle; Hasenfratz-Sauder, Marie-Paule; Szal, Bożena

    2018-01-01

    Nitrate (NO3–) and ammonium (NH4+) are prevalent nitrogen (N) sources for plants. Although NH4+ should be the preferred form of N from the energetic point of view, ammonium nutrition often exhibits adverse effects on plant physiological functions and induces an important growth-limiting stress referred as ammonium syndrome. The effective incorporation of NH4+ into amino acid structures requires high activity of the mitochondrial tricarboxylic acid cycle and the glycolytic pathway. An unavoidable consequence of glycolytic metabolism is the production of methylglyoxal (MG), which is very toxic and inhibits cell growth in all types of organisms. Here, we aimed to investigate MG metabolism in Arabidopsis thaliana plants grown on NH4+ as a sole N source. We found that changes in activities of glycolytic enzymes enhanced MG production and that markedly elevated MG levels superseded the detoxification capability of the glyoxalase pathway. Consequently, the excessive accumulation of MG was directly involved in the induction of dicarbonyl stress by introducing MG-derived advanced glycation end products (MAGEs) to proteins. The severe damage to proteins was not within the repair capacity of proteolytic enzymes. Collectively, our results suggest the impact of MG (mediated by MAGEs formation in proteins) in the contribution to NH4+ toxicity symptoms in Arabidopsis. PMID:29881392

  5. Aptasensor based optical detection of glycated albumin for diabetes mellitus diagnosis

    Science.gov (United States)

    Ghosh, Shreya; Datta, Debopam; Cheema, Mehar; Dutta, Mitra; Stroscio, Michael A.

    2017-10-01

    Glycated albumin (GA) has been reported as an important biomarker for diabetes mellitus. This study investigates an optical sensor comprised of deoxyribonucleic acid (DNA) aptamer, semiconductor quantum dot and gold (Au) nanoparticle for the detection of GA. The system functions as a ‘turn on’ sensor because an increase in photoluminescence intensity is observed upon the addition of GA to the sensor. This is possibly because of the structure of the DNA aptamer, which folds to form a large hairpin loop before the addition of the analyte and is assumed to open up after the addition of target to the sensor in order to bind to GA. This pushes the quantum dot and the Au nanoparticle away causing an increase in photoluminescence. A linear increase in photoluminescence intensity and quenching efficiency of the sensor is observed as the GA concentration is varied between 0-14 500 nM. Time based photoluminescence studies with the sensor show the decrease in binding rate of the aptamer to the target within a specific time period. The sensor was found to have a higher selectivity towards GA than other control proteins. Further investigation of this simple sensor with greater number of clinical samples can open up avenues for an efficient diagnosis and monitoring of diabetes mellitus when used in conjunction with the traditional method of glucose level monitoring.

  6. Advanced glycation end products (AGEs) and their receptor (RAGE) induce apoptosis of periodontal ligament fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Li, D.X.; Deng, T.Z.; Lv, J.; Ke, J. [Department of Stomatology, Air Force General Hospital PLA, Haidian District, Beijing (China)

    2014-09-19

    Diabetics have an increased prevalence of periodontitis, and diabetes is one of the causative factors of severe periodontitis. Apoptosis is thought to be involved in this pathogenic relationship. The aim of this study was to investigate apoptosis in human periodontal ligament (PDL) fibroblasts induced by advanced glycation end products (AGEs) and their receptor (RAGE). We examined the roles of apoptosis, AGEs, and RAGE during periodontitis in diabetes mellitus using cultured PDL fibroblasts that were treated by AGE-modified bovine serum albumin (AGE-BSA), bovine serum albumin (BSA) alone, or given no treatment (control). Microscopy and real-time quantitative PCR indicated that PDL fibroblasts treated with AGE-BSA were deformed and expressed higher levels of RAGE and caspase 3. Cell viability assays and flow cytometry indicated that AGE-BSA reduced cell viability (69.80±5.50%, P<0.01) and increased apoptosis (11.31±1.73%, P<0.05). Hoechst 33258 staining and terminal-deoxynucleotidyl transferase-mediated nick-end labeling revealed that AGE-BSA significantly increased apoptosis of PDL fibroblasts. The results showed that the changes in PDL fibroblasts induced by AGE-BSA may explain how AGE-RAGE participates in and exacerbates periodontium destruction.

  7. Efficacy of benfotiamine versus thiamine on function and glycation products of peripheral nerves in diabetic rats.

    Science.gov (United States)

    Stracke, H; Hammes, H P; Werkmann, D; Mavrakis, K; Bitsch, I; Netzel, M; Geyer, J; Köpcke, W; Sauerland, C; Bretzel, R G; Federlin, K F

    2001-01-01

    In rats with streptozotocin (STZ) induced diabetes the effect of (watersoluble) thiamine nitrate and of (lipidsoluble) benfotiamine on peripheral nerve function (motor nerve conduction velocity) as well as on the formation of advanced glycation end-products in peripheral nerve tissue was studied. In one group of animals drug administration was started immediately after diabetes induction (prevention study) and in another group two months after diabetes induction (treatment study). Motor nerve conduction velocity (NCV) dropped by 10.5% in diabetic animals, carboxymethyl-lysine (CML) rose to a 3.5fold concentration, deoxyglucosone (3DG)-type AGE formation was increased 5.1fold compared with controls. After three months preventive administration of both vitamin B(1) preparations NCV had increased substantially compared with results in diabetic controls. It was nearly normal after six months with benfotiamine, while the administration of thiamine nitrate resulted in no further amelioration. NCV was nearly normalized after six months of benfotiamine application but not with thiamine. Furthermore, benfotiamine induced a major inhibition of neural imidazole-type AGE formation and completely prevented diabetes induced glycoxidation products (CML). Treatment with thiamine did not significantly affect AGE or cmL levels. Unlike treatment with water-soluble thiamine nitrate timely administration of liposoluble prodrug benfotiamine was effective in the prevention of functional damage and of AGE and cmL formation in nerves of diabetic rats.

  8. Receptor for Advanced Glycation End Products (RAGE and Its Ligands: Focus on Spinal Cord Injury

    Directory of Open Access Journals (Sweden)

    Juhyun Song

    2014-07-01

    Full Text Available Spinal cord injury (SCI results in neuronal and glial death and the loss of axons at the injury site. Inflammation after SCI leads to the inhibition of tissue regeneration and reduced neuronal survival. In addition, the loss of axons after SCI results in functional loss below the site of injury accompanied by neuronal cell body’s damage. Consequently, reducing inflammation and promoting axonal regeneration after SCI is a worthy therapeutic goal. The receptor for advanced glycation end products (RAGE is a transmembrane protein and receptor of the immunoglobulin superfamily. RAGE is implicated in inflammation and neurodegeneration. Several recent studies demonstrated an association between RAGE and central nervous system disorders through various mechanisms. However, the relationship between RAGE and SCI has not been shown. It is imperative to elucidate the association between RAGE and SCI, considering that RAGE relates to inflammation and axonal degeneration following SCI. Hence, the present review highlights recent research regarding RAGE as a compelling target for the treatment of SCI.

  9. Expression of receptor for advanced glycation end-products (RAGE) in thymus from myasthenia patients.

    Science.gov (United States)

    Bouchikh, M; Zouaidia, F; Benhaddou, E H A; Mahassini, N; Achir, A; El Malki, H O

    2017-06-01

    The receptor for advanced glycation end-products (RAGE) is a membranous immunoglobulin involved in the pathogenesis of numerous autoimmune diseases and tumors. The aim of this study was to investigate the possible involvement of RAGE in the pathogenesis of myasthenia gravis. This prospective study included 41 cases of myasthenia gravis treated at our institution between 2010 and 2015. There were 18 men and 23 women, with an average age of 36.44±14.47 years. The majority of patients (24.4%) were classified as IIb, according to MGFA scoring, and 21 of them required corticosteroid and/or immunosuppressive treatment. Assessment of RAGE in thymus specimens was done by immunohistochemistry using RAGE antibody (C-term). RAGE expression was assessed according to various clinical, paraclinical and pathological parameters. Histopathological studies found 18 thymomas, 17 hyperplasias and six other types of pathology. Expression of RAGE was negative/weak in 19 cases and moderate/strong in 22 cases. It was more important in thymoma type B2 (Pmyasthenia was short (P=0.04), and was not significantly related to either myasthenia clinical severity or preoperative treatment. Our results suggest that the RAGE pathway is involved in myasthenia gravis pathophysiology, especially at disease onset, and in forms with thymomas. Further studies would be indispensable to explore other aspects of this signaling pathway, especially the potential role of different ligands and soluble forms of RAGE. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  10. Advanced glycation endproducts link inflammatory cues to upregulation of galectin-1 in diabetic retinopathy.

    Science.gov (United States)

    Kanda, Atsuhiro; Dong, Yoko; Noda, Kousuke; Saito, Wataru; Ishida, Susumu

    2017-11-23

    Diabetic retinopathy (DR) is an inflammatory and progressive vaso-occlusive disease resulting in angiogenesis. Galectin-1 is a hypoxia-induced angiogenic factor associated with cancer and proliferative DR. Here we reveal a significant upregulation of galectin-1 in eyes of DR patients along with progression of clinical stages beginning from the pre-ischemic, inflammatory stage with diabetic macular edema, but not in eyes with non-diabetic retinal vascular occlusions. As for its regulatory mechanism unrelated to hypoxia but selective to DR, in vitro galectin-1/LGALS1 expression was shown to increase after application to Müller glial cells with interleukin (IL)-1β, which was induced in monocyte-derived macrophages and microglial cells via toll-like receptor (TLR) 4 signaling stimulated by advanced glycation endproducts (AGE). In vivo inhibition of AGE generation with aminoguanidine, macrophage depletion with clodronate liposomes, and antibody-based blockade of Il-1β and Tlr4 attenuated diabetes-induced retinal Lgals1 expression in mice. Fibrovascular tissues from proliferative DR eyes were immunoreactive for AGE, TRL4 and IL-1β in macrophages, and IL-1β receptor-positive glial cells expressed galectin-1. Therefore, diabetes-induced retinal AGE accumulation was suggested to activate IL-1β-related inflammatory cues in macrophages followed by Müller cells, linking to galectin-1 upregulation in human DR with time. Our data highlight AGE-triggered inflammation as the DR-selective inducer of galectin-1.

  11. Isotope effects in the non enzymic glycation of hemoglobin catalyzed by DPG

    Energy Technology Data Exchange (ETDEWEB)

    Gil, Herminia; Uzcategui, Jorge [Universidad de Los Andes, Merida (Venezuela). Dept. de Quimica

    1993-12-31

    The paradigmatic reaction of glucose with hemoglobin (Hb A{sub o}) has been studied and is known to occur most rapidly at the N-terminal valine of the {beta}-subunit. An initial, rapid imine formation is succeeded by slower Amadori rearrangement. Non enzymic glycation of Hb A{sub o} was studied in vitro in buffer Tris 10 mM in H{sub 2} O and D{sub 2} O, pH 7.3, pD 7.8 at 37 deg C at a fixed concentration of 2,3 diphosphoglycerate (DPG). The reaction exhibits identical rates in protium and deuterium oxides. When D-glucose-2-h is compared with D-glucose-2-d, the kinetic isotope effect for the DPG-dependent rate is 2.1 {+-} 0.3, while the DPG-independent rate constant shows no isotope effect (1.1 {+-} 0.1). The absence of a rate in isotopic water solvents shows that proton donation for solvent, lyons or DPG does not limit the rate. The substrate isotope effect of around 2 for the DPG kinetic term indicates that the proton abstraction step of the Amadori rearrangement by DPG is wholly or partially rate-limiting for this reaction. (author) 23 refs., 4 figs.

  12. Effects of ginger on serum glucose, advanced glycation end products, and inflammation in peritoneal dialysis patients.

    Science.gov (United States)

    Imani, Hossein; Tabibi, Hadi; Najafi, Iraj; Atabak, Shahnaz; Hedayati, Mehdi; Rahmani, Leila

    2015-05-01

    The aim of this study was to investigate the effects of ginger supplementation on serum glucose, advanced glycation end products, oxidative stress, and systemic and vascular inflammatory markers in patients on peritoneal dialysis (PD). In this randomized, double-blind, placebo-controlled trial, 36 patients on PD were randomly assigned to either the ginger or the placebo group. The patients in the ginger group received 1000 mg/d ginger for 10 wk, whereas the placebo group received corresponding placebos. At baseline and the end of week 10, serum concentrations of glucose, carboxymethyl lysine, pentosidine, malondialdehyde (MDA), high-sensitivity C-reactive protein (hs-CRP), soluble intercellular adhesion molecule type 1 (sICAM-1), soluble vascular cell adhesion molecule type 1 (sVCAM-1), and sE-selectin were measured after a 12- to 14-h fast. Serum fasting glucose decreased significantly up to 20% in the ginger group at the end of week 10 compared with baseline (P ginger reduces serum fasting glucose, which is a risk factor for hyperinsulinemia, dyslipidemia, peritoneal membrane fibrosis, and cardiovascular disease, in patients on PD. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Prediction model for high glycated hemoglobin concentration among ethnic Chinese in Taiwan

    Directory of Open Access Journals (Sweden)

    Lee Bai-Chin

    2010-09-01

    Full Text Available Abstract Background This study aimed to construct a prediction model to identify subjects with high glycated hemoglobin (HbA1c levels by incorporating anthropometric, lifestyle, clinical, and biochemical information in a large cross-sectional ethnic Chinese population in Taiwan from a health checkup center. Methods The prediction model was derived from multivariate logistic regression, and we evaluated the performance of the model in identifying the cases with high HbA1c levels (> = 7.0%. In total 17,773 participants (age > = 30 years were recruited and 323 participants (1.8% had high HbA1c levels. The study population was divided randomly into two parts, with 80% as the derivation data and 20% as the validation data. Results The point-based clinical model, including age (maximal 8 points, sex (1 point, family history (3 points, body mass index (2 points, waist circumference (4 points, and systolic blood pressure (3 points reached an area under the receiver operating characteristic curve (AUC of 0.723 (95% confidence interval, 0.677- 0.769 in the validation data. Adding biochemical measures such as triglycerides and HDL cholesterol improved the prediction power (AUC, 0.770 [0.723 - 0.817], P = Conclusions A prediction model was constructed for the prevalent risk of high HbA1c, which could be useful in identifying high risk subjects for diabetes among ethnic Chinese in Taiwan.

  14. Receptor for advanced glycation end-products is a marker of type I lung alveolar cells.

    Science.gov (United States)

    Shirasawa, Madoka; Fujiwara, Naoyuki; Hirabayashi, Susumu; Ohno, Hideki; Iida, Junko; Makita, Koshi; Hata, Yutaka

    2004-02-01

    Lung alveolar epithelial cells are comprised of type I (ATI) and type II (ATII) cells. ATI cells are polarized, although they have very flat morphology. The identification of marker proteins for apical and basolateral membranes of ATI cells is important to investigate into the differentiation of ATI cells. In this paper, we characterized receptor for advanced glycation end-products (RAGE) as a marker for ATI cells. RAGE was localized on basolateral membranes of ATI cells in the immunoelectron microscopy and its expression was enhanced in a parallel manner to the differentiation of ATI cells in vivo and in primary cultures of ATII cells. RAGE and T1 alpha, a well-known ATI marker protein, were targeted to basolateral and apical membranes, respectively, when expressed in polarized Madine Darby canine kidney cells. Moreover, RAGE was expressed in ATI cells after T1 alpha in vivo and in ex in vivo organ cultures. In conclusion, RAGE is a marker for basolateral membranes of well-differentiated ATI cells. ATI cells require some signal provided by the in vivo environment to express RAGE.

  15. Glycated haemoglobin: A marker of circulating lipids in patients with type 2 diabetes

    Directory of Open Access Journals (Sweden)

    Sheikh Ishaq

    2017-01-01

    Full Text Available Introduction: Type 2 diabetes mellitus (T2DM is a group of metabolic disorder and is an independent risk factor for cardiovascular disease and dyslipidaemia. Patients with T2DM have dyslipidaemia at wavering degrees, characterised by increased levels of triglyceride and low-density lipoprotein-cholesterol and decreased levels of high-density lipoprotein (HDL-cholesterol. In the present study, we evaluated glycated haemoglobin (HbA1c as a marker of circulating lipids in patients with T2DM. Methods: Two hundred and thirty-nine patients with T2DM were enrolled for the study. A detailed biochemical and lipid profile was done for all patients. Results: Of 239 cases, 96 (40% were male and 143 (60% were female. Of 239 patients, 53 (22% patients with T2DM had controlled glycaemia (HbA1c <6.5 and 186 (78% patients had uncontrolled glycaemia (HbA1c ≥6.5. Pearson's correlation of HbA1c with all lipid parameters was statistically significant. HbA1c, however, had an inverse correlation with HDL and had a significant direct correlation with fasting blood glucose. Conclusion: The study reveals that HbA1c is not only a reliable glycaemic index but can also be used as an important indicator of dyslipidaemia in patients with T2DM.

  16. Cloning and characterization of the canine receptor for advanced glycation end products.

    Science.gov (United States)

    Murua Escobar, Hugo; Soller, Jan T; Sterenczak, Katharina A; Sperveslage, Jan D; Schlueter, Claudia; Burchardt, Birgit; Eberle, Nina; Fork, Melanie; Nimzyk, Rolf; Winkler, Susanne; Nolte, Ingo; Bullerdiek, Jörn

    2006-03-15

    Metastasis is one of the major problems when dealing with malignant neoplasias. Accordingly, the finding of molecular targets, which can be addressed to reduce tumour metastasising, will have significant impact on the development of new therapeutic approaches. Recently, the receptor for advanced glycation end products (RAGE)-high mobility group B1 (HMGB1) protein complex has been shown to have significant influence on invasiveness, growth and motility of tumour cells, which are essential characteristics required for metastatic behaviour. A set of in vitro and in vivo approaches showed that blocking of this complex resulted in drastic suppression of tumour cell growth. Due to the similarities of human and canine cancer the dog has joined the common rodent animal model for therapeutic and preclinical studies. However, complete characterisation of the protein complex is a precondition to a therapeutic approach based on the blocking of the RAGE-HMGB1 complex to spontaneously occurring tumours in dogs. We recently characterised the canine HMGB1 gene and protein completely. Here we present the complete characterisation of the canine RAGE gene including its 1384 bp mRNA, the 1215 bp protein coding sequence, the 2835 bp genomic structure, chromosomal localisation, gene expression pattern, and its 404 amino acid protein. Furthermore we compared the CDS of six different canine breeds and screened them for single nucleotide polymorphisms.

  17. Flanking signal and mature peptide residues influence signal peptide cleavage

    Directory of Open Access Journals (Sweden)

    Ranganathan Shoba

    2008-12-01

    Full Text Available Abstract Background Signal peptides (SPs mediate the targeting of secretory precursor proteins to the correct subcellular compartments in prokaryotes and eukaryotes. Identifying these transient peptides is crucial to the medical, food and beverage and biotechnology industries yet our understanding of these peptides remains limited. This paper examines the most common type of signal peptides cleavable by the endoprotease signal peptidase I (SPase I, and the residues flanking the cleavage sites of three groups of signal peptide sequences, namely (i eukaryotes (Euk (ii Gram-positive (Gram+ bacteria, and (iii Gram-negative (Gram- bacteria. Results In this study, 2352 secretory peptide sequences from a variety of organisms with amino-terminal SPs are extracted from the manually curated SPdb database for analysis based on physicochemical properties such as pI, aliphatic index, GRAVY score, hydrophobicity, net charge and position-specific residue preferences. Our findings show that the three groups share several similarities in general, but they display distinctive features upon examination in terms of their amino acid compositions and frequencies, and various physico-chemical properties. Thus, analysis or prediction of their sequences should be separated and treated as distinct groups. Conclusion We conclude that the peptide segment recognized by SPase I extends to the start of the mature protein to a limited extent, upon our survey of the amino acid residues surrounding the cleavage processing site. These flanking residues possibly influence the cleavage processing and contribute to non-canonical cleavage sites. Our findings are applicable in defining more accurate prediction tools for recognition and identification of cleavage site of SPs.

  18. Peptides and Anti-peptide Antibodies for Small and Medium Scale Peptide and Anti-peptide Affinity Microarrays: Antigenic Peptide Selection, Immobilization, and Processing.

    Science.gov (United States)

    Zhang, Fan; Briones, Andrea; Soloviev, Mikhail

    2016-01-01

    This chapter describes the principles of selection of antigenic peptides for the development of anti-peptide antibodies for use in microarray-based multiplex affinity assays and also with mass-spectrometry detection. The methods described here are mostly applicable to small to medium scale arrays. Although the same principles of peptide selection would be suitable for larger scale arrays (with 100+ features) the actual informatics software and printing methods may well be different. Because of the sheer number of proteins/peptides to be processed and analyzed dedicated software capable of processing all the proteins and an enterprise level array robotics may be necessary for larger scale efforts. This report aims to provide practical advice to those who develop or use arrays with up to ~100 different peptide or protein features.

  19. Prior lactose glycation of caseinate via the Maillard reaction affects in vitro activities of the pepsin-trypsin digest toward intestinal epithelial cells.

    Science.gov (United States)

    Wang, X P; Zhao, X H

    2017-07-01

    The well-known Maillard reaction in milk occurs between lactose and milk proteins during thermal treatment, and its effects on milk nutrition and safety have been well studied. A lactose-glycated caseinate was prepared via this reaction and digested using 2 digestive proteases, pepsin and trypsin. The glycated caseinate digest was assessed for its in vitro activities on rat intestinal epithelial cells in terms of growth proliferation, anti-apoptotic effect, and differentiation induction using caseinate digest as reference, to verify potential effects of the Maillard reaction on these activities of caseinate digest to the cells. Two digests had proliferative and anti-apoptotic effects, and reached the highest effects at 0.02 g/L of digest concentration with treatment time of 24 h. In comparison with caseinate digest, glycated caseinate digest always showed weaker proliferative (5.3-14.2%) and anti-apoptotic (5.9-39.0%) effects, and was more toxic to the cells at 0.5 g/L of digest concentration with treatment time of 48 h. However, glycated caseinate digest at 2 incubation times of 4 to 7 d showed differentiation induction higher than caseinate digest, as it could confer the cells with increased activities in lactase (16.3-26.6%), sucrase (22.4-31.2%), and alkaline phosphatase (17.4-24.8%). Transmission electron microscopy observation results also confirmed higher differentiation induction of glycated caseinate digest. Amino acid loss and lactose glycation partially contributed to these decreased and enhanced activities of glycated caseinate digest, respectively. The Maillard reaction of caseinate and lactose is thus shown in this study to have effects on the activities of caseinate digest to intestinal epithelial cells. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  20. Automated solid-phase peptide synthesis to obtain therapeutic peptides

    Directory of Open Access Journals (Sweden)

    Veronika Mäde

    2014-05-01

    Full Text Available The great versatility and the inherent high affinities of peptides for their respective targets have led to tremendous progress for therapeutic applications in the last years. In order to increase the drugability of these frequently unstable and rapidly cleared molecules, chemical modifications are of great interest. Automated solid-phase peptide synthesis (SPPS offers a suitable technology to produce chemically engineered peptides. This review concentrates on the application of SPPS by Fmoc/t-Bu protecting-group strategy, which is most commonly used. Critical issues and suggestions for the synthesis are covered. The development of automated methods from conventional to essentially improved microwave-assisted instruments is discussed. In order to improve pharmacokinetic properties of peptides, lipidation and PEGylation are described as covalent conjugation methods, which can be applied by a combination of automated and manual synthesis approaches. The synthesis and application of SPPS is described for neuropeptide Y receptor analogs as an example for bioactive hormones. The applied strategies represent innovative and potent methods for the development of novel peptide drug candidates that can be manufactured with optimized automated synthesis technologies.

  1. What peptides these deltorphins be.

    Science.gov (United States)

    Lazarus, L H; Bryant, S D; Cooper, P S; Salvadori, S

    1999-02-01

    The deltorphins are a class of highly selective delta-opioid heptapeptides from the skin of the Amazonian frogs Phyllomedusa sauvagei and P. bicolor. The first of these fascinating peptides came to light in 1987 by cloning of the cDNA of from frog skins, while the other members of this family were identified either by cDNA or isolation of the peptides. The distinctive feature of deltorphins is the presence of a naturally occurring D-enantiomer at the second position in their common N-terminal sequence, Tyr-D-Xaa-Phe, comparable to dermorphin, which is the prototype of a group of mu-selective opioids from the same source. The D-amino acid and the anionic residues, either Glu or Asp, as well as their unique amino acid compositions are responsible for the remarkable biostability, high delta-receptor affinity, bioactivity and peptide conformation. This review summarizes a decade of research from many laboratories that defined which residues and substituents in the deltorphins interact with the delta-receptor and characterized pharmacological and physiological activities in vitro and in vivo. It begins with a historical description of the topic and presents general schema for the synthesis of peptide analogues of deltorphins A, B and C as a means to document the methods employed in producing a myriad of analogues. Structure activity studies of the peptides and their pharmacological activities in vitro are detailed in abundantly tabulated data. A brief compendium of the current level of knowledge of the delta-receptor assists the reader to appreciate the rationale for the design of these analogues. Discussion of the conformation of these peptides addresses how structure leads to further hypotheses regarding ligand receptor interaction. The review ends with a broad discussion of the potential applications of these peptides in clinical and therapeutic settings.

  2. Sequencing Cyclic Peptides by Multistage Mass Spectrometry

    Science.gov (United States)

    Mohimani, Hosein; Yang, Yu-Liang; Liu, Wei-Ting; Hsieh, Pei-Wen; Dorrestein, Pieter C.; Pevzner, Pavel A.

    2012-01-01

    Some of the most effective antibiotics (e.g., Vancomycin and Daptomycin) are cyclic peptides produced by non-ribosomal biosynthetic pathways. While hundreds of biomedically important cyclic peptides have been sequenced, the computational techniques for sequencing cyclic peptides are still in their infancy. Previous methods for sequencing peptide antibiotics and other cyclic peptides are based on Nuclear Magnetic Resonance spectroscopy, and require large amount (miligrams) of purified materials that, for most compounds, are not possible to obtain. Recently, development of mass spectrometry based methods has provided some hope for accurate sequencing of cyclic peptides using picograms of materials. In this paper we develop a method for sequencing of cyclic peptides by multistage mass spectrometry, and show its advantages over single stage mass spectrometry. The method is tested on known and new cyclic peptides from Bacillus brevis, Dianthus superbus and Streptomyces griseus, as well as a new family of cyclic peptides produced by marine bacteria. PMID:21751357

  3. Cyclic peptide therapeutics: past, present and future.

    Science.gov (United States)

    Zorzi, Alessandro; Deyle, Kaycie; Heinis, Christian

    2017-06-01

    Cyclic peptides combine several favorable properties such as good binding affinity, target selectivity and low toxicity that make them an attractive modality for the development of therapeutics. Over 40 cyclic peptide drugs are currently in clinical use and around one new cyclic peptide drug enters the market every year on average. The vast majority of clinically approved cyclic peptides are derived from natural products, such as antimicrobials or human peptide hormones. New powerful techniques based on rational design and in vitro evolution have enabled the de novo development of cyclic peptide ligands to targets for which nature does not offer solutions. A look at the cyclic peptides currently under clinical evaluation shows that several have been developed using such techniques. This new source for cyclic peptide ligands introduces a freshness to the field, and it is likely that de novo developed cyclic peptides will be in clinical use in the near future. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Peptide 1 Level in Patients with Type 2 Diabetes Mellitus

    Directory of Open Access Journals (Sweden)

    Sang Ah Lee

    2016-09-01

    Full Text Available BackgroundPrevious studies have reported that glypican-4 (GPC4 regulates insulin signaling by interacting with insulin receptor and through adipocyte differentiation. However, GPC4 has not been studied with regard to its effects on clinical factors in patients with type 2 diabetes mellitus (T2DM. We aimed to identify factors associated with GPC4 level in T2DM.MethodsBetween January 2010 and December 2013, we selected 152 subjects with T2DM and collected serum and plasma into tubes pretreated with aprotinin and dipeptidyl peptidase-4 inhibitor to preserve active gastric inhibitory polypeptide (GIP and glucagon-like peptide 1 (GLP-1. GPC4, active GLP-1, active GIP, and other factors were measured in these plasma samples. We performed a linear regression analysis to identify factors associated with GPC4 level.ResultsThe subjects had a mean age of 58.1 years, were mildly obese (mean body mass index [BMI], 26.1 kg/m2, had T2DM of long-duration (mean, 101.3 months, glycated hemoglobin 7.5%, low insulin secretion, and low insulin resistance (mean homeostatic model assessment of insulin resistance [HOMA-IR], 1.2. Their mean GPC4 was 2.0±0.2 ng/mL. In multivariate analysis, GPC4 was independently associated with age (β=0.224, P=0.009, and levels of active GLP-1 (β=0.171, P=0.049 and aspartate aminotransferase (AST; β=–0.176, P=0.043 after being adjusted for other clinical factors.ConclusionGPC4 was independently associated with age, active GLP-1, and AST in T2DM patients, but was not associated with HOMA-IR and BMI, which are well known factors related to GPC4. Further study is needed to identify the mechanisms of the association between GPC4 and basal active GLP-1 levels.

  5. Peptide Vaccine: Progress and Challenges

    Directory of Open Access Journals (Sweden)

    Weidang Li

    2014-07-01

    Full Text Available Conventional vaccine strategies have been highly efficacious for several decades in reducing mortality and morbidity due to infectious diseases. The bane of conventional vaccines, such as those that include whole organisms or large proteins, appear to be the inclusion of unnecessary antigenic load that, not only contributes little to the protective immune response, but complicates the situation by inducing allergenic and/or reactogenic responses. Peptide vaccines are an attractive alternative strategy that relies on usage of short peptide fragments to engineer the induction of highly targeted immune responses, consequently avoiding allergenic and/or reactogenic sequences. Conversely, peptide vaccines used in isolation are often weakly immunogenic and require particulate carriers for delivery and adjuvanting. In this article, we discuss the specific advantages and considerations in targeted induction of immune responses by peptide vaccines and progresses in the development of such vaccines against various diseases. Additionally, we also discuss the development of particulate carrier strategies and the inherent challenges with regard to safety when combining such technologies with peptide vaccines.

  6. Double-Stranded Peptide Nucleic Acids

    DEFF Research Database (Denmark)

    2001-01-01

    A novel class of compounds, known as peptide nucleic acids, form double-stranded structures with one another and with ssDNA. The peptide nucleic acids generally comprise ligands such as naturally occurring DNA bases attached to a peptide backbone through a suitable linker.......A novel class of compounds, known as peptide nucleic acids, form double-stranded structures with one another and with ssDNA. The peptide nucleic acids generally comprise ligands such as naturally occurring DNA bases attached to a peptide backbone through a suitable linker....

  7. (R)-α-Lipoic acid inhibits fructose-induced myoglobin fructation and the formation of advanced glycation end products (AGEs) in vitro.

    Science.gov (United States)

    Ghelani, Hardik; Razmovski-Naumovski, Valentina; Pragada, Rajeswara Rao; Nammi, Srinivas

    2018-01-15

    Fructose-mediated protein glycation (fructation) has been linked to an increase in diabetic and cardiovascular complications due to over consumption of high-fructose containing diets in recent times. The objective of the present study is to evaluate the protective effect of (R)-α-lipoic acid (ALA) against fructose-induced myoglobin fructation and the formation of advanced glycation end products (AGEs) in vitro. The anti-glycation activity of ALA was determined using the formation of AGEs fluorescence intensity, iron released from the heme moiety of myoglobin and the level of fructosamine. The fructation-induced myoglobin oxidation was examined using the level of protein carbonyl content and thiol group estimation. The results showed that co-incubation of myoglobin (1 mg/mL), fructose (1 M) and ALA (1, 2 and 4 mM) significantly inhibited the formation of AGEs during the 30 day study period. ALA markedly decreased the levels of fructosamine, which is directly associated with the reduction of AGEs formation. Furthermore, ALA significantly reduced free iron release from myoglobin which is attributed to the protection of myoglobin from fructose-induced glycation. The results also demonstrated a significant protective effect of ALA on myoglobin oxidative damages, as seen from decreased protein carbonyl content and increased protein thiols. These findings provide new insights into the anti-glycation properties of ALA and emphasize that ALA supplementation is beneficial in the prevention of AGEs-mediated diabetic and cardiovascular complications.

  8. Effects of Short-Term Exenatide Treatment on Regional Fat Distribution, Glycated Hemoglobin Levels, and Aortic Pulse Wave Velocity of Obese Type 2 Diabetes Mellitus Patients

    Directory of Open Access Journals (Sweden)

    Ju-Young Hong

    2016-03-01

    Full Text Available BackgroundMost type 2 diabetes mellitus patients are obese and have obesity related vascular complications. Exenatide treatment is well known for both decreasing glycated hemoglobin levels and reduction in body weight. So, this study aimed to determine the effects of exenatide on body composition, glycated hemoglobin levels, and vascular stiffness in obese type 2 diabetes mellitus patients.MethodsFor 1 month, 32 obese type 2 diabetes mellitus patients were administered 5 µg of exenatide twice daily. The dosage was then increased to 10 µg. Patients' height, body weight, glycated hemoglobin levels, lipid profile, pulse wave velocity (PWV, body mass index, fat mass, and muscle mass were measured by using Inbody at baseline and after 3 months of treatment.ResultsAfter 3 months of treatment, glycated hemoglobin levels decreased significantly (P=0.007. Triglyceride, total cholesterol, and low density lipoprotein levels decreased, while aspartate aminotransferase and alanine aminotransferase levels were no change. Body weight, and fat mass decreased significantly (P=0.002 and P=0.001, respectively, while interestingly, muscle mass did not decrease (P=0.289. In addition to, Waist-to-hip ratio and aortic PWV decreased significantly (P=0.006 and P=0.001, respectively.ConclusionEffects of short term exenatide use in obese type 2 diabetes mellitus with cardiometabolic high risk patients not only reduced body weight without muscle mass loss, body fat mass, and glycated hemoglobin levels but also improved aortic PWV in accordance with waist to hip ratio.

  9. Clinical Value of High Mobility Group Box 1 and the Receptor for Advanced Glycation End-products in Head and Neck Cancer: A Systematic Review

    Directory of Open Access Journals (Sweden)

    Nguyen, Austin

    2016-04-01

    Full Text Available Introduction High mobility group box 1 is a versatile protein involved in gene transcription, extracellular signaling, and response to inflammation. Extracellularly, high mobility group box 1 binds to several receptors, notably the receptor for advanced glycation end-products. Expression of high mobility group box 1 and the receptor for advanced glycation end-products has been described in many cancers. Objectives To systematically review the available literature using PubMed and Web of Science to evaluate the clinical value of high mobility group box 1 and the receptor for advanced glycation end-products in head and neck squamous cell carcinomas. Data synthesis A total of eleven studies were included in this review. High mobility group box 1 overexpression is associated with poor prognosis and many clinical and pathological characteristics of head and neck squamous cell carcinomas patients. Additionally, the receptor for advanced glycation end-products demonstrates potential value as a clinical indicator of tumor angiogenesis and advanced staging. In diagnosis, high mobility group box 1 demonstrates low sensitivity. Conclusion High mobility group box 1 and the receptor for advanced glycation end-products are associated with clinical and pathological characteristics of head and neck squamous cell carcinomas. Further investigation of the prognostic and diagnostic value of these molecules is warranted.

  10. Reduction of serum advanced glycation end-products with a low calorie Mediterranean diet.

    Science.gov (United States)

    Rodríguez, Juan Manuel; Leiva Balich, Laura; Concha, M J; Mizón, C; Bunout Barnett, Daniel; Barrera Acevedo, Gladys; Hirsch Birn, Sandra; Jiménez Jaime, Teresa; Henríquez, Sandra; Uribarri, Jaime; de la Maza Cave, María Pía

    2015-06-01

    Dietary intake of advanced glycation end-products (AGEs) increases circulating and tissue levels of these substances, contributing to a state of increased oxidative stress and inflammation. A low dietary AGE intervention has been shown to reduce body AGE content. Mediterranean diets (MD) are theoretically considered low in AGEs, but the specific effects of a MD on AGEs serum levels has not been tested. Forty-seven overweight and obese premenopausal women underwent a three-month calorie restriction treatment (20 kcal/kg initial weight) with a Mediterranean-type diet that excluded wine intake. The adherence to the MD was assessed before and at the end of treatment using an on-line questionnaire, which scores from 0 to 14 (minimal to maximal adherence). Body composition, insulin resistance, lipoproteins and carboxymethyl-lisine (CML) serum levels were measured at both time periods. Serum CML was assessed through ELISA (enzyme-linked immunosorbent assay). Compliance to calorie restriction was assessed according to weight loss ( 5% initial weight). Mean body weight, body fat, waist circumference, total cholesterol, triglycerides and serum CML fell significantly, together with an increase in the Mediterranean score, although none of the patients reached the highest score. Significant changes in CML and insulin resistance were observed in 17 women classified as compliant to caloric restriction, but not in the 27 participants who were considered adherent to the MD (according to improvement of the Mediterranean Score). CML serum levels can be reduced through calorie restricted-Mediterranean-type diet. We could not reach a high enough MD score, so we cannot conclude whether the MD itself has an additive effect to caloric restriction. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  11. Advanced Glycation End-Products affect transcription factors regulating insulin gene expression

    International Nuclear Information System (INIS)

    Puddu, A.; Storace, D.; Odetti, P.; Viviani, G.L.

    2010-01-01

    Advanced Glycation End-Products (AGEs) are generated by the covalent interaction of reducing sugars with proteins, lipids or nucleic acids. AGEs are implicated in diabetic complications and pancreatic β-cell dysfunction. We previously demonstrated that exposure of the pancreatic islet cell line HIT-T15 to high concentrations of AGEs leads to a significant decrease of insulin secretion and content. Insulin gene transcription is positively regulated by the beta cell specific transcription factor PDX-1 (Pancreatic and Duodenal Homeobox-1). On the contrary, the forkhead transcription factor FoxO1 inhibits PDX-1 gene transcription. Activity of FoxO1 is regulated by post-translational modifications: phosphorylation deactivates FoxO1, and acetylation prevents FoxO1 ubiquitination. In this work we investigated whether AGEs affect expression and subcellular localization of PDX-1 and FoxO1. HIT-T15 cells were cultured for 5 days in presence of AGEs. Cells were then lysed and processed for subcellular fractionation. We determined intracellular insulin content, then we assessed the expression and subcellular localization of PDX-1, FoxO1, phosphoFoxO1 and acetylFoxO1. As expected intracellular insulin content was lower in HIT-T15 cells cultured with AGEs. The results showed that AGEs decreased expression and nuclear localization of PDX-1, reduced phosphorylation of FoxO1, and increased expression and acetylation of FoxO1. These results suggest that AGEs decrease insulin content unbalancing transcription factors regulating insulin gene expression.

  12. Glycated haemoglobin (HbA1c), diabetes and trajectories of change in episodic memory performance.

    Science.gov (United States)

    Pappas, Colleen; Andel, Ross; Infurna, Frank J; Seetharaman, Shyam

    2017-02-01

    As the ageing population grows, it is important to identify strategies to moderate cognitive ageing. We examined glycated haemoglobin (HbA1c) and diabetes in relation to level and change in episodic memory in older adults with and without diabetes. Data from 4419 older adults with (n=950) and without (n=3469) diabetes participating in a nationally representative longitudinal panel study (the Health and Retirement Study) were examined. Average baseline age was 72.66 years and 58% were women. HbA1c was measured in 2006 and episodic memory was measured using immediate and delayed list recall over 4 biennial waves between 2006 and 2012. Growth curve models were used to assess trajectories of episodic memory change. In growth curve models adjusted for age, sex, education, race, depressive symptoms and waist circumference, higher HbA1c levels and having diabetes were associated with poorer baseline episodic memory (p=0.036 and HbA1c on episodic memory decline was smaller than the effect of age. The results were stronger for women than men and were not modified by age or race. When the main analyses were estimated for those with and without diabetes separately, HbA1c was significantly linked to change in episodic memory only among those with diabetes. Higher HbA1c and diabetes were both associated with declines in episodic memory, with this relationship further exacerbated by having diabetes and elevated HbA1c. HbA1c appeared more important for episodic memory performance among women than men. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  13. Glycated hemoglobin: A powerful tool not used enough in primary care.

    Science.gov (United States)

    Salinas, Maria; López-Garrigós, Maite; Flores, Emilio; Leiva-Salinas, Carlos

    2018-03-01

    Glycated haemoglobin (HbA1c) is one of the most useful and relevant laboratory tests currently available. The aim of the actual research was to study the variability and appropriateness in the request of HbA1c in primary care, and differences between regions, to assess if there would be an opportunity to improve the request. A cross-sectional study was conducted enrolling clinical Spanish laboratories. The number of HbA1c requested in 2014 by all general practitioners was reported by each participant. Test-utilization rate was expressed as tests per 1000 inhabitants. The index of variability was calculated, as the top decile divided by the bottom decile. HbA1c per 1000 inhabitants was compared between the different regions. To investigate whether HbA1c was appropriately requested to manage patients with diabetes, the real request was compared to the theoretically ideal number, according to prevalence of known diabetes mellitus in Spain and guideline recommendations. A total of 110 laboratories participated in the study, corresponding to a catchment area of 27 798 262 inhabitants (59.8% of the Spanish population) from 15 different autonomous communities (AACCs). 2 655 547 HbA1c were requested, a median of 93.9 (interquartile range (IQR): 33.4) per 1000 inhabitants. The variability index was 1.97. The HbA1c/1000 inhabitants was significantly different among the AACCs, ranging from 73.4 to 126.3. A total of 4 336 529 additional HbA1c would have been necessary to manage patients with diabetes according to guidelines, and 3 861 769 for diagnosis in asymptomatic patients. There was a high variability and significant differences between Spanish AACCs. Also a significant under-request of HbA1c was observed in Primary Care in Spain. © 2017 Wiley Periodicals, Inc.

  14. Advanced glycation end products (AGEs) and its receptors in the pathogenesis of hyperthyroidism.

    Science.gov (United States)

    Caspar-Bell, Gudrun; Dhar, Indu; Prasad, Kailash

    2016-03-01

    Oxidative stress has been implicated in the pathogenesis of hyperthyroidism and its complications. Interaction of advanced glycation end products (AGEs) with receptor RAGE (receptor for AGEs) generates reactive oxygen species. Soluble receptor for AGEs (sRAGE) competes with RAGE for binding with AGEs and attenuates the generation of ROS. Low levels sRAGE and high levels AGEs would generate more ROS leading to hyperthyroidism and its complications. The objectives are to determine if levels of serum sRAGE are low and the levels of AGEs and AGEs/sRAGE are high in patients with hyperthyroidism. The study subjects comprised of 33 patients with hyperthyroidism and 20 controls. Levels of serum sRAGE were lower, while that of AGEs and AGEs/sRAGE were higher in patients compared to controls, being significant only for sRAGE and AGEs/sRAGE. When the levels of sRAGE, AGEs, and AGEs/sRAGE were assessed for hyperthyroidism associated with different diseases, the levels of sRAGE were lower in Hashimoto disease, and levels of AGEs were higher in patients with Graves' disease compared to control. The levels of AGEs/sRAGE were elevated in an all except patients with Hashimoto disease. The levels of AGEs, sRAGE, or AGEs/RAGE were not correlated with age, weight, and blood pressures except systolic pressure which was inversely correlated with sRAGE. The levels of sRAGE were negatively correlated with AGEs and AGEs/sRAGE. The levels of AGEs/sRAGE were positively correlated with AGEs. In conclusion, low levels of sRAGE, and high levels of AGEs and AGEs/sRAGE are risk biomarkers in the pathogenesis hyperthyroidism and its complications.

  15. Advanced glycation end product (AGE) modified proteins in tears of diabetic patients.

    Science.gov (United States)

    Zhao, Zhenjun; Liu, Jingfang; Shi, Bingyin; He, Shuixiang; Yao, Xiaoli; Willcox, Mark D P

    2010-08-11

    High glucose level in diabetic patients may lead to advanced glycation end product (AGE) modified proteins. This study investigated AGE modified proteins in tears and compared their levels in diabetic patients (DM) with non-diabetic controls (CTL). Basal tears were collected from DM with (DR) or without (DNR) retinopathy and CTL. Total AGE modified proteins were detected quantitatively by a dot immunobinding assay. The AGE modified proteins were separated in 1D- and 2D-SDS gels and detected by western-blotting. The individual AGE modified proteins were also compared between groups using densitometry. Compared with the CTL group, tear concentrations of AGE modified proteins were significantly elevated in DR and DNR groups. The concentration of AGE modified proteins in diabetic tears were positively correlated with AGE modified hemoglobin (HbA1c) and postprandial blood glucose level (PBG). Western blotting of AGE modified proteins from 1D-SDS gels showed several bands, the major one at around 60 kDa. The intensities of AGE modified protein bands were higher in DM tears than in CTL tears. Western blotting from 2D-SDS gels showed a strongly stained horizontal strip, which corresponded to the major band in 1D-SDS gels. Most of the other AGE modified protein species were within molecular weight of 30-60 kDa, PI 5.2-7.0. Densitometry analysis demonstrated several AGE modified proteins were elevated in DR or DNR tears. Total and some individual AGE modified proteins were elevated in DM tears. AGE modified proteins in tears may be used as biomarkers to diagnose diabetes and/or diabetic retinopathy.

  16. Association Between Coronary Artery Calcification and the Hemoglobin Glycation Index: The Kangbuk Samsung Health Study.

    Science.gov (United States)

    Rhee, Eun-Jung; Cho, Jung-Hwan; Kwon, Hyemi; Park, Se Eun; Park, Cheol-Young; Oh, Ki-Won; Park, Sung-Woo; Lee, Won-Young

    2017-12-01

    The hemoglobin glycation index (HGI) is known to be correlated with the risk for cardiovascular disease. To analyze the association between incident coronary artery calcification (CAC) and the changes in HGI among participants without diabetes, over 4 years. A retrospective study of 2052 nondiabetic participants in whom the coronary artery calcium score was measured repeatedly over 4 years, as part of a health checkup program in Kangbuk Samsung Hospital in Korea, and who had no CAC at baseline. The HGI was defined as the difference between the measured and predicted hemoglobin A1c (HbA1c) levels. A total of 201 participants developed CAC after 4 years, and the mean baseline HGI was significantly higher in those patients. The incidence of CAC gradually increased from the first to the fourth quartile groups of baseline HGI. The odds ratio (OR) for incident CAC was the highest among the four groups divided by the quartiles of the baseline HGI and was significant after adjustment for confounding variables (vs first quartile group: OR, 1.632; 95% confidence interval, 1.024 to 2.601). The incidence of and risk for CAC development were significantly higher than in other groups compared with the low-to-low group after adjustment for confounding factors; however, when baseline HbA1c level was included in the model, only participants with a low-to-high HGI over 4 years showed a significantly increased OR for CAC development compared with the low-to-low group (OR, 1.722; 95% confidence interval, 1.046 to 2.833). The participants with a high baseline HGI and consistently high HGI showed a higher risk for incident CAC than those with a low baseline HGI. An increased HGI over 4 years significantly increased the risk for CAC regardless of the baseline HbA1c levels. Copyright © 2017 Endocrine Society

  17. Advanced Glycation Endproducts and Bone Material Properties in Type 1 Diabetic Mice.

    Directory of Open Access Journals (Sweden)

    Mishaela R Rubin

    Full Text Available Fractures, particularly at the lower extremities and hip, are a complication of diabetes. In both type 1 (T1D and type 2 diabetes (T2D, fracture risk is disproportionately worse than that predicted from the measurement of bone mineral density. Although an explanation for this discrepancy is the presence of organic matrix abnormalities, it has not been fully elucidated how advanced glycation endproducts (AGEs relate to bone deterioration at both the macroscopic and microscopic levels. We hypothesized that there would be a relationship between skeletal AGE levels (determined by Raman microspectroscopy at specific anatomical locations and bone macroscopic and microscopic properties, as demonstrated by the biomechanical measures of crack growth and microindentation respectively. We found that in OVE26 mice, a transgenic model of severe early onset T1D, AGEs were increased by Raman (carboxymethyl-lysine [CML] wildtype (WT: 0.0143 ±0.0005 vs T1D: 0.0175 ±0.0002, p = 0.003 at the periosteal surface. These differences were associated with less tough bone in T1D by fracture mechanics (propagation toughness WT: 4.73 ± 0.32 vs T1D: 3.39 ± 0.24 NM/m1/2, p = 0.010 and by reference point indentation (indentation distance increase WT: 6.85 ± 0.44 vs T1D: 9.04 ± 0.77 μm; p = 0.043. Within T1D, higher AGEs by Raman correlated inversely with macroscopic bone toughness. These data add to the existing body of knowledge regarding AGEs and the relationship between skeletal AGEs with biomechanical indices.

  18. pH-Responsive Hydrogel With an Anti-Glycation Agent for Modulating Experimental Periodontitis.

    Science.gov (United States)

    Yu, Min-Chen; Chang, Chih-Yeun; Chao, Yi-Chi; Jheng, Yi-Han; Yang, Connie; Lee, Ning; Yu, Shan-Huey; Yu, Xin-Hong; Liu, Dean-Mo; Chang, Po-Chun

    2016-06-01

    Stimulus-responsive devices have emerged as a novel approach for local drug delivery. This study investigates the feasibility of a novel chitosan-based, pH-responsive hydrogel loaded with N-phenacylthiazolium bromide (PTB), which cleaves the crosslinks of advanced glycation end products on the extracellular matrix. A chitosan-based hydrogel loaded with PTB was fabricated, and the in vitro release profile was evaluated within pH 5.5 to 7.4. BALB/cJ mice and Sprague-Dawley rats were used to evaluate the effects during the induction and recovery phases of periodontitis, respectively, and animals in each phase were divided into four groups: 1) no periodontitis induction; 2) ligature-induced experimental periodontitis (group PR); 3) experimental periodontitis plus hydrogel without PTB (group PH); and 4) experimental periodontitis plus hydrogel with PTB (group PP). The therapeutic effects were evaluated by microcomputed tomographic imaging of periodontal bone level (PBL) loss and histomorphometry for inflammatory cell infiltration and collagen density. PTB was released faster at pH 5.5 to 6.5 and consistently slower at pH 7.4. In the induction phase, PBL and inflammatory cell infiltration were significantly reduced in group PP relative to group PR, and the loss of collagen matrix was significantly reduced relative to that observed in group PH. In the recovery phase, PBL and inflammatory cell infiltration were significantly reduced, and significantly greater collagen deposition was noted in group PP relative to groups PR and PH at 4 and 14 days after silk removal. Chitosan-based, pH-responsive hydrogels loaded with PTB can retard the initiation of and facilitate the recovery from experimental periodontitis.

  19. Contribution of dietary advanced glycation end products (AGE) to circulating AGE: role of dietary fat.

    Science.gov (United States)

    Davis, Kathleen E; Prasad, Chandan; Vijayagopal, Parakat; Juma, Shanil; Adams-Huet, Beverley; Imrhan, Victorine

    2015-12-14

    The purpose of this pilot study was to determine whether macronutrient content (low-fat v. high-fat diet) influences an indicator of advanced glycation end products (AGE), N(ε) carboxymethyl-lysine (CML), in the context of a 1-d, high-AGE diet. The effect of the diets on inflammatory markers was also assessed. A total of nineteen overweight and obese adults (nine men and ten women) without known disease were recruited to participate in a crossover challenge of a high-fat, high-AGE (HFHA) and low-fat, high-AGE (LFHA) diet. In each phase patients had fasting blood drawn, followed by consumption of a high-fat or low-fat breakfast test meal, then three postprandial blood draws at 1, 2 and 3 h after consuming the test meal. After consuming high-AGE meals for the remainder of the day, participants returned the next day for a follow-up analysis. A different pattern in the 3-h post-meal CML and soluble receptor for AGE response to the two diets was observed (P=0·01 and 0·05, respectively). No change in serum CML was observed following consumption of a LFHA breakfast (535 (25th-75th percentile 451-790) to 495 (25th-75th percentile 391-682) ng/ml; P=0·36), whereas a rise in CML occurred after the HFHA breakfast (463 (25th-75th percentile 428-664) to 578 (25th-75th percentile 474-865) ng/ml; P=0·05). High sensitivity C-reactive protein and high molecular weight adiponectin were not affected by either diet. These findings suggest that dietary CML may not be as important in influencing serum CML as other dietary factors. In addition, acute exposure to dietary CML may not influence inflammation in adults without diabetes or kidney disease. This is contrary to previous findings.

  20. Metabolic and Cardiovascular Ageing Indices in Relation to Glycated Haemoglobin in Healthy and Diabetic Subjects.

    Science.gov (United States)

    Suvarna H I, Shruthi; Moodithaya, Shailaja; Sharma, Raghava

    2017-01-01

    Ageing is a natural phenomenon that has tremendous amount of control over normal physiological functions. Diabetes mellitus and ageing share common symptoms like stiffness and loss of functioning of tissues due to cross-liked proteins and free radicals. Glycated Haemoglobin (HbA1c) is often used as a stable cumulative index of glycemic control and has shown that even in non-diabetic adults, there is a steady increase in HbA1c levels with age. Aim of the study is to evaluate the strength of association of HbA1c with metabolic and cardiovascular ageing indices in subjects between the age group of 40 to 60 yrs. A total of 220 subjects, with (n=110) and without (n=110) diabetes were assessed for the metabolic and cardiovascular ageing indices. BMI, waist hip ratio, fat percentage, Fasting blood sugar and HbA1c were assessed as metabolic ageing indices. The cardiovascular ageing indices measured were resting heart rate, blood pressure and heart rate variability. Ageing indices were compared between subjects with and without diabetes using independent' t' test and showed that the T2DM group exhibit significant accelerated ageing as compared to that of the controls. Pearson's and partial correlation coefficient was used to assess the association of HbA1c with the ageing indices without and with controlling for chronological age, indicated that, strength of association of levels of HBA1c with cardiovascular and other metabolic indices of ageing is statistically significant. The study concludes that the tightness of glycemic control has a significant impact on the biological ageing process. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.