WorldWideScience

Sample records for non-destructive testing ndt

  1. Guidebook for the fabrication of non-destructive testing (NDT) test specimens

    International Nuclear Information System (INIS)

    2001-01-01

    Non-destructive testing (NDT) test specimens constitute a very important part of training and certification of NDT personnel and are important for carrying out actual inspection and testing, and for achieving international harmonization of NDT practices. The IAEA organized an advisory group of experts to develop a Guidebook for Fabrication of NDT Test Specimens. The experts consulted the ISO/FDIS 9712-1999 requirements for training and certification of personnel and the suitability of various types of NDT test specimens that are needed to meet such requirements This guidebook presents a set of NDT test specimens, and the methodology and procedures for their fabrication

  2. Impact to non-destructive testing (NDT) companies of PNRI/PSNT trained NDT personnel

    International Nuclear Information System (INIS)

    De Jesus, Teresita G.

    2002-12-01

    This research discusses the impact to non-destructive testing (NDT) companies of PNRI/PSNT trained NDT personnel to the individual and to the organization that the individual belongs in the midst of competitive, demanding and fast-paced workplace in the NDT industry. Related literature and studies were carefully chosen and reviewed to validate the consistencies of the research design and data gathering relationship to the present undertaking to previous studies were also discussed and analyzed. The research design used were the descriptive-normative survey method together with a questionnaire consisting of six (6) parts. The first part includes queries on personal/demographic profiles of respondents. The second part contains queries on the level of expectation of the respondents of the job-related variables. The third part contains queries on the levels of adequacy of the organization-related variables. The fourth part consists of questions on the impact of the PNRI/PSNT trained NDT personnel before and after the training. It is divided into two sections, first was for the organization and second was for the individual development. The fifth part was on the analysis of the personal-related factors that influence the impact of the PNRI/PSNT trained NDT personnel. The last part was to find out the significant differences on the impact of the training as to methods. A five-point scale was used to quantify the degree of respondents' responses to queries in the questionnaires. In addition, the following statistical formula were used for treatment of gathered data were frequency percentage, ranking, wilcoxon signed ranks test and spearman rho. The null hypotheses that were presented for acceptance or rejection were also tested. Presentation of findings, analysis and interpretations were presented based on the data gathered and the computations. Recommendations were discussed based on the findings. It is recommended that training of NDT personnel in the different NDT

  3. Development of non-destructive testing (NDT) technology in Pakistan

    International Nuclear Information System (INIS)

    Khan, A.A.

    2005-01-01

    Non-Destructive Testing (NDT) techniques are being extensively used to improve and maintain the quality of manufactured goods as well as for proper maintenance of industrial plants and equipment. Typical industries that benefit most include Aerospace, Chemical, Heavy Mechanical Fabrication, Conventional and Nuclear Power Generation, Automobiles, Oil and Gas, Shipbuilding, Foundries, and Armaments, etc. As the name implies, with these techniques an industrial product is inspected mostly for defects in its structure without destroying it. Among the most widely used NDT techniques for the detection of internal defects are Radiographic and Ultrasonic Testing. For surface and just below the surface defects Magnetic Particle Testing, Penetrant Testing and Eddy Current Testing are commonly used. In addition to these, there are some NDT methods which have specific applications. These include Acoustic Emission, Thermal and Infrared Testing, Microwave Testing, Computer Tomography, Strain Gauging, Leak Testing and Holography, etc. This paper describes various phases through which the development of NDT technology passed and its present state of the art. It started with the undertaking of a nuclear technology programme and has matured along with it. As it stands we are fully competent to undertake various essential activities related to this technology, namely, (I) raining and certification of NDT personnel at various levels. (II) revision of NDT services to various industrial sectors including nuclear power during manufacture, fabrication, pre-service inspection (PSI) and in-service inspection (ISI). (author)

  4. The need to qualify Non Destructive Tests (NDT) has been recognized for many years in the European countries engaged in nuclear power generation

    International Nuclear Information System (INIS)

    Walczak, M.; Wojas, M.

    2008-01-01

    The European Network for Inspection Qualification, ENIQ, which groups the major part of the nuclear power plant operators in the European Union and in the Applicant Countries, has developed the European methodology for Qualification of Non Destructive Tests. As qualification of NDT is nowadays a standard method in the nuclear industry and in other industries. CEN (European Committee for Standardization) Technical Committee 138 '' Non Destructive Testing '' has established a Working Group, which is responsible for developing a Standard document detailing the CEN Methodology for the qualification of Non Destructive Tests applicable to all industries carrying out Non-Destructive Tests. This Standard document sets out basic principles and provides recommendations and general guidelines for carrying out qualification of NDT. It describes a methodology for qualification of Non-Destructive Tests, applicable to all NDT methods and considers qualification of equipment, procedure and personnel training. This paper presents a short background of the European Methodology for Qualification of Non-Destructive Tests and the Standard document CEN/TR 14748 '' Non-destructive testing - Methodology for qualification of non-destructive tests ''. (author)

  5. Identification of the Thickness of Nugget on Worksheet Spot Welding Using Non Destructive Test (NDT) - Effect of Pressure

    Science.gov (United States)

    Sifa, A.; Baskoro, A. S.; Sugeng, S.; Badruzzaman, B.; Endramawan, T.

    2018-02-01

    Resistance Spot Welding (RSW) is a process of connecting between two worksheet with thermomechanical loading process, RSW is widely used in automotive industry, the quality of splicing spot welding is influenced by several factors. One of the factors at the time of the welding process is pressure. The quality of welding on the nuggets can be determined by undertaking non-destructive testing by using Non Destructive Test (NDT) - Ultrasonic Test. In the NDT test is done by detecting the thickness of the nugget area, the purpose of research conducted to determine the effect of pressure to welding quality with Nugget thickness gauge measurement with Non Destructive Test method and manual measurement with micrometer, Experimental welding process by entering the welding parameters that have been specified and pressure variables 1 -5 bars on the worksheet thickness of 1 mm. The results of testing with NDT show there is addition of thickness in nugget superiority after compare with measurement result of thickness of nugget with micrometer which slightly experience thickness in nugget area, this indicates that the welding results have a connection between worksheet 1 and worksheet 2.

  6. Non-destructive testing. V. 2

    International Nuclear Information System (INIS)

    Farley, J.M.; Nichols, R.W.

    1988-01-01

    The book entitled 'Non-destructive Testing' Volume 2, contains the proceedings of the fourth European Conference, organized by the British Institute of Non-Destructive Testing and held in London, September 1987. The volume contains seven chapters which examine the reliability of NDT, the economics of NDT and the use of NDT in:- civil engineering; oil, gas, coal and petrochemical industries; iron and steel industries; aerospace industry; and the nuclear and electricity supply industries. The seven chapters contain 78 papers, of which 19 are selected for INIS and indexed separately. (U.K.)

  7. Innovation in Non Destructive Testing

    NARCIS (Netherlands)

    Wassink, C.H.P.

    2012-01-01

    In many established companies the pace of innovation is low. The Non-Destructive Testing sector is an example of a sector where the pace of innovation is very slow. Non-Destructive Testing (NDT) refers to the set of non-invasive activities used to determine the condition of objects or installations

  8. Non-destructive testing (NDT) of metal cracks using a high Tc rf-SQUID and eddy current method

    Energy Technology Data Exchange (ETDEWEB)

    Lu, D.F.; Fan, C.; Ruan, J.Z. [Midwest Superconductivity Inc., Lawrence, KS (United States)] [and others

    1994-12-31

    A SQUID is the most sensitive device to detect change in magnetic field. A non-destructive testing (NDT) device using high temperature SQUIDs and eddy current method will be much more sensitive than those currently used eddy current systems, yet much cheaper than one with low temperature SQUIDs. In this paper, we present our study of such a NDT device using a high temperature superconducting rf-SQUID as a gradiometer sensor. The result clearly demonstrates the expected sensitivity of the system, and indicates the feasibility of building a portable HTS SQUID NDT device with the help from cryocooler industry. Such a NDT device will have a significant impact on metal corrosion or crack detection technology.

  9. Non-destructive testing (NDT) of metal cracks using a high Tc rf-SQUID and eddy current method

    International Nuclear Information System (INIS)

    Lu, D.F.; Fan, C.; Ruan, J.Z.

    1994-01-01

    A SQUID is the most sensitive device to detect change in magnetic field. A non-destructive testing (NDT) device using high temperature SQUIDs and eddy current method will be much more sensitive than those currently used eddy current systems, yet much cheaper than one with low temperature SQUIDs. In this paper, we present our study of such a NDT device using a high temperature superconducting rf-SQUID as a gradiometer sensor. The result clearly demonstrates the expected sensitivity of the system, and indicates the feasibility of building a portable HTS SQUID NDT device with the help from cryocooler industry. Such a NDT device will have a significant impact on metal corrosion or crack detection technology

  10. Guidebook on non-destructive testing of concrete structures

    International Nuclear Information System (INIS)

    2002-01-01

    The International Atomic Energy Agency has been active in the promotion of non-destructive testing (NDT) technology for many years. NDT is an important component of a number of IAEA regional projects. This guidebook deals with NDT of concrete. This book covers a wide range of NDT methods including industrial radiography, ultrasonic testing, electromagnetic testing, infrared thermography, etc. Codes, standards, specifications and procedures are also covered

  11. Training Guidelines in Non-destructive Testing Techniques. 2013 Edition

    International Nuclear Information System (INIS)

    2014-12-01

    The IAEA promotes industrial applications of radiation technology, including non-destructive testing (NDT), through activities such as Technical Cooperation Projects (national and regional) and Coordinated Research Projects. Through this cooperation, Member States have initiated national programmes for the training and certification of NDT personnel. National certifying bodies have also been established based on International Organization for Standardization (ISO) standards. As part of these efforts, the IAEA has been actively involved in developing training materials. Consequently, IAEA-TECDOC-407, Training Guidelines in Non-destructive Testing Techniques, was published in 1987, then revised and expanded as IAEA-TECDOC-628 in 1991. Revisions of IAEA-TECDOC-628 were considered essential to meet the demands of end-user industries in Member States, and revised and expanded versions were issued in 2002 and 2008. These latter versions included work conducted by the International Committee for Non-Destructive Testing (ICNDT) and many national NDT societies. It is one of the publications referred to in ISO 9712:2005, Non-destructive Testing: Qualification and Certification of Personnel, which in turn is an internationally accepted standard, revised as ISO 9712:2012, Non-destructive Testing: Qualification and Certification of NDT Personnel. This publication is an updated version of IAEA-TECDOC-628. The content of which has been revised following the changes of ISO 9712 converging with EN 473 and becoming EN ISO 9712:2012, based on the experience of experts and comments from end-user industries. The details of the topics on each subject have been expanded to include the latest developments in the respective methods. The incorporated changes will assist the end-user industries to update their NDT qualification and certification schemes and course materials. This publication, like the previous versions, will continue to play an important role in international harmonization

  12. Modelling, simulation and visualisation for electromagnetic non-destructive testing

    International Nuclear Information System (INIS)

    Ilham Mukriz Zainal Abidin; Abdul Razak Hamzah

    2010-01-01

    This paper reviews the state-of-the art and the recent development of modelling, simulation and visualization for eddy current Non-Destructive Testing (NDT) technique. Simulation and visualization has aid in the design and development of electromagnetic sensors and imaging techniques and systems for Electromagnetic Non-Destructive Testing (ENDT); feature extraction and inverse problems for Quantitative Non-Destructive Testing (QNDT). After reviewing the state-of-the art of electromagnetic modelling and simulation, case studies of Research and Development in eddy current NDT technique via magnetic field mapping and thermography for eddy current distribution are discussed. (author)

  13. Human factors in non-destructive testing (NDT). Risks and challenges of mechanised NDT

    Energy Technology Data Exchange (ETDEWEB)

    Bertovic, Marija

    2016-08-01

    Non-destructive testing (NDT) is regarded as one of the key elements in ensuring quality of engineering systems and their safe use. A failure of NDT to detect critical defects in safetyrelevant components, such as those in the nuclear industry, may lead to catastrophic consequences for the environment and the people. Therefore, ensuring that NDT methods are capable of detecting all critical defects, i.e. that they are reliable, is of utmost importance. Reliability of NDT is affected by human factors, which have thus far received the least amount of attention in the reliability assessments. With increased use of automation, in terms of mechanised testing (automation-assisted inspection and the corresponding evaluation of data), higher reliability standards are believed to have been achieved. However, human inspectors, and thus human factors, still play an important role throughout this process, and the risks involved in this application are unknown. The overall aim of the work presented in this dissertation was to explore for the first time the risks associated with mechanised NDT and find ways of mitigating their effects on the inspection performance. Hence, the objectives were to (1) identify and analyse potential risks in mechanised NDT, (2) devise measures against them, (3) critically address the preventive measures with respect to new potential risks, and (4) suggest ways for the implementation of the preventive measures. To address the first two objectives a risk assessment in form of a Failure Modes and Effects Analysis (FMEA) was conducted (Study 1). This analysis revealed potential for failure during both the acquisition and evaluation of NDT data that could be assigned to human, technology, and organisation. Since the existing preventive measures are insufficient to defend the system from identified failures, new preventive measures were suggested. The conclusion of the study was that those preventive measures need to be carefully considered with respect

  14. Human factors in non-destructive testing (NDT). Risks and challenges of mechanised NDT

    International Nuclear Information System (INIS)

    Bertovic, Marija

    2016-01-01

    Non-destructive testing (NDT) is regarded as one of the key elements in ensuring quality of engineering systems and their safe use. A failure of NDT to detect critical defects in safetyrelevant components, such as those in the nuclear industry, may lead to catastrophic consequences for the environment and the people. Therefore, ensuring that NDT methods are capable of detecting all critical defects, i.e. that they are reliable, is of utmost importance. Reliability of NDT is affected by human factors, which have thus far received the least amount of attention in the reliability assessments. With increased use of automation, in terms of mechanised testing (automation-assisted inspection and the corresponding evaluation of data), higher reliability standards are believed to have been achieved. However, human inspectors, and thus human factors, still play an important role throughout this process, and the risks involved in this application are unknown. The overall aim of the work presented in this dissertation was to explore for the first time the risks associated with mechanised NDT and find ways of mitigating their effects on the inspection performance. Hence, the objectives were to (1) identify and analyse potential risks in mechanised NDT, (2) devise measures against them, (3) critically address the preventive measures with respect to new potential risks, and (4) suggest ways for the implementation of the preventive measures. To address the first two objectives a risk assessment in form of a Failure Modes and Effects Analysis (FMEA) was conducted (Study 1). This analysis revealed potential for failure during both the acquisition and evaluation of NDT data that could be assigned to human, technology, and organisation. Since the existing preventive measures are insufficient to defend the system from identified failures, new preventive measures were suggested. The conclusion of the study was that those preventive measures need to be carefully considered with respect

  15. New technologies in electromagnetic non-destructive testing

    CERN Document Server

    Huang, Songling

    2016-01-01

    This book introduces novel developments in the field of electromagnetic non-destructive testing and evaluation (NDT/E). The topics include electromagnetic ultrasonic guided wave testing, pulsed eddy current testing, remote field eddy current testing, low frequency eddy current testing, metal magnetic memory testing, and magnetic flux leakage testing. Considering the increasing concern about the safety maintenance of critical structures in various industries and everyday life, these topics presented here will be of particular interest to the readers in the NDT/E field. This book covers both theoretical researches and the engineering applications of the electromagnetic NDT technology. It could serve as a valuable reference for college students and relevant NDT technicians. It is also a useful material for qualification training and higher learning for nondestructive testing professionals.

  16. Non-Destructive Testing for Concrete Structure

    International Nuclear Information System (INIS)

    Tengku Sarah Tengku Amran; Noor Azreen Masenwat; Mohamad Pauzi Ismail

    2015-01-01

    Nondestructive testing (NDT) is a technique to determine the integrity of a material, component or structure. It is essential in the inspection of alteration, repair and new construction in the building industry. There are a number of non-destructive testing techniques that can be applied to determine the integrity of concrete in a completed structure. Each has its own advantages and limitations. For concrete, these problems relate to strength, cracking, dimensions, delamination, and inhomogeneities. NDT is reasonably good and reliable tool to measure the property of concrete which also gives the fair indication of the compressive strength development. This paper discussed the concrete inspection using combined methods of NDT. (author)

  17. Non-destructive testing and radiation in industry

    International Nuclear Information System (INIS)

    Woodford, C; Ashby, P.

    2001-01-01

    Non-destructive testing (NDT) is a little known discipline which uses non-invasive and passive techniques to investigate the condition of materials and structures. Some of these techniques employ the use of radioisotopes. The penetrating radiations produced by these materials are applied in various ways to obtain the required information. This presentation is an overview of the application of radioisotopes within the scope of NDT. Notwithstanding the well established use of traditional materials, new forms of radioisotopes are being developed which will extend their capabilities

  18. Non-destructive testing of CFC/Cu joints

    International Nuclear Information System (INIS)

    Casalegno, V.; Ferraris, M.; Salvo, M.; Vesprini, R.; Merola, M.

    2006-01-01

    Reliable non-destructive tests (NDT) are fundamental for the manufacturing of ITER components, especially for high heat flux plasma facing components. NDT include various techniques, which allow inspection of a component without impairing serviceability; it's important to detect and characterize defects (type, size and position) as well as the set-up of acceptance standards in order to predict their influence on the component performance in service conditions. The present study shows a description of NDT used to assess the manufacturing quality of CFC (carbon fibre reinforced carbon matrix composites)/Cu/CuCrZr joints. In the ITER divertor, armor tiles made of CFC are joined to the cooling structure made of precipitation hardened copper alloy CuCrZr; a soft pure Cu interlayer is required between the heat sink and the armour in order to mitigate the stresses at the joint interface. NDT on CFC/Cu joint are difficult because of the different behavior of CFC and copper with regard to physical excitations (e.g. ultrasonic wave) used to test the component; furthermore the response to this input must be accurately studied to identify the detachment of CFC tiles from Cu alloy. The inspected CFC/Cu/CuCrZr joints were obtained through direct casting of pure Cu on modified CFC surface and subsequently through brazing of CFC/Cu joints to CuCrZr by a Cu-based alloy. Different non-destructive methods were used for inspecting these joints: lock-in thermography, ultrasonic inspections, microtomography and microradiography. The NDT tests were followed by metallographic investigation on the samples, since the reliability of a certain non destructive test can be only validated by morphological evidence of the detected defects. This study will undertake a direct comparison of NDT used on CFC/Cu joints in terms of real flaws presence. The purpose of this work is to detect defects at the joining interface as well as in the cast copper ( for instance voids). The experimental work was

  19. Training guidelines in non-destructive testing techniques

    International Nuclear Information System (INIS)

    1987-02-01

    With the conclusion in 1979 of a successful Agency executed UNDP project in Argentina, whose aim was the establishment of a national non-destructive testing centre, the Agency was asked by other countries in the Latin American and Caribbean Region to evaluate the possibility of transferring this success to the whole region. In 1982, with the financial cooperation of UNFSSTD and UNIDO, a regional project was started with the principal objective of assisting the countries in the region to reinforce autonomous NDT capability through regional cooperation. One essential component of this project has been the harmonization of training through the development and use of course syllabi by the 17 countries now participating in the project. To this end, a Regional Working Group was formed and one of its tasks is the development of these syllabi for the more common NDT methods. This publication is a collection of the training programmes elaborated to date which have so far been followed by some 10,000 persons in the region who have received training in NDT as a direct result of the project. These syllabi take into account the development work done by the International Committee for Non-destructive Testing and many national training programmes, and are meant to be an objective guide to assist in the formation of NDT personnel

  20. Human and organisational factors influencing the reliability of non-destructive testing. An international literary survey; Inhimillisten ja organisatoristen tekijoeiden yhteys NDT- tarkastusten luotettavuuteen. Katsaus kansainvaeliseen kirjallisuuteen

    Energy Technology Data Exchange (ETDEWEB)

    Kettunen, J.; Norros, L.

    1996-04-01

    The aim of the study is to chart human and organisational factors influencing the reliability of non-destructive testing (NDT). The emphasis will be in ultrasonic testing (UT) and in the planning and execution of in-service inspections during nuclear power plant maintenance outages. Being a literary survey this study is mainly based on the foreign and domestic research available on the topic. In consequence, the results presented in this report reflect the ideas of international research community. In addition to this, Finnish nuclear power plant operators (Imatran Voima Oy and Teollisuuden Voima Oy), independent inspection organisations and the Finnish Centre for Radiation and Nuclear Safety have provided us with valuable information on NDT theory and practice. Especially, a kind of `big picture` of non-destructive testing has been pursued in the study. (6 figs., 2 tabs.).

  1. Proficiency Testing in Nondestructive Testing (NDT)

    International Nuclear Information System (INIS)

    Amry Amin Abbas; Suhairy Sani; Mohamad Pauzi Ismail; Abd Nassir Ibrahim

    2014-01-01

    Department of Standard Malaysia (DSM) launched myPTP programme on 31 December 2013 in accordance to ISO/IC 17043. The standard states the requirements for Proficiency Testing. The provider of these services is called Proficiency Testing Provider (PTP). The role of PTP is to compare the proficiency level between inspection bodies or laboratories. With the assistance of expert panel, the PTP will determine the assigned value as reference to be compared to the values obtained from the inspection bodies or laboratories. Quality wise, this services is important as participation will improve wuality of the inspection quality continuously and increase confidence level of client and improve safety level. Requirement of PT in NDT is mentioned in SC1.5- Specific Criteria for Accreditation of Mechanical Testing and Non-Destructive Testing (NDT) for MS ISO/IEC17025 and MTR2- MIBAS Technical Requirements for Accreditation of NDT. This paper explains and discusses the result of this proficiency test done on a number of NDT companies that participated. (author)

  2. Local defect resonance for sensitive non-destructive testing

    Science.gov (United States)

    Adebahr, W.; Solodov, I.; Rahammer, M.; Gulnizkij, N.; Kreutzbruck, M.

    2016-02-01

    Ultrasonic wave-defect interaction is a background of ultrasound activated techniques for imaging and non-destructive testing (NDT) of materials and industrial components. The interaction, primarily, results in acoustic response of a defect which provides attenuation and scattering of ultrasound used as an indicator of defects in conventional ultrasonic NDT. The derivative ultrasonic-induced effects include e.g. nonlinear, thermal, acousto-optic, etc. responses also applied for NDT and defect imaging. These secondary effects are normally relatively inefficient so that the corresponding NDT techniques require an elevated acoustic power and stand out from conventional ultrasonic NDT counterparts for their specific instrumentation particularly adapted to high-power ultrasonic. In this paper, a consistent way to enhance ultrasonic, optical and thermal defect responses and thus to reduce an ultrasonic power required is suggested by using selective ultrasonic activation of defects based on the concept of local defect resonance (LDR). A strong increase in vibration amplitude at LDR enables to reliably detect and visualize the defect as soon as the driving ultrasonic frequency is matched to the LDR frequency. This also provides a high frequency selectivity of the LDR-based imaging, i.e. an opportunity of detecting a certain defect among a multitude of other defects in material. Some examples are shown how to use LDR in non-destructive testing techniques, like vibrometry, ultrasonic thermography and shearography in order to enhance the sensitivity of defect visualization.

  3. A new look at trends in non-destructive testing

    International Nuclear Information System (INIS)

    Forsten, J.

    1984-01-01

    Non-destructive testing (NDT) has been performed extensively for several decades. However, the NDT area is not in a static condition, as sophisticated equipment, improved procedures and new innovations keep development going on. Neither is the NDT field isolated from other fields, and this influences strongly the current situation, i.e.: The cost of electronics is decreasing and complex problems can now be solved; Safety requirements on products and components become more stringent; Quality requirements of the whole life span of a product or a component become more accentuated; Improved testing reliability is required; Quality assurance requirements must be imposed on NDT itself; New materials, e.g., fiber reinforced materials, and materials combinations, e.g., sandwich structures, will be used for special purposes; New production techniques, like glueing of metals, put new requirements on the NDT techniques

  4. Application of positron annihilation techniques in non-destructive testing

    International Nuclear Information System (INIS)

    Zeng Hui; Chen Zhiqiang; Jiang Jing; Xue Xudong; Wu Yichu; Liang Jianping; Liu Xiangbing; Wang Rongshan

    2014-01-01

    Background: The investigation of the material damage state is very important for industrial application. Most mechanical damage starts with a change in the microstructure of the material. Positron annihilation techniques are very sensitive probes for detecting defects and damage on an atomic scale in materials, which are of great concern in the engineering applications. Additionally they are apparatus of non-destruction, high-sensitivity and easy-use. Purpose: Our goal is to develop a system to exploit new non-destructive testing (NDT) methods using positron annihilation spectroscopy, a powerful tool to detect vacancy-type defects and their chemical environment. Methods: A positron NDT system was designed and constructed by modifying the 'sandwich structure' of sample-source-sample in conventional Doppler broadening and positron lifetime spectrometers. Doppler broadening and positron lifetime spectra of a single sample can be measured and analyzed by subtracting the contribution of a reference sample. Results: The feasibility and reliability of positron NDT system have been tested by analyzing nondestructively deformation and damage caused by mechanical treatment or by irradiation of metal alloys. This system can be used for detecting defects and damage in thick or large-size samples, as well as for measuring the two-dimension distribution of defects in portable, sensitive, fast way. Conclusion: Positron NDT measurement shows changes in real atomic-scale defects prior to changes in the mechanical properties, which are detectable by other methods of NDT, such as ultrasonic testing and eddy current testing. This system can be developed for use in both the laboratory and field in the future. (authors)

  5. Radioisotopes in non-destructive testing

    International Nuclear Information System (INIS)

    Domanus, J.C.

    1976-12-01

    After defining nondestructive testing (NDT) and comparing this concept with destructive testing, a short description is given of NDT methods other than radiologic. The basic concepts of radiologic methods are discussed and the principles of radiography are explained. Radiation sources and gamma radiography machines are next reviewed and radiographic inspection of weldings and castings is described. A brief description is given of the radiographic darkroom and accessories. Other radioisotope methods, such as neutron radiography, are shortly reviewed. Cost estimations for radioisotopic equipment conclude the report. (author)

  6. Current developments in mechanized non-destructive testing in nuclear power plants

    International Nuclear Information System (INIS)

    Zeilinger, R.

    2008-01-01

    Nuclear power plants require frequent in-service activities to be carried out conscientiously in areas potentially hazardous to human operators (because of the associated radiation exposure), such as non-destructive testing of pressurized components of the steam system. Locations to be inspected in this way include the reactor pressure vessel, core internals, steam generators, pressurizers, and pipes. The codes to be used as a basis of these inspections demand high absolute positioning and repeating accuracy. These requirements can be met by mechanized test procedures. Accordingly, many new applications of, mostly mobile, robots have been developed over the past few years. The innovative control and sensor systems for stationary and mobile robots now on the market offer a potential for economic application in a large number of new areas in inspection, maintenance and service in nuclear power plants. More progress in this area is expected for the near future. Areva NP founded the new NDT Center, NETEC (Non-destructive Examination Technical Center), as a global technical center for non-destructive materials testing. NETEC is to advance research and development of all basic NDT technologies, robotics included. For many years, intelligeNDT has offered solutions and products for a variety of inspection and testing purposes and locations in nuclear power plants and is involved in continuous further development of the experience collected in nuclear power plants on the spot. (orig.)

  7. NDT Reliability - Final Report. Reliability in non-destructive testing (NDT) of the canister components

    Energy Technology Data Exchange (ETDEWEB)

    Pavlovic, Mato; Takahashi, Kazunori; Mueller, Christina; Boehm, Rainer (BAM, Federal Inst. for Materials Research and Testing, Berlin (Germany)); Ronneteg, Ulf (Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden))

    2008-12-15

    This report describes the methodology of the reliability investigation performed on the ultrasonic phased array NDT system, developed by SKB in collaboration with Posiva, for inspection of the canisters for permanent storage of nuclear spent fuel. The canister is composed of a cast iron insert surrounded by a copper shell. The shell is composed of the tube and the lid/base which are welded to the tube after the fuel has been place, in the tube. The manufacturing process of the canister parts and the welding process are described. Possible defects, which might arise in the canister components during the manufacturing or in the weld during the welding, are identified. The number of real defects in manufactured components have been limited. Therefore the reliability of the NDT system has been determined using a number of test objects with artificial defects. The reliability analysis is based on the signal response analysis. The conventional signal response analysis is adopted and further developed before applied on the modern ultrasonic phased-array NDT system. The concept of multi-parameter a, where the response of the NDT system is dependent on more than just one parameter, is introduced. The weakness of use of the peak signal response in the analysis is demonstrated and integration of the amplitudes in the C-scan is proposed as an alternative. The calculation of the volume POD, when the part is inspected with more configurations, is also presented. The reliability analysis is supported by the ultrasonic simulation based on the point source synthesis method

  8. Aging material evaluation and studies by non-destructive techniques (AMES-NDT) - a European network project

    International Nuclear Information System (INIS)

    Dobmann, Gerd; Debarberis, Luigi; Coste, Jean-Francois

    2001-01-01

    This paper presents results obtained in a round-robin action organized in a concerted action of ten partners in the EURATOM program of the European Community. The objective of the research was to document the state of the art of available non-destructive testing (NDT) techniques in order to characterize material aging phenomena based on a reduction of Charpy-V energy and a shift in the fracture appearance transition temperature. Therefore, samples from the Japanese nuclear reactor pressure vessel JRQ-steel (ASMT Standard A533-B Class 1) have been thermally treated at 700 deg. C for 18 h with a subsequent water quenching. Besides micromagnetic and electromagnetic NDT, the positron annihilation technique, ultrasonic reverberation by using Laser ultrasonics and the thermo-electrical power have been applied to characterize the aged material states

  9. Training guidelines in non-destructive testing techniques

    International Nuclear Information System (INIS)

    1991-10-01

    Non-destructive testing methods (NDT), by their very nature, allow components to be fully examined for properties or flaws without interfering with their usefulness. This grouping of inspection methods has grown from a handful of primitive techniques practised by artists to a widely known discipline which is an essential part of quality control, largely as a result of the standards demanded by the nuclear and aerospace industries. Recognizing the need for an international publication of NDT training syllabi, the IAEA Consultants Meeting on ''Qualification and Certification of NDT Personnel'' (Milan, 20-21 May 1986), recommended that the Agency publish the guidelines developed by Regional Working Group of the Latin America and Caribbean project. It was first issued in English in 1987 and has now been re-edited in English and Spanish and enlarged by the addition of programmes for other techniques

  10. Development of non-destructive testing. Turkey

    International Nuclear Information System (INIS)

    1991-01-01

    A National Scheme for the qualification and certification of Non-Destructive Testing (NDT) personnel in various methods has been established as the first stage of implementation. Systematic training in such methods as radiography (RT), ultrasonics (UT), magnetic particles (MT), liquid penetrant (PT) and eddy currents (ET) at levels I, II and some at III has been initiated and should be continued. Direct link with the industry and continuous effort to extend practical applications is strongly recommended

  11. Comparative testing of radiographic testing, ultrasonic testing and phased array advanced ultrasonic testing non destructive testing techniques in accordance with the AWS D1.5 bridge welding code.

    Science.gov (United States)

    2014-02-01

    A comprehensive body of non-destructive testing data was collected from steel bridge welds under real-world conditions in a fabricators shop. Three different non-destructive testing (NDT) techniques were used on each weld inspection, these being R...

  12. Training Guidelines in Non-Destructive Testing Techniques: Manual for Visual Testing at Level 2

    International Nuclear Information System (INIS)

    2013-01-01

    The International Atomic Energy Agency (IAEA) has been active in the promotion of non-destructive testing (NDT) technology for many decades. The prime reason for this interest has been the need for stringent quality control standards for safe operation of nuclear as well as other industrial installations. The IAEA has successfully executed a number of projects, including technical cooperation projects (national and regional) and coordinated research projects, in which NDT was an important part. Through these projects, a large number of persons have been trained in numerous Member States, leading to the establishment of national certifying bodies responsible for training and certification of NDT personnel. Consequently a state of self-sufficiency in this area of technology has been achieved in many of these States. All along there has been a realization of the need to have well established training guidelines and related books, in order, first, to guide IAEA experts involved in this training programme and, second, to achieve some level of international uniformity and harmonization of training materials and consequent competence of NDT personnel. The syllabuses for training courses have been published in the form of TECDOC publications. The first was IAEA-TECDOC-407 (1987), which contained syllabuses for the five basic NDT methods: liquid penetrant testing, magnetic particle testing, eddy current testing, radiographic testing and ultrasonic testing. To accommodate advancements in NDT technology, later versions of this publication were issued in 1991, 2002 and 2008, with the current version being IAEA-TECDOC- 628/Rev.2 (2008), which includes additional and more advanced NDT methods. The next logical step was to compile textbooks and training manuals in accordance with these syllabuses. Manuals on liquid penetrant, magnetic particle, radiographic, ultrasonic and eddy current testing have already been published in the Training Course Series. These play a vital role in

  13. Non-destructive testing: significant facts

    International Nuclear Information System (INIS)

    Espejo, Hector; Ruch, Marta C.

    2006-01-01

    In the last fifty years different organisations, both public and private, have been assigned to the mission of introducing into the country the most relevant aspects of the modern technological discipline 'Non Destructive Testing' (NDT) through a manifold of activities, such as training and education, research, development, technical assistance and services, personnel qualification/certification and standardisation. A review is given of the significant facts in this process, in which the Argentine Atomic Energy Commission, CNEA, played a leading part, a balance of the accomplishments is made and a forecast of the future of the activity is sketched. (author) [es

  14. Containment nuclear plant structures evaluation by non destructive testing: strategy and results

    OpenAIRE

    GARNIER, Vincent; HENAULT, Jean-Marie; HAFID, Hamid; VERDIER, Jérôme; CHAIX, Jean François; ABRAHAM, Odile; SBARTAÏ, Zoubir Medhi; BALAYSSAC, Jean Pierre; PIWAKOWSKI, Bogdan; VILLAIN, Géraldine; DEROBERT, Xavier; PAYAN, Cédric; RAKOTONARIVO, Sandrine; LAROSE, Eric; SOGBOSSI, Hognon

    2016-01-01

    Containment nuclear plants structures are an ultimate barrier in the event of an accident. Mechanical resistance and tightness are the two functions that they are expected to provide. To evaluate their capacity to perform them, destructive testing cannot be used to characterize the material. Non-Destructive Tests then represent a relevant solution to test concrete and the struc- ture. The article positions NDT within the context of containment structures supervision and maintenance, and prese...

  15. Qualifying program on Non-Destructive Testing, Visual Inspection of the welding (level 2)

    International Nuclear Information System (INIS)

    Shafee, M. A.

    2011-01-01

    Nondestructive testing is a wide group of analysis technique used in science and industry to evaluate the properties of a material, component or system without causing damage. Common Non-Destructive Testing methods include ultrasonic, magnetic-particle, liquid penetrate, radiographic, visual inspection and eddy-current testing. AAEA put the new book of the Non-Destructive Testing publication series that focused on Q ualifying program on Non-Destructive Testing, visual inspection of welding-level 2 . This book was done in accordance with the Arab standard certification of Non-Destructive Testing (ARAB-NDT-CERT-002) which is agreeing with the ISO-9712 (2005) and IAEA- TEC-DOC-487. It includes twenty one chapters dealing with engineering materials used in industry, the mechanical behavior of metals, metal forming equipments, welding, metallurgy, testing of welds, introduction to Non-Destructive Testing, defects in metals, welding defects and discontinuities, introduction to visual inspection theory, properties and tools of visual testing, visual testing, quality control regulations, standards, codes and specifications, procedures of welding inspections, responsibility of welding test inspector, qualification of Non-Destructive Testing inspector and health safety during working.

  16. Non destructive testing: a unique R and D platform in Europe in Saclay

    International Nuclear Information System (INIS)

    On, Dinhill

    2012-01-01

    This article presents the 'Gerim 2' R and D platform which is dedicated to non destructive testing (NDT) in the field of information and communication technology (ICT). It is the first of its kind in Europe and is located in Saclay. It possesses a wide spectrum of NDT technologies: contactless ultrasonic testing, ultrasonic adaptive imagery, automated and multi-resolution X-ray tomography, etc. Founded by public research institutions and industrial partners, this centre is dedicated only to research and development

  17. Training guidelines in non-destructive testing techniques. 1991 edition

    International Nuclear Information System (INIS)

    1991-10-01

    Non-destructive testing methods (NDT), by their very nature, allow components to be fully examined for properties or flaws without interfering with their usefulness. This grouping of inspection methods has grown from a handful of primitive techniques practised by artists to a widely known discipline which is an essential part of quality control, largely as a result of the standards demanded by the nuclear and aerospace industries. Recognizing the need for an international publication of NDT training syllabi, the IAEA Consultants Meeting on ''Qualification and Certification of NDT Personnel'' (Milan, 20-21 May 1986), recommended that the Agency publish the guidelines developed by Regional Working Group of the Latin America and Caribbean project. It was first issued in English in 1987 and has now been re-edited in English and Spanish and enlarged by the addition of programmes for other techniques

  18. Combining data in non-destructive testing

    International Nuclear Information System (INIS)

    Lavayssiere, B.

    1994-03-01

    Non-destructive testing of some components requires quite often the use of several methods such as X-ray, ultrasonics, Eddy Currents. But the efficiency of a NDT method is highly dependent on the fact that the detectability of flaws in a specimen relies on the choice of the best method. Moreover a lot of inspection issues could benefit from the use of more than one test method, as each NDT method has its own physical properties and technological limits. Some questions still remain: how to combine data, at what level and for what functionality. Simple monomethod processes are well-known now. They include techniques like reconstruction which belongs to the so-called ill-posed problems in the field of mathematics. For NDT data processing, it has the ability to estimate real data from distorted ones coming from a probe. But, up to now there has been very few approaches for computer aided combination of results from different advanced techniques. This report presents the various mathematical fields involved towards that goal (statistical decision theory which allows the use of multiple hypothesis, non-linear decision theory for its capability to classify and to discriminate, graph theory to find the optimal path in an hypothesis graph and also fuzzy logic, multiple resolution analysis, artificial intelligence,...) and which combinations of methods are useful. Some images will illustrate this topic in which EDF is involved, and will explain what are the major goals of this work. Combining is not only an improvement of 3D visualisation which would allow to display simultaneously CAD or NDT data for example, but it consists in exploiting multisensor data collected via a variety of sophisticated techniques and presenting this information to the operator without overloading the operator/system capacities in order to reduce the uncertainty and to resolve the ambiguity inherent to mono method inspection. (author). 7 figs., 35 refs

  19. X-rays for industry: Non-destructive testing helps Malaysia’s competitiveness

    International Nuclear Information System (INIS)

    Plonsky, Brian

    2015-01-01

    Industrial testing using nuclear technology has contributed to the competitiveness of Malaysia’s manufacturing sector, industry players have said. The country has also built itself an export niche in South-East Asia, offering non-destructive testing (NDT) with nuclear devices to manufacturers in neighbouring countries. “The fact that we can get NDT services of a good quality level at a very reasonable price allows us to spend more money on inspection, and thus improve our competitiveness as well as the level of safety of our plant,” said Zamaludin Ali, senior engineer at oil company PETRONAS. Before the development of a local NDT industry and accreditation system for testing services, PETRONAS and other companies in Malaysia had to rely on foreign NDT providers, or local companies hiring operators certified abroad, he explained. NDT using nuclear techniques involves the use of ionizing radiation to test the quality of finished products. It is based on the same principle as X-rays used in hospitals. Oil pipes, boilers, pressure vessels, aircraft equipment and ships are among the products whose quality is tested with the technique. The IAEA has played an important role in helping Malaysia to establish accredited training agencies and a certification system, and to promote NDT technologies such as radiographic testing. As a result of this longstanding partnership, over 50 companies in Malaysia, employing more than 2000 technicians, are certified to carry out NDT testing.

  20. Non destructive Testing (NDT) of concrete containing hematite

    International Nuclear Information System (INIS)

    Mohamad Pauzi Ismail; Noor Azreen Masenwat; Suhairy Sani; Nasharuddin Isa; Mohamad Haniza Mahmud

    2014-01-01

    This paper described the results of Non-destructive ultrasonic and rebound hammer measurements on concrete containing hematite. Local hematite stones were used as aggregates to produce high density concrete for application in X-and gamma shielding. Concrete cube samples (150 mm x 150 mm x 150 mm) containing hematite as coarse aggregates were prepared by changing mix ratio, water to cement ratio (w/c) and types of fine aggregate. All samples were cured in water for 7 days and then tested after 28 days. Density, rebound number(N) and ultrasonic pulse velocity (UPV) of the samples were taken before compressed to failure. The measurement results are explained and discussed. (author)

  1. Non destructive testing in amusement park

    International Nuclear Information System (INIS)

    Dominguez Marrero, Humberto; Hernandez Torres, Debora; Sendoya Puente, Felix; Herrera Palma, Victoria; Suarez Guerra, Yarelis; Moreno Hernandez, Eduardo; Lopez Hernandez, Pedro

    2009-01-01

    In 2006 began the installation of Chinese amusement parks at several places in Havana City. Structural security is one of the principal tasks that should be done, since the beginning of the services of these installations. The use on Non Destructive Testing Techniques (NDT), has to be development and implemented in order to avoid the possibility of failure during services with a consequence threat to safety for the public presented. In this work it is shown the results of application of NDT techniques and recommendations for the quality control of the different welds and mechanical components presented. Techniques as Visual Examination, Liquid Penetrant and Ultrasonic have been used for these purposes in order to obtain a structural diagnostic in the amusement parks. There are also exposed the use and implementation of international recommendations and Standards, which are very rigorous in its applications for the case of recreation industry. This is a consequence to its social service fundamentally to children and teenage people. (Author)

  2. Building Of Training Program Of Non-Destructive Testing For Concrete Structures (Part 1: Radiographic testing; Ultrasonic pulse velocity measurement; Nuclear moisture-density gauge)

    International Nuclear Information System (INIS)

    Nguyen Le Son; Phan Chanh Vu; Pham The Hung; Vu Huy Thuc

    2007-01-01

    Non-destructive testing methods (NDT) have been identified as a strong candidate for remote sensing of concrete structures over recent years. This has accelerated the powerful development of the NDT techniques in Vietnam. Hence, there is an urgent need to promote the awareness of NDT methods which could give an improved estimate of the condition concrete. Building of training program of non-destructive testing for concrete structures is a necessary duty, in aiming to build a unified training program, possibly satisfying the requirements on training as well as researching. Under the framework of the basic VAEC project (CS/07/02-03), a training program for the first 03 NDT methods: 1. Radiographic testing; 2. Ultrasonic pulse velocity measurement; 3. Nuclear moisture- density gauge was prepared. The main products of this project include: 1. Set out 03 training notes for 03 methods; 2. Set out the practical exercises to train for 03 methods; 3. Editing a set of examination questions in aiming to familiarize with various questions in 03 trained methods; 4. Fabricating practical test specimens to demonstrate for 03 techniques. (author)

  3. Training Guidelines in Non-Destructive Testing Techniques: Leak Testing at Level 2

    International Nuclear Information System (INIS)

    2012-01-01

    The International Atomic Energy Agency (IAEA) has been active in the promotion of non-destructive testing (NDT) technology for many decades. The prime reason for this interest has been the need for stringent standards for quality assurance for safe operation of nuclear and other industrial installations. The IAEA successfully executed a number of programmes, including technical cooperation projects (national and regional) and coordinated research projects (CRPs), in which NDT was an important part. Through these programmes, a large number of personnel have been trained in Member States, leading to the establishment of national certifying bodies responsible for the training and certification of NDT personnel. Consequently, a state of self-sufficiency in this area of technology has been achieved in many Member States. All along there has been a realization of the need to have well established training guidelines, in order to orient the IAEA experts who were involved in training and certification programmes, and to achieve some level of international uniformity and harmonization of training materials and certification processes, and consequent competence of NDT personnel.

  4. Qualification and certification in NDT

    International Nuclear Information System (INIS)

    Hassan Kavarodi Maracair

    2003-01-01

    Ruane-TATI Sdn Bhd was the first accredited training centre in Asia approved by The British Institute of Non Destructive Testing (BINDT) as per EN 473, ISO 9712 and EN 45013 requirements. Meanwhile, Ruane-TATI is also accredited by National Vocational Training Center ( MLVK ).This mean that Ruane-TATI is the first training and examination center that accredited by both international and national bodies in providing quality , qualification and certification for comprehensive training and examination in Inspection and Non Destructive Testing (NDT). There are several NDT examinations scheme available in Malaysia due to differences requirement from the industrials. This has put the difficulties to services company in upgrading their NDT technician qualifications. The intention of this paper is to discuss the basic different among the NDT examinations scheme used in Malaysia ( mostly offered by Ruane-TATI ) and the development of certain schemes in covering their schemes to more sectors and NDT methods. (Author)

  5. Human and organisational factors influencing the reliability of non-destructive testing. An international literary survey

    International Nuclear Information System (INIS)

    Kettunen, J.; Norros, L.

    1996-04-01

    The aim of the study is to chart human and organisational factors influencing the reliability of non-destructive testing (NDT). The emphasis will be in ultrasonic testing (UT) and in the planning and execution of in-service inspections during nuclear power plant maintenance outages. Being a literary survey this study is mainly based on the foreign and domestic research available on the topic. In consequence, the results presented in this report reflect the ideas of international research community. In addition to this, Finnish nuclear power plant operators (Imatran Voima Oy and Teollisuuden Voima Oy), independent inspection organisations and the Finnish Centre for Radiation and Nuclear Safety have provided us with valuable information on NDT theory and practice. Especially, a kind of 'big picture' of non-destructive testing has been pursued in the study. (6 figs., 2 tabs.)

  6. Computerized tomography used in non-destructive testing of welded pipes

    Energy Technology Data Exchange (ETDEWEB)

    Iovea, M; Rizescu, C; Georgescu, G; Marinescu, A; Chitescu, P; Sava, T; Neagu, M; Avram, D [Institute of Research and Design for Electrical Engineering, ICPE - Electrostatica Splaiul Unirii 313, Sect. 3, R-74204 Bucharest (Romania)

    1997-12-31

    High quality standards in operation of National Power System is ensured by the use of high performance techniques and systems for Non-Destructive Testing (NDT). In recent years a number of new developments of the non-conventional technologies in the field of NDT have been achieved. In our laboratory there have been developed two computerized technologies using {gamma}-ray computed tomography and ultrasonic imaging methods. The standard techniques for imaging from projection data is computerized tomography. The industrial computerized tomography methods consist in the measurement of thin X - or {gamma}-ray beam attenuation when passing through some selected surface of the tested object, along several directions, so that by means of an adequate mathematical algorithm, a map of linear attenuation coefficients for the scanned surface is obtained. In fact, this map gives the density of materials occurring in the surface plane. Computerized tomography equipment, in various constructive versions, are intended for the following applications: (1) NDT in those fields requiring strict control of product quality, as for instance the nuclear energy, military industry, aeronautics, transportation fields, etc., (2) research in field of materials technology, machine engineering, metallurgy, welding, etc. This paper presents the applications of Computerized Tomography in NDT, by showing the results obtained on welded pipes, as well as the facilities offered by this method. In the final part, the paper presents the concept of a mobile tomography system for industrial pipes testing. (author). 2 figs., 7 refs.

  7. Computerized tomography used in non-destructive testing of welded pipes

    International Nuclear Information System (INIS)

    Iovea, M.; Rizescu, C.; Georgescu, G.; Marinescu, A.; Chitescu, P.; Sava, T.; Neagu, M.; Avram, D.

    1996-01-01

    High quality standards in operation of National Power System is ensured by the use of high performance techniques and systems for Non-Destructive Testing (NDT). In recent years a number of new developments of the non-conventional technologies in the field of NDT have been achieved. In our laboratory there have been developed two computerized technologies using γ-ray computed tomography and ultrasonic imaging methods. The standard techniques for imaging from projection data is computerized tomography. The industrial computerized tomography methods consist in the measurement of thin X - or γ-ray beam attenuation when passing through some selected surface of the tested object, along several directions, so that by means of an adequate mathematical algorithm, a map of linear attenuation coefficients for the scanned surface is obtained. In fact, this map gives the density of materials occurring in the surface plane. Computerized tomography equipment, in various constructive versions, are intended for the following applications: 1) NDT in those fields requiring strict control of product quality, as for instance the nuclear energy, military industry, aeronautics, transportation fields, etc., 2) research in field of materials technology, machine engineering, metallurgy, welding, etc. This paper presents the applications of Computerized Tomography in NDT, by showing the results obtained on welded pipes, as well as the facilities offered by this method. In the final part, the paper presents the concept of a mobile tomography system for industrial pipes testing. (author). 2 figs., 7 refs

  8. Training guidelines in non-destructive testing techniques: 2008 ed

    International Nuclear Information System (INIS)

    2008-12-01

    This publication is a revision of IAEA-TECDOC-628/Rev.1 and provides the basic syllabus for systems for training and certification programmes of non-destructive testing (NDT) personnel in accordance with the requirements of international standard ISO 9712 (2005). The training guidelines developed to date have been used by Member States in formulating their national NDT programmes and to provide local end user industries with a skilled workforce. The present publication accommodates the latest advancements in technology and will continue to play an important role towards international harmonization in the field of NDT. This publication contains a body of knowledge for non-destructive testing. It was developed to provide guidelines for trainers, training organizations and certification bodies, detailing the subject matter and the content for each level of certification. It is general in nature but the contents of the training should be adapted to the needs, procedures, materials and products of the customer. The recommended training hours are consistent with the edition of the standard ISO 9712 in effect at the time of preparation. All formal training described in this publication contains a theoretical portion and a practical portion. Guidance is included on the range of equipment and materials needed for instruction in each method. There is a common core of material that is required by level 3 personnel in every method. This common material has been removed from the content for the particular method and included as a separate section. All training should end with an examination and can lead to a certification. Examination and certification are not covered by this publication, but detailed information about this can be found in ISO 9712. This publication is applicable for the following methods: eddy current testing, magnetic particle testing, liquid penetrant testing, radiographic testing, and ultrasonic testing. NDT methods are now widely used in civil engineering

  9. Analysis of Within-Test Variability of Non-Destructive Test Methods to Evaluate Compressive Strength of Normal Vibrated and Self-Compacting Concretes

    Science.gov (United States)

    Nepomuceno, Miguel C. S.; Lopes, Sérgio M. R.

    2017-10-01

    Non-destructive tests (NDT) have been used in the last decades for the assessment of in-situ quality and integrity of concrete elements. An important step in the application of NDT methods concerns to the interpretation and validation of the test results. In general, interpretation of NDT results should involve three distinct phases leading to the development of conclusions: processing of collected data, analysis of within-test variability and quantitative evaluation of property under investigation. The analysis of within-test variability can provide valuable information, since this can be compared with that of within-test variability associated with the NDT method in use, either to provide a measure of the quality control or to detect the presence of abnormal circumstances during the in-situ application. This paper reports the analysis of the experimental results of within-test variability of NDT obtained for normal vibrated concrete and self-compacting concrete. The NDT reported includes the surface hardness test, ultrasonic pulse velocity test, penetration resistance test, pull-off test, pull-out test and maturity test. The obtained results are discussed and conclusions are presented.

  10. 3D Modeling and Simulation for Electromagnetic Non-Destructive Testing- Problems and Limitations

    International Nuclear Information System (INIS)

    Ilham Mukriz Zainal Abidin; Nurul Ain Ahmad Latif

    2011-01-01

    Non-Destructive Testing (NDT) plays a critical role in nuclear power plants (NPPs) for life cycle management; such testing requires specialists with various NDT related expertise with specific equipment. This paper will discuss the importance of 3D modeling and simulation for electromagnetic NDT for critical and complex components in terms of engineering reasoning and physical trials. Results from simulation are presented which show the link established between the measurements and information relating to defects, such as 3D shape, size and location, which facilitates not only forward problem but also inverse modeling involving experimental system specification and configuration; and pattern recognition for 3D defect information. Subsequently, the problems and limitations pertinent to 3D modeling and simulation are then highlighted and areas of improvement are discussed. (author)

  11. Non-destructive Testing by Infrared Thermography Under Random Excitation and ARMA Analysis

    Science.gov (United States)

    Bodnar, J. L.; Nicolas, J. L.; Candoré, J. C.; Detalle, V.

    2012-11-01

    Photothermal thermography is a non-destructive testing (NDT) method, which has many applications in the field of control and characterization of thin materials. This technique is usually implemented under CW or flash excitation. Such excitations are not adapted for control of fragile materials or for multi-frequency analysis. To allow these analyses, in this article, the use of a new control mode is proposed: infrared thermography under random excitation and auto regressive moving average analysis. First, the principle of this NDT method is presented. Then, the method is shown to permit detection, with low energy constraints, of detachments situated in mural paintings.

  12. Status report on developments and cooperation on risk-informed inservice-inspection and non-destructive testing (NDT) qualification in OECD-NEA member countries - CSNI integrity and ageing working group

    International Nuclear Information System (INIS)

    Skanberg, Lars

    2005-01-01

    presented at the Workshop have been published in the proceedings referenced NEA/CSNI/R(2004)9. The two reports along with the NRWG-report EUR 21320 are the main source of information for this Status Report on Developments and Cooperation on Risk-Informed In-Service-Inspection and Non-Destructive Testing (NDT) Qualification in OECD-NEA member countries. The report is organized in the following way: introduction to early ISI strategies and Augmented ISI and NDT Qualification; Risk-Informed In-Service Inspection (RI-ISI): Development of RI-ISI strategies, RI-ISI Regulatory guidance, Important aspects of RI-ISI, Overview of RI-ISI methods, Comparison of methods, Overview of RI-ISI applications and pilot studies, RI-ISI experience so far, Further evaluations and developments of RI-ISI methodologies; Non-Destructive Testing (NDT) Qualification: Development of NDT qualification strategies, NDT-qualification requirements and applications, NDT-qualification experience. Conclusions and recommendations are then given

  13. Training guidelines in non-destructive testing techniques. 2002 edition

    International Nuclear Information System (INIS)

    2002-01-01

    Non-destructive testing (NDT) is a dynamic technology and progresses with time. Since the issuance of IAEA-TECDOC-628 in 1991, the technology has experienced numerous changes. Advancements in knowledge about the behaviour of materials have led to changes in the applicable NDT codes, standards and specifications. In addition, over the last ten years, as a result of extensive research and development activities worldwide, new NDT techniques and equipment have been developed which are accepted by engineering community. To accommodate the latest developments, modifications are required to training materials. The present publication is an updated version of IAEA-TECDOC-628. The modifications were made during an Advisory Group Meeting, held in Vienna from 25-29 June 2001. The content of the first edition of IAEA-TECDOC-628 has been revised based on the experience of the experts, as well as comments of the end-user industries. The time allotment for different topics has been changed without changing the total duration. The details of the topics on each subject have been expanded to include the latest developments in the individual fields. The incorporated changes will help end-the user industries to update their NDT qualification and certification schemes, and course material

  14. Data fusion: a new concept in non-destructive testing

    International Nuclear Information System (INIS)

    Georgel, B.; Lavayssiere, B.

    1995-01-01

    Non-destructive testing of some components (made of austenitic steel, or of a complex shape for example) requires quite often the use of several methods such as X-ray, ultrasonics, Eddy Currents. Then, a skilled operator is able to perform the expertise of the specimen. The main goal of this paper is to show that 3D diagnosis may be improved in term of reliability and precision by fusion of several NDT techniques. A data fusion algorithm is more that trying to improve the visualisation or the rendering of NDT data sets. It consists for each volume element, in computing a new value representing the combined information and in formulating a diagnosis on this basis. To achieve such a goal, know-how in modeling of physical phenomena and in applied mathematics is crucial. (authors). 4 refs., 2 figs

  15. Non-destructive testing; Examenes no destructivos

    Energy Technology Data Exchange (ETDEWEB)

    Calva, Mauricio; Loske, Achim [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1988-12-31

    The application of non-destructive testing (NDT) in several technical and industrial fields is pointed out, standing out its utilization in the detection of future failures without affecting the examined element. Likewise, the different types of NDTs and their processes, such as x-rays, ultrasoud, magnetic particles, induced currents, penetrating fluids, and optical means, are described. The Non-Destructive Tests Laboratory of the Instituto de Investigaciones Electricas (IIE), plans to create new and more reliable systems independent from the operator`s capacity, to contribute to fulfill the inspection and quality control needs of the generating Mexican power plants. [Espanol] Se senala la aplicacion de los examenes no destructivos (END) a diversos campos tecnicos e industriales, destacando su utilizacion en la deteccion de futuras fallas sin afectar el elemento examinado. Asimismo, se describen los diferentes tipos de END y sus procesos, tales como radiografia, ultrasonido, particulas magneticas, corrientes inducidas, liquidos penetrantes y metodos opticos. El Laboratorio de Pruebas no Destructivas, del Instituto de Investigaciones Electricas (IIE), planea crear sistemas novedosos mas confiables, que no dependan de la capacidad del operador, para contribuir a satisfacer las necesidades de inspeccion y control de calidad que se presentan en las plantas generadoras de energia mexicanas.

  16. Non-destructive testing; Examenes no destructivos

    Energy Technology Data Exchange (ETDEWEB)

    Calva, Mauricio; Loske, Achim [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1987-12-31

    The application of non-destructive testing (NDT) in several technical and industrial fields is pointed out, standing out its utilization in the detection of future failures without affecting the examined element. Likewise, the different types of NDTs and their processes, such as x-rays, ultrasoud, magnetic particles, induced currents, penetrating fluids, and optical means, are described. The Non-Destructive Tests Laboratory of the Instituto de Investigaciones Electricas (IIE), plans to create new and more reliable systems independent from the operator`s capacity, to contribute to fulfill the inspection and quality control needs of the generating Mexican power plants. [Espanol] Se senala la aplicacion de los examenes no destructivos (END) a diversos campos tecnicos e industriales, destacando su utilizacion en la deteccion de futuras fallas sin afectar el elemento examinado. Asimismo, se describen los diferentes tipos de END y sus procesos, tales como radiografia, ultrasonido, particulas magneticas, corrientes inducidas, liquidos penetrantes y metodos opticos. El Laboratorio de Pruebas no Destructivas, del Instituto de Investigaciones Electricas (IIE), planea crear sistemas novedosos mas confiables, que no dependan de la capacidad del operador, para contribuir a satisfacer las necesidades de inspeccion y control de calidad que se presentan en las plantas generadoras de energia mexicanas.

  17. Human and organisational factors in the reliability of non-destructive testing (NOT)

    International Nuclear Information System (INIS)

    Norros, L.

    1998-01-01

    Non-destructive testing used in in-service inspections can be seen as a complicated activity system including three mutually related sub-activities: (1) definition of inspection programs and necessary resources, (2) carrying out diagnostic inspections, and (3) interpretation of the results from the view of plant safety and corrective measures. Various studies to investigate and measure the NDT performance have produced disappointing result. No clear correlations between single human factors and performance have been identified even though general agreement exists concerning the significance of human factors to the reliability of testing. Another incentive for our studies has been to test and evaluate the applicability of the international results in the Finnish circumstances. Three successive studies have thus been carried out on the human and organisational factors in non-destructive testing. (author)

  18. Current developments in mechanized non-destructive testing in nuclear power plants; Aktuelle Entwicklungen bei mechanisierten, zerstoerungsfreien Pruefungen in Kernkraftwerken

    Energy Technology Data Exchange (ETDEWEB)

    Zeilinger, R. [intelligeNDT System und Services GmbH und Co. KG, Erlangen (Germany)

    2008-01-15

    Nuclear power plants require frequent in-service activities to be carried out conscientiously in areas potentially hazardous to human operators (because of the associated radiation exposure), such as non-destructive testing of pressurized components of the steam system. Locations to be inspected in this way include the reactor pressure vessel, core internals, steam generators, pressurizers, and pipes. The codes to be used as a basis of these inspections demand high absolute positioning and repeating accuracy. These requirements can be met by mechanized test procedures. Accordingly, many new applications of, mostly mobile, robots have been developed over the past few years. The innovative control and sensor systems for stationary and mobile robots now on the market offer a potential for economic application in a large number of new areas in inspection, maintenance and service in nuclear power plants. More progress in this area is expected for the near future. Areva NP founded the new NDT Center, NETEC (Non-destructive Examination Technical Center), as a global technical center for non-destructive materials testing. NETEC is to advance research and development of all basic NDT technologies, robotics included. For many years, intelligeNDT has offered solutions and products for a variety of inspection and testing purposes and locations in nuclear power plants and is involved in continuous further development of the experience collected in nuclear power plants on the spot. (orig.)

  19. International symposium on NDT in aerospace. Proceedings

    International Nuclear Information System (INIS)

    2008-01-01

    The emerging use of modern materials, especially in the aerospace industry, has initiated a new discussion about the current status and performance of Non Destructive Testing and Evaluation regarding their capability and reliability in material inspection and characterization. The substitution of mono materials, like aluminium, by composite materials, especially carbon fiber reinforced plastics, requires the development of advanced testing methods or even the combination of different methods. The symposium will bridge a gap between the different experts in NDT and E and will help to intensify the dialogue between basic NDT research and industrial NDT challenges. In April 2005 the project ''Development Center for Non-Destructive Testing of New Materials in Aerospace'' (''ZeLuR'') was authorized at the ''Technikum Neue Materialien'' in Fuerth. This project with a term of 4 years is funded by the Free State of Bavaria with the support of the Objective 2 Programme Bavaria 2002 - 2006 of the European Union. This project is addressing the various demands of different methods for the non-destructive testing of new materials in the aerospace industry. The sessions of the conference include thermal imaging, ultrasound technology, optics and all aspects of X-ray testing as well as structural health monitoring, reliability and adhesive bonding. Moreover the latest results of the project ''ZeLuR'' will be presented, covering various aspects of NDT in aerospace. (orig.)

  20. Non-destructive testing: A guidebook for industrial management and quality control personnel

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-01-01

    The introduction and application of non-destructive testing (NDT) in industry is grossly misrepresented and misunderstood. It is often said that introduction of this expensive technology does not give any tangible returns or at least does not give returns proportional to the investment made. The facts, however, are exactly opposite to this notion and thinking. In fact, NDT, when appropriately applied, gives tremendous returns by way of savings in scrap by lowering the ultimate rates of rejection, saving valuable manufacturing time, increasing the overall quality and reliability of manufactured goods, providing an extension of plant life through preventive maintenance, saving unnecessary shutdowns, particularly through inservice inspection, and enhancement of a particular industry's reputation and consequent increased sales and profits. Therefore, even from a purely commercial viewpoint, NDT is of utmost importance for an industrial concern. The additional considerations of NDT's role in safety, failure and consequent accident prevention leave no doubt at all about the value and need of NDT. It is this point that needs to be fully appreciated by the industrial managers and decision makers at all levels. Management ought to understand in quite an unambiguous way that their products can only survive in the highly competitive markets of today if they have the adequate and optimum quality. This quality can be built into the manufactured goods only if suitable measures and methods of quality control are employed and that the most suitable methods in most situations are the non-destructive testing methods. Experience shows that in many cases of industrial decision making, proper knowledge of various aspects of a particular technology plays an important role. Therefore, if positive decisions are desired to be taken in favour of introducing NDT in industry in any country, its decision makers should be properly equipped with knowledge and information about this area of

  1. Non-destructive testing: A guidebook for industrial management and quality control personnel

    International Nuclear Information System (INIS)

    1999-01-01

    The introduction and application of non-destructive testing (NDT) in industry is grossly misrepresented and misunderstood. It is often said that introduction of this expensive technology does not give any tangible returns or at least does not give returns proportional to the investment made. The facts, however, are exactly opposite to this notion and thinking. In fact, NDT, when appropriately applied, gives tremendous returns by way of savings in scrap by lowering the ultimate rates of rejection, saving valuable manufacturing time, increasing the overall quality and reliability of manufactured goods, providing an extension of plant life through preventive maintenance, saving unnecessary shutdowns, particularly through inservice inspection, and enhancement of a particular industry's reputation and consequent increased sales and profits. Therefore, even from a purely commercial viewpoint, NDT is of utmost importance for an industrial concern. The additional considerations of NDT's role in safety, failure and consequent accident prevention leave no doubt at all about the value and need of NDT. It is this point that needs to be fully appreciated by the industrial managers and decision makers at all levels. Management ought to understand in quite an unambiguous way that their products can only survive in the highly competitive markets of today if they have the adequate and optimum quality. This quality can be built into the manufactured goods only if suitable measures and methods of quality control are employed and that the most suitable methods in most situations are the non-destructive testing methods. Experience shows that in many cases of industrial decision making, proper knowledge of various aspects of a particular technology plays an important role. Therefore, if positive decisions are desired to be taken in favour of introducing NDT in industry in any country, its decision makers should be properly equipped with knowledge and information about this area of

  2. Ionizing radiations for non-destructive evaluation

    International Nuclear Information System (INIS)

    Raj, Baldev; Venkataraman, B.

    1989-01-01

    A state of the art of major non-destructive testing (NDT) techniques based on ionising radiations is presented. These techniques are broadly classified into three categories, namely, radiography, radiation gaging and analytical applications. The basic principles behind each method are explained and salient features of each technique which make it suitable for a particular task are described. Several illustrative applications drawn from the nuclear industry are given. The monograph is intended to serve as an introductory guide to scientist and engineers engaged in NDT activities. (M.G.B.). 32 refs., 13 figs., 5 tabs

  3. Isotope techniques in non-destructive testing of dynamic systems

    International Nuclear Information System (INIS)

    Singh, Gursharan; Pant, H.J.

    1996-01-01

    A few applications of gamma scanning and radiotracer techniques for Non-destructive Testing (NDT) of dynamic systems in chemical and petrochemical industries are briefly discussed in this paper. Examples of gamma scanning inspections carried out for troubleshooting of various types of columns such as vacuum, extraction, separator and rectifier, with trays and packed beds and having diameters from 1 meter to 8.4 meters are given. Radiotracer applications for Residence Time Distribution (RTD) studies on different systems like an aniline production reactor in a chemical industry and a laboratory scale solid-liquid fluidized bed column are mentioned. (author)

  4. The Effect of Localized Damage on the Electrical Conductivity of Bare Carbon Fiber Tow and its Use as a Non-Destructive Evaluation Tool for Composite Overwrapped Pressure Vessels

    Science.gov (United States)

    Wentzel, Daniel

    2015-01-01

    Composite materials are beneficial because of their high specific strength and low weight. Safety, Destructive testing and destructive testing, Non-Destructive Testing (NDT) and Non-Destructive Evaluation (NDE). Problem: Neither NDT nor NDE can provide sufficient data to determine life expectancy or quantify the damage state of a composite material.

  5. Non-destructive testing of ceramic materials using mid-infrared ultrashort-pulse laser

    Science.gov (United States)

    Sun, S. C.; Qi, Hong; An, X. Y.; Ren, Y. T.; Qiao, Y. B.; Ruan, Liming M.

    2018-04-01

    The non-destructive testing (NDT) of ceramic materials using mid-infrared ultrashort-pulse laser is investigated in this study. The discrete ordinate method is applied to solve the transient radiative transfer equation in 2D semitransparent medium and the emerging radiative intensity on boundary serves as input for the inverse analysis. The sequential quadratic programming algorithm is employed as the inverse technique to optimize objective function, in which the gradient of objective function with respect to reconstruction parameters is calculated using the adjoint model. Two reticulated porous ceramics including partially stabilized zirconia and oxide-bonded silicon carbide are tested. The retrieval results show that the main characteristics of defects such as optical properties, geometric shapes and positions can be accurately reconstructed by the present model. The proposed technique is effective and robust in NDT of ceramics even with measurement errors.

  6. Research on non-destructive testing (NDT) aerospace igniter fuse with neutron radiography (NR)

    International Nuclear Information System (INIS)

    Mo Dawei; Liu Yisi; Cai Qingsheng; Chen Boxian

    1995-01-01

    The research works, facilities and results of NDT aerospace igniter fuse with neutron radiography at Tsinghua University swimming-pool reactor are introduced. The image quality (NR) of ASTM E545-85 I level was approached. The NR experimental research of the typical and possible defects was performed. The theoretical analysis was performed too. The feasibility of NDT aerospace igniter fuse with NR was proved experimentally

  7. Operator performance in non-destructive testing: A study of operator performance in a performance test

    Energy Technology Data Exchange (ETDEWEB)

    Enkvist, J.; Edland, A.; Svenson, Ola [Stockholm Univ. (Sweden). Dept. of Psychology

    2000-05-15

    In the process industries there is a need of inspecting the integrity of critical components without disrupting the process. Such in-service inspections are typically performed with non-destructive testing (NDT). In NDT the task of the operator is to (based on diagnostic information) decide if the component can remain in service or not. The present study looks at the performance in NDT. The aim is to improve performance, in the long run, by exploring the operators' decision strategies and other underlying factors and to this way find out what makes some operators more successful than others. Sixteen operators performed manual ultrasonic inspections of four test pieces with the aim to detect (implanted) cracks. In addition to these performance demonstration tests (PDT), the operators performed independent ability tests and filled out questionnaires. The results show that operators who trust their gut feeling more than the procedure (when the two come to different results) and that at the same time have a positive attitude towards the procedure have a higher PDT performance. These results indicate the need for operators to be motivated and confident when performing NDT. It was also found that the operators who performed better rated more decision criteria higher in the detection phase than the operators who performed worse. For characterizing it was the other way around. Also, the operators who performed better used more time, both detecting and characterizing, than the operators who performed worse.

  8. Operator performance in non-destructive testing: A study of operator performance in a performance test

    International Nuclear Information System (INIS)

    Enkvist, J.; Edland, A.; Svenson, Ola

    2000-05-01

    In the process industries there is a need of inspecting the integrity of critical components without disrupting the process. Such in-service inspections are typically performed with non-destructive testing (NDT). In NDT the task of the operator is to (based on diagnostic information) decide if the component can remain in service or not. The present study looks at the performance in NDT. The aim is to improve performance, in the long run, by exploring the operators' decision strategies and other underlying factors and to this way find out what makes some operators more successful than others. Sixteen operators performed manual ultrasonic inspections of four test pieces with the aim to detect (implanted) cracks. In addition to these performance demonstration tests (PDT), the operators performed independent ability tests and filled out questionnaires. The results show that operators who trust their gut feeling more than the procedure (when the two come to different results) and that at the same time have a positive attitude towards the procedure have a higher PDT performance. These results indicate the need for operators to be motivated and confident when performing NDT. It was also found that the operators who performed better rated more decision criteria higher in the detection phase than the operators who performed worse. For characterizing it was the other way around. Also, the operators who performed better used more time, both detecting and characterizing, than the operators who performed worse

  9. Non-Destructive Testing for Building Diagnostics and Monitoring: Experience Achieved with Case Studies

    Directory of Open Access Journals (Sweden)

    Tavukçuoğlu Ayşe

    2018-01-01

    Full Text Available Building inspection on site, in other words in-situ examinations of buildings is a troublesome work that necessitates the use of non-destructive investigation (NDT techniques. One of the main concerns of non-destructive testing studies is to improve in-situ use of NDT techniques for diagnostic and monitoring studies. The quantitative infrared thermography (QIRT and ultrasonic pulse velocity (UPV measurements have distinct importance in that regard. The joint use of QIRT and ultrasonic testing allows in-situ evaluation and monitoring of historical structures and contemporary ones in relation to moisture, thermal, materials and structural failures while the buildings themselves remain intact. For instances, those methods are useful for detection of visible and invisible cracks, thermal bridges and damp zones in building materials, components and functional systems as well as for soundness assessment of materials and thermal performance assessment of building components. In addition, those methods are promising for moisture content analyses in materials and monitoring the success of conservation treatments or interventions in structures. The in-situ NDT studies for diagnostic purposes should start with the mapping of decay forms and scanning of building surfaces with infrared images. Quantitative analyses are shaped for data acquisition on site and at laboratory from representative sound and problem areas in structures or laboratory samples. Laboratory analyses are needed to support in-situ examinations and to establish the reference data for better interpretation of in situ data. Advances in laboratory tests using IRT and ultrasonic testing are guiding for in-situ materials investigations based on measurable parameters. The knowledge and experience on QIRT and ultrasonic testing are promising for the innovative studies on today’s materials technologies, building science and conservation/maintenance practices. Such studies demand a multi

  10. Application of the Positron Lifetime Spectroscopy as Method of Non-Destructive Testing

    OpenAIRE

    Somieski , B.; Krause-Rehberg , R.; Salz , H.; Meyendorf , N.

    1995-01-01

    In order to show the suitability of the Positron Lifetime Spectroscopy (POLIS) as a method of Non-Destructive Testing (NDT) several iron alloys / steels were mechanically damaged (tensile stress, fatigue, creeping). The positron annihilation parameters show clear changes during all applied kinds of damage. After tensile stress as well as after creeping a homogeneous distribution of damage in the sample was detected. During the very first elastic cycle of a fatigue experiment, a change in the ...

  11. Development of NDT technology of the welds

    International Nuclear Information System (INIS)

    Li Jianwen; Xu Yansen; Wang Zengyong

    2002-01-01

    Non-destructive testing (NDT) and its up-to-date development are summarized, including the advantages and disadvantages and the development of NDT technology. The up-to-date development of X-ray imaging and industrial CT is emphasised on, and the fundamental theory of ultrasonic imaging and related signal processing technology is introduced

  12. Development of NDT technology of the welds

    Energy Technology Data Exchange (ETDEWEB)

    Jianwen, Li; Yansen, Xu; Zengyong, Wang [China Academy of Engineering Physics, Mianyang (China). Inst. of Mechanical Engineering

    2002-07-01

    Non-destructive testing (NDT) and its up-to-date development are summarized, including the advantages and disadvantages and the development of NDT technology. The up-to-date development of X-ray imaging and industrial CT is emphasised on, and the fundamental theory of ultrasonic imaging and related signal processing technology is introduced.

  13. Accuracy of Non-Destructive Testing of PBRs to Estimate Fragilities

    Science.gov (United States)

    Brune, J. N.; Brune, R.; Biasi, G. P.; Anooshehpoor, R.; Purvance, M.

    2011-12-01

    Prior studies of Precariously Balanced Rocks (PBRs) have involved various methods of documenting rock shapes and fragilities. These have included non-destructive testing (NDT) methods such as photomodeling, and potentially destructive testing (PDT) such as forced tilt tests. PDT methods usually have the potential of damaging or disturbing the rock or its pedestal so that the PBR usefulness for future generations is compromised. To date we have force-tilt tested approximately 28 PBRs, and of these we believe 7 have been compromised. We suggest here that given other inherent uncertainties in the current methodologies, NDT methods are now sufficiently advanced as to be adequate for the current state of the art use for comparison with Ground Motion Prediction Equations (GMPEs) and seismic hazard maps (SHMs). Here we compare tilt-test static toppling estimates to three non-destructive methods: (1) 3-D photographic modeling (2) profile analysis assuming the rock is 2-D, and (3) expert judgments from photographs. 3-D modeling uses the commercial Photomodeler program and photographs in the field taken from numerous directions around the rock. The output polyhedral shape is analyzed in Matlab determine the center of mass and in Autocad to estimate the static overturning angle alpha. For the 2-D method we chose the photograph in profile looking perpendicular to the estimated direction of toppling. The rock is outlined as a 2-D object in Matlab. Rock dimensions, rocking points, and a vertical reference are supplied by the photo analyst to estimate the center of gravity and static force overturning angles. For the expert opinion method we used additional photographs taken from different directions to improve the estimates of the center of mass and the rocking points. We used 7 rocks for comparisons. The error in estimating tan alpha from 3-D modeling is about 0.05. For 2-D estimates an average error is about 0.1 (?). For expert opinion estimates the error is about 0.06. For

  14. Resolution enhancement for ultrasonic echographic technique in non destructive testing with an adaptive deconvolution method

    International Nuclear Information System (INIS)

    Vivet, L.

    1989-01-01

    The ultrasonic echographic technique has specific advantages which makes it essential in a lot of Non Destructive Testing (NDT) investigations. However, the high acoustic power necessary to propagate through highly attenuating media can only be transmitted by resonant transducers, which induces severe limitations of the resolution on the received echograms. This resolution may be improved with deconvolution methods. But one-dimensional deconvolution methods come up against problems in non destructive testing when the investigated medium is highly anisotropic and inhomogeneous (i.e. austenitic steel). Numerous deconvolution techniques are well documented in the NDT literature. But they often come from other application fields (biomedical engineering, geophysics) and we show they do not apply well to specific NDT problems: frequency-dependent attenuation and non-minimum phase of the emitted wavelet. We therefore introduce a new time-domain approach which takes into account the wavelet features. Our method solves the deconvolution problem as an estimation one and is performed in two steps: (i) A phase correction step which takes into account the phase of the wavelet and estimates a phase-corrected echogram. The phase of the wavelet is only due to the transducer and is assumed time-invariant during the propagation. (ii) A band equalization step which restores the spectral content of the ideal reflectivity. The two steps of the method are performed using fast Kalman filters which allow a significant reduction of the computational effort. Synthetic and actual results are given to prove that this is a good approach for resolution improvement in attenuating media [fr

  15. Quantitative impact characterization of aeronautical CFRP materials with non-destructive testing methods

    Energy Technology Data Exchange (ETDEWEB)

    Kiefel, Denis, E-mail: Denis.Kiefel@airbus.com, E-mail: Rainer.Stoessel@airbus.com; Stoessel, Rainer, E-mail: Denis.Kiefel@airbus.com, E-mail: Rainer.Stoessel@airbus.com [Airbus Group Innovations, Munich (Germany); Grosse, Christian, E-mail: Grosse@tum.de [Technical University Munich (Germany)

    2015-03-31

    In recent years, an increasing number of safety-relevant structures are designed and manufactured from carbon fiber reinforced polymers (CFRP) in order to reduce weight of airplanes by taking the advantage of their specific strength into account. Non-destructive testing (NDT) methods for quantitative defect analysis of damages are liquid- or air-coupled ultrasonic testing (UT), phased array ultrasonic techniques, and active thermography (IR). The advantage of these testing methods is the applicability on large areas. However, their quantitative information is often limited on impact localization and size. In addition to these techniques, Airbus Group Innovations operates a micro x-ray computed tomography (μ-XCT) system, which was developed for CFRP characterization. It is an open system which allows different kinds of acquisition, reconstruction, and data evaluation. One main advantage of this μ-XCT system is its high resolution with 3-dimensional analysis and visualization opportunities, which enables to gain important quantitative information for composite part design and stress analysis. Within this study, different NDT methods will be compared at CFRP samples with specified artificial impact damages. The results can be used to select the most suitable NDT-method for specific application cases. Furthermore, novel evaluation and visualization methods for impact analyzes are developed and will be presented.

  16. Quantitative impact characterization of aeronautical CFRP materials with non-destructive testing methods

    International Nuclear Information System (INIS)

    Kiefel, Denis; Stoessel, Rainer; Grosse, Christian

    2015-01-01

    In recent years, an increasing number of safety-relevant structures are designed and manufactured from carbon fiber reinforced polymers (CFRP) in order to reduce weight of airplanes by taking the advantage of their specific strength into account. Non-destructive testing (NDT) methods for quantitative defect analysis of damages are liquid- or air-coupled ultrasonic testing (UT), phased array ultrasonic techniques, and active thermography (IR). The advantage of these testing methods is the applicability on large areas. However, their quantitative information is often limited on impact localization and size. In addition to these techniques, Airbus Group Innovations operates a micro x-ray computed tomography (μ-XCT) system, which was developed for CFRP characterization. It is an open system which allows different kinds of acquisition, reconstruction, and data evaluation. One main advantage of this μ-XCT system is its high resolution with 3-dimensional analysis and visualization opportunities, which enables to gain important quantitative information for composite part design and stress analysis. Within this study, different NDT methods will be compared at CFRP samples with specified artificial impact damages. The results can be used to select the most suitable NDT-method for specific application cases. Furthermore, novel evaluation and visualization methods for impact analyzes are developed and will be presented

  17. Augmented reality application for industrial non-destructive inspection training

    Science.gov (United States)

    Amza, Catalin Gheorghe; Zapciu, Aurelian; Teodorescu, Octav

    2018-02-01

    Such a technology - Augmented Reality (AR) has great potential of use, especially for training purposes of new operators on using expensive equipment. In this context, the paper presents an augmented reality training system developed for phased-array ultrasonic non-destructive testing (NDT) equipment. The application has been developed using Unity 5.6.0 game-engine platform integrated with Vuforia sdk toolkit for devices with Android operating system. The test results performed by several NDT operators showed good results, thus proving the potential of using the application in the industrial field.

  18. NDT using ionising radiation in the Indian space programme

    International Nuclear Information System (INIS)

    Viswanathan, K.

    1997-01-01

    Ionising radiations continue to play a vital role in the Non-Destructive Evaluation (NDE) of various components used in space vehicles and satellites. The different Non-Destructive Testing (NDT) methods which are useful to the Indian space programme are discussed. 4 refs., 5 figs

  19. The effect of safety training involving non-destructive testing among students at specialized vocational high schools

    Energy Technology Data Exchange (ETDEWEB)

    Lim Young Khi [Dept. of Radiological Science, Gachon University, Inchon (Korea, Republic of); Han, Eun Ok; Choi, Yoon Seok [Dept. of Education amd Research, Korea Academy of Nuclear Safety, Seoul (Korea, Republic of)

    2017-06-15

    By examining the safety issues involved in on-site training sessions conducted at specialized vocational high schools, and by analyzing the effects of non-destructive testing (NDT) safety training, this study aims to contribute to ensuring the general safety of high school students. Students who expressed an interest in participation were surveyed regarding current NDT training practices, as well as NDT safety training. A total of 361 students from 4 schools participated in this study; 37.7% (136 students) were from the Seoul metropolitan area and 62.3% (225 students) were from other areas. Of the respondents, 2.2% (8 students) reported having engaged in NDT. As a result of safety training, statistically significant improvements were observed in most areas, except for individuals with previous NDT experience. The areas of improvement included safety awareness, acquisition of knowledge, subjective knowledge levels, objective knowledge levels, and adjustments to existing personal attitudes. Even at absolutely necessary observation-only training sessions, it is crucial that sufficient safety training and additional safety measures be adequately provided.

  20. The effect of safety training involving non-destructive testing among students at specialized vocational high schools

    International Nuclear Information System (INIS)

    Lim Young Khi; Han, Eun Ok; Choi, Yoon Seok

    2017-01-01

    By examining the safety issues involved in on-site training sessions conducted at specialized vocational high schools, and by analyzing the effects of non-destructive testing (NDT) safety training, this study aims to contribute to ensuring the general safety of high school students. Students who expressed an interest in participation were surveyed regarding current NDT training practices, as well as NDT safety training. A total of 361 students from 4 schools participated in this study; 37.7% (136 students) were from the Seoul metropolitan area and 62.3% (225 students) were from other areas. Of the respondents, 2.2% (8 students) reported having engaged in NDT. As a result of safety training, statistically significant improvements were observed in most areas, except for individuals with previous NDT experience. The areas of improvement included safety awareness, acquisition of knowledge, subjective knowledge levels, objective knowledge levels, and adjustments to existing personal attitudes. Even at absolutely necessary observation-only training sessions, it is crucial that sufficient safety training and additional safety measures be adequately provided

  1. Application of the positron lifetime spectroscopy as method of non-destructive testing

    International Nuclear Information System (INIS)

    Somieski, B.; Krause-Rehberg, R.; Salz, H.; Meyendorf, N.

    1995-01-01

    In order to show the suitability of the Positron Lifetime Spectroscopy (POLIS) as a method of Non-Destructive Testing (NDT) several iron alloys/steels were mechanically damaged (tensile stress, fatigue, creeping). The positron annihilation parameters show clear changes during all applied kinds of damage. After tensile stress as well as after creeping a homogeneous distribution of damage in the sample was detected. During the very first elastic cycle of a fatigue experiment, a change in the defect structure occurs in well annealed materials. A modified spectrometer for in the field mapping is presented. (orig.)

  2. Identification of the Quality Spot Welding used Non Destructive Test-Ultrasonic Testing: (Effect of Welding Time)

    Science.gov (United States)

    Sifa, A.; Endramawan, T.; Badruzzaman

    2017-03-01

    Resistance Spot Welding (RSW) is frequently used as one way of welding is used in the manufacturing process, especially in the automotive industry [4][5][6][7]. Several parameters influence the process of welding points. To determine the quality of a welding job needs to be tested, either by damaging or testing without damage, in this study conducted experimental testing the quality of welding or identify quality of the nugget by using Non-Destructive Test (NDT) -Ultrasonic Testing (UT), in which the identification of the quality of the welding is done with parameter thickness of worksheet after welding using NDT-UT with use same material worksheet and have more thickness of worksheet, the thickness of the worksheet single plate 1mm, with the capability of propagation Ultrasonic Testing (UT) standard limited> 3 mm [1], welding process parameters such as the time difference between 1-10s and the welding current of 8 KV, visually Heat Affected Zone ( HAZ ) have different results due to the length of time of welding. UT uses a probe that is used with a frequency of 4 MHz, diameter 10 mm, range 100 and the couplant used is oil. Identification techniques using drop 6dB, with sound velocity 2267 m / s of Fe, with the result that the effect of the Welding time affect the size of the HAZ, identification with the lowest time 1s show results capable identified joined through NDT - UT.

  3. Integrated automatic non-destructive testing in industrial production and in the operation of technical plant

    International Nuclear Information System (INIS)

    Hoeller, P.

    1989-01-01

    The article deals with non-destructive testing (NDT) in automated manufacture and in the automated operation of industrial plant. In both areas of application, the tests are coupled to the process (real time operation) and the results are used for the control of manufacture or of the course of the process. The control process can be coupled to the process in open loop or closed loop. The subject is explained by the following examples: 1) Automated testing of sheets in a steelworks. 2) Automatic NDT on machine parts in tempering and machining by the 3MA system (3MA: micro-magnetic, multi-parameter, micro-structure and stress analysis). 3) Automated ultrasonic testing in manufacture and in the operation of plants with the ALOK data collection and processing system (ALOK: amplitude, running time, location curves). 4) Automated wheel running surface test on Intercity experimental train, and 5) automated level measurement on BWR pressure vessels. (orig./MM) [de

  4. Non-Destructive Metallic Materials Testing—Recent Research and Future Perspectives

    Directory of Open Access Journals (Sweden)

    João Manuel R. S. Tavares

    2017-10-01

    Full Text Available Non-destructive testing (NDT has become extremely important formicrostructural characterization, mainly by allowing the assessment of metallic material properties in an effective and reasonable manner, in addition to maintaining the integrity of the evaluated metallic samples and applicability in service in many cases [...

  5. Routes for GMR-Sensor Design in Non-Destructive Testing

    Directory of Open Access Journals (Sweden)

    Andreas Schütze

    2012-09-01

    Full Text Available GMR sensors are widely used in many industrial segments such as information technology, automotive, automation and production, and safety applications. Each area requires an adaption of the sensor arrangement in terms of size adaption and alignment with respect to the field source involved. This paper deals with an analysis of geometric sensor parameters and the arrangement of GMR sensors providing a design roadmap for non-destructive testing (NDT applications. For this purpose we use an analytical model simulating the magnetic flux leakage (MFL distribution of surface breaking defects and investigate the flux leakage signal as a function of various sensor parameters. Our calculations show both the influence of sensor length and height and that when detecting the magnetic flux leakage of µm sized defects a gradiometer base line of 250 µm leads to a signal strength loss of less than 10% in comparison with a magnetometer response. To validate the simulation results we finally performed measurements with a GMR magnetometer sensor on a test plate with artificial µm-range cracks. The differences between simulation and measurement are below 6%. We report on the routes for a GMR gradiometer design as a basis for the fabrication of NDT-adapted sensor arrays. The results are also helpful for the use of GMR in other application when it comes to measure positions, lengths, angles or electrical currents.

  6. Project GRETE: evaluation of non destructive testing techniques for monitoring of material degradation

    International Nuclear Information System (INIS)

    Coste, J.F.

    2001-01-01

    The material aging of major critical components of nuclear installations due to in-service conditions may lead to a degradation of their mechanical characteristics. The early detection of material changes and their monitoring using innovative non destructive testing techniques would allow to plan actions in order to prevent the apparition of macroscopic damage (e.g. cracks). One major difficulty in using these particular techniques is to correlate the changes in the measured NDT signals to the microstructural changes in the material due to aging. This problem may be solved through careful microstructural examinations of the material damage. The objective of the project GRETE is to illustrate the potential use of NDT techniques for the monitoring of material degradation through two examples: neutron irradiation of reactor pressure vessel steel and thermal fatigue of piping. The purpose of this paper is to present the project and its programme of work. (author)

  7. Review of international developments and cooperation on Risk-Informed In-Service-Inspection (RI-ISI) and Non-destructive Testing (NDT) Qualification in OECD-NEA member countries- Responses to the questionnaire - CSNI/integrity and ageing working group

    International Nuclear Information System (INIS)

    2005-01-01

    In December 2000, the Committee on Nuclear Regulatory Activities (CNRA) and the Committee on the Safety of Nuclear Installations (CSNI) agreed to prepare a state-of-the art report addressing the present situation and regulatory aspects in NEA member countries on: - Risk based / risk informed in-service inspections (ISI) developments, - Qualification of NDT system to be used for the inspections. The CSNI gave mandate to the CSNI working group on the Integrity of Components and Structures (IAGE) to prepare the report. In order to get a good basis for compiling the report with an overview on the present situation in OECD countries and regulatory aspects on the further developments of RI-ISI and NDT qualification approaches a questionnaire was prepared. This questionnaire was organised in two parts. The first part addressed used risk based / risk informed ISI approaches and regulatory aspects on the further developments. The second part addressed used NDT qualification approaches and other measures for getting reliable inspection results as well as regulatory aspects on the further developments of qualification approaches. Some parts of the questionnaire addressed topics, which have been dealt with in other European or national programs. Available relevant information from these programs has been also collected. The questionnaire was circulated in 2003 among NEA member countries organisations. Appendix 1 contains the questionnaire. Appendix 2 contains the compilation of responses to the questionnaire. A workshop was organized to complement the questionnaire (NEA/CSNI/R(2004)9 Proceedings of the CSNI Workshop on 'International developments and cooperation on Risk-Informed In-Service- Inspection (RI-ISI) and Non-destructive Testing (NDT) Qualification' held in Stockholm, Sweden on 13-14 April 2004 and hosted by SKI). In addition to regulators, licensees, manufacturers and researchers, this workshop gathered international organisations (i.e. EC, IAEA) and the main

  8. Combined Non-destructive Testing (NDT) methods for evaluating concrete quality

    International Nuclear Information System (INIS)

    Mohamad Pauzi Ismail; Noor Azreen Masenwat; Suhairy Sani; Nasharuddin Isa; Mohamad Haniza Mahmud

    2014-01-01

    This paper described the results of combining Non-destructive measurements on concrete. Local crushed granite and hematite were used as coarse aggregates; mining sand and river sand were used as fine aggregates to produce various density and strength of concrete. Concrete samples (150 mm cubes and interlocked blocks) were prepared by changing mix ratio, water to cement ratio (w/c) and types of aggregates. Density, rebound number(N) and ultrasonic pulse velocity (UPV) of the samples were taken before compressed to failure. The measurement results are explained and discussed. (author)

  9. The trends of NDT technologies - IAEA experience

    International Nuclear Information System (INIS)

    Khan, A. A.; Einav, I.

    2003-01-01

    Non destructive testing (NDT) is an essential technology for quality control leading to more reliable and safer industrial as well as nuclear plants. This was the main reason for the IAEA to undertake the promotion of this technology in the world. Through its regional and technical assistance programmes the NDT technology programmes encompass approximately more than 80 developing countries. The main focus of the NDT programme has been the creation of core groups of personnel able to undertake education, training and certification of NDT personnel and provision of NDT services to industries, creation of national certifying bodies, issuance of national standards compatible with ISO 9712 and the establishment of Professional NDT Societies. The programme has met a great success in most of the Member States. The paper will review the programmes of the IAEA in the field of NDT and provide an assessment of the present status of NDT technology development both in the developing as well as developed countries. (Author)

  10. Tone burst generator for a Non-Destructive Testing system based on ultrasonic guided waves

    OpenAIRE

    Jiménez Sánchez, Daniel

    2011-01-01

    English: This PFC provides a design of a tested and specific tone-burst generator circuit for a Non-Destructive System based on ultrasonid guided waves. This circuit includes a complementary protection circuit for the NDT system working in a pulse-echo configuration. In this paper, a brief state f art about different driving circuits employed in distinct NDE systems is presented. Castellano: El PFC proporciona un diseño electrónico específico y probado de un circuito excitador de salvas (C...

  11. A feasibility study on different NDT techniques used for testing bond quality in cold roll bonded Al-Sn alloy/steel bimetal strips

    Directory of Open Access Journals (Sweden)

    Tallafuss Philipp Johannes

    2017-01-01

    Full Text Available This paper presents non-destructive testing (NDT results for the detection of bond defects in aluminium-tin (Al-Sn alloy/steel bimetal strips. Among all types of bimetal strip that are used in the automotive industry for plain journal engine bearings, Al-Sn alloys cold roll bonded (CRB onto steel backing is the most common type. The difficulty to evaluate the metallurgical bond between the two dissimilar metals is a major industrial concern, which comprises the risk that bearings fail in the field. Considering the harsh performance requirements, 100% online non-destructive testing would be desirable to significantly reduce the business risk. Nowadays bimetal strip manufacturers still rely on destructive testing through different peel-off tests. This work offers the results from four independent NDT studies, using active thermography, shearography, ultrasound and guided wave electromagnetic acoustic transducers (EMATs and samples with different artificially implanted defects, to explore the feasibility to qualitatively indicate the occurrence of bond defects. A destructive peel off test was used to correlate the NDT results with known bond quality. The studies were done under laboratory conditions, and in case of ultrasound also online under production conditions. During the ultrasound online test, the requirements that a NDT technique has to fulfil for online inspection of Al-Sn alloy/steel bimetal strip were established. For active thermography, shearography and guided wave EMAT techniques, it was theoretically analysed, if the laboratory test results could be transferred to testing under production conditions. As a result, guided waves using EMATs, among the four tested methods, are best suited for online inspection of Al-Sn alloy/steel bimetal strip. This research was carried out in collaboration with MAHLE Engine Systems UK Ltd., an Al-Sn alloy/steel bimetal strip manufacturer for the automotive industry.

  12. Recent Trends in Electromagnetic Non-Destructive Sensing

    Directory of Open Access Journals (Sweden)

    Klara Capova

    2008-01-01

    Full Text Available The paper deals with material electromagnetic non-destructive testing (eNDT with emphasize on eddy current testing (ECT. Various modifications of ECT sensing are compared and discussed from the desired detected signal characteristics point of view. Except of the optimization of usual probe coils arrangements for the concrete applications, the new magnetic sensors as giant magneto-resistance (GMR and spin dependent tunneling (SDT are presented. The advanced ECT sensors are characterized by their sensitivity, frequency range and sensor dimensions

  13. 7th International symposium on NDT in aerospace 2015

    International Nuclear Information System (INIS)

    2015-01-01

    Non-Destructive Testing and Evaluation is one of the major requirements in aerospace structural design. Hardly any of the components manufactured is not allowed to pass quality assurance without having gone through any of the various NDT procedures being around. For damage tolerant design as used in aviation NDT is a prerequisite. Appropriate use of NDT guarantees safety in aerospace and is thus a subject of highest attention. Major topics to be discussed among others at this event will include the physics of NDT, sensors and material interaction, design of complete inspection systems and data evaluation such as for automated image processing. A special focus will also be towards improvement in inspection speed and transfer of laboratory NDT into production and manufacturing process integrated testing for in-line inspection.

  14. Non-destructive testing of the MEGAPIE target

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Y., E-mail: yong.dai@psi.ch; Wohlmuther, M.; Boutellier, V.; Hahl, S.; Lagotzki, A.; Leu, H.; Linder, H.P.; Schwarz, R.; Spahr, A.; Zanini, L.; Kuster, D.; Gavillet, D.; Wagner, W.

    2016-01-15

    Non-destructive testing (NDT) is one important part of the post-irradiation examination (PIE) of the MEGAPIE target. It includes visual inspection and ultrasonic measurement of the beam window of the T91 LBE container and gamma mapping of the beam window of the AlMg{sub 3} safety-container. The visual inspection showed no visible failure in the proton beam window area of the T91 LBE container. The ultrasonic measurement demonstrated no detectable change in the wall thickness of the T91 beam window, which implies no severe corrosion effect induced by flowing LBE during the four-month irradiation period. The gamma mapping provided the distribution of {sup 22}Na, a spallation product, in the proton beam window area of the AlMg{sub 3} safety-container. The result was used to evaluate the accumulated proton fluence distribution profile, the input data for determining irradiation parameters. A maximum proton fluence of 1.9 × 10{sup 25} p/m2 was deduced. The corresponding displacement damage degree in the T91 beam window was 7.1 dpa. - Highlights: • MEGAPIE is to design, build, operate and explore a liquid lead–bismuth (LBE) spallation target for 1 MW of beam power. • NDT of the target components exposed to high fluxes of high-energy protons and spallation neutrons was conducted. • There are no evident failures and corrosion effect of LBE in the T91 steel liquid metal container after irradiation to 7.1 dpa.

  15. Non-Destructive Testing: Sample Questions for Conduct of Examinations at Levels 1 and 2

    International Nuclear Information System (INIS)

    2010-01-01

    The International Atomic Energy Agency (IAEA) supports industrial applications of radiation technology which include non-destructive testing (NDT) under its various programmes such as individual country Technical Co-operation (TC) projects, Regional Projects and Coordinated Research Projects (CRPs). NDT technology is essentially needed for the improvement of the quality of industrial products, equipment and plants all over the world, especially in developing Member States. Trained and certified personnel is one of the essential requirements for applying this technology in industry. With this in view, the IAEA first played an important role in cooperation with the International Organisation for Standardisation (ISO) for the development of a standard for training and certification of NDT personnel, namely ISO 9712, 'Non-Destructive Testing: Qualification and Certification of Personnel'. Subsequently the syllabi and needed training materials were identified and developed for the creation of, in each of the Member States, a core group of personnel who are trained and qualified to establish the training and certification process in their respective countries. One of the important requirements for such a process is to have the examination questions for conducting the certification examinations. A need had been felt to compile the appropriate questions firstly for conducting these examinations at the national and regional levels and secondly to provide these to the certification bodies of the Member States so that they could initiate their own level 1 and 2 certification examinations. For this purpose, Experts' Task Force Meetings were convened first in Accra, Ghana and then in Vienna, Austria under the AFRA regional projects on NDT. The experts examined and discussed in detail the ISO 9712 (1999 and 2005 versions) requirements for general, specific and practical examinations for level 1 and 2 personnel. After that a set of questions has been established which are

  16. NDT applications in the aircraft industry

    International Nuclear Information System (INIS)

    Aguilar, E.C.

    1994-01-01

    Non-destructive testing (NDT) in the aircraft industry is used primarily to detect process defects in the manufacturing stage and failure defects in the in-service stage. Inspection techniques such as X- or gamma ray radiography are used for examination. Eddy current and ultrasonic are applied for examination, fluorescent penetrant and magnetic particles are applied for examination of aircraft and engine. With the wide scope of application, this paper discussed one type of NDT that is much used in aircraft being the latest technique in aircraft manufacturing. 1 fig

  17. Limits of applicability in NDT inspections. Practical examples

    International Nuclear Information System (INIS)

    Sodeikat, Christian; Lohse, Carsten

    2016-01-01

    Property owners, developers, architects, planners and in many cases courts require further information regarding the state of existing and under construction buildings. In order to avoid concerns on the building structure and to avoid nuisance by noise and dirt and ultimately save costs, structural inspection should be carried out as non-destructive. NDT methods, however, always have application limits that can be very different depending on the methods used and test equipment. However, not every inspection task, the implementation of which customer want, can be solved with NDT methods. The following article presents practical examples of application limits of different NDT methods. [de

  18. Non-destructive testing of the MEGAPIE target

    Science.gov (United States)

    Dai, Y.; Wohlmuther, M.; Boutellier, V.; Hahl, S.; Lagotzki, A.; Leu, H.; Linder, H. P.; Schwarz, R.; Spahr, A.; Zanini, L.; Kuster, D.; Gavillet, D.; Wagner, W.

    2016-01-01

    Non-destructive testing (NDT) is one important part of the post-irradiation examination (PIE) of the MEGAPIE target. It includes visual inspection and ultrasonic measurement of the beam window of the T91 LBE container and gamma mapping of the beam window of the AlMg3 safety-container. The visual inspection showed no visible failure in the proton beam window area of the T91 LBE container. The ultrasonic measurement demonstrated no detectable change in the wall thickness of the T91 beam window, which implies no severe corrosion effect induced by flowing LBE during the four-month irradiation period. The gamma mapping provided the distribution of 22Na, a spallation product, in the proton beam window area of the AlMg3 safety-container. The result was used to evaluate the accumulated proton fluence distribution profile, the input data for determining irradiation parameters. A maximum proton fluence of 1.9 × 1025 p/m2 was deduced. The corresponding displacement damage degree in the T91 beam window was 7.1 dpa.

  19. Quality assurance in ceramic materials and components. High-resolution non-destructive testing especially of ceramic surfaces

    International Nuclear Information System (INIS)

    Reiter, H.; Hoffmann, B.; Morsch, A.; Arnold, W.; Schneider, E.

    1988-01-01

    This report discusses the influence of defects on the failure behavior of ceramic materials under four-point bending stress. In this connection various Si 3 N 4 and SiC materials with and without artificially introduced defect particles (Fe, WC, Si, pores) were examined by the following non-destructive test methods: photoacoustic microscopy, scanning laser acoustic microscopy, microfocus roentgenoscopy and ultrasound transit-time measurements. Finally, a four-point bending test and a fracture-mechanical evaluation of the fracture-incuding defects were carried out at the Institute for reliability and failure studies in mechanical engineering of the University of Karlsruhe. According to the type of stress the samples predominantly failed in the case of defects in the surface zone of the side in tension. Among the ndt methods applied the photoacoustic microscopy as a typical surface testing method could predict most of the fracture-inducing defects (30-50 %) without causing destruction. In this connection a different detection sensitivity which corresponds to the thermal reflection factors became apparent according to the type of defect. Furthermore the reports describes the results of some preliminary tests on ndt of green ceramics. In these investigations both the microfocus roentgenoscopy test and the roentgen computed tomography showed a high potential of detecting inhomogeneities and defects in green Si 3 N 4 and SiC components. (orig.) [de

  20. 7{sup th} International symposium on NDT in aerospace 2015

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-07-01

    Non-Destructive Testing and Evaluation is one of the major requirements in aerospace structural design. Hardly any of the components manufactured is not allowed to pass quality assurance without having gone through any of the various NDT procedures being around. For damage tolerant design as used in aviation NDT is a prerequisite. Appropriate use of NDT guarantees safety in aerospace and is thus a subject of highest attention. Major topics to be discussed among others at this event will include the physics of NDT, sensors and material interaction, design of complete inspection systems and data evaluation such as for automated image processing. A special focus will also be towards improvement in inspection speed and transfer of laboratory NDT into production and manufacturing process integrated testing for in-line inspection.

  1. Non-destructive testing for plant life assessment

    International Nuclear Information System (INIS)

    2005-01-01

    The International Atomic Energy Agency (IAEA) is promoting industrial applications of nondestructive testing (NDT) technology, which includes radiography testing (RT) and related methods, to assure safety and reliability of operation of industrial facilities and processes. NDT technology is essentially needed for improvement of the quality of industrial products, safe performance of equipment and plants, including safety of metallic and concrete structures and constructions. The IAEA is playing an important role in promoting the NDT use and technology support to Member States, in harmonisation for training and certification of NDT personnel, and in establishing national accreditation and certifying bodies. All these efforts have led to a stage of maturity and self sufficiency in numerous countries especially in the field of training and certification of personnel, and in provision of services to industries. This has had a positive impact on the improvement of the quality of industrial goods and services. NDT methods are primarily used for detection, location and sizing of surface and internal defects (in welds, castings, forging, composite materials, concrete and many more). Various NDT methods are applied for preventive maintenance (aircraft, bridge), for the inspection of raw materials, half-finished and finished products, for in-service-inspection and for plant life assessment studies. NDT is essential for quality control of the facilities and products, and for fitness - for purpose assessment (so-called plant life assessment). NDT evaluates remaining operation life of plant components (processing lines, pipes, vessels) providing an accurate diagnosis that allows predicting extended life operation beyond design life. Status and trends on the NDT for plant life assessment have been discussed in many IAEA meetings related with NDT development, training and education. Experts have largely demonstrated that, using NDT methods, a comprehensive assessment of the life

  2. Activity on non-destructive testing as constituent element of the quality management in accordance with ISO 9001:2000 standard at The Institute of Nuclear Physics, Kazakhstan

    International Nuclear Information System (INIS)

    Kadyrzhanov, K.K.; Kislitsin, S.B.; Ablanov, M.B.

    2004-01-01

    An increase of technical and public safety requirements for facilities of nuclear industries, an efficient quality control based on non-destructive testing (NDT) techniques is crucial. Therefore, Institute of Nuclear Physics (INP) through NDT Division makes efforts towards a competent NDT inspection of its facilities starting from research reactor of WWR-K type with a further activity according to the National Program for Development in Nuclear Industry. The additional objective is to harmonize the present codes and standards for Nuclear Industry as an integral part of the INP policy in a quality management according ISO 9001:2000 Standard. (author)

  3. Fundamentals for remote structural health monitoring of wind turbine blades - a pre-project. Annex B - Sensors and non-destructive testing methods for damage detection in wind turbine blades

    Energy Technology Data Exchange (ETDEWEB)

    Lading, L.; McGugan, M.; Sendrup, P.; Rheinlaender, J.; Rusborg, J.

    2002-05-01

    This annex provides a description of the sensor schemes and the non-destructive testing (NDT) methods that have been investigated in this project. Acoustic emission and fibre optic sensors are described in some detail whereas only the key features of well-established NDT methods are presented. Estimates of the cost of different sensor systems are given and the advantages and disadvantages of the different schemes is discussed. (au)

  4. Selection of suitable NDT methods for building inspection

    Science.gov (United States)

    Pauzi Ismail, Mohamad

    2017-11-01

    Construction of modern structures requires good quality concrete with adequate strength and durability. Several accidents occurred in the civil constructions and were reported in the media. Such accidents were due to poor workmanship and lack of systematic monitoring during the constructions. In addition, water leaking and cracking in residential houses was commonly reported too. Based on these facts, monitoring the quality of concrete in structures is becoming more and more important subject. This paper describes major Non-destructive Testing (NDT) methods for evaluating structural integrity of concrete building. Some interesting findings during actual NDT inspections on site are presented. The NDT methods used are explained, compared and discussed. The suitable methods are suggested as minimum NDT methods to cover parameters required in the inspection.

  5. Radiation applications in NDT in space program

    International Nuclear Information System (INIS)

    Viswanathan, K.

    1994-01-01

    Non-destructive testing (NDT) and evaluation play an important role in the qualification of sub-systems and components in space programme. NDT is carried out at various stages of manufacturing of components and also prior to end use to ensure a high degree of reliability. Penetrating radiations such as X-rays, γ-rays and neutrons are extensively used for the radiographic inspection of components, sub-systems and assemblies in both the launch vehicles and satellites. Both low and high energy radiations are employed for the evaluation of the above components depending on their size and nature. Real time radiography (RTR) and computed tomography (CT) are also used in certain specific applications where more detailed information is needed. Neutron radiography is employed for the inspection of pyro-devices used in separation, destruct and satellite deployment systems. Besides their use for non-destructive testing purposes, the radiation sources are also used for various special applications like solid propellant slurry flow measurement simulation of radiation environment on components used in the satellites and also for studying migration of ingredients in solid rocket motor. (author). 12 refs., 6 figs

  6. Study of Lamb Waves for Non-Destructive Testing Behind Screens

    Science.gov (United States)

    Kauffmann, P.; Ploix, M.-A.; Chaix, J.-F.; Gueudré, C.; Corneloup, G.; Baqué, F. AF(; )

    2018-01-01

    The inspection and control of sodium-cooled fast reactors (SFR) is a major issue for the nuclear industry. Ultrasonic solutions are under study because of the opacity of liquid sodium. In this paper, the use of leaky Lamb waves is considered for non-destructive testing (NDT) on parallel and immersed structures assimilated as plates. The first phase of our approach involved studying the propagation properties of leaky Lamb waves. Equations that model the propagation of Lamb waves in an immersed plate were solved numerically. The phase velocity can be experimentally measured using a two dimensional Fourier transform. The group velocity can be experimentally measured using a short-time Fourier transform technique. Attenuation of leaky Lamb waves is mostly due to the re-emission of energy into the surrounding fluid, and it can be measured by these two techniques.

  7. Combining data in non-destructive testing; Fusion de donnees en CND pour le projet pace

    Energy Technology Data Exchange (ETDEWEB)

    Lavayssiere, B

    1994-03-01

    Non-destructive testing of some components requires quite often the use of several methods such as X-ray, ultrasonics, Eddy Currents. But the efficiency of a NDT method is highly dependent on the fact that the detectability of flaws in a specimen relies on the choice of the best method. Moreover a lot of inspection issues could benefit from the use of more than one test method, as each NDT method has its own physical properties and technological limits. Some questions still remain: how to combine data, at what level and for what functionality. Simple monomethod processes are well-known now. They include techniques like reconstruction which belongs to the so-called ill-posed problems in the field of mathematics. For NDT data processing, it has the ability to estimate real data from distorted ones coming from a probe. But, up to now there has been very few approaches for computer aided combination of results from different advanced techniques. This report presents the various mathematical fields involved towards that goal (statistical decision theory which allows the use of multiple hypothesis, non-linear decision theory for its capability to classify and to discriminate, graph theory to find the optimal path in an hypothesis graph and also fuzzy logic, multiple resolution analysis, artificial intelligence,...) and which combinations of methods are useful. Some images will illustrate this topic in which EDF is involved, and will explain what are the major goals of this work. Combining is not only an improvement of 3D visualisation which would allow to display simultaneously CAD or NDT data for example, but it consists in exploiting multisensor data collected via a variety of sophisticated techniques and presenting this information to the operator without overloading the operator/system capacities in order to reduce the uncertainty and to resolve the ambiguity inherent to mono method inspection. (author). 7 figs., 35 refs.

  8. 5th international conference on certification and standardization in NDT

    International Nuclear Information System (INIS)

    2007-01-01

    This CD-ROM contains 30 lectures (in form of manuscripts or abstracts) and 6 posters with the following topics: 1. Some Critical Remarks from German Chemical Industry on Certification and Accreditation in NDT. 2. Global Impact of International Standard ISO 9712. 3. Maintaining Concurrent Compliance with Multiple NDT Personnel Certification Standards. 4. The Revision of the New Approach. 5. Comparison between prEN 473 Currently Submitted to Formal Vote and ISO 9712:2005. 6. Accreditation and Certification - a Contradiction?. 7. The Way We Were. 8. EFNDT-Question-Data-Bank (QDB). 9. NDT Certification in Turkey as an European Country- How It Couldn't Work as the Only Example?. 10. Validation of Practical Examination Specimens. 11. Examination Bank Structure for Radiographic Testing (RT) - An Example. 12. About the New Classification of NDT Methods Based on Positions of Risks and Equipment Life Assessment. 13. Olympus NDT Training Academy. 14. Harmonisation of Personnel Certification Schemes for Non-destructive Testing in the Asia-Pacific Region. 15. How EFNDT Can Help in Accreditation or Recognition/Approval of NDT Certification Bodies? 16. SNT-TC-1A - 40 Years of Employer Certification for NDT Personnel. 17. The Same NDT Certification Scheme for Everybody: a Dream or a Need. 18. 19. Personnel Certification for Thermographers - Status and Trends. 20. Guided Wave Training and Certification. 21. Examination Radiographs and Master Reports for the Industrial Sectors 6 and 7. 22. New Standards ISO 24497 on the Metal Magnetic Memory Method. The Program of Personnel Training and Certification. 23. The Use of the Psychometrics in NDT Certification Programs. 24. EFNDT Guidelines ''Overall NDT Quality System''. 25. The Role of the Forum for National Aerospace NDT Boards. 26. Don't Forget, We Are Supposed to Be Representing Industry. 27. Don't Forget, We Are Supposed to Be Representing Industry. 28. The Need for Standardization in NDT Personnel Certification. 29. NDT

  9. Confirm calculation of 12 MeV non-destructive testing electron linear accelerator target

    International Nuclear Information System (INIS)

    Ma Shudong; Zhang Rutong; Guo Yanbin; Zhou Yuan; Li Xuexian; Chen Yan

    2012-01-01

    The confirm calculation of 12 MeV non-destructive testing (NDT) electron linear accelerator (LINAC) target was studied. Firstly, the most optimal target thickness and related photon dose yield, distributions of dose rate, and related photon conversion efficiencies were got by calculation with specific analysis of the physical mechanism of the interactions between the beam and target; Secondly, the photon dose rate distribution, converter efficiencies, and thickness of various kinds of targets, such as W, Au, Ta, etc. were verified by MCNP simulation and the most optimal target was got using the MCNP code; Lastly, the calculation results of theory and MCNP were compared to confirm the validity of target calculation. (authors)

  10. Geophysical Methods for Non-Destructive Testing in Civil Engineering

    Science.gov (United States)

    Niederleithinger, E.

    2013-12-01

    Many non-destructive testing (NDT) methods for civil engineering (e. g. ultrasonics, radar) are similar to geophysical techniques. They just differ in scale, material under investigation and vocabulary used. In spite of the fact that the same principles of physics and mathematics apply to both fields, exchange has been limited in the past. But since a few years more and more geophysical knowledge is used in civil engineering. One of the focal points in research is to improve ultrasonic testing of concrete to be able to image the inside even of large, complex structures and to detect any deterioration as early as possible. One of the main issues is the heterogeneity of concrete, including aggregates, reinforcement, cracks and many other features. Our current research focuses on three points. One is the application of state of the art geophysical migration techniques as Reverse Time Migration (RTM) to image vertical faces or the backside of voids and ducts in thick concrete structures, which isn't possible with conventional techniques used in NDT. Second, we have started to use seismic interferometric techniques to interpolate ultrasonic traces, which can't be measured directly for technical reasons. Third, we are using coda wave interferometry to detect concrete degradation due to load, fatigue, temperature or other influences as early as possible. Practical examples of the application of these techniques are given and potential future research directions will be discussed. It will be shown, how a subset of these techniques can be used for innovative monitoring systems for civil infrastructure. Imaging the interior of a concrete body by ultrasonics and reverse time migration(simulated data).

  11. Analysis of the single and combined non-destructive test approaches for on-site concrete strength assessment: General statements based on a real case-study

    Directory of Open Access Journals (Sweden)

    Khoudja Ali-Benyahia

    2017-06-01

    Full Text Available The evaluation of the compressive strength of concrete in existing structures by coring is expensive, technically difficult in certain cases, and even impossible in others. The use of non-destructive testing (NDT is an interesting alternative method (i.e. affordable cost, portable, fast, etc.. However, the NDT estimation of strength requires a procedure of calibration of the model between NDT and compressive strength. The robustness of this calibration is a crucial point allowing better choice of the optimal number of cores. Studies which treat the calibration of proposed models are often based on laboratory experiments or synthetic data. The present study aims at identifying and optimizing the methodology of the calibration model on site. This paper is based on a broad campaign of auscultation using NDT (Rebound and Ultrasound and coring on an existing construction with 205 triplets of data (strengths and NDT results. Statistical data analysis enables to quantify the role of: the number of cores (NC used for the calibration, the use of only one or two-combined NDT techniques and the calibration method. The conclusions are focused on the improvement of the relevance and the effectiveness of NDT techniques in such operational situations.

  12. Quality and innovation in education and certification of the personnel with the responsibility for welding coordination and non-destructive testing

    Directory of Open Access Journals (Sweden)

    J. Słania

    2010-07-01

    Full Text Available The article presents the activities of Instytut Spawalnictwa (Institute of Weldingwhich include essential supervision of training of welding and non-destructive testing personnel conducted at Instytut Spawalnictwa and outside the Institute. The activity comprise approval and attestation of centres for welding and NDT training as well as verification of lecturers and examiners for the welders training centres located outside the Institute, supervision of run courses in all levels of training, participation in examination and verification of welders’ and specialists’ qualifications. On the basis of acquired accreditations, authorisations and current regulations InstytutSpawalnictwa initiates drafting of guidelines for training and examining in all levels of training in the field of welding technology and allied technologies as well as NDT. Training is conducted in accordance with Instytut’s own programmes as well as programmes of International Welding Institute (IIW and European Federation for Welding, Joining and Cutting (EWF. Training is the base for welding and NDT personnel to obtain European and International diplomas and certificates.

  13. 5{sup th} international conference on certification and standardization in NDT

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    This CD-ROM contains 30 lectures (in form of manuscripts or abstracts) and 6 posters with the following topics: 1. Some Critical Remarks from German Chemical Industry on Certification and Accreditation in NDT. 2. Global Impact of International Standard ISO 9712. 3. Maintaining Concurrent Compliance with Multiple NDT Personnel Certification Standards. 4. The Revision of the New Approach. 5. Comparison between prEN 473 Currently Submitted to Formal Vote and ISO 9712:2005. 6. Accreditation and Certification - a Contradiction?. 7. The Way We Were. 8. EFNDT-Question-Data-Bank (QDB). 9. NDT Certification in Turkey as an European Country- How It Couldn't Work as the Only Example?. 10. Validation of Practical Examination Specimens. 11. Examination Bank Structure for Radiographic Testing (RT) - An Example. 12. About the New Classification of NDT Methods Based on Positions of Risks and Equipment Life Assessment. 13. Olympus NDT Training Academy. 14. Harmonisation of Personnel Certification Schemes for Non-destructive Testing in the Asia-Pacific Region. 15. How EFNDT Can Help in Accreditation or Recognition/Approval of NDT Certification Bodies? 16. SNT-TC-1A - 40 Years of Employer Certification for NDT Personnel. 17. The Same NDT Certification Scheme for Everybody: a Dream or a Need. 18. 19. Personnel Certification for Thermographers - Status and Trends. 20. Guided Wave Training and Certification. 21. Examination Radiographs and Master Reports for the Industrial Sectors 6 and 7. 22. New Standards ISO 24497 on the Metal Magnetic Memory Method. The Program of Personnel Training and Certification. 23. The Use of the Psychometrics in NDT Certification Programs. 24. EFNDT Guidelines ''Overall NDT Quality System''. 25. The Role of the Forum for National Aerospace NDT Boards. 26. Don't Forget, We Are Supposed to Be Representing Industry. 27. Don't Forget, We Are Supposed to Be Representing Industry. 28. The Need for Standardization in NDT Personnel

  14. Non-destructive testing at Chalk River

    International Nuclear Information System (INIS)

    Hilborn, J.W.

    1976-01-01

    In 1969 CRNL recognized the need for a strong group skilled in non-destructive test procedures. Within two years a new branch called Quality Control Branch was staffed and working. This branch engages in all aspects of non-destructive testing including development of new techniques, new applications of known technology, and special problems in support of operating reactors. (author)

  15. Liquid penetrant and magnetic particle testing at level 2. Manual for the syllabi contained in IAEA-TECDOC-628, training guidelines in non-destructive testing techniques

    International Nuclear Information System (INIS)

    2000-01-01

    The International Atomic Energy Agency (IAEA) has been active in the promotion of non-destructive testing (NDT) technology in the world for many decades. The prime reason for this has been the need for stringent standards for quality control for safe operation of industrial as well a nuclear installations. It has successfully executed a number of programmes and regional projects of which NDT was an important part. Through these programmes a large number of persons have been trained in the member states and a state of self sufficiency in this area of technology has been achieved in many of them. All along there has been a realization of the need to have well established training guidelines and related books in order, firstly, to guide the IAEA experts who were involved in this training programme and, secondly, to achieve some level of international uniformity and harmonization of training materials and consequent competence of personnel. The syllabi for training courses have been published in the form of two TECDOC publications. The first was IAEA-TECDOC-407 which contained syllabi for the basic five methods, i.e. liquid penetrant testing, magnetic particle testing, eddy current testing, radiographic testing and ultrasonic testing, and the second and revised is IAEA-TECDOC-628 which includes additional methods of visual testing and leak testing. IAEA-TECDOC-628, as well as most of the international standards on the subject of training and certification of NDT personnel including ISO 9712, define three levels of competence, namely, Level 1, Level 2 and Level 3. Among these, Level 1 is the lowest and Level 3 the highest. The intermediate Level 2 is considered to be the most appropriate for persons who, beside other duties, are expected to independently undertake practical testing in the relevant method of NDT; develop NDT procedures adapted to various problems; prepare written instructions; make accept/reject decisions in accordance with relevant standards and

  16. Liquid penetrant and magnetic particle testing at level 2. Manual for the syllabi contained in IAEA-TECDOC-628, training guidelines in non-destructive testing techniques

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-02-01

    The International Atomic Energy Agency (IAEA) has been active in the promotion of non-destructive testing (NDT) technology in the world for many decades. The prime reason for this has been the need for stringent standards for quality control for safe operation of industrial as well a nuclear installations. It has successfully executed a number of programmes and regional projects of which NDT was an important part. Through these programmes a large number of persons have been trained in the member states and a state of self sufficiency in this area of technology has been achieved in many of them. All along there has been a realization of the need to have well established training guidelines and related books in order, firstly, to guide the IAEA experts who were involved in this training programme and, secondly, to achieve some level of international uniformity and harmonization of training materials and consequent competence of personnel. The syllabi for training courses have been published in the form of two TECDOC publications. The first was IAEA-TECDOC-407 which contained syllabi for the basic five methods, i.e. liquid penetrant testing, magnetic particle testing, eddy current testing, radiographic testing and ultrasonic testing, and the second and revised is IAEA-TECDOC-628 which includes additional methods of visual testing and leak testing. IAEA-TECDOC-628, as well as most of the international standards on the subject of training and certification of NDT personnel including ISO 9712, define three levels of competence, namely, Level 1, Level 2 and Level 3. Among these, Level 1 is the lowest and Level 3 the highest. The intermediate Level 2 is considered to be the most appropriate for persons who, beside other duties, are expected to independently undertake practical testing in the relevant method of NDT; develop NDT procedures adapted to various problems; prepare written instructions; make accept/reject decisions in accordance with relevant standards and

  17. Reliability of non-destructive test techniques in the inspection of pipelines used in the oil industry

    International Nuclear Information System (INIS)

    Carvalho, A.A.; Rebello, J.M.A.; Souza, M.P.V.; Sagrilo, L.V.S.; Soares, S.D.

    2008-01-01

    The aim of this work is to evaluate the reliability of non-destructive test (NDT) techniques for the inspection of pipeline welds employed in the petroleum industry. Radiography, manual and automatic ultrasonic techniques using pulse-echo and time of flight diffraction (TOFD) were employed. Three classes of defects were analyzed: lack of penetration (LP), lack of fusion (LF) and undercut (UC). The tests were carried out on specimen made from pipelines containing defects, which had been artificially inserted on laying the weld bead. The results showed the superiority of the automatic ultrasonic tests for defect detection compared with the manual ultrasonic and radiographic tests. Additionally, artificial neural networks (ANN) were used in the detection and automatic classification of the defects

  18. Nonconventional concrete hollow blocks evaluation by destructive and non-destructive testing

    Directory of Open Access Journals (Sweden)

    M.S. Rodrigues

    Full Text Available The aim of this study was to evaluate cementitious matrices properties by partial replacement of Portland cement by silica fume (SF or by rice husk ash (RHA, and their application in nonbearing hollow blocks, tested by destructive and non-destructive methods. The following mixtures were produced: reference (100% of Portland cement and Portland cement replacement (10% by mass with SF or RHA. The non-destructive testing showed that the highest values of UPV were obtained for SF-based blocks and RHA-based blocks. The destructive test showed better results for SF-based blocks, but there was no statistical difference between the RHA-based and control ones.

  19. Non-destructive testing of electronic parts

    International Nuclear Information System (INIS)

    Widenhorn, G.

    1980-01-01

    The requirements on quality, safety, faultlessness and reliability of electric components increase because of the high complexity of the appliances in which they are used. By means of examples a survey is given on the common non-destructive testing methods, testing operation and evaluation of test results on electric components which must meet in their application high requirements on quality and reliability. Defective components, especially those with hidden failures are sorted out by non-destructive testing and the failure frequency of the appliances and plants in testing and operation is greatly reduced. (orig.) [de

  20. Eddy Current Testing at Level 2: Manual for the Syllabi Contained in IAEA-TECDOC-628.Rev. 2 'Training Guidelines for Non Destructive Testing Techniques'

    International Nuclear Information System (INIS)

    2011-01-01

    The International Atomic Energy Agency has been active in the promotion of non-destructive testing (NDT) technology in the world for many decades. The prime reason for this interest has been the need for stringent standards for quality control for safe operation of nuclear as well as other industrial installations. It has successfully executed a number of programmes including technical co-operation (TC) projects (national and regional) and the coordinated research projects (CRP) of which NDT was an important part. Through these programmes a large number of persons in the Member States have been trained, leading to establishment of national certifying bodies (NCB) responsible for training and certification of NDT personnel. Consequently, a state of self-sufficiency in this area of technology has been achieved in many of them. All along there has been a realization of the need to have well established training guidelines and related books in order, firstly, to guide the IAEA experts who were involved in this training programme and, secondly, to achieve some level of international uniformity and harmonization of training materials and consequent competence of NDT personnel. The syllabi for training courses have been published in the form of IAEA-TECDOC publications. The first was IAEA-TECDOC-407 (1987), which contained syllabi for the basic five methods, i.e. liquid penetrant testing, magnetic particle testing, eddy current testing, radiographic testing and ultrasonic testing. To accommodate advancements in NDT technology, later versions of this publication were issued in 1991, 2002 and 2008, the current version being IAEA-TECDOC-628/Rev.2 (2008), which includes additional and more advanced NDT methods. This IAEA-TECDOC, as well as most of the international standards on the subject of training and certification of NDT personnel including ISO 9712 (2005), define three levels of competence. Among these, level 1 is the lowest and level 3 the highest. The intermediate

  1. Non-Destructive Evaluation for Corrosion Monitoring in Concrete: A Review and Capability of Acoustic Emission Technique

    Science.gov (United States)

    Zaki, Ahmad; Chai, Hwa Kian; Aggelis, Dimitrios G.; Alver, Ninel

    2015-01-01

    Corrosion of reinforced concrete (RC) structures has been one of the major causes of structural failure. Early detection of the corrosion process could help limit the location and the extent of necessary repairs or replacement, as well as reduce the cost associated with rehabilitation work. Non-destructive testing (NDT) methods have been found to be useful for in-situ evaluation of steel corrosion in RC, where the effect of steel corrosion and the integrity of the concrete structure can be assessed effectively. A complementary study of NDT methods for the investigation of corrosion is presented here. In this paper, acoustic emission (AE) effectively detects the corrosion of concrete structures at an early stage. The capability of the AE technique to detect corrosion occurring in real-time makes it a strong candidate for serving as an efficient NDT method, giving it an advantage over other NDT methods. PMID:26251904

  2. Non-Destructive Evaluation for Corrosion Monitoring in Concrete: A Review and Capability of Acoustic Emission Technique

    Directory of Open Access Journals (Sweden)

    Ahmad Zaki

    2015-08-01

    Full Text Available Corrosion of reinforced concrete (RC structures has been one of the major causes of structural failure. Early detection of the corrosion process could help limit the location and the extent of necessary repairs or replacement, as well as reduce the cost associated with rehabilitation work. Non-destructive testing (NDT methods have been found to be useful for in-situ evaluation of steel corrosion in RC, where the effect of steel corrosion and the integrity of the concrete structure can be assessed effectively. A complementary study of NDT methods for the investigation of corrosion is presented here. In this paper, acoustic emission (AE effectively detects the corrosion of concrete structures at an early stage. The capability of the AE technique to detect corrosion occurring in real-time makes it a strong candidate for serving as an efficient NDT method, giving it an advantage over other NDT methods.

  3. Round busbar concept for 30 nH, 1.7 kV, 10 kA IGBT non-destructive short-circuit tester

    DEFF Research Database (Denmark)

    Smirnova, Liudmila; Pyrhönen, Juha; Iannuzzo, Francesco

    2014-01-01

    Design of a Non-Destructive Test (NDT) set-up for short-circuit tests of 1.7 kV, 1 kA IGBT modules is discussed in this paper. The test set-up allows achieving short-circuit current up to 10 kA. The important objective during the design of the test set-up is to minimize the parasitic inductance...

  4. NDT Nuclear Malaysia 35 Years History

    International Nuclear Information System (INIS)

    Mohamad Pauzi Ismail

    2016-01-01

    ASME V-2015, Article 1 defined Non-destructive Examination as a development and application of technical methods to examine materials and/or components in ways that do not impair future usefulness and serviceability in order to detect, locate, measure, interpret, and evaluate flaws. NDT unit in Nuclear Malaysia (PUSPATI) was first established in 1980 headed by Mr Ashaari Abas. He then moved to open an NDT company and was replaced by Dr. Abd Nassir Ibrahim followed by Dr Azali Muhammad, Dr Ab Razak Hamzah and myself. At the early stage from 1980-1983, most of the activities were attending NDT training courses in France, Singapore, Japan, Pakistan and Australia. Our first contribution is on NDT training. The first course is radiation safety in industrial radiography. Then moving ahead giving NDT services to industries especially in oil and gas and power generation. Recently we are seriously involved in research and development and innovation. To be a centre of excellence, NDT activities need to cover three important areas i.e. training, services, consultation and applied research. In the future, the fundamental research maybe included. (author)

  5. NDT reliability in the organizational context of service inspection companies

    International Nuclear Information System (INIS)

    Holstein, Ralf; Bertovic, Marija; Kanzler, Daniel; Mueller, Christina

    2014-01-01

    The focus of NDT reliability research in the past was in the field of two high risk industries: (atomic) power plants and aircrafts. The responsible organizations have been well aware of the risks and founded projects to understand and optimize critical steps during production, operation and maintenance. But the use of NDT is not limited to these two fields. The risks during operation of chemical plants, trains or windmills are different from the area above but evident. The coverage by legal regulations is relatively low. Instead of this owner responsibility, product liability and financial issues are the driving forces to do inspections and to use non-destructive testing. The different targets and financial issues influence the practice of NDT-inspections. A survey of this practice and its results are shown. (orig.)

  6. Effects of time pressure and noise on non-destructive testing

    Energy Technology Data Exchange (ETDEWEB)

    Enkvist, J.; Svenson, Ola [Stockholm Univ. (Sweden). Dept. of Psychology; Edland, A. [Swedish Nuclear Power Inspectorate, Stockholm (Sweden)

    2001-12-01

    Manual ultrasonic testing (UT) is the most frequently used non-destructive testing (NDT) method for in-service inspection of components important to safety and/or plant availability. Earlier, great variations have been found in operator performance, often attributed to operator fatigue. However, no conclusive findings have been reported. According to the Yerkes-Dodson law there is an optimal arousal level where performance is highest, for simple tasks this optimum is higher than for more complex tasks. In the present study twenty operators performed manual ultrasonic inspections of six test pieces with manufactured flaws. The operators performed the inspections under stress (high arousal - time pressure and noise) and non-stress conditions; one condition the first day and the other the second and last day. It was hypothesised that the stress condition led to a level of arousal so high that it would affect the results negatively. The results confirmed that the operators were affected by the stress condition. However, contrary to the hypotheses it was found that the manipulation increased operator performance. Operators with the stress condition the first day performed better than the other operators did (under both the stress and the non-stress condition). This was interpreted as the 'stress first' (group 1) operators had established efficient performance patterns the first day - affecting also the second day. Operators beginning with stress condition also tended to be more motivated. It was concluded that operator performance is affected by arousal. The operators with non-stress first (group 2) worked hard with the complex task but their arousal level was assumed to be above the optimal, resulting in a low hit rate.

  7. Effects of time pressure and noise on non-destructive testing

    Energy Technology Data Exchange (ETDEWEB)

    Enkvist, J; Svenson, Ola [Stockholm Univ. (Sweden). Dept. of Psychology; Edland, A [Swedish Nuclear Power Inspectorate, Stockholm (Sweden)

    2001-12-01

    Manual ultrasonic testing (UT) is the most frequently used non-destructive testing (NDT) method for in-service inspection of components important to safety and/or plant availability. Earlier, great variations have been found in operator performance, often attributed to operator fatigue. However, no conclusive findings have been reported. According to the Yerkes-Dodson law there is an optimal arousal level where performance is highest, for simple tasks this optimum is higher than for more complex tasks. In the present study twenty operators performed manual ultrasonic inspections of six test pieces with manufactured flaws. The operators performed the inspections under stress (high arousal - time pressure and noise) and non-stress conditions; one condition the first day and the other the second and last day. It was hypothesised that the stress condition led to a level of arousal so high that it would affect the results negatively. The results confirmed that the operators were affected by the stress condition. However, contrary to the hypotheses it was found that the manipulation increased operator performance. Operators with the stress condition the first day performed better than the other operators did (under both the stress and the non-stress condition). This was interpreted as the 'stress first' (group 1) operators had established efficient performance patterns the first day - affecting also the second day. Operators beginning with stress condition also tended to be more motivated. It was concluded that operator performance is affected by arousal. The operators with non-stress first (group 2) worked hard with the complex task but their arousal level was assumed to be above the optimal, resulting in a low hit rate.

  8. Effects of time pressure and noise on non-destructive testing

    International Nuclear Information System (INIS)

    Enkvist, J.; Svenson, Ola

    2001-12-01

    Manual ultrasonic testing (UT) is the most frequently used non-destructive testing (NDT) method for in-service inspection of components important to safety and/or plant availability. Earlier, great variations have been found in operator performance, often attributed to operator fatigue. However, no conclusive findings have been reported. According to the Yerkes-Dodson law there is an optimal arousal level where performance is highest, for simple tasks this optimum is higher than for more complex tasks. In the present study twenty operators performed manual ultrasonic inspections of six test pieces with manufactured flaws. The operators performed the inspections under stress (high arousal - time pressure and noise) and non-stress conditions; one condition the first day and the other the second and last day. It was hypothesised that the stress condition led to a level of arousal so high that it would affect the results negatively. The results confirmed that the operators were affected by the stress condition. However, contrary to the hypotheses it was found that the manipulation increased operator performance. Operators with the stress condition the first day performed better than the other operators did (under both the stress and the non-stress condition). This was interpreted as the 'stress first' (group 1) operators had established efficient performance patterns the first day - affecting also the second day. Operators beginning with stress condition also tended to be more motivated. It was concluded that operator performance is affected by arousal. The operators with non-stress first (group 2) worked hard with the complex task but their arousal level was assumed to be above the optimal, resulting in a low hit rate

  9. Trends in NDE science and technology: proceedings of the fourteenth world conference on NDT. V. 3

    International Nuclear Information System (INIS)

    Krishnadas Nair, C.G.; Baldev Raj; Murthy, C.R.L.; Jayakumar, T.

    1996-01-01

    The multi volume proceedings of the 14th World Conference on Nondestructive Testing (NDT) cover the applications of Non destructive Evaluation (NDE) in a wide range of industries, viz. aerospace, chemical, defence, manufacturing, nuclear etc. and for different materials. The major topics covered under it are NDE in nuclear industry, NDE of tubes and bars, non destructive evaluation of composites, NDE of concrete, non destructive evaluation of stresses, NDE of defects, condition monitoring, vibration monitoring, life prediction and NDE for medical applications. Papers relevant to INIS from this volume are indexed separately

  10. Non-destructive Engineering

    International Nuclear Information System (INIS)

    Ko, Jin Hyeon; Ryu, Taek In; Ko, Jun Bin; Hwang, Yong Hwa

    2006-08-01

    This book gives descriptions of non-destructive engineering on outline of non-destructive test, weld defects, radiographic inspection radiography, ultrasonic inspection, magnetic particle testing, liquid penetrant testing, eddy current inspection method, strain measurement, acoustic emission inspection method, other non-destructive testing like leakage inspection method, and non-destructive mechanics for fault analysis such as Griffiths creaking theory, and stress analysis of creaking.

  11. Economic importance of non-destructive testing

    International Nuclear Information System (INIS)

    Loebert, P.

    1979-01-01

    On May 21 to 23, 1979, the annual meeting of the Deutsche Gesellschaft fuer Zerstoerungsfreie Pruefung took place in Lindau near the Bodensee lake. About 600 experts from Germany and abroad participated in the meeting, whose general subject was 'The Economic Importance of Non-Destructive Testing'. Theoretical problems and practical investigations were discussed in a number of papers on special subjects. Apart from the 33 papers, there was also a poster show with 53 stands with texts, drawings, diagrams, and figures where the authors informed those interested on the latest state of knowledge in testing. The short papers were read in six sessions under the headings of rentability of non-destructive testing, X-ray methods, electromagnetic methods, and ultrasonic methods 1 and 2. (orig.) [de

  12. Application of advanced non-destructive testing for testing the integrity of concrete foundations

    International Nuclear Information System (INIS)

    Nguyen Le Son; Nguyen Phuoc Lan; Pham The Hung; Vu Huy Thuc

    2004-01-01

    computer from the cross-hole sonic logging data by prepared software fit the expected range of Ultrasonic Pulse Velocity results from the laboratory tests and can improve the reliability of interpreted quality. The acquired capabilities are valuable asset to apply the Cross-hole sonic method - advanced non-destructive testing (NDT) technique for testing the integrity of the deep concrete foundations. (author)

  13. Destructive examination of test plates 3 and test piece 4 of the defects detection trials (DDT)

    International Nuclear Information System (INIS)

    Buegers, W.; Crutzen, S.; Pisoni, A.; Violin, F.; Di Piazza, L.; Lock, D.; Sargent, T.

    1984-01-01

    The evaluation of NDT exercises results has been based on destructive examination of the plates or test blocks used during the exercise. The PISC I Programme has shown that in all cases the indications given by the NDT instrumentation were corresponding to some particular defects or structure aspects in the steel or were explained by particular positions of reflectors. Generally the introduction of defects using techniques such as: - implantation of modules, - introduction of non metallic material, - introduction of poison in the weld, do not produce a final ''detective zone or area'' which is strictly corresponding to the intended defect. The DDT exercise management has thus decided to perform a complete destructive examination of the four plates involved in this exercise because of its experience (the PISC I exercise) and independance of commercial interest, the JRC of the CEC, Ispra Establishment, has been asked to do the work in collaboratione with the Risley Nuclear Power development Laboratories (RNL). A collaboration agreement has been signed between RNL and JRC. Operating Agent of the PISC II programme, is interested in having a direct access to data to be added to those furnished by PISC. The present report describes the results of the destructive examination of the DDT plates 3 and 4

  14. Analysis of NDT-inspectors working practices; NDT-tarkastajien toimintatavat ammattitaitoa ja tarkastustehtaevaeae koskevien kaesitysten perusteella

    Energy Technology Data Exchange (ETDEWEB)

    Norros, L.; Kettunen, J. [VTT Automation, Espoo (Finland)

    1998-10-01

    The human and organizational factors play a significant role in the reliability of non-destructive testing (NDT); however, no single factors have been identified as the major causes of unreliability. In this study as activity-centered approach was adopted in order to capture the nature of the problem. Three successive studies were carried out, this report providing the results of the last one. It focused on the analysis of the decision-making demands of NDT inspectors on the basis of interview data. The data was carried out during the ultrasonic inspections during the 1996 annual maintenance outages of both Finnish nuclear power plants. All 15 NDT inspectors who participated in the work were interviewed. The data consisted of 200 pages. It was analyzed in two ways. First the factors that the inspectors consider affecting the reliability of inspections were studied. Secondly, the inspectors conceptions of the decision-making demands of their work were analyzed. Differences in these conceptions were supposed to indicate differences in professional orientations becoming manifest in different habits of action, i.e. ways of taking into account the situational demands of inspection. A systematic discourse analysis was carried out on the interview material to verify this assumption 26 refs.

  15. Report of the IAEA/RCA-NDT education project

    International Nuclear Information System (INIS)

    Ooka, Kiichi; Terada, Kunio; Ohtani, Kiyoshi; Niwa, Noboru.

    1988-01-01

    The Japan Non-Destructive Test (NDT) Association has been carried out an NDT technical education project with support from IAEA. Phase I of the project was successfully completed last year. The present report briefly outlines the second five-year plan (Phase II) to be carried out under the project. The project was first established in 1981 after receiving a request from IAEA to provide NDT education for participants from the RCA countries (13 countries in Asian and Pacific area). Phase I was mainly designed to provide lectures on NDT techniques. Prior to the start of Phase II, the International Education Subcommittee was established in December 1986 to take the leadership in carrying out Phase II of the project. In addition, the NDT Expert Working Group (formally called Advisory Group) has been installed which consists of representative from Japan. Australia India and Singapore. The Group held nine meetings during Phase I. Three lecture meetings at Singapore and another three at Tokyo were held to provide education according to a plan developed by the Group. It has been decided that Japan be support the lecture meetings to be held during Phase II. To conduct such meetings, a group comprising all of the National Coordinators from the RCA countries was set up to replace the Working Group. The National Coordinator Conference was held four times since its establishment. (N.K.)

  16. Report of the IAEA/RCA-NDT education project

    Energy Technology Data Exchange (ETDEWEB)

    Ooka, Kiichi; Terada, Kunio; Ohtani, Kiyoshi; Niwa, Noboru

    1988-11-01

    The Japan Non-Destructive Test (NDT) Association has been carried out an NDT technical education project with support from IAEA. Phase I of the project was successfully completed last year. The present report briefly outlines the second five-year plan (Phase II) to be carried out under the project. The project was first established in 1981 after receiving a request from IAEA to provide NDT education for participants from the RCA countries (13 countries in Asian and Pacific area). Phase I was mainly designed to provide lectures on NDT techniques. Prior to the start of Phase II, the International Education Subcommittee was established in December 1986 to take the leadership in carrying out Phase II of the project. In addition, the NDT Expert Working Group (formally called Advisory Group) has been installed which consists of representative from Japan. Australia India and Singapore. The Group held nine meetings during Phase I. Three lecture meetings at Singapore and another three at Tokyo were held to provide education according to a plan developed by the Group. It has been decided that Japan be support the lecture meetings to be held during Phase II. To conduct such meetings, a group comprising all of the National Coordinators from the RCA countries was set up to replace the Working Group. The National Coordinator Conference was held four times since its establishment. (N.K.).

  17. Inspection procedure and essential parameters in NDT qualification

    International Nuclear Information System (INIS)

    Sarkimo, M.

    2000-06-01

    The objective of the inspection qualification is to ensure that applied non-destructive methods (NDT) have the required performance. The approach of the qualification process is systematic and carefully documented and therefore some new requirements can be seen concerning the composition of the documentation. There are also new document types, that only application of the inspection qualification requires. The most important of these is the technical justification, that includes the documented evidences concerning the performance of the inspection system. This publication includes two reports: 'Compilation of the inspection procedure' and 'Essential/influential parameters in NDT qualification'. The former of these discusses the issues to be considered in an inspection procedure especially from the point of view of the mechanised ultrasonic testing. The later report explains the parameters formulated to analyse in the technical justification all aspects of the inspection application. (orig.)

  18. Elaboration of data and documents intended to complement and expand the German series of nuclear engineering codes. 3. Technical report. Non-destructive testing of austenitic welds and claddings

    International Nuclear Information System (INIS)

    Waidele, H.

    1997-01-01

    This 3. technical report presents a literature study on non-destructive testing of austenitic welds and claddings. NDT of claddings was the subject of a previous BMU project report SR 2024, so that this report contains only an update covering the latest developments in this subject area, and NDT of austenitic welds is the major subject of the report in hand. The literature study shows that improvements of ultrasonic test results for austenitic welds are expected to be achieved soon as a result of application of novel testing methods, advanced signal processing algorithms, and reduced anisotropy of austenitic welds due to specific welding techniques. Enhanced information is expected to be achieved from radiography tests through improvements available now, such as digitization of conventional radiographs combined with computer-assisted evaluation methods. As to the inspection of components with wall thickness up to 10 mm, low-frequency methods or eddy current methods will increasingly be applied in future as complementing methods supplying additional information. (orig./CB) [de

  19. Guidebook for establishing a sustainable and accredited system for qualification and certification of personnel for non-destructive testing

    International Nuclear Information System (INIS)

    2009-01-01

    Non-destructive testing (NDT) methods are used for detection, location and sizing of surface and internal defects (in welds, castings, forging, composite materials, concrete and many more). Various NDT methods are also used in preventive maintenance (nuclear power plants, aircraft, bridges, etc.). NDT methods are essential to the inspection of raw materials and half-finished products. They are applied to finished products and to in-service inspection, as well as for the design and development of new products and for plant life assessment studies. Thus NDT technology contributes significantly to the protection of life, public health and the environment through assurance of the quality and integrity of critical equipment and facilities. It is especially important in the developing Member States where the consequences of failure may be particularly severe, resulting in social, financial and environmental impacts. The IAEA has supported developing Member States for capacity building in utilization of NDT technology by providing experts, equipment, training opportunities and scientific visits. It was recognized early that NDT operator qualification and certification deserved special attention as the Member States began to apply NDT technology to local industrial problems. A series of meetings, workshops and publications have been dedicated to this issue. These efforts have led to a stage of maturity and self-sufficiency in many countries, especially in the field of training and certification of personnel, and in the provision of services to industries. ISO 9712, the international standard for qualification and certification of NDT personnel, has been adopted as the cornerstone for carrying out the training and certification activities. In 2005, a revised version of the standard, ISO 9712:2005, was published. There are some significant differences in this standard from previous editions, particularly in reference to an accreditation standard, ISO/IEC 17024:2003 (2003

  20. Analysis of NDT-inspectors working practices

    International Nuclear Information System (INIS)

    Norros, L.; Kettunen, J.

    1998-10-01

    The human and organizational factors play a significant role in the reliability of non-destructive testing (NDT); however, no single factors have been identified as the major causes of unreliability. In this study as activity-centered approach was adopted in order to capture the nature of the problem. Three successive studies were carried out, this report providing the results of the last one. It focused on the analysis of the decision-making demands of NDT inspectors on the basis of interview data. The data was carried out during the ultrasonic inspections during the 1996 annual maintenance outages of both Finnish nuclear power plants. All 15 NDT inspectors who participated in the work were interviewed. The data consisted of 200 pages. It was analyzed in two ways. First the factors that the inspectors consider affecting the reliability of inspections were studied. Secondly, the inspectors conceptions of the decision-making demands of their work were analyzed. Differences in these conceptions were supposed to indicate differences in professional orientations becoming manifest in different habits of action, i.e. ways of taking into account the situational demands of inspection. A systematic discourse analysis was carried out on the interview material to verify this assumption

  1. The role of ultrasonic velocity and Schmidt hammer hardness - The simple and economical non-destructive test for the evaluation of mechanical properties of weathered granite

    Science.gov (United States)

    Jobli, Ahmad Fadzil; Hampden, Ahmad Zaidi; Tawie, Rudy

    2017-08-01

    One of the most significant techniques for evaluation of rock strength is by using the simple and economical non-destructive test (NDT). Previous literatures confirm that there were good correlations between NDTs to the strength properties of granite rocks. The present work deals with the use of Ultrasonic Pulse Velocity and Schmidt Hammer Hardness test to predict the mechanical properties of weathered granite. Cylindrical specimens with the length to diameter ratio of two were prepared for this study and were characterized based on different weathering states. Each of the rock specimens was tested under non-destructive test and then followed by uniaxial compression test to assess the mechanical properties. It was found that good correlations established between the NDTs and the uniaxial compressive strength. The correlation between uniaxial compressive strength and rebound hardness number was demonstrated by exponential form; UCS = 6.31e0.057N, while linear correlations was obtained between the uniaxial compressive strength and the ultrasonic pulse velocity; UCS = 0.023Vp - 21.43. It was also noticed that the increase of uniaxial compression strength was parallel to the increase of elastic modulus and can be presented by a linear equation; UCS = 1.039Et50 + 4.252. Based on the reported results, it is clear that the mechanical properties or weathered granite can be estimated by means of non-destructive test.

  2. Material characterization and non destructive testing by ultrasounds; modelling, simulation and experimental validation

    International Nuclear Information System (INIS)

    Noroy-Nadal, M.H.

    2002-06-01

    This memory presents the research concerning the characterization of materials and the Non Destructive Testing (N.D.T) by ultrasonics. The different topics include three steps: modeling, computations and experimental validation. The studied materials concern mainly metals. The memory is divided in four parts. The first one concerns the characterization of materials versus temperature. The determination of the shear modulus G(T) is especially studied for a large temperature range, and around the melting point. The second part is devoted to studies by photothermal devices essentially focused on the modeling of the mechanical displacement and the stress field in coated materials. In this particular field of interest, applications concern either the mechanical characterization of the coating, the defect detection in the structure and finally the evaluation of the coating adhesion. The third section is dedicated to microstructural characterization using acoustic microscopy. The evaluation of crystallographic texture is especially approached, for metallic objects obtained by forming. Before concluding and pointing out some perspectives to this work, the last section concerns the introduction of optimization techniques, applied to the material characterization by acoustic microscopy. (author)

  3. Trends in NDE science and technology: proceedings of the fourteenth world conference on NDT. V. 1

    International Nuclear Information System (INIS)

    Krishnadas Nair, C.G.; Baldev Raj; Murthy, C.R.L.; Jayakumar, T.

    1996-01-01

    The multi volume proceedings of the 14th World Conference on Nondestructive Testing (NDT) cover the applications of Nondestructive Evaluation (NDE) in a wide range of industries, viz. aerospace, chemical, defence, manufacturing, nuclear etc. and for different materials. The major topics covered under it are NDE in nuclear industry, NDE of tubes and bars, non destructive evaluation of composites, NDE of concrete, non destructive evaluation of stresses, NDE of defects, condition monitoring, vibration monitoring, life prediction and NDE for medical applications. Papers relevant to INIS from this volume are indexed separately

  4. Trends in NDE science and technology: proceedings of the fourteenth world conference on NDT. V. 2

    International Nuclear Information System (INIS)

    Krishnadas Nair, C.G.; Baldev Raj; Murthy, C.R.L.; Jayakumar, T.

    1996-01-01

    The multi volume proceedings of the 14th World Conference on Nondestructive Testing (NDT) cover the applications of Nondestructive Evaluation (NDE) in a wide range of industries, viz. aerospace, chemical, defence, manufacturing, nuclear etc. and for different materials. The major topics covered under it are NDE in nuclear industry, NDE of tubes and bars, non destructive evaluation of composites, NDE of concrete, non destructive evaluation of stresses, NDE of defects, condition monitoring, vibration monitoring, life prediction and NDE for medical applications. Papers relevant to INIS from this volume are indexed separately

  5. Trends in NDE science and technology: proceedings of the fourteenth world conference on NDT. V. 4

    International Nuclear Information System (INIS)

    Krishnadas Nair, C.G.; Baldev Raj; Murthy, C.R.L.; Jayakumar, T.

    1996-01-01

    The multi volume proceedings of the 14th World Conference on Nondestructive Testing (NDT) cover the applications of Nondestructive Evaluation (NDE) in a wide range of industries, viz. aerospace, chemical, defence, manufacturing, nuclear etc. and for different materials. The major topics covered under it are NDE in nuclear industry, NDE of tubes and bars, non destructive evaluation of composites, NDE of concrete, non destructive evaluation of stresses, NDE of defects, condition monitoring, vibration monitoring, life prediction and NDE for medical applications. Papers relevant to INIS from this volume are indexed separately

  6. Trends in NDE science and technology: proceedings of the fourteenth world conference on NDT V. 5

    International Nuclear Information System (INIS)

    Krishnadas Nair, C.J.; Baldev Raj; Murthy, C.R.L.; Jayakumar, T.

    1996-01-01

    The multi volume proceedings of the 14th World Conference on Nondestructive Testing (NDT) cover the applications of Nondestructive Evaluation (NDE) in a wide range of industries, viz. aerospace, chemical, defence, manufacturing, nuclear etc. and for different materials. The major topics covered under it are NDE in nuclear industry, NDE of tubes and bars, non destructive evaluation of composites, NDE of concrete, non destructive evaluation of stresses, NDE of defects, condition monitoring, vibration monitoring, life prediction and NDE for medical applications. Papers relevant to INIS from this volume are indexed separately

  7. Shearography applications in non-dectructive testing

    International Nuclear Information System (INIS)

    Wan Saffiey Wan Abdullah

    2002-01-01

    Shearography method in non-destructive testing has been accepted in industrial application since it was introduced in 1982. This method provide some advantageous over other conventional NDT methods such as eddy current, dye penetrant, ultrasound and radiological methods. It offers real time, non-contact, whole field, fast and non-contamination measurements. Shearography is based on laser speckle phenomena due to the scattering of laser light from various depth of a defuse object surface. The speckle pattern on the object surface are then optically sheared one relative to another and hence formed a sheared image on the image plane. The fringe pattern observed due to correlation of speckle patterns as a consequence of surface deformation. Material flaws can be represented by the fringe anomalies of the inspected surface. The size, location and depth of defect can also be investigated. By means of optical and image manipulation, data can be quantitatively analysed. In this paper, the principle and application of shearography in non-destructive testing are presented. (Author)

  8. Review of the Air-Coupled Impact-Echo Method for Non-Destructive Testing

    Science.gov (United States)

    Nowotarski, Piotr; Dubas, Sebastian; Milwicz, Roman

    2017-10-01

    The article presents the general idea of Air-Coupled Impact-Echo (ACIE) method which is one of the non-destructive testing (NDT) techniques used in the construction industry. One of the main advantages of the general Impact Echo (IE) method is that it is sufficient to access from one side to that of the structure which greatly facilitate research in the road facilities or places which are difficult to access and diagnose. The main purpose of the article is to present state-of-the-art related to ACIE method based on the publications available at Thomson Reuters Web of Science Core Collection database (WOS) with the further analysis of the mentioned methods. Deeper analysis was also performed for the newest publications published within last 3 years related to ACIE for investigation on the subject of main focus of the researchers and scientists to try to define possible regions where additional examination and work is necessary. One of the main conclusions that comes from the performed analysis is that ACIE methods can be widely used for performing NDT of concrete structures and can be performed faster than standard IE method thanks to the Air-coupled sensors. What is more, 92.3% of the analysed recent research described in publications connected with ACIE was performed in laboratories, and only 23.1% in-situ on real structures. This indicates that method requires further research to prepare test stand ready to perform analysis on real objects outside laboratory conditions. Moreover, algorithms that are used for data processing and later presentation in ACIE method are still being developed and there is no universal solution available for all kinds of the existing and possible to find defects, which indicates possible research area for further works. Authors are of the opinion that emerging ACIE method could be good opportunity for ND testing especially for concrete structures. Development and refinement of test stands that will allow to perform in-situ tests could

  9. IR-based spot weld NDT in automotive applications

    Science.gov (United States)

    Chen, Jian; Feng, Zhili

    2015-05-01

    Today's auto industry primarily relies on destructive teardown evaluation to ensure the quality of the resistance spot welds (RSWs) due to their criticality in crash resistance and performance of vehicles. The destructive teardown evaluation is labor intensive and costly. The very nature of the destructive test means only a few selected welds will be sampled for quality. Most of the welds in a car are never checked. There are significant costs and risks associated with reworking and scrapping the defective welded parts made between the teardown tests. IR thermography as a non-destructive testing (NDT) tool has its distinct advantage — its non-intrusive and non-contact nature. This makes the IR based NDT especially attractive for the highly automated assembly lines. IR for weld quality inspection has been explored in the past, mostly limited to the offline post-processing manner in a laboratory environment. No online real-time RSW inspection using IR thermography has been reported. Typically for postprocessing inspection, a short-pulse heating via xenon flash lamp light (in a few milliseconds) is applied to the surface of a spot weld. However, applications in the auto industry have been unsuccessful, largely due to a critical drawback that cannot be implemented in the high-volume production line - the prerequisite of painting the weld surface to eliminate surface reflection and other environmental interference. This is due to the low signal-to-noise ratio resulting from the low/unknown surface emissivity and the very small temperature changes (typically on the order of 0.1°C) induced by the flash lamp method. An integrated approach consisting of innovations in both data analysis algorithms and hardware apparatus that effectively solved the key technical barriers for IR NDT. The system can be used for both real-time (during welding) and post-processing inspections (after welds have been made). First, we developed a special IR thermal image processing method that

  10. Fracture-mechanical results of non-destructive testing - function, goals, methods

    International Nuclear Information System (INIS)

    Herter, K.H.; Kockelmann, H.; Schuler, X.; Waidele, H.

    2004-01-01

    Non-destructive testing provides data for fracture-mechanical analyses, e.g. defect size and orientation. On the other hand, fracture-mechanical analyses may help to define criteria for non-destructive testing, e.g. sensitivity, inspection intervals and inspection sites. The criteria applied differ as a function of the safety relevance of a component. (orig.) [de

  11. Non-Destructive Techniques Based on Eddy Current Testing

    Science.gov (United States)

    García-Martín, Javier; Gómez-Gil, Jaime; Vázquez-Sánchez, Ernesto

    2011-01-01

    Non-destructive techniques are used widely in the metal industry in order to control the quality of materials. Eddy current testing is one of the most extensively used non-destructive techniques for inspecting electrically conductive materials at very high speeds that does not require any contact between the test piece and the sensor. This paper includes an overview of the fundamentals and main variables of eddy current testing. It also describes the state-of-the-art sensors and modern techniques such as multi-frequency and pulsed systems. Recent advances in complex models towards solving crack-sensor interaction, developments in instrumentation due to advances in electronic devices, and the evolution of data processing suggest that eddy current testing systems will be increasingly used in the future. PMID:22163754

  12. New tasks for non-destructive testing

    International Nuclear Information System (INIS)

    1990-01-01

    The proceedings contain 29 lectures and 43 posters which were presented in Trier at the annual meeting of the DGZfP in May 1990. The contributions report on further development of non-destructive testing methods towards more reliability, both of inspections and with regard to interpretation of the results. (MM) [de

  13. Non-linear ultrasonic time-reversal mirrors in NDT

    Czech Academy of Sciences Publication Activity Database

    Převorovský, Zdeněk

    -, č. 4 (2012), s. 4-4 [World Conference on Nondestructive Testing /18./. 16.4.2012-20.4.2012, Durban] R&D Projects: GA MPO(CZ) FR-TI1/274; GA MPO(CZ) FR-T1/198; GA ČR(CZ) GAP104/10/1430 Institutional research plan: CEZ:AV0Z2076919 Keywords : non-linear ime reversal mirror * ultrasonic techniques * ESAM Subject RIV: BI - Acoustics http://www.academia-ndt.org/Downloads/AcademiaNews4.pdf

  14. A non-contacting thermal wave technique for NDT of coatings and other applications in the CEGB: current status (July 1987)

    International Nuclear Information System (INIS)

    Corbett, J.; Quigley, M.B.C.; Smith, B.L.; Hart, B.

    1988-10-01

    This report describes the current status of the photothermal non-destructive testing (NDT) of sprayed coatings on components in conventional and nuclear power plant. Thickness measurements of sprayed coatings have been performed and the thickness resolution capability has been shown to be, in principle, of the order of 1 micrometre. Sub-surface defects down to 0.5mm is size have been detected, using a tightly focused laser beam. The ability to distinguish between penetrated and non-penetrated welds has been illustrated. A portable diode-laser based system is being designed for on-line manufacturing quality assurance and in-situ inspection of coatings. Finally, the potential cost benefit and current research programme are outlined. (author)

  15. A new mode of acoustic NDT via resonant air-coupled emission

    Science.gov (United States)

    Solodov, Igor; Dillenz, Alexander; Kreutzbruck, Marc

    2017-06-01

    Resonant modes of non-destructive testing (NDT) which make use of local damage resonance (LDR) have been developed recently and demonstrated a significant increase in efficiency and sensitivity of hybrid inspection techniques by laser vibrometry, ultrasonic thermography, and shearography. In this paper, a new fully acoustic version of resonant NDT is demonstrated for defects in composite materials relevant to automotive and aviation applications. This technique is based on an efficient activation of defect vibrations by using a sonic/ultrasonic wave matched to a fundamental LDR frequency of the defect. On this condition, all points of the faulty area get involved in synchronous out-of-plane vibrations which produce a similar in-phase wave motion in ambient air. This effect of resonant air-coupled emission results in airborne waves emanating from the defect area, which can be received by a commercial microphone (low LDR frequency) or an air-coupled ultrasonic transducer (high frequency LDR). A series of experiments confirm the feasibility of both contact and non-contact versions of the technique for NDT and imaging of simulated and realistic defects (impacts, delaminations, and disbonds) in composites.

  16. Field application of a cable NDT system for cable-stayed bridge using MFL sensors integrated

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ju Won; Choi, Jun Sung; Park, Seung Hee [Sungkyunkwan University, Seoul (Korea, Republic of); Lee, Eun Chan [Korea Maintance Co., Ltd., Seoul (Korea, Republic of)

    2014-02-15

    In this study, an automated cable non-destructive testing(NDT) system was developed to monitor the steel cables that are a core component of cable-stayed bridges. The magnetic flux leakage(MFL) method, which is suitable for ferromagnetic continuum structures and has been verified in previous studies, was applied to the cable inspection. A multi-channel MFL sensor head was fabricated using hall sensors and permanent magnets. A wheel-based cable climbing robot was fabricated to improve the accessibility to the cables, and operating software was developed to monitor the MFL-based NDT research and control the climbing robot. Remote data transmission and robot control were realized by applying wireless LAN communication. Finally, the developed element techniques were integrated into an MFL-based cable NDT system, and the field applicability of this system was verified through a field test at Seohae Bridge, which is a typical cable-stayed bridge currently in operation.

  17. Field application of a cable NDT system for cable-stayed bridge using MFL sensors integrated

    International Nuclear Information System (INIS)

    Kim, Ju Won; Choi, Jun Sung; Park, Seung Hee; Lee, Eun Chan

    2014-01-01

    In this study, an automated cable non-destructive testing(NDT) system was developed to monitor the steel cables that are a core component of cable-stayed bridges. The magnetic flux leakage(MFL) method, which is suitable for ferromagnetic continuum structures and has been verified in previous studies, was applied to the cable inspection. A multi-channel MFL sensor head was fabricated using hall sensors and permanent magnets. A wheel-based cable climbing robot was fabricated to improve the accessibility to the cables, and operating software was developed to monitor the MFL-based NDT research and control the climbing robot. Remote data transmission and robot control were realized by applying wireless LAN communication. Finally, the developed element techniques were integrated into an MFL-based cable NDT system, and the field applicability of this system was verified through a field test at Seohae Bridge, which is a typical cable-stayed bridge currently in operation.

  18. Destructive examination of test plates 1 and 2 of the defects detection trials

    International Nuclear Information System (INIS)

    Crutzen, S.; Buergers, W.; Violin, F.; Di Piazza, L.; Cowburn, K.; Sargent, T.

    1983-01-01

    A further phase of the UKAEA defect detection trials (described previously) with PWR pressure vessel steels is reported. The evaluation of NDT exercise results must be based on destructive examination of the plates used during the exercise. Tests are described and results given. (U.K.)

  19. Non-destructive testing and evaluation for structural integrity

    International Nuclear Information System (INIS)

    Baldev Raj; Jayakumar, T.; Rao, B.P.C.

    1995-01-01

    In this paper, a brief description of the physical concepts of non-destructive evaluation (NDE) methods and the physical/derived parameters that are used for assessing defects, stresses and microstructures are given. A few case studies highlighting the importance of non-destructive testing and evaluation for structural integrity assessment are also discussed based on the investigations carried out. Emerging concepts like intelligent processing of materials, expert systems, neural networks, use of multisensors with fusion of data and exploitation of signal analysis and imaging approaches are also addressed in this paper. (author). 92 refs., 1 tab

  20. Practical acoustic emission testing

    CERN Document Server

    2016-01-01

    This book is intended for non-destructive testing (NDT) technicians who want to learn practical acoustic emission testing based on level 1 of ISO 9712 (Non-destructive testing – Qualification and certification of personnel) criteria. The essential aspects of ISO/DIS 18436-6 (Condition monitoring and diagnostics of machines – Requirements for training and certification of personnel, Part 6: Acoustic Emission) are explained, and readers can deepen their understanding with the help of practice exercises. This work presents the guiding principles of acoustic emission measurement, signal processing, algorithms for source location, measurement devices, applicability of testing methods, and measurement cases to support not only researchers in this field but also and especially NDT technicians.

  1. Magnetic Non-destructive Testing of Plastically Deformed Mild Steel

    Directory of Open Access Journals (Sweden)

    Jozef Pala

    2004-01-01

    Full Text Available The Barkhausen noise analysis and coercive field measurement have been used as magnetic non-destructive testing methods for plastically deformed high quality carbon steel specimens. The strain dependence of root mean square value and power spectrum of the Barkhausen noise and the coercive field are explained in terms of the dislocation density. The specimens have been subjected to different magnetizing frequencies to show the overlapping nature of the Barkhausen noise. The results are discussed in the context of usage of magnetic non-destructive testing to evaluate the plastic deformation of high quality carbon steel products.

  2. Non-destructive testing of electronic component packages

    International Nuclear Information System (INIS)

    Anderle, C.

    1975-01-01

    A non-destructive method of investigating packaged parts of semiconductor components by X radiation is described and the relevant theoretical relations limiting this technique are derived. The application of the technique is demonstrated in testing several components. The described method is iNsimple and quick. (author)

  3. Destructive examination of test plates 1 and 2 of the defects detection trials (DDT)

    International Nuclear Information System (INIS)

    Crutzen, S.; Buegers, W.; Violin, F.; Di Piazza, L.; Cowburn, K.; Sargent, T.

    1984-01-01

    The evaluation of NDT exercises results has been based on destructive examination of the plates or test blocks used during the exercise. The PISC Programme has shown that in all cases the indications given by the NDT instrumentation were corresponding to some particular defects or structure aspects in the steel or were explained by particular positions of reflectors. Generally the introduction of defects do not produce a final ''defective zone or area'' which is strictly corresponding to the intended defect. The DDT exercise management has thus decided to perform a complete destructive examination of the four plates involved in this exercise because of its experience (the PISC I exercise) and independance of commercial interest, the JRC of the CEC Ispra Establishment has been asked to do the work with the Risley Nuclear Power Development Laboratories (RNL). The present report describes the results of the destructive examination of the DDT plates 1 and 2

  4. Effectiveness Analysis of a Non-Destructive Single Event Burnout Test Methodology

    CERN Document Server

    Oser, P; Spiezia, G; Fadakis, E; Foucard, G; Peronnard, P; Masi, A; Gaillard, R

    2014-01-01

    It is essential to characterize power MosFETs regarding their tolerance to destructive Single Event Burnouts (SEB). Therefore, several non-destructive test methods have been developed to evaluate the SEB cross-section of power devices. A power MosFET has been evaluated using a test circuit, designed according to standard non-destructive test methods discussed in the literature. Guidelines suggest a prior adaptation of auxiliary components to the device sensitivity before the radiation test. With the first value chosen for the de-coupling capacitor, the external component initiated destructive events and affected the evaluation of the cross-section. As a result, the influence of auxiliary components on the device cross-section was studied. This paper presents the obtained experimental results, supported by SPICE simulations, to evaluate and discuss how the circuit effectiveness depends on the external components.

  5. Training to NDT construction experts (ZFPBau). Developments in recent years

    International Nuclear Information System (INIS)

    Taffe, Alexander; Feistkorn, Sascha

    2016-01-01

    Classical destructive test methods are fixed part of industrial sectors for decades such as aerospace, automotive, railway and power plants. A high degree of standardization of procedures, and training in form of an ISO standard are present, but not in non-destructive testing of civil engineering (ZfPBau). Except for the rebound hammer NDT methods in civil engineering are not standardized. Also of personnel qualifications can be found in regulations very few requirements, although it is obvious that this is an indispensable prerequisite for the proper application of the procedures and reliable inspection results. In this contribution experiences with a presented training concept in which the construction inspector will trained to DIN 1076 in a two-day course. Here are the necessary conditions worked out, such as the creation of suitable test bodies or the definition of necessary course content for establishing training courses. [de

  6. Application of a Bayesian model for the quantification of the European methodology for qualification of non-destructive testing

    International Nuclear Information System (INIS)

    Gandossi, Luca; Simola, Kaisa; Shepherd, Barrie

    2010-01-01

    The European methodology for qualification of non-destructive testing is a well-established approach adopted by nuclear utilities in many European countries. According to this methodology, qualification is based on a combination of technical justification and practical trials. The methodology is qualitative in nature, and it does not give explicit guidance on how the evidence from the technical justification and results from trials should be weighted. A Bayesian model for the quantification process was presented in a previous paper, proposing a way to combine the 'soft' evidence contained in a technical justification with the 'hard' evidence obtained from practical trials. This paper describes the results of a pilot study in which such a Bayesian model was applied to two realistic Qualification Dossiers by experienced NDT qualification specialists. At the end of the study, recommendations were made and a set of guidelines was developed for the application of the Bayesian model.

  7. Proceedings of the joint CEC OECD IAEA specialists meeting on non-destructive examination - Practice and results

    Energy Technology Data Exchange (ETDEWEB)

    Borloo, E [Institute of Advanceds Materials, Ispra (Italy); Lemaitre, P M.V. [Institute of Advanced Materials, PO Box 2, NL-1755 ZG Petten (Netherlands)

    1994-07-01

    This meeting was organized to be an international forum for discussion of recent application results and of utility experience with non-destructive methods used for the inspection of steel components and weldments; it was also the closing meeting of the Round Robin Tests phase of PISC III (Programme for the Inspection of Steel Components). Lessons learned, data base available and first results were presented and discussed in view of further detailed analysis of all the information generated by that programme. The meeting addressed, in terms of the state of art, the capability and reliability of NDT procedures applied to the major nuclear reactor components. Special emphasis was placed on NDE techniques to detect and size flaws in order to assure structural integrity during plant design life or beyond. Related topics included qualification with emphasis on performance demonstration and application of NDT in plant life management

  8. Proceedings of the joint CEC OECD IAEA specialists meeting on non-destructive examination - Practice and results

    International Nuclear Information System (INIS)

    Borloo, E.; Lemaitre, P.M.V.

    1994-01-01

    This meeting was organized to be an international forum for discussion of recent application results and of utility experience with non-destructive methods used for the inspection of steel components and weldments; it was also the closing meeting of the Round Robin Tests phase of PISC III (Programme for the Inspection of Steel Components). Lessons learned, data base available and first results were presented and discussed in view of further detailed analysis of all the information generated by that programme. The meeting addressed, in terms of the state of art, the capability and reliability of NDT procedures applied to the major nuclear reactor components. Special emphasis was placed on NDE techniques to detect and size flaws in order to assure structural integrity during plant design life or beyond. Related topics included qualification with emphasis on performance demonstration and application of NDT in plant life management

  9. A non-destructive evaluation of transverse hydrogen cracking in high strength flux-cored weld metal

    International Nuclear Information System (INIS)

    Sterjovski, Z.; Carr, D. G.; Holdstock, R.; Nolan, D.; Norrish, J.

    2007-01-01

    Transverse hydrogen cracking in high strength weld metal (WM) is a potentially serious problem in thick-sections, especially in highly restrained structures. This paper presents preliminary re suits for which transverse weld metal hydrogen cracking was purposefully generated in 40 mm thick high strength WM to study the effectiveness of various non-destructive testing methods in locating and sizing transverse cracks. Transverse WM hydrogen cracking was intentionally produced by: increasing diffusible hydrogen levels through the introduction of 2% hydrogen in CO 2 shielding gas and minimizing interpass temperature and time; increasing the cracking susceptibility of the micro structure by increasing cooling rate with a large-scale test plate and maintaining an interpass temperature below 70 deg C; increasing stress levels with the use of stiffeners and end welds; and rapid postweld cooling to a temperature lower than 100 deg C. The extent of transverse weld metal hydrogen cracking was evaluated by non-destructive testing (NDT), which included conventional ultrasonic testing, radiography, acoustic emission monitoring and magnetic particle inspection. It was established that conventional ultrasonic testing was the most effective of the NDT techniques used. Acoustic emission monitoring revealed that two different types of emissions emanated from the weld metal and that the majority of emissions occurred within the first 48 hours of welding, although there was some evidence of cracking well after this initial 48 hour period. Larger sized cracks were observed near the transverse stiffeners (and weld ends) where tensile residual stresses (both longitudinal and transverse) were thought to be highest and the micro structure was therefore more susceptible to cracking. Additionally, numerous finer cracks were located in the top third of the plate (in the thickness direction) and on both sides of the weld centre line

  10. Formulations by surface integral equations for numerical simulation of non-destructive testing by eddy currents

    International Nuclear Information System (INIS)

    Vigneron, Audrey

    2015-01-01

    The thesis addresses the numerical simulation of non-destructive testing (NDT) using eddy currents, and more precisely the computation of induced electromagnetic fields by a transmitter sensor in a healthy part. This calculation is the first step of the modeling of a complete control process in the CIVA software platform developed at CEA LIST. Currently, models integrated in CIVA are restricted to canonical (modal computation) or axially-symmetric geometries. The need for more diverse and complex configurations requires the introduction of new numerical modeling tools. In practice the sensor may be composed of elements with different shapes and physical properties. The inspected parts are conductive and may contain dielectric or magnetic elements. Due to the cohabitation of different materials in one configuration, different regimes (static, quasi-static or dynamic) may coexist. Under the assumption of linear, isotropic and piecewise homogeneous material properties, the surface integral equation (SIE) approach allows to reduce a volume-based problem to an equivalent surface-based problem. However, the usual SIE formulations for the Maxwell's problem generally suffer from numerical noise in asymptotic situations, and especially at low frequencies. The objective of this study is to determine a version that is stable for a range of physical parameters typical of eddy-current NDT applications. In this context, a block-iterative scheme based on a physical decomposition is proposed for the computation of primary fields. This scheme is accurate and well-conditioned. An asymptotic study of the integral Maxwell's problem at low frequencies is also performed, allowing to establish the eddy-current integral problem as an asymptotic case of the corresponding Maxwell problem. (author) [fr

  11. Comparisons of NDT Methods to Inspect Cork and Cork filled Epoxy Bands

    Science.gov (United States)

    Lingbloom, Mike

    2007-01-01

    Sheet cork and cork filled epoxy provide external insulation for the Reusable Solid Rocket Motor (RSRM) on the Nation's Space Transportation System (STS). Interest in the reliability of the external insulation bonds has increased since the Columbia incident. A non-destructive test (NDT) method that will provide the best inspection for these bonds has been under evaluation. Electronic Shearography has been selected as the primary NDT method for inspection of these bond lines in the RSRM production flow. ATK Launch Systems Group has purchased an electronic shearography system that includes a vacuum chamber that is used for evaluation of test parts and custom vacuum windows for inspection of full-scale motors. Although the electronic shearography technology has been selected as the primary method for inspection of the external bonds, other technologies that exist continue to be investigated. The NASA/Marshall Space Flight Center (MSFC) NDT department has inspected several samples for comparison with electronic shearography with various inspections systems in their laboratory. The systems that were evaluated are X-ray backscatter, terahertz imaging, and microwave imaging. The samples tested have some programmed flaws as well as some flaws that occurred naturally during the sample making process. These samples provide sufficient flaw variation for the evaluation of the different inspection systems. This paper will describe and compare the basic functionality, test method and test results including dissection for each inspection technology.

  12. Optical generation,detection and non-destructive testing applications of terahertz waves

    Institute of Scientific and Technical Information of China (English)

    ZHANG; Weili; LIANG; Dachuan; TIAN; Zhen; HAN; Jiaguang; GU; Jianqiang; HE; Mingxia; OUYANG; Chunmei

    2016-01-01

    Optoelectronic terahertz generation and detection play a key role in the applications of non-destructive testing,which involves different areas such as physics,biological,material science,imaging,explosions detection,astronomy applications,semiconductor technology and superconductiong electronics. In this article,we present a reviewof the principle and performance of typical terahertz sources,detectors and non-destructive testing applications. On this basis,the newdevelopment and trends of terahertz radiation detectors are also discussed.

  13. Short time evaluation of metallic materials' fatigue potential combining destructive and non-destructive testing methods

    International Nuclear Information System (INIS)

    Starke, Peter; Wu, Haoran; Boller, Christian

    2015-01-01

    Fatigue of engineering structures is an issue from an engineering design point. The lifetime of materials being subject to repeated mechanical loads is limited. Different examples of failures and fateful air accidents have caused significant cost and claims to the operators as well as manufacturers in excess of fatalities. Criticality of failure increases with increasing age and the uncertainty of operational loads applied. In such a case a reassessment of a structural materials' condition is in big need should damage tolerance criteria still be met, being the essential ground rule for aeronautical structural design. It is therefore the challenging aim to use a metallic material's microstructure characterizing non-destructive testing (NDT) parameter or a combination of those as a parameter to be scanned over a defined surface of the component considered to more realistically characterize the damage condition and to use this information twofold: (a) to more precisely assess the structural component's residual life and (b) to feed the information recorded back into a specific database belonging to an approach named PHYBAL. The physically based fatigue life evaluation method (PHYBAL) is a short-time procedure for the evaluation of fatigue data based on a small number of fatigue tests performed on un-notched specimens only. This method significantly reduces the effort for experimentation in terms of time and cost by around 90 % and inhibits remarkable scientific as well as economic advantages. The paper highlights the high capability of PHYBAL as well as the suitability for assessing the residual life of aeronautical components also with respect to the application of this approach in the light of structural health monitoring issues.

  14. Overview of a benefit/risk ratio optimized for a radiation emitting device used in non-destructive testing

    Energy Technology Data Exchange (ETDEWEB)

    Maharaj, H.P., E-mail: H_P_Maharaj@hc-sc.gc.ca [Health Canada, Dept. of Health, Consumer and Clinical Radiaton Protection Bureau, Ottawa, Ontario (Canada)

    2016-03-15

    This paper aims to provide an overview of an optimized benefit/risk ratio for a radiation emitting device. The device, which is portable, hand-held, and open-beam x-ray tube based, is utilized by a wide variety of industries for purposes of determining elemental or chemical analyses of materials in-situ based on fluorescent x-rays. These analyses do not cause damage or permanent alteration of the test materials and are considered a non-destructive test (NDT). Briefly, the key characteristics, principles of use and radiation hazards associated with the Hay device are presented and discussed. In view of the potential radiation risks, a long term strategy that incorporates risk factors and guiding principles intended to mitigate the radiation risks to the end user was considered and applied. Consequently, an operator certification program was developed on the basis of an International Standards Organization (ISO) standard (ISO 20807:2004) and in collaboration with various stake holders and was implemented by a federal national NDT certification body several years ago. It comprises a written radiation safety examination and hands-on training with the x-ray device. The operator certification program was recently revised and the changes appear beneficial. There is a fivefold increase in operator certification (Levels 1 a nd 2) to date compared with earlier years. Results are favorable and promising. An operational guidance document is available to help mitigate radiation risks. Operator certification in conjunction with the use of the operational guidance document is prudent, and is recommended for end users of the x-ray device. Manufacturers and owners of the x-ray devices will also benefit from the operational guidance document. (author)

  15. Overview of a benefit/risk ratio optimized for a radiation emitting device used in non-destructive testing

    International Nuclear Information System (INIS)

    Maharaj, H.P.

    2016-01-01

    This paper aims to provide an overview of an optimized benefit/risk ratio for a radiation emitting device. The device, which is portable, hand-held, and open-beam x-ray tube based, is utilized by a wide variety of industries for purposes of determining elemental or chemical analyses of materials in-situ based on fluorescent x-rays. These analyses do not cause damage or permanent alteration of the test materials and are considered a non-destructive test (NDT). Briefly, the key characteristics, principles of use and radiation hazards associated with the Hay device are presented and discussed. In view of the potential radiation risks, a long term strategy that incorporates risk factors and guiding principles intended to mitigate the radiation risks to the end user was considered and applied. Consequently, an operator certification program was developed on the basis of an International Standards Organization (ISO) standard (ISO 20807:2004) and in collaboration with various stake holders and was implemented by a federal national NDT certification body several years ago. It comprises a written radiation safety examination and hands-on training with the x-ray device. The operator certification program was recently revised and the changes appear beneficial. There is a fivefold increase in operator certification (Levels 1 a nd 2) to date compared with earlier years. Results are favorable and promising. An operational guidance document is available to help mitigate radiation risks. Operator certification in conjunction with the use of the operational guidance document is prudent, and is recommended for end users of the x-ray device. Manufacturers and owners of the x-ray devices will also benefit from the operational guidance document. (author)

  16. Non-destructive inservice inspections

    International Nuclear Information System (INIS)

    Kauppinen, P.; Sarkimo, M.; Lahdenperae, K.

    1998-01-01

    In order to assess the possible damages occurring in the components and structures of operating nuclear power plants during service the main components and structures are periodically inspected by non-destructive testing techniques. The reliability of non-destructive testing techniques applied in these inservice inspections is of major importance because the decisions concerning the needs for repair of components are mainly based on the results of inspections. One of the targets of this research program has been to improve the reliability of non-destructive testing. This has been addressed in the sub-projects which are briefly summarised here. (author)

  17. Advancing industrial quality through NDT in Latin America and the Caribbean

    International Nuclear Information System (INIS)

    Beswick, C.K.; Peters, W.

    1990-01-01

    The article describes the regional Non Destructive Testing (NDT) Project for Latin America and the Caribbean. The main objective, that of creating an autonomous NDT capacity, has largely been achieved. All countries are now able to provide training nationally up to the second of the three internationally agreed levels in most of the basic techniques. Although a few countries still need some assistance at the third level, the knowledge and experience now available are sufficient to make regional autonomy viable in the near future. There are currently over one hundred registered specialists in the region capable of giving recognized training. There is now a well established base in Latin America and the Caribbean for the implementation of in-service inspection programmes critical to the success not only of nuclear power programmes, but also of the region's industrial development in general. 3 figs, 1 tab

  18. On the use of NDT Data for Reliability-Based Assessment of Existing Timber Structures

    DEFF Research Database (Denmark)

    Sousa, Hélder S.; Sørensen, John Dalsgaard; Kirkegaard, Poul Henning

    2013-01-01

    The objective of this paper is to address the possibilities of using non-destructive testing (NDT) data for updating information and obtaining adequate characterization of the reliability level of existing timber structures and, also, for assessing the evolution in time of performance...... of these structures when exposed to deterioration. By improving the knowledge upon the mechanical properties of timber, better and more substantiated decisions after a reliability safety assessment are aimed at. Bayesian methods are used to update the mechanical properties of timber and reliability assessment......, and information of NDT is also used to calibrate these models. The proposed approach is used for reliability assessment of different structural timber systems. Reliability of the structural system is assessed regarding the failure consequences of individual elements defined as key elements which were determined...

  19. Utilization of radiation in non destructive tests

    International Nuclear Information System (INIS)

    Lopes, R.T.; Jesus, E.F.O. de; Junqueira, M.M.; Matos, J.A. de; Castello Branco, L.M.; Barros Junior, J.D.; Borges, J.C.

    1987-01-01

    The Nuclear Instrumentation Laboratory from COPPE/UFRJ has been developed techniques for using nuclear radiations to obtain images for non-destructive materials testing and medicine. With this objective, some prototypes of transmission computerized tomography systems using parallel beans and fan beans, with computer automation, including the mathematical process of image reprocessing and presentation in videos or printers are constructed [pt

  20. Automated Defect Recognition as a Critical Element of a Three Dimensional X-ray Computed Tomography Imaging-Based Smart Non-Destructive Testing Technique in Additive Manufacturing of Near Net-Shape Parts

    Directory of Open Access Journals (Sweden)

    Istvan Szabo

    2017-11-01

    Full Text Available In this paper, a state of the art automated defect recognition (ADR system is presented that was developed specifically for Non-Destructive Testing (NDT of powder metallurgy (PM parts using three dimensional X-ray Computed Tomography (CT imaging, towards enabling online quality assurance and enhanced integrity confidence. PM parts exhibit typical defects such as microscopic cracks, porosity, and voids, internal to components that without an effective detection system, limit the growth of industrial applications. Compared to typical testing methods (e.g., destructive such as metallography that is based on sampling, cutting, and polishing of parts, CT provides full coverage of defect detection. This paper establishes the importance and advantages of an automated NDT system for the PM industry applications with particular emphasis on image processing procedures for defect recognition. Moreover, the article describes how to establish a reference library based on real 3D X-ray CT images of net-shape parts. The paper follows the development of the ADR system from processing 2D image slices of a measured 3D X-ray image to processing the complete 3D X-ray image as a whole. The introduced technique is successfully integrated into an automated in-line quality control system highly sought by major industry sectors in Oil and Gas, Automotive, and Aerospace.

  1. A final report on the performance achieved by non-destructive testing of defective butt welds in 50mm thick Type 316 stainless steel

    International Nuclear Information System (INIS)

    Ford, J.; Hudgell, R.J.

    1987-03-01

    This report concludes a programme of work started approximately eight years ago to fabricate deliberately defective austenitic downhand welds in 50 mm thick Type 316 plate and then to examine them non-destructively under ideal laboratory conditions. After completing and reporting the Non-Destructive Testing (NDT), the specimens were subjected to detailed metallography to locate, identify and size all the planned and unplanned flaws in the welds. The report gives the final analysis of this exercise on the relative merits of X-radiography, pulse echo ultrasonics and the time-of-flight technique for the detection, location and sizing of weld flaws. It was found that X-radiography and pulse echo ultrasonics were the best techniques for flaw detection but neither technique was reliable for flaw sizing. The time-of-flight technique provided accurate sizing data but the location of the flaws had to be known to identify the diffracted signals from the extremities of the flaws due to the poor signal to noise ratio. Observations are also reported on the fabrication of deliberately defective austenitic welds for use as reference specimens in the FR programme. (author)

  2. Quality evaluation of soil-cement-plant residue bricks by the combination of destructive and non-destructive tests

    Directory of Open Access Journals (Sweden)

    Regis de C. Ferreira

    Full Text Available ABSTRACT Residues from agricultural activity can be used to improve the quality of soil-based bricks, constituting an interesting alternative for their destination. The technical quality of soil-cement-plant residue bricks was evaluated by the combination of non-destructive and destructive methods. A predominant clayey soil, Portland cement and residues of husks of both rice and Brachiaria brizantha cv. Marandu (0, 10, 20, 30 and 40%, in mass, in substitution to the 10% cement content were used. The bricks were submitted to destructive (water absorption and compressive strength and nondestructive (ultrasound tests for their physical and mechanical characterization. Results from both destructive and non-destructive tests were combined to determine the quantitative parameter named “anisotropic resistance” in order to evaluate the quality of the bricks. The addition that promoted best technical quality was 10% residue content, regardless of the residue type. The anisotropic resistance proved to be adequate for the technical quality evaluation of the bricks.

  3. Parallelization of ultrasonic field simulations for non destructive testing

    International Nuclear Information System (INIS)

    Lambert, Jason

    2015-01-01

    The Non Destructive Testing field increasingly uses simulation. It is used at every step of the whole control process of an industrial part, from speeding up control development to helping experts understand results. During this thesis, a fast ultrasonic field simulation tool dedicated to the computation of an ultrasonic field radiated by a phase array probe in an isotropic specimen has been developed. During this thesis, a simulation tool dedicated to the fast computation of an ultrasonic field radiated by a phased array probe in an isotropic specimen has been developed. Its performance enables an interactive usage. To benefit from the commonly available parallel architectures, a regular model (aimed at removing divergent branching) derived from the generic CIVA model has been developed. First, a reference implementation was developed to validate this model against CIVA results, and to analyze its performance behaviour before optimization. The resulting code has been optimized for three kinds of parallel architectures commonly available in workstations: general purpose processors (GPP), many-core co-processors (Intel MIC) and graphics processing units (nVidia GPU). On the GPP and the MIC, the algorithm was reorganized and implemented to benefit from both parallelism levels, multithreading and vector instructions. On the GPU, the multiple steps of field computing have been divided in multiple successive CUDA kernels. Moreover, libraries dedicated to each architecture were used to speedup Fast Fourier Transforms, Intel MKL on GPP and MIC and nVidia cuFFT on GPU. Performance and hardware adequation of the produced codes were thoroughly studied for each architecture. On multiple realistic control configurations, interactive performance was reached. Perspectives to address more complex configurations were drawn. Finally, the integration and the industrialization of this code in the commercial NDT platform CIVA is discussed. (author) [fr

  4. Ultrasonic testing of materials at level 2. Manual for the syllabi contained in IAEA-TECDOC-628, training guidelines in non-destructive testing techniques

    International Nuclear Information System (INIS)

    1999-01-01

    The International Atomic Energy Agency (IAEA) has been active in the promotion of non-destructive testing (NDT) technology for many years. The prime reason for this interest has been the need for stringent quality control standards for the safe operation of nuclear installations. The IAEA has successfully executed a number of regional projects of which NDT was an important part. These were the Regional Co-operative Arrangements for the Promotion of Nuclear Science and Technology in Latin America (ARCAL), the Regional Co-operative Agreement for Asia and the Pacific (RCA), the African Regional Co-operative Agreement (AFRA) and lately the NDT Regional Project in West Asia. Through these projects a large number of persons have been trained in Member States and a state of self-sufficiency in this area of technology has been achieved in many of them. There has long been a realization of the need to have well established training guidelines and related books in order, firstly, to guide IAEA experts who were involved in this training programme and, secondly, to achieve some level of international uniformity and harmonization of training materials and consequent competence of personnel. The syllabi for training courses have been published in the form of two publications, IAEA-TECDOC-407 and IAEA-TECDOC-628. IAEA-TECDOC-628, as well as most of the international standards on the subject of training and certification of NDT personnel includes ISO 9712. The next logical step is to compile the textbooks and training manuals. Work in this regard has been undertaken and a manual on radiographic testing was issued in 1992 in the Training Course Series. This publication is a continuation of that effort. Earlier training notes on this subject existed in the form of IAEA-TECDOC-462, which was compiled in accordance with the syllabus of IAEA-TECDOC-407. These fulfilled the training needs of the member countries of RCA for quite some time. The present book is in fact an expanded and

  5. Computer analysis of holographic interferograms for NDT applications

    International Nuclear Information System (INIS)

    Tichenor, D.A.; Madsen, V.P.

    1978-01-01

    Holographic interferometry (or holometry) is a non-destructive technique that measures the microscopic displacement of all points on the surface of a test object. The displacement field is represented by a pattern of interference fringes superimposed on the image of the test object. Each fringe can be interpreted as a contour line representing points of equal displacement normal to the image plane. The displacement interval between adjacent fringes is half of the optical wavelength used in recording the hologram. For many NDT applications the fringe density information alone is sufficient to identify all defects of interest. Also fringe density is more easily extracted from the interferogram than is the complete deformation map. An algorithm to generate local estimates of fringe density and determine acceptability of product based on this data is described

  6. Non-destructive test of lock actuator component using neutron radiography technique

    International Nuclear Information System (INIS)

    Juliyanti; Setiawan; Sutiarso

    2012-01-01

    Non-destructive test of lock actuator using neutron radiography technique has been done. The lock actuator is a mechanical system which is controlled by central lock module consisting of electronic circuit which drives the lock actuator works accordingly to open and lock the vehicle door. The non-destructive test using neutron radiography is carried out to identify the type of defect is presence by comparing between the broken and the brand new one. The method used to test the lock actuator component is film method (direct method). The result show that the radiography procedure has complied with the ASTM standard for neutron radiography with background density of 2.2, 7 lines and 3 holes was seen in the sensitivity indicator (SI) and the quite good image quality was obtained. In the brand new actuator is seen that isolator part which separated the coils has melted. By this non-destructive test using neutron radiography technique is able to detect in early stage the type of component's defect inside the lock actuator without to dismantle it. (author)

  7. Non destructive testing of green parts in powder metallurgy

    International Nuclear Information System (INIS)

    Accary, A.

    1979-01-01

    The non destructive testing of green parts is potentially advantageous by making possible a lowering of the material and energy consumption as well as the production of parts with a 100% reliability. After a survey of the possible methods and of the defects to be detected it is shown that the goal can be achieved using a 'blind detection' method and that the difficulty of the problem depends on the size and shape of the part to be controled. The gravimetric, dimensional, γ absorption and thermal diffusivity methods are then examined. It is concluded that a unit control is paying only if it allows to enter the high reliability part market. Used statisticaly the non destructive testing of green parts can possibly lead to savings on materials and energy [fr

  8. Non-destructive testing of tubes by electromagnetic processes

    International Nuclear Information System (INIS)

    Kowarski, A.

    1979-01-01

    This article reviews and assesses the non destructive testing techniques used for locating defects in tubes by electromagnetic processes. These form the basis of many testing devices, the diversity of which results from various factors: range of materials, methods of fabrication, specific defects of the product. There are two distinct main families of devices utilising two different principles: dispersion flow and Foucault currents [fr

  9. Quality assurance in NDT

    International Nuclear Information System (INIS)

    Krishnamoorthy, K.

    2010-01-01

    The importance of Nondestructive Testing (NDT) as a Quality Control/Quality Assurance tool in the industrial domain cannot be over-emphasized. With the rapid advancement in research and technology, the NDT field is becoming larger and more sophisticated day by day. Innovative research in materials science and digital technology is paving the way for more and more new methods in NDT technology. Although the NDT technology has improved over the years, the basic 'human factor' underlying the success of the NDT field remains the same. There are two major factors that influence the 'Quality Assurance in NDT'. First, knowledgeable and skilled NDT Operators are the most important factor in assuring the reliable test results. Second, the Management oversight of the NDT operations plays a major role in assuring the overall quality of NDT. Management responsibilities include the implementation of a Quality Management System (QMS) that focuses on the NDT operations and apply all the elements of Quality Assurance relevant to NDT. Whether the NDT operations are performed in-house or by a contractor, periodic Management Self-assessments should include the following question: How can the Management assess and improve the 'Quality Assurance in NDT'? This paper attempts to answer the above question. Some practical examples are provided to illustrate the potential quality incidents that could lead to costly failures, and the role of NDT Operator and the Management in preventing such quality incidents. Also, some guidelines are provided on how the Management can apply the elements of Quality Assurance to NDT in order to assess and improve the 'Quality Assurance in NDT'. (author)

  10. The evaluation of the status of nondestructive testing (NDT) companies in the Philippines

    International Nuclear Information System (INIS)

    Mateo, Alejandro J.

    2002-10-01

    This research study assessed the present status of the NDT companies practicing the five techniques and methods in nondestructive testing and found answers to the following questions: what is the profile of the NDT companies and NDT personnel in terms of type, category of the company, number of years in operation, capitalization, nature of NDT services offered, number of certified NDT personnel their age, sex, marital status, educational attainment, monthly salary, NDT training and work experience of NDT personnel; what is the level of adequacy of the NDT companies based on the following organization-related factors: financial support human resources, availability of NDT/office equipment/vehicles, available facilities and quality systems; what is the status of the NDT companies in terms of level of performance, in-house activities, level of competitiveness and conformity with PNS-146:1998; are there significant differences in the perceptions of the respondent's on the status of the NDT companies when grouped according to age, sex, salary, work experience; and what personal and organizational-related factors affect the status of the NDT companies. The research study provided for the researcher an opportunity to identify and analyse the problems and concern of the local NDT sector to be able to recommend solutions for the NDT to attain the status of a profession and/or career and with all NDT companies and NDT personnel act as professionals in the performance of NDT services and other NDT-related activities. The study will achieve the following objectives: to the accredited NDT companies, the accreditation will provide the recognition of the companies as to the quality of personnel, equipment, and services they provide to the client; to the client, the accredited NDT companies will provide the assurance of the quality of personnel, equipment and service provided; to the other NDT companies, the accreditation of the NDT company will provide the impetus that they

  11. Development and improvement of synthetic imaging methods for non-destructive ultrasonic testing of complex industrial components

    International Nuclear Information System (INIS)

    Bannouf, S.

    2013-01-01

    The goal of this thesis was, initially, to evaluate phased array methods for ultrasonic Non Destructive Testing (NDT) in order to propose optimizations, or to develop new alternative methods. In particular, this works deals with the detection of defects in complex geometries and/or materials parts. The TFM (Total Focusing Method) algorithm provides high resolution images and several representations of a same defect thanks to different reconstruction modes. These properties have been exploited judiciously in order to propose an adaptive imaging method in immersion configuration. We showed that TFM imaging can be used to characterize more precisely the defects. However, this method presents two major drawbacks: the large amount of data to be processed and a low signal-to-noise ratio (SNR), especially in noisy materials. We developed solutions to these two problems. To overcome the limitation caused by the large number of signals to be processed, we propose an algorithm that defines the sparse array to activate. As for the low SNR, it can be now improved by use of virtual sources and a new filtering method based on the DORT method (Decomposition of the Time Reversal Operator). (author) [fr

  12. Non-destructive tests of capsules for JMTR irradiation examination

    International Nuclear Information System (INIS)

    Tanaka, Hidetaka; Nagao, Yoshiharu; Sato, Masashi; Osawa, Kenji

    2007-03-01

    Irradiation examination are increasing in advanced irradiation research for accurate prediction control and evaluation of irradiation parameter such as neutron fluence, etc. by using JMTR. Irradiation capsule internals are therefore structurally complicated recently. This report described the procedure of non destructive tests such as radiographic test, penetrant test, ultrasonic test, etc. for inspection of irradiation capsules in JMTR, and the result of Test-case of confirmation procedure for internal parts of irradiation capsules. (author)

  13. Non-destructive testing of rocket fuse by thermal neutron radiography

    International Nuclear Information System (INIS)

    An Fulin; Li Furong

    1999-01-01

    A neutron radiography system in reactor horizontal hole of Tsinghua University was introduced, and its capability of neutron radiography was evaluated by theory and experiment, the non-destructive testing for rocket fuse is successful

  14. Kartini reactor tank inspection using NDT method for safety improvement of the reactor operation

    International Nuclear Information System (INIS)

    Syarip; Sutondo, Tegas; Saleh, Chaerul; Nitiswati; Puradwi; Andryansah; Mudiharjo

    2002-01-01

    The inspection of Kartini reactor tank liner (TRK) by using Non Destructive Testing (NDT) methods to improve the reactor operation safety, have been done. The type of NDT used were: visual examination using an underwater camera and magnifier, replication survey using dental putty, hardness test using an Equotip D indentor, thickness test using ultrasonic probe, and dye penetrant test. The visual examination showed that the surface of TRK was in good condition. The hardness readings were considered to be consistent with the original condition of the tank and the slight hardness increase at the reactor core area consistent with the neutron fluence experienced -10 1 4 n/cm 2 . Results of ultrasonic thickness survey showed that in average the TRK thickness is between 5,0 mm - 6,5 mm, a low 2,1 mm thickness exists at the top of the TRK in the belt area (double layer aluminum plat, therefore do not influencing the safety ). The replica and dye penetrant test at the low thickness area and several suspected areas showed that it could be some defect from original manufacture. Therefore, it can be concluded that the TRK is still feasible for continued operation safely

  15. Practical Uses of Neutron Radiography for Non-Destructive Testing

    International Nuclear Information System (INIS)

    Middleton, M.F.; de Beer, F.; Pazsit, Imre; Li, Kewen; Hilson, Jodie

    2006-01-01

    Over the past nine years, a research collaboration has been developed around the use of neutron radiography in non-destructive testing of porous rocks and other materials. This paper is a review of that work, with a critical reflection on the future potential of the technique. Neutrons are ideal for detecting water concentration, due to the high attenuation of neutrons by hydrogen, in porous or semi-porous media. Problems, which involve the determination of water concentration in porous media, are particularly amenable for neutron radiography analysis. In this context, water concentration in porous media is important in groundwater studies, petroleum reservoir studies, studies of geothermal systems, the understanding of water absorption in building materials, and more recently in mineral exploration and processing applications. Beyond these applications, neutron analysis of flawed and corroded aircraft parts has emerged as a valuable tool to support conventional non-destructive testing (NDT) techniques. Such investigations, using neutron radiography of aircraft parts, have been active in the United States, Canada and South Africa for over two decades. In 2001, an Australian Research Council (ARC) grant enabled the informal collaboration to establish a semi-portable neutron imaging system in Australia. Preliminary results of that ongoing research will also be presented herein. In overview, neutron radiography presents a powerful non-destructive testing method, which in many new areas of application remains to be evaluated. It has proven to be most valuable where water detection, in quantities greater than approximately 0.1 percent of the total volume, is required. This concentration is not a limitation on the technique, but only current applications. It has been demonstrated to be powerful tool to detect natural substances containing bound-water and neutron-attenuating minerals, such as clay, Glauconite and the various water-rich iron-bearing minerals (e.g. Goethite

  16. Benefits of GMR sensors for high spatial resolution NDT applications

    Science.gov (United States)

    Pelkner, M.; Stegemann, R.; Sonntag, N.; Pohl, R.; Kreutzbruck, M.

    2018-04-01

    Magneto resistance sensors like GMR (giant magneto resistance) or TMR (tunnel magneto resistance) are widely used in industrial applications; examples are position measurement and read heads of hard disk drives. However, in case of non-destructive testing (NDT) applications these sensors, although their properties are outstanding like high spatial resolution, high field sensitivity, low cost and low energy consumption, never reached a technical transfer to an application beyond scientific scope. This paper deals with benefits of GMR/TMR sensors in terms of high spatial resolution testing for different NDT applications. The first example demonstrates the preeminent advantages of MR-elements compared with conventional coils used in eddy current testing (ET). The probe comprises one-wire excitation with an array of MR elements. This led to a better spatial resolution in terms of neighboring defects. The second section concentrates on MFL-testing (magnetic flux leakage) with active field excitation during and before testing. The latter illustrated the capability of highly resolved crack detection of a crossed notch. This example is best suited to show the ability of tiny magnetic field sensors for magnetic material characterization of a sample surface. Another example is based on characterization of samples after tensile test. Here, no external field is applied. The magnetization is only changed due to external load and magnetostriction leading to a field signature which GMR sensors can resolve. This gives access to internal changes of the magnetization state of the sample under test.

  17. Assessment of classroom performance of trainees in nondestructive testing (NDT) training courses

    International Nuclear Information System (INIS)

    Elauria, Erla Rhysa R.; Banaga, Renato T.; Loterina, Roel A.

    2009-01-01

    Criterion-referenced tests in an NDT course for Radiography, Level 2, are constructed and evaluated using item analysis such as item difficulty index and discrimination index. A 10-part test item was given to 37 students in a Radiography course and an item analysis of the test questions was conducted right after.The results showed that the indices of difficulty of the test items were within the desired values. Three of the test items were relatively easy questions (items 2, 3, and 4). Three of the test items were moderately difficult (items 1, 5, and 10). The discriminating indices of the items revealed acceptable values for all but a low value of 0.2 for two test items (item 2 and 10) were measured. These two items should be modified to increase their discriminating ability or eliminated. The study concluded that the said test is a reliable test with adequate discriminatory power in assessing classroom performance of NDT trainees. The study recommended that similar studies be conducted on other NDT methods like Ultrasonic Testing, Eddy Current Testing, and Surface Methods Testing. (author)

  18. Nondestructive testing of welds in steam generators for advanced gas cooled reactors at Heyshamm II and Torness

    International Nuclear Information System (INIS)

    Parkin, K.; Bainbridge, A.; Carver, K.; Hammell, R.; Lack, B.J.

    1985-01-01

    The paper concerns non-destructive testing (NDT) of welds in advanced gas cooled steam generators for Heysham II and Torness nuclear power stations. A description is given of the steam generator. The selection of NDT techniques is also outlined, including the factors considered to ascertain the viability of a technique. Examples are given of applied NDT methods which match particular fabrication processes; these include: microfocus radiography, ultrasonic testing of austenitic tube butt welds, gamma-ray isotope projection system, surface crack detection, and automated radiography. Finally, future trends in this field of NDT are highlighted. (UK)

  19. Electromagnetic NDT to characterize usage properties of flat steel products

    Energy Technology Data Exchange (ETDEWEB)

    Altpeter, I.; Dobmann, G.; Szielasko, K., E-mail: iab.altlau@t-online.de, E-mail: gerd.dobmann@t-online.de, E-mail: klaus.szielasko@izfp.fraunhofer.de [Fraunhofer Inst. - IZFP, Saarbruecken (Germany)

    2015-07-15

    The Fraunhofer Institute for Non-destructive Testing (IZFP) in Saarbruecken, Germany, started its activities in materials characterization of flat steel products in the eighties of the last century in the basic program of the European Community of Coal and Steel (ECCS). Throughout the years, continuous research and development were performed. The objective of the work, presented within this three-part series of reports, is to discuss the history of an innovation which began in 1988 with R&D in the area of texture characterization in steel sheets produced for car-body manufacturing (Part 1). In the following years the activities were to automate online property determination in terms of yield strength, tensile strength, planar, and vertical-anisotropy-factors. Again, steel sheets were the focus of the developments and the first NDT systems that came into industrial application for this project. Parallel research was performed to characterize the mechanical properties and hardness of heavy steel plates, mainly produced for pipeline manufacturing and off-shore applications (Part 2) The final report in the series (Part 3) will discuss steel sheet characterization and presents the successful development of a combination-transducer which combines ultrasonics with electromagnetic NDT. (author)

  20. Electromagnetic NDT to characterize usage properties of flat steel products

    International Nuclear Information System (INIS)

    Altpeter, I.; Dobmann, G.; Szielasko, K.

    2015-01-01

    The Fraunhofer Institute for Non-destructive Testing (IZFP) in Saarbruecken, Germany, started its activities in materials characterization of flat steel products in the eighties of the last century in the basic program of the European Community of Coal and Steel (ECCS). Throughout the years, continuous research and development were performed. The objective of the work, presented within this three-part series of reports, is to discuss the history of an innovation which began in 1988 with R&D in the area of texture characterization in steel sheets produced for car-body manufacturing (Part 1). In the following years the activities were to automate online property determination in terms of yield strength, tensile strength, planar, and vertical-anisotropy-factors. Again, steel sheets were the focus of the developments and the first NDT systems that came into industrial application for this project. Parallel research was performed to characterize the mechanical properties and hardness of heavy steel plates, mainly produced for pipeline manufacturing and off-shore applications (Part 2) The final report in the series (Part 3) will discuss steel sheet characterization and presents the successful development of a combination-transducer which combines ultrasonics with electromagnetic NDT. (author)

  1. International symposium 'Non-destructive testing in civil engineering (NDT-CE)'

    International Nuclear Information System (INIS)

    2003-01-01

    Contributions to this symposium focus on testing methods used in construction and for the condition assessment of buildings and other structures. Special attention will be given to preventive inspection systems, which help to identify damage or structural failures under the categories of public safety and economic aspects of construction. Five papers are separately analyzed for the ENERGY database

  2. Laser active thermography for non-destructive testing

    International Nuclear Information System (INIS)

    Semerok, A.; Grisolia, C.; Fomichev, S.V.; Thro, P.Y.

    2013-01-01

    Thermography methods have found their applications in different fields of human activity. The non-destructive feature of these methods along with the additional advantage by automated remote control and tests of nuclear installations without personnel attendance in the contaminated zone are of particular interest. Laser active pyrometry and laser lock-in thermography for in situ non-destructive characterization of micrometric layers on graphite substrates from European tokamaks were under extensive experimental and theoretical studies in CEA (France). The studies were aimed to obtain layer characterization with cross-checking the layer thermal contact coefficients determined by active laser pyrometry and lock-in thermography. The experimental installation comprised a Nd-YAG pulsed repetition rate laser (1 Hz - 10 kHz repetition rate frequency, homogeneous spot) and a home-made pyrometer system based on two pyrometers for the temperature measurements in 500 - 2600 K range. For both methods, the layer characterization was provided by the best fit of the experimental results and simulations. The layer thermal contact coefficients determined by both methods were quite comparable. Though there was no gain in the measurements accuracy, lock-in measurements have proved their advantage as being much more rapid. The obtained experimental and theoretical results are presented. Some practical applications and possible improvements of the methods are discussed. (authors)

  3. Laser active thermography for non-destructive testing

    Science.gov (United States)

    Semerok, A.; Grisolia, C.; Fomichev, S. V.; Thro, P.-Y.

    2013-11-01

    Thermography methods have found their applications in different fields of human activity. The non-destructive feature of these methods along with the additional advantage by automated remote control and tests of nuclear installations without personnel attendance in the contaminated zone are of particular interest. Laser active pyrometry and laser lock-in thermography for in situ non-destructive characterization of micrometric layers on graphite substrates from European tokamaks were under extensive experimental and theoretical studies in CEA (France). The studies were aimed to obtain layer characterization with cross-checking the layer thermal contact coefficients determined by active laser pyrometry and lock-in thermography. The experimental installation comprised a Nd-YAG pulsed repetition rate laser (1 Hz - 10 kHz repetition rate frequency, homogeneous spot) and a home-made pyrometer system based on two pyrometers for the temperature measurements in 500 - 2600 K range. For both methods, the layer characterization was provided by the best fit of the experimental results and simulations. The layer thermal contact coefficients determined by both methods were quite comparable. Though there was no gain in the measurements accuracy, lock-in measurements have proved their advantage as being much more rapid. The obtained experimental and theoretical results are presented. Some practical applications and possible improvements of the methods are discussed.

  4. Can non-destructive inspection be reliable

    International Nuclear Information System (INIS)

    Silk, M.G.; Stoneham, A.M.; Temple, J.A.G.

    1988-01-01

    The paper on inspection is based on the book ''The reliability of non-destructive inspection: assessing the assessment of structures under stress'' by the present authors (published by Adam Hilger 1987). Emphasis is placed on the reliability of inspection and whether cracks in welds or flaws in components can be detected. The need for non-destructive testing and the historical attitudes to non-destructive testing are outlined, along with the case of failure. Factors influencing reliable inspection are discussed, and defect detection trials involving round robin tests are described. The development of reliable inspection techniques and the costs of reliability and unreliability are also examined. (U.K.)

  5. Influence of Kaolin in Fly Ash Based Geopolymer Concrete: Destructive and Non-Destructive Testing

    Science.gov (United States)

    Yahya, Z.; Abdullah, M. M. A. B.; Ramli, N. Mohd; Burduhos-Nergis, D. D.; Razak, R. Abd

    2018-06-01

    Development of geopolymer concrete is mainly to reduce the production of ordinary Portland cement (OPC) that adverse the natural effect. Fly ash is a by-product collected from electrical generating power plant which resulted from burning pulverized coal. Since fly ash is waste materials, it can be recycled for future advantages particularly as pozzolanic materials in construction industry. This study focused on the feasibility of fly ash based geopolymer concrete to which kaolin has been added. The main constituents of geopolymer production for this study were class F fly ash, sodium silicate and sodium hydroxide (NaOH) solution. The concentration of NaOH solution was fixed at 12 Molar, ratio of fly ash/alkaline activator and sodium silicate/NaOH fixed at 1.5 and 2.5, respectively. Kaolin was added in range 5% to 15% from the mass of fly ash and all the samples were cured at room temperature. Destructive and non-destructive test were performed on geopolymer concrete to evaluate the best mix proportions that yield the highest strength as well as the quality of the concrete. Compressive strength, flexural strength, rebound hammer and ultrasonic pulse velocity (UPV) result have been obtained. It shown that 5% replacement of kaolin contributed to maximum compressive strength and flexural strength of 40.4 MPa and 12.35 MPa at 28 days. These result was supported by non-destructive test for the same mix proportion.

  6. Modelling and simulation of eddy current non-destructive testing

    International Nuclear Information System (INIS)

    Mansir, H.; Burais, N.; Nicolas, A.

    1986-01-01

    This paper presents the practical configuration for detecting cracks in conducting materials by eddy current non destructive testing. An electromagnetic field formulation is proposed using Maxwell's relations. Geometrical and physical properties of the crack are taken into account by several models, particularly with a new finite element called ''crack element''. Modelisation is applied to sensor impedance calculation with classical numerical methods [fr

  7. Biennial activity report of the Division for PIE and NDT Development [for years] 1989-1990

    International Nuclear Information System (INIS)

    Babu Rao, C.; Shyamsunder, M.T.; Murugan, S.; Ramabathiran, A.; Rajagopalan, C.; Bhattacharya, D.K.; Kumar, P.V.; Kalyanasundaram, P.; Kasiviswanathan, K.V.

    1992-01-01

    This is the first biennial report of the Division for Post-Irradiation Examination and Non-Destructive Testing (DPEND) of the Indira Gandhi Centre for Atomic Research, Kalpakkam. It covers the research and development (R and D) activities of the Division during 1989 and 1990. The R and D activities of the Division are both multidisciplinary and interdisciplinary. The principal areas of R and D of DPEND are post-irradiation examination of fuel and structural materials, irradiation experiments, non-destructive evaluation for material characterisation, quality assurance and inservice inspection, failure investigations, remote technology etc. These R and D activities are reported in the form of extended summaries arranged under the headings: research and development in non-destructive evaluation, material characterisation, instrumentation, development of techniques, software development, mechanical equipment and systems (development and commissioning), inspections, and failure analysis. Some of the highlights of these activities are : (1)setting up of a radio metallurgy laboratory with hot cells with recirculating nitrogen gas environment to facilitate post-irradiation examination of the carbide fuel of the Fast Breeder Test Reactor. (FBTR), (2) development of the remote milling and drilling machine and development of pressurised capsules for irradiation creep measurement experiments in FBTR, (b) fabrication of non-destructive testing (NDT) reference standards with controlled defects for use in Nuclear Fuel Complex, Hyderabad. There are a number of appendices listing publications, conference paper, invited talks, internal reports etc. by the scientists of the Division and also awards/prizes won by the scientists. A staff-chart of the Division is also given. (M.G.B.)

  8. Trappist: european project dedicated to an open backbone structure for NDT expertise

    International Nuclear Information System (INIS)

    Nouailhas, B.; Vailhen, O.

    1993-01-01

    Non Destructive Testing (NDT) on critical components such as the reactor vessel, primary coolant pipes and steam generators have already been, and are still the subject of many development concerning the improvement of measuring techniques, data processing and on site operation. The tools developed for these tests are generally closed, difficult to extend and of proprietary type. Productivity could be increased if an open backbone structure common to several types of test were available. Moreover, these components are generally submitted to a test involving a single method. In certain cases, the produced information is an insufficient basis for drawing up a satisfactory diagnosis: the test operator or expert often faces problems in extracting more information from signals that are generally noisy. It may prove necessary to complete the inspection with another NDT method based on different principles in order to obtain better performances. It is then by combining the information obtained by two complementary methods that it will be possible to draw up a more reliable diagnosis. These components have also a complex shape. In the case of ultrasonic testing, the accurate following of probe paths requires 3D representation of the geometry, as it is built, to position and display the data obtained from the inspection. To take these geometric constraints into account, it is imperative to use computer tools allowing the three-dimensional representation of the reconstructed information on the components' actual geometry. This specific difficulty, which has long been appreciated, is the subject of developments resulting to industrial products that are more or less satisfactory. The aim of the European Project TRAPPIST (Race Program) is to study an open backbone structure. A mock-up of an analysis station dedicated to NDT expertise will be built and evaluated with specific examples. (authors). 6 figs., 1 ref

  9. Non destructive testing and neutron radiography in 1994

    International Nuclear Information System (INIS)

    Bayon, G.

    1994-01-01

    Neutron radiography has been considered for a long time as a promising technique; however it plays a minor part in the world of non destructive testing today, due to the lack of suitable neutron sources and lack of new industrial applications. This paper reviews the present status of neutron sources, neutron radiography activities, especially in France (such as the neutron-capture-issued secondary radiation spectrometry), in nuclear, aerospace, aeronautical and metallurgical sectors, and the last applications of neutron dynamic imaging. 9 refs

  10. NDT method in determining the rate of corrosion applicable to risk based inspection

    International Nuclear Information System (INIS)

    Mohamed Hairul Hasmoni; Mohamad Pauzi Ismail; Ab Razak Hamzah

    2004-01-01

    Corrosion is a major problem in oil and gas industries, refineries and chemical process plants as the equipment is often exposed to corrosive environments or elevated temperature. Important equipment need to operate safely and reliably to avoid injuries to personnel and the public, and to prevent loss time and cost incurred due to loss of production and shutdown. The paper assess the approach in evaluating the technique of non-destructive testing (NDT) using Ultrasonic Testing (UT) in determining the rate of corrosion and remaining life of equipment applicable to Risk Based Inspection (RBI). Methods in determining the corrosion rate are presented using analytical method. Examples and data from MINT chiller water pipeline are presented to illustrate the application of these methods. (Author)

  11. Non-Destructive Testing for Control of Radioactive Waste Package

    Science.gov (United States)

    Plumeri, S.; Carrel, F.

    2015-10-01

    Characterization and control of radioactive waste packages are important issues in the management of a radioactive waste repository. Therefore, Andra performs quality control inspection on radwaste package before disposal to ensure the compliance of the radwast characteristics with Andra waste disposal specifications and to check the consistency between Andra measurements results and producer declared properties. Objectives of this quality control are: assessment and improvement of producer radwaste packages quality mastery, guarantee of the radwaste disposal safety, maintain of the public confidence. To control radiological characteristics of radwaste package, non-destructive passive methods (gamma spectrometry and neutrons counting) are commonly used. These passive methods may not be sufficient, for instance to control the mass of fissile material contained inside radwaste package. This is particularly true for large concrete hull of heterogeneous radwaste containing several actinides mixed with fission products like 137Cs. Non-destructive active methods, like measurement of photofission delayed neutrons, allow to quantify the global mass of actinides and is a promising method to quantify mass of fissile material. Andra has performed different non-destructive measurements on concrete intermediate-level short lived nuclear waste (ILW-SL) package to control its nuclear material content. These tests have allowed Andra to have a first evaluation of the performance of photofission delayed neutron measurement and to identify development needed to have a reliable method, especially for fissile material mass control in intermediate-level long lived waste package.

  12. The use of portable Non-Destructive Techniques for material decay characterisation of palaeontological Geosites

    Science.gov (United States)

    Gomez-Heras, Miguel; Ortega-Becerril, Jose A.; López-Martínez, Jerónimo; Oliva-Urcia, Belén; Maestro, Adolfo

    2017-04-01

    The conservation of both natural and cultural heritage is regarded as a priority for humankind and it is therefore recognised by the UNESCO since the Convention Concerning the Protection of the World Cultural and Natural Heritage in 1972. The International Union of Geological Sciences launched in 1995 in collaboration with UNESCO the Global Geosites programme to create an inventory of geological heritage sites. Although the conservation of Geosites may face different issues to those of stone-built cultural heritage, much could be learnt from techniques initially used to characterise weathering and material decay in stone-built cultural heritage. This is especially the case for portable Non-Destructive Techniques (NDT). Portable NDT allow characterising on-site the degree of material decay and are, therefore, a good way to assess the state of conservation of certain Geosites whose relevance lies on localised features. Geosites chosen for the outstanding occurrence of dinosaur ichnites, such as those in the Cameros Massif (north-western part of the Iberian Range, Spain), are a good example of this. This communication explores the potential of portable NDT to characterise the state of decay and susceptibility to further decay of dinosaur ichnites in the Cameros Massif. These techniques included: Ultrasound Pulse Velocity determination, Leeb hardness rebound test, colour determination by means of a spectrophotometer and thermal imaging obtained with an infrared camera. Results will show the potential of these techniques to characterise differential weathering patterns in both individual ichnites as well as on tracks in addition to assessing the possible effects of conservation strategies on the long-term preservation of the mentioned Geosites. Research funded by Madrid's Regional Government project Geomateriales 2 S2013/MIT-2914

  13. Multi-energy radiography for non-destructive testing of materials and structures for civil engineering

    International Nuclear Information System (INIS)

    Naydenov, S.V.; Ryzhikov, V.

    2003-01-01

    Development of the technological base of modern non-destructive testing require new methods allowing determination of specified properties of materials and structures under study. A traditional direction of works is determination of internal spatial structure of the materials and other constructions. Restoration of this geometrical information is of qualitative character, though provides for determination of technical parameters affecting physical properties of the system. Reconstruction of the chemical composition, density and atomic structure (effective atomic number) is an inverse problem of direct quantitative determination of properties starting from data obtained by means of non-destructive testing. In the present work, we propose the use of multi-energy radiography for reconstruction of the substantial structure of materials. In framework of simple theoretical model it is shown that, using multi-channel absorption of X-rays, important substantial characteristics of materials and multi-compound structures can be readily reconstructed. The results obtained show high efficiency of 2-energy radiography for non-destructive testing in civil engineering

  14. Fluoroscopic inspection in the non-destructive testing of material today-and tomorrow

    International Nuclear Information System (INIS)

    Bohnsack, G.

    1985-01-01

    A lot of articles in NDT-magazines and reports at NDT-meetings deal with the problems of fluoroscopy, i.e. real time imaging. All of them give theoretical information of conversion factors, line pair sensitivity, input/output, but very few of them give practical hints regarding application for this 'NDT-Toll' which is more and more used in nearly in industrial fields. The imaging systems to be combined with x-ray systems are presented. The aspects of practical use in modern industry are discussed. (Author) [pt

  15. Material characterization and non destructive testing by ultrasounds; modelling, simulation and experimental validation; Caracterisation des materiaux et controle non destructif par ultrasons; modelisation, simulation et validation experimentale

    Energy Technology Data Exchange (ETDEWEB)

    Noroy-Nadal, M H

    2002-06-15

    This memory presents the research concerning the characterization of materials and the Non Destructive Testing (N.D.T) by ultrasonics. The different topics include three steps: modeling, computations and experimental validation. The studied materials concern mainly metals. The memory is divided in four parts. The first one concerns the characterization of materials versus temperature. The determination of the shear modulus G(T) is especially studied for a large temperature range, and around the melting point. The second part is devoted to studies by photothermal devices essentially focused on the modeling of the mechanical displacement and the stress field in coated materials. In this particular field of interest, applications concern either the mechanical characterization of the coating, the defect detection in the structure and finally the evaluation of the coating adhesion. The third section is dedicated to microstructural characterization using acoustic microscopy. The evaluation of crystallographic texture is especially approached, for metallic objects obtained by forming. Before concluding and pointing out some perspectives to this work, the last section concerns the introduction of optimization techniques, applied to the material characterization by acoustic microscopy. (author)

  16. Giant Magnetoresistance Sensors: A Review on Structures and Non-Destructive Eddy Current Testing Applications

    Directory of Open Access Journals (Sweden)

    Damhuji Rifai

    2016-02-01

    Full Text Available Non-destructive eddy current testing (ECT is widely used to examine structural defects in ferromagnetic pipe in the oil and gas industry. Implementation of giant magnetoresistance (GMR sensors as magnetic field sensors to detect the changes of magnetic field continuity have increased the sensitivity of eddy current techniques in detecting the material defect profile. However, not many researchers have described in detail the structure and issues of GMR sensors and their application in eddy current techniques for nondestructive testing. This paper will describe the implementation of GMR sensors in non-destructive testing eddy current testing. The first part of this paper will describe the structure and principles of GMR sensors. The second part outlines the principles and types of eddy current testing probe that have been studied and developed by previous researchers. The influence of various parameters on the GMR measurement and a factor affecting in eddy current testing will be described in detail in the third part of this paper. Finally, this paper will discuss the limitations of coil probe and compensation techniques that researchers have applied in eddy current testing probes. A comprehensive review of previous studies on the application of GMR sensors in non-destructive eddy current testing also be given at the end of this paper.

  17. Giant Magnetoresistance Sensors: A Review on Structures and Non-Destructive Eddy Current Testing Applications

    Science.gov (United States)

    Rifai, Damhuji; Abdalla, Ahmed N.; Ali, Kharudin; Razali, Ramdan

    2016-01-01

    Non-destructive eddy current testing (ECT) is widely used to examine structural defects in ferromagnetic pipe in the oil and gas industry. Implementation of giant magnetoresistance (GMR) sensors as magnetic field sensors to detect the changes of magnetic field continuity have increased the sensitivity of eddy current techniques in detecting the material defect profile. However, not many researchers have described in detail the structure and issues of GMR sensors and their application in eddy current techniques for nondestructive testing. This paper will describe the implementation of GMR sensors in non-destructive testing eddy current testing. The first part of this paper will describe the structure and principles of GMR sensors. The second part outlines the principles and types of eddy current testing probe that have been studied and developed by previous researchers. The influence of various parameters on the GMR measurement and a factor affecting in eddy current testing will be described in detail in the third part of this paper. Finally, this paper will discuss the limitations of coil probe and compensation techniques that researchers have applied in eddy current testing probes. A comprehensive review of previous studies on the application of GMR sensors in non-destructive eddy current testing also be given at the end of this paper. PMID:26927123

  18. Digital radiography - usability of experience in medical technology with fluorescent storage material for technical X-ray testing

    International Nuclear Information System (INIS)

    Mattis, A.; Winterberg, K.H.

    1992-01-01

    In nearly 100 years' development of X-ray technique, synergy effects between medical technology and non-destructive material testing (NDT) have repeatedly led to new applications. Thus digital radiography in medicine is a 'low dose' process introduced years ago which, by using a specially developed storage foil technique, offers extensive possibilities of application for NDT. (orig.) [de

  19. Electromagnetic NDT to characterize usage properties of flat steel products - Part 2

    International Nuclear Information System (INIS)

    Altpeter, I.; Dobmann, G.; Szielasko, K.

    2015-01-01

    The Fraunhofer Institute for Non-destructive Testing (IZFP) in Saarbruecken, Germany, started its activities in materials characterization of flat steel products in the eighties of the last century in the basic program of the European Community of Coal and Steel (ECCS). Throughout the years, continuous research and development were performed. The objective of the work, presented within this three-part series of reports, is to discuss the history of an innovation which began in 1988 with R&D in the area of texture characterization in steel sheets produced for car-body manufacturing (Part 1). In the following years the activities were to automate online property determination in terms of yield strength, tensile strength, planar, and vertical-anisotropy-factors. Again, steel sheets were the focus of the developments and the first NDT systems that came into industrial application for this project. Parallel research was performed to characterize the mechanical properties and hardness of heavy steel plates, mainly produced for pipeline manufacturing and off-shore applications (Part 2) The final report in the series (Part 3) will discuss steel sheet characterization and presents the successful development of a combination-transducer which combines ultrasonics with electromagnetic NDT. (author)

  20. Electromagnetic NDT to characterize usage properties of flat steel products - Part 2

    Energy Technology Data Exchange (ETDEWEB)

    Altpeter, I.; Dobmann, G.; Szielasko, K., E-mail: iab.altlau@t-online.de, E-mail: gerd.dobmann@t-online.de, E-mail: klaus.szielasko@izfp.fraunhofer.de [Fraunhofer Inst. - IZFP, Saarbruecken (Germany)

    2015-09-15

    The Fraunhofer Institute for Non-destructive Testing (IZFP) in Saarbruecken, Germany, started its activities in materials characterization of flat steel products in the eighties of the last century in the basic program of the European Community of Coal and Steel (ECCS). Throughout the years, continuous research and development were performed. The objective of the work, presented within this three-part series of reports, is to discuss the history of an innovation which began in 1988 with R&D in the area of texture characterization in steel sheets produced for car-body manufacturing (Part 1). In the following years the activities were to automate online property determination in terms of yield strength, tensile strength, planar, and vertical-anisotropy-factors. Again, steel sheets were the focus of the developments and the first NDT systems that came into industrial application for this project. Parallel research was performed to characterize the mechanical properties and hardness of heavy steel plates, mainly produced for pipeline manufacturing and off-shore applications (Part 2) The final report in the series (Part 3) will discuss steel sheet characterization and presents the successful development of a combination-transducer which combines ultrasonics with electromagnetic NDT. (author)

  1. Homogeneity test of the ceramic reference materials for non-destructive quantitative

    International Nuclear Information System (INIS)

    Li Li; Fong Songlin; Zhu Jihao; Feng Xiangqian; Xie Guoxi; Yan Lingtong

    2010-01-01

    In order to study elemental composition of ancient porcelain samples, we developed a set of ceramic reference materials for non-destructive quantitative analysis. In this paper,homogeneity of Al, Si, K, Ca, Ti, Mn and Fe contents in the ceramic reference materials is investigated by EDXRF. The F test and the relative standard deviation are used to treat the normalized net counts by SPSS. The results show that apart from the DY2 and JDZ4 reference materials, to which further investigation would be needed, homogeneity of the DH, DY3, JDZ3, JDZ6, GY1, RY1, LQ4, YJ1, YY2 and JY2 meets the requirements of ceramic reference materials for non-destructive quantitative analysis. (authors)

  2. Using photons for non-destructive testing of thick materials: a simulation study

    International Nuclear Information System (INIS)

    Oishi, Ryutaro; Nagai, Hideki

    2004-01-01

    Positron annihilation spectroscopy using positron annihilation lifetimes has been successfully studied for non-destructive material testing. A positron inspection probe is annihilated with an electron at the front of the material. The application of the positron lifetime method is restricted to thin materials. A photon with energy exceeding 1.02MeV reaches the materials' depth and can produce a positron through γ-conversion. Such a photon-produced positron is a probe for thick materials. The probability of γ-conversion, however, is low. The method of photon-produced positron annihilation lifetimes is restricted by statistics. We estimated the expected number of events and the statistical uncertainties of the lifetime measurements for a non-destructive test, such as an SUS316 fatigue monitoring, to construct a fatigue-monitoring system

  3. NDT-86

    International Nuclear Information System (INIS)

    Farley, J.M.; Hanstead, P.D.

    1987-01-01

    The paper presents the proceedings of the 21st Annual British Conference on Non-Destructive Testing held at Newcastle upon Tyne (U.K.) 1986, and organized by the British Institute of Non-Destructive Testing. The papers are arranged in five principal categories - general papers; ultrasonics; acoustic emission, vibration and sonic techniques; magnetic and eddy current methods; and radiography. Of these papers, three papers were selected for INIS and indexed separately. (U.K.)

  4. Operational NDT simulator, towards human factors integration in simulated probability of detection

    Science.gov (United States)

    Rodat, Damien; Guibert, Frank; Dominguez, Nicolas; Calmon, Pierre

    2017-02-01

    In the aeronautic industry, the performance demonstration of Non-Destructive Testing (NDT) procedures relies on Probability Of Detection (POD) analyses. This statistical approach measures the ability of the procedure to detect a flaw with regard to one of its characteristic dimensions. The inspection chain is evaluated as a whole, including equipment configuration, probe effciency but also operator manipulations. Traditionally, a POD study requires an expensive campaign during which several operators apply the procedure on a large set of representative samples. Recently, new perspectives for the POD estimation have been introduced using NDT simulation to generate data. However, these approaches do not offer straightforward solutions to take the operator into account. The simulation of human factors, including cognitive aspects, often raises questions. To address these diffculties, we propose a concept of operational NDT simulator [1]. This work presents the first steps in the implementation of such simulator for ultrasound phased array inspection of composite parts containing Flat Bottom Holes (FBHs). The final system will look like a classical ultrasound testing equipment with a single exception: the displayed signals will be synthesized. Our hardware (ultrasound acquisition card, 3D position tracker) and software (position analysis, inspection scenario, synchronization, simulations) environments are developed as a bench to test the meta-modeling techniques able to provide fast-simulated realistic ultra-sound signals. The results presented here are obtained by on-the-fly merging of real and simulated signals. They confirm the feasibility of our approach: the replacement of real signals by purely simulated ones has been unnoticed by operators. We believe this simulator is a great prospect for POD evaluation including human factors, and may also find applications for training or procedure set-up.

  5. Non-destructive evaluation of containment walls in nuclear power plants

    Science.gov (United States)

    Garnier, V.; Payan, C.; Lott, M.; Ranaivomanana, N.; Balayssac, J. P.; Verdier, J.; Larose, E.; Zhang, Y.; Saliba, J.; Boniface, A.; Sbartai, Z. M.; Piwakowski, B.; Ciccarone, C.; Hafid, H.; Henault, J. M.; Buffet, F. Ouvrier

    2017-02-01

    Two functions are regularly tested on containment walls in order to anticipate a possible accident. The first is mechanical to resist a possible internal over-pressure and the second is to prevent leakage. The AAPR reference accident is the rupture of a pipe in the primary circuit of a nuclear plant. In this case, the pressure and temperature can reach 5 bar and 180°C in 20 seconds. The national project `Non-destructive testing of the containment structures of nuclear plants' aims at studying the non-destructive techniques capable to evaluate the concrete properties and its damaging and cracks. This 4-year-project is segmented into two parts. The first consists in developing and selecting the most relevant NDEs in the laboratory to reach these goals. These evaluations are developed in conditions representing the real conditions of the stresses generated during ten-yearly visits of the plants or those related to an accident. The second part consists in applying the selected techniques to two containment structures under pressure. The first structure is proposed by ONERA and the second is a mockup of a containment wall on a 1/3 scale made by EDF within the VeRCoRs project. Communication is focused on the part of the project that concerns the damage and crack process characterization by means of NDT. The tests are done in 3 or 4 points bending in order to study the cracks' generation, their propagation, as well as their opening and closing. The main ultrasonic techniques developed concern linear or non-linear acoustic: acoustic emission [1], Locadiff [2], energy diffusion, surface wave's velocity and attenuation, DAET [3]. The recorded data contribute to providing the mapping of the investigated parameters, either in volume, in surface or globally. Digital image correlation is an important additional asset to validate the coherence of the data. The spatial normalization of the data in the specimen space allows proposing algorithms on the combination of the

  6. Limits of applicability in NDT inspections. Practical examples; Grenzen der Anwendbarkeit bei ZfP-Pruefungen. Beispiele aus der Praxis

    Energy Technology Data Exchange (ETDEWEB)

    Sodeikat, Christian [Ingenieurbuero Schiessl Gehlen Sodeikat GmbH, Muenchen (Germany); Lohse, Carsten [Bewehrungsnachweis und -analyse, Augustusburg (Germany)

    2016-05-01

    Property owners, developers, architects, planners and in many cases courts require further information regarding the state of existing and under construction buildings. In order to avoid concerns on the building structure and to avoid nuisance by noise and dirt and ultimately save costs, structural inspection should be carried out as non-destructive. NDT methods, however, always have application limits that can be very different depending on the methods used and test equipment. However, not every inspection task, the implementation of which customer want, can be solved with NDT methods. The following article presents practical examples of application limits of different NDT methods. [German] Eigentuemer, Bauherren, Architekten, Planer und vielfach auch Gerichte benoetigen weitergehende Informationen bzgl. des Zustands bestehender und auch im Bau befindlicher Bauwerke. Um die Bausubstanz nicht zu beeintraechtigen, Belaestigungen durch Laerm und Dreck zu vermeiden und letztlich Kosten zu sparen, sollen Bauwerksuntersuchungen moeglichst zerstoerungsfrei durchgefuehrt werden. ZfP-Verfahren weisen jedoch immer Anwendungsgrenzen auf, die je nach eingesetzten Verfahren und Pruefgeraeten sehr unterschiedlich sein koennen. Jedoch kann nicht jede Pruefaufgabe, deren Umsetzung sich Auftraggeber wuenschen, mit ZfP-Verfahren geloest werden. Der nachfolgende Beitrag stellt Praxisbeispiele fuer Anwendungsgrenzen verschiedener ZfP-Verfahren dar.

  7. Qualification of NDT techniques for in-service inspections in nuclear power plants in accordance with ENIQ - examples and lessons - learned

    International Nuclear Information System (INIS)

    Just, T.; Csapo, G.

    2006-01-01

    ENIQ (European Network for Inspection and Qualification) has developed regulations on how to qualify non-destructive testing (NDT) methods and techniques in a standardized and structured manner. Two major innovative qualifications were carried out and reviewed with regard to implementation, according to the recommended German practice of ENIQ. The conclusions were drawn after performing the ENIQ qualification procedure for in-service inspections (ISI) of real components in nuclear power plants (NPP). The first example covers the qualification of NDT methods for the detection and characterization of surface, subsurface and underclad cracks in the area of the austenitic cladded RPV surface. Open and blind tests were conducted applying UT and ET (from the ID) and UT (from the OD) on realistic flaws (artificially induced IGSCC, hot cracks and fatigue cracks) in the cladding of a full scale RPV mock-up from MPA Stuttgart. The second example covers the qualification of mechanised RT in combination with tomography (developed by the BAM) for the sizing of cracks in pipe welds. For both qualification procedures TUEV NORD SysTec experts were part of the qualification body. The proposed NDT procedures have been qualified within defined limits of application. Recommendations were made to optimise the procedures and the techniques itself further. (orig.)

  8. A Monte Carlo approach applied to ultrasonic non-destructive testing

    Science.gov (United States)

    Mosca, I.; Bilgili, F.; Meier, T.; Sigloch, K.

    2012-04-01

    Non-destructive testing based on ultrasound allows us to detect, characterize and size discrete flaws in geotechnical and architectural structures and materials. This information is needed to determine whether such flaws can be tolerated in future service. In typical ultrasonic experiments, only the first-arriving P-wave is interpreted, and the remainder of the recorded waveform is neglected. Our work aims at understanding surface waves, which are strong signals in the later wave train, with the ultimate goal of full waveform tomography. At present, even the structural estimation of layered media is still challenging because material properties of the samples can vary widely, and good initial models for inversion do not often exist. The aim of the present study is to combine non-destructive testing with a theoretical data analysis and hence to contribute to conservation strategies of archaeological and architectural structures. We analyze ultrasonic waveforms measured at the surface of a variety of samples, and define the behaviour of surface waves in structures of increasing complexity. The tremendous potential of ultrasonic surface waves becomes an advantage only if numerical forward modelling tools are available to describe the waveforms accurately. We compute synthetic full seismograms as well as group and phase velocities for the data. We invert them for the elastic properties of the sample via a global search of the parameter space, using the Neighbourhood Algorithm. Such a Monte Carlo approach allows us to perform a complete uncertainty and resolution analysis, but the computational cost is high and increases quickly with the number of model parameters. Therefore it is practical only for defining the seismic properties of media with a limited number of degrees of freedom, such as layered structures. We have applied this approach to both synthetic layered structures and real samples. The former contributed to benchmark the propagation of ultrasonic surface

  9. How reliable must advanced nondestructive testing be? A concept for the prediction, validation and raised quality of NDT

    International Nuclear Information System (INIS)

    Nockemann, C.; Tillack, G.R.; Schnitger, D.; Heidt, H.

    1995-01-01

    A concept of the harmonic integration of the following three mainstays of the reliability of ndt is proposed: 1. Theoretical prediction of the reliability as a function of physical parameter by computer modelling of the test problem concerned and the ndt process; maximisation by variation of the parameters. 2. Experimental evaluation of the reliability of ndt processes by the application of statistical methods to test practice. 3. Increasing the reliability by the combination of several ndt methods in a standard DV environment and European interconnection and provision of a distributed databank system. International exchange of experience via telecommunication. (orig.) [de

  10. Quality assurance and non-destructive testing for nuclear power plants

    International Nuclear Information System (INIS)

    Manlucu, F.A.

    1991-01-01

    This article discussed the quality assurance requirements which have been extensively applied in plant design, fabrication, construction and operation and has played a major role in the excellent safety record of nuclear power plants. The application of non-destructive testing techniques, plays a very important role during the in-service inspection (ISI) in order to prevent dangerous accident and to assure continuous safe operation of nuclear power plants. (IMA). 12 refs

  11. Template synthesis of test tube nanoparticles using non-destructive replication.

    Science.gov (United States)

    Wagner, Jonathan; Yao, Jingyuan; Rodgers, David; Hinds, Bruce

    2013-03-01

    Nano test tubes are a promising delivery vehicle for a range of therapeutics, including small molecule drugs and biologics. However, current template synthesis methods of producing nano test tubes are prohibitively expensive and time consuming. Here, non-destructive template replication was used to increase nano test tube yield from porous alumina by more than a hundredfold. We demonstrate how to produce nano test tubes of several sizes and compositions, including hybrid tubes with different inner and outer surfaces for targeted surface chemistry. Nano test tubes were readily suspended and stored in aqueous solutions without the need for chemical treatment. These nano test tubes should find application as delivery vehicles for therapeutics, particularly for processive 'bionanoreactors' loaded with enzymes.

  12. Design of eddy current probes and signal inversion for non-destructive testing

    International Nuclear Information System (INIS)

    Ravat, C.

    2008-01-01

    Non destructive testing is widely used in aerospace industry and nuclear industry. The growing complexity of industrial processes and manufactured parts, the increasing need of safety in service and the will of life span optimization, require more and more complex quality evaluations to be set up. Among the different anomalies to consider, sub-millimetric breaking surface notches have to be subject to special care. Indeed, it often constitutes a start to larger notches, which can cause the destruction of parts. Penetrant testing is nowadays widely used for that kind of defect, owing to its good performances. Nevertheless, it should be eventually dropped because of environmental norms. Among the possible substitution solutions, the use of eddy currents (EC) for conductive parts is a reliable, fast and inexpensive alternative. The study is about the conception and the use of multi-elements EC probe structures featuring microsensors for non destructive testing of surface breaking defects. A methodology has been established in order to develop such structures and to compare their performances within the framework of sub-millimetric surface breaking notch research. These structures has been employed for calibrated notches evaluation with a specific acquisition bench. Original detection and defect characterization algorithms have been designed and implemented on acquired signals. The most efficient structure has been determined, the notch detection quality has been quantified, and the geometric characteristics of notches has been estimated. (author)

  13. Interactive ultrasonic field simulations for complex non-destructive testing configurations

    International Nuclear Information System (INIS)

    Chouh, Hamza

    2016-01-01

    In order to fulfill increasing reliability and safety requirements, non-destructive testing techniques are constantly evolving and so does their complexity. Consequently, simulation is an essential part of their design. We developed a tool for the simulation of the ultrasonic field radiated by any planar probes into non-destructive testing configurations involving meshed geometries without prominent edges, isotropic and anisotropic, homogeneous and heterogeneous materials, and wave trajectories that can include reflections and transmissions. We approximate the ultrasonic wave fronts by using polynomial interpolators that are local to ultrasonic ray pencils. They are obtained using a surface research algorithm based on pencil tracing and successive subdivisions. Their interpolators enable the computation of the necessary quantities for the impulse responses on each point of a sampling of the transducer surface that fulfills the Shannon criterion. By doing so, we can compute a global impulse response which, when convolved with the excitation signal of the transducer, results in the ultrasonic field. The usage of task parallelism and of SIMD instructions on the most computationally expensive steps yields an important performance boost. Finally, we developed a tool for progressive visualization of field images. It benefits from an image reconstruction technique and schedules field computations in order to accelerate convergence towards the final image. (author) [fr

  14. Non-destructive testing. The current state of standards and qualification and certification for leak testing

    International Nuclear Information System (INIS)

    Tamura, Yoshikazu

    2011-01-01

    Domestic standards of the leak testing are enacted as one of Japan Industrial Standards. The conformity is advanced between these domestic standards and ISO (International Organization for Standardization) standard. ISO9712 (Non-destructive testing-Qualification and certification of personnel) was revised to include the leak testing of qualification and certification in 2005. The preparation working group of qualification and certification for leak testing is planning start aiming at the system in one and a half years. (author)

  15. Contribution of NDT to the safety of pressurized components in power stations

    International Nuclear Information System (INIS)

    Mletzko, U.; Maier, H.J.

    1994-01-01

    In the eyes on the MPA Stuttgart, the nondestructive testing has a very high weight relating to the safety of pressure components in power stations (concept of basis safety). In this connection, the performance verification by NDT has a special significance. A qualification of NDT-techniques can be, indeed, executed in the initial stage at test bodies with artificial faults, known with respect to position, size and type. Even theoretical (modelling) considerations can be integrated. For a performance verification in a closer sense however, this is not sufficient. The performance verification should be effected for the overall system, composed of hardware, software and examination personnel at components having the scale of 1:1 (Full Scale) under realistic boundary conditions and given times. The components must have natural or quasi-natural faults in a certain quality. The informative value of performance verifications is considerably increased, when executed as authenitic dry runs, and when the fault state is subsequently verified by destructive (metallographical) methods. (orig.) [de

  16. Accreditation of nondestructive testing (NDT) laboratories: do we have choices?

    International Nuclear Information System (INIS)

    Abd Nassir Ibrahim

    2003-01-01

    Demand for quality of products and services by consumers throughout the world resulted in fierce competition among manufacturers and service providers. Such a competition forces NDT service providers to deliver the highest quality and most reliable results at a reasonable price to their clients. NDT beneficiaries such as oil and gas, and power generation sectors through their quality system such as ISO 9001 Version 2000 demand that the quality system adopted by organizations providing services to them must be evaluated. Such requirement leave NDT services companies with no option except to have them accredited. As for today, the most logical accreditation scheme applicable to NDT organizations is the ISO 17025. This paper reviews the current status and forecast the need for such an accreditation in Malaysia. (Author)

  17. Study on personnel qualification for non-destructive tests in the field of reactor safety

    International Nuclear Information System (INIS)

    Trusch, K.; Wuestenberg, H.

    1977-01-01

    The training system for non-destructive testing is described, and the available and necessary personnel is analyzed; the personnel required for reactor safety problems is treated separately. On this basis, the subjects discussed in the study - available personnel, personnel requirements, training, training requirements, and suggestions for realisation - are treated in a general manner to begin with and afterwards with a view to specific problems of reactor safety. The methods employed are adapted to this situation. To obtain the necessary empirical data, questionnaires were set up and distributed, and experts in selected business companies and institutions were interviewed who work in the field of reactor safety or do same training in non-destructive testing. (orig.) [de

  18. The use of computers for the performance and analysis of non-destructive testing

    International Nuclear Information System (INIS)

    Edelmann, X.; Pfister, O.

    1988-01-01

    Examples of the use of computers in non-destructive testing are related. Ultrasonic testing is especially addressed. The employment of computers means improvements for the user, the possibility of registering the reflector position, storage of test data and help with documentation. The test can be automated. The introduction of expert systems is expected for the future. 8 figs., 12 refs

  19. Catalogue of test specimens for non-destructive examination

    International Nuclear Information System (INIS)

    1985-05-01

    One of the key elements in assuring the integrity of reactor primary circuits is the availability of trustworthy non-destructive methods for detecting dangerous defects that may be present. Various approaches to making such examinations are being developed, including the use of ultrasonic and radiographic techniques. To demonstrate their capability and reliability, they must be tested on steel specimens reproducing the various types of faults which may arise in real primary circuit vessels and piping. Such specimens are costly to fabricate. It is therefore clearly desirable that existing specimens should be made accessible to as many organisations as possible for testing. This catalogue contains detailed Information on forty-odd deliberately flawed plates, blocks, vessels, etc. which have been produced in OECD countries, along with the name of a contact person to whom inquiries should be directed in each case

  20. Template synthesis of test tube nanoparticles using non-destructive replication

    International Nuclear Information System (INIS)

    Wagner, Jonathan; Rodgers, David; Yao Jingyuan; Hinds, Bruce

    2013-01-01

    Nano test tubes are a promising delivery vehicle for a range of therapeutics, including small molecule drugs and biologics. However, current template synthesis methods of producing nano test tubes are prohibitively expensive and time consuming. Here, non-destructive template replication was used to increase nano test tube yield from porous alumina by more than a hundredfold. We demonstrate how to produce nano test tubes of several sizes and compositions, including hybrid tubes with different inner and outer surfaces for targeted surface chemistry. Nano test tubes were readily suspended and stored in aqueous solutions without the need for chemical treatment. These nano test tubes should find application as delivery vehicles for therapeutics, particularly for processive ‘bionanoreactors’ loaded with enzymes. (paper)

  1. Non-destructive test for VHTR fuel using 160kV X-ray system in Hotcell

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Jun; Yoo, Boung Ok; Choo, Yong sun; Baik Sang youl; Kim, Hee Moon; Ahn, Sang Bok [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    The research for VHTR which is one of the next generation reactor has been actively carried out. As a part of the research for VHTR, an irradiation examination for the VHTR fuel was performed to confirm an in-pile behavior in HANARO. The non-destructive test for the irradiated fuel is very important to understand the in-pile behavior of the fuel. Especially, the X-ray system is useful to observe the fuel shape without destruction. A dimensional change and defect of the fuel can be confirmed thorough the Xray system. Also, using the 3-D software and CT technology, the fuel shape can be intuitionally observed. The 450kV and 160kV X-ray system were installed and operated in IMEF hotcell. The 160kV X-ray system relatively using a low voltage is suitable to a small scale sample. And high resolution images can be obtained. In this study, the non-destructive test for the unirradiated and irradiated VHTR fuel were performed using the 160kV X-ray system. Through these test, the possibility for the X-ray inspection of irradiated fuel was confirmed. The non-destructive test for the unirradiated and irradiated VHTR fuel were performed using the 160kV X-ray system. The clear images of the irradiated coated particle were produced without the radiation damage during the Xray inspection. The X-ray images of the VHTR fuel will be utilized as the in-pile performance validation data.

  2. Non-destructive test for VHTR fuel using 160kV X-ray system in Hotcell

    International Nuclear Information System (INIS)

    Kim, Young Jun; Yoo, Boung Ok; Choo, Yong sun; Baik Sang youl; Kim, Hee Moon; Ahn, Sang Bok

    2016-01-01

    The research for VHTR which is one of the next generation reactor has been actively carried out. As a part of the research for VHTR, an irradiation examination for the VHTR fuel was performed to confirm an in-pile behavior in HANARO. The non-destructive test for the irradiated fuel is very important to understand the in-pile behavior of the fuel. Especially, the X-ray system is useful to observe the fuel shape without destruction. A dimensional change and defect of the fuel can be confirmed thorough the Xray system. Also, using the 3-D software and CT technology, the fuel shape can be intuitionally observed. The 450kV and 160kV X-ray system were installed and operated in IMEF hotcell. The 160kV X-ray system relatively using a low voltage is suitable to a small scale sample. And high resolution images can be obtained. In this study, the non-destructive test for the unirradiated and irradiated VHTR fuel were performed using the 160kV X-ray system. Through these test, the possibility for the X-ray inspection of irradiated fuel was confirmed. The non-destructive test for the unirradiated and irradiated VHTR fuel were performed using the 160kV X-ray system. The clear images of the irradiated coated particle were produced without the radiation damage during the Xray inspection. The X-ray images of the VHTR fuel will be utilized as the in-pile performance validation data.

  3. Resonant ultrasound spectroscopy and non-destructive testing

    Science.gov (United States)

    Migliori, A.; Darling, T. W.

    The use of mechanical resonances to test properties of materials is perhaps older than the industrial revolution. Early documented cases of British railroad engineers tapping the wheels of a train and using the sound to detect cracks perhaps mark the first real use of resonances to test the integrity of high-performance alloys. Attempts were made in the following years to understand the resonances of solids mathematically, based on the shape and composition. But Nobel Laureate Lord Rayleigh best summarized the state of affairs in 1894, stating 'the problem has, for the most part, resisted attack'. More recently, modern computers and electronics have enabled Anderson and co-workers with their work on minerals, and our work at Los Alamos on new materials and manufactured components to advance the use of resonances to a precision non-destructive testing tool that makes anisotropic modulus measurements, defect detection and geometry error detection routine. The result is that resonances can achieve the highest absolute accuracy for any dynamic modulus measurement technique, can be used on the smallest samples, and can also enable detection of errors in certain classes of precision manufactured components faster and more accurately than any other technique.

  4. Theoretical and practical program in the non-destructive testing by eddy currents - the first level

    International Nuclear Information System (INIS)

    Shaaban, H.I.; Addarwish, J.M.A.

    2014-11-01

    The testing using eddy currents is one of the non-destructive tests that use electromagnetic property as a basis for testing procedures, and there are many other ways to use this principle, including Remote Field Testing and the Magnetic Flux Leakage test. Eddy currents are electrical currents moving in a circular path, and took the name eddy of eddies that form when a liquid or gas is moving in a circular path because of objection obstacles to its track. They are generated in the material using a variable magnetic field. Non-destructive testing by eddy currents is a technique used for the detection of defects and interruptions in a material and it is a process that relies on the generation of small eddy currents in the material of the part to be examined, provided that this part is of an electrically conducting material. This technique and its scientific basis are explained in this book. Also the devices used in this technique and how to use these devices in details are explained. The book contains Twelve chapters: Introduction to non destructive testing - Engineering materials and its mechanical characteristics - Electrical and magnetic characteristics of engineering materials - Introduction to testing by eddy currents - Factors affecting eddy currents - Basis of electrical circuits used in eddy currents testing devices - Probes of eddy currents testing - Eddy currents testing devices (Theoretical) - Analysis of the examination results of testing by eddy currents: techniques and applications - Applications of testing by eddy currents - Eddy currents testing devices (Application) - Practical lessons for the first level in testing by eddy currents.

  5. Non-destructive testing of high heat flux components of fusion devices by infrared thermography: modeling and signal processing

    International Nuclear Information System (INIS)

    Cismondi, Fabio

    2007-01-01

    In Plasma Facing Components (PFCs) the joint of the CFC armour material onto the metallic CuCrZr heat sink needs to be significant defects free. Detection of material flaws is a major issue of the PFCs acceptance protocol. A Non-Destructive Technique (NDT) based upon active infrared thermography allows testing PFCs on SATIR tests bed in Cadarache. Up to now defect detection was based on the comparison of the surface temperature evolution of the inspected component with that of a supposed 'defect-free' one (used as a reference element). This work deals with improvement of thermal signal processing coming from SATIR. In particular the contributions of the thermal modelling and statistical signal processing converge in this work. As for thermal modelling, the identification of a sensitive parameter to defect presence allows improving the quantitative estimation of defect Otherwise Finite Element (FE) modeling of SATIR allows calculating the so called deterministic numerical tile. Statistical approach via the Monte Carlo technique extends the numerical tile concept to the numerical population concept. As for signal processing, traditional statistical treatments allow a better localization of the bond defect processing thermo-signal by itself, without utilising a reference signal. Moreover the problem of detection and classification of random signals can be solved by maximizing the signal-to-noise ratio. Two filters maximizing the signal-to-noise ratio are optimized: the stochastic matched filter aims at detects detection and the constrained stochastic matched filter aims at defects classification. Performances are quantified and methods are compared via the ROC curves. (author)

  6. Diagnosis of structures. Practical applications and future tasks of non-destructive testing; Bauwerksdiagnose. Praktische Anwendungen Zerstoerungsfreier Pruefungen und Zukunftsaufgaben

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2016-05-01

    The preservation of buildings is increasingly becoming the focus of public attention, not least because of traffic restrictions on roads and bridges, which have grown significantly in recent years. Here the building inspectors is of particular importance to assess the causes and extent of repair work as required. This non-destructive testing in the construction industry (ZfPBau method) have become indispensable. However, very few rules are found in construction in contrast to the classical industrial NDT. Also the offers to the qualification of examiners are low, but but in the meantime available. The symposium takes this conflict area to less regulation and a high demand of professional services. One of tasks of the future is the reliable evaluation of existing structures. The foundation was laid by the adoption of the directive for the recalculation of road bridges in 2011 to have results of non-destructive examination incorporated in recalculations. Meanwhile are first experiences on investigations and recalculations of bridges that will be presented at the symposium for the first time. [German] Die Erhaltung von Bauwerken rueckt immer mehr in den Fokus der Oeffentlichkeit, nicht zuletzt durch Verkehrseinschraenkungen an Strassen und Bruecken, die in den letzten Jahren spuerbar zugenommen haben. Dabei kommt den Bauwerkspruefern eine besondere Bedeutung zu, Ursachen und Umfang von Instandsetzungsmassnahmen bedarfsgemaess abzuschaetzen. Hierbei sind zerstoerungsfreie Pruefverfahren im Bauwesen (ZfPBau-Verfahren) nicht mehr wegzudenken. Allerdings sind im Gegensatz zur klassischen industriellen ZfP im Bauwesen sehr wenige Regelwerke anzutreffen. Auch die Angebote zur Qualifizierung von Pruefern sind gering aber mittlerweile vorhanden. Die Fachtagung greift dieses Spannungsfeld geringer Regelsetzung und grossem Bedarf qualifizierter Dienstleistungen auf. Ein Aufgabenfeld der Zukunft ist die zuverlaessige Bewertung von Bestandsbauwerken. Durch das Inkrafttreten der

  7. A system for personnel qualification of non-destructive testing procedures from testing and and qualification system in Sweden

    International Nuclear Information System (INIS)

    Kuna, M.; Kubis, S.; Plasek, J.

    1999-01-01

    The method for qualification of non-destructive testing personnel carrying out inspections by means of ultrasonic and eddy-current tests to inspect cladding in BWR reactor pressure vessel and core shroud lid. Development of procedures tests with real artificial cracks, blind tests. Evaluation of results by the Swedish Qualification Commission. Performance of the tests at Oskarshamn-1

  8. RESEARCH ON NON-DESTRUCTIVE TESTING TECHNOLOGY IN CONSERVATION REPAIR PROJECT OF ANCESTRAL TEMPLE IN MUKDEN PALACE

    Directory of Open Access Journals (Sweden)

    J. Yang

    2017-08-01

    Full Text Available Due to the use of wood and other non-permanent materials, traditional Chinese architecture is one of the most fragile constructions in various heritage objects today. With the increasing emphasis on the protection of cultural relics, the repair project of wooden structure has become more and more important. There are various kinds of destructions, which pose a hidden danger to the overall safety of the ancient buildings, caused not only by time and nature, but also by improper repairs in history or nowadays. Today, the use of digital technology is a basic requirement in the conservation of cultural heritage. Detection technology, especially non-destructive testing technology, could provide more accurate records in capturing detailed physical characteristics of structures such as geometric deformation and invisible damage, as well as prevent a man-made destruction in the process of repair project. This paper aims to interpret with a typical example, Ancestral Temple in Mukden Palace, along with a discussion of how to use the non-destructive testing technology with ground penetrating radar, stress wave, resistograph and so on, in addition to find an appropriate protection method in repair project of traditional Chinese wooden architecture.

  9. Research on Non-Destructive Testing Technology in Conservation Repair Project of Ancestral Temple in Mukden Palace

    Science.gov (United States)

    Yang, J.; Fu, M.

    2017-08-01

    Due to the use of wood and other non-permanent materials, traditional Chinese architecture is one of the most fragile constructions in various heritage objects today. With the increasing emphasis on the protection of cultural relics, the repair project of wooden structure has become more and more important. There are various kinds of destructions, which pose a hidden danger to the overall safety of the ancient buildings, caused not only by time and nature, but also by improper repairs in history or nowadays. Today, the use of digital technology is a basic requirement in the conservation of cultural heritage. Detection technology, especially non-destructive testing technology, could provide more accurate records in capturing detailed physical characteristics of structures such as geometric deformation and invisible damage, as well as prevent a man-made destruction in the process of repair project. This paper aims to interpret with a typical example, Ancestral Temple in Mukden Palace, along with a discussion of how to use the non-destructive testing technology with ground penetrating radar, stress wave, resistograph and so on, in addition to find an appropriate protection method in repair project of traditional Chinese wooden architecture.

  10. Non-Destructive Evaluation of Kissing Bonds using Local Defect Resonance (LDR) Spectroscopy: A Simulation Study

    Science.gov (United States)

    Delrue, S.; Tabatabaeipour, M.; Hettler, J.; Van Den Abeele, K.

    With the growing demand from industry to optimize and further develop existing Non-Destructive Testing & Evaluation (NDT&E) techniques or new methods to detect and characterize incipient damage with high sensitivity and increased quality, ample efforts have been devoted to better understand the typical behavior of kissing bonds, such as delaminations and cracks. Recently, it has been shown experimentally that the nonlinear ultrasonic response of kissing bonds could be enhanced by using Local Defect Resonance (LDR) spectroscopy. LDR spectroscopy is an efficient NDT technique that takes advantage of the characteristic fre- quencies of the defect (defect resonances) in order to provide maximum acoustic wave-defect interaction. In fact, for nonlinear methodologies, the ultrasonic excitation of the sample should occur at either multiples or integer ratios of the characteristic defect resonance frequencies, in order to obtain the highest signal-to-noise response in the nonlinear LDR spectroscopy. In this paper, the potential of using LDR spectroscopy for the detection, localization and characterization of kissing bonds is illustrated using a 3D simulation code for elastic wave propagation in materials containing closed but dynamically active cracks or delaminations. Using the model, we are able to define an appropriate method, based on the Scaling Subtraction Method (SSM), to determine the local defect resonance frequencies of a delamination in a composite plate and to illustrate an increase in defect nonlinearity due to LDR. The simulation results will help us to obtain a better understanding of the concept of LDR and to assist in the further design and testing of LDR spectroscopy for the detection, localization and characterization of kissing bonds.

  11. Holistic risk assessment and risk prevention approach to the mechanized NDT and the inspection procedure

    International Nuclear Information System (INIS)

    Bertovic, Marija; Mueller, Christina; Fahlbruch, Babette; Ronneteg, Ulf; Pitkaenen, Jorma

    2013-01-01

    The difficulty to deal with human factors in non-destructive testing (NDT) stems from their diversity and complexity - no single human or organizational factor is responsible for the entire fluctuations in the NDT performance. The typical approach to decrease the variability in the inspection results had been found in replacing manual NDT with mechanized methods. However, even though some human errors can be avoided by automating the process, there are new risks that can arise from its application and need to be further investigated. To address this problem, a combination of theoretical and practical approaches should be applied, where the source of error is not seen only in the inspector, but also in his interaction with social and technical systems, as well as the organization. An analysis of potential risks in the use of mechanized inspections methods for spent fuel canisters has shown potential for human error in acquisition, as well as in the evaluation of the gathered results. Assessed causes of those errors lay in the inspector, but also in the organization and in shortcomings of the inspection procedure. The aim of the analysis was to provide with preventive measures and optimization recommendations. Those include further automation of the process, application of human redundancy, improvements of the inspection procedure, hardware and software improvements etc. Before improvements can be made, there is a need to understand the resulting processes and the influence of their interaction on the inspection results. The results have shown that when working with an automated system, one must avoid over relying on its proper functioning and form appropriate trust towards automation. Furthermore, human redundancy should be applied only in cases where the redundant inspectors are completely unaware of each other, in order to avoid the effects of social loafing and shirking. The inspection procedure is one of the most important tools in the application of NDT. On an

  12. Holistic risk assessment and risk prevention approach to the mechanized NDT and the inspection procedure

    Energy Technology Data Exchange (ETDEWEB)

    Bertovic, Marija; Mueller, Christina [Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin (Germany); Fahlbruch, Babette [TUEV NORD Systems GmbH und Co. KG, Berlin (Germany); Ronneteg, Ulf [SKB Swedish Nuclear Fuel and Waste Management Co., Oskarshamn (Sweden); Pitkaenen, Jorma [Posiva Oy, Eurajoki (Finland)

    2013-07-01

    The difficulty to deal with human factors in non-destructive testing (NDT) stems from their diversity and complexity - no single human or organizational factor is responsible for the entire fluctuations in the NDT performance. The typical approach to decrease the variability in the inspection results had been found in replacing manual NDT with mechanized methods. However, even though some human errors can be avoided by automating the process, there are new risks that can arise from its application and need to be further investigated. To address this problem, a combination of theoretical and practical approaches should be applied, where the source of error is not seen only in the inspector, but also in his interaction with social and technical systems, as well as the organization. An analysis of potential risks in the use of mechanized inspections methods for spent fuel canisters has shown potential for human error in acquisition, as well as in the evaluation of the gathered results. Assessed causes of those errors lay in the inspector, but also in the organization and in shortcomings of the inspection procedure. The aim of the analysis was to provide with preventive measures and optimization recommendations. Those include further automation of the process, application of human redundancy, improvements of the inspection procedure, hardware and software improvements etc. Before improvements can be made, there is a need to understand the resulting processes and the influence of their interaction on the inspection results. The results have shown that when working with an automated system, one must avoid over relying on its proper functioning and form appropriate trust towards automation. Furthermore, human redundancy should be applied only in cases where the redundant inspectors are completely unaware of each other, in order to avoid the effects of social loafing and shirking. The inspection procedure is one of the most important tools in the application of NDT. On an

  13. The Third NDT Technology Forum

    International Nuclear Information System (INIS)

    2005-04-01

    This reports the presentation for enactment of law on development of nondestructive testing and management, which includes meaning and content of enactment of NDT law like background, process, important content, and demand for cooperation. It has four presentations on nondestructive testing ; safety and well-being trend and industrial function of NDT, safety function in public facilities and diversity of technical application, train and education and direction and attitude of self-improvement and industrial function and requirement of inspection of company.

  14. Models on reliability of non-destructive testing

    International Nuclear Information System (INIS)

    Simola, K.; Pulkkinen, U.

    1998-01-01

    The reliability of ultrasonic inspections has been studied in e.g. international PISC (Programme for the Inspection of Steel Components) exercises. These exercises have produced a large amount of information on the effect of various factors on the reliability of inspections. The information obtained from reliability experiments are used to model the dependency of flaw detection probability on various factors and to evaluate the performance of inspection equipment, including the sizing accuracy. The information from experiments is utilised in a most effective way when mathematical models are applied. Here, some statistical models for reliability of non-destructive tests are introduced. In order to demonstrate the use of inspection reliability models, they have been applied to the inspection results of intergranular stress corrosion cracking (IGSCC) type flaws in PISC III exercise (PISC 1995). The models are applied to both flaw detection frequency data of all inspection teams and to flaw sizing data of one participating team. (author)

  15. Digital transfer of non-destructive testing images

    International Nuclear Information System (INIS)

    Nelson, S.

    1996-01-01

    This paper intends to address a possible avenue to assist the Non-Destructive Testing Industry in managing and transferring results to their clients in a more efficient way. Data is sent around the globe in various forms to a multitude of destinations. The problem has been twofold in any industry: how to get the data into a communication network and, how to manage and utilize this data. There are many types of scanners which can digitize the graph which can then be displayed on a computer screen via a software programme. The one presented in this paper has been jointly developed by a Melbourne company, Compu Medics and AGFA Australia. This system can also capture a video signal from Ultrasound Units and display on the screen. The author also explore what can be done with this data. Possibilities are endless and include: sending it via satellite or land line to a remote reader, saving or archiving for future reference and utilising the data base for education

  16. Reliability considerations of NDT by probability of detection (POD). Determination using ultrasound phased array. Results from a project in frame of the German nuclear safety research program

    International Nuclear Information System (INIS)

    Kurz, Jochen H.; Dugan, Sandra; Juengert, Anne

    2013-01-01

    Reliable assessment procedures are an important aspect of maintenance concepts. Non-destructive testing (NDT) methods are an essential part of a variety of maintenance plans. Fracture mechanical assessments require knowledge of flaw dimensions, loads and material parameters. NDT methods are able to acquire information on all of these areas. However, it has to be considered that the level of detail information depends on the case investigated and therefore on the applicable methods. Reliability aspects of NDT methods are of importance if quantitative information is required. Different design concepts e.g. the damage tolerance approach in aerospace already include reliability criteria of NDT methods applied in maintenance plans. NDT is also an essential part during construction and maintenance of nuclear power plants. In Germany, type and extent of inspection are specified in Safety Standards of the Nuclear Safety Standards Commission (KTA). Only certified inspections are allowed in the nuclear industry. The qualification of NDT is carried out in form of performance demonstrations of the inspection teams and the equipment, witnessed by an authorized inspector. The results of these tests are mainly statements regarding the detection capabilities of certain artificial flaws. In other countries, e.g. the U.S., additional blind tests on test blocks with hidden and unknown flaws may be required, in which a certain percentage of these flaws has to be detected. The knowledge of the probability of detection (POD) curves of specific flaws in specific testing conditions is often not present. This paper shows the results of a research project designed for POD determination of ultrasound phased array inspections of real and artificial cracks. The continuative objective of this project was to generate quantitative POD results. The distribution of the crack sizes of the specimens and the inspection planning is discussed, and results of the ultrasound inspections are presented. In

  17. NDT in Canada - the next 20 years

    International Nuclear Information System (INIS)

    Kittmer, C.A.

    1985-01-01

    The theme for the Fifth Canadian Conference on Nondestructive Testing was 'NDT in Canada - The Next 20 years'. The three day conference with 42 presentations provided a short overview of NDT in Canada, a look at NDT in pipeline, materials, offshore, nuclear and training applications, and a glimpse into the next 20 years with recent advances in research and development as related to this 'hi-tech' field of work

  18. An ultrasonic methodology to non-destructively estimate the grain orientation in an anisotropic weld

    Directory of Open Access Journals (Sweden)

    Wirdelius Håkan

    2014-06-01

    Full Text Available The initial step towards a non-destructive technique that estimates grain orientation in an anisotropic weld is presented in this paper. The purpose is to aid future forward simulations of ultrasonic NDT of this kind of weld to achieve a better result. A forward model that consists of a weld model, a transmitter model, a receiver model and a 2D ray tracing algorithm is introduced. An inversion based on a multi-objective genetic algorithm is also presented. Experiments are conducted for both P and SV waves in order to collect enough data used in the inversion. Calculation is conducted to fulfil the estimation with both the synthetic data and the experimental data. Concluding remarks are presented at the end of the paper.

  19. Questions of qualification exam for non-destructive testing and materials science - the first level

    International Nuclear Information System (INIS)

    Shaaban, H.I.; Addarwish, J.M.A.

    2013-01-01

    The book contains seven chapters: Questions of qualification for magnetic particles testing method - Questions of qualification for liquids penetrant testing method - Questions of qualification for the visual inspection testing method - Questions of qualification for the ultrasonic testing method - Questions of qualification for the eddy current testing method - Questions of rehabilitation for industrial radiographic testing method - Qualification questions about materials science and manufacturing defects of castings and welding and comparison between non-destructive testing methods.

  20. Report on the Regulators Experience of NDT Qualification for In-service Inspection of Nuclear Components

    International Nuclear Information System (INIS)

    2003-08-01

    In November 1992, the Nuclear Regulators Working Group (NRWG) decided to set up a task force on qualification of non-destructive testing (NDT) systems for pre and in-service inspection of light water reactors. The first task was to agree on the philosophy and principles governing the qualification of techniques, equipment, software, procedures, and personnel for NDT to be used for the inspection of structural components that are important to safety in nuclear power plants; and to establish a common view on essential aspects of NDT qualifications. The first task, which also included a comparison of the common views of the European regulators with the qualification approach outlined in Appendix VIII to Section XI of the ASME Code, was completed in 1996. The result was published in the report ''Common position of European regulators on qualification of NDT systems for pre- and in-service inspection of light water reactor components''2. In parallel, the European nuclear power industries had set up a working group, the European Network for Inspection Qualification (ENIQ), to discuss and agree on how to perform inspection qualifications. In 1995, ENIQ finalized its first version of ''European methodology for qualification of non-destructive tests''3. A second version 4 was then published in 1997. This second version is in relatively close agreement with the principles given in the regulators common position document. With these two basic documents, a platform was established for the further development of qualification strategies in the European countries. The second task of the NRWG Task Force was to follow and evaluate the first ENIQ pilot study from a regulatory point of view. The objective of this pilot study was to explore ways of how to apply the European qualification methodology and to test its feasibility. The pilot study commenced late 1996 and was planned to be finalized a year later. Depending on unforeseen difficulties, the pilot study has been delayed

  1. Non Destructive Testing by active infrared thermography coupled with shearography under same optical heat excitation

    Science.gov (United States)

    Theroux, Louis-Daniel; Dumoulin, Jean; Maldague, Xavier

    2014-05-01

    As infrastructures are aging, the evaluation of their health is becoming crucial. To do so, numerous Non Destructive Testing (NDT) methods are available. Among them, thermal shearography and active infrared thermography represent two full field and contactless methods for surface inspection. The synchronized use of both methods presents multiples advantages. Most importantly, both NDT are based on different material properties. Thermography depend on the thermal properties and shearography on the mechanical properties. The cross-correlation of both methods result in a more accurate and exact detection of the defects. For real site application, the simultaneous use of both methods is simplified due to the fact that the excitation method (thermal) is the same. Active infrared thermography is the measure of the temperature by an infrared camera of a surface subjected to heat flux. Observation of the variation of temperature in function of time reveal the presence of defects. On the other hand, shearography is a measure of out-of-plane surface displacement. This displacement is caused by the application of a strain on the surface which (in our case) take the form of a temperature gradient inducing a thermal stress To measure the resulting out-of-plane displacement, shearography exploit the relation between the phase difference and the optical path length. The phase difference is measured by the observation of the interference between two coherent light beam projected on the surface. This interference is due to change in optical path length as the surface is deformed [1]. A series of experimentation have been conducted in laboratory with various sample of concrete reinforced with CFRP materials. Results obtained reveal that with both methods it was possible to detect defects in the gluing. An infrared lamp radiating was used as the active heat source. This is necessary if measurements with shearography are to be made during the heating process. A heating lamp in the

  2. Non-destructive control of castings

    International Nuclear Information System (INIS)

    Boutault, J.; Mascre, C.

    1978-01-01

    The object of non-destructive control in foundries is to verify the metal structure, the absence of unacceptable discontinuity, total tightness, etc. This leads to a range of very varied controls according to the importance of the series, the quality level required by the specifications, the nature of the alloy. The originality of the solutions which are imperative for castings is shown through examples: casting of high quality complex forms in short series; very thick unit parts; very large series of parts requiring on efficient automation of non-destructive control. Lastly the publishing of testing methods and interpretating rules, which are the base of a friendly understanding between constructors and founders are recalled [fr

  3. High-speed image processing systems in non-destructive testing

    Science.gov (United States)

    Shashev, D. V.; Shidlovskiy, S. V.

    2017-08-01

    Digital imaging systems are using in most of both industrial and scientific industries. Such systems effectively solve a wide range of tasks in the field of non-destructive testing. There are problems in digital image processing for decades associated with the speed of the operation of such systems, sufficient to efficiently process and analyze video streams in real time, ideally in mobile small-sized devices. In this paper, we consider the use of parallel-pipeline computing architectures in image processing problems using the example of an algorithm for calculating the area of an object on a binary image. The approach used allows us to achieve high-speed performance in the tasks of digital image processing.

  4. Non destructive testing of works of art by terahertz analysis

    Science.gov (United States)

    Bodnar, Jean-Luc; Metayer, Jean-Jacques; Mouhoubi, Kamel; Detalle, Vincent

    2013-11-01

    Improvements in technologies and the growing security needs in airport terminals lead to the development of non destructive testing devices using terahertz waves. Indeed, these waves have the advantage of being, on one hand, relatively penetrating. They also have the asset of not being ionizing. It is thus potentially an interesting contribution in the non destructive testing field. With the help of the VISIOM Company, the possibilities of this new industrial analysis method in assisting the restoration of works of art were then approached. The results obtained within this framework are presented here and compared with those obtained by infrared thermography. The results obtained show first that the THZ method, like the stimulated infrared thermography allows the detection of delamination located in murals paintings or in marquetries. They show then that the THZ method seems to allow detecting defects located relatively deeply (10 mm) and defects potentially concealed by other defects. It is an advantage compared to the stimulated infra-red thermography which does not make it possible to obtain these results. Furthermore, they show that the method does not seem sensitive to the various pigments constituting the pictorial layer, to the presence of a layer of "Japan paper" and to the presence of a layer of whitewash. It is not the case of the stimulated infrared thermography. It is another advantage of the THZ method. Finally, they show that the THZ method is limited in the detection of low-size defects. It is a disadvantage compared to the stimulated infrared thermography.

  5. Non-destructive qualification tests for ITER cryogenic axial insulating breaks

    International Nuclear Information System (INIS)

    Kosek, Jacek; Lopez, Roberto; Tommasini, Davide; Rodriguez-Mateos, Felix

    2014-01-01

    In the ITER superconducting magnets the dielectric separation between the CICC (Cable-In-Conduit Conductors) and the helium supply pipes is made through the so-called insulating breaks (IB). These devices shall provide the required dielectric insulation at a 30 kV level under different types of stresses and constraints: thermal, mechanical, dielectric and ionizing radiations. As part of the R and D program, the ITER Organization launched contracts with industrial companies aimed at the qualification of the manufacturing techniques. After reviewing the main functional aspects, this paper describes and discusses the protocol established for non-destructive qualification tests of the prototypes

  6. Non-destructive qualification tests for ITER cryogenic axial insulating breaks

    Energy Technology Data Exchange (ETDEWEB)

    Kosek, Jacek [Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland and CERN, Geneva 23,CH-1211 (Switzerland); Lopez, Roberto; Tommasini, Davide [CERN, Geneva 23,CH-1211 (Switzerland); Rodriguez-Mateos, Felix [CERN, Geneva 23,CH-1211, Switzerland and ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul lez Durance (France)

    2014-01-29

    In the ITER superconducting magnets the dielectric separation between the CICC (Cable-In-Conduit Conductors) and the helium supply pipes is made through the so-called insulating breaks (IB). These devices shall provide the required dielectric insulation at a 30 kV level under different types of stresses and constraints: thermal, mechanical, dielectric and ionizing radiations. As part of the R and D program, the ITER Organization launched contracts with industrial companies aimed at the qualification of the manufacturing techniques. After reviewing the main functional aspects, this paper describes and discusses the protocol established for non-destructive qualification tests of the prototypes.

  7. Topics in acoustics, non destructive testing, and thermo-mechanics of continua

    International Nuclear Information System (INIS)

    Suarez Antola, R.

    2001-03-01

    A small scale physical model of a granular porous medium was studied .Osmosis, filtration and fracture were considered, both experimentally and mathematically.Longitudinal ultrasonic pulse velocity was measured in slender timber and concrete bodies in order to characterized the geometric dispersion effects.A mathematical model is developed to described geometric dispersion in reinforced concrete.A sequential method for non destructive testing of structures by mechanicals vibrations is proposed and theoretically considered.Some simple examples are fully developed from a theoretical stand point

  8. Time reversal signal processing in acoustic emission testing

    Czech Academy of Sciences Publication Activity Database

    Převorovský, Zdeněk; Krofta, Josef; Kober, Jan; Dvořáková, Zuzana; Chlada, Milan; Dos Santos, S.

    2014-01-01

    Roč. 19, č. 12 (2014) ISSN 1435-4934. [European Conference on Non-Destructive Testing (ECNDT 2014) /11./. Praha, 06.10.2014-10.10.2014] Institutional support: RVO:61388998 Keywords : acoustic emission (AE) * ultrasonic testing (UT) * signal processing * source location * time reversal acoustic s * acoustic emission * signal processing and transfer Subject RIV: BI - Acoustic s http://www.ndt.net/events/ECNDT2014/app/content/Slides/637_Prevorovsky.pdf

  9. Surface integral formulation of Maxwell's equations for simulation of non-destructive testing by eddy currents. Preliminary study on the implementation of the fast multipole method

    International Nuclear Information System (INIS)

    Lim, T.

    2011-01-01

    To simulate numerically a non-destructive by eddy current testing (NDT-CF), the sensor response can be modeled through a semi-analytical approach by volume integral equations. Faster than the finite element method, this approach is however restricted to the study of plane or cylindrical parts (without taking into account the edge effects) because of the complexity of the expression of the dyadic Green function for more general configurations. However, there is an industrial demand to extend the capabilities of the CF model in complex configurations (deformed plates, edges effects...). We were thus brought to formulate the electromagnetic problem differently, by setting ourselves the goal of maintaining a semi-analytical approach. The surface integral equation (SIE) expresses the volume problem by an equivalent transmission one at the interfaces (2D) between homogeneous sub-domains. This problem is approached by a linear system (by the method of moments), whose number of unknowns is reduced due to the nature of the surfacic mesh. Therefore, this system can be solved by a direct solver for small configurations. That enabled us to treat several various positions of the sensor for only one inversion of the impedance matrix. The numerical results obtained using this formulation involve plates with consideration of edge effects such as edge and corner. They are consistent with results obtained by the finite element method. For larger configurations, we conducted a preliminary study for the adaptation of an acceleration method of the matrix vector product involved in an iterative solver (fast multipole method or FMM) to define the conditions under which the FMM calculation works correctly (accuracy, convergence...) in the NDT's domain. A special attention has been given to the choice of basis functions (which have to satisfy an Hdiv conforming property) and on the evaluation of near interactions (which are weakly singular). (author) [fr

  10. Coded excitation for infrared non-destructive testing of carbon fiber reinforced plastics.

    Science.gov (United States)

    Mulaveesala, Ravibabu; Venkata Ghali, Subbarao

    2011-05-01

    This paper proposes a Barker coded excitation for defect detection using infrared non-destructive testing. Capability of the proposed excitation scheme is highlighted with recently introduced correlation based post processing approach and compared with the existing phase based analysis by taking the signal to noise ratio into consideration. Applicability of the proposed scheme has been experimentally validated on a carbon fiber reinforced plastic specimen containing flat bottom holes located at different depths.

  11. Non-destructive Testing of Wood Defects Based on Discriminant Analysis Method

    Directory of Open Access Journals (Sweden)

    Wenshu LIN

    2015-09-01

    Full Text Available The defects of wood samples were tested by the technique of stress wave and ultrasonic technology, and the testing results were comparatively analyzed by using the Fisher discriminant analysis in the statistic software of SPSS. The differences of defect detection sensitivity and accuracy for stress wave and ultrasonic under different wood properties and defects were concluded. Therefore, in practical applications, according to different situations the corresponding wood non- destructive testing method should be used, or the two detection methods are applied at the same time in order to compensate for its shortcomings with each other to improve the ability to distinguish the timber defects. The results can provide a reference for further improvement of the reliability of timber defects detection.

  12. Introduction to non-destructive testing of materials: part II

    International Nuclear Information System (INIS)

    Ahmed, M.; Ahmed, B.

    2001-01-01

    Ultrasonic waves are mechanical vibrations that require a medium, which functions as carrier. Ultrasonics are widely used in non-destructive testing of materials in which high frequency sound waves are introduced into the material being inspected. If the frequency of sound waves in within the range 10 to 20,000 Hz, the sound is audible, i.e. the range of hearing, above 20,000 Hz, the sound waves are referred to as Ultrasound or Ultrasonics. Sound waves do not cause any permanent change in material although its transient presence is very noticeable. An energy transport through a sound wave is possible only when constituent particles are connected to each other by elastic forces. Liquids and Gases are also suitable media for the transmission of sound. In vacuum no matter exists and thus no sound transmission is possible. At the end of this article advantages and limitations of ultrasonic testing are also given. (A.B.)

  13. Comparative study of destructive and non-destructive methods in the activation analysis of rocks

    International Nuclear Information System (INIS)

    Vasconcellos, M.B.A.

    1978-01-01

    A comparative study between non-destructive thermal neutron activation analysis and activation analysis with radiochemical group separation is made Both methods are applied to the determination of trace elements minor and major elements in rocks. The treatment of the rocks, with special reference to the problems related to grinding and contamination by foreign elements is described. The choice of standards for multielement trace activation analysis is discussed. Two types of computer programs for the evalution of data obtained through Ge-li detector counting are used. All the phases of the destructive and non destructive analysis are described. In the destructive analysis, an adaptation of the group separation scheme developed by Morrison et al for the activation analysis of geological samples is made. The changes introduced make the radiochemical separation simpler and more rapid. Both destructive and non destructive methods are tested by means of the analysis of the United States Geological Survey standard rock AGV-1, which has been analysed by many authors. The same procedure is then applied to some alcaline rocks taken from the apatite mine of Jacupiranga, in the State of Sao Paulo, Brazil. The knowledge of the trace element concentration in these rocks is important for geochemical studies. A detailed study of the possible interferences encountered in the neutron activation analysis of these rocks is made, considering the interferences due to major activities, and to the proximity of the several gamma ray energies of the radioisotopes produced. Finally, the comparative study between the two methods is presented, using statistical tests for the quantitative evalution of results. (Author) [pt

  14. Development of new NDT certification scheme in Singapore

    International Nuclear Information System (INIS)

    Wong, B.S.; Prabhakaran, K.G.; Babu, S.K.; Kuppuswamy, N.

    2009-01-01

    Nondestructive testing plays a vital role in Singapore Industry either it is construction or it it oil and gas. To cope up with the future demands for nondestructive testing personnel and cater to the local industry needs for qualified and certified NDT operators, Nondestructive Testing Society (Singapore)-NDTSS launched the SGNDT Certification Scheme. The aim of the organization is to promote and standardize the quality of NDT through education and training based on a scheme that is on par with internationally recognized 3rd party certifications. The certification also provides a greater confidence to the clients and end users who utilize the NDT test results provided by the certified operators. NDE certification in Singapore varies from industries and currently relies on the in-house certification scheme based on SNT-TC-1A where organizations find it difficult to standardize the skill and reliability of operators. NDE Certification system varies globally from countries to countries. A proper certification system is required to produce successful NDT Practitioners to suit the local industry. This paper outlines the development of Singapore NDT Certification Scheme (SGNDT), the operations, levels of qualification, the method of operation and control measures. The Training and Certification committee, Quality Management system within the certification scheme and the current system practiced in Singapore are discussed in this paper. The paper also highlights the importance of third party certification scheme. (author)

  15. Contributions to ultrasounds applications in non-destructive tests on materials used in nuclear technologies

    International Nuclear Information System (INIS)

    Stanica, V.

    1979-01-01

    The problems expounded in the paper, besides servjng the practical purpose generated by the need to perform quality tests on fuel element compounds by means of the ultrasounds method, are also interesting to ultrasounds non-destructive tests applied in all industry branches as they assert the necessity of passing from manual to automation tests carried out by installations which should record the signals caused by failures, both to increase the productivjty and especially to transform it into an objective, effective test. (author)

  16. An overview of non destructive inspection services in nuclear power plants

    International Nuclear Information System (INIS)

    Farley, S.

    2004-01-01

    Worldwide nuclear power plants are obliged by international and local authorities to perform periodical inspection and maintenance of safety relevant components. Non-Destructive Testing (NDT) techniques such as eddy current, ultrasonic, visual, dye penetrant and radiographic testing have been used and continually developed to inspect a wide range of components and materials. Inspecting such components invariably poses an interesting chal-lenge due to complex component geometries, radiation exposure and the material make-up of the component or its welds. As a leader in services to the nuclear industry, Westinghouse has an immense knowl-edge and experience in inspecting and repairing primary circuit components such as steam generators, reactor vessels, core internals, primary coolant pumps and loops, fuel elements and many other components in hazardous environments. To fulfil the requirements posed by authorities and inspection standards, remotely operated manipulators and vehicles have been designed to bring a diverse variety of probes and cameras to the object of inspection. Each inspection process is tested and qualified by the relevant qualification body. In some cases the results of an inspection may require further in depth analysis or even repair of part of the component. These added challenges have often been met by specifically designed and qualified processes such as for the repair of vessel head penetrations or the re-pair of vessel nozzle safe end welds. This presentation will give a general overview of a range of inspection capabilities and give a few examples in which repair was successfully performed. (author)

  17. Development of hotcell non-destructive examination techniques

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Uhn; Yu, S. C.; Kang, B. S.; Byun, K. S. [Chungbuk National University, Chungju (Korea)

    2002-01-01

    The purpose of this project is to establish non-destructive examination techniques which needs to determine the status of spent nuclear fuel and/or bundles. Through the project, we will establish an image reconstruction tomography which is a kind of non-destructive techniques in Hotcell. The tomography technique can be used to identify the 2-dimensional density distribution of fission products in the spent fuel rods and/or bundles. And form results of the measurement and analysis of magnetic properties of neutron irradiated material in the press vessel and reactor, we will develop some techniques to test its hardness and defects. In 2001, the first year, we have established mathematical background and necessary data and informations to develop the techniques. We will try to find some experimental results that are necessary in developing the Hotcell non-destructive examination techniques in the coming year. 14 refs., 65 figs., 5 tabs. (Author)

  18. Current NDT activities at Cekmece Nuclear Research and Training Center

    International Nuclear Information System (INIS)

    Ekinci, S.

    2004-01-01

    Nondestructive testing (NDT) activities at Cekmece Nuclear Research and Training Center (CNAEM) has been initiated in the Industrial Application Department of the Center which was established in 1976 as the Radioisotope Applications Group for Industry. The Department started its first NDT activity with industrial radiography. The NDT activities have been developed by the support of various national (State Planning Organization (DPT)) and international (IAEA and UNDP) projects. Today, there are five basic NDT techniques (radiography, ultrasonic, magnetic particle, liquid penetrant and eddy current) used in the Industrial Application Department. The Department arranges routinely NDT qualification courses according to ISO 9712 and TS EN 473 standards for level 1 and 2 for Turkish Industry. It also carries out national DPT and IAEA Technical Co-operation projects and gives NDT services in the laboratory and in the field. Digital radiography and digital ultrasonic techniques are being used in advanced NDT applications. This paper describes the NDT activities of CNAEM. (author)

  19. High temperature flexible ultrasonic transducers for structural health monitoring and NDT

    Energy Technology Data Exchange (ETDEWEB)

    Shih, J.L. [McGill Univ., Montreal, PQ (Canada). Dept. of Electrical and Computer Engineering; Kobayashi, M.; Jen, C.K.; Tatibouet, J. [National Research Council of Canada, Boucherville, PQ (Canada). Industrial Materials Inst.; Mrad, N. [Department of National Defence, Ottawa, ON (Canada). Air Vehicles Research Station

    2009-07-01

    Ultrasonic techniques are often used for non-destructive testing (NDT) and structural health monitoring (SHM) of pipes in nuclear and fossil fuel power plants, petrochemical plants and other structures as a method to improve safety and extend the service life of the structure. In such applications, ultrasonic transducers (UTs) must be able to operate at high temperature, and must come in contact with structures that have surfaces with different curvatures. As such, flexible UTs (FUTs) are most suitable because they ensure self-alignment to the object's surface. The purpose of this study was to develop FUTs that have high flexibility similar to commercially available polyvinylidene fluoride PVDF FUTs, but which can operate at up to at least 150 degrees C and have a high ultrasonic performance comparable to commercial broadband UTs. The fabrication of the FUT consisted of a sol-gel based sensor fabrication process. The substrate was a 75 {mu}m thick titanium (Ti) membrane, a piezoelectric composite with a thickness larger than 85 {mu}m and a top electrode. The ultrasonic performance of the FUT in terms of signal strength was found to be at least as good as commercially available broadband ultrasonic transducers at room temperature. Onsite gluing and brazing installation techniques which bond the FUTs onto steel pipes for SHM and NDT purposes up to 100 and 150 degrees C were developed, respectively. The best thickness measurement accuracy of FUT at 150 degrees C was estimated to be 26 {mu}m. 18 refs., 2 tabs., 6 figs.

  20. Application of non-destructive testing and in-service inspection to research reactors. Results of a co-ordinated research project

    International Nuclear Information System (INIS)

    2001-12-01

    testing (NDT), are generally called in-service inspections (ISI) and, together with the above specific techniques, are the subject of the present TECDOC. The main objectives of the TECDOC are to present a number of these special techniques and to give guidance for their application. The guidance and recommendations given in this publication form the basis for the conduct of ISI of research reactors with limited hazard potential to the public. This TECDOC is based on the results of a Co-ordinated Research Project (CRP) on the Application of Non-destructive Testing and In-service Inspection to Research Reactors that the IAEA organized in 1995 to supplement its activities on research reactor ageing within its Research Reactor Safety Programme (RRSP). Because of the importance of such in-service inspections within the programmes for the management of ageing in research reactors, this TECDOC will be useful to a large fraction of the currently operating research reactors that are over 30 years old

  1. Design and fabrication of liner-arroy ultrasonic transducer using KLM and FEM simulation for non-destructive testing

    International Nuclear Information System (INIS)

    Park, Chan Yuk; Sung, Jin Ho; Jeong, Jong Seob

    2015-01-01

    In this paper, a linear-array transducer capable of overcoming the faults of a single element and phased array transducers with convex shape for non-destructive ultrasonic testing was designed and fabricated. A 5.5 MHz linear-array transducer was designed using the PiezoCAD program based on the KLM analysis and the PZFlex program based on the FEM analysis. A 2-2 composite structure was employed to achieve broad-band characteristics. A 128 element linear-array transducer was fabricated and its performance was compared with the simulation results. The center frequency of the fabricated transducer was 5.5 Mhzand the -6 dB frequency bandwidth was 70 %. Thus, we expect that the designed transducer can provide an effective inner image of the test material during non-destructive ultrasonic testing.

  2. Design and fabrication of liner-arroy ultrasonic transducer using KLM and FEM simulation for non-destructive testing

    Energy Technology Data Exchange (ETDEWEB)

    Park, Chan Yuk; Sung, Jin Ho; Jeong, Jong Seob [Dept. of Medical Biotechnology, Dongguk University Biomedi Campus, Goyang (Korea, Republic of)

    2015-04-15

    In this paper, a linear-array transducer capable of overcoming the faults of a single element and phased array transducers with convex shape for non-destructive ultrasonic testing was designed and fabricated. A 5.5 MHz linear-array transducer was designed using the PiezoCAD program based on the KLM analysis and the PZFlex program based on the FEM analysis. A 2-2 composite structure was employed to achieve broad-band characteristics. A 128 element linear-array transducer was fabricated and its performance was compared with the simulation results. The center frequency of the fabricated transducer was 5.5 Mhzand the -6 dB frequency bandwidth was 70 %. Thus, we expect that the designed transducer can provide an effective inner image of the test material during non-destructive ultrasonic testing.

  3. New developments in NDT through electronic speckle pattern interferometry

    International Nuclear Information System (INIS)

    Mohan, S.; Murugesan, P; Mas, R.H.

    2007-01-01

    Full text: Optical holography and speckle interferometry are the emerging optical techniques that can be used for the measurements of microscopic parameters such as displacement, strain, stress and slope. These techniques are applied in various fields such as surface studies, non destructive testing, speckle metrology and steller interferometry. Even though many new NDT methods are available, the suitability for a specific application is based on the material property, nature of defects and sensitivity of detection. Difficulty in radiographic technique is that it fails in detecting tight cracks, planar defects and debonds. Microwave techniques has limited sensitivity for the defect detection and it is not suitable for the objects with metallic cases since the metals are perfect reflectors for the microwaves. Low modulus material attenuates the acoustic energy completely, making ultrasonic testing techniques not feasible. The recently evolved optoelectronic technique namely Electronic Speckle Pattern interferometry (ESPI) is a fast developing optical technique widely used for measuring displacement components, their derivatives, surface roughness, surface contours, shape and others. Due to non contact nature and high sensitivity, this technique has been used as a powerful on line inspection tool for non destructive pattern of materials in industrial environment. The salient feature of ESPI is its capability to display the correlation fringes in a real time on a monitor without the need of photographic processing or optical filtering. ESPI is an alternate non destructive technique suitable for propellant grains and other low modulus materials used in space vehicle systems. The optoelectronic technique can be used to detect cracks, voids and residual stresses etc.., in the components in the industrial environment. In the present investigation, speckle non destructive testing has been carried out on some selected low modulus materials used in space vehicles. The

  4. Advanced inspection technology for non intrusive inspection (NII) program

    International Nuclear Information System (INIS)

    Zamir Mohamed Daud

    2003-01-01

    In the current economic environment, plants and facilities are under pressure to introduced cost saving as well as profit maximising measures. Among the many changes in the way things are run is a move towards Risk Based Inspection (RBI), with an emphasis on longer operating periods between shutdowns as well as to utilise components to their maximum capability. Underpinning and RBI program requires good data from an effective online inspections program, which would not require the shutdown of critical components. One methodology of online inspection is known as Non Intrusive Inspection (NII), an inspection philosophy with the objective of replacing internal inspection of a vessel by doing Non Destructive Testing (NDT) and inspections externally. To this end, a variety of advanced NDT techniques are needed to provide accurate online measurements. (Author)

  5. NonDestructive Evaluation for Industrial & Development Applications

    Energy Technology Data Exchange (ETDEWEB)

    Hunter, James F. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-10-12

    Provide overview of weld inspection for Non-Destructive Testing at LANL. This includes radiography (RT/DR/CR/CT for x-ray & neutron sources), ultrasonic testing (UT/PAUT), dye penetrant inspection (PT), eddy current inspection (ET) and magnetic particle testing (MT). Facilities and capabilities for weld inspection will be summarized with examples.

  6. Application of microCT to the non-destructive testing of an additive manufactured titanium component

    Directory of Open Access Journals (Sweden)

    Anton du Plessis

    2015-11-01

    Full Text Available In this paper the application of X-ray microCT to the non-destructive testing of an additive manufactured titanium alloy component of complex geometry is demonstrated. Additive manufacturing of metal components is fast growing and shows great promise, yet these parts may contain defects which affect mechanical properties of the components. In this work a layered form of defect is found by microCT, which would have been very difficult or impossible to detect by other non-destructive testing methods due to the object complexity, defect size and shape and because the pores are entirely contained inside the object and not connected to the surface. Additionally, this test part was subjected to hot isostatic pressing (HIPPING and subsequently scanned. Comparing before and after scans by alignment of the volumes allows visualization and quantification of the pore size changes. The application of X-ray microCT to additive manufacturing is thus demonstrated in this example to be an ideal combination, especially for process improvements and for high value components.

  7. Fatigue crack growth monitoring: fracture mechanics and non-destructive testing requirements

    International Nuclear Information System (INIS)

    Williams, S.; Mudge, P.J.

    1982-01-01

    If a fatigue crack is found in a component in service, two options exist if plant integrity is to be maintained: first, the plant can be removed from service and repairs effected or replacements fitted; second, the growth of the crack can be monitored non-destructively until it is either considered to be too large to tolerate, in which case it must be repaired, or until a convenient down time when repair can be effected. The second option has obvious benefits for plant operators, but in such a situation it is essential that errors of the non-destructive estimate of defect size, which will undoubtedly exist, and uncertainties in the fatigue crack growth laws in operation must both be allowed for if a safe extension of service life is to be obtained; i.e. without failure by leakage or fast fracture arising from the fatigue crack. This paper analyses the accuracy required of non-destructive crack measurement techniques to permit the safe monitoring of crack growth by periodic inspection. It then demonstrates that it is possible to achieve adequate crack monitoring using conventional ultrasonic techniques. (author)

  8. Sampling methods and non-destructive examination techniques for large radioactive waste packages

    International Nuclear Information System (INIS)

    Green, T.H.; Smith, D.L.; Burgoyne, K.E.; Maxwell, D.J.; Norris, G.H.; Billington, D.M.; Pipe, R.G.; Smith, J.E.; Inman, C.M.

    1992-01-01

    Progress is reported on work undertaken to evaluate quality checking methods for radioactive wastes. A sampling rig was designed, fabricated and used to develop techniques for the destructive sampling of cemented simulant waste using remotely operated equipment. An engineered system for the containment of cooling water was designed and manufactured and successfully demonstrated with the drum and coring equipment mounted in both vertical and horizontal orientations. The preferred in-cell orientation was found to be with the drum and coring machinery mounted in a horizontal position. Small powdered samples can be taken from cemented homogeneous waste cores using a hollow drill/vacuum section technique with the preferred subsampling technique being to discard the outer 10 mm layer to obtain a representative sample of the cement core. Cement blends can be dissolved using fusion techniques and the resulting solutions are stable to gelling for periods in excess of one year. Although hydrochloric acid and nitric acid are promising solvents for dissolution of cement blends, the resultant solutions tend to form silicic acid gels. An estimate of the beta-emitter content of cemented waste packages can be obtained by a combination of non-destructive and destructive techniques. The errors will probably be in excess of +/-60 % at the 95 % confidence level. Real-time X-ray video-imaging techniques have been used to analyse drums of uncompressed, hand-compressed, in-drum compacted and high-force compacted (i.e. supercompacted) simulant waste. The results have confirmed the applicability of this technique for NDT of low-level waste. 8 refs., 12 figs., 3 tabs

  9. The influence of age, education and experience on the grade point average (GPA) of trainees of nondestructive testing (NDT) courses

    International Nuclear Information System (INIS)

    Loterina, Roel A.; Relunia, Estrella D.

    2008-01-01

    The Philippine National Standard, PNS/ISO9712:2006, entitled ''Nondestructive Testing Qualification and Certification of Personnel'' requires education, training and experience to quality personnel to take the National Certifying Body (NCB) examination. The NDT training courses offered by the Philippine Society for Nondestructive Testing (PSNT) in cooperation with the Philippine Nuclear Research Institute (PNRI) is designed to qualify trainees to take the National Certifying Body (NCB) for NDT. (author)

  10. Diagnosis of structures. Practical applications and future tasks of non-destructive testing. Papers; Bauwerksdiagnose. Praktische Anwendungen Zerstoerungsfreier Pruefungen und Zukunftsaufgaben. Vortraege

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    The CD contains 17 papers and 20 posters on the subject of non-destructive diagnosis of structures. The titles of the 17 papers are: 1. Non-destructive testing in transition - from quality testing to life management; 2. Non-destructive testing of bridges on German motorways; 3. Structural diagnosis of concrete components - results obtained by a group of scientists of Deutsche Forschungsgemeinschaft; 4. Building diagnosis - its relevance and options for the building authorities; 5. Optimisation of permanent monitoring of structures by non-destructive test methods; 6. Assessment of Structures using Fibre-optic Sensors; 7. Methods and results in wood structure diagnosis; 8. The collapse of the roof of the Bad Reichenhall ice-skating rink - how could it have been prevented? 9. Integration of non-destructive structural tests in structure management of PPP models (Powerpoint); 10: Elements of sustainable life cycle management of engineering structures; 11. Structure monitoring as a component of life management systems; 12. Chloride and Sulfate analysis using LIBS - from the laboratory to the construction site; 13. Applications of georadar und ultrasonics - examples from the working practice of an engineering consultants' office; 14. Bridge analysis by automatic methods - new developments; 15. Fast large-area condition monitoring of reinforced-concrete bridges, floors and ceilings; 16. Influence of roof gap pressing on non-destructive thickness testing of the inner shells of motorway tunnels; 17. Non-destructive test methods for structure diagnosis - status and perspectives. [German] Die CD enthaelt 17 Vortraege und 20 Posterbeitraege zum Thema: ''Zerstoerungsfreie Pruefverahren fuer die Bauwerksdiagnose''. Die Themen der 17 Vortraege sind: 1. Die Zerstoerungsfreie Pruefung im Wandel - Von der Qualitaetspruefung zum Lebensdauermanagement; 2. ZfPBau-Verfahren fuer die Zustandserfassung von Bruecken der Bundesfernstrassen; 3. Strukturbestimmung von

  11. Industry-University SBIR NDT Projects — A Critical Assessment

    Science.gov (United States)

    Reinhart, Eugene R.

    2007-03-01

    The Small Business Innovative Research (SBIR) program, funded by various United States government agencies (DOD, DOE, NSF, etc.), provides funds for Research and Development (R&D) of nondestructive testing (NDT) techniques and equipment, thereby supplying valuable money for NDT development by small businesses and stimulating cooperative university programs. A review and critical assessment of the SBIR program as related to NDT is presented and should provide insight into reasons for or against pursuing this source of R&D funding.

  12. Signal processing for non-destructive testing of railway tracks

    Science.gov (United States)

    Heckel, Thomas; Casperson, Ralf; Rühe, Sven; Mook, Gerhard

    2018-04-01

    Increased speed, heavier loads, altered material and modern drive systems result in an increasing number of rail flaws. The appearance of these flaws also changes continually due to the rapid change in damage mechanisms of modern rolling stock. Hence, interpretation has become difficult when evaluating non-destructive rail testing results. Due to the changed interplay between detection methods and flaws, the recorded signals may result in unclassified types of rail flaws. Methods for automatic rail inspection (according to defect detection and classification) undergo continual development. Signal processing is a key technology to master the challenge of classification and maintain resolution and detection quality, independent of operation speed. The basic ideas of signal processing, based on the Glassy-Rail-Diagram for classification purposes, are presented herein. Examples for the detection of damages caused by rolling contact fatigue also are given, and synergetic effects of combined evaluation of diverse inspection methods are shown.

  13. Corrosion evaluation in insulated pipes by non destructive testing method

    International Nuclear Information System (INIS)

    Abd Razak Hamzah; Azali Muhammad; Mohammad Pauzi Ismail; Abd Nassir Ibrahim; Abd Aziz Mohamed; Sufian Saad; Saharuddin Sayuti; Shukri Ahmad

    2002-01-01

    In engineering plants, detection of corrosion and evaluation of deposit in insulated pipes using radiography method are considered as a very challenging tasks. In General this degradation problem is attributed to water condensation. It causes the formation of deposit and scale inside the pipe, as well as between the insulation and pipe in cold temperature pipes. On the other hand, for hot temperature pipes the main problem is mainly due to corrosion/erosion attack inside the pipe. In the study of corrosion in pipelines, one of the most important parameters to be monitored and measured is the wall thickness. Currently, most pipeline corrosion monitoring and evaluation for both insulated and non-insulated pipes is performed using an ultrasonic method. The most common technique is that based on the A-Scan, using either a normal flaw detector or some form of dedicated equipment. However, with recent development of ultrasonic technology, more advance method, namely B-Scan and C-scan techniques are also available. The most notable disadvantage of using this method is that the insulation covering the pipe has to be removed before the inspection can be carried out and this is considered as not so cost effective. Due to this reason, the possibility of employing other alternative NDT method, namely radiographic testing method were studied. The technique used in this studied are known as tangential technique. In this study it was found that the result found using tangential technique is consistent with the actual thickness of the pipe. Result of this study is presented and discussed in this paper. (Author)

  14. Ultrasonic transverse velocity calibration of standard blocks for use in non-destructive testing

    International Nuclear Information System (INIS)

    Silva, C E R; Braz, D S; Maggi, L E; Felix, R P B Costa

    2015-01-01

    Standard blocks are employed in the verification of the equipment used in Ultrasound Non-Destructive Testing. To assure the metrology reliability of all the measurement process, it is necessary to calibrate or certify these Standard blocks. In this work, the transverse wave velocity and main dimensions were assessed according to the specifications ISO Standards. For transverse wave velocity measurement, a 5 MHz transverse wave transducer, a waveform generator, an oscilloscope and a computer with a program developed in LabVIEW TM were used. Concerning the transverse wave velocity calibration, only two Standard blocks of the 4 tested is in accordance with the standard

  15. Microwave Detection of Laser Ultrasonic for Non-Destructive Testing, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — In this proposal, we describe a program to develop a high-performance, cost-effective and robust microwave receiver prototype for multi-purpose Non-Destructive...

  16. Characterization of a new dosimeter for the development of a position-sensitive detector of radioactive sources in industrial NDT equipment

    Science.gov (United States)

    Kim, K. T.; Kim, J. H.; Han, M. J.; Heo, Y. J.; Park, S. K.

    2018-02-01

    Imaging technology based on gamma-ray sources has been extensively used in non-destructive testing (NDT) to detect any possible internal defects in products without changing their shapes or functions. However, such technology has been subject to increasingly stricter regulations, and an international radiation-safety management system has been recently established. Consequently, radiation source location in NDT systems has become an essential process, given that it can prevent radiation accidents. In this study, we focused on developing a monitoring system that can detect, in real time, the position of a radioactive source in the source guide tube of a projector. We fabricated a lead iodide (PbI2) dosimeter based on the particle-in-binder method, which has a high production yield and facilitates thickness and shape adjustment. Using a gamma-ray source, we then tested the reproducibility, linearity of the dosimeter response, and the dosimeter's percentage interval distance (PID). It was found that the fabricated PbI2 dosimeter yields highly accurate, reproducible, and linear dose measurements. The PID analysis—conducted to investigate the possibility of developing a monitoring system based on the proposed dosimeter—indicated that the valid detection distance was approximately 11.3 cm. The results of this study are expected to contribute to the development of an easily usable radiation monitoring system capable of significantly reducing the risk of radiation accidents.

  17. COST Action TU1208 - Working Group 4 - Combined use of GPR and other NDT methods & GPR applications in geosciences

    Science.gov (United States)

    Pajewski, Lara; Solla, Mercedes; Fontul, Simona

    2017-04-01

    This work aims at presenting the main results achieved by Working Group (WG) 4 "Different applications of GPR and other NDT technologies in civil engineering" of the COST (European COoperation in Science and Technology) Action TU1208 "Civil Engineering Applications of Ground Penetrating Radar" (www.GPRadar.eu, www.cost.eu). The main objective of the Action TU1208, started in April 2013 and ending in October 2017, is to exchange and increase scientific-technical knowledge and experience of Ground Penetrating Radar (GPR) techniques in civil engineering, whilst promoting in Europe the effective use of this safe non-destructive technique. The Action involves more than 150 Institutions from 28 COST Countries, a Cooperating State, 6 Near Neighbour Countries and 6 International Partner Countries. WG4 deals with the use of GPR outside from the civil engineering area, namely in archaeological prospecting and cultural heritage diagnostics, agriculture and management of water resources, investigation of polluted industrial sites, non-destructive testing of living tree trunks, planetary exploration, demining, localization of people buried under avalanches and debris, and more. Furthermore, this WG studies the integration of GPR with other Non-Destructive Testing (NDT) methods. The most relevant achievements stemming from WG4 will be presented during the 2017 EGU GA. These are: (i) The collection of thorough information on the state-of-the-art, ongoing studies, problems and future research needs on the topics of interest for this WG; (ii) The performance of a plethora of interesting case studies in important sites all over Europe, including well-known historical places such as Stonehenge (United Kingdom), Carnuntum (Austria), the Wawel Cathedral (Cracow, Poland), the Tholos Tomb of Acharnon (Athens, Greece), the Łazienki Royal Palace (Warsaw, Poland), and more; (iii) WG4 contributed to the TU1208 Education Pack, an open educational package conceived to teach GPR in University

  18. The non-destructive control, a major constituent of quality

    International Nuclear Information System (INIS)

    Anon.

    1998-01-01

    The number of continuous research and development works about non-destructive control in all sectors of activity is justified by the increasing need for high quality materials without anomalies. This paper gives a overview of the state of the art and of the recent trends in non-destructive testing researches in different sectors: aeronautics, nuclear industry, automotive industry. New studies and techniques are presented: ultrasonic testing of welds on large diameter pipes, automated applications of ultrasonic testing, ultrasound/computer-aided design coupling, pressure vessels inspection using acoustic emission testing (leaks detection, application to composite materials), numerical radiography (image visualisation and processing), magnetic testing (steel damage detection using Barkhausen noise testing), 'shearography' (detection of the loss of thickness in pipes due to corrosion), X-ray tomography (density measurement of sintered steels, fluid flow calculations in automobile parts). (J.S.)

  19. Influence of porosity and relative humidity on consolidation of dolostone with calcium hydroxide nanoparticles: Effectiveness assessment with non-destructive techniques

    International Nuclear Information System (INIS)

    Lopez-Arce, P.; Gomez-Villalba, L.S.; Pinho, L.; Fernandez-Valle, M.E.; Alvarez de Buergo, M.; Fort, R.

    2010-01-01

    Slaked lime (Ca(OH) 2 ) nanoparticles were exposed at 33% and 75% relative humidity (RH) to consolidate dolostone samples used in historical buildings. Non-destructive techniques (NDT) were applied to determine the chemical, morphological, physical and hydric properties of the stone samples, before and after 20 days treatment. Morphological and mineralogical characterisation of the nanoparticles was performed. 75% RH favors the consolidation process studied under Environmental Scanning Electron Microscopy (ESEM-EDS), spectrophotometry, capillarity, water absorption under vacuum, ultrasound velocity, Nuclear Magnetic Resonance (imaging and relaxometry) and Optical Surface Roughness analyses. At 75% RH the nanoparticles fill the pores and inter-crystalline dolomite grain contacts but do not favor calcite re-crystallization as it occurs at 33% RH. The ESEM, XRD and TEM analyses under 75% RH reveal the fast transformation of portlandite (Ca(OH) 2 ) into vaterite (CaCO 3 ), monohydrocalcite (CaCO 3 . H 2 O) and calcite (CaCO 3 ), and eventually the physical and hydric properties of the stones significantly improve. New insights are provided for the assessment of consolidation effectiveness of porous carbonate stones with calcium hydroxide nanoparticles under optimum RH conditions combining several NDT.

  20. Influence of porosity and relative humidity on consolidation of dolostone with calcium hydroxide nanoparticles: Effectiveness assessment with non-destructive techniques

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Arce, P., E-mail: plopezar@geo.ucm.es [Group of Applied Petrology to Heritage Conservation, Institute of Economic Geology (CSIC-UCM), Madrid 28040 (Spain); Gomez-Villalba, L.S. [Group of Applied Petrology to Heritage Conservation, Institute of Economic Geology (CSIC-UCM), Madrid 28040 (Spain); Pinho, L. [Center of Construction Studies, Engineering Faculty, Oporto University, Oporto 4200-465 (Portugal); Fernandez-Valle, M.E. [Research Assistance Center, Nuclear Magnetic Resonance (Pluridisciplinar Institute), Complutense University of Madrid (UCM), Madrid 28040 (Spain); Alvarez de Buergo, M.; Fort, R. [Group of Applied Petrology to Heritage Conservation, Institute of Economic Geology (CSIC-UCM), Madrid 28040 (Spain)

    2010-02-15

    Slaked lime (Ca(OH){sub 2}) nanoparticles were exposed at 33% and 75% relative humidity (RH) to consolidate dolostone samples used in historical buildings. Non-destructive techniques (NDT) were applied to determine the chemical, morphological, physical and hydric properties of the stone samples, before and after 20 days treatment. Morphological and mineralogical characterisation of the nanoparticles was performed. 75% RH favors the consolidation process studied under Environmental Scanning Electron Microscopy (ESEM-EDS), spectrophotometry, capillarity, water absorption under vacuum, ultrasound velocity, Nuclear Magnetic Resonance (imaging and relaxometry) and Optical Surface Roughness analyses. At 75% RH the nanoparticles fill the pores and inter-crystalline dolomite grain contacts but do not favor calcite re-crystallization as it occurs at 33% RH. The ESEM, XRD and TEM analyses under 75% RH reveal the fast transformation of portlandite (Ca(OH){sub 2}) into vaterite (CaCO{sub 3}), monohydrocalcite (CaCO{sub 3} . H{sub 2}O) and calcite (CaCO{sub 3}), and eventually the physical and hydric properties of the stones significantly improve. New insights are provided for the assessment of consolidation effectiveness of porous carbonate stones with calcium hydroxide nanoparticles under optimum RH conditions combining several NDT.

  1. Non-destructive controls

    International Nuclear Information System (INIS)

    Nouvet, A.

    1978-01-01

    The non-destructive controls permit, while respecting their integrity, the direct and individual examination of parts or complete objects as they are manufactured, as well as to follow the evolution of their eventual defects while in operation. The choice of control methods depends on the manufacturing process and shapes of parts, on the physical properties of their components as well as the nature, position and size of the defects which are likely to be detected. Whether it is a question of controls by means of ionizing radiation, flux of neutrons, ultrasons, acoustic source, sweating, magnetoscopy. Foucault currents, thermography, detection of leaks or non-destructive metallography, each has a limited field of application such that they are less competitive than complementary [fr

  2. Non destructive testing and neutron radiography in 1994; Les controles non destructifs et la neutronographie en 1994

    Energy Technology Data Exchange (ETDEWEB)

    Bayon, G.

    1994-12-31

    Neutron radiography has been considered for a long time as a promising technique; however it plays a minor part in the world of non destructive testing today, due to the lack of suitable neutron sources and lack of new industrial applications. This paper reviews the present status of neutron sources, neutron radiography activities, especially in France (such as the neutron-capture-issued secondary radiation spectrometry), in nuclear, aerospace, aeronautical and metallurgical sectors, and the last applications of neutron dynamic imaging. 9 refs.

  3. Integrate models of ultrasonics examination for NDT expertise

    International Nuclear Information System (INIS)

    Calmon, P.; Lhemery, A.; Lecoeur-Taibi, I.; Raillon, R.

    1996-01-01

    For several years, the French Atomic Energy Commission (CEA) has developed a system called CIVA for multiple-technique NDE data acquisition and processing. Modeling tools for ultrasonic non-destructive testing have been developed and implemented within this allowing direct comparison between measured and predicted results. These models are not only devoted to laboratory uses bus also must be usable by ultrasonic operators without special training in simulation techniques. Therefore, emphasis has been on finding the best compromise between as accurate as possible quantitative predictions and ease, simplicity and speed, crucial requirements in the industrial context. This approach has led us to develop approximate models for the different phenomena involved in ultrasonic inspections: radiation, transmission through interfaces, propagation, scattering by defects and boundaries, reception etc. Two main models have been implemented, covering the most commonly encountered NDT configurations. At first, these two models are shortly described. Then, two examples of their applications are shown. Based on the same underlying theories, specific modeling tools are proposed to industrial partners to answer special requirements. To illustrate this, an example is given of a software used a tool to help experts's interpretation during on-site french PWR vessel inspections. Other models can be implemented in CIVA when some assumptions made in the previous models Champ-Sons and Mephisto are not fulfilled, e. g., when less-conventional testing configurations are concerned. We briefly presents as an example a modeling study of echoes arising from cladded steel surfaces achieved in the laboratory. (authors)

  4. Ultrasonic non-destructive testing on CFC monoblock divertor mock-up

    International Nuclear Information System (INIS)

    Ezato, K.; Taniguchi, M.; Sato, K.; Araki, M.; Akiba, M.

    2001-01-01

    Non-destructive ultrasonic testing has been applied for the characterization of joints by means of a polymer transducer. One of the advantages of the polymer transducer is flexibility in its shape and the possibility to install multiple transducers in one probe, which can reduce the time for inspection. As a first step, the size effect of the transducer on the resolution and sensitivity was examined to detect the joint flaw. Transducers with circumferential angles of 5 , 10 and 30 were tested. For this test a small divertor element with a driller hole was prepared, which simulates a joint defect. The transducers with angles of 30 could not characterize the size of the artificial joint flaw. On the contrary, the size of the artificial defect was successfully detected with an accuracy of 90% by means of the transducers with angles of 5 and 10 . From the viewpoint of the sensitivity of the detection of the joint flaw, the transducer with the angle of 10 is appropriate because it could detect the largest intensity of the reflected signal caused by the same artificial defect of the joint interface. (orig.)

  5. Agreement on economic and technological cooperation between the Federal Republic of Germany and the GDR. Project part 3.2, ''NDT and QA''. Project task 2.11. Experiments with the full-size vessel in Stuttgart for selection of practice-relevant non-destructive testing methods for evaluation of the value and performance of recurrent inspections of reactor components. Final report

    International Nuclear Information System (INIS)

    Betzold, K.; Brinette, R.; Bonitz, F.

    1992-01-01

    The efficiency of NDT methods such as ALOK, SAFT, EMUS, LLT, phased array, and multi-frequency eddy current testing which are generally used for reactor components recurrent inspection has been verified with experiments using two test specimens. These are a section of a main coolant pipe and the full-size vessel installed at MPA-Stuttgart, furnished with PWR test bodies with artificial defects and artificially applied natural defects. The defects have been detected with commercial probes as well as with probes optimized for the NDT methods EMUS, LLT, phased array, and multi-frequency eddy current testing. Type, location, orientation and geometry of the defects have been measured, also recording the influence of type of defect on the efficiency of the NDT methods, in order to reveal problems linked with the various methods as well as their advantages. Further tests have been made for evaluation of a combination of ALOK and SAFT using novel, specifically developed test probes, and a combination of ALOK and phased array testing. (orig.) [de

  6. Application of advanced non-destructive testing to evaluate the foundation depth of the existing structures

    International Nuclear Information System (INIS)

    Nguyen Le Son; Nguyen Phuoc Lan; Pham The Hung; Vu Huy Thuc; Phan Chanh Vu; Bui Xuan Huy; Tran Thanh Luan; Nguyen Kien Chinh; Le Danh Chuan

    2004-01-01

    situations encountered in practice, e.g. a stiffer layer near the bottom of a deep foundation. Due to the signal attenuates beyond recognition, variation of compression wave velocity with depth and the uncertainty in the travel paths, the distance between the foundation and access hole less than 1.5 m should be selected. At greater distances, the interpretations of the compiled first arrival profiles become more difficult, especially in the conditions where subsurface conditions are unknown. A suggested combination of the parallel seismic technique with gamma logging can improve the reliability of interpreted depths for the complex soil strata. The acquired capabilities are valuable asset that can clearly be utilized as the effort to apply advanced non-destructive (NDT) technique - PSM to the rehabilitation investigations of existing structures. (author)

  7. Implementation of the non-destructive ultrasound testing by immersion through the transmission technique, applied to the quality control of nuclear fuel plates

    International Nuclear Information System (INIS)

    Medina Jofre, David Christian

    2014-01-01

    Within the framework of global development, which seeks to reduce the enrichment of U 235 in nuclear fuels for research reactors, the Fuel Elements Plant (PEC) of the Chilean Nuclear Energy Commission (CCHEN) has worked with the Idaho National Laboratory (INL-USA), for the fabrication of high density fuel plates based on the dispersion of Uranium-Molybdenum alloy powders (UMo), which are subjected to inspections and tests to qualify as a compliant product for use in nuclear research reactors. It is in this matter where the Non Destructive Test (NDT) of immersion ultrasound used in both facilities differs in its acceptance criteria, when is used different testing techniques; On the one hand, the PEC uses the pulse-echo technique, while the INL uses the transmission technique. Therefore, the present work is focused on the implementation of the ultrasound by immersion using the transmission technique. During the development of the work, the physical and virtual configuration of the ultrasound equipment was possible and elaborate an operation procedure, which allows to inspect through this technique, a series of fuel plates based on UMo and U 3 Si 2 powders, with different characteristics. The results allow to characterize the signals obtained in fuel plates according to the nuclear fuel material used. There is an inverse relationship between the uranium load per unit volume (uranium density, gU/cm 3 ) used in the fuel plate and the transmittance of the ultrasonic beam through the areas where there is nuclear fuel material (meat); the effect produced by a dispersed combustible material is observed and it is possible to identify discontinuities that may be present in the fuel plate. Finally, an inspection technical instruction for U 3 Si 2 fuel plates is elaborated, where acceptance and rejection criteria are defined

  8. Comparison of NDT techniques to evaluate CFRP. Results obtained in a MAIzfp round robin test

    Energy Technology Data Exchange (ETDEWEB)

    Grosse, Christian U. [Technische Univ. Muenchen (Germany). Chair of Non-destructive Testing; Goldammer, Matthias; Grager, Jan-Carl [Siemens AG Corporate Technology, Muenchen (Germany); and others

    2016-10-01

    Fiber reinforced polymeric materials are used for lightweight constructions and are an integral part of cars, airplanes or rotor blades of wind turbines. Nondestructive testing (NDT) methods play an increasing role concerning the manufacturing process and the inspection during lifetime. The selection of the best NDT technique for a certain application depends - of course - on many factors including the type, position and size of the defect to be detected but also on secondary issues like accessibility, automation, testing costs, reliability and resolution to mention only some. For the more technical-scientific part of these issues, the determination of the probability of detection (PoD) plays a significant role. Early in the design process questions should be raised concerning the probability with which certain attribute of interest (a defect that has an effect on the structural behavior) can be detected (and localized) in a certain construction. Several defect types have been identified to be critical like impact damages, undulations and porosity. Test samples out of differently processed Carbon Fiber-Reinforced Polymers (CFRP) as used in the automotive or aeronautical industry have been produced including defects of different type and size. In order to determine the PoD and to check whether a technique is applicable the different partners applied a broad variety of selected NDT techniques including Micro CT, Ultrasound (including phased-array and air-coupled UT), Active Thermography, Eddy Current, Vibration and Visual Analysis and Local Acoustic Resonance Spectroscopy (LARS). The presentation will summarize some of the results of the experiments and ongoing data analysis.

  9. Comparison of NDT techniques to evaluate CFRP. Results obtained in a MAIzfp round robin test

    International Nuclear Information System (INIS)

    Grosse, Christian U.

    2016-01-01

    Fiber reinforced polymeric materials are used for lightweight constructions and are an integral part of cars, airplanes or rotor blades of wind turbines. Nondestructive testing (NDT) methods play an increasing role concerning the manufacturing process and the inspection during lifetime. The selection of the best NDT technique for a certain application depends - of course - on many factors including the type, position and size of the defect to be detected but also on secondary issues like accessibility, automation, testing costs, reliability and resolution to mention only some. For the more technical-scientific part of these issues, the determination of the probability of detection (PoD) plays a significant role. Early in the design process questions should be raised concerning the probability with which certain attribute of interest (a defect that has an effect on the structural behavior) can be detected (and localized) in a certain construction. Several defect types have been identified to be critical like impact damages, undulations and porosity. Test samples out of differently processed Carbon Fiber-Reinforced Polymers (CFRP) as used in the automotive or aeronautical industry have been produced including defects of different type and size. In order to determine the PoD and to check whether a technique is applicable the different partners applied a broad variety of selected NDT techniques including Micro CT, Ultrasound (including phased-array and air-coupled UT), Active Thermography, Eddy Current, Vibration and Visual Analysis and Local Acoustic Resonance Spectroscopy (LARS). The presentation will summarize some of the results of the experiments and ongoing data analysis.

  10. Artificial neural networks in NDT

    International Nuclear Information System (INIS)

    Abdul Aziz Mohamed

    2001-01-01

    Artificial neural networks, simply known as neural networks, have attracted considerable interest in recent years largely because of a growing recognition of the potential of these computational paradigms as powerful alternative models to conventional pattern recognition or function approximation techniques. The neural networks approach is having a profound effect on almost all fields, and has been utilised in fields Where experimental inter-disciplinary work is being carried out. Being a multidisciplinary subject with a broad knowledge base, Nondestructive Testing (NDT) or Nondestructive Evaluation (NDE) is no exception. This paper explains typical applications of neural networks in NDT/NDE. Three promising types of neural networks are highlighted, namely, back-propagation, binary Hopfield and Kohonen's self-organising maps. (Author)

  11. The Non-Destructive Test of Steel Corrosion in Reinforced Concrete Bridges Using a Micro-Magnetic Sensor

    Directory of Open Access Journals (Sweden)

    Hong Zhang

    2016-09-01

    Full Text Available This paper presents a non-destructive test method for steel corrosion in reinforced concrete bridges by using a 3-dimensional digital micro-magnetic sensor to detect and analyze the self-magnetic field leakage from corroded reinforced concrete. The setup of the magnetic scanning device and the measurement mode of the micro-magnetic sensor are introduced. The numerical analysis model is also built based on the linear magnetic charge theory. Compared to the self-magnetic field leakage data obtained from magnetic sensor-based measurement and numerical calculation, it is shown that the curves of tangential magnetic field at different lift-off height all intersect near the edge of the steel corrosion zone. The result indicates that the intersection of magnetic field curves can be used to detect and evaluate the range of the inner steel corrosion in engineering structures. The findings of this work propose a new and effective non-destructive test method for steel corrosion, and therefore enlarge the application of the micro-magnetic sensor.

  12. Application of golay complementary coded excitation schemes for non-destructive testing of sandwich structures

    Science.gov (United States)

    Arora, Vanita; Mulaveesala, Ravibabu

    2017-06-01

    In recent years, InfraRed Thermography (IRT) has become a widely accepted non-destructive testing technique to evaluate the structural integrity of composite sandwich structures due to its full-field, remote, fast and in-service inspection capabilities. This paper presents a novel infrared thermographic approach named as Golay complementary coded thermal wave imaging is presented to detect disbonds in a sandwich structure having face sheets from Glass/Carbon Fibre Reinforced (GFR/CFR) laminates and core of the wooden block.

  13. Analysis of unbalanced sensor in eddy current method of non destructive testing

    International Nuclear Information System (INIS)

    Chegodaev, V.V.

    2001-01-01

    Different types of sensors are used in eddy current method of non-destructive testing. The choosing of sensor type depends on control object. Different types of sensors can have the same schemes of cut-in in device for formation of information signal. The most common scheme of sensor cut-in is presented. The calculation of output voltage when the sensor is on a segment of the control object, which has not defect is made. The conditions of balancing are adduced and it was shown that the balancing of sensor is very difficult. The methods of compensation or account of voltage of an imbalance are indicated. (author)

  14. Pipe robots for internal inspection, non-destructive testing and machining of pipelines

    International Nuclear Information System (INIS)

    Reiss, Alexander

    2016-01-01

    Inspector Systems is a specialist in manufacturing of tethered self-propelled pipe robots for internal inspection, non-destructive testing and machining of pipeline systems. Our industrial sectors, which originates from 30 year experience in the nuclear industry, are Gas and Oil (On-/Offshore, Refineries), Chemical, Petrochemical, Water etc. The pipe robots are able to get inserted through poor access points (e.g. valves) and to pass in bi-directional travelling vertical sections and numerous bends with small arc radius. The paper describes the system concept and performance of the pipe robot technology. A modular construction allows to equip the robots with different operational elements for the respective application.

  15. Issues of weapons of mass destruction non-proliferation in Tajikistan

    International Nuclear Information System (INIS)

    Mirsaidov, U.M.

    2010-01-01

    This article is devoted to issues of weapons of mass destruction non-proliferation in Tajikistan. Over a period of 20 century, starting from First World War, the weapons of mass destruction arouse serious concern of world community. Geneva protocol of 1925 prohibits the use of chemical and biological weapons. Once nuclear weapon was created, the weapons of mass destruction distributions become the subject of high concern. Besides, during the end of 'cold war', regional conflicts, collapse of Soviet Union, as well as access to sensitive technologies considerably increase the danger of weapons of mass destruction distribution. More than 10 countries have active programs, relating to weapons of mass destruction and, possibly, more than ten countries have potential to start implementing such kinds of programs. Nowadays, trans national organized criminal groups and international terrorist networks are appeared in the world scene, which show interest in obtaining an access to sensitive materials, technologies, weapons and their distribution. After 11 September events, the risk of such weapons of mass destruction components use by such forces for Governments blackmail become real scene, which, despite of low possibility of this threat implementation, could have very serious and disastrous consequences. International community responded to these problems and challenges, basically through the following actions, which is detailed regime development of multilateral international treaties, directed to weapons of mass destruction distribution prevention. Non-proliferation treaty of nuclear weapons, Convention on prohibition of chemical weapons and Convention on prohibition of biological and toxin weapons are some of them. As it is known, Tajikistan signed all these treaties. For different reasons these treaties were subject of serious tests. Nuclear weapons tests in India and Pakistan in 1998 year, actual Israel status as state having nuclear weapon and North Korean program on

  16. Non-invasive studies of objects from cultural heritage

    International Nuclear Information System (INIS)

    Lehmann, Eberhard H.; Vontobel, Peter; Deschler-Erb, Eckhard; Soares, Marie

    2005-01-01

    In order to preserve the objects from European cultural heritage in its structure and shape for our future generations, there is a need to perform all investigations on important samples non-destructively or with very limited amounts of material. Among the non-destructive testing (NDT) methods available for this purpose there are those that need large installations such as accelerators and reactors to provide different kinds of radiation (X-ray, protons, neutrons, gamma, etc.). Therefore, a link between the specialists working at such facilities with scientists from museums and archaeological institutes is necessary. This paper describes the status of a European network dedicated to the NDT of museum objects (COST-G8) as an overview. In more detail, the activities in Switzerland will be presented where PSI plays a role for the study with neutrons and X-rays. Most of the investigated samples of Swiss collections are from Celtic or Roman origin. The superposition of both applied methods gives the opportunity to decide about the structure of objects and artefacts from restoration work applied later to the virgin excavation status. The presented examples will give an overview about opportunities of the applied methods and their limitations in some cases. This should be motivating to adapt the demonstrated methods to other similar objects of historical relevance

  17. Limits to the Recognizability of Flaws in Non-Destructive Testing Steam-Generator Tubes for Nuclear-Power Plants

    International Nuclear Information System (INIS)

    Kuhlmann, A.; Adamsky, F.-J.

    1965-01-01

    In the Federal Republic of Germany there are nuclear reactors under construction with steam generators inside the reactor pressure-vessel. As a result design repairs of steam- generator tubes are very difficult and cause large shut-down times of the nuclear-power plant. It is known that numerous troubles in operating conventional power plants are results of steam-generator tube damages. Because of the high total costs of these reactors it. is necessary to construct the steam generators especially in such a manner that the load factor of the power plant is as high as possible. The Technischer Überwachungs-Verein Rheinland was charged to supervise and to test fabrication and construction of the steam generators to see that this part of the plant was as free of defects as possible. The experience gained during this work is of interest for manufacture and construction of steam generators for nuclear-power plants in general. This paper deals with the efficiency limits of non-destructive testing steam-generator tubes. The following tests performed will be discussed in detail: (a) Automatic ultrasonic testing of the straight tubes in the production facility; (b) Combined ultrasonic and radiographic testing of the bent tubes and tube weldings; (c) Other non-destructive tests. (author) [fr

  18. Non-destructive testing of rocket propellant quality using -X-ray radiography

    International Nuclear Information System (INIS)

    Arayaprecha, W.

    1979-01-01

    Currently, X-rays radiography has been used extensively in various industries. In this thesis, X-rays has been used in the study of compaction of rocket propellant. For a rocket, to gain an accurate guidance result, the propellant used must be mixed and compacted thoroughly. The quality control of the production of propellant sticks must be carefully done. In this study of non-destructive quality testing of rocket propellant, at first the ultrasonic rays was used to test its homogeneity. However, because the density of the propellant was too low, the test equipment could not detect any reflected signals from the propellant being tested. Then the new procedure using X-rays radiography was tried. The variables in the test procedure were voltage, amperage and the focal-film distance. Also different types of films were used. The results of this experiment were then used to construct an exposure chart for testing the homogeneity of the rocket propellant. The advantage of this chart is that a tester can use this table with propellant sticks of different sizes if they have similar density to the density specified in the chart. Also, it is not necessary that the mixture of the testing propellant be the same as the ones used to construct this chart

  19. Assessment of hydrogen levels in Zircaloy-2 by non-destructive testing

    International Nuclear Information System (INIS)

    De, P.K.; John, J.T.; Banerjee, S.; Jayakumar, T.; Thavasimuthu, M.; Raj, B.

    1998-01-01

    A non-destructive assessment of Zircaloy-2 samples charged with hydrogen in the range of 50 to 1150 mg/kg has been made using ultrasonic and eddy current testing. It has been found that the ratio of the longitudinal to the shear wave velocity is a parameter which can be directly correlated with the hydrogen content up to a level of 100 to 200 mg/kg. This parameter together with the values of longitudinal and shear wave velocities can be utilized in a multi-parametric correlation approach for estimation of higher levels of the hydrogen content (up to 1150 mg/kg). The sensitivity at different ranges has been found to be acceptable. Ultrasonic attenuation measurements at higher frequencies and eddy current test parameter are also effective for estimation of hydrogen levels above 250 mg/kg in zirconium alloys. Microstructural characterization including TEM studies have been carried out for studying the influence of the type and the morphology of hydride precipitates on ultrasonic parameters. (orig.)

  20. Cleaner production technology for the NDT industry

    International Nuclear Information System (INIS)

    Relunia, Estrella D.; Mateo, Alejandro J.

    2001-01-01

    This paper discusses te wastes generated from the conduct of nondestructive testing (NDT) techniques and operations like NDT film processing and the systems to reduce water pollution and the film system quality control. Discussions on clean technology production concepts and philosophy is also discussed. A case study on cleaner production technology where a process and equipment modifications and a product substitution were implemented is presented. The equipment modification and product substitution eliminated the use of 1,1,1-trichloroethane in its cleaning operation. (Author)

  1. THz QCL-based active imaging dedicated to non-destructive testing of composite materials used in aeronautics

    Science.gov (United States)

    Destic, F.; Petitjean, Y.; Massenot, S.; Mollier, J.-C.; Barbieri, S.

    2010-08-01

    This paper presents a CW raster-scanning THz imaging setup, used to perform Non-Destructive Testing of KevlarTMand carbon fibre samples. The setup uses a 2.5 THz Quantum Cascade Laser as a source. Delamination defect in a Kevlar sample was detected showing a sensitivity to laser polarization orientation. Detection of a break in a carbon/epoxy sample was also performed.

  2. THz QCL-based active imaging dedicated to non-destructive testing of composite materials used in aeronautics

    OpenAIRE

    Destic, Fabien; Petitjean, Yoann; Massenot, Sébastien; Mollier, Jean-Claude; Barbieri, Stefano

    2010-01-01

    This paper presents a CW raster-scanning THz imaging setup, used to perform Non-Destructive Testing of KevlarTMand carbon fibre samples. The setup uses a 2.5 THz Quantum Cascade Laser as a source. Delamination defect in a Kevlar sample was detected showing a sensitivity to laser polarization orientation. Detection of a break in a carbon/epoxy sample was also performed.

  3. Destructive examination of the PVRC plates Nos. 50/52, 51/53 and 204

    International Nuclear Information System (INIS)

    1979-01-01

    The present document describes the destructive examination of the blocks required to obtain the precise and complete description of all the defects the NDT techniques were supposed to find, locate and size. This precise map of defects has to be used as the reference for the PISC trial results evaluation. The destructive examination was discontinued once NDT, conducted under very favourable conditions on small sections of the plate, was able to detect all defects larger than or equal to 1 mm in diameter, and also to size the defects when only one portion of the defect was visible after cutting. Complete destructive examination has therefore only been carried out on some sections, either when it was absolutely necessary, or in order to give illustrative examples. In order to avoid any doubt as to the original position of a defect, scrupulous attention has been paid to marking the specimen pieces at all stages of the destructive examination

  4. Survey of NDT techniques, services, qualifications and certification of NDT personnel-preliminary results

    International Nuclear Information System (INIS)

    Aleta, C.R.; Kinilitan, V.E.; Lailo, R.M.

    1987-01-01

    This paper presented the results of a survey conducted to determine the profile of the NDT industry including its problems. A questionnaire designed in three parts 1) present practices on qualification and certification, 2) NDT equipment and 3) services and problems in NDT. Of the 36 firms contacted only 20 responded. Results indicated the following: a) most firms are engaged in four (4) main techniques, RT, UT, MT and PT. Only 2 indicated capability of ET. b) level III personnel are relatively few in number, c) most firms allow the ASNT recommendation as a basis for their qualifications and certification and are in favor of standardization of the qualification and certification process and supportive of a national center for training of NDT personnel and d) most firms perceived the lack of adequate repair/maintenance skills/facilities, followed by high cost of equipment and the lack of national standard for qualification and certification. (ELC)

  5. Non-destructive sampling of ancient insect DNA

    DEFF Research Database (Denmark)

    Thomsen, Philip Francis; Elias, Scott; Gilbert, Tom

    2009-01-01

    BACKGROUND: A major challenge for ancient DNA (aDNA) studies on insect remains is that sampling procedures involve at least partial destruction of the specimens. A recent extraction protocol reveals the possibility of obtaining DNA from past insect remains without causing visual morphological...... of 77-204 base pairs (-bp) in size using species-specific and general insect primers. CONCLUSION/SIGNIFICANCE: The applied non-destructive DNA extraction method shows promising potential on insect museum specimens of historical age as far back as AD 1820, but less so on the ancient permafrost......-preserved insect fossil remains tested, where DNA was obtained from samples up to ca. 26,000 years old. The non-frozen sediment DNA approach appears to have great potential for recording the former presence of insect taxa not normally preserved as macrofossils and opens new frontiers in research on ancient...

  6. Destructive and non-destructive tests for radioactive waste packages Task 3 Characterization of radioactive waste forms. A series of final reports (1985-89) No 43

    International Nuclear Information System (INIS)

    Odoj, R.

    1991-01-01

    On the basis of preliminary waste acceptance requirements quality control of radioactive waste has to be performed prior to interim storage or final disposal. The quality control can either be achieved by random tests on conditioned radioactive waste packages or by process qualification of the conditioning processes. One of the most important criteria is the activity of the radioactive waste product or packages. To get some first information on the waste package γ-spectrometric measurement is performed as non-destructive test. Besides the γ-emitting nuclides the α and β-emitting nuclides can be estimated by calculation if the waste was generated in nuclear power plants and the nuclide relations are known. If the non-destructive determination of nuclides is not sufficient or the non-radioactive content of the waste packages has to be identified sampling from the waste packages has to be performed. This can best be done by core drilling. To avoid the need of water for cooling the drill head, air cooled core drilling is investigated. As mixed wastes is not allowed for final disposal the determination of possible organic toxic materials like PCB, dioxin and furane-compounds in cemented wastes is conducted by GC-MS-investigations. For getting more knowledge in the field of process qualification concerning super compaction, instrumentation of the super compaction process is investigated and tested

  7. Evaluation of SHM system produced by additive manufacturing via acoustic emission and other NDT methods.

    Science.gov (United States)

    Strantza, Maria; Aggelis, Dimitrios G; de Baere, Dieter; Guillaume, Patrick; van Hemelrijck, Danny

    2015-10-21

    During the last decades, structural health monitoring (SHM) systems are used in order to detect damage in structures. We have developed a novel structural health monitoring approach, the so-called "effective structural health monitoring" (eSHM) system. The current SHM system is incorporated into a metallic structure by means of additive manufacturing (AM) and has the possibility to advance life safety and reduce direct operative costs. It operates based on a network of capillaries that are integrated into an AM structure. The internal pressure of the capillaries is continuously monitored by a pressure sensor. When a crack nucleates and reaches the capillary, the internal pressure changes signifying the existence of the flaw. The main objective of this paper is to evaluate the crack detection capacity of the eSHM system and crack location accuracy by means of various non-destructive testing (NDT) techniques. During this study, detailed acoustic emission (AE) analysis was applied in AM materials for the first time in order to investigate if phenomena like the Kaiser effect and waveform parameters used in conventional metals can offer valuable insight into the damage accumulation of the AM structure as well. Liquid penetrant inspection, eddy current and radiography were also used in order to confirm the fatigue damage and indicate the damage location on un-notched four-point bending AM metallic specimens with an integrated eSHM system. It is shown that the eSHM system in combination with NDT can provide correct information on the damage condition of additive manufactured metals.

  8. Improvement in reliability and accuracy of heater tube eddy current testing by integration with an appropriate destructive test

    International Nuclear Information System (INIS)

    Giovanelli, F.; Gabiccini, S.; Tarli, R.; Motta, P.

    1988-01-01

    A specially developed destructive test is described showing how the reliability and accuracy of a non-destructive technique can be improved if it is suitably accompanied by an appropriate destructive test. The experiment was carried out on samples of AISI 304L tubes from the low-pressure (LP) preheaters of a BWR 900 MW nuclear plant. (author)

  9. Non destructive analysis apparatus by eddy currents for non magnetic metallic products

    International Nuclear Information System (INIS)

    Coutanceau-Monteil, N.; Billy, F.; Bernard, A.

    1993-01-01

    The device for non destructive testing of nonmagnetic metallic surfaces uses eddy currents with two independent receptors at different positions around the emitting coil which is fed with current impulses and whose axis is parallel to the surface under study. 4 figs

  10. Combination of GPR with other NDT techniques in different fields of application - COST Action TU1208

    Science.gov (United States)

    Solla, Mercedes; Pérez-Gracia, Vega; Fontul, Simona; Santos-Assunçao, Sonia; Kucukdemirci, Melda

    2017-04-01

    During the last decades, there has been a continuous increase in the use of non-destructive testing (NDT) applied to many aspects related to civil engineering and other fields such as geology or sedimentology, archaeology and either monument or cultural heritage. This is principally due to the fact that most NDT methods work remotely, that is, without direct contact, while adding information of non-visible areas. Particularly, geophysics has significantly benefited the procedures for inspection and also, successfully solved some of the limitations of traditional methods such as a lack of objectiveness, destructive testing, loss of safety during infrastructure inspection, and also, low rates of production. The different geophysical methodologies are based on the measurement of physical properties of media. However, all geophysical methods are sensitive to different physical parameters and the success of these methods is related to the nature of the buried features themselves, in terms of their physical and geometric properties, soil conditions, operational factors such as the sensitivity of equipment and etc. Consequently, taking into account all of these factors, to obtain reliable and complementary results, multiple geophysical methods rather than single method and moreover data integration approaches are recommended to provide accurate interpretations. This work presents some examples of combination of Ground-Penetrating Radar (GPR) with other NDT techniques in different fields of application (pavements/railways, archaeological sites, monuments, and stratigraphy in beaches and bathymetries). An example of combination of GPR and Falling Weight Deflectometer (FWD) to assess the bearing capacity of flexible pavement is described as the most efficient structural evaluation of pavements and one of the most commonly applications of the methods on civil engineering inspections. Results of archaeogeophysical field surveys in Turkey are also included by combining the most

  11. Corrosion and deposit evaluation in industrial plants by non destructive testing method

    International Nuclear Information System (INIS)

    Azali Muhammad; Abd Razak Hamzah; Abd Aziz Mohamed; Mohd Pauzi Ismail; S Saad; S Sayuti; S Ahmad

    2000-01-01

    In petrochemical plants, the detection of corrosion and evaluation of deposit in insulated pipes using a radiography method are very challenging tasks. This main degradation problem experienced by pipelines is due to water condensation. It will cause deposit and scale inside the pipe, as well as between the insulation and pipe for the cold temperature pipes. On the other hand, for the hot temperature pipes the main problem is mainly due to corrosion/erosion attack inside the pipe. In the case of corrosion study one of the most important parameters in a piping or pipeline to be monitored and measured is that the wall thickness. In general, most pipeline corrosion monitoring and evaluation for both insulated and non-insulated pipes is done by using an ultrasonic method. The most common technique for corrosion is that based on the A-Scan, using either a normal flow detector or some form of dedicated equipment. However, with recent development of ultrasonic technology, more advance method, namely B-Scan and C-scan techniques are also available. The most notable disadvantage of using this current method is that the insulation covered the pipe has to be removed before the inspection can be carried out and this is considered as not so cost effective. Due to this reason other alternative NDT method, namely radiographic testing method has been studied. The testing technique used in this studied are tangential technique and double wall radiographic technique which involve studying the changing in density of radiographic film. The result found using tangential technique is consistent with real thickness of the pipe. However for the later technique the result is only achieved with a reasonable accuracy when the changing in wall thickness is very small. The result of the studies is discussed in this paper

  12. Guidelines on Training, Examination and Certification in Digital Industrial Radiology Testing (RT-D)

    International Nuclear Information System (INIS)

    2015-01-01

    The IAEA promotes industrial applications of non-destructive testing (NDT) technologies. NDT methods are primarily used for the detection, location and sizing of surface and internal defects in, for example, welds, castings, forging, composite materials and concrete. Various NDT methods are also used in the preventive maintenance of nuclear power plants, aircraft and bridges. Thus, NDT technology contributes significantly to the improvement of the quality of industrial products and the integrity of equipment and plants. The introduction of powerful computers and reliable imaging technology has had significant impact on traditional, nuclear based NDT methods. During the introduction phase in digital industrial radiography (DIR), the digitization of films provided economy of storage, efficiency of communication and accuracy of dimensional measurement. NDT laboratories are progressing rapidly with the digitalization of NDT data. New radiologic imaging techniques in DIR, using image intensifier systems, computed radiography with phosphor imaging plates and digital detector arrays, have increased the capacity for visualization of defects and have revealed new potential for accurate evaluation and measurement. The development of DIR has been of continuing interest to the IAEA and national NDT societies in recent years. This has led to the formation of projects on the development and application of advanced industrial radiography and tomography techniques under the IAEA Regional Co-operative Agreement for Research, Development and Training Related to Nuclear Science and Technology. This publication is intended to provide resource material to support vocational training to NDT radiographers on digital industrial radiography and to help NDT training centres and certification bodies in Member States to establish their own courses, curricula and certification systems in this technology

  13. 50 years of progress in NDT worldwide

    International Nuclear Information System (INIS)

    Farley, J.M.

    2013-01-01

    The paper is focussed on the progress which has been made over 50 years in the science, technology and application of NDT, particularly in relation to inspection of welds and safety critical components used in mining, oil and gas offshore, pipelines, power generation, petrochemical, shipbuilding, pulp and paper, mineral processing, and defence industries - both during manufacture and in-service. New techniques not dreamt of 50 years ago and new technology such as personal computers, lasers and robotics which are now common-place in everyday life have transformed some aspects of NDT. But other aspects have remained unchanged, including the continued use of the more basic NDT methods and the challenges of recruitment, training, certification and motivation of personnel. There have been major changes in the world scene over 50 years including the globalisation of trade, the emergence of new countries as industrial powers, and the ageing of safety critical infrastructure. These have impacted on NDT business and on the activities of the international NDT community (including ICNDT, the International Committee for NDT). The paper will conclude by introducing the activities championed by ICNDT to promote the understanding of the importance of NDT, to support the development of NDT Societies around the world, to educate users on the correct use of personnel certification and to pursue the objective of global harmonisation and recognition of third party certification.

  14. Nonlinear NDT: A Route to Conventional Ultrasonic Testing

    OpenAIRE

    Igor Solodov

    2016-01-01

    The bottleneck problem of nonlinear NDT is a low efficiency of conversion from fundamental frequency to nonlinear frequency components. In this paper, it is proposed to use a combination of nonlinearity with Local Defect Resonance (LDR) to enhance substantially the input-output conversion. Since LDR is an efficient resonance “amplifier” of the local vibrations, it manifests a profound nonlinearity even at moderate ultrasonic excitation level. As the driving frequency matches the LDR-frequency...

  15. Non-destructive controls in the steel tube industry

    International Nuclear Information System (INIS)

    Mondot, J.

    1978-01-01

    The main non-destructive control methods in the tube industry are reviewed: eddy currents, particularly well adapted to small tubes; magnetoscopic testing for weldless tubes; ultrasonic waves widely used for thick weldless tubes and weldings; radiography, to examine tube ends and the known questionable zones; measure of diameters by laser [fr

  16. Quality control of radioactive waste disposal container for borehole project

    International Nuclear Information System (INIS)

    Mohamad Pauzi Ismail; Suhairy Sani; Azhar Azmi; Ilham Mukhriz Zainal Abidin

    2014-01-01

    This paper explained quality control of radioactive disposal container for the borehole project. Non-destructive Testing (NDT) is one of the quality tool used for evaluating the product. The disposal container is made of 316L stainless steel. The suitable NDT method for this object is radiography, ultrasonic, penetrant and eddy current testing. This container will be filled with radioactive capsules and cement mortar is grouted to fill the gap. The results of NDT measurements are explained and discussed. (author)

  17. Acoustic wave focusing in complex media using Nonlinear Time Reversal coded signal processing

    Czech Academy of Sciences Publication Activity Database

    Dos Santos, S.; Dvořáková, Zuzana; Lints, M.; Kůs, V.; Salupere, A.; Převorovský, Zdeněk

    2014-01-01

    Roč. 19, č. 12 (2014) ISSN 1435-4934. [European Conference on Non-Destructive Testing (ECNDT 2014) /11./. Praha, 06.10.2014-10.10.2014] Institutional support: RVO:61388998 Keywords : ultrasonic testing (UT) * signal processing * TR- NEWS * nonlinear time reversal * NDT * nonlinear acoustics Subject RIV: BI - Acoustics http://www.ndt.net/events/ECNDT2014/app/content/Slides/590_DosSantos_Rev1.pdf

  18. The utilization of VUJE specialists non-destructive testing qualification at international cooperation with company TECNATOM

    International Nuclear Information System (INIS)

    Kuna, M.

    2006-01-01

    The utilization of VUJE specialists non-destructive testing qualification at cooperation with company TECNATOM. The obtain of QDA qualification for ET examination for possibility of qualified evaluation in the foreign NPP (USA, Brazil). The acquired practical experiences by evaluation of ET data from NPP Angra Brazil and Waltz Mill USA. The obtain of SNT-TC-1A and EPRI qualification for the UT evaluation of penetration tube welds measurements. The practical experience during the measurement on NPP Shearon Harris (Author)

  19. Integrated non-destructive assessment of relevant structural elements of an Italian heritage site: the Carthusian monastery of Trisulti

    International Nuclear Information System (INIS)

    Rainieri, C; Marra, A; Gargaro, D; Fabbrocino, G; Rainieri, G M; Pepe, M

    2015-01-01

    The analysis of historical structures in need of preservation and restoration interventions is a very complex task due to the large uncertainties in the characterization of structural properties and detailing in view of the structural response. Moreover, the predictive performance of numerical analyses and simulations depend on the availability of information about the constructional properties of the architectural complex, crack patterns and active degradation phenomena. In particular, local changes in material properties or damage due to past events (such as earthquakes) can affect individual structural elements. They can be hardly detected as a result of the maintenance interventions carried out over the centuries and the possibility to carry out limited or even no destructive investigations due to the historical relevance of the structure. Thus, non-destructive investigations play a fundamental role in the assessment of historical structures minimizing, at the same time, the invasiveness of interventions. The present paper deals with an explanatory case study concerning the structural investigations carried out in view of the seismic assessment of an Italian historical monument, the Carthusian monastery of Trisulti in Collepardo, erected in 1204 under Pope Innocenzo HI. The relevance of the case study is due to the application, in combination, of different NDT methods, such as sonic tests, and active and passive infrared thermography, in order to characterize relevant masonry elements. Moreover, an advanced system for the in-situ nondestructive vibration-based estimation of the tensile loads in ancient tie-rods is described and the main results obtained from its application for the characterization of the tie-rods of the cloister are presented. (paper)

  20. Fast and Accurate Non-destructive Testing System for Inspection of Canning Tubes

    DEFF Research Database (Denmark)

    Gundtoft, Hans Erik; Nielsen, E.

    1973-01-01

    The authors describe the development of an inspection bench for the non-destructive examination of canning tubes. The bench is original in that the internal diameter is calculated from exact measurement of the outer diameter and the wall thickness. The transducers for inspection and control are r...

  1. Predicting capacities of runways serving new large aircraft

    Directory of Open Access Journals (Sweden)

    K. Gopalakrishnan

    2008-03-01

    Full Text Available This paper presents a simplified approach for predicting the allowable load repetitions of New Large Aircraft (NLA loading for airfield runways based on Non-Destructive Test (NDT data. Full-scale traffic test results from the Federal Aviation Administration’s National Airport Pavement Test Facility (NAPTF were used to develop the NDT-based evaluation methodology. Four flexible test pavement sections with variable (unbound layer thicknesses were trafficked using six-wheel and four-wheel NLA test gears until the test pavements were deemed failed. Non-destructive tests using a Heavy Weight Deflectometer (HWD were conducted prior to the initiation of traffic testing to measure the pavement surface deflections. In the past, pavement surface deflections have been successfully used as an indicator of airport pavement life. In this study, the HWD surface deflections and the derived Deflection Basin Parameters (DBPs were related to functional performance of NAPTF flexible pavements through simple regression analysis. The results demonstrated the usefulness of NDT data for predicting the performance of airport flexible pavements serving the next generation of aircrafts.

  2. The Model Of One-Type Aircraft Fleet Behaviour While Service And Advantages SHM V. NDT Implementation

    Directory of Open Access Journals (Sweden)

    Lewitowicz Jerzy

    2014-12-01

    Full Text Available The paper defines the essence of durability characteristics of the designing structure of an airframe in terms of flight safety. Particular attention is drawn to one of the main factors influencing the durability characteristics of the airframe – diagnostics system for the health assessment of the airframe during the process of operation. The effectiveness of the use of integrated solutions to the structure of the airframe providing a continuous assessment of the technical condition is presented. Continuous diagnostics system integrated with the airframe, SHM, is classified as an intelligent solution. This paper presents a model of the behavior of one-type aircraft operating in the air operator’s fleet in terms of susceptibility to failure. Justified assumption in the description of this behavior, in the form of a “bathtub curve”. The analysis is supported by real data of failures. The benefits of using a continuous diagnostics system integrated with the airframe, SHM, is interpreted in relation to the classical approach with the use of non-destructive testing, NDT, for the three phases of the bathtub curve.

  3. Advanced uses of radiation in non-destructive evaluation

    International Nuclear Information System (INIS)

    Baldev Raj; Viswanathan, B.; Venkataraman, B.

    1998-01-01

    The increasing demand for newer materials and stringency of specifications, have expanded the scope of advanced uses of radiation in non-destructive evaluation of materials and industrial components. This paper highlights the application of some of the advanced techniques of radiography and residual stress measurements, using x-ray diffraction, for materials characterisation and testing, based on the results obtained at the author's laboratory. The application of positron annihilation techniques based on the use of radioisotopes and high resolution gamma ray spectroscopy, is introduced as non-destructive tools for materials characterisation. Selective examples of significant results obtained using this technique, on the radiation damage and early stages of fatigue damage in technologically important steels are reviewed from recent works at the author's laboratory and elsewhere. The scope of application of charge particle based thin layer activation method is briefly outlined. (author)

  4. A iterative algorithm in computarized tomography applied to non-destructive testing

    International Nuclear Information System (INIS)

    Santos, C.A.C.

    1982-10-01

    In the present work, a mathematical model has been developed for two dimensional image reconstruction in computarized tomography applied to non-destructive testing. The method used is the Algebraic Reconstruction Technique (ART) with additive corrections. This model consists of a discontinuous system formed by an NxN array of cells (pixels). The attenuation in the object of a collimated beam of gamma rays has been determined for various positions and angles of incidence (projections) in terms of the interaction of the beam with the intercepted pixels. The contribution of each pixel to beam attenuation was determined using the weight function wij. Simulated tests using standard objects carried out with attenuation coefficients in the range 0,2 to 0,7 cm -1 , were made using cell arrays of up to 25x25. Experiments were made using a gamma radiation source ( 241 Am), a table with translational and rotational movements and a gamma radiation detection system. Results indicate that convergence obtained in the iterative calculations is a function of the distribution of attenuation coefficient in the pixels, of the number of angular projection and of the number of iterations. (author) [pt

  5. Remote visual testing (RVT) for the diagnostic inspection of feedwater heaters

    International Nuclear Information System (INIS)

    Nugent, M.J.; Pellegrino, B.A.

    1991-01-01

    In this paper the benefits and limitations of Non-Destructive Testing (NDT) on feedwater heaters will be briefly reviewed. All Remote Visual Testing (RVT) devices including borescopes, fiberscopes, videoborescopes and Closed Circuit Television (CCTV) cameras will be discussed along with currently accepted formats for documentation. The benefits of a comprehensive in-place inspection involving Remote Visual Testing will be discussed in relationship to its diagnostic capabilities. The results of eight post-service heater inspections will be discussed along with the root cause of failure of seven unique failure mechanisms. These inspections, including FWH access, RVT tool and data analysis, will be detailed

  6. Automating the radiographic NDT process

    International Nuclear Information System (INIS)

    Aman, J.K.

    1986-01-01

    Automation, the removal of the human element in inspection, has not been generally applied to film radiographic NDT. The justication for automating is not only productivity but also reliability of results. Film remains in the automated system of the future because of its extremely high image content, approximately 8 x 10 9 bits per 14 x 17. The equivalent to 2200 computer floppy discs. Parts handling systems and robotics applied for manufacturing and some NDT modalities, should now be applied to film radiographic NDT systems. Automatic film handling can be achieved with the daylight NDT film handling system. Automatic film processing is becoming the standard in industry and can be coupled to the daylight system. Robots offer the opportunity to automate fully the exposure step. Finally, computer aided interpretation appears on the horizon. A unit which laser scans a 14 x 17 (inch) film in 6 - 8 seconds can digitize film information for further manipulation and possible automatic interrogations (computer aided interpretation). The system called FDRS (for Film Digital Radiography System) is moving toward 50 micron (*approx* 16 lines/mm) resolution. This is believed to meet the need of the majority of image content needs. We expect the automated system to appear first in parts (modules) as certain operations are automated. The future will see it all come together in an automated film radiographic NDT system (author) [pt

  7. 2014 annual meeting of the German Society for Non-Destructive Testing (DGZfP). NDE in research development and application

    International Nuclear Information System (INIS)

    2014-01-01

    The proceedings of the 2014 annual meeting of the German Society for Non-Destructive Testing (DGZfP) includes contributions to the following issues: process control, methods for surface analysis, dimensional measuring methods, computerized tomography, materials characterization, construction engineering, energy engineering, adhesive joints, equipment condition monitoring, thermography, guided waves, simulation - reconstruction - imaging techniques, phased array methods, combination of test procedures, microwave-terahertz-methods, fiber-reinforced composites.

  8. Malaysian NDT standards

    International Nuclear Information System (INIS)

    Khazali Mohd Zin

    2001-01-01

    In order to become a developed country, Malaysia needs to develop her own national standards. It has been projected that by the year 2020, Malaysia requires about 8,000 standards (Department of Standard Malaysia). Currently more than 2,000 Malaysian Standards have been gazette by the government which considerably too low before tire year 2020. NDT standards have been identified by the standard working group as one of the areas to promote our national standards. In this paper the author describes the steps taken to establish the Malaysian very own NDT standards. The project starts with the establishment of radiographic standards. (Author)

  9. Non-destructive testing method for determining the solvent diffusion coefficient in the porous materials products

    Science.gov (United States)

    Belyaev, V. P.; Mishchenko, S. V.; Belyaev, P. S.

    2018-01-01

    Ensuring non-destructive testing of products in industry is an urgent task. Most of the modern methods for determining the diffusion coefficient in porous materials have been developed for bodies of a given configuration and size. This leads to the need for finished products destruction to make experimental samples from them. The purpose of this study is the development of a dynamic method that allows operatively determine the diffusion coefficient in finished products from porous materials without destroying them. The method is designed to investigate the solvents diffusion coefficient in building constructions from materials having a porous structure: brick, concrete and aerated concrete, gypsum, cement, gypsum or silicate solutions, gas silicate blocks, heat insulators, etc. A mathematical model of the method is constructed. The influence of the design and measuring device operating parameters on the method accuracy is studied. The application results of the developed method for structural porous products are presented.

  10. Non-destructive test for irradiated fuels using X-ray CT system in hot-laboratory

    International Nuclear Information System (INIS)

    Kim, Heemoon; Kim, Gil-Soo; Yoo, Boung-Ok; Tahk, Young-Wook; Cho, Moon-Sung; Ahn, Sang-Bok

    2015-01-01

    To inspect inside of irradiated fuel rod for PIE in hotcell, neutron beam and X-ray have been used. Many hot laboratories in the world have shown the results for NDT by 2-D film data. Currently, computed image processing technology instead of film has been developed and CT was applied to the X-ray and neutron beam system. In this trend, our facility needed to set up X-ray system for irradiated fuel inspection and installed in hotcell with consideration of radiation damage. In this study, X-ray system was tested to be operated with radioactive samples and was performed to inspect fuel rods and observe internal damage and dimensional change. 450kV X-ray CT system was installed in hotcell with modification and tested to check image resolution and radiation damage. The image data were analyzed by 3-D computer software. 8 fuel plates and VHTR rods were inspected and measured internal shape and dimension

  11. European Non Destructive Examination Forum (ENDEF)

    International Nuclear Information System (INIS)

    Deffrennes, M.; Engl, G.; Estorff, U. von

    1998-01-01

    Non destructive examination (NDE) during fabrication, Pre-service inspection (PSI) and In service inspection (ISI) are considered key issues for the safe use of nuclear energy. They are important elements of plant lifetime management which is a critical item in decision making on nuclear policies. The European non destructive examination forum (ENDEF) founded by European Commission provides a platform for open discussion between representatives of the European industries with the purpose to establish cooperation between EU, Central and Eastern European Countries and New Independent States in the field of NDE and ISI

  12. Neutron radiography

    International Nuclear Information System (INIS)

    Bayon, G.

    1989-01-01

    Neutronography or neutron radiography, a non-destructive test method which is similar in its principle to conventional X-ray photography, presently occupies a marginal position among non-destructive test methods (NDT) (no source of suitable performance or cost). Neutron radiography associated with the ORPHEE reactor permits industrial testing; it can very quickly meet a cost requirement comparable to that of conventional test methods. In 1988, 2500 parts were tested on this unit [fr

  13. Test-qualification experience with non-destructive material analysis system performed at Paks Nuclear Power Plant and its usage in non-nuclear fields

    International Nuclear Information System (INIS)

    Somogyi, Gy.; Szabo, D.

    2003-01-01

    The need for qualification of non-destructive material analysis has been recognised in controlling nuclear energy production process. This test-qualification has been performed as first of its kind after the task has been assigned by the National Nuclear Energy Agency. The input documents for the test were. Technical Specification, Analysis Technology, Technical Justification. Test-qualification has been performed with real form control bodies developed by the Rez Nuclear Research Institute, in which the planned defects has been produced by spark-chipping. The qualification procedure has been summarized in a Qualification Folder and given to the national agency to issue a qualification certificate. The procedure might be interesting mostly for companies delivering nuclear power plant assemblies. Similar needs are formulated in standards relative to the qualification of non-nuclear material testing methods (MSZ EN 17025 and EU). (Gy.M.)

  14. Application of acoustic emission, as non destructive testing technique, to nuclear components inspection

    International Nuclear Information System (INIS)

    Sanchez Miro, J.J.

    1980-01-01

    A panorama of actual state of acoustic emission as non destructive testing technique, from stand point of its safety applications to nuclear reactor is offered. In first place the physic grounds of acoustic emission phenomenon is briefly exposed. After we speak about the experimental methods for detection, and overall is made an explanation of the problems which are found during the application of this technology to on-line inspection of nuclear oower plants. It is hoped that this repport makes a contribution in the sense of to create a favourable atmosphere toward the introduction in our country of this important technique, and concretely within the nuclear power industry. In this last field the employ of acoustic emission is overcoming the experimental stage. (author)

  15. Laser ultrasonics for civil engineering : some applications in development for concrete non destructive testing

    International Nuclear Information System (INIS)

    Abraham, O; Cottineau, L-M; Durand, O; Popovics, J S

    2011-01-01

    Non destructive testing of civil engineering infrastructures is becoming of primary importance for their diagnosis, residual time life estimation and/or structural health monitoring. A particularity of civil engineering application is the large size of the survey zones and the expected low cost of inspection. In this context non contact ultrasonics may offer the possibility to built robots that can automatically scan large areas (or eventually be integrated in moving vehicles) to recover mechanical properties of material or to perform imagery for geometrical information recovery. In this paper we present two possible applications of in situ laser ultrasonics : one is the detection of voids in tendon duct with the impact echo method, the other is the use of surface waves to recover mechanical properties of the first centimetres of concrete structures (here after called cover concrete).

  16. Wavelet modeling of signals for non-destructive testing of concretes

    International Nuclear Information System (INIS)

    Shao, Zhixue; Shi, Lihua; Cai, Jian

    2011-01-01

    In a non-destructive test of concrete structures, ultrasonic pulses are commonly used to detect damage or embedded objects from their reflections. A wavelet modeling method is proposed here to identify the main reflections and to remove the interferences in the detected ultrasonic waves. This method assumes that if the structure is stimulated by a wavelet function with good time–frequency localization ability, the detected signal is a combination of time-delayed and amplitude-attenuated wavelets. Therefore, modeling of the detected signal by wavelets can give a straightforward and simple model of the original signal. The central time and amplitude of each wavelet represent the position and amplitude of the reflections in the detected structure. A signal processing method is also proposed to estimate the structure response to wavelet excitation from its response to a high-voltage pulse with a sharp leading edge. A signal generation card with a compact peripheral component interconnect extension for instrumentation interface is designed to produce this high-voltage pulse. The proposed method is applied to synthesized aperture focusing technology of concrete specimens and the image results are provided

  17. What's happening in the global NDT market? An update on current trends impacting the NDT market with a special focus on the Canadian oil and gas industry

    International Nuclear Information System (INIS)

    Jain, N.

    2013-01-01

    Nondestructive testing (NDT) plays a critical role in maintaining quality and guaranteeing the safety of industries by predicting or assessing the performance and service life of a structure throughout its lifecycle, from manufacturing to operation and maintenance. The ability to assess the integrity of a material, component or structure without affecting its useful life provides perfect balance between quality control and cost-effectiveness. NDT is also used for equipment life assessment or condition assessment to estimate the operational life of plant components, such as processing lines, pipes, tanks and pressure vessels, etc. Based on this information, strategic plans can be developed for extending the useful life of these components. There are more than 60 techniques for performing NDT, with newer techniques being developed at a rapid pace. However, based on the item being inspected, these techniques can be broadly classified into two categories: surface inspection and volumetric inspection. Techniques like dye penetrant testing, magnetic testing, and eddy current testing are classified under surface inspection, with radiography, ultrasonic testing, and acoustic emission classified under volumetric inspection. The traditional or conventional NDT techniques, such as magnetic particle inspection, penetrant testing, radiography and ultrasonic testing, have been around for nearly a century. However, these and the other technologies have evolved significantly since their inception, with newer advanced techniques developed over the past two decades. Amongst the most notable advancements in technology include phased array ultrasonic testing and digital radiography. In an industry where adoption of new technology is a key challenge, the success phased array and digital radiography have achieved as mainstream inspection techniques is noteworthy. (author)

  18. Investigating the computer analysis of eddy current NDT data

    International Nuclear Information System (INIS)

    Brown, R.L.

    1979-01-01

    The objective of this activity was to investigate and develop techniques for computer analysis of eddy current nondestructive testing (NDT) data. A single frequency commercial eddy current tester and a precision mechanical scanner were interfaced with a PDP-11/34 computer to obtain and analyze eddy current data from samples of 316 stainless steel tubing containing known discontinuities. Among the data analysis techniques investigated were: correlation, Fast Fourier Transforms (FFT), clustering, and Adaptive Learning Networks (ALN). The results were considered encouraging. ALN, for example, correctly identified 88% of the defects and non-defects from a group of 153 signal indications

  19. About a sequential method for non destructive testing of structures by mechanical vibrations

    International Nuclear Information System (INIS)

    Suarez Antola, R.

    2001-01-01

    The presence and growth of cracks voids or fields of pores under applied forces or environmental actions can produce a meaningful lowering in the proper frequencies of normal modes of mechanical vibration in structures.A quite general expression for the square of modes proper frequency as a functional of displacement field,density field and elastic moduli fields is used as a starting point.The effect of defects on frequency are modeled as equivalent changes in density and elastic moduli fields,introducing the concept of region of influence of each defect.An approximate expression is obtained which relates the relative lowering in the square of modes proper frequency with position,size,shape and orientation of defects in mode displacement field.Some simple examples of structural elements with cracks or fields of pores are considered.the connection with linear elastic fracture mechanics is briefly exemplified.A sequential method is proposed for non-destructive testing of structures using mechanical vibrations combined with properly chosen local nondestructive testing methods

  20. Adopting ISO 9712:2005 and ISO/IEC 17024:2003 as Philippine national standard for NDT for global competitiveness

    International Nuclear Information System (INIS)

    Banaga, Renato T.; Mateo, Alejandro J.

    2005-01-01

    This paper describes and promotes the adoption of ISO 9712: 2005 edition and the ISO/IEC 17024: 2003 edition by the Philippines to be globally competitive. ISO 9712 is a standard for qualifications and certification of nondestructive testing (NDT) personnel while ISO/IEC 17024 is conformity assessment-general requirements for bodies operating certification of persons. ISO 9712 defies that the effectiveness of an application of nondestructive testing depends on the capabilities and qualifications of personnel performing the NDT test. The Philippines through the national certifying body (NCB) implements the certification of proficiency of NDT personnel in accordance with the Philippine National Standards (PNS-146: 1998) This standard (formerly PNS-146: 1987) was originally based from the draft ISO/TC-135/SC7N35.3 and was later revised to conform to the latest ISO FDIS 9712: 1997 and rename PNS-146: 1998. Now with the issuance of the latest ISO 9712:2005 edition and to keep abreast with the current trends of NDT technology, present time and conditions dictates for us to revise our NDT personnel certification to the latest edition of ISO 9712. The International Atomic Energy Agency (IAEA) supports the establishment of a common NDT standard. The IAEA is promoting af financially supporting the establishment in developing countries of only one NDT standard. The IAEA through the Regional Cooperative Agreement (RCA) has initiated the harmonization of the NDT qualification and certification of personnel in the RCA member states. In October 2001, the IAEA sponsored the Dhaka meeting where the International Committee for Nondestructive Testing (ICNDT), Asia-Pacific Committee (APCNDT) and RCA member states representatives drafted a Mutual Recognition Agreement (MRA) for the Asia-Pacific NDT (APCNDT) personnel certification schemes acording to ISO 9712. Last August 2005, IAEA/RCA sponsored the Colombo meeting for the harmonization of regional NDT applying ISO 9712 and ISO

  1. Non-destructive testing of full-length bonded rock bolts based on HHT signal analysis

    Science.gov (United States)

    Shi, Z. M.; Liu, L.; Peng, M.; Liu, C. C.; Tao, F. J.; Liu, C. S.

    2018-04-01

    Full-length bonded rock bolts are commonly used in mining, tunneling and slope engineering because of their simple design and resistance to corrosion. However, the length of a rock bolt and grouting quality do not often meet the required design standards in practice because of the concealment and complexity of bolt construction. Non-destructive testing is preferred when testing a rock bolt's quality because of the convenience, low cost and wide detection range. In this paper, a signal analysis method for the non-destructive sound wave testing of full-length bonded rock bolts is presented, which is based on the Hilbert-Huang transform (HHT). First, we introduce the HHT analysis method to calculate the bolt length and identify defect locations based on sound wave reflection test signals, which includes decomposing the test signal via empirical mode decomposition (EMD), selecting the intrinsic mode functions (IMF) using the Pearson Correlation Index (PCI) and calculating the instantaneous phase and frequency via the Hilbert transform (HT). Second, six model tests are conducted using different grouting defects and bolt protruding lengths to verify the effectiveness of the HHT analysis method. Lastly, the influence of the bolt protruding length on the test signal, identification of multiple reflections from defects, bolt end and protruding end, and mode mixing from EMD are discussed. The HHT analysis method can identify the bolt length and grouting defect locations from signals that contain noise at multiple reflected interfaces. The reflection from the long protruding end creates an irregular test signal with many frequency peaks on the spectrum. The reflections from defects barely change the original signal because they are low energy, which cannot be adequately resolved using existing methods. The HHT analysis method can identify reflections from the long protruding end of the bolt and multiple reflections from grouting defects based on mutations in the instantaneous

  2. Qualification and authorization of staff carrying out non-destructive testing in Electricite de France

    International Nuclear Information System (INIS)

    Sermadiras, P.; Lhermitte, R.; Boulet, J.

    1985-01-01

    The surveillance carried out by the Group des laboratoires of the Service de la Production thermique on components submitted to Quality Assurance in nuclear power plants of all types requires the use for non-destructive testing of staff who have been given authorization for their particular services. These authorizations are for activities specific to Electricite de France. In the first part, the authors describe the staff of the Groupe des Laboratoires and show how the different levels of authorization (4 levels) are given, taking into account staff qualifications. In the second part, the procedures for qualification and authorization of the staff of outside companies working with and on behalf of the Groupe des Laboratoires are described

  3. A study on the human resource development (HRD) program in nondestructive testing (NDT) in the Philippines

    International Nuclear Information System (INIS)

    De Jesus, Teresita G.

    2005-01-01

    This study aims to make an appraisal of the HRD program in nondestructive testing in the country. A five-point scale was used to quantify the degree of responses to queries in the questionnaires distributed to NDT trained personnel. In addition the statistical formulas used for the analysis of the gathered data were frequency, percentage, ranking, wilcoxon signed rank test and spearman rho. The study shows a positive impact of the training to both the company and to the individual. (Author)

  4. Analysis of Radiation Accident of Non-destructive Inspection and Rational Preparing Bills

    International Nuclear Information System (INIS)

    Bae, Junwoo; Yoo, Donghan; Kim, Hee Reyoung

    2013-01-01

    After 2006, according to enactment of Non-destructive Inspection Promotion Act, the number of non-destructive inspection companies and corresponding accident is increased sharply. In this research, it includes characteristic analysis of field of the non-destructive inspection. And from the result of analysis, the purpose of this research is discovering reason for 'Why there is higher accident ratio in non-destructive inspection field, relatively' and preparing effective bill for reducing radiation accidents. The number of worker for non-destructive inspect is increased steadily and non-destructive inspect worker take highest dose. Corresponding to these, it must be needed to prepare bills to protect non-destructive inspect workers. By analysis of accident case, there are many case of carelessness that tools are too heavy to carry it everywhere workers go. And there are some cases caused by deficiency of education that less understanding of radiation and poor operation by less understanding of structure of tools. Also, there is no data specialized to non-destructive inspect field. So, it has to take information from statistical data. Because of this, it is hard to analyze nondestructive inspect field accurately. So, it is required to; preparing rational bills to protect non-destructive inspect workers nondestructive inspect instrument lightening and easy manual which can understandable for low education background people accurate survey data from real worker. To accomplish these, we needs to do; analyze and comprehend the present law about non-destructive inspect worker understand non-destructive inspect instruments accurately and conduct research for developing material developing rational survey to measuring real condition for non-destructive inspect workers

  5. Non-destructive beam profile monitor at HIMAC

    International Nuclear Information System (INIS)

    Sato, S.; Araki, N.; Hosaka, M.

    1995-01-01

    Non-destructive profile monitors (NDPM), based on micro-channel plate (MCP), have been developed and installed in both the synchrotron ring and high-energy beam transport (HEBT) line at HIMAC. Beam test using these monitors have been carried out since April of 1995 to investigate a change of vertical beam size in synchrotron and a possibility of observing beam with high energy by one pass. In this paper the measurement system is mainly reported, and the preliminary results are also briefly presented. (author)

  6. Advanced non-destructive methods for an efficient service performance

    International Nuclear Information System (INIS)

    Rauschenbach, H.; Clossen-von Lanken Schulz, M.; Oberlin, R.

    2015-01-01

    Due to the power generation industry's desire to decrease outage time and extend inspection intervals for highly stressed turbine parts, advanced and reliable Non-destructive methods were developed by Siemens Non-destructive laboratory. Effective outage performance requires the optimized planning of all outage activities as well as modern Non-destructive examination methods, in order to examine the highly stressed components (turbine rotor, casings, valves, generator rotor) reliably and in short periods of access. This paper describes the experience of Siemens Energy with an ultrasonic Phased Array inspection technique for the inspection of radial entry pinned turbine blade roots. The developed inspection technique allows the ultrasonic inspection of steam turbine blades without blade removal. Furthermore advanced Non-destructive examination methods for joint bolts will be described, which offer a significant reduction of outage duration in comparison to conventional inspection techniques. (authors)

  7. The use of non-destructive testing in COSY, an ultrahigh vacuum research plant of KFA, Juelich

    International Nuclear Information System (INIS)

    Schroeder, G.; Pauly, F.; Stechemesser, H.

    1993-01-01

    This report shows that the development, the construction and the later successful operation of ultra-high vacuum (UHV) plants in the pressure range of ≤ 10 -10 mbar is not possible without the use of highly sensitive non-destructive testing. Using the example of the large scale precision plant COSY, it is shown that only by observing basic UHV manufacturing conditions and the thorough use of the helium leak-finding technique and mass-spectrometric residual gas analysis can the required leakage rates ( -10 mbar. 1 . s -1 ) and surface cleanliness be achieved. (orig.) [de

  8. Post-Irradiation Non-Destructive Analyses of the AFIP-7 Experiment

    Science.gov (United States)

    Williams, W. J.; Robinson, A. B.; Rabin, B. H.

    2017-12-01

    This article reports the results and interpretation of post-irradiation non-destructive examinations performed on four curved full-size fuel plates that comprise the AFIP-7 experiment. These fuel plates, having a U-10 wt.%Mo monolithic design, were irradiated under moderate operating conditions in the Advanced Test Reactor to assess fuel performance for geometries that are prototypic of research reactor fuel assemblies. Non-destructive examinations include visual examination, neutron radiography, profilometry, and precision gamma scanning. This article evaluates the qualitative and quantitative data taken for each plate, compares corresponding data sets, and presents the results of swelling analyses. These characterization results demonstrate that the fuel meets established irradiation performance requirements for mechanical integrity, geometric stability, and stable and predictable behavior.

  9. Efficiency evaluation test of waste non-destructive analysis device

    International Nuclear Information System (INIS)

    Maeda, Kouichi; Ogasawara, Kensuke; Nisizawa, Ichio

    2000-03-01

    A device for non-destructive analysis of plutonium in alpha solid waste has been installed in NUCEF; Nuclear Fuel Cycle Safety Engineering Research Facility. The device has been designed to determine the amount of radioisotopes in carton-boxes, 45 l steel cans and 200 l steel cans containing relatively low density waste. Considering the waste density and the heterogeneity of radio-sources, the proper distance between the detector and the waste, and the open degree of the collimator have been settled, because real waste may contain several kinds of material and the heterogeneity of radioactivity. It has been confirmed from the evaluation of the detect limit that plutonium of about 8 MBq can be determined with the accuracy of 10% and the device may be proper for the practical application. (author)

  10. Non-destructive evaluation of fiber-reinforced composites with a fast 2D fiber-optic laser-ultrasound scanner

    Science.gov (United States)

    Pelivanov, Ivan; Buma, Takashi; Xia, Jinjun; Wei, Chen-Wei; Shtokolov, Alex; O'Donnell, Matthew

    2015-03-01

    Laser ultrasonic (LU) inspection represents an attractive, non-contact method to evaluate composite materials. Current non-contact systems, however, have relatively low sensitivity compared to contact piezoelectric detection. They are also difficult to adjust, very expensive, and strongly influenced by environmental noise. Here, we demonstrate that most of these drawbacks can be eliminated by combining a new generation of compact, inexpensive fiber lasers with new developments in fiber telecommunication optics and an optimally designed balanced probe scheme. In particular, a new type of a balanced fiber-optic Sagnac interferometer is presented as part of an all-optical LU pump-probe system for high speed non-destructive testing and evaluation (NDT&E) of aircraft composites. The performance of the LU system is demonstrated on a composite sample typically used in the aircraft industry. Wide-band ultrasound probe signals are generated directly at the sample surface with a pulsed diode-pumped laser delivering nanosecond laser pulses at a 1 kHz repetition rate with a pulse energy of 2 mJ. A balanced fiber-optic Sagnac interferometer is employed to detect pressure signals in a 1-10 MHz frequency range at the same point (an 8 μm focal spot) on the composite surface. A fast (up to 100 mm/s) 2D translation system is employed to move the sample during scanning and produce a complete B-scan consisting of one thousand A-scans in less than a second. The sensitivity of this system, in terms of the noise equivalent pressure, is found to be only 10 dB above the Nyquist thermal noise limit. To our knowledge, this is the best reported sensitivity for a non-contact ultrasonic detector of this dimension.

  11. The role of NDT in nuclear power development in Pakistan

    International Nuclear Information System (INIS)

    Asghar Ali Khan; Sabir Choudhary, M.; Arif Iftikhar, M.; Afaque, A. S.; Yousaf Raza Zaidi, S.

    2003-01-01

    Pakistan has two operating nuclear power plants namely, Karachi Nuclear Power Plant (KANUPP) which is 137 MW Candu type Canadian reactor using natural uranium fuel and the Chashma Nuclear Power Plant (CHASNUPP) which is a 300 MW PWR type Chinese built reactor using 3% enriched uranium fuel. A third nuclear power plant is being negotiated for construction. This would most probably be the twin unit of CHASNUPP and the construction might begin early next year.Non destructive testing (NDT) has an important role in the development and safe operation of the nuclear power plants by providing the Pre-Service Inspection (PSI) services during the manufacturing and installation phase, and the In-Service Inspection (ISI) services during the operation and maintenance phase. ISI of various components of nuclear power plants is an essential activity which has to be carried out either on emergency basis on as and when required basis or periodically at regular intervals described in the quality assurance QA manuals of the plant. There are numerous components and systems in the nuclear power plants working together. The failure of one system affects the performance of the whole plant. There are two main divisions, called the Nuclear Island and Conventional Island. Main components of Nuclear Island are reactor pressure vessel, reactor core, steam generators, pressurizer, primary coolant pumps and primary piping, etc. and the main components in Conventional Island are turbine, condensers, pre-heaters, moisture separators, secondary heat treatment system and piping etc. (Author)

  12. What's happening in the global NDT market? An update on current trends impacting the NDT market with a special focus on the Canadian oil and gas industry

    Energy Technology Data Exchange (ETDEWEB)

    Jain, N. [Frost and Sullivan, Chennai (India)

    2013-09-15

    Nondestructive testing (NDT) plays a critical role in maintaining quality and guaranteeing the safety of industries by predicting or assessing the performance and service life of a structure throughout its lifecycle, from manufacturing to operation and maintenance. The ability to assess the integrity of a material, component or structure without affecting its useful life provides perfect balance between quality control and cost-effectiveness. NDT is also used for equipment life assessment or condition assessment to estimate the operational life of plant components, such as processing lines, pipes, tanks and pressure vessels, etc. Based on this information, strategic plans can be developed for extending the useful life of these components. There are more than 60 techniques for performing NDT, with newer techniques being developed at a rapid pace. However, based on the item being inspected, these techniques can be broadly classified into two categories: surface inspection and volumetric inspection. Techniques like dye penetrant testing, magnetic testing, and eddy current testing are classified under surface inspection, with radiography, ultrasonic testing, and acoustic emission classified under volumetric inspection. The traditional or conventional NDT techniques, such as magnetic particle inspection, penetrant testing, radiography and ultrasonic testing, have been around for nearly a century. However, these and the other technologies have evolved significantly since their inception, with newer advanced techniques developed over the past two decades. Amongst the most notable advancements in technology include phased array ultrasonic testing and digital radiography. In an industry where adoption of new technology is a key challenge, the success phased array and digital radiography have achieved as mainstream inspection techniques is noteworthy. (author)

  13. Automating the radiographic NDT process

    International Nuclear Information System (INIS)

    Aman, J.K.

    1988-01-01

    Automation, the removal of the human element in inspection has not been generally applied to film radiographic NDT. The justification for automation is not only productivity but also reliability of results. Film remains in the automated system of the future because of its extremely high image content, approximately 3x10 (to the power of nine) bits per 14x17. This is equivalent to 2200 computer floppy disks parts handling systems and robotics applied for manufacturing and some NDT modalities, should now be applied to film radiographic NDT systems. Automatic film handling can be achieved with the daylight NDT film handling system. Automatic film processing is becoming the standard in industry and can be coupled to the daylight system. Robots offer the opportunity to automate fully the exposure step. Finally, a computer aided interpretation appears on the horizon. A unit which laser scans a 14x27 (inch) film in 6-8 seconds can digitize film in information for further manipulation and possible automatic interrogations (computer aided interpretation). The system called FDRS (for film digital radiography system) is moving toward 50 micron (16 lines/mm) resolution. This is believed to meet the need of the majority of image content needs. (Author). 4 refs.; 21 figs

  14. Positive Feedback of NDT80 Expression Ensures Irreversible Meiotic Commitment in Budding Yeast

    Science.gov (United States)

    Tsuchiya, Dai; Yang, Yang; Lacefield, Soni

    2014-01-01

    In budding yeast, meiotic commitment is the irreversible continuation of the developmental path of meiosis. After reaching meiotic commitment, cells finish meiosis and gametogenesis, even in the absence of the meiosis-inducing signal. In contrast, if the meiosis-inducing signal is removed and the mitosis-inducing signal is provided prior to reaching meiotic commitment, cells exit meiosis and return to mitosis. Previous work has shown that cells commit to meiosis after prophase I but before entering the meiotic divisions. Since the Ndt80 transcription factor induces expression of middle meiosis genes necessary for the meiotic divisions, we examined the role of the NDT80 transcriptional network in meiotic commitment. Using a microfluidic approach to analyze single cells, we found that cells commit to meiosis in prometaphase I, after the induction of the Ndt80-dependent genes. Our results showed that high-level expression of NDT80 is important for the timing and irreversibility of meiotic commitment. A modest reduction in NDT80 levels delayed meiotic commitment based on meiotic stages, although the timing of each meiotic stage was similar to that of wildtype cells. A further reduction of NDT80 resulted in the surprising finding of inappropriately uncommitted cells: withdrawal of the meiosis-inducing signal and addition of the mitosis-inducing signal to cells at stages beyond metaphase I caused return to mitosis, leading to multi-nucleate cells. Since Ndt80 enhances its own transcription through positive feedback, we tested whether positive feedback ensured the irreversibility of meiotic commitment. Ablating positive feedback in NDT80 expression resulted in a complete loss of meiotic commitment. These findings suggest that irreversibility of meiotic commitment is a consequence of the NDT80 transcriptional positive feedback loop, which provides the high-level of Ndt80 required for the developmental switch of meiotic commitment. These results also illustrate the

  15. Reliability in NDT: ROC study of radiographic weld inspections

    International Nuclear Information System (INIS)

    Nockemann, C.; Heidt, H.; Thomsen, N.

    1991-01-01

    The complexity of modern nondestructive testing (NDT) equipment as well as the demand for high reliability in many industries makes it necessary to have a tool to assess different NDT techniques and devices quickly. As for cost benefit considerations, a measure of accuracy has to include not only the number of correctly detected defects but also the corresponding number of false indications. In order to satisfy a variety of security demands this ratio of true and false indications must be known for a wide range of defect dimensions to be included in the defect count. This information will be provided by only one ROC (relative operating characteristic) study of inspection data using the rating confidence method. An expanded ROC version also yields an assessment of the accuracy of the defect classification and of the correctness of the indicated defect importance. All these measures of performance can also be called up for each individual inspector. For demonstrating the power of the method it is applied to ascertain the difference in detection performance of three distinct experimental modalities in the radiographic testing of welded joints. In order to be capable of drawing conclusions reliably, the study is completed by statistical significance tests. The paper shows the usefulness of ROC for performance assessment in NDT and gives an illustration of what can be done with which effort. (Author)

  16. Quantitative multi-modal NDT data analysis

    International Nuclear Information System (INIS)

    Heideklang, René; Shokouhi, Parisa

    2014-01-01

    A single NDT technique is often not adequate to provide assessments about the integrity of test objects with the required coverage or accuracy. In such situations, it is often resorted to multi-modal testing, where complementary and overlapping information from different NDT techniques are combined for a more comprehensive evaluation. Multi-modal material and defect characterization is an interesting task which involves several diverse fields of research, including signal and image processing, statistics and data mining. The fusion of different modalities may improve quantitative nondestructive evaluation by effectively exploiting the augmented set of multi-sensor information about the material. It is the redundant information in particular, whose quantification is expected to lead to increased reliability and robustness of the inspection results. There are different systematic approaches to data fusion, each with its specific advantages and drawbacks. In our contribution, these will be discussed in the context of nondestructive materials testing. A practical study adopting a high-level scheme for the fusion of Eddy Current, GMR and Thermography measurements on a reference metallic specimen with built-in grooves will be presented. Results show that fusion is able to outperform the best single sensor regarding detection specificity, while retaining the same level of sensitivity

  17. Non-destructive testing of high pressure fibre reinforced composites tubes by computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Klimek, L. [Qualitaetszentrum Dortmund (Germany); Monstadt, H.; Boedecker, T. [EFMT, Bochum (Germany)

    1995-12-31

    For new applications of fibre reinforced composites, new non-destructive testing methods are required which on the one hand can be used as a quality testing method and on the other hand as an in-service inspection method during the life of a product. Special attention should be paid to the defect sensitivity and to a detailed classification of visible defects. Defining a detectable standard, comparable investigations were carried out using the Ultra Fast Scanner which is located at the Entwicklungs- und Forschungszentrum fuer Mikrotherapie gGmbH (EFMT) and the industrial scanner of the Qualitaetszentrum Dortmund GmbH u. Co. KG (QZ-DO). The investigation object is a high pressure tube which is made up of three different diameter structures. There can be distinguished between three types of tube layers. Digital image processing has been used to get more information form measured data. We developed two different types of digital image filters: A SIGMA and a Contrast Sensitive Weights (CSW) image filter and made a comparative study. (orig./RHM)

  18. Development of imaging and reconstructions algorithms on parallel processing architectures for applications in non-destructive testing

    International Nuclear Information System (INIS)

    Pedron, Antoine

    2013-01-01

    This thesis work is placed between the scientific domain of ultrasound non-destructive testing and algorithm-architecture adequation. Ultrasound non-destructive testing includes a group of analysis techniques used in science and industry to evaluate the properties of a material, component, or system without causing damage. In order to characterise possible defects, determining their position, size and shape, imaging and reconstruction tools have been developed at CEA-LIST, within the CIVA software platform. Evolution of acquisition sensors implies a continuous growth of datasets and consequently more and more computing power is needed to maintain interactive reconstructions. General purpose processors (GPP) evolving towards parallelism and emerging architectures such as GPU allow large acceleration possibilities than can be applied to these algorithms. The main goal of the thesis is to evaluate the acceleration than can be obtained for two reconstruction algorithms on these architectures. These two algorithms differ in their parallelization scheme. The first one can be properly parallelized on GPP whereas on GPU, an intensive use of atomic instructions is required. Within the second algorithm, parallelism is easier to express, but loop ordering on GPP, as well as thread scheduling and a good use of shared memory on GPU are necessary in order to obtain efficient results. Different API or libraries, such as OpenMP, CUDA and OpenCL are evaluated through chosen benchmarks. An integration of both algorithms in the CIVA software platform is proposed and different issues related to code maintenance and durability are discussed. (author) [fr

  19. Case studies in ultrasonic testing

    International Nuclear Information System (INIS)

    Prasad, V.; Satheesh, C.; Varde, P.V.

    2015-01-01

    Ultrasonic testing is widely used Non Destructive Testing (NDT) method and forms the essential part of In-service inspection programme of nuclear reactors. Main application of ultrasonic testing is for volumetric scanning of weld joints followed by thickness gauging of pipelines and pressure vessels. Research reactor Dhruva has completed the first In Service Inspection programme in which about 325 weld joints have been volumetrically scanned, in addition to thickness gauging of 300 meters of pipe lines of various sizes and about 24 nos of pressure vessels. Ultrasonic testing is also used for level measurements, distance measurements and cleaning and decontamination of tools. Two case studies are brought out in this paper in which ultrasonic testing is used successfully for identification of butterfly valve opening status and extent of choking in pipe lines in Dhruva reactor systems

  20. Crack characterisation using invariable feature extraction in stainless steel specimen used for absorber tubes of CSP applications via EMAT

    DEFF Research Database (Denmark)

    Cheng, Liang; Kogia, Maria; Mohimi, Abbas

    2017-01-01

    of power generation. Therefore, the monitoring of their structural health via Non-Destructive Testing (NDT) techniques is regarded as essential for preventing them from being significantly defective and thereby reducing maintenance cost. Non-contact method is one of the best inspection candidates, which...

  1. Compressed Sensing mm-Wave SAR for Non-Destructive Testing Applications Using Multiple Weighted Side Information

    Directory of Open Access Journals (Sweden)

    Mathias Becquaert

    2018-05-01

    Full Text Available This work explores an innovative strategy for increasing the efficiency of compressed sensing applied on mm-wave SAR sensing using multiple weighted side information. The approach is tested on synthetic and on real non-destructive testing measurements performed on a 3D-printed object with defects while taking advantage of multiple previous SAR images of the object with different degrees of similarity. The tested algorithm attributes autonomously weights to the side information at two levels: (1 between the components inside the side information and (2 between the different side information. The reconstruction is thereby almost immune to poor quality side information while exploiting the relevant components hidden inside the added side information. The presented results prove that, in contrast to common compressed sensing, good SAR image reconstruction is achieved at subsampling rates far below the Nyquist rate. Moreover, the algorithm is shown to be much more robust for low quality side information compared to coherent background subtraction.

  2. Recent advances in seismic non-destructive testing of concrete plate like structures

    International Nuclear Information System (INIS)

    Ryden, N.; Kristensen, A.; Jovall, O.

    2009-01-01

    This paper describes recent advances in seismic/acoustic non-destructive testing of concrete containment walls. The presented technique is focused on the characterization of the mean stiffness (seismic velocities) and thickness of the containment wall. The Impact Echo (IE) method is a well-established technique to measure the thickness of concrete plates or to locate defects in concrete plate like structures. The method relies on a good estimate of the mean velocity through the thickness of the plate and a precisely measured thickness resonant frequency. Recently the underlying theory of the IE method has been redefined and improved based on Lamb waves in a free plate. Based on this theory we have developed a new data processing technique where both propagating and standing Lamb waves are analysed in a combined manner using multichannel data. With this approach the mean velocity through the plate thickness is evaluated by using the fundamental mode Lamb wave dispersion curves. The accuracy and detection ability of the measured resonant frequency is improved by utilizing both amplitude and phase information from the multichannel record. The method has been tested on several nuclear power plants in Sweden and Finland and proved to be more robust compared to conventional IE and surface wave measurements

  3. Training to NDT construction experts (ZFPBau). Developments in recent years; Ausbildung zum ZfPBau-Experten. Entwicklungen der letzten Jahre

    Energy Technology Data Exchange (ETDEWEB)

    Taffe, Alexander [Hochschule fuer Technik und Wirtschaft, Berlin (Germany); Feistkorn, Sascha [SVTI Schweizerischer Verein fuer technische Inspektionen, Wallisellen (Switzerland). Nuklearinspektorat; Dauberschmidt, Christoph [Hochschule Muenchen (Germany)

    2016-05-01

    Classical destructive test methods are fixed part of industrial sectors for decades such as aerospace, automotive, railway and power plants. A high degree of standardization of procedures, and training in form of an ISO standard are present, but not in non-destructive testing of civil engineering (ZfPBau). Except for the rebound hammer NDT methods in civil engineering are not standardized. Also of personnel qualifications can be found in regulations very few requirements, although it is obvious that this is an indispensable prerequisite for the proper application of the procedures and reliable inspection results. In this contribution experiences with a presented training concept in which the construction inspector will trained to DIN 1076 in a two-day course. Here are the necessary conditions worked out, such as the creation of suitable test bodies or the definition of necessary course content for establishing training courses. [German] Klassische zerstoerungsfreie Pruefverfahren sind seit Jahrzehnten fester Bestandteil industrieller Bereiche wie Luftfahrt, Automotive, Eisenbahn und Kraftwerke. Ein hoher Normungsgrad der Verfahren und Ausbildungsstandards in Form einer ISO-Norm liegen vor. Bei der zerstoerungsfreien Pruefung im Bauwesen (ZfPBau) ist das anders. Bis auf den Rueckprallhammer sind ZfPBau-Verfahren nicht genormt. Auch zur Personalqualifikation finden sich in Regelwerken nur sehr wenige Anforderungen, obwohl es offensichtlich ist, dass dies eine unverzichtbare Voraussetzung fuer die richtige Anwendung der Verfahren und zuverlaessige Pruefaussagen ist. In diesem Beitrag werden Erfahrungen mit einem Ausbildungskonzept vorgestellt, bei dem Bauwerkspruefer nach DIN 1076 in einem zweitaegigen Lehrgang ausgebildet werden. Dabei werden die notwendigen Voraussetzungen heraus gearbeitet, wie z.B. die Erstellung von geeigneten Testkoerpern oder die Festlegung notwendiger Kursinhalte, die zum Etablieren von Ausbildungskursen erforderlich sind.

  4. Non-destructive control at the Kozloduy NPP; Nerazrushayushchij kontrol` v AEhS `Kozloduy`

    Energy Technology Data Exchange (ETDEWEB)

    Mikhovsky, M [Institute of Mechanics, Bulgarian Academy of Sciences, Sofia (Bulgaria); Skordev, A [SIME-CONTROL, Sofia (Bulgaria); Nichev, V; Tsokov, P; Popova, N [Kombinat Atomna Energetika, Kozloduj (Bulgaria)

    1996-12-31

    A program for technical diagnostics using non-destructive methods is being carried out at the Kozloduy NPP. The main target is to test mechanical equipment integrity (metal control, mechanical stress control, etc.) as well as electrical equipment. Computer methods and simulation are widely used in program implementation. Non-destructive testing is based on methods involving optical, radiation, ultrasonic and magnetic processes. Control procedures are standardised in special technological documents and one of them is described as an example. It refers to ultrasonic control of the austenitic steel welds of the WWER-440 piping system (DU-500). Graphic representing the microstructure of the welds, the distribution of surface ultrasonic wave and the longitudinal and vertically polarised perpendicular waves are presented. 6 refs. 8 figs.

  5. Pulse and lock-in IR NDT in complex structures

    Science.gov (United States)

    Tarin, Markus

    2011-05-01

    Bicycles, cars, airplanes, prosthetics, solar panels...composites are ubiquitous in the modern world. Three thermographic NDT techniques are currently in use for the detection and measurement of defects in these composites, including defects such as impact damage, delamination, voids, inclusions and stresses. The particular technique for optimum results, pulsed flash, pulsed transient, or lock-in, depends upon the sample material and thickness and shape, and the test environment. Choice of camera type varies widely, from high performance cooled to affordable uncooled, with large format 640 x 480 pixels now available, also. NDT hardware and software now includes models that allow all types of excitation sources and excitation methods with the same equipment.

  6. Main characteristics and development of NDT equipment

    International Nuclear Information System (INIS)

    Dubresson, J.

    1991-01-01

    Recent developments of non destructive testing with ionizing radiations are reviewed. Real time or differed time data processing is the key for new techniques and a renewal of classical techniques. Progress of radiation sources are also examined [fr

  7. Prediction of unknown deep foundation lengths using the Hilbert Huang Transform (HHT

    Directory of Open Access Journals (Sweden)

    Ahmed T.M. Farid

    2012-08-01

    Full Text Available Prediction of unknown deep foundation embedment depth is a great deal nowadays, especially in case of upgrading or rehabilitation of old structures. Many old bridges and marine or pier structures in the United States are established using deep foundations system of timber piles and their foundation records do not exist. Non-Destructive Testing (NDT or Non-Destructive Evaluation (NDE method for a great variety of materials and structures has become an integral part of many tests. However, the process of testing long piles, deeply embedded in the ground, is more complex than (NDT of the other structural materials. This paper summarizes some of the most common non-destructive test methods for deep foundations and presents a new method called the Hilbert Huang Transform (HHT. This Hilbert Huang Transform (HHT method is used now by a wide range in a different health monitoring of many systems. In this paper, some field tests on the timber Piles of one bridge at North Carolina was performed to verify the using the (HHT method for predicting the embedded depth of the unknown piles. Percentage of the accuracy achieved using HHT method for pile length compared to the actual pile length data was performed. Finally, a recommendation is presented for the limitation of using this new method as a new non-destructive method for deep foundations.

  8. A comparison between destructive and non-destructive techniques in determining coating thickness

    Science.gov (United States)

    Haider, F. I.; Suryanto; Ani, M. H.; Mahmood, M. H.

    2018-01-01

    Measuring coating thickness is an important part in research works related to coating applications. In general, techniques for measuring coating thickness may be divided into destructive and non-destructive methods which are commonly used depending on the applications. The objective of this study is to compare two methods measuring the coating thickness of electroplating copper coating on the austenitic stainless-steel substrate. The electroplating was carried out in a solution containing 200 g/L CuSO4, 100 g/L H2SO4 at room temperature and current of 40mA/cm2 during 20, 40, 60, 80 and 100 mins as coating periods. And the coating thickness was measured by two methods, cross sectional analysis as a destructive technique and weight gain as a non-destructive technique. The results show that at 20 mins coating time interval, the thickness measured by cross sectional method was 16.67 μm and by weight gain method was 17.37 μm, with difference of 0.7 μm and percentage error of 4.11%. This error increased to 5.27% at 100mins time interval, where the values of the thickness measured by cross sectional and weight gain were 86.33 μm and 81.9 μm respectively, and the difference was 4.43 μm. Moreover, though the weight gain method is fast and gives the indication for the termination of a coating process, information regarding the uniformity, porosity and the presence of cracks cannot be obtained. On the other hand, determining the coating thickness using destructive method will damage the sample.

  9. Study of defect characteristics essential for NDT testing methods ET, UT and RT

    International Nuclear Information System (INIS)

    Wirdelius, H.; Oesterberg, Elena

    2000-10-01

    This paper presents results from a literature review of defect characteristics essential for nondestructive testing (NDT). Most of the major NDT methods are included in the study - ultrasonic testing (UT), radiography (RT) and eddy current testing (ET). The study was performed by means of searching in scientific databases, technical journals, conference proceedings etc. Mainly the following databases were used: CHANS (Chalmers database), INSPEC, NTIS, Ei Compendex, World Surface Coating Abs, METADEX, JICST-Eplus, Aerospace database, Pascal, Eng Materials, SciSearch and Weldasearch. It is concluded that for eddy current testing, the defect geometry, the defect size and the defect orientation influence the outcome signal. A number of investigations address the relationships between the defect parameters like defect depth, length and width and the outcome signal parameters like amplitude, phase and signal shape. Also the phenomena of the electrical contacts between the defect surfaces (for a crack) was studied. Defect parameters that are essential to the quality of ultrasonic testing are defect position in the object (includes the depth), orientation, size, crack surface roughness, closure and tip radius. This investigation has been focused on those parameters that are not that easy to reconstruct and only briefly discussed the influence on the signal response due to defect position, orientation and size. When it comes to radiographic techniques, the most important defect related parameters that influence the quality are the difference in radio opacity of the specimen and defect and the angle between the volumetric extension of the defect and the direction of projection. The defect gape and the morphology of the crack are also very essential parameters. A very simple model of the detectability as a function of depth, width and misorientation (angle to the radiation beam) has been validated and to some extent also verified in a number of papers. Even for defects with

  10. Development of a fast multi-line x-ray CT detector for NDT

    International Nuclear Information System (INIS)

    Hofmann, T.; Nachtrab, F.; Schlechter, T.; Mühlbauer, J.; Schröpfer, S.; Firsching, M.; Uhlmann, N.; Neubauer, H.; Ernst, J.; Schweiger, T.; Oberst, M.; Meyer, A.

    2015-01-01

    Typical X-ray detectors for non-destructive testing (NDT) are line detectors or area detectors, like e.g. flat panel detectors. Multi-line detectors are currently only available in medical Computed Tomography (CT) scanners. Compared to flat panel detectors, line and multi-line detectors can achieve much higher frame rates. This allows time-resolved 3D CT scans of an object under investigation. Also, an improved image quality can be achieved due to reduced scattered radiation from object and detector themselves. Another benefit of line and multi-line detectors is that very wide detectors can be assembled easily, while flat panel detectors are usually limited to an imaging field with a size of approx. 40 × 40 cm 2 at maximum. The big disadvantage of line detectors is the limited number of object slices that can be scanned simultaneously. This leads to long scan times for large objects. Volume scans with a multi-line detector are much faster, but with almost similar image quality. Due to the promising properties of multi-line detectors their application outside of medical CT would also be very interesting for NDT. However, medical CT multi-line detectors are optimized for the scanning of human bodies. Many non-medical applications require higher spatial resolutions and/or higher X-ray energies. For those non-medical applications we are developing a fast multi-line X-ray detector.In the scope of this work, we present the current state of the development of the novel detector, which includes several outstanding properties like an adjustable curved design for variable focus-detector-distances, conserving nearly uniform perpendicular irradiation over the entire detector width. Basis of the detector is a specifically designed, radiation hard CMOS imaging sensor with a pixel pitch of 200 μ m. Each pixel has an automatic in-pixel gain adjustment, which allows for both: a very high sensitivity and a wide dynamic range. The final detector is planned to have 256 lines of

  11. Non-destructive microstructural analysis with depth resolution

    Energy Technology Data Exchange (ETDEWEB)

    Zolotoyabko, E. E-mail: zloto@tx.technion.ac.il; Quintana, J.P

    2003-01-01

    A depth-sensitive X-ray diffraction technique has been developed with the aim of studying microstructural modifications in inhomogeneous polycrystalline materials. In that method, diffraction profiles are measured at different X-ray energies varied by small steps. X-rays at higher energies probe deeper layers of material. Depth-resolved structural information is retrieved by comparing energy-dependent diffraction profiles. The method provides non-destructive depth profiling of the preferred orientation, grain size, microstrain fluctuations and residual strains. This technique is applied to the characterization of seashells. Similarly, energy-variable X-ray diffraction can be used for the non-destructive characterization of different laminated structures and composite materials.

  12. Feasibility Study of Non-Destructive Techniques to Measure Corrosion in SAVY Containers

    Energy Technology Data Exchange (ETDEWEB)

    Davenport, Matthew Nicholas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-07-15

    Stainless Steel SAVY containers are used to transport and store nuclear material. They are prone to interior corrosion in the presence of certain chemicals and a low-oxygen environment. SAVY containers also have relatively thin walls to reduce their weight, making their structural integrity more vulnerable to the effects of corrosion. A nondestructive evaluation system that finds and monitors corrosion within containers in use would improve safety conditions and preclude hazards. Non-destructive testing can determine whether oxidation or corrosion is occurring inside the SAVY containers, and there are a variety of non-destructive testing methods that may be viable. The feasibility study described will objectively decide which method best fits the requirements of the facility and the problem. To improve efficiency, the containers cannot be opened during the non-destructive examination. The chosen technique should also be user-friendly and relatively quick to apply. It must also meet facility requirements regarding wireless technology and maintenance. A feasibility study is an objective search for a new technology or product to solve a particular problem. First, the design, technical, and facility feasibility requirements are chosen and ranked in order of importance. Then each technology considered is given a score based upon a standard ranking system. The technology with the highest total score is deemed the best fit for a certain application.

  13. Non-destructive forensic latent fingerprint acquisition with chromatic white light sensors

    Science.gov (United States)

    Leich, Marcus; Kiltz, Stefan; Dittmann, Jana; Vielhauer, Claus

    2011-02-01

    Non-destructive latent fingerprint acquisition is an emerging field of research, which, unlike traditional methods, makes latent fingerprints available for additional verification or further analysis like tests for substance abuse or age estimation. In this paper a series of tests is performed to investigate the overall suitability of a high resolution off-the-shelf chromatic white light sensor for the contact-less and non-destructive latent fingerprint acquisition. Our paper focuses on scanning previously determined regions with exemplary acquisition parameter settings. 3D height field and reflection data of five different latent fingerprints on six different types of surfaces (HDD platter, brushed metal, painted car body (metallic and non-metallic finish), blued metal, veneered plywood) are experimentally studied. Pre-processing is performed by removing low-frequency gradients. The quality of the results is assessed subjectively; no automated feature extraction is performed. Additionally, the degradation of the fingerprint during the acquisition period is observed. While the quality of the acquired data is highly dependent on surface structure, the sensor is capable of detecting the fingerprint on all sample surfaces. On blued metal the residual material is detected; however, the ridge line structure dissolves within minutes after fingerprint placement.

  14. Non destructive nuclear measurements for control and characterization purpose

    International Nuclear Information System (INIS)

    Lyoussi, Abdallah

    2002-01-01

    In this report for accreditation to supervise researches, the author proposes a large and rather precise overview of his research works which dealt with the upstream and downstream parts of the nuclear fuel cycle. After having discussed the different needs associated with non destructive nuclear measurements during the fuel cycle, the author describes his past research activities. In the following parts, he discusses control and characterization methods associated with the upstream and downstream parts of the fuel cycle: fuel density variation measurement, non destructive control of uranium-235 content of enriched uranium ingots, examination of induced photo-fissions in radioactive waste parcels, use of electron accelerator for simultaneous neutron and photon examination, measurement of the spatial distribution of the photonic component from the Mini Linatron, association of non destructive measurement techniques

  15. Energy dispersive CdTe and CdZnTe detectors for spectral clinical CT and NDT applications

    Energy Technology Data Exchange (ETDEWEB)

    Barber, W.C., E-mail: william.barber@dxray.com [DxRay, Inc., Northridge, CA (United States); Interon AS, Asker (Norway); Wessel, J.C. [DxRay, Inc., Northridge, CA (United States); Interon AS, Asker (Norway); Nygard, E. [Interon AS, Asker (Norway); Iwanczyk, J.S. [DxRay, Inc., Northridge, CA (United States)

    2015-06-01

    We are developing room temperature compound semiconductor detectors for applications in energy-resolved high-flux single x-ray photon-counting spectral computed tomography (CT), including functional imaging with nanoparticle contrast agents for medical applications and non-destructive testing (NDT) for security applications. Energy-resolved photon-counting can provide reduced patient dose through optimal energy weighting for a particular imaging task in CT, functional contrast enhancement through spectroscopic imaging of metal nanoparticles in CT, and compositional analysis through multiple basis function material decomposition in CT and NDT. These applications produce high input count rates from an x-ray generator delivered to the detector. Therefore, in order to achieve energy-resolved single photon counting in these applications, a high output count rate (OCR) for an energy-dispersive detector must be achieved at the required spatial resolution and across the required dynamic range for the application. The required performance in terms of the OCR, spatial resolution, and dynamic range must be obtained with sufficient field of view (FOV) for the application thus requiring the tiling of pixel arrays and scanning techniques. Room temperature cadmium telluride (CdTe) and cadmium zinc telluride (CdZnTe) compound semiconductors, operating as direct conversion x-ray sensors, can provide the required speed when connected to application specific integrated circuits (ASICs) operating at fast peaking times with multiple fixed thresholds per pixel provided the sensors are designed for rapid signal formation across the x-ray energy ranges of the application at the required energy and spatial resolutions, and at a sufficiently high detective quantum efficiency (DQE). We have developed high-flux energy-resolved photon-counting x-ray imaging array sensors using pixellated CdTe and CdZnTe semiconductors optimized for clinical CT and security NDT. We have also fabricated high

  16. Digital signal processing for NDT

    International Nuclear Information System (INIS)

    Georgel, B.

    1994-01-01

    NDT begins to adapt and use the most recent developments of digital signal and image processing. We briefly sum up the main characteristics of NDT situations (particularly noise and inverse problem formulation) and comment on techniques already used or just emerging (SAFT, split spectrum, adaptive learning network, noise reference filtering, stochastic models, neural networks). This survey is focused on ultrasonics, eddy currents and X-ray radiography. The final objective of end users (availability of automatic diagnosis systems) cannot be achieved only by signal processing algorithms. A close cooperation with other techniques such as artificial intelligence has therefore to be implemented. (author). 20 refs

  17. Background information for NDT qualification of Finnish disposal canisters of spent fuel

    International Nuclear Information System (INIS)

    Sarkimo, M.; Pitkaenen, J.

    2013-12-01

    This report presents a review to basic concepts, which are applied in the qualification of non-destructive testing (NDT) techniques. The qualification systems developed and used in some countries are briefly described in the beginning of the report. Anyway the report mainly discusses the qualification practices applied in the Finnish nuclear industry. The Finnish Radiation and Nuclear Safety Authority (STUK) in the YVL Guide 3.8 define the Finnish qualification approach applied for the in-service inspections. The principles presented in this document follow the views of the international organisations: Nuclear Regulator Working Group (NRWG) and European Network for Inspection and Qualification (ENIQ). For the practical qualification work a national guideline is established using so called SP-documents that include specific rules and instructions for execution of qualifications in accordance with YVL Guide 3.8 principles. Altogether the Finnish qualification system can be seen very well to follow the European (ENIQ) methodology. The report discusses several qualification terms and documents. Thus the normally necessary tasks and parts of a qualification are described. The qualification can be seen as a project that includes several tasks, which will be performed by different parties. Enough resources and time should be reserved for the planning and control of a qualification project to ensure its fluent progress. Some tasks are discussed in the report taking into account the situation in the qualification cases that are seen to be linked to the inspections of disposal canisters of spent fuel. (orig.)

  18. Background information for NDT qualification of Finnish disposal canisters of spent fuel

    Energy Technology Data Exchange (ETDEWEB)

    Sarkimo, M. [VTT Technical Research Centre of Finland, Espoo (Finland); Pitkaenen, J.

    2013-12-15

    This report presents a review to basic concepts, which are applied in the qualification of non-destructive testing (NDT) techniques. The qualification systems developed and used in some countries are briefly described in the beginning of the report. Anyway the report mainly discusses the qualification practices applied in the Finnish nuclear industry. The Finnish Radiation and Nuclear Safety Authority (STUK) in the YVL Guide 3.8 define the Finnish qualification approach applied for the in-service inspections. The principles presented in this document follow the views of the international organisations: Nuclear Regulator Working Group (NRWG) and European Network for Inspection and Qualification (ENIQ). For the practical qualification work a national guideline is established using so called SP-documents that include specific rules and instructions for execution of qualifications in accordance with YVL Guide 3.8 principles. Altogether the Finnish qualification system can be seen very well to follow the European (ENIQ) methodology. The report discusses several qualification terms and documents. Thus the normally necessary tasks and parts of a qualification are described. The qualification can be seen as a project that includes several tasks, which will be performed by different parties. Enough resources and time should be reserved for the planning and control of a qualification project to ensure its fluent progress. Some tasks are discussed in the report taking into account the situation in the qualification cases that are seen to be linked to the inspections of disposal canisters of spent fuel. (orig.)

  19. Ultrasonic non-destructive testing of pieces of complex geometry with a flexible phased array transducer

    Science.gov (United States)

    Chatillon; Cattiaux; Serre; Roy

    2000-03-01

    Ultrasonic non-destructive testing of components of complex geometry in the nuclear industry faces several difficulties: sensitivity variations due to unmatched contact, inaccurate localization of defects due to variations of transducer orientation, and uncovered area of the component. To improve the performances of such testing and defect characterization, we propose a new concept of ultrasonic contact phased array transducer. The phased array transducer has a flexible radiating surface able to fit the actual surface of the piece to optimize the contact and thus the sensitivity of the test. To control the transmitted field, and therefore to improve the defect characterization, a delay law optimizing algorithm is developed. To assess the capability of such a transducer, the Champ-Sons model, developed at the French Atomic Energy Commission for predicting field radiated by arbitrary transducers into pieces, has to be extended to sources directly in contact with pieces of complex geometry. The good behavior of this new type of probe predicted by computations is experimentally validated with a jointed transducer positioned on pieces of various profiles.

  20. The major results of the PISC II RRT

    International Nuclear Information System (INIS)

    Crutzen, S.; Jehenson, P.; McDonald, N.

    1989-01-01

    Non Destructive Testing (NDT) forms part of the in-service inspection (ISI) of a reactor pressure vessel (RPV) and its associated pressure circuit, and the results of the NDT are used in conjunction with fracture mechanics or as part of a code-defined treatment to assess the significance of flaws. Detection, location and sizing of crack-like flaws play an important role in helping to establish the integrity of these reactor steel structures. (orig.)

  1. Evaluation of non destructive testing to characterize the resistance of the prefabricated system of columns and floor tiles for single family homes of a level: permeability meter, determination of wave velocity by ultrasound, Schmidt sclerometer and metal detector

    International Nuclear Information System (INIS)

    Quesada Chacon, Dannell

    2014-01-01

    Non destructive testing are determined to be correlated with resistance to compression and flexion of elements belonging to prefabricated system of columns and floor tiles for single family homes of a level. The characteristics of the non destructive testing are described, such as: measurer of permeability, Schmidt sclerometer, determination of wave velocity by ultrasound and metal detector. The columns and floor tiles are elaborated with 2 mixtures of different resistances at 28 days. The first more than 30 MPa and the second less than 25 MPa are sampled together with the control cylinders necessary to obtain the actual resistance according to ASTM C39. Last resistance testings to compression and Schmidt sclerometer are realized to control cylinders to 1, 2, and 4 weeks after being cast. Non destructive testings (permeability meter Torrent, Schmidt sclerometer and determination of wave velocity by ultrasound) are performed in columns and floor tiles to 1, 2, and 4 weeks after being cast. Last resistance testings to flexion is obtained by means of destructive tests of the columns and floor tiles sampled. The correlation of the data obtained is determined to derive values of compression resistance from non destructive testing [es

  2. GPR used in combination with other NDT methods for assessing pavements in PPP projects

    Science.gov (United States)

    Loizos, Andreas; Plati, Christina

    2014-05-01

    In the recent decades, Public-Private Partnerships (PPP) has been adopted for highway infrastructure procurement in many countries. PPP projects typically take the form of a section of highway and connecting roadways which are to be construction and managed for a given concession period. Over the course of the highway concession period, the private agency takes over the pavement maintenance and rehabilitation duties. On this purpose, it is critical to find the most cost effective way to maintain the infrastructure in compliance with the agreed upon performance measures and a Pavement Management Systems (PMS) is critical to the success of this process. For the prosperous operation of a PMS it is necessary to have appropriate procedures for pavement monitoring and evaluation, which is important in many areas of pavement engineering. Non Destructive Testing (NDT) has played a major role in pavement condition monitoring, assessments and evaluation accomplishing continuous and quick collection of pavement data. The analysis of this data can lead to indicators related to trigger values (criteria) that define the pavement condition based on which the pavement "health" is perceived helping decide whether there is the need or not to intervene in the pavement. The accomplished perception appoints required management activities for preserving pavements in favor not only of the involved highway/road agencies but also of users' service. Amongst NDT methods Ground Penetrating Radar (GPR) seems to be a very powerful toll, as it provides a range of condition and construction pavement information. It can support effectively the implementation of PMS activities in the framework of pavement monitoring and evaluation. Given that, the present work aims to the development and adaptation of a protocol for the use of GPR in combination with other NDT methods, such as Falling Weight Deflectometer (FWD), for assessing pavements in PPP projects. It is based on the experience of Laboratory of

  3. APPARATUS FOR NON-DESTRUCTIVE INSPECTION OF CANTILEVERED MEMBERS

    Science.gov (United States)

    Taylor, E.R.; Mahoney, C.H.; Lay, C.R.

    1961-10-24

    An apparatus for non-destructive inspection of cantilevered members, such as compressor blades, is described. The member under inspection is vibrated with a regulated source of air under pressure. The amplitude of vibration of the member is maintained at its natural frequency. The frequency of vibration of the member is measured. An indication of an excessive decay or erratic shifting in the measured frequency above an allowable hysteretic decay is provided as an indication of a fault in the member. The member is vibrated for a selected test period. (AEC)

  4. Human factors aspects of non-destructive testing in the nuclear power context. A review of research in the field

    Energy Technology Data Exchange (ETDEWEB)

    Enkvist, J.; Edland, A.; Svenson, Ola [Stockholm Univ. (Sweden). Dept. of Psychology

    1999-02-01

    The present report reviews literature relevant to human factors and non-destructive testing. The purpose is to cover research that has been done, and to find out what still needs to be done to improve inspection performance. Methods of non-destructive testing (e.g., ultrasonics, eddy current) are complex diagnostic tools used by operators to inspect materials, e.g., components of a nuclear power plant. In order to maintain the integrity of a plant, recurrent inspections are made while the components are still in service. To control the quality of inspections, operators have to follow a procedure that determines what equipment to use and how to use it. The procedure also guides the operator in assessment of indications. There are a number of factors that can affect the inspection quality (e.g., heat, time pressure, and fear of radiation). In earlier studies, experience, organizational practices, and work conditions have been shown to affect on the quality of inspections. The quality of inspection performance is considered to benefit from adapting equipment and procedure to man`s abilities and limitations. Furthermore, work conditions and feedback are considered determinants of performance quality. However, exactly how performance is affected by these factors, and the combined effect of them, need to be studied further. Further research is needed in decision criteria, procedure, and work conditions, and their effect on the quality of inspection performance

  5. Human factors aspects of non-destructive testing in the nuclear power context. A review of research in the field

    International Nuclear Information System (INIS)

    Enkvist, J.; Edland, A.; Svenson, Ola

    1999-02-01

    The present report reviews literature relevant to human factors and non-destructive testing. The purpose is to cover research that has been done, and to find out what still needs to be done to improve inspection performance. Methods of non-destructive testing (e.g., ultrasonics, eddy current) are complex diagnostic tools used by operators to inspect materials, e.g., components of a nuclear power plant. In order to maintain the integrity of a plant, recurrent inspections are made while the components are still in service. To control the quality of inspections, operators have to follow a procedure that determines what equipment to use and how to use it. The procedure also guides the operator in assessment of indications. There are a number of factors that can affect the inspection quality (e.g., heat, time pressure, and fear of radiation). In earlier studies, experience, organizational practices, and work conditions have been shown to affect on the quality of inspections. The quality of inspection performance is considered to benefit from adapting equipment and procedure to man's abilities and limitations. Furthermore, work conditions and feedback are considered determinants of performance quality. However, exactly how performance is affected by these factors, and the combined effect of them, need to be studied further. Further research is needed in decision criteria, procedure, and work conditions, and their effect on the quality of inspection performance

  6. Investigation on the Short-Circuit Behavior of an Aged IGBT Module Through a 6 kA/1.1 kV Non-Destructive Testing Equipment

    DEFF Research Database (Denmark)

    Wu, Rui; Smirnova, Liudmila; Iannuzzo, Francesco

    2014-01-01

    This paper describes the design and development of a 6 kA/1.1 kV non-destructive testing system, which aims for short circuit testing of high-power IGBT modules. An ultralow stray inductance of 37 nH is achieved in the implementation of the tester. An 100 MHz FPGA supervising unit enables 10 ns...

  7. Evaluation of concrete structures affected by alkali-silica reaction and delayed ettringite formation - part 2.

    Science.gov (United States)

    2012-12-01

    This report details the results of a comprehensive research project aimed at evaluating the potential use of : non-destructive testing (NDT) to assess structures affected by ASR and/or DEF. This project was a : collaborative effort between the Univer...

  8. A prototype NDT inspection data bank

    International Nuclear Information System (INIS)

    Wells, N.S.

    1978-01-01

    Existing reliability data banks provide information on items with catastrophic failure modes. However, many system components in a nuclear generating station, e.g., the steam generators, have a time-dependent degradation failure mode. Non-destructive tests associated with this failure mode require a different data base to permit predictive estimates of the component service life and performance. A data base suitable for this failure mode is presently being tested at Chalk River Nuclear Laboratories. (author)

  9. Contribution to the improvement of heritage mural painting non-destructive testing by stimulated infrared thermography

    Science.gov (United States)

    Bodnar, Jean-Luc; Mouhoubi, Kamel; Di Pallo, Luigi; Detalle, Vincent; Vallet, Jean-Marc; Duvaut, Thierry

    2013-10-01

    Non-destructive testing of heritage mural paintings by means of stimulated infrared thermography has now become rather efficient [1-14]. However, pigments, which form a pictorial layer, have contrasting radiative properties possibly leading to artifact detection. In this paper, attempts to alleviate this difficulty are presented. Based on the spectroscopic study of different paint layers, one can argue that, in the medium infrared field, this radiative disparity decreases significantly. Then, with similar settings, it can be shown that ceramic radiative sources allow reaching this wavelength band. Finally, on the basis of a study carried out on an academic sample and a partial copy of a fresco from the cathedral of Angers, combining ceramic heat sources with a laboratory SAMMTHIR experimental setup enables to make real headway in terms of defects' detection.

  10. Non-destructive testing on aramid fibres for the long-term assessment of interventions on heritage structures

    International Nuclear Information System (INIS)

    Ceravolo, R; Pinotti, E; Surace, C; Fragonara, L Zanotti; De Marchi, A

    2015-01-01

    High strength fibre reinforced polymers (FRPs) are composite materials made of fibres such as carbon, aramid and/or glass, and a resin matrix. FRPs are commonly used for structural repair and strengthening interventions and exhibit high potential for applications to existing constructions, including heritage buildings. In regard to aramid fibres, uncertainties about the long-term behaviour of these materials have often made the designers reluctant to use them in structural engineering. The present study describes simple and non-destructive nonlinearity tests for assessing damage or degradation of structural properties in Kevlar fibres. This was obtained by using high precision measurements to detect small deviations in the dynamic response measured on fibres and ropes. The change in dynamic properties was then related to a damage produced by exposure of the sample to UV rays for a defined time period, which simulated long-term sun exposure. In order to investigate the sensitivity of such an approach to damage detection, non-linearity characterisation tests were conducted on aramid fibres in both damaged and undamaged states. With the purpose of carrying out dynamic tests on small fibre specimens, a dedicated instrumentation was designed and built in cooperation with the Metrology Laboratory of the Department of Electronics at the Politecnico di Torino. (paper)

  11. Development of a model of the interaction of an electromagnetic field with an ideal planar defect within a conductive medium. Application to eddy current non destructive testing; Developpement d'un modele d'interaction d'un champ electromagnetique avec un defaut plan dans un materiau conducteur. Application a la simulation d'un procede de controle non destructif par courants de Foucault

    Energy Technology Data Exchange (ETDEWEB)

    Maurice, L

    2006-12-15

    The Eddy Current (EC) Non Destructive Testing (NDT) is used in various industrial fields. The modelling of the implied phenomena brings a substantial hand for the understanding, the set-up and the optimisation of the investigations to be performed. It requires the resolution of the Maxwell equations that can be achieved with semi-analytical models, based on an integral methods. The Volume Integral Method (VIM) enables to simulate various EC NDT configurations involving volumetric defects. Nevertheless, important formalism and numerical problems appear when the considered defect has a small aperture, and computational times become very high. This is the reason why the Surface Integral Model (SIM) has been developed. The defect is taken into account as a source layer of current dipole. Based on this assumption, the existence of a scalar potential quantity can be demonstrated. A study of different numerical implementations enables to select the most efficient. Then, validations have been carried out, comparing probe responses, computed by SIM, VIM, to experimental data. The SIM model turns out to be very fast, and well adapted to get 2-D probe responses, with good accuracy. Nevertheless, the hypotheses used in the SIM formalism appeared to be very restrictive for some configurations. A model has been set up, that takes advantages of both VIM and SIM. The dipole density evaluation is still based on surface hypotheses, therefore the computational load is comparable to the ones of SIM. The computations are then improved by the evaluation of the total field, which enables to partially take into account the defect aperture. Another set of comparisons between data obtained by the three simulation models and experimental measurements has been carried out, for numerous configurations. Some of them namely imply probes made of two coils, separately transmitting and receiving.The new 'hybrid' model brings suitable corrections to the SIM model. The simulation results

  12. The Destructive/Non-Destructive Identification of Enameled Pottery, Glass Artifacts and Associated Pigments—A Brief Overview

    Directory of Open Access Journals (Sweden)

    Philippe Colomban

    2013-07-01

    Full Text Available The birth of Chemistry can be found in two main practices: (i the Arts du feu (ceramic and glass, metallurgy, i.e., inorganic and solid state chemistry and (ii the preparation of remedies, alcohols and perfumes, dyes, i.e., organic and liquid state chemistry. After a brief survey of the history of (glazed pottery and (enameled glass artifacts, the development of destructive and non-destructive analytical techniques during the last few centuries is reviewed. Emphasis is put on mobile non-destructive Raman microspectroscopy of pigments and their glass/glaze host matrices for chronological/technological expertise. The techniques of white opacification, blue, yellow, green, red, and black coloring, are used as examples to point out the interest of pigments as chronological/technological markers.

  13. Decision Support System for Condition Monitoring Technologies

    NARCIS (Netherlands)

    Mouatamir, Abderrahim

    2018-01-01

    The technological feasibility of a condition-based maintenance (CBM) policy is intrinsically related to the suitable selection of condition monitoring (CM) technologies such as vibration- and oil analysis or other non-destructive testing (NDT) techniques such as radiographic- and magnetic particle

  14. Industrial radiography

    International Nuclear Information System (INIS)

    1992-01-01

    Industrial radiography is a non-destructive testing (NDT) method which allows components to be examined for flaws without interfering with their usefulness. It is one of a number of inspection methods which are commonly used in industry to control the quality of manufactured products and to monitor their performance in service. Because of its involvement in organizing training courses in all the common NDT methods in regional projects in Asia and the Pacific and Latin America and the Caribbean and in many country programmes, the Agency is aware of the importance of standardizing as far as possible the syllabi and training course notes used by the many experts who are involved in presenting the training courses. IAEA-TECDOC-628 ''Training Guidelines in Non-destructive Testing'' presents syllabi which were developed by an Agency executed UNDP project in Latin America and the Caribbean taking into account the developmental work done by the International Committee for Non-destructive Testing. Experience gained from using the radiography syllabi from TECDOC-628 at national and regional radiography training courses in the Agency executed UNDP project in Asia and the Pacific (RAS/86/073) showed that some guidance needed to be given to radiography experts engaged in teaching at these courses on the material which should be covered. The IAEA/UNDP Asia and Pacific Project National NDT Coordinators therefore undertook to prepare Radiography Training Course Notes which could be used by experts to prepare lectures for Level 1,2 and 3 radiography personnel. The notes have been expanded to cover most topics in a more complete manner than that possible at a Level 1, 2 or 3 training course and can now be used as source material for NDT personnel interested in expanding their knowledge of radiography. Refs, figs and tabs

  15. New possibilities for non-destructive testing of pipelines with intelligent pigs

    Energy Technology Data Exchange (ETDEWEB)

    Willems, H.; Jaskolla, B.; Barbian, O.A. [NDT Systems and Services, Stutensee (Germany); Niese, F. [Institut fuer zerstoerungsfreie Pruefverfahren, Saarbruecken (Germany)

    2009-07-01

    Pipelines are considered to be the safest way for transportation of large amounts of liquid and gas over large distances. In the course of the lifetime of a pipeline, however, many effects can lead to damages affecting the integrity of the line, e.g. manufacturing-related anomalies, operationally induced anomalies or third-party damage. In order to avoid pipeline failures with potentially catastrophic consequences so-called intelligent pigs (or smart pigs) were developed during the last decades: These tools allow for the internal inspection (In-Line Inspection, ILI) of pipelines using non-destructive testing technologies for the early detection and sizing of defects. Most common are magnetic flux leakage (MFL) and ultrasonic techniques for corrosion inspection and the latter also for crack inspection. While the ultrasonic techniques offer superior sizing capabilities they are limited to the inspection of liquid pipelines where the medium itself provides the necessary coupling between the (piezoelectric) ultrasonic transducers and the pipe wall. However, this limitation can be overcome by recent developments using EMAT (Electro-Magnetic Acoustic Transducer) technology. By a special sensor design, the EMAT inspection is combined with eddy current (EC) inspection and MFL inspection at the same time. As a result, this new multi-technology approach offers improved sizing as well as enhanced feature identification for wall thickness inspection of gas pipelines. (orig.)

  16. Classification by a neural network approach applied to non destructive testing

    International Nuclear Information System (INIS)

    Lefevre, M.; Preteux, F.; Lavayssiere, B.

    1995-01-01

    Radiography is used by EDF for pipe inspection in nuclear power plants in order to detect defects. The radiographs obtained are then digitized in a well-defined protocol. The aim of EDF consists of developing a non destructive testing system for recognizing defects. In this paper, we describe the recognition procedure of areas with defects. We first present the digitization protocol, specifies the poor quality of images under study and propose a procedure to enhance defects. We then examine the problem raised by the choice of good features for classification. After having proved that statistical or standard textural features such as homogeneity, entropy or contrast are not relevant, we develop a geometrical-statistical approach based on the cooperation between signal correlations study and regional extrema analysis. The principle consists of analysing and comparing for areas with defects and without any defect, the evolution of conditional probabilities matrices for increasing neighborhood sizes, the shape of variograms and the location of regional minima. We demonstrate that anisotropy and surface of series of 'comet tails' associated with probability matrices, variograms slope and statistical indices, regional extrema location, are features able to discriminate areas with defects from areas without any. The classification is then realized by a neural network, which structure, properties and learning mechanisms are detailed. Finally we discuss the results. (authors). 21 refs., 5 figs

  17. Non destructive testing of industrial pieces by radiography: quantitative characterization and 3 D reconstruction by the way of a limited number of images

    International Nuclear Information System (INIS)

    Retraint, F.

    1998-01-01

    The non destructive testing of industrial pieces is evaluated on the basis of numerical radiographies.The context of the study is the online control of the fuel rods production. A direct model of a numerical radiography formation is proposed and detailed for an acquisition system consisting of a CCD video connected to a converter screen by an optical system. As this approach does not allow the determination of the measured matter thickness from the X-ray photograph, an approximate model based on realistic approximations of the industrial non destructive testing, has been developed. For the specific cases it is possible to inverse the model and to reach the quantitative information present in the x-ray photograph, in other words, the map of the X-rays measured matter thickness. It becomes then possible to access to the quantitative parameters of the possible defects present in the measured specimen, such as the surface and the bulk. To reach the 3 D information on the defects a 3 D reconstruction method, from 3 X-rays photographs, is proposed.The inverse problem is solved by the non convex energy minimization. (A.L.B.)

  18. Annual meeting 1997 - Nondestructive materials evaluation: NDT as a service in a changed industrial environment. Proceedings, book of papers

    International Nuclear Information System (INIS)

    1997-01-01

    Volume 1 of the conference proceedings presents the full papers. They discuss aspects of the following subjects of main interest: NDT services, ultrasonic testing, industrial radiography, eddy current testing, materials characterization, NDT in the building trade, acoustic emission analysis. Eighteen of the papers were analysed and indexed for separate retrieval from the ENERGY database. (MM) [de

  19. New Developments and special NDT techniques

    International Nuclear Information System (INIS)

    Mundry, E.

    1978-01-01

    New developments in measuring methods using non-destructive testing are reported. The following are discussed in various chapters: a) Mechanical and acoustic methods, b) thermal and optical methods, c) electric and magnetic methods, d) X-ray and gamma radiation methods, e) particle methods or particle radiation. Finally, method techniques are explained. An extensive bibliography (210 quotations) supplement the work. (RW) [de

  20. Non-destructive nuclear forensics of radioactive samples

    Energy Technology Data Exchange (ETDEWEB)

    Rogge, R.B. [Canadian Neutron Beam Centre, Chalk River, ON (Canada); Alexander, Q.; Bentoumi, G.; Dimayuga, F. [Atomic Energy of Canada Limited, Chalk River, ON (Canada); Flacau, R. [Canadian Neutron Beam Centre, Chalk River, ON (Canada); Li, G.; Li, L.; Sur, B. [Atomic Energy of Canada Limited, Chalk River, ON (Canada)

    2014-07-01

    It is a matter of public safety and security to be able to examine suspicious packages of unknown origin. If the package is radioactive and sealed (i.e., the radioactive materials contained in the package, including their chemical and physical forms, are unknown), there is a significant risk on how to handle the package and eventually safely dispose of its contents. Within the context of nuclear security, nuclear forensics helps address the key issue of identifying the nature and origin of radioactive and nuclear material in order to improve physical protection measures and prevent future theft or diversion of these materials. Nuclear forensics utilizes analytical techniques, destructive and non-destructive, developed for applications related to nuclear fuel cycles. This paper demonstrates the non-destructive examination techniques that can be used to inspect encapsulated radioactive samples. Results of γ spectroscopy, X-ray spectroscopy, neutron imaging, neutron diffraction, and delayed neutron analysis as applied to an examination of sealed capsules containing unknown radioactive materials are presented. The paper also highlights the value of these techniques to the overall nuclear forensic investigation to determine the origin of these unknown radioactive materials. (author)

  1. Potential development of non-destructive assay for nuclear safeguards

    International Nuclear Information System (INIS)

    Benoit, R.; Cuypers, M.; Guardini, S.

    1983-01-01

    After a brief summary on the role of non-destructive assay in safeguarding the nuclear fuel cycle, its evolution from NDA methods development to other areas is illustrated. These areas are essentially: a) the evaluation of the performances of NDA techniques in field conditions; b) introduction of full automation of measurement instrument operation, using interactive microprocessors and of measurement data handling evaluation and retrieval features; c) introduction of the adequate link and compatibility to assure NDA measurement data transfer in an integrated safeguards data evaluation scheme. In this field, the Joint Research Centre (JRC) of the Commission of the European Communities (CEC) is developing and implementing a number of techniques and methodologies allowing an integrated and rational treatment of the large amount of safeguards data produced. In particular for the non-destructive assay measurements and techniques, the JRC has studied and tested methodologies for the automatic generation and validation of data of inventory verification. In order to apply these techniques successfully in field, the JRC has studied the design requirements of NDA data management and evaluation systems. This paper also discusses the functional requirements of an integrated system for NDA safeguards data evaluation

  2. X-ray phase scanning setup for non-destructive testing using Talbot-Lau interferometer

    Science.gov (United States)

    Bachche, S.; Nonoguchi, M.; Kato, K.; Kageyama, M.; Koike, T.; Kuribayashi, M.; Momose, A.

    2016-09-01

    X-ray grating interferometry has a great potential for X-ray phase imaging over conventional X-ray absorption imaging which does not provide significant contrast for weakly absorbing objects and soft biological tissues. X-ray Talbot and Talbot-Lau interferometers which are composed of transmission gratings and measure the differential X-ray phase shifts have gained popularity because they operate with polychromatic beams. In X-ray radiography, especially for nondestructive testing in industrial applications, the feasibility of continuous sample scanning is not yet completely revealed. A scanning setup is frequently advantageous when compared to a direct 2D static image acquisition in terms of field of view, exposure time, illuminating radiation, etc. This paper demonstrates an efficient scanning setup for grating-based Xray phase imaging using laboratory-based X-ray source. An apparatus consisting of an X-ray source that emits X-rays vertically, optical gratings and a photon-counting detector was used with which continuously moving objects across the field of view as that of conveyor belt system can be imaged. The imaging performance of phase scanner was tested by scanning a long continuous moving sample at a speed of 5 mm/s and absorption, differential-phase and visibility images were generated by processing non-uniform moire movie with our specially designed phase measurement algorithm. A brief discussion on the feasibility of phase scanner with scanning setup approach including X-ray phase imaging performance is reported. The successful results suggest a breakthrough for scanning objects those are moving continuously on conveyor belt system non-destructively using the scheme of X-ray phase imaging.

  3. Non-destructive elecrochemical monitoring of reinforcement corrosion

    DEFF Research Database (Denmark)

    Nygaard, Peter Vagn

    been widely accepted as a non-destructive ”state of the art” technique for detection of corrosion in concrete structures. And, over the last decade, the trend in corrosion monitoring has moved towards quantitative non-destructive monitoring of the corrosion rate of the steel reinforcement. A few...... corrosion rate measurement instruments have been developed and are commercially available. The main features of these instruments are the combined use of an electrochemical technique for determining the corrosion rate and a so-called ”confinement technique”, which in principle controls the polarised surface...... area of the reinforcement, i.e. the measurement area. Both on-site investigations and laboratory studies have shown that varying corrosion rates are obtained when the various commercially available instruments are used. And in the published studies, conflicting explanations are given illustrating...

  4. Non-destructive examination system of vitreous body

    Science.gov (United States)

    Shibata, Takuma; Gong, Jin; Watanabe, Yosuke; Kabir, M. Hasnat; Masato, Makino; Furukawa, Hidemitsu; Nishitsuka, Koichi

    2014-04-01

    Eyeball plays a quite important role in acquiring the vision. Vitreous body occupies the largest part of the eyeball and consists of biological, elastic, transparent, gel materials. In the present medical examination, the non-destructive examination method of the vitreous body has not been well established. Here, we focus on an application of dynamic light scattering to this topic. We tried to apply our lab-made apparatus, scanning microscopic light scattering (SMILS), which was specially designed for observing the nanometer-scale network structure in gel materials. In order to examine the vitreous body using SMILS method, a commercial apparatus, nano Partica (Horiba Co. Ltd.) was also customized. We analyzed vitreous body using both the SMILS and the customized nano Partica. We successfully examined the vitreous bodies of healthy pigs in non-destructive way.

  5. SQUID in NDT

    International Nuclear Information System (INIS)

    Rashdi Shah Ahmad

    2001-01-01

    Superconducting Quantum Interference Device (SQUID) is the most sensitive magnetic flux sensor. It has been used to map the magnetic field on the scalp of human being generated by the brain activity. Currently, a number of groups have tried using SQUID for some special NDT application. This paper reviews some of these work. (Author)

  6. National seminar on non-destructive evaluation techniques: proceedings cum souvenir

    International Nuclear Information System (INIS)

    Dutta, N.G.; Kulkarni, P.G.; Purushotham, D.S.C.

    1994-01-01

    This volume contains selected papers presented at the National Seminar on Non-Destructive Evaluation Techniques held at Bhabha Atomic Research Centre, Mumbai during December 8-9, 1994. The papers covered a wide spectrum of non-destructive evaluation activities including that for quality assurance of various nuclear components and structures with the focal theme being computerization and robotics. The papers relevant to INIS are indexed separately

  7. Community survey on reference blocks and transducers for non-destructive ultrasonic testing

    International Nuclear Information System (INIS)

    Vinche, C.; Borloo, E.; Jehenson, P.

    1978-01-01

    In the frame of the European programmes 'Standards and Reference Substances' and 'Reference Materials and Methods' (BCR) the Commission of the European Communities, in conjunction with National experts launched in 1975 an inquiry on reference blocks and transducers for non-destructive ultrasonic testing. This inquiry which is complementary to a general survey made in 1971-1972 by the Commission on Reference Materials (Ref. EUR Report 1973. EUR 4886. d,f,i,n,e) was felt necessary and prepared by a specialists group from the Community Countries and the Joint Research Centre (JRC), Ispra Establishment (the list of these specialists is indicated on p. 2 of the questionnaire). The results of this survey, collated by the JRC Ispra Members have been discussed by the group of specialists and form the subject of this report. On bases of mailing lists submitted by national specialists, 215 organizations have been contacted; the fields of activity of these organizations are mainly: metallurgy, machine parts, technical assistance, aeronautics, power stations and research, 73 organizations have replied to the questionnaire. Most answers were obained from organizations dealing with metallurgy, machine parts manufacturers and technical consultants. The annexes supply a detailed analysis of the results given, on a national basis

  8. Non-destructive evaluation on mechanical properties of nuclear graphite with porous structure

    International Nuclear Information System (INIS)

    Shibata, Taiju; Hanawa, Satoshi; Sumita, Junya; Tada, Tatsuya; Sawa, Kazuhiro; Iyoku, Tatsuo

    2005-01-01

    As a research subjects of 'Research and development for advanced high temperature gas cooled reactor fuels and graphite components,' we started the study of development of non-destructive evaluation methods for mechanical properties of graphite components. The micro-indentation and ultrasonic wave methods are focused to evaluate the degradation of graphite components in VHTR core. For the micro-indentation method, the test apparatus was designed for the indentation test on graphite specimens with some stress levels. It is expected the stress condition is evaluated by the indentation load-depth characteristics and hardness. For the ultrasonic wave method, ultrasonic wave testing machine and probes were prepared for experiments. It is expected that the stress and inner porous conditions are evaluated by the wave propagation characteristics with wave-pore interaction model. R and D plan to develop the non-destructive evaluation method for graphite is presented in this paper. (This study is the result of contract research in the fiscal year of 2004, Research and development for advanced high temperature gas cooled reactor fuels and graphite components,' which is entrusted to the Japan Atomic Energy Research Institute from the Ministry of Education, Culture, Sports, Science and Technology of Japan.) (author)

  9. RNL NDT studies related to PWR pressure vessel inlet nozzle inspection

    International Nuclear Information System (INIS)

    Rogerson, A.; Poulter, L.N.J.; Clough, P.; Cooper, A.

    1984-01-01

    Non-destructive examinations of the Reactor Pressure Vessel (RPV) of a Pressurized Water Reactor (PWR) play an important role in assuring vessel integrity throughout its operational life. Automated ultrasonic techniques for the detection and sizing of flaws in thick-section seam welds and near-surface regions in a PWR RPV have been under development at RNL for some time. Techniques for the inspection of complex geometry welds and other regions of the vessel are now being assessed and further developed as part of the UK NDT development programme in support of the Sizewell PWR. One objective of this programme is to demonstrate that the range of ultrasonic techniques already shown to be effective for the inspection of seam welds and inlet nozzle corner regions, through exercises such as the Defect Detection Trials, can also be effective for inspection of these other vessel regions. The nozzle-to-vessel welds and nozzle crotch corners associated with the RPV water inlet and outlet nozzles are two such regions being examined in this programme. In this paper, a review is given of the work performed at RNL in the development of a laboratory-based inspection system for inlet nozzle inspection. The main features of the system in its current stage of development are explained. (author)

  10. Proceedings of the national workshop on non destructive evaluation of structures

    International Nuclear Information System (INIS)

    2013-01-01

    In spite of the care and best efforts to improve the quality of structures, problems do occur, raising alarm. This makes doubtful about the understanding. Distresses in the structures start immediately after construction and these are often concealed under the external finishes. A defect takes time to manifest itself. To add further, structures remain unattended for several years. As it is uneconomical to replace the assets before the intended service life by another capital investment, it is essential to periodically monitor the health of structures throughout its life. Success of both, the construction and restoration work depends on right diagnosis of the problem thorough proper testing techniques. Non destructive evaluation is one of the reliable methods for the scientific assessment of health and prediction of residual service life of structure. The workshop shall provide a platform to students, engineers and professionals for acquaintance with the current state of art technology of non-destructive evaluation techniques. Papers relevant to INIS are indexed separately

  11. Modelling heterogeneity of concrete using 2D lattice network for ...

    Indian Academy of Sciences (India)

    present work brings out certain finer details which are not available explicitly in the earlier works. Keywords. Concrete fracture; lattice model; Fuller distribution; ... examples are cement mortar and concrete in civil engineering. ..... Although acoustic emission technique is a well established non destructive testing (NDT).

  12. Technical property and application of industrial computed tomography

    International Nuclear Information System (INIS)

    Sun Lingxia; Ye Yunchang

    2006-01-01

    The main technical property of industrial computed tomography (ICT) and its application in non-destructive testing (NDT) were described. And some examples of ICT applications in such fields as defects detection, welding quality, density uniformity, structure analysis and making-up quality were given. (authors)

  13. NDT in failure analysis - some case studies [Paper IIIA-g

    International Nuclear Information System (INIS)

    Raj, Baldev; Bhattacharya, D.K.; Lopez, E.C.; Jayakumar, T.

    1986-01-01

    The effective uses of several non-destructive techniques in failure analysis are discussed. The techniques considered are: dye penetrant testing, radiography, ultrasonic testing, hardness measurement and in-situ metallography. A few failure cases are discussed to highlight the usefulness of the techniques. (author)

  14. Defect recognition in CFRP components using various NDT methods within a smart manufacturing process

    Science.gov (United States)

    Schumacher, David; Meyendorf, Norbert; Hakim, Issa; Ewert, Uwe

    2018-04-01

    The manufacturing process of carbon fiber reinforced polymer (CFRP) components is gaining a more and more significant role when looking at the increasing amount of CFRPs used in industries today. The monitoring of the manufacturing process and hence the reliability of the manufactured products, is one of the major challenges we need to face in the near future. Common defects which arise during manufacturing process are e.g. porosity and voids which may lead to delaminations during operation and under load. To find irregularities and classify them as possible defects in an early stage of the manufacturing process is of high importance for the safety and reliability of the finished products, as well as of significant impact from an economical point of view. In this study we compare various NDT methods which were applied to similar CFRP laminate samples in order to detect and characterize regions of defective volume. Besides ultrasound, thermography and eddy current, different X-ray methods like radiography, laminography and computed tomography are used to investigate the samples. These methods are compared with the intention to evaluate their capability to reliably detect and characterize defective volume. Beyond the detection and evaluation of defects, we also investigate possibilities to combine various NDT methods within a smart manufacturing process in which the decision which method shall be applied is inherent within the process. Is it possible to design an in-line or at-line testing process which can recognize defects reliably and reduce testing time and costs? This study aims to show up opportunities of designing a smart NDT process synchronized to the production based on the concepts of smart production (Industry 4.0). A set of defective CFRP laminate samples and different NDT methods were used to demonstrate how effective defects are recognized and how communication between interconnected NDT sensors and the manufacturing process could be organized.

  15. Analysis the evaluation of reinforces concrete structure Block 62 by Non Destructive Method, Destructive Method and Esteem Computer Program

    International Nuclear Information System (INIS)

    Mohd Jamil Hashim; Norhazwani Mohd Azahari

    2012-01-01

    The evaluation of old and unrecorded building is a difficult task to work on. This is because no detail record of building component such as reinforce concrete strength test record, type of reinforcement used, construction methods and soil investigation (SI) which make it impossible to analyse. Through NDT building reinforced concrete component is easily evaluated and mean while DT method give assurance through actual sample testing. From these early result detail drawing plans can be rebuild and building forensic work can be done. These data will be fed into the computer program to produce a structure evaluation result whether it is safe or not in accordance to design standard BS8110. (author)

  16. Non-destructive and destructive examination of the retired North Anna 2 Reactor Pressure Vessel Head

    International Nuclear Information System (INIS)

    Ahluwalia, Kawaljit; Barnes, Robert; Rao, Gutti; Cattant, Francois; Peat, Noel

    2006-09-01

    Stress corrosion cracking of Alloy 600 and nickel-based weld materials has been the single biggest challenge facing the PWR industry. A fundamental and thorough knowledge was needed to properly explain this phenomenon and develop appropriate mitigation strategies. Non Destructive Examination (NDE) of the North Anna Unit 2 Reactor Vessel Head (RVH) during the 2002 fall outage identified widespread crack indications in the Alloy 600 CRDM penetrations and associated Alloy 182 and 82 J-groove attachment welds. When the Utility decided to replace the RVH, a rare opportunity was provided to the industry to undertake in-depth studies of representative defective CRDM penetrations from a retired RVH. Accordingly, the Materials Reliability Program, undertook a two-phase program on the retired North Anna 2 Alloy 600 RVH. The first phase involved selection and removal of six penetrations from the RVH and penetration decontamination, replication and laboratory NDE. The second phase consisted of a detailed destructive examination of penetration number 54. This paper provides a summary of work undertaken during this program. Criteria for selection of penetrations for removal and procedures used in removal of the penetrations are described. Extreme care was undertaken in decontamination of the penetrations to facilitate laboratory NDE. Penetration number 54 was then subjected to destructive examination to establish a correlation between NDE findings (from both field and laboratory inspections) and actual flaws. Additional objectives of the destructive examination included mechanistic assessment of defect formation and investigation of the annulus environment and wastage characterization. Data obtained from these studies is invaluable in validating safety assessment statements by developing the correlation between field NDE and actual defects. In addition, information gathered from non-destructive and destructive examinations is used to assess accuracy of the NDE techniques

  17. 40 years of progress in NDT - History as a guide to the future

    Energy Technology Data Exchange (ETDEWEB)

    Farley, Mike [Chairman, International Committee for NDT (ICNDT) and Secretariat: The British Institute of NDT, Newton Building, St George' s Avenue, Northampton NN2 6JB (United Kingdom)

    2014-02-18

    The paper is focussed on the progress which has been made over 40 years in the science, technology and application of NDT/NDE both during manufacture and in-service, from the perspective of the author and his background in the energy industries in the UK. New techniques not dreamt of 40 years ago and new technology such as personal computers, lasers and robotics which are now common-place in everyday life have transformed some aspects of NDT. But other aspects have remained unchanged, including the continued use of the more basic NDT methods and the challenges of recruitment, training, certification and motivation of personnel. There have been major changes in the world scene over 40 years including the globalization of trade, the emergence of new countries as industrial powers, and the ageing of safety critical infrastructure. These have impacted on NDT business and on the activities of the international NDT community (including ICNDT, the International Committee for NDT). The paper concludes by introducing the activities championed by ICNDT to promote the understanding of the importance of NDT, to support the development of NDT Societies around the world, to educate users on the correct use of personnel certification and to pursue the objective of global harmonisation and recognition of third party certification.

  18. 40 years of progress in NDT - History as a guide to the future

    International Nuclear Information System (INIS)

    Farley, Mike

    2014-01-01

    The paper is focussed on the progress which has been made over 40 years in the science, technology and application of NDT/NDE both during manufacture and in-service, from the perspective of the author and his background in the energy industries in the UK. New techniques not dreamt of 40 years ago and new technology such as personal computers, lasers and robotics which are now common-place in everyday life have transformed some aspects of NDT. But other aspects have remained unchanged, including the continued use of the more basic NDT methods and the challenges of recruitment, training, certification and motivation of personnel. There have been major changes in the world scene over 40 years including the globalization of trade, the emergence of new countries as industrial powers, and the ageing of safety critical infrastructure. These have impacted on NDT business and on the activities of the international NDT community (including ICNDT, the International Committee for NDT). The paper concludes by introducing the activities championed by ICNDT to promote the understanding of the importance of NDT, to support the development of NDT Societies around the world, to educate users on the correct use of personnel certification and to pursue the objective of global harmonisation and recognition of third party certification

  19. Call for NDT leadership role in assuring safety of nuclear power

    International Nuclear Information System (INIS)

    Anders, W.A.; Simpson, J.W.

    1976-01-01

    Nondestructive Testing and its potential role in assuring the safety of nuclear power were given emphasis at a conference on Nondestructive Testing in the Nuclear Industry sponsored by the American Society for Metals Dec. 1--3 in Denver, Colo. Excerpts from two major addresses challenging the NDT community to assume leadership in solving nuclear safety problems are presented

  20. Role of non-destructive examinations in leak testing of glove boxes for industrial scale plutonium handling at nuclear fuel fabrication facility along with case study

    International Nuclear Information System (INIS)

    Aher, Sachin

    2015-01-01

    Non Destructive Examinations has the prominent role at Nuclear Fuel Fabrication Facilities. Specifically NDE has contributed at utmost stratum in Leak Testing of Glove Boxes and qualifying them as a Class-I confinement for safe Plutonium handling at industrial scale. Advanced Fuel Fabrication Facility, BARC, Tarapur is engaged in fabrication of Plutonium based MOX (PuO 2 , DDUO 2 ) fuel with different enrichments for first core of PFBR reactor. Alpha- Leak Tight Glove Boxes along with HEPA Filters and dynamic ventilation form the promising engineering system for safe and reliable handling of plutonium bearing materials considering the radiotoxicity and risk associated with handling of plutonium. Leak Testing of Glove Boxes which involves the leak detection, leak rectification and leak quantifications is major challenging task. To accomplish this challenge, various Non Destructive Testing methods have assisted in promising way to achieve the stringent leak rate criterion for commissioning of Glove Box facilities for plutonium handling. This paper highlights the Role of various NDE techniques like Soap Solution Test, Argon Sniffer Test, Pressure Drop/Rise Test etc. in Glove Box Leak Testing along with procedure and methodology for effective rectification of leakage points. A Flow Chart consisting of Glove Box leak testing procedure starting from preliminary stage up to qualification stage along with a case study and observations are discussed in this paper. (author)

  1. Status report on the destructive and non-destructive examinations of U-bends removed from Trojan steam generator D

    International Nuclear Information System (INIS)

    Aspden, R.G.

    1981-01-01

    The last status report on the non-destructive examination of U-bends removed from Trojan steam generator D was dated July 7, 1980. As part of this activity, the measurement of wall thicknesses on selected U-bends was planned using an ultrasonic gage. These readings were not made because reproducible results could not be obtained using water as the coupling fluid which was necessary to avoid contamination. Three tubes from the same heat were selected for destructive examination at Westinghouse: one leaking U-bend (R1-C6) and two tubes with no indications (R1-C10 and R1-C22). Results of the examination procedure are presented. The non-destructive examination results from the July 7, 1980 report for 29 U-bends are included

  2. Non-Destructive Thermography Analysis of Impact Damage on Large-Scale CFRP Automotive Parts

    Science.gov (United States)

    Maier, Alexander; Schmidt, Roland; Oswald-Tranta, Beate; Schledjewski, Ralf

    2014-01-01

    Laminated composites are increasingly used in aeronautics and the wind energy industry, as well as in the automotive industry. In these applications, the construction and processing need to fulfill the highest requirements regarding weight and mechanical properties. Environmental issues, like fuel consumption and CO2-footprint, set new challenges in producing lightweight parts that meet the highly monitored standards for these branches. In the automotive industry, one main aspect of construction is the impact behavior of structural parts. To verify the quality of parts made from composite materials with little effort, cost and time, non-destructive test methods are increasingly used. A highly recommended non-destructive testing method is thermography analysis. In this work, a prototype for a car’s base plate was produced by using vacuum infusion. For research work, testing specimens were produced with the same multi-layer build up as the prototypes. These specimens were charged with defined loads in impact tests to simulate the effect of stone chips. Afterwards, the impacted specimens were investigated with thermography analysis. The research results in that work will help to understand the possible fields of application and the usage of thermography analysis as the first quick and economic failure detection method for automotive parts. PMID:28788464

  3. Non-Destructive Thermography Analysis of Impact Damage on Large-Scale CFRP Automotive Parts

    Directory of Open Access Journals (Sweden)

    Alexander Maier

    2014-01-01

    Full Text Available Laminated composites are increasingly used in aeronautics and the wind energy industry, as well as in the automotive industry. In these applications, the construction and processing need to fulfill the highest requirements regarding weight and mechanical properties. Environmental issues, like fuel consumption and CO2-footprint, set new challenges in producing lightweight parts that meet the highly monitored standards for these branches. In the automotive industry, one main aspect of construction is the impact behavior of structural parts. To verify the quality of parts made from composite materials with little effort, cost and time, non-destructive test methods are increasingly used. A highly recommended non-destructive testing method is thermography analysis. In this work, a prototype for a car’s base plate was produced by using vacuum infusion. For research work, testing specimens were produced with the same multi-layer build up as the prototypes. These specimens were charged with defined loads in impact tests to simulate the effect of stone chips. Afterwards, the impacted specimens were investigated with thermography analysis. The research results in that work will help to understand the possible fields of application and the usage of thermography analysis as the first quick and economic failure detection method for automotive parts.

  4. Non-Destructive Thermography Analysis of Impact Damage on Large-Scale CFRP Automotive Parts.

    Science.gov (United States)

    Maier, Alexander; Schmidt, Roland; Oswald-Tranta, Beate; Schledjewski, Ralf

    2014-01-14

    Laminated composites are increasingly used in aeronautics and the wind energy industry, as well as in the automotive industry. In these applications, the construction and processing need to fulfill the highest requirements regarding weight and mechanical properties. Environmental issues, like fuel consumption and CO₂-footprint, set new challenges in producing lightweight parts that meet the highly monitored standards for these branches. In the automotive industry, one main aspect of construction is the impact behavior of structural parts. To verify the quality of parts made from composite materials with little effort, cost and time, non-destructive test methods are increasingly used. A highly recommended non-destructive testing method is thermography analysis. In this work, a prototype for a car's base plate was produced by using vacuum infusion. For research work, testing specimens were produced with the same multi-layer build up as the prototypes. These specimens were charged with defined loads in impact tests to simulate the effect of stone chips. Afterwards, the impacted specimens were investigated with thermography analysis. The research results in that work will help to understand the possible fields of application and the usage of thermography analysis as the first quick and economic failure detection method for automotive parts.

  5. Evidence of Gate Voltage Oscillations during Short Circuit of Commercial 1.7 kV/ 1 kA IGBT Power Modules

    DEFF Research Database (Denmark)

    Reigosa, Paula Diaz; Wu, Rui; Iannuzzo, Francesco

    2015-01-01

    This paper analyzes the evidence of critical gate voltage oscillations in 1.7 kV/1 kA Insulated-Gate Bipolar Transistor (IGBT) power modules under short circuit conditions. A 6 kA/1.1 kV Non-Destructive Test (NDT) set up for repeatable short circuit tests has been built with a 40 nH stray inducta...

  6. Ultrasonic evaluation of local human skin anisotropy

    Czech Academy of Sciences Publication Activity Database

    Tokar, Daniel; Převorovský, Zdeněk; Hradilová, Jana

    2014-01-01

    Roč. 19, č. 12 (2014) ISSN 1435-4934. [European Conference on Non-Destructive Testing (ECNDT 2014) /11./. Praha, 06.10.2014-10.10.2014] Institutional support: RVO:61388998 Keywords : anisotropy * ultrasonic testing * human skin in-vivo * fabric-fiber composite * signal processing Subject RIV: BI - Acoustics http://www.ndt.net/events/ECNDT2014/app/content/Paper/324_Tokar.pdf

  7. Application of ICT in the non-destructive inspection of explosive device

    International Nuclear Information System (INIS)

    Wang Zhe; Li Tiantuo; Liu Zhiqiang; Pei Zhihua; Wang Zhiping

    2003-01-01

    The inspection of explosive device is an important task in the store of the weapons. The technique of non-destructive examination with radial, especially the ICT, is an effective method. The paper mainly introduces the design and the theories on the inspection system and software system of the application of industrial ICT in the non-destructive examination of explosive device, and gives a reference to the work in such fields

  8. Non-destructive examination of the bonding interface in DEMO divertor fingers

    International Nuclear Information System (INIS)

    Richou, Marianne; Missirlian, Marc; Vignal, Nicolas; Cantone, Vincent; Hernandez, Caroline; Norajitra, Prachai; Spatafora, Luigi

    2013-01-01

    Highlights: • SATIR tests on DEMO divertor fingers (integrating or not He cooling system). • Millimeter size artificial defects were manufactured. • Detectability of millimeter size artificial defects was evaluated. • SATIR can detect defect in DEMO divertor fingers. • Simulations are well correlated to SATIR tests. -- Abstract: Plasma facing components (PFCs) with tungsten (W) armor materials for DEMO divertor require a high heat flux removal capability (at least 10 MW/m 2 in steady-state conditions). The reference divertor PFC concept is a finger with a tungsten tile as a protection and sacrificial layer brazed to a thimble made of tungsten alloy W – 1% La 2 O 3 (WL10). Defects may be located at the W thimble to W tile interface. As the number of fingers is considerable (>250,000), it is then a major issue to develop a reliable control procedure in order to control with a non-destructive examination the fabrication processes. The feasibility for detecting defect with infrared thermography SATIR test bed is presented. SATIR is based on the heat transient method and is used as an inspection tool in order to assess component heat transfer capability. SATIR tests were performed on fingers integrating or not the complex He cooling system (steel cartridge with jet holes). Millimeter size artificial defects were manufactured and their detectability was evaluated. Results of this study demonstrate that the SATIR method can be considered as a relevant non-destructive technique examination for the defect detection of DEMO divertor fingers

  9. Edward's sword? - A non-destructive study of a medieval king's sword

    Science.gov (United States)

    Segebade, Chr.

    2013-04-01

    Non-destructive and instrumental methods including photon activation analysis were applied in an examination of an ancient sword. It was tried to find indication of forgery or, if authentic, any later processing and alteration. Metal components of the hilt and the blade were analysed by instrumental photon activation. Non-destructive metallurgical studies (hardness measurements, microscopic microstructure analysis) are briefly described, too. The results of these investigations did not yield indication of non-authenticity. This stood in agreement with the results of stylistic and scientific studies by weapon experts.

  10. Evaluation of Medical and Dosimetric Monitoring of the Personnel Exposed to Ionizing Radiations in Industry

    International Nuclear Information System (INIS)

    Hammou, A.; Ben Hariz, N.; Ben Omrane, L.

    2008-01-01

    Increasing use of the ionizing radiations in industry, in particular in the field of the non destructive testing (NDT) exposes the operators to low radiation doses. Therefore Radiation protection measures in this field are needed. We report the results of a survey carried out on a sample of 50 workers in NDT in Tunisia; Our purpose is to evaluate the professional training levels in radiation protection of the operators, to determine their exposure dose rate. In case of over-exposure, to determine the causes, to evaluate the medical follow-up, and to propose adequate recommendations

  11. Inspection of welded joints and cords using industrial x-ray and gamma radiography

    International Nuclear Information System (INIS)

    Escobar R, E.J.

    2000-01-01

    The first part of this work contains five chapters related to theoretical aspects and basic knowledge of welding metallurgy, welding, welded joint discontinuity, non-destructive testing (NDT) and industrial x-rays. The second part contains experimental works applied and carried out by the Peruvian Institute of Nuclear Energy (IPEN). Due to the importance of identifying and applying the different methods of NDT in the industry's quality control, more emphasis is placed on industrial x-ray and gamma radiography, a method that involves the radiographic inspection of welded joints and cords

  12. Use of modeling and simulation in the planning, analysis and interpretation of ultrasonic testing

    International Nuclear Information System (INIS)

    Algernon, Daniel; Grosse, Christian U.

    2016-01-01

    Acoustic testing methods such as ultrasound and impact echo are an important tool in building diagnostics. The range includes thickness measurements, the representation of the internal component geometry as well as the detection of voids (gravel pockets), delaminations or possibly locating grouting faults in the interior of metallic cladding tubes of tendon ducts. Basically acoustic method for non-destructive testing (NDT) is based on the excitation of elastic waves that interact with the target object (e.g. to detect discontinuity in the component) at the acoustic interface. From the signal received at the component surface this interaction shall be detected and interpreted to draw conclusions about the presence of the target object, and optionally to determine its size and position (approximately). Although the basic underlying physical principles of the application of elastic waves in NDT are known, it can be complicated by complex relationships in the form of restricted access, component geometries, or the type and form of reflectors. To estimate the chances of success of a test is already often not trivial. These circumstances highlight the importance of using simulations that allow a theoretically sound basis for testing and allow easy optimizing test systems. The deployable simulation methods are varied. Common are in particular the finite element method, the Elasto Finite Integration Technique and semi-analytical calculation methods. [de

  13. Non-destructive control in nuclear construction

    International Nuclear Information System (INIS)

    Banus; Barbier; Launay

    1978-01-01

    Having recalled the characteristics of the fundamental components of the main primary circuit of nuclear boilers (900 MW) and the means appropriated for their control, it is recalled that the 'French Electricity Board's specifications and control rules' often prescribe more severe criteria than those existing in the U.S.A. Then practical examples of non-destructive controls concerning the steam generator end plates, vessel stainless steel linings, pump attachements, steam generator pipes are given [fr

  14. Mathematical modelling of ultrasonic non-destructive evaluation

    Directory of Open Access Journals (Sweden)

    Larissa Ju Fradkin

    2001-01-01

    Full Text Available High-frequency asymptotics have been used at our Centre to develop codes for modelling pulse propagation and scattering in the near-field of the ultrasonic transducers used in NDE (Non-Destructive Evaluation, particularly of walls of nuclear reactors. The codes are hundreds of times faster than the direct numerical codes but no less accurate.

  15. Non-destructive controls in the mechanical industry

    Energy Technology Data Exchange (ETDEWEB)

    Jarlan, L

    1978-12-01

    The sequence of operations implicating the mechanical industries from the suppliers to their customers is briefly recalled; a description of the field of application of non-destructive control methods in these industries is given. Follows a description of some recent typical applications of the principal methods: radiography, ultrasonic waves, magnetism, acoustic emission, sonic control, tracer techniques.

  16. Non-invasive and non-destructive measurements of confluence in cultured adherent cell lines.

    Science.gov (United States)

    Busschots, Steven; O'Toole, Sharon; O'Leary, John J; Stordal, Britta

    2015-01-01

    Many protocols used for measuring the growth of adherent monolayer cells in vitro are invasive, destructive and do not allow for the continued, undisturbed growth of cells within flasks. Protocols often use indirect methods for measuring proliferation. Microscopy techniques can analyse cell proliferation in a non-invasive or non-destructive manner but often use expensive equipment and software algorithms. In this method images of cells within flasks are captured by photographing under a standard inverted phase contract light microscope using a digital camera with a camera lens adaptor. Images are analysed for confluence using ImageJ freeware resulting in a measure of confluence known as an Area Fraction (AF) output. An example of the AF method in use on OVCAR8 and UPN251 cell lines is included. •Measurements of confluence from growing adherent cell lines in cell culture flasks is obtained in a non-invasive, non-destructive, label-free manner.•The technique is quick, affordable and eliminates sample manipulation.•The technique provides an objective, consistent measure of when cells reach confluence and is highly correlated to manual counting with a haemocytometer. The average correlation co-efficient from a Spearman correlation (n = 3) was 0.99 ± 0.008 for OVCAR8 (p = 0.01) and 0.99 ± 0.01 for UPN251 (p = 0.01) cell lines.

  17. An accurate method for determining residual stresses with magnetic non-destructive techniques in welded ferromagnetic steels

    International Nuclear Information System (INIS)

    Vourna, P

    2016-01-01

    The scope of the present research work was to investigate the proper selection criteria for developing a suitable methodology for the accurate determination of residual stresses existing in welded parts. Magnetic non-destructive testing took place by the use of two magnetic non-destructive techniques: by the measurement of the magnetic Barkhausen noise and by the evaluation of the magnetic hysteresis loop parameters. The spatial distribution of residual stresses in welded metal parts by both non-destructive magnetic methods and two diffraction methods was determined. The conduction of magnetic measurements required an initial calibration of ferromagnetic steels. Based on the examined volume of the sample, all methods used were divided into two large categories: the first one was related to the determination of surface residual stress, whereas the second one was related to bulk residual stress determination. The first category included the magnetic Barkhausen noise and the X-ray diffraction measurements, while the second one included the magnetic permeability and the neutron diffraction data. The residual stresses determined by the magnetic techniques were in a good agreement with the diffraction ones. (paper)

  18. Rope NDT as means to raise safety of crane and elevator use

    Energy Technology Data Exchange (ETDEWEB)

    Kotelnikov, V. [Gosgortechnadzor, Moscow (Russian Federation); Sukhorukov, V. [Intron Plus, Ltd., Moscow (Russian Federation)

    2006-03-15

    Steel rope NDT by magnetic flaw detectors is usual for mine hoist inspection through the world. But it is no ordinary by crane and especially by elevator inspection. However, magnetic NDT statistic data of 60 crane and 227 elevator ropes in use shows that about 23% of crane and 9% of elevator ropes should be discarded in accordance with actual discarding criterion in Russia. Russian State Rules for crane safe exploitation require the magnetic NDT while periodically inspection. But not all the inspecting companies meet it in Russia, contenting themselves by visual inspection only. This is not objective and does not provide rope inner faults detection. That is a reason of rope break rather high percentage in general statistics of crane accidents and damages. Investigation of accidents with crane ropes in Moscow region in 2001 shows that they would de prevented by the magnetic NDT fulfilled timely. The elevator rope NDT problem is not so sharp but attention should de attracted to it to raise safety of elevators. (author)

  19. Rope NDT as means to raise safety of crane and elevator use

    International Nuclear Information System (INIS)

    Kotelnikov, V.; Sukhorukov, V.

    2006-01-01

    Steel rope NDT by magnetic flaw detectors is usual for mine hoist inspection through the world. But it is no ordinary by crane and especially by elevator inspection. However, magnetic NDT statistic data of 60 crane and 227 elevator ropes in use shows that about 23% of crane and 9% of elevator ropes should be discarded in accordance with actual discarding criterion in Russia. Russian State Rules for crane safe exploitation require the magnetic NDT while periodically inspection. But not all the inspecting companies meet it in Russia, contenting themselves by visual inspection only. This is not objective and does not provide rope inner faults detection. That is a reason of rope break rather high percentage in general statistics of crane accidents and damages. Investigation of accidents with crane ropes in Moscow region in 2001 shows that they would de prevented by the magnetic NDT fulfilled timely. The elevator rope NDT problem is not so sharp but attention should de attracted to it to raise safety of elevators. (author)

  20. Analysis of body fluids for forensic purposes: from laboratory testing to non-destructive rapid confirmatory identification at a crime scene.

    Science.gov (United States)

    Virkler, Kelly; Lednev, Igor K

    2009-07-01

    Body fluid traces recovered at crime scenes are among the most important types of evidence to forensic investigators. They contain valuable DNA evidence which can identify a suspect or victim as well as exonerate an innocent individual. The first step of identifying a particular body fluid is highly important since the nature of the fluid is itself very informative to the investigation, and the destructive nature of a screening test must be considered when only a small amount of material is available. The ability to characterize an unknown stain at the scene of the crime without having to wait for results from a laboratory is another very critical step in the development of forensic body fluid analysis. Driven by the importance for forensic applications, body fluid identification methods have been extensively developed in recent years. The systematic analysis of these new developments is vital for forensic investigators to be continuously educated on possible superior techniques. Significant advances in laser technology and the development of novel light detectors have dramatically improved spectroscopic methods for molecular characterization over the last decade. The application of this novel biospectroscopy for forensic purposes opens new and exciting opportunities for the development of on-field, non-destructive, confirmatory methods for body fluid identification at a crime scene. In addition, the biospectroscopy methods are universally applicable to all body fluids unlike the majority of current techniques which are valid for individual fluids only. This article analyzes the current methods being used to identify body fluid stains including blood, semen, saliva, vaginal fluid, urine, and sweat, and also focuses on new techniques that have been developed in the last 5-6 years. In addition, the potential of new biospectroscopic techniques based on Raman and fluorescence spectroscopy is evaluated for rapid, confirmatory, non-destructive identification of a body

  1. In-situ Non-destructive Studies on Biofouling Processes in Reverse Osmosis Membrane Systems

    KAUST Repository

    Farhat, Nadia

    2016-12-01

    Reverse osmosis (RO) and nanofiltration (NF) membrane systems are high-pressure membrane filtration processes that can produce high quality drinking water. Biofouling, biofilm formation that exceeds a certain threshold, is a major problem in spiral wound RO and NF membrane systems resulting in a decline in membrane performance, produced water quality, and quantity. In practice, detection of biofouling is typically done indirectly through measurements of performance decline. Existing direct biofouling detection methods are mainly destructive, such as membrane autopsies, where biofilm samples can be contaminated, damaged and resulting in biofilm structural changes. The objective of this study was to test whether transparent luminescent planar oxygen sensing optodes, in combination with a simple imaging system, can be used for in-situ, non-destructive biofouling characterization. Aspects of the study were early detection of biofouling, biofilm spatial patterning in spacer filled channels, and the effect of feed cross-flow velocity, and feed flow temperature. Oxygen sensing optode imaging was found suitable for studying biofilm processes and gave detailed spatial and quantitative biofilm development information enabling better understanding of the biofouling development process. The outcome of this study attests the importance of in-situ, non-destructive imaging in acquiring detailed knowledge on biofilm development in membrane systems contributing to the development of effective biofouling control strategies.

  2. Comparisons of non-destructive examination standards in the framework of fracture mechanics approach

    International Nuclear Information System (INIS)

    Reale, S.; Corvi, A.

    1993-01-01

    One of the aims of the various Engineering Standards related to Non-destructive Examination (NDE) is to identify and limit some characteristics of defects in a structure, since the degree of damage of a structure can be associated with these defect characteristics. One way that the damage level can be evaluated is by means of Fracture Mechanics. The objective of the present paper is to compare and identify the differences in the flaw acceptance criteria of national NDE Standards so as to suggest some guidelines for a future common European Standard. This paper examines the Standards adopted in France (RCC-MR), Germany (DIN), Italy (ASME) and the UK (BSI). It concentrates on both ultrasonic and radiographic inspection methods. The flaw acceptance criteria in these standards relating to non-destructive tests performed on a component during manufacturing are compared and evaluated by the Fracture Mechanics CEGB R6 procedure. General guidelines and results supporting the significance of the Fracture Mechanics approach are given. (Author)

  3. Sampling analytical tests and destructive tests for quality assurance

    International Nuclear Information System (INIS)

    Saas, A.; Pasquini, S.; Jouan, A.; Angelis, de; Hreen Taywood, H.; Odoj, R.

    1990-01-01

    In the context of the third programme of the European Communities on the monitoring of radioactive waste, various methods have been developed for the performance of sampling and measuring tests on encapsulated waste of low and medium level activity, on the one hand, and of high level activity, on the other hand. The purpose was to provide better quality assurance for products to be stored on an interim or long-term basis. Various testing sampling means are proposed such as: - sampling of raw waste before conditioning and determination of the representative aliquot, - sampling of encapsulated waste on process output, - sampling of core specimens subjected to measurement before and after cutting. Equipment suitable for these sampling procedures have been developed and, in the case of core samples, a comparison of techniques has been made. The results are described for the various analytical tests carried out on the samples such as: - mechanical tests, - radiation resistance, - fire resistance, - lixiviation, - determination of free water, - biodegradation, - water resistance, - chemical and radiochemical analysis. Every time it was possible, these tests were compared with non-destructive tests on full-scale packages and some correlations are given. This word has made if possible to improve and clarify sample optimization, with fine sampling techniques and methodologies and draw up characterization procedures. It also provided an occasion for a first collaboration between the laboratories responsible for these studies and which will be furthered in the scope of the 1990-1994 programme

  4. Developments in non-destructive beam diagnostics

    International Nuclear Information System (INIS)

    Fraser, J.S.

    1981-01-01

    With the large average beam currents being achieved in accelerators and storage rings, there is an increasing need for non-destructive beam diagnostic devices. For continuous beams, position monitors of the capacitive pick-up type are replaced by resonant devices that respond to the transverse displacement of the beam centroid. Bunch length monitors of the SLAC type using resonant cavities operating in the TM 010 mode can be used for continuous beams. The more detailed information derivable from beam profile scanners requires development of improved non-destructive devices. Profile monitors which scan the visible light produced by high current beams may be more reliable than ones using the residual ionization if the light intensity from gas molecules following nonionizing collisions with beam particles gives a measure of the beam current density independent of the local electron density. The intense Balmer series lines from neutral hydrogen beams have been used successfully to measure beam profiles. At CRNL and at LASL, beam light profile monitors are being developed for high average current accelerators. Three or more projections will be recorded to allow tomographic reconstruction of the two-dimensional beam current density. Light detection is either by intensified Reticons or ISIT vidicons. The use of three or more beam light monitors on a beam transport line will also permit estimates of the transverse emittance to be made through the reconstruction technique

  5. Development of non-destructive testing

    International Nuclear Information System (INIS)

    Park, D.Y.; Moon, Y.S.; Lim, B.K.

    1980-01-01

    Various standard test samples were made for eddy current test last year ('78) and several probes of eddy current test were fabricated this year ('79). The result of some basic experiments using these probes is described in this report. A EM 3300 Multitester (made by Automation Industries, U.S.A.) was purchased, which is the fundamental instrument for the examinations of steam generator U-tubes of nuclear power plant. After some necessary experiments had been performed with this instrument, we have participated in the first inservice inspection of KORI-1 nuclear power plant (Nov., '79) and accumulated much technical experiences. Some of its test results are described in this report. (author)

  6. Non-destructive Determination of Martensitic Content by Means of Magnetic Methods

    Energy Technology Data Exchange (ETDEWEB)

    Niffenegger, M.; Bauer, R.; Kalkhof, D

    2003-07-01

    The detection of material degradation in a pre-cracked stage would be very advantageous. Therefore the main objective of the EC 5th Framework Programme Project CRETE (Contract No. FIS5-1999-00280) was to assess the capability and the reliability of innovative NDT-inspection techniques for the detection of material degradation, induced by low cycle fatigue (LCF) and neutron irradiation of metastable austenitic and ferritic low-alloy steel. Within work package WP6 and WP7 several project partners tested aged or irradiated samples, using various advanced measuring techniques, such as acoustic, magnetic and thermoelectric ones. These indirect methods require a careful interpretation of the measured signal in terms of micro-structural evolutions due to ageing of the material. Therefore the material had to be characterized in its undamaged, as well as in its damaged state. Based on results from former investigations, main attention was paid to the content of martensitic phase as an indicator for fatigue. Since most NDT-methods are considered as indirect methods for the detection of martensite, neutron diffraction was applied as a reference method for a quantitative determination of martensite. The material characterization performed at PSI and INSA de Lyon is published in the PSI Bericht Nr. 03-17, July 2003, (ISSN 1019-0643). The present report only describes the magnetic methods applied at PSI for the detection of material degradation and summarises the results obtained in WP3 of the CRETE project. The report is issued simultaneously as a PSI report and the CRETE work package WP3 report. At PSI the following magnetic methods were applied to LCF specimens: (1) Ferromaster for measuring the magnetic permeability, (2) Eddy current impedance measuring by means of a Giant Magneto Resistance sensor (GMR), (3) Remanence field measurements using high sensitive Fluxgate and SQUID sensors. With these methods three sets of fatigue specimens, made from different metastable

  7. On the systems of automatic non-destructive control of NPP metallic structures

    International Nuclear Information System (INIS)

    Grebennik, V.S.; Lantukh, V.M.

    1980-01-01

    The main stages of developing automatic systems of non- destructive control (NC) of NPP metallic structures are pointed out. The main requirements for automatic NC systems are formulated. Recommendations on the use of the developed experimental automatic facilities for control of certain NPP components are given. It is noted that the present facilities may be used in the future in development of modular sets of non-destructive control systems [ru

  8. S.S. Annunziata Church (L'Aquila, Italy) unveiled by non- and micro-destructive testing techniques

    Science.gov (United States)

    Sfarra, Stefano; Cheilakou, Eleni; Theodorakeas, Panagiotis; Paoletti, Domenica; Koui, Maria

    2017-03-01

    The present research work explores the potential of an integrated inspection methodology, combining Non-destructive testing and micro-destructive analytical techniques, for both the structural assessment of the S.S. Annunziata Church located in Roio Colle (L'Aquila, Italy) and the characterization of its wall paintings' pigments. The study started by applying passive thermal imaging for the structural monitoring of the church before and after the application of a consolidation treatment, while active thermal imaging was further used for assessing this consolidation procedure. After the earthquake of 2009, which seriously damaged the city of L'Aquila and its surroundings, part of the internal plaster fell off revealing the presence of an ancient mural painting that was subsequently investigated by means of a combined analytical approach involving portable VIS-NIR fiber optics diffuse reflectance spectroscopy (FORS) and laboratory methods, such as environmental scanning electron microscopy (ESEM) coupled with energy dispersive X-ray analysis (EDX), and attenuated total reflectance-fourier transform infrared spectroscopy (ATR-FTIR). The results obtained from the thermographic analysis provided information concerning the two different constrictive phases of the Church, enabled the assessment of the consolidation treatment, and contributed to the detection of localized problems mainly related to the rising damp phenomenon and to biological attack. In addition, the results obtained from the combined analytical approach allowed the identification of the wall painting pigments (red and yellow ochre, green earth, and smalt) and provided information on the binding media and the painting technique possibly applied by the artist. From the results of the present study, it is possible to conclude that the joint use of the above stated methods into an integrated methodology can produce the complete set of useful information required for the planning of the Church's restoration

  9. Development of non-destructive Young's modulus measurement techniques in non-oriented CeF$_{3}$ crystals

    CERN Document Server

    Pietroni, P; Lebeau, M; Majni, G; Rinaldi, D

    2005-01-01

    For a reliable mechanical assembly of scintillating crystals for the application to radiographic systems such as Positron Emission Tomographer (PET) and high-energy physics calorimeters (e.g. in CMS at CERN LHC), the evaluation of the monocrystal elastic constant (Young's modulus) is needed. Its knowledge is also essential in the photoelastic analysis for the determination of residual stresses. In this work non-destructive techniques based on elastic wave propagation are tested. They differ in the mechanical excitation device: instrumented hammer, traditional ultrasonic probes and laser- generated ultrasound. We have analysed three non-oriented cerium fluoride crystal samples produced for scintillation applications. Finally, we have validated the experimental results comparing them with the elastic constant calculated by using the stiffness matrix.

  10. Development of non-destructive Young's modulus measurement techniques in non-oriented CeF3 crystals

    International Nuclear Information System (INIS)

    Pietroni, P.; Paone, N.; Lebeau, M.; Majni, G.; Rinaldi, D.

    2005-01-01

    For a reliable mechanical assembly of scintillating crystals for the application to radiographic systems such as Positron Emission Tomographer (PET) and high-energy physics calorimeters (e.g. in CMS at CERN LHC), the evaluation of the monocrystal elastic constant (Young's modulus) is needed. Its knowledge is also essential in the photoelastic analysis for the determination of residual stresses. In this work non-destructive techniques based on elastic wave propagation are tested. They differ in the mechanical excitation device: instrumented hammer, traditional ultrasonic probes and laser-generated ultrasound. We have analysed three non-oriented cerium fluoride crystal samples produced for scintillation applications. Finally, we have validated the experimental results comparing them with the elastic constant calculated by using the stiffness matrix

  11. Application of non-destructive testing and in-service inspections to research reactors and preparation of ISI programme and manual for WWR-C research reactors

    International Nuclear Information System (INIS)

    Khattab, M.

    1996-01-01

    The present report gives a review on the results of application of non-destructive testing and in-service inspections to WWR-C reactors in different countries. The major problems related to reactor safety and the procedure of inspection techniques are investigated to collect the experience gained from this type of reactors. Exchangeable experience in solving common problems in similar reactors play an important role in the effectiveness of their rehabilitation programmes. 9 figs., 4 tabs

  12. Safeguards and Non-destructive Assay

    International Nuclear Information System (INIS)

    Carchon, R.; Bruggeman, M.

    2001-01-01

    SCK-CEN's programme on safeguards and non-destructive assay includes: (1) various activities to assure nuclear materials accountancy; (2) contributes to the implementation of Integrated Safeguards measures in Belgium and to assist the IAEA through the Belgian Support Programme; (3) renders services to internal and external customers in the field of safeguards; (4) improves passive neutron coincidence counting techniques for waste assay and safeguards verification measurements by R and D on correlation algorithms implemented via software or dedicated hardware; (5) improves gamma assay techniques for waste assay by implementing advanced scanning techniques and different correlation algorithms; and (6) develops numerical calibration techniques. Major achievements in these areas in 2000 are reported

  13. Field testing of prototype systems for the non-destructive measurement of the neutral temperature of railroad tracks

    Science.gov (United States)

    Phillips, Robert; Lanza di Scalea, Francesco; Nucera, Claudio; Fateh, Mahmood; Choros, John

    2014-03-01

    In both high speed and freight rail systems, the modern construction method is Continuous Welded Rail (CWR). The purpose of the CWR method is to eliminate joints in order to reduce the maintenance costs for both the rails and the rolling stock. However the elimination of the joints increases the risk of rail breakage in cold weather and buckling in hot weather. In order to predict the temperature at which the rail will break or buckle, it is critical to have knowledge of the temperature at which the rail is stress free, namely, the Rail Neutral Temperature (Rail-NT).The University of California at San Diego has developed an innovative technique based on non-linear ultrasonic guided waves, under FRA research and development grants for the non-destructive measurement of the neutral temperature of railroad tracks. Through the licensing of this technology from the UCSD and under the sponsorship of the FRA Office of Research and Development, a field deployable prototype system has been developed and recently field tested at cooperating railroad properties. Three prototype systems have been deployed to the Union Pacific (UP), Burlington Northern Santa Fe (BNSF), and AMTRAK railroads for field testing and related data acquisition for a comprehensive evaluation of the system, with respect to both performance and economy of operation. The results from these tests have been very encouraging. Based on the lessons learned from these field tests and the feedback from the railroads, it is planned develop a compact 2nd generation Rail-NT system to foster deployment and furtherance of FRA R&D grant purpose of potential contribution to the agency mission of US railroad safety. In this paper, the results of the field tests with the railroads in summer of 2013 are reported.

  14. Testing an Impedance Non-destructive Method to Evaluate Steel-Fiber Concrete Samples

    Science.gov (United States)

    Komarkova, Tereza; Fiala, Pavel; Steinbauer, Miloslav; Roubal, Zdenek

    2018-02-01

    Steel-fiber reinforced concrete is a composite material characterized by outstanding tensile properties and resistance to the development of cracks. The concrete, however, exhibits such characteristics only on the condition that the steel fibers in the final, hardened composite have been distributed evenly. The current methods to evaluate the distribution and concentration of a fiber composite are either destructive or exhibit a limited capability of evaluating the concentration and orientation of the fibers. In this context, the paper discusses tests related to the evaluation of the density and orientation of fibers in a composite material. Compared to the approaches used to date, the proposed technique is based on the evaluation of the electrical impedance Z in the band close to the resonance of the sensor-sample configuration. Using analytically expressed equations, we can evaluate the monitored part of the composite and its density at various depths of the tested sample. The method employs test blocks of composites, utilizing the resonance of the measuring device and the measured sample set; the desired state occurs within the interval of between f=3 kHz and 400 kHz.

  15. Laser plasma X-ray for non-destructive inspection

    International Nuclear Information System (INIS)

    Yagi, T.; Kusama, H.

    1995-01-01

    External electric field is applied to the laser produced plasma, and its found that plasma shape in soft X-ray region is changed due to the penetrating electric field. The plasma emits strong hard X-ray, which can be used as a compact light source for non-destructive inspection. (author)

  16. NDT technical assessment for ISO 17025 and ISO 17020 certification

    International Nuclear Information System (INIS)

    Mohamad Pauzi Ismail

    2011-01-01

    ISO 17025 is an international standard that states the requirement criteria for testing and calibration laboratory, while ISO 17020 is for inspection body. Standard Malaysia is the accreditation body for both standards. The author involved in the technical assessment for both standards both in Nuclear Malaysia and outside. The experience in performing NDT assessment activity is explained and discussed. The comparison between both standards is also discussed. (author)

  17. Flaw acceptance criteria taking into consideration the NDT: radiographic and ultrasonic testing. Analysis through the fracture mechanics methods

    International Nuclear Information System (INIS)

    Capurro, E.; Alicino, F.; Corvi, A.

    1993-01-01

    The present study compares and evaluates the flaw acceptance criteria of the non-destructive inspections meeting European Community standards, through the application of the fracture mechanics methods that were determined and verified by the previous activity. Some choices were made; these, however, do not change the general validity of the conclusions. Shaved full-penetration butt welds of Class 1 components making up the primary circuit were considered and the following parameters varied: standards: French, German, Italian (ASME III) and UK; material: AISI 316 and low alloy steel A 533; base material and weld metal; temperature: RT, 370 deg C for the austenitic and 260 deg C for the ferritic steel; ultrasonic and radiographic methods; defect position: surface and internal; stress condition: situations with different primary and secondary stresses. From a preliminary examination of this study it is evident that the large quantity of results available and the abundance of information contained therein make a simple and exhaustive synthesis difficult. In fact, different analyses are possible and we have, therefore, limited the research to activities to perform a comparison and a general evaluation of the acceptance criteria of the non-destructive testing. (authors). 57 refs., 25 figs., 11 tabs

  18. PANDA-A novel instrument for non-destructive sample analysis

    International Nuclear Information System (INIS)

    Turunen, Jani; Peraejaervi, Kari; Poellaenen, Roy; Toivonen, Harri

    2010-01-01

    An instrument known as PANDA (Particles And Non-Destructive Analysis) for non-destructive sample analysis has been designed and built at the Finnish Radiation and Nuclear Safety Authority (STUK). In PANDA the measurement techniques and instruments designed for the basic research are applied to the analysis of environmental samples. PANDA has two vacuum chambers, one for loading samples and the other for measurements. In the measurement chamber there are two individual measurement positions. Currently the first one hosts an HPGe gamma detector and a position-sensitive alpha detector. The second measurement position is intended for precise characterization of found particles. PANDA's data are recorded in event mode and events are timestamped. In the present article the technical design of PANDA is presented in detail. In addition, its performance using depleted uranium particles and an air filter is demonstrated.

  19. Nondestructive inspection of concrete structures by nonlinear elastic wave spectroscopy methods

    Czech Academy of Sciences Publication Activity Database

    Převorovský, Zdeněk; Krofta, Josef; Kober, Jan; Chlada, Milan

    2014-01-01

    Roč. 19, č. 12 (2014) ISSN 1435-4934. [European Conference on Non-Destructive Testing (ECNDT 2014) /11./. Praha, 06.10.2014-10.10.2014] Institutional support: RVO:61388998 Keywords : civil engineering * nuclear * power plant * structural health monitoring (SHM) * signal processing * other medhods * ultrasonic testing (UT) Subject RIV: BI - Acoustics http://www.ndt.net/events/ECNDT2014/app/content/Slides/642_Prevorovsky_Rev1.pdf

  20. Improvement of non destructive infrared test bed SATIR for examination of actively cooled tungsten armour Plasma Facing Components

    Energy Technology Data Exchange (ETDEWEB)

    Vignal, N., E-mail: nicolas.vignal@cea.fr; Desgranges, C.; Cantone, V.; Richou, M.; Courtois, X.; Missirlian, M.; Magaud, Ph.

    2013-10-15

    Highlights: • Non destructive infrared techniques for control ITER like PFCs. • Reflective surface such as W induce a measurement temperature error. • Numerical data processing by evaluation of the local emissivity. • SATIR test bed can control metallic surface with low and variable emissivity. -- Abstract: For steady state (magnetic) thermonuclear fusion devices which need large power exhaust capability and have to withstand heat fluxes in the range 10–20 MW m{sup −2}, advanced Plasma Facing Components (PFCs) have been developed. The importance of PFCs for operating tokamaks requests to verify their manufacturing quality before mounting. SATIR is an IR test bed validated and recognized as a reliable and suitable tool to detect cooling defaults on PFCs with CFC armour material. Current tokamak developments implement metallic armour materials for first wall and divertor; their low emissivity causes several difficulties for infrared thermography control. We present SATIR infrared thermography test bed improvements for W monoblocks components without defect and with calibrated defects. These results are compared to ultrasonic inspection. This study demonstrates that SATIR method is fully usable for PFCs with low emissivity armour material.

  1. Improvement of non destructive infrared test bed SATIR for examination of actively cooled tungsten armour Plasma Facing Components

    International Nuclear Information System (INIS)

    Vignal, N.; Desgranges, C.; Cantone, V.; Richou, M.; Courtois, X.; Missirlian, M.; Magaud, Ph.

    2013-01-01

    Highlights: • Non destructive infrared techniques for control ITER like PFCs. • Reflective surface such as W induce a measurement temperature error. • Numerical data processing by evaluation of the local emissivity. • SATIR test bed can control metallic surface with low and variable emissivity. -- Abstract: For steady state (magnetic) thermonuclear fusion devices which need large power exhaust capability and have to withstand heat fluxes in the range 10–20 MW m −2 , advanced Plasma Facing Components (PFCs) have been developed. The importance of PFCs for operating tokamaks requests to verify their manufacturing quality before mounting. SATIR is an IR test bed validated and recognized as a reliable and suitable tool to detect cooling defaults on PFCs with CFC armour material. Current tokamak developments implement metallic armour materials for first wall and divertor; their low emissivity causes several difficulties for infrared thermography control. We present SATIR infrared thermography test bed improvements for W monoblocks components without defect and with calibrated defects. These results are compared to ultrasonic inspection. This study demonstrates that SATIR method is fully usable for PFCs with low emissivity armour material

  2. Improvement of testing techniques for inspecting steam turbine rotor in power plant

    International Nuclear Information System (INIS)

    Su, Yeong Shuenn; Wei, Chieng Neng; Wu, Chien Wen; Wu, Yung How

    1997-01-01

    Steam turbine rotor is important to the Utility industry, it degrades over time due to fatigue and corrosion under high temperature and high pressure environment. Periodic inspection is required in the wake of plant annual overhaul to ensure the integrity of turbine rotor. Non-Destructive Testing of turbine rotor is usually performed using magnetic particle testing with wet fluorescent magnetic particle. However, it is very difficult to ensure the reliability of inspection due to the limitation of using one NDT method only. The crack-susceptible areas, such as turbine blade, and blade root have high incidence of stress corrosion cracking, The blade root section is difficult to locate cracks because of the complex geometry which may cause inadequate magnetic field and poor accessibility. Improved inspection practices was developed by our Department, together with remaining life analysis, in maintaining the high availability of steam turbine rotor. The newly-developed inspection system based on the practical study of magnetic field strength distribution, quality of magnetic particle bath and a combination of different NDT methods with Eddy Current Testing using absolute pen-type coil and Visual Testing using reflective mirror to examine the key areas concerned are described. TPC' experience with the well-trained technicians together with the adequate inspection procedure in detecting blade-root flaws are also discussed in the paper. Many of these inspection improvement have been applied in the fields for several times and the inspection reliability has been enhanced substantially. Results are quite encouraging and satisfactory.

  3. Online Preventative Non-Destructive Evaluation in Automated Fibre Placement

    NARCIS (Netherlands)

    Tonnaer, R.; Shroff, S.; Groves, R.M.

    2016-01-01

    The strict quality requirements for aerospace composite struc- tures give rise to costly quality control procedures. In automated bre placement (AFP) these procedures rely heavily on manual work and inspection. This research aims at performing preventative non-destructive evaluation of composite

  4. Expert`s dictionary of technical terminology in non-destructive materials testing. 1359 terms and definitions from A - Z used in non-destructive materials and workpiece testing - for vocational training, students and professionals; Expert-Praxislexikon Zerstoerungsfreie Materialpruefung. 1359 Begriffe von A bis Z zur zerstoerungsfreien Material- und Werkstueckuntersuchung - fuer Lehre, Studium und Beruf

    Energy Technology Data Exchange (ETDEWEB)

    Steeb, S

    1998-12-31

    The monolingual, German dictionary is a compilation enhanced by figures and tables, of technical terms and definitions used in non-destructive materials testing and application of the following eight major testing methods: - Radiography using X-rays - radiography using isotope beams - crack examination with the magnetic particle method - magnetic stray field testing with scanning probe - penetration tests with light and uv radiation - ultrasonic tests including evaluation of results - eddy current testing, manual and automated - sound emission methods. (orig./MM) 179 figs., 8 tabs. [Deutsch] Die wichtigsten Begriffe aus dem Gebiet der folgenden acht Untersuchungsverfahren sind in diesem Woerterbuch zusammengestellt und erlaeutert: - Durchstrahlungsverfahren mit Roentgenstrahlen - Durchstrahlungsverfahren mit Isotopenstrahlen - Risspruefung nach dem Magnetpulververfahren - magnetische Streuflusspruefung mit Sondenabtastung - Eindringverfahren bei sichtbarem Licht und bei UV-Licht - Ultraschallverfahren mit Bewertung der Ergebnisse - Wirbelstromverfahren manuell und automatisch - Schallemissionsverfahren. (orig./MM)

  5. A New Algorithm Using the Non-Dominated Tree to Improve Non-Dominated Sorting.

    Science.gov (United States)

    Gustavsson, Patrik; Syberfeldt, Anna

    2018-01-01

    Non-dominated sorting is a technique often used in evolutionary algorithms to determine the quality of solutions in a population. The most common algorithm is the Fast Non-dominated Sort (FNS). This algorithm, however, has the drawback that its performance deteriorates when the population size grows. The same drawback applies also to other non-dominating sorting algorithms such as the Efficient Non-dominated Sort with Binary Strategy (ENS-BS). An algorithm suggested to overcome this drawback is the Divide-and-Conquer Non-dominated Sort (DCNS) which works well on a limited number of objectives but deteriorates when the number of objectives grows. This article presents a new, more efficient algorithm called the Efficient Non-dominated Sort with Non-Dominated Tree (ENS-NDT). ENS-NDT is an extension of the ENS-BS algorithm and uses a novel Non-Dominated Tree (NDTree) to speed up the non-dominated sorting. ENS-NDT is able to handle large population sizes and a large number of objectives more efficiently than existing algorithms for non-dominated sorting. In the article, it is shown that with ENS-NDT the runtime of multi-objective optimization algorithms such as the Non-Dominated Sorting Genetic Algorithm II (NSGA-II) can be substantially reduced.

  6. Challenges of Non-Destructive Assay Waste Measurement

    International Nuclear Information System (INIS)

    Shull, A.H.

    2003-01-01

    Historically, the Savannah River Site (SRS) routinely produced special nuclear material (SNM), which provided stable measurement conditions for the non-destructive assay (NDA) methods. However, the main mission of SRS has changed from the production of SNM to the processing of waste and material stabilization. Currently, the purpose of processing is to recover the SNM from the waste and stabilization materials, much of which is from other DOE facilities. These missions are usually of a short duration, but require non-destructive assay (NDA) accountability measurements on materials of varying composition and geometric configuration. These missions usually have cost and time constraints, which sometimes require re-application of existing NDA methods to waste measurements. Usually, each new material or re-application of the NDA method to a different SNM campaign requires new standards and timely re-calibration of the method. These constraints provide numerous challenges for the NDA methods, particularly in the area of measurement uncertainty. This paper will discuss the challenges of these situations, mainly from a measurement and statistical point of view and provide some possible solutions to the problems encountered. Specific examples will be discussed for the segmented gamma scanner (SGS), neutron multiplicity counter (NMC) and passive neutron coincidence counter (PNCC), which are some of the most common NDA instruments at SRS

  7. Non destructive examination of UN / U-Si fuel pellets using neutrons (preliminary assessment)

    Energy Technology Data Exchange (ETDEWEB)

    Bourke, Mark Andrew [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Vogel, Sven C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Voit, Stewart Lancaster [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mcclellan, Kenneth James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Losko, Adrian S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Tremsin, Anton [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-03-31

    Tomographic imaging and diffraction measurements were performed on nine pellets; four UN/ U Si composite formulations (two enrichment levels), three pure U3Si5 reference formulations (two enrichment levels) and two reject pellets with visible flaws (to qualify the technique). The U-235 enrichments ranged from 0.2 to 8.8 wt.%. The nitride/silicide composites are candidate compositions for use as Accident Tolerant Fuel (ATF). The monophase U3Si5 material was included as a reference. Pellets from the same fabrication batches will be inserted in the Advanced Test Reactor at Idaho during 2016. The goal of the Advanced Non-destructive Fuel Examination work package is the development and application of non-destructive neutron imaging and scattering techniques to ceramic and metallic nuclear fuels. Data reported in this report were collected in the LANSCE run cycle that started in September 2015 and ended in March 2016. Data analysis is ongoing; thus, this report provides a preliminary review of the measurements and provides an overview of the characterized samples.

  8. Non-destructive Faraday imaging of dynamically controlled ultracold atoms

    DEFF Research Database (Denmark)

    Gajdacz, Miroslav; Pedersen, Poul Lindholm; Mørch, Troels

    2013-01-01

    We describe an easily implementable method for non-destructive measurements of ultracold atomic clouds based on dark field imaging of spatially resolved Faraday rotation. The signal-to-noise ratio is analyzed theoretically and, in the absence of experimental imperfections, the sensitivity limit...

  9. Visualization of Tooth for Non-Destructive Evaluation from CT Images

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Hui; Chae, Ok Sam [Kyung Hee University, Seoul (Korea, Republic of)

    2009-06-15

    This paper reports an effort to develop 3D tooth visualization system from CT sequence images as a part of the non-destructive evaluation suitable for the simulation of endodontics, orthodontics and other dental treatments. We focus on the segmentation and visualization for the individual tooth. In dental CT images teeth are touching the adjacent teeth or surrounded by the alveolar bones with similar intensity. We propose an improved level set method with shape prior to separate a tooth from other teeth as well as the alveolar bones. Reconstructed 3D model of individual tooth based on the segmentation results indicates that our technique is a very conducive tool for tooth visualization, evaluation and diagnosis. Some comparative visualization results validate the non-destructive function of our method.

  10. Concrete damage diagnosed using the non-classical nonlinear acoustic method

    International Nuclear Information System (INIS)

    Dao, Zhou; Xiao-Zhou, Liu; Xiu-Fen, Gong; E, Nazarov V; Li, Ma

    2009-01-01

    It is known that the strength of concrete is seriously affected by damage and cracking. In this paper, six concrete samples under different damage levels are studied. The experimental results show a linear dependence of the resonance frequency shift on strain amplitude at the fundamental frequency, and approximate quadratic dependence of the amplitudes of the second and third harmonics on strain amplitude at the fundamental frequency as well. In addition, the amplitude of the third harmonics is shown to increase with the increase of damage level, which is even higher than that of the second harmonics in samples with higher damage levels. These are three properties of non-classical nonlinear acoustics. The nonlinear parameters increase from 10 6 to 10 8 with damage level, and are more sensitive to the damage level of the concrete than the linear parameters obtained by using traditional acoustics methods. So, this method based on non-classical nonlinear acoustics may provide a better means of non-destructive testing (NDT) of concrete and other porous materials

  11. Rapid and non-destructive discrimination of tea varieties by near ...

    African Journals Online (AJOL)

    Rapid and non-destructive discrimination of tea varieties by near infrared diffuse reflection spectroscopy coupled with classification and regression trees. SM Tan, RM Luo, YP Zhou, H Gong, Z Tan ...

  12. Digital image analysis of NDT radiographs

    International Nuclear Information System (INIS)

    Graeme, W.A. Jr.; Eizember, A.C.; Douglass, J.

    1989-01-01

    Prior to the introduction of Charge Coupled Device (CCD) detectors the majority of image analysis performed on NDT radiographic images was done visually in the analog domain. While some film digitization was being performed, the process was often unable to capture all the usable information on the radiograph or was too time consuming. CCD technology now provides a method to digitize radiographic film images without losing the useful information captured in the original radiograph in a timely process. Incorporating that technology into a complete digital radiographic workstation allows analog radiographic information to be processed, providing additional information to the radiographer. Once in the digital domain, that data can be stored, and fused with radioscopic and other forms of digital data. The result is more productive analysis and management of radiographic inspection data. The principal function of the NDT Scan IV digital radiography system is the digitization, enhancement and storage of radiographic images

  13. Attributes identification of nuclear material by non-destructive radiation measurement methods

    International Nuclear Information System (INIS)

    Gan Lin

    2002-01-01

    Full text: The nuclear materials should be controlled under the regulation of National Safeguard System. The non-destructive analysis method, which is simple and quick, provide a effective process in determining the nuclear materials, nuclear scraps and wastes. The method play a very important role in the fields of nuclear material control and physical protection against the illegal removal and smuggling of nuclear material. The application of non-destructive analysis in attributes identification of nuclear material is briefly described in this paper. The attributes determined by radioactive detection technique are useful tolls to identify the characterization of special nuclear material (isotopic composition, enrichment etc.). (author)

  14. Contribution of expert systems to data processing in non-destructive control

    International Nuclear Information System (INIS)

    Augendre, H.; Perron, M.C.

    1990-01-01

    The increase of non-destructive control in industrial applications requires the development of new data processing methods. The expert system approach is able to provide signal modelling means which are closer to the human behaviour. Such methods used in more traditional programs lead to substantial improvements. These investigations come within our design to apply sophisticated methods to industrial non-destructive control. For defect characterization purposes in ultrasonic control, various supervised learning methods have been investigated in an experimental study. The traditional approach is concerned with statistics based methods, whereas the second one lies in learning logical decision rules valid within a numerical description space [fr

  15. Remote Visual Testing (RVT) for the diagnostic inspection of feedwater heaters

    International Nuclear Information System (INIS)

    Nugent, M.J.; Pellegrino, B.A.

    1993-01-01

    Feedwater heaters are an important component in the overall plant heat rate, reliability, availability, performance and maintenance considerations at power stations. The ability to diagnose heater problems in-situ properly can lead to: (1) Preventative plugging of damaged, but unfailed tubes; (2) In-place repair procedures; (3) Incorporation of corrective actions into replacement designs or heater/unit operations. The benefits and limitations of Non-Destructive Testing (NDT) on feedwater heaters are briefly reviewed. All Remote Visual Testing (RVT) including borescopes, fiberscopes, videoborescopes and Closed Circuit Television (CCTV) cameras are discussed along with currently accepted formats for documentation. The benefits of a comprehensive in-place inspection involving Remote Visual Testing are discussed in relationship to its diagnostic capabilities. The results of eight post-service heater inspections are discussed along with the root cause of failure of seven unique failure mechanisms. These inspections, including FWH access, RVT tool and data analysis, are detailed. 13 figs

  16. Conventional compressive strength parallel to the grain and mechanical resistance of wood against pin penetration and microdrilling established by in-situ semidestructive devices

    Czech Academy of Sciences Publication Activity Database

    Kloiber, Michal; Drdácký, Miloš; Tippner, J.; Hrivnák, J.

    2015-01-01

    Roč. 48, č. 10 (2015), s. 3217-3229 ISSN 1359-5997 R&D Projects: GA MK(CZ) DF11P01OVV001; GA MŠk(CZ) LO1219 Keywords : compressive strength * density * in situ testing * non-destructive testing (NDT) * small size loading jack * wood Subject RIV: AL - Art, Architecture, Cultural Heritage Impact factor: 2.453, year: 2015 http://link.springer.com/article/10.1617/s11527-014-0392-6

  17. Eddy currents non-destructive testing. use of a numeric/symbolic method to separate and characterize the transitions of a signal

    International Nuclear Information System (INIS)

    Benas, J.C.; Lefevre, F.; Gaillard, P.; Georgel, B.

    1995-01-01

    This paper presents an original numeric/symbolic method for solving an inverse problem in the field of non-destructive testing. The purpose of this method is to characterize the transitions of a signal even when they are superimposed. Its principle is to solve as many direct problems as necessary to obtain the solution, and to use some hypothesis to manage the reasoning of the process. The direct problem calculation yields to a 'model signal', and the solution is reached when the model signal is close to the measured one. This method calculates the directions of minimization thanks to a symbolic reasoning based on the peaks of the residual signal. The results of the method are good and seem very promising. (authors). 13 refs., 13 figs., 5 tabs

  18. NDT of friction stir welds PLFW 1 to PLFW 5 (FSWL 98, FSWL 100, FSWL 101, FSWL 102, FSWL 103). NDT data report

    International Nuclear Information System (INIS)

    Pitkaenen, J.; Haapalainen, J.; Lipponen, A.; Sarkimo, M.

    2014-09-01

    The inspection methods of friction stir welding were tested in test manufacturing of 5 FS-weld. In the welding several parameters were applied also outside of good parameter window. This may have caused some additional defects which were good test for inspection methods. Only one weld was manufactured with optimum parameters and it was clearly best weld and acceptable for final disposal. This test was also a trial to apply the acceptance criteria in real inspections. The strategy of NDT inspections bases on the defect types in the FS-weld, which item is studied in this trial. The applied inspection methods are described in this report. Different sizing methods were tested for being able to apply acceptance criteria. Each found defect except root defects, which are typical in FS-welding, were sized separately using different NDT-methods other than just raw data-analysis. The goal was to determine depth/length -relation (a/l-relation) of each found defect. In case of ordinary root defect the depths were less than 5 mm in raw data-analysis and it was sufficient for acceptance of the weld. If there were no other defect present than typical root defects there were no need for more accurate sizing than raw data analysis. The remaining wall thickness was used as an final acceptance criteria in the evaluation of the welds when defect size in wall thickness direction was taken away from the theoretical minimum wall thickness (48.5 mm). In spite of variable parameters in the FS-welding all the inspected welds was regarded to be acceptable according to preliminary acceptance criteria. Advanced sizing methods must still develop for certain defect types in order to be able to size all found defects with sufficient small inaccuracy. The defect detection, sizing and acceptance process were applied successfully in this trial. (orig.)

  19. Advanced Approach of Reactor Pressure Vessel In-service Inspection

    International Nuclear Information System (INIS)

    Matokovic, A.; Picek, E.; Pajnic, M.

    2006-01-01

    The most important task of every utility operating a nuclear power plant is the continuously keeping of the desired safety and reliability level. This is achieved by the performance of numerous inspections of the components, equipment and system of the nuclear power plant in operation and in particular during the scheduled maintenance periods at re-fueling time. Periodic non-destructive in-service inspections provide most relevant criteria of the integrity of primary circuit pressure components. The task is to reliably detect defects and realistically size and characterize them. One of most important and the most extensive examination is a reactor pressure vessel in-service inspection. That inspection demand high standards of technology and quality and continual innovation in the field of non-destructive testing (NDT) advanced technology as well as regarding reactor pressure vessel tool and control systems. A remote underwater contact ultrasonic technique is employed for the examination of the defined sections (reactor welds), whence eddy current method is applied for clad surface examinations. Visual inspection is used for examination of the vessel inner surface. The movement of probes and data positioning are assured by using new reactor pressure vessel tool concept that is fully integrated with NDT systems. The successful performance is attributed thorough pre-outage planning, training and successful performance demonstration qualification of chosen NDT techniques on the specimens with artificial and/or real defects. Furthermore, use of advanced approach of inspection through implementation the state of the art examination equipment significantly reduced the inspection time, radiation exposure to examination personnel, shortening nuclear power plant outage and cutting the total inspection costs. The advanced approach as presented in this paper offer more flexibility of application (non-destructive tests, local grinding action as well as taking of boat samples

  20. Non-destructive evaluation of thermal aging embrittlement of duplex stainless steels

    International Nuclear Information System (INIS)

    Yi, Y.S.; Tomobe, T.; Watanabe, Y.; Shoji, T.

    1993-01-01

    The non-destructive evaluation procedure for detecting thermal aging embrittlement of cast duplex stainless steels has been investigated. As a novel measurement technique for the thermal aging embrittlement, an electrochemical method was used and anodic polarization behaviors were measured on new, service exposed, and laboratory aged materials and then were compared with the results of the mechanical tests and microstructural changes. During the polarization experiments performed in potassium hydroxide solution (KOH), M 23 C 6 carbides on phase boundary were preferentially dissolved, which was comfirmed by the SEM after polarization measurements. The preferential dissolution of M 23 C 6 carbides were obtained. Also, the non-destructive measurement and evaluation method of spinodal decomposition, which has been known as the primary mechanism of embrittlement inferrite phase, was reviewed. When the materials, where spinodal decomposition occurred, were polarized in an acetic acid solution (CH 3 COOH), larger critical anodic current densities were observed than those observed on new materials, and these results were consistent with the result of the microhardness measurement. Concerning these polarization results, a critical electric charge, which was required for stable passive films in passive metals, was defined and the relationship between the microstructural changes and this charge amount was reviewed under various polarization conditions in order to verify the polarization mechanism of the spinodally decomposed ferrite phase