WorldWideScience

Sample records for non-destructive testing methods

  1. Non-destructive testing of electronic parts

    International Nuclear Information System (INIS)

    Widenhorn, G.

    1980-01-01

    The requirements on quality, safety, faultlessness and reliability of electric components increase because of the high complexity of the appliances in which they are used. By means of examples a survey is given on the common non-destructive testing methods, testing operation and evaluation of test results on electric components which must meet in their application high requirements on quality and reliability. Defective components, especially those with hidden failures are sorted out by non-destructive testing and the failure frequency of the appliances and plants in testing and operation is greatly reduced. (orig.) [de

  2. Non-destructive Engineering

    International Nuclear Information System (INIS)

    Ko, Jin Hyeon; Ryu, Taek In; Ko, Jun Bin; Hwang, Yong Hwa

    2006-08-01

    This book gives descriptions of non-destructive engineering on outline of non-destructive test, weld defects, radiographic inspection radiography, ultrasonic inspection, magnetic particle testing, liquid penetrant testing, eddy current inspection method, strain measurement, acoustic emission inspection method, other non-destructive testing like leakage inspection method, and non-destructive mechanics for fault analysis such as Griffiths creaking theory, and stress analysis of creaking.

  3. Nonconventional concrete hollow blocks evaluation by destructive and non-destructive testing

    Directory of Open Access Journals (Sweden)

    M.S. Rodrigues

    Full Text Available The aim of this study was to evaluate cementitious matrices properties by partial replacement of Portland cement by silica fume (SF or by rice husk ash (RHA, and their application in nonbearing hollow blocks, tested by destructive and non-destructive methods. The following mixtures were produced: reference (100% of Portland cement and Portland cement replacement (10% by mass with SF or RHA. The non-destructive testing showed that the highest values of UPV were obtained for SF-based blocks and RHA-based blocks. The destructive test showed better results for SF-based blocks, but there was no statistical difference between the RHA-based and control ones.

  4. Fracture-mechanical results of non-destructive testing - function, goals, methods

    International Nuclear Information System (INIS)

    Herter, K.H.; Kockelmann, H.; Schuler, X.; Waidele, H.

    2004-01-01

    Non-destructive testing provides data for fracture-mechanical analyses, e.g. defect size and orientation. On the other hand, fracture-mechanical analyses may help to define criteria for non-destructive testing, e.g. sensitivity, inspection intervals and inspection sites. The criteria applied differ as a function of the safety relevance of a component. (orig.) [de

  5. Economic importance of non-destructive testing

    International Nuclear Information System (INIS)

    Loebert, P.

    1979-01-01

    On May 21 to 23, 1979, the annual meeting of the Deutsche Gesellschaft fuer Zerstoerungsfreie Pruefung took place in Lindau near the Bodensee lake. About 600 experts from Germany and abroad participated in the meeting, whose general subject was 'The Economic Importance of Non-Destructive Testing'. Theoretical problems and practical investigations were discussed in a number of papers on special subjects. Apart from the 33 papers, there was also a poster show with 53 stands with texts, drawings, diagrams, and figures where the authors informed those interested on the latest state of knowledge in testing. The short papers were read in six sessions under the headings of rentability of non-destructive testing, X-ray methods, electromagnetic methods, and ultrasonic methods 1 and 2. (orig.) [de

  6. Innovation in Non Destructive Testing

    NARCIS (Netherlands)

    Wassink, C.H.P.

    2012-01-01

    In many established companies the pace of innovation is low. The Non-Destructive Testing sector is an example of a sector where the pace of innovation is very slow. Non-Destructive Testing (NDT) refers to the set of non-invasive activities used to determine the condition of objects or installations

  7. Non-destructive testing at Chalk River

    International Nuclear Information System (INIS)

    Hilborn, J.W.

    1976-01-01

    In 1969 CRNL recognized the need for a strong group skilled in non-destructive test procedures. Within two years a new branch called Quality Control Branch was staffed and working. This branch engages in all aspects of non-destructive testing including development of new techniques, new applications of known technology, and special problems in support of operating reactors. (author)

  8. Non-destructive testing. V. 2

    International Nuclear Information System (INIS)

    Farley, J.M.; Nichols, R.W.

    1988-01-01

    The book entitled 'Non-destructive Testing' Volume 2, contains the proceedings of the fourth European Conference, organized by the British Institute of Non-Destructive Testing and held in London, September 1987. The volume contains seven chapters which examine the reliability of NDT, the economics of NDT and the use of NDT in:- civil engineering; oil, gas, coal and petrochemical industries; iron and steel industries; aerospace industry; and the nuclear and electricity supply industries. The seven chapters contain 78 papers, of which 19 are selected for INIS and indexed separately. (U.K.)

  9. Non-destructive testing of electronic component packages

    International Nuclear Information System (INIS)

    Anderle, C.

    1975-01-01

    A non-destructive method of investigating packaged parts of semiconductor components by X radiation is described and the relevant theoretical relations limiting this technique are derived. The application of the technique is demonstrated in testing several components. The described method is iNsimple and quick. (author)

  10. New tasks for non-destructive testing

    International Nuclear Information System (INIS)

    1990-01-01

    The proceedings contain 29 lectures and 43 posters which were presented in Trier at the annual meeting of the DGZfP in May 1990. The contributions report on further development of non-destructive testing methods towards more reliability, both of inspections and with regard to interpretation of the results. (MM) [de

  11. Non-destructive Testing of Wood Defects Based on Discriminant Analysis Method

    Directory of Open Access Journals (Sweden)

    Wenshu LIN

    2015-09-01

    Full Text Available The defects of wood samples were tested by the technique of stress wave and ultrasonic technology, and the testing results were comparatively analyzed by using the Fisher discriminant analysis in the statistic software of SPSS. The differences of defect detection sensitivity and accuracy for stress wave and ultrasonic under different wood properties and defects were concluded. Therefore, in practical applications, according to different situations the corresponding wood non- destructive testing method should be used, or the two detection methods are applied at the same time in order to compensate for its shortcomings with each other to improve the ability to distinguish the timber defects. The results can provide a reference for further improvement of the reliability of timber defects detection.

  12. Qualifying program on Non-Destructive Testing, Visual Inspection of the welding (level 2)

    International Nuclear Information System (INIS)

    Shafee, M. A.

    2011-01-01

    Nondestructive testing is a wide group of analysis technique used in science and industry to evaluate the properties of a material, component or system without causing damage. Common Non-Destructive Testing methods include ultrasonic, magnetic-particle, liquid penetrate, radiographic, visual inspection and eddy-current testing. AAEA put the new book of the Non-Destructive Testing publication series that focused on Q ualifying program on Non-Destructive Testing, visual inspection of welding-level 2 . This book was done in accordance with the Arab standard certification of Non-Destructive Testing (ARAB-NDT-CERT-002) which is agreeing with the ISO-9712 (2005) and IAEA- TEC-DOC-487. It includes twenty one chapters dealing with engineering materials used in industry, the mechanical behavior of metals, metal forming equipments, welding, metallurgy, testing of welds, introduction to Non-Destructive Testing, defects in metals, welding defects and discontinuities, introduction to visual inspection theory, properties and tools of visual testing, visual testing, quality control regulations, standards, codes and specifications, procedures of welding inspections, responsibility of welding test inspector, qualification of Non-Destructive Testing inspector and health safety during working.

  13. Effectiveness Analysis of a Non-Destructive Single Event Burnout Test Methodology

    CERN Document Server

    Oser, P; Spiezia, G; Fadakis, E; Foucard, G; Peronnard, P; Masi, A; Gaillard, R

    2014-01-01

    It is essential to characterize power MosFETs regarding their tolerance to destructive Single Event Burnouts (SEB). Therefore, several non-destructive test methods have been developed to evaluate the SEB cross-section of power devices. A power MosFET has been evaluated using a test circuit, designed according to standard non-destructive test methods discussed in the literature. Guidelines suggest a prior adaptation of auxiliary components to the device sensitivity before the radiation test. With the first value chosen for the de-coupling capacitor, the external component initiated destructive events and affected the evaluation of the cross-section. As a result, the influence of auxiliary components on the device cross-section was studied. This paper presents the obtained experimental results, supported by SPICE simulations, to evaluate and discuss how the circuit effectiveness depends on the external components.

  14. Non-destructive testing and evaluation for structural integrity

    International Nuclear Information System (INIS)

    Baldev Raj; Jayakumar, T.; Rao, B.P.C.

    1995-01-01

    In this paper, a brief description of the physical concepts of non-destructive evaluation (NDE) methods and the physical/derived parameters that are used for assessing defects, stresses and microstructures are given. A few case studies highlighting the importance of non-destructive testing and evaluation for structural integrity assessment are also discussed based on the investigations carried out. Emerging concepts like intelligent processing of materials, expert systems, neural networks, use of multisensors with fusion of data and exploitation of signal analysis and imaging approaches are also addressed in this paper. (author). 92 refs., 1 tab

  15. Development of non-destructive testing. Turkey

    International Nuclear Information System (INIS)

    1991-01-01

    A National Scheme for the qualification and certification of Non-Destructive Testing (NDT) personnel in various methods has been established as the first stage of implementation. Systematic training in such methods as radiography (RT), ultrasonics (UT), magnetic particles (MT), liquid penetrant (PT) and eddy currents (ET) at levels I, II and some at III has been initiated and should be continued. Direct link with the industry and continuous effort to extend practical applications is strongly recommended

  16. Comparative study of destructive and non-destructive methods in the activation analysis of rocks

    International Nuclear Information System (INIS)

    Vasconcellos, M.B.A.

    1978-01-01

    A comparative study between non-destructive thermal neutron activation analysis and activation analysis with radiochemical group separation is made Both methods are applied to the determination of trace elements minor and major elements in rocks. The treatment of the rocks, with special reference to the problems related to grinding and contamination by foreign elements is described. The choice of standards for multielement trace activation analysis is discussed. Two types of computer programs for the evalution of data obtained through Ge-li detector counting are used. All the phases of the destructive and non destructive analysis are described. In the destructive analysis, an adaptation of the group separation scheme developed by Morrison et al for the activation analysis of geological samples is made. The changes introduced make the radiochemical separation simpler and more rapid. Both destructive and non destructive methods are tested by means of the analysis of the United States Geological Survey standard rock AGV-1, which has been analysed by many authors. The same procedure is then applied to some alcaline rocks taken from the apatite mine of Jacupiranga, in the State of Sao Paulo, Brazil. The knowledge of the trace element concentration in these rocks is important for geochemical studies. A detailed study of the possible interferences encountered in the neutron activation analysis of these rocks is made, considering the interferences due to major activities, and to the proximity of the several gamma ray energies of the radioisotopes produced. Finally, the comparative study between the two methods is presented, using statistical tests for the quantitative evalution of results. (Author) [pt

  17. Magnetic Non-destructive Testing of Plastically Deformed Mild Steel

    Directory of Open Access Journals (Sweden)

    Jozef Pala

    2004-01-01

    Full Text Available The Barkhausen noise analysis and coercive field measurement have been used as magnetic non-destructive testing methods for plastically deformed high quality carbon steel specimens. The strain dependence of root mean square value and power spectrum of the Barkhausen noise and the coercive field are explained in terms of the dislocation density. The specimens have been subjected to different magnetizing frequencies to show the overlapping nature of the Barkhausen noise. The results are discussed in the context of usage of magnetic non-destructive testing to evaluate the plastic deformation of high quality carbon steel products.

  18. Non destructive testing of green parts in powder metallurgy

    International Nuclear Information System (INIS)

    Accary, A.

    1979-01-01

    The non destructive testing of green parts is potentially advantageous by making possible a lowering of the material and energy consumption as well as the production of parts with a 100% reliability. After a survey of the possible methods and of the defects to be detected it is shown that the goal can be achieved using a 'blind detection' method and that the difficulty of the problem depends on the size and shape of the part to be controled. The gravimetric, dimensional, γ absorption and thermal diffusivity methods are then examined. It is concluded that a unit control is paying only if it allows to enter the high reliability part market. Used statisticaly the non destructive testing of green parts can possibly lead to savings on materials and energy [fr

  19. Application of the Positron Lifetime Spectroscopy as Method of Non-Destructive Testing

    OpenAIRE

    Somieski , B.; Krause-Rehberg , R.; Salz , H.; Meyendorf , N.

    1995-01-01

    In order to show the suitability of the Positron Lifetime Spectroscopy (POLIS) as a method of Non-Destructive Testing (NDT) several iron alloys / steels were mechanically damaged (tensile stress, fatigue, creeping). The positron annihilation parameters show clear changes during all applied kinds of damage. After tensile stress as well as after creeping a homogeneous distribution of damage in the sample was detected. During the very first elastic cycle of a fatigue experiment, a change in the ...

  20. Non-destructive test of lock actuator component using neutron radiography technique

    International Nuclear Information System (INIS)

    Juliyanti; Setiawan; Sutiarso

    2012-01-01

    Non-destructive test of lock actuator using neutron radiography technique has been done. The lock actuator is a mechanical system which is controlled by central lock module consisting of electronic circuit which drives the lock actuator works accordingly to open and lock the vehicle door. The non-destructive test using neutron radiography is carried out to identify the type of defect is presence by comparing between the broken and the brand new one. The method used to test the lock actuator component is film method (direct method). The result show that the radiography procedure has complied with the ASTM standard for neutron radiography with background density of 2.2, 7 lines and 3 holes was seen in the sensitivity indicator (SI) and the quite good image quality was obtained. In the brand new actuator is seen that isolator part which separated the coils has melted. By this non-destructive test using neutron radiography technique is able to detect in early stage the type of component's defect inside the lock actuator without to dismantle it. (author)

  1. Training Guidelines in Non-destructive Testing Techniques. 2013 Edition

    International Nuclear Information System (INIS)

    2014-12-01

    The IAEA promotes industrial applications of radiation technology, including non-destructive testing (NDT), through activities such as Technical Cooperation Projects (national and regional) and Coordinated Research Projects. Through this cooperation, Member States have initiated national programmes for the training and certification of NDT personnel. National certifying bodies have also been established based on International Organization for Standardization (ISO) standards. As part of these efforts, the IAEA has been actively involved in developing training materials. Consequently, IAEA-TECDOC-407, Training Guidelines in Non-destructive Testing Techniques, was published in 1987, then revised and expanded as IAEA-TECDOC-628 in 1991. Revisions of IAEA-TECDOC-628 were considered essential to meet the demands of end-user industries in Member States, and revised and expanded versions were issued in 2002 and 2008. These latter versions included work conducted by the International Committee for Non-Destructive Testing (ICNDT) and many national NDT societies. It is one of the publications referred to in ISO 9712:2005, Non-destructive Testing: Qualification and Certification of Personnel, which in turn is an internationally accepted standard, revised as ISO 9712:2012, Non-destructive Testing: Qualification and Certification of NDT Personnel. This publication is an updated version of IAEA-TECDOC-628. The content of which has been revised following the changes of ISO 9712 converging with EN 473 and becoming EN ISO 9712:2012, based on the experience of experts and comments from end-user industries. The details of the topics on each subject have been expanded to include the latest developments in the respective methods. The incorporated changes will assist the end-user industries to update their NDT qualification and certification schemes and course materials. This publication, like the previous versions, will continue to play an important role in international harmonization

  2. Guidebook on non-destructive testing of concrete structures

    International Nuclear Information System (INIS)

    2002-01-01

    The International Atomic Energy Agency has been active in the promotion of non-destructive testing (NDT) technology for many years. NDT is an important component of a number of IAEA regional projects. This guidebook deals with NDT of concrete. This book covers a wide range of NDT methods including industrial radiography, ultrasonic testing, electromagnetic testing, infrared thermography, etc. Codes, standards, specifications and procedures are also covered

  3. Application of the positron lifetime spectroscopy as method of non-destructive testing

    International Nuclear Information System (INIS)

    Somieski, B.; Krause-Rehberg, R.; Salz, H.; Meyendorf, N.

    1995-01-01

    In order to show the suitability of the Positron Lifetime Spectroscopy (POLIS) as a method of Non-Destructive Testing (NDT) several iron alloys/steels were mechanically damaged (tensile stress, fatigue, creeping). The positron annihilation parameters show clear changes during all applied kinds of damage. After tensile stress as well as after creeping a homogeneous distribution of damage in the sample was detected. During the very first elastic cycle of a fatigue experiment, a change in the defect structure occurs in well annealed materials. A modified spectrometer for in the field mapping is presented. (orig.)

  4. Modelling, simulation and visualisation for electromagnetic non-destructive testing

    International Nuclear Information System (INIS)

    Ilham Mukriz Zainal Abidin; Abdul Razak Hamzah

    2010-01-01

    This paper reviews the state-of-the art and the recent development of modelling, simulation and visualization for eddy current Non-Destructive Testing (NDT) technique. Simulation and visualization has aid in the design and development of electromagnetic sensors and imaging techniques and systems for Electromagnetic Non-Destructive Testing (ENDT); feature extraction and inverse problems for Quantitative Non-Destructive Testing (QNDT). After reviewing the state-of-the art of electromagnetic modelling and simulation, case studies of Research and Development in eddy current NDT technique via magnetic field mapping and thermography for eddy current distribution are discussed. (author)

  5. Analysis of unbalanced sensor in eddy current method of non destructive testing

    International Nuclear Information System (INIS)

    Chegodaev, V.V.

    2001-01-01

    Different types of sensors are used in eddy current method of non-destructive testing. The choosing of sensor type depends on control object. Different types of sensors can have the same schemes of cut-in in device for formation of information signal. The most common scheme of sensor cut-in is presented. The calculation of output voltage when the sensor is on a segment of the control object, which has not defect is made. The conditions of balancing are adduced and it was shown that the balancing of sensor is very difficult. The methods of compensation or account of voltage of an imbalance are indicated. (author)

  6. Non-destructive testing of tubes by electromagnetic processes

    International Nuclear Information System (INIS)

    Kowarski, A.

    1979-01-01

    This article reviews and assesses the non destructive testing techniques used for locating defects in tubes by electromagnetic processes. These form the basis of many testing devices, the diversity of which results from various factors: range of materials, methods of fabrication, specific defects of the product. There are two distinct main families of devices utilising two different principles: dispersion flow and Foucault currents [fr

  7. Non-Destructive Testing for Concrete Structure

    International Nuclear Information System (INIS)

    Tengku Sarah Tengku Amran; Noor Azreen Masenwat; Mohamad Pauzi Ismail

    2015-01-01

    Nondestructive testing (NDT) is a technique to determine the integrity of a material, component or structure. It is essential in the inspection of alteration, repair and new construction in the building industry. There are a number of non-destructive testing techniques that can be applied to determine the integrity of concrete in a completed structure. Each has its own advantages and limitations. For concrete, these problems relate to strength, cracking, dimensions, delamination, and inhomogeneities. NDT is reasonably good and reliable tool to measure the property of concrete which also gives the fair indication of the compressive strength development. This paper discussed the concrete inspection using combined methods of NDT. (author)

  8. Laser active thermography for non-destructive testing

    International Nuclear Information System (INIS)

    Semerok, A.; Grisolia, C.; Fomichev, S.V.; Thro, P.Y.

    2013-01-01

    Thermography methods have found their applications in different fields of human activity. The non-destructive feature of these methods along with the additional advantage by automated remote control and tests of nuclear installations without personnel attendance in the contaminated zone are of particular interest. Laser active pyrometry and laser lock-in thermography for in situ non-destructive characterization of micrometric layers on graphite substrates from European tokamaks were under extensive experimental and theoretical studies in CEA (France). The studies were aimed to obtain layer characterization with cross-checking the layer thermal contact coefficients determined by active laser pyrometry and lock-in thermography. The experimental installation comprised a Nd-YAG pulsed repetition rate laser (1 Hz - 10 kHz repetition rate frequency, homogeneous spot) and a home-made pyrometer system based on two pyrometers for the temperature measurements in 500 - 2600 K range. For both methods, the layer characterization was provided by the best fit of the experimental results and simulations. The layer thermal contact coefficients determined by both methods were quite comparable. Though there was no gain in the measurements accuracy, lock-in measurements have proved their advantage as being much more rapid. The obtained experimental and theoretical results are presented. Some practical applications and possible improvements of the methods are discussed. (authors)

  9. Laser active thermography for non-destructive testing

    Science.gov (United States)

    Semerok, A.; Grisolia, C.; Fomichev, S. V.; Thro, P.-Y.

    2013-11-01

    Thermography methods have found their applications in different fields of human activity. The non-destructive feature of these methods along with the additional advantage by automated remote control and tests of nuclear installations without personnel attendance in the contaminated zone are of particular interest. Laser active pyrometry and laser lock-in thermography for in situ non-destructive characterization of micrometric layers on graphite substrates from European tokamaks were under extensive experimental and theoretical studies in CEA (France). The studies were aimed to obtain layer characterization with cross-checking the layer thermal contact coefficients determined by active laser pyrometry and lock-in thermography. The experimental installation comprised a Nd-YAG pulsed repetition rate laser (1 Hz - 10 kHz repetition rate frequency, homogeneous spot) and a home-made pyrometer system based on two pyrometers for the temperature measurements in 500 - 2600 K range. For both methods, the layer characterization was provided by the best fit of the experimental results and simulations. The layer thermal contact coefficients determined by both methods were quite comparable. Though there was no gain in the measurements accuracy, lock-in measurements have proved their advantage as being much more rapid. The obtained experimental and theoretical results are presented. Some practical applications and possible improvements of the methods are discussed.

  10. Quality evaluation of soil-cement-plant residue bricks by the combination of destructive and non-destructive tests

    Directory of Open Access Journals (Sweden)

    Regis de C. Ferreira

    Full Text Available ABSTRACT Residues from agricultural activity can be used to improve the quality of soil-based bricks, constituting an interesting alternative for their destination. The technical quality of soil-cement-plant residue bricks was evaluated by the combination of non-destructive and destructive methods. A predominant clayey soil, Portland cement and residues of husks of both rice and Brachiaria brizantha cv. Marandu (0, 10, 20, 30 and 40%, in mass, in substitution to the 10% cement content were used. The bricks were submitted to destructive (water absorption and compressive strength and nondestructive (ultrasound tests for their physical and mechanical characterization. Results from both destructive and non-destructive tests were combined to determine the quantitative parameter named “anisotropic resistance” in order to evaluate the quality of the bricks. The addition that promoted best technical quality was 10% residue content, regardless of the residue type. The anisotropic resistance proved to be adequate for the technical quality evaluation of the bricks.

  11. Non-destructive testing method for determining the solvent diffusion coefficient in the porous materials products

    Science.gov (United States)

    Belyaev, V. P.; Mishchenko, S. V.; Belyaev, P. S.

    2018-01-01

    Ensuring non-destructive testing of products in industry is an urgent task. Most of the modern methods for determining the diffusion coefficient in porous materials have been developed for bodies of a given configuration and size. This leads to the need for finished products destruction to make experimental samples from them. The purpose of this study is the development of a dynamic method that allows operatively determine the diffusion coefficient in finished products from porous materials without destroying them. The method is designed to investigate the solvents diffusion coefficient in building constructions from materials having a porous structure: brick, concrete and aerated concrete, gypsum, cement, gypsum or silicate solutions, gas silicate blocks, heat insulators, etc. A mathematical model of the method is constructed. The influence of the design and measuring device operating parameters on the method accuracy is studied. The application results of the developed method for structural porous products are presented.

  12. Advanced non-destructive methods for an efficient service performance

    International Nuclear Information System (INIS)

    Rauschenbach, H.; Clossen-von Lanken Schulz, M.; Oberlin, R.

    2015-01-01

    Due to the power generation industry's desire to decrease outage time and extend inspection intervals for highly stressed turbine parts, advanced and reliable Non-destructive methods were developed by Siemens Non-destructive laboratory. Effective outage performance requires the optimized planning of all outage activities as well as modern Non-destructive examination methods, in order to examine the highly stressed components (turbine rotor, casings, valves, generator rotor) reliably and in short periods of access. This paper describes the experience of Siemens Energy with an ultrasonic Phased Array inspection technique for the inspection of radial entry pinned turbine blade roots. The developed inspection technique allows the ultrasonic inspection of steam turbine blades without blade removal. Furthermore advanced Non-destructive examination methods for joint bolts will be described, which offer a significant reduction of outage duration in comparison to conventional inspection techniques. (authors)

  13. Non-Destructive Testing for Control of Radioactive Waste Package

    Science.gov (United States)

    Plumeri, S.; Carrel, F.

    2015-10-01

    Characterization and control of radioactive waste packages are important issues in the management of a radioactive waste repository. Therefore, Andra performs quality control inspection on radwaste package before disposal to ensure the compliance of the radwast characteristics with Andra waste disposal specifications and to check the consistency between Andra measurements results and producer declared properties. Objectives of this quality control are: assessment and improvement of producer radwaste packages quality mastery, guarantee of the radwaste disposal safety, maintain of the public confidence. To control radiological characteristics of radwaste package, non-destructive passive methods (gamma spectrometry and neutrons counting) are commonly used. These passive methods may not be sufficient, for instance to control the mass of fissile material contained inside radwaste package. This is particularly true for large concrete hull of heterogeneous radwaste containing several actinides mixed with fission products like 137Cs. Non-destructive active methods, like measurement of photofission delayed neutrons, allow to quantify the global mass of actinides and is a promising method to quantify mass of fissile material. Andra has performed different non-destructive measurements on concrete intermediate-level short lived nuclear waste (ILW-SL) package to control its nuclear material content. These tests have allowed Andra to have a first evaluation of the performance of photofission delayed neutron measurement and to identify development needed to have a reliable method, especially for fissile material mass control in intermediate-level long lived waste package.

  14. Resolution enhancement for ultrasonic echographic technique in non destructive testing with an adaptive deconvolution method

    International Nuclear Information System (INIS)

    Vivet, L.

    1989-01-01

    The ultrasonic echographic technique has specific advantages which makes it essential in a lot of Non Destructive Testing (NDT) investigations. However, the high acoustic power necessary to propagate through highly attenuating media can only be transmitted by resonant transducers, which induces severe limitations of the resolution on the received echograms. This resolution may be improved with deconvolution methods. But one-dimensional deconvolution methods come up against problems in non destructive testing when the investigated medium is highly anisotropic and inhomogeneous (i.e. austenitic steel). Numerous deconvolution techniques are well documented in the NDT literature. But they often come from other application fields (biomedical engineering, geophysics) and we show they do not apply well to specific NDT problems: frequency-dependent attenuation and non-minimum phase of the emitted wavelet. We therefore introduce a new time-domain approach which takes into account the wavelet features. Our method solves the deconvolution problem as an estimation one and is performed in two steps: (i) A phase correction step which takes into account the phase of the wavelet and estimates a phase-corrected echogram. The phase of the wavelet is only due to the transducer and is assumed time-invariant during the propagation. (ii) A band equalization step which restores the spectral content of the ideal reflectivity. The two steps of the method are performed using fast Kalman filters which allow a significant reduction of the computational effort. Synthetic and actual results are given to prove that this is a good approach for resolution improvement in attenuating media [fr

  15. Quantitative impact characterization of aeronautical CFRP materials with non-destructive testing methods

    Energy Technology Data Exchange (ETDEWEB)

    Kiefel, Denis, E-mail: Denis.Kiefel@airbus.com, E-mail: Rainer.Stoessel@airbus.com; Stoessel, Rainer, E-mail: Denis.Kiefel@airbus.com, E-mail: Rainer.Stoessel@airbus.com [Airbus Group Innovations, Munich (Germany); Grosse, Christian, E-mail: Grosse@tum.de [Technical University Munich (Germany)

    2015-03-31

    In recent years, an increasing number of safety-relevant structures are designed and manufactured from carbon fiber reinforced polymers (CFRP) in order to reduce weight of airplanes by taking the advantage of their specific strength into account. Non-destructive testing (NDT) methods for quantitative defect analysis of damages are liquid- or air-coupled ultrasonic testing (UT), phased array ultrasonic techniques, and active thermography (IR). The advantage of these testing methods is the applicability on large areas. However, their quantitative information is often limited on impact localization and size. In addition to these techniques, Airbus Group Innovations operates a micro x-ray computed tomography (μ-XCT) system, which was developed for CFRP characterization. It is an open system which allows different kinds of acquisition, reconstruction, and data evaluation. One main advantage of this μ-XCT system is its high resolution with 3-dimensional analysis and visualization opportunities, which enables to gain important quantitative information for composite part design and stress analysis. Within this study, different NDT methods will be compared at CFRP samples with specified artificial impact damages. The results can be used to select the most suitable NDT-method for specific application cases. Furthermore, novel evaluation and visualization methods for impact analyzes are developed and will be presented.

  16. Quantitative impact characterization of aeronautical CFRP materials with non-destructive testing methods

    International Nuclear Information System (INIS)

    Kiefel, Denis; Stoessel, Rainer; Grosse, Christian

    2015-01-01

    In recent years, an increasing number of safety-relevant structures are designed and manufactured from carbon fiber reinforced polymers (CFRP) in order to reduce weight of airplanes by taking the advantage of their specific strength into account. Non-destructive testing (NDT) methods for quantitative defect analysis of damages are liquid- or air-coupled ultrasonic testing (UT), phased array ultrasonic techniques, and active thermography (IR). The advantage of these testing methods is the applicability on large areas. However, their quantitative information is often limited on impact localization and size. In addition to these techniques, Airbus Group Innovations operates a micro x-ray computed tomography (μ-XCT) system, which was developed for CFRP characterization. It is an open system which allows different kinds of acquisition, reconstruction, and data evaluation. One main advantage of this μ-XCT system is its high resolution with 3-dimensional analysis and visualization opportunities, which enables to gain important quantitative information for composite part design and stress analysis. Within this study, different NDT methods will be compared at CFRP samples with specified artificial impact damages. The results can be used to select the most suitable NDT-method for specific application cases. Furthermore, novel evaluation and visualization methods for impact analyzes are developed and will be presented

  17. Radioisotopes in non-destructive testing

    International Nuclear Information System (INIS)

    Domanus, J.C.

    1976-12-01

    After defining nondestructive testing (NDT) and comparing this concept with destructive testing, a short description is given of NDT methods other than radiologic. The basic concepts of radiologic methods are discussed and the principles of radiography are explained. Radiation sources and gamma radiography machines are next reviewed and radiographic inspection of weldings and castings is described. A brief description is given of the radiographic darkroom and accessories. Other radioisotope methods, such as neutron radiography, are shortly reviewed. Cost estimations for radioisotopic equipment conclude the report. (author)

  18. Non-Destructive Techniques Based on Eddy Current Testing

    Science.gov (United States)

    García-Martín, Javier; Gómez-Gil, Jaime; Vázquez-Sánchez, Ernesto

    2011-01-01

    Non-destructive techniques are used widely in the metal industry in order to control the quality of materials. Eddy current testing is one of the most extensively used non-destructive techniques for inspecting electrically conductive materials at very high speeds that does not require any contact between the test piece and the sensor. This paper includes an overview of the fundamentals and main variables of eddy current testing. It also describes the state-of-the-art sensors and modern techniques such as multi-frequency and pulsed systems. Recent advances in complex models towards solving crack-sensor interaction, developments in instrumentation due to advances in electronic devices, and the evolution of data processing suggest that eddy current testing systems will be increasingly used in the future. PMID:22163754

  19. Modelling and simulation of eddy current non-destructive testing

    International Nuclear Information System (INIS)

    Mansir, H.; Burais, N.; Nicolas, A.

    1986-01-01

    This paper presents the practical configuration for detecting cracks in conducting materials by eddy current non destructive testing. An electromagnetic field formulation is proposed using Maxwell's relations. Geometrical and physical properties of the crack are taken into account by several models, particularly with a new finite element called ''crack element''. Modelisation is applied to sensor impedance calculation with classical numerical methods [fr

  20. Training guidelines in non-destructive testing techniques

    International Nuclear Information System (INIS)

    1987-02-01

    With the conclusion in 1979 of a successful Agency executed UNDP project in Argentina, whose aim was the establishment of a national non-destructive testing centre, the Agency was asked by other countries in the Latin American and Caribbean Region to evaluate the possibility of transferring this success to the whole region. In 1982, with the financial cooperation of UNFSSTD and UNIDO, a regional project was started with the principal objective of assisting the countries in the region to reinforce autonomous NDT capability through regional cooperation. One essential component of this project has been the harmonization of training through the development and use of course syllabi by the 17 countries now participating in the project. To this end, a Regional Working Group was formed and one of its tasks is the development of these syllabi for the more common NDT methods. This publication is a collection of the training programmes elaborated to date which have so far been followed by some 10,000 persons in the region who have received training in NDT as a direct result of the project. These syllabi take into account the development work done by the International Committee for Non-destructive Testing and many national training programmes, and are meant to be an objective guide to assist in the formation of NDT personnel

  1. About a sequential method for non destructive testing of structures by mechanical vibrations

    International Nuclear Information System (INIS)

    Suarez Antola, R.

    2001-01-01

    The presence and growth of cracks voids or fields of pores under applied forces or environmental actions can produce a meaningful lowering in the proper frequencies of normal modes of mechanical vibration in structures.A quite general expression for the square of modes proper frequency as a functional of displacement field,density field and elastic moduli fields is used as a starting point.The effect of defects on frequency are modeled as equivalent changes in density and elastic moduli fields,introducing the concept of region of influence of each defect.An approximate expression is obtained which relates the relative lowering in the square of modes proper frequency with position,size,shape and orientation of defects in mode displacement field.Some simple examples of structural elements with cracks or fields of pores are considered.the connection with linear elastic fracture mechanics is briefly exemplified.A sequential method is proposed for non-destructive testing of structures using mechanical vibrations combined with properly chosen local nondestructive testing methods

  2. Using photons for non-destructive testing of thick materials: a simulation study

    International Nuclear Information System (INIS)

    Oishi, Ryutaro; Nagai, Hideki

    2004-01-01

    Positron annihilation spectroscopy using positron annihilation lifetimes has been successfully studied for non-destructive material testing. A positron inspection probe is annihilated with an electron at the front of the material. The application of the positron lifetime method is restricted to thin materials. A photon with energy exceeding 1.02MeV reaches the materials' depth and can produce a positron through γ-conversion. Such a photon-produced positron is a probe for thick materials. The probability of γ-conversion, however, is low. The method of photon-produced positron annihilation lifetimes is restricted by statistics. We estimated the expected number of events and the statistical uncertainties of the lifetime measurements for a non-destructive test, such as an SUS316 fatigue monitoring, to construct a fatigue-monitoring system

  3. Application of positron annihilation techniques in non-destructive testing

    International Nuclear Information System (INIS)

    Zeng Hui; Chen Zhiqiang; Jiang Jing; Xue Xudong; Wu Yichu; Liang Jianping; Liu Xiangbing; Wang Rongshan

    2014-01-01

    Background: The investigation of the material damage state is very important for industrial application. Most mechanical damage starts with a change in the microstructure of the material. Positron annihilation techniques are very sensitive probes for detecting defects and damage on an atomic scale in materials, which are of great concern in the engineering applications. Additionally they are apparatus of non-destruction, high-sensitivity and easy-use. Purpose: Our goal is to develop a system to exploit new non-destructive testing (NDT) methods using positron annihilation spectroscopy, a powerful tool to detect vacancy-type defects and their chemical environment. Methods: A positron NDT system was designed and constructed by modifying the 'sandwich structure' of sample-source-sample in conventional Doppler broadening and positron lifetime spectrometers. Doppler broadening and positron lifetime spectra of a single sample can be measured and analyzed by subtracting the contribution of a reference sample. Results: The feasibility and reliability of positron NDT system have been tested by analyzing nondestructively deformation and damage caused by mechanical treatment or by irradiation of metal alloys. This system can be used for detecting defects and damage in thick or large-size samples, as well as for measuring the two-dimension distribution of defects in portable, sensitive, fast way. Conclusion: Positron NDT measurement shows changes in real atomic-scale defects prior to changes in the mechanical properties, which are detectable by other methods of NDT, such as ultrasonic testing and eddy current testing. This system can be developed for use in both the laboratory and field in the future. (authors)

  4. Non-destructive testing of CFC/Cu joints

    International Nuclear Information System (INIS)

    Casalegno, V.; Ferraris, M.; Salvo, M.; Vesprini, R.; Merola, M.

    2006-01-01

    Reliable non-destructive tests (NDT) are fundamental for the manufacturing of ITER components, especially for high heat flux plasma facing components. NDT include various techniques, which allow inspection of a component without impairing serviceability; it's important to detect and characterize defects (type, size and position) as well as the set-up of acceptance standards in order to predict their influence on the component performance in service conditions. The present study shows a description of NDT used to assess the manufacturing quality of CFC (carbon fibre reinforced carbon matrix composites)/Cu/CuCrZr joints. In the ITER divertor, armor tiles made of CFC are joined to the cooling structure made of precipitation hardened copper alloy CuCrZr; a soft pure Cu interlayer is required between the heat sink and the armour in order to mitigate the stresses at the joint interface. NDT on CFC/Cu joint are difficult because of the different behavior of CFC and copper with regard to physical excitations (e.g. ultrasonic wave) used to test the component; furthermore the response to this input must be accurately studied to identify the detachment of CFC tiles from Cu alloy. The inspected CFC/Cu/CuCrZr joints were obtained through direct casting of pure Cu on modified CFC surface and subsequently through brazing of CFC/Cu joints to CuCrZr by a Cu-based alloy. Different non-destructive methods were used for inspecting these joints: lock-in thermography, ultrasonic inspections, microtomography and microradiography. The NDT tests were followed by metallographic investigation on the samples, since the reliability of a certain non destructive test can be only validated by morphological evidence of the detected defects. This study will undertake a direct comparison of NDT used on CFC/Cu joints in terms of real flaws presence. The purpose of this work is to detect defects at the joining interface as well as in the cast copper ( for instance voids). The experimental work was

  5. The need to qualify Non Destructive Tests (NDT) has been recognized for many years in the European countries engaged in nuclear power generation

    International Nuclear Information System (INIS)

    Walczak, M.; Wojas, M.

    2008-01-01

    The European Network for Inspection Qualification, ENIQ, which groups the major part of the nuclear power plant operators in the European Union and in the Applicant Countries, has developed the European methodology for Qualification of Non Destructive Tests. As qualification of NDT is nowadays a standard method in the nuclear industry and in other industries. CEN (European Committee for Standardization) Technical Committee 138 '' Non Destructive Testing '' has established a Working Group, which is responsible for developing a Standard document detailing the CEN Methodology for the qualification of Non Destructive Tests applicable to all industries carrying out Non-Destructive Tests. This Standard document sets out basic principles and provides recommendations and general guidelines for carrying out qualification of NDT. It describes a methodology for qualification of Non-Destructive Tests, applicable to all NDT methods and considers qualification of equipment, procedure and personnel training. This paper presents a short background of the European Methodology for Qualification of Non-Destructive Tests and the Standard document CEN/TR 14748 '' Non-destructive testing - Methodology for qualification of non-destructive tests ''. (author)

  6. Questions of qualification exam for non-destructive testing and materials science - the first level

    International Nuclear Information System (INIS)

    Shaaban, H.I.; Addarwish, J.M.A.

    2013-01-01

    The book contains seven chapters: Questions of qualification for magnetic particles testing method - Questions of qualification for liquids penetrant testing method - Questions of qualification for the visual inspection testing method - Questions of qualification for the ultrasonic testing method - Questions of qualification for the eddy current testing method - Questions of rehabilitation for industrial radiographic testing method - Qualification questions about materials science and manufacturing defects of castings and welding and comparison between non-destructive testing methods.

  7. Non-destructive testing; Examenes no destructivos

    Energy Technology Data Exchange (ETDEWEB)

    Calva, Mauricio; Loske, Achim [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1988-12-31

    The application of non-destructive testing (NDT) in several technical and industrial fields is pointed out, standing out its utilization in the detection of future failures without affecting the examined element. Likewise, the different types of NDTs and their processes, such as x-rays, ultrasoud, magnetic particles, induced currents, penetrating fluids, and optical means, are described. The Non-Destructive Tests Laboratory of the Instituto de Investigaciones Electricas (IIE), plans to create new and more reliable systems independent from the operator`s capacity, to contribute to fulfill the inspection and quality control needs of the generating Mexican power plants. [Espanol] Se senala la aplicacion de los examenes no destructivos (END) a diversos campos tecnicos e industriales, destacando su utilizacion en la deteccion de futuras fallas sin afectar el elemento examinado. Asimismo, se describen los diferentes tipos de END y sus procesos, tales como radiografia, ultrasonido, particulas magneticas, corrientes inducidas, liquidos penetrantes y metodos opticos. El Laboratorio de Pruebas no Destructivas, del Instituto de Investigaciones Electricas (IIE), planea crear sistemas novedosos mas confiables, que no dependan de la capacidad del operador, para contribuir a satisfacer las necesidades de inspeccion y control de calidad que se presentan en las plantas generadoras de energia mexicanas.

  8. Non-destructive testing; Examenes no destructivos

    Energy Technology Data Exchange (ETDEWEB)

    Calva, Mauricio; Loske, Achim [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1987-12-31

    The application of non-destructive testing (NDT) in several technical and industrial fields is pointed out, standing out its utilization in the detection of future failures without affecting the examined element. Likewise, the different types of NDTs and their processes, such as x-rays, ultrasoud, magnetic particles, induced currents, penetrating fluids, and optical means, are described. The Non-Destructive Tests Laboratory of the Instituto de Investigaciones Electricas (IIE), plans to create new and more reliable systems independent from the operator`s capacity, to contribute to fulfill the inspection and quality control needs of the generating Mexican power plants. [Espanol] Se senala la aplicacion de los examenes no destructivos (END) a diversos campos tecnicos e industriales, destacando su utilizacion en la deteccion de futuras fallas sin afectar el elemento examinado. Asimismo, se describen los diferentes tipos de END y sus procesos, tales como radiografia, ultrasonido, particulas magneticas, corrientes inducidas, liquidos penetrantes y metodos opticos. El Laboratorio de Pruebas no Destructivas, del Instituto de Investigaciones Electricas (IIE), planea crear sistemas novedosos mas confiables, que no dependan de la capacidad del operador, para contribuir a satisfacer las necesidades de inspeccion y control de calidad que se presentan en las plantas generadoras de energia mexicanas.

  9. Optical generation,detection and non-destructive testing applications of terahertz waves

    Institute of Scientific and Technical Information of China (English)

    ZHANG; Weili; LIANG; Dachuan; TIAN; Zhen; HAN; Jiaguang; GU; Jianqiang; HE; Mingxia; OUYANG; Chunmei

    2016-01-01

    Optoelectronic terahertz generation and detection play a key role in the applications of non-destructive testing,which involves different areas such as physics,biological,material science,imaging,explosions detection,astronomy applications,semiconductor technology and superconductiong electronics. In this article,we present a reviewof the principle and performance of typical terahertz sources,detectors and non-destructive testing applications. On this basis,the newdevelopment and trends of terahertz radiation detectors are also discussed.

  10. Multi-energy radiography for non-destructive testing of materials and structures for civil engineering

    International Nuclear Information System (INIS)

    Naydenov, S.V.; Ryzhikov, V.

    2003-01-01

    Development of the technological base of modern non-destructive testing require new methods allowing determination of specified properties of materials and structures under study. A traditional direction of works is determination of internal spatial structure of the materials and other constructions. Restoration of this geometrical information is of qualitative character, though provides for determination of technical parameters affecting physical properties of the system. Reconstruction of the chemical composition, density and atomic structure (effective atomic number) is an inverse problem of direct quantitative determination of properties starting from data obtained by means of non-destructive testing. In the present work, we propose the use of multi-energy radiography for reconstruction of the substantial structure of materials. In framework of simple theoretical model it is shown that, using multi-channel absorption of X-rays, important substantial characteristics of materials and multi-compound structures can be readily reconstructed. The results obtained show high efficiency of 2-energy radiography for non-destructive testing in civil engineering

  11. Geophysical Methods for Non-Destructive Testing in Civil Engineering

    Science.gov (United States)

    Niederleithinger, E.

    2013-12-01

    Many non-destructive testing (NDT) methods for civil engineering (e. g. ultrasonics, radar) are similar to geophysical techniques. They just differ in scale, material under investigation and vocabulary used. In spite of the fact that the same principles of physics and mathematics apply to both fields, exchange has been limited in the past. But since a few years more and more geophysical knowledge is used in civil engineering. One of the focal points in research is to improve ultrasonic testing of concrete to be able to image the inside even of large, complex structures and to detect any deterioration as early as possible. One of the main issues is the heterogeneity of concrete, including aggregates, reinforcement, cracks and many other features. Our current research focuses on three points. One is the application of state of the art geophysical migration techniques as Reverse Time Migration (RTM) to image vertical faces or the backside of voids and ducts in thick concrete structures, which isn't possible with conventional techniques used in NDT. Second, we have started to use seismic interferometric techniques to interpolate ultrasonic traces, which can't be measured directly for technical reasons. Third, we are using coda wave interferometry to detect concrete degradation due to load, fatigue, temperature or other influences as early as possible. Practical examples of the application of these techniques are given and potential future research directions will be discussed. It will be shown, how a subset of these techniques can be used for innovative monitoring systems for civil infrastructure. Imaging the interior of a concrete body by ultrasonics and reverse time migration(simulated data).

  12. Non-destructive inservice inspections

    International Nuclear Information System (INIS)

    Kauppinen, P.; Sarkimo, M.; Lahdenperae, K.

    1998-01-01

    In order to assess the possible damages occurring in the components and structures of operating nuclear power plants during service the main components and structures are periodically inspected by non-destructive testing techniques. The reliability of non-destructive testing techniques applied in these inservice inspections is of major importance because the decisions concerning the needs for repair of components are mainly based on the results of inspections. One of the targets of this research program has been to improve the reliability of non-destructive testing. This has been addressed in the sub-projects which are briefly summarised here. (author)

  13. Non-destructive testing: significant facts

    International Nuclear Information System (INIS)

    Espejo, Hector; Ruch, Marta C.

    2006-01-01

    In the last fifty years different organisations, both public and private, have been assigned to the mission of introducing into the country the most relevant aspects of the modern technological discipline 'Non Destructive Testing' (NDT) through a manifold of activities, such as training and education, research, development, technical assistance and services, personnel qualification/certification and standardisation. A review is given of the significant facts in this process, in which the Argentine Atomic Energy Commission, CNEA, played a leading part, a balance of the accomplishments is made and a forecast of the future of the activity is sketched. (author) [es

  14. Combining data in non-destructive testing

    International Nuclear Information System (INIS)

    Lavayssiere, B.

    1994-03-01

    Non-destructive testing of some components requires quite often the use of several methods such as X-ray, ultrasonics, Eddy Currents. But the efficiency of a NDT method is highly dependent on the fact that the detectability of flaws in a specimen relies on the choice of the best method. Moreover a lot of inspection issues could benefit from the use of more than one test method, as each NDT method has its own physical properties and technological limits. Some questions still remain: how to combine data, at what level and for what functionality. Simple monomethod processes are well-known now. They include techniques like reconstruction which belongs to the so-called ill-posed problems in the field of mathematics. For NDT data processing, it has the ability to estimate real data from distorted ones coming from a probe. But, up to now there has been very few approaches for computer aided combination of results from different advanced techniques. This report presents the various mathematical fields involved towards that goal (statistical decision theory which allows the use of multiple hypothesis, non-linear decision theory for its capability to classify and to discriminate, graph theory to find the optimal path in an hypothesis graph and also fuzzy logic, multiple resolution analysis, artificial intelligence,...) and which combinations of methods are useful. Some images will illustrate this topic in which EDF is involved, and will explain what are the major goals of this work. Combining is not only an improvement of 3D visualisation which would allow to display simultaneously CAD or NDT data for example, but it consists in exploiting multisensor data collected via a variety of sophisticated techniques and presenting this information to the operator without overloading the operator/system capacities in order to reduce the uncertainty and to resolve the ambiguity inherent to mono method inspection. (author). 7 figs., 35 refs

  15. Training guidelines in non-destructive testing techniques

    International Nuclear Information System (INIS)

    1991-10-01

    Non-destructive testing methods (NDT), by their very nature, allow components to be fully examined for properties or flaws without interfering with their usefulness. This grouping of inspection methods has grown from a handful of primitive techniques practised by artists to a widely known discipline which is an essential part of quality control, largely as a result of the standards demanded by the nuclear and aerospace industries. Recognizing the need for an international publication of NDT training syllabi, the IAEA Consultants Meeting on ''Qualification and Certification of NDT Personnel'' (Milan, 20-21 May 1986), recommended that the Agency publish the guidelines developed by Regional Working Group of the Latin America and Caribbean project. It was first issued in English in 1987 and has now been re-edited in English and Spanish and enlarged by the addition of programmes for other techniques

  16. Utilization of radiation in non destructive tests

    International Nuclear Information System (INIS)

    Lopes, R.T.; Jesus, E.F.O. de; Junqueira, M.M.; Matos, J.A. de; Castello Branco, L.M.; Barros Junior, J.D.; Borges, J.C.

    1987-01-01

    The Nuclear Instrumentation Laboratory from COPPE/UFRJ has been developed techniques for using nuclear radiations to obtain images for non-destructive materials testing and medicine. With this objective, some prototypes of transmission computerized tomography systems using parallel beans and fan beans, with computer automation, including the mathematical process of image reprocessing and presentation in videos or printers are constructed [pt

  17. Accuracy of Non-Destructive Testing of PBRs to Estimate Fragilities

    Science.gov (United States)

    Brune, J. N.; Brune, R.; Biasi, G. P.; Anooshehpoor, R.; Purvance, M.

    2011-12-01

    Prior studies of Precariously Balanced Rocks (PBRs) have involved various methods of documenting rock shapes and fragilities. These have included non-destructive testing (NDT) methods such as photomodeling, and potentially destructive testing (PDT) such as forced tilt tests. PDT methods usually have the potential of damaging or disturbing the rock or its pedestal so that the PBR usefulness for future generations is compromised. To date we have force-tilt tested approximately 28 PBRs, and of these we believe 7 have been compromised. We suggest here that given other inherent uncertainties in the current methodologies, NDT methods are now sufficiently advanced as to be adequate for the current state of the art use for comparison with Ground Motion Prediction Equations (GMPEs) and seismic hazard maps (SHMs). Here we compare tilt-test static toppling estimates to three non-destructive methods: (1) 3-D photographic modeling (2) profile analysis assuming the rock is 2-D, and (3) expert judgments from photographs. 3-D modeling uses the commercial Photomodeler program and photographs in the field taken from numerous directions around the rock. The output polyhedral shape is analyzed in Matlab determine the center of mass and in Autocad to estimate the static overturning angle alpha. For the 2-D method we chose the photograph in profile looking perpendicular to the estimated direction of toppling. The rock is outlined as a 2-D object in Matlab. Rock dimensions, rocking points, and a vertical reference are supplied by the photo analyst to estimate the center of gravity and static force overturning angles. For the expert opinion method we used additional photographs taken from different directions to improve the estimates of the center of mass and the rocking points. We used 7 rocks for comparisons. The error in estimating tan alpha from 3-D modeling is about 0.05. For 2-D estimates an average error is about 0.1 (?). For expert opinion estimates the error is about 0.06. For

  18. Non-destructive testing and radiation in industry

    International Nuclear Information System (INIS)

    Woodford, C; Ashby, P.

    2001-01-01

    Non-destructive testing (NDT) is a little known discipline which uses non-invasive and passive techniques to investigate the condition of materials and structures. Some of these techniques employ the use of radioisotopes. The penetrating radiations produced by these materials are applied in various ways to obtain the required information. This presentation is an overview of the application of radioisotopes within the scope of NDT. Notwithstanding the well established use of traditional materials, new forms of radioisotopes are being developed which will extend their capabilities

  19. Non destructive testing of works of art by terahertz analysis

    Science.gov (United States)

    Bodnar, Jean-Luc; Metayer, Jean-Jacques; Mouhoubi, Kamel; Detalle, Vincent

    2013-11-01

    Improvements in technologies and the growing security needs in airport terminals lead to the development of non destructive testing devices using terahertz waves. Indeed, these waves have the advantage of being, on one hand, relatively penetrating. They also have the asset of not being ionizing. It is thus potentially an interesting contribution in the non destructive testing field. With the help of the VISIOM Company, the possibilities of this new industrial analysis method in assisting the restoration of works of art were then approached. The results obtained within this framework are presented here and compared with those obtained by infrared thermography. The results obtained show first that the THZ method, like the stimulated infrared thermography allows the detection of delamination located in murals paintings or in marquetries. They show then that the THZ method seems to allow detecting defects located relatively deeply (10 mm) and defects potentially concealed by other defects. It is an advantage compared to the stimulated infra-red thermography which does not make it possible to obtain these results. Furthermore, they show that the method does not seem sensitive to the various pigments constituting the pictorial layer, to the presence of a layer of "Japan paper" and to the presence of a layer of whitewash. It is not the case of the stimulated infrared thermography. It is another advantage of the THZ method. Finally, they show that the THZ method is limited in the detection of low-size defects. It is a disadvantage compared to the stimulated infrared thermography.

  20. Template synthesis of test tube nanoparticles using non-destructive replication.

    Science.gov (United States)

    Wagner, Jonathan; Yao, Jingyuan; Rodgers, David; Hinds, Bruce

    2013-03-01

    Nano test tubes are a promising delivery vehicle for a range of therapeutics, including small molecule drugs and biologics. However, current template synthesis methods of producing nano test tubes are prohibitively expensive and time consuming. Here, non-destructive template replication was used to increase nano test tube yield from porous alumina by more than a hundredfold. We demonstrate how to produce nano test tubes of several sizes and compositions, including hybrid tubes with different inner and outer surfaces for targeted surface chemistry. Nano test tubes were readily suspended and stored in aqueous solutions without the need for chemical treatment. These nano test tubes should find application as delivery vehicles for therapeutics, particularly for processive 'bionanoreactors' loaded with enzymes.

  1. Review of the Air-Coupled Impact-Echo Method for Non-Destructive Testing

    Science.gov (United States)

    Nowotarski, Piotr; Dubas, Sebastian; Milwicz, Roman

    2017-10-01

    The article presents the general idea of Air-Coupled Impact-Echo (ACIE) method which is one of the non-destructive testing (NDT) techniques used in the construction industry. One of the main advantages of the general Impact Echo (IE) method is that it is sufficient to access from one side to that of the structure which greatly facilitate research in the road facilities or places which are difficult to access and diagnose. The main purpose of the article is to present state-of-the-art related to ACIE method based on the publications available at Thomson Reuters Web of Science Core Collection database (WOS) with the further analysis of the mentioned methods. Deeper analysis was also performed for the newest publications published within last 3 years related to ACIE for investigation on the subject of main focus of the researchers and scientists to try to define possible regions where additional examination and work is necessary. One of the main conclusions that comes from the performed analysis is that ACIE methods can be widely used for performing NDT of concrete structures and can be performed faster than standard IE method thanks to the Air-coupled sensors. What is more, 92.3% of the analysed recent research described in publications connected with ACIE was performed in laboratories, and only 23.1% in-situ on real structures. This indicates that method requires further research to prepare test stand ready to perform analysis on real objects outside laboratory conditions. Moreover, algorithms that are used for data processing and later presentation in ACIE method are still being developed and there is no universal solution available for all kinds of the existing and possible to find defects, which indicates possible research area for further works. Authors are of the opinion that emerging ACIE method could be good opportunity for ND testing especially for concrete structures. Development and refinement of test stands that will allow to perform in-situ tests could

  2. A system for personnel qualification of non-destructive testing procedures from testing and and qualification system in Sweden

    International Nuclear Information System (INIS)

    Kuna, M.; Kubis, S.; Plasek, J.

    1999-01-01

    The method for qualification of non-destructive testing personnel carrying out inspections by means of ultrasonic and eddy-current tests to inspect cladding in BWR reactor pressure vessel and core shroud lid. Development of procedures tests with real artificial cracks, blind tests. Evaluation of results by the Swedish Qualification Commission. Performance of the tests at Oskarshamn-1

  3. Study on personnel qualification for non-destructive tests in the field of reactor safety

    International Nuclear Information System (INIS)

    Trusch, K.; Wuestenberg, H.

    1977-01-01

    The training system for non-destructive testing is described, and the available and necessary personnel is analyzed; the personnel required for reactor safety problems is treated separately. On this basis, the subjects discussed in the study - available personnel, personnel requirements, training, training requirements, and suggestions for realisation - are treated in a general manner to begin with and afterwards with a view to specific problems of reactor safety. The methods employed are adapted to this situation. To obtain the necessary empirical data, questionnaires were set up and distributed, and experts in selected business companies and institutions were interviewed who work in the field of reactor safety or do same training in non-destructive testing. (orig.) [de

  4. Application of advanced non-destructive testing for testing the integrity of concrete foundations

    International Nuclear Information System (INIS)

    Nguyen Le Son; Nguyen Phuoc Lan; Pham The Hung; Vu Huy Thuc

    2004-01-01

    Solid foundations are integral important part of any structures. Obtaining accurate and timely information on the integrity of structural foundations is essential for project progress and success. Cross-hole sonic method has been widely accepted for quality assurance and quality control on projects with deep foundations, and to assess the integrity of other civil engineering structures. Under the framework of the basic VAEC project (2003) and project VIE/8/013, the Cross-hole sonic method (CHM) was evaluated at Center for Nuclear Techniques, Hochiminh City (CNT). Background information on principle and general description of the method as is typically applied in the evaluation of deep foundations are also summarized. A suitable experimental model of the shaft foundations was prepared, where the artificial defects can be controlled for the Cross-hole sonic logging was conducted by measuring the propagation time of ultrasonic signals between two probes in vertical holes in a shaft. The purpose of the test program is to evaluate the ability of the cross-hole sonic method to identify the defects present in the experimental model, to evaluate the capabilities of the method and the equipped system Cs-97, to improve the presentation of test results to meet requirements for interpreting the quality of drilled shafts by processing the data of Cs-97. The cross-hole sonic testing program is describe. Summarizes the results and analysis of the cross-hole sonic logging are presented to highlight both the applicability and limitations of the method. The cross-hole sonic logging evaluation is a valuable non-destructive method in assessing the integrity of deep foundations. The cross-hole sonic logging tests successfully determined the location and extent of the built-in defects on experimental model shaft. Minimum sizes of defects can be detected were about ≥ 10 cm Cs-97. Effects of the directions, detectable sizes and natures of defects were studied. The apparent velocities

  5. New technologies in electromagnetic non-destructive testing

    CERN Document Server

    Huang, Songling

    2016-01-01

    This book introduces novel developments in the field of electromagnetic non-destructive testing and evaluation (NDT/E). The topics include electromagnetic ultrasonic guided wave testing, pulsed eddy current testing, remote field eddy current testing, low frequency eddy current testing, metal magnetic memory testing, and magnetic flux leakage testing. Considering the increasing concern about the safety maintenance of critical structures in various industries and everyday life, these topics presented here will be of particular interest to the readers in the NDT/E field. This book covers both theoretical researches and the engineering applications of the electromagnetic NDT technology. It could serve as a valuable reference for college students and relevant NDT technicians. It is also a useful material for qualification training and higher learning for nondestructive testing professionals.

  6. Template synthesis of test tube nanoparticles using non-destructive replication

    International Nuclear Information System (INIS)

    Wagner, Jonathan; Rodgers, David; Yao Jingyuan; Hinds, Bruce

    2013-01-01

    Nano test tubes are a promising delivery vehicle for a range of therapeutics, including small molecule drugs and biologics. However, current template synthesis methods of producing nano test tubes are prohibitively expensive and time consuming. Here, non-destructive template replication was used to increase nano test tube yield from porous alumina by more than a hundredfold. We demonstrate how to produce nano test tubes of several sizes and compositions, including hybrid tubes with different inner and outer surfaces for targeted surface chemistry. Nano test tubes were readily suspended and stored in aqueous solutions without the need for chemical treatment. These nano test tubes should find application as delivery vehicles for therapeutics, particularly for processive ‘bionanoreactors’ loaded with enzymes. (paper)

  7. Catalogue of test specimens for non-destructive examination

    International Nuclear Information System (INIS)

    1985-05-01

    One of the key elements in assuring the integrity of reactor primary circuits is the availability of trustworthy non-destructive methods for detecting dangerous defects that may be present. Various approaches to making such examinations are being developed, including the use of ultrasonic and radiographic techniques. To demonstrate their capability and reliability, they must be tested on steel specimens reproducing the various types of faults which may arise in real primary circuit vessels and piping. Such specimens are costly to fabricate. It is therefore clearly desirable that existing specimens should be made accessible to as many organisations as possible for testing. This catalogue contains detailed Information on forty-odd deliberately flawed plates, blocks, vessels, etc. which have been produced in OECD countries, along with the name of a contact person to whom inquiries should be directed in each case

  8. Non-destructive tests of capsules for JMTR irradiation examination

    International Nuclear Information System (INIS)

    Tanaka, Hidetaka; Nagao, Yoshiharu; Sato, Masashi; Osawa, Kenji

    2007-03-01

    Irradiation examination are increasing in advanced irradiation research for accurate prediction control and evaluation of irradiation parameter such as neutron fluence, etc. by using JMTR. Irradiation capsule internals are therefore structurally complicated recently. This report described the procedure of non destructive tests such as radiographic test, penetrant test, ultrasonic test, etc. for inspection of irradiation capsules in JMTR, and the result of Test-case of confirmation procedure for internal parts of irradiation capsules. (author)

  9. Training guidelines in non-destructive testing techniques: 2008 ed

    International Nuclear Information System (INIS)

    2008-12-01

    This publication is a revision of IAEA-TECDOC-628/Rev.1 and provides the basic syllabus for systems for training and certification programmes of non-destructive testing (NDT) personnel in accordance with the requirements of international standard ISO 9712 (2005). The training guidelines developed to date have been used by Member States in formulating their national NDT programmes and to provide local end user industries with a skilled workforce. The present publication accommodates the latest advancements in technology and will continue to play an important role towards international harmonization in the field of NDT. This publication contains a body of knowledge for non-destructive testing. It was developed to provide guidelines for trainers, training organizations and certification bodies, detailing the subject matter and the content for each level of certification. It is general in nature but the contents of the training should be adapted to the needs, procedures, materials and products of the customer. The recommended training hours are consistent with the edition of the standard ISO 9712 in effect at the time of preparation. All formal training described in this publication contains a theoretical portion and a practical portion. Guidance is included on the range of equipment and materials needed for instruction in each method. There is a common core of material that is required by level 3 personnel in every method. This common material has been removed from the content for the particular method and included as a separate section. All training should end with an examination and can lead to a certification. Examination and certification are not covered by this publication, but detailed information about this can be found in ISO 9712. This publication is applicable for the following methods: eddy current testing, magnetic particle testing, liquid penetrant testing, radiographic testing, and ultrasonic testing. NDT methods are now widely used in civil engineering

  10. Short time evaluation of metallic materials' fatigue potential combining destructive and non-destructive testing methods

    International Nuclear Information System (INIS)

    Starke, Peter; Wu, Haoran; Boller, Christian

    2015-01-01

    Fatigue of engineering structures is an issue from an engineering design point. The lifetime of materials being subject to repeated mechanical loads is limited. Different examples of failures and fateful air accidents have caused significant cost and claims to the operators as well as manufacturers in excess of fatalities. Criticality of failure increases with increasing age and the uncertainty of operational loads applied. In such a case a reassessment of a structural materials' condition is in big need should damage tolerance criteria still be met, being the essential ground rule for aeronautical structural design. It is therefore the challenging aim to use a metallic material's microstructure characterizing non-destructive testing (NDT) parameter or a combination of those as a parameter to be scanned over a defined surface of the component considered to more realistically characterize the damage condition and to use this information twofold: (a) to more precisely assess the structural component's residual life and (b) to feed the information recorded back into a specific database belonging to an approach named PHYBAL. The physically based fatigue life evaluation method (PHYBAL) is a short-time procedure for the evaluation of fatigue data based on a small number of fatigue tests performed on un-notched specimens only. This method significantly reduces the effort for experimentation in terms of time and cost by around 90 % and inhibits remarkable scientific as well as economic advantages. The paper highlights the high capability of PHYBAL as well as the suitability for assessing the residual life of aeronautical components also with respect to the application of this approach in the light of structural health monitoring issues.

  11. Non-destructive testing of rocket fuse by thermal neutron radiography

    International Nuclear Information System (INIS)

    An Fulin; Li Furong

    1999-01-01

    A neutron radiography system in reactor horizontal hole of Tsinghua University was introduced, and its capability of neutron radiography was evaluated by theory and experiment, the non-destructive testing for rocket fuse is successful

  12. Analysis of Within-Test Variability of Non-Destructive Test Methods to Evaluate Compressive Strength of Normal Vibrated and Self-Compacting Concretes

    Science.gov (United States)

    Nepomuceno, Miguel C. S.; Lopes, Sérgio M. R.

    2017-10-01

    Non-destructive tests (NDT) have been used in the last decades for the assessment of in-situ quality and integrity of concrete elements. An important step in the application of NDT methods concerns to the interpretation and validation of the test results. In general, interpretation of NDT results should involve three distinct phases leading to the development of conclusions: processing of collected data, analysis of within-test variability and quantitative evaluation of property under investigation. The analysis of within-test variability can provide valuable information, since this can be compared with that of within-test variability associated with the NDT method in use, either to provide a measure of the quality control or to detect the presence of abnormal circumstances during the in-situ application. This paper reports the analysis of the experimental results of within-test variability of NDT obtained for normal vibrated concrete and self-compacting concrete. The NDT reported includes the surface hardness test, ultrasonic pulse velocity test, penetration resistance test, pull-off test, pull-out test and maturity test. The obtained results are discussed and conclusions are presented.

  13. Containment nuclear plant structures evaluation by non destructive testing: strategy and results

    OpenAIRE

    GARNIER, Vincent; HENAULT, Jean-Marie; HAFID, Hamid; VERDIER, Jérôme; CHAIX, Jean François; ABRAHAM, Odile; SBARTAÏ, Zoubir Medhi; BALAYSSAC, Jean Pierre; PIWAKOWSKI, Bogdan; VILLAIN, Géraldine; DEROBERT, Xavier; PAYAN, Cédric; RAKOTONARIVO, Sandrine; LAROSE, Eric; SOGBOSSI, Hognon

    2016-01-01

    Containment nuclear plants structures are an ultimate barrier in the event of an accident. Mechanical resistance and tightness are the two functions that they are expected to provide. To evaluate their capacity to perform them, destructive testing cannot be used to characterize the material. Non-Destructive Tests then represent a relevant solution to test concrete and the struc- ture. The article positions NDT within the context of containment structures supervision and maintenance, and prese...

  14. Guidebook for the fabrication of non-destructive testing (NDT) test specimens

    International Nuclear Information System (INIS)

    2001-01-01

    Non-destructive testing (NDT) test specimens constitute a very important part of training and certification of NDT personnel and are important for carrying out actual inspection and testing, and for achieving international harmonization of NDT practices. The IAEA organized an advisory group of experts to develop a Guidebook for Fabrication of NDT Test Specimens. The experts consulted the ISO/FDIS 9712-1999 requirements for training and certification of personnel and the suitability of various types of NDT test specimens that are needed to meet such requirements This guidebook presents a set of NDT test specimens, and the methodology and procedures for their fabrication

  15. Current developments in mechanized non-destructive testing in nuclear power plants

    International Nuclear Information System (INIS)

    Zeilinger, R.

    2008-01-01

    Nuclear power plants require frequent in-service activities to be carried out conscientiously in areas potentially hazardous to human operators (because of the associated radiation exposure), such as non-destructive testing of pressurized components of the steam system. Locations to be inspected in this way include the reactor pressure vessel, core internals, steam generators, pressurizers, and pipes. The codes to be used as a basis of these inspections demand high absolute positioning and repeating accuracy. These requirements can be met by mechanized test procedures. Accordingly, many new applications of, mostly mobile, robots have been developed over the past few years. The innovative control and sensor systems for stationary and mobile robots now on the market offer a potential for economic application in a large number of new areas in inspection, maintenance and service in nuclear power plants. More progress in this area is expected for the near future. Areva NP founded the new NDT Center, NETEC (Non-destructive Examination Technical Center), as a global technical center for non-destructive materials testing. NETEC is to advance research and development of all basic NDT technologies, robotics included. For many years, intelligeNDT has offered solutions and products for a variety of inspection and testing purposes and locations in nuclear power plants and is involved in continuous further development of the experience collected in nuclear power plants on the spot. (orig.)

  16. Topics in acoustics, non destructive testing, and thermo-mechanics of continua

    International Nuclear Information System (INIS)

    Suarez Antola, R.

    2001-03-01

    A small scale physical model of a granular porous medium was studied .Osmosis, filtration and fracture were considered, both experimentally and mathematically.Longitudinal ultrasonic pulse velocity was measured in slender timber and concrete bodies in order to characterized the geometric dispersion effects.A mathematical model is developed to described geometric dispersion in reinforced concrete.A sequential method for non destructive testing of structures by mechanicals vibrations is proposed and theoretically considered.Some simple examples are fully developed from a theoretical stand point

  17. Non-destructive control of castings

    International Nuclear Information System (INIS)

    Boutault, J.; Mascre, C.

    1978-01-01

    The object of non-destructive control in foundries is to verify the metal structure, the absence of unacceptable discontinuity, total tightness, etc. This leads to a range of very varied controls according to the importance of the series, the quality level required by the specifications, the nature of the alloy. The originality of the solutions which are imperative for castings is shown through examples: casting of high quality complex forms in short series; very thick unit parts; very large series of parts requiring on efficient automation of non-destructive control. Lastly the publishing of testing methods and interpretating rules, which are the base of a friendly understanding between constructors and founders are recalled [fr

  18. RESEARCH ON NON-DESTRUCTIVE TESTING TECHNOLOGY IN CONSERVATION REPAIR PROJECT OF ANCESTRAL TEMPLE IN MUKDEN PALACE

    Directory of Open Access Journals (Sweden)

    J. Yang

    2017-08-01

    Full Text Available Due to the use of wood and other non-permanent materials, traditional Chinese architecture is one of the most fragile constructions in various heritage objects today. With the increasing emphasis on the protection of cultural relics, the repair project of wooden structure has become more and more important. There are various kinds of destructions, which pose a hidden danger to the overall safety of the ancient buildings, caused not only by time and nature, but also by improper repairs in history or nowadays. Today, the use of digital technology is a basic requirement in the conservation of cultural heritage. Detection technology, especially non-destructive testing technology, could provide more accurate records in capturing detailed physical characteristics of structures such as geometric deformation and invisible damage, as well as prevent a man-made destruction in the process of repair project. This paper aims to interpret with a typical example, Ancestral Temple in Mukden Palace, along with a discussion of how to use the non-destructive testing technology with ground penetrating radar, stress wave, resistograph and so on, in addition to find an appropriate protection method in repair project of traditional Chinese wooden architecture.

  19. Research on Non-Destructive Testing Technology in Conservation Repair Project of Ancestral Temple in Mukden Palace

    Science.gov (United States)

    Yang, J.; Fu, M.

    2017-08-01

    Due to the use of wood and other non-permanent materials, traditional Chinese architecture is one of the most fragile constructions in various heritage objects today. With the increasing emphasis on the protection of cultural relics, the repair project of wooden structure has become more and more important. There are various kinds of destructions, which pose a hidden danger to the overall safety of the ancient buildings, caused not only by time and nature, but also by improper repairs in history or nowadays. Today, the use of digital technology is a basic requirement in the conservation of cultural heritage. Detection technology, especially non-destructive testing technology, could provide more accurate records in capturing detailed physical characteristics of structures such as geometric deformation and invisible damage, as well as prevent a man-made destruction in the process of repair project. This paper aims to interpret with a typical example, Ancestral Temple in Mukden Palace, along with a discussion of how to use the non-destructive testing technology with ground penetrating radar, stress wave, resistograph and so on, in addition to find an appropriate protection method in repair project of traditional Chinese wooden architecture.

  20. Combined Non-destructive Testing (NDT) methods for evaluating concrete quality

    International Nuclear Information System (INIS)

    Mohamad Pauzi Ismail; Noor Azreen Masenwat; Suhairy Sani; Nasharuddin Isa; Mohamad Haniza Mahmud

    2014-01-01

    This paper described the results of combining Non-destructive measurements on concrete. Local crushed granite and hematite were used as coarse aggregates; mining sand and river sand were used as fine aggregates to produce various density and strength of concrete. Concrete samples (150 mm cubes and interlocked blocks) were prepared by changing mix ratio, water to cement ratio (w/c) and types of aggregates. Density, rebound number(N) and ultrasonic pulse velocity (UPV) of the samples were taken before compressed to failure. The measurement results are explained and discussed. (author)

  1. Can non-destructive inspection be reliable

    International Nuclear Information System (INIS)

    Silk, M.G.; Stoneham, A.M.; Temple, J.A.G.

    1988-01-01

    The paper on inspection is based on the book ''The reliability of non-destructive inspection: assessing the assessment of structures under stress'' by the present authors (published by Adam Hilger 1987). Emphasis is placed on the reliability of inspection and whether cracks in welds or flaws in components can be detected. The need for non-destructive testing and the historical attitudes to non-destructive testing are outlined, along with the case of failure. Factors influencing reliable inspection are discussed, and defect detection trials involving round robin tests are described. The development of reliable inspection techniques and the costs of reliability and unreliability are also examined. (U.K.)

  2. Signal processing for non-destructive testing of railway tracks

    Science.gov (United States)

    Heckel, Thomas; Casperson, Ralf; Rühe, Sven; Mook, Gerhard

    2018-04-01

    Increased speed, heavier loads, altered material and modern drive systems result in an increasing number of rail flaws. The appearance of these flaws also changes continually due to the rapid change in damage mechanisms of modern rolling stock. Hence, interpretation has become difficult when evaluating non-destructive rail testing results. Due to the changed interplay between detection methods and flaws, the recorded signals may result in unclassified types of rail flaws. Methods for automatic rail inspection (according to defect detection and classification) undergo continual development. Signal processing is a key technology to master the challenge of classification and maintain resolution and detection quality, independent of operation speed. The basic ideas of signal processing, based on the Glassy-Rail-Diagram for classification purposes, are presented herein. Examples for the detection of damages caused by rolling contact fatigue also are given, and synergetic effects of combined evaluation of diverse inspection methods are shown.

  3. Influence of Kaolin in Fly Ash Based Geopolymer Concrete: Destructive and Non-Destructive Testing

    Science.gov (United States)

    Yahya, Z.; Abdullah, M. M. A. B.; Ramli, N. Mohd; Burduhos-Nergis, D. D.; Razak, R. Abd

    2018-06-01

    Development of geopolymer concrete is mainly to reduce the production of ordinary Portland cement (OPC) that adverse the natural effect. Fly ash is a by-product collected from electrical generating power plant which resulted from burning pulverized coal. Since fly ash is waste materials, it can be recycled for future advantages particularly as pozzolanic materials in construction industry. This study focused on the feasibility of fly ash based geopolymer concrete to which kaolin has been added. The main constituents of geopolymer production for this study were class F fly ash, sodium silicate and sodium hydroxide (NaOH) solution. The concentration of NaOH solution was fixed at 12 Molar, ratio of fly ash/alkaline activator and sodium silicate/NaOH fixed at 1.5 and 2.5, respectively. Kaolin was added in range 5% to 15% from the mass of fly ash and all the samples were cured at room temperature. Destructive and non-destructive test were performed on geopolymer concrete to evaluate the best mix proportions that yield the highest strength as well as the quality of the concrete. Compressive strength, flexural strength, rebound hammer and ultrasonic pulse velocity (UPV) result have been obtained. It shown that 5% replacement of kaolin contributed to maximum compressive strength and flexural strength of 40.4 MPa and 12.35 MPa at 28 days. These result was supported by non-destructive test for the same mix proportion.

  4. Training guidelines in non-destructive testing techniques. 1991 edition

    International Nuclear Information System (INIS)

    1991-10-01

    Non-destructive testing methods (NDT), by their very nature, allow components to be fully examined for properties or flaws without interfering with their usefulness. This grouping of inspection methods has grown from a handful of primitive techniques practised by artists to a widely known discipline which is an essential part of quality control, largely as a result of the standards demanded by the nuclear and aerospace industries. Recognizing the need for an international publication of NDT training syllabi, the IAEA Consultants Meeting on ''Qualification and Certification of NDT Personnel'' (Milan, 20-21 May 1986), recommended that the Agency publish the guidelines developed by Regional Working Group of the Latin America and Caribbean project. It was first issued in English in 1987 and has now been re-edited in English and Spanish and enlarged by the addition of programmes for other techniques

  5. Non-destructive Testing by Infrared Thermography Under Random Excitation and ARMA Analysis

    Science.gov (United States)

    Bodnar, J. L.; Nicolas, J. L.; Candoré, J. C.; Detalle, V.

    2012-11-01

    Photothermal thermography is a non-destructive testing (NDT) method, which has many applications in the field of control and characterization of thin materials. This technique is usually implemented under CW or flash excitation. Such excitations are not adapted for control of fragile materials or for multi-frequency analysis. To allow these analyses, in this article, the use of a new control mode is proposed: infrared thermography under random excitation and auto regressive moving average analysis. First, the principle of this NDT method is presented. Then, the method is shown to permit detection, with low energy constraints, of detachments situated in mural paintings.

  6. Human and organisational factors in the reliability of non-destructive testing (NOT)

    International Nuclear Information System (INIS)

    Norros, L.

    1998-01-01

    Non-destructive testing used in in-service inspections can be seen as a complicated activity system including three mutually related sub-activities: (1) definition of inspection programs and necessary resources, (2) carrying out diagnostic inspections, and (3) interpretation of the results from the view of plant safety and corrective measures. Various studies to investigate and measure the NDT performance have produced disappointing result. No clear correlations between single human factors and performance have been identified even though general agreement exists concerning the significance of human factors to the reliability of testing. Another incentive for our studies has been to test and evaluate the applicability of the international results in the Finnish circumstances. Three successive studies have thus been carried out on the human and organisational factors in non-destructive testing. (author)

  7. An accurate method for determining residual stresses with magnetic non-destructive techniques in welded ferromagnetic steels

    International Nuclear Information System (INIS)

    Vourna, P

    2016-01-01

    The scope of the present research work was to investigate the proper selection criteria for developing a suitable methodology for the accurate determination of residual stresses existing in welded parts. Magnetic non-destructive testing took place by the use of two magnetic non-destructive techniques: by the measurement of the magnetic Barkhausen noise and by the evaluation of the magnetic hysteresis loop parameters. The spatial distribution of residual stresses in welded metal parts by both non-destructive magnetic methods and two diffraction methods was determined. The conduction of magnetic measurements required an initial calibration of ferromagnetic steels. Based on the examined volume of the sample, all methods used were divided into two large categories: the first one was related to the determination of surface residual stress, whereas the second one was related to bulk residual stress determination. The first category included the magnetic Barkhausen noise and the X-ray diffraction measurements, while the second one included the magnetic permeability and the neutron diffraction data. The residual stresses determined by the magnetic techniques were in a good agreement with the diffraction ones. (paper)

  8. Contributions to ultrasounds applications in non-destructive tests on materials used in nuclear technologies

    International Nuclear Information System (INIS)

    Stanica, V.

    1979-01-01

    The problems expounded in the paper, besides servjng the practical purpose generated by the need to perform quality tests on fuel element compounds by means of the ultrasounds method, are also interesting to ultrasounds non-destructive tests applied in all industry branches as they assert the necessity of passing from manual to automation tests carried out by installations which should record the signals caused by failures, both to increase the productivjty and especially to transform it into an objective, effective test. (author)

  9. Comparative testing of radiographic testing, ultrasonic testing and phased array advanced ultrasonic testing non destructive testing techniques in accordance with the AWS D1.5 bridge welding code.

    Science.gov (United States)

    2014-02-01

    A comprehensive body of non-destructive testing data was collected from steel bridge welds under real-world conditions in a fabricators shop. Three different non-destructive testing (NDT) techniques were used on each weld inspection, these being R...

  10. Attributes identification of nuclear material by non-destructive radiation measurement methods

    International Nuclear Information System (INIS)

    Gan Lin

    2002-01-01

    Full text: The nuclear materials should be controlled under the regulation of National Safeguard System. The non-destructive analysis method, which is simple and quick, provide a effective process in determining the nuclear materials, nuclear scraps and wastes. The method play a very important role in the fields of nuclear material control and physical protection against the illegal removal and smuggling of nuclear material. The application of non-destructive analysis in attributes identification of nuclear material is briefly described in this paper. The attributes determined by radioactive detection technique are useful tolls to identify the characterization of special nuclear material (isotopic composition, enrichment etc.). (author)

  11. Non-destructive testing (NDT) of metal cracks using a high Tc rf-SQUID and eddy current method

    Energy Technology Data Exchange (ETDEWEB)

    Lu, D.F.; Fan, C.; Ruan, J.Z. [Midwest Superconductivity Inc., Lawrence, KS (United States)] [and others

    1994-12-31

    A SQUID is the most sensitive device to detect change in magnetic field. A non-destructive testing (NDT) device using high temperature SQUIDs and eddy current method will be much more sensitive than those currently used eddy current systems, yet much cheaper than one with low temperature SQUIDs. In this paper, we present our study of such a NDT device using a high temperature superconducting rf-SQUID as a gradiometer sensor. The result clearly demonstrates the expected sensitivity of the system, and indicates the feasibility of building a portable HTS SQUID NDT device with the help from cryocooler industry. Such a NDT device will have a significant impact on metal corrosion or crack detection technology.

  12. Non-destructive testing (NDT) of metal cracks using a high Tc rf-SQUID and eddy current method

    International Nuclear Information System (INIS)

    Lu, D.F.; Fan, C.; Ruan, J.Z.

    1994-01-01

    A SQUID is the most sensitive device to detect change in magnetic field. A non-destructive testing (NDT) device using high temperature SQUIDs and eddy current method will be much more sensitive than those currently used eddy current systems, yet much cheaper than one with low temperature SQUIDs. In this paper, we present our study of such a NDT device using a high temperature superconducting rf-SQUID as a gradiometer sensor. The result clearly demonstrates the expected sensitivity of the system, and indicates the feasibility of building a portable HTS SQUID NDT device with the help from cryocooler industry. Such a NDT device will have a significant impact on metal corrosion or crack detection technology

  13. Non destructive testing and neutron radiography in 1994

    International Nuclear Information System (INIS)

    Bayon, G.

    1994-01-01

    Neutron radiography has been considered for a long time as a promising technique; however it plays a minor part in the world of non destructive testing today, due to the lack of suitable neutron sources and lack of new industrial applications. This paper reviews the present status of neutron sources, neutron radiography activities, especially in France (such as the neutron-capture-issued secondary radiation spectrometry), in nuclear, aerospace, aeronautical and metallurgical sectors, and the last applications of neutron dynamic imaging. 9 refs

  14. Testing an Impedance Non-destructive Method to Evaluate Steel-Fiber Concrete Samples

    Science.gov (United States)

    Komarkova, Tereza; Fiala, Pavel; Steinbauer, Miloslav; Roubal, Zdenek

    2018-02-01

    Steel-fiber reinforced concrete is a composite material characterized by outstanding tensile properties and resistance to the development of cracks. The concrete, however, exhibits such characteristics only on the condition that the steel fibers in the final, hardened composite have been distributed evenly. The current methods to evaluate the distribution and concentration of a fiber composite are either destructive or exhibit a limited capability of evaluating the concentration and orientation of the fibers. In this context, the paper discusses tests related to the evaluation of the density and orientation of fibers in a composite material. Compared to the approaches used to date, the proposed technique is based on the evaluation of the electrical impedance Z in the band close to the resonance of the sensor-sample configuration. Using analytically expressed equations, we can evaluate the monitored part of the composite and its density at various depths of the tested sample. The method employs test blocks of composites, utilizing the resonance of the measuring device and the measured sample set; the desired state occurs within the interval of between f=3 kHz and 400 kHz.

  15. Identification of the Thickness of Nugget on Worksheet Spot Welding Using Non Destructive Test (NDT) - Effect of Pressure

    Science.gov (United States)

    Sifa, A.; Baskoro, A. S.; Sugeng, S.; Badruzzaman, B.; Endramawan, T.

    2018-02-01

    Resistance Spot Welding (RSW) is a process of connecting between two worksheet with thermomechanical loading process, RSW is widely used in automotive industry, the quality of splicing spot welding is influenced by several factors. One of the factors at the time of the welding process is pressure. The quality of welding on the nuggets can be determined by undertaking non-destructive testing by using Non Destructive Test (NDT) - Ultrasonic Test. In the NDT test is done by detecting the thickness of the nugget area, the purpose of research conducted to determine the effect of pressure to welding quality with Nugget thickness gauge measurement with Non Destructive Test method and manual measurement with micrometer, Experimental welding process by entering the welding parameters that have been specified and pressure variables 1 -5 bars on the worksheet thickness of 1 mm. The results of testing with NDT show there is addition of thickness in nugget superiority after compare with measurement result of thickness of nugget with micrometer which slightly experience thickness in nugget area, this indicates that the welding results have a connection between worksheet 1 and worksheet 2.

  16. Diagnosis of structures. Practical applications and future tasks of non-destructive testing. Papers; Bauwerksdiagnose. Praktische Anwendungen Zerstoerungsfreier Pruefungen und Zukunftsaufgaben. Vortraege

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    The CD contains 17 papers and 20 posters on the subject of non-destructive diagnosis of structures. The titles of the 17 papers are: 1. Non-destructive testing in transition - from quality testing to life management; 2. Non-destructive testing of bridges on German motorways; 3. Structural diagnosis of concrete components - results obtained by a group of scientists of Deutsche Forschungsgemeinschaft; 4. Building diagnosis - its relevance and options for the building authorities; 5. Optimisation of permanent monitoring of structures by non-destructive test methods; 6. Assessment of Structures using Fibre-optic Sensors; 7. Methods and results in wood structure diagnosis; 8. The collapse of the roof of the Bad Reichenhall ice-skating rink - how could it have been prevented? 9. Integration of non-destructive structural tests in structure management of PPP models (Powerpoint); 10: Elements of sustainable life cycle management of engineering structures; 11. Structure monitoring as a component of life management systems; 12. Chloride and Sulfate analysis using LIBS - from the laboratory to the construction site; 13. Applications of georadar und ultrasonics - examples from the working practice of an engineering consultants' office; 14. Bridge analysis by automatic methods - new developments; 15. Fast large-area condition monitoring of reinforced-concrete bridges, floors and ceilings; 16. Influence of roof gap pressing on non-destructive thickness testing of the inner shells of motorway tunnels; 17. Non-destructive test methods for structure diagnosis - status and perspectives. [German] Die CD enthaelt 17 Vortraege und 20 Posterbeitraege zum Thema: ''Zerstoerungsfreie Pruefverahren fuer die Bauwerksdiagnose''. Die Themen der 17 Vortraege sind: 1. Die Zerstoerungsfreie Pruefung im Wandel - Von der Qualitaetspruefung zum Lebensdauermanagement; 2. ZfPBau-Verfahren fuer die Zustandserfassung von Bruecken der Bundesfernstrassen; 3. Strukturbestimmung von

  17. Development and improvement of synthetic imaging methods for non-destructive ultrasonic testing of complex industrial components

    International Nuclear Information System (INIS)

    Bannouf, S.

    2013-01-01

    The goal of this thesis was, initially, to evaluate phased array methods for ultrasonic Non Destructive Testing (NDT) in order to propose optimizations, or to develop new alternative methods. In particular, this works deals with the detection of defects in complex geometries and/or materials parts. The TFM (Total Focusing Method) algorithm provides high resolution images and several representations of a same defect thanks to different reconstruction modes. These properties have been exploited judiciously in order to propose an adaptive imaging method in immersion configuration. We showed that TFM imaging can be used to characterize more precisely the defects. However, this method presents two major drawbacks: the large amount of data to be processed and a low signal-to-noise ratio (SNR), especially in noisy materials. We developed solutions to these two problems. To overcome the limitation caused by the large number of signals to be processed, we propose an algorithm that defines the sparse array to activate. As for the low SNR, it can be now improved by use of virtual sources and a new filtering method based on the DORT method (Decomposition of the Time Reversal Operator). (author) [fr

  18. Building Of Training Program Of Non-Destructive Testing For Concrete Structures (Part 1: Radiographic testing; Ultrasonic pulse velocity measurement; Nuclear moisture-density gauge)

    International Nuclear Information System (INIS)

    Nguyen Le Son; Phan Chanh Vu; Pham The Hung; Vu Huy Thuc

    2007-01-01

    Non-destructive testing methods (NDT) have been identified as a strong candidate for remote sensing of concrete structures over recent years. This has accelerated the powerful development of the NDT techniques in Vietnam. Hence, there is an urgent need to promote the awareness of NDT methods which could give an improved estimate of the condition concrete. Building of training program of non-destructive testing for concrete structures is a necessary duty, in aiming to build a unified training program, possibly satisfying the requirements on training as well as researching. Under the framework of the basic VAEC project (CS/07/02-03), a training program for the first 03 NDT methods: 1. Radiographic testing; 2. Ultrasonic pulse velocity measurement; 3. Nuclear moisture- density gauge was prepared. The main products of this project include: 1. Set out 03 training notes for 03 methods; 2. Set out the practical exercises to train for 03 methods; 3. Editing a set of examination questions in aiming to familiarize with various questions in 03 trained methods; 4. Fabricating practical test specimens to demonstrate for 03 techniques. (author)

  19. Local defect resonance for sensitive non-destructive testing

    Science.gov (United States)

    Adebahr, W.; Solodov, I.; Rahammer, M.; Gulnizkij, N.; Kreutzbruck, M.

    2016-02-01

    Ultrasonic wave-defect interaction is a background of ultrasound activated techniques for imaging and non-destructive testing (NDT) of materials and industrial components. The interaction, primarily, results in acoustic response of a defect which provides attenuation and scattering of ultrasound used as an indicator of defects in conventional ultrasonic NDT. The derivative ultrasonic-induced effects include e.g. nonlinear, thermal, acousto-optic, etc. responses also applied for NDT and defect imaging. These secondary effects are normally relatively inefficient so that the corresponding NDT techniques require an elevated acoustic power and stand out from conventional ultrasonic NDT counterparts for their specific instrumentation particularly adapted to high-power ultrasonic. In this paper, a consistent way to enhance ultrasonic, optical and thermal defect responses and thus to reduce an ultrasonic power required is suggested by using selective ultrasonic activation of defects based on the concept of local defect resonance (LDR). A strong increase in vibration amplitude at LDR enables to reliably detect and visualize the defect as soon as the driving ultrasonic frequency is matched to the LDR frequency. This also provides a high frequency selectivity of the LDR-based imaging, i.e. an opportunity of detecting a certain defect among a multitude of other defects in material. Some examples are shown how to use LDR in non-destructive testing techniques, like vibrometry, ultrasonic thermography and shearography in order to enhance the sensitivity of defect visualization.

  20. Dam safety review using non-destructive methods for reinforced concrete structure

    Energy Technology Data Exchange (ETDEWEB)

    Philibert, Alain; Saint-Pierre, Francois; Turcotte, Bernard [Le Groupe S.M. International Inc., Sherbrooke, (Canada)

    2010-07-01

    Dams built at the beginning of the twentieth century include concrete structures that were put in under rehabilitation works. In some cases, the details of the structures are not well documented. In other cases, concrete damage can be hidden under new layers of undamaged material. This requires that the dam safety review in a real investigation gather the information necessary for carrying out the hydraulic and stability studies required by the Dam Safety Act. This paper presented the process of dam safety review using non-destructive methods for reinforced concrete structures. Two reinforced concrete dams built in the 1900's, the Eustic dam on the Coaticook River and the Frontenac dam on the Magog River near Sherbrooke, were evaluated by S.M. International using non-destructive methods such as sonic and ground penetrating radar methods. The studies allowed mapping of concrete damage and provided geometric information on some non visible structure elements that were part of previous reinforcement operations.

  1. Giant Magnetoresistance Sensors: A Review on Structures and Non-Destructive Eddy Current Testing Applications

    Directory of Open Access Journals (Sweden)

    Damhuji Rifai

    2016-02-01

    Full Text Available Non-destructive eddy current testing (ECT is widely used to examine structural defects in ferromagnetic pipe in the oil and gas industry. Implementation of giant magnetoresistance (GMR sensors as magnetic field sensors to detect the changes of magnetic field continuity have increased the sensitivity of eddy current techniques in detecting the material defect profile. However, not many researchers have described in detail the structure and issues of GMR sensors and their application in eddy current techniques for nondestructive testing. This paper will describe the implementation of GMR sensors in non-destructive testing eddy current testing. The first part of this paper will describe the structure and principles of GMR sensors. The second part outlines the principles and types of eddy current testing probe that have been studied and developed by previous researchers. The influence of various parameters on the GMR measurement and a factor affecting in eddy current testing will be described in detail in the third part of this paper. Finally, this paper will discuss the limitations of coil probe and compensation techniques that researchers have applied in eddy current testing probes. A comprehensive review of previous studies on the application of GMR sensors in non-destructive eddy current testing also be given at the end of this paper.

  2. Giant Magnetoresistance Sensors: A Review on Structures and Non-Destructive Eddy Current Testing Applications

    Science.gov (United States)

    Rifai, Damhuji; Abdalla, Ahmed N.; Ali, Kharudin; Razali, Ramdan

    2016-01-01

    Non-destructive eddy current testing (ECT) is widely used to examine structural defects in ferromagnetic pipe in the oil and gas industry. Implementation of giant magnetoresistance (GMR) sensors as magnetic field sensors to detect the changes of magnetic field continuity have increased the sensitivity of eddy current techniques in detecting the material defect profile. However, not many researchers have described in detail the structure and issues of GMR sensors and their application in eddy current techniques for nondestructive testing. This paper will describe the implementation of GMR sensors in non-destructive testing eddy current testing. The first part of this paper will describe the structure and principles of GMR sensors. The second part outlines the principles and types of eddy current testing probe that have been studied and developed by previous researchers. The influence of various parameters on the GMR measurement and a factor affecting in eddy current testing will be described in detail in the third part of this paper. Finally, this paper will discuss the limitations of coil probe and compensation techniques that researchers have applied in eddy current testing probes. A comprehensive review of previous studies on the application of GMR sensors in non-destructive eddy current testing also be given at the end of this paper. PMID:26927123

  3. Computerized tomography used in non-destructive testing of welded pipes

    Energy Technology Data Exchange (ETDEWEB)

    Iovea, M; Rizescu, C; Georgescu, G; Marinescu, A; Chitescu, P; Sava, T; Neagu, M; Avram, D [Institute of Research and Design for Electrical Engineering, ICPE - Electrostatica Splaiul Unirii 313, Sect. 3, R-74204 Bucharest (Romania)

    1997-12-31

    High quality standards in operation of National Power System is ensured by the use of high performance techniques and systems for Non-Destructive Testing (NDT). In recent years a number of new developments of the non-conventional technologies in the field of NDT have been achieved. In our laboratory there have been developed two computerized technologies using {gamma}-ray computed tomography and ultrasonic imaging methods. The standard techniques for imaging from projection data is computerized tomography. The industrial computerized tomography methods consist in the measurement of thin X - or {gamma}-ray beam attenuation when passing through some selected surface of the tested object, along several directions, so that by means of an adequate mathematical algorithm, a map of linear attenuation coefficients for the scanned surface is obtained. In fact, this map gives the density of materials occurring in the surface plane. Computerized tomography equipment, in various constructive versions, are intended for the following applications: (1) NDT in those fields requiring strict control of product quality, as for instance the nuclear energy, military industry, aeronautics, transportation fields, etc., (2) research in field of materials technology, machine engineering, metallurgy, welding, etc. This paper presents the applications of Computerized Tomography in NDT, by showing the results obtained on welded pipes, as well as the facilities offered by this method. In the final part, the paper presents the concept of a mobile tomography system for industrial pipes testing. (author). 2 figs., 7 refs.

  4. Computerized tomography used in non-destructive testing of welded pipes

    International Nuclear Information System (INIS)

    Iovea, M.; Rizescu, C.; Georgescu, G.; Marinescu, A.; Chitescu, P.; Sava, T.; Neagu, M.; Avram, D.

    1996-01-01

    High quality standards in operation of National Power System is ensured by the use of high performance techniques and systems for Non-Destructive Testing (NDT). In recent years a number of new developments of the non-conventional technologies in the field of NDT have been achieved. In our laboratory there have been developed two computerized technologies using γ-ray computed tomography and ultrasonic imaging methods. The standard techniques for imaging from projection data is computerized tomography. The industrial computerized tomography methods consist in the measurement of thin X - or γ-ray beam attenuation when passing through some selected surface of the tested object, along several directions, so that by means of an adequate mathematical algorithm, a map of linear attenuation coefficients for the scanned surface is obtained. In fact, this map gives the density of materials occurring in the surface plane. Computerized tomography equipment, in various constructive versions, are intended for the following applications: 1) NDT in those fields requiring strict control of product quality, as for instance the nuclear energy, military industry, aeronautics, transportation fields, etc., 2) research in field of materials technology, machine engineering, metallurgy, welding, etc. This paper presents the applications of Computerized Tomography in NDT, by showing the results obtained on welded pipes, as well as the facilities offered by this method. In the final part, the paper presents the concept of a mobile tomography system for industrial pipes testing. (author). 2 figs., 7 refs

  5. Homogeneity test of the ceramic reference materials for non-destructive quantitative

    International Nuclear Information System (INIS)

    Li Li; Fong Songlin; Zhu Jihao; Feng Xiangqian; Xie Guoxi; Yan Lingtong

    2010-01-01

    In order to study elemental composition of ancient porcelain samples, we developed a set of ceramic reference materials for non-destructive quantitative analysis. In this paper,homogeneity of Al, Si, K, Ca, Ti, Mn and Fe contents in the ceramic reference materials is investigated by EDXRF. The F test and the relative standard deviation are used to treat the normalized net counts by SPSS. The results show that apart from the DY2 and JDZ4 reference materials, to which further investigation would be needed, homogeneity of the DH, DY3, JDZ3, JDZ6, GY1, RY1, LQ4, YJ1, YY2 and JY2 meets the requirements of ceramic reference materials for non-destructive quantitative analysis. (authors)

  6. Data fusion: a new concept in non-destructive testing

    International Nuclear Information System (INIS)

    Georgel, B.; Lavayssiere, B.

    1995-01-01

    Non-destructive testing of some components (made of austenitic steel, or of a complex shape for example) requires quite often the use of several methods such as X-ray, ultrasonics, Eddy Currents. Then, a skilled operator is able to perform the expertise of the specimen. The main goal of this paper is to show that 3D diagnosis may be improved in term of reliability and precision by fusion of several NDT techniques. A data fusion algorithm is more that trying to improve the visualisation or the rendering of NDT data sets. It consists for each volume element, in computing a new value representing the combined information and in formulating a diagnosis on this basis. To achieve such a goal, know-how in modeling of physical phenomena and in applied mathematics is crucial. (authors). 4 refs., 2 figs

  7. Eddy currents non-destructive testing. use of a numeric/symbolic method to separate and characterize the transitions of a signal

    International Nuclear Information System (INIS)

    Benas, J.C.; Lefevre, F.; Gaillard, P.; Georgel, B.

    1995-01-01

    This paper presents an original numeric/symbolic method for solving an inverse problem in the field of non-destructive testing. The purpose of this method is to characterize the transitions of a signal even when they are superimposed. Its principle is to solve as many direct problems as necessary to obtain the solution, and to use some hypothesis to manage the reasoning of the process. The direct problem calculation yields to a 'model signal', and the solution is reached when the model signal is close to the measured one. This method calculates the directions of minimization thanks to a symbolic reasoning based on the peaks of the residual signal. The results of the method are good and seem very promising. (authors). 13 refs., 13 figs., 5 tabs

  8. Training Guidelines in Non-Destructive Testing Techniques: Manual for Visual Testing at Level 2

    International Nuclear Information System (INIS)

    2013-01-01

    The International Atomic Energy Agency (IAEA) has been active in the promotion of non-destructive testing (NDT) technology for many decades. The prime reason for this interest has been the need for stringent quality control standards for safe operation of nuclear as well as other industrial installations. The IAEA has successfully executed a number of projects, including technical cooperation projects (national and regional) and coordinated research projects, in which NDT was an important part. Through these projects, a large number of persons have been trained in numerous Member States, leading to the establishment of national certifying bodies responsible for training and certification of NDT personnel. Consequently a state of self-sufficiency in this area of technology has been achieved in many of these States. All along there has been a realization of the need to have well established training guidelines and related books, in order, first, to guide IAEA experts involved in this training programme and, second, to achieve some level of international uniformity and harmonization of training materials and consequent competence of NDT personnel. The syllabuses for training courses have been published in the form of TECDOC publications. The first was IAEA-TECDOC-407 (1987), which contained syllabuses for the five basic NDT methods: liquid penetrant testing, magnetic particle testing, eddy current testing, radiographic testing and ultrasonic testing. To accommodate advancements in NDT technology, later versions of this publication were issued in 1991, 2002 and 2008, with the current version being IAEA-TECDOC- 628/Rev.2 (2008), which includes additional and more advanced NDT methods. The next logical step was to compile textbooks and training manuals in accordance with these syllabuses. Manuals on liquid penetrant, magnetic particle, radiographic, ultrasonic and eddy current testing have already been published in the Training Course Series. These play a vital role in

  9. Application of microCT to the non-destructive testing of an additive manufactured titanium component

    Directory of Open Access Journals (Sweden)

    Anton du Plessis

    2015-11-01

    Full Text Available In this paper the application of X-ray microCT to the non-destructive testing of an additive manufactured titanium alloy component of complex geometry is demonstrated. Additive manufacturing of metal components is fast growing and shows great promise, yet these parts may contain defects which affect mechanical properties of the components. In this work a layered form of defect is found by microCT, which would have been very difficult or impossible to detect by other non-destructive testing methods due to the object complexity, defect size and shape and because the pores are entirely contained inside the object and not connected to the surface. Additionally, this test part was subjected to hot isostatic pressing (HIPPING and subsequently scanned. Comparing before and after scans by alignment of the volumes allows visualization and quantification of the pore size changes. The application of X-ray microCT to additive manufacturing is thus demonstrated in this example to be an ideal combination, especially for process improvements and for high value components.

  10. Non-destructive automated express method for determining the inclination of chromium-nickel steels IGC

    International Nuclear Information System (INIS)

    Nazarov, A.A.; Kamenev, Yu.B.; Kuusk, L.V.; Kormin, E.G.; Vasil'ev, A.N.; Sumbaeva, T.E.

    1986-01-01

    Methods of automated control of 18-10-type steel inclination to IGC are developed and a corresponding automated testing complex (ATS) is created. 08Kh18N10T steel samples had two variants of thermal treatment: 1) 1200 deg (5 h), 600 deg (50 h); 2) 1200 deg (5 h). Methods of non-destructive automated control of 18-10-type steel inclination to IGC are developed on the basis of potentiodynamic reactivation (PR) principle. Automated testing complex is developed, which has undergone experimental running and demonstrated a high confidence of results, reliability and easy operation

  11. A Monte Carlo approach applied to ultrasonic non-destructive testing

    Science.gov (United States)

    Mosca, I.; Bilgili, F.; Meier, T.; Sigloch, K.

    2012-04-01

    Non-destructive testing based on ultrasound allows us to detect, characterize and size discrete flaws in geotechnical and architectural structures and materials. This information is needed to determine whether such flaws can be tolerated in future service. In typical ultrasonic experiments, only the first-arriving P-wave is interpreted, and the remainder of the recorded waveform is neglected. Our work aims at understanding surface waves, which are strong signals in the later wave train, with the ultimate goal of full waveform tomography. At present, even the structural estimation of layered media is still challenging because material properties of the samples can vary widely, and good initial models for inversion do not often exist. The aim of the present study is to combine non-destructive testing with a theoretical data analysis and hence to contribute to conservation strategies of archaeological and architectural structures. We analyze ultrasonic waveforms measured at the surface of a variety of samples, and define the behaviour of surface waves in structures of increasing complexity. The tremendous potential of ultrasonic surface waves becomes an advantage only if numerical forward modelling tools are available to describe the waveforms accurately. We compute synthetic full seismograms as well as group and phase velocities for the data. We invert them for the elastic properties of the sample via a global search of the parameter space, using the Neighbourhood Algorithm. Such a Monte Carlo approach allows us to perform a complete uncertainty and resolution analysis, but the computational cost is high and increases quickly with the number of model parameters. Therefore it is practical only for defining the seismic properties of media with a limited number of degrees of freedom, such as layered structures. We have applied this approach to both synthetic layered structures and real samples. The former contributed to benchmark the propagation of ultrasonic surface

  12. 2014 annual meeting of the German Society for Non-Destructive Testing (DGZfP). NDE in research development and application

    International Nuclear Information System (INIS)

    2014-01-01

    The proceedings of the 2014 annual meeting of the German Society for Non-Destructive Testing (DGZfP) includes contributions to the following issues: process control, methods for surface analysis, dimensional measuring methods, computerized tomography, materials characterization, construction engineering, energy engineering, adhesive joints, equipment condition monitoring, thermography, guided waves, simulation - reconstruction - imaging techniques, phased array methods, combination of test procedures, microwave-terahertz-methods, fiber-reinforced composites.

  13. The Non-Destructive Test of Steel Corrosion in Reinforced Concrete Bridges Using a Micro-Magnetic Sensor

    Directory of Open Access Journals (Sweden)

    Hong Zhang

    2016-09-01

    Full Text Available This paper presents a non-destructive test method for steel corrosion in reinforced concrete bridges by using a 3-dimensional digital micro-magnetic sensor to detect and analyze the self-magnetic field leakage from corroded reinforced concrete. The setup of the magnetic scanning device and the measurement mode of the micro-magnetic sensor are introduced. The numerical analysis model is also built based on the linear magnetic charge theory. Compared to the self-magnetic field leakage data obtained from magnetic sensor-based measurement and numerical calculation, it is shown that the curves of tangential magnetic field at different lift-off height all intersect near the edge of the steel corrosion zone. The result indicates that the intersection of magnetic field curves can be used to detect and evaluate the range of the inner steel corrosion in engineering structures. The findings of this work propose a new and effective non-destructive test method for steel corrosion, and therefore enlarge the application of the micro-magnetic sensor.

  14. Non destructive testing in amusement park

    International Nuclear Information System (INIS)

    Dominguez Marrero, Humberto; Hernandez Torres, Debora; Sendoya Puente, Felix; Herrera Palma, Victoria; Suarez Guerra, Yarelis; Moreno Hernandez, Eduardo; Lopez Hernandez, Pedro

    2009-01-01

    In 2006 began the installation of Chinese amusement parks at several places in Havana City. Structural security is one of the principal tasks that should be done, since the beginning of the services of these installations. The use on Non Destructive Testing Techniques (NDT), has to be development and implemented in order to avoid the possibility of failure during services with a consequence threat to safety for the public presented. In this work it is shown the results of application of NDT techniques and recommendations for the quality control of the different welds and mechanical components presented. Techniques as Visual Examination, Liquid Penetrant and Ultrasonic have been used for these purposes in order to obtain a structural diagnostic in the amusement parks. There are also exposed the use and implementation of international recommendations and Standards, which are very rigorous in its applications for the case of recreation industry. This is a consequence to its social service fundamentally to children and teenage people. (Author)

  15. Quality assurance and non-destructive testing for nuclear power plants

    International Nuclear Information System (INIS)

    Manlucu, F.A.

    1991-01-01

    This article discussed the quality assurance requirements which have been extensively applied in plant design, fabrication, construction and operation and has played a major role in the excellent safety record of nuclear power plants. The application of non-destructive testing techniques, plays a very important role during the in-service inspection (ISI) in order to prevent dangerous accident and to assure continuous safe operation of nuclear power plants. (IMA). 12 refs

  16. Design of eddy current probes and signal inversion for non-destructive testing

    International Nuclear Information System (INIS)

    Ravat, C.

    2008-01-01

    Non destructive testing is widely used in aerospace industry and nuclear industry. The growing complexity of industrial processes and manufactured parts, the increasing need of safety in service and the will of life span optimization, require more and more complex quality evaluations to be set up. Among the different anomalies to consider, sub-millimetric breaking surface notches have to be subject to special care. Indeed, it often constitutes a start to larger notches, which can cause the destruction of parts. Penetrant testing is nowadays widely used for that kind of defect, owing to its good performances. Nevertheless, it should be eventually dropped because of environmental norms. Among the possible substitution solutions, the use of eddy currents (EC) for conductive parts is a reliable, fast and inexpensive alternative. The study is about the conception and the use of multi-elements EC probe structures featuring microsensors for non destructive testing of surface breaking defects. A methodology has been established in order to develop such structures and to compare their performances within the framework of sub-millimetric surface breaking notch research. These structures has been employed for calibrated notches evaluation with a specific acquisition bench. Original detection and defect characterization algorithms have been designed and implemented on acquired signals. The most efficient structure has been determined, the notch detection quality has been quantified, and the geometric characteristics of notches has been estimated. (author)

  17. Non destructive Testing (NDT) of concrete containing hematite

    International Nuclear Information System (INIS)

    Mohamad Pauzi Ismail; Noor Azreen Masenwat; Suhairy Sani; Nasharuddin Isa; Mohamad Haniza Mahmud

    2014-01-01

    This paper described the results of Non-destructive ultrasonic and rebound hammer measurements on concrete containing hematite. Local hematite stones were used as aggregates to produce high density concrete for application in X-and gamma shielding. Concrete cube samples (150 mm x 150 mm x 150 mm) containing hematite as coarse aggregates were prepared by changing mix ratio, water to cement ratio (w/c) and types of fine aggregate. All samples were cured in water for 7 days and then tested after 28 days. Density, rebound number(N) and ultrasonic pulse velocity (UPV) of the samples were taken before compressed to failure. The measurement results are explained and discussed. (author)

  18. Non-destructive controls

    International Nuclear Information System (INIS)

    Nouvet, A.

    1978-01-01

    The non-destructive controls permit, while respecting their integrity, the direct and individual examination of parts or complete objects as they are manufactured, as well as to follow the evolution of their eventual defects while in operation. The choice of control methods depends on the manufacturing process and shapes of parts, on the physical properties of their components as well as the nature, position and size of the defects which are likely to be detected. Whether it is a question of controls by means of ionizing radiation, flux of neutrons, ultrasons, acoustic source, sweating, magnetoscopy. Foucault currents, thermography, detection of leaks or non-destructive metallography, each has a limited field of application such that they are less competitive than complementary [fr

  19. Non-destructive methods and means for quality control of structural products

    International Nuclear Information System (INIS)

    Dmitriev, V.V.

    1989-01-01

    Progressive non-destructive methods (acoustic, magnetic, radiation with liquid penetrants) and means of control of structural product quality, allowing to determine the state of products and structures not only immediately after their production but directly at the erected or reconstructed objects are described

  20. Non-Destructive Testing for Building Diagnostics and Monitoring: Experience Achieved with Case Studies

    Directory of Open Access Journals (Sweden)

    Tavukçuoğlu Ayşe

    2018-01-01

    Full Text Available Building inspection on site, in other words in-situ examinations of buildings is a troublesome work that necessitates the use of non-destructive investigation (NDT techniques. One of the main concerns of non-destructive testing studies is to improve in-situ use of NDT techniques for diagnostic and monitoring studies. The quantitative infrared thermography (QIRT and ultrasonic pulse velocity (UPV measurements have distinct importance in that regard. The joint use of QIRT and ultrasonic testing allows in-situ evaluation and monitoring of historical structures and contemporary ones in relation to moisture, thermal, materials and structural failures while the buildings themselves remain intact. For instances, those methods are useful for detection of visible and invisible cracks, thermal bridges and damp zones in building materials, components and functional systems as well as for soundness assessment of materials and thermal performance assessment of building components. In addition, those methods are promising for moisture content analyses in materials and monitoring the success of conservation treatments or interventions in structures. The in-situ NDT studies for diagnostic purposes should start with the mapping of decay forms and scanning of building surfaces with infrared images. Quantitative analyses are shaped for data acquisition on site and at laboratory from representative sound and problem areas in structures or laboratory samples. Laboratory analyses are needed to support in-situ examinations and to establish the reference data for better interpretation of in situ data. Advances in laboratory tests using IRT and ultrasonic testing are guiding for in-situ materials investigations based on measurable parameters. The knowledge and experience on QIRT and ultrasonic testing are promising for the innovative studies on today’s materials technologies, building science and conservation/maintenance practices. Such studies demand a multi

  1. Interactive ultrasonic field simulations for complex non-destructive testing configurations

    International Nuclear Information System (INIS)

    Chouh, Hamza

    2016-01-01

    In order to fulfill increasing reliability and safety requirements, non-destructive testing techniques are constantly evolving and so does their complexity. Consequently, simulation is an essential part of their design. We developed a tool for the simulation of the ultrasonic field radiated by any planar probes into non-destructive testing configurations involving meshed geometries without prominent edges, isotropic and anisotropic, homogeneous and heterogeneous materials, and wave trajectories that can include reflections and transmissions. We approximate the ultrasonic wave fronts by using polynomial interpolators that are local to ultrasonic ray pencils. They are obtained using a surface research algorithm based on pencil tracing and successive subdivisions. Their interpolators enable the computation of the necessary quantities for the impulse responses on each point of a sampling of the transducer surface that fulfills the Shannon criterion. By doing so, we can compute a global impulse response which, when convolved with the excitation signal of the transducer, results in the ultrasonic field. The usage of task parallelism and of SIMD instructions on the most computationally expensive steps yields an important performance boost. Finally, we developed a tool for progressive visualization of field images. It benefits from an image reconstruction technique and schedules field computations in order to accelerate convergence towards the final image. (author) [fr

  2. Non-destructive testing. The current state of standards and qualification and certification for leak testing

    International Nuclear Information System (INIS)

    Tamura, Yoshikazu

    2011-01-01

    Domestic standards of the leak testing are enacted as one of Japan Industrial Standards. The conformity is advanced between these domestic standards and ISO (International Organization for Standardization) standard. ISO9712 (Non-destructive testing-Qualification and certification of personnel) was revised to include the leak testing of qualification and certification in 2005. The preparation working group of qualification and certification for leak testing is planning start aiming at the system in one and a half years. (author)

  3. Comparative analysis of non-destructive methods to control fissile materials in large-size containers

    Directory of Open Access Journals (Sweden)

    Batyaev V.F.

    2017-01-01

    Full Text Available The analysis of various non-destructive methods to control fissile materials (FM in large-size containers filled with radioactive waste (RAW has been carried out. The difficulty of applying passive gamma-neutron monitoring FM in large containers filled with concreted RAW is shown. Selection of an active non-destructive assay technique depends on the container contents; and in case of a concrete or iron matrix with very low activity and low activity RAW the neutron radiation method appears to be more preferable as compared with the photonuclear one.

  4. Development of non-destructive testing (NDT) technology in Pakistan

    International Nuclear Information System (INIS)

    Khan, A.A.

    2005-01-01

    Non-Destructive Testing (NDT) techniques are being extensively used to improve and maintain the quality of manufactured goods as well as for proper maintenance of industrial plants and equipment. Typical industries that benefit most include Aerospace, Chemical, Heavy Mechanical Fabrication, Conventional and Nuclear Power Generation, Automobiles, Oil and Gas, Shipbuilding, Foundries, and Armaments, etc. As the name implies, with these techniques an industrial product is inspected mostly for defects in its structure without destroying it. Among the most widely used NDT techniques for the detection of internal defects are Radiographic and Ultrasonic Testing. For surface and just below the surface defects Magnetic Particle Testing, Penetrant Testing and Eddy Current Testing are commonly used. In addition to these, there are some NDT methods which have specific applications. These include Acoustic Emission, Thermal and Infrared Testing, Microwave Testing, Computer Tomography, Strain Gauging, Leak Testing and Holography, etc. This paper describes various phases through which the development of NDT technology passed and its present state of the art. It started with the undertaking of a nuclear technology programme and has matured along with it. As it stands we are fully competent to undertake various essential activities related to this technology, namely, (I) raining and certification of NDT personnel at various levels. (II) revision of NDT services to various industrial sectors including nuclear power during manufacture, fabrication, pre-service inspection (PSI) and in-service inspection (ISI). (author)

  5. The use of computers for the performance and analysis of non-destructive testing

    International Nuclear Information System (INIS)

    Edelmann, X.; Pfister, O.

    1988-01-01

    Examples of the use of computers in non-destructive testing are related. Ultrasonic testing is especially addressed. The employment of computers means improvements for the user, the possibility of registering the reflector position, storage of test data and help with documentation. The test can be automated. The introduction of expert systems is expected for the future. 8 figs., 12 refs

  6. Non-destructive test for VHTR fuel using 160kV X-ray system in Hotcell

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Jun; Yoo, Boung Ok; Choo, Yong sun; Baik Sang youl; Kim, Hee Moon; Ahn, Sang Bok [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    The research for VHTR which is one of the next generation reactor has been actively carried out. As a part of the research for VHTR, an irradiation examination for the VHTR fuel was performed to confirm an in-pile behavior in HANARO. The non-destructive test for the irradiated fuel is very important to understand the in-pile behavior of the fuel. Especially, the X-ray system is useful to observe the fuel shape without destruction. A dimensional change and defect of the fuel can be confirmed thorough the Xray system. Also, using the 3-D software and CT technology, the fuel shape can be intuitionally observed. The 450kV and 160kV X-ray system were installed and operated in IMEF hotcell. The 160kV X-ray system relatively using a low voltage is suitable to a small scale sample. And high resolution images can be obtained. In this study, the non-destructive test for the unirradiated and irradiated VHTR fuel were performed using the 160kV X-ray system. Through these test, the possibility for the X-ray inspection of irradiated fuel was confirmed. The non-destructive test for the unirradiated and irradiated VHTR fuel were performed using the 160kV X-ray system. The clear images of the irradiated coated particle were produced without the radiation damage during the Xray inspection. The X-ray images of the VHTR fuel will be utilized as the in-pile performance validation data.

  7. Non-destructive test for VHTR fuel using 160kV X-ray system in Hotcell

    International Nuclear Information System (INIS)

    Kim, Young Jun; Yoo, Boung Ok; Choo, Yong sun; Baik Sang youl; Kim, Hee Moon; Ahn, Sang Bok

    2016-01-01

    The research for VHTR which is one of the next generation reactor has been actively carried out. As a part of the research for VHTR, an irradiation examination for the VHTR fuel was performed to confirm an in-pile behavior in HANARO. The non-destructive test for the irradiated fuel is very important to understand the in-pile behavior of the fuel. Especially, the X-ray system is useful to observe the fuel shape without destruction. A dimensional change and defect of the fuel can be confirmed thorough the Xray system. Also, using the 3-D software and CT technology, the fuel shape can be intuitionally observed. The 450kV and 160kV X-ray system were installed and operated in IMEF hotcell. The 160kV X-ray system relatively using a low voltage is suitable to a small scale sample. And high resolution images can be obtained. In this study, the non-destructive test for the unirradiated and irradiated VHTR fuel were performed using the 160kV X-ray system. Through these test, the possibility for the X-ray inspection of irradiated fuel was confirmed. The non-destructive test for the unirradiated and irradiated VHTR fuel were performed using the 160kV X-ray system. The clear images of the irradiated coated particle were produced without the radiation damage during the Xray inspection. The X-ray images of the VHTR fuel will be utilized as the in-pile performance validation data.

  8. Resonant ultrasound spectroscopy and non-destructive testing

    Science.gov (United States)

    Migliori, A.; Darling, T. W.

    The use of mechanical resonances to test properties of materials is perhaps older than the industrial revolution. Early documented cases of British railroad engineers tapping the wheels of a train and using the sound to detect cracks perhaps mark the first real use of resonances to test the integrity of high-performance alloys. Attempts were made in the following years to understand the resonances of solids mathematically, based on the shape and composition. But Nobel Laureate Lord Rayleigh best summarized the state of affairs in 1894, stating 'the problem has, for the most part, resisted attack'. More recently, modern computers and electronics have enabled Anderson and co-workers with their work on minerals, and our work at Los Alamos on new materials and manufactured components to advance the use of resonances to a precision non-destructive testing tool that makes anisotropic modulus measurements, defect detection and geometry error detection routine. The result is that resonances can achieve the highest absolute accuracy for any dynamic modulus measurement technique, can be used on the smallest samples, and can also enable detection of errors in certain classes of precision manufactured components faster and more accurately than any other technique.

  9. Theoretical and practical program in the non-destructive testing by eddy currents - the first level

    International Nuclear Information System (INIS)

    Shaaban, H.I.; Addarwish, J.M.A.

    2014-11-01

    The testing using eddy currents is one of the non-destructive tests that use electromagnetic property as a basis for testing procedures, and there are many other ways to use this principle, including Remote Field Testing and the Magnetic Flux Leakage test. Eddy currents are electrical currents moving in a circular path, and took the name eddy of eddies that form when a liquid or gas is moving in a circular path because of objection obstacles to its track. They are generated in the material using a variable magnetic field. Non-destructive testing by eddy currents is a technique used for the detection of defects and interruptions in a material and it is a process that relies on the generation of small eddy currents in the material of the part to be examined, provided that this part is of an electrically conducting material. This technique and its scientific basis are explained in this book. Also the devices used in this technique and how to use these devices in details are explained. The book contains Twelve chapters: Introduction to non destructive testing - Engineering materials and its mechanical characteristics - Electrical and magnetic characteristics of engineering materials - Introduction to testing by eddy currents - Factors affecting eddy currents - Basis of electrical circuits used in eddy currents testing devices - Probes of eddy currents testing - Eddy currents testing devices (Theoretical) - Analysis of the examination results of testing by eddy currents: techniques and applications - Applications of testing by eddy currents - Eddy currents testing devices (Application) - Practical lessons for the first level in testing by eddy currents.

  10. Effects of time pressure and noise on non-destructive testing

    Energy Technology Data Exchange (ETDEWEB)

    Enkvist, J.; Svenson, Ola [Stockholm Univ. (Sweden). Dept. of Psychology; Edland, A. [Swedish Nuclear Power Inspectorate, Stockholm (Sweden)

    2001-12-01

    Manual ultrasonic testing (UT) is the most frequently used non-destructive testing (NDT) method for in-service inspection of components important to safety and/or plant availability. Earlier, great variations have been found in operator performance, often attributed to operator fatigue. However, no conclusive findings have been reported. According to the Yerkes-Dodson law there is an optimal arousal level where performance is highest, for simple tasks this optimum is higher than for more complex tasks. In the present study twenty operators performed manual ultrasonic inspections of six test pieces with manufactured flaws. The operators performed the inspections under stress (high arousal - time pressure and noise) and non-stress conditions; one condition the first day and the other the second and last day. It was hypothesised that the stress condition led to a level of arousal so high that it would affect the results negatively. The results confirmed that the operators were affected by the stress condition. However, contrary to the hypotheses it was found that the manipulation increased operator performance. Operators with the stress condition the first day performed better than the other operators did (under both the stress and the non-stress condition). This was interpreted as the 'stress first' (group 1) operators had established efficient performance patterns the first day - affecting also the second day. Operators beginning with stress condition also tended to be more motivated. It was concluded that operator performance is affected by arousal. The operators with non-stress first (group 2) worked hard with the complex task but their arousal level was assumed to be above the optimal, resulting in a low hit rate.

  11. Effects of time pressure and noise on non-destructive testing

    Energy Technology Data Exchange (ETDEWEB)

    Enkvist, J; Svenson, Ola [Stockholm Univ. (Sweden). Dept. of Psychology; Edland, A [Swedish Nuclear Power Inspectorate, Stockholm (Sweden)

    2001-12-01

    Manual ultrasonic testing (UT) is the most frequently used non-destructive testing (NDT) method for in-service inspection of components important to safety and/or plant availability. Earlier, great variations have been found in operator performance, often attributed to operator fatigue. However, no conclusive findings have been reported. According to the Yerkes-Dodson law there is an optimal arousal level where performance is highest, for simple tasks this optimum is higher than for more complex tasks. In the present study twenty operators performed manual ultrasonic inspections of six test pieces with manufactured flaws. The operators performed the inspections under stress (high arousal - time pressure and noise) and non-stress conditions; one condition the first day and the other the second and last day. It was hypothesised that the stress condition led to a level of arousal so high that it would affect the results negatively. The results confirmed that the operators were affected by the stress condition. However, contrary to the hypotheses it was found that the manipulation increased operator performance. Operators with the stress condition the first day performed better than the other operators did (under both the stress and the non-stress condition). This was interpreted as the 'stress first' (group 1) operators had established efficient performance patterns the first day - affecting also the second day. Operators beginning with stress condition also tended to be more motivated. It was concluded that operator performance is affected by arousal. The operators with non-stress first (group 2) worked hard with the complex task but their arousal level was assumed to be above the optimal, resulting in a low hit rate.

  12. Effects of time pressure and noise on non-destructive testing

    International Nuclear Information System (INIS)

    Enkvist, J.; Svenson, Ola

    2001-12-01

    Manual ultrasonic testing (UT) is the most frequently used non-destructive testing (NDT) method for in-service inspection of components important to safety and/or plant availability. Earlier, great variations have been found in operator performance, often attributed to operator fatigue. However, no conclusive findings have been reported. According to the Yerkes-Dodson law there is an optimal arousal level where performance is highest, for simple tasks this optimum is higher than for more complex tasks. In the present study twenty operators performed manual ultrasonic inspections of six test pieces with manufactured flaws. The operators performed the inspections under stress (high arousal - time pressure and noise) and non-stress conditions; one condition the first day and the other the second and last day. It was hypothesised that the stress condition led to a level of arousal so high that it would affect the results negatively. The results confirmed that the operators were affected by the stress condition. However, contrary to the hypotheses it was found that the manipulation increased operator performance. Operators with the stress condition the first day performed better than the other operators did (under both the stress and the non-stress condition). This was interpreted as the 'stress first' (group 1) operators had established efficient performance patterns the first day - affecting also the second day. Operators beginning with stress condition also tended to be more motivated. It was concluded that operator performance is affected by arousal. The operators with non-stress first (group 2) worked hard with the complex task but their arousal level was assumed to be above the optimal, resulting in a low hit rate

  13. Comparative analysis of non-destructive methods to control fissile materials in large-size containers

    Science.gov (United States)

    Batyaev, V. F.; Sklyarov, S. V.

    2017-09-01

    The analysis of various non-destructive methods to control fissile materials (FM) in large-size containers filled with radioactive waste (RAW) has been carried out. The difficulty of applying passive gamma-neutron monitoring FM in large containers filled with concreted RAW is shown. Selection of an active non-destructive assay technique depends on the container contents; and in case of a concrete or iron matrix with very low activity and low activity RAW the neutron radiation method appears to be more preferable as compared with the photonuclear one. Note to the reader: the pdf file has been changed on September 22, 2017.

  14. Wavelet modeling of signals for non-destructive testing of concretes

    International Nuclear Information System (INIS)

    Shao, Zhixue; Shi, Lihua; Cai, Jian

    2011-01-01

    In a non-destructive test of concrete structures, ultrasonic pulses are commonly used to detect damage or embedded objects from their reflections. A wavelet modeling method is proposed here to identify the main reflections and to remove the interferences in the detected ultrasonic waves. This method assumes that if the structure is stimulated by a wavelet function with good time–frequency localization ability, the detected signal is a combination of time-delayed and amplitude-attenuated wavelets. Therefore, modeling of the detected signal by wavelets can give a straightforward and simple model of the original signal. The central time and amplitude of each wavelet represent the position and amplitude of the reflections in the detected structure. A signal processing method is also proposed to estimate the structure response to wavelet excitation from its response to a high-voltage pulse with a sharp leading edge. A signal generation card with a compact peripheral component interconnect extension for instrumentation interface is designed to produce this high-voltage pulse. The proposed method is applied to synthesized aperture focusing technology of concrete specimens and the image results are provided

  15. Isotope techniques in non-destructive testing of dynamic systems

    International Nuclear Information System (INIS)

    Singh, Gursharan; Pant, H.J.

    1996-01-01

    A few applications of gamma scanning and radiotracer techniques for Non-destructive Testing (NDT) of dynamic systems in chemical and petrochemical industries are briefly discussed in this paper. Examples of gamma scanning inspections carried out for troubleshooting of various types of columns such as vacuum, extraction, separator and rectifier, with trays and packed beds and having diameters from 1 meter to 8.4 meters are given. Radiotracer applications for Residence Time Distribution (RTD) studies on different systems like an aniline production reactor in a chemical industry and a laboratory scale solid-liquid fluidized bed column are mentioned. (author)

  16. Non-destructive controls in the steel tube industry

    International Nuclear Information System (INIS)

    Mondot, J.

    1978-01-01

    The main non-destructive control methods in the tube industry are reviewed: eddy currents, particularly well adapted to small tubes; magnetoscopic testing for weldless tubes; ultrasonic waves widely used for thick weldless tubes and weldings; radiography, to examine tube ends and the known questionable zones; measure of diameters by laser [fr

  17. Detection Of Cracks In Composite Materials Using Hybrid Non-Destructive Testing Method Based On Vibro-Thermography And Time-Frequency Analysis Of Ultrasonic Excitation Signal

    Directory of Open Access Journals (Sweden)

    Prokopowicz Wojciech

    2015-09-01

    Full Text Available The theme of the publication is to determine the possibility of diagnosing damage in composite materials using vibrio-thermography and frequency analysis and time-frequency of excitation signal. In order to verify the proposed method experiments were performed on a sample of the composite made in the technology of pressing prepregs. Analysis of the recorded signals and the thermograms were performed in MatLab environment. Hybrid non-destructive testing method based on thermogram and appropriate signal processing algorithm clearly showed damage in the sample composite material.

  18. Practical Uses of Neutron Radiography for Non-Destructive Testing

    International Nuclear Information System (INIS)

    Middleton, M.F.; de Beer, F.; Pazsit, Imre; Li, Kewen; Hilson, Jodie

    2006-01-01

    Over the past nine years, a research collaboration has been developed around the use of neutron radiography in non-destructive testing of porous rocks and other materials. This paper is a review of that work, with a critical reflection on the future potential of the technique. Neutrons are ideal for detecting water concentration, due to the high attenuation of neutrons by hydrogen, in porous or semi-porous media. Problems, which involve the determination of water concentration in porous media, are particularly amenable for neutron radiography analysis. In this context, water concentration in porous media is important in groundwater studies, petroleum reservoir studies, studies of geothermal systems, the understanding of water absorption in building materials, and more recently in mineral exploration and processing applications. Beyond these applications, neutron analysis of flawed and corroded aircraft parts has emerged as a valuable tool to support conventional non-destructive testing (NDT) techniques. Such investigations, using neutron radiography of aircraft parts, have been active in the United States, Canada and South Africa for over two decades. In 2001, an Australian Research Council (ARC) grant enabled the informal collaboration to establish a semi-portable neutron imaging system in Australia. Preliminary results of that ongoing research will also be presented herein. In overview, neutron radiography presents a powerful non-destructive testing method, which in many new areas of application remains to be evaluated. It has proven to be most valuable where water detection, in quantities greater than approximately 0.1 percent of the total volume, is required. This concentration is not a limitation on the technique, but only current applications. It has been demonstrated to be powerful tool to detect natural substances containing bound-water and neutron-attenuating minerals, such as clay, Glauconite and the various water-rich iron-bearing minerals (e.g. Goethite

  19. Non-destructive testing of ceramic materials using mid-infrared ultrashort-pulse laser

    Science.gov (United States)

    Sun, S. C.; Qi, Hong; An, X. Y.; Ren, Y. T.; Qiao, Y. B.; Ruan, Liming M.

    2018-04-01

    The non-destructive testing (NDT) of ceramic materials using mid-infrared ultrashort-pulse laser is investigated in this study. The discrete ordinate method is applied to solve the transient radiative transfer equation in 2D semitransparent medium and the emerging radiative intensity on boundary serves as input for the inverse analysis. The sequential quadratic programming algorithm is employed as the inverse technique to optimize objective function, in which the gradient of objective function with respect to reconstruction parameters is calculated using the adjoint model. Two reticulated porous ceramics including partially stabilized zirconia and oxide-bonded silicon carbide are tested. The retrieval results show that the main characteristics of defects such as optical properties, geometric shapes and positions can be accurately reconstructed by the present model. The proposed technique is effective and robust in NDT of ceramics even with measurement errors.

  20. Non-destructive testing of full-length bonded rock bolts based on HHT signal analysis

    Science.gov (United States)

    Shi, Z. M.; Liu, L.; Peng, M.; Liu, C. C.; Tao, F. J.; Liu, C. S.

    2018-04-01

    Full-length bonded rock bolts are commonly used in mining, tunneling and slope engineering because of their simple design and resistance to corrosion. However, the length of a rock bolt and grouting quality do not often meet the required design standards in practice because of the concealment and complexity of bolt construction. Non-destructive testing is preferred when testing a rock bolt's quality because of the convenience, low cost and wide detection range. In this paper, a signal analysis method for the non-destructive sound wave testing of full-length bonded rock bolts is presented, which is based on the Hilbert-Huang transform (HHT). First, we introduce the HHT analysis method to calculate the bolt length and identify defect locations based on sound wave reflection test signals, which includes decomposing the test signal via empirical mode decomposition (EMD), selecting the intrinsic mode functions (IMF) using the Pearson Correlation Index (PCI) and calculating the instantaneous phase and frequency via the Hilbert transform (HT). Second, six model tests are conducted using different grouting defects and bolt protruding lengths to verify the effectiveness of the HHT analysis method. Lastly, the influence of the bolt protruding length on the test signal, identification of multiple reflections from defects, bolt end and protruding end, and mode mixing from EMD are discussed. The HHT analysis method can identify the bolt length and grouting defect locations from signals that contain noise at multiple reflected interfaces. The reflection from the long protruding end creates an irregular test signal with many frequency peaks on the spectrum. The reflections from defects barely change the original signal because they are low energy, which cannot be adequately resolved using existing methods. The HHT analysis method can identify reflections from the long protruding end of the bolt and multiple reflections from grouting defects based on mutations in the instantaneous

  1. Non-destructive vacuum decay method for pre-filled syringe closure integrity testing compared with dye ingress testing and high-voltage leak detection.

    Science.gov (United States)

    Simonetti, Andrea; Amari, Filippo

    2015-01-01

    solution, preventing possible prefilled syringe plunger movement during container closure integrity testing execution, is presented as well. The growing need to meet sterile drug products' regulatory, quality, and safety expectations has progressively driven new developments and improvements both in container closure integrity testing methods and in the respective equipment, over the last years. Indeed, container closure integrity testing establishes the container closure system capability to provide required protection to the drug product and to demonstrate maintenance of product sterility over its shelf life. This article describes the development of four container closure integrity testing approaches for the evaluation of glass prefilled syringe closure integrity, including two destructive (pharmacopoeial and Novartis specific dye ingress test) and two non-destructive (vacuum decay and high-voltage leak detection) methods. The important finding from the validation of comparative studies was that the vacuum decay method resulted in the most effective, reliable and repeatable detection of defective samples, whether the defect was exposed to sterile water, to drug product, or to air. Complete sets of known defects were created for this purpose (5 μm, 10 μm, 20 μm certified leakages by laser drilled holes and capillary tubes). All investigations and studies were conducted at Bonfiglioli Engineering S.r.l. (Vigarano Pieve, Ferrara, Italy) and at Novartis Vaccines (Sovicille, Siena, Italy). © PDA, Inc. 2015.

  2. Non-destructive sampling of ancient insect DNA

    DEFF Research Database (Denmark)

    Thomsen, Philip Francis; Elias, Scott; Gilbert, Tom

    2009-01-01

    BACKGROUND: A major challenge for ancient DNA (aDNA) studies on insect remains is that sampling procedures involve at least partial destruction of the specimens. A recent extraction protocol reveals the possibility of obtaining DNA from past insect remains without causing visual morphological...... of 77-204 base pairs (-bp) in size using species-specific and general insect primers. CONCLUSION/SIGNIFICANCE: The applied non-destructive DNA extraction method shows promising potential on insect museum specimens of historical age as far back as AD 1820, but less so on the ancient permafrost......-preserved insect fossil remains tested, where DNA was obtained from samples up to ca. 26,000 years old. The non-frozen sediment DNA approach appears to have great potential for recording the former presence of insect taxa not normally preserved as macrofossils and opens new frontiers in research on ancient...

  3. Models on reliability of non-destructive testing

    International Nuclear Information System (INIS)

    Simola, K.; Pulkkinen, U.

    1998-01-01

    The reliability of ultrasonic inspections has been studied in e.g. international PISC (Programme for the Inspection of Steel Components) exercises. These exercises have produced a large amount of information on the effect of various factors on the reliability of inspections. The information obtained from reliability experiments are used to model the dependency of flaw detection probability on various factors and to evaluate the performance of inspection equipment, including the sizing accuracy. The information from experiments is utilised in a most effective way when mathematical models are applied. Here, some statistical models for reliability of non-destructive tests are introduced. In order to demonstrate the use of inspection reliability models, they have been applied to the inspection results of intergranular stress corrosion cracking (IGSCC) type flaws in PISC III exercise (PISC 1995). The models are applied to both flaw detection frequency data of all inspection teams and to flaw sizing data of one participating team. (author)

  4. Digital transfer of non-destructive testing images

    International Nuclear Information System (INIS)

    Nelson, S.

    1996-01-01

    This paper intends to address a possible avenue to assist the Non-Destructive Testing Industry in managing and transferring results to their clients in a more efficient way. Data is sent around the globe in various forms to a multitude of destinations. The problem has been twofold in any industry: how to get the data into a communication network and, how to manage and utilize this data. There are many types of scanners which can digitize the graph which can then be displayed on a computer screen via a software programme. The one presented in this paper has been jointly developed by a Melbourne company, Compu Medics and AGFA Australia. This system can also capture a video signal from Ultrasound Units and display on the screen. The author also explore what can be done with this data. Possibilities are endless and include: sending it via satellite or land line to a remote reader, saving or archiving for future reference and utilising the data base for education

  5. Non-destructive measurement methods for large scale gaseous diffusion process equipment

    International Nuclear Information System (INIS)

    Mayer, R.L.; Hagenauer, R.C.; McGinnis, B.R.

    1994-01-01

    Two measurement methods have been developed to measure non-destructively uranium hold-up in gaseous diffusion plants. These methods include passive neutron and passive γ ray measurements. An additional method, high resolution γ ray spectroscopy, provides supplementary information about additional γ ray emitting isotopes, γ ray correction factors, 235 U/ 234 U ratios and 235 U enrichment. Many of these methods can be used as a general purpose measurement technique for large containers of uranium. Measurement applications for these methods include uranium hold-up, waste measurements, criticality safety and nuclear accountability

  6. Quality assurance in ceramic materials and components. High-resolution non-destructive testing especially of ceramic surfaces

    International Nuclear Information System (INIS)

    Reiter, H.; Hoffmann, B.; Morsch, A.; Arnold, W.; Schneider, E.

    1988-01-01

    This report discusses the influence of defects on the failure behavior of ceramic materials under four-point bending stress. In this connection various Si 3 N 4 and SiC materials with and without artificially introduced defect particles (Fe, WC, Si, pores) were examined by the following non-destructive test methods: photoacoustic microscopy, scanning laser acoustic microscopy, microfocus roentgenoscopy and ultrasound transit-time measurements. Finally, a four-point bending test and a fracture-mechanical evaluation of the fracture-incuding defects were carried out at the Institute for reliability and failure studies in mechanical engineering of the University of Karlsruhe. According to the type of stress the samples predominantly failed in the case of defects in the surface zone of the side in tension. Among the ndt methods applied the photoacoustic microscopy as a typical surface testing method could predict most of the fracture-inducing defects (30-50 %) without causing destruction. In this connection a different detection sensitivity which corresponds to the thermal reflection factors became apparent according to the type of defect. Furthermore the reports describes the results of some preliminary tests on ndt of green ceramics. In these investigations both the microfocus roentgenoscopy test and the roentgen computed tomography showed a high potential of detecting inhomogeneities and defects in green Si 3 N 4 and SiC components. (orig.) [de

  7. Non-destructive screening method for radiation hardened performance of large scale integration

    International Nuclear Information System (INIS)

    Zhou Dong; Xi Shanbin; Guo Qi; Ren Diyuan; Li Yudong; Sun Jing; Wen Lin

    2013-01-01

    The space radiation environment could induce radiation damage on the electronic devices. As the performance of commercial devices is generally superior to that of radiation hardened devices, it is necessary to screen out the devices with good radiation hardened performance from the commercial devices and applying these devices to space systems could improve the reliability of the systems. Combining the mathematical regression analysis with the different physical stressing experiments, we investigated the non-destructive screening method for radiation hardened performance of the integrated circuit. The relationship between the change of typical parameters and the radiation performance of the circuit was discussed. The irradiation-sensitive parameters were confirmed. The pluralistic linear regression equation toward the prediction of the radiation performance was established. Finally, the regression equations under stress conditions were verified by practical irradiation. The results show that the reliability and accuracy of the non-destructive screening method can be elevated by combining the mathematical regression analysis with the practical stressing experiment. (authors)

  8. Human and organisational factors influencing the reliability of non-destructive testing. An international literary survey

    International Nuclear Information System (INIS)

    Kettunen, J.; Norros, L.

    1996-04-01

    The aim of the study is to chart human and organisational factors influencing the reliability of non-destructive testing (NDT). The emphasis will be in ultrasonic testing (UT) and in the planning and execution of in-service inspections during nuclear power plant maintenance outages. Being a literary survey this study is mainly based on the foreign and domestic research available on the topic. In consequence, the results presented in this report reflect the ideas of international research community. In addition to this, Finnish nuclear power plant operators (Imatran Voima Oy and Teollisuuden Voima Oy), independent inspection organisations and the Finnish Centre for Radiation and Nuclear Safety have provided us with valuable information on NDT theory and practice. Especially, a kind of 'big picture' of non-destructive testing has been pursued in the study. (6 figs., 2 tabs.)

  9. A new look at trends in non-destructive testing

    International Nuclear Information System (INIS)

    Forsten, J.

    1984-01-01

    Non-destructive testing (NDT) has been performed extensively for several decades. However, the NDT area is not in a static condition, as sophisticated equipment, improved procedures and new innovations keep development going on. Neither is the NDT field isolated from other fields, and this influences strongly the current situation, i.e.: The cost of electronics is decreasing and complex problems can now be solved; Safety requirements on products and components become more stringent; Quality requirements of the whole life span of a product or a component become more accentuated; Improved testing reliability is required; Quality assurance requirements must be imposed on NDT itself; New materials, e.g., fiber reinforced materials, and materials combinations, e.g., sandwich structures, will be used for special purposes; New production techniques, like glueing of metals, put new requirements on the NDT techniques

  10. Fundamentals for remote structural health monitoring of wind turbine blades - a pre-project. Annex B - Sensors and non-destructive testing methods for damage detection in wind turbine blades

    Energy Technology Data Exchange (ETDEWEB)

    Lading, L.; McGugan, M.; Sendrup, P.; Rheinlaender, J.; Rusborg, J.

    2002-05-01

    This annex provides a description of the sensor schemes and the non-destructive testing (NDT) methods that have been investigated in this project. Acoustic emission and fibre optic sensors are described in some detail whereas only the key features of well-established NDT methods are presented. Estimates of the cost of different sensor systems are given and the advantages and disadvantages of the different schemes is discussed. (au)

  11. High-speed image processing systems in non-destructive testing

    Science.gov (United States)

    Shashev, D. V.; Shidlovskiy, S. V.

    2017-08-01

    Digital imaging systems are using in most of both industrial and scientific industries. Such systems effectively solve a wide range of tasks in the field of non-destructive testing. There are problems in digital image processing for decades associated with the speed of the operation of such systems, sufficient to efficiently process and analyze video streams in real time, ideally in mobile small-sized devices. In this paper, we consider the use of parallel-pipeline computing architectures in image processing problems using the example of an algorithm for calculating the area of an object on a binary image. The approach used allows us to achieve high-speed performance in the tasks of digital image processing.

  12. Method and equipment for the non-destructive analysis of nuclear fuels

    International Nuclear Information System (INIS)

    Michaelis, W.

    1975-01-01

    This is a method for the non-destructive analysis of the content of fissile isotopes in nuclear fuels. In this analysis a neutron beam is directed to the nuclear fuel which is to be analysed. The beam penetrates the nuclear fuel, thus causing a secondany radiation by nuclear reactions which reaches a space directly surrounding the nuclear fuel and is measuned there. (orig./UA) [de

  13. Non-destructive qualification tests for ITER cryogenic axial insulating breaks

    International Nuclear Information System (INIS)

    Kosek, Jacek; Lopez, Roberto; Tommasini, Davide; Rodriguez-Mateos, Felix

    2014-01-01

    In the ITER superconducting magnets the dielectric separation between the CICC (Cable-In-Conduit Conductors) and the helium supply pipes is made through the so-called insulating breaks (IB). These devices shall provide the required dielectric insulation at a 30 kV level under different types of stresses and constraints: thermal, mechanical, dielectric and ionizing radiations. As part of the R and D program, the ITER Organization launched contracts with industrial companies aimed at the qualification of the manufacturing techniques. After reviewing the main functional aspects, this paper describes and discusses the protocol established for non-destructive qualification tests of the prototypes

  14. Non-destructive qualification tests for ITER cryogenic axial insulating breaks

    Energy Technology Data Exchange (ETDEWEB)

    Kosek, Jacek [Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland and CERN, Geneva 23,CH-1211 (Switzerland); Lopez, Roberto; Tommasini, Davide [CERN, Geneva 23,CH-1211 (Switzerland); Rodriguez-Mateos, Felix [CERN, Geneva 23,CH-1211, Switzerland and ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul lez Durance (France)

    2014-01-29

    In the ITER superconducting magnets the dielectric separation between the CICC (Cable-In-Conduit Conductors) and the helium supply pipes is made through the so-called insulating breaks (IB). These devices shall provide the required dielectric insulation at a 30 kV level under different types of stresses and constraints: thermal, mechanical, dielectric and ionizing radiations. As part of the R and D program, the ITER Organization launched contracts with industrial companies aimed at the qualification of the manufacturing techniques. After reviewing the main functional aspects, this paper describes and discusses the protocol established for non-destructive qualification tests of the prototypes.

  15. A comparison between destructive and non-destructive techniques in determining coating thickness

    Science.gov (United States)

    Haider, F. I.; Suryanto; Ani, M. H.; Mahmood, M. H.

    2018-01-01

    Measuring coating thickness is an important part in research works related to coating applications. In general, techniques for measuring coating thickness may be divided into destructive and non-destructive methods which are commonly used depending on the applications. The objective of this study is to compare two methods measuring the coating thickness of electroplating copper coating on the austenitic stainless-steel substrate. The electroplating was carried out in a solution containing 200 g/L CuSO4, 100 g/L H2SO4 at room temperature and current of 40mA/cm2 during 20, 40, 60, 80 and 100 mins as coating periods. And the coating thickness was measured by two methods, cross sectional analysis as a destructive technique and weight gain as a non-destructive technique. The results show that at 20 mins coating time interval, the thickness measured by cross sectional method was 16.67 μm and by weight gain method was 17.37 μm, with difference of 0.7 μm and percentage error of 4.11%. This error increased to 5.27% at 100mins time interval, where the values of the thickness measured by cross sectional and weight gain were 86.33 μm and 81.9 μm respectively, and the difference was 4.43 μm. Moreover, though the weight gain method is fast and gives the indication for the termination of a coating process, information regarding the uniformity, porosity and the presence of cracks cannot be obtained. On the other hand, determining the coating thickness using destructive method will damage the sample.

  16. Non-destructive testing of high pressure fibre reinforced composites tubes by computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Klimek, L. [Qualitaetszentrum Dortmund (Germany); Monstadt, H.; Boedecker, T. [EFMT, Bochum (Germany)

    1995-12-31

    For new applications of fibre reinforced composites, new non-destructive testing methods are required which on the one hand can be used as a quality testing method and on the other hand as an in-service inspection method during the life of a product. Special attention should be paid to the defect sensitivity and to a detailed classification of visible defects. Defining a detectable standard, comparable investigations were carried out using the Ultra Fast Scanner which is located at the Entwicklungs- und Forschungszentrum fuer Mikrotherapie gGmbH (EFMT) and the industrial scanner of the Qualitaetszentrum Dortmund GmbH u. Co. KG (QZ-DO). The investigation object is a high pressure tube which is made up of three different diameter structures. There can be distinguished between three types of tube layers. Digital image processing has been used to get more information form measured data. We developed two different types of digital image filters: A SIGMA and a Contrast Sensitive Weights (CSW) image filter and made a comparative study. (orig./RHM)

  17. Non-destructive testing of the MEGAPIE target

    Science.gov (United States)

    Dai, Y.; Wohlmuther, M.; Boutellier, V.; Hahl, S.; Lagotzki, A.; Leu, H.; Linder, H. P.; Schwarz, R.; Spahr, A.; Zanini, L.; Kuster, D.; Gavillet, D.; Wagner, W.

    2016-01-01

    Non-destructive testing (NDT) is one important part of the post-irradiation examination (PIE) of the MEGAPIE target. It includes visual inspection and ultrasonic measurement of the beam window of the T91 LBE container and gamma mapping of the beam window of the AlMg3 safety-container. The visual inspection showed no visible failure in the proton beam window area of the T91 LBE container. The ultrasonic measurement demonstrated no detectable change in the wall thickness of the T91 beam window, which implies no severe corrosion effect induced by flowing LBE during the four-month irradiation period. The gamma mapping provided the distribution of 22Na, a spallation product, in the proton beam window area of the AlMg3 safety-container. The result was used to evaluate the accumulated proton fluence distribution profile, the input data for determining irradiation parameters. A maximum proton fluence of 1.9 × 1025 p/m2 was deduced. The corresponding displacement damage degree in the T91 beam window was 7.1 dpa.

  18. Recent advances in seismic non-destructive testing of concrete plate like structures

    International Nuclear Information System (INIS)

    Ryden, N.; Kristensen, A.; Jovall, O.

    2009-01-01

    This paper describes recent advances in seismic/acoustic non-destructive testing of concrete containment walls. The presented technique is focused on the characterization of the mean stiffness (seismic velocities) and thickness of the containment wall. The Impact Echo (IE) method is a well-established technique to measure the thickness of concrete plates or to locate defects in concrete plate like structures. The method relies on a good estimate of the mean velocity through the thickness of the plate and a precisely measured thickness resonant frequency. Recently the underlying theory of the IE method has been redefined and improved based on Lamb waves in a free plate. Based on this theory we have developed a new data processing technique where both propagating and standing Lamb waves are analysed in a combined manner using multichannel data. With this approach the mean velocity through the plate thickness is evaluated by using the fundamental mode Lamb wave dispersion curves. The accuracy and detection ability of the measured resonant frequency is improved by utilizing both amplitude and phase information from the multichannel record. The method has been tested on several nuclear power plants in Sweden and Finland and proved to be more robust compared to conventional IE and surface wave measurements

  19. Non-destructive control at the Kozloduy NPP; Nerazrushayushchij kontrol` v AEhS `Kozloduy`

    Energy Technology Data Exchange (ETDEWEB)

    Mikhovsky, M [Institute of Mechanics, Bulgarian Academy of Sciences, Sofia (Bulgaria); Skordev, A [SIME-CONTROL, Sofia (Bulgaria); Nichev, V; Tsokov, P; Popova, N [Kombinat Atomna Energetika, Kozloduj (Bulgaria)

    1996-12-31

    A program for technical diagnostics using non-destructive methods is being carried out at the Kozloduy NPP. The main target is to test mechanical equipment integrity (metal control, mechanical stress control, etc.) as well as electrical equipment. Computer methods and simulation are widely used in program implementation. Non-destructive testing is based on methods involving optical, radiation, ultrasonic and magnetic processes. Control procedures are standardised in special technological documents and one of them is described as an example. It refers to ultrasonic control of the austenitic steel welds of the WWER-440 piping system (DU-500). Graphic representing the microstructure of the welds, the distribution of surface ultrasonic wave and the longitudinal and vertically polarised perpendicular waves are presented. 6 refs. 8 figs.

  20. Non-destructive investigations of Swiss museums objects with neutron and x-ray imaging methods

    International Nuclear Information System (INIS)

    Lehmann, E.H.; Deschler, E.; Pernet, L.; Vontobel, P.

    2004-01-01

    Many objects of archaeological relevance found in Switzerland are from the Celtic and Roman era. Because of their uniqueness in most cases it is demanded to perform any investigation with such samples non-destructively. Depending on the structure and size of the objects a transmission experiment performed either with X-ray or neutron can alight inner structures, composition, defects or the principles of the manufacturing procedures. Furthermore, the treatment by conservators and restaurateurs becomes visible in many cases. This report describes some examples of such investigations. In the case of neutron investigations, beside the transmission imaging as a radiograph the three-dimensional structure was observed with a tomography technique. For X-ray radiography, the images were obtained in the same digital format because the similar experimental method (imaging plates) was applied. It becomes evident in the described examples that the combination and complementary use of both methods (neutrons and X-ray) brings insights in different aspects of the samples properties and treatment. This approach to study museums objects stored and exhibit in Switzerland can be extrapolated to other countries where these techniques are also simultaneously available in order to investigate other objects of relevance. The European network COST-G8 entitled 'Non-destructive analysis and testing of museum objects' can help to support initiatives in this direction. (author)

  1. Ionizing radiations for non-destructive evaluation

    International Nuclear Information System (INIS)

    Raj, Baldev; Venkataraman, B.

    1989-01-01

    A state of the art of major non-destructive testing (NDT) techniques based on ionising radiations is presented. These techniques are broadly classified into three categories, namely, radiography, radiation gaging and analytical applications. The basic principles behind each method are explained and salient features of each technique which make it suitable for a particular task are described. Several illustrative applications drawn from the nuclear industry are given. The monograph is intended to serve as an introductory guide to scientist and engineers engaged in NDT activities. (M.G.B.). 32 refs., 13 figs., 5 tabs

  2. Advanced uses of radiation in non-destructive evaluation

    International Nuclear Information System (INIS)

    Baldev Raj; Viswanathan, B.; Venkataraman, B.

    1998-01-01

    The increasing demand for newer materials and stringency of specifications, have expanded the scope of advanced uses of radiation in non-destructive evaluation of materials and industrial components. This paper highlights the application of some of the advanced techniques of radiography and residual stress measurements, using x-ray diffraction, for materials characterisation and testing, based on the results obtained at the author's laboratory. The application of positron annihilation techniques based on the use of radioisotopes and high resolution gamma ray spectroscopy, is introduced as non-destructive tools for materials characterisation. Selective examples of significant results obtained using this technique, on the radiation damage and early stages of fatigue damage in technologically important steels are reviewed from recent works at the author's laboratory and elsewhere. The scope of application of charge particle based thin layer activation method is briefly outlined. (author)

  3. The study on defects in aluminum 2219-T6 thick butt friction stir welds with the application of multiple non-destructive testing methods

    International Nuclear Information System (INIS)

    Li, Bo; Shen, Yifu; Hu, Weiye

    2011-01-01

    Research highlights: → Friction stir weld-defect forming mechanisms of thick butt-joints. → Relationship between weld-defects and friction stir welding process parameters. → Multiple non-destructive testing methods applied to friction stir welds. → Empirical criterion basing on mass-conservation for inner material-loss defects. → Nonlinear correlation between weld strengths and root-flaw lengths. -- Abstract: The present study focused on the relationship between primary friction stir welding process parameters and varied types of weld-defect discovered in aluminum 2219-T6 friction stir butt-welds of thick plates, meanwhile, the weld-defect forming mechanisms were investigated. Besides a series of optical metallographic examinations for friction stir butt welds, multiple non-destructive testing methods including X-ray detection, ultrasonic C-scan testing, ultrasonic phased array inspection and fluorescent penetrating fluid inspection were successfully used aiming to examine the shapes and existence locations of different weld-defects. In addition, precipitated Al 2 Cu phase coarsening particles were found around a 'kissing-bond' defect within the weld stirred nugget zone by means of scanning electron microscope and energy dispersive X-ray analysis. On the basis of volume conservation law in material plastic deformation, a simple empirical criterion for estimating the existence of inner material-loss defects was proposed. Defect-free butt joints were obtained after process optimization of friction stir welding for aluminum 2219-T6 plates in 17-20 mm thickness. Process experiments proved that besides of tool rotation speed and travel speed, more other appropriate process parameter variables played important roles at the formation of high-quality friction stir welds, such as tool-shoulder target depth, spindle tilt angle, and fixture clamping conditions on the work-pieces. Furthermore, the nonlinear correlation between weld tensile strengths and weld crack

  4. The detection of structural defects in metallic materials and components using a non-destructive multi-frequency eddy current method

    International Nuclear Information System (INIS)

    Becker, R.

    1980-01-01

    Application of the multi-frequency method in eddy current testing is shown to be usefull for many important and complex problems in the field of non-destructive testing, which cannot be solved by the single frequency method because of principle reasons. Also in the presence of several perturbing signals the method can be applied successfully, thus very often difference coils can be replaced by absolute coils. Introducing the algorithm of multidimensional direction selection, the calibration of the test system is simpler, allowing automization of the calibration process. In addition, the test signals related with the defect parameters can be evaluated in an objective way. (orig./RW) [de

  5. Coded excitation for infrared non-destructive testing of carbon fiber reinforced plastics.

    Science.gov (United States)

    Mulaveesala, Ravibabu; Venkata Ghali, Subbarao

    2011-05-01

    This paper proposes a Barker coded excitation for defect detection using infrared non-destructive testing. Capability of the proposed excitation scheme is highlighted with recently introduced correlation based post processing approach and compared with the existing phase based analysis by taking the signal to noise ratio into consideration. Applicability of the proposed scheme has been experimentally validated on a carbon fiber reinforced plastic specimen containing flat bottom holes located at different depths.

  6. A non-destructive method for estimating onion leaf area

    Directory of Open Access Journals (Sweden)

    Córcoles J.I.

    2015-06-01

    Full Text Available Leaf area is one of the most important parameters for characterizing crop growth and development, and its measurement is useful for examining the effects of agronomic management on crop production. It is related to interception of radiation, photosynthesis, biomass accumulation, transpiration and gas exchange in crop canopies. Several direct and indirect methods have been developed for determining leaf area. The aim of this study is to develop an indirect method, based on the use of a mathematical model, to compute leaf area in an onion crop using non-destructive measurements with the condition that the model must be practical and useful as a Decision Support System tool to improve crop management. A field experiment was conducted in a 4.75 ha commercial onion plot irrigated with a centre pivot system in Aguas Nuevas (Albacete, Spain, during the 2010 irrigation season. To determine onion crop leaf area in the laboratory, the crop was sampled on four occasions between 15 June and 15 September. At each sampling event, eight experimental plots of 1 m2 were used and the leaf area for individual leaves was computed using two indirect methods, one based on the use of an automated infrared imaging system, LI-COR-3100C, and the other using a digital scanner EPSON GT-8000, obtaining several images that were processed using Image J v 1.43 software. A total of 1146 leaves were used. Before measuring the leaf area, 25 parameters related to leaf length and width were determined for each leaf. The combined application of principal components analysis and cluster analysis for grouping leaf parameters was used to reduce the number of variables from 25 to 12. The parameter derived from the product of the total leaf length (L and the leaf diameter at a distance of 25% of the total leaf length (A25 gave the best results for estimating leaf area using a simple linear regression model. The model obtained was useful for computing leaf area using a non-destructive

  7. The Combine Use of Semi-destructive and Non-destructive Methods for Tiled Floor Diagnostics

    Science.gov (United States)

    Štainbruch, Jakub; Bayer, Karol; Jiroušek, Tomáš; Červinka, Josef

    2017-04-01

    The combination of semi-destructive and non-destructive methods was used to asset the conditions of a tiled floor in the historical monument Minaret, situated in the park complex of the Chateau Lednice (South Moravia Region, Czech Republic), before its renovation. Another set of measurements is going to be performed after the conservation works are finished. (The comparison of the results collected during pre- and post-remediation measurements will be known and presented during the General Assembly meeting in Wien.) The diagnostic complex of methods consisted of photogrammetry, resistivity drilling and georadar. The survey was aimed to contour extends of air gaps beneath the tiles and the efficiency of filling gaps by means of injection, consolidation and gluing individual layers. The state chateau Lednice creates a part of the Lednice-Valtice precinct, a UNESCO landmark, and belongs among the greatest historic monuments in Southern Moravia. In the chateau park there is a romantic observation tower in the shape of a minaret built according to the plans of Josef Hardtmuth between 1798-1804. The Minaret has been extensively renovated for many decades including the restoration of mosaic floors from Venetian terazzo. During the static works of the Minaret building between 1999-2000, the mosaic floors in the rooms on the second floor were transferred and put back onto concrete slabs. Specifically, the floor was cut up to tiles and these were glued to square slabs which were then attached to the base plate. The transfer was not successful and the floor restoration was finalized between 2016-2017. The damage consisted in separating the original floor from the concrete plate which led to creating gaps. Furthermore, the layers of the floor were not compact. It was necessary to fill the gaps and consolidate and glue the layers. The existence of air gap between individual layers of the tiles and their degradation was detected using two different diagnostic methods: semi-destructive

  8. Control of abusive water addition to Octopus vulgaris with non-destructive methods.

    Science.gov (United States)

    Mendes, Rogério; Schimmer, Ove; Vieira, Helena; Pereira, João; Teixeira, Bárbara

    2018-01-01

    Abusive water addition to octopus has evidenced the need for quick non-destructive methods for product qualification in the industry and control of fresh commercial products in markets. Electric conductivity (EC)/pH and dielectric property measurements were selected to detect water uptake in octopus. A significant EC decrease was determined after soaking octopus in freshwater for 4 h. EC reflected the water uptake of octopus and the correspondent concentration decrease of available ions in the interstitial fluid. Significant correlations were determined between octopus water uptake, EC (R = -0.940) and moisture/protein (M/P) ratio (R = 0.923) changes. Seasonal and spatial variation in proximate composition did not introduce any uncertainty in EC discrimination of freshwater tampering. Immersion in 5 g L -1 sodium tripolyphosphate (STPP) increased EC to a value similar to control octopus. EC false negatives resulting from the use of additives (STPP and citric acid) were eliminated with the additional determination of pH. Octopus soaked in freshwater, STPP and citric acid can also be clearly discriminated from untreated samples (control) and also from frozen (thawed) ones using the dielectric properties. No significant differences in the dielectric property scores were found between octopus sizes or geographical locations. Simultaneous EC/pH or dielectric property measurements can be used in a handheld device for non-destructive water addition detection in octopus. M/P ratio can be used as a reference destructive method. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  9. Introduction to non-destructive testing of materials: part II

    International Nuclear Information System (INIS)

    Ahmed, M.; Ahmed, B.

    2001-01-01

    Ultrasonic waves are mechanical vibrations that require a medium, which functions as carrier. Ultrasonics are widely used in non-destructive testing of materials in which high frequency sound waves are introduced into the material being inspected. If the frequency of sound waves in within the range 10 to 20,000 Hz, the sound is audible, i.e. the range of hearing, above 20,000 Hz, the sound waves are referred to as Ultrasound or Ultrasonics. Sound waves do not cause any permanent change in material although its transient presence is very noticeable. An energy transport through a sound wave is possible only when constituent particles are connected to each other by elastic forces. Liquids and Gases are also suitable media for the transmission of sound. In vacuum no matter exists and thus no sound transmission is possible. At the end of this article advantages and limitations of ultrasonic testing are also given. (A.B.)

  10. Application of acoustic emission, as non destructive testing technique, to nuclear components inspection

    International Nuclear Information System (INIS)

    Sanchez Miro, J.J.

    1980-01-01

    A panorama of actual state of acoustic emission as non destructive testing technique, from stand point of its safety applications to nuclear reactor is offered. In first place the physic grounds of acoustic emission phenomenon is briefly exposed. After we speak about the experimental methods for detection, and overall is made an explanation of the problems which are found during the application of this technology to on-line inspection of nuclear oower plants. It is hoped that this repport makes a contribution in the sense of to create a favourable atmosphere toward the introduction in our country of this important technique, and concretely within the nuclear power industry. In this last field the employ of acoustic emission is overcoming the experimental stage. (author)

  11. Non destructive testing: a unique R and D platform in Europe in Saclay

    International Nuclear Information System (INIS)

    On, Dinhill

    2012-01-01

    This article presents the 'Gerim 2' R and D platform which is dedicated to non destructive testing (NDT) in the field of information and communication technology (ICT). It is the first of its kind in Europe and is located in Saclay. It possesses a wide spectrum of NDT technologies: contactless ultrasonic testing, ultrasonic adaptive imagery, automated and multi-resolution X-ray tomography, etc. Founded by public research institutions and industrial partners, this centre is dedicated only to research and development

  12. Cell wall proteome of sugarcane stems: comparison of a destructive and a non-destructive extraction method showed differences in glycoside hydrolases and peroxidases.

    Science.gov (United States)

    Calderan-Rodrigues, Maria Juliana; Jamet, Elisabeth; Douché, Thibaut; Bonassi, Maria Beatriz Rodrigues; Cataldi, Thaís Regiani; Fonseca, Juliana Guimarães; San Clemente, Hélène; Pont-Lezica, Rafael; Labate, Carlos Alberto

    2016-01-11

    Sugarcane has been used as the main crop for ethanol production for more than 40 years in Brazil. Recently, the production of bioethanol from bagasse and straw, also called second generation (2G) ethanol, became a reality with the first commercial plants started in the USA and Brazil. However, the industrial processes still need to be improved to generate a low cost fuel. One possibility is the remodeling of cell walls, by means of genetic improvement or transgenesis, in order to make the bagasse more accessible to hydrolytic enzymes. We aimed at characterizing the cell wall proteome of young sugarcane culms, to identify proteins involved in cell wall biogenesis. Proteins were extracted from the cell walls of 2-month-old culms using two protocols, non-destructive by vacuum infiltration vs destructive. The proteins were identified by mass spectrometry and bioinformatics. A predicted signal peptide was found in 84 different proteins, called cell wall proteins (CWPs). As expected, the non-destructive method showed a lower percentage of proteins predicted to be intracellular than the destructive one (33% vs 44%). About 19% of CWPs were identified with both methods, whilst the infiltration protocol could lead to the identification of 75% more CWPs. In both cases, the most populated protein functional classes were those of proteins related to lipid metabolism and oxido-reductases. Curiously, a single glycoside hydrolase (GH) was identified using the non-destructive method whereas 10 GHs were found with the destructive one. Quantitative data analysis allowed the identification of the most abundant proteins. The results highlighted the importance of using different protocols to extract proteins from cell walls to expand the coverage of the cell wall proteome. Ten GHs were indicated as possible targets for further studies in order to obtain cell walls less recalcitrant to deconstruction. Therefore, this work contributed to two goals: enlarge the coverage of the sugarcane

  13. Test-qualification experience with non-destructive material analysis system performed at Paks Nuclear Power Plant and its usage in non-nuclear fields

    International Nuclear Information System (INIS)

    Somogyi, Gy.; Szabo, D.

    2003-01-01

    The need for qualification of non-destructive material analysis has been recognised in controlling nuclear energy production process. This test-qualification has been performed as first of its kind after the task has been assigned by the National Nuclear Energy Agency. The input documents for the test were. Technical Specification, Analysis Technology, Technical Justification. Test-qualification has been performed with real form control bodies developed by the Rez Nuclear Research Institute, in which the planned defects has been produced by spark-chipping. The qualification procedure has been summarized in a Qualification Folder and given to the national agency to issue a qualification certificate. The procedure might be interesting mostly for companies delivering nuclear power plant assemblies. Similar needs are formulated in standards relative to the qualification of non-nuclear material testing methods (MSZ EN 17025 and EU). (Gy.M.)

  14. Laser ultrasonics for civil engineering : some applications in development for concrete non destructive testing

    International Nuclear Information System (INIS)

    Abraham, O; Cottineau, L-M; Durand, O; Popovics, J S

    2011-01-01

    Non destructive testing of civil engineering infrastructures is becoming of primary importance for their diagnosis, residual time life estimation and/or structural health monitoring. A particularity of civil engineering application is the large size of the survey zones and the expected low cost of inspection. In this context non contact ultrasonics may offer the possibility to built robots that can automatically scan large areas (or eventually be integrated in moving vehicles) to recover mechanical properties of material or to perform imagery for geometrical information recovery. In this paper we present two possible applications of in situ laser ultrasonics : one is the detection of voids in tendon duct with the impact echo method, the other is the use of surface waves to recover mechanical properties of the first centimetres of concrete structures (here after called cover concrete).

  15. Development of hotcell non-destructive examination techniques

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Uhn; Yu, S. C.; Kang, B. S.; Byun, K. S. [Chungbuk National University, Chungju (Korea)

    2002-01-01

    The purpose of this project is to establish non-destructive examination techniques which needs to determine the status of spent nuclear fuel and/or bundles. Through the project, we will establish an image reconstruction tomography which is a kind of non-destructive techniques in Hotcell. The tomography technique can be used to identify the 2-dimensional density distribution of fission products in the spent fuel rods and/or bundles. And form results of the measurement and analysis of magnetic properties of neutron irradiated material in the press vessel and reactor, we will develop some techniques to test its hardness and defects. In 2001, the first year, we have established mathematical background and necessary data and informations to develop the techniques. We will try to find some experimental results that are necessary in developing the Hotcell non-destructive examination techniques in the coming year. 14 refs., 65 figs., 5 tabs. (Author)

  16. A iterative algorithm in computarized tomography applied to non-destructive testing

    International Nuclear Information System (INIS)

    Santos, C.A.C.

    1982-10-01

    In the present work, a mathematical model has been developed for two dimensional image reconstruction in computarized tomography applied to non-destructive testing. The method used is the Algebraic Reconstruction Technique (ART) with additive corrections. This model consists of a discontinuous system formed by an NxN array of cells (pixels). The attenuation in the object of a collimated beam of gamma rays has been determined for various positions and angles of incidence (projections) in terms of the interaction of the beam with the intercepted pixels. The contribution of each pixel to beam attenuation was determined using the weight function wij. Simulated tests using standard objects carried out with attenuation coefficients in the range 0,2 to 0,7 cm -1 , were made using cell arrays of up to 25x25. Experiments were made using a gamma radiation source ( 241 Am), a table with translational and rotational movements and a gamma radiation detection system. Results indicate that convergence obtained in the iterative calculations is a function of the distribution of attenuation coefficient in the pixels, of the number of angular projection and of the number of iterations. (author) [pt

  17. A spatially offset Raman spectroscopy method for non-destructive detection of gelatin-encapsulated powders

    Science.gov (United States)

    Non-destructive subsurface detection of encapsulated, coated, or seal-packaged foods and pharmaceuticals can help prevent distribution and consumption of counterfeit or hazardous products. This study used a Spatially Offset Raman Spectroscopy (SORS) method to detect and identify urea, ibuprofen, and...

  18. Design and fabrication of liner-arroy ultrasonic transducer using KLM and FEM simulation for non-destructive testing

    International Nuclear Information System (INIS)

    Park, Chan Yuk; Sung, Jin Ho; Jeong, Jong Seob

    2015-01-01

    In this paper, a linear-array transducer capable of overcoming the faults of a single element and phased array transducers with convex shape for non-destructive ultrasonic testing was designed and fabricated. A 5.5 MHz linear-array transducer was designed using the PiezoCAD program based on the KLM analysis and the PZFlex program based on the FEM analysis. A 2-2 composite structure was employed to achieve broad-band characteristics. A 128 element linear-array transducer was fabricated and its performance was compared with the simulation results. The center frequency of the fabricated transducer was 5.5 Mhzand the -6 dB frequency bandwidth was 70 %. Thus, we expect that the designed transducer can provide an effective inner image of the test material during non-destructive ultrasonic testing.

  19. Design and fabrication of liner-arroy ultrasonic transducer using KLM and FEM simulation for non-destructive testing

    Energy Technology Data Exchange (ETDEWEB)

    Park, Chan Yuk; Sung, Jin Ho; Jeong, Jong Seob [Dept. of Medical Biotechnology, Dongguk University Biomedi Campus, Goyang (Korea, Republic of)

    2015-04-15

    In this paper, a linear-array transducer capable of overcoming the faults of a single element and phased array transducers with convex shape for non-destructive ultrasonic testing was designed and fabricated. A 5.5 MHz linear-array transducer was designed using the PiezoCAD program based on the KLM analysis and the PZFlex program based on the FEM analysis. A 2-2 composite structure was employed to achieve broad-band characteristics. A 128 element linear-array transducer was fabricated and its performance was compared with the simulation results. The center frequency of the fabricated transducer was 5.5 Mhzand the -6 dB frequency bandwidth was 70 %. Thus, we expect that the designed transducer can provide an effective inner image of the test material during non-destructive ultrasonic testing.

  20. Corrosion evaluation in insulated pipes by non destructive testing method

    International Nuclear Information System (INIS)

    Abd Razak Hamzah; Azali Muhammad; Mohammad Pauzi Ismail; Abd Nassir Ibrahim; Abd Aziz Mohamed; Sufian Saad; Saharuddin Sayuti; Shukri Ahmad

    2002-01-01

    In engineering plants, detection of corrosion and evaluation of deposit in insulated pipes using radiography method are considered as a very challenging tasks. In General this degradation problem is attributed to water condensation. It causes the formation of deposit and scale inside the pipe, as well as between the insulation and pipe in cold temperature pipes. On the other hand, for hot temperature pipes the main problem is mainly due to corrosion/erosion attack inside the pipe. In the study of corrosion in pipelines, one of the most important parameters to be monitored and measured is the wall thickness. Currently, most pipeline corrosion monitoring and evaluation for both insulated and non-insulated pipes is performed using an ultrasonic method. The most common technique is that based on the A-Scan, using either a normal flaw detector or some form of dedicated equipment. However, with recent development of ultrasonic technology, more advance method, namely B-Scan and C-scan techniques are also available. The most notable disadvantage of using this method is that the insulation covering the pipe has to be removed before the inspection can be carried out and this is considered as not so cost effective. Due to this reason, the possibility of employing other alternative NDT method, namely radiographic testing method were studied. The technique used in this studied are known as tangential technique. In this study it was found that the result found using tangential technique is consistent with the actual thickness of the pipe. Result of this study is presented and discussed in this paper. (Author)

  1. Non-destructive microstructural analysis with depth resolution

    Energy Technology Data Exchange (ETDEWEB)

    Zolotoyabko, E. E-mail: zloto@tx.technion.ac.il; Quintana, J.P

    2003-01-01

    A depth-sensitive X-ray diffraction technique has been developed with the aim of studying microstructural modifications in inhomogeneous polycrystalline materials. In that method, diffraction profiles are measured at different X-ray energies varied by small steps. X-rays at higher energies probe deeper layers of material. Depth-resolved structural information is retrieved by comparing energy-dependent diffraction profiles. The method provides non-destructive depth profiling of the preferred orientation, grain size, microstrain fluctuations and residual strains. This technique is applied to the characterization of seashells. Similarly, energy-variable X-ray diffraction can be used for the non-destructive characterization of different laminated structures and composite materials.

  2. NonDestructive Evaluation for Industrial & Development Applications

    Energy Technology Data Exchange (ETDEWEB)

    Hunter, James F. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-10-12

    Provide overview of weld inspection for Non-Destructive Testing at LANL. This includes radiography (RT/DR/CR/CT for x-ray & neutron sources), ultrasonic testing (UT/PAUT), dye penetrant inspection (PT), eddy current inspection (ET) and magnetic particle testing (MT). Facilities and capabilities for weld inspection will be summarized with examples.

  3. Impact to non-destructive testing (NDT) companies of PNRI/PSNT trained NDT personnel

    International Nuclear Information System (INIS)

    De Jesus, Teresita G.

    2002-12-01

    This research discusses the impact to non-destructive testing (NDT) companies of PNRI/PSNT trained NDT personnel to the individual and to the organization that the individual belongs in the midst of competitive, demanding and fast-paced workplace in the NDT industry. Related literature and studies were carefully chosen and reviewed to validate the consistencies of the research design and data gathering relationship to the present undertaking to previous studies were also discussed and analyzed. The research design used were the descriptive-normative survey method together with a questionnaire consisting of six (6) parts. The first part includes queries on personal/demographic profiles of respondents. The second part contains queries on the level of expectation of the respondents of the job-related variables. The third part contains queries on the levels of adequacy of the organization-related variables. The fourth part consists of questions on the impact of the PNRI/PSNT trained NDT personnel before and after the training. It is divided into two sections, first was for the organization and second was for the individual development. The fifth part was on the analysis of the personal-related factors that influence the impact of the PNRI/PSNT trained NDT personnel. The last part was to find out the significant differences on the impact of the training as to methods. A five-point scale was used to quantify the degree of respondents' responses to queries in the questionnaires. In addition, the following statistical formula were used for treatment of gathered data were frequency percentage, ranking, wilcoxon signed ranks test and spearman rho. The null hypotheses that were presented for acceptance or rejection were also tested. Presentation of findings, analysis and interpretations were presented based on the data gathered and the computations. Recommendations were discussed based on the findings. It is recommended that training of NDT personnel in the different NDT

  4. Fatigue crack growth monitoring: fracture mechanics and non-destructive testing requirements

    International Nuclear Information System (INIS)

    Williams, S.; Mudge, P.J.

    1982-01-01

    If a fatigue crack is found in a component in service, two options exist if plant integrity is to be maintained: first, the plant can be removed from service and repairs effected or replacements fitted; second, the growth of the crack can be monitored non-destructively until it is either considered to be too large to tolerate, in which case it must be repaired, or until a convenient down time when repair can be effected. The second option has obvious benefits for plant operators, but in such a situation it is essential that errors of the non-destructive estimate of defect size, which will undoubtedly exist, and uncertainties in the fatigue crack growth laws in operation must both be allowed for if a safe extension of service life is to be obtained; i.e. without failure by leakage or fast fracture arising from the fatigue crack. This paper analyses the accuracy required of non-destructive crack measurement techniques to permit the safe monitoring of crack growth by periodic inspection. It then demonstrates that it is possible to achieve adequate crack monitoring using conventional ultrasonic techniques. (author)

  5. Non-destructive evaluation on mechanical properties of nuclear graphite with porous structure

    International Nuclear Information System (INIS)

    Shibata, Taiju; Hanawa, Satoshi; Sumita, Junya; Tada, Tatsuya; Sawa, Kazuhiro; Iyoku, Tatsuo

    2005-01-01

    As a research subjects of 'Research and development for advanced high temperature gas cooled reactor fuels and graphite components,' we started the study of development of non-destructive evaluation methods for mechanical properties of graphite components. The micro-indentation and ultrasonic wave methods are focused to evaluate the degradation of graphite components in VHTR core. For the micro-indentation method, the test apparatus was designed for the indentation test on graphite specimens with some stress levels. It is expected the stress condition is evaluated by the indentation load-depth characteristics and hardness. For the ultrasonic wave method, ultrasonic wave testing machine and probes were prepared for experiments. It is expected that the stress and inner porous conditions are evaluated by the wave propagation characteristics with wave-pore interaction model. R and D plan to develop the non-destructive evaluation method for graphite is presented in this paper. (This study is the result of contract research in the fiscal year of 2004, Research and development for advanced high temperature gas cooled reactor fuels and graphite components,' which is entrusted to the Japan Atomic Energy Research Institute from the Ministry of Education, Culture, Sports, Science and Technology of Japan.) (author)

  6. Oxidation damage evaluation by non-destructive method for graphite components in high temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Shibata, Taiju; Tada, Tatsuya; Sumita, Junya; Sawa, Kazuhiro

    2008-01-01

    To develop non-destructive evaluation methods for oxidation damage on graphite components in High Temperature Gas-cooled Reactors (HTGRs), the applicability of ultrasonic wave and micro-indentation methods were investigated. Candidate graphites, IG-110 and IG-430, for core components of Very High Temperature Reactor (VHTR) were used in this study. These graphites were oxidized uniformly by air at 500degC. The following results were obtained from this study. (1) Ultrasonic wave velocities with 1 MHz can be expressed empirically by exponential formulas to burn-off, oxidation weight loss. (2) The porous condition of the oxidized graphite could be evaluated with wave propagation analysis with a wave-pore interaction model. It is important to consider the non-uniformity of oxidized porous condition. (3) Micro-indentation method is expected to determine the local oxidation damage. It is necessary to assess the variation of the test data. (author)

  7. Destructive and non-destructive methods of measuring the quantity and isotopic composition of fissile materials for purposes of national safeguards in the German Democratic Republic

    International Nuclear Information System (INIS)

    Villun, K.; Gruner, V.; Siebert, Kh.U.; Hoffmann, D.

    1979-01-01

    The authors give a brief description of the destructive and non-destructive methods of measuring the quantity and isotopic composition of fissile materials used in the nuclear materials accounting and control system of the German Democratic Republic. They cite examples of the use of gamma-spectrometry, X-ray fluorescence analysis, neutron activation, radiochemical techniques, mass-spectrometry and alpha-spectrometry. (author)

  8. Application of non-destructive methods for qualification of the U3O8-Al and U3Si2-Al dispersion fuels in the IEA-R1 Reactor

    International Nuclear Information System (INIS)

    Silva, Jose Eduardo Rosa da

    2011-01-01

    IPEN/CNEN-SP manufactures fuels to be used in its nuclear research reactor - the IEA-R1. To qualify those fuels, it is necessary to check if they have a good performance under irradiation. As Brazil doesn't have nuclear research reactors with high neutron fluxes, or suitable hot cells for carrying out post-irradiation examination of nuclear fuels, IPEN/CNEN-SP has conducted a fuel qualification program based on the use of uranium compounds, internationally tested and qualified to be used in research reactors, and has gotten experience in the technological development stages for the manufacturing of fuel plates, irradiation and non-destructive post-irradiation testing. Fuel elements containing low volume fractions of fuel in the dispersion were manufactured and irradiated successfully directly in the core of the IEA-R1. However, there are plans to increase the uranium density of these fuels. The objective of this thesis work was to study and to propose a set of non-destructive methods to qualify the dispersions fuels U 3 O 8 -Al e U 3 Si 2 -Al with high uranium density produced at IPEN/CNEN-SP. For that, the irradiation resources in the IEA-R1, and the application of non-destructive methods in the reactor pool available in the Institution were considered. The proposal is to specify, manufacture and irradiate fuel mini plates in IEA-R1 at the maximum densities, qualified internationally, and to monitor their general conditions during the period of irradiation, using non-destructive methods in the reactor pool. In addition to the non-destructive visual inspection and sipping methods, already used at the Institution, the infrastructure for dimensional sub-aquatic testing to evaluate the swelling of irradiated fuel mini plates was completed. The analyses of the results will provide means to assess and decide whether or not to continue with the irradiation of mini plates, until the desired burnup for the irradiation tests at IEA-R1 are reached. (author)

  9. Non-destructive methods of control of thermo-physical properties of fuel rods

    International Nuclear Information System (INIS)

    Kruglov, A B; Kruglov, V B; Kharitonov, V S; Struchalin, P G; Galkin, A G

    2017-01-01

    Information about the change of thermal properties of the fuel elements needed for a successful and safe operation of the nuclear power plant. At present, the existing amount of information on the fuel thermal conductivity change and “fuel-shell” thermal resistance is insufficient. Also, there is no technique that would allow for the measurement of these properties on the non-destructive way of irradiated fuel elements. We propose a method of measuring the thermal conductivity of the fuel in the fuel element and the contact thermal resistance between the fuel and the shell without damaging the integrity of the fuel element, which is based on laser flash method. The description of the experimental setup, implementing methodology, experiments scheme. The results of test experiments on mock-ups of the fuel elements and their comparison with reference data, as well as the results of numerical modeling of thermal processes that occur during the measurement. Displaying harmonization of numerical calculation with the experimental thermograms layout shell portions of the fuel cell, confirming the correctness of the calculation model. (paper)

  10. Ultrasonic transverse velocity calibration of standard blocks for use in non-destructive testing

    International Nuclear Information System (INIS)

    Silva, C E R; Braz, D S; Maggi, L E; Felix, R P B Costa

    2015-01-01

    Standard blocks are employed in the verification of the equipment used in Ultrasound Non-Destructive Testing. To assure the metrology reliability of all the measurement process, it is necessary to calibrate or certify these Standard blocks. In this work, the transverse wave velocity and main dimensions were assessed according to the specifications ISO Standards. For transverse wave velocity measurement, a 5 MHz transverse wave transducer, a waveform generator, an oscilloscope and a computer with a program developed in LabVIEW TM were used. Concerning the transverse wave velocity calibration, only two Standard blocks of the 4 tested is in accordance with the standard

  11. Microwave Detection of Laser Ultrasonic for Non-Destructive Testing, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — In this proposal, we describe a program to develop a high-performance, cost-effective and robust microwave receiver prototype for multi-purpose Non-Destructive...

  12. Feasibility Study of Non-Destructive Techniques to Measure Corrosion in SAVY Containers

    Energy Technology Data Exchange (ETDEWEB)

    Davenport, Matthew Nicholas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-07-15

    Stainless Steel SAVY containers are used to transport and store nuclear material. They are prone to interior corrosion in the presence of certain chemicals and a low-oxygen environment. SAVY containers also have relatively thin walls to reduce their weight, making their structural integrity more vulnerable to the effects of corrosion. A nondestructive evaluation system that finds and monitors corrosion within containers in use would improve safety conditions and preclude hazards. Non-destructive testing can determine whether oxidation or corrosion is occurring inside the SAVY containers, and there are a variety of non-destructive testing methods that may be viable. The feasibility study described will objectively decide which method best fits the requirements of the facility and the problem. To improve efficiency, the containers cannot be opened during the non-destructive examination. The chosen technique should also be user-friendly and relatively quick to apply. It must also meet facility requirements regarding wireless technology and maintenance. A feasibility study is an objective search for a new technology or product to solve a particular problem. First, the design, technical, and facility feasibility requirements are chosen and ranked in order of importance. Then each technology considered is given a score based upon a standard ranking system. The technology with the highest total score is deemed the best fit for a certain application.

  13. Shearography applications in non-dectructive testing

    International Nuclear Information System (INIS)

    Wan Saffiey Wan Abdullah

    2002-01-01

    Shearography method in non-destructive testing has been accepted in industrial application since it was introduced in 1982. This method provide some advantageous over other conventional NDT methods such as eddy current, dye penetrant, ultrasound and radiological methods. It offers real time, non-contact, whole field, fast and non-contamination measurements. Shearography is based on laser speckle phenomena due to the scattering of laser light from various depth of a defuse object surface. The speckle pattern on the object surface are then optically sheared one relative to another and hence formed a sheared image on the image plane. The fringe pattern observed due to correlation of speckle patterns as a consequence of surface deformation. Material flaws can be represented by the fringe anomalies of the inspected surface. The size, location and depth of defect can also be investigated. By means of optical and image manipulation, data can be quantitatively analysed. In this paper, the principle and application of shearography in non-destructive testing are presented. (Author)

  14. Non-destructive evaluation methods to improve quality control in low enrichment MTR fuel plate production

    International Nuclear Information System (INIS)

    Milne, J.M.; Lidington, B.; Hawker, B.M.

    1991-01-01

    This paper summarises some preliminary non-destructive measurements made recently at the Harwell Laboratory on a prototype low enrichment MTR fuel plate. The measurements were intended to indicate the potential of two different techniques for improving quality control in plate production. Pulse Video Thermography (PVT) is being considered as an alternative to ultrasound transmission measurements for the detection and sizing of lack of thermal bonding between the fuel and the clad layers, either to verify the indications from the established ultrasonic methods before destroying the plate or as a replacement method of inspection. High frequency pulse-echo ultrasonics is being considered for providing maps of clad layer thickness on each side of the plate. The measurements have indicated the potential for both methods, but more work is required, using a test plate containing controlled defects, to establish their capability. (orig.)

  15. The non-destructive control, a major constituent of quality

    International Nuclear Information System (INIS)

    Anon.

    1998-01-01

    The number of continuous research and development works about non-destructive control in all sectors of activity is justified by the increasing need for high quality materials without anomalies. This paper gives a overview of the state of the art and of the recent trends in non-destructive testing researches in different sectors: aeronautics, nuclear industry, automotive industry. New studies and techniques are presented: ultrasonic testing of welds on large diameter pipes, automated applications of ultrasonic testing, ultrasound/computer-aided design coupling, pressure vessels inspection using acoustic emission testing (leaks detection, application to composite materials), numerical radiography (image visualisation and processing), magnetic testing (steel damage detection using Barkhausen noise testing), 'shearography' (detection of the loss of thickness in pipes due to corrosion), X-ray tomography (density measurement of sintered steels, fluid flow calculations in automobile parts). (J.S.)

  16. Non-destructive examination system of vitreous body

    Science.gov (United States)

    Shibata, Takuma; Gong, Jin; Watanabe, Yosuke; Kabir, M. Hasnat; Masato, Makino; Furukawa, Hidemitsu; Nishitsuka, Koichi

    2014-04-01

    Eyeball plays a quite important role in acquiring the vision. Vitreous body occupies the largest part of the eyeball and consists of biological, elastic, transparent, gel materials. In the present medical examination, the non-destructive examination method of the vitreous body has not been well established. Here, we focus on an application of dynamic light scattering to this topic. We tried to apply our lab-made apparatus, scanning microscopic light scattering (SMILS), which was specially designed for observing the nanometer-scale network structure in gel materials. In order to examine the vitreous body using SMILS method, a commercial apparatus, nano Partica (Horiba Co. Ltd.) was also customized. We analyzed vitreous body using both the SMILS and the customized nano Partica. We successfully examined the vitreous bodies of healthy pigs in non-destructive way.

  17. Non destructive testing and neutron radiography in 1994; Les controles non destructifs et la neutronographie en 1994

    Energy Technology Data Exchange (ETDEWEB)

    Bayon, G.

    1994-12-31

    Neutron radiography has been considered for a long time as a promising technique; however it plays a minor part in the world of non destructive testing today, due to the lack of suitable neutron sources and lack of new industrial applications. This paper reviews the present status of neutron sources, neutron radiography activities, especially in France (such as the neutron-capture-issued secondary radiation spectrometry), in nuclear, aerospace, aeronautical and metallurgical sectors, and the last applications of neutron dynamic imaging. 9 refs.

  18. Non destructive method of determination of depth profiling with ESCA spectroscopy by angular distribution

    International Nuclear Information System (INIS)

    Pijolat, Michele.

    1979-07-01

    The aim of this study has been to determine the possibilities of photoelectron spectroscopy ESCA for depth profiling in the first hundred angstrom of a compound. First of all, the technique ESCA has been described in an analytical point of view. Then, the common sputter profiling method has been tested, and a model to deduce the concentrations profile has been formulated. However the analysis of the various effects due to the sputtering events showed that this method is able to give only the profile shape with a bad depth resolution. A new non destructive method based on the analysed depth dependence with photoelectrons emission angle is settled. A computational method (simplexe optimization) is used to deduce the concentrations profile. Simulation have revealed the necessity of submitting constraints proper to the system physical properties and allowed to state the applicability range of the method. The interface profiles Ag-Pd, Ag-Al 2 O 3 and SiO 2 -Si have been measured, and the surface segregation in CuNi alloy has been studied [fr

  19. Analysis of a Single Hot Particle by a Combination of Non-Destructive Analytical Methods

    Energy Technology Data Exchange (ETDEWEB)

    Hrnecek, E.; Aldave de las Heras, L.; Bielewski, M.; Carlos, R. [EC JRC Institute for Transuranium Elements, Karlsruhe (Germany); Betti, M. [IAEA Environment Laboratories (Monaco)

    2013-07-15

    Radioactive substances are often released to the environment in the form of particles. The determination of their chemical composition is a key factor in the overall understanding of their environmental behaviour. The aim of this investigation was to identify the source of one single radioactive particle collected from the Irish Sea and to understand its fate in the environment and in human body fluids. As the particle was supposed to be analysed for its dissolution behaviour in humans after ingestion, it was necessary to gain as much information as possible beforehand on the chemical and isotopic composition by means of non-destructive analysis such as SEM, SIMS, {mu}-XRF and {mu}-XANES. In this paper, an overview of the different non-destructive methods applied for the analysis of this particle and the results obtained is given. Additionally, the dissolution behaviour in human digestive solutions is discussed. (author)

  20. Current developments in mechanized non-destructive testing in nuclear power plants; Aktuelle Entwicklungen bei mechanisierten, zerstoerungsfreien Pruefungen in Kernkraftwerken

    Energy Technology Data Exchange (ETDEWEB)

    Zeilinger, R. [intelligeNDT System und Services GmbH und Co. KG, Erlangen (Germany)

    2008-01-15

    Nuclear power plants require frequent in-service activities to be carried out conscientiously in areas potentially hazardous to human operators (because of the associated radiation exposure), such as non-destructive testing of pressurized components of the steam system. Locations to be inspected in this way include the reactor pressure vessel, core internals, steam generators, pressurizers, and pipes. The codes to be used as a basis of these inspections demand high absolute positioning and repeating accuracy. These requirements can be met by mechanized test procedures. Accordingly, many new applications of, mostly mobile, robots have been developed over the past few years. The innovative control and sensor systems for stationary and mobile robots now on the market offer a potential for economic application in a large number of new areas in inspection, maintenance and service in nuclear power plants. More progress in this area is expected for the near future. Areva NP founded the new NDT Center, NETEC (Non-destructive Examination Technical Center), as a global technical center for non-destructive materials testing. NETEC is to advance research and development of all basic NDT technologies, robotics included. For many years, intelligeNDT has offered solutions and products for a variety of inspection and testing purposes and locations in nuclear power plants and is involved in continuous further development of the experience collected in nuclear power plants on the spot. (orig.)

  1. Ultrasonic non-destructive testing on CFC monoblock divertor mock-up

    International Nuclear Information System (INIS)

    Ezato, K.; Taniguchi, M.; Sato, K.; Araki, M.; Akiba, M.

    2001-01-01

    Non-destructive ultrasonic testing has been applied for the characterization of joints by means of a polymer transducer. One of the advantages of the polymer transducer is flexibility in its shape and the possibility to install multiple transducers in one probe, which can reduce the time for inspection. As a first step, the size effect of the transducer on the resolution and sensitivity was examined to detect the joint flaw. Transducers with circumferential angles of 5 , 10 and 30 were tested. For this test a small divertor element with a driller hole was prepared, which simulates a joint defect. The transducers with angles of 30 could not characterize the size of the artificial joint flaw. On the contrary, the size of the artificial defect was successfully detected with an accuracy of 90% by means of the transducers with angles of 5 and 10 . From the viewpoint of the sensitivity of the detection of the joint flaw, the transducer with the angle of 10 is appropriate because it could detect the largest intensity of the reflected signal caused by the same artificial defect of the joint interface. (orig.)

  2. Study of Lamb Waves for Non-Destructive Testing Behind Screens

    Science.gov (United States)

    Kauffmann, P.; Ploix, M.-A.; Chaix, J.-F.; Gueudré, C.; Corneloup, G.; Baqué, F. AF(; )

    2018-01-01

    The inspection and control of sodium-cooled fast reactors (SFR) is a major issue for the nuclear industry. Ultrasonic solutions are under study because of the opacity of liquid sodium. In this paper, the use of leaky Lamb waves is considered for non-destructive testing (NDT) on parallel and immersed structures assimilated as plates. The first phase of our approach involved studying the propagation properties of leaky Lamb waves. Equations that model the propagation of Lamb waves in an immersed plate were solved numerically. The phase velocity can be experimentally measured using a two dimensional Fourier transform. The group velocity can be experimentally measured using a short-time Fourier transform technique. Attenuation of leaky Lamb waves is mostly due to the re-emission of energy into the surrounding fluid, and it can be measured by these two techniques.

  3. Non destructive nuclear measurements for control and characterization purpose

    International Nuclear Information System (INIS)

    Lyoussi, Abdallah

    2002-01-01

    In this report for accreditation to supervise researches, the author proposes a large and rather precise overview of his research works which dealt with the upstream and downstream parts of the nuclear fuel cycle. After having discussed the different needs associated with non destructive nuclear measurements during the fuel cycle, the author describes his past research activities. In the following parts, he discusses control and characterization methods associated with the upstream and downstream parts of the fuel cycle: fuel density variation measurement, non destructive control of uranium-235 content of enriched uranium ingots, examination of induced photo-fissions in radioactive waste parcels, use of electron accelerator for simultaneous neutron and photon examination, measurement of the spatial distribution of the photonic component from the Mini Linatron, association of non destructive measurement techniques

  4. Application of golay complementary coded excitation schemes for non-destructive testing of sandwich structures

    Science.gov (United States)

    Arora, Vanita; Mulaveesala, Ravibabu

    2017-06-01

    In recent years, InfraRed Thermography (IRT) has become a widely accepted non-destructive testing technique to evaluate the structural integrity of composite sandwich structures due to its full-field, remote, fast and in-service inspection capabilities. This paper presents a novel infrared thermographic approach named as Golay complementary coded thermal wave imaging is presented to detect disbonds in a sandwich structure having face sheets from Glass/Carbon Fibre Reinforced (GFR/CFR) laminates and core of the wooden block.

  5. Thermal shock resistance of ceramic fibre composites characterized by non-destructive methods

    Directory of Open Access Journals (Sweden)

    M. Dimitrijević

    2008-12-01

    Full Text Available Alumina based ceramic fibres and alumina based ceramic were used to produce composite material. Behaviour of composite ceramics after thermal shock treatments was investigated. Thermal shock of the samples was evaluated using water quench test. Surface deterioration level of samples was monitored by image analysis before and after a number of quenching cycles. Ultrasonic measurements were done on samples after quench tests. Dynamic Young modulus of elasticity and strength degradation were calculated using measured values of ultrasonic velocities. Strengths deterioration was calculated using the non-destructive measurements and correlated to degradation of surface area and number of quenches. The addition of small amount of ceramic fibres improves the strengths and diminishes the loss of mechanical properties of samples during thermal shock experiments.

  6. Pipe robots for internal inspection, non-destructive testing and machining of pipelines

    International Nuclear Information System (INIS)

    Reiss, Alexander

    2016-01-01

    Inspector Systems is a specialist in manufacturing of tethered self-propelled pipe robots for internal inspection, non-destructive testing and machining of pipeline systems. Our industrial sectors, which originates from 30 year experience in the nuclear industry, are Gas and Oil (On-/Offshore, Refineries), Chemical, Petrochemical, Water etc. The pipe robots are able to get inserted through poor access points (e.g. valves) and to pass in bi-directional travelling vertical sections and numerous bends with small arc radius. The paper describes the system concept and performance of the pipe robot technology. A modular construction allows to equip the robots with different operational elements for the respective application.

  7. Corrosion and deposit evaluation in industrial plants by non destructive testing method

    International Nuclear Information System (INIS)

    Azali Muhammad; Abd Razak Hamzah; Abd Aziz Mohamed; Mohd Pauzi Ismail; S Saad; S Sayuti; S Ahmad

    2000-01-01

    In petrochemical plants, the detection of corrosion and evaluation of deposit in insulated pipes using a radiography method are very challenging tasks. This main degradation problem experienced by pipelines is due to water condensation. It will cause deposit and scale inside the pipe, as well as between the insulation and pipe for the cold temperature pipes. On the other hand, for the hot temperature pipes the main problem is mainly due to corrosion/erosion attack inside the pipe. In the case of corrosion study one of the most important parameters in a piping or pipeline to be monitored and measured is that the wall thickness. In general, most pipeline corrosion monitoring and evaluation for both insulated and non-insulated pipes is done by using an ultrasonic method. The most common technique for corrosion is that based on the A-Scan, using either a normal flow detector or some form of dedicated equipment. However, with recent development of ultrasonic technology, more advance method, namely B-Scan and C-scan techniques are also available. The most notable disadvantage of using this current method is that the insulation covered the pipe has to be removed before the inspection can be carried out and this is considered as not so cost effective. Due to this reason other alternative NDT method, namely radiographic testing method has been studied. The testing technique used in this studied are tangential technique and double wall radiographic technique which involve studying the changing in density of radiographic film. The result found using tangential technique is consistent with real thickness of the pipe. However for the later technique the result is only achieved with a reasonable accuracy when the changing in wall thickness is very small. The result of the studies is discussed in this paper

  8. Issues of weapons of mass destruction non-proliferation in Tajikistan

    International Nuclear Information System (INIS)

    Mirsaidov, U.M.

    2010-01-01

    This article is devoted to issues of weapons of mass destruction non-proliferation in Tajikistan. Over a period of 20 century, starting from First World War, the weapons of mass destruction arouse serious concern of world community. Geneva protocol of 1925 prohibits the use of chemical and biological weapons. Once nuclear weapon was created, the weapons of mass destruction distributions become the subject of high concern. Besides, during the end of 'cold war', regional conflicts, collapse of Soviet Union, as well as access to sensitive technologies considerably increase the danger of weapons of mass destruction distribution. More than 10 countries have active programs, relating to weapons of mass destruction and, possibly, more than ten countries have potential to start implementing such kinds of programs. Nowadays, trans national organized criminal groups and international terrorist networks are appeared in the world scene, which show interest in obtaining an access to sensitive materials, technologies, weapons and their distribution. After 11 September events, the risk of such weapons of mass destruction components use by such forces for Governments blackmail become real scene, which, despite of low possibility of this threat implementation, could have very serious and disastrous consequences. International community responded to these problems and challenges, basically through the following actions, which is detailed regime development of multilateral international treaties, directed to weapons of mass destruction distribution prevention. Non-proliferation treaty of nuclear weapons, Convention on prohibition of chemical weapons and Convention on prohibition of biological and toxin weapons are some of them. As it is known, Tajikistan signed all these treaties. For different reasons these treaties were subject of serious tests. Nuclear weapons tests in India and Pakistan in 1998 year, actual Israel status as state having nuclear weapon and North Korean program on

  9. Limits to the Recognizability of Flaws in Non-Destructive Testing Steam-Generator Tubes for Nuclear-Power Plants

    International Nuclear Information System (INIS)

    Kuhlmann, A.; Adamsky, F.-J.

    1965-01-01

    In the Federal Republic of Germany there are nuclear reactors under construction with steam generators inside the reactor pressure-vessel. As a result design repairs of steam- generator tubes are very difficult and cause large shut-down times of the nuclear-power plant. It is known that numerous troubles in operating conventional power plants are results of steam-generator tube damages. Because of the high total costs of these reactors it. is necessary to construct the steam generators especially in such a manner that the load factor of the power plant is as high as possible. The Technischer Überwachungs-Verein Rheinland was charged to supervise and to test fabrication and construction of the steam generators to see that this part of the plant was as free of defects as possible. The experience gained during this work is of interest for manufacture and construction of steam generators for nuclear-power plants in general. This paper deals with the efficiency limits of non-destructive testing steam-generator tubes. The following tests performed will be discussed in detail: (a) Automatic ultrasonic testing of the straight tubes in the production facility; (b) Combined ultrasonic and radiographic testing of the bent tubes and tube weldings; (c) Other non-destructive tests. (author) [fr

  10. Non-destructive testing of rocket propellant quality using -X-ray radiography

    International Nuclear Information System (INIS)

    Arayaprecha, W.

    1979-01-01

    Currently, X-rays radiography has been used extensively in various industries. In this thesis, X-rays has been used in the study of compaction of rocket propellant. For a rocket, to gain an accurate guidance result, the propellant used must be mixed and compacted thoroughly. The quality control of the production of propellant sticks must be carefully done. In this study of non-destructive quality testing of rocket propellant, at first the ultrasonic rays was used to test its homogeneity. However, because the density of the propellant was too low, the test equipment could not detect any reflected signals from the propellant being tested. Then the new procedure using X-rays radiography was tried. The variables in the test procedure were voltage, amperage and the focal-film distance. Also different types of films were used. The results of this experiment were then used to construct an exposure chart for testing the homogeneity of the rocket propellant. The advantage of this chart is that a tester can use this table with propellant sticks of different sizes if they have similar density to the density specified in the chart. Also, it is not necessary that the mixture of the testing propellant be the same as the ones used to construct this chart

  11. Selection of non-destructive assay methods: Neutron counting or calorimetric assay?

    International Nuclear Information System (INIS)

    Cremers, T.L.; Wachter, J.R.

    1994-01-01

    The transition of DOE facilities from production to D ampersand D has lead to more measurements of product, waste, scrap, and other less attractive materials. Some of these materials are difficult to analyze by either neutron counting or calorimetric assay. To determine the most efficacious analysis method, variety of materials, impure salts and hydrofluorination residues have been assayed by both calorimetric assay and neutron counting. New data will be presented together with a review of published data. The precision and accuracy of these measurements are compared to chemistry values and are reported. The contribution of the gamma ray isotopic determination measurement to the overall error of the calorimetric assay or neutron assay is examined and discussed. Other factors affecting selection of the most appropriate non-destructive assay method are listed and considered

  12. Assessment of hydrogen levels in Zircaloy-2 by non-destructive testing

    International Nuclear Information System (INIS)

    De, P.K.; John, J.T.; Banerjee, S.; Jayakumar, T.; Thavasimuthu, M.; Raj, B.

    1998-01-01

    A non-destructive assessment of Zircaloy-2 samples charged with hydrogen in the range of 50 to 1150 mg/kg has been made using ultrasonic and eddy current testing. It has been found that the ratio of the longitudinal to the shear wave velocity is a parameter which can be directly correlated with the hydrogen content up to a level of 100 to 200 mg/kg. This parameter together with the values of longitudinal and shear wave velocities can be utilized in a multi-parametric correlation approach for estimation of higher levels of the hydrogen content (up to 1150 mg/kg). The sensitivity at different ranges has been found to be acceptable. Ultrasonic attenuation measurements at higher frequencies and eddy current test parameter are also effective for estimation of hydrogen levels above 250 mg/kg in zirconium alloys. Microstructural characterization including TEM studies have been carried out for studying the influence of the type and the morphology of hydride precipitates on ultrasonic parameters. (orig.)

  13. Non-Destructive Evaluation Method Based On Dynamic Invariant Stress Resultants

    Directory of Open Access Journals (Sweden)

    Zhang Junchi

    2015-01-01

    Full Text Available Most of the vibration based damage detection methods are based on changes in frequencies, mode shapes, mode shape curvature, and flexibilities. These methods are limited and typically can only detect the presence and location of damage. Current methods seldom can identify the exact severity of damage to structures. This paper will present research in the development of a new non-destructive evaluation method to identify the existence, location, and severity of damage for structural systems. The method utilizes the concept of invariant stress resultants (ISR. The basic concept of ISR is that at any given cross section the resultant internal force distribution in a structural member is not affected by the inflicted damage. The method utilizes dynamic analysis of the structure to simulate direct measurements of acceleration, velocity and displacement simultaneously. The proposed dynamic ISR method is developed and utilized to detect the damage of corresponding changes in mass, damping and stiffness. The objectives of this research are to develop the basic theory of the dynamic ISR method, apply it to the specific types of structures, and verify the accuracy of the developed theory. Numerical results that demonstrate the application of the method will reflect the advanced sensitivity and accuracy in characterizing multiple damage locations.

  14. Non-destructive controls in the mechanical industry

    Energy Technology Data Exchange (ETDEWEB)

    Jarlan, L

    1978-12-01

    The sequence of operations implicating the mechanical industries from the suppliers to their customers is briefly recalled; a description of the field of application of non-destructive control methods in these industries is given. Follows a description of some recent typical applications of the principal methods: radiography, ultrasonic waves, magnetism, acoustic emission, sonic control, tracer techniques.

  15. Non-Destructive Thermography Analysis of Impact Damage on Large-Scale CFRP Automotive Parts

    Science.gov (United States)

    Maier, Alexander; Schmidt, Roland; Oswald-Tranta, Beate; Schledjewski, Ralf

    2014-01-01

    Laminated composites are increasingly used in aeronautics and the wind energy industry, as well as in the automotive industry. In these applications, the construction and processing need to fulfill the highest requirements regarding weight and mechanical properties. Environmental issues, like fuel consumption and CO2-footprint, set new challenges in producing lightweight parts that meet the highly monitored standards for these branches. In the automotive industry, one main aspect of construction is the impact behavior of structural parts. To verify the quality of parts made from composite materials with little effort, cost and time, non-destructive test methods are increasingly used. A highly recommended non-destructive testing method is thermography analysis. In this work, a prototype for a car’s base plate was produced by using vacuum infusion. For research work, testing specimens were produced with the same multi-layer build up as the prototypes. These specimens were charged with defined loads in impact tests to simulate the effect of stone chips. Afterwards, the impacted specimens were investigated with thermography analysis. The research results in that work will help to understand the possible fields of application and the usage of thermography analysis as the first quick and economic failure detection method for automotive parts. PMID:28788464

  16. Non-Destructive Thermography Analysis of Impact Damage on Large-Scale CFRP Automotive Parts

    Directory of Open Access Journals (Sweden)

    Alexander Maier

    2014-01-01

    Full Text Available Laminated composites are increasingly used in aeronautics and the wind energy industry, as well as in the automotive industry. In these applications, the construction and processing need to fulfill the highest requirements regarding weight and mechanical properties. Environmental issues, like fuel consumption and CO2-footprint, set new challenges in producing lightweight parts that meet the highly monitored standards for these branches. In the automotive industry, one main aspect of construction is the impact behavior of structural parts. To verify the quality of parts made from composite materials with little effort, cost and time, non-destructive test methods are increasingly used. A highly recommended non-destructive testing method is thermography analysis. In this work, a prototype for a car’s base plate was produced by using vacuum infusion. For research work, testing specimens were produced with the same multi-layer build up as the prototypes. These specimens were charged with defined loads in impact tests to simulate the effect of stone chips. Afterwards, the impacted specimens were investigated with thermography analysis. The research results in that work will help to understand the possible fields of application and the usage of thermography analysis as the first quick and economic failure detection method for automotive parts.

  17. Non-Destructive Thermography Analysis of Impact Damage on Large-Scale CFRP Automotive Parts.

    Science.gov (United States)

    Maier, Alexander; Schmidt, Roland; Oswald-Tranta, Beate; Schledjewski, Ralf

    2014-01-14

    Laminated composites are increasingly used in aeronautics and the wind energy industry, as well as in the automotive industry. In these applications, the construction and processing need to fulfill the highest requirements regarding weight and mechanical properties. Environmental issues, like fuel consumption and CO₂-footprint, set new challenges in producing lightweight parts that meet the highly monitored standards for these branches. In the automotive industry, one main aspect of construction is the impact behavior of structural parts. To verify the quality of parts made from composite materials with little effort, cost and time, non-destructive test methods are increasingly used. A highly recommended non-destructive testing method is thermography analysis. In this work, a prototype for a car's base plate was produced by using vacuum infusion. For research work, testing specimens were produced with the same multi-layer build up as the prototypes. These specimens were charged with defined loads in impact tests to simulate the effect of stone chips. Afterwards, the impacted specimens were investigated with thermography analysis. The research results in that work will help to understand the possible fields of application and the usage of thermography analysis as the first quick and economic failure detection method for automotive parts.

  18. Non-destructive forensic latent fingerprint acquisition with chromatic white light sensors

    Science.gov (United States)

    Leich, Marcus; Kiltz, Stefan; Dittmann, Jana; Vielhauer, Claus

    2011-02-01

    Non-destructive latent fingerprint acquisition is an emerging field of research, which, unlike traditional methods, makes latent fingerprints available for additional verification or further analysis like tests for substance abuse or age estimation. In this paper a series of tests is performed to investigate the overall suitability of a high resolution off-the-shelf chromatic white light sensor for the contact-less and non-destructive latent fingerprint acquisition. Our paper focuses on scanning previously determined regions with exemplary acquisition parameter settings. 3D height field and reflection data of five different latent fingerprints on six different types of surfaces (HDD platter, brushed metal, painted car body (metallic and non-metallic finish), blued metal, veneered plywood) are experimentally studied. Pre-processing is performed by removing low-frequency gradients. The quality of the results is assessed subjectively; no automated feature extraction is performed. Additionally, the degradation of the fingerprint during the acquisition period is observed. While the quality of the acquired data is highly dependent on surface structure, the sensor is capable of detecting the fingerprint on all sample surfaces. On blued metal the residual material is detected; however, the ridge line structure dissolves within minutes after fingerprint placement.

  19. THz QCL-based active imaging dedicated to non-destructive testing of composite materials used in aeronautics

    Science.gov (United States)

    Destic, F.; Petitjean, Y.; Massenot, S.; Mollier, J.-C.; Barbieri, S.

    2010-08-01

    This paper presents a CW raster-scanning THz imaging setup, used to perform Non-Destructive Testing of KevlarTMand carbon fibre samples. The setup uses a 2.5 THz Quantum Cascade Laser as a source. Delamination defect in a Kevlar sample was detected showing a sensitivity to laser polarization orientation. Detection of a break in a carbon/epoxy sample was also performed.

  20. THz QCL-based active imaging dedicated to non-destructive testing of composite materials used in aeronautics

    OpenAIRE

    Destic, Fabien; Petitjean, Yoann; Massenot, Sébastien; Mollier, Jean-Claude; Barbieri, Stefano

    2010-01-01

    This paper presents a CW raster-scanning THz imaging setup, used to perform Non-Destructive Testing of KevlarTMand carbon fibre samples. The setup uses a 2.5 THz Quantum Cascade Laser as a source. Delamination defect in a Kevlar sample was detected showing a sensitivity to laser polarization orientation. Detection of a break in a carbon/epoxy sample was also performed.

  1. Training Guidelines in Non-Destructive Testing Techniques: Leak Testing at Level 2

    International Nuclear Information System (INIS)

    2012-01-01

    The International Atomic Energy Agency (IAEA) has been active in the promotion of non-destructive testing (NDT) technology for many decades. The prime reason for this interest has been the need for stringent standards for quality assurance for safe operation of nuclear and other industrial installations. The IAEA successfully executed a number of programmes, including technical cooperation projects (national and regional) and coordinated research projects (CRPs), in which NDT was an important part. Through these programmes, a large number of personnel have been trained in Member States, leading to the establishment of national certifying bodies responsible for the training and certification of NDT personnel. Consequently, a state of self-sufficiency in this area of technology has been achieved in many Member States. All along there has been a realization of the need to have well established training guidelines, in order to orient the IAEA experts who were involved in training and certification programmes, and to achieve some level of international uniformity and harmonization of training materials and certification processes, and consequent competence of NDT personnel.

  2. Analysis of body fluids for forensic purposes: from laboratory testing to non-destructive rapid confirmatory identification at a crime scene.

    Science.gov (United States)

    Virkler, Kelly; Lednev, Igor K

    2009-07-01

    Body fluid traces recovered at crime scenes are among the most important types of evidence to forensic investigators. They contain valuable DNA evidence which can identify a suspect or victim as well as exonerate an innocent individual. The first step of identifying a particular body fluid is highly important since the nature of the fluid is itself very informative to the investigation, and the destructive nature of a screening test must be considered when only a small amount of material is available. The ability to characterize an unknown stain at the scene of the crime without having to wait for results from a laboratory is another very critical step in the development of forensic body fluid analysis. Driven by the importance for forensic applications, body fluid identification methods have been extensively developed in recent years. The systematic analysis of these new developments is vital for forensic investigators to be continuously educated on possible superior techniques. Significant advances in laser technology and the development of novel light detectors have dramatically improved spectroscopic methods for molecular characterization over the last decade. The application of this novel biospectroscopy for forensic purposes opens new and exciting opportunities for the development of on-field, non-destructive, confirmatory methods for body fluid identification at a crime scene. In addition, the biospectroscopy methods are universally applicable to all body fluids unlike the majority of current techniques which are valid for individual fluids only. This article analyzes the current methods being used to identify body fluid stains including blood, semen, saliva, vaginal fluid, urine, and sweat, and also focuses on new techniques that have been developed in the last 5-6 years. In addition, the potential of new biospectroscopic techniques based on Raman and fluorescence spectroscopy is evaluated for rapid, confirmatory, non-destructive identification of a body

  3. Non-destructive testing of the MEGAPIE target

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Y., E-mail: yong.dai@psi.ch; Wohlmuther, M.; Boutellier, V.; Hahl, S.; Lagotzki, A.; Leu, H.; Linder, H.P.; Schwarz, R.; Spahr, A.; Zanini, L.; Kuster, D.; Gavillet, D.; Wagner, W.

    2016-01-15

    Non-destructive testing (NDT) is one important part of the post-irradiation examination (PIE) of the MEGAPIE target. It includes visual inspection and ultrasonic measurement of the beam window of the T91 LBE container and gamma mapping of the beam window of the AlMg{sub 3} safety-container. The visual inspection showed no visible failure in the proton beam window area of the T91 LBE container. The ultrasonic measurement demonstrated no detectable change in the wall thickness of the T91 beam window, which implies no severe corrosion effect induced by flowing LBE during the four-month irradiation period. The gamma mapping provided the distribution of {sup 22}Na, a spallation product, in the proton beam window area of the AlMg{sub 3} safety-container. The result was used to evaluate the accumulated proton fluence distribution profile, the input data for determining irradiation parameters. A maximum proton fluence of 1.9 × 10{sup 25} p/m2 was deduced. The corresponding displacement damage degree in the T91 beam window was 7.1 dpa. - Highlights: • MEGAPIE is to design, build, operate and explore a liquid lead–bismuth (LBE) spallation target for 1 MW of beam power. • NDT of the target components exposed to high fluxes of high-energy protons and spallation neutrons was conducted. • There are no evident failures and corrosion effect of LBE in the T91 steel liquid metal container after irradiation to 7.1 dpa.

  4. A non-destructive ammonium detection method as indicator for freshness for packed fish: Application on cod

    NARCIS (Netherlands)

    Heising, J.K.; Dekker, M.; Bartels, P.V.; Boekel, van M.A.J.S.

    2012-01-01

    This paper introduces a non-destructive method for monitoring headspace ammonium as an indicator for changes in the freshness status of packed fish. Electrodes in an aqueous phase in the package monitor changes in the concentration of ammonia produced in/on the packed fish and released in the

  5. A non-destructive selection method for faster growth at suboptimal temperature in common bean (Phaseolus vulgaris)

    NARCIS (Netherlands)

    Drijfhout, E.; Oeveren, J.C. van; Jansen, R.C.

    1991-01-01

    A non-destructive method has been developed to select common bean (Phaseolus vulgaris L.) plants whose growth is less effected at a suboptimal temperature. Shoot weight was determined at a suboptimal (14°C) and optimal temperature (20°C), 38 days after sowing and accessions identified with a

  6. Routes for GMR-Sensor Design in Non-Destructive Testing

    Directory of Open Access Journals (Sweden)

    Andreas Schütze

    2012-09-01

    Full Text Available GMR sensors are widely used in many industrial segments such as information technology, automotive, automation and production, and safety applications. Each area requires an adaption of the sensor arrangement in terms of size adaption and alignment with respect to the field source involved. This paper deals with an analysis of geometric sensor parameters and the arrangement of GMR sensors providing a design roadmap for non-destructive testing (NDT applications. For this purpose we use an analytical model simulating the magnetic flux leakage (MFL distribution of surface breaking defects and investigate the flux leakage signal as a function of various sensor parameters. Our calculations show both the influence of sensor length and height and that when detecting the magnetic flux leakage of µm sized defects a gradiometer base line of 250 µm leads to a signal strength loss of less than 10% in comparison with a magnetometer response. To validate the simulation results we finally performed measurements with a GMR magnetometer sensor on a test plate with artificial µm-range cracks. The differences between simulation and measurement are below 6%. We report on the routes for a GMR gradiometer design as a basis for the fabrication of NDT-adapted sensor arrays. The results are also helpful for the use of GMR in other application when it comes to measure positions, lengths, angles or electrical currents.

  7. Tone burst generator for a Non-Destructive Testing system based on ultrasonic guided waves

    OpenAIRE

    Jiménez Sánchez, Daniel

    2011-01-01

    English: This PFC provides a design of a tested and specific tone-burst generator circuit for a Non-Destructive System based on ultrasonid guided waves. This circuit includes a complementary protection circuit for the NDT system working in a pulse-echo configuration. In this paper, a brief state f art about different driving circuits employed in distinct NDE systems is presented. Castellano: El PFC proporciona un diseño electrónico específico y probado de un circuito excitador de salvas (C...

  8. Destructive and non-destructive tests for radioactive waste packages Task 3 Characterization of radioactive waste forms. A series of final reports (1985-89) No 43

    International Nuclear Information System (INIS)

    Odoj, R.

    1991-01-01

    On the basis of preliminary waste acceptance requirements quality control of radioactive waste has to be performed prior to interim storage or final disposal. The quality control can either be achieved by random tests on conditioned radioactive waste packages or by process qualification of the conditioning processes. One of the most important criteria is the activity of the radioactive waste product or packages. To get some first information on the waste package γ-spectrometric measurement is performed as non-destructive test. Besides the γ-emitting nuclides the α and β-emitting nuclides can be estimated by calculation if the waste was generated in nuclear power plants and the nuclide relations are known. If the non-destructive determination of nuclides is not sufficient or the non-radioactive content of the waste packages has to be identified sampling from the waste packages has to be performed. This can best be done by core drilling. To avoid the need of water for cooling the drill head, air cooled core drilling is investigated. As mixed wastes is not allowed for final disposal the determination of possible organic toxic materials like PCB, dioxin and furane-compounds in cemented wastes is conducted by GC-MS-investigations. For getting more knowledge in the field of process qualification concerning super compaction, instrumentation of the super compaction process is investigated and tested

  9. Improvement in reliability and accuracy of heater tube eddy current testing by integration with an appropriate destructive test

    International Nuclear Information System (INIS)

    Giovanelli, F.; Gabiccini, S.; Tarli, R.; Motta, P.

    1988-01-01

    A specially developed destructive test is described showing how the reliability and accuracy of a non-destructive technique can be improved if it is suitably accompanied by an appropriate destructive test. The experiment was carried out on samples of AISI 304L tubes from the low-pressure (LP) preheaters of a BWR 900 MW nuclear plant. (author)

  10. Non destructive analysis apparatus by eddy currents for non magnetic metallic products

    International Nuclear Information System (INIS)

    Coutanceau-Monteil, N.; Billy, F.; Bernard, A.

    1993-01-01

    The device for non destructive testing of nonmagnetic metallic surfaces uses eddy currents with two independent receptors at different positions around the emitting coil which is fed with current impulses and whose axis is parallel to the surface under study. 4 figs

  11. Contribution of expert systems to data processing in non-destructive control

    International Nuclear Information System (INIS)

    Augendre, H.; Perron, M.C.

    1990-01-01

    The increase of non-destructive control in industrial applications requires the development of new data processing methods. The expert system approach is able to provide signal modelling means which are closer to the human behaviour. Such methods used in more traditional programs lead to substantial improvements. These investigations come within our design to apply sophisticated methods to industrial non-destructive control. For defect characterization purposes in ultrasonic control, various supervised learning methods have been investigated in an experimental study. The traditional approach is concerned with statistics based methods, whereas the second one lies in learning logical decision rules valid within a numerical description space [fr

  12. Non-destructive testing: A guidebook for industrial management and quality control personnel

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-01-01

    The introduction and application of non-destructive testing (NDT) in industry is grossly misrepresented and misunderstood. It is often said that introduction of this expensive technology does not give any tangible returns or at least does not give returns proportional to the investment made. The facts, however, are exactly opposite to this notion and thinking. In fact, NDT, when appropriately applied, gives tremendous returns by way of savings in scrap by lowering the ultimate rates of rejection, saving valuable manufacturing time, increasing the overall quality and reliability of manufactured goods, providing an extension of plant life through preventive maintenance, saving unnecessary shutdowns, particularly through inservice inspection, and enhancement of a particular industry's reputation and consequent increased sales and profits. Therefore, even from a purely commercial viewpoint, NDT is of utmost importance for an industrial concern. The additional considerations of NDT's role in safety, failure and consequent accident prevention leave no doubt at all about the value and need of NDT. It is this point that needs to be fully appreciated by the industrial managers and decision makers at all levels. Management ought to understand in quite an unambiguous way that their products can only survive in the highly competitive markets of today if they have the adequate and optimum quality. This quality can be built into the manufactured goods only if suitable measures and methods of quality control are employed and that the most suitable methods in most situations are the non-destructive testing methods. Experience shows that in many cases of industrial decision making, proper knowledge of various aspects of a particular technology plays an important role. Therefore, if positive decisions are desired to be taken in favour of introducing NDT in industry in any country, its decision makers should be properly equipped with knowledge and information about this area of

  13. Non-destructive testing: A guidebook for industrial management and quality control personnel

    International Nuclear Information System (INIS)

    1999-01-01

    The introduction and application of non-destructive testing (NDT) in industry is grossly misrepresented and misunderstood. It is often said that introduction of this expensive technology does not give any tangible returns or at least does not give returns proportional to the investment made. The facts, however, are exactly opposite to this notion and thinking. In fact, NDT, when appropriately applied, gives tremendous returns by way of savings in scrap by lowering the ultimate rates of rejection, saving valuable manufacturing time, increasing the overall quality and reliability of manufactured goods, providing an extension of plant life through preventive maintenance, saving unnecessary shutdowns, particularly through inservice inspection, and enhancement of a particular industry's reputation and consequent increased sales and profits. Therefore, even from a purely commercial viewpoint, NDT is of utmost importance for an industrial concern. The additional considerations of NDT's role in safety, failure and consequent accident prevention leave no doubt at all about the value and need of NDT. It is this point that needs to be fully appreciated by the industrial managers and decision makers at all levels. Management ought to understand in quite an unambiguous way that their products can only survive in the highly competitive markets of today if they have the adequate and optimum quality. This quality can be built into the manufactured goods only if suitable measures and methods of quality control are employed and that the most suitable methods in most situations are the non-destructive testing methods. Experience shows that in many cases of industrial decision making, proper knowledge of various aspects of a particular technology plays an important role. Therefore, if positive decisions are desired to be taken in favour of introducing NDT in industry in any country, its decision makers should be properly equipped with knowledge and information about this area of

  14. Combining data in non-destructive testing; Fusion de donnees en CND pour le projet pace

    Energy Technology Data Exchange (ETDEWEB)

    Lavayssiere, B

    1994-03-01

    Non-destructive testing of some components requires quite often the use of several methods such as X-ray, ultrasonics, Eddy Currents. But the efficiency of a NDT method is highly dependent on the fact that the detectability of flaws in a specimen relies on the choice of the best method. Moreover a lot of inspection issues could benefit from the use of more than one test method, as each NDT method has its own physical properties and technological limits. Some questions still remain: how to combine data, at what level and for what functionality. Simple monomethod processes are well-known now. They include techniques like reconstruction which belongs to the so-called ill-posed problems in the field of mathematics. For NDT data processing, it has the ability to estimate real data from distorted ones coming from a probe. But, up to now there has been very few approaches for computer aided combination of results from different advanced techniques. This report presents the various mathematical fields involved towards that goal (statistical decision theory which allows the use of multiple hypothesis, non-linear decision theory for its capability to classify and to discriminate, graph theory to find the optimal path in an hypothesis graph and also fuzzy logic, multiple resolution analysis, artificial intelligence,...) and which combinations of methods are useful. Some images will illustrate this topic in which EDF is involved, and will explain what are the major goals of this work. Combining is not only an improvement of 3D visualisation which would allow to display simultaneously CAD or NDT data for example, but it consists in exploiting multisensor data collected via a variety of sophisticated techniques and presenting this information to the operator without overloading the operator/system capacities in order to reduce the uncertainty and to resolve the ambiguity inherent to mono method inspection. (author). 7 figs., 35 refs.

  15. Reliability of non-destructive testing methods

    International Nuclear Information System (INIS)

    Broekhoven, M.J.G.

    1988-01-01

    This contribution regards the results of an evaluation of the reliability of radiography (X-rays and gamma-rays), manual-, and mechanized/automated ultrasonic examination by generally accepted codes/rules, with respect to detection, characterization and sizing/localization of defects. The evaluation is based on the results of examinations, by a number of teams, of 30 test plates, 30 and 50 mm thickness, containing V,U, X and K-shaped welds each containing several types of imperfections (211) in total) typical for steel arc fusion welding, such as porosity, inclusions, lack of fusion or penetration and cracks. Besides, some results are presented obtained from research on advanced UT-techniques, viz. the time-of-flight-diffraction and flaw-tip deflection technique. (author)

  16. Reliability of non-destructive testing methods

    Energy Technology Data Exchange (ETDEWEB)

    Broekhoven, M J.G. [Ministry of Social Affairs, (Netherlands)

    1988-12-31

    This contribution regards the results of an evaluation of the reliability of radiography (X-rays and gamma-rays), manual-, and mechanized/automated ultrasonic examination by generally accepted codes/rules, with respect to detection, characterization and sizing/localization of defects. The evaluation is based on the results of examinations, by a number of teams, of 30 test plates, 30 and 50 mm thickness, containing V,U, X and K-shaped welds each containing several types of imperfections (211) in total) typical for steel arc fusion welding, such as porosity, inclusions, lack of fusion or penetration and cracks. Besides, some results are presented obtained from research on advanced UT-techniques, viz. the time-of-flight-diffraction and flaw-tip deflection technique. (author). 4 refs.

  17. Human factors aspects of non-destructive testing in the nuclear power context. A review of research in the field

    Energy Technology Data Exchange (ETDEWEB)

    Enkvist, J.; Edland, A.; Svenson, Ola [Stockholm Univ. (Sweden). Dept. of Psychology

    1999-02-01

    The present report reviews literature relevant to human factors and non-destructive testing. The purpose is to cover research that has been done, and to find out what still needs to be done to improve inspection performance. Methods of non-destructive testing (e.g., ultrasonics, eddy current) are complex diagnostic tools used by operators to inspect materials, e.g., components of a nuclear power plant. In order to maintain the integrity of a plant, recurrent inspections are made while the components are still in service. To control the quality of inspections, operators have to follow a procedure that determines what equipment to use and how to use it. The procedure also guides the operator in assessment of indications. There are a number of factors that can affect the inspection quality (e.g., heat, time pressure, and fear of radiation). In earlier studies, experience, organizational practices, and work conditions have been shown to affect on the quality of inspections. The quality of inspection performance is considered to benefit from adapting equipment and procedure to man`s abilities and limitations. Furthermore, work conditions and feedback are considered determinants of performance quality. However, exactly how performance is affected by these factors, and the combined effect of them, need to be studied further. Further research is needed in decision criteria, procedure, and work conditions, and their effect on the quality of inspection performance

  18. Human factors aspects of non-destructive testing in the nuclear power context. A review of research in the field

    International Nuclear Information System (INIS)

    Enkvist, J.; Edland, A.; Svenson, Ola

    1999-02-01

    The present report reviews literature relevant to human factors and non-destructive testing. The purpose is to cover research that has been done, and to find out what still needs to be done to improve inspection performance. Methods of non-destructive testing (e.g., ultrasonics, eddy current) are complex diagnostic tools used by operators to inspect materials, e.g., components of a nuclear power plant. In order to maintain the integrity of a plant, recurrent inspections are made while the components are still in service. To control the quality of inspections, operators have to follow a procedure that determines what equipment to use and how to use it. The procedure also guides the operator in assessment of indications. There are a number of factors that can affect the inspection quality (e.g., heat, time pressure, and fear of radiation). In earlier studies, experience, organizational practices, and work conditions have been shown to affect on the quality of inspections. The quality of inspection performance is considered to benefit from adapting equipment and procedure to man's abilities and limitations. Furthermore, work conditions and feedback are considered determinants of performance quality. However, exactly how performance is affected by these factors, and the combined effect of them, need to be studied further. Further research is needed in decision criteria, procedure, and work conditions, and their effect on the quality of inspection performance

  19. Non destructive testing of industrial pieces by radiography: quantitative characterization and 3 D reconstruction by the way of a limited number of images

    International Nuclear Information System (INIS)

    Retraint, F.

    1998-01-01

    The non destructive testing of industrial pieces is evaluated on the basis of numerical radiographies.The context of the study is the online control of the fuel rods production. A direct model of a numerical radiography formation is proposed and detailed for an acquisition system consisting of a CCD video connected to a converter screen by an optical system. As this approach does not allow the determination of the measured matter thickness from the X-ray photograph, an approximate model based on realistic approximations of the industrial non destructive testing, has been developed. For the specific cases it is possible to inverse the model and to reach the quantitative information present in the x-ray photograph, in other words, the map of the X-rays measured matter thickness. It becomes then possible to access to the quantitative parameters of the possible defects present in the measured specimen, such as the surface and the bulk. To reach the 3 D information on the defects a 3 D reconstruction method, from 3 X-rays photographs, is proposed.The inverse problem is solved by the non convex energy minimization. (A.L.B.)

  20. 3D Modeling and Simulation for Electromagnetic Non-Destructive Testing- Problems and Limitations

    International Nuclear Information System (INIS)

    Ilham Mukriz Zainal Abidin; Nurul Ain Ahmad Latif

    2011-01-01

    Non-Destructive Testing (NDT) plays a critical role in nuclear power plants (NPPs) for life cycle management; such testing requires specialists with various NDT related expertise with specific equipment. This paper will discuss the importance of 3D modeling and simulation for electromagnetic NDT for critical and complex components in terms of engineering reasoning and physical trials. Results from simulation are presented which show the link established between the measurements and information relating to defects, such as 3D shape, size and location, which facilitates not only forward problem but also inverse modeling involving experimental system specification and configuration; and pattern recognition for 3D defect information. Subsequently, the problems and limitations pertinent to 3D modeling and simulation are then highlighted and areas of improvement are discussed. (author)

  1. Development of a non-destructive method to identify different grades of stainless steel

    International Nuclear Information System (INIS)

    Meor Yusoff Meor Sulaiman

    2004-01-01

    One of the non-destructive methods used for the identification and verification of metals is by the energy-dispersive x-ray fluorescence (EDXRF) technique. EDXRF analysis provides several important advantages such as simultaneous determination of the elements present, enable to analyze a very wide concentration range, fast analysis with no tedious sample preparation. The paper shows how this technique is developed and applied in the identification and verification of different grades of stainless steels. Comparison of the results obtained from this analysis with certified reference standards show very small differences between them. (Author)

  2. Challenges of Non-Destructive Assay Waste Measurement

    International Nuclear Information System (INIS)

    Shull, A.H.

    2003-01-01

    Historically, the Savannah River Site (SRS) routinely produced special nuclear material (SNM), which provided stable measurement conditions for the non-destructive assay (NDA) methods. However, the main mission of SRS has changed from the production of SNM to the processing of waste and material stabilization. Currently, the purpose of processing is to recover the SNM from the waste and stabilization materials, much of which is from other DOE facilities. These missions are usually of a short duration, but require non-destructive assay (NDA) accountability measurements on materials of varying composition and geometric configuration. These missions usually have cost and time constraints, which sometimes require re-application of existing NDA methods to waste measurements. Usually, each new material or re-application of the NDA method to a different SNM campaign requires new standards and timely re-calibration of the method. These constraints provide numerous challenges for the NDA methods, particularly in the area of measurement uncertainty. This paper will discuss the challenges of these situations, mainly from a measurement and statistical point of view and provide some possible solutions to the problems encountered. Specific examples will be discussed for the segmented gamma scanner (SGS), neutron multiplicity counter (NMC) and passive neutron coincidence counter (PNCC), which are some of the most common NDA instruments at SRS

  3. Non-invasive and non-destructive measurements of confluence in cultured adherent cell lines.

    Science.gov (United States)

    Busschots, Steven; O'Toole, Sharon; O'Leary, John J; Stordal, Britta

    2015-01-01

    Many protocols used for measuring the growth of adherent monolayer cells in vitro are invasive, destructive and do not allow for the continued, undisturbed growth of cells within flasks. Protocols often use indirect methods for measuring proliferation. Microscopy techniques can analyse cell proliferation in a non-invasive or non-destructive manner but often use expensive equipment and software algorithms. In this method images of cells within flasks are captured by photographing under a standard inverted phase contract light microscope using a digital camera with a camera lens adaptor. Images are analysed for confluence using ImageJ freeware resulting in a measure of confluence known as an Area Fraction (AF) output. An example of the AF method in use on OVCAR8 and UPN251 cell lines is included. •Measurements of confluence from growing adherent cell lines in cell culture flasks is obtained in a non-invasive, non-destructive, label-free manner.•The technique is quick, affordable and eliminates sample manipulation.•The technique provides an objective, consistent measure of when cells reach confluence and is highly correlated to manual counting with a haemocytometer. The average correlation co-efficient from a Spearman correlation (n = 3) was 0.99 ± 0.008 for OVCAR8 (p = 0.01) and 0.99 ± 0.01 for UPN251 (p = 0.01) cell lines.

  4. Application of ICT in the non-destructive inspection of explosive device

    International Nuclear Information System (INIS)

    Wang Zhe; Li Tiantuo; Liu Zhiqiang; Pei Zhihua; Wang Zhiping

    2003-01-01

    The inspection of explosive device is an important task in the store of the weapons. The technique of non-destructive examination with radial, especially the ICT, is an effective method. The paper mainly introduces the design and the theories on the inspection system and software system of the application of industrial ICT in the non-destructive examination of explosive device, and gives a reference to the work in such fields

  5. The utilization of VUJE specialists non-destructive testing qualification at international cooperation with company TECNATOM

    International Nuclear Information System (INIS)

    Kuna, M.

    2006-01-01

    The utilization of VUJE specialists non-destructive testing qualification at cooperation with company TECNATOM. The obtain of QDA qualification for ET examination for possibility of qualified evaluation in the foreign NPP (USA, Brazil). The acquired practical experiences by evaluation of ET data from NPP Angra Brazil and Waltz Mill USA. The obtain of SNT-TC-1A and EPRI qualification for the UT evaluation of penetration tube welds measurements. The practical experience during the measurement on NPP Shearon Harris (Author)

  6. Recent Trends in Electromagnetic Non-Destructive Sensing

    Directory of Open Access Journals (Sweden)

    Klara Capova

    2008-01-01

    Full Text Available The paper deals with material electromagnetic non-destructive testing (eNDT with emphasize on eddy current testing (ECT. Various modifications of ECT sensing are compared and discussed from the desired detected signal characteristics point of view. Except of the optimization of usual probe coils arrangements for the concrete applications, the new magnetic sensors as giant magneto-resistance (GMR and spin dependent tunneling (SDT are presented. The advanced ECT sensors are characterized by their sensitivity, frequency range and sensor dimensions

  7. The application of non-destructive methods in the diagnostics of the approach pavement at the bridges

    Science.gov (United States)

    Miskiewicz, M.; Lachowicz, J.; Tysiac, P.; Jaskula, P.; Wilde, K.

    2018-05-01

    The article presents the possibility of using non-destructive methods of road pavement diagnostics as an alternative to traditional means to assess the reasons for premature cracks adjacent to bridge objects. Two scanning methods were used: laser scanning to measure geometric surface deformation and ground penetrating radar (GPR) inspection to assess the road pavement condition. With the use of a laser scanner, an effective tool for road deformation assessment several approach pavement surfaces next to the bridges were scanned. As the result, a point cloud was obtained including spatial information about the pavement deformation. The data accuracy was about 3 mm, the deformations were presented in the form of deviation maps between the reference surface and the actual surface. Moreover characteristic pavement surface cross-sections were presented. The in situ measurements of the GPR method were performed and analysed in order to detect non-homogeneity in the density of structural layers of the pavement. Due to the analysis of the permittivity of individual layers, it was possible to detect non-homogeneity areas. The performed GPR measurements were verified by standard invasive tests carried out by drilling boreholes and taking cores from the pavement and testing the compaction and air voids content in asphalt layers. As a result of the measurements made by both methods significant differences in layer compacting factor values were diagnosed. The factor was much smaller in the area directly next to the bridgehead and much larger in the zone located a few meters away. The research showed the occurrence of both design and erection errors as well as those related to the maintenance of engineering structures.

  8. Potential development of non-destructive assay for nuclear safeguards

    International Nuclear Information System (INIS)

    Benoit, R.; Cuypers, M.; Guardini, S.

    1983-01-01

    After a brief summary on the role of non-destructive assay in safeguarding the nuclear fuel cycle, its evolution from NDA methods development to other areas is illustrated. These areas are essentially: a) the evaluation of the performances of NDA techniques in field conditions; b) introduction of full automation of measurement instrument operation, using interactive microprocessors and of measurement data handling evaluation and retrieval features; c) introduction of the adequate link and compatibility to assure NDA measurement data transfer in an integrated safeguards data evaluation scheme. In this field, the Joint Research Centre (JRC) of the Commission of the European Communities (CEC) is developing and implementing a number of techniques and methodologies allowing an integrated and rational treatment of the large amount of safeguards data produced. In particular for the non-destructive assay measurements and techniques, the JRC has studied and tested methodologies for the automatic generation and validation of data of inventory verification. In order to apply these techniques successfully in field, the JRC has studied the design requirements of NDA data management and evaluation systems. This paper also discusses the functional requirements of an integrated system for NDA safeguards data evaluation

  9. Expert`s dictionary of technical terminology in non-destructive materials testing. 1359 terms and definitions from A - Z used in non-destructive materials and workpiece testing - for vocational training, students and professionals; Expert-Praxislexikon Zerstoerungsfreie Materialpruefung. 1359 Begriffe von A bis Z zur zerstoerungsfreien Material- und Werkstueckuntersuchung - fuer Lehre, Studium und Beruf

    Energy Technology Data Exchange (ETDEWEB)

    Steeb, S

    1998-12-31

    The monolingual, German dictionary is a compilation enhanced by figures and tables, of technical terms and definitions used in non-destructive materials testing and application of the following eight major testing methods: - Radiography using X-rays - radiography using isotope beams - crack examination with the magnetic particle method - magnetic stray field testing with scanning probe - penetration tests with light and uv radiation - ultrasonic tests including evaluation of results - eddy current testing, manual and automated - sound emission methods. (orig./MM) 179 figs., 8 tabs. [Deutsch] Die wichtigsten Begriffe aus dem Gebiet der folgenden acht Untersuchungsverfahren sind in diesem Woerterbuch zusammengestellt und erlaeutert: - Durchstrahlungsverfahren mit Roentgenstrahlen - Durchstrahlungsverfahren mit Isotopenstrahlen - Risspruefung nach dem Magnetpulververfahren - magnetische Streuflusspruefung mit Sondenabtastung - Eindringverfahren bei sichtbarem Licht und bei UV-Licht - Ultraschallverfahren mit Bewertung der Ergebnisse - Wirbelstromverfahren manuell und automatisch - Schallemissionsverfahren. (orig./MM)

  10. X-rays for industry: Non-destructive testing helps Malaysia’s competitiveness

    International Nuclear Information System (INIS)

    Plonsky, Brian

    2015-01-01

    Industrial testing using nuclear technology has contributed to the competitiveness of Malaysia’s manufacturing sector, industry players have said. The country has also built itself an export niche in South-East Asia, offering non-destructive testing (NDT) with nuclear devices to manufacturers in neighbouring countries. “The fact that we can get NDT services of a good quality level at a very reasonable price allows us to spend more money on inspection, and thus improve our competitiveness as well as the level of safety of our plant,” said Zamaludin Ali, senior engineer at oil company PETRONAS. Before the development of a local NDT industry and accreditation system for testing services, PETRONAS and other companies in Malaysia had to rely on foreign NDT providers, or local companies hiring operators certified abroad, he explained. NDT using nuclear techniques involves the use of ionizing radiation to test the quality of finished products. It is based on the same principle as X-rays used in hospitals. Oil pipes, boilers, pressure vessels, aircraft equipment and ships are among the products whose quality is tested with the technique. The IAEA has played an important role in helping Malaysia to establish accredited training agencies and a certification system, and to promote NDT technologies such as radiographic testing. As a result of this longstanding partnership, over 50 companies in Malaysia, employing more than 2000 technicians, are certified to carry out NDT testing.

  11. Proceedings of the national workshop on non destructive evaluation of structures

    International Nuclear Information System (INIS)

    2013-01-01

    In spite of the care and best efforts to improve the quality of structures, problems do occur, raising alarm. This makes doubtful about the understanding. Distresses in the structures start immediately after construction and these are often concealed under the external finishes. A defect takes time to manifest itself. To add further, structures remain unattended for several years. As it is uneconomical to replace the assets before the intended service life by another capital investment, it is essential to periodically monitor the health of structures throughout its life. Success of both, the construction and restoration work depends on right diagnosis of the problem thorough proper testing techniques. Non destructive evaluation is one of the reliable methods for the scientific assessment of health and prediction of residual service life of structure. The workshop shall provide a platform to students, engineers and professionals for acquaintance with the current state of art technology of non-destructive evaluation techniques. Papers relevant to INIS are indexed separately

  12. A Spatially Offset Raman Spectroscopy Method for Non-Destructive Detection of Gelatin-Encapsulated Powders

    Directory of Open Access Journals (Sweden)

    Kuanglin Chao

    2017-03-01

    Full Text Available Non-destructive subsurface detection of encapsulated, coated, or seal-packaged foods and pharmaceuticals can help prevent distribution and consumption of counterfeit or hazardous products. This study used a Spatially Offset Raman Spectroscopy (SORS method to detect and identify urea, ibuprofen, and acetaminophen powders contained within one or more (up to eight layers of gelatin capsules to demonstrate subsurface chemical detection and identification. A 785-nm point-scan Raman spectroscopy system was used to acquire spatially offset Raman spectra for an offset range of 0 to 10 mm from the surfaces of 24 encapsulated samples, using a step size of 0.1 mm to obtain 101 spectral measurements per sample. As the offset distance was increased, the spectral contribution from the subsurface powder gradually outweighed that of the surface capsule layers, allowing for detection of the encapsulated powders. Containing mixed contributions from the powder and capsule, the SORS spectra for each sample were resolved into pure component spectra using self-modeling mixture analysis (SMA and the corresponding components were identified using spectral information divergence values. As demonstrated here for detecting chemicals contained inside thick capsule layers, this SORS measurement technique coupled with SMA has the potential to be a reliable non-destructive method for subsurface inspection and authentication of foods, health supplements, and pharmaceutical products that are prepared or packaged with semi-transparent materials.

  13. Fast and Accurate Non-destructive Testing System for Inspection of Canning Tubes

    DEFF Research Database (Denmark)

    Gundtoft, Hans Erik; Nielsen, E.

    1973-01-01

    The authors describe the development of an inspection bench for the non-destructive examination of canning tubes. The bench is original in that the internal diameter is calculated from exact measurement of the outer diameter and the wall thickness. The transducers for inspection and control are r...

  14. Training guidelines in non-destructive testing techniques. 2002 edition

    International Nuclear Information System (INIS)

    2002-01-01

    Non-destructive testing (NDT) is a dynamic technology and progresses with time. Since the issuance of IAEA-TECDOC-628 in 1991, the technology has experienced numerous changes. Advancements in knowledge about the behaviour of materials have led to changes in the applicable NDT codes, standards and specifications. In addition, over the last ten years, as a result of extensive research and development activities worldwide, new NDT techniques and equipment have been developed which are accepted by engineering community. To accommodate the latest developments, modifications are required to training materials. The present publication is an updated version of IAEA-TECDOC-628. The modifications were made during an Advisory Group Meeting, held in Vienna from 25-29 June 2001. The content of the first edition of IAEA-TECDOC-628 has been revised based on the experience of the experts, as well as comments of the end-user industries. The time allotment for different topics has been changed without changing the total duration. The details of the topics on each subject have been expanded to include the latest developments in the individual fields. The incorporated changes will help end-the user industries to update their NDT qualification and certification schemes, and course material

  15. Edward's sword? - A non-destructive study of a medieval king's sword

    Science.gov (United States)

    Segebade, Chr.

    2013-04-01

    Non-destructive and instrumental methods including photon activation analysis were applied in an examination of an ancient sword. It was tried to find indication of forgery or, if authentic, any later processing and alteration. Metal components of the hilt and the blade were analysed by instrumental photon activation. Non-destructive metallurgical studies (hardness measurements, microscopic microstructure analysis) are briefly described, too. The results of these investigations did not yield indication of non-authenticity. This stood in agreement with the results of stylistic and scientific studies by weapon experts.

  16. Non-destructive examination of the bonding interface in DEMO divertor fingers

    International Nuclear Information System (INIS)

    Richou, Marianne; Missirlian, Marc; Vignal, Nicolas; Cantone, Vincent; Hernandez, Caroline; Norajitra, Prachai; Spatafora, Luigi

    2013-01-01

    Highlights: • SATIR tests on DEMO divertor fingers (integrating or not He cooling system). • Millimeter size artificial defects were manufactured. • Detectability of millimeter size artificial defects was evaluated. • SATIR can detect defect in DEMO divertor fingers. • Simulations are well correlated to SATIR tests. -- Abstract: Plasma facing components (PFCs) with tungsten (W) armor materials for DEMO divertor require a high heat flux removal capability (at least 10 MW/m 2 in steady-state conditions). The reference divertor PFC concept is a finger with a tungsten tile as a protection and sacrificial layer brazed to a thimble made of tungsten alloy W – 1% La 2 O 3 (WL10). Defects may be located at the W thimble to W tile interface. As the number of fingers is considerable (>250,000), it is then a major issue to develop a reliable control procedure in order to control with a non-destructive examination the fabrication processes. The feasibility for detecting defect with infrared thermography SATIR test bed is presented. SATIR is based on the heat transient method and is used as an inspection tool in order to assess component heat transfer capability. SATIR tests were performed on fingers integrating or not the complex He cooling system (steel cartridge with jet holes). Millimeter size artificial defects were manufactured and their detectability was evaluated. Results of this study demonstrate that the SATIR method can be considered as a relevant non-destructive technique examination for the defect detection of DEMO divertor fingers

  17. Community survey on reference blocks and transducers for non-destructive ultrasonic testing

    International Nuclear Information System (INIS)

    Vinche, C.; Borloo, E.; Jehenson, P.

    1978-01-01

    In the frame of the European programmes 'Standards and Reference Substances' and 'Reference Materials and Methods' (BCR) the Commission of the European Communities, in conjunction with National experts launched in 1975 an inquiry on reference blocks and transducers for non-destructive ultrasonic testing. This inquiry which is complementary to a general survey made in 1971-1972 by the Commission on Reference Materials (Ref. EUR Report 1973. EUR 4886. d,f,i,n,e) was felt necessary and prepared by a specialists group from the Community Countries and the Joint Research Centre (JRC), Ispra Establishment (the list of these specialists is indicated on p. 2 of the questionnaire). The results of this survey, collated by the JRC Ispra Members have been discussed by the group of specialists and form the subject of this report. On bases of mailing lists submitted by national specialists, 215 organizations have been contacted; the fields of activity of these organizations are mainly: metallurgy, machine parts, technical assistance, aeronautics, power stations and research, 73 organizations have replied to the questionnaire. Most answers were obained from organizations dealing with metallurgy, machine parts manufacturers and technical consultants. The annexes supply a detailed analysis of the results given, on a national basis

  18. Confirm calculation of 12 MeV non-destructive testing electron linear accelerator target

    International Nuclear Information System (INIS)

    Ma Shudong; Zhang Rutong; Guo Yanbin; Zhou Yuan; Li Xuexian; Chen Yan

    2012-01-01

    The confirm calculation of 12 MeV non-destructive testing (NDT) electron linear accelerator (LINAC) target was studied. Firstly, the most optimal target thickness and related photon dose yield, distributions of dose rate, and related photon conversion efficiencies were got by calculation with specific analysis of the physical mechanism of the interactions between the beam and target; Secondly, the photon dose rate distribution, converter efficiencies, and thickness of various kinds of targets, such as W, Au, Ta, etc. were verified by MCNP simulation and the most optimal target was got using the MCNP code; Lastly, the calculation results of theory and MCNP were compared to confirm the validity of target calculation. (authors)

  19. Sampling methods and non-destructive examination techniques for large radioactive waste packages

    International Nuclear Information System (INIS)

    Green, T.H.; Smith, D.L.; Burgoyne, K.E.; Maxwell, D.J.; Norris, G.H.; Billington, D.M.; Pipe, R.G.; Smith, J.E.; Inman, C.M.

    1992-01-01

    Progress is reported on work undertaken to evaluate quality checking methods for radioactive wastes. A sampling rig was designed, fabricated and used to develop techniques for the destructive sampling of cemented simulant waste using remotely operated equipment. An engineered system for the containment of cooling water was designed and manufactured and successfully demonstrated with the drum and coring equipment mounted in both vertical and horizontal orientations. The preferred in-cell orientation was found to be with the drum and coring machinery mounted in a horizontal position. Small powdered samples can be taken from cemented homogeneous waste cores using a hollow drill/vacuum section technique with the preferred subsampling technique being to discard the outer 10 mm layer to obtain a representative sample of the cement core. Cement blends can be dissolved using fusion techniques and the resulting solutions are stable to gelling for periods in excess of one year. Although hydrochloric acid and nitric acid are promising solvents for dissolution of cement blends, the resultant solutions tend to form silicic acid gels. An estimate of the beta-emitter content of cemented waste packages can be obtained by a combination of non-destructive and destructive techniques. The errors will probably be in excess of +/-60 % at the 95 % confidence level. Real-time X-ray video-imaging techniques have been used to analyse drums of uncompressed, hand-compressed, in-drum compacted and high-force compacted (i.e. supercompacted) simulant waste. The results have confirmed the applicability of this technique for NDT of low-level waste. 8 refs., 12 figs., 3 tabs

  20. Development of a non-destructive method to identify different grades of stainless steel

    International Nuclear Information System (INIS)

    Meor Yusoff Meor Sulaiman

    2003-01-01

    One of the non-destructive methods used for the identification and verification of metals is by the energy-dispersive X-ray fluorescence (EDXRF) technique. EDXRF analysis provides several important advantages such as simultaneous determination of the elements present, enable to analyse a very wide concentration range, fast analysis with no sample preparation. The paper shows how this technique is developed and applied in the identification and verification of different grades of stainless steels. Comparison of the results for certified reference standards obtained from this analysis and that of its certified value shows very small differences between them. (Author)

  1. Non-Destructive Lichen Biomass Estimation in Northwestern Alaska: A Comparison of Methods

    Science.gov (United States)

    Rosso, Abbey; Neitlich, Peter; Smith, Robert J.

    2014-01-01

    Terrestrial lichen biomass is an important indicator of forage availability for caribou in northern regions, and can indicate vegetation shifts due to climate change, air pollution or changes in vascular plant community structure. Techniques for estimating lichen biomass have traditionally required destructive harvesting that is painstaking and impractical, so we developed models to estimate biomass from relatively simple cover and height measurements. We measured cover and height of forage lichens (including single-taxon and multi-taxa “community” samples, n = 144) at 73 sites on the Seward Peninsula of northwestern Alaska, and harvested lichen biomass from the same plots. We assessed biomass-to-volume relationships using zero-intercept regressions, and compared differences among two non-destructive cover estimation methods (ocular vs. point count), among four landcover types in two ecoregions, and among single-taxon vs. multi-taxa samples. Additionally, we explored the feasibility of using lichen height (instead of volume) as a predictor of stand-level biomass. Although lichen taxa exhibited unique biomass and bulk density responses that varied significantly by growth form, we found that single-taxon sampling consistently under-estimated true biomass and was constrained by the need for taxonomic experts. We also found that the point count method provided little to no improvement over ocular methods, despite increased effort. Estimated biomass of lichen-dominated communities (mean lichen cover: 84.9±1.4%) using multi-taxa, ocular methods differed only nominally among landcover types within ecoregions (range: 822 to 1418 g m−2). Height alone was a poor predictor of lichen biomass and should always be weighted by cover abundance. We conclude that the multi-taxa (whole-community) approach, when paired with ocular estimates, is the most reasonable and practical method for estimating lichen biomass at landscape scales in northwest Alaska. PMID:25079228

  2. Non-destructive lichen biomass estimation in northwestern Alaska: a comparison of methods.

    Directory of Open Access Journals (Sweden)

    Abbey Rosso

    Full Text Available Terrestrial lichen biomass is an important indicator of forage availability for caribou in northern regions, and can indicate vegetation shifts due to climate change, air pollution or changes in vascular plant community structure. Techniques for estimating lichen biomass have traditionally required destructive harvesting that is painstaking and impractical, so we developed models to estimate biomass from relatively simple cover and height measurements. We measured cover and height of forage lichens (including single-taxon and multi-taxa "community" samples, n = 144 at 73 sites on the Seward Peninsula of northwestern Alaska, and harvested lichen biomass from the same plots. We assessed biomass-to-volume relationships using zero-intercept regressions, and compared differences among two non-destructive cover estimation methods (ocular vs. point count, among four landcover types in two ecoregions, and among single-taxon vs. multi-taxa samples. Additionally, we explored the feasibility of using lichen height (instead of volume as a predictor of stand-level biomass. Although lichen taxa exhibited unique biomass and bulk density responses that varied significantly by growth form, we found that single-taxon sampling consistently under-estimated true biomass and was constrained by the need for taxonomic experts. We also found that the point count method provided little to no improvement over ocular methods, despite increased effort. Estimated biomass of lichen-dominated communities (mean lichen cover: 84.9±1.4% using multi-taxa, ocular methods differed only nominally among landcover types within ecoregions (range: 822 to 1418 g m-2. Height alone was a poor predictor of lichen biomass and should always be weighted by cover abundance. We conclude that the multi-taxa (whole-community approach, when paired with ocular estimates, is the most reasonable and practical method for estimating lichen biomass at landscape scales in northwest Alaska.

  3. Non-destructive lichen biomass estimation in northwestern Alaska: a comparison of methods.

    Science.gov (United States)

    Rosso, Abbey; Neitlich, Peter; Smith, Robert J

    2014-01-01

    Terrestrial lichen biomass is an important indicator of forage availability for caribou in northern regions, and can indicate vegetation shifts due to climate change, air pollution or changes in vascular plant community structure. Techniques for estimating lichen biomass have traditionally required destructive harvesting that is painstaking and impractical, so we developed models to estimate biomass from relatively simple cover and height measurements. We measured cover and height of forage lichens (including single-taxon and multi-taxa "community" samples, n = 144) at 73 sites on the Seward Peninsula of northwestern Alaska, and harvested lichen biomass from the same plots. We assessed biomass-to-volume relationships using zero-intercept regressions, and compared differences among two non-destructive cover estimation methods (ocular vs. point count), among four landcover types in two ecoregions, and among single-taxon vs. multi-taxa samples. Additionally, we explored the feasibility of using lichen height (instead of volume) as a predictor of stand-level biomass. Although lichen taxa exhibited unique biomass and bulk density responses that varied significantly by growth form, we found that single-taxon sampling consistently under-estimated true biomass and was constrained by the need for taxonomic experts. We also found that the point count method provided little to no improvement over ocular methods, despite increased effort. Estimated biomass of lichen-dominated communities (mean lichen cover: 84.9±1.4%) using multi-taxa, ocular methods differed only nominally among landcover types within ecoregions (range: 822 to 1418 g m-2). Height alone was a poor predictor of lichen biomass and should always be weighted by cover abundance. We conclude that the multi-taxa (whole-community) approach, when paired with ocular estimates, is the most reasonable and practical method for estimating lichen biomass at landscape scales in northwest Alaska.

  4. Visualization of Tooth for Non-Destructive Evaluation from CT Images

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Hui; Chae, Ok Sam [Kyung Hee University, Seoul (Korea, Republic of)

    2009-06-15

    This paper reports an effort to develop 3D tooth visualization system from CT sequence images as a part of the non-destructive evaluation suitable for the simulation of endodontics, orthodontics and other dental treatments. We focus on the segmentation and visualization for the individual tooth. In dental CT images teeth are touching the adjacent teeth or surrounded by the alveolar bones with similar intensity. We propose an improved level set method with shape prior to separate a tooth from other teeth as well as the alveolar bones. Reconstructed 3D model of individual tooth based on the segmentation results indicates that our technique is a very conducive tool for tooth visualization, evaluation and diagnosis. Some comparative visualization results validate the non-destructive function of our method.

  5. Non-Destructive Methods for Determining Burn-Up in Nuclear Fuel; Methodes Non Destructives d'Evaluation du Taux de Combustion dans le Combustible Nucleaire; Metody opredeleniya vygoraniya v yadernom toplive bez razrusheniya obraztsa; Metodos No Destructivos para Determinai el Grado de Combustion de los Elementos Combustibles Nucleares

    Energy Technology Data Exchange (ETDEWEB)

    McGonnagle, W. J. [Illinois Institute of Technology, Chicago, IL (United States)

    1966-02-15

    Non-destructive methods for quantitative measurement of burn-up in nuclear reactor fuel elements are useful and desirable. The ideal method for fuel assay would be one that requires no special information about the neutron spectra, radiation history, or cooling time. The irradiated fuel element contains a record of the fuel burn-up. This record is in the form of radioactive and stable isotopes resulting from the fission process. Unfortunately, in the non-destructive as well as the destructive fuel assay methods, the neutron spectrum, irradiation history, and cooling period influence this record. Likewise, the lack of precise nuclear data, such as values of nuclear cross-sections, affects any calculations that can be made. Another difficulty in the non-destructive assay is the presence of high radiation fields which contribute to the ''noise'' background of the measurements. The development of useful and realistic standards is difficult. The non-destructive burn-up methods do serve a useful purpose especially when an approximate value of burn-up is required quickly and economically even though in the present state of the art they lack the desired precision and accuracy. Several non-destructive methods for determining burn-up have been used, are being evaluated, or have been proposed. Various types of spectrometers including the bent crystal, magnetic Compton, Compton coincidence, and scintillation have been used to analyse the gamma radiation from the radioactive material formed during the fission process. Other non-destructive methods include foil activation, neutron transmission, activation analysis, measurement of capture gamma rays, and the measurement of prompt and delayed neutrons. The basic principles of each of the above instruments and methods, their sensitivities and their limitations will be reviewed. Non-destructive methods using stable isotopes produced during the fission process are proposed. In the use of stable isotopes, detailed irradiation history

  6. European Non Destructive Examination Forum (ENDEF)

    International Nuclear Information System (INIS)

    Deffrennes, M.; Engl, G.; Estorff, U. von

    1998-01-01

    Non destructive examination (NDE) during fabrication, Pre-service inspection (PSI) and In service inspection (ISI) are considered key issues for the safe use of nuclear energy. They are important elements of plant lifetime management which is a critical item in decision making on nuclear policies. The European non destructive examination forum (ENDEF) founded by European Commission provides a platform for open discussion between representatives of the European industries with the purpose to establish cooperation between EU, Central and Eastern European Countries and New Independent States in the field of NDE and ISI

  7. Evaluation of corrosion of prestressing steel in concrete using non-destructive techniques

    International Nuclear Information System (INIS)

    Ali, M.G.; Maddocks, A.R.

    2003-01-01

    Use of high strength steel in pre-stressed concrete structures has been in use in Australia for many decades. Highway bridges, among other structures, have extensively used pre-stress-ing and post-tensioning techniques. Although prestressing offers many competitive edges to it's traditional rival reinforced concrete, the consequence of damage to prestressing tendons could be catastrophic. Periodic visual inspections of prestressed concrete bridges throughout the world have demonstrated the growing problem of deterioration of prestressing steel as a result of corrosion. Early detection of damage to prestressing steel therefore is of paramount importance. Unfortunately no reliable and practical non-destructive evaluation technique has been available for assessing the condition of prestressing steel within concrete although a number of techniques appear promising. The following inspection methods have been highlighted in recent literature for their use as non-destructive inspection methods for prestressed concrete structures. In addition to the techniques discussed, a number of destructive, or invasive techniques also exist for determination of the corrosion status of prestressing tendons in prestressed structures. The following non-destructive techniques are discussed in some detail: Radiography; Computed Tomography; Surface Penetrating Radar; Impact Echo; Acoustic Emission Monitoring; Magnetic Field Disturbance Technique; Remnant Magnetism Method; Linear Polarisation Method; Electrical Resistance and Surface Potential Survey. The portability, limitations and use in Australia of these techniques are summarised in a table

  8. Non-destructive geographical traceability of sea cucumber (Apostichopus japonicus) using near infrared spectroscopy combined with chemometric methods.

    Science.gov (United States)

    Guo, Xiuhan; Cai, Rui; Wang, Shisheng; Tang, Bo; Li, Yueqing; Zhao, Weijie

    2018-01-01

    Sea cucumber is the major tonic seafood worldwide, and geographical origin traceability is an important part of its quality and safety control. In this work, a non-destructive method for origin traceability of sea cucumber ( Apostichopus japonicus ) from northern China Sea and East China Sea using near infrared spectroscopy (NIRS) and multivariate analysis methods was proposed. Total fat contents of 189 fresh sea cucumber samples were determined and partial least-squares (PLS) regression was used to establish the quantitative NIRS model. The ordered predictor selection algorithm was performed to select feasible wavelength regions for the construction of PLS and identification models. The identification model was developed by principal component analysis combined with Mahalanobis distance and scaling to the first range algorithms. In the test set of the optimum PLS models, the root mean square error of prediction was 0.45, and correlation coefficient was 0.90. The correct classification rates of 100% were obtained in both identification calibration model and test model. The overall results indicated that NIRS method combined with chemometric analysis was a suitable tool for origin traceability and identification of fresh sea cucumber samples from nine origins in China.

  9. A NEW METHOD FOR NON DESTRUCTIVE ESTIMATION OF Jc IN YBaCuO CERAMIC SAMPLES

    Directory of Open Access Journals (Sweden)

    Giancarlo Cordeiro Costa

    2014-12-01

    Full Text Available This work presents a new method for estimation of Jc as a bulk characteristic of YBCO blocks. The experimental magnetic interaction force between a SmCo permanent magnet and a YBCO block was compared to finite element method (FEM simulations results, allowing us to search a best fitting value to the critical current of the superconducting sample. As FEM simulations were based on Bean model , the critical current density was taken as an unknown parameter. This is a non destructive estimation method. since there is no need of breaking even a little piece of the sample for analysis.

  10. Reliability of non-destructive test techniques in the inspection of pipelines used in the oil industry

    International Nuclear Information System (INIS)

    Carvalho, A.A.; Rebello, J.M.A.; Souza, M.P.V.; Sagrilo, L.V.S.; Soares, S.D.

    2008-01-01

    The aim of this work is to evaluate the reliability of non-destructive test (NDT) techniques for the inspection of pipeline welds employed in the petroleum industry. Radiography, manual and automatic ultrasonic techniques using pulse-echo and time of flight diffraction (TOFD) were employed. Three classes of defects were analyzed: lack of penetration (LP), lack of fusion (LF) and undercut (UC). The tests were carried out on specimen made from pipelines containing defects, which had been artificially inserted on laying the weld bead. The results showed the superiority of the automatic ultrasonic tests for defect detection compared with the manual ultrasonic and radiographic tests. Additionally, artificial neural networks (ANN) were used in the detection and automatic classification of the defects

  11. Non-destructive Inspection of Top-Down Construction Joints of Column in SRC Structure using Ultrasonic Method

    International Nuclear Information System (INIS)

    Park, Seok Kyun; Baek, Un Chan; Lee, Han Bum; Kim, Myoung Mo

    2000-01-01

    The joint treatment of concrete is one of the technical problems in top down construction method. Joints created with the top down construction result in serious weakness from the aspects of both structural and water-barrier function. Ultrasonic method was used for the inspection of top down construction joints of a various column in SRC structure in this study. The advantages and limitations of this method for non-destructive inspection in top down construction joints are investigated. As a result, it has been verified that the semi-direct measurement method is more effective than the other methods for detecting the voids of construction joints using ultrasonic method

  12. Non-destructive Faraday imaging of dynamically controlled ultracold atoms

    DEFF Research Database (Denmark)

    Gajdacz, Miroslav; Pedersen, Poul Lindholm; Mørch, Troels

    2013-01-01

    We describe an easily implementable method for non-destructive measurements of ultracold atomic clouds based on dark field imaging of spatially resolved Faraday rotation. The signal-to-noise ratio is analyzed theoretically and, in the absence of experimental imperfections, the sensitivity limit...

  13. Role of non-destructive examinations in leak testing of glove boxes for industrial scale plutonium handling at nuclear fuel fabrication facility along with case study

    International Nuclear Information System (INIS)

    Aher, Sachin

    2015-01-01

    Non Destructive Examinations has the prominent role at Nuclear Fuel Fabrication Facilities. Specifically NDE has contributed at utmost stratum in Leak Testing of Glove Boxes and qualifying them as a Class-I confinement for safe Plutonium handling at industrial scale. Advanced Fuel Fabrication Facility, BARC, Tarapur is engaged in fabrication of Plutonium based MOX (PuO 2 , DDUO 2 ) fuel with different enrichments for first core of PFBR reactor. Alpha- Leak Tight Glove Boxes along with HEPA Filters and dynamic ventilation form the promising engineering system for safe and reliable handling of plutonium bearing materials considering the radiotoxicity and risk associated with handling of plutonium. Leak Testing of Glove Boxes which involves the leak detection, leak rectification and leak quantifications is major challenging task. To accomplish this challenge, various Non Destructive Testing methods have assisted in promising way to achieve the stringent leak rate criterion for commissioning of Glove Box facilities for plutonium handling. This paper highlights the Role of various NDE techniques like Soap Solution Test, Argon Sniffer Test, Pressure Drop/Rise Test etc. in Glove Box Leak Testing along with procedure and methodology for effective rectification of leakage points. A Flow Chart consisting of Glove Box leak testing procedure starting from preliminary stage up to qualification stage along with a case study and observations are discussed in this paper. (author)

  14. A new non-destructive method for estimating the remanent life of a turbine rotor steel by reversible magnetic permeability

    International Nuclear Information System (INIS)

    Ryu, K.S.; Nahm, S.H.; Park, J.S.; Yu, K.M.; Kim, Y.B.; Son, D.

    2002-01-01

    We present a new magnetic and non-destructive procedure to evaluate the remanent life of 1Cr-1Mo-0.25V steel using the value of reversible magnetic permeability. The method is based on the existence of reversible magnetic permeability in the differential magnetization around the coercive force. The measurement principle is based on the foundation harmonics voltage induced in a coil using a lock-in amplifier tuned to a frequency of the exciting one. Results obtained for reversible magnetic permeability and Vickers hardness on the aged sample show that the peak interval of reversible magnetic permeability (PIRMP) and Vickers hardness decreases as aging time increases. A softening curve is obtained from the correlation between Vickers hardness and the PIRMP. This curve can be used as a non-destructive method to evaluate the remanent life of 1Cr-1Mo-0.25V steel

  15. Evaluation of destructive methods for managing decontamination wastes

    International Nuclear Information System (INIS)

    Piciulo, P.L.; Adams, J.W.

    1986-01-01

    Results are discussed of a laboratory evaluation of destructive methods for processing chemical decontamination wastes. Incineration, acid digestion and wet-air oxidation are capable of degrading decontamination reagents and organic ion-exchange resins. The extent of destruction as a function of operating parameters was waste specific. The reagents used in the testing were: EDTA, oxalic acid, citric acid, picolinic acid and LND-101A

  16. S.S. Annunziata Church (L'Aquila, Italy) unveiled by non- and micro-destructive testing techniques

    Science.gov (United States)

    Sfarra, Stefano; Cheilakou, Eleni; Theodorakeas, Panagiotis; Paoletti, Domenica; Koui, Maria

    2017-03-01

    The present research work explores the potential of an integrated inspection methodology, combining Non-destructive testing and micro-destructive analytical techniques, for both the structural assessment of the S.S. Annunziata Church located in Roio Colle (L'Aquila, Italy) and the characterization of its wall paintings' pigments. The study started by applying passive thermal imaging for the structural monitoring of the church before and after the application of a consolidation treatment, while active thermal imaging was further used for assessing this consolidation procedure. After the earthquake of 2009, which seriously damaged the city of L'Aquila and its surroundings, part of the internal plaster fell off revealing the presence of an ancient mural painting that was subsequently investigated by means of a combined analytical approach involving portable VIS-NIR fiber optics diffuse reflectance spectroscopy (FORS) and laboratory methods, such as environmental scanning electron microscopy (ESEM) coupled with energy dispersive X-ray analysis (EDX), and attenuated total reflectance-fourier transform infrared spectroscopy (ATR-FTIR). The results obtained from the thermographic analysis provided information concerning the two different constrictive phases of the Church, enabled the assessment of the consolidation treatment, and contributed to the detection of localized problems mainly related to the rising damp phenomenon and to biological attack. In addition, the results obtained from the combined analytical approach allowed the identification of the wall painting pigments (red and yellow ochre, green earth, and smalt) and provided information on the binding media and the painting technique possibly applied by the artist. From the results of the present study, it is possible to conclude that the joint use of the above stated methods into an integrated methodology can produce the complete set of useful information required for the planning of the Church's restoration

  17. Qualification and authorization of staff carrying out non-destructive testing in Electricite de France

    International Nuclear Information System (INIS)

    Sermadiras, P.; Lhermitte, R.; Boulet, J.

    1985-01-01

    The surveillance carried out by the Group des laboratoires of the Service de la Production thermique on components submitted to Quality Assurance in nuclear power plants of all types requires the use for non-destructive testing of staff who have been given authorization for their particular services. These authorizations are for activities specific to Electricite de France. In the first part, the authors describe the staff of the Groupe des Laboratoires and show how the different levels of authorization (4 levels) are given, taking into account staff qualifications. In the second part, the procedures for qualification and authorization of the staff of outside companies working with and on behalf of the Groupe des Laboratoires are described

  18. Analysis of Radiation Accident of Non-destructive Inspection and Rational Preparing Bills

    International Nuclear Information System (INIS)

    Bae, Junwoo; Yoo, Donghan; Kim, Hee Reyoung

    2013-01-01

    After 2006, according to enactment of Non-destructive Inspection Promotion Act, the number of non-destructive inspection companies and corresponding accident is increased sharply. In this research, it includes characteristic analysis of field of the non-destructive inspection. And from the result of analysis, the purpose of this research is discovering reason for 'Why there is higher accident ratio in non-destructive inspection field, relatively' and preparing effective bill for reducing radiation accidents. The number of worker for non-destructive inspect is increased steadily and non-destructive inspect worker take highest dose. Corresponding to these, it must be needed to prepare bills to protect non-destructive inspect workers. By analysis of accident case, there are many case of carelessness that tools are too heavy to carry it everywhere workers go. And there are some cases caused by deficiency of education that less understanding of radiation and poor operation by less understanding of structure of tools. Also, there is no data specialized to non-destructive inspect field. So, it has to take information from statistical data. Because of this, it is hard to analyze nondestructive inspect field accurately. So, it is required to; preparing rational bills to protect non-destructive inspect workers nondestructive inspect instrument lightening and easy manual which can understandable for low education background people accurate survey data from real worker. To accomplish these, we needs to do; analyze and comprehend the present law about non-destructive inspect worker understand non-destructive inspect instruments accurately and conduct research for developing material developing rational survey to measuring real condition for non-destructive inspect workers

  19. Integrated automatic non-destructive testing in industrial production and in the operation of technical plant

    International Nuclear Information System (INIS)

    Hoeller, P.

    1989-01-01

    The article deals with non-destructive testing (NDT) in automated manufacture and in the automated operation of industrial plant. In both areas of application, the tests are coupled to the process (real time operation) and the results are used for the control of manufacture or of the course of the process. The control process can be coupled to the process in open loop or closed loop. The subject is explained by the following examples: 1) Automated testing of sheets in a steelworks. 2) Automatic NDT on machine parts in tempering and machining by the 3MA system (3MA: micro-magnetic, multi-parameter, micro-structure and stress analysis). 3) Automated ultrasonic testing in manufacture and in the operation of plants with the ALOK data collection and processing system (ALOK: amplitude, running time, location curves). 4) Automated wheel running surface test on Intercity experimental train, and 5) automated level measurement on BWR pressure vessels. (orig./MM) [de

  20. Non-destructive beam profile monitor at HIMAC

    International Nuclear Information System (INIS)

    Sato, S.; Araki, N.; Hosaka, M.

    1995-01-01

    Non-destructive profile monitors (NDPM), based on micro-channel plate (MCP), have been developed and installed in both the synchrotron ring and high-energy beam transport (HEBT) line at HIMAC. Beam test using these monitors have been carried out since April of 1995 to investigate a change of vertical beam size in synchrotron and a possibility of observing beam with high energy by one pass. In this paper the measurement system is mainly reported, and the preliminary results are also briefly presented. (author)

  1. The use of non-destructive testing in COSY, an ultrahigh vacuum research plant of KFA, Juelich

    International Nuclear Information System (INIS)

    Schroeder, G.; Pauly, F.; Stechemesser, H.

    1993-01-01

    This report shows that the development, the construction and the later successful operation of ultra-high vacuum (UHV) plants in the pressure range of ≤ 10 -10 mbar is not possible without the use of highly sensitive non-destructive testing. Using the example of the large scale precision plant COSY, it is shown that only by observing basic UHV manufacturing conditions and the thorough use of the helium leak-finding technique and mass-spectrometric residual gas analysis can the required leakage rates ( -10 mbar. 1 . s -1 ) and surface cleanliness be achieved. (orig.) [de

  2. Post-Irradiation Non-Destructive Analyses of the AFIP-7 Experiment

    Science.gov (United States)

    Williams, W. J.; Robinson, A. B.; Rabin, B. H.

    2017-12-01

    This article reports the results and interpretation of post-irradiation non-destructive examinations performed on four curved full-size fuel plates that comprise the AFIP-7 experiment. These fuel plates, having a U-10 wt.%Mo monolithic design, were irradiated under moderate operating conditions in the Advanced Test Reactor to assess fuel performance for geometries that are prototypic of research reactor fuel assemblies. Non-destructive examinations include visual examination, neutron radiography, profilometry, and precision gamma scanning. This article evaluates the qualitative and quantitative data taken for each plate, compares corresponding data sets, and presents the results of swelling analyses. These characterization results demonstrate that the fuel meets established irradiation performance requirements for mechanical integrity, geometric stability, and stable and predictable behavior.

  3. Efficiency evaluation test of waste non-destructive analysis device

    International Nuclear Information System (INIS)

    Maeda, Kouichi; Ogasawara, Kensuke; Nisizawa, Ichio

    2000-03-01

    A device for non-destructive analysis of plutonium in alpha solid waste has been installed in NUCEF; Nuclear Fuel Cycle Safety Engineering Research Facility. The device has been designed to determine the amount of radioisotopes in carton-boxes, 45 l steel cans and 200 l steel cans containing relatively low density waste. Considering the waste density and the heterogeneity of radio-sources, the proper distance between the detector and the waste, and the open degree of the collimator have been settled, because real waste may contain several kinds of material and the heterogeneity of radioactivity. It has been confirmed from the evaluation of the detect limit that plutonium of about 8 MBq can be determined with the accuracy of 10% and the device may be proper for the practical application. (author)

  4. Field testing of prototype systems for the non-destructive measurement of the neutral temperature of railroad tracks

    Science.gov (United States)

    Phillips, Robert; Lanza di Scalea, Francesco; Nucera, Claudio; Fateh, Mahmood; Choros, John

    2014-03-01

    In both high speed and freight rail systems, the modern construction method is Continuous Welded Rail (CWR). The purpose of the CWR method is to eliminate joints in order to reduce the maintenance costs for both the rails and the rolling stock. However the elimination of the joints increases the risk of rail breakage in cold weather and buckling in hot weather. In order to predict the temperature at which the rail will break or buckle, it is critical to have knowledge of the temperature at which the rail is stress free, namely, the Rail Neutral Temperature (Rail-NT).The University of California at San Diego has developed an innovative technique based on non-linear ultrasonic guided waves, under FRA research and development grants for the non-destructive measurement of the neutral temperature of railroad tracks. Through the licensing of this technology from the UCSD and under the sponsorship of the FRA Office of Research and Development, a field deployable prototype system has been developed and recently field tested at cooperating railroad properties. Three prototype systems have been deployed to the Union Pacific (UP), Burlington Northern Santa Fe (BNSF), and AMTRAK railroads for field testing and related data acquisition for a comprehensive evaluation of the system, with respect to both performance and economy of operation. The results from these tests have been very encouraging. Based on the lessons learned from these field tests and the feedback from the railroads, it is planned develop a compact 2nd generation Rail-NT system to foster deployment and furtherance of FRA R&D grant purpose of potential contribution to the agency mission of US railroad safety. In this paper, the results of the field tests with the railroads in summer of 2013 are reported.

  5. Non-Destructive Metallic Materials Testing—Recent Research and Future Perspectives

    Directory of Open Access Journals (Sweden)

    João Manuel R. S. Tavares

    2017-10-01

    Full Text Available Non-destructive testing (NDT has become extremely important formicrostructural characterization, mainly by allowing the assessment of metallic material properties in an effective and reasonable manner, in addition to maintaining the integrity of the evaluated metallic samples and applicability in service in many cases [...

  6. Non-destructive evaluation of UV pulse laser-induced damage performance of fused silica optics.

    Science.gov (United States)

    Huang, Jin; Wang, Fengrui; Liu, Hongjie; Geng, Feng; Jiang, Xiaodong; Sun, Laixi; Ye, Xin; Li, Qingzhi; Wu, Weidong; Zheng, Wanguo; Sun, Dunlu

    2017-11-24

    The surface laser damage performance of fused silica optics is related to the distribution of surface defects. In this study, we used chemical etching assisted by ultrasound and magnetorheological finishing to modify defect distribution in a fused silica surface, resulting in fused silica samples with different laser damage performance. Non-destructive test methods such as UV laser-induced fluorescence imaging and photo-thermal deflection were used to characterize the surface defects that contribute to the absorption of UV laser radiation. Our results indicate that the two methods can quantitatively distinguish differences in the distribution of absorptive defects in fused silica samples subjected to different post-processing steps. The percentage of fluorescence defects and the weak absorption coefficient were strongly related to the damage threshold and damage density of fused silica optics, as confirmed by the correlation curves built from statistical analysis of experimental data. The results show that non-destructive evaluation methods such as laser-induced fluorescence and photo-thermal absorption can be effectively applied to estimate the damage performance of fused silica optics at 351 nm pulse laser radiation. This indirect evaluation method is effective for laser damage performance assessment of fused silica optics prior to utilization.

  7. The role of ultrasonic velocity and Schmidt hammer hardness - The simple and economical non-destructive test for the evaluation of mechanical properties of weathered granite

    Science.gov (United States)

    Jobli, Ahmad Fadzil; Hampden, Ahmad Zaidi; Tawie, Rudy

    2017-08-01

    One of the most significant techniques for evaluation of rock strength is by using the simple and economical non-destructive test (NDT). Previous literatures confirm that there were good correlations between NDTs to the strength properties of granite rocks. The present work deals with the use of Ultrasonic Pulse Velocity and Schmidt Hammer Hardness test to predict the mechanical properties of weathered granite. Cylindrical specimens with the length to diameter ratio of two were prepared for this study and were characterized based on different weathering states. Each of the rock specimens was tested under non-destructive test and then followed by uniaxial compression test to assess the mechanical properties. It was found that good correlations established between the NDTs and the uniaxial compressive strength. The correlation between uniaxial compressive strength and rebound hardness number was demonstrated by exponential form; UCS = 6.31e0.057N, while linear correlations was obtained between the uniaxial compressive strength and the ultrasonic pulse velocity; UCS = 0.023Vp - 21.43. It was also noticed that the increase of uniaxial compression strength was parallel to the increase of elastic modulus and can be presented by a linear equation; UCS = 1.039Et50 + 4.252. Based on the reported results, it is clear that the mechanical properties or weathered granite can be estimated by means of non-destructive test.

  8. Comparisons of non-destructive examination standards in the framework of fracture mechanics approach

    International Nuclear Information System (INIS)

    Reale, S.; Corvi, A.

    1993-01-01

    One of the aims of the various Engineering Standards related to Non-destructive Examination (NDE) is to identify and limit some characteristics of defects in a structure, since the degree of damage of a structure can be associated with these defect characteristics. One way that the damage level can be evaluated is by means of Fracture Mechanics. The objective of the present paper is to compare and identify the differences in the flaw acceptance criteria of national NDE Standards so as to suggest some guidelines for a future common European Standard. This paper examines the Standards adopted in France (RCC-MR), Germany (DIN), Italy (ASME) and the UK (BSI). It concentrates on both ultrasonic and radiographic inspection methods. The flaw acceptance criteria in these standards relating to non-destructive tests performed on a component during manufacturing are compared and evaluated by the Fracture Mechanics CEGB R6 procedure. General guidelines and results supporting the significance of the Fracture Mechanics approach are given. (Author)

  9. Non-destructive analysis for the inspection and control of metalic monuments and historical manuscripts

    International Nuclear Information System (INIS)

    Faubel, W.; Heissler, S.; Klewe-Nebenius, H.; Willin, E.

    2003-01-01

    As a contribution to the increasing efforts to preserve cultural heritage of historical bronze monuments exposed to atmospheric corrosion as well as historical books and manuscripts non-destructive analytical methods are highly desirable enabling an in-situ examination of the surface status of an object. The development and application of novel non-destructive analytical methods based on the photoacoustic and photothermal deflection spectroscopy allowed to investigate the state of bronze patina as well as the effectiveness of conservation procedures for historical manuscripts. (orig.)

  10. A study of non destructive integrity assessment method for structural materials of nuclear reactor. Part 2

    International Nuclear Information System (INIS)

    Totsuka, Nobuo; Matsuzaki, Akihiro

    2011-01-01

    The hardness measurement is one of the most effective way for non destructive integrity assessment evaluating structural materials of nuclear power plants before and after suffering an earthquake. Then an actual evaluation method and effectiveness of the method using portable hardness tester has been reported in the previous Journal. In this study, the developing method which can evaluate more accurately the amount of plastic deformation of the material caused by an earthquake has been reported, based on the experimental results about the hardness change of the material considering the thermal aging due to the plant operation and the cyclic deformation suffered by an earthquake. (author)

  11. Operator performance in non-destructive testing: A study of operator performance in a performance test

    Energy Technology Data Exchange (ETDEWEB)

    Enkvist, J.; Edland, A.; Svenson, Ola [Stockholm Univ. (Sweden). Dept. of Psychology

    2000-05-15

    In the process industries there is a need of inspecting the integrity of critical components without disrupting the process. Such in-service inspections are typically performed with non-destructive testing (NDT). In NDT the task of the operator is to (based on diagnostic information) decide if the component can remain in service or not. The present study looks at the performance in NDT. The aim is to improve performance, in the long run, by exploring the operators' decision strategies and other underlying factors and to this way find out what makes some operators more successful than others. Sixteen operators performed manual ultrasonic inspections of four test pieces with the aim to detect (implanted) cracks. In addition to these performance demonstration tests (PDT), the operators performed independent ability tests and filled out questionnaires. The results show that operators who trust their gut feeling more than the procedure (when the two come to different results) and that at the same time have a positive attitude towards the procedure have a higher PDT performance. These results indicate the need for operators to be motivated and confident when performing NDT. It was also found that the operators who performed better rated more decision criteria higher in the detection phase than the operators who performed worse. For characterizing it was the other way around. Also, the operators who performed better used more time, both detecting and characterizing, than the operators who performed worse.

  12. Operator performance in non-destructive testing: A study of operator performance in a performance test

    International Nuclear Information System (INIS)

    Enkvist, J.; Edland, A.; Svenson, Ola

    2000-05-01

    In the process industries there is a need of inspecting the integrity of critical components without disrupting the process. Such in-service inspections are typically performed with non-destructive testing (NDT). In NDT the task of the operator is to (based on diagnostic information) decide if the component can remain in service or not. The present study looks at the performance in NDT. The aim is to improve performance, in the long run, by exploring the operators' decision strategies and other underlying factors and to this way find out what makes some operators more successful than others. Sixteen operators performed manual ultrasonic inspections of four test pieces with the aim to detect (implanted) cracks. In addition to these performance demonstration tests (PDT), the operators performed independent ability tests and filled out questionnaires. The results show that operators who trust their gut feeling more than the procedure (when the two come to different results) and that at the same time have a positive attitude towards the procedure have a higher PDT performance. These results indicate the need for operators to be motivated and confident when performing NDT. It was also found that the operators who performed better rated more decision criteria higher in the detection phase than the operators who performed worse. For characterizing it was the other way around. Also, the operators who performed better used more time, both detecting and characterizing, than the operators who performed worse

  13. Applications of Non-destructive methods (GPR and 3D Laser Scanner) in Historic Masonry Arch Bridge Assessment

    Science.gov (United States)

    Alani, Amir; Banks, Kevin

    2014-05-01

    There exist approximately 70,000 masonry arch bridge spans (brick and stone) in the UK with tens of thousands more throughout Europe. A significant number of these bridges are still in operation and form part of the road and rail network systems in many countries. A great majority of these bridges are in desperate need of repair and maintenance. Applications of non-destructive testing methods such as ground penetrating radar (GPR), 3D laser scanning, accelerometer sensors and vibration detecting sensors amongst many others have been used to assess and monitor such structures in the past few years. This presentation provides results of the applications of a 2GHz GPR antenna system and a 3D laser scanner on a historic masonry arch bridge (the Old Bridge, Aylesford) located in Kent, in the south east of England. The older part of the bridge (the mid-span) is 860 years old. The bridge was the subject of a major alteration in 1811. This presentation forms part of a larger ongoing study which is using the two above mentioned non-destructive methods for long-term monitoring of the bridge. The adopted survey planning strategy and technique, data acquisition and processing as well as challenges encountered during actual survey and fieldworks have been discussed in this presentation. As a result of this study the position of different layers of the deck structure has been established with the identification of the original stone base of the bridge. This information in addition to the location of a number of structural ties (anchors - remedial work carried out previously) in the absence of reliable and accurate design details proved to be extremely useful for the modelling of the bridge using the finite element method. Results of the 3D laser scanning of the bridge have also been presented which have provided invaluable data essential for the accurate modelling of the bridge as well as the long term monitoring of the bridge. 2014 EGU-GA GI3.1 Session, organised by COST Action

  14. NON-DESTRUCTIVE LEAK DETECTION IN GALVANIZED IRON PIPE USING NONLINEAR ACOUSTIC MODULATION METHOD

    Directory of Open Access Journals (Sweden)

    Gigih Priyandoko

    2018-02-01

    Full Text Available Non-destructive testing is a wide group of analysis techniques used in science and industry to evaluate the properties of a structure without causing damage to it. The main objective of this project is to carry out experiment to detect leakage in pipeline using nonlinear acoustic modulation method. The nonlinear acoustic modulation approach with low frequency excitation and high frequency acoustic wave is used to reveal modulations in the presence of leak. The pipe used in this experiment was galvanized iron pipe. The experiment is started with the experiment of undamaged specimen and followed by the experiment of damaged specimen with manually applied leak. The results obtained are being observed and the difference between the specimen without leak and with leak can be distinguished. The distance of the leak and the distance of the outlet detected is nearly accurate to the exact location which is leak at 4.0 m and outlet at 6.0 m. Therefore, the results demonstrate that leakage can be detected using nonlinear acoustic modulation, and proved the objective of distinguish the difference between the results of specimen without leak and with leak has succeeded. The damage detection process can be eased with the knowledge on the signal features.

  15. Low frequency electrical and magnetic methods for non-destructive analysis of fiber dispersion in fiber reinforced cementitious composites: an overview.

    Science.gov (United States)

    Faifer, Marco; Ferrara, Liberato; Ottoboni, Roberto; Toscani, Sergio

    2013-01-21

    Non-destructive analysis of fiber dispersion in structural elements made of Fiber Reinforced Concrete (FRC) and Fiber Reinforced Cementitious Composites (FRCCs) plays a significant role in the framework of quality control and performance prediction. In this paper, the research activity of the authors in the aforementioned field all over the last lustrum will be reviewed. A method based on the measurement of the inductance of a probe to be placed on the specimen will be presented and its progressive development will be described. Obtained correlation with actual fiber dispersion, as checked by means of destructive methods, as well as with the mechanical performance of the composite will also be presented, in an attempt to address the significance of the method from an engineering application perspective.

  16. Performance and non-destructive evaluation methods of airborne radome and stealth structures

    Science.gov (United States)

    Panwar, Ravi; Ryul Lee, Jung

    2018-06-01

    In the past few years, great effort has been devoted to the fabrication of highly efficient, broadband radome and stealth (R&S) structures for distinct control, guidance, surveillance and communication applications for airborne platforms. The evaluation of non-planar aircraft R&S structures in terms of their electromagnetic performance and structural damage is still a very challenging task. In this article, distinct measurement techniques are discussed for the electromagnetic performance and non-destructive evaluation (NDE) of R&S structures. This paper deals with an overview of the transmission line method and free space measurement based microwave measurement techniques for the electromagnetic performance evaluation of R&S structures. In addition, various conventional as well as advanced methods, such as millimetre and terahertz wave based imaging techniques with great potential for NDE of load bearing R&S structures, are also discussed in detail. A glimpse of in situ NDE techniques with corresponding experimental setup for R&S structures is also presented. The basic concepts, measurement ranges and their instrumentation, measurement method of different R&S structures and some miscellaneous topics are discussed in detail. Some of the challenges and issues pertaining to the measurement of curved R&S structures are also presented. This study also lists various mathematical models and analytical techniques for the electromagnetic performance evaluation and NDE of R&S structures. The research directions described in this study may be of interest to the scientific community in the aerospace sectors.

  17. Development of imaging and reconstructions algorithms on parallel processing architectures for applications in non-destructive testing

    International Nuclear Information System (INIS)

    Pedron, Antoine

    2013-01-01

    This thesis work is placed between the scientific domain of ultrasound non-destructive testing and algorithm-architecture adequation. Ultrasound non-destructive testing includes a group of analysis techniques used in science and industry to evaluate the properties of a material, component, or system without causing damage. In order to characterise possible defects, determining their position, size and shape, imaging and reconstruction tools have been developed at CEA-LIST, within the CIVA software platform. Evolution of acquisition sensors implies a continuous growth of datasets and consequently more and more computing power is needed to maintain interactive reconstructions. General purpose processors (GPP) evolving towards parallelism and emerging architectures such as GPU allow large acceleration possibilities than can be applied to these algorithms. The main goal of the thesis is to evaluate the acceleration than can be obtained for two reconstruction algorithms on these architectures. These two algorithms differ in their parallelization scheme. The first one can be properly parallelized on GPP whereas on GPU, an intensive use of atomic instructions is required. Within the second algorithm, parallelism is easier to express, but loop ordering on GPP, as well as thread scheduling and a good use of shared memory on GPU are necessary in order to obtain efficient results. Different API or libraries, such as OpenMP, CUDA and OpenCL are evaluated through chosen benchmarks. An integration of both algorithms in the CIVA software platform is proposed and different issues related to code maintenance and durability are discussed. (author) [fr

  18. Non-destructive characterization of the materials for future nuclear reactors

    International Nuclear Information System (INIS)

    Snopek, J.; Slugen, V.

    2016-01-01

    For our experiments, we have used Barkhausen noise technique, which is powerful non-destructive method for monitoring stresses in lattices of magnetic materials. We have also used PAS, which is powerful non-destructive method for diagnosing vacancy defects in variable materials. We researched some ODS steels, which are primarily going to be used as fuel cladding or reactor pressure vessel internal components. This thesis describes the behavior of the microstructure of the oxide dispersion strengthened steels at intermediate temperature. Two, in principle, different techniques were used for the characterization of the microstructure of the oxide dispersion strengthened steels thermally aged at 475 grad C and 650 grad C. Both techniques, namely Positron annihilation lifetime spectroscopy (PAS) and Barkhausen noise (BN) measurements are very sensitive to metallurgical modifications and presence of nano-sized imperfections in the crystal lattice. Precipitation of the nano-sized α' phases shift the Barkhausen noise signal. (authors)

  19. Non-destructive evaluation of thermal aging embrittlement of duplex stainless steels

    International Nuclear Information System (INIS)

    Yi, Y.S.; Tomobe, T.; Watanabe, Y.; Shoji, T.

    1993-01-01

    The non-destructive evaluation procedure for detecting thermal aging embrittlement of cast duplex stainless steels has been investigated. As a novel measurement technique for the thermal aging embrittlement, an electrochemical method was used and anodic polarization behaviors were measured on new, service exposed, and laboratory aged materials and then were compared with the results of the mechanical tests and microstructural changes. During the polarization experiments performed in potassium hydroxide solution (KOH), M 23 C 6 carbides on phase boundary were preferentially dissolved, which was comfirmed by the SEM after polarization measurements. The preferential dissolution of M 23 C 6 carbides were obtained. Also, the non-destructive measurement and evaluation method of spinodal decomposition, which has been known as the primary mechanism of embrittlement inferrite phase, was reviewed. When the materials, where spinodal decomposition occurred, were polarized in an acetic acid solution (CH 3 COOH), larger critical anodic current densities were observed than those observed on new materials, and these results were consistent with the result of the microhardness measurement. Concerning these polarization results, a critical electric charge, which was required for stable passive films in passive metals, was defined and the relationship between the microstructural changes and this charge amount was reviewed under various polarization conditions in order to verify the polarization mechanism of the spinodally decomposed ferrite phase

  20. Identification of the Quality Spot Welding used Non Destructive Test-Ultrasonic Testing: (Effect of Welding Time)

    Science.gov (United States)

    Sifa, A.; Endramawan, T.; Badruzzaman

    2017-03-01

    Resistance Spot Welding (RSW) is frequently used as one way of welding is used in the manufacturing process, especially in the automotive industry [4][5][6][7]. Several parameters influence the process of welding points. To determine the quality of a welding job needs to be tested, either by damaging or testing without damage, in this study conducted experimental testing the quality of welding or identify quality of the nugget by using Non-Destructive Test (NDT) -Ultrasonic Testing (UT), in which the identification of the quality of the welding is done with parameter thickness of worksheet after welding using NDT-UT with use same material worksheet and have more thickness of worksheet, the thickness of the worksheet single plate 1mm, with the capability of propagation Ultrasonic Testing (UT) standard limited> 3 mm [1], welding process parameters such as the time difference between 1-10s and the welding current of 8 KV, visually Heat Affected Zone ( HAZ ) have different results due to the length of time of welding. UT uses a probe that is used with a frequency of 4 MHz, diameter 10 mm, range 100 and the couplant used is oil. Identification techniques using drop 6dB, with sound velocity 2267 m / s of Fe, with the result that the effect of the Welding time affect the size of the HAZ, identification with the lowest time 1s show results capable identified joined through NDT - UT.

  1. A non-destructive DNA sampling technique for herbarium specimens.

    Science.gov (United States)

    Shepherd, Lara D

    2017-01-01

    Herbarium specimens are an important source of DNA for plant research but current sampling methods require the removal of material for DNA extraction. This is undesirable for irreplaceable specimens such as rare species or type material. Here I present the first non-destructive sampling method for extracting DNA from herbarium specimens. DNA was successfully retrieved from robust leaves and/or stems of herbarium specimens up to 73 years old.

  2. In-situ Non-destructive Studies on Biofouling Processes in Reverse Osmosis Membrane Systems

    KAUST Repository

    Farhat, Nadia

    2016-12-01

    Reverse osmosis (RO) and nanofiltration (NF) membrane systems are high-pressure membrane filtration processes that can produce high quality drinking water. Biofouling, biofilm formation that exceeds a certain threshold, is a major problem in spiral wound RO and NF membrane systems resulting in a decline in membrane performance, produced water quality, and quantity. In practice, detection of biofouling is typically done indirectly through measurements of performance decline. Existing direct biofouling detection methods are mainly destructive, such as membrane autopsies, where biofilm samples can be contaminated, damaged and resulting in biofilm structural changes. The objective of this study was to test whether transparent luminescent planar oxygen sensing optodes, in combination with a simple imaging system, can be used for in-situ, non-destructive biofouling characterization. Aspects of the study were early detection of biofouling, biofilm spatial patterning in spacer filled channels, and the effect of feed cross-flow velocity, and feed flow temperature. Oxygen sensing optode imaging was found suitable for studying biofilm processes and gave detailed spatial and quantitative biofilm development information enabling better understanding of the biofouling development process. The outcome of this study attests the importance of in-situ, non-destructive imaging in acquiring detailed knowledge on biofilm development in membrane systems contributing to the development of effective biofouling control strategies.

  3. Compressed Sensing mm-Wave SAR for Non-Destructive Testing Applications Using Multiple Weighted Side Information

    Directory of Open Access Journals (Sweden)

    Mathias Becquaert

    2018-05-01

    Full Text Available This work explores an innovative strategy for increasing the efficiency of compressed sensing applied on mm-wave SAR sensing using multiple weighted side information. The approach is tested on synthetic and on real non-destructive testing measurements performed on a 3D-printed object with defects while taking advantage of multiple previous SAR images of the object with different degrees of similarity. The tested algorithm attributes autonomously weights to the side information at two levels: (1 between the components inside the side information and (2 between the different side information. The reconstruction is thereby almost immune to poor quality side information while exploiting the relevant components hidden inside the added side information. The presented results prove that, in contrast to common compressed sensing, good SAR image reconstruction is achieved at subsampling rates far below the Nyquist rate. Moreover, the algorithm is shown to be much more robust for low quality side information compared to coherent background subtraction.

  4. Project GRETE: evaluation of non destructive testing techniques for monitoring of material degradation

    International Nuclear Information System (INIS)

    Coste, J.F.

    2001-01-01

    The material aging of major critical components of nuclear installations due to in-service conditions may lead to a degradation of their mechanical characteristics. The early detection of material changes and their monitoring using innovative non destructive testing techniques would allow to plan actions in order to prevent the apparition of macroscopic damage (e.g. cracks). One major difficulty in using these particular techniques is to correlate the changes in the measured NDT signals to the microstructural changes in the material due to aging. This problem may be solved through careful microstructural examinations of the material damage. The objective of the project GRETE is to illustrate the potential use of NDT techniques for the monitoring of material degradation through two examples: neutron irradiation of reactor pressure vessel steel and thermal fatigue of piping. The purpose of this paper is to present the project and its programme of work. (author)

  5. Liquid penetrant and magnetic particle testing at level 2. Manual for the syllabi contained in IAEA-TECDOC-628, training guidelines in non-destructive testing techniques

    International Nuclear Information System (INIS)

    2000-01-01

    The International Atomic Energy Agency (IAEA) has been active in the promotion of non-destructive testing (NDT) technology in the world for many decades. The prime reason for this has been the need for stringent standards for quality control for safe operation of industrial as well a nuclear installations. It has successfully executed a number of programmes and regional projects of which NDT was an important part. Through these programmes a large number of persons have been trained in the member states and a state of self sufficiency in this area of technology has been achieved in many of them. All along there has been a realization of the need to have well established training guidelines and related books in order, firstly, to guide the IAEA experts who were involved in this training programme and, secondly, to achieve some level of international uniformity and harmonization of training materials and consequent competence of personnel. The syllabi for training courses have been published in the form of two TECDOC publications. The first was IAEA-TECDOC-407 which contained syllabi for the basic five methods, i.e. liquid penetrant testing, magnetic particle testing, eddy current testing, radiographic testing and ultrasonic testing, and the second and revised is IAEA-TECDOC-628 which includes additional methods of visual testing and leak testing. IAEA-TECDOC-628, as well as most of the international standards on the subject of training and certification of NDT personnel including ISO 9712, define three levels of competence, namely, Level 1, Level 2 and Level 3. Among these, Level 1 is the lowest and Level 3 the highest. The intermediate Level 2 is considered to be the most appropriate for persons who, beside other duties, are expected to independently undertake practical testing in the relevant method of NDT; develop NDT procedures adapted to various problems; prepare written instructions; make accept/reject decisions in accordance with relevant standards and

  6. Liquid penetrant and magnetic particle testing at level 2. Manual for the syllabi contained in IAEA-TECDOC-628, training guidelines in non-destructive testing techniques

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-02-01

    The International Atomic Energy Agency (IAEA) has been active in the promotion of non-destructive testing (NDT) technology in the world for many decades. The prime reason for this has been the need for stringent standards for quality control for safe operation of industrial as well a nuclear installations. It has successfully executed a number of programmes and regional projects of which NDT was an important part. Through these programmes a large number of persons have been trained in the member states and a state of self sufficiency in this area of technology has been achieved in many of them. All along there has been a realization of the need to have well established training guidelines and related books in order, firstly, to guide the IAEA experts who were involved in this training programme and, secondly, to achieve some level of international uniformity and harmonization of training materials and consequent competence of personnel. The syllabi for training courses have been published in the form of two TECDOC publications. The first was IAEA-TECDOC-407 which contained syllabi for the basic five methods, i.e. liquid penetrant testing, magnetic particle testing, eddy current testing, radiographic testing and ultrasonic testing, and the second and revised is IAEA-TECDOC-628 which includes additional methods of visual testing and leak testing. IAEA-TECDOC-628, as well as most of the international standards on the subject of training and certification of NDT personnel including ISO 9712, define three levels of competence, namely, Level 1, Level 2 and Level 3. Among these, Level 1 is the lowest and Level 3 the highest. The intermediate Level 2 is considered to be the most appropriate for persons who, beside other duties, are expected to independently undertake practical testing in the relevant method of NDT; develop NDT procedures adapted to various problems; prepare written instructions; make accept/reject decisions in accordance with relevant standards and

  7. 1998 Annual Study Report. Standards development of chemical analysis and non destructive inspection methods for pure titanium metals; 1998 nendo seika hokokusho. Jun chitan no shiken hyoka hoho no hyojunka

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    This study was conducted to standardize the chemical analysis and non-destructive inspection methods for pure titanium metals of industrial grade. These methods are among those serving bases for international standardization of products. The chemical analysis is aimed at quantitative analysis of trace impurities, in particular, present in pure titanium metals of industrial grade by developing and standardizing the inductively coupled plasma atomic emission spectroscopy, known for its low detectable limit, and, at the same time, spark and glow discharged atomic emission spectrometry as the improved routine analysis methods. These methods, although being used by, e.g., steel makers, have not been standardized because the effects of titanium-peculiar matrix are not elucidated. The non-destructive testing is aimed at standardization of the techniques useful for automatic production lines. More concretely, these include optical methods aided by a laser or CCD camera for plate surface defect inspection, ultrasonic methods for plate internal defect inspection, and pressure differential methods for air-tightness of welded pipes. They have not been used yet for automatic production lines. (NEDO)

  8. Sampling analytical tests and destructive tests for quality assurance

    International Nuclear Information System (INIS)

    Saas, A.; Pasquini, S.; Jouan, A.; Angelis, de; Hreen Taywood, H.; Odoj, R.

    1990-01-01

    In the context of the third programme of the European Communities on the monitoring of radioactive waste, various methods have been developed for the performance of sampling and measuring tests on encapsulated waste of low and medium level activity, on the one hand, and of high level activity, on the other hand. The purpose was to provide better quality assurance for products to be stored on an interim or long-term basis. Various testing sampling means are proposed such as: - sampling of raw waste before conditioning and determination of the representative aliquot, - sampling of encapsulated waste on process output, - sampling of core specimens subjected to measurement before and after cutting. Equipment suitable for these sampling procedures have been developed and, in the case of core samples, a comparison of techniques has been made. The results are described for the various analytical tests carried out on the samples such as: - mechanical tests, - radiation resistance, - fire resistance, - lixiviation, - determination of free water, - biodegradation, - water resistance, - chemical and radiochemical analysis. Every time it was possible, these tests were compared with non-destructive tests on full-scale packages and some correlations are given. This word has made if possible to improve and clarify sample optimization, with fine sampling techniques and methodologies and draw up characterization procedures. It also provided an occasion for a first collaboration between the laboratories responsible for these studies and which will be furthered in the scope of the 1990-1994 programme

  9. Measurement of mango firmness by non-destructive limited compression technique

    NARCIS (Netherlands)

    Penchaiya, P.; Uthairatanakij, A.; Srilaong, V.; Kanlayanarat, S.; Tijskens, L.M.M.; Tansakul, A.

    2015-01-01

    Thai mango 'Nam Dok Mai Si-Thong' has an attractive golden yellow skin colour even in immature fruit, not ready for consumption. Firmness becomes an important quality attribute to assess the ripening stage of the fruit during storage. In this study, the possibility of a non-destructive method

  10. Improvement of non destructive infrared test bed SATIR for examination of actively cooled tungsten armour Plasma Facing Components

    Energy Technology Data Exchange (ETDEWEB)

    Vignal, N., E-mail: nicolas.vignal@cea.fr; Desgranges, C.; Cantone, V.; Richou, M.; Courtois, X.; Missirlian, M.; Magaud, Ph.

    2013-10-15

    Highlights: • Non destructive infrared techniques for control ITER like PFCs. • Reflective surface such as W induce a measurement temperature error. • Numerical data processing by evaluation of the local emissivity. • SATIR test bed can control metallic surface with low and variable emissivity. -- Abstract: For steady state (magnetic) thermonuclear fusion devices which need large power exhaust capability and have to withstand heat fluxes in the range 10–20 MW m{sup −2}, advanced Plasma Facing Components (PFCs) have been developed. The importance of PFCs for operating tokamaks requests to verify their manufacturing quality before mounting. SATIR is an IR test bed validated and recognized as a reliable and suitable tool to detect cooling defaults on PFCs with CFC armour material. Current tokamak developments implement metallic armour materials for first wall and divertor; their low emissivity causes several difficulties for infrared thermography control. We present SATIR infrared thermography test bed improvements for W monoblocks components without defect and with calibrated defects. These results are compared to ultrasonic inspection. This study demonstrates that SATIR method is fully usable for PFCs with low emissivity armour material.

  11. Improvement of non destructive infrared test bed SATIR for examination of actively cooled tungsten armour Plasma Facing Components

    International Nuclear Information System (INIS)

    Vignal, N.; Desgranges, C.; Cantone, V.; Richou, M.; Courtois, X.; Missirlian, M.; Magaud, Ph.

    2013-01-01

    Highlights: • Non destructive infrared techniques for control ITER like PFCs. • Reflective surface such as W induce a measurement temperature error. • Numerical data processing by evaluation of the local emissivity. • SATIR test bed can control metallic surface with low and variable emissivity. -- Abstract: For steady state (magnetic) thermonuclear fusion devices which need large power exhaust capability and have to withstand heat fluxes in the range 10–20 MW m −2 , advanced Plasma Facing Components (PFCs) have been developed. The importance of PFCs for operating tokamaks requests to verify their manufacturing quality before mounting. SATIR is an IR test bed validated and recognized as a reliable and suitable tool to detect cooling defaults on PFCs with CFC armour material. Current tokamak developments implement metallic armour materials for first wall and divertor; their low emissivity causes several difficulties for infrared thermography control. We present SATIR infrared thermography test bed improvements for W monoblocks components without defect and with calibrated defects. These results are compared to ultrasonic inspection. This study demonstrates that SATIR method is fully usable for PFCs with low emissivity armour material

  12. Edward’s sword? – A non-destructive study of a medieval king’s sword

    International Nuclear Information System (INIS)

    Segebade, Chr.

    2013-01-01

    Non-destructive and instrumental methods including photon activation analysis were applied in an examination of an ancient sword. It was tried to find indication of forgery or, if authentic, any later processing and alteration. Metal components of the hilt and the blade were analysed by instrumental photon activation. Non-destructive metallurgical studies (hardness measurements, microscopic microstructure analysis) are briefly described, too. The results of these investigations did not yield indication of non-authenticity. This stood in agreement with the results of stylistic and scientific studies by weapon experts.

  13. Augmented reality application for industrial non-destructive inspection training

    Science.gov (United States)

    Amza, Catalin Gheorghe; Zapciu, Aurelian; Teodorescu, Octav

    2018-02-01

    Such a technology - Augmented Reality (AR) has great potential of use, especially for training purposes of new operators on using expensive equipment. In this context, the paper presents an augmented reality training system developed for phased-array ultrasonic non-destructive testing (NDT) equipment. The application has been developed using Unity 5.6.0 game-engine platform integrated with Vuforia sdk toolkit for devices with Android operating system. The test results performed by several NDT operators showed good results, thus proving the potential of using the application in the industrial field.

  14. A non-destructive, ultrasonic method for the determination of internal pressure and gas composition in an LWR fuel rod on-going and future programme

    International Nuclear Information System (INIS)

    Ferrandis, J.; Leveque, G.; Villard, J.

    2006-01-01

    Several possible non-destructive methods have been investigated in the past to measure the internal gas pressure e.g., measurement of 85 Kr directly, or after accumulation in the plenum by freezing with liquid nitrogen. However no satisfactory resolution to the problem has been found, so at present there is no rapid and accurate method of determining the fission gas pressure in a fuel rod without puncturing the cladding. This procedure is time-consuming and expensive and as a consequence a relatively small number of measurements are generally made compared with the number of fuel rods irradiated. In this paper it is proposed a new method for the measurement of pressure that is: Non-destructive; Non-invasive (i.e., allows re-irradiation of the measured rod); Easy to operate - directly in the reactor pool; Can be used on the critical path; Is inexpensive compared with the methods currently in use. This method is also being adapted to the on line measurement of fission gas release on fuel irradiation in research reactors. This method is based on the application of acoustic technology

  15. Application of a robust vibration-based non-destructive method for detection of fatigue cracks in structures

    International Nuclear Information System (INIS)

    Razi, Pejman; Esmaeel, Ramadan A; Taheri, Farid

    2011-01-01

    This paper presents the application of a novel vibration-based technique for detecting fatigue cracks in structures. The method utilizes the empirical mode decomposition method (EMD) to establish an effective energy-based damage index. To investigate the feasibility of the method, fatigue cracks of different sizes were introduced in an aluminum beam subjected to a cyclic load under a three-point bending configuration. The vibration signals corresponding to the healthy and the damaged states of the beam were acquired via piezoceramic sensors. The signals were then processed by the proposed methodology to obtain the damage indices. In addition, for the sake of comparison, the frequency and damping analysis were performed on the test specimen. The results of this study concluded with two major observations. Firstly, the method was highly successful in not only predicting the presence of the fatigue crack, but also in quantifying its progression. Secondly, the proposed energy-based damage index was proved to be superior to the frequency-based methods in terms of sensitivity to the damage detection and quantification. As a result, this technique could be regarded as an efficient non-destructive tool, since it is simple, cost-effective and does not rely on analytical modeling of structures. In addition, the capability of the finite element method (FEM) in mimicking the experiments, and hence for consideration as an effective tool for conducting future parametric studies, was also investigated

  16. System and method for non-destructive evaluation of surface characteristics of a magnetic material

    Science.gov (United States)

    Jiles, David C.; Sipahi, Levent B.

    1994-05-17

    A system and a related method for non-destructive evaluation of the surface characteristics of a magnetic material. The sample is excited by an alternating magnetic field. The field frequency, amplitude and offset are controlled according to a predetermined protocol. The Barkhausen response of the sample is detected for the various fields and offsets and is analyzed. The system produces information relating to the frequency content, the amplitude content, the average or RMS energy content, as well as count rate information, for each of the Barkhausen responses at each of the excitation levels applied during the protocol. That information provides a contiguous body of data, heretofore unavailable, which can be analyzed to deduce information about the surface characteristics of the material at various depths below the surface.

  17. Ultrasonic non-destructive testing of pieces of complex geometry with a flexible phased array transducer

    Science.gov (United States)

    Chatillon; Cattiaux; Serre; Roy

    2000-03-01

    Ultrasonic non-destructive testing of components of complex geometry in the nuclear industry faces several difficulties: sensitivity variations due to unmatched contact, inaccurate localization of defects due to variations of transducer orientation, and uncovered area of the component. To improve the performances of such testing and defect characterization, we propose a new concept of ultrasonic contact phased array transducer. The phased array transducer has a flexible radiating surface able to fit the actual surface of the piece to optimize the contact and thus the sensitivity of the test. To control the transmitted field, and therefore to improve the defect characterization, a delay law optimizing algorithm is developed. To assess the capability of such a transducer, the Champ-Sons model, developed at the French Atomic Energy Commission for predicting field radiated by arbitrary transducers into pieces, has to be extended to sources directly in contact with pieces of complex geometry. The good behavior of this new type of probe predicted by computations is experimentally validated with a jointed transducer positioned on pieces of various profiles.

  18. Study of development of non-destructive method for determining FGR from high burned PWR type fuel rod

    International Nuclear Information System (INIS)

    Yanagisawa, Kazuaki; Miyanishi, Hideyuki; Kitagawa, Isamu; Iida, Shozo; Ito, Tadaharu; Amano, Hidetoshi.

    1991-11-01

    Experimental study was made to evaluate the FGR (Fission Product Gas Release) from high burned PWR type fuel rods by means of non-destructive method through measurement of the gamma activity of 85 Kr isotope which was accumulated in the fuel top plenum. Experimental result shows that it is possible to know the amounts of FGR at fuel plenum by the equations given in the followings. FGR = 0.28C/V f or FGR = 0.07C where, FGR (%) is the amounts of Xe and Kr released from UO 2 fuel, C (counts/h) the radioactivity of 85 Kr at plenum of the tested fuel rod and V f (ml) the plenum volume of the tested fuel rod, respectively. The present study was made by using 14 x 14 PWR type fuel rods preirradiated up to the burn-up of 42.1 MWd/kgU, followed by the pulse irradiation at Nuclear Safety Research Reactor of Japan Atomic Energy Research Institute (JAERI). The FGR of the tested segmented fuel rods were measured by puncturing and found to range from 0.6% to 12% according to the magnitude of the deposited energy given by pulse. Estimated experimental error bands against the above equations were within plus minus 30%. (author)

  19. Evaluation of non destructive testing to characterize the resistance of the prefabricated system of columns and floor tiles for single family homes of a level: permeability meter, determination of wave velocity by ultrasound, Schmidt sclerometer and metal detector

    International Nuclear Information System (INIS)

    Quesada Chacon, Dannell

    2014-01-01

    Non destructive testing are determined to be correlated with resistance to compression and flexion of elements belonging to prefabricated system of columns and floor tiles for single family homes of a level. The characteristics of the non destructive testing are described, such as: measurer of permeability, Schmidt sclerometer, determination of wave velocity by ultrasound and metal detector. The columns and floor tiles are elaborated with 2 mixtures of different resistances at 28 days. The first more than 30 MPa and the second less than 25 MPa are sampled together with the control cylinders necessary to obtain the actual resistance according to ASTM C39. Last resistance testings to compression and Schmidt sclerometer are realized to control cylinders to 1, 2, and 4 weeks after being cast. Non destructive testings (permeability meter Torrent, Schmidt sclerometer and determination of wave velocity by ultrasound) are performed in columns and floor tiles to 1, 2, and 4 weeks after being cast. Last resistance testings to flexion is obtained by means of destructive tests of the columns and floor tiles sampled. The correlation of the data obtained is determined to derive values of compression resistance from non destructive testing [es

  20. APPARATUS FOR NON-DESTRUCTIVE INSPECTION OF CANTILEVERED MEMBERS

    Science.gov (United States)

    Taylor, E.R.; Mahoney, C.H.; Lay, C.R.

    1961-10-24

    An apparatus for non-destructive inspection of cantilevered members, such as compressor blades, is described. The member under inspection is vibrated with a regulated source of air under pressure. The amplitude of vibration of the member is maintained at its natural frequency. The frequency of vibration of the member is measured. An indication of an excessive decay or erratic shifting in the measured frequency above an allowable hysteretic decay is provided as an indication of a fault in the member. The member is vibrated for a selected test period. (AEC)

  1. Non-Destructive Testing: Sample Questions for Conduct of Examinations at Levels 1 and 2

    International Nuclear Information System (INIS)

    2010-01-01

    The International Atomic Energy Agency (IAEA) supports industrial applications of radiation technology which include non-destructive testing (NDT) under its various programmes such as individual country Technical Co-operation (TC) projects, Regional Projects and Coordinated Research Projects (CRPs). NDT technology is essentially needed for the improvement of the quality of industrial products, equipment and plants all over the world, especially in developing Member States. Trained and certified personnel is one of the essential requirements for applying this technology in industry. With this in view, the IAEA first played an important role in cooperation with the International Organisation for Standardisation (ISO) for the development of a standard for training and certification of NDT personnel, namely ISO 9712, 'Non-Destructive Testing: Qualification and Certification of Personnel'. Subsequently the syllabi and needed training materials were identified and developed for the creation of, in each of the Member States, a core group of personnel who are trained and qualified to establish the training and certification process in their respective countries. One of the important requirements for such a process is to have the examination questions for conducting the certification examinations. A need had been felt to compile the appropriate questions firstly for conducting these examinations at the national and regional levels and secondly to provide these to the certification bodies of the Member States so that they could initiate their own level 1 and 2 certification examinations. For this purpose, Experts' Task Force Meetings were convened first in Accra, Ghana and then in Vienna, Austria under the AFRA regional projects on NDT. The experts examined and discussed in detail the ISO 9712 (1999 and 2005 versions) requirements for general, specific and practical examinations for level 1 and 2 personnel. After that a set of questions has been established which are

  2. Human and organisational factors influencing the reliability of non-destructive testing. An international literary survey; Inhimillisten ja organisatoristen tekijoeiden yhteys NDT- tarkastusten luotettavuuteen. Katsaus kansainvaeliseen kirjallisuuteen

    Energy Technology Data Exchange (ETDEWEB)

    Kettunen, J.; Norros, L.

    1996-04-01

    The aim of the study is to chart human and organisational factors influencing the reliability of non-destructive testing (NDT). The emphasis will be in ultrasonic testing (UT) and in the planning and execution of in-service inspections during nuclear power plant maintenance outages. Being a literary survey this study is mainly based on the foreign and domestic research available on the topic. In consequence, the results presented in this report reflect the ideas of international research community. In addition to this, Finnish nuclear power plant operators (Imatran Voima Oy and Teollisuuden Voima Oy), independent inspection organisations and the Finnish Centre for Radiation and Nuclear Safety have provided us with valuable information on NDT theory and practice. Especially, a kind of `big picture` of non-destructive testing has been pursued in the study. (6 figs., 2 tabs.).

  3. Investigation on the Short-Circuit Behavior of an Aged IGBT Module Through a 6 kA/1.1 kV Non-Destructive Testing Equipment

    DEFF Research Database (Denmark)

    Wu, Rui; Smirnova, Liudmila; Iannuzzo, Francesco

    2014-01-01

    This paper describes the design and development of a 6 kA/1.1 kV non-destructive testing system, which aims for short circuit testing of high-power IGBT modules. An ultralow stray inductance of 37 nH is achieved in the implementation of the tester. An 100 MHz FPGA supervising unit enables 10 ns...

  4. Parallelization of ultrasonic field simulations for non destructive testing

    International Nuclear Information System (INIS)

    Lambert, Jason

    2015-01-01

    The Non Destructive Testing field increasingly uses simulation. It is used at every step of the whole control process of an industrial part, from speeding up control development to helping experts understand results. During this thesis, a fast ultrasonic field simulation tool dedicated to the computation of an ultrasonic field radiated by a phase array probe in an isotropic specimen has been developed. During this thesis, a simulation tool dedicated to the fast computation of an ultrasonic field radiated by a phased array probe in an isotropic specimen has been developed. Its performance enables an interactive usage. To benefit from the commonly available parallel architectures, a regular model (aimed at removing divergent branching) derived from the generic CIVA model has been developed. First, a reference implementation was developed to validate this model against CIVA results, and to analyze its performance behaviour before optimization. The resulting code has been optimized for three kinds of parallel architectures commonly available in workstations: general purpose processors (GPP), many-core co-processors (Intel MIC) and graphics processing units (nVidia GPU). On the GPP and the MIC, the algorithm was reorganized and implemented to benefit from both parallelism levels, multithreading and vector instructions. On the GPU, the multiple steps of field computing have been divided in multiple successive CUDA kernels. Moreover, libraries dedicated to each architecture were used to speedup Fast Fourier Transforms, Intel MKL on GPP and MIC and nVidia cuFFT on GPU. Performance and hardware adequation of the produced codes were thoroughly studied for each architecture. On multiple realistic control configurations, interactive performance was reached. Perspectives to address more complex configurations were drawn. Finally, the integration and the industrialization of this code in the commercial NDT platform CIVA is discussed. (author) [fr

  5. The Effect of Localized Damage on the Electrical Conductivity of Bare Carbon Fiber Tow and its Use as a Non-Destructive Evaluation Tool for Composite Overwrapped Pressure Vessels

    Science.gov (United States)

    Wentzel, Daniel

    2015-01-01

    Composite materials are beneficial because of their high specific strength and low weight. Safety, Destructive testing and destructive testing, Non-Destructive Testing (NDT) and Non-Destructive Evaluation (NDE). Problem: Neither NDT nor NDE can provide sufficient data to determine life expectancy or quantify the damage state of a composite material.

  6. Contribution to the improvement of heritage mural painting non-destructive testing by stimulated infrared thermography

    Science.gov (United States)

    Bodnar, Jean-Luc; Mouhoubi, Kamel; Di Pallo, Luigi; Detalle, Vincent; Vallet, Jean-Marc; Duvaut, Thierry

    2013-10-01

    Non-destructive testing of heritage mural paintings by means of stimulated infrared thermography has now become rather efficient [1-14]. However, pigments, which form a pictorial layer, have contrasting radiative properties possibly leading to artifact detection. In this paper, attempts to alleviate this difficulty are presented. Based on the spectroscopic study of different paint layers, one can argue that, in the medium infrared field, this radiative disparity decreases significantly. Then, with similar settings, it can be shown that ceramic radiative sources allow reaching this wavelength band. Finally, on the basis of a study carried out on an academic sample and a partial copy of a fresco from the cathedral of Angers, combining ceramic heat sources with a laboratory SAMMTHIR experimental setup enables to make real headway in terms of defects' detection.

  7. Non-destructive testing on aramid fibres for the long-term assessment of interventions on heritage structures

    International Nuclear Information System (INIS)

    Ceravolo, R; Pinotti, E; Surace, C; Fragonara, L Zanotti; De Marchi, A

    2015-01-01

    High strength fibre reinforced polymers (FRPs) are composite materials made of fibres such as carbon, aramid and/or glass, and a resin matrix. FRPs are commonly used for structural repair and strengthening interventions and exhibit high potential for applications to existing constructions, including heritage buildings. In regard to aramid fibres, uncertainties about the long-term behaviour of these materials have often made the designers reluctant to use them in structural engineering. The present study describes simple and non-destructive nonlinearity tests for assessing damage or degradation of structural properties in Kevlar fibres. This was obtained by using high precision measurements to detect small deviations in the dynamic response measured on fibres and ropes. The change in dynamic properties was then related to a damage produced by exposure of the sample to UV rays for a defined time period, which simulated long-term sun exposure. In order to investigate the sensitivity of such an approach to damage detection, non-linearity characterisation tests were conducted on aramid fibres in both damaged and undamaged states. With the purpose of carrying out dynamic tests on small fibre specimens, a dedicated instrumentation was designed and built in cooperation with the Metrology Laboratory of the Department of Electronics at the Politecnico di Torino. (paper)

  8. Non destructive method to follow the phase sigma in a duplex stainless steel

    International Nuclear Information System (INIS)

    Silva, E.M.; Andrade, A.L.S. Souza; Fialho, W.M.L.; Araujo, B.R.; Silva, J.H.R.; Leite, Josinaldo P.; Silva, Eloy M.; Leite, Joao P.

    2014-01-01

    Duplex stainless steels are subject to embrittlement due to the formation of sigma phase, which is one with the greatest effect of weakening because they are rich in chromium and deplete the matrix of this element. In this paper, a non-destructive methodology based on measurements of Hall voltage, is presented for monitoring the formation of sigma phase at temperatures of 800 deg C and 900 deg C. Different field intensities are generated by an electromagnet and the flow of field lines is detected by a Hall effect sensor. Hall voltage measurements are proportional to the formation of sigma phase generated by different times of aging methods. The results are correlated with results of microscopic, hardness and X-ray diffraction. It was showed that exist a correlation between the Hall voltage and the amount of sigma phase. The formation of this phase influences the signal voltage by reducing the voltage. (author)

  9. Edward's sword? - A non-destructive study of a medieval king's sword

    Energy Technology Data Exchange (ETDEWEB)

    Segebade, Chr. [Idaho Accelerator Centre, Idaho State University, 1500 Alvin Ricken Drive, Pocatello, ID 83201 (United States)

    2013-04-19

    Non-destructive and instrumental methods including photon activation analysis were applied in an examination of an ancient sword. It was tried to find indication of forgery or, if authentic, any later processing and alteration. Metal components of the hilt and the blade were analysed by instrumental photon activation. Non-destructive metallurgical studies (hardness measurements, microscopic microstructure analysis) are briefly described, too. The results of these investigations did not yield indication of non-authenticity. This stood in agreement with the results of stylistic and scientific studies by weapon experts.

  10. The Destructive/Non-Destructive Identification of Enameled Pottery, Glass Artifacts and Associated Pigments—A Brief Overview

    Directory of Open Access Journals (Sweden)

    Philippe Colomban

    2013-07-01

    Full Text Available The birth of Chemistry can be found in two main practices: (i the Arts du feu (ceramic and glass, metallurgy, i.e., inorganic and solid state chemistry and (ii the preparation of remedies, alcohols and perfumes, dyes, i.e., organic and liquid state chemistry. After a brief survey of the history of (glazed pottery and (enameled glass artifacts, the development of destructive and non-destructive analytical techniques during the last few centuries is reviewed. Emphasis is put on mobile non-destructive Raman microspectroscopy of pigments and their glass/glaze host matrices for chronological/technological expertise. The techniques of white opacification, blue, yellow, green, red, and black coloring, are used as examples to point out the interest of pigments as chronological/technological markers.

  11. LL/ILW: Post-Qualification of Old Waste through Non-Destructive Extraction of Barrels from Cement Shields - 13535

    International Nuclear Information System (INIS)

    Oehmigen, Steffen; Ambos, Frank

    2013-01-01

    Currently there is a large number of radioactive waste drums entombed in cement shields at German nuclear power plants. These concrete containers used in the past for the waste are not approved for the final repository. Compliance with current acceptance criteria of the final repository has to be proven by qualification measures on the waste. To meet these criteria, a new declaration and new packing is necessary. A simple non-destructive extraction of about 2000 drums from their concrete shields is not possible. So different methods were tested to find a way of non-destructive extraction of old waste drums from cement shields and therefore reduce the final repository volume and final repository costs by using a container accepted and approved for Konrad. The main objective was to build a mobile system to offer this service to nuclear plant stations. (authors)

  12. New possibilities for non-destructive testing of pipelines with intelligent pigs

    Energy Technology Data Exchange (ETDEWEB)

    Willems, H.; Jaskolla, B.; Barbian, O.A. [NDT Systems and Services, Stutensee (Germany); Niese, F. [Institut fuer zerstoerungsfreie Pruefverfahren, Saarbruecken (Germany)

    2009-07-01

    Pipelines are considered to be the safest way for transportation of large amounts of liquid and gas over large distances. In the course of the lifetime of a pipeline, however, many effects can lead to damages affecting the integrity of the line, e.g. manufacturing-related anomalies, operationally induced anomalies or third-party damage. In order to avoid pipeline failures with potentially catastrophic consequences so-called intelligent pigs (or smart pigs) were developed during the last decades: These tools allow for the internal inspection (In-Line Inspection, ILI) of pipelines using non-destructive testing technologies for the early detection and sizing of defects. Most common are magnetic flux leakage (MFL) and ultrasonic techniques for corrosion inspection and the latter also for crack inspection. While the ultrasonic techniques offer superior sizing capabilities they are limited to the inspection of liquid pipelines where the medium itself provides the necessary coupling between the (piezoelectric) ultrasonic transducers and the pipe wall. However, this limitation can be overcome by recent developments using EMAT (Electro-Magnetic Acoustic Transducer) technology. By a special sensor design, the EMAT inspection is combined with eddy current (EC) inspection and MFL inspection at the same time. As a result, this new multi-technology approach offers improved sizing as well as enhanced feature identification for wall thickness inspection of gas pipelines. (orig.)

  13. Classification by a neural network approach applied to non destructive testing

    International Nuclear Information System (INIS)

    Lefevre, M.; Preteux, F.; Lavayssiere, B.

    1995-01-01

    Radiography is used by EDF for pipe inspection in nuclear power plants in order to detect defects. The radiographs obtained are then digitized in a well-defined protocol. The aim of EDF consists of developing a non destructive testing system for recognizing defects. In this paper, we describe the recognition procedure of areas with defects. We first present the digitization protocol, specifies the poor quality of images under study and propose a procedure to enhance defects. We then examine the problem raised by the choice of good features for classification. After having proved that statistical or standard textural features such as homogeneity, entropy or contrast are not relevant, we develop a geometrical-statistical approach based on the cooperation between signal correlations study and regional extrema analysis. The principle consists of analysing and comparing for areas with defects and without any defect, the evolution of conditional probabilities matrices for increasing neighborhood sizes, the shape of variograms and the location of regional minima. We demonstrate that anisotropy and surface of series of 'comet tails' associated with probability matrices, variograms slope and statistical indices, regional extrema location, are features able to discriminate areas with defects from areas without any. The classification is then realized by a neural network, which structure, properties and learning mechanisms are detailed. Finally we discuss the results. (authors). 21 refs., 5 figs

  14. Burn up determination of IEAR-1 fuel elements by non destructive gamma ray spectrometry method

    International Nuclear Information System (INIS)

    Soares, A.J.

    1977-01-01

    Measurement of nuclear fuel burn up by non destructive gamma ray spectrometry is discussed, and results of such measurements, made at the Instituto de Energia Atomica (IEA), are given. Specifically, the burn up of an MTR (Material Testing Reactor) fuel element removed from the IEAR-1 swimming pool reactor in 1958 is evaluated from the measured Cs-137 activity, which gives a single 661,6 keV gamma ray. Due to the long decay time of the test element, no other fission decay product activity could be detected. Analysis of measurements, made with a 3'' x 3'' NaI(Tl) detector at 330 distinct points of the element, showed the total burn up to 3.3 +- -+ 0.8 mg. This is in agreement with a calculated value. As the maximum temperature of IEAR-1 fuel elements is of the order of 40 0 C, migration effects of Cs-137 was not considered, this being significant only at fuel temperature in excess of 1000 0 C [pt

  15. Material characterization and non destructive testing by ultrasounds; modelling, simulation and experimental validation

    International Nuclear Information System (INIS)

    Noroy-Nadal, M.H.

    2002-06-01

    This memory presents the research concerning the characterization of materials and the Non Destructive Testing (N.D.T) by ultrasonics. The different topics include three steps: modeling, computations and experimental validation. The studied materials concern mainly metals. The memory is divided in four parts. The first one concerns the characterization of materials versus temperature. The determination of the shear modulus G(T) is especially studied for a large temperature range, and around the melting point. The second part is devoted to studies by photothermal devices essentially focused on the modeling of the mechanical displacement and the stress field in coated materials. In this particular field of interest, applications concern either the mechanical characterization of the coating, the defect detection in the structure and finally the evaluation of the coating adhesion. The third section is dedicated to microstructural characterization using acoustic microscopy. The evaluation of crystallographic texture is especially approached, for metallic objects obtained by forming. Before concluding and pointing out some perspectives to this work, the last section concerns the introduction of optimization techniques, applied to the material characterization by acoustic microscopy. (author)

  16. Elaboration of data and documents intended to complement and expand the German series of nuclear engineering codes. 3. Technical report. Non-destructive testing of austenitic welds and claddings

    International Nuclear Information System (INIS)

    Waidele, H.

    1997-01-01

    This 3. technical report presents a literature study on non-destructive testing of austenitic welds and claddings. NDT of claddings was the subject of a previous BMU project report SR 2024, so that this report contains only an update covering the latest developments in this subject area, and NDT of austenitic welds is the major subject of the report in hand. The literature study shows that improvements of ultrasonic test results for austenitic welds are expected to be achieved soon as a result of application of novel testing methods, advanced signal processing algorithms, and reduced anisotropy of austenitic welds due to specific welding techniques. Enhanced information is expected to be achieved from radiography tests through improvements available now, such as digitization of conventional radiographs combined with computer-assisted evaluation methods. As to the inspection of components with wall thickness up to 10 mm, low-frequency methods or eddy current methods will increasingly be applied in future as complementing methods supplying additional information. (orig./CB) [de

  17. Study of different ultrasonic focusing methods applied to non destructive testing

    International Nuclear Information System (INIS)

    El Amrani, M.

    1995-01-01

    The work presented in this thesis concerns the study of different ultrasonic focusing techniques applied to Nondestructive Testing (mechanical focusing and electronic focusing) and compares their capabilities. We have developed a model to predict the ultrasonic field radiated into a solid by water-coupled transducers. The model is based upon the Rayleigh integral formulation, modified to take account the refraction at the liquid-solid interface. The model has been validated by numerous experiments in various configurations. Running this model and the associated software, we have developed new methods to optimize focused transducers and studied the characteristics of the beam generated by transducers using various focusing techniques. (author). 120 refs., 95 figs., 4 appends

  18. Non-destructive nuclear forensics of radioactive samples

    Energy Technology Data Exchange (ETDEWEB)

    Rogge, R.B. [Canadian Neutron Beam Centre, Chalk River, ON (Canada); Alexander, Q.; Bentoumi, G.; Dimayuga, F. [Atomic Energy of Canada Limited, Chalk River, ON (Canada); Flacau, R. [Canadian Neutron Beam Centre, Chalk River, ON (Canada); Li, G.; Li, L.; Sur, B. [Atomic Energy of Canada Limited, Chalk River, ON (Canada)

    2014-07-01

    It is a matter of public safety and security to be able to examine suspicious packages of unknown origin. If the package is radioactive and sealed (i.e., the radioactive materials contained in the package, including their chemical and physical forms, are unknown), there is a significant risk on how to handle the package and eventually safely dispose of its contents. Within the context of nuclear security, nuclear forensics helps address the key issue of identifying the nature and origin of radioactive and nuclear material in order to improve physical protection measures and prevent future theft or diversion of these materials. Nuclear forensics utilizes analytical techniques, destructive and non-destructive, developed for applications related to nuclear fuel cycles. This paper demonstrates the non-destructive examination techniques that can be used to inspect encapsulated radioactive samples. Results of γ spectroscopy, X-ray spectroscopy, neutron imaging, neutron diffraction, and delayed neutron analysis as applied to an examination of sealed capsules containing unknown radioactive materials are presented. The paper also highlights the value of these techniques to the overall nuclear forensic investigation to determine the origin of these unknown radioactive materials. (author)

  19. X-ray phase scanning setup for non-destructive testing using Talbot-Lau interferometer

    Science.gov (United States)

    Bachche, S.; Nonoguchi, M.; Kato, K.; Kageyama, M.; Koike, T.; Kuribayashi, M.; Momose, A.

    2016-09-01

    X-ray grating interferometry has a great potential for X-ray phase imaging over conventional X-ray absorption imaging which does not provide significant contrast for weakly absorbing objects and soft biological tissues. X-ray Talbot and Talbot-Lau interferometers which are composed of transmission gratings and measure the differential X-ray phase shifts have gained popularity because they operate with polychromatic beams. In X-ray radiography, especially for nondestructive testing in industrial applications, the feasibility of continuous sample scanning is not yet completely revealed. A scanning setup is frequently advantageous when compared to a direct 2D static image acquisition in terms of field of view, exposure time, illuminating radiation, etc. This paper demonstrates an efficient scanning setup for grating-based Xray phase imaging using laboratory-based X-ray source. An apparatus consisting of an X-ray source that emits X-rays vertically, optical gratings and a photon-counting detector was used with which continuously moving objects across the field of view as that of conveyor belt system can be imaged. The imaging performance of phase scanner was tested by scanning a long continuous moving sample at a speed of 5 mm/s and absorption, differential-phase and visibility images were generated by processing non-uniform moire movie with our specially designed phase measurement algorithm. A brief discussion on the feasibility of phase scanner with scanning setup approach including X-ray phase imaging performance is reported. The successful results suggest a breakthrough for scanning objects those are moving continuously on conveyor belt system non-destructively using the scheme of X-ray phase imaging.

  20. Non-destructive elecrochemical monitoring of reinforcement corrosion

    DEFF Research Database (Denmark)

    Nygaard, Peter Vagn

    been widely accepted as a non-destructive ”state of the art” technique for detection of corrosion in concrete structures. And, over the last decade, the trend in corrosion monitoring has moved towards quantitative non-destructive monitoring of the corrosion rate of the steel reinforcement. A few...... corrosion rate measurement instruments have been developed and are commercially available. The main features of these instruments are the combined use of an electrochemical technique for determining the corrosion rate and a so-called ”confinement technique”, which in principle controls the polarised surface...... area of the reinforcement, i.e. the measurement area. Both on-site investigations and laboratory studies have shown that varying corrosion rates are obtained when the various commercially available instruments are used. And in the published studies, conflicting explanations are given illustrating...

  1. National seminar on non-destructive evaluation techniques: proceedings cum souvenir

    International Nuclear Information System (INIS)

    Dutta, N.G.; Kulkarni, P.G.; Purushotham, D.S.C.

    1994-01-01

    This volume contains selected papers presented at the National Seminar on Non-Destructive Evaluation Techniques held at Bhabha Atomic Research Centre, Mumbai during December 8-9, 1994. The papers covered a wide spectrum of non-destructive evaluation activities including that for quality assurance of various nuclear components and structures with the focal theme being computerization and robotics. The papers relevant to INIS are indexed separately

  2. Improving the Repair Planning System for Mining Equipment on the Basis of Non-destructive Evaluation Data

    Science.gov (United States)

    Drygin, Michael; Kuryshkin, Nicholas

    2017-11-01

    The article tells about forming a new concept of scheduled preventive repair system of the equipment at coal mining enterprises, based on the use of modem non-destructive evaluation methods. The approach to the solution for this task is based on the system-oriented analysis of the regulatory documentation, non-destructive evaluation methods and means, experimental studies with compilation of statistics and subsequent grapho-analytical analysis. The main result of the work is a feasible explanation of using non-destructive evaluation methods within the current scheduled preventive repair system, their high efficiency and the potential of gradual transition to condition-based maintenance. In practice wide use of nondestructive evaluation means w;ill allow to reduce significantly the number of equipment failures and to repair only the nodes in pre-accident condition. Considering the import phase-out policy, the solution for this task will allow to adapt the SPR system to Russian market economy conditions and give the opportunity of commercial move by reducing the expenses for maintenance of Russian-made and imported equipment.

  3. Non-destructive evaluation of concrete using ultrasonic pulse velocity

    International Nuclear Information System (INIS)

    Lawson, I.

    2008-06-01

    Ultrasonic pulse velocity is one of the most popular non-destructive techniques used in the assessment of concrete properties. This thesis investigates the relationship between using ultrasonic pulse velocity (UPV) and the conventional compressive strength tests to determine concrete uniformity. The specimens used in the studies were made of concrete with a paste content of 18% and the constituents of the specimens varied in different water-cement ratios (w/c). The UPV measurement and compressive strength tests were carried out at the concrete age of 2, 7, 15 and 28 days. The UPV and the compressive strength of concrete increase with age, but the growth rate varies with mixture proportion. A relationship curve is drawn between UPV and compressive strength for concrete having different w/c from 0.35 to 0.7. Tests were also performed using Ultrasonic Pulse Velocity Method (UPVM) in detecting discontinuity and determining its depth during the early age of concrete. The test results indicate that the UPVM can be used to assess the in-situ properties of concrete or for quality control on site. The accuracy of the UPVM in detecting discontinuities ranges from 55.75 to 98.70% for ages 3 to 28 (full strength) respectively. (au)

  4. Quality parameters of mango and potential of non-destructive techniques for their measurement- a review

    International Nuclear Information System (INIS)

    Jha, S.N.; Narsaiah, K.; Sharma, A.D.; Singh, M.; Bansal, S.; Kumar, R.

    2010-01-01

    The king of fruits 'Mango' (Mangifera indica L.) is very nutritious and rich in carotenes. India produces about 50% of the total world's mango. Many researchers have reported the maturity indices and quality parameters for determination of harvesting time and eating quality. The methods currently used for determination of quality of mango are mostly based on the biochemical analysis, which leads to destruction of the fruits. Numerous works are being carried out to explore some non-destructive methods such as Near Infrared (NIR), Nuclear Magnetic Resonance (NMR), X-ray and Computed Tomography (CT), electronic nose, machine vision and ultrasound for quality determination of fruits. This paper deals with some recent work reported on quality parameters, harvesting and post-harvest treatments in relation to quality of mango fruits and reviews on some of the potential non-destructive techniques that can be explored for quality determination of mango cultivars. (author)

  5. Use of combined destructive and non-destructive test methods to assess the strength of concrete

    Energy Technology Data Exchange (ETDEWEB)

    Arioz, O. [Optimizing Consultancy, Izmir (Turkey); Kilinc, K. [Kirklareli University, Department of Civil Engineering, Kirklareli (Turkey); Ramyar, K. [Ege University, Department of Civil Engineering, Ismir (Turkey); Tuncan, M.; Tuncan, A. [Anadolu University, Department of Civil Engineering, Eskişehir (Turkey)

    2013-07-01

    The compressive strength test applied on standard samples is one of the most important tests indicating the quality of concrete in structures. The results of the standard tests are compared with the values used in design calculations and the quality of concrete is controlled. Although the standard tests are well accepted by the construction industry, they may not represent the in-situ strength of concrete due to the differences between the degree of compaction and curing conditions of concrete and those of standard samples. In-situ strength is also important for the efficient planning of the construction works in huge projects. In the present study, the results obtained from standard tests, core tests, ultrasonic pulse velocity tests, and rebound hammer tests were extensively analysed for the assessment of concrete strength. Key words: Concrete strength, standard tests, core test, ultrasonic pulse velocity, rebound number.

  6. Advantages of the non-stationary approach: test on eddy current signals

    International Nuclear Information System (INIS)

    Brunel, P.

    1993-12-01

    Conventional signal processing is often unsuitable for the interpretation of intrinsically non-stationary signals, such as surveillance or non destructive testing signals. In these cases, ''advanced'' methods are required. This report presents two applications of non-stationary signal processing methods to the complex signals obtained in eddy current non destructive testing of steam generator tubes. The first application consists in segmenting the absolute channel, which can be likened to a piecewise constant signal. The Page-Hinkley cumulative sum algorithm is used, enabling detection of unknown mean amplitude jumps in a piecewise constant signal disturbed by a white noise. Results are comparable to those obtained with the empirical method currently in use. As easy to implement as the latter, the Page-Hinkley algorithm has the added advantage of being well formalized and of identifying whether the jumps in mean are positive or negative. The second application concerns assistance in detecting characteristic fault transients in the differential channels, using the continuous wavelet transform. The useful signal and noise spectra are fairly close, but not strictly identical. With the continuous wavelet transform, these frequency differences can be turned to account. The method was tested on synthetic signals obtained by summing noise and real defect signals. Using the continuous wavelet transform reduces the minimum signal-to-noise ratio by 5 dB for detection of a transient as compared with direct detection on the original signal. Finally, a summary of non-stationary methods using our data is presented. The two investigations described confirm that non-stationary methods may be considered as interesting signal and image analysis tools, as an efficient complement to conventional methods. (author). 24 figs., 13 refs

  7. Non-destructive Inspection of Multi-layered Composite Using Ultrasonic Signal Processing

    International Nuclear Information System (INIS)

    Ng, S C; Ismail, N; Ali, Aidy; Sahari, Barkawi; Yusof, J M; Chu, B W

    2011-01-01

    Composites exhibit higher strength and stiffness, better design practice and greater corrosion resistance compare to metal material. However, composites are susceptible to impact damage and the typical damage behaviour in the laminated composites is fibre-breakage and delamination. Detection of failure in laminated composites is complicated compared with ordinary non-destructive testing for metal materials as they are sensitive to echoes drown in noise due to the properties of the constituent materials and the multi-layered structure of the composites. In the current study, the detection of failure in multi-layered composite materials is investigated. To obtain a high probability of defect detection in composite materials, signal processing algorithms were used to resolve echoes associated with defects in glass fibre-reinforced plastics (GRP) detected by using ultrasonic testing. Pulse-echo method with single transducer was used to transmit and receive ultrasound. The obtained signals were processed to reduce noise and to extract suitable features. Results were validated on GRP with and without defects in order to demonstrate the feasibility of the method on defect detection in composites.

  8. A non-destructive culturing and cell sorting method for cardiomyocytes and neurons using a double alginate layer.

    Directory of Open Access Journals (Sweden)

    Hideyuki Terazono

    Full Text Available A non-destructive method of collecting cultured cells after identifying their in situ functional characteristics is proposed. In this method, cells are cultivated on an alginate layer in a culture dish and released by spot application of a calcium chelate buffer that locally melts the alginate layer and enables the collection of cultured cells at the single-cell level. Primary hippocampal neurons, beating human embryonic stem (hES cell-derived cardiomyocytes, and beating hES cell-derived cardiomyocyte clusters cultivated on an alginate layer were successfully released and collected with a micropipette. The collected cells were recultured while maintaining their physiological function, including beating, and elongated neurites. These results suggest that the proposed method may eventually facilitate the transplantation of ES- or iPS-derived cardiomyocytes and neurons differentiated in culture.

  9. A Non-Destructive Culturing and Cell Sorting Method for Cardiomyocytes and Neurons Using a Double Alginate Layer

    Science.gov (United States)

    Terazono, Hideyuki; Kim, Hyonchol; Hayashi, Masahito; Hattori, Akihiro; Nomura, Fumimasa; Kaneko, Tomoyuki; Yasuda, Kenji

    2012-01-01

    A non-destructive method of collecting cultured cells after identifying their in situ functional characteristics is proposed. In this method, cells are cultivated on an alginate layer in a culture dish and released by spot application of a calcium chelate buffer that locally melts the alginate layer and enables the collection of cultured cells at the single-cell level. Primary hippocampal neurons, beating human embryonic stem (hES) cell-derived cardiomyocytes, and beating hES cell-derived cardiomyocyte clusters cultivated on an alginate layer were successfully released and collected with a micropipette. The collected cells were recultured while maintaining their physiological function, including beating, and elongated neurites. These results suggest that the proposed method may eventually facilitate the transplantation of ES- or iPS-derived cardiomyocytes and neurons differentiated in culture. PMID:22870332

  10. In Silico Toxicology – Non-Testing Methods

    Science.gov (United States)

    Raunio, Hannu

    2011-01-01

    In silico toxicology in its broadest sense means “anything that we can do with a computer in toxicology.” Many different types of in silico methods have been developed to characterize and predict toxic outcomes in humans and environment. The term non-testing methods denote grouping approaches, structure–activity relationship, and expert systems. These methods are already used for regulatory purposes and it is anticipated that their role will be much more prominent in the near future. This Perspective will delineate the basic principles of non-testing methods and evaluate their role in current and future risk assessment of chemical compounds. PMID:21772821

  11. Example value-impact analysis of non-destructive examination methods used for inservice inspection of BWR piping

    International Nuclear Information System (INIS)

    Tabatabai, A.S.; Simonen, F.A.

    1985-12-01

    This paper describes work recently completed at Pacific Northwest Laboratory (PNL) to use value-impact (V/I) analysis methods to help guide research to improve the effectiveness of inservice inspection (ISI) procedures at nuclear power plants. The example developed at PNL uses the results of probabilistic fracture mechanics and probabilistic risk analysis (PRA) studies to compare three generic categories of non-destructive examination (NDE) methods. These NDE methods are used to detect possible pipe cracks such as those induced by intergranular stress corrosion (IGSCC). The results of the analysis of this example include (1) quantification of the effectiveness of ISI in increasing plant safety in terms of reduction in core-melt frequency, (2) estimates of the industry cost of performing ISI, (3) estimates of radiation exposures to plant personnel as a result of performing ISI, and (4) potential areas of improvement in the NDE and ISI process

  12. Significantly improving nuclear resonance fluorescence non-destructive assay by using the integral resonance transmission method and photofission

    International Nuclear Information System (INIS)

    Angell, Christopher T.; Hayakawa, Takehito; Shizuma, Toshiyuki; Hajima, Ryoichi

    2013-01-01

    Non-destructive assay (NDA) of 239 Pu in spent nuclear fuel or melted fuel using a γ-ray beam is possible using self absorption and the integral resonance transmission method. The method uses nuclear resonance absorption where resonances in 239 Pu remove photons from the beam, and the selective absorption is detected by measuring the decrease in scattering in a witness target placed in the beam after the fuel, consisting of the isotope of interest, namely 239 Pu. The method is isotope specific, and can use photofission or scattered γ-rays to assay the 239 Pu. It overcomes several problems related to NDA of melted fuel, including the radioactivity of the fuel, and the unknown composition and geometry. This talk will explain the general method, and how photofission can be used to assay specific isotopes, and present example calculations. (author)

  13. The photothermal camera - a new non destructive inspection tool

    International Nuclear Information System (INIS)

    Piriou, M.

    2007-01-01

    The Photothermal Camera, developed by the Non-Destructive Inspection Department at AREVA NP's Technical Center, is a device created to replace penetrant testing, a method whose drawbacks include environmental pollutants, industrial complexity and potential operator exposure. We have already seen how the Photothermal Camera can work alongside or instead of conventional surface inspection techniques such as penetrant, magnetic particle or eddy currents. With it, users can detect without any surface contact ligament defects or openings measuring just a few microns on rough oxidized, machined or welded metal parts. It also enables them to work on geometrically varied surfaces, hot parts or insulating (dielectric) materials without interference from the magnetic properties of the inspected part. The Photothermal Camera method has already been used for in situ inspections of tube/plate welds on an intermediate heat exchanger of the Phenix fast reactor. It also replaced the penetrant method for weld inspections on the ITER vacuum chamber, for weld crack detection on vessel head adapter J-welds, and for detecting cracks brought on by heat crazing. What sets this innovative method apart from others is its ability to operate at distances of up to two meters from the inspected part, as well as its remote control functionality at distances of up to 15 meters (or more via Ethernet), and its emissions-free environmental cleanliness. These make it a true alternative to penetrant testing, to the benefit of operator and environmental protection. (author) [fr

  14. Determination of nuclear fuel burnup by non-destructive gamma spectroscopy

    International Nuclear Information System (INIS)

    Soares, A.J.

    1979-01-01

    The determination of nuclear fuel burnup by the non-destructive gamma spectroscopy method is studied. A MTR (Materials Testing Reactor) -type fuel element is used in the measurement. The fuel element was removed from the reactor core in 1958 and, because of the long decay time, show only one peak in is gamma spectrum at 661.6 Kev. Corresponding to 137 Cs. Measurements are made at 330 points of the element using a Nal detector and the final result revealed that the quantity of 235 U consumed was 3.3 +- 0,8 milligram in the entire element. The effect of the migration of 137 Cs in the element is neglected in view of the fact that it occurs only when the temperature is above 1000 0 C, which is not the case in IEAR-1. (Author)

  15. Development of Fracture Toughness Evaluation Method for Composite Materials by Non-Destructive Testing Method

    International Nuclear Information System (INIS)

    Lee, Y. T.; Kim, K. S.

    1998-01-01

    Fracture process of continuous fiber reinforced composites is very complex because various fracture mechanisms such as matrix cracking, debonding, delamination and fiber breaking occur simultaneously during crack growth. If fibers cause crack bridging during crack growth, the stable crack growth and unstable crack growth appear repeatedly. Therefore, it is very difficult to exactly determine tile starting point of crack growth and the fracture toughness at the critical crack length in composites. In this research, fracture toughness test for CFRP was accomplished by using acoustic emission(AE) and recording of tile fracture process in real time by video-microscope. The starting point of crack growth, pop-in point and the point of unstable crack growth can be exactly determined. Each fracture mechanism can be classified by analyzing the fracture process through AE and video-microscope. The more reliable method is the fracture toughness measurement of composite materials was proposed by using the combination of R-curve method, AE and video microscope

  16. PlantSize Offers an Affordable, Non-destructive Method to Measure Plant Size and Color in Vitro

    Directory of Open Access Journals (Sweden)

    Dóra Faragó

    2018-02-01

    Full Text Available Plant size, shape and color are important parameters of plants, which have traditionally been measured by destructive and time-consuming methods. Non-destructive image analysis is an increasingly popular technology to characterize plant development in time. High throughput automatic phenotyping platforms can simultaneously analyze multiple morphological and physiological parameters of hundreds or thousands of plants. Such platforms are, however, expensive and are not affordable for many laboratories. Moreover, determination of basic parameters is sufficient for most studies. Here we describe a non-invasive method, which simultaneously measures basic morphological and physiological parameters of in vitro cultured plants. Changes of plant size, shape and color is monitored by repeated photography with a commercial digital camera using neutral white background. Images are analyzed with the MatLab-based computer application PlantSize, which simultaneously calculates several parameters including rosette size, convex area, convex ratio, chlorophyll and anthocyanin contents of all plants identified on the image. Numerical data are exported in MS Excel-compatible format. Subsequent data processing provides information on growth rates, chlorophyll and anthocyanin contents. Proof-of-concept validation of the imaging technology was demonstrated by revealing small but significant differences between wild type and transgenic Arabidopsis plants overexpressing the HSFA4A transcription factor or the hsfa4a knockout mutant, subjected to different stress conditions. While HSFA4A overexpression was associated with better growth, higher chlorophyll and lower anthocyanin content in saline conditions, the knockout hsfa4a mutant showed hypersensitivity to various stresses. Morphological differences were revealed by comparing rosette size, shape and color of wild type plants with phytochrome B (phyB-9 mutant. While the technology was developed with Arabidopsis plants

  17. EFFLUENT TREATMENT FACILITY PEROXIDE DESTRUCTION CATALYST TESTING

    International Nuclear Information System (INIS)

    HALGREN DL

    2008-01-01

    The 200 Area Effluent Treatment Facility (ETF) main treatment train includes the peroxide destruction module (PDM) where the hydrogen peroxide residual from the upstream ultraviolet light/hydrogen peroxide oxidation unit is destroyed. Removal of the residual peroxide is necessary to protect downstream membranes from the strong oxidizer. The main component of the PDM is two reaction vessels utilizing granular activated carbon (GAC) as the reaction media. The PDM experienced a number of operability problems, including frequent plugging, and has not been utilized since the ETF changed to groundwater as the predominant feed. The unit seemed to be underperforming in regards to peroxide removal during the early periods of operation as well. It is anticipated that a functional PDM will be required for wastewater from the vitrification plant and other future streams. An alternate media or methodology needs to be identified to replace the GAC in the PDMs. This series of bench scale tests is to develop information to support an engineering study on the options for replacement of the existing GAC method for peroxide destruction at the ETF. A number of different catalysts will be compared as well as other potential methods such as strong reducing agents. The testing should lead to general conclusions on the viability of different catalysts and identify candidates for further study and evaluation

  18. Application of advanced non-destructive testing to evaluate the foundation depth of the existing structures

    International Nuclear Information System (INIS)

    Nguyen Le Son; Nguyen Phuoc Lan; Pham The Hung; Vu Huy Thuc; Phan Chanh Vu; Bui Xuan Huy; Tran Thanh Luan; Nguyen Kien Chinh; Le Danh Chuan

    2004-01-01

    The applications of Parallel Seismic Test to evaluate deep foundations of the existing structures are still new in Vietnam. Under the framework of the basic VAEC project (2003) and project VIE/8/013, the parallel seismic test method (PSM) was evaluated at Center for Nuclear Techniques, Hochiminh City. Background information on principle and general description of the method as it is typically applied in the evaluation of deep foundations are also summarized. A suitable test site was selected, where the foundation depths can be controlled for the parallel seismic tests were conducted by impacting the driven piles, and the travel times down the pile, through the soil, to a receiver located in an adjacent water-filled borehole were measured. The primary objective of the test program is to evaluated the accuracy of method in determining the pile length, to evaluate the capabilities of the method and the equipped system SPL-97, to define the type of material which comprises a deep foundation, the distance of the compression wave can travel through the adjacent soil before the signal attenuates beyond recognition and the ware velocities in the various soil strata encountered. The parallel seismic testing program is described and results are presented. Parallel seismic tests, as conventionally practiced, i.e. with short distance between a structure and an access hole, can be used to define the bottom of the piles, as well as to identify the material type from the computed velocity in the structural material. The conventional approach of using changes of slop of the plot versus first arrival to identify the bottom of a deep foundation works best when the piles are in a soil with uniform stiffness and the accuracy of the evaluated depths can be obtained about ± 0.5 m. Supplementing this approach of interpretation by the examining the amplitudes of the first arrival on a plot with the same scale for all records allows one to better interpret signals in more common

  19. Non-destructive and destructive examination of the retired North Anna 2 Reactor Pressure Vessel Head

    International Nuclear Information System (INIS)

    Ahluwalia, Kawaljit; Barnes, Robert; Rao, Gutti; Cattant, Francois; Peat, Noel

    2006-09-01

    Stress corrosion cracking of Alloy 600 and nickel-based weld materials has been the single biggest challenge facing the PWR industry. A fundamental and thorough knowledge was needed to properly explain this phenomenon and develop appropriate mitigation strategies. Non Destructive Examination (NDE) of the North Anna Unit 2 Reactor Vessel Head (RVH) during the 2002 fall outage identified widespread crack indications in the Alloy 600 CRDM penetrations and associated Alloy 182 and 82 J-groove attachment welds. When the Utility decided to replace the RVH, a rare opportunity was provided to the industry to undertake in-depth studies of representative defective CRDM penetrations from a retired RVH. Accordingly, the Materials Reliability Program, undertook a two-phase program on the retired North Anna 2 Alloy 600 RVH. The first phase involved selection and removal of six penetrations from the RVH and penetration decontamination, replication and laboratory NDE. The second phase consisted of a detailed destructive examination of penetration number 54. This paper provides a summary of work undertaken during this program. Criteria for selection of penetrations for removal and procedures used in removal of the penetrations are described. Extreme care was undertaken in decontamination of the penetrations to facilitate laboratory NDE. Penetration number 54 was then subjected to destructive examination to establish a correlation between NDE findings (from both field and laboratory inspections) and actual flaws. Additional objectives of the destructive examination included mechanistic assessment of defect formation and investigation of the annulus environment and wastage characterization. Data obtained from these studies is invaluable in validating safety assessment statements by developing the correlation between field NDE and actual defects. In addition, information gathered from non-destructive and destructive examinations is used to assess accuracy of the NDE techniques

  20. PEROXIDE DESTRUCTION TESTING FOR THE 200 AREA EFFLUENT TREATMENT FACILITY

    International Nuclear Information System (INIS)

    Halgren, D.L.

    2010-01-01

    The hydrogen peroxide decomposer columns at the 200 Area Effluent Treatment Facility (ETF) have been taken out of service due to ongoing problems with particulate fines and poor destruction performance from the granular activated carbon (GAC) used in the columns. An alternative search was initiated and led to bench scale testing and then pilot scale testing. Based on the bench scale testing three manganese dioxide based catalysts were evaluated in the peroxide destruction pilot column installed at the 300 Area Treated Effluent Disposal Facility. The ten inch diameter, nine foot tall, clear polyvinyl chloride (PVC) column allowed for the same six foot catalyst bed depth as is in the existing ETF system. The flow rate to the column was controlled to evaluate the performance at the same superficial velocity (gpm/ft 2 ) as the full scale design flow and normal process flow. Each catalyst was evaluated on peroxide destruction performance and particulate fines capacity and carryover. Peroxide destruction was measured by hydrogen peroxide concentration analysis of samples taken before and after the column. The presence of fines in the column headspace and the discharge from carryover was generally assessed by visual observation. All three catalysts met the peroxide destruction criteria by achieving hydrogen peroxide discharge concentrations of less than 0.5 mg/L at the design flow with inlet peroxide concentrations greater than 100 mg/L. The Sud-Chemie T-2525 catalyst was markedly better in the minimization of fines and particle carryover. It is anticipated the T-2525 can be installed as a direct replacement for the GAC in the peroxide decomposer columns. Based on the results of the peroxide method development work the recommendation is to purchase the T-2525 catalyst and initially load one of the ETF decomposer columns for full scale testing.

  1. The photothermal camera - a new non destructive inspection tool; La camera photothermique - une nouvelle methode de controle non destructif

    Energy Technology Data Exchange (ETDEWEB)

    Piriou, M. [AREVA NP Centre Technique SFE - Zone Industrielle et Portuaire Sud - BP13 - 71380 Saint Marcel (France)

    2007-07-01

    The Photothermal Camera, developed by the Non-Destructive Inspection Department at AREVA NP's Technical Center, is a device created to replace penetrant testing, a method whose drawbacks include environmental pollutants, industrial complexity and potential operator exposure. We have already seen how the Photothermal Camera can work alongside or instead of conventional surface inspection techniques such as penetrant, magnetic particle or eddy currents. With it, users can detect without any surface contact ligament defects or openings measuring just a few microns on rough oxidized, machined or welded metal parts. It also enables them to work on geometrically varied surfaces, hot parts or insulating (dielectric) materials without interference from the magnetic properties of the inspected part. The Photothermal Camera method has already been used for in situ inspections of tube/plate welds on an intermediate heat exchanger of the Phenix fast reactor. It also replaced the penetrant method for weld inspections on the ITER vacuum chamber, for weld crack detection on vessel head adapter J-welds, and for detecting cracks brought on by heat crazing. What sets this innovative method apart from others is its ability to operate at distances of up to two meters from the inspected part, as well as its remote control functionality at distances of up to 15 meters (or more via Ethernet), and its emissions-free environmental cleanliness. These make it a true alternative to penetrant testing, to the benefit of operator and environmental protection. (author) [French] La Camera Photothermique, developpee par le departement des Examens Non Destructifs du Centre Technique de AREVA NP, est un equipement destine a remplacer le ressuage, source de pollution pour l'environnement, de complexite pour l'industrialisation et eventuellement de dosimetrie pour les operateurs. Il a ete demontre que la Camera Photothermique peut etre utilisee en complement ou en remplacement des

  2. Non-destructive Faraday imaging of dynamically controlled ultracold atoms

    Science.gov (United States)

    Gajdacz, Miroslav; Pedersen, Poul; Mørch, Troels; Hilliard, Andrew; Arlt, Jan; Sherson, Jacob

    2013-05-01

    We investigate non-destructive measurements of ultra-cold atomic clouds based on dark field imaging of spatially resolved Faraday rotation. In particular, we pursue applications to dynamically controlled ultracold atoms. The dependence of the Faraday signal on laser detuning, atomic density and temperature is characterized in a detailed comparison with theory. In particular the destructivity per measurement is extremely low and we illustrate this by imaging the same cloud up to 2000 times. The technique is applied to avoid the effect of shot-to-shot fluctuations in atom number calibration. Adding dynamic changes to system parameters, we demonstrate single-run vector magnetic field imaging and single-run spatial imaging of the system's dynamic behavior. The method can be implemented particularly easily in standard imaging systems by the insertion of an extra polarizing beam splitter. These results are steps towards quantum state engineering using feedback control of ultracold atoms.

  3. Resolution improvement of ultrasonic echography methods in non destructive testing by adaptative deconvolution

    International Nuclear Information System (INIS)

    Vivet, L.

    1989-01-01

    The ultrasonic echography has a lot of advantages which make it attractive for nondestructive testing. But the important acoustic energy useful to go through very attenuating materials can be got only with resonant translators, that is a limit for the resolution on measured echograms. This resolution can be improved by deconvolution. But this method is a problem for austenitic steel. Here is developed a method of time deconvolution which allows to take in account the characteristics of the wave. A first step of phase correction and a second step of spectral equalization which gives back the spectral contents of ideal reflectivity. The two steps use fast Kalman filters which reduce the cost of the method

  4. Non-destructive control of cladding thickness of fuel elements for research reactors

    Energy Technology Data Exchange (ETDEWEB)

    Karlov, Y.; Zhukov, Y.; Chashchin, S

    1997-07-01

    The control method of fuel elements for research reactors by means of measuring beta particles back scattering made it possible to perform complete automatic non-destructive control of internal and external claddings at our plant. This control gives high guarantees of the fuel element correspondence to the requirements. The method can be used to control the three-layer items of different geometry, including plates. (author)

  5. Surface integral formulation of Maxwell's equations for simulation of non-destructive testing by eddy currents. Preliminary study on the implementation of the fast multipole method

    International Nuclear Information System (INIS)

    Lim, T.

    2011-01-01

    To simulate numerically a non-destructive by eddy current testing (NDT-CF), the sensor response can be modeled through a semi-analytical approach by volume integral equations. Faster than the finite element method, this approach is however restricted to the study of plane or cylindrical parts (without taking into account the edge effects) because of the complexity of the expression of the dyadic Green function for more general configurations. However, there is an industrial demand to extend the capabilities of the CF model in complex configurations (deformed plates, edges effects...). We were thus brought to formulate the electromagnetic problem differently, by setting ourselves the goal of maintaining a semi-analytical approach. The surface integral equation (SIE) expresses the volume problem by an equivalent transmission one at the interfaces (2D) between homogeneous sub-domains. This problem is approached by a linear system (by the method of moments), whose number of unknowns is reduced due to the nature of the surfacic mesh. Therefore, this system can be solved by a direct solver for small configurations. That enabled us to treat several various positions of the sensor for only one inversion of the impedance matrix. The numerical results obtained using this formulation involve plates with consideration of edge effects such as edge and corner. They are consistent with results obtained by the finite element method. For larger configurations, we conducted a preliminary study for the adaptation of an acceleration method of the matrix vector product involved in an iterative solver (fast multipole method or FMM) to define the conditions under which the FMM calculation works correctly (accuracy, convergence...) in the NDT's domain. A special attention has been given to the choice of basis functions (which have to satisfy an Hdiv conforming property) and on the evaluation of near interactions (which are weakly singular). (author) [fr

  6. Non-destructive inspection technology using a magnetic transmission sensor; Jiki toka sensor wo mochiita hihakai kensa gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    Obama, H.

    1996-06-01

    A newly developed magnetic sensor for non-destructive inspection has acquired the U.S. patent. The starting point of the invention was an inspection of aluminum broth bags in cup-noodle containers with aluminum leaf cover, which was asked from a food maker. A method was developed, in which the microwave is transmitted through containers below their covers and the reflected wave is detected. Then, development of an inspection apparatus for spot welding parts used for automobiles was requested. Since welding is carried out using large current for the spot welding, magnetic characteristics change greatly, which is a remarkable phenomenon appearing especially for magnetic substances. This was found out to be the same phenomenon as the hardening of swords consisting of high temperature heating, pressurizing, and quenching. This substance with two changes can be considered as another material different from the base metal. Coils fitted to impressions were made, and their test pieces were measured. The correlation coefficient over 0.9 was obtained between measured values and results of tensile strength tests. This apparatus can be applied to the non-destructive inspection of internal defects of castings. 2 figs.

  7. Methodical approaches to solving special problems of testing. Seminar papers

    International Nuclear Information System (INIS)

    1996-01-01

    This Seminar volume introduces concepts and applications from different areas of application of ultrasonic testing and other non-destructive test methods in 18 lectures, in order to give an idea of new trends in development and stimuli for special solutions to problems. 3 articles were recorded separately for the ENERGY data bank. (orig./MM) [de

  8. Status report on the destructive and non-destructive examinations of U-bends removed from Trojan steam generator D

    International Nuclear Information System (INIS)

    Aspden, R.G.

    1981-01-01

    The last status report on the non-destructive examination of U-bends removed from Trojan steam generator D was dated July 7, 1980. As part of this activity, the measurement of wall thicknesses on selected U-bends was planned using an ultrasonic gage. These readings were not made because reproducible results could not be obtained using water as the coupling fluid which was necessary to avoid contamination. Three tubes from the same heat were selected for destructive examination at Westinghouse: one leaking U-bend (R1-C6) and two tubes with no indications (R1-C10 and R1-C22). Results of the examination procedure are presented. The non-destructive examination results from the July 7, 1980 report for 29 U-bends are included

  9. Calculated and experimental substantiation of the thermal method for non-destructive testing of fuel elements

    International Nuclear Information System (INIS)

    Maksimov, N.M.; Soldatenko, V.A.; Petrovichev, V.I.; Salimov, S.E.; Aleksandrov, K.A.; Kurov, D.A.

    1985-01-01

    The main systems and methods of thermal testing, their potentialities and advantages, thermal irradiation photodetectors are described. Possible fields of application of thermal testing in nuclear engineering are discussed. Calculations of the fuel element nonstationary temperature field in the three-dimensional geometry in the presence of such an effect as fuel exfaliation from cladding are presented. The developed method and equipment for fuel element thermal testing are described. Preliminary experimental data being in agreement with the calculated ones and opening the prospects for flaw detecting are presened

  10. Recent Advances in Active Infrared Thermography for Non-Destructive Testing of Aerospace Components

    Directory of Open Access Journals (Sweden)

    Francesco Ciampa

    2018-02-01

    Full Text Available Active infrared thermography is a fast and accurate non-destructive evaluation technique that is of particular relevance to the aerospace industry for the inspection of aircraft and helicopters’ primary and secondary structures, aero-engine parts, spacecraft components and its subsystems. This review provides an exhaustive summary of most recent active thermographic methods used for aerospace applications according to their physical principle and thermal excitation sources. Besides traditional optically stimulated thermography, which uses external optical radiation such as flashes, heaters and laser systems, novel hybrid thermographic techniques are also investigated. These include ultrasonic stimulated thermography, which uses ultrasonic waves and the local damage resonance effect to enhance the reliability and sensitivity to micro-cracks, eddy current stimulated thermography, which uses cost-effective eddy current excitation to generate induction heating, and microwave thermography, which uses electromagnetic radiation at the microwave frequency bands to provide rapid detection of cracks and delamination. All these techniques are here analysed and numerous examples are provided for different damage scenarios and aerospace components in order to identify the strength and limitations of each thermographic technique. Moreover, alternative strategies to current external thermal excitation sources, here named as material-based thermography methods, are examined in this paper. These novel thermographic techniques rely on thermoresistive internal heating and offer a fast, low power, accurate and reliable assessment of damage in aerospace composites.

  11. Recent Advances in Active Infrared Thermography for Non-Destructive Testing of Aerospace Components.

    Science.gov (United States)

    Ciampa, Francesco; Mahmoodi, Pooya; Pinto, Fulvio; Meo, Michele

    2018-02-16

    Active infrared thermography is a fast and accurate non-destructive evaluation technique that is of particular relevance to the aerospace industry for the inspection of aircraft and helicopters' primary and secondary structures, aero-engine parts, spacecraft components and its subsystems. This review provides an exhaustive summary of most recent active thermographic methods used for aerospace applications according to their physical principle and thermal excitation sources. Besides traditional optically stimulated thermography, which uses external optical radiation such as flashes, heaters and laser systems, novel hybrid thermographic techniques are also investigated. These include ultrasonic stimulated thermography, which uses ultrasonic waves and the local damage resonance effect to enhance the reliability and sensitivity to micro-cracks, eddy current stimulated thermography, which uses cost-effective eddy current excitation to generate induction heating, and microwave thermography, which uses electromagnetic radiation at the microwave frequency bands to provide rapid detection of cracks and delamination. All these techniques are here analysed and numerous examples are provided for different damage scenarios and aerospace components in order to identify the strength and limitations of each thermographic technique. Moreover, alternative strategies to current external thermal excitation sources, here named as material-based thermography methods, are examined in this paper. These novel thermographic techniques rely on thermoresistive internal heating and offer a fast, low power, accurate and reliable assessment of damage in aerospace composites.

  12. Determination of the Optimum Harvest Window for Apples Using the Non-Destructive Biospeckle Method

    Directory of Open Access Journals (Sweden)

    Anna Skic

    2016-05-01

    Full Text Available Determination of the optimum harvest window plays a key role in the agro-food chain as the quality of fruit depends on the right harvesting time and appropriate storage conditions during the postharvest period. Usually, indices based on destructive measurements are used for this purpose, like the De Jager Index (PFW-1, FARS index and the most popular Streif Index. In this study, we proposed a biospeckle method for the evaluation of the optimum harvest window (OHW of the “Ligol” and “Szampion” apple cultivars. The experiment involved eight different maturity stages, of which four were followed by long cold storage and shelf life to assist the determination of the optimum harvest window. The biospeckle activity was studied in relation to standard quality attributes (firmness, acidity, starch, soluble solids content, Streif Index and physiological parameters (respiration and ethylene emission of both apple cultivars. Changes of biospeckle activity (BA over time showed moderate relationships with biochemical changes during apple maturation and ripening. The harvest date suggested by the Streif Index and postharvest quality indicators matched with characteristic decrease in BA. The ability of biospeckle method to characterize the biological state of apples was confirmed by significant correlations of BA with firmness, starch index, total soluble solids and Streif Index, as well as good match with changes in carbon dioxide and ethylene emission. However, it should be noted that correlations between variables changing over time are not as meaningful as independent observations. Also, it is a well-known property of the Pearson’s correlation that its value is highly susceptible to outlier data. Due to its non-selective nature the BA reflected only the current biological state of the fruit and could be affected by many other factors. The investigations showed that the optimum harvest window for apples was indicated by the characteristic drop of

  13. Determination of the Optimum Harvest Window for Apples Using the Non-Destructive Biospeckle Method.

    Science.gov (United States)

    Skic, Anna; Szymańska-Chargot, Monika; Kruk, Beata; Chylińska, Monika; Pieczywek, Piotr Mariusz; Kurenda, Andrzej; Zdunek, Artur; Rutkowski, Krzysztof P

    2016-05-10

    Determination of the optimum harvest window plays a key role in the agro-food chain as the quality of fruit depends on the right harvesting time and appropriate storage conditions during the postharvest period. Usually, indices based on destructive measurements are used for this purpose, like the De Jager Index (PFW-1), FARS index and the most popular Streif Index. In this study, we proposed a biospeckle method for the evaluation of the optimum harvest window (OHW) of the "Ligol" and "Szampion" apple cultivars. The experiment involved eight different maturity stages, of which four were followed by long cold storage and shelf life to assist the determination of the optimum harvest window. The biospeckle activity was studied in relation to standard quality attributes (firmness, acidity, starch, soluble solids content, Streif Index) and physiological parameters (respiration and ethylene emission) of both apple cultivars. Changes of biospeckle activity (BA) over time showed moderate relationships with biochemical changes during apple maturation and ripening. The harvest date suggested by the Streif Index and postharvest quality indicators matched with characteristic decrease in BA. The ability of biospeckle method to characterize the biological state of apples was confirmed by significant correlations of BA with firmness, starch index, total soluble solids and Streif Index, as well as good match with changes in carbon dioxide and ethylene emission. However, it should be noted that correlations between variables changing over time are not as meaningful as independent observations. Also, it is a well-known property of the Pearson's correlation that its value is highly susceptible to outlier data. Due to its non-selective nature the BA reflected only the current biological state of the fruit and could be affected by many other factors. The investigations showed that the optimum harvest window for apples was indicated by the characteristic drop of BA during pre

  14. Using magnetic levitation for non-destructive quality control of plastic parts.

    Science.gov (United States)

    Hennek, Jonathan W; Nemiroski, Alex; Subramaniam, Anand Bala; Bwambok, David K; Yang, Dian; Harburg, Daniel V; Tricard, Simon; Ellerbee, Audrey K; Whitesides, George M

    2015-03-04

    Magnetic levitation (MagLev) enables rapid and non-destructive quality control of plastic parts. The feasibility of MagLev as a method to: i) rapidly assess injection-molded plastic parts for defects during process optimization, ii) monitor the degradation of plastics after exposure to harsh environmental conditions, and iii) detect counterfeit polymers by density is demonstrated. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Training methods in non-destructive examination with ultrasonic testing

    International Nuclear Information System (INIS)

    Walte, F.

    1986-01-01

    German concept for inspection of LWR, leak before break, basic safety; General inspection methods; Ultrasonic inspection - basic principle, generation of ultrasound, bulk and surface waves, piezo electric and electromagnetic transducers, energy balance, scattering and adsorption, divergence; Ultra techniques in compliance with KTA-rules - pulse-echo, tandem, throughtransmission; Valuation of ultrasonic indications; Pre- and in-service inspection; Practical part - ultrasonic equipment, ultrasonic piezo electric transducers, wall thickness measurement, crack depth measurement with potential drop technique. (orig.)

  16. Specific features of the determination of the pellet-cladding gap of the fuel rods by non-destructive method

    International Nuclear Information System (INIS)

    Amosov, S.V.; Pavlov, S.V.

    2002-01-01

    This report describes the specific features of determining the pellet-cladding gap of the irradiated WWER-1000 fuel rods by nondestructive method. The method is based on the elastic radial deformation of the cladding up to its contact with the fuel. The value of deformation of cladding till its contacting fuel when radial force changes from F max to 0 is proposed as a measuring parameter for determination of the diametrical gap. Because of the features of compression method, the obtained gap value is not analog of the gap measured on micrograph of the fuel rod cross-section. Results of metallography can provide only qualitative evaluation of its method efficiency. Comparison of the values determined by non-destructive method and metallography for WWER-1000 fuel rods with burnup from 25 to 55 MWd/kg U testified that the results of compression method can be used as a low estimate of the pellet-cladding gap value. (author)

  17. Diagnosis of structures. Practical applications and future tasks of non-destructive testing; Bauwerksdiagnose. Praktische Anwendungen Zerstoerungsfreier Pruefungen und Zukunftsaufgaben

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2016-05-01

    The preservation of buildings is increasingly becoming the focus of public attention, not least because of traffic restrictions on roads and bridges, which have grown significantly in recent years. Here the building inspectors is of particular importance to assess the causes and extent of repair work as required. This non-destructive testing in the construction industry (ZfPBau method) have become indispensable. However, very few rules are found in construction in contrast to the classical industrial NDT. Also the offers to the qualification of examiners are low, but but in the meantime available. The symposium takes this conflict area to less regulation and a high demand of professional services. One of tasks of the future is the reliable evaluation of existing structures. The foundation was laid by the adoption of the directive for the recalculation of road bridges in 2011 to have results of non-destructive examination incorporated in recalculations. Meanwhile are first experiences on investigations and recalculations of bridges that will be presented at the symposium for the first time. [German] Die Erhaltung von Bauwerken rueckt immer mehr in den Fokus der Oeffentlichkeit, nicht zuletzt durch Verkehrseinschraenkungen an Strassen und Bruecken, die in den letzten Jahren spuerbar zugenommen haben. Dabei kommt den Bauwerkspruefern eine besondere Bedeutung zu, Ursachen und Umfang von Instandsetzungsmassnahmen bedarfsgemaess abzuschaetzen. Hierbei sind zerstoerungsfreie Pruefverfahren im Bauwesen (ZfPBau-Verfahren) nicht mehr wegzudenken. Allerdings sind im Gegensatz zur klassischen industriellen ZfP im Bauwesen sehr wenige Regelwerke anzutreffen. Auch die Angebote zur Qualifizierung von Pruefern sind gering aber mittlerweile vorhanden. Die Fachtagung greift dieses Spannungsfeld geringer Regelsetzung und grossem Bedarf qualifizierter Dienstleistungen auf. Ein Aufgabenfeld der Zukunft ist die zuverlaessige Bewertung von Bestandsbauwerken. Durch das Inkrafttreten der

  18. In-situ Non-destructive Studies on Biofouling Processes in Reverse Osmosis Membrane Systems

    KAUST Repository

    Farhat, Nadia

    2016-01-01

    biofouling detection methods are mainly destructive, such as membrane autopsies, where biofilm samples can be contaminated, damaged and resulting in biofilm structural changes. The objective of this study was to test whether transparent luminescent planar

  19. Stress analysis of thermal sprayed coatings using a semi-destructive hole-drilling strain gauge method

    International Nuclear Information System (INIS)

    Dolhof, V.; Musil, J.; Cepera, M.; Zeman, J.

    1995-01-01

    Residual stress is an important parameter in coating technology since it often relates to the maximum coating thickness which can be deposited without spallation, and this applies to coatings produced by different thermal spray and thin film technologies. Indeed, the mechanisms by which residual stress is built up or locked into a coating depends markedly on the deposition process and coating structure (growth structure, phase composition) in the same way too. Methods for determining residual stresses in materials include both destructive and non-destructive methods. This contribution describes semi-destructive hole-drilling strain gauge method modified for measurement of residual stresses in thermal sprayed coatings. This method of stress analysis was used for determination of stress levels in thermal sprayed WC-17% Co coatings onto 13% Cr steel substrates. Results show that deposition conditions and final coating structure influence directly the residual stress level in the coatings. It is proved that semi-destructive hole-tube drilling measurement is effective reproducible method of coating stress analysis and good solution for optimization of deposition process

  20. Further Experiments with Lok-Test and Ultrasonic Test in Relation to Fresh and Hardened Concrete

    DEFF Research Database (Denmark)

    Jensen, Jens Kristian Jehrbo

    Lok-test is mainly a non-destructive pull-out test for determination of concrete strength. The method is deseribed in (l) and it is detailed discussed in theory (2). The method is welknown in practice. Ultrasonic is commonly used for investigations of several materials, especially concrete. In a ....... In a project (3) about non-destructive testing of concrete different methods and the relations to concrete are discussed in theory and practice. This paper point out some interesting results from further experiments in this area.......Lok-test is mainly a non-destructive pull-out test for determination of concrete strength. The method is deseribed in (l) and it is detailed discussed in theory (2). The method is welknown in practice. Ultrasonic is commonly used for investigations of several materials, especially concrete...

  1. Non-destructive control in nuclear construction

    International Nuclear Information System (INIS)

    Banus; Barbier; Launay

    1978-01-01

    Having recalled the characteristics of the fundamental components of the main primary circuit of nuclear boilers (900 MW) and the means appropriated for their control, it is recalled that the 'French Electricity Board's specifications and control rules' often prescribe more severe criteria than those existing in the U.S.A. Then practical examples of non-destructive controls concerning the steam generator end plates, vessel stainless steel linings, pump attachements, steam generator pipes are given [fr

  2. Non destructive testing of industrial pieces by radiography: quantitative characterization and 3 D reconstruction by the way of a limited number of images; Controle non destructif de pieces industrielles par radiographie: caracterisation quantitative et reconstruction 3D a partir d`un nombre limite de vues

    Energy Technology Data Exchange (ETDEWEB)

    Retraint, F

    1999-12-31

    The non destructive testing of industrial pieces is evaluated on the basis of numerical radiographies.The context of the study is the online control of the fuel rods production. A direct model of a numerical radiography formation is proposed and detailed for an acquisition system consisting of a CCD video connected to a converter screen by an optical system. As this approach does not allow the determination of the measured matter thickness from the X-ray photograph, an approximate model based on realistic approximations of the industrial non destructive testing, has been developed. For the specific cases it is possible to inverse the model and to reach the quantitative information present in the x-ray photograph, in other words, the map of the X-rays measured matter thickness. It becomes then possible to access to the quantitative parameters of the possible defects present in the measured specimen, such as the surface and the bulk. To reach the 3 D information on the defects a 3 D reconstruction method, from 3 X-rays photographs, is proposed.The inverse problem is solved by the non convex energy minimization. (A.L.B.) 109 refs.

  3. Non destructive testing of industrial pieces by radiography: quantitative characterization and 3 D reconstruction by the way of a limited number of images; Controle non destructif de pieces industrielles par radiographie: caracterisation quantitative et reconstruction 3D a partir d`un nombre limite de vues

    Energy Technology Data Exchange (ETDEWEB)

    Retraint, F

    1998-12-31

    The non destructive testing of industrial pieces is evaluated on the basis of numerical radiographies.The context of the study is the online control of the fuel rods production. A direct model of a numerical radiography formation is proposed and detailed for an acquisition system consisting of a CCD video connected to a converter screen by an optical system. As this approach does not allow the determination of the measured matter thickness from the X-ray photograph, an approximate model based on realistic approximations of the industrial non destructive testing, has been developed. For the specific cases it is possible to inverse the model and to reach the quantitative information present in the x-ray photograph, in other words, the map of the X-rays measured matter thickness. It becomes then possible to access to the quantitative parameters of the possible defects present in the measured specimen, such as the surface and the bulk. To reach the 3 D information on the defects a 3 D reconstruction method, from 3 X-rays photographs, is proposed.The inverse problem is solved by the non convex energy minimization. (A.L.B.) 109 refs.

  4. Mathematical modelling of ultrasonic non-destructive evaluation

    Directory of Open Access Journals (Sweden)

    Larissa Ju Fradkin

    2001-01-01

    Full Text Available High-frequency asymptotics have been used at our Centre to develop codes for modelling pulse propagation and scattering in the near-field of the ultrasonic transducers used in NDE (Non-Destructive Evaluation, particularly of walls of nuclear reactors. The codes are hundreds of times faster than the direct numerical codes but no less accurate.

  5. 234Th distributions in coastal and open ocean waters by non-destructive β-counting

    International Nuclear Information System (INIS)

    Miller, L.A.; Svaeren, I.

    2003-01-01

    Non-destructive β-counting analyses of particulate and dissolved 234 Th activities in seawater are simpler but no less precise than traditional radioanalytical methods. The inherent accuracy limitations of the non-destructive β-counting method, particularly in samples likely to be contaminated with anthropogenic nuclides, are alleviated by recounting the samples over several half-lives and fitting the counting data to the 234 Th decay curve. Precision (including accuracy, estimated at an average of 3%) is better than 10% for particulate or 5% for dissolved samples. Thorium-234 distributions in the Skagerrak indicated a vigorous, presumably biological, particle export from the surface waters, and while bottom sediment resuspension was not an effective export mechanism, it did strip thorium from the dissolved phase. In the Greenland and Norwegian Seas, we saw clear evidence of particulate export from the surface waters, but at 75 m, total 234 Th activities were generally in equilibrium with 238 U. (author)

  6. A non-destructive evaluation of transverse hydrogen cracking in high strength flux-cored weld metal

    International Nuclear Information System (INIS)

    Sterjovski, Z.; Carr, D. G.; Holdstock, R.; Nolan, D.; Norrish, J.

    2007-01-01

    Transverse hydrogen cracking in high strength weld metal (WM) is a potentially serious problem in thick-sections, especially in highly restrained structures. This paper presents preliminary re suits for which transverse weld metal hydrogen cracking was purposefully generated in 40 mm thick high strength WM to study the effectiveness of various non-destructive testing methods in locating and sizing transverse cracks. Transverse WM hydrogen cracking was intentionally produced by: increasing diffusible hydrogen levels through the introduction of 2% hydrogen in CO 2 shielding gas and minimizing interpass temperature and time; increasing the cracking susceptibility of the micro structure by increasing cooling rate with a large-scale test plate and maintaining an interpass temperature below 70 deg C; increasing stress levels with the use of stiffeners and end welds; and rapid postweld cooling to a temperature lower than 100 deg C. The extent of transverse weld metal hydrogen cracking was evaluated by non-destructive testing (NDT), which included conventional ultrasonic testing, radiography, acoustic emission monitoring and magnetic particle inspection. It was established that conventional ultrasonic testing was the most effective of the NDT techniques used. Acoustic emission monitoring revealed that two different types of emissions emanated from the weld metal and that the majority of emissions occurred within the first 48 hours of welding, although there was some evidence of cracking well after this initial 48 hour period. Larger sized cracks were observed near the transverse stiffeners (and weld ends) where tensile residual stresses (both longitudinal and transverse) were thought to be highest and the micro structure was therefore more susceptible to cracking. Additionally, numerous finer cracks were located in the top third of the plate (in the thickness direction) and on both sides of the weld centre line

  7. A novel combined approach of diffuse reflectance UV-Vis-NIR spectroscopy and multivariate analysis for non-destructive examination of blue ballpoint pen inks in forensic application.

    Science.gov (United States)

    Kumar, Raj; Sharma, Vishal

    2017-03-15

    The present research is focused on the analysis of writing inks using destructive UV-Vis spectroscopy (dissolution of ink by the solvent) and non-destructive diffuse reflectance UV-Vis-NIR spectroscopy along with Chemometrics. Fifty seven samples of blue ballpoint pen inks were analyzed under optimum conditions to determine the differences in spectral features of inks among same and different manufacturers. Normalization was performed on the spectroscopic data before chemometric analysis. Principal Component Analysis (PCA) and K-mean cluster analysis were used on the data to ascertain whether the blue ballpoint pen inks could be differentiated by their UV-Vis/UV-Vis NIR spectra. The discriminating power is calculated by qualitative analysis by the visual comparison of the spectra (absorbance peaks), produced by the destructive and non-destructive methods. In the latter two methods, the pairwise comparison is made by incorporating the clustering method. It is found that chemometric method provides better discriminating power (98.72% and 99.46%, in destructive and non-destructive, respectively) in comparison to the qualitative analysis (69.67%). Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Non-destructive methods for peat layer assessment in oligotrophic peat bogs: a case study from Poiana Ştampei, Romania

    Directory of Open Access Journals (Sweden)

    Iuliana F. Gheorghe

    2011-01-01

    Full Text Available Practices currently employed in the investigation and characterisation of peat deposits are destructive and may irremediable perturb peat bog development even in cases when exploitation is not carried out. We investigated the correlation between vegetation characteristics in the active area of Poiana Ştampei peat bog, Romania, and the underlying peat layer depth, aiming at establishing a non-destructive method of peat layer depth estimation. The presence of the Sphagneto-Eriophoretum vaginati association, dominated by Sphagnum fimbriatum, Eriophorum vaginatum, Andromeda polifolia, Vaccinium oxycoccos, V. myrtillus, V. vitis-idaea, Polytrichum commune, Picea excelsa, Pinus sylvestris and Betula verrucosa was found to predict the existence of the peat layer but not its depth. Out of the seven identified vegetation types, one type was associated with a very thin or no peat layer, one type was characterised by the presence of a thick (over 100 cm peat layer and five types indicated the presence of variable average depths of the peat layer. pH values correlated with peat layer depth only within the vegetation type associated with thick peat layers.

  9. Preliminary Tests For Development Of A Non-Pertechnetate Analysis Method

    Energy Technology Data Exchange (ETDEWEB)

    Diprete, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); McCabe, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-09-28

    The objective of this task was to develop a non-pertechnetate analysis method that 222-S lab could easily implement. The initial scope involved working with 222-S laboratory personnel to adapt the existing Tc analytical method to fractionate the non-pertechnetate and pertechnetate. SRNL then developed and tested a method using commercial sorbents containing Aliquat® 336 to extract the pertechnetate (thereby separating it from non-pertechnetate), followed by oxidation, extraction, and stripping steps, and finally analysis by beta counting and Mass Spectroscopy. Several additional items were partially investigated, including impacts of a 137Cs removal step. The method was initially tested on SRS tank waste samples to determine its viability. Although SRS tank waste does not contain non-pertechnetate, testing with it was useful to investigate the compatibility, separation efficiency, interference removal efficacy, and method sensitivity.

  10. Non-destructive sampling of rock-dwelling microbial communities using sterile adhesive tape.

    Science.gov (United States)

    Cutler, Nick A; Oliver, Anna E; Viles, Heather A; Whiteley, Andrew S

    2012-12-01

    Building stone provides a habitat for an array of microorganisms, many of which have been demonstrated to have a deleterious effect on the appearance and/or structural integrity of stone masonry. It is essential to understand the composition and structure of stone-dwelling (lithobiontic) microbial communities if successful stone conservation strategies are to be applied, particularly in the face of global environmental change. Ideally, the techniques used to sample such assemblages should be non-destructive due to the sensitive conservation status of many stone buildings. This paper quantitatively assesses the performance of sterile adhesive tape as a non-destructive sampling technique and compares the results of tape sampling with an alternative, destructive, sampling method. We used DNA fingerprinting (TRFLP) to characterise the algal, fungal and bacterial communities living on a stone slab. Our results demonstrate that tape sampling may be used to collect viable quantities of microbial DNA from environmental samples. This technique is ideally suited to the sampling of microbial biofilms, particularly when these communities are dominated by green algae. It provides a good approximation of total community diversity (i.e. the aggregate diversity of epilithic and endolithic communities). Tape sampling is straightforward, rapid and cost effective. When combined with molecular analytical techniques, this sampling method has the potential to make a major contribution to efforts to understand the structure of lithobiontic microbial communities and our ability to predict the response of such communities to future environmental change. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Bulk Electrical Cable Non-Destructive Examination Methods for Nuclear Power Plant Cable Aging Management Programs

    Energy Technology Data Exchange (ETDEWEB)

    Glass, Samuel W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Jones, Anthony M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Fifield, Leonard S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hartman, Trenton S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-09-01

    This Pacific Northwest National Laboratory milestone report describes progress to date on the investigation of nondestructive test methods focusing particularly on bulk electrical test methods that provide key indicators of cable aging and damage. The work includes a review of relevant literature as well as hands-on experimental verification of inspection capabilities. As nuclear power plants consider applying for second, or subsequent, license renewal to extend their operating period from 60 years to 80 years, it is important to understand how the materials installed in plant systems and components will age during that time and develop aging management programs to assure continued safe operation under normal and design basis events (DBE). Normal component and system tests typically confirm the cables can perform their normal operational function. The focus of the cable test program, however, is directed toward the more demanding challenge of assuring the cable function under accident or DBE. The industry has adopted 50% elongation at break (EAB) relative to the un-aged cable condition as the acceptability standard. All tests are benchmarked against the cable EAB test. EAB, however, is a destructive test so the test programs must apply an array of other nondestructive examination (NDE) tests to assure or infer the overall set of cable’s system integrity. Assessment of cable integrity is further complicated in many cases by vendor’s use of dissimilar material for jacket and insulation. Frequently the jacket will degrade more rapidly than the underlying insulation. Although this can serve as an early alert to cable damage, direct test of the cable insulation without violating the protective jacket becomes problematic. This report addresses the range of bulk electrical NDE cable tests that are or could be practically implemented in a field-test situation with a particular focus on frequency domain reflectometry (FDR). The FDR test method offers numerous advantages

  12. Developments in non-destructive beam diagnostics

    International Nuclear Information System (INIS)

    Fraser, J.S.

    1981-01-01

    With the large average beam currents being achieved in accelerators and storage rings, there is an increasing need for non-destructive beam diagnostic devices. For continuous beams, position monitors of the capacitive pick-up type are replaced by resonant devices that respond to the transverse displacement of the beam centroid. Bunch length monitors of the SLAC type using resonant cavities operating in the TM 010 mode can be used for continuous beams. The more detailed information derivable from beam profile scanners requires development of improved non-destructive devices. Profile monitors which scan the visible light produced by high current beams may be more reliable than ones using the residual ionization if the light intensity from gas molecules following nonionizing collisions with beam particles gives a measure of the beam current density independent of the local electron density. The intense Balmer series lines from neutral hydrogen beams have been used successfully to measure beam profiles. At CRNL and at LASL, beam light profile monitors are being developed for high average current accelerators. Three or more projections will be recorded to allow tomographic reconstruction of the two-dimensional beam current density. Light detection is either by intensified Reticons or ISIT vidicons. The use of three or more beam light monitors on a beam transport line will also permit estimates of the transverse emittance to be made through the reconstruction technique

  13. Development of non-destructive testing

    International Nuclear Information System (INIS)

    Park, D.Y.; Moon, Y.S.; Lim, B.K.

    1980-01-01

    Various standard test samples were made for eddy current test last year ('78) and several probes of eddy current test were fabricated this year ('79). The result of some basic experiments using these probes is described in this report. A EM 3300 Multitester (made by Automation Industries, U.S.A.) was purchased, which is the fundamental instrument for the examinations of steam generator U-tubes of nuclear power plant. After some necessary experiments had been performed with this instrument, we have participated in the first inservice inspection of KORI-1 nuclear power plant (Nov., '79) and accumulated much technical experiences. Some of its test results are described in this report. (author)

  14. On the systems of automatic non-destructive control of NPP metallic structures

    International Nuclear Information System (INIS)

    Grebennik, V.S.; Lantukh, V.M.

    1980-01-01

    The main stages of developing automatic systems of non- destructive control (NC) of NPP metallic structures are pointed out. The main requirements for automatic NC systems are formulated. Recommendations on the use of the developed experimental automatic facilities for control of certain NPP components are given. It is noted that the present facilities may be used in the future in development of modular sets of non-destructive control systems [ru

  15. Development of non-destructive Young's modulus measurement techniques in non-oriented CeF$_{3}$ crystals

    CERN Document Server

    Pietroni, P; Lebeau, M; Majni, G; Rinaldi, D

    2005-01-01

    For a reliable mechanical assembly of scintillating crystals for the application to radiographic systems such as Positron Emission Tomographer (PET) and high-energy physics calorimeters (e.g. in CMS at CERN LHC), the evaluation of the monocrystal elastic constant (Young's modulus) is needed. Its knowledge is also essential in the photoelastic analysis for the determination of residual stresses. In this work non-destructive techniques based on elastic wave propagation are tested. They differ in the mechanical excitation device: instrumented hammer, traditional ultrasonic probes and laser- generated ultrasound. We have analysed three non-oriented cerium fluoride crystal samples produced for scintillation applications. Finally, we have validated the experimental results comparing them with the elastic constant calculated by using the stiffness matrix.

  16. Development of non-destructive Young's modulus measurement techniques in non-oriented CeF3 crystals

    International Nuclear Information System (INIS)

    Pietroni, P.; Paone, N.; Lebeau, M.; Majni, G.; Rinaldi, D.

    2005-01-01

    For a reliable mechanical assembly of scintillating crystals for the application to radiographic systems such as Positron Emission Tomographer (PET) and high-energy physics calorimeters (e.g. in CMS at CERN LHC), the evaluation of the monocrystal elastic constant (Young's modulus) is needed. Its knowledge is also essential in the photoelastic analysis for the determination of residual stresses. In this work non-destructive techniques based on elastic wave propagation are tested. They differ in the mechanical excitation device: instrumented hammer, traditional ultrasonic probes and laser-generated ultrasound. We have analysed three non-oriented cerium fluoride crystal samples produced for scintillation applications. Finally, we have validated the experimental results comparing them with the elastic constant calculated by using the stiffness matrix

  17. Non-destructive evaluation of the hidden voids in integrated circuit packages using terahertz time-domain spectroscopy

    International Nuclear Information System (INIS)

    Park, Sung-Hyeon; Kim, Hak-Sung; Jang, Jin-Wook

    2015-01-01

    In this work, a terahertz time-domain spectroscopy (THz-TDS) imaging technique was used as a non-destructive inspection method for detecting voids in integrated circuit (IC) packages. Transmission and reflection modes, with an angle of incidence of 30°, were used to detect voids in IC packages. The locations of the detected voids in the IC packages could be calculated by analyzing THz waveforms. Finally, voids that are positioned at the different interfaces in the IC package samples could be successfully detected and imaged. Therefore, this THz-TDS imaging technique is expected to be a promising technique for non-destructive evaluation of IC packages. (paper)

  18. Non-destructive testing of proteins in single seeds using the 14N(d,p)15N and 14N(d,∝)12C reactions

    International Nuclear Information System (INIS)

    Moreno B, E.

    1986-01-01

    A non-destructive nuclear technique aimed for the analysis of proteins in single seeds using the 14 N(d,p) 15 N and 14 N(d,∝) 12 C reactions is implemented. This work was performed at the ININ's Tandem Van der Graaff facility, using a 6 MeV deuteron beam and a surface barrier solid state detector with its associated electronics for the pulse height analysis of the charged particles backscattered from the samples. Well defined populations of five varieties of wheat, and four of corn were used as samples in order to optimize the experimental conditions for the analysis, these results were compared with those obtained using an analytical chemical method (Kjeldahl). The linear regression coefficient (''r'') obtained from the results of these two methods was: r = 0.9 in the case of wheat, and r = 0.7 in the case of corn, which we consider adequate figures for using the non-destructive nuclear technique as an aid or support in agricultural seed protein improvement programs. In adequate geometrical conditions the analysis per seed can take a few seconds, and the exposure to the germ can be as low as ≅1 Rad. (author)

  19. A Novel High Sensitivity Sensor for Remote Field Eddy Current Non-Destructive Testing Based on Orthogonal Magnetic Field

    Directory of Open Access Journals (Sweden)

    Xiaojie Xu

    2014-12-01

    Full Text Available Remote field eddy current is an effective non-destructive testing method for ferromagnetic tubular structures. In view of conventional sensors’ disadvantages such as low signal-to-noise ratio and poor sensitivity to axial cracks, a novel high sensitivity sensor based on orthogonal magnetic field excitation is proposed. Firstly, through a three-dimensional finite element simulation, the remote field effect under orthogonal magnetic field excitation is determined, and an appropriate configuration which can generate an orthogonal magnetic field for a tubular structure is developed. Secondly, optimized selection of key parameters such as frequency, exciting currents and shielding modes is analyzed in detail, and different types of pick-up coils, including a new self-differential mode pick-up coil, are designed and analyzed. Lastly, the proposed sensor is verified experimentally by various types of defects manufactured on a section of a ferromagnetic tube. Experimental results show that the proposed novel sensor can largely improve the sensitivity of defect detection, especially for axial crack whose depth is less than 40% wall thickness, which are very difficult to detect and identify by conventional sensors. Another noteworthy advantage of the proposed sensor is that it has almost equal sensitivity to various types of defects, when a self-differential mode pick-up coil is adopted.

  20. Non-destructive evaluation of containment walls in nuclear power plants

    Science.gov (United States)

    Garnier, V.; Payan, C.; Lott, M.; Ranaivomanana, N.; Balayssac, J. P.; Verdier, J.; Larose, E.; Zhang, Y.; Saliba, J.; Boniface, A.; Sbartai, Z. M.; Piwakowski, B.; Ciccarone, C.; Hafid, H.; Henault, J. M.; Buffet, F. Ouvrier

    2017-02-01

    Two functions are regularly tested on containment walls in order to anticipate a possible accident. The first is mechanical to resist a possible internal over-pressure and the second is to prevent leakage. The AAPR reference accident is the rupture of a pipe in the primary circuit of a nuclear plant. In this case, the pressure and temperature can reach 5 bar and 180°C in 20 seconds. The national project `Non-destructive testing of the containment structures of nuclear plants' aims at studying the non-destructive techniques capable to evaluate the concrete properties and its damaging and cracks. This 4-year-project is segmented into two parts. The first consists in developing and selecting the most relevant NDEs in the laboratory to reach these goals. These evaluations are developed in conditions representing the real conditions of the stresses generated during ten-yearly visits of the plants or those related to an accident. The second part consists in applying the selected techniques to two containment structures under pressure. The first structure is proposed by ONERA and the second is a mockup of a containment wall on a 1/3 scale made by EDF within the VeRCoRs project. Communication is focused on the part of the project that concerns the damage and crack process characterization by means of NDT. The tests are done in 3 or 4 points bending in order to study the cracks' generation, their propagation, as well as their opening and closing. The main ultrasonic techniques developed concern linear or non-linear acoustic: acoustic emission [1], Locadiff [2], energy diffusion, surface wave's velocity and attenuation, DAET [3]. The recorded data contribute to providing the mapping of the investigated parameters, either in volume, in surface or globally. Digital image correlation is an important additional asset to validate the coherence of the data. The spatial normalization of the data in the specimen space allows proposing algorithms on the combination of the

  1. Application of non-destructive testing and in-service inspections to research reactors and preparation of ISI programme and manual for WWR-C research reactors

    International Nuclear Information System (INIS)

    Khattab, M.

    1996-01-01

    The present report gives a review on the results of application of non-destructive testing and in-service inspections to WWR-C reactors in different countries. The major problems related to reactor safety and the procedure of inspection techniques are investigated to collect the experience gained from this type of reactors. Exchangeable experience in solving common problems in similar reactors play an important role in the effectiveness of their rehabilitation programmes. 9 figs., 4 tabs

  2. In situ non-destructive measurement of biofilm thickness and topology in an interferometric optical microscope

    Energy Technology Data Exchange (ETDEWEB)

    Larimer, Curtis [Pacific Northwest National Laboratory, Battelle for the USDOE, PO Box 999, MSIN P7-50 Richland WA 99354 USA; Suter, Jonathan D. [Pacific Northwest National Laboratory, Battelle for the USDOE, PO Box 999, MSIN P7-50 Richland WA 99354 USA; Bonheyo, George [Pacific Northwest National Laboratory, Battelle for the USDOE, PO Box 999, MSIN P7-50 Richland WA 99354 USA; Addleman, Raymond Shane [Pacific Northwest National Laboratory, Battelle for the USDOE, PO Box 999, MSIN P7-50 Richland WA 99354 USA

    2016-03-15

    Biofilms are ubiquitous and deleteriously impact a wide range of industrial processes, medical and dental health issues, and environmental problems such as transport of invasive species and the fuel efficiency of ocean going vessels. Biofilms are difficult to characterize when fully hydrated, especially in a non-destructive manner, because of their soft structure and water-like bulk properties. Herein we describe a non-destructive high resolution method of measuring and monitoring the thickness and topology of live biofilms of using white light interferometric optical microscopy. Using this technique, surface morphology, surface roughness, and biofilm thickness can be measured non-destructively and with high resolution as a function of time without disruption of the biofilm activity and processes. The thickness and surface topology of a P. putida biofilm were monitored growing from initial colonization to a mature biofilm. Typical bacterial growth curves were observed. Increase in surface roughness was a leading indicator of biofilm growth.

  3. Non-Destructive Radiological Characterisation Of Contaminated And Activated Concrete

    International Nuclear Information System (INIS)

    Cantrel, E.

    2005-01-01

    The decommissioning of nuclear facilities leads to large quantities of concrete and building material wastes. Radioactivity in building structures arise from very different physical processes such as neutron activation (bioshield), diffusion of the contaminants in the material (primary coolant leakage, maintenance and fuel loading) or aerosol deposition. The variety of the building material also extends the range of faced radiological characteristics. Therefore the minimization of concrete waste generation requires extensive characterisations and the availability of different measurement tools and methods. Up to now, these measurements came from the coring and the radiological analysis of the concrete, which is a destructive, long and costly technique. Looking for alternative solutions, SCK-CEN has started to investigate in collaboration with EDF -research and development and CEA (France) several non destructive methods based on gamma spectroscopy and different spectral examinations using mathematical calibration and modelling tools available on the market. Information on in-depth activity distribution can be derived from in situ gamma spectra by modelling absorption laws (peak to peak ratios) and photons interactions (Compton front) in the bulk of the concrete. As they combine modelling and measurement, the different methodologies being evaluated involve a lot of uncertainty sources linked to the measurement environment, to the knowledge available on site (historical background, material composition), to the operator responsible for the data acquisition and to the performance of the equipment. Therefore a detailed sensitivity analysis is required to define the range of applicability and the performances of the different methods

  4. Safeguards and Non-destructive Assay

    International Nuclear Information System (INIS)

    Carchon, R.; Bruggeman, M.

    2001-01-01

    SCK-CEN's programme on safeguards and non-destructive assay includes: (1) various activities to assure nuclear materials accountancy; (2) contributes to the implementation of Integrated Safeguards measures in Belgium and to assist the IAEA through the Belgian Support Programme; (3) renders services to internal and external customers in the field of safeguards; (4) improves passive neutron coincidence counting techniques for waste assay and safeguards verification measurements by R and D on correlation algorithms implemented via software or dedicated hardware; (5) improves gamma assay techniques for waste assay by implementing advanced scanning techniques and different correlation algorithms; and (6) develops numerical calibration techniques. Major achievements in these areas in 2000 are reported

  5. Non Destructive Analysis of Uranium by Radiometry

    International Nuclear Information System (INIS)

    Yusuf Nampira

    2007-01-01

    Uranium used in nuclear fuel development activity. the Substance use incurred by regulation safeguard. On that account in uranium acceptance conducted by verification of according to document by the specification of goods. Verification done by analysing performed uranium. The activity require by analyse method which simple and rapid analyses and has accurate result of analyses, is hence done by validation of non destructive uranium analysis that is with count gamma radiation from 235 U and product decay from 238 U. Quantitative analysis of uranium in substance determined by through count radiation-g at energy 185.72 keV and the use assess ratio of gamma radiation count from 235 U to 234 Pa to determine isotope content 235 U in substance. The result of analyses were given result of analysis with above correctness storey level 95% and have limit detect equivalent by 0.0174 mg U in U 3 O 8 . This method use at isotope uranium-235 analysis through count gamma radiation comparing method 235 U/ 234 Pa giving accuracy level 95% at sample equivalent uranium its content in 1 g uranium with isotope 235 U smaller than 75 weight percent. (author)

  6. Laser plasma X-ray for non-destructive inspection

    International Nuclear Information System (INIS)

    Yagi, T.; Kusama, H.

    1995-01-01

    External electric field is applied to the laser produced plasma, and its found that plasma shape in soft X-ray region is changed due to the penetrating electric field. The plasma emits strong hard X-ray, which can be used as a compact light source for non-destructive inspection. (author)

  7. Thermographic Non-Destructive Evaluation for Natural Fiber-Reinforced Composite Laminates

    Directory of Open Access Journals (Sweden)

    Hai Zhang

    2018-02-01

    Full Text Available Natural fibers, including mineral and plant fibers, are increasingly used for polymer composite materials due to their low environmental impact. In this paper, thermographic non-destructive inspection techniques were used to evaluate and characterize basalt, jute/hemp and bagasse fibers composite panels. Different defects were analyzed in terms of impact damage, delaminations and resin abnormalities. Of particular interest, homogeneous particleboards of sugarcane bagasse, a new plant fiber material, were studied. Pulsed phase thermography and principal component thermography were used as the post-processing methods. In addition, ultrasonic C-scan and continuous wave terahertz imaging were also carried out on the mineral fiber laminates for comparative purposes. Finally, an analytical comparison of different methods was given.

  8. Non-destructive analysis in a study of the religious art objects

    International Nuclear Information System (INIS)

    Vornicu, Nicoleta; Bibire, Cristina; Geba, Maria

    2009-01-01

    The icon Descending of the Saint Spirit from Bucium Church, dating in the year 1814 and was done in tempera on wood technology. The characterization of cultural heritage materials is essential for the comprehension of their degradation mechanisms. The present study aims at identifying the pigments in the various layers, establishing the possible existence of an organic binder and scientifically evaluating the state of preservation. To this end, were used non-destructive methods, as: microscopic (SEM), XRF and spectroscopic (FTIR).

  9. A final report on the performance achieved by non-destructive testing of defective butt welds in 50mm thick Type 316 stainless steel

    International Nuclear Information System (INIS)

    Ford, J.; Hudgell, R.J.

    1987-03-01

    This report concludes a programme of work started approximately eight years ago to fabricate deliberately defective austenitic downhand welds in 50 mm thick Type 316 plate and then to examine them non-destructively under ideal laboratory conditions. After completing and reporting the Non-Destructive Testing (NDT), the specimens were subjected to detailed metallography to locate, identify and size all the planned and unplanned flaws in the welds. The report gives the final analysis of this exercise on the relative merits of X-radiography, pulse echo ultrasonics and the time-of-flight technique for the detection, location and sizing of weld flaws. It was found that X-radiography and pulse echo ultrasonics were the best techniques for flaw detection but neither technique was reliable for flaw sizing. The time-of-flight technique provided accurate sizing data but the location of the flaws had to be known to identify the diffracted signals from the extremities of the flaws due to the poor signal to noise ratio. Observations are also reported on the fabrication of deliberately defective austenitic welds for use as reference specimens in the FR programme. (author)

  10. Non-Destructive Testing in Reactor Pressure-Vessel Fabrication; Essais non Destructifs dans la Fabrication des Caissons Etanches de Reacteurs; Nedestruktivnoe ispytanie pri izgotovlenii reaktornykh bakov vysokogo davleniya; Ensayo no Destructivo Durante la Fabricacion de Recipientes de Presion para Reactores

    Energy Technology Data Exchange (ETDEWEB)

    McGonnagle, W. J. [Fluids Dynamics Research, Iit Research Institute, Chicago, IL (United States)

    1965-09-15

    The objective of this paper is to outline briefly a quality control programme for the design and fabrication of a reactor pressure-vessel which will meet all nuclear and safety requirements, and to show the place and importance of non-destructive testing in achieving that objective. Failure in materials, components, and assembly has demonstrated that our present techniques of fabrication are not sufficient alone to assure constant reliability in critical components. Flaws and inhomogeneities occur even when using the best processes and properly controlled methods and techniques. Thus an adequate and well-integrated non-destructive testing programme is necessary to assure the quality level required in a nuclear- reactor pressure-vessel. The principal non-destructive methods used by fabricators of reactor pressure-vessels are: visual, X-ray and gamma radiography, ultrasonics, magnetic particle, and liquid penetrant. The non-destructive testing programme includes the inspection of plate material, forging, casting, cladding and welds. The particular non-destructive testing problems met in nuclear pressure-vessels are discussed. The specialized techniques peculiar to the non-destructive testing of pressure vessels and their components are illustrated and discussed. The applicable codes and specifications, such as the Boiler and Pressure Vessel Code of the American Society for Mechanical Engineers and other regulatory bodies, are outlined. How non-destructive testing can help to comply with the specifications and requirements of various regulatory bodies, and the adequacy and applicability of standards used in such an application are discussed. Realistic but adequate acceptance and rejection criteria are suggested. A procedure is outlined which will help non-destructive personnel to perform adequately their functions at the proper time in the fabrication cycle. The inter-relationships of the non-destructive testing group with the other groups involved in the fabrication

  11. PANDA-A novel instrument for non-destructive sample analysis

    International Nuclear Information System (INIS)

    Turunen, Jani; Peraejaervi, Kari; Poellaenen, Roy; Toivonen, Harri

    2010-01-01

    An instrument known as PANDA (Particles And Non-Destructive Analysis) for non-destructive sample analysis has been designed and built at the Finnish Radiation and Nuclear Safety Authority (STUK). In PANDA the measurement techniques and instruments designed for the basic research are applied to the analysis of environmental samples. PANDA has two vacuum chambers, one for loading samples and the other for measurements. In the measurement chamber there are two individual measurement positions. Currently the first one hosts an HPGe gamma detector and a position-sensitive alpha detector. The second measurement position is intended for precise characterization of found particles. PANDA's data are recorded in event mode and events are timestamped. In the present article the technical design of PANDA is presented in detail. In addition, its performance using depleted uranium particles and an air filter is demonstrated.

  12. Unmanned Ground Vehicle for Autonomous Non-Destructive Testing of FRP Bridge Decks

    Science.gov (United States)

    Klinkhachorn, P.; Mercer, A. Scott; Halabe, Udaya B.; GangaRao, Hota V. S.

    2007-03-01

    Current non-destructive techniques for defect analysis of FRP bridge decks have a narrow scope. These techniques are very good at detecting certain types of defects but are not robust enough to detect all defects by themselves. For example, infrared thermography (IRT) can detect air filled defects and Ground Penetrating Radar (GPR) is good at detecting water filled ones. These technologies can be combined to create a more robust defect detection scheme. To accomplish this, an Unmanned Ground Vehicle (UGV) has been designed that incorporates both IR and GPR analysis to create a comprehensive defect map of a bridge deck. The UGV autonomously surveys the deck surface and acquires data. The UGV has two 1.5 GHz ground coupled GPR antennas that are mounted on the front of the UGV to collect GPR data. It also incorporates an active heating source and a radiometric IR camera to capture IR images of the deck, even in less than ideal weather scenarios such as cold cloudy days. The UGV is designed so that it can collect data in an assembly line fashion. It moves in 1 foot increments. When moving, it collects GPR data from the two antennas. When it stops it heats a section of the deck. The next time it stops to heat a section, the IR camera is analyzing the preheated deck section while preparing for the next section. Because the data is being continually collected using this method, the UGV can survey the entire deck in an efficient and timely manner.

  13. Online Preventative Non-Destructive Evaluation in Automated Fibre Placement

    NARCIS (Netherlands)

    Tonnaer, R.; Shroff, S.; Groves, R.M.

    2016-01-01

    The strict quality requirements for aerospace composite struc- tures give rise to costly quality control procedures. In automated bre placement (AFP) these procedures rely heavily on manual work and inspection. This research aims at performing preventative non-destructive evaluation of composite

  14. The effect of safety training involving non-destructive testing among students at specialized vocational high schools

    Energy Technology Data Exchange (ETDEWEB)

    Lim Young Khi [Dept. of Radiological Science, Gachon University, Inchon (Korea, Republic of); Han, Eun Ok; Choi, Yoon Seok [Dept. of Education amd Research, Korea Academy of Nuclear Safety, Seoul (Korea, Republic of)

    2017-06-15

    By examining the safety issues involved in on-site training sessions conducted at specialized vocational high schools, and by analyzing the effects of non-destructive testing (NDT) safety training, this study aims to contribute to ensuring the general safety of high school students. Students who expressed an interest in participation were surveyed regarding current NDT training practices, as well as NDT safety training. A total of 361 students from 4 schools participated in this study; 37.7% (136 students) were from the Seoul metropolitan area and 62.3% (225 students) were from other areas. Of the respondents, 2.2% (8 students) reported having engaged in NDT. As a result of safety training, statistically significant improvements were observed in most areas, except for individuals with previous NDT experience. The areas of improvement included safety awareness, acquisition of knowledge, subjective knowledge levels, objective knowledge levels, and adjustments to existing personal attitudes. Even at absolutely necessary observation-only training sessions, it is crucial that sufficient safety training and additional safety measures be adequately provided.

  15. The effect of safety training involving non-destructive testing among students at specialized vocational high schools

    International Nuclear Information System (INIS)

    Lim Young Khi; Han, Eun Ok; Choi, Yoon Seok

    2017-01-01

    By examining the safety issues involved in on-site training sessions conducted at specialized vocational high schools, and by analyzing the effects of non-destructive testing (NDT) safety training, this study aims to contribute to ensuring the general safety of high school students. Students who expressed an interest in participation were surveyed regarding current NDT training practices, as well as NDT safety training. A total of 361 students from 4 schools participated in this study; 37.7% (136 students) were from the Seoul metropolitan area and 62.3% (225 students) were from other areas. Of the respondents, 2.2% (8 students) reported having engaged in NDT. As a result of safety training, statistically significant improvements were observed in most areas, except for individuals with previous NDT experience. The areas of improvement included safety awareness, acquisition of knowledge, subjective knowledge levels, objective knowledge levels, and adjustments to existing personal attitudes. Even at absolutely necessary observation-only training sessions, it is crucial that sufficient safety training and additional safety measures be adequately provided

  16. "Cold combustion" as a new method of toxic waste destruction

    Directory of Open Access Journals (Sweden)

    Екатерина Юрьевна Ткаченко

    2015-05-01

    Full Text Available This article describes a promising new method for the destruction of toxic industrial waste, obsolete pesticides and military poisons and explosives. The proposed method can be used to create mobile modular units that will produce the destruction of the "field", to clean the soil and water containing low concentrations of a pollutant, to solve the problem of disposal of explosives, which is often accompanied by the destruction of uncontrolled detonation. The proposed method is environmentally friendly, using ice as the working body

  17. A fracture mechanics and reliability based method to assess non-destructive testings for pressure vessels

    International Nuclear Information System (INIS)

    Kitagawa, Hideo; Hisada, Toshiaki

    1979-01-01

    Quantitative evaluation has not been made on the effects of carrying out preservice and in-service nondestructive tests for securing the soundness, safety and maintainability of pressure vessels, spending large expenses and labor. Especially the problems concerning the time and interval of in-service inspections lack the reasonable, quantitative evaluation method. In this paper, the problems of pressure vessels are treated by having developed the analysis method based on reliability technology and probability theory. The growth of surface cracks in pressure vessels was estimated, using the results of previous studies. The effects of nondestructive inspection on the defects in pressure vessels were evaluated, and the influences of many factors, such as plate thickness, stress, the accuracy of inspection and so on, on the effects of inspection, and the method of evaluating the inspections at unequal intervals were investigated. The analysis of reliability taking in-service inspection into consideration, the evaluation of in-service inspection and other affecting factors through the typical examples of analysis, and the review concerning the time of inspection are described. The method of analyzing the reliability of pressure vessels, considering the growth of defects and preservice and in-service nondestructive tests, was able to be systematized so as to be practically usable. (Kako, I.)

  18. Non-Destructive Current Sensing for Energy Efficiency Monitoring in Buildings with Environmental Certification.

    Science.gov (United States)

    Mota, Lia Toledo Moreira; Mota, Alexandre de Assis; Coiado, Lorenzo Campos

    2015-07-10

    Nowadays, buildings environmental certifications encourage the implementation of initiatives aiming to increase energy efficiency in buildings. In these certification systems, increased energy efficiency arising from such initiatives must be demonstrated. Thus, a challenge to be faced is how to check the increase in energy efficiency related to each of the employed initiatives without a considerable building retrofit. In this context, this work presents a non-destructive method for electric current sensing to assess implemented initiatives to increase energy efficiency in buildings with environmental certification. This method proposes the use of a sensor that can be installed directly in the low voltage electrical circuit conductors that are powering the initiative under evaluation, without the need for reforms that result in significant costs, repair, and maintenance. The proposed sensor consists of three elements: an air-core transformer current sensor, an amplifying/filtering stage, and a microprocessor. A prototype of the proposed sensor was developed and tests were performed to validate this sensor. Based on laboratory tests, it was possible to characterize the proposed current sensor with respect to the number of turns and cross-sectional area of the primary and secondary coils. Furthermore, using the Least Squares Method, it was possible to determine the efficiency of the air core transformer current sensor (the best efficiency found, considering different test conditions, was 2%), which leads to a linear output response.

  19. Non-Destructive Current Sensing for Energy Efficiency Monitoring in Buildings with Environmental Certification

    Science.gov (United States)

    Mota, Lia Toledo Moreira; Mota, Alexandre de Assis; Coiado, Lorenzo Campos

    2015-01-01

    Nowadays, buildings environmental certifications encourage the implementation of initiatives aiming to increase energy efficiency in buildings. In these certification systems, increased energy efficiency arising from such initiatives must be demonstrated. Thus, a challenge to be faced is how to check the increase in energy efficiency related to each of the employed initiatives without a considerable building retrofit. In this context, this work presents a non-destructive method for electric current sensing to assess implemented initiatives to increase energy efficiency in buildings with environmental certification. This method proposes the use of a sensor that can be installed directly in the low voltage electrical circuit conductors that are powering the initiative under evaluation, without the need for reforms that result in significant costs, repair, and maintenance. The proposed sensor consists of three elements: an air-core transformer current sensor, an amplifying/filtering stage, and a microprocessor. A prototype of the proposed sensor was developed and tests were performed to validate this sensor. Based on laboratory tests, it was possible to characterize the proposed current sensor with respect to the number of turns and cross-sectional area of the primary and secondary coils. Furthermore, using the Least Squares Method, it was possible to determine the efficiency of the air core transformer current sensor (the best efficiency found, considering different test conditions, was 2%), which leads to a linear output response. PMID:26184208

  20. Non-Destructive Current Sensing for Energy Efficiency Monitoring in Buildings with Environmental Certification

    Directory of Open Access Journals (Sweden)

    Lia Toledo Moreira Mota

    2015-07-01

    Full Text Available Nowadays, buildings environmental certifications encourage the implementation of initiatives aiming to increase energy efficiency in buildings. In these certification systems, increased energy efficiency arising from such initiatives must be demonstrated. Thus, a challenge to be faced is how to check the increase in energy efficiency related to each of the employed initiatives without a considerable building retrofit. In this context, this work presents a non-destructive method for electric current sensing to assess implemented initiatives to increase energy efficiency in buildings with environmental certification. This method proposes the use of a sensor that can be installed directly in the low voltage electrical circuit conductors that are powering the initiative under evaluation, without the need for reforms that result in significant costs, repair, and maintenance. The proposed sensor consists of three elements: an air-core transformer current sensor, an amplifying/filtering stage, and a microprocessor. A prototype of the proposed sensor was developed and tests were performed to validate this sensor. Based on laboratory tests, it was possible to characterize the proposed current sensor with respect to the number of turns and cross-sectional area of the primary and secondary coils. Furthermore, using the Least Squares Method, it was possible to determine the efficiency of the air core transformer current sensor (the best efficiency found, considering different test conditions, was 2%, which leads to a linear output response.

  1. Non-destructive testing of high heat flux components of fusion devices by infrared thermography: modeling and signal processing

    International Nuclear Information System (INIS)

    Cismondi, Fabio

    2007-01-01

    In Plasma Facing Components (PFCs) the joint of the CFC armour material onto the metallic CuCrZr heat sink needs to be significant defects free. Detection of material flaws is a major issue of the PFCs acceptance protocol. A Non-Destructive Technique (NDT) based upon active infrared thermography allows testing PFCs on SATIR tests bed in Cadarache. Up to now defect detection was based on the comparison of the surface temperature evolution of the inspected component with that of a supposed 'defect-free' one (used as a reference element). This work deals with improvement of thermal signal processing coming from SATIR. In particular the contributions of the thermal modelling and statistical signal processing converge in this work. As for thermal modelling, the identification of a sensitive parameter to defect presence allows improving the quantitative estimation of defect Otherwise Finite Element (FE) modeling of SATIR allows calculating the so called deterministic numerical tile. Statistical approach via the Monte Carlo technique extends the numerical tile concept to the numerical population concept. As for signal processing, traditional statistical treatments allow a better localization of the bond defect processing thermo-signal by itself, without utilising a reference signal. Moreover the problem of detection and classification of random signals can be solved by maximizing the signal-to-noise ratio. Two filters maximizing the signal-to-noise ratio are optimized: the stochastic matched filter aims at detects detection and the constrained stochastic matched filter aims at defects classification. Performances are quantified and methods are compared via the ROC curves. (author)

  2. Non destructive examination of UN / U-Si fuel pellets using neutrons (preliminary assessment)

    Energy Technology Data Exchange (ETDEWEB)

    Bourke, Mark Andrew [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Vogel, Sven C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Voit, Stewart Lancaster [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mcclellan, Kenneth James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Losko, Adrian S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Tremsin, Anton [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-03-31

    Tomographic imaging and diffraction measurements were performed on nine pellets; four UN/ U Si composite formulations (two enrichment levels), three pure U3Si5 reference formulations (two enrichment levels) and two reject pellets with visible flaws (to qualify the technique). The U-235 enrichments ranged from 0.2 to 8.8 wt.%. The nitride/silicide composites are candidate compositions for use as Accident Tolerant Fuel (ATF). The monophase U3Si5 material was included as a reference. Pellets from the same fabrication batches will be inserted in the Advanced Test Reactor at Idaho during 2016. The goal of the Advanced Non-destructive Fuel Examination work package is the development and application of non-destructive neutron imaging and scattering techniques to ceramic and metallic nuclear fuels. Data reported in this report were collected in the LANSCE run cycle that started in September 2015 and ended in March 2016. Data analysis is ongoing; thus, this report provides a preliminary review of the measurements and provides an overview of the characterized samples.

  3. Spatial distribution pattern analysis of subtidal macroalgae assemblages by a non-destructive rapid assessment method

    Science.gov (United States)

    Guinda, Xabier; Juanes, José Antonio; Puente, Araceli; Echavarri-Erasun, Beatriz

    2012-01-01

    The extensive field work carried out over the last century has allowed the worldwide description of general distribution patterns and specific composition of rocky intertidal communities. However, the information concerning subtidal communities on hard substrates is more recent and scarce due to the difficulties associated with working in such environments. In this work, a non-destructive method is applied to the study and mapping of subtidal rocky bottom macroalgae assemblages on the coast of Cantabria (N Spain) which is quick, easy and economical. Gelidium corneum and Cystoseira baccata were the dominant species, however, the composition and coverage of macroalgae assemblages varied significantly at different locations and depth ranges. The high presence of Laminaria ochroleuca and Saccorhiza polyschides, characteristic of colder waters, shows the transitional character of this coastal area. The results obtained throughout this study have been very useful to the application of the European Water Framework Directive (WFD 2000/60/EC) and could be of great interest for the future conservation and management of these ecosystems (e.g. Habitats Directive 92/43/EEC).

  4. Rapid and non-destructive discrimination of tea varieties by near ...

    African Journals Online (AJOL)

    Rapid and non-destructive discrimination of tea varieties by near infrared diffuse reflection spectroscopy coupled with classification and regression trees. SM Tan, RM Luo, YP Zhou, H Gong, Z Tan ...

  5. Inspection with non destructive assay techniques of the aluminium coating of the TRIGA Mark III reactor vat

    International Nuclear Information System (INIS)

    Reyes A, A.I.; Gonzalez M, A.; Castaneda J, G.; Rivera M, H.; Sandoval G, I.

    2001-01-01

    In June 2000, the Reactor Department assigned to the Scientific Research Direction of the National Institute of Nuclear Research requested to the Non-destructive Assays Laboratory (LEND), assigned to the Materials Science Management, the inspection and measurement of thickness of the aluminium coating (liner) of the TRIGA Mark III reactor vat with non-destructive assay techniques, due to that the aluminium coating is exposed mainly to undergo slimming on its back side due to corrosion phenomena. Activity that was able to be carried out from april until august 2001. It is worth pointing out that this type of inspection with these techniques was realized by first time. The non-destructive assays (NDA) are techniques which use indirect physical methods for inspecting the sanitation of components in process or in service, for detect lack of continuity or defects which affect their quality or usefulness. The application of those do not alter the physical, chemical, mechanical or dimensional properties of the part subject of inspection. The results of the application of the ultrasound inspection techniques, industrial radiography and penetrating liquids are presented. (Author)

  6. Non-destructive grading of peaches by near-infrared spectrometry

    Science.gov (United States)

    Carlomagno, G.; Capozzo, L.; Attolico, G.; Distante, A.

    2004-12-01

    This paper describes an experimental study on non-destructive methods for sorting peaches according to their degree of ripeness. The method is based on near-infrared (NIR) transmittance spectrometry in the region between 730 and 900 nm. It estimates the ripeness in terms of internal sugar content and firmness. A station for acquiring the NIR signal has been designed and realized, carefully choosing between several options for each component. Four different stations have been realized and compared during the experimental phase. The signals acquired by the station have been pre-processed using a noise-reducing method based on a packets-wavelet transform. In addition, an outlier detection technique has been applied for identifying irregular behaviors inside each of the considered classes. Finally, a minimum distance classifier estimates the grade of each experimental data. The results obtained in classification show that this early version of the station enables the correct discrimination of peaches with a percentage of 82.5%.

  7. Photothermal Analysis Applied To Non-Destructive Evaluation Of Paint On Polymer Substrates

    Science.gov (United States)

    Vergne, D.; Busse, G.

    1988-10-01

    The decoration and protection quality of coatings on polymers is of considerable interest for industrial applications. However, at present there is no non-destructive (NDE) method to monitor the quality of these coatings during the manufacturing process or while they are in use. As an approach for such a method we use photothermal analysis where the propagation and reflection of optically generated thermal waves is investigated. We found that one can monitor the drying process, the effect of surface temperature treatment, and coating thickness (accuracy + 2 μm in 50 μm thickness). The information obtained with this remote NDE method is adequate for most industrial applications, eg car manufacturing.

  8. Non-Destructive Evaluation for Corrosion Monitoring in Concrete: A Review and Capability of Acoustic Emission Technique

    Science.gov (United States)

    Zaki, Ahmad; Chai, Hwa Kian; Aggelis, Dimitrios G.; Alver, Ninel

    2015-01-01

    Corrosion of reinforced concrete (RC) structures has been one of the major causes of structural failure. Early detection of the corrosion process could help limit the location and the extent of necessary repairs or replacement, as well as reduce the cost associated with rehabilitation work. Non-destructive testing (NDT) methods have been found to be useful for in-situ evaluation of steel corrosion in RC, where the effect of steel corrosion and the integrity of the concrete structure can be assessed effectively. A complementary study of NDT methods for the investigation of corrosion is presented here. In this paper, acoustic emission (AE) effectively detects the corrosion of concrete structures at an early stage. The capability of the AE technique to detect corrosion occurring in real-time makes it a strong candidate for serving as an efficient NDT method, giving it an advantage over other NDT methods. PMID:26251904

  9. Non-Destructive Evaluation for Corrosion Monitoring in Concrete: A Review and Capability of Acoustic Emission Technique

    Directory of Open Access Journals (Sweden)

    Ahmad Zaki

    2015-08-01

    Full Text Available Corrosion of reinforced concrete (RC structures has been one of the major causes of structural failure. Early detection of the corrosion process could help limit the location and the extent of necessary repairs or replacement, as well as reduce the cost associated with rehabilitation work. Non-destructive testing (NDT methods have been found to be useful for in-situ evaluation of steel corrosion in RC, where the effect of steel corrosion and the integrity of the concrete structure can be assessed effectively. A complementary study of NDT methods for the investigation of corrosion is presented here. In this paper, acoustic emission (AE effectively detects the corrosion of concrete structures at an early stage. The capability of the AE technique to detect corrosion occurring in real-time makes it a strong candidate for serving as an efficient NDT method, giving it an advantage over other NDT methods.

  10. Non-destructive estimation of leaf area for different plant ages and accessions of Capsicum annuum L.

    NARCIS (Netherlands)

    Swart, de E.A.M.; Groenwold, R.; Kanne, H.J.; Stam, P.; Marcelis, L.F.M.; Voorrips, R.E.

    2004-01-01

    Accurate measurements of leaf area are important for agronomic and physiological studies. To be able to perform repeated measurements of leaf area on single (genetically unique) plants, a method was developed to estimate leaf area from non-destructive measurements in Capsicum annuum L. independent

  11. Application of a Bayesian model for the quantification of the European methodology for qualification of non-destructive testing

    International Nuclear Information System (INIS)

    Gandossi, Luca; Simola, Kaisa; Shepherd, Barrie

    2010-01-01

    The European methodology for qualification of non-destructive testing is a well-established approach adopted by nuclear utilities in many European countries. According to this methodology, qualification is based on a combination of technical justification and practical trials. The methodology is qualitative in nature, and it does not give explicit guidance on how the evidence from the technical justification and results from trials should be weighted. A Bayesian model for the quantification process was presented in a previous paper, proposing a way to combine the 'soft' evidence contained in a technical justification with the 'hard' evidence obtained from practical trials. This paper describes the results of a pilot study in which such a Bayesian model was applied to two realistic Qualification Dossiers by experienced NDT qualification specialists. At the end of the study, recommendations were made and a set of guidelines was developed for the application of the Bayesian model.

  12. Development and assembly of equipment for non destructive assay system control using nuclear radiation

    International Nuclear Information System (INIS)

    Melo, Jose Altino Tupinamba

    2006-01-01

    Nondestructive Assay (NDA) is applied to machines and components quality tests. These elements would not have a good performance if they were conceived without concern about the mechanical project quality, used materials, manufacture processes and inspection and maintenance methodology. There are constant developments in high level of technology with the objective of guaranteeing the components quality and the good functioning of these machines, in the mechanics, naval, aeronautical, petrochemical and steel industry, energy and nuclear generation as well. The globalization in the industry lines is a fact, leading to an increase in the multinational projects and products. The following questions arise: how to assure the high quality of components and processes? How to optimize the test methods to assure that the materials do not have defects affecting the performance of the components? The answers to the questions above are found in the application of NDA. The complex materials analysis (inhomogeneous) using NDA requires a detailed study of the sensors response signal. In this work, a measure and control system of non destructive processes was developed, using a radioactive source with a defined energy in function of the material to be analyzed. This system involves: (a) Interface of input/output (I/O) (the Hardware) and (b) graphical Interface (Software). In the non destructive analysis, it is made the comparison of the signal proceeding from the sensor with a signal preset (Set Point) or analogical signal of reference (Base Line), which is adjusted in the I/O Interface. Analyzed the signal, the system will make the decision: (a) to reject or (b) to accept the analyzed material. The I/O Interface is implemented by electronic equipment with a MCS51. The purpose of this interface is to supply conditions to exchange information, using serial RS232, between the sensor and the microcomputer. The graphical Interface (software) is written in visual C++ language (author)

  13. Destructive and nondestructive methods for controlling nuclear materials for the purpose of safeguards in the CSSR

    International Nuclear Information System (INIS)

    Krivanek, M.; Krtil, J.; Moravec, J.; Pacak, P.; Sus, F.

    1977-01-01

    Central Control Laboratory (CCL) of the Nuclear Research Institute was charged with the control of nuclear materials in CSSR within the framework of the safeguards system. The CCL has been directed by the Department of nuclear safety and safeguards of CAEC according to a long-term plan, elaborated for controlling nuclear material in CSSR. The CCL has mainly been performing independent, rapid, accurate, and reliable analyses of nuclear materials, using destructive as well as non-destructive methods; the analyses of samples taken in MBA's in CSSR are mentioned, concerning the determinations of U, Pu, and Th contents, isotopic compositions of U and Pu, and burn up. The results of the analyses have served for the material and isotopic balances of fissile materials and the control of fuel reprocessing under laboratory conditions. The methods for sampling and sample transport as well as sample treatment before the analysis are described. The experience is given, obtained at CCL during a routine application of chemical methods for highly precise determinations of U, Pu, and Th (titration-based methods), mass-spectrometric determinations of U and Pu (isotopic composition, IDA using 233 U and 242 Pu), and burn-up determinations based on radioactive fissile products (Cs, Ru, Ce) and stable Nd isotopes. Some non-destructive methods for controlling nuclear materials (passive gamma-spectrometry) are discussed

  14. Non-destructive flavour evaluation of red onion (Allium cepa L.) ecotypes: an electronic-nose-based approach.

    Science.gov (United States)

    Russo, Mariateresa; di Sanzo, Rosa; Cefaly, Vittoria; Carabetta, Sonia; Serra, Demetrio; Fuda, Salvatore

    2013-11-15

    This work reports preliminary results on the potential of a metal oxide sensor (MOS)-based electronic nose, as a non-destructive method to discriminate three "Tropea Red Onion" PGI ecotypes (TrT, TrMC and TrA) from each other and the common red onion (RO), which is usually used to counterfeit. The signals from the sensor array were processed using a canonical discriminant function analysis (DFA) pattern recognition technique. The DFA on onion samples showed a clear separation among the four onion groups with an overall correct classification rate (CR) of 97.5%. Onion flavour is closely linked to pungency and thus to the pyruvic acid content. The e-nose analysis results are in good agreement with pyruvic acid analysis. This work demonstrated that artificial olfactory systems have potential for use as an innovative, rapid and specific non-destructive technique, and may provide a method to protect food products against counterfeiting. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Non-destructive pollution exposure assessment in the European hedgehog (Erinaceus europaeus): IV hair versus soil analysis in exposure and risk assessment of organochlorine compounds

    NARCIS (Netherlands)

    Havé, D' H.; Scheirs, J.; Covaci, A.; Brink, van den N.W.; Verhagen, R.; Coen, De W.

    2007-01-01

    Few ecotoxicological studies on mammals use non-destructive methodologies, despite the growing ethical concern over the use of destructive sampling methods. In the present study we assessed exposure of hedgehogs (Erinaceus europaeus) to polychlorinated biphenyls (PCBs),

  16. Non-destructive and non-invasive analyses shed light on the realization technique of ancient polychrome prints

    Science.gov (United States)

    Striová, Jana; Coccolini, Gabriele; Micheli, Sara; Lofrumento, Cristiana; Galeotti, Monica; Cagnini, Andrea; Castellucci, Emilio Mario

    2009-08-01

    Five polychrome prints representing famous painters, such as Albrecht Dürer, were analyzed using a non-destructive and non-invasive methodology as required by the artwork typology. The diagnostic strategy includes X-ray fluorescence (XRF), reflectance micro-infrared (μFTIR) and micro-Raman (μRaman) spectroscopy. These prints were realized with a la poupée method that involves application of the polychrome inks on a single copper plate, before the printing process. A broad range of compounds (i.e., cinnabar, red lead, white lead, umber earth, hydrated calcium sulfate, calcium carbonate, amorphous carbon, and Prussian blue) was employed as chalcographic inks, using linseed oil as a binding medium. Gamboge was identified in the delicate finishing brush touches realized in watercolor.

  17. Round busbar concept for 30 nH, 1.7 kV, 10 kA IGBT non-destructive short-circuit tester

    DEFF Research Database (Denmark)

    Smirnova, Liudmila; Pyrhönen, Juha; Iannuzzo, Francesco

    2014-01-01

    Design of a Non-Destructive Test (NDT) set-up for short-circuit tests of 1.7 kV, 1 kA IGBT modules is discussed in this paper. The test set-up allows achieving short-circuit current up to 10 kA. The important objective during the design of the test set-up is to minimize the parasitic inductance...

  18. Non-destructive testing process by Eddy current and device using a multifrequency excitation and enabling the elimination of parameters

    International Nuclear Information System (INIS)

    Pigeon, Michel.

    1975-01-01

    A non-destructive testing process by Eddy current is described, in which a probe is moved near the part to be tested; the probe is fed with an excitation current at n different frequencies and the components at each of the n frequencies are analysed in the measurement signal delivered by the probe. It is characterised in that its resistive part X in phase with the excitation current at the same frequency and its reactive part Y in quadrature are determined for each components; parts X 1 and Y 1 of a component at one frequency are modified so that they coincide, in the area corresponding to the defect of a parameter to be eliminated, with parts X 2 and Y 2 of a component at another frequency; parts X 1 and Y 1 thus modified are deducted from parts X 2 and Y 2 and this provides a new set of resistive and reative parts X' and Y', making it possible to obtain a representative curve for which the contribution of the unwanted parameter has been eliminated [fr

  19. Non Destructive Testing - Identification of Defects in Materials

    Directory of Open Access Journals (Sweden)

    Tibor Bachorec

    2006-01-01

    Full Text Available In electrical impedance tomography (EIT currents are applied through the electrodes attached on the surface of the object, and the resulting voltages are measured using the same or additional electrodes. Internal conductivity distribution is recalculated from the measured voltages and currents. The problem is very ill posed, and therefore, regularization has to be used. The aim is to reconstruct, as accurately as possible, the conductivity distribution s in phantom using finite element method (FEM. In this paper are proposed variations of the regularization term, which are applied to non-destructiveidentification of defects (voids or cracks in conductive material.

  20. Additive Manufacturing (AM) Activities and Non-Destructive Evaluation (NDE) at GSFC

    Science.gov (United States)

    Jones, Justin S.

    2017-01-01

    NASA personnel will be meeting with a delegation from the Japan Aerospace Exploration Agency (JAXA) Office of Safety and Mission Assurance (OSMA) at Langley Research Center on 2217 through 3217. The purpose of the meeting is a technical interchange between NASA and JAXA to discuss Non-Destructive Evaluation (NDE) of Additive Manufacturing (AM) parts and the HALT process (relates to accelerated life testing). The visitors will be a small group of Japanese citizens. Goddard Space Flight Center (GSFC) has been asked to participate in the meeting, either in person or via teleconference. This presentation covers NDE efforts at GSFC and provides a cursory overview of AM and lab capabilities.

  1. A versatile passive and active non-destructive device for spent fuel assemblies monitoring

    International Nuclear Information System (INIS)

    Berne, R.; Bignan, G.; Andrieu, G.; Dethan, B.

    1993-01-01

    The monitoring of spent fuel assemblies in reactor pools or in reprocessing plants with NDA methods is interesting (non-destructivity, non-intrusivity) for process control, safety-criticality and/or nuclear material management. In this context, the authors present the results of the development and design of a prototype device (physical methods used, qualification...) called PYTHON. The aim of PYTHON is to check the declared characteristic values of an irradiated assembly before taking it into a transport cask for safety criticality control. The PYTHON device consists of a detector head in two sections and a 252 Cf source if active neutron counting is to be used. Each section of the detection head consists of two detectors: one fission chamber and one ionization chamber

  2. Destructive examination of test plates 3 and test piece 4 of the defects detection trials (DDT)

    International Nuclear Information System (INIS)

    Buegers, W.; Crutzen, S.; Pisoni, A.; Violin, F.; Di Piazza, L.; Lock, D.; Sargent, T.

    1984-01-01

    The evaluation of NDT exercises results has been based on destructive examination of the plates or test blocks used during the exercise. The PISC I Programme has shown that in all cases the indications given by the NDT instrumentation were corresponding to some particular defects or structure aspects in the steel or were explained by particular positions of reflectors. Generally the introduction of defects using techniques such as: - implantation of modules, - introduction of non metallic material, - introduction of poison in the weld, do not produce a final ''detective zone or area'' which is strictly corresponding to the intended defect. The DDT exercise management has thus decided to perform a complete destructive examination of the four plates involved in this exercise because of its experience (the PISC I exercise) and independance of commercial interest, the JRC of the CEC, Ispra Establishment, has been asked to do the work in collaboratione with the Risley Nuclear Power development Laboratories (RNL). A collaboration agreement has been signed between RNL and JRC. Operating Agent of the PISC II programme, is interested in having a direct access to data to be added to those furnished by PISC. The present report describes the results of the destructive examination of the DDT plates 3 and 4

  3. Characterisation of nuclear dispersion fuels. The non-destructive examination of silicon carbide by selenium immersion

    Energy Technology Data Exchange (ETDEWEB)

    Ambler, J.F.R.; Ferguson, I.F.

    1974-07-15

    The non-destructive microscopic examination of silicon-carbide-coated spheres containing uranium carbide, which involves immersing the coated spheres in selenium, is particularly suited for the examination of flaws in the coats but it is not possible to measure coating thicknesses by this method. Some coats are found to be opaque and this is related to their porosity. (auth)

  4. Non-destructive testing for plant life assessment

    International Nuclear Information System (INIS)

    2005-01-01

    The International Atomic Energy Agency (IAEA) is promoting industrial applications of nondestructive testing (NDT) technology, which includes radiography testing (RT) and related methods, to assure safety and reliability of operation of industrial facilities and processes. NDT technology is essentially needed for improvement of the quality of industrial products, safe performance of equipment and plants, including safety of metallic and concrete structures and constructions. The IAEA is playing an important role in promoting the NDT use and technology support to Member States, in harmonisation for training and certification of NDT personnel, and in establishing national accreditation and certifying bodies. All these efforts have led to a stage of maturity and self sufficiency in numerous countries especially in the field of training and certification of personnel, and in provision of services to industries. This has had a positive impact on the improvement of the quality of industrial goods and services. NDT methods are primarily used for detection, location and sizing of surface and internal defects (in welds, castings, forging, composite materials, concrete and many more). Various NDT methods are applied for preventive maintenance (aircraft, bridge), for the inspection of raw materials, half-finished and finished products, for in-service-inspection and for plant life assessment studies. NDT is essential for quality control of the facilities and products, and for fitness - for purpose assessment (so-called plant life assessment). NDT evaluates remaining operation life of plant components (processing lines, pipes, vessels) providing an accurate diagnosis that allows predicting extended life operation beyond design life. Status and trends on the NDT for plant life assessment have been discussed in many IAEA meetings related with NDT development, training and education. Experts have largely demonstrated that, using NDT methods, a comprehensive assessment of the life

  5. Application of optical interferometric techniques for non-destructive evaluation of novel "green" composite materials

    Science.gov (United States)

    Pagliarulo, Vito; Russo, Pietro; Bianco, Vittorio; Ferraro, Pietro; Simeoli, Giorgio; Cimino, Francesca; Ruggiero, Berardo

    2018-04-01

    Nowadays the use of advanced composite materials in aeronautics, both civil and military, in automotive and in sport applications, citing some, is well established. The characteristics of composite materials in terms of weight, fatigue resistance and corrosion resistance make them competitive with respect to conventional ones. On the other side, the fabrication process of the most employed composites reinforced by carbon fibers or glass fibers, needs of complex steps that not always are environmental complaisant. Moreover, such fibers are not themselves "green". For these reasons, in the last decades, the use of natural reinforcing fibers has gained an increasing attention allowing the development of new materials with the same advantages of composite systems but respecting the environment. Furthermore, such materials for their structural complexity are not always compatible with the use of standard non-destructive evaluation as the ultrasounds methods. In this work the efficiency of the employment of optical interferometric techniques as nondestructive evaluation methods in full field modality is proved on novel "green" composite materials. In particular, Electronic Speckle Pattern Interferometry has been tested on different kinds of specimens after flexural tests.

  6. A non-destructive method for quantifying small-diameter woody biomass in southern pine forests

    Science.gov (United States)

    D. Andrew Scott; Rick Stagg; Morris Smith

    2006-01-01

    Quantifying the impact of silvicultural treatments on woody understory vegetation largely has been accomplished by destructive sampling or through estimates of frequency and coverage. In studies where repeated measures of understory biomass across large areas are needed, destructive sampling and percent cover estimates are not satisfactory. For example, estimates of...

  7. Time Domain Terahertz Axial Computed Tomography Non Destructive Evaluation, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to demonstrate key elements of feasibility for a high speed automated time domain terahertz computed axial tomography (TD-THz CT) non destructive...

  8. A robust approach to optimal matched filter design in ultrasonic non-destructive evaluation (NDE)

    Science.gov (United States)

    Li, Minghui; Hayward, Gordon

    2017-02-01

    The matched filter was demonstrated to be a powerful yet efficient technique to enhance defect detection and imaging in ultrasonic non-destructive evaluation (NDE) of coarse grain materials, provided that the filter was properly designed and optimized. In the literature, in order to accurately approximate the defect echoes, the design utilized the real excitation signals, which made it time consuming and less straightforward to implement in practice. In this paper, we present a more robust and flexible approach to optimal matched filter design using the simulated excitation signals, and the control parameters are chosen and optimized based on the real scenario of array transducer, transmitter-receiver system response, and the test sample, as a result, the filter response is optimized and depends on the material characteristics. Experiments on industrial samples are conducted and the results confirm the great benefits of the method.

  9. Non-destructive study of iron gall inks in manuscripts

    Science.gov (United States)

    Duh, Jelena; Krstić, Dragica; Desnica, Vladan; Fazinić, Stjepko

    2018-02-01

    The aim of this research is to establish an effective procedure of iron gall ink characterization using complementary non-destructive methods. By this, it is possible to better understand correlation of chemical composition of the inks and the state of preservation of iron gall ink manuscripts, as well as the effects of conservation treatment performed upon them. This study was undertaken on a bound 16th century manuscript comprised of different types of paper and ink from the National and University Library in Zagreb. Analytical methods used included Particle Induced X-ray Emission (PIXE) and X-ray Fluorescence (XRF). Paper fibers were identified by optical microscopy and the degradation state, as well as ink differentiation, transit metal migrations and detection of stains, with ultraviolet (UV) and infrared (IR) photography. The techniques applied on original writing materials gave important information about paper and ink composition, its preservation state and efficiency of conservation treatment performed upon them.

  10. Newly developed non-destructive testing method for evaluation of irradiation brittleness of structural materials using ultrasonic

    International Nuclear Information System (INIS)

    Ishii, Toshimitsu; Ooka, Norikazu; Kato, Yoshiaki; Saito, Junichi; Hoshiya, Taiji; Shibata, Saburo; Kobayashi, Hideo

    1999-01-01

    Surveillance testing is important to evaluate neutron irradiation embrittlement of reactor pressure vessel material for long life operation. An alternative test method for evaluating the irradiation embrittlement of the pressure vessel material will have to be proposed to support the limited number of surveillance test specimens in order to manage the plant life to be extended. In this study, ultrasonic testing for irradiated A533B-1 steel and weld metal was applied to examine material degradation nondestructively. With increasing the shift of Charpy 41 J transition temperature, ultrasonic velocity decreased and attenuation coefficient of ultrasonic wave increased. Especially, the difference of ultrasonic velocity for 5 MHz shear wave between as-received and irradiated material is corresponding to the shift of transition temperature showing material degradation. (author)

  11. Systematic evaluation of non-animal test methods for skin sensitisation safety assessment.

    Science.gov (United States)

    Reisinger, Kerstin; Hoffmann, Sebastian; Alépée, Nathalie; Ashikaga, Takao; Barroso, Joao; Elcombe, Cliff; Gellatly, Nicola; Galbiati, Valentina; Gibbs, Susan; Groux, Hervé; Hibatallah, Jalila; Keller, Donald; Kern, Petra; Klaric, Martina; Kolle, Susanne; Kuehnl, Jochen; Lambrechts, Nathalie; Lindstedt, Malin; Millet, Marion; Martinozzi-Teissier, Silvia; Natsch, Andreas; Petersohn, Dirk; Pike, Ian; Sakaguchi, Hitoshi; Schepky, Andreas; Tailhardat, Magalie; Templier, Marie; van Vliet, Erwin; Maxwell, Gavin

    2015-02-01

    The need for non-animal data to assess skin sensitisation properties of substances, especially cosmetics ingredients, has spawned the development of many in vitro methods. As it is widely believed that no single method can provide a solution, the Cosmetics Europe Skin Tolerance Task Force has defined a three-phase framework for the development of a non-animal testing strategy for skin sensitization potency prediction. The results of the first phase – systematic evaluation of 16 test methods – are presented here. This evaluation involved generation of data on a common set of ten substances in all methods and systematic collation of information including the level of standardisation, existing test data,potential for throughput, transferability and accessibility in cooperation with the test method developers.A workshop was held with the test method developers to review the outcome of this evaluation and to discuss the results. The evaluation informed the prioritisation of test methods for the next phase of the non-animal testing strategy development framework. Ultimately, the testing strategy – combined with bioavailability and skin metabolism data and exposure consideration – is envisaged to allow establishment of a data integration approach for skin sensitisation safety assessment of cosmetic ingredients.

  12. Non-destructive testing techniques

    International Nuclear Information System (INIS)

    Abd El Slam, T.M.

    2002-01-01

    Neutron radiography is similar to x ray radiography, in which the radiation is attenuating when passing through the matter, in different manner according to the nature of material . the advantage of neutron radiography rather than x ray radiography is the adjacent elements in the periodic tabl are interacting with neutrons in different rules. rather than that interaction of x ray with matter; thus the adjacent elements could be discriminated by neutron radiography than x ray radiography. there are 104 neutron radiography facilities all over the world, in 34 countries, the number of facilities, that are actually in operation, are 56 facilities in 1996, about 75% of them are using research reactors, as a neutron source, the others use radioactive neutron sources, or accelerators produce interaction to produce neutrons. there is a neutron radiography facility in SAFARI I reactor, 20 Mw use for commercial case in south africa.the most important use of neutron radiography is that, we can detect hydrogenous and liquid materials inside the metals, and black neutron absorbing material as well. the ETRR-2 is designed with a neutron radiography facility, which was commissioned in 1999,the aim of this thesis is to investigate the characteristic parameters of the facility; to assure the optimum conditions for its operation , and to assure the proper conditions for radiograph by neutrons, the benefit of this thesis is the actual operation of the ETRR-2 neutron radiography facility at the beginning half of 2002.he characterization parameters affecting the optimum conditions are: reactor power, flux distribution , n t h/ γ ratio, and Cd ratio. we investigated the optimum conditions for best resolution , best contrast, best kind of films to be used and optimum etching time. different applications of the facility have been performed, including non return valve, pin dosimeter, and pocket dosimeter

  13. Application of lock-in thermography non destructive technique to CFC armoured plasma facing components

    International Nuclear Information System (INIS)

    Escourbiac, F.; Constans, S.; Courtois, X.; Durocher, A.

    2007-01-01

    A non destructive testing technique - so called modulated photothermal thermography or lock-in thermography - has been set-up for plasma facing components examination. Reliable measurements of phase contrast were obtained on 8 mm carbon fiber composite (CFC) armoured W7-X divertor component with calibrated flaws. A 3D finite element analysis allowed the correlation of the measured phase contrast and showed that a 4 mm strip flaw can be detected at the CFC/copper interface

  14. Non-Destructive Investigation on Short Circuit Capability of Wind-Turbine-Scale IGBT Power Modules

    DEFF Research Database (Denmark)

    Wu, Rui; Iannuzzo, Francesco; Wang, Huai

    2014-01-01

    This paper presents a comprehensive investigation on the short circuit capability of wind-turbine-scale IGBT power modules by means of a 6 kA/1.1 kV non-destructive testing system. A Field Programmable Gate Array (FPGA) supervising unit is adpoted to achieve an accurate time control for short...... circuit test, which enables to define the driving signals with an accuracy of 10 ns. Thanks to the capability and the effectiveness of the constructed setup, oscillations appearing during short circuits of the new-generation 1.7 kV/1 kA IGBT power modules have been evidenced and characterized under...

  15. Shake and stew: a non-destructive PCR-ready DNA isolation method from a single preserved fish larva.

    Science.gov (United States)

    Alvarado Bremer, J R; Smith, B L; Moulton, D L; Lu, C-P; Cornic, M

    2014-01-01

    A rapid non-destructive alternative to isolate DNA from an individual fish larva is presented, based on the suspension of epithelial cells through vortex forces, and the release of DNA in a heated alkaline solution. DNA from >6056 fish larvae isolated using this protocol has yielded a high PCR amplification success rate (>93%), suggesting its applicability to other taxonomic groups or sources when tissue amount is the limiting factor. © 2014 The Fisheries Society of the British Isles.

  16. Non-destructive NIR-FT-Raman analyses in practice. Part I. Analyses of plants and historic textiles.

    Science.gov (United States)

    Andreev, G N; Schrader, B; Schulz, H; Fuchs, R; Popov, S; Handjieva, N

    2001-12-01

    Non-destructive analysis of natural substances in plants as well as of old dyed textiles by Raman spectroscopy has not been possible using conventional techniques. Exciting lines from the visible part of the spectrum produced photochemical and thermal decomposition of the objects as well as strong fluorescence. Using Nd:YAG laser excitation at 1,064 nm together with a special sample arrangement and interferometric recording, various polyacetylenes in Aethusa cynapium and in chamomile (Chamomilla recutita) and the main valuable substances in gentian species (Gentiana lutea and G. punctata), curcuma roots (Curcuma longa), cinnamon (Cinnamomum zeylanicum), fennel (Foeniculum vulgare), clove (Caryophyllus aromaticus), and ginger (Zingiber officinale) were analyzed non-destructively and discussed in comparison with the corresponding pure standard compounds. We further analyzed non-destructively the FT Raman spectra of collections of historical textiles and lakes used for dyeing. It is possible to distinguish the main dye component non-destructively by using Raman bands.

  17. Time Domain Terahertz Axial Computed Tomography Non Destructive Evaluation, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — In this Phase 2 project, we propose to develop, construct, and deliver to NASA a computed axial tomography time-domain terahertz (CT TD-THz) non destructive...

  18. Weed control based on real time patchy application of herbicides using image analysis as a non-destructive estimation method for weed infestation and herbicide effects

    DEFF Research Database (Denmark)

    Asif, Ali

    There is an increasing concern about excessive use of herbicides for weed control in arable lands. Usually the whole field is sprayed uniformly, while the distribution of weeds often is non-uniform. Often there are spots in a field where weed pressure is very low and has no significant effect...... on crop yield. The excessive use of spraying can potentially be reduced by spraying only those parts of the field where it has economic importance. The competition relation between weeds and crop was ana-lyzed in context of real time patch spray. A non-destructive image analysis method was developed...

  19. Development of non-destructive examination system for irradiated fuel rods

    International Nuclear Information System (INIS)

    Sumerling, R.; Goldsmith, L.A.; Cross, M.T.; McKee, F.

    1978-12-01

    The development of non-destructive examination (NDE) system for irradiated fuel rods is described. The system is used for testing rods within a concrete cave and consists of three parts: a fully-automated fuel rod-drive machine, designed for easy maintenance; a series of plug-in NDE modules which fit into the central space provided in the machine, plus optical/TV viewing devices and gamma-scan equipment lined up on the rod; and on electronic control equipment situated outside the concrete shielding. The equipment is at present routinely used for viewing, eddy-current testing, gamma-scanning and diameter measurement of rods. The system is flexible in that additional modules can be added later as they are developed, since there is room for three modules of standard size (about 10cm x 10 cm x 3cm) in the machine or one large module taking the full space. New developments include the use of dual frequency eddy-current testing, which allows much greater discrimination against unwanted signals, and measurement of oxide thickness using a high frequency eddy-current probe. (author)

  20. Addition of magnetic markers for non-destructive evaluation of polymer composites

    Directory of Open Access Journals (Sweden)

    Ana Paula Pereira Fulco

    2011-12-01

    Full Text Available Polymer composite pipes are an appealing option as a substitute for conventional steel pipes, particularly due to their inherent corrosion resistance. However, the composite pipes currently used do not allow non-destructive evaluation (NDE using instrumented devices which operate with magnetic sensors. The present work aims at the development of polymer composites with the addition magnetic markers to allow the application non-destructive evaluation techniques which use magnetic sensors. Glass-polyester composite flat, circular plates were fabricated with the addition of ferrite particles (barium ferrite and strontium ferrite and four types of notches were introduced on the plates' surfaces. The influence of these notches on the measured magnetic properties of each material was measured. X-ray diffraction (XRD, X-ray fluorescence (XRF and Brunauer, Emmett, and Teller (BET nitrogen adsorption were used for the characterization of the ferrite particles. Particle dispersion in the polymer matrix was analyzed by scanning electron microscopy (SEM. According to the results, a particular variation in magnetic field was detected over the region surrounding each type of notch. The results suggest that the proposed technique has great potential for damage detection in polymer composites using magnetic sensors and thus constitute a valuable contribution which may ultimately lead to the development of non-destructive evaluation techniques for assessing the structural integrity polymer composite pipes.

  1. Spectral algorithm for non-destructive damage localisation: Application to an ancient masonry arch model

    Science.gov (United States)

    Masciotta, Maria-Giovanna; Ramos, Luís F.; Lourenço, Paulo B.; Vasta, Marcello

    2017-02-01

    Structural monitoring and vibration-based damage identification methods are fundamental tools for condition assessment and early-stage damage identification, especially when dealing with the conservation of historical constructions and the maintenance of strategic civil structures. However, although the substantial advances in the field, several issues must still be addressed to broaden the application range of such tools and to assert their reliability. This study deals with the experimental validation of a novel method for non-destructive damage identification purposes. This method is based on the use of spectral output signals and has been recently validated by the authors through a numerical simulation. After a brief insight into the basic principles of the proposed approach, the spectral-based technique is applied to identify the experimental damage induced on a masonry arch through statically increasing loading. Once the direct and cross spectral density functions of the nodal response processes are estimated, the system's output power spectrum matrix is built and decomposed in eigenvalues and eigenvectors. The present study points out how the extracted spectral eigenparameters contribute to the damage analysis allowing to detect the occurrence of damage and to locate the target points where the cracks appear during the experimental tests. The sensitivity of the spectral formulation to the level of noise in the modal data is investigated and discussed. As a final evaluation criterion, the results from the spectrum-driven method are compared with the ones obtained from existing non-model based damage identification methods.

  2. Review of fiber optic methods for strain monitoring and non-destructive testing

    NARCIS (Netherlands)

    Bruinsma, A.J.A.

    1989-01-01

    A number of fiber optic methods has been developed for the inspection of critical components of mechanical structures. For inspection from a remote location various methods have been developed for the detection of cracks and strain. Some of these monitoring methods use a fiber mesh or OTDR

  3. Evaluating different approaches to non-destructive nitrogen status diagnosis of rice using portable RapidSCAN active canopy sensor.

    Science.gov (United States)

    Lu, Junjun; Miao, Yuxin; Shi, Wei; Li, Jingxin; Yuan, Fei

    2017-10-26

    RapidSCAN is a new portable active crop canopy sensor with three wavebands in red, red-edge, and near infrared spectral regions. The objective of this study was to determine the potential and practical approaches of using this sensor for non-destructive diagnosis of rice nitrogen (N) status. Sixteen plot experiments and ten on-farm experiments were conducted from 2014 to 2016 in Jiansanjiang Experiment Station of the China Agricultural University and Qixing Farm in Northeast China. Two mechanistic and three semi-empirical approaches using the sensor's default vegetation indices, normalized difference vegetation index and normalized difference red edge, were evaluated in comparison with the top performing vegetation indices selected from 51 tested indices. The results indicated that the most practical and stable method of using the RapidSCAN sensor for rice N status diagnosis is to calculate N sufficiency index with the default vegetation indices and then to estimate N nutrition index non-destructively (R 2  = 0.50-0.59). This semi-empirical approach achieved a diagnosis accuracy rate of 59-76%. The findings of this study will facilitate the application of the RapidSCAN active sensor for rice N status diagnosis across growth stages, cultivars and site-years, and thus contributing to precision N management for sustainable intensification of agriculture.

  4. Non-destructive inspection protocol for reinforced concrete barriers and bridge railings

    Energy Technology Data Exchange (ETDEWEB)

    Chintakunta, Satish R. [Engineering and Software Consultants, Inc., 14123 Robert Paris Ct., Chantilly, VA 20151 (United States); Boone, Shane D. [Federal Highway Administration, Turner Fairbank Highway Research Center, 6300 Georgetown Pike, McLean, VA 22101 (United States)

    2014-02-18

    Reinforced concrete highway barriers and bridge railings serve to prevent errant vehicles from departing the travel way at grade separations. Despite the important role that they play in maintaining safety and their ubiquitous nature, barrier inspection rarely moves beyond visual inspection. In August 2008, a tractor-trailer fatally departed William Preston Lane, Jr. Memorial Bridge after it dislodged a section of the bridge barrier. Investigations following the accident identified significant corrosion of the anchor bolts attaching the bridge railing to the bridge deck. As a result of the information gathered during its investigation of the accident, the National Transportation Safety Board (NTSB) made recommendations to the Federal Highway Administration concerning Non-Destructive Evaluation (NDE) of concrete bridge railings. The Center for nondestructive evaluation (NDE) at Turner Fairbank Highway Research Center in McLean, VA is currently evaluating feasibility of using four technologies - ground penetrating radar (GPR), ultrasonic pulse-echo, digital radiography and infrared thermal imaging methods to develop bridge inspection methods that augment visual inspections, offer reliable measurement techniques, and are practical, both in terms of time and cost, for field inspection work. Controlled samples containing predefined corrosion levels in reinforcing steel were embedded at barrier connection points for laboratory testing. All four NDE techniques were used in the initial phase I testing. An inspection protocol for detecting and measuring the corrosion of reinforced steel embedded in the anchorage system will be developed as part of phase II research. The identified technologies shall be further developed for field testing utilizing a structure with a barrier in good condition and a structure with a barrier in poor condition.

  5. Non-destructive inspection protocol for reinforced concrete barriers and bridge railings

    Science.gov (United States)

    Chintakunta, Satish R.; Boone, Shane D.

    2014-02-01

    Reinforced concrete highway barriers and bridge railings serve to prevent errant vehicles from departing the travel way at grade separations. Despite the important role that they play in maintaining safety and their ubiquitous nature, barrier inspection rarely moves beyond visual inspection. In August 2008, a tractor-trailer fatally departed William Preston Lane, Jr. Memorial Bridge after it dislodged a section of the bridge barrier. Investigations following the accident identified significant corrosion of the anchor bolts attaching the bridge railing to the bridge deck. As a result of the information gathered during its investigation of the accident, the National Transportation Safety Board (NTSB) made recommendations to the Federal Highway Administration concerning Non-Destructive Evaluation (NDE) of concrete bridge railings. The Center for nondestructive evaluation (NDE) at Turner Fairbank Highway Research Center in McLean, VA is currently evaluating feasibility of using four technologies - ground penetrating radar (GPR), ultrasonic pulse-echo, digital radiography and infrared thermal imaging methods to develop bridge inspection methods that augment visual inspections, offer reliable measurement techniques, and are practical, both in terms of time and cost, for field inspection work. Controlled samples containing predefined corrosion levels in reinforcing steel were embedded at barrier connection points for laboratory testing. All four NDE techniques were used in the initial phase I testing. An inspection protocol for detecting and measuring the corrosion of reinforced steel embedded in the anchorage system will be developed as part of phase II research. The identified technologies shall be further developed for field testing utilizing a structure with a barrier in good condition and a structure with a barrier in poor condition.

  6. Advances in Non-Destructive Early Assessment of Fruit Ripeness towards Defining Optimal Time of Harvest and Yield Prediction—A Review

    Directory of Open Access Journals (Sweden)

    Bo Li

    2018-01-01

    Full Text Available Global food security for the increasing world population not only requires increased sustainable production of food but a significant reduction in pre- and post-harvest waste. The timing of when a fruit is harvested is critical for reducing waste along the supply chain and increasing fruit quality for consumers. The early in-field assessment of fruit ripeness and prediction of the harvest date and yield by non-destructive technologies have the potential to revolutionize farming practices and enable the consumer to eat the tastiest and freshest fruit possible. A variety of non-destructive techniques have been applied to estimate the ripeness or maturity but not all of them are applicable for in situ (field or glasshouse assessment. This review focuses on the non-destructive methods which are promising for, or have already been applied to, the pre-harvest in-field measurements including colorimetry, visible imaging, spectroscopy and spectroscopic imaging. Machine learning and regression models used in assessing ripeness are also discussed.

  7. Analysis of the single and combined non-destructive test approaches for on-site concrete strength assessment: General statements based on a real case-study

    Directory of Open Access Journals (Sweden)

    Khoudja Ali-Benyahia

    2017-06-01

    Full Text Available The evaluation of the compressive strength of concrete in existing structures by coring is expensive, technically difficult in certain cases, and even impossible in others. The use of non-destructive testing (NDT is an interesting alternative method (i.e. affordable cost, portable, fast, etc.. However, the NDT estimation of strength requires a procedure of calibration of the model between NDT and compressive strength. The robustness of this calibration is a crucial point allowing better choice of the optimal number of cores. Studies which treat the calibration of proposed models are often based on laboratory experiments or synthetic data. The present study aims at identifying and optimizing the methodology of the calibration model on site. This paper is based on a broad campaign of auscultation using NDT (Rebound and Ultrasound and coring on an existing construction with 205 triplets of data (strengths and NDT results. Statistical data analysis enables to quantify the role of: the number of cores (NC used for the calibration, the use of only one or two-combined NDT techniques and the calibration method. The conclusions are focused on the improvement of the relevance and the effectiveness of NDT techniques in such operational situations.

  8. Characterization of spent fuel assemblies for storage facilities using non destructive assay

    International Nuclear Information System (INIS)

    Lebrun, A.; Bignan, G.; Recroix, H.; Huver, M.

    1999-01-01

    Many non destructive assay (NDA) techniques have been developed by the French Atomic Energy Commission (CEA) for spent fuel characterization and management. Passive and active neutron methods as well as gamma spectrometric methods have been carried out and applied to industrial devices like PYTHON TM and NAJA. Many existing NDA methods can be successfully applied to storage, but the most promising are the neutron methods combined with on line evolution codes. For dry storage applications, active neutron measurements require further R and D to achieve accurate results. Characterization data given by NDA instruments can now be linked to automatic fuel recognition. Both information can feed the storage management software in order to meet the storage operation requirements like: fissile mass inventory, operators declaration consistency or automatic selection of proper storage conditions. (author)

  9. Operational experience in the non-destructive assay of fissile material in General Electric's nuclear fuel fabrication facility

    International Nuclear Information System (INIS)

    Stewart, J.P.

    1976-01-01

    Operational experience in the non-destructive assay of fissile material in a variety of forms and containers and incorporation of the assay devices into the accountability measurement system for General Electric's Wilmington Fuel Fabrication Facility measurement control programme is detailed. Description of the purpose and related operational requirements of each non-destructive assay system is also included. In addition, the accountability data acquisition and processing system is described in relation to its interaction with the various non-destructive assay devices and scales used for accountability purposes within the facility. (author)

  10. Application of non-destructive testing and in-service inspection to research reactors. Results of a co-ordinated research project

    International Nuclear Information System (INIS)

    2001-12-01

    As per April 2001, 284 research reactors are currently in operation and 258 have been shut down, waiting for a decision whether to be refurbished or eventually decommissioned. In fact, more than half of all operating research reactors worldwide are over thirty years old and face concerns regarding ageing and obsolescence of equipment. Some of these reactors have been refurbished, so that the age in many cases is not a representative figure to identify degradation problems. These reactors are not only sharing common issues such as progressive ageing of their materials and components but also needs of assessment for taking decisions concerning their extension of operation or shutdown for refurbishment or decommissioning. Therefore, it is necessary to examine on a regular basis the structures, systems and components of the reactor facility for potential degradation to assess its effect on safety, on availability or to avoid high cost of repair or replacement. Part of this examination is carried out through the maintenance and periodic testing programme. The establishment and implementation of a programme of maintenance, periodic testing and inspection is a general requirement in the legal framework of the IAEA Member States to ensure the operational safety of their reactors. However, the scope and format of such a programme depends on the national practices of each country. The approach adopted in the IAEA Safety Standards for research reactors covers a broad spectrum of international practices, which include activities related to: (a) preventive and corrective maintenance of structures, systems and components; (b) periodic testing intended to ensure that operation remains within the established operational limits and conditions; and (c) special inspections pursuing various objectives and initiated by the operating organization or the regulatory body. These special inspections, which are performed using specific techniques such as those based on non-destructive

  11. Infrared thermography non-destructive evaluation of lithium-ion battery

    Science.gov (United States)

    Wang, Zi-jun; Li, Zhi-qiang; Liu, Qiang

    2011-08-01

    The power lithium-ion battery with its high specific energy, high theoretical capacity and good cycle-life is a prime candidate as a power source for electric vehicles (EVs) and hybrid electric vehicles (HEVs). Safety is especially important for large-scale lithium-ion batteries, especially the thermal analysis is essential for their development and design. Thermal modeling is an effective way to understand the thermal behavior of the lithium-ion battery during charging and discharging. With the charging and discharging, the internal heat generation of the lithium-ion battery becomes large, and the temperature rises leading to an uneven temperature distribution induces partial degradation. Infrared (IR) Non-destructive Evaluation (NDE) has been well developed for decades years in materials, structures, and aircraft. Most thermographic methods need thermal excitation to the measurement structures. In NDE of battery, the thermal excitation is the heat generated from carbon and cobalt electrodes in electrolyte. A technique named "power function" has been developed to determine the heat by chemical reactions. In this paper, the simulations of the transient response of the temperature distribution in the lithium-ion battery are developed. The key to resolving the security problem lies in the thermal controlling, including the heat generation and the internal and external heat transfer. Therefore, three-dimensional modelling for capturing geometrical thermal effects on battery thermal abuse behaviour is required. The simulation model contains the heat generation during electrolyte decomposition and electrical resistance component. Oven tests are simulated by three-dimensional model and the discharge test preformed by test system. Infrared thermography of discharge is recorded in order to analyze the security of the lithium-ion power battery. Nondestructive detection is performed for thermal abuse analysis and discharge analysis.

  12. Non-destructive synchrotron X-ray diffraction mapping of a Roman painting

    International Nuclear Information System (INIS)

    Dooryhee, E.; Anne, M.; Hodeau, J.-L.; Martinetto, P.; Rondot, S.; Bardies, I.; Salomon, J.; Walter, P.; Vaughan, G.B.M.

    2005-01-01

    The history and the properties of materials are deduced not only from their elemental and molecular signatures, but also from their exact phase compositions, and from the structures and the defects of their constituents. Here we implement a non-destructive synchrotron X-ray based method, which combines both the quantitative structural content of diffraction and the imaging mode. As a demonstration case, the pigments of a Roman wall painting are examined. The joined elemental and mineral maps mimic the major features of the painting. Different structural phases made of common atomic elements are differentiated. Textures and graininess are measured and related to the artist's know-how. (orig.)

  13. Mapping of mechanical properties of cast iron melts using non-destructive structuroscopy

    Directory of Open Access Journals (Sweden)

    J. Dočekal

    2008-07-01

    Full Text Available The contribution is focused on mapping of mechanical properties using methods of non-destructive structuroscopy of cast irons, which are a result of research at TU of Liberec and Institute of Physics of ASCR. Investigated samples become from melts of FOCAM s.r.o Olomouc Foundry shop. It compares data of mechanical properties obtained using ultrasound method with data from magnetic spot method and MAT. These are interpreted by mathematic models applicable in practice. In the following it concerns to derivation of loading tensile curve method, which can be used to obtain yield and fatigue strength limits even for cast irons with flake graphite. In spite of promising results reported by literature the experiments are bothered with error. This method can be applied to structure checking both before casting and at vendor inspection of castings.

  14. Non-destructive Assessment of Relief Marking Parameters of Heat Shrinkable Installation Parts for Aviation Technology

    Directory of Open Access Journals (Sweden)

    Kondratov Aleksandr P.

    2017-01-01

    Full Text Available The article explains a new method of relief marking of heat-shrinkable tubing and sleeves made of polymer materials with “shape memory effect.” Method of instrument evaluation of relief marking stereometry of installation parts for aviation equipment, made of polyvinyl chloride, polyethyleneterephthalate and polystyrene was developed and the results were explained. Parameters of pin-point relief marking and compliance of point forms to the Braille font standard were determined with the use of the non-destructive method based on the color of interference pattern with precision of 0.02 mm.

  15. Early non-destructive biofouling detection and spatial distribution: Application of oxygen sensing optodes

    KAUST Repository

    Farhat, Nadia

    2015-06-11

    Biofouling is a serious problem in reverse osmosis/nanofiltration (RO/NF) applications, reducing membrane performance. Early detection of biofouling plays an essential role in an adequate anti-biofouling strategy. Presently, fouling of membrane filtration systems is mainly determined by measuring changes in pressure drop, which is not exclusively linked to biofouling. Non-destructive imaging of oxygen concentrations (i) is specific for biological activity of biofilms and (ii) may enable earlier detection of biofilm accumulation than pressure drop. The objective of this study was to test whether transparent luminescent planar O2 optodes, in combination with a simple imaging system, can be used for early non-destructive biofouling detection. This biofouling detection is done by mapping the two-dimensional distribution of O2 concentrations and O2 decrease rates inside a membrane fouling simulator (MFS). Results show that at an early stage, biofouling development was detected by the oxygen sensing optodes while no significant increase in pressure drop was yet observed. Additionally, optodes could detect spatial heterogeneities in biofouling distribution at a micro scale. Biofilm development started mainly at the feed spacer crossings. The spatial and quantitative information on biological activity will lead to better understanding of the biofouling processes, contributing to the development of more effective biofouling control strategies.

  16. Summaries of the lectures of a conference on nondestructive testing

    International Nuclear Information System (INIS)

    1980-01-01

    The present brochure contains summaries of the lectures that were held at the DGZfP-conference on non-destructive testing' in May 1980 in Goettingen. The greater part of the lectures dealt with ultrasonic methods, electromagnetic methods and applications of X-, γ- and neutron-rays in non-destructive testing. Besides, questions of quality ensurance, economics and problems of the training of testing personnel were treated. (RW) [de

  17. Thermal history sensors for non-destructive temperature measurements in harsh environments

    Energy Technology Data Exchange (ETDEWEB)

    Pilgrim, C. C. [Mechanical Engineering, Imperial College London, London, SW7 2AZ, UK and Sensor Coating Systems, Imperial Incubator, Bessemer Building, Level 1 and 2, Imperial College London, London SW7 2AZ (United Kingdom); Heyes, A. L. [Energy Technology and Innovation Initiative, University of Leeds, Leeds, LS2 9JT (United Kingdom); Feist, J. P. [Sensor Coating Systems, Imperial Incubator, Bessemer Building, Level 1 and 2, Imperial College London, London SW7 2AZ (United Kingdom)

    2014-02-18

    The operating temperature is a critical physical parameter in many engineering applications, however, can be very challenging to measure in certain environments, particularly when access is limited or on rotating components. A new quantitative non-destructive temperature measurement technique has been proposed which relies on thermally induced permanent changes in ceramic phosphors. This technique has several distinct advantages over current methods for many different applications. The robust ceramic material stores the temperature information allowing long term thermal exposures in harsh environment to be measured at a convenient time. Additionally, rare earth dopants make the ceramic phosphorescent so that the temperature information can be interpreted by automated interrogation of the phosphorescent light. This technique has been demonstrated by application of YAG doped with dysprosium and europium as coatings through the air-plasma spray process. Either material can be used to measure temperature over a wide range, namely between 300°C and 900°C. Furthermore, results show that the material records the peak exposure temperature and prolonged exposure at lower temperatures would have no effect on the temperature measurement. This indicates that these materials could be used to measure peak operating temperatures in long-term testing.

  18. Electromagnetic non-destructive technique for duplex stainless steel characterization

    Science.gov (United States)

    Rocha, João Vicente; Camerini, Cesar; Pereira, Gabriela

    2016-02-01

    Duplex stainless steel (DSS) is a two-phase (ferrite and austenite) material, which exhibits an attractive combination of mechanical properties and high corrosion resistance, being commonly employed for equipment of petrochemical plants, refining units and oil & gas platforms. The best properties of DSS are achieved when the phases are in equal proportions. However, exposition to high temperatures (e.g. welding process) may entail undesired consequences, such as deleterious phases precipitation (e.g. sigma, chi) and different proportion of the original phases, impairing dramatically the mechanical and corrosion properties of the material. A detailed study of the magnetic behavior of DSS microstructure with different ferrite austenite ratios and deleterious phases content was accomplished. The non destructive method evaluates the electromagnetic properties changes in the material and is capable to identify the presence of deleterious phases into DSS microstructure.

  19. Application of digital radiography for the non-destructive characterization of radioactive waste packages

    International Nuclear Information System (INIS)

    Lierse, C.; Goebel, H.; Kaciniel, E.; Buecherl, T.; Krebs, K.

    1995-01-01

    Digital radiography (DR) using gamma-rays is a powerful tool for the non-destructive determination of various parameters which are relevant within the quality control procedure of radioactive waste packages prior to an interim storage or a final disposal. DR provides information about the waste form and the extent of filling in a typical container. It can identify internal structures and defects, gives their geometric dimensions and helps to detect non-declared inner containers, shielding materials etc. From a digital radiographic image the waste matrix homogeneity may be determined and mean attenuation coefficients as well as density values for selected regions of interest can be calculated. This data provides the basis for an appropriate attenuation correction of gamma emission measurements (gamma scanning) and makes a reliable quantification of gamma emitters in waste containers possible. Information from DR measurements are also used for the selection of interesting height positions of the object which are subsequently inspected in more detail by other non-destructive methods, e. g. by transmission computerized tomography (TCT). The present paper gives important technical specifications of an integrated tomography system (ITS) which is used to perform digital radiography as well as transmission/emission computerized tomography (TCT/ECT) on radioactive waste packages. It describes the DR mode and some of its main applications and shows typical examples of radiographs of real radioactive waste drums

  20. Improved process control, lowered costs and reduced risks through the use of non-destructive mobility and sheet carrier density measurements on GaAs and GaN wafers

    Science.gov (United States)

    Nguyen, D.; Hogan, K.; Blew, A.; Cordes, M.

    2004-12-01

    Improved process control, lowered costs and reduced risks can be realized through the use of non-destructive mobility and sheet charge density measurements during the fabrication of GaAs and GaN wafers. The results from this microwave-based technique are shown to agree with destructive van der Pauw Hall testing results to within ±5%. In addition, it has the ability to map wafer uniformity and provide separated 2DEG data for thick cap or multi-layered structures. As a result, this technique provides an efficient and cost-effective alternative to current process control metrology methods, while providing the user with important process control data.

  1. Laser photothermal non-destructive metrology of cracks in un-sintered powder metallurgy manufactured automotive transmission sprockets

    International Nuclear Information System (INIS)

    Tolev, J; Mandelis, A

    2010-01-01

    A non-contact and non-intrusive method of revealing crack presence in un-sintered (green) automotive transmission parts (sprockets), manufactured by means of a powder metallurgy technology based on analysis of photo-thermal radiometric (PTR) signals and their statistical analysis was developed. The inspection methodology relies on the interaction of a modulated laser generated thermal wave with the potential crack and the resulting change in amplitude and phase of the detected signal [1-5]. The crack existence at points in high stress regions of a group of green (unsintered) sprockets was evaluated through frequency scans. The results were validated by independent destructive cross-sectioning of the sprockets following sintering and polishing. Examination of the sectioned sprockets under a microscope at the locations where signal changes was used for correlation with the PTR signals. Statistical analysis confirmed the capabilities of the method to detect the presence of hairline cracks (∼5 - 10 μm size) with excellent sensitivity (91%) and good accuracy (78%) and specificity (61%). This measurement technique and the associated statistical analysis can be used as a simple and reliable on-line inspection methodology of industrial powder metallurgy manufactured steel products for non-destructive quality and feedback control of the parts forming process.

  2. Space Qualified Non-Destructive Evaluation and Structural Health Monitoring Technology, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NextGen Aeronautics is proposing an innovative space qualified non-destructive evaluation and health monitoring technology. The technology is built on concepts...

  3. Space Qualified Non-Destructive Evaluation and Structural Health Monitoring Technology, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Encouraged by Phase I accomplishments, the proposed Phase II program will significantly mature and align the development of a Space Qualified Non-Destructive...

  4. Non Destructive Testing by active infrared thermography coupled with shearography under same optical heat excitation

    Science.gov (United States)

    Theroux, Louis-Daniel; Dumoulin, Jean; Maldague, Xavier

    2014-05-01

    As infrastructures are aging, the evaluation of their health is becoming crucial. To do so, numerous Non Destructive Testing (NDT) methods are available. Among them, thermal shearography and active infrared thermography represent two full field and contactless methods for surface inspection. The synchronized use of both methods presents multiples advantages. Most importantly, both NDT are based on different material properties. Thermography depend on the thermal properties and shearography on the mechanical properties. The cross-correlation of both methods result in a more accurate and exact detection of the defects. For real site application, the simultaneous use of both methods is simplified due to the fact that the excitation method (thermal) is the same. Active infrared thermography is the measure of the temperature by an infrared camera of a surface subjected to heat flux. Observation of the variation of temperature in function of time reveal the presence of defects. On the other hand, shearography is a measure of out-of-plane surface displacement. This displacement is caused by the application of a strain on the surface which (in our case) take the form of a temperature gradient inducing a thermal stress To measure the resulting out-of-plane displacement, shearography exploit the relation between the phase difference and the optical path length. The phase difference is measured by the observation of the interference between two coherent light beam projected on the surface. This interference is due to change in optical path length as the surface is deformed [1]. A series of experimentation have been conducted in laboratory with various sample of concrete reinforced with CFRP materials. Results obtained reveal that with both methods it was possible to detect defects in the gluing. An infrared lamp radiating was used as the active heat source. This is necessary if measurements with shearography are to be made during the heating process. A heating lamp in the

  5. Automated Defect Recognition as a Critical Element of a Three Dimensional X-ray Computed Tomography Imaging-Based Smart Non-Destructive Testing Technique in Additive Manufacturing of Near Net-Shape Parts

    Directory of Open Access Journals (Sweden)

    Istvan Szabo

    2017-11-01

    Full Text Available In this paper, a state of the art automated defect recognition (ADR system is presented that was developed specifically for Non-Destructive Testing (NDT of powder metallurgy (PM parts using three dimensional X-ray Computed Tomography (CT imaging, towards enabling online quality assurance and enhanced integrity confidence. PM parts exhibit typical defects such as microscopic cracks, porosity, and voids, internal to components that without an effective detection system, limit the growth of industrial applications. Compared to typical testing methods (e.g., destructive such as metallography that is based on sampling, cutting, and polishing of parts, CT provides full coverage of defect detection. This paper establishes the importance and advantages of an automated NDT system for the PM industry applications with particular emphasis on image processing procedures for defect recognition. Moreover, the article describes how to establish a reference library based on real 3D X-ray CT images of net-shape parts. The paper follows the development of the ADR system from processing 2D image slices of a measured 3D X-ray image to processing the complete 3D X-ray image as a whole. The introduced technique is successfully integrated into an automated in-line quality control system highly sought by major industry sectors in Oil and Gas, Automotive, and Aerospace.

  6. Application of magnetic resonance imaging to non-destructive void detection in watermelon

    Science.gov (United States)

    Saito, K.; Miki, T.; Hayashi, S.; Kajikawa, H.; Shimada, M.; Kawate, Y.; Nishizawa, T.; Ikegaya, D.; Kimura, N.; Takabatake, K.; Sugiura, N.; Suzuki, M.

    A novel application of magnetic resonance imaging (MRI) is described. The possibility of utilizing MRI for non-destructive quality evaluation of watermelons was studied. In this study, we applied MRI to the detection of internal voids in watermelons. In order to increase the measurement rate, we employed a one-dimensional projection profile method instead of observing a two-dimensional cross-sectional image. The void detection was carried out with this technique over 30 samples and 28 samples were correctly evaluated. The measurement rate was 900 ms per sample, which is an acceptable speed for a sorting machine in the agricultural field.

  7. Toward a simple, repeatable, non-destructive approach to measuring stable-isotope ratios of water within tree stems

    Science.gov (United States)

    Raulerson, S.; Volkmann, T.; Pangle, L. A.

    2017-12-01

    Traditional methodologies for measuring ratios of stable isotopes within the xylem water of trees involve destructive coring of the stem. A recent approach involves permanently installed probes within the stem, and an on-site assembly of pumps, switching valves, gas lines, and climate-controlled structure for field deployment of a laser spectrometer. The former method limits the possible temporal resolution of sampling, and sample size, while the latter may not be feasible for many research groups. We present results from initial laboratory efforts towards developing a non-destructive, temporally-resolved technique for measuring stable isotope ratios within the xylem flow of trees. Researchers have used direct liquid-vapor equilibration as a method to measure isotope ratios of the water in soil pores. Typically, this is done by placing soil samples in a fixed container, and allowing the liquid water within the soil to come into isotopic equilibrium with the headspace of the container. Water can also be removed via cryogenic distillation or azeotropic distillation, with the resulting liquid tested for isotope ratios. Alternatively, the isotope ratios of the water vapor can be directly measured using a laser-based water vapor isotope analyzer. Well-established fractionation factors and the isotope ratios in the vapor phase are then used to calculate the isotope ratios in the liquid phase. We propose a setup which would install a single, removable chamber onto a tree, where vapor samples could non-destructively and repeatedly be taken. These vapor samples will be injected into a laser-based isotope analyzer by a recirculating gas conveyance system. A major part of what is presented here is in the procedure of taking vapor samples at 100% relative humidity, appropriately diluting them with completely dry N2 calibration gas, and injecting them into the gas conveyance system without inducing fractionation in the process. This methodology will be helpful in making

  8. A Non-destructive and Continuous Measurement of Gelatinization of Rice in Rice Cooking Process

    OpenAIRE

    Hagura, Yoshio; Suzuki, Kanichi

    2002-01-01

    A non-destructive and continuous method to measure gelatinization of rice samples in a rice-water system during rice cooking process was examined. An aluminum pot and a lid of a rice cooker were used as two electrode plates, and changes in dielectric properties (capacitance : C, and dielectric dissipation factor : tan δ) of the samples in the rice cooking process were measured by a capacitance meter. Differential scanning calorimetry (DSC) was used to measure gelatinization enthalpy and to de...

  9. Complex Archaeological Prospection Using Combination of Non-destructive Techniques

    Science.gov (United States)

    Faltýnová, M.; Pavelka, K.; Nový, P.; Šedina, J.

    2015-08-01

    This article describes the use of a combination of non-destructive techniques for the complex documentation of a fabulous historical site called Devil's Furrow, an unusual linear formation lying in the landscape of central Bohemia. In spite of many efforts towards interpretation of the formation, its original form and purpose have not yet been explained in a satisfactory manner. The study focuses on the northern part of the furrow which appears to be a dissimilar element within the scope of the whole Devil's Furrow. This article presents detailed description of relics of the formation based on historical map searches and modern investigation methods including airborne laser scanning, aerial photogrammetry (based on airplane and RPAS) and ground-penetrating radar. Airborne laser scanning data and aerial orthoimages acquired by the Czech Office for Surveying, Mapping and Cadastre were used. Other measurements were conducted by our laboratory. Data acquired by various methods provide sufficient information to determine the probable original shape of the formation and proves explicitly the anthropological origin of the northern part of the formation (around village Lipany).

  10. Complex Archaeological Prospection Using Combination of Non-destructive Techniques

    Directory of Open Access Journals (Sweden)

    M. Faltýnová

    2015-08-01

    Full Text Available This article describes the use of a combination of non-destructive techniques for the complex documentation of a fabulous historical site called Devil’s Furrow, an unusual linear formation lying in the landscape of central Bohemia. In spite of many efforts towards interpretation of the formation, its original form and purpose have not yet been explained in a satisfactory manner. The study focuses on the northern part of the furrow which appears to be a dissimilar element within the scope of the whole Devil’s Furrow. This article presents detailed description of relics of the formation based on historical map searches and modern investigation methods including airborne laser scanning, aerial photogrammetry (based on airplane and RPAS and ground-penetrating radar. Airborne laser scanning data and aerial orthoimages acquired by the Czech Office for Surveying, Mapping and Cadastre were used. Other measurements were conducted by our laboratory. Data acquired by various methods provide sufficient information to determine the probable original shape of the formation and proves explicitly the anthropological origin of the northern part of the formation (around village Lipany.

  11. The non-destructive identification of early Chinese porcelain by PIXE

    International Nuclear Information System (INIS)

    Cheng, H.S.; Zhang, Z.Q.; Zhang, B.; Yang, F.J.

    2004-01-01

    PIXE is used for the non-destructive differentiation of early precious Chinese blue and white porcelain made in Yuan (AD 1206-1368), Ming (AD 1368-1644) Dynasty in Jingdezhen from imitations. Also, ancient celadon made in Song Dynasty (AD 960-1279) is identified by measuring the trace elements contained in the glazes

  12. An improved technique for non-destructive measurement of the stem ...

    African Journals Online (AJOL)

    It was concluded that the standard volume model based on the non-destructive measurement technique meets the requirements for precision in forest surveys. The precision of the standard volume model for L. gmelinii (a coniferous tree) was superior to that of the model for P. tomentosa (a broad-leaved tree). The electronic ...

  13. The non-destructive identification of early Chinese porcelain by PIXE

    Science.gov (United States)

    Cheng, H. S.; Zhang, Z. Q.; Zhang, B.; Yang, F. J.

    2004-06-01

    PIXE is used for the non-destructive differentiation of early precious Chinese blue and white porcelain made in Yuan (AD 1206-1368), Ming (AD 1368-1644) Dynasty in Jingdezhen from imitations. Also, ancient celadon made in Song Dynasty (AD 960-1279) is identified by measuring the trace elements contained in the glazes.

  14. Thermophysical instruments for non-destructive examination of tightness and internal gas pressure or irradiated power reactor fuel rods

    International Nuclear Information System (INIS)

    Pastoushin, V.V.; Novikov, A.Yu.; Bibilashvili, Yu.K.

    1998-01-01

    The developed thermophysical method and technical instruments for non-destructive leak-tightness and gas pressure inspection inside irradiated power reactor fuel rods and FAs under poolside and hot cell conditions are described. The method of gas pressure measuring based on the examination of parameters of thermal convection that aroused in gas volume of rod plenum by special technical instruments. The developed method and technique allows accurate value determination of not only one of the main critical rod parameters, namely total internal gas pressure, that forms rod mean life in the reactor core, but also the partial pressure of every main constituent of gaseous mixture inside irradiated fuel rod, that provides the feasibility of authentic and reliable leak-tightness detection. The described techniques were experimentally checked during the examination of all types power reactor fuel rods existing in Russia (WWER, BN, RBMK) and could form the basis for new technique development for non-destructive examination of PWR (and other) type rods and FAs having gas plenum filled with spring or another elements of design. (author)

  15. Precise Detection of Buried Underground Utilities by Non-destructive Electromagnetic Survey

    International Nuclear Information System (INIS)

    Shon, Ho Woong; Lee, Seung Hee; Lee, Kang Won

    2002-01-01

    To detect the position and depth of buried underground utilities, method of Ground Penetrating Radar(GPR) survey is the most commonly used. However, the skin-depth of GPR is very shallow, and in the places where subsurface materials are not homogeneous and are compose of clays and/or salts and gravels, GPR method has limitations in application and interpretation. The aim of this study is to overcome these limitations of GPR survey. For this purpose the site where the GPR survey is unsuccessful to detect the underground big pipes is selected, and soil tests were conducted to confirm the reason why GPR method was not applicable. Non-destructive high-frequency electromagnetic (HFEM) survey was newly developed and was applied in the study area to prove the effectiveness of this new technique. The frequency ranges 2kHz∼4MHz and the skin depth is about 30m. The HFEM measures the electric field and magnetic field perpendicular to each other to get the impedance from which vertical electric resistivity distribution at the measured point can be deduced. By adopting the capacitive coupled electrodes, it can make the measuring time shorter, and can be applied to the places covered by asphalt an and/or concrete. In addition to the above mentioned advantages, noise due to high-voltage power line is much reduced by stacking the signals. As a result, the HFEM was successful in detecting the buried underground objects. Therefore this method is a promising new technique that can be applied in the lots of fields, such as geotechnical and archaeological surveys

  16. Guidebook on destructive examination of water reactor fuel

    International Nuclear Information System (INIS)

    1997-01-01

    As a result of common efforts of fuel vendors, utilities and research institutes the average burnup pf design batch fuels was increased for both PWRs and BWRs and the fuel failure rate has been reduced. The previously published Guidebook on Non-Destructive Examination of Water Reactor Fuel recommended that more detailed destructive techniques are required for complete understanding of fuel performance. On the basis of contributions of the 14 participants in the ED-WARF-II CRP and proceedings of IAEA Technical Committee on Recent Developments in Post-irradiation Examination Techniques for Water Reactor Fuel this guidebook was compiled. It gives a complete survey of destructive techniques available to date worldwide. The following examination techniques are described in detailed including major principles of equipment design: microstructural studies; elemental analysis; isotopic analysis; measurement of physical properties; measurement of mechanical properties. Besides the examination techniques, methods for refabrication of experimental rods from high burnup power reactor rods as well as methods for verification of non-destructive techniques by using destructive techniques is included

  17. Mechanical and Non-Destructive Study of CFRP Adhesive Bonds Subjected to Pre-Bond Thermal Treatment and De-Icing Fluid Contamination

    Directory of Open Access Journals (Sweden)

    Paweł H. Malinowski

    2018-04-01

    Full Text Available Composite materials are commonly used in many branches of industry. One of the effective methods to join the carbon fibre reinforced polymer (CFRP parts includes the use of adhesives. There is a search on effective methods for quality assurance of bonded parts. In the research here reported the influence of surface pre-bond modification on the adhesive bonds of CFRP plates has been analyzed. Adherends surface modifications, to include defects affecting the bonding quality, were obtained through surface thermal treatment, surface contamination with de-icing fluid and a combination of both the previously described treatments. Characterization of bonded joints was performed by means of mechanical testing, ultrasounds and electromechanical impedance (EMI measurements. The study here proposed has also the aim to evaluate the ability of different destructive and non-destructive techniques to assess the quality of the bonds. While mechanical tests were strongly affected by the surface modifications, results obtained ultrasound and EMI test have demonstrate only a limited ability of these techniques to differentiate between the different samples. In fact, ultrasounds did not show any changes in the bondline, due to pre-bond modifications. However, this technique was able to detect delamination in CFRP for one of the samples thermally treated at 280 °C. Electromechanical impedance (EMI measurements showed similar behavior as mechanical tests for samples thermally treated at 260 °C and 280 °C, and for the sample whose surface modification was made with a combination of thermally and de-icing fluid treatments.

  18. NUMERICAL MODELLING AS NON-DESTRUCTIVE METHOD FOR THE ANALYSES AND DIAGNOSIS OF STONE STRUCTURES: MODELS AND POSSIBILITIES

    Directory of Open Access Journals (Sweden)

    Nataša Štambuk-Cvitanović

    1999-12-01

    Full Text Available Assuming the necessity of analysis, diagnosis and preservation of existing valuable stone masonry structures and ancient monuments in today European urban cores, numerical modelling become an efficient tool for the structural behaviour investigation. It should be supported by experimentally found input data and taken as a part of general combined approach, particularly non-destructive techniques on the structure/model within it. For the structures or their detail which may require more complex analyses three numerical models based upon finite elements technique are suggested: (1 standard linear model; (2 linear model with contact (interface elements; and (3 non-linear elasto-plastic and orthotropic model. The applicability of these models depend upon the accuracy of the approach or type of the problem, and will be presented on some characteristic samples.

  19. Non-destructive evaluation of timber structures in a historical building of Tiradentes , MG

    Directory of Open Access Journals (Sweden)

    Luciana Barbosa de Abreu

    2013-09-01

    Full Text Available Problems related to the durability of wood are commonly found in historical buildings structures. Preservation and conservation resolutions must be adopted, in order to avoid losses and substitutions, which mischaracterize buildings. Non-destructive methods for detecting deterioration should be used in order to substantiate decisions and increase the longevity of historical heritage. This work was carried out in order to perform non-destructive essays to infer about the integrity of a beam and a pillar of the original construction of the Sobrado Ramalho, a historical building of the city of Tiradentes, MG. The equipments utilized were the Stress Wave Timer and resistograph. Samples of the elements were taken for analysis of density. The results showed that, in both structures, to calculate the dynamic modulus of elasticity, there was no significant difference for the application of stress wave timer on the alignments studied. There was no significant difference between the directions of application of the resistograph on the pillar, due to its apparent entirety and regular sessions, practically square, and to not being loaded eccentrically. In the case of the beam, there was significant difference, presumably because it has cracks in its traction line. The equipments, unknown by professionals of heritage conservation allow promising methodologies for inspection of timber structures in service.

  20. Completely non-destructive elemental analysis of bulky samples by PGA

    International Nuclear Information System (INIS)

    Oura, Y.; Nakahara, H.; Sueki, K.; Sato, W.; Tomizawa, T.

    1998-01-01

    A new non-destructive method is proposed for the elemental analysis of bulk samples. It is essentially a combination of PGA and NAA by a single neutron irradiation, and allows determinations of elemental contents of both major and minor constituents relative to that of some reference element. Major elements and some trace elements such as B, Sm, and Gd are mostly determined by the measurement of prompt gamma rays emitted when a bulky sample in its original form, namely, without any reduction of the sample size, is placed in the beam of neutrons guided from a nuclear reactor. Minor elements are then determined by the off-line measurements of gamma rays emitted from the radioactive nuclides produced within the sample by neutron capture reactions. As the radioactivity remaining in the sample becomes negligibly small after a few weeks cooling, the proposed method will be most usefully applied for the elemental analysis of bulky precious samples such as archaeological samples, and arts and crafts. In this presentation, applicability of the method will be demonstrated for porcelain and bronze samples. (author)