WorldWideScience

Sample records for non-destructive evaluation part

  1. Non-destructive evaluation of welding part of stainless steels by phased array system

    International Nuclear Information System (INIS)

    Tatematsu, Nobuhiro; Matsumoto, Eiji

    2009-01-01

    Recently, more accurate and convenient Non-Destructive Evaluation techniques are required for flaw inspection of structural materials. Phased array ultrasonic transducers are expected as such as NDE technique but there are many subjects to be solved. Furthermore, commercial phased array systems with conventional scanning and imaging techniques have not fulfilled their maximum potential. The purpose of this paper is to improve the phased array system to be applicable to the inhomogeneity evaluation of welding part of stainless steels. (author)

  2. Non-destructive testing of electronic parts

    International Nuclear Information System (INIS)

    Widenhorn, G.

    1980-01-01

    The requirements on quality, safety, faultlessness and reliability of electric components increase because of the high complexity of the appliances in which they are used. By means of examples a survey is given on the common non-destructive testing methods, testing operation and evaluation of test results on electric components which must meet in their application high requirements on quality and reliability. Defective components, especially those with hidden failures are sorted out by non-destructive testing and the failure frequency of the appliances and plants in testing and operation is greatly reduced. (orig.) [de

  3. Non destructive evaluation of ceramics

    International Nuclear Information System (INIS)

    Green, R.E. Jr

    1992-01-01

    While monolithic and composite ceramics have been successfully manufactured, inconsistencies in processing and the unpredictable nature of their failure have limited their use as engineering materials. The optimization of the processing and properties of ceramics and the structures, devices and systems made from them demand the innovative application of modern nondestructive materials characterization techniques to monitor and control as many stages of the production process as possible. This paper will describe the state-of-the-art of nondestructive evaluation techniques for characterization of monolithic ceramics and ceramic composites. Among the techniques to be discussed are laser ultrasonics, acoustic microscopy, thermography, microfocus and x-ray tomography, and micro-photoelasticity. Application of these and other nondestructive evaluation techniques for more effective and efficient real-time process control will result in improved product quality and reliability. 27 refs

  4. Ionizing radiations for non-destructive evaluation

    International Nuclear Information System (INIS)

    Raj, Baldev; Venkataraman, B.

    1989-01-01

    A state of the art of major non-destructive testing (NDT) techniques based on ionising radiations is presented. These techniques are broadly classified into three categories, namely, radiography, radiation gaging and analytical applications. The basic principles behind each method are explained and salient features of each technique which make it suitable for a particular task are described. Several illustrative applications drawn from the nuclear industry are given. The monograph is intended to serve as an introductory guide to scientist and engineers engaged in NDT activities. (M.G.B.). 32 refs., 13 figs., 5 tabs

  5. Non destructive testing of green parts in powder metallurgy

    International Nuclear Information System (INIS)

    Accary, A.

    1979-01-01

    The non destructive testing of green parts is potentially advantageous by making possible a lowering of the material and energy consumption as well as the production of parts with a 100% reliability. After a survey of the possible methods and of the defects to be detected it is shown that the goal can be achieved using a 'blind detection' method and that the difficulty of the problem depends on the size and shape of the part to be controled. The gravimetric, dimensional, γ absorption and thermal diffusivity methods are then examined. It is concluded that a unit control is paying only if it allows to enter the high reliability part market. Used statisticaly the non destructive testing of green parts can possibly lead to savings on materials and energy [fr

  6. Technology Evaluation Report: Non-destructive ...

    Science.gov (United States)

    Technology Evaluation Report HSRP is working to develop tools and information that will help detect the intentional introduction of chemical or biological contaminants in buildings or water systems, the containment of these contaminants, the decontamination of buildings and/or water systems, and the management of wastes generated from decontamination and cleanup operations. Evaluation of the performance of CBI Polymers’ DeconGelTM 1108, Environmental Alternatives, Inc.’s (EAI’s) Rad-Release II (RRII), Environmental Alternatives, Inc.’s SuperGel, and Intek Technologies’ LH-21. The objective of evaluating these technologies was to test their ability to remove radioactive cesium (Cs)-137 from the mixed building material coupons of brick with mortar, tile with grout, granite with mortar, all mortar and all grout coupons.

  7. Non-destructive testing and evaluation for structural integrity

    International Nuclear Information System (INIS)

    Baldev Raj; Jayakumar, T.; Rao, B.P.C.

    1995-01-01

    In this paper, a brief description of the physical concepts of non-destructive evaluation (NDE) methods and the physical/derived parameters that are used for assessing defects, stresses and microstructures are given. A few case studies highlighting the importance of non-destructive testing and evaluation for structural integrity assessment are also discussed based on the investigations carried out. Emerging concepts like intelligent processing of materials, expert systems, neural networks, use of multisensors with fusion of data and exploitation of signal analysis and imaging approaches are also addressed in this paper. (author). 92 refs., 1 tab

  8. Mathematical modelling of ultrasonic non-destructive evaluation

    Directory of Open Access Journals (Sweden)

    Larissa Ju Fradkin

    2001-01-01

    Full Text Available High-frequency asymptotics have been used at our Centre to develop codes for modelling pulse propagation and scattering in the near-field of the ultrasonic transducers used in NDE (Non-Destructive Evaluation, particularly of walls of nuclear reactors. The codes are hundreds of times faster than the direct numerical codes but no less accurate.

  9. Online Preventative Non-Destructive Evaluation in Automated Fibre Placement

    NARCIS (Netherlands)

    Tonnaer, R.; Shroff, S.; Groves, R.M.

    2016-01-01

    The strict quality requirements for aerospace composite struc- tures give rise to costly quality control procedures. In automated bre placement (AFP) these procedures rely heavily on manual work and inspection. This research aims at performing preventative non-destructive evaluation of composite

  10. Advanced uses of radiation in non-destructive evaluation

    International Nuclear Information System (INIS)

    Baldev Raj; Viswanathan, B.; Venkataraman, B.

    1998-01-01

    The increasing demand for newer materials and stringency of specifications, have expanded the scope of advanced uses of radiation in non-destructive evaluation of materials and industrial components. This paper highlights the application of some of the advanced techniques of radiography and residual stress measurements, using x-ray diffraction, for materials characterisation and testing, based on the results obtained at the author's laboratory. The application of positron annihilation techniques based on the use of radioisotopes and high resolution gamma ray spectroscopy, is introduced as non-destructive tools for materials characterisation. Selective examples of significant results obtained using this technique, on the radiation damage and early stages of fatigue damage in technologically important steels are reviewed from recent works at the author's laboratory and elsewhere. The scope of application of charge particle based thin layer activation method is briefly outlined. (author)

  11. Non destructive evaluation of containment nuclear plants structures

    Energy Technology Data Exchange (ETDEWEB)

    Garnier, V. [Aix Marseille Univ., Aix en Provence (France). LMA, CNRS UPR 7051, IUT; Verdier, J. [Toulouse Univ. (France). UPS, INSA, LMDC; Sbartai, Z.M. [Bordeaux Univ., Talence (France). I2M; and others

    2015-07-01

    French Projects of Investment for the Future, called ''Research for Nuclear Safety and Radiation Protection'' have been initiated to further research on the causes, the management, the impact of the observed nuclear accidents and to propose and validate solutions to limit the risk and the consequences. In this context the ''Non Destructive Evaluation of nuclear plants containment'' project (ENDE) with eight partners (six research institutes and two industrials) supported by the ''National Agency of Research'', proposes a methodology for the Non Destructive Evaluation of the containment capacity to fulfil its two major functions: strength and leak tightness. The NDE measurements will be performed under conditions representing the specific solicitations of a decennial inspection, and after or during a reference accident. The project aims to develop NDEs, to combine them by data fusion and to select the most efficient combinations with quantitative criteria. The work is based on: - Structuring the knowledge and developing an experimental plan. - Evaluating the material in representative conditions of accidental solicitations (water saturation, porosity, strength, elastic modulus, stress) and the diffuse thermal damage (micro cracks) - Monitoring the transition from diffuse to continuous damage (cracks) and monitoring a crack under stress (opening and width). - Implementing ND Techniques on-site. The ND techniques retained after selection will be implemented on a containment mock-up on the 1/3 scale. This mock-up developed by EDF (Electricite de France) will be available in 2016. It will be comparable to those of real size containment regarding pressure and temperature conditions. The measures deduced from the NDEs will be introduced in another project (Macena) that aims to simulate the water and heat transfers as well as creep occurring in a reference accident. We will present the methodology and the results

  12. Non-destructive evaluation of water ingress in photovoltaic modules

    Energy Technology Data Exchange (ETDEWEB)

    Bora, Mihail; Kotovsky, Jack

    2017-03-07

    Systems and techniques for non-destructive evaluation of water ingress in photovoltaic modules include and/or are configured to illuminate a photovoltaic module comprising a photovoltaic cell and an encapsulant with at least one beam of light having a wavelength in a range from about 1400 nm to about 2700 nm; capture one or more images of the illuminated photovoltaic module, each image relating to a water content of the photovoltaic module; and determine a water content of the photovoltaic module based on the one or more images. Systems preferably include one or more of a light source, a moving mirror, a focusing lens, a beam splitter, a stationary mirror, an objective lens and an imaging module.

  13. Efficiency evaluation test of waste non-destructive analysis device

    International Nuclear Information System (INIS)

    Maeda, Kouichi; Ogasawara, Kensuke; Nisizawa, Ichio

    2000-03-01

    A device for non-destructive analysis of plutonium in alpha solid waste has been installed in NUCEF; Nuclear Fuel Cycle Safety Engineering Research Facility. The device has been designed to determine the amount of radioisotopes in carton-boxes, 45 l steel cans and 200 l steel cans containing relatively low density waste. Considering the waste density and the heterogeneity of radio-sources, the proper distance between the detector and the waste, and the open degree of the collimator have been settled, because real waste may contain several kinds of material and the heterogeneity of radioactivity. It has been confirmed from the evaluation of the detect limit that plutonium of about 8 MBq can be determined with the accuracy of 10% and the device may be proper for the practical application. (author)

  14. Introduction to non-destructive testing of materials: part II

    International Nuclear Information System (INIS)

    Ahmed, M.; Ahmed, B.

    2001-01-01

    Ultrasonic waves are mechanical vibrations that require a medium, which functions as carrier. Ultrasonics are widely used in non-destructive testing of materials in which high frequency sound waves are introduced into the material being inspected. If the frequency of sound waves in within the range 10 to 20,000 Hz, the sound is audible, i.e. the range of hearing, above 20,000 Hz, the sound waves are referred to as Ultrasound or Ultrasonics. Sound waves do not cause any permanent change in material although its transient presence is very noticeable. An energy transport through a sound wave is possible only when constituent particles are connected to each other by elastic forces. Liquids and Gases are also suitable media for the transmission of sound. In vacuum no matter exists and thus no sound transmission is possible. At the end of this article advantages and limitations of ultrasonic testing are also given. (A.B.)

  15. Non-destructive Assessment of Relief Marking Parameters of Heat Shrinkable Installation Parts for Aviation Technology

    Directory of Open Access Journals (Sweden)

    Kondratov Aleksandr P.

    2017-01-01

    Full Text Available The article explains a new method of relief marking of heat-shrinkable tubing and sleeves made of polymer materials with “shape memory effect.” Method of instrument evaluation of relief marking stereometry of installation parts for aviation equipment, made of polyvinyl chloride, polyethyleneterephthalate and polystyrene was developed and the results were explained. Parameters of pin-point relief marking and compliance of point forms to the Braille font standard were determined with the use of the non-destructive method based on the color of interference pattern with precision of 0.02 mm.

  16. NonDestructive Evaluation for Industrial & Development Applications

    Energy Technology Data Exchange (ETDEWEB)

    Hunter, James F. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-10-12

    Provide overview of weld inspection for Non-Destructive Testing at LANL. This includes radiography (RT/DR/CR/CT for x-ray & neutron sources), ultrasonic testing (UT/PAUT), dye penetrant inspection (PT), eddy current inspection (ET) and magnetic particle testing (MT). Facilities and capabilities for weld inspection will be summarized with examples.

  17. Visualization of Tooth for Non-Destructive Evaluation from CT Images

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Hui; Chae, Ok Sam [Kyung Hee University, Seoul (Korea, Republic of)

    2009-06-15

    This paper reports an effort to develop 3D tooth visualization system from CT sequence images as a part of the non-destructive evaluation suitable for the simulation of endodontics, orthodontics and other dental treatments. We focus on the segmentation and visualization for the individual tooth. In dental CT images teeth are touching the adjacent teeth or surrounded by the alveolar bones with similar intensity. We propose an improved level set method with shape prior to separate a tooth from other teeth as well as the alveolar bones. Reconstructed 3D model of individual tooth based on the segmentation results indicates that our technique is a very conducive tool for tooth visualization, evaluation and diagnosis. Some comparative visualization results validate the non-destructive function of our method.

  18. Additive Manufacturing (AM) Activities and Non-Destructive Evaluation (NDE) at GSFC

    Science.gov (United States)

    Jones, Justin S.

    2017-01-01

    NASA personnel will be meeting with a delegation from the Japan Aerospace Exploration Agency (JAXA) Office of Safety and Mission Assurance (OSMA) at Langley Research Center on 2217 through 3217. The purpose of the meeting is a technical interchange between NASA and JAXA to discuss Non-Destructive Evaluation (NDE) of Additive Manufacturing (AM) parts and the HALT process (relates to accelerated life testing). The visitors will be a small group of Japanese citizens. Goddard Space Flight Center (GSFC) has been asked to participate in the meeting, either in person or via teleconference. This presentation covers NDE efforts at GSFC and provides a cursory overview of AM and lab capabilities.

  19. Non-destructive evaluation of concrete using ultrasonic pulse velocity

    International Nuclear Information System (INIS)

    Lawson, I.

    2008-06-01

    Ultrasonic pulse velocity is one of the most popular non-destructive techniques used in the assessment of concrete properties. This thesis investigates the relationship between using ultrasonic pulse velocity (UPV) and the conventional compressive strength tests to determine concrete uniformity. The specimens used in the studies were made of concrete with a paste content of 18% and the constituents of the specimens varied in different water-cement ratios (w/c). The UPV measurement and compressive strength tests were carried out at the concrete age of 2, 7, 15 and 28 days. The UPV and the compressive strength of concrete increase with age, but the growth rate varies with mixture proportion. A relationship curve is drawn between UPV and compressive strength for concrete having different w/c from 0.35 to 0.7. Tests were also performed using Ultrasonic Pulse Velocity Method (UPVM) in detecting discontinuity and determining its depth during the early age of concrete. The test results indicate that the UPVM can be used to assess the in-situ properties of concrete or for quality control on site. The accuracy of the UPVM in detecting discontinuities ranges from 55.75 to 98.70% for ages 3 to 28 (full strength) respectively. (au)

  20. Non-destructive system to evaluate critical properties of asphalt compaction : [research brief].

    Science.gov (United States)

    2013-12-01

    The Wisconsin Highway Research Program sponsored a two-stage investigation to develop a non-destructive system to evaluate critical compaction properties and characteristics of asphalt pavements during the densification process. Stage One activities ...

  1. Space Qualified Non-Destructive Evaluation and Structural Health Monitoring Technology, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NextGen Aeronautics is proposing an innovative space qualified non-destructive evaluation and health monitoring technology. The technology is built on concepts...

  2. National seminar on non-destructive evaluation techniques: proceedings cum souvenir

    International Nuclear Information System (INIS)

    Dutta, N.G.; Kulkarni, P.G.; Purushotham, D.S.C.

    1994-01-01

    This volume contains selected papers presented at the National Seminar on Non-Destructive Evaluation Techniques held at Bhabha Atomic Research Centre, Mumbai during December 8-9, 1994. The papers covered a wide spectrum of non-destructive evaluation activities including that for quality assurance of various nuclear components and structures with the focal theme being computerization and robotics. The papers relevant to INIS are indexed separately

  3. Using magnetic levitation for non-destructive quality control of plastic parts.

    Science.gov (United States)

    Hennek, Jonathan W; Nemiroski, Alex; Subramaniam, Anand Bala; Bwambok, David K; Yang, Dian; Harburg, Daniel V; Tricard, Simon; Ellerbee, Audrey K; Whitesides, George M

    2015-03-04

    Magnetic levitation (MagLev) enables rapid and non-destructive quality control of plastic parts. The feasibility of MagLev as a method to: i) rapidly assess injection-molded plastic parts for defects during process optimization, ii) monitor the degradation of plastics after exposure to harsh environmental conditions, and iii) detect counterfeit polymers by density is demonstrated. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Numerical modeling for the electromagnetic non-destructive evaluation: application to the non-destructive evaluation of concrete

    International Nuclear Information System (INIS)

    Travassos, L.

    2007-06-01

    Concrete is the most common building material and accounts for a large part of the systems that are necessary for a country to operate smoothly including buildings, roads, and bridges. Nondestructive testing is one of the techniques that can be used to assess the structural condition. It provides non perceptible information that conventional techniques of evaluation unable to do. The main objective of this work is the numerical simulation of a particular technique of nondestructive testing: the radar. The numerical modeling of the radar assessment of concrete structures make it possible to envisage the behavior of the system and its capacity to detect defects in various configurations. To achieve this objective, it was implemented electromagnetic wave propagation models in concrete structures, by using various numerical techniques to examine different aspects of the radar inspection. First of all, we implemented the finite-difference time-domain method in 3D which allows to take into account concrete characteristics such as porosity, salt content and the degree of saturation of the mixture by using Debye models. In addition, a procedure to improve the radiation pattern of bow-tie antennas is presented. This approach involves the Moment Method in conjunction with the Multi objective Genetic Algorithm. Finally, we implemented imaging algorithms which can perform fast and precise characterization of buried targets in inhomogeneous medium by using three different methods. The performance of the proposed algorithms is confirmed by numerical simulations. (author)

  5. Non-destructive Reliability Evaluation of Electronic Device by ESPI

    International Nuclear Information System (INIS)

    Yoon, Sung Un; Kim, Koung Suk; Kang, Ki Soo; Jo, Seon Hyung

    2001-01-01

    This paper propose electronic speckle pattern interferometry(ESPI) for reliability evaluation of electronic device. Especially, vibration problem in a fan of air conditioner, motor of washing machine and etc. is important factor to design the devices. But, it is difficult to apply previous method, accelerometer to the devices with complex geometry. ESPI, non-contact measurement technique applies a commercial fan of air conditioner to vibration analysis. Vibration mode shapes, natural frequency and the range of the frequency are decided and compared with that of FEM analysis. In mechanical deign of new product, ESPI adds weak point of previous method to supply effective design information

  6. Non-destructive evaluation studies for cultural heritage

    International Nuclear Information System (INIS)

    Jayakumar, T.; Babu Rao, C.; Kumar, Anish; Rajkumar, K.V.; Sharma, G.K.; Raj, Baldev

    2009-01-01

    The results of the nondestructive evaluation studies carried out on the Delhi iron pillar and the musical pillars of the Vithala temple at Hampi, Karnataka are discussed. While studies on Delhi iron pillar were carried out with a primary aim to understand the methodology of fabrication of this pillar, the studies on the musical pillars were carried out to finger print/petroligically characterize the stones used in the construction of the musical pillars and to understand the origin of various sounds generated on tapping of the musical pillars by carrying out various acoustic studies. (author)

  7. A study of non destructive integrity assessment method for structural materials of nuclear reactor. Part 2

    International Nuclear Information System (INIS)

    Totsuka, Nobuo; Matsuzaki, Akihiro

    2011-01-01

    The hardness measurement is one of the most effective way for non destructive integrity assessment evaluating structural materials of nuclear power plants before and after suffering an earthquake. Then an actual evaluation method and effectiveness of the method using portable hardness tester has been reported in the previous Journal. In this study, the developing method which can evaluate more accurately the amount of plastic deformation of the material caused by an earthquake has been reported, based on the experimental results about the hardness change of the material considering the thermal aging due to the plant operation and the cyclic deformation suffered by an earthquake. (author)

  8. Corrosion evaluation in insulated pipes by non destructive testing method

    International Nuclear Information System (INIS)

    Abd Razak Hamzah; Azali Muhammad; Mohammad Pauzi Ismail; Abd Nassir Ibrahim; Abd Aziz Mohamed; Sufian Saad; Saharuddin Sayuti; Shukri Ahmad

    2002-01-01

    In engineering plants, detection of corrosion and evaluation of deposit in insulated pipes using radiography method are considered as a very challenging tasks. In General this degradation problem is attributed to water condensation. It causes the formation of deposit and scale inside the pipe, as well as between the insulation and pipe in cold temperature pipes. On the other hand, for hot temperature pipes the main problem is mainly due to corrosion/erosion attack inside the pipe. In the study of corrosion in pipelines, one of the most important parameters to be monitored and measured is the wall thickness. Currently, most pipeline corrosion monitoring and evaluation for both insulated and non-insulated pipes is performed using an ultrasonic method. The most common technique is that based on the A-Scan, using either a normal flaw detector or some form of dedicated equipment. However, with recent development of ultrasonic technology, more advance method, namely B-Scan and C-scan techniques are also available. The most notable disadvantage of using this method is that the insulation covering the pipe has to be removed before the inspection can be carried out and this is considered as not so cost effective. Due to this reason, the possibility of employing other alternative NDT method, namely radiographic testing method were studied. The technique used in this studied are known as tangential technique. In this study it was found that the result found using tangential technique is consistent with the actual thickness of the pipe. Result of this study is presented and discussed in this paper. (Author)

  9. Non-Destructive Thermography Analysis of Impact Damage on Large-Scale CFRP Automotive Parts

    Science.gov (United States)

    Maier, Alexander; Schmidt, Roland; Oswald-Tranta, Beate; Schledjewski, Ralf

    2014-01-01

    Laminated composites are increasingly used in aeronautics and the wind energy industry, as well as in the automotive industry. In these applications, the construction and processing need to fulfill the highest requirements regarding weight and mechanical properties. Environmental issues, like fuel consumption and CO2-footprint, set new challenges in producing lightweight parts that meet the highly monitored standards for these branches. In the automotive industry, one main aspect of construction is the impact behavior of structural parts. To verify the quality of parts made from composite materials with little effort, cost and time, non-destructive test methods are increasingly used. A highly recommended non-destructive testing method is thermography analysis. In this work, a prototype for a car’s base plate was produced by using vacuum infusion. For research work, testing specimens were produced with the same multi-layer build up as the prototypes. These specimens were charged with defined loads in impact tests to simulate the effect of stone chips. Afterwards, the impacted specimens were investigated with thermography analysis. The research results in that work will help to understand the possible fields of application and the usage of thermography analysis as the first quick and economic failure detection method for automotive parts. PMID:28788464

  10. Non-Destructive Thermography Analysis of Impact Damage on Large-Scale CFRP Automotive Parts

    Directory of Open Access Journals (Sweden)

    Alexander Maier

    2014-01-01

    Full Text Available Laminated composites are increasingly used in aeronautics and the wind energy industry, as well as in the automotive industry. In these applications, the construction and processing need to fulfill the highest requirements regarding weight and mechanical properties. Environmental issues, like fuel consumption and CO2-footprint, set new challenges in producing lightweight parts that meet the highly monitored standards for these branches. In the automotive industry, one main aspect of construction is the impact behavior of structural parts. To verify the quality of parts made from composite materials with little effort, cost and time, non-destructive test methods are increasingly used. A highly recommended non-destructive testing method is thermography analysis. In this work, a prototype for a car’s base plate was produced by using vacuum infusion. For research work, testing specimens were produced with the same multi-layer build up as the prototypes. These specimens were charged with defined loads in impact tests to simulate the effect of stone chips. Afterwards, the impacted specimens were investigated with thermography analysis. The research results in that work will help to understand the possible fields of application and the usage of thermography analysis as the first quick and economic failure detection method for automotive parts.

  11. Non-Destructive Thermography Analysis of Impact Damage on Large-Scale CFRP Automotive Parts.

    Science.gov (United States)

    Maier, Alexander; Schmidt, Roland; Oswald-Tranta, Beate; Schledjewski, Ralf

    2014-01-14

    Laminated composites are increasingly used in aeronautics and the wind energy industry, as well as in the automotive industry. In these applications, the construction and processing need to fulfill the highest requirements regarding weight and mechanical properties. Environmental issues, like fuel consumption and CO₂-footprint, set new challenges in producing lightweight parts that meet the highly monitored standards for these branches. In the automotive industry, one main aspect of construction is the impact behavior of structural parts. To verify the quality of parts made from composite materials with little effort, cost and time, non-destructive test methods are increasingly used. A highly recommended non-destructive testing method is thermography analysis. In this work, a prototype for a car's base plate was produced by using vacuum infusion. For research work, testing specimens were produced with the same multi-layer build up as the prototypes. These specimens were charged with defined loads in impact tests to simulate the effect of stone chips. Afterwards, the impacted specimens were investigated with thermography analysis. The research results in that work will help to understand the possible fields of application and the usage of thermography analysis as the first quick and economic failure detection method for automotive parts.

  12. Non-destructive evaluation of containment walls in nuclear power plants

    Science.gov (United States)

    Garnier, V.; Payan, C.; Lott, M.; Ranaivomanana, N.; Balayssac, J. P.; Verdier, J.; Larose, E.; Zhang, Y.; Saliba, J.; Boniface, A.; Sbartai, Z. M.; Piwakowski, B.; Ciccarone, C.; Hafid, H.; Henault, J. M.; Buffet, F. Ouvrier

    2017-02-01

    Two functions are regularly tested on containment walls in order to anticipate a possible accident. The first is mechanical to resist a possible internal over-pressure and the second is to prevent leakage. The AAPR reference accident is the rupture of a pipe in the primary circuit of a nuclear plant. In this case, the pressure and temperature can reach 5 bar and 180°C in 20 seconds. The national project `Non-destructive testing of the containment structures of nuclear plants' aims at studying the non-destructive techniques capable to evaluate the concrete properties and its damaging and cracks. This 4-year-project is segmented into two parts. The first consists in developing and selecting the most relevant NDEs in the laboratory to reach these goals. These evaluations are developed in conditions representing the real conditions of the stresses generated during ten-yearly visits of the plants or those related to an accident. The second part consists in applying the selected techniques to two containment structures under pressure. The first structure is proposed by ONERA and the second is a mockup of a containment wall on a 1/3 scale made by EDF within the VeRCoRs project. Communication is focused on the part of the project that concerns the damage and crack process characterization by means of NDT. The tests are done in 3 or 4 points bending in order to study the cracks' generation, their propagation, as well as their opening and closing. The main ultrasonic techniques developed concern linear or non-linear acoustic: acoustic emission [1], Locadiff [2], energy diffusion, surface wave's velocity and attenuation, DAET [3]. The recorded data contribute to providing the mapping of the investigated parameters, either in volume, in surface or globally. Digital image correlation is an important additional asset to validate the coherence of the data. The spatial normalization of the data in the specimen space allows proposing algorithms on the combination of the

  13. Non-destructive NIR-FT-Raman analyses in practice. Part I. Analyses of plants and historic textiles.

    Science.gov (United States)

    Andreev, G N; Schrader, B; Schulz, H; Fuchs, R; Popov, S; Handjieva, N

    2001-12-01

    Non-destructive analysis of natural substances in plants as well as of old dyed textiles by Raman spectroscopy has not been possible using conventional techniques. Exciting lines from the visible part of the spectrum produced photochemical and thermal decomposition of the objects as well as strong fluorescence. Using Nd:YAG laser excitation at 1,064 nm together with a special sample arrangement and interferometric recording, various polyacetylenes in Aethusa cynapium and in chamomile (Chamomilla recutita) and the main valuable substances in gentian species (Gentiana lutea and G. punctata), curcuma roots (Curcuma longa), cinnamon (Cinnamomum zeylanicum), fennel (Foeniculum vulgare), clove (Caryophyllus aromaticus), and ginger (Zingiber officinale) were analyzed non-destructively and discussed in comparison with the corresponding pure standard compounds. We further analyzed non-destructively the FT Raman spectra of collections of historical textiles and lakes used for dyeing. It is possible to distinguish the main dye component non-destructively by using Raman bands.

  14. Proceedings of the national workshop on non destructive evaluation of structures

    International Nuclear Information System (INIS)

    2013-01-01

    In spite of the care and best efforts to improve the quality of structures, problems do occur, raising alarm. This makes doubtful about the understanding. Distresses in the structures start immediately after construction and these are often concealed under the external finishes. A defect takes time to manifest itself. To add further, structures remain unattended for several years. As it is uneconomical to replace the assets before the intended service life by another capital investment, it is essential to periodically monitor the health of structures throughout its life. Success of both, the construction and restoration work depends on right diagnosis of the problem thorough proper testing techniques. Non destructive evaluation is one of the reliable methods for the scientific assessment of health and prediction of residual service life of structure. The workshop shall provide a platform to students, engineers and professionals for acquaintance with the current state of art technology of non-destructive evaluation techniques. Papers relevant to INIS are indexed separately

  15. Containment nuclear plant structures evaluation by non destructive testing: strategy and results

    OpenAIRE

    GARNIER, Vincent; HENAULT, Jean-Marie; HAFID, Hamid; VERDIER, Jérôme; CHAIX, Jean François; ABRAHAM, Odile; SBARTAÏ, Zoubir Medhi; BALAYSSAC, Jean Pierre; PIWAKOWSKI, Bogdan; VILLAIN, Géraldine; DEROBERT, Xavier; PAYAN, Cédric; RAKOTONARIVO, Sandrine; LAROSE, Eric; SOGBOSSI, Hognon

    2016-01-01

    Containment nuclear plants structures are an ultimate barrier in the event of an accident. Mechanical resistance and tightness are the two functions that they are expected to provide. To evaluate their capacity to perform them, destructive testing cannot be used to characterize the material. Non-Destructive Tests then represent a relevant solution to test concrete and the struc- ture. The article positions NDT within the context of containment structures supervision and maintenance, and prese...

  16. Role of research in non-destructive evaluation for nuclear technology

    International Nuclear Information System (INIS)

    Jayakumar, T.; Rao, B.P.C.; Raj, Baldev

    2010-01-01

    This paper presents the role of research in non-destructive evaluation (NDE) of microstructures and mechanical properties in materials, assessment of manufacturing quality and early detection of in-service damage in nuclear components and structures. A few applications and case studies are discussed based on the results of systematic research and developmental activities pursued in different NDE techniques at the authors' laboratory for three different types of Indian nuclear reactors. (author)

  17. Addition of magnetic markers for non-destructive evaluation of polymer composites

    Directory of Open Access Journals (Sweden)

    Ana Paula Pereira Fulco

    2011-12-01

    Full Text Available Polymer composite pipes are an appealing option as a substitute for conventional steel pipes, particularly due to their inherent corrosion resistance. However, the composite pipes currently used do not allow non-destructive evaluation (NDE using instrumented devices which operate with magnetic sensors. The present work aims at the development of polymer composites with the addition magnetic markers to allow the application non-destructive evaluation techniques which use magnetic sensors. Glass-polyester composite flat, circular plates were fabricated with the addition of ferrite particles (barium ferrite and strontium ferrite and four types of notches were introduced on the plates' surfaces. The influence of these notches on the measured magnetic properties of each material was measured. X-ray diffraction (XRD, X-ray fluorescence (XRF and Brunauer, Emmett, and Teller (BET nitrogen adsorption were used for the characterization of the ferrite particles. Particle dispersion in the polymer matrix was analyzed by scanning electron microscopy (SEM. According to the results, a particular variation in magnetic field was detected over the region surrounding each type of notch. The results suggest that the proposed technique has great potential for damage detection in polymer composites using magnetic sensors and thus constitute a valuable contribution which may ultimately lead to the development of non-destructive evaluation techniques for assessing the structural integrity polymer composite pipes.

  18. Nonconventional concrete hollow blocks evaluation by destructive and non-destructive testing

    Directory of Open Access Journals (Sweden)

    M.S. Rodrigues

    Full Text Available The aim of this study was to evaluate cementitious matrices properties by partial replacement of Portland cement by silica fume (SF or by rice husk ash (RHA, and their application in nonbearing hollow blocks, tested by destructive and non-destructive methods. The following mixtures were produced: reference (100% of Portland cement and Portland cement replacement (10% by mass with SF or RHA. The non-destructive testing showed that the highest values of UPV were obtained for SF-based blocks and RHA-based blocks. The destructive test showed better results for SF-based blocks, but there was no statistical difference between the RHA-based and control ones.

  19. Evaluation of corrosion of prestressing steel in concrete using non-destructive techniques

    International Nuclear Information System (INIS)

    Ali, M.G.; Maddocks, A.R.

    2003-01-01

    Use of high strength steel in pre-stressed concrete structures has been in use in Australia for many decades. Highway bridges, among other structures, have extensively used pre-stress-ing and post-tensioning techniques. Although prestressing offers many competitive edges to it's traditional rival reinforced concrete, the consequence of damage to prestressing tendons could be catastrophic. Periodic visual inspections of prestressed concrete bridges throughout the world have demonstrated the growing problem of deterioration of prestressing steel as a result of corrosion. Early detection of damage to prestressing steel therefore is of paramount importance. Unfortunately no reliable and practical non-destructive evaluation technique has been available for assessing the condition of prestressing steel within concrete although a number of techniques appear promising. The following inspection methods have been highlighted in recent literature for their use as non-destructive inspection methods for prestressed concrete structures. In addition to the techniques discussed, a number of destructive, or invasive techniques also exist for determination of the corrosion status of prestressing tendons in prestressed structures. The following non-destructive techniques are discussed in some detail: Radiography; Computed Tomography; Surface Penetrating Radar; Impact Echo; Acoustic Emission Monitoring; Magnetic Field Disturbance Technique; Remnant Magnetism Method; Linear Polarisation Method; Electrical Resistance and Surface Potential Survey. The portability, limitations and use in Australia of these techniques are summarised in a table

  20. Yucca Mountain project container fabrication, closure and non-destructive evaluation development activities

    International Nuclear Information System (INIS)

    Russell, E.W.; Nelson, T.A.

    1989-06-01

    In this presentation, container fabrication, closure, and non-destructive evaluation (NDE) process development activities are described. All of these activities are interrelated, and will contribute to the metal barrier selection activity. The plan is to use a corrosion-resistant material in the form of a cylinder with a wall thickness of ∼1cm (2cm for pure copper.) The materials under consideration include the three austenitic alloys: stainless steel-304L, stainless steel-316L and alloy 825, as well as the three copper alloys: CDA 102, CDA 613, and CDA 715. This document reviews the recommended procedures and processes for fabricating, closing and evaluating each of the candidate materials

  1. Non-destructive high-resolution thermal imaging techniques to evaluate wildlife and delicate biological samples

    International Nuclear Information System (INIS)

    Lavers, C; Franklin, P; Franklin, P; Plowman, A; Sayers, G; Bol, J; Shepard, D; Fields, D

    2009-01-01

    Thermal imaging cameras now allows routine monitoring of dangerous yet endangered wildlife in captivity. This study looks at the potential applications of radiometrically calibrated thermal data to wildlife, as well as providing parameters for future materials applications. We present a non-destructive active testing technique suitable for enhancing imagery contrast of thin or delicate biological specimens yielding improved thermal contrast at room temperature, for analysis of sample thermal properties. A broad spectrum of animals is studied with different textured surfaces, reflective and emissive properties in the infra red part of the electromagnetic spectrum. Some surface features offer biomimetic materials design opportunities.

  2. Non-destructive high-resolution thermal imaging techniques to evaluate wildlife and delicate biological samples

    Energy Technology Data Exchange (ETDEWEB)

    Lavers, C; Franklin, P; Franklin, P; Plowman, A; Sayers, G; Bol, J; Shepard, D; Fields, D, E-mail: brnc-radarcomms1@nrta.mod.u [Sensors Team, Plymouth University at Britannia Royal Naval College, Dartmouth, Devon (United Kingdom) and Paignton Zoological Park, Paignton, Devon (United Kingdom); Thermal Wave Imaging, Inc., 845 Livernoise St, Ferndale, MI (United States); Buckfast Butterfly and Otter Sanctuary, Buckfast, Devon (United Kingdom)

    2009-07-01

    Thermal imaging cameras now allows routine monitoring of dangerous yet endangered wildlife in captivity. This study looks at the potential applications of radiometrically calibrated thermal data to wildlife, as well as providing parameters for future materials applications. We present a non-destructive active testing technique suitable for enhancing imagery contrast of thin or delicate biological specimens yielding improved thermal contrast at room temperature, for analysis of sample thermal properties. A broad spectrum of animals is studied with different textured surfaces, reflective and emissive properties in the infra red part of the electromagnetic spectrum. Some surface features offer biomimetic materials design opportunities.

  3. Enhancing the capabilities of eddy current techniques for non-destructive evaluation of austenitic stainless steels

    International Nuclear Information System (INIS)

    Rao, B.P.C.; Thirunavukkarasu, S.; Sasi, B.; Jayakumar, T.; Baldev Raj

    2010-01-01

    Eddy current non-destructive evaluation (NDE) techniques find many applications during fabrication and in-service inspection of components made of stainless steel. In recent years, concurrent developments in electromagnetic field detection sensors such as giant magneto-resistive (GMR), giant-magneto impedance (GMI) and SQUIDs sensors, computers, microelectronics, and incorporating advanced signal and image processing techniques, have paved the way for enhancing the capabilities of existing eddy current (EC) techniques for examination of austenitic stainless steel (SS) plates, tubes and other geometries and several innovative methodologies have been developed. This paper highlights a few such applications in EC testing to austenitic stainless steel components used in fast reactors. (author)

  4. Non-destructive evaluation on mechanical properties of nuclear graphite with porous structure

    International Nuclear Information System (INIS)

    Shibata, Taiju; Hanawa, Satoshi; Sumita, Junya; Tada, Tatsuya; Sawa, Kazuhiro; Iyoku, Tatsuo

    2005-01-01

    As a research subjects of 'Research and development for advanced high temperature gas cooled reactor fuels and graphite components,' we started the study of development of non-destructive evaluation methods for mechanical properties of graphite components. The micro-indentation and ultrasonic wave methods are focused to evaluate the degradation of graphite components in VHTR core. For the micro-indentation method, the test apparatus was designed for the indentation test on graphite specimens with some stress levels. It is expected the stress condition is evaluated by the indentation load-depth characteristics and hardness. For the ultrasonic wave method, ultrasonic wave testing machine and probes were prepared for experiments. It is expected that the stress and inner porous conditions are evaluated by the wave propagation characteristics with wave-pore interaction model. R and D plan to develop the non-destructive evaluation method for graphite is presented in this paper. (This study is the result of contract research in the fiscal year of 2004, Research and development for advanced high temperature gas cooled reactor fuels and graphite components,' which is entrusted to the Japan Atomic Energy Research Institute from the Ministry of Education, Culture, Sports, Science and Technology of Japan.) (author)

  5. Investigation and development of a non-destructive system to evaluate critical properties of asphalt pavements during the compaction process.

    Science.gov (United States)

    2013-10-01

    The purpose of this report is to present findings from a two-stage investigation to develop a non-destructive system to : evaluate critical properties and characteristics of asphalt pavements during the compaction process. The first stage aligned : c...

  6. Non-destructive evaluation of thermal aging embrittlement of duplex stainless steels

    International Nuclear Information System (INIS)

    Yi, Y.S.; Tomobe, T.; Watanabe, Y.; Shoji, T.

    1993-01-01

    The non-destructive evaluation procedure for detecting thermal aging embrittlement of cast duplex stainless steels has been investigated. As a novel measurement technique for the thermal aging embrittlement, an electrochemical method was used and anodic polarization behaviors were measured on new, service exposed, and laboratory aged materials and then were compared with the results of the mechanical tests and microstructural changes. During the polarization experiments performed in potassium hydroxide solution (KOH), M 23 C 6 carbides on phase boundary were preferentially dissolved, which was comfirmed by the SEM after polarization measurements. The preferential dissolution of M 23 C 6 carbides were obtained. Also, the non-destructive measurement and evaluation method of spinodal decomposition, which has been known as the primary mechanism of embrittlement inferrite phase, was reviewed. When the materials, where spinodal decomposition occurred, were polarized in an acetic acid solution (CH 3 COOH), larger critical anodic current densities were observed than those observed on new materials, and these results were consistent with the result of the microhardness measurement. Concerning these polarization results, a critical electric charge, which was required for stable passive films in passive metals, was defined and the relationship between the microstructural changes and this charge amount was reviewed under various polarization conditions in order to verify the polarization mechanism of the spinodally decomposed ferrite phase

  7. Non-destructive evaluation of UV pulse laser-induced damage performance of fused silica optics.

    Science.gov (United States)

    Huang, Jin; Wang, Fengrui; Liu, Hongjie; Geng, Feng; Jiang, Xiaodong; Sun, Laixi; Ye, Xin; Li, Qingzhi; Wu, Weidong; Zheng, Wanguo; Sun, Dunlu

    2017-11-24

    The surface laser damage performance of fused silica optics is related to the distribution of surface defects. In this study, we used chemical etching assisted by ultrasound and magnetorheological finishing to modify defect distribution in a fused silica surface, resulting in fused silica samples with different laser damage performance. Non-destructive test methods such as UV laser-induced fluorescence imaging and photo-thermal deflection were used to characterize the surface defects that contribute to the absorption of UV laser radiation. Our results indicate that the two methods can quantitatively distinguish differences in the distribution of absorptive defects in fused silica samples subjected to different post-processing steps. The percentage of fluorescence defects and the weak absorption coefficient were strongly related to the damage threshold and damage density of fused silica optics, as confirmed by the correlation curves built from statistical analysis of experimental data. The results show that non-destructive evaluation methods such as laser-induced fluorescence and photo-thermal absorption can be effectively applied to estimate the damage performance of fused silica optics at 351 nm pulse laser radiation. This indirect evaluation method is effective for laser damage performance assessment of fused silica optics prior to utilization.

  8. Yucca mountain container fabrication, closure and non-destructive evaluation development activities

    International Nuclear Information System (INIS)

    Russell, E.W.; Nelson, T.A.

    1990-01-01

    Container fabrication, closure, and non-destructive evaluation process development activities are described. The design parameters for a tuff environment are: no significant hydrostatic or lithostatic loading of the container; very small water flux; benign water, an oxidizing, dilute sodium bicarbonate solution of neutral pH; temperatures reaching 250 C over the first 50 to 100 years, then falling to about 97 C over the remainder of the 300-year container period. The materials under consideration are three austenitic alloys: AISI 304L, AISI 316L, and alloy 825; as well as three copper alloys: CDA 102, CDA 613, and CDA 715. Targets are controlled, uniform microstructures for the base metal, the weld and the heat affected zones of the weld; controlled microchemistry; low residual stresses; small welds and heat-affected zones; and reliable methods of flaw detection by surface and volumetric activities. The recommended procedures and processes for fabricating, closing and evaluating each of the candidate materials are reviewed

  9. QUANTITATIVE NON-DESTRUCTIVE EVALUATION (QNDE) OF THE ELASTIC MODULI OF POROUS TIAL ALLOYS

    International Nuclear Information System (INIS)

    Yeheskel, O.

    2008-01-01

    The elastic moduli of γ-TiA1 were studied in porous samples consolidated by various techniques e.g. cold isostatic pressing (CIP), pressure-less sintering, or hot isostatic pressing (HIP). Porosity linearly affects the dynamic elastic moduli of samples. The results indicate that the sound wave velocities and the elastic moduli affected by the processing route and depend not only on the attained density but also on the consolidation temperature. In this paper we show that there is linear correlation between the shear and the longitudinal sound velocities in porous TiA1. This opens the way to use a single sound velocity as a tool for quantitative non-destructive evaluation (QNDE) of porous TiA1 alloys. Here we demonstrate the applicability of an equation derived from the elastic theory and used previously for porous cubic metals

  10. A robust approach to optimal matched filter design in ultrasonic non-destructive evaluation (NDE)

    Science.gov (United States)

    Li, Minghui; Hayward, Gordon

    2017-02-01

    The matched filter was demonstrated to be a powerful yet efficient technique to enhance defect detection and imaging in ultrasonic non-destructive evaluation (NDE) of coarse grain materials, provided that the filter was properly designed and optimized. In the literature, in order to accurately approximate the defect echoes, the design utilized the real excitation signals, which made it time consuming and less straightforward to implement in practice. In this paper, we present a more robust and flexible approach to optimal matched filter design using the simulated excitation signals, and the control parameters are chosen and optimized based on the real scenario of array transducer, transmitter-receiver system response, and the test sample, as a result, the filter response is optimized and depends on the material characteristics. Experiments on industrial samples are conducted and the results confirm the great benefits of the method.

  11. System and method for non-destructive evaluation of surface characteristics of a magnetic material

    Science.gov (United States)

    Jiles, David C.; Sipahi, Levent B.

    1994-05-17

    A system and a related method for non-destructive evaluation of the surface characteristics of a magnetic material. The sample is excited by an alternating magnetic field. The field frequency, amplitude and offset are controlled according to a predetermined protocol. The Barkhausen response of the sample is detected for the various fields and offsets and is analyzed. The system produces information relating to the frequency content, the amplitude content, the average or RMS energy content, as well as count rate information, for each of the Barkhausen responses at each of the excitation levels applied during the protocol. That information provides a contiguous body of data, heretofore unavailable, which can be analyzed to deduce information about the surface characteristics of the material at various depths below the surface.

  12. Thermographic Non-Destructive Evaluation for Natural Fiber-Reinforced Composite Laminates

    Directory of Open Access Journals (Sweden)

    Hai Zhang

    2018-02-01

    Full Text Available Natural fibers, including mineral and plant fibers, are increasingly used for polymer composite materials due to their low environmental impact. In this paper, thermographic non-destructive inspection techniques were used to evaluate and characterize basalt, jute/hemp and bagasse fibers composite panels. Different defects were analyzed in terms of impact damage, delaminations and resin abnormalities. Of particular interest, homogeneous particleboards of sugarcane bagasse, a new plant fiber material, were studied. Pulsed phase thermography and principal component thermography were used as the post-processing methods. In addition, ultrasonic C-scan and continuous wave terahertz imaging were also carried out on the mineral fiber laminates for comparative purposes. Finally, an analytical comparison of different methods was given.

  13. Space Qualified Non-Destructive Evaluation and Structural Health Monitoring Technology, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Encouraged by Phase I accomplishments, the proposed Phase II program will significantly mature and align the development of a Space Qualified Non-Destructive...

  14. Time Domain Terahertz Axial Computed Tomography Non Destructive Evaluation, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to demonstrate key elements of feasibility for a high speed automated time domain terahertz computed axial tomography (TD-THz CT) non destructive...

  15. Time Domain Terahertz Axial Computed Tomography Non Destructive Evaluation, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — In this Phase 2 project, we propose to develop, construct, and deliver to NASA a computed axial tomography time-domain terahertz (CT TD-THz) non destructive...

  16. Performance and non-destructive evaluation methods of airborne radome and stealth structures

    Science.gov (United States)

    Panwar, Ravi; Ryul Lee, Jung

    2018-06-01

    In the past few years, great effort has been devoted to the fabrication of highly efficient, broadband radome and stealth (R&S) structures for distinct control, guidance, surveillance and communication applications for airborne platforms. The evaluation of non-planar aircraft R&S structures in terms of their electromagnetic performance and structural damage is still a very challenging task. In this article, distinct measurement techniques are discussed for the electromagnetic performance and non-destructive evaluation (NDE) of R&S structures. This paper deals with an overview of the transmission line method and free space measurement based microwave measurement techniques for the electromagnetic performance evaluation of R&S structures. In addition, various conventional as well as advanced methods, such as millimetre and terahertz wave based imaging techniques with great potential for NDE of load bearing R&S structures, are also discussed in detail. A glimpse of in situ NDE techniques with corresponding experimental setup for R&S structures is also presented. The basic concepts, measurement ranges and their instrumentation, measurement method of different R&S structures and some miscellaneous topics are discussed in detail. Some of the challenges and issues pertaining to the measurement of curved R&S structures are also presented. This study also lists various mathematical models and analytical techniques for the electromagnetic performance evaluation and NDE of R&S structures. The research directions described in this study may be of interest to the scientific community in the aerospace sectors.

  17. Application of optical interferometric techniques for non-destructive evaluation of novel "green" composite materials

    Science.gov (United States)

    Pagliarulo, Vito; Russo, Pietro; Bianco, Vittorio; Ferraro, Pietro; Simeoli, Giorgio; Cimino, Francesca; Ruggiero, Berardo

    2018-04-01

    Nowadays the use of advanced composite materials in aeronautics, both civil and military, in automotive and in sport applications, citing some, is well established. The characteristics of composite materials in terms of weight, fatigue resistance and corrosion resistance make them competitive with respect to conventional ones. On the other side, the fabrication process of the most employed composites reinforced by carbon fibers or glass fibers, needs of complex steps that not always are environmental complaisant. Moreover, such fibers are not themselves "green". For these reasons, in the last decades, the use of natural reinforcing fibers has gained an increasing attention allowing the development of new materials with the same advantages of composite systems but respecting the environment. Furthermore, such materials for their structural complexity are not always compatible with the use of standard non-destructive evaluation as the ultrasounds methods. In this work the efficiency of the employment of optical interferometric techniques as nondestructive evaluation methods in full field modality is proved on novel "green" composite materials. In particular, Electronic Speckle Pattern Interferometry has been tested on different kinds of specimens after flexural tests.

  18. Non-destructive evaluation of the hidden voids in integrated circuit packages using terahertz time-domain spectroscopy

    International Nuclear Information System (INIS)

    Park, Sung-Hyeon; Kim, Hak-Sung; Jang, Jin-Wook

    2015-01-01

    In this work, a terahertz time-domain spectroscopy (THz-TDS) imaging technique was used as a non-destructive inspection method for detecting voids in integrated circuit (IC) packages. Transmission and reflection modes, with an angle of incidence of 30°, were used to detect voids in IC packages. The locations of the detected voids in the IC packages could be calculated by analyzing THz waveforms. Finally, voids that are positioned at the different interfaces in the IC package samples could be successfully detected and imaged. Therefore, this THz-TDS imaging technique is expected to be a promising technique for non-destructive evaluation of IC packages. (paper)

  19. Static characterization of a soft elastomeric capacitor for non destructive evaluation applications

    International Nuclear Information System (INIS)

    Saleem, Hussam; Laflamme, Simon; Zhang, Huanhuan; Geiger, Randall; Kessler, Michael; Rajan, Krishna

    2014-01-01

    A large and flexible strain transducer consisting of a soft elastomeric capacitor (SEC) has been proposed by the authors. Arranged in a network setup, the sensing strategy offers tremendous potential at conducting non-destructive evaluation of large-scale surfaces. In prior work, the authors have demonstrated the performance of the sensor at tracking strain history, localizing cracks, and detecting vibration signatures. In this paper, we characterize the static performance of the proposed SEC. The characterization includes sensitivity of the signal, and temperature and humidity dependences. Tests are conducted on a simply supported aluminum beam subjected to bending as well as on a free standing sensor. The performance of the SEC is compared against off-the-shelf resistance-based strain gauges with resolution of 1 με. A sensitivity of 1190 pF/ε is obtained experimentally, in agreement with theory. Results also show the sensor linearity over the given level of strain, showing the promise of the SEC at monitoring of surface strain

  20. Static characterization of a soft elastomeric capacitor for non destructive evaluation applications

    Science.gov (United States)

    Saleem, Hussam; Laflamme, Simon; Zhang, Huanhuan; Geiger, Randall; Kessler, Michael; Rajan, Krishna

    2014-02-01

    A large and flexible strain transducer consisting of a soft elastomeric capacitor (SEC) has been proposed by the authors. Arranged in a network setup, the sensing strategy offers tremendous potential at conducting non-destructive evaluation of large-scale surfaces. In prior work, the authors have demonstrated the performance of the sensor at tracking strain history, localizing cracks, and detecting vibration signatures. In this paper, we characterize the static performance of the proposed SEC. The characterization includes sensitivity of the signal, and temperature and humidity dependences. Tests are conducted on a simply supported aluminum beam subjected to bending as well as on a free standing sensor. The performance of the SEC is compared against off-the-shelf resistance-based strain gauges with resolution of 1 μɛ. A sensitivity of 1190 pF/ɛ is obtained experimentally, in agreement with theory. Results also show the sensor linearity over the given level of strain, showing the promise of the SEC at monitoring of surface strain.

  1. Fractal dimension analysis for robust ultrasonic non-destructive evaluation (NDE) of coarse grained materials

    Science.gov (United States)

    Li, Minghui; Hayward, Gordon

    2018-04-01

    Over the recent decades, there has been a growing demand on reliable and robust non-destructive evaluation (NDE) of structures and components made from coarse grained materials such as alloys, stainless steels, carbon-reinforced composites and concrete; however, when inspected using ultrasound, the flaw echoes are usually contaminated by high-level, time-invariant, and correlated grain noise originating from the microstructure and grain boundaries, leading to pretty low signal-to-noise ratio (SNR) and the flaw information being obscured or completely hidden by the grain noise. In this paper, the fractal dimension analysis of the A-scan echoes is investigated as a measure of complexity of the time series to distinguish the echoes originating from the real defects and the grain noise, and then the normalized fractal dimension coefficients are applied to the amplitudes as the weighting factor to enhance the SNR and defect detection. Experiments on industrial samples of the mild steel and the stainless steel are conducted and the results confirm the great benefits of the method.

  2. Non-Destructive Evaluation Method Based On Dynamic Invariant Stress Resultants

    Directory of Open Access Journals (Sweden)

    Zhang Junchi

    2015-01-01

    Full Text Available Most of the vibration based damage detection methods are based on changes in frequencies, mode shapes, mode shape curvature, and flexibilities. These methods are limited and typically can only detect the presence and location of damage. Current methods seldom can identify the exact severity of damage to structures. This paper will present research in the development of a new non-destructive evaluation method to identify the existence, location, and severity of damage for structural systems. The method utilizes the concept of invariant stress resultants (ISR. The basic concept of ISR is that at any given cross section the resultant internal force distribution in a structural member is not affected by the inflicted damage. The method utilizes dynamic analysis of the structure to simulate direct measurements of acceleration, velocity and displacement simultaneously. The proposed dynamic ISR method is developed and utilized to detect the damage of corresponding changes in mass, damping and stiffness. The objectives of this research are to develop the basic theory of the dynamic ISR method, apply it to the specific types of structures, and verify the accuracy of the developed theory. Numerical results that demonstrate the application of the method will reflect the advanced sensitivity and accuracy in characterizing multiple damage locations.

  3. Development of non-destructive evaluation system using an HTS-SQUID gradiometer for magnetized materials

    Science.gov (United States)

    Kawano, J.; Tsukamoto, A.; Adachi, S.; Oshikubo, Y.; Hato, T.; Tanabe, K.; Okamura, T.

    We have developed a new eddy-current non-destructive evaluation (NDE) system using an HTS SQUID gradiometer with the aim of applying it to practical materials with magnetization. The new NDE system employs a LN2-cooled external Cu pickup coil and an HTS SQUID chip placed in a magnetic shield made of HTS material. The HTS SQUID chip consists of an HTS planar gradiometer manufactured by using a ramp-edge junction technology and a multi-turn HTS thin film input coil coupled with the flip-chip configuration. The first-order coaxial gradiometric Cu pickup coil with a diameter of 16 mm and the baseline of 5.6 mm was used in the present NDE experiments. By using this NDE system, we could observe defect-induced magnetic signals without an appreciable influence of magnetization up to 10 mT. We also examined the ability of detecting deep-lying defects and compared with the results obtained using our previous NDE system.

  4. PHOTOACOUSTIC NON-DESTRUCTIVE EVALUATION AND IMAGING OF CARIES IN DENTAL SAMPLES

    International Nuclear Information System (INIS)

    Li, T.; Dewhurst, R. J.

    2010-01-01

    Dental caries is a disease wherein bacterial processes damage hard tooth structure. Traditional dental radiography has its limitations for detecting early stage caries. In this study, a photoacoustic (PA) imaging system with the near-infrared light source has been applied to postmortem dental samples to obtain 2-D and 3-D images. Imaging results showed that the PA technique can be used to image human teeth caries. For non-destructive photoacoustic evaluation and imaging, the induced temperature and pressure rises within biotissues should not cause physical damage to the tissue. For example, temperature rises above 5 deg. C within live human teeth will cause pulpal necrosis. Therefore, several simulations based on the thermoelastic effect have been applied to predict temperature and pressure fields within samples. Predicted temperature levels are below corresponding safety limits, but care is required to avoid nonlinear absorption phenomena. Furthermore, PA imaging results from the phantom provide evidence for high sensitivity, which shows the imaging potential of the PA technique for detecting early stage disease.

  5. Non-destructive controls

    International Nuclear Information System (INIS)

    Nouvet, A.

    1978-01-01

    The non-destructive controls permit, while respecting their integrity, the direct and individual examination of parts or complete objects as they are manufactured, as well as to follow the evolution of their eventual defects while in operation. The choice of control methods depends on the manufacturing process and shapes of parts, on the physical properties of their components as well as the nature, position and size of the defects which are likely to be detected. Whether it is a question of controls by means of ionizing radiation, flux of neutrons, ultrasons, acoustic source, sweating, magnetoscopy. Foucault currents, thermography, detection of leaks or non-destructive metallography, each has a limited field of application such that they are less competitive than complementary [fr

  6. Evaluation of the MIT-Scan-T2 for non-destructive PCC pavement thickness determination.

    Science.gov (United States)

    2008-07-01

    The MIT-Scan-T2 device is marketed as a non-destructive way to determine pavement thickness on both : HMA and PCC pavements. PCC pavement thickness determination is an important incentivedisincentive : measurement for the Iowa DOT and contractors. Th...

  7. Dynamic laser speckle for non-destructive quality evaluation of bread

    Science.gov (United States)

    Stoykova, E.; Ivanov, B.; Shopova, M.; Lyubenova, T.; Panchev, I.; Sainov, V.

    2010-10-01

    Coherent illumination of a diffuse object yields a randomly varying interference pattern, which changes over time at any modification of the object. This phenomenon can be used for detection and visualization of physical or biological activity in various objects (e.g. fruits, seeds, coatings) through statistical description of laser speckle dynamics. The present report aims at non-destructive full-field evaluation of bread by spatial-temporal characterization of laser speckle. The main purpose of the conducted experiments was to prove the ability of the dynamic speckle method to indicate activity within the studied bread samples. In the set-up for acquisition and storage of dynamic speckle patterns an expanded beam from a DPSS laser (532 nm and 100mW) illuminated the sample through a ground glass diffuser. A CCD camera, adjusted to focus the sample, recorded regularly a sequence of images (8 bits and 780 x 582 squared pixels, sized 8.1 × 8.1 μm) at sampling frequency 0.25 Hz. A temporal structure function was calculated to evaluate activity of the bread samples in time using the full images in the sequence. In total, 7 samples of two types of bread were monitored during a chemical and physical process of bread's staling. Segmentation of images into matrixes of isometric fragments was also utilized. The results proved the potential of dynamic speckle as effective means for monitoring the process of bread staling and ability of this approach to differentiate between different types of bread.

  8. Numerical modeling for the electromagnetic non-destructive evaluation: application to the non-destructive evaluation of concrete; Modelisation numerique pour l'evaluation non destructive electromagnetique: application au controle non destructif des structures en beton

    Energy Technology Data Exchange (ETDEWEB)

    Travassos, L

    2007-06-15

    Concrete is the most common building material and accounts for a large part of the systems that are necessary for a country to operate smoothly including buildings, roads, and bridges. Nondestructive testing is one of the techniques that can be used to assess the structural condition. It provides non perceptible information that conventional techniques of evaluation unable to do. The main objective of this work is the numerical simulation of a particular technique of nondestructive testing: the radar. The numerical modeling of the radar assessment of concrete structures make it possible to envisage the behavior of the system and its capacity to detect defects in various configurations. To achieve this objective, it was implemented electromagnetic wave propagation models in concrete structures, by using various numerical techniques to examine different aspects of the radar inspection. First of all, we implemented the finite-difference time-domain method in 3D which allows to take into account concrete characteristics such as porosity, salt content and the degree of saturation of the mixture by using Debye models. In addition, a procedure to improve the radiation pattern of bow-tie antennas is presented. This approach involves the Moment Method in conjunction with the Multi objective Genetic Algorithm. Finally, we implemented imaging algorithms which can perform fast and precise characterization of buried targets in inhomogeneous medium by using three different methods. The performance of the proposed algorithms is confirmed by numerical simulations. (author)

  9. Infrared thermography non-destructive evaluation of lithium-ion battery

    Science.gov (United States)

    Wang, Zi-jun; Li, Zhi-qiang; Liu, Qiang

    2011-08-01

    The power lithium-ion battery with its high specific energy, high theoretical capacity and good cycle-life is a prime candidate as a power source for electric vehicles (EVs) and hybrid electric vehicles (HEVs). Safety is especially important for large-scale lithium-ion batteries, especially the thermal analysis is essential for their development and design. Thermal modeling is an effective way to understand the thermal behavior of the lithium-ion battery during charging and discharging. With the charging and discharging, the internal heat generation of the lithium-ion battery becomes large, and the temperature rises leading to an uneven temperature distribution induces partial degradation. Infrared (IR) Non-destructive Evaluation (NDE) has been well developed for decades years in materials, structures, and aircraft. Most thermographic methods need thermal excitation to the measurement structures. In NDE of battery, the thermal excitation is the heat generated from carbon and cobalt electrodes in electrolyte. A technique named "power function" has been developed to determine the heat by chemical reactions. In this paper, the simulations of the transient response of the temperature distribution in the lithium-ion battery are developed. The key to resolving the security problem lies in the thermal controlling, including the heat generation and the internal and external heat transfer. Therefore, three-dimensional modelling for capturing geometrical thermal effects on battery thermal abuse behaviour is required. The simulation model contains the heat generation during electrolyte decomposition and electrical resistance component. Oven tests are simulated by three-dimensional model and the discharge test preformed by test system. Infrared thermography of discharge is recorded in order to analyze the security of the lithium-ion power battery. Nondestructive detection is performed for thermal abuse analysis and discharge analysis.

  10. Non-Destructive Evaluation of Kissing Bonds using Local Defect Resonance (LDR) Spectroscopy: A Simulation Study

    Science.gov (United States)

    Delrue, S.; Tabatabaeipour, M.; Hettler, J.; Van Den Abeele, K.

    With the growing demand from industry to optimize and further develop existing Non-Destructive Testing & Evaluation (NDT&E) techniques or new methods to detect and characterize incipient damage with high sensitivity and increased quality, ample efforts have been devoted to better understand the typical behavior of kissing bonds, such as delaminations and cracks. Recently, it has been shown experimentally that the nonlinear ultrasonic response of kissing bonds could be enhanced by using Local Defect Resonance (LDR) spectroscopy. LDR spectroscopy is an efficient NDT technique that takes advantage of the characteristic fre- quencies of the defect (defect resonances) in order to provide maximum acoustic wave-defect interaction. In fact, for nonlinear methodologies, the ultrasonic excitation of the sample should occur at either multiples or integer ratios of the characteristic defect resonance frequencies, in order to obtain the highest signal-to-noise response in the nonlinear LDR spectroscopy. In this paper, the potential of using LDR spectroscopy for the detection, localization and characterization of kissing bonds is illustrated using a 3D simulation code for elastic wave propagation in materials containing closed but dynamically active cracks or delaminations. Using the model, we are able to define an appropriate method, based on the Scaling Subtraction Method (SSM), to determine the local defect resonance frequencies of a delamination in a composite plate and to illustrate an increase in defect nonlinearity due to LDR. The simulation results will help us to obtain a better understanding of the concept of LDR and to assist in the further design and testing of LDR spectroscopy for the detection, localization and characterization of kissing bonds.

  11. Improving the Repair Planning System for Mining Equipment on the Basis of Non-destructive Evaluation Data

    Science.gov (United States)

    Drygin, Michael; Kuryshkin, Nicholas

    2017-11-01

    The article tells about forming a new concept of scheduled preventive repair system of the equipment at coal mining enterprises, based on the use of modem non-destructive evaluation methods. The approach to the solution for this task is based on the system-oriented analysis of the regulatory documentation, non-destructive evaluation methods and means, experimental studies with compilation of statistics and subsequent grapho-analytical analysis. The main result of the work is a feasible explanation of using non-destructive evaluation methods within the current scheduled preventive repair system, their high efficiency and the potential of gradual transition to condition-based maintenance. In practice wide use of nondestructive evaluation means w;ill allow to reduce significantly the number of equipment failures and to repair only the nodes in pre-accident condition. Considering the import phase-out policy, the solution for this task will allow to adapt the SPR system to Russian market economy conditions and give the opportunity of commercial move by reducing the expenses for maintenance of Russian-made and imported equipment.

  12. Non-destructive Engineering

    International Nuclear Information System (INIS)

    Ko, Jin Hyeon; Ryu, Taek In; Ko, Jun Bin; Hwang, Yong Hwa

    2006-08-01

    This book gives descriptions of non-destructive engineering on outline of non-destructive test, weld defects, radiographic inspection radiography, ultrasonic inspection, magnetic particle testing, liquid penetrant testing, eddy current inspection method, strain measurement, acoustic emission inspection method, other non-destructive testing like leakage inspection method, and non-destructive mechanics for fault analysis such as Griffiths creaking theory, and stress analysis of creaking.

  13. Application of advanced non-destructive testing to evaluate the foundation depth of the existing structures

    International Nuclear Information System (INIS)

    Nguyen Le Son; Nguyen Phuoc Lan; Pham The Hung; Vu Huy Thuc; Phan Chanh Vu; Bui Xuan Huy; Tran Thanh Luan; Nguyen Kien Chinh; Le Danh Chuan

    2004-01-01

    situations encountered in practice, e.g. a stiffer layer near the bottom of a deep foundation. Due to the signal attenuates beyond recognition, variation of compression wave velocity with depth and the uncertainty in the travel paths, the distance between the foundation and access hole less than 1.5 m should be selected. At greater distances, the interpretations of the compiled first arrival profiles become more difficult, especially in the conditions where subsurface conditions are unknown. A suggested combination of the parallel seismic technique with gamma logging can improve the reliability of interpreted depths for the complex soil strata. The acquired capabilities are valuable asset that can clearly be utilized as the effort to apply advanced non-destructive (NDT) technique - PSM to the rehabilitation investigations of existing structures. (author)

  14. Combined Non-destructive Testing (NDT) methods for evaluating concrete quality

    International Nuclear Information System (INIS)

    Mohamad Pauzi Ismail; Noor Azreen Masenwat; Suhairy Sani; Nasharuddin Isa; Mohamad Haniza Mahmud

    2014-01-01

    This paper described the results of combining Non-destructive measurements on concrete. Local crushed granite and hematite were used as coarse aggregates; mining sand and river sand were used as fine aggregates to produce various density and strength of concrete. Concrete samples (150 mm cubes and interlocked blocks) were prepared by changing mix ratio, water to cement ratio (w/c) and types of aggregates. Density, rebound number(N) and ultrasonic pulse velocity (UPV) of the samples were taken before compressed to failure. The measurement results are explained and discussed. (author)

  15. Photothermal Analysis Applied To Non-Destructive Evaluation Of Paint On Polymer Substrates

    Science.gov (United States)

    Vergne, D.; Busse, G.

    1988-10-01

    The decoration and protection quality of coatings on polymers is of considerable interest for industrial applications. However, at present there is no non-destructive (NDE) method to monitor the quality of these coatings during the manufacturing process or while they are in use. As an approach for such a method we use photothermal analysis where the propagation and reflection of optically generated thermal waves is investigated. We found that one can monitor the drying process, the effect of surface temperature treatment, and coating thickness (accuracy + 2 μm in 50 μm thickness). The information obtained with this remote NDE method is adequate for most industrial applications, eg car manufacturing.

  16. Non-destructive evaluation of timber structures in a historical building of Tiradentes , MG

    Directory of Open Access Journals (Sweden)

    Luciana Barbosa de Abreu

    2013-09-01

    Full Text Available Problems related to the durability of wood are commonly found in historical buildings structures. Preservation and conservation resolutions must be adopted, in order to avoid losses and substitutions, which mischaracterize buildings. Non-destructive methods for detecting deterioration should be used in order to substantiate decisions and increase the longevity of historical heritage. This work was carried out in order to perform non-destructive essays to infer about the integrity of a beam and a pillar of the original construction of the Sobrado Ramalho, a historical building of the city of Tiradentes, MG. The equipments utilized were the Stress Wave Timer and resistograph. Samples of the elements were taken for analysis of density. The results showed that, in both structures, to calculate the dynamic modulus of elasticity, there was no significant difference for the application of stress wave timer on the alignments studied. There was no significant difference between the directions of application of the resistograph on the pillar, due to its apparent entirety and regular sessions, practically square, and to not being loaded eccentrically. In the case of the beam, there was significant difference, presumably because it has cracks in its traction line. The equipments, unknown by professionals of heritage conservation allow promising methodologies for inspection of timber structures in service.

  17. Reports from the Yayoi symposium on quantitative non-destructive evaluation, (1)

    International Nuclear Information System (INIS)

    1990-02-01

    The report consists of four parts. The first part deals with nondestructive evaluation in the nuclear power industry, focusing on in-service inspection in nuclear power plant, eddy current crack detection test of steam generator heat-exchanger tube, and nondestructive test of thin-wall components. The second part discusses inverse problems and quantification for nondestructive evaluation, centering on the identification of defect by boundary element method, quantification by using supersonic wave, defect shape recognition by the electrical potential method, and a neural network applied to crack type recognition. The third part deals with the application of electromagnetic phenomena to nondestructive evaluation, focusing on a superconducting quantum interference device, electromagnetic measurement in the iron industry, and nondestructive measurement of residual stress by magnetic process. The fourth part discusses visualization techniques for nondestructive evaluation, focusing on image processing, neutron radiography, X-ray CT, defect diagnosis by infrared rays, and visualization of magnetic field. (N.K.)

  18. Magnetic non-destructive evaluation of ruptures of tensile armor in oil risers

    International Nuclear Information System (INIS)

    Pérez-Benitez, J A; Padovese, L R

    2012-01-01

    Risers are flexible multilayered pipes formed by an inner flexible metal structure surrounded by polymer layers and spiral wound steel ligaments, also known as armor wires. Since these risers are used to link subsea pipelines to floating oil and gas production installations, and their failure could produce catastrophic consequences, some methods have been proposed to monitor the armor integrity. However, until now there is no practical method that allows the automatic non-destructive detection of individual armor wire rupture. In this work we show a method using magnetic Barkhausen noise that has shown high efficiency in the detection of armor wire rupture. The results are examined under the cyclic and static load conditions of the riser. This work also analyzes the theory behind the singular dependence of the magnetic Barkhausen noise on the applied tension in riser armor wires. (paper)

  19. Post-harvest Quality Evaluation of Grapes using Non-destructive Electronic Nose

    Directory of Open Access Journals (Sweden)

    RAJIN S. M. Ataul Karim

    2015-10-01

    Full Text Available Over the past decades, electronic nose has opened a variety of possibilities and is becoming one of the most important non-destructive odour inspection technologies in the food industry. The objective of this study is to determine the quality degradation of the fruit by monitoring the change in the volatile compound while kept in storage using a lab manufactured electronic nose. Here, grapes are chosen as the fruit sample for experiment. Principal component analysis (PCA is used to determine the ability of the electronic nose to distinguish the different quality of the fruit stored over an interval of time. The result shows that using PCA analysis, the electronic nose is able to identify a clear distinction between the aromas of grapes stored for different time intervals.

  20. Project GRETE: evaluation of non destructive testing techniques for monitoring of material degradation

    International Nuclear Information System (INIS)

    Coste, J.F.

    2001-01-01

    The material aging of major critical components of nuclear installations due to in-service conditions may lead to a degradation of their mechanical characteristics. The early detection of material changes and their monitoring using innovative non destructive testing techniques would allow to plan actions in order to prevent the apparition of macroscopic damage (e.g. cracks). One major difficulty in using these particular techniques is to correlate the changes in the measured NDT signals to the microstructural changes in the material due to aging. This problem may be solved through careful microstructural examinations of the material damage. The objective of the project GRETE is to illustrate the potential use of NDT techniques for the monitoring of material degradation through two examples: neutron irradiation of reactor pressure vessel steel and thermal fatigue of piping. The purpose of this paper is to present the project and its programme of work. (author)

  1. Non-destructive evaluation methods to improve quality control in low enrichment MTR fuel plate production

    International Nuclear Information System (INIS)

    Milne, J.M.; Lidington, B.; Hawker, B.M.

    1991-01-01

    This paper summarises some preliminary non-destructive measurements made recently at the Harwell Laboratory on a prototype low enrichment MTR fuel plate. The measurements were intended to indicate the potential of two different techniques for improving quality control in plate production. Pulse Video Thermography (PVT) is being considered as an alternative to ultrasound transmission measurements for the detection and sizing of lack of thermal bonding between the fuel and the clad layers, either to verify the indications from the established ultrasonic methods before destroying the plate or as a replacement method of inspection. High frequency pulse-echo ultrasonics is being considered for providing maps of clad layer thickness on each side of the plate. The measurements have indicated the potential for both methods, but more work is required, using a test plate containing controlled defects, to establish their capability. (orig.)

  2. Miniaturized Time Domain Terahertz Non Destructive Evaluation for In-Orbit Inspection of Inflatable Habitats and Thermal Protection Systems, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Picometrix's time-domain terahertz (TD-THz) non-destructive evaluation (NDE) technology could be used to inspect space flight structures such as inflatable space...

  3. Miniaturized Time Domain Terahertz Non Destructive Evaluation for In-Orbit Inspection of Inflatable Habitats and Thermal Protection Systems, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Picometrix's time-domain terahertz (TD-THz) non-destructive evaluation (NDE) technology could be used to inspect space flight structures such as inflatable space...

  4. Performance values for non destructive assay (NDA) techniques applied to safeguards: the 2002 evaluation by the ESARDA NDA Working Group

    International Nuclear Information System (INIS)

    Guardini, S.

    2003-01-01

    The first evaluation of NDA performance values undertaken by the ESARDA Working Group for Standards and Non Destructive Assay Techniques (WGNDA) was published in 1993. Almost 10 years later the Working Group decided to review those values, to report about improvements and to issue new performance values for techniques which were not applied in the early nineties, or were at that time only emerging. Non-Destructive Assay techniques have become more and more important in recent years, and they are used to a large extent in nuclear material accountancy and control both by operators and control authorities. As a consequence, the performance evaluation for NDA techniques is of particular relevance to safeguards authorities in optimising Safeguards operations and reducing costs. Performance values are important also for NMAC regulators, to define detection levels, limits for anomalies, goal quantities and to negotiate basic audit rules. This paper presents the latest evaluation of ESARDA Performance Values (EPVs) for the most common NDA techniques currently used for the assay of nuclear materials for Safeguards purposes. The main topics covered by the document are: techniques for plutonium bearing materials: PuO 2 and MOX; techniques for U-bearing materials; techniques for U and Pu in liquid form; techniques for spent fuel assay. This issue of the performance values is the result of specific international round robin exercises, field measurements and ad hoc experiments, evaluated and discussed in the ESARDA NDA Working Group. (author)

  5. Quality evaluation of soil-cement-plant residue bricks by the combination of destructive and non-destructive tests

    Directory of Open Access Journals (Sweden)

    Regis de C. Ferreira

    Full Text Available ABSTRACT Residues from agricultural activity can be used to improve the quality of soil-based bricks, constituting an interesting alternative for their destination. The technical quality of soil-cement-plant residue bricks was evaluated by the combination of non-destructive and destructive methods. A predominant clayey soil, Portland cement and residues of husks of both rice and Brachiaria brizantha cv. Marandu (0, 10, 20, 30 and 40%, in mass, in substitution to the 10% cement content were used. The bricks were submitted to destructive (water absorption and compressive strength and nondestructive (ultrasound tests for their physical and mechanical characterization. Results from both destructive and non-destructive tests were combined to determine the quantitative parameter named “anisotropic resistance” in order to evaluate the quality of the bricks. The addition that promoted best technical quality was 10% residue content, regardless of the residue type. The anisotropic resistance proved to be adequate for the technical quality evaluation of the bricks.

  6. Evaluation of Cs-134 and Cs-137 in sugar by non-destructive analysis

    Energy Technology Data Exchange (ETDEWEB)

    Correira, Filipe Lopes de Barros; Santos Júnior, José Araújo dos; Amaral, Romilton dos Santos; Santos, Josineide Marques do Nascimento; Medeiros, Nilson Vicente da Silva; Santos Junior, Otávio Pereira dos, E-mail: filipelbck@gmail.com, E-mail: jaraujo@ufpe.br, E-mail: romilton@ufpe.br, E-mail: josineide.santos@ufpe.br, E-mail: nilson.medeiros@ufpe.br, E-mail: otavio.santos@vitoria.ifpe.edu.br [Universidade Federal de Pernambuco (RAE/UFPE), Recife, PE (Brazil). Departamento de Energia Nuclear. Grupo de Radioecologia; Vieira, José Wilson, E-mail: jose.wilson59@uol.com.br [Instituto Federal de Pernambuco (IFPE), Recife (Brazil); Valois, Rhaiana Caminha, E-mail: rhaianavalois@hotmail.com [Colégio Militar do Recife, PE (Brazil)

    2017-07-01

    The spread of anthropogenic radioisotopes in the environment comes from nuclear tests and accidents that occurred in the past, which justifies constant monitoring, to guarantee the safety and control of the activities that involve these applications. Brazil, when exporting some food products, depending on the country of origin, a radiometric report is required, especially for sugar that has high world consumption and the possibility of contamination of the population, when radioisotope is present. Therefore, the investigation of the levels of Cs-134 and Cs-137 in sugar matrices is necessary to predict radioecological emergency situations. The National Nuclear Energy Commission, the agency that oversees nuclear applications in Brazil, With Resolution No. 102 of December 22, 2010 approved regulatory positions, including levels of action for food control, recommended to restrict the marketing of food products in Brazil. General, whose specific activity is higher than the limit of 1.0 kBq / kg for the said isotopes of cesium independently. Aiming for improvements in the analyzes that are already performed in the Laboratory of Radioecology and Environmental Control of the Department of Nuclear Energy of the Federal University of Pernambuco to assurance the quality of sugar marketed in Brazil, a standard procedure for the analysis of these radionuclides in this matrix was determined. High resolution gamma spectrometry with non-destructive analysis was used to perform the tests. Priority was given to parameters that directly influence the qualitative and quantitative analysis of these radioactive elements, such as calibration in energy and efficiency, resolution, influence of self-absorption, counting statistics directly associated with the time of analysis, influence of background radiation and geometry analysis. (author)

  7. Evaluation of Cs-134 and Cs-137 in sugar by non-destructive analysis

    International Nuclear Information System (INIS)

    Correira, Filipe Lopes de Barros; Santos Júnior, José Araújo dos; Amaral, Romilton dos Santos; Santos, Josineide Marques do Nascimento; Medeiros, Nilson Vicente da Silva; Santos Junior, Otávio Pereira dos; Valois, Rhaiana Caminha

    2017-01-01

    The spread of anthropogenic radioisotopes in the environment comes from nuclear tests and accidents that occurred in the past, which justifies constant monitoring, to guarantee the safety and control of the activities that involve these applications. Brazil, when exporting some food products, depending on the country of origin, a radiometric report is required, especially for sugar that has high world consumption and the possibility of contamination of the population, when radioisotope is present. Therefore, the investigation of the levels of Cs-134 and Cs-137 in sugar matrices is necessary to predict radioecological emergency situations. The National Nuclear Energy Commission, the agency that oversees nuclear applications in Brazil, With Resolution No. 102 of December 22, 2010 approved regulatory positions, including levels of action for food control, recommended to restrict the marketing of food products in Brazil. General, whose specific activity is higher than the limit of 1.0 kBq / kg for the said isotopes of cesium independently. Aiming for improvements in the analyzes that are already performed in the Laboratory of Radioecology and Environmental Control of the Department of Nuclear Energy of the Federal University of Pernambuco to assurance the quality of sugar marketed in Brazil, a standard procedure for the analysis of these radionuclides in this matrix was determined. High resolution gamma spectrometry with non-destructive analysis was used to perform the tests. Priority was given to parameters that directly influence the qualitative and quantitative analysis of these radioactive elements, such as calibration in energy and efficiency, resolution, influence of self-absorption, counting statistics directly associated with the time of analysis, influence of background radiation and geometry analysis. (author)

  8. Evaluating different approaches to non-destructive nitrogen status diagnosis of rice using portable RapidSCAN active canopy sensor.

    Science.gov (United States)

    Lu, Junjun; Miao, Yuxin; Shi, Wei; Li, Jingxin; Yuan, Fei

    2017-10-26

    RapidSCAN is a new portable active crop canopy sensor with three wavebands in red, red-edge, and near infrared spectral regions. The objective of this study was to determine the potential and practical approaches of using this sensor for non-destructive diagnosis of rice nitrogen (N) status. Sixteen plot experiments and ten on-farm experiments were conducted from 2014 to 2016 in Jiansanjiang Experiment Station of the China Agricultural University and Qixing Farm in Northeast China. Two mechanistic and three semi-empirical approaches using the sensor's default vegetation indices, normalized difference vegetation index and normalized difference red edge, were evaluated in comparison with the top performing vegetation indices selected from 51 tested indices. The results indicated that the most practical and stable method of using the RapidSCAN sensor for rice N status diagnosis is to calculate N sufficiency index with the default vegetation indices and then to estimate N nutrition index non-destructively (R 2  = 0.50-0.59). This semi-empirical approach achieved a diagnosis accuracy rate of 59-76%. The findings of this study will facilitate the application of the RapidSCAN active sensor for rice N status diagnosis across growth stages, cultivars and site-years, and thus contributing to precision N management for sustainable intensification of agriculture.

  9. Characterization of airborne particulate matter in Santiago, Chile. Part 5: non-destructive determination by x-ray fluorescence

    International Nuclear Information System (INIS)

    Poblete, V.H.; Hurtado, O.; Toro, P.

    1995-01-01

    A procedure for non-destructive analysis of airborne particular matter using X ray fluorescence is presented. The elements Fe, Pb and Zn were determined and their concentration compared with the results reported by other techniques. The homogeneity of the distribution of Fe in the samples was investigated. (author). 4 refs, 5 figs

  10. Testing an Impedance Non-destructive Method to Evaluate Steel-Fiber Concrete Samples

    Science.gov (United States)

    Komarkova, Tereza; Fiala, Pavel; Steinbauer, Miloslav; Roubal, Zdenek

    2018-02-01

    Steel-fiber reinforced concrete is a composite material characterized by outstanding tensile properties and resistance to the development of cracks. The concrete, however, exhibits such characteristics only on the condition that the steel fibers in the final, hardened composite have been distributed evenly. The current methods to evaluate the distribution and concentration of a fiber composite are either destructive or exhibit a limited capability of evaluating the concentration and orientation of the fibers. In this context, the paper discusses tests related to the evaluation of the density and orientation of fibers in a composite material. Compared to the approaches used to date, the proposed technique is based on the evaluation of the electrical impedance Z in the band close to the resonance of the sensor-sample configuration. Using analytically expressed equations, we can evaluate the monitored part of the composite and its density at various depths of the tested sample. The method employs test blocks of composites, utilizing the resonance of the measuring device and the measured sample set; the desired state occurs within the interval of between f=3 kHz and 400 kHz.

  11. Non-destructive evaluation utilizing imaging plates for field radiography applications

    International Nuclear Information System (INIS)

    White, Brian S.

    2016-01-01

    The oil and gas industry has utilized film radiography for the evaluation of pipeline welds for many years. The world has evolved, and today people are easily sharing digital images as part of the information revolution. Computed radiography is ready to replace film radiography for portable outdoor use applications. Computed radiography technology adoption has been contingent upon achieving acceptable image quality and getting enough imaging plate use cycles to be profitable. Image quality is dependent upon shot conditions, imaging plate type, reader settings, and scatter control. Likewise, the number of achievable use cycles is dependent upon the imaging plate design for durability and the user's operating environment. This presentation reviews the basic principles of storage phosphor imaging plates. Usage criteria and guidelines for optimum image quality and maximized overall use cycles will be discussed for various imaging plate types. A comparison of film and computed radiography imaging plate technology will be presented.

  12. Oxidation damage evaluation by non-destructive method for graphite components in high temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Shibata, Taiju; Tada, Tatsuya; Sumita, Junya; Sawa, Kazuhiro

    2008-01-01

    To develop non-destructive evaluation methods for oxidation damage on graphite components in High Temperature Gas-cooled Reactors (HTGRs), the applicability of ultrasonic wave and micro-indentation methods were investigated. Candidate graphites, IG-110 and IG-430, for core components of Very High Temperature Reactor (VHTR) were used in this study. These graphites were oxidized uniformly by air at 500degC. The following results were obtained from this study. (1) Ultrasonic wave velocities with 1 MHz can be expressed empirically by exponential formulas to burn-off, oxidation weight loss. (2) The porous condition of the oxidized graphite could be evaluated with wave propagation analysis with a wave-pore interaction model. It is important to consider the non-uniformity of oxidized porous condition. (3) Micro-indentation method is expected to determine the local oxidation damage. It is necessary to assess the variation of the test data. (author)

  13. Non-destructive electrochemical techniques applied to the corrosion evaluation of the liner structures in nuclear power plants

    International Nuclear Information System (INIS)

    Martinez, I.; Castillo, A.; Andrade, C.

    2008-01-01

    The liner structure in nuclear power plants provides containment for the operation and therefore the study of its durability and integrity during its service life is an important issue. There are several causes for the deterioration of the liner, which in general involve corrosion due to its metallic nature. The present paper is aimed at describing the assessment of corrosion problems of two liners from two different nuclear power plants, which were evaluated using non-destructive electrochemical techniques. In spite of the testing difficulties arisen, from the results extracted it can be concluded that the electrochemical techniques applied are adequate for the corrosion evaluation. They provide important information about the integrity of the structure and allow for its evolution with time to be assessed

  14. Non-destructive evaluation of the cladding thickness in LEU fuel plates by accurate ultrasonic scanning technique

    Energy Technology Data Exchange (ETDEWEB)

    Borring, J.; Gundtoft, H.E.; Borum, K.K.; Toft, P. [Riso National Lab. (Denmark)

    1997-08-01

    In an effort to improve their ultrasonic scanning technique for accurate determination of the cladding thickness in LEU fuel plates, new equipment and modifications to the existing hardware and software have been tested and evaluated. The authors are now able to measure an aluminium thickness down to 0.25 mm instead of the previous 0.35 mm. Furthermore, they have shown how the measuring sensitivity can be improved from 0.03 mm to 0.01 mm. It has now become possible to check their standard fuel plates for DR3 against the minimum cladding thickness requirements non-destructively. Such measurements open the possibility for the acceptance of a thinner nominal cladding than normally used today.

  15. SAFT-assisted sound beam focusing using phased arrays (PA-SAFT) for non-destructive evaluation

    Science.gov (United States)

    Nanekar, Paritosh; Kumar, Anish; Jayakumar, T.

    2015-04-01

    Focusing of sound has always been a subject of interest in ultrasonic non-destructive evaluation. An integrated approach to sound beam focusing using phased array and synthetic aperture focusing technique (PA-SAFT) has been developed in the authors' laboratory. The approach involves SAFT processing on ultrasonic B-scan image collected by a linear array transducer using a divergent sound beam. The objective is to achieve sound beam focusing using fewer elements than the ones required using conventional phased array. The effectiveness of the approach is demonstrated on aluminium blocks with artificial flaws and steel plate samples with embedded volumetric weld flaws, such as slag and clustered porosities. The results obtained by the PA-SAFT approach are found to be comparable to those obtained by conventional phased array and full matrix capture - total focusing method approaches.

  16. Non-Destructive Evaluation for Corrosion Monitoring in Concrete: A Review and Capability of Acoustic Emission Technique

    Science.gov (United States)

    Zaki, Ahmad; Chai, Hwa Kian; Aggelis, Dimitrios G.; Alver, Ninel

    2015-01-01

    Corrosion of reinforced concrete (RC) structures has been one of the major causes of structural failure. Early detection of the corrosion process could help limit the location and the extent of necessary repairs or replacement, as well as reduce the cost associated with rehabilitation work. Non-destructive testing (NDT) methods have been found to be useful for in-situ evaluation of steel corrosion in RC, where the effect of steel corrosion and the integrity of the concrete structure can be assessed effectively. A complementary study of NDT methods for the investigation of corrosion is presented here. In this paper, acoustic emission (AE) effectively detects the corrosion of concrete structures at an early stage. The capability of the AE technique to detect corrosion occurring in real-time makes it a strong candidate for serving as an efficient NDT method, giving it an advantage over other NDT methods. PMID:26251904

  17. Non-destructive evaluation of the cladding thickness in LEU fuel plates by accurate ultrasonic scanning technique

    International Nuclear Information System (INIS)

    Borring, J.; Gundtoft, H.E.; Borum, K.K.; Toft, P.

    1997-01-01

    In an effort to improve their ultrasonic scanning technique for accurate determination of the cladding thickness in LEU fuel plates, new equipment and modifications to the existing hardware and software have been tested and evaluated. The authors are now able to measure an aluminium thickness down to 0.25 mm instead of the previous 0.35 mm. Furthermore, they have shown how the measuring sensitivity can be improved from 0.03 mm to 0.01 mm. It has now become possible to check their standard fuel plates for DR3 against the minimum cladding thickness requirements non-destructively. Such measurements open the possibility for the acceptance of a thinner nominal cladding than normally used today

  18. Non-Destructive Evaluation for Corrosion Monitoring in Concrete: A Review and Capability of Acoustic Emission Technique

    Directory of Open Access Journals (Sweden)

    Ahmad Zaki

    2015-08-01

    Full Text Available Corrosion of reinforced concrete (RC structures has been one of the major causes of structural failure. Early detection of the corrosion process could help limit the location and the extent of necessary repairs or replacement, as well as reduce the cost associated with rehabilitation work. Non-destructive testing (NDT methods have been found to be useful for in-situ evaluation of steel corrosion in RC, where the effect of steel corrosion and the integrity of the concrete structure can be assessed effectively. A complementary study of NDT methods for the investigation of corrosion is presented here. In this paper, acoustic emission (AE effectively detects the corrosion of concrete structures at an early stage. The capability of the AE technique to detect corrosion occurring in real-time makes it a strong candidate for serving as an efficient NDT method, giving it an advantage over other NDT methods.

  19. Evaluation of non-destructive density determination for QA/QC acceptance testing : research project capsule.

    Science.gov (United States)

    2017-08-01

    LTRCs Geotechnical and Asphalt groups will be conducting two separate field and laboratory evaluations. The Geotechnical group will evaluate field densities of soil layers and the asphalt group will evaluate field densities on asphalt pavement lay...

  20. A non-destructive evaluation of transverse hydrogen cracking in high strength flux-cored weld metal

    International Nuclear Information System (INIS)

    Sterjovski, Z.; Carr, D. G.; Holdstock, R.; Nolan, D.; Norrish, J.

    2007-01-01

    Transverse hydrogen cracking in high strength weld metal (WM) is a potentially serious problem in thick-sections, especially in highly restrained structures. This paper presents preliminary re suits for which transverse weld metal hydrogen cracking was purposefully generated in 40 mm thick high strength WM to study the effectiveness of various non-destructive testing methods in locating and sizing transverse cracks. Transverse WM hydrogen cracking was intentionally produced by: increasing diffusible hydrogen levels through the introduction of 2% hydrogen in CO 2 shielding gas and minimizing interpass temperature and time; increasing the cracking susceptibility of the micro structure by increasing cooling rate with a large-scale test plate and maintaining an interpass temperature below 70 deg C; increasing stress levels with the use of stiffeners and end welds; and rapid postweld cooling to a temperature lower than 100 deg C. The extent of transverse weld metal hydrogen cracking was evaluated by non-destructive testing (NDT), which included conventional ultrasonic testing, radiography, acoustic emission monitoring and magnetic particle inspection. It was established that conventional ultrasonic testing was the most effective of the NDT techniques used. Acoustic emission monitoring revealed that two different types of emissions emanated from the weld metal and that the majority of emissions occurred within the first 48 hours of welding, although there was some evidence of cracking well after this initial 48 hour period. Larger sized cracks were observed near the transverse stiffeners (and weld ends) where tensile residual stresses (both longitudinal and transverse) were thought to be highest and the micro structure was therefore more susceptible to cracking. Additionally, numerous finer cracks were located in the top third of the plate (in the thickness direction) and on both sides of the weld centre line

  1. Development and optimization of thermographic techniques for Non-Destructive Evaluation of multilayered structures

    Science.gov (United States)

    Gavrilov, Dmitry J.

    Quality control of modern materials is of the utmost importance in science and industry. Methods for nondestructive evaluation of material properties and the presence of defects are numerous. They differ in terms of their sensitivity and applicability in various conditions, and they provide different kinds of data such as the speed of sound in the material, its hardness, radiation absorption, etc. Based on measured characteristics an analyst makes a decision on the material studied. This work addresses a class of methods known as active thermographic analysis. Thermography analyzes the temperature of the surface of the sample under different external conditions. By keeping track of temperature changes at the surface caused by a deposition of heat on the sample one can determine its material properties such as theand processing the data captured it is possible to make decisions on parameters of this sample. Among the data which can be acquired are such important information as the location of internal defects (e.g., detachments, hollows, inclusions), thickness of the material layers, thermal parameters of the material and the location of internal defects (e.g., detachments, hollows, inclusions). The first part of this research investigates a method for analysis of layered composite materials using the approach based on interference of so called temperature waves. As demonstrated using the expressions derived, one can determine the thermal properties of the layers of the sample by applying a harmonically modulated heat flux to the surfaces and measuring the phase of the periodically changing surface temperature. This approach can be of use in the field of designing and analysis of composite thermal insulation coatings. In the second part of this work a method of analyzing objects of fine art was investigated, particularly - detection of subsurface defects. In the process of preserving art it is of primary importance to determine whether restoration is necessary

  2. Using the World-Wide Web to Facilitate Communications of Non-Destructive Evaluation

    Science.gov (United States)

    McBurney, Sean

    1995-01-01

    The high reliability required for Aeronautical components is a major reason for extensive Nondestructive Testing and Evaluation. Here at Langley Research Center (LaRC), there are highly trained and certified personal to conduct such testing to prevent hazards from occurring in the workplace and on the research projects for the National Aeronautics and Space Administration (NASA). The purpose of my studies was to develop a communication source to educate others of the services and equipment offered here. This was accomplished by creating documents that are accessible to all in the industry via the World Wide Web.

  3. Non-destructive evaluation of material degradation in RPV steel by magnetic methods

    International Nuclear Information System (INIS)

    Takahashi, S.; Kikuchi, H.; Kamada, Y.; Ara, K.; Zhang, L.; Liu, T.

    2004-01-01

    The minor hysteresis loops are measured with increasing magnetic field amplitude, H a , step by step and analyzed in connection with the lattice defects such as dislocations in deformed and neutron irradiated A533B steels. We have defined several new magnetic parameters in the minor loops: they are a pseudo coercive force H c *, a pseudo remanence B R *, a magnetic susceptibility at pseudo coercive force χ H *, pseudo hysteresis loss W f *, pseudo remanence work W r *. H c * is the magnetic field where the magnetization becomes zero in the minor loop. Six coefficients sensitive to lattice defects are obtained by the pseudo magnetic properties and they are independent of H a as well as the magnetic field. These coefficients are effective parameters for nondestructive evaluation of degradation before the initiation of cracking. The minor loops have several advantages for the nondestructive evaluation compared with the major loop. The coefficients have much information about lattice defects and the high accuracy. The measurement is available for low magnetic field of 20 Oe and the H a step is not necessarily fine for the detailed information because of the similarity. (orig.)

  4. Non-destructive evaluation of impact damage on carbon fiber laminates: Comparison between ESPI and Shearography

    Energy Technology Data Exchange (ETDEWEB)

    Pagliarulo, V., E-mail: v.pagliarulo@isasi.cnr.it; Ferraro, P. [CNR National Research Council, ISASI, Institute of Applied Sciences and Intelligent Systems, via Campi Flegrei 34, 80078 Pozzuoli, NA (Italy); Lopresto, V.; Langella, A. [Dpt. Of Chemicals, Materials and Production Engin., University of Naples “Federico II”, P.leTecchio 80, Naples (Italy); Antonucci, V.; Ricciardi, M. R. [CNR National Research Council, IPCB, Institute of Polymer Composites and Biomedical Materials, P.E. Fermi, Portici (Italy)

    2016-06-28

    The aim of this paper is to investigate the ability of two different interferometric NDT techniques to detect and evaluate barely visible impact damage on composite laminates. The interferometric techniques allow to investigate large and complex structures. Electronic Speckle Pattern Interferometry (ESPI) works through real-time surface illumination by visible laser (i.e. 532 nm) and the range and the accuracy are related to the wavelength. While the ESPI works with the “classic” holographic configuration, that is reference beam and object beam, the Shearography uses the object image itself as reference: two object images are overlapped creating a shear image. This makes the method much less sensitive to external vibrations and noise but with one difference, it measures the first derivative of the displacement. In this work, different specimens at different impact energies have been investigated by means of both methods. The delaminated areas have been estimated and compared.

  5. Non-destructive evaluation of the water content of concretes by low energy gamma backscattering

    International Nuclear Information System (INIS)

    Raghunath, V.M.; Bhatnagar, P.K.; Meenakshisundaram, V.

    1983-01-01

    A method of estimating the water content of various concretes mixed with neutron absorbers like boron or rare earths is described. This makes use of the fact that a large buildup of low energy photons in the 20 - 100 keV range is observed in the backscattered spectrum from water when compared to conrete. A 4.36 mCi 137 Cs (662 keV) source is used with a 1 mm thick NaI scintillator as the detector to measure the backscattered radiation in the energy range. Calibration curves for evaluating the water content in borated concretes, ordinary conretes of different thickness, and a mortar brick are reported. It has been possible to estimate the water content to within 0.25% (by weight) by this method. (orig.)

  6. Improvement and evaluation of vegerable seed quality by the use of non-destructive technologies

    DEFF Research Database (Denmark)

    Olesen, Merete Halkjær

    and HC=CH structures which represent some of the functional groups in lipids.The same differences in absorbance bands were observed between seeds with different germination capacities. Correct classification of seed germination ranged from 89.5 % to 98.3 %, using extended canonical variance analysis...... are all supposed to influence germination of the seed. To increase the number of non-germinating seeds, seed samples were exposed to accelerated ageing (41 °C for 72 h). This also provides an opportunity to evaluate the difference between NIR spectra of aged and non-aged seeds. Lipids play a major role...... in both ageing and germination. During accelerated ageing lipid peroxidation leads to deterioration of cell membranes and this leads to reduced germination capacity of the seeds. Assignment of difference between scatter corrected absorbance spectra of aged and non-aged seeds leads to 12 the CH2, CH3...

  7. Non-destructive evaluation of the water content of concretes by low energy gamma backscattering

    Energy Technology Data Exchange (ETDEWEB)

    Raghunath, V M; Bhatnagar, P K; Meenakshisundaram, V [Reactor Research Centre, Kalpakkam (India). Safety Research Lab.

    1983-02-15

    A method of estimating the water content of various concretes mixed with neutron absorbers like boron or rare earths is described. This makes use of the fact that a large buildup of low energy photons in the 20 - 100 keV range is observed in the backscattered spectrum from water when compared to concrete. A 4.36 mCi /sup 137/Cs (662 keV) source is used with a 1 mm thick NaI scintillator as the detector to measure the backscattered radiation in the energy range. Calibration curves for evaluating the water content in borated concretes, ordinary concretes of different thickness, and a mortar brick are reported. It has been possible to estimate the water content to within 0.25% (by weight) by this method.

  8. Comparison between beamforming and super resolution imaging algorithms for non-destructive evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Chengguang [College of Mechatronic Engineering and Automation, National University of Defense Technology, Changsha 410073, PR China and Department of Mechanical Engineering, University of Bristol, Queen' s Building, University Walk, Bristol BS8 1TR (United Kingdom); Drinkwater, Bruce W. [Department of Mechanical Engineering, University of Bristol, Queen' s Building, University Walk, Bristol BS8 1TR (United Kingdom)

    2014-02-18

    In this paper the performance of total focusing method is compared with the widely used time-reversal MUSIC super resolution technique. The algorithms are tested with simulated and experimental ultrasonic array data, each containing different noise levels. The simulated time domain signals allow the effects of array geometry, frequency, scatterer location, scatterer size, scatterer separation and random noise to be carefully controlled. The performance of the imaging algorithms is evaluated in terms of resolution and sensitivity to random noise. It is shown that for the low noise situation, time-reversal MUSIC provides enhanced lateral resolution when compared to the total focusing method. However, for higher noise levels, the total focusing method shows robustness, whilst the performance of time-reversal MUSIC is significantly degraded.

  9. Comparison between beamforming and super resolution imaging algorithms for non-destructive evaluation

    International Nuclear Information System (INIS)

    Fan, Chengguang; Drinkwater, Bruce W.

    2014-01-01

    In this paper the performance of total focusing method is compared with the widely used time-reversal MUSIC super resolution technique. The algorithms are tested with simulated and experimental ultrasonic array data, each containing different noise levels. The simulated time domain signals allow the effects of array geometry, frequency, scatterer location, scatterer size, scatterer separation and random noise to be carefully controlled. The performance of the imaging algorithms is evaluated in terms of resolution and sensitivity to random noise. It is shown that for the low noise situation, time-reversal MUSIC provides enhanced lateral resolution when compared to the total focusing method. However, for higher noise levels, the total focusing method shows robustness, whilst the performance of time-reversal MUSIC is significantly degraded

  10. Corrosion and deposit evaluation in industrial plants by non destructive testing method

    International Nuclear Information System (INIS)

    Azali Muhammad; Abd Razak Hamzah; Abd Aziz Mohamed; Mohd Pauzi Ismail; S Saad; S Sayuti; S Ahmad

    2000-01-01

    In petrochemical plants, the detection of corrosion and evaluation of deposit in insulated pipes using a radiography method are very challenging tasks. This main degradation problem experienced by pipelines is due to water condensation. It will cause deposit and scale inside the pipe, as well as between the insulation and pipe for the cold temperature pipes. On the other hand, for the hot temperature pipes the main problem is mainly due to corrosion/erosion attack inside the pipe. In the case of corrosion study one of the most important parameters in a piping or pipeline to be monitored and measured is that the wall thickness. In general, most pipeline corrosion monitoring and evaluation for both insulated and non-insulated pipes is done by using an ultrasonic method. The most common technique for corrosion is that based on the A-Scan, using either a normal flow detector or some form of dedicated equipment. However, with recent development of ultrasonic technology, more advance method, namely B-Scan and C-scan techniques are also available. The most notable disadvantage of using this current method is that the insulation covered the pipe has to be removed before the inspection can be carried out and this is considered as not so cost effective. Due to this reason other alternative NDT method, namely radiographic testing method has been studied. The testing technique used in this studied are tangential technique and double wall radiographic technique which involve studying the changing in density of radiographic film. The result found using tangential technique is consistent with real thickness of the pipe. However for the later technique the result is only achieved with a reasonable accuracy when the changing in wall thickness is very small. The result of the studies is discussed in this paper

  11. Linear Array Ultrasonic Testing Of A Thick Concrete Specimens For Non-Destructive Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Clayton, Dwight A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Khazanovich, Lev [Univ. of Minnesota, Minneapolis, MN (United States); Zammerachi, Mattia [Univ. of Minnesota, Minneapolis, MN (United States); Ezell, N. Dianne Bull [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-04-01

    The University of Minnesota and Oak Ridge National Laboratory are collaborating on the design and construction of a concrete specimen with sufficient reinforcement density and cross-sectional size to represent a light water reactor (LWR) containment wall with various defects. The preliminary analysis of the collected data using extended synthetic aperture focussin technique (SAFT) reconstruction indicated a great potential of the ultrasound array technology for locating relatively shallow distresses. However, the resolution and reliability of the analysis is inversely proportional to the defect depth and the amount of reinforcement between the measurement point and the defect location. The objective of this round of testing is to evaluate repeatability of the obtained reconstructions from measurements with different frequencies as well as to examine the effect of the duration of the sending ultrasound signal on the resulting reconstructions. Two series of testing are performed in this study. The objective of the first series is to evaluate repeatability of the measurements and resulting reconstructed images. The measurements use three center frequencies. Five measurements are performed at each location with and without lifting the device. The analysis of the collected data suggested that a linear array ultrasound system can produce reliably repeatable reconstructions using 50 kHz signals for relatively shallow depths (less than 0.5 m). However, for reconstructions at the greater depths the use of lower frequency and/or signal filtering to reduce the effect of signal noise may be required. The objective of the second series of testing is to obtain measurements with various impulse signal durations. The entire grid on the smooth surface is tested with four different various impulse signal durations. An analysis of the resulting extended SAFT reconstructions suggested that Kirchhoff-based migration leads to easier interpreting reconstructions when shorter duration

  12. Frontiers in Science and technology of Non-Destructive Evaluation Applications to Industry, Health and Culture

    International Nuclear Information System (INIS)

    Raj, Baldev; Venkatraman, B.

    2009-01-01

    The Indira Gandhi Center for Atomic Research (IGCAR) located at Kalpakkam, Tamil Nadu, India is the second largest research center of the Department of Atomic Energy (DAE). It has been established with the mandate to develop fast reactor technology and associated fuel cycle technologies. As part of this strategy, a 40 MW (th) test reactor, the Fast Breeder Test Reactor (Fbtr), was constructed. This reactor is completing 24 years of successful operation since its first criticality in October 1985. At IGCAR, a small NDE group was established in early 1980s. Combining a dedicated group of multi disciplinary professionals from metallurgy, physics, engineering and instrumentation and through development and application of cutting edge technologies, this group has achieved international recognition. Today, the NDE Center at IGCAR is unique in India, combining conventional and advanced NDE under a single roof with excellent expertise in the areas of modelling, research, NDE hardware and software design, development and applications. It is a Center for Excellence and well recognised internationally. This is reflected in over 600 publications in peer reviewed journals, successful organization of national and international conferences, including more than 15 patents, about 20 books and the international linkages and collaborations. The robust NDE technologies and methodologies developed by this group based on sound basic science principles and engineering validation has been utilised by the strategic and core sectors in India and internationally to solve many challenging problems. This paper highlights NDE solutions to challenging problems encountered during manufacture of important components of 500 MWE PFBR. The paper also highlights the application oriented Research and Development that has been undertaken to enhance the limit and reliability of detection. Many of these technologies and procedures have significant Societal applications. The paper also outlines some

  13. Non destructive methods for evaluating the mechanical properties of cemented toxic wastes

    Energy Technology Data Exchange (ETDEWEB)

    De Angelis, G. [ENEA, Centro Ricerche Casaccia, Rome (Italy). Dipt. Ambiente

    1999-07-01

    Measurements of resonant frequency and ultrasonic pulse velocity proved quite useful in order to follow the development of mechanical properties of cemented wastes in laboratory scale. Values of the elastic modulus (Young's modulus), shear and Poisson' s ratio have been obtained from these techniques and compared with dimensional movements and mechanical strength determined on the same formulations. The influence of crack formation on resonant frequency and quenching coefficient has also been evaluated in one case, in order to demonstrate the validity of such techniques for verifying any modification in the internal structure of the material. Sclerometric hardness was also determined on small samples and related to the compressive strength. However sclerometric measurements on full scale samples did not prove reliable. [Italian] Misure di frequenza di risonanza e di diffusione degli impulsi ultrasonici si sono rilevate un utile metodo di indagine a livello di laboratorio per meglio comprendere lo sviluppo delle proprieta' meccaniche dei rifiuti tossici condizionati in matrice cementizia. I valori del modulo di elasticita' (o modulo di Young), del modulo a torsione e del rapporto di Poisson, ottenuti mediante queste tecniche, sono stati messi in relazione con le variazioni dimensionali e con le proprieta' meccaniche di campioni ottenuti dallo stesso impasto. In un singolo caso e' stato valutato anche l'effetto che la formazione di crepe nel materiale esercita sul valore del picco di risonanza e sul coefficiente di smorzamento, allo scopo di dimostrare la validita' di queste tecniche nella verifica di modifiche insorte nella struttura interna di tali prodotti. Sono state fatte anche determinazioni di durezza per mezzo dello sclerometro, correlando i valori ottenuti con la resistenza alla compressione, mettendo altresi' in evidenza la non applicabilita' di tale metodo a manufatti preparati industrialmente.

  14. Non-destructive evaluation of degradation in EB-PVD thermal barrier coatings by infrared reflectance spectroscopy

    International Nuclear Information System (INIS)

    Flattum, Richard Y.; Cooney, Adam T.

    2013-01-01

    At room temperature and atmospheric conditions infrared reflectance spectroscopy and X-ray diffraction were employed for the detection of the phase transformation and residual stress within thermal barrier coatings (TBC). The TBC's samples initially consisted of the porous ceramic topcoat deposited by electron beam plasma vapor deposition, a bond coat and a superalloy substrate. Reflectance spectroscopy scans were performed from 7497 cm −1 to 68 cm −1 to analysis the fingerprint region as well as the chemical bonding region. These regions should indicate if a detectable change within the TBC response is a result of thermal degradation of the microstructure and the changes in yttrium dispersion throughout the yttrium stabilized zirconium. The thermal degradation was induced by thermal cycling the samples to 1100° C and then cooling them in an atmospheric environment. X-ray diffraction was also used to detect the phase composition within the TBC samples and see if either would clearly identify failure prior to actual spallation. The eventual measurability and quantify-ability of the phase changes within the TBC's may be used as an effective non-destructive evaluation (NDE) technique that would allow personnel in the field to know when servicing of the turbine blade was necessary.

  15. Mirage effect sensor with simple detector and with multiple detector: application to non destructive evaluation by photothermal excitation

    International Nuclear Information System (INIS)

    Charbonnier, Francois

    1990-01-01

    Local photothermal excitation of absorbing sample provides spatial and temporal temperature distribution inside this sample and its neighbouring medium. Optical, thermal and geometrical characteristics (thickness, presence of a defect...) modify surface temperature evolution. The realization of an optical instrument using mirage effect, sensitive and accurate, has came out of two industrial applications of non destructive evaluation: - automatic set-up for absolute measurement of thermal losses on concentrical pipes interface.- set up for quantitative measurement of optical absorption losses on multi coated laser mirrors. To obtain images and compensate acquisition slowness due to investigated thermal phenomenons, a synchronous integration signal process from a multi detector, is described. Experimental set-up using mirage effect detected by a linear CCD reading sensor is realized on this principle. Some examples prove feasibility of this parallel measurement along an excitation line. At last, high frequency parallel synchronous detection with sequential cut-out demodulation was tested and succeeded with a 50 kHz optical signal. (author) [fr

  16. Performance Values for Non-Destructive Assay (NDA) Technique Applied to Wastes: Evaluation by the ESARDA NDA Working Group

    International Nuclear Information System (INIS)

    Rackham, Jamie; Weber, Anne-Laure; Chard, Patrick

    2012-01-01

    The first evaluation of NDA performance values was undertaken by the ESARDA Working Group for Standards and Non Destructive Assay Techniques and was published in 1993. Almost ten years later in 2002 the Working Group reviewed those values and reported on improvements in performance values and new measurement techniques that had emerged since the original assessment. The 2002 evaluation of NDA performance values did not include waste measurements (although these had been incorporated into the 1993 exercise), because although the same measurement techniques are generally applied, the performance is significantly different compared to the assay of conventional Safeguarded special nuclear material. It was therefore considered more appropriate to perform a separate evaluation of performance values for waste assay. Waste assay is becoming increasingly important within the Safeguards community, particularly since the implementation of the Additional Protocol, which calls for declaration of plutonium and HEU bearing waste in addition to information on existing declared material or facilities. Improvements in the measurement performance in recent years, in particular the accuracy, mean that special nuclear materials can now be accounted for in wastes with greater certainty. This paper presents an evaluation of performance values for the NDA techniques in common usage for the assay of waste containing special nuclear material. The main topics covered by the document are: 1- Techniques for plutonium bearing solid wastes 2- Techniques for uranium bearing solid wastes 3 - Techniques for assay of fissile material in spent fuel wastes. Originally it was intended to include performance values for measurements of uranium and plutonium in liquid wastes; however, as no performance data for liquid waste measurements was obtained it was decided to exclude liquid wastes from this report. This issue of the performance values for waste assay has been evaluated and discussed by the ESARDA

  17. Performance Values for Non-Destructive Assay (NDA) Technique Applied to Wastes: Evaluation by the ESARDA NDA Working Group

    Energy Technology Data Exchange (ETDEWEB)

    Rackham, Jamie [Babcock International Group, Sellafield, Seascale, Cumbria, (United Kingdom); Weber, Anne-Laure [Institut de Radioprotection et de Surete Nucleaire Fontenay-Aux-Roses (France); Chard, Patrick [Canberra, Forss Business and Technology park, Thurso, Caithness (United Kingdom)

    2012-12-15

    The first evaluation of NDA performance values was undertaken by the ESARDA Working Group for Standards and Non Destructive Assay Techniques and was published in 1993. Almost ten years later in 2002 the Working Group reviewed those values and reported on improvements in performance values and new measurement techniques that had emerged since the original assessment. The 2002 evaluation of NDA performance values did not include waste measurements (although these had been incorporated into the 1993 exercise), because although the same measurement techniques are generally applied, the performance is significantly different compared to the assay of conventional Safeguarded special nuclear material. It was therefore considered more appropriate to perform a separate evaluation of performance values for waste assay. Waste assay is becoming increasingly important within the Safeguards community, particularly since the implementation of the Additional Protocol, which calls for declaration of plutonium and HEU bearing waste in addition to information on existing declared material or facilities. Improvements in the measurement performance in recent years, in particular the accuracy, mean that special nuclear materials can now be accounted for in wastes with greater certainty. This paper presents an evaluation of performance values for the NDA techniques in common usage for the assay of waste containing special nuclear material. The main topics covered by the document are: 1- Techniques for plutonium bearing solid wastes 2- Techniques for uranium bearing solid wastes 3 - Techniques for assay of fissile material in spent fuel wastes. Originally it was intended to include performance values for measurements of uranium and plutonium in liquid wastes; however, as no performance data for liquid waste measurements was obtained it was decided to exclude liquid wastes from this report. This issue of the performance values for waste assay has been evaluated and discussed by the ESARDA

  18. Development and characterization of enhanced green fluorescent protein and luciferase expressing cell line for non-destructive evaluation of tissue engineering constructs.

    NARCIS (Netherlands)

    Blum, J.S.; Temenoff, J.S.; Park, H.; Jansen, J.A.; Mikos, A.G.; Barry, M.A.

    2004-01-01

    This study investigates the utility of genetically modified cells developed for the qualitative and quantitative non-destructive evaluation of cells on biomaterials. The Fisher rat fibroblastic cell line has been genetically modified to stably express the reporter genes enhanced green fluorescence

  19. Short time evaluation of metallic materials' fatigue potential combining destructive and non-destructive testing methods

    International Nuclear Information System (INIS)

    Starke, Peter; Wu, Haoran; Boller, Christian

    2015-01-01

    Fatigue of engineering structures is an issue from an engineering design point. The lifetime of materials being subject to repeated mechanical loads is limited. Different examples of failures and fateful air accidents have caused significant cost and claims to the operators as well as manufacturers in excess of fatalities. Criticality of failure increases with increasing age and the uncertainty of operational loads applied. In such a case a reassessment of a structural materials' condition is in big need should damage tolerance criteria still be met, being the essential ground rule for aeronautical structural design. It is therefore the challenging aim to use a metallic material's microstructure characterizing non-destructive testing (NDT) parameter or a combination of those as a parameter to be scanned over a defined surface of the component considered to more realistically characterize the damage condition and to use this information twofold: (a) to more precisely assess the structural component's residual life and (b) to feed the information recorded back into a specific database belonging to an approach named PHYBAL. The physically based fatigue life evaluation method (PHYBAL) is a short-time procedure for the evaluation of fatigue data based on a small number of fatigue tests performed on un-notched specimens only. This method significantly reduces the effort for experimentation in terms of time and cost by around 90 % and inhibits remarkable scientific as well as economic advantages. The paper highlights the high capability of PHYBAL as well as the suitability for assessing the residual life of aeronautical components also with respect to the application of this approach in the light of structural health monitoring issues.

  20. The Effect of Localized Damage on the Electrical Conductivity of Bare Carbon Fiber Tow and its Use as a Non-Destructive Evaluation Tool for Composite Overwrapped Pressure Vessels

    Science.gov (United States)

    Wentzel, Daniel

    2015-01-01

    Composite materials are beneficial because of their high specific strength and low weight. Safety, Destructive testing and destructive testing, Non-Destructive Testing (NDT) and Non-Destructive Evaluation (NDE). Problem: Neither NDT nor NDE can provide sufficient data to determine life expectancy or quantify the damage state of a composite material.

  1. Non-destructive flavour evaluation of red onion (Allium cepa L.) ecotypes: an electronic-nose-based approach.

    Science.gov (United States)

    Russo, Mariateresa; di Sanzo, Rosa; Cefaly, Vittoria; Carabetta, Sonia; Serra, Demetrio; Fuda, Salvatore

    2013-11-15

    This work reports preliminary results on the potential of a metal oxide sensor (MOS)-based electronic nose, as a non-destructive method to discriminate three "Tropea Red Onion" PGI ecotypes (TrT, TrMC and TrA) from each other and the common red onion (RO), which is usually used to counterfeit. The signals from the sensor array were processed using a canonical discriminant function analysis (DFA) pattern recognition technique. The DFA on onion samples showed a clear separation among the four onion groups with an overall correct classification rate (CR) of 97.5%. Onion flavour is closely linked to pungency and thus to the pyruvic acid content. The e-nose analysis results are in good agreement with pyruvic acid analysis. This work demonstrated that artificial olfactory systems have potential for use as an innovative, rapid and specific non-destructive technique, and may provide a method to protect food products against counterfeiting. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. The role of ultrasonic velocity and Schmidt hammer hardness - The simple and economical non-destructive test for the evaluation of mechanical properties of weathered granite

    Science.gov (United States)

    Jobli, Ahmad Fadzil; Hampden, Ahmad Zaidi; Tawie, Rudy

    2017-08-01

    One of the most significant techniques for evaluation of rock strength is by using the simple and economical non-destructive test (NDT). Previous literatures confirm that there were good correlations between NDTs to the strength properties of granite rocks. The present work deals with the use of Ultrasonic Pulse Velocity and Schmidt Hammer Hardness test to predict the mechanical properties of weathered granite. Cylindrical specimens with the length to diameter ratio of two were prepared for this study and were characterized based on different weathering states. Each of the rock specimens was tested under non-destructive test and then followed by uniaxial compression test to assess the mechanical properties. It was found that good correlations established between the NDTs and the uniaxial compressive strength. The correlation between uniaxial compressive strength and rebound hardness number was demonstrated by exponential form; UCS = 6.31e0.057N, while linear correlations was obtained between the uniaxial compressive strength and the ultrasonic pulse velocity; UCS = 0.023Vp - 21.43. It was also noticed that the increase of uniaxial compression strength was parallel to the increase of elastic modulus and can be presented by a linear equation; UCS = 1.039Et50 + 4.252. Based on the reported results, it is clear that the mechanical properties or weathered granite can be estimated by means of non-destructive test.

  3. Aging material evaluation and studies by non-destructive techniques (AMES-NDT) - a European network project

    International Nuclear Information System (INIS)

    Dobmann, Gerd; Debarberis, Luigi; Coste, Jean-Francois

    2001-01-01

    This paper presents results obtained in a round-robin action organized in a concerted action of ten partners in the EURATOM program of the European Community. The objective of the research was to document the state of the art of available non-destructive testing (NDT) techniques in order to characterize material aging phenomena based on a reduction of Charpy-V energy and a shift in the fracture appearance transition temperature. Therefore, samples from the Japanese nuclear reactor pressure vessel JRQ-steel (ASMT Standard A533-B Class 1) have been thermally treated at 700 deg. C for 18 h with a subsequent water quenching. Besides micromagnetic and electromagnetic NDT, the positron annihilation technique, ultrasonic reverberation by using Laser ultrasonics and the thermo-electrical power have been applied to characterize the aged material states

  4. Innovation in Non Destructive Testing

    NARCIS (Netherlands)

    Wassink, C.H.P.

    2012-01-01

    In many established companies the pace of innovation is low. The Non-Destructive Testing sector is an example of a sector where the pace of innovation is very slow. Non-Destructive Testing (NDT) refers to the set of non-invasive activities used to determine the condition of objects or installations

  5. Non-destructive evaluation of fiber-reinforced composites with a fast 2D fiber-optic laser-ultrasound scanner

    Science.gov (United States)

    Pelivanov, Ivan; Buma, Takashi; Xia, Jinjun; Wei, Chen-Wei; Shtokolov, Alex; O'Donnell, Matthew

    2015-03-01

    Laser ultrasonic (LU) inspection represents an attractive, non-contact method to evaluate composite materials. Current non-contact systems, however, have relatively low sensitivity compared to contact piezoelectric detection. They are also difficult to adjust, very expensive, and strongly influenced by environmental noise. Here, we demonstrate that most of these drawbacks can be eliminated by combining a new generation of compact, inexpensive fiber lasers with new developments in fiber telecommunication optics and an optimally designed balanced probe scheme. In particular, a new type of a balanced fiber-optic Sagnac interferometer is presented as part of an all-optical LU pump-probe system for high speed non-destructive testing and evaluation (NDT&E) of aircraft composites. The performance of the LU system is demonstrated on a composite sample typically used in the aircraft industry. Wide-band ultrasound probe signals are generated directly at the sample surface with a pulsed diode-pumped laser delivering nanosecond laser pulses at a 1 kHz repetition rate with a pulse energy of 2 mJ. A balanced fiber-optic Sagnac interferometer is employed to detect pressure signals in a 1-10 MHz frequency range at the same point (an 8 μm focal spot) on the composite surface. A fast (up to 100 mm/s) 2D translation system is employed to move the sample during scanning and produce a complete B-scan consisting of one thousand A-scans in less than a second. The sensitivity of this system, in terms of the noise equivalent pressure, is found to be only 10 dB above the Nyquist thermal noise limit. To our knowledge, this is the best reported sensitivity for a non-contact ultrasonic detector of this dimension.

  6. Evaluation of stress-induced martensite phase in ferromagnetic shape memory alloy Fe-30.2at%Pd by non-destructive Barkhausen noise

    Science.gov (United States)

    Furuya, Yasubumi; Okazaki, Teiko; Ueno, Takasi; Spearing, Mark; Wutting, Manfred

    2005-05-01

    Barkhausen noise (BHN) method seems a useful tecnique to non-destructive evaluation of martensite phase transformation of ferromagnetic shape memory alloy, which is used as the filler of our proposing "Smart Composite Board". The concept of design for "Smart Composite Board" which can combine the non-destructive magnetic inspection and shape recovery function in the material itself was formerly proposed. In the present study, we survey the possibility of Barkhausen noise (BHN) method to detect the transformation of microscopic martensite phase caused by stress-loading in Fe-30.2at%Pd thin foil, which has a stable austenite phase (fcc structure) at room temperature. The BHN voltage was measured at loading stress up to 100 MPa in temperature range of 300K to 373K. Stress-induced martensite twin was observed by laser microscope above loading stress of 25 MPa. A phase transformation caused by loading stress were analyzed also by X-ray diffraction. The signals of BHN are analyzed by the time of magnetization and the noise frequency. BHN caused by grain boundaries appears in the lower frequency range (1kHz-3kHz) and BHN by martensite twin in the higher frequency range (8kHz-10kHz). The envelope of the BHN voltage as a function of time of magnetization shows a peak due to austenite phase at weak magnetic field. The BHN envelope due to martensite twins creates additional two peaks at intermediate magnetic field. BHN method turns out to be a powerful technique for non-destructive evaluation of the phase transformation of ferromagnetic shape memory alloy.

  7. Non-destructive monitoring of mouse embryo development and its qualitative evaluation at the molecular level using Raman spectroscopy

    Science.gov (United States)

    Ishigaki, Mika; Hashimoto, Kosuke; Sato, Hidetoshi; Ozaki, Yukihiro

    2017-03-01

    Current research focuses on embryonic development and quality not only by considering fundamental biology, but also by aiming to improve assisted reproduction technologies, such as in vitro fertilization. In this study, we explored the development of mouse embryo and its quality based on molecular information, obtained nondestructively using Raman spectroscopy. The detailed analysis of Raman spectra measured in situ during embryonic development revealed a temporary increase in protein content after fertilization. Proteins with a β-sheet structure—present in the early stages of embryonic development—are derived from maternal oocytes, while α-helical proteins are additionally generated by switching on a gene after fertilization. The transition from maternal to embryonic control during development can be non-destructively profiled, thus facilitating the in situ assessment of structural changes and component variation in proteins generated by metabolic activity. Furthermore, it was indicated that embryos with low-grade morphology had high concentrations of lipids and hydroxyapatite. This technique could be used for embryo quality testing in the future.

  8. Non-destructive inservice inspections

    International Nuclear Information System (INIS)

    Kauppinen, P.; Sarkimo, M.; Lahdenperae, K.

    1998-01-01

    In order to assess the possible damages occurring in the components and structures of operating nuclear power plants during service the main components and structures are periodically inspected by non-destructive testing techniques. The reliability of non-destructive testing techniques applied in these inservice inspections is of major importance because the decisions concerning the needs for repair of components are mainly based on the results of inspections. One of the targets of this research program has been to improve the reliability of non-destructive testing. This has been addressed in the sub-projects which are briefly summarised here. (author)

  9. Evaluation of bridge decks using non-destructive evaluation (NDE) at near highway speeds for effective asset management.

    Science.gov (United States)

    2015-06-01

    Remote sensing technologies allow for the condition evaluation of bridge decks at near highway speed. : Data collection at near highway speed for assessment of the top of the concrete deck and proof of : concept testing for the underside of the deck ...

  10. Infrared image processing devoted to thermal non-contact characterization-Applications to Non-Destructive Evaluation, Microfluidics and 2D source term distribution for multispectral tomography

    International Nuclear Information System (INIS)

    Batsale, Jean-Christophe; Pradere, Christophe

    2015-01-01

    The cost of IR cameras is more and more decreasing. Beyond the preliminary calibration step and the global instrumentation, the infrared image processing is then one of the key step for achieving in very broad domains.Generally the IR images are coming from the transient temperature field related to the emission of a black surface in response to an external or internal heating (active IR thermography). The first applications were devoted to the so called thermal Non-Destructive Evaluation methods by considering a thin sample and 1D transient heat diffusion through the sample (transverse diffusion). With simplified assumptions related to the transverse diffusion, the in-plane diffusion and transport phenomena can be also considered.A general equation can be applied in order to balance the heat transfer at the pixel scale or between groups of pixels in order to estimate several fields of thermophysical properties (heterogeneous field of in-plane diffusivity, flow distributions, source terms).There is a lot of possible strategies to process the space and time distributed big amount of data (previous integral transformation of the images, compression, elimination of the non useful areas...), generally based on the necessity to analyse the derivative versus space and time of the temperature field. Several illustrative examples related to the Non-Destructive Evaluation of heterogeneous solids, the thermal characterization of chemical reactions in microfluidic channels and the design of systems for multispectral tomography, will be presented. (paper)

  11. Non-destructive tests of capsules for JMTR irradiation examination

    International Nuclear Information System (INIS)

    Tanaka, Hidetaka; Nagao, Yoshiharu; Sato, Masashi; Osawa, Kenji

    2007-03-01

    Irradiation examination are increasing in advanced irradiation research for accurate prediction control and evaluation of irradiation parameter such as neutron fluence, etc. by using JMTR. Irradiation capsule internals are therefore structurally complicated recently. This report described the procedure of non destructive tests such as radiographic test, penetrant test, ultrasonic test, etc. for inspection of irradiation capsules in JMTR, and the result of Test-case of confirmation procedure for internal parts of irradiation capsules. (author)

  12. Light Water Reactor Sustainability (LWRS) Program – Non-Destructive Evaluation (NDE) R&D Roadmap for Determining Remaining Useful Life of Aging Cables in Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Simmons, Kevin L.; Ramuhalli, Pradeep; Brenchley, David L.; Coble, Jamie B.; Hashemian, Hash; Konnik, Robert; Ray, Sheila

    2012-09-14

    The purpose of the non-destructive evaluation (NDE) R&D Roadmap for Cables is to support the Materials Aging and Degradation (MAaD) R&D pathway. The focus of the workshop was to identify the technical gaps in detecting aging cables and predicting their remaining life expectancy. The workshop was held in Knoxville, Tennessee, on July 30, 2012, at Analysis and Measurement Services Corporation (AMS) headquarters. The workshop was attended by 30 experts in materials, electrical engineering, U.S. Nuclear Regulatory Commission (NRC), U.S. Department of Energy (DOE) National Laboratories (Oak Ridge National Laboratory, Pacific Northwest National Laboratory, Argonne National Laboratory, and Idaho National Engineering Laboratory), NDE instrumentation development, universities, commercial NDE services and cable manufacturers, and Electric Power Research Institute (EPRI). The motivation for the R&D roadmap comes from the need to address the aging management of in-containment cables at nuclear power plants (NPPs).

  13. Light Water Reactor Sustainability (LWRS) Program – Non-Destructive Evaluation (NDE) R&D Roadmap for Determining Remaining Useful Life of Aging Cables in Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Simmons, K.L.; Ramuhali, P.; Brenchley, D.L.; Coble, J.B.; Hashemian, H.M.; Konnick, R.; Ray, S.

    2012-09-01

    Executive Summary [partial] The purpose of the non-destructive evaluation (NDE) R&D Roadmap for Cables is to support the Materials Aging and Degradation (MAaD) R&D pathway. A workshop was held to gather subject matter experts to develop the NDE R&D Roadmap for Cables. The focus of the workshop was to identify the technical gaps in detecting aging cables and predicting their remaining life expectancy. The workshop was held in Knoxville, Tennessee, on July 30, 2012, at Analysis and Measurement Services Corporation (AMS) headquarters. The workshop was attended by 30 experts in materials, electrical engineering, and NDE instrumentation development from the U.S. Nuclear Regulatory Commission (NRC), U.S. Department of Energy (DOE) National Laboratories (Oak Ridge National Laboratory, Pacific Northwest National Laboratory, Argonne National Laboratory, and Idaho National Engineering Laboratory), universities, commercial NDE service vendors and cable manufacturers, and the Electric Power Research Institute (EPRI).

  14. Application of non-destructive impedance-based monitoring technique for cyclic fatigue evaluation of endodontic nickel-titanium rotary instruments.

    Science.gov (United States)

    Chang, Yau-Zen; Liu, Mou-Chuan; Pai, Che-An; Lin, Chun-Li; Yen, Kuang-I

    2011-06-01

    This study investigates the application of non-destructive testing based on the impedance theory in the cyclic fatigue evaluation of endodontic Ni-Ti rotary instruments. Fifty Ni-Ti ProTaper instruments were divided into five groups (n=10 in Groups A to E). Groups A to D were subjected to cyclic fatigue within an artificial canal (Group E was the control group). The mean value of the total life limit (TLL), defined as the instrument being rotated until fracture occurred was found to be 104 s in Group A. Each rotary instrument in Groups B, C and D were rotated until the tested instruments reached 80% (84 s), 60% (62 s) and 40% (42 s) of the TLL. After fatigue testing, each rotary instrument was mounted onto a custom-developed non-destructive testing device to give the tip of the instrument a progressive sideways bend in four mutually perpendicular directions to measure the corresponding impedance value (including the resistance and the reactance). The results indicated that the impedance value showed the same trend as the resistance, implying that the impedance was primarily affected by the resistance. The impedance value for the instruments in the 80% and 60% TLL groups increased by about 6 mΩ (about 7.5%) more than that of the instruments in the intact and 40% TLL groups. The SEM analysis result showed that crack striations were only found at the tip of the thread on the cracked surface of the instrument, consistent with the impedance measurements that found the impedance value of the cracked surface to be significantly different from those in other surfaces. These findings indicate that the impedance value may represent an effective parameter for evaluating the micro-structural status of Ni-Ti rotary instruments subjected to fatigue loading. Copyright © 2010 IPEM. Published by Elsevier Ltd. All rights reserved.

  15. Non-destructive control of castings

    International Nuclear Information System (INIS)

    Boutault, J.; Mascre, C.

    1978-01-01

    The object of non-destructive control in foundries is to verify the metal structure, the absence of unacceptable discontinuity, total tightness, etc. This leads to a range of very varied controls according to the importance of the series, the quality level required by the specifications, the nature of the alloy. The originality of the solutions which are imperative for castings is shown through examples: casting of high quality complex forms in short series; very thick unit parts; very large series of parts requiring on efficient automation of non-destructive control. Lastly the publishing of testing methods and interpretating rules, which are the base of a friendly understanding between constructors and founders are recalled [fr

  16. Non-destructive observation of damage in mortar and concrete during mechanical loading for the evaluation of moisture transfer profiles

    DEFF Research Database (Denmark)

    Rouchier, Simon; Janssen, Hans; Rode, Carsten

    2012-01-01

    Coupled heat and mass transfer modelling in building materials now plays an important part in the design of energy-efficient buildings. However, concrete and other construction materials subjected to mechanical loading and atmospheric excitation inevitably develop fractures patterns during...... characterization with a hygric modelling can provide an appropriate prediction of the water infiltration in fractured porous building materials....

  17. Analysis the evaluation of reinforces concrete structure Block 62 by Non Destructive Method, Destructive Method and Esteem Computer Program

    International Nuclear Information System (INIS)

    Mohd Jamil Hashim; Norhazwani Mohd Azahari

    2012-01-01

    The evaluation of old and unrecorded building is a difficult task to work on. This is because no detail record of building component such as reinforce concrete strength test record, type of reinforcement used, construction methods and soil investigation (SI) which make it impossible to analyse. Through NDT building reinforced concrete component is easily evaluated and mean while DT method give assurance through actual sample testing. From these early result detail drawing plans can be rebuild and building forensic work can be done. These data will be fed into the computer program to produce a structure evaluation result whether it is safe or not in accordance to design standard BS8110. (author)

  18. Non-destructive quality evaluation of pepper (Capsicum annuum L.) seeds using LED-induced hyperspectral reflectance imaging

    Science.gov (United States)

    In this study, we develop a viability evaluation method for pepper (Capsicum annuum L.) seed based on hyperspectral reflectance imaging. The reflectance spectra of pepper seeds in the 400–700 nm range are collected from hyperspectral reflectance images obtained using blue, green, and red LED illumin...

  19. Newly developed non-destructive testing method for evaluation of irradiation brittleness of structural materials using ultrasonic

    International Nuclear Information System (INIS)

    Ishii, Toshimitsu; Ooka, Norikazu; Kato, Yoshiaki; Saito, Junichi; Hoshiya, Taiji; Shibata, Saburo; Kobayashi, Hideo

    1999-01-01

    Surveillance testing is important to evaluate neutron irradiation embrittlement of reactor pressure vessel material for long life operation. An alternative test method for evaluating the irradiation embrittlement of the pressure vessel material will have to be proposed to support the limited number of surveillance test specimens in order to manage the plant life to be extended. In this study, ultrasonic testing for irradiated A533B-1 steel and weld metal was applied to examine material degradation nondestructively. With increasing the shift of Charpy 41 J transition temperature, ultrasonic velocity decreased and attenuation coefficient of ultrasonic wave increased. Especially, the difference of ultrasonic velocity for 5 MHz shear wave between as-received and irradiated material is corresponding to the shift of transition temperature showing material degradation. (author)

  20. Agreement on economic and technological cooperation between the Federal Republic of Germany and the GDR. Project part 3.2, ''NDT and QA''. Project task 2.11. Experiments with the full-size vessel in Stuttgart for selection of practice-relevant non-destructive testing methods for evaluation of the value and performance of recurrent inspections of reactor components. Final report

    International Nuclear Information System (INIS)

    Betzold, K.; Brinette, R.; Bonitz, F.

    1992-01-01

    The efficiency of NDT methods such as ALOK, SAFT, EMUS, LLT, phased array, and multi-frequency eddy current testing which are generally used for reactor components recurrent inspection has been verified with experiments using two test specimens. These are a section of a main coolant pipe and the full-size vessel installed at MPA-Stuttgart, furnished with PWR test bodies with artificial defects and artificially applied natural defects. The defects have been detected with commercial probes as well as with probes optimized for the NDT methods EMUS, LLT, phased array, and multi-frequency eddy current testing. Type, location, orientation and geometry of the defects have been measured, also recording the influence of type of defect on the efficiency of the NDT methods, in order to reveal problems linked with the various methods as well as their advantages. Further tests have been made for evaluation of a combination of ALOK and SAFT using novel, specifically developed test probes, and a combination of ALOK and phased array testing. (orig.) [de

  1. Non-destructive evaluation of porosity and its effect on mechanical properties of carbon fiber reinforced polymer composite materials

    Science.gov (United States)

    Bhat, M. R.; Binoy, M. P.; Surya, N. M.; Murthy, C. R. L.; Engelbart, R. W.

    2012-05-01

    In this work, an attempt is made to induce porosity of varied levels in carbon fiber reinforced epoxy based polymer composite laminates fabricated using prepregs by varying the fabrication parameters such as applied vacuum, autoclave pressure and curing temperature. Different NDE tools have been utilized to evaluate the porosity content and correlate with measurable parameters of different NDE techniques. Primarily, ultrasonic imaging and real time digital X-ray imaging have been tried to obtain a measurable parameter which can represent or reflect the amount of porosity contained in the composite laminate. Also, effect of varied porosity content on mechanical properties of the CFRP composite materials is investigated through a series of experimental investigations. The outcome of the experimental approach has yielded interesting and encouraging trend as a first step towards developing an NDE tool for quantification of effect of varied porosity in the polymer composite materials.

  2. Non-Destructive Quality Evaluation of Pepper (Capsicum annuum L. Seeds Using LED-Induced Hyperspectral Reflectance Imaging

    Directory of Open Access Journals (Sweden)

    Changyeun Mo

    2014-04-01

    Full Text Available In this study, we developed a viability evaluation method for pepper (Capsicum annuum L. seeds based on hyperspectral reflectance imaging. The reflectance spectra of pepper seeds in the 400–700 nm range are collected from hyperspectral reflectance images obtained using blue, green, and red LED illumination. A partial least squares–discriminant analysis (PLS-DA model is developed to classify viable and non-viable seeds. Four spectral ranges generated with four types of LEDs (blue, green, red, and RGB, which were pretreated using various methods, are investigated to develop the classification models. The optimal PLS-DA model based on the standard normal variate for RGB LED illumination (400–700 nm yields discrimination accuracies of 96.7% and 99.4% for viable seeds and nonviable seeds, respectively. The use of images based on the PLS-DA model with the first-order derivative of a 31.5-nm gap for red LED illumination (600–700 nm yields 100% discrimination accuracy for both viable and nonviable seeds. The results indicate that a hyperspectral imaging technique based on LED light can be potentially applied to high-quality pepper seed sorting.

  3. In situ mobile subaquatic archaeometry evaluated by non-destructive Raman microscopy of gemstones lying under impure waters

    Science.gov (United States)

    Smith, David C.

    2003-08-01

    A series of laboratory simulations have been made in order to evaluate the credibility of carrying out physico-chemical analysis of cultural heritage items by Raman spectral fingerprinting using a mobile Raman microscope in situ under natural impure water in subaquatic or submarine conditions. Three different kinds of gemstone (zircon, microcline and sodalite) were successively placed under different kinds of impure water into which a low power microscope objective was immersed to eliminate the normal aerial pathway between the objective and the object to be analysed. According to the nature of the impurities (inorganic or organic, dissolved or suspended, transparent or coloured) the results obtained variously gave Raman band intensities stronger than, similar to or weaker than those of spectra obtained without water, i.e. in air. The significant point is that after only minor spectral treatment the less good spectra nevertheless yielded exploitable data with most, if not all, of the key Raman bands being detected. Thus the problems of fluorescence or peak absences under water are of a similar degree of magnitude to the other problems inherent with the Raman spectroscopic technique in aerial conditions, e.g. relative peak intensities varying with crystal orientation; peak positions varying with chemical composition. These results indicate that even if at certain sites of submerged cities or sunken ships, the combination of animal, vegetal, mineral and microbial impurities join together to inhibit or hinder the success of subaquatic or submarine archaeometry, there will certainly be other sites where such activity is indeed credible.

  4. Non-destructive evaluation of bacteria-infected watermelon seeds using visible/near-infrared hyperspectral imaging.

    Science.gov (United States)

    Lee, Hoonsoo; Kim, Moon S; Song, Yu-Rim; Oh, Chang-Sik; Lim, Hyoun-Sub; Lee, Wang-Hee; Kang, Jum-Soon; Cho, Byoung-Kwan

    2017-03-01

    There is a need to minimize economic damage by sorting infected seeds from healthy seeds before seeding. However, current methods of detecting infected seeds, such as seedling grow-out, enzyme-linked immunosorbent assays, the polymerase chain reaction (PCR) and the real-time PCR have a critical drawbacks in that they are time-consuming, labor-intensive and destructive procedures. The present study aimed to evaluate the potential of visible/near-infrared (Vis/NIR) hyperspectral imaging system for detecting bacteria-infected watermelon seeds. A hyperspectral Vis/NIR reflectance imaging system (spectral region of 400-1000 nm) was constructed to obtain hyperspectral reflectance images for 336 bacteria-infected watermelon seeds, which were then subjected to partial least square discriminant analysis (PLS-DA) and a least-squares support vector machine (LS-SVM) to classify bacteria-infected watermelon seeds from healthy watermelon seeds. The developed system detected bacteria-infected watermelon seeds with an accuracy > 90% (PLS-DA: 91.7%, LS-SVM: 90.5%), suggesting that the Vis/NIR hyperspectral imaging system is effective for quarantining bacteria-infected watermelon seeds. The results of the present study show that it is possible to use the Vis/NIR hyperspectral imaging system for detecting bacteria-infected watermelon seeds. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  5. Building Of Training Program Of Non-Destructive Testing For Concrete Structures (Part 1: Radiographic testing; Ultrasonic pulse velocity measurement; Nuclear moisture-density gauge)

    International Nuclear Information System (INIS)

    Nguyen Le Son; Phan Chanh Vu; Pham The Hung; Vu Huy Thuc

    2007-01-01

    Non-destructive testing methods (NDT) have been identified as a strong candidate for remote sensing of concrete structures over recent years. This has accelerated the powerful development of the NDT techniques in Vietnam. Hence, there is an urgent need to promote the awareness of NDT methods which could give an improved estimate of the condition concrete. Building of training program of non-destructive testing for concrete structures is a necessary duty, in aiming to build a unified training program, possibly satisfying the requirements on training as well as researching. Under the framework of the basic VAEC project (CS/07/02-03), a training program for the first 03 NDT methods: 1. Radiographic testing; 2. Ultrasonic pulse velocity measurement; 3. Nuclear moisture- density gauge was prepared. The main products of this project include: 1. Set out 03 training notes for 03 methods; 2. Set out the practical exercises to train for 03 methods; 3. Editing a set of examination questions in aiming to familiarize with various questions in 03 trained methods; 4. Fabricating practical test specimens to demonstrate for 03 techniques. (author)

  6. Analysis of Within-Test Variability of Non-Destructive Test Methods to Evaluate Compressive Strength of Normal Vibrated and Self-Compacting Concretes

    Science.gov (United States)

    Nepomuceno, Miguel C. S.; Lopes, Sérgio M. R.

    2017-10-01

    Non-destructive tests (NDT) have been used in the last decades for the assessment of in-situ quality and integrity of concrete elements. An important step in the application of NDT methods concerns to the interpretation and validation of the test results. In general, interpretation of NDT results should involve three distinct phases leading to the development of conclusions: processing of collected data, analysis of within-test variability and quantitative evaluation of property under investigation. The analysis of within-test variability can provide valuable information, since this can be compared with that of within-test variability associated with the NDT method in use, either to provide a measure of the quality control or to detect the presence of abnormal circumstances during the in-situ application. This paper reports the analysis of the experimental results of within-test variability of NDT obtained for normal vibrated concrete and self-compacting concrete. The NDT reported includes the surface hardness test, ultrasonic pulse velocity test, penetration resistance test, pull-off test, pull-out test and maturity test. The obtained results are discussed and conclusions are presented.

  7. Magnetic Flux Leakage Sensing and Artificial Neural Network Pattern Recognition-Based Automated Damage Detection and Quantification for Wire Rope Non-Destructive Evaluation.

    Science.gov (United States)

    Kim, Ju-Won; Park, Seunghee

    2018-01-02

    In this study, a magnetic flux leakage (MFL) method, known to be a suitable non-destructive evaluation (NDE) method for continuum ferromagnetic structures, was used to detect local damage when inspecting steel wire ropes. To demonstrate the proposed damage detection method through experiments, a multi-channel MFL sensor head was fabricated using a Hall sensor array and magnetic yokes to adapt to the wire rope. To prepare the damaged wire-rope specimens, several different amounts of artificial damages were inflicted on wire ropes. The MFL sensor head was used to scan the damaged specimens to measure the magnetic flux signals. After obtaining the signals, a series of signal processing steps, including the enveloping process based on the Hilbert transform (HT), was performed to better recognize the MFL signals by reducing the unexpected noise. The enveloped signals were then analyzed for objective damage detection by comparing them with a threshold that was established based on the generalized extreme value (GEV) distribution. The detected MFL signals that exceed the threshold were analyzed quantitatively by extracting the magnetic features from the MFL signals. To improve the quantitative analysis, damage indexes based on the relationship between the enveloped MFL signal and the threshold value were also utilized, along with a general damage index for the MFL method. The detected MFL signals for each damage type were quantified by using the proposed damage indexes and the general damage indexes for the MFL method. Finally, an artificial neural network (ANN) based multi-stage pattern recognition method using extracted multi-scale damage indexes was implemented to automatically estimate the severity of the damage. To analyze the reliability of the MFL-based automated wire rope NDE method, the accuracy and reliability were evaluated by comparing the repeatedly estimated damage size and the actual damage size.

  8. Non-destructive testing: significant facts

    International Nuclear Information System (INIS)

    Espejo, Hector; Ruch, Marta C.

    2006-01-01

    In the last fifty years different organisations, both public and private, have been assigned to the mission of introducing into the country the most relevant aspects of the modern technological discipline 'Non Destructive Testing' (NDT) through a manifold of activities, such as training and education, research, development, technical assistance and services, personnel qualification/certification and standardisation. A review is given of the significant facts in this process, in which the Argentine Atomic Energy Commission, CNEA, played a leading part, a balance of the accomplishments is made and a forecast of the future of the activity is sketched. (author) [es

  9. Non-Destructive Methods for Determining Burn-Up in Nuclear Fuel; Methodes Non Destructives d'Evaluation du Taux de Combustion dans le Combustible Nucleaire; Metody opredeleniya vygoraniya v yadernom toplive bez razrusheniya obraztsa; Metodos No Destructivos para Determinai el Grado de Combustion de los Elementos Combustibles Nucleares

    Energy Technology Data Exchange (ETDEWEB)

    McGonnagle, W. J. [Illinois Institute of Technology, Chicago, IL (United States)

    1966-02-15

    Non-destructive methods for quantitative measurement of burn-up in nuclear reactor fuel elements are useful and desirable. The ideal method for fuel assay would be one that requires no special information about the neutron spectra, radiation history, or cooling time. The irradiated fuel element contains a record of the fuel burn-up. This record is in the form of radioactive and stable isotopes resulting from the fission process. Unfortunately, in the non-destructive as well as the destructive fuel assay methods, the neutron spectrum, irradiation history, and cooling period influence this record. Likewise, the lack of precise nuclear data, such as values of nuclear cross-sections, affects any calculations that can be made. Another difficulty in the non-destructive assay is the presence of high radiation fields which contribute to the ''noise'' background of the measurements. The development of useful and realistic standards is difficult. The non-destructive burn-up methods do serve a useful purpose especially when an approximate value of burn-up is required quickly and economically even though in the present state of the art they lack the desired precision and accuracy. Several non-destructive methods for determining burn-up have been used, are being evaluated, or have been proposed. Various types of spectrometers including the bent crystal, magnetic Compton, Compton coincidence, and scintillation have been used to analyse the gamma radiation from the radioactive material formed during the fission process. Other non-destructive methods include foil activation, neutron transmission, activation analysis, measurement of capture gamma rays, and the measurement of prompt and delayed neutrons. The basic principles of each of the above instruments and methods, their sensitivities and their limitations will be reviewed. Non-destructive methods using stable isotopes produced during the fission process are proposed. In the use of stable isotopes, detailed irradiation history

  10. Advanced non-destructive methods for an efficient service performance

    International Nuclear Information System (INIS)

    Rauschenbach, H.; Clossen-von Lanken Schulz, M.; Oberlin, R.

    2015-01-01

    Due to the power generation industry's desire to decrease outage time and extend inspection intervals for highly stressed turbine parts, advanced and reliable Non-destructive methods were developed by Siemens Non-destructive laboratory. Effective outage performance requires the optimized planning of all outage activities as well as modern Non-destructive examination methods, in order to examine the highly stressed components (turbine rotor, casings, valves, generator rotor) reliably and in short periods of access. This paper describes the experience of Siemens Energy with an ultrasonic Phased Array inspection technique for the inspection of radial entry pinned turbine blade roots. The developed inspection technique allows the ultrasonic inspection of steam turbine blades without blade removal. Furthermore advanced Non-destructive examination methods for joint bolts will be described, which offer a significant reduction of outage duration in comparison to conventional inspection techniques. (authors)

  11. Non destructive nuclear measurements for control and characterization purpose

    International Nuclear Information System (INIS)

    Lyoussi, Abdallah

    2002-01-01

    In this report for accreditation to supervise researches, the author proposes a large and rather precise overview of his research works which dealt with the upstream and downstream parts of the nuclear fuel cycle. After having discussed the different needs associated with non destructive nuclear measurements during the fuel cycle, the author describes his past research activities. In the following parts, he discusses control and characterization methods associated with the upstream and downstream parts of the fuel cycle: fuel density variation measurement, non destructive control of uranium-235 content of enriched uranium ingots, examination of induced photo-fissions in radioactive waste parcels, use of electron accelerator for simultaneous neutron and photon examination, measurement of the spatial distribution of the photonic component from the Mini Linatron, association of non destructive measurement techniques

  12. Non-destructive testing at Chalk River

    International Nuclear Information System (INIS)

    Hilborn, J.W.

    1976-01-01

    In 1969 CRNL recognized the need for a strong group skilled in non-destructive test procedures. Within two years a new branch called Quality Control Branch was staffed and working. This branch engages in all aspects of non-destructive testing including development of new techniques, new applications of known technology, and special problems in support of operating reactors. (author)

  13. Can non-destructive inspection be reliable

    International Nuclear Information System (INIS)

    Silk, M.G.; Stoneham, A.M.; Temple, J.A.G.

    1988-01-01

    The paper on inspection is based on the book ''The reliability of non-destructive inspection: assessing the assessment of structures under stress'' by the present authors (published by Adam Hilger 1987). Emphasis is placed on the reliability of inspection and whether cracks in welds or flaws in components can be detected. The need for non-destructive testing and the historical attitudes to non-destructive testing are outlined, along with the case of failure. Factors influencing reliable inspection are discussed, and defect detection trials involving round robin tests are described. The development of reliable inspection techniques and the costs of reliability and unreliability are also examined. (U.K.)

  14. Non-destructive testing of electronic component packages

    International Nuclear Information System (INIS)

    Anderle, C.

    1975-01-01

    A non-destructive method of investigating packaged parts of semiconductor components by X radiation is described and the relevant theoretical relations limiting this technique are derived. The application of the technique is demonstrated in testing several components. The described method is iNsimple and quick. (author)

  15. Magnetic Non-destructive Testing of Plastically Deformed Mild Steel

    Directory of Open Access Journals (Sweden)

    Jozef Pala

    2004-01-01

    Full Text Available The Barkhausen noise analysis and coercive field measurement have been used as magnetic non-destructive testing methods for plastically deformed high quality carbon steel specimens. The strain dependence of root mean square value and power spectrum of the Barkhausen noise and the coercive field are explained in terms of the dislocation density. The specimens have been subjected to different magnetizing frequencies to show the overlapping nature of the Barkhausen noise. The results are discussed in the context of usage of magnetic non-destructive testing to evaluate the plastic deformation of high quality carbon steel products.

  16. Automated Defect Recognition as a Critical Element of a Three Dimensional X-ray Computed Tomography Imaging-Based Smart Non-Destructive Testing Technique in Additive Manufacturing of Near Net-Shape Parts

    Directory of Open Access Journals (Sweden)

    Istvan Szabo

    2017-11-01

    Full Text Available In this paper, a state of the art automated defect recognition (ADR system is presented that was developed specifically for Non-Destructive Testing (NDT of powder metallurgy (PM parts using three dimensional X-ray Computed Tomography (CT imaging, towards enabling online quality assurance and enhanced integrity confidence. PM parts exhibit typical defects such as microscopic cracks, porosity, and voids, internal to components that without an effective detection system, limit the growth of industrial applications. Compared to typical testing methods (e.g., destructive such as metallography that is based on sampling, cutting, and polishing of parts, CT provides full coverage of defect detection. This paper establishes the importance and advantages of an automated NDT system for the PM industry applications with particular emphasis on image processing procedures for defect recognition. Moreover, the article describes how to establish a reference library based on real 3D X-ray CT images of net-shape parts. The paper follows the development of the ADR system from processing 2D image slices of a measured 3D X-ray image to processing the complete 3D X-ray image as a whole. The introduced technique is successfully integrated into an automated in-line quality control system highly sought by major industry sectors in Oil and Gas, Automotive, and Aerospace.

  17. Evaluation of the veracity of one work by the artist Di Cavalcanti through non-destructive techniques: XRF, imaging and brush stroke analysis

    International Nuclear Information System (INIS)

    Kajiya, E.A.M.; Campos, P.H.O.V.; Rizzutto, M.A.; Appoloni, C.R.; Lopes, F.

    2014-01-01

    This paper presents systematic studies and analysis that contributed to the identification of the forgery of a work by the artist Emiliano Augusto Cavalcanti de Albuquerque e Melo, known as Di Cavalcanti. The use of several areas of expertise such as brush stroke analysis (“pinacologia”), applied physics, and art history resulted in an accurate diagnosis for ascertaining the authenticity of the work entitled “Violeiro” (1950). For this work we used non-destructive methods such as techniques of infrared, ultraviolet, visible and tangential light imaging combined with chemical analysis of the pigments by portable X-Ray Fluorescence (XRF) and graphic gesture analysis. Each applied method of analysis produced specific information that made possible the identification of materials and techniques employed and we concluded that this work is not consistent with patterns characteristic of the artist Di Cavalcanti. - Highlights: • Identification of the forgery of an easel painting of Di Cavalcanti. • Diagnosis for ascertaining the authenticity of the work entitled “Violeiro” (1950). • X-Ray fluorescence spectroscopy and image analysis. • Image analyses allow some identification as hidden underlying lines. • Materials and techniques not characteristic of the artist

  18. High-Resolution and Non-destructive Evaluation of the Spatial Distribution of Nitrate and Its Dynamics in Spinach (Spinacia oleracea L. Leaves by Near-Infrared Hyperspectral Imaging

    Directory of Open Access Journals (Sweden)

    Hao-Yu Yang

    2017-11-01

    Full Text Available Nitrate is an important component of the nitrogen cycle and is therefore present in all plants. However, excessive nitrogen fertilization results in a high nitrate content in vegetables, which is unhealthy for humans. Understanding the spatial distribution of nitrate in leaves is beneficial for improving nitrogen assimilation efficiency and reducing its content in vegetables. In this study, near-infrared (NIR hyperspectral imaging was used for the non-destructive and effective evaluation of nitrate content in spinach (Spinacia oleracea L. leaves. Leaf samples with different nitrate contents were collected under various fertilization conditions, and reference data were obtained using reflectometer apparatus RQflex 10. Partial least squares regression analysis revealed that there was a high correlation between the reference data and NIR spectra (r2 = 0.74, root mean squared error of cross-validation = 710.16 mg/kg. Furthermore, the nitrate content in spinach leaves was successfully mapped at a high spatial resolution, clearly displaying its distribution in the petiole, vein, and blade. Finally, the mapping results demonstrated dynamic changes in the nitrate content in intact leaf samples under different storage conditions, showing the value of this non-destructive tool for future analyses of the nitrate content in vegetables.

  19. Non-Destructive Evaluation of the Leaf Nitrogen Concentration by In-Field Visible/Near-Infrared Spectroscopy in Pear Orchards

    Directory of Open Access Journals (Sweden)

    Jie Wang

    2017-03-01

    Full Text Available Non-destructive and timely determination of leaf nitrogen (N concentration is urgently needed for N management in pear orchards. A two-year field experiment was conducted in a commercial pear orchard with five N application rates: 0 (N0, 165 (N1, 330 (N2, 660 (N3, and 990 (N4 kg·N·ha−1. The mid-portion leaves on the year’s shoot were selected for the spectral measurement first and then N concentration determination in the laboratory at 50 and 80 days after full bloom (DAB. Three methods of in-field spectral measurement (25° bare fibre under solar conditions, black background attached to plant probe, and white background attached to plant probe were compared. We also investigated the modelling performances of four chemometric techniques (principal components regression, PCR; partial least squares regression, PLSR; stepwise multiple linear regression, SMLR; and back propagation neural network, BPNN and three vegetation indices (difference spectral index, normalized difference spectral index, and ratio spectral index. Due to the low correlation of reflectance obtained by the 25° field of view method, all of the modelling was performed on two spectral datasets—both acquired by a plant probe. Results showed that the best modelling and prediction accuracy were found in the model established by PLSR and spectra measured with a black background. The randomly-separated subsets of calibration (n = 1000 and validation (n = 420 of this model resulted in high R2 values of 0.86 and 0.85, respectively, as well as a low mean relative error (<6%. Furthermore, a higher coefficient of determination between the leaf N concentration and fruit yield was found at 50 DAB samplings in both 2015 (R2 = 0.77 and 2014 (R2 = 0.59. Thus, the leaf N concentration was suggested to be determined at 50 DAB by visible/near-infrared spectroscopy and the threshold should be 24–27 g/kg.

  20. Training Guidelines in Non-destructive Testing Techniques. 2013 Edition

    International Nuclear Information System (INIS)

    2014-12-01

    The IAEA promotes industrial applications of radiation technology, including non-destructive testing (NDT), through activities such as Technical Cooperation Projects (national and regional) and Coordinated Research Projects. Through this cooperation, Member States have initiated national programmes for the training and certification of NDT personnel. National certifying bodies have also been established based on International Organization for Standardization (ISO) standards. As part of these efforts, the IAEA has been actively involved in developing training materials. Consequently, IAEA-TECDOC-407, Training Guidelines in Non-destructive Testing Techniques, was published in 1987, then revised and expanded as IAEA-TECDOC-628 in 1991. Revisions of IAEA-TECDOC-628 were considered essential to meet the demands of end-user industries in Member States, and revised and expanded versions were issued in 2002 and 2008. These latter versions included work conducted by the International Committee for Non-Destructive Testing (ICNDT) and many national NDT societies. It is one of the publications referred to in ISO 9712:2005, Non-destructive Testing: Qualification and Certification of Personnel, which in turn is an internationally accepted standard, revised as ISO 9712:2012, Non-destructive Testing: Qualification and Certification of NDT Personnel. This publication is an updated version of IAEA-TECDOC-628. The content of which has been revised following the changes of ISO 9712 converging with EN 473 and becoming EN ISO 9712:2012, based on the experience of experts and comments from end-user industries. The details of the topics on each subject have been expanded to include the latest developments in the respective methods. The incorporated changes will assist the end-user industries to update their NDT qualification and certification schemes and course materials. This publication, like the previous versions, will continue to play an important role in international harmonization

  1. Non-destructive testing. V. 2

    International Nuclear Information System (INIS)

    Farley, J.M.; Nichols, R.W.

    1988-01-01

    The book entitled 'Non-destructive Testing' Volume 2, contains the proceedings of the fourth European Conference, organized by the British Institute of Non-Destructive Testing and held in London, September 1987. The volume contains seven chapters which examine the reliability of NDT, the economics of NDT and the use of NDT in:- civil engineering; oil, gas, coal and petrochemical industries; iron and steel industries; aerospace industry; and the nuclear and electricity supply industries. The seven chapters contain 78 papers, of which 19 are selected for INIS and indexed separately. (U.K.)

  2. European Non Destructive Examination Forum (ENDEF)

    International Nuclear Information System (INIS)

    Deffrennes, M.; Engl, G.; Estorff, U. von

    1998-01-01

    Non destructive examination (NDE) during fabrication, Pre-service inspection (PSI) and In service inspection (ISI) are considered key issues for the safe use of nuclear energy. They are important elements of plant lifetime management which is a critical item in decision making on nuclear policies. The European non destructive examination forum (ENDEF) founded by European Commission provides a platform for open discussion between representatives of the European industries with the purpose to establish cooperation between EU, Central and Eastern European Countries and New Independent States in the field of NDE and ISI

  3. X-ray tomography as a non-destructive tool for evaluating the preservation of primary isotope signatures and mineralogy of Mesozoic fossils

    Science.gov (United States)

    Santillan, J. D.; Boyce, J. W.; Eagle, R.; Martin, T.; Tuetken, T.; Eiler, J.

    2010-12-01

    The stable isotope compositions of carbonate and phosphate components in fossil teeth and bone are widely used to infer information on paleoclimate and the physiology of extinct organisms. Recently the potential for measuring the body temperatures of extinct vertebrates from analyses of 13C-18O bond ordering in fossil teeth has been demonstrated (Eagle et al. 2010). The interpretation of these isotopic signatures relies on an assessment of the resistance of fossil bioapatite to alteration, as diffusion within, and partial recrystallization, or replacement of the original bioapatite will lead to measured compositions that represent mixtures between primary and secondary phases and/or otherwise inaccurate apparent temperatures. X-ray computed tomography (CT) allows 3-D density maps of teeth to be made at micron-scale resolution. Such density maps have the potential to record textural evidence for alteration, recrystallization, or replacement of enamel. Because it is non-destructive, CT can be used prior to stable isotope analysis to identify potentially problematic samples without consuming or damaging scientifically significant specimens. As a test, we have applied CT to tooth fragments containing both dentin and enamel from Late Jurassic sauropods and a Late Cretaceous theropod that yielded a range of clumped isotope temperatures from anomalously high ˜60oC to physiologically plausible ≤40oC. This range of temperatures suggests partial, high-temperature modification of some specimens, but possible preservation of primary signals in others. Three-dimensional CT volumes generated using General Electric Phoenix|x-ray CT instruments were compared with visible light and back-scattered electron images of the same samples. The tube-detector combination used for the CT study consisted of a 180 kV nanofocus transmission tube coupled with a 127 micron pixel pitch detector ( ˜3-12μ m voxel edges), allowing us to clearly map out alteration zones in high contrast, while

  4. New tasks for non-destructive testing

    International Nuclear Information System (INIS)

    1990-01-01

    The proceedings contain 29 lectures and 43 posters which were presented in Trier at the annual meeting of the DGZfP in May 1990. The contributions report on further development of non-destructive testing methods towards more reliability, both of inspections and with regard to interpretation of the results. (MM) [de

  5. Utilization of radiation in non destructive tests

    International Nuclear Information System (INIS)

    Lopes, R.T.; Jesus, E.F.O. de; Junqueira, M.M.; Matos, J.A. de; Castello Branco, L.M.; Barros Junior, J.D.; Borges, J.C.

    1987-01-01

    The Nuclear Instrumentation Laboratory from COPPE/UFRJ has been developed techniques for using nuclear radiations to obtain images for non-destructive materials testing and medicine. With this objective, some prototypes of transmission computerized tomography systems using parallel beans and fan beans, with computer automation, including the mathematical process of image reprocessing and presentation in videos or printers are constructed [pt

  6. Non destructive testing and neutron radiography in 1994

    International Nuclear Information System (INIS)

    Bayon, G.

    1994-01-01

    Neutron radiography has been considered for a long time as a promising technique; however it plays a minor part in the world of non destructive testing today, due to the lack of suitable neutron sources and lack of new industrial applications. This paper reviews the present status of neutron sources, neutron radiography activities, especially in France (such as the neutron-capture-issued secondary radiation spectrometry), in nuclear, aerospace, aeronautical and metallurgical sectors, and the last applications of neutron dynamic imaging. 9 refs

  7. Non-destructive examination system of vitreous body

    Science.gov (United States)

    Shibata, Takuma; Gong, Jin; Watanabe, Yosuke; Kabir, M. Hasnat; Masato, Makino; Furukawa, Hidemitsu; Nishitsuka, Koichi

    2014-04-01

    Eyeball plays a quite important role in acquiring the vision. Vitreous body occupies the largest part of the eyeball and consists of biological, elastic, transparent, gel materials. In the present medical examination, the non-destructive examination method of the vitreous body has not been well established. Here, we focus on an application of dynamic light scattering to this topic. We tried to apply our lab-made apparatus, scanning microscopic light scattering (SMILS), which was specially designed for observing the nanometer-scale network structure in gel materials. In order to examine the vitreous body using SMILS method, a commercial apparatus, nano Partica (Horiba Co. Ltd.) was also customized. We analyzed vitreous body using both the SMILS and the customized nano Partica. We successfully examined the vitreous bodies of healthy pigs in non-destructive way.

  8. The non-destructive control, a major constituent of quality

    International Nuclear Information System (INIS)

    Anon.

    1998-01-01

    The number of continuous research and development works about non-destructive control in all sectors of activity is justified by the increasing need for high quality materials without anomalies. This paper gives a overview of the state of the art and of the recent trends in non-destructive testing researches in different sectors: aeronautics, nuclear industry, automotive industry. New studies and techniques are presented: ultrasonic testing of welds on large diameter pipes, automated applications of ultrasonic testing, ultrasound/computer-aided design coupling, pressure vessels inspection using acoustic emission testing (leaks detection, application to composite materials), numerical radiography (image visualisation and processing), magnetic testing (steel damage detection using Barkhausen noise testing), 'shearography' (detection of the loss of thickness in pipes due to corrosion), X-ray tomography (density measurement of sintered steels, fluid flow calculations in automobile parts). (J.S.)

  9. Practical Uses of Neutron Radiography for Non-Destructive Testing

    International Nuclear Information System (INIS)

    Middleton, M.F.; de Beer, F.; Pazsit, Imre; Li, Kewen; Hilson, Jodie

    2006-01-01

    Over the past nine years, a research collaboration has been developed around the use of neutron radiography in non-destructive testing of porous rocks and other materials. This paper is a review of that work, with a critical reflection on the future potential of the technique. Neutrons are ideal for detecting water concentration, due to the high attenuation of neutrons by hydrogen, in porous or semi-porous media. Problems, which involve the determination of water concentration in porous media, are particularly amenable for neutron radiography analysis. In this context, water concentration in porous media is important in groundwater studies, petroleum reservoir studies, studies of geothermal systems, the understanding of water absorption in building materials, and more recently in mineral exploration and processing applications. Beyond these applications, neutron analysis of flawed and corroded aircraft parts has emerged as a valuable tool to support conventional non-destructive testing (NDT) techniques. Such investigations, using neutron radiography of aircraft parts, have been active in the United States, Canada and South Africa for over two decades. In 2001, an Australian Research Council (ARC) grant enabled the informal collaboration to establish a semi-portable neutron imaging system in Australia. Preliminary results of that ongoing research will also be presented herein. In overview, neutron radiography presents a powerful non-destructive testing method, which in many new areas of application remains to be evaluated. It has proven to be most valuable where water detection, in quantities greater than approximately 0.1 percent of the total volume, is required. This concentration is not a limitation on the technique, but only current applications. It has been demonstrated to be powerful tool to detect natural substances containing bound-water and neutron-attenuating minerals, such as clay, Glauconite and the various water-rich iron-bearing minerals (e.g. Goethite

  10. Economic importance of non-destructive testing

    International Nuclear Information System (INIS)

    Loebert, P.

    1979-01-01

    On May 21 to 23, 1979, the annual meeting of the Deutsche Gesellschaft fuer Zerstoerungsfreie Pruefung took place in Lindau near the Bodensee lake. About 600 experts from Germany and abroad participated in the meeting, whose general subject was 'The Economic Importance of Non-Destructive Testing'. Theoretical problems and practical investigations were discussed in a number of papers on special subjects. Apart from the 33 papers, there was also a poster show with 53 stands with texts, drawings, diagrams, and figures where the authors informed those interested on the latest state of knowledge in testing. The short papers were read in six sessions under the headings of rentability of non-destructive testing, X-ray methods, electromagnetic methods, and ultrasonic methods 1 and 2. (orig.) [de

  11. Non-destructive control in nuclear construction

    International Nuclear Information System (INIS)

    Banus; Barbier; Launay

    1978-01-01

    Having recalled the characteristics of the fundamental components of the main primary circuit of nuclear boilers (900 MW) and the means appropriated for their control, it is recalled that the 'French Electricity Board's specifications and control rules' often prescribe more severe criteria than those existing in the U.S.A. Then practical examples of non-destructive controls concerning the steam generator end plates, vessel stainless steel linings, pump attachements, steam generator pipes are given [fr

  12. Development of non-destructive testing. Turkey

    International Nuclear Information System (INIS)

    1991-01-01

    A National Scheme for the qualification and certification of Non-Destructive Testing (NDT) personnel in various methods has been established as the first stage of implementation. Systematic training in such methods as radiography (RT), ultrasonics (UT), magnetic particles (MT), liquid penetrant (PT) and eddy currents (ET) at levels I, II and some at III has been initiated and should be continued. Direct link with the industry and continuous effort to extend practical applications is strongly recommended

  13. Non-destructive testing of the MEGAPIE target

    Science.gov (United States)

    Dai, Y.; Wohlmuther, M.; Boutellier, V.; Hahl, S.; Lagotzki, A.; Leu, H.; Linder, H. P.; Schwarz, R.; Spahr, A.; Zanini, L.; Kuster, D.; Gavillet, D.; Wagner, W.

    2016-01-01

    Non-destructive testing (NDT) is one important part of the post-irradiation examination (PIE) of the MEGAPIE target. It includes visual inspection and ultrasonic measurement of the beam window of the T91 LBE container and gamma mapping of the beam window of the AlMg3 safety-container. The visual inspection showed no visible failure in the proton beam window area of the T91 LBE container. The ultrasonic measurement demonstrated no detectable change in the wall thickness of the T91 beam window, which implies no severe corrosion effect induced by flowing LBE during the four-month irradiation period. The gamma mapping provided the distribution of 22Na, a spallation product, in the proton beam window area of the AlMg3 safety-container. The result was used to evaluate the accumulated proton fluence distribution profile, the input data for determining irradiation parameters. A maximum proton fluence of 1.9 × 1025 p/m2 was deduced. The corresponding displacement damage degree in the T91 beam window was 7.1 dpa.

  14. Non-Destructive Testing for Control of Radioactive Waste Package

    Science.gov (United States)

    Plumeri, S.; Carrel, F.

    2015-10-01

    Characterization and control of radioactive waste packages are important issues in the management of a radioactive waste repository. Therefore, Andra performs quality control inspection on radwaste package before disposal to ensure the compliance of the radwast characteristics with Andra waste disposal specifications and to check the consistency between Andra measurements results and producer declared properties. Objectives of this quality control are: assessment and improvement of producer radwaste packages quality mastery, guarantee of the radwaste disposal safety, maintain of the public confidence. To control radiological characteristics of radwaste package, non-destructive passive methods (gamma spectrometry and neutrons counting) are commonly used. These passive methods may not be sufficient, for instance to control the mass of fissile material contained inside radwaste package. This is particularly true for large concrete hull of heterogeneous radwaste containing several actinides mixed with fission products like 137Cs. Non-destructive active methods, like measurement of photofission delayed neutrons, allow to quantify the global mass of actinides and is a promising method to quantify mass of fissile material. Andra has performed different non-destructive measurements on concrete intermediate-level short lived nuclear waste (ILW-SL) package to control its nuclear material content. These tests have allowed Andra to have a first evaluation of the performance of photofission delayed neutron measurement and to identify development needed to have a reliable method, especially for fissile material mass control in intermediate-level long lived waste package.

  15. Criticality Safety Evaluation for Small Sample Preparation and Non-Destructive Assay (NDA) Operations in Wing 7 Basement of the CMR Facility

    Energy Technology Data Exchange (ETDEWEB)

    Kunkle, Paige Elizabeth [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Zhang, Ning [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-08-02

    Nuclear Criticality Safety (NCS) has reviewed the fissionable material small sample preparation and NDA operations in Wing 7 Basement of the CMR Facility. This is a Level-1 evaluation conducted in accordance with NCS-AP-004 [Reference 1], formerly NCS-GUIDE-01, and the guidance set forth on use of the Standard Criticality Safety Requirements (SCSRs) [Reference 2]. As stated in Reference 2, the criticality safety evaluation consists of both the SCSR CSED and the SCSR Application CSED. The SCSR CSED is a Level-3 CSED [Reference 3]. This Level-1 CSED is the SCSR Application CSED. This SCSR Application (Level-1) evaluation does not derive controls, it simply applies controls derived from the SCSR CSED (Level-3) for the application of operations conducted here. The controls derived in the SCSR CSED (Level-3) were evaluated via the process described in Section 6.6.5 of SD-130 (also reproduced in Section 4.3.5 of NCS-AP-004 [Reference 1]) and were determined to not meet the requirements for consideration of elevation into the safety basis documentation for CMR. According to the guidance set forth on use of the SCSRs [Reference 2], the SCSR CSED (Level-3) is also applicable to the CMR Facility because the process and the normal and credible abnormal conditions in question are bounded by those that are described in the SCSR CSED. The controls derived in the SCSR CSED include allowances for solid materials and solution operations. Based on the operations conducted at this location, there are less-than-accountable (LTA) amounts of 233U. Based on the evaluation documented herein, the normal and credible abnormal conditions that might arise during the execution of this process will remain subcritical with the following recommended controls.

  16. Non-destructive, preclinical evaluation of root canal anatomy of human teeth with flat-panel detector volume CT (FD-VCT)

    International Nuclear Information System (INIS)

    Heidrich, G.; Hassepass, F.; Dullin, C.; Grabbe, E.; Attin, T.; Hannig, C.

    2005-01-01

    Purpose: Successful endodontic diagnostics and therapy call for adequate depiction of the root canal anatomy with multimodal diagnostic imaging. The aim of the present study is to evaluate visualization of the endodont with flat-panel detector volume CT (FD-VCT). Materials and methods: 13 human teeth were examined with the prototype of a FD-VCT. After data acquisition and generation of volume data sets in volume rendering technology (VRT), the findings obtained were compared to conventional X-rays and cross-section preparations of the teeth. Results: The anatomical structures of the endodont such as root canals, side canals and communications between different root canals as well as dentricles could be detected precisely with FD-VCT. The length of curved root canals was also determined accurately. The spatial resolution of the system is around 140 μm. Only around 73% of the main root canals detected with FD-VCT and 87% of the roots could be visualized with conventional dental X-rays. None of the side canals, shown with FD-VCT, was detectable on conventional X-rays. In all cases the enamel and dentin of the teeth could be well delineated. No differences in image quality could be discerned between stored and freshly extracted teeth, or between primary and adult teeth. (orig.)

  17. Evaluating the effect of crumb rubber and nano silica on the properties of high volume fly ash roller compacted concrete pavement using non-destructive techniques

    Directory of Open Access Journals (Sweden)

    Bashar S. Mohammed

    2018-06-01

    Full Text Available The major problems related to roller compacted concrete (RCC pavement are high rigidity, lower tensile strength which causes a tendency of cracking due to thermal or plastic shrinkage, flexural and fatigue loads. Furthermore, RCC pavement does not support the use of dowel bars or reinforcement due to the way it is placed and compacted, these also aided in cracking and consequently increased maintenance cost. To address these issues, high volume fly ash (HVFA RCC pavement was developed by partially replacing 50% cement by volume with fly ash. Crumb rubber was used as a partial replacement to fine aggregate in HVFA RCC pavement at 0%, 10%, 20%, and 30% replacement by volume. Nano silica was added at 0%, 1%, 2% and 3% by weight of cementitious materials to improve early strength development in HVFA RCC pavement and mitigate the loss of strength due to the incorporation of crumb rubber. The nondestructive technique using the rebound hammer test (RHT and ultrasonic pulse velocity (UPV were used to evaluate the effect of crumb rubber and nano silica on the performance of HVFA RCC pavement. The results showed that the use of HVFA as cement replacement decreases both the unit weight, compressive strength, rebound number (RN. Furthermore, the unit weight, compressive strength, RN, UPV and dynamic modulus of elasticity of HVFA RCC pavement all decreases with increase in crumb rubber content and increases with the addition of nano-silica. Combined UPV-RN (SonReb models for predicting the 28 days strength of HVFA RCC pavement based on combining UPV and RN were developed using multivariable regression (double power, bilinear, and double exponential models. The exponential combined SonReb model is the most suitable for predicting the compressive strength of HVFA RCC pavement using UPV and RN as the independent variable with better predicting ability, higher correlation compared to the single variable models. Keywords: Crumb rubber, High volume fly ash, Nano

  18. Safeguards and Non-destructive Assay

    International Nuclear Information System (INIS)

    Carchon, R.; Bruggeman, M.

    2001-01-01

    SCK-CEN's programme on safeguards and non-destructive assay includes: (1) various activities to assure nuclear materials accountancy; (2) contributes to the implementation of Integrated Safeguards measures in Belgium and to assist the IAEA through the Belgian Support Programme; (3) renders services to internal and external customers in the field of safeguards; (4) improves passive neutron coincidence counting techniques for waste assay and safeguards verification measurements by R and D on correlation algorithms implemented via software or dedicated hardware; (5) improves gamma assay techniques for waste assay by implementing advanced scanning techniques and different correlation algorithms; and (6) develops numerical calibration techniques. Major achievements in these areas in 2000 are reported

  19. Non-Destructive Testing for Concrete Structure

    International Nuclear Information System (INIS)

    Tengku Sarah Tengku Amran; Noor Azreen Masenwat; Mohamad Pauzi Ismail

    2015-01-01

    Nondestructive testing (NDT) is a technique to determine the integrity of a material, component or structure. It is essential in the inspection of alteration, repair and new construction in the building industry. There are a number of non-destructive testing techniques that can be applied to determine the integrity of concrete in a completed structure. Each has its own advantages and limitations. For concrete, these problems relate to strength, cracking, dimensions, delamination, and inhomogeneities. NDT is reasonably good and reliable tool to measure the property of concrete which also gives the fair indication of the compressive strength development. This paper discussed the concrete inspection using combined methods of NDT. (author)

  20. Non-destructive testing of rocket fuse by thermal neutron radiography

    International Nuclear Information System (INIS)

    An Fulin; Li Furong

    1999-01-01

    A neutron radiography system in reactor horizontal hole of Tsinghua University was introduced, and its capability of neutron radiography was evaluated by theory and experiment, the non-destructive testing for rocket fuse is successful

  1. Non-destructive testing; Examenes no destructivos

    Energy Technology Data Exchange (ETDEWEB)

    Calva, Mauricio; Loske, Achim [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1988-12-31

    The application of non-destructive testing (NDT) in several technical and industrial fields is pointed out, standing out its utilization in the detection of future failures without affecting the examined element. Likewise, the different types of NDTs and their processes, such as x-rays, ultrasoud, magnetic particles, induced currents, penetrating fluids, and optical means, are described. The Non-Destructive Tests Laboratory of the Instituto de Investigaciones Electricas (IIE), plans to create new and more reliable systems independent from the operator`s capacity, to contribute to fulfill the inspection and quality control needs of the generating Mexican power plants. [Espanol] Se senala la aplicacion de los examenes no destructivos (END) a diversos campos tecnicos e industriales, destacando su utilizacion en la deteccion de futuras fallas sin afectar el elemento examinado. Asimismo, se describen los diferentes tipos de END y sus procesos, tales como radiografia, ultrasonido, particulas magneticas, corrientes inducidas, liquidos penetrantes y metodos opticos. El Laboratorio de Pruebas no Destructivas, del Instituto de Investigaciones Electricas (IIE), planea crear sistemas novedosos mas confiables, que no dependan de la capacidad del operador, para contribuir a satisfacer las necesidades de inspeccion y control de calidad que se presentan en las plantas generadoras de energia mexicanas.

  2. Developments in non-destructive beam diagnostics

    International Nuclear Information System (INIS)

    Fraser, J.S.

    1981-01-01

    With the large average beam currents being achieved in accelerators and storage rings, there is an increasing need for non-destructive beam diagnostic devices. For continuous beams, position monitors of the capacitive pick-up type are replaced by resonant devices that respond to the transverse displacement of the beam centroid. Bunch length monitors of the SLAC type using resonant cavities operating in the TM 010 mode can be used for continuous beams. The more detailed information derivable from beam profile scanners requires development of improved non-destructive devices. Profile monitors which scan the visible light produced by high current beams may be more reliable than ones using the residual ionization if the light intensity from gas molecules following nonionizing collisions with beam particles gives a measure of the beam current density independent of the local electron density. The intense Balmer series lines from neutral hydrogen beams have been used successfully to measure beam profiles. At CRNL and at LASL, beam light profile monitors are being developed for high average current accelerators. Three or more projections will be recorded to allow tomographic reconstruction of the two-dimensional beam current density. Light detection is either by intensified Reticons or ISIT vidicons. The use of three or more beam light monitors on a beam transport line will also permit estimates of the transverse emittance to be made through the reconstruction technique

  3. Non-destructive testing; Examenes no destructivos

    Energy Technology Data Exchange (ETDEWEB)

    Calva, Mauricio; Loske, Achim [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1987-12-31

    The application of non-destructive testing (NDT) in several technical and industrial fields is pointed out, standing out its utilization in the detection of future failures without affecting the examined element. Likewise, the different types of NDTs and their processes, such as x-rays, ultrasoud, magnetic particles, induced currents, penetrating fluids, and optical means, are described. The Non-Destructive Tests Laboratory of the Instituto de Investigaciones Electricas (IIE), plans to create new and more reliable systems independent from the operator`s capacity, to contribute to fulfill the inspection and quality control needs of the generating Mexican power plants. [Espanol] Se senala la aplicacion de los examenes no destructivos (END) a diversos campos tecnicos e industriales, destacando su utilizacion en la deteccion de futuras fallas sin afectar el elemento examinado. Asimismo, se describen los diferentes tipos de END y sus procesos, tales como radiografia, ultrasonido, particulas magneticas, corrientes inducidas, liquidos penetrantes y metodos opticos. El Laboratorio de Pruebas no Destructivas, del Instituto de Investigaciones Electricas (IIE), planea crear sistemas novedosos mas confiables, que no dependan de la capacidad del operador, para contribuir a satisfacer las necesidades de inspeccion y control de calidad que se presentan en las plantas generadoras de energia mexicanas.

  4. Fundamental investigation of hybrid high-temperature superconductor-semiconductor sensors for magnetic signals in non-destructive evaluation. Final report; Grundlegende Untersuchungen hybrider Hochtemperatursupraleiter-Halbleiter-Magnetfelddetektoren auf Siliziumsubstraten fuer Anwendungen in der zerstoerungsfreien Pruefung. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Seidel, P.; Schmidl, F.; Linzen, S.; Schmidt, F.; Scherbel, J.

    2002-11-01

    A new magnetic sensor was realized using a Hall magnetometer coupled to an antenna out of high-temperature superconducting material. The resolution of the magnetometer was improved and a noise-limited field resolution of the system of 2.7 nT/{radical}(Hz) was obtained. The necessary thin film technology was developed and optimized. Further improvements will result in 0.5 nT/{radical}(Hz). The sensors were realized as single sensors as well as sensor arrays and successfully tested in a system for non-destructive evaluation. Within this system the cooling was established by a cryocooler which also cools down the electronics to about 80 K. (orig.) [German] Es wurde ein neuartiger Magnetfeldsensor realisiert, bei dem ein Hallmagnetometer mit einer Antenne aus Hochtemperatursupraleitenden Material gekoppelt wird. Die Magnetometerempfindlichkeit wird dadurch kiar verbessert und eine rauschbegrenzte Feldaufloesung des Systems von 2,7 nT{radical}(/Hz) erreicht. Die zur Herstellung noetige hybride Duennschichttechnologie wurde entwickelt und optimiert. Durch Layoutverbesserungen erscheinen Aufloesungen von 0,5 nT/{radical}(Hz) realisierbar. Die Sensoren wurden als Einzelsensor und Sensorarrays realisiert und in einer Anlage zur zerstoerungsfreien Pruefung erfolgreich getestet. Dabei erfolgte die Kuehlung mittels Kleinkuehler, der auch die Verarbeitungselektronik auf 80 K kuehlt. (orig.)

  5. Design of eddy current probes and signal inversion for non-destructive testing

    International Nuclear Information System (INIS)

    Ravat, C.

    2008-01-01

    Non destructive testing is widely used in aerospace industry and nuclear industry. The growing complexity of industrial processes and manufactured parts, the increasing need of safety in service and the will of life span optimization, require more and more complex quality evaluations to be set up. Among the different anomalies to consider, sub-millimetric breaking surface notches have to be subject to special care. Indeed, it often constitutes a start to larger notches, which can cause the destruction of parts. Penetrant testing is nowadays widely used for that kind of defect, owing to its good performances. Nevertheless, it should be eventually dropped because of environmental norms. Among the possible substitution solutions, the use of eddy currents (EC) for conductive parts is a reliable, fast and inexpensive alternative. The study is about the conception and the use of multi-elements EC probe structures featuring microsensors for non destructive testing of surface breaking defects. A methodology has been established in order to develop such structures and to compare their performances within the framework of sub-millimetric surface breaking notch research. These structures has been employed for calibrated notches evaluation with a specific acquisition bench. Original detection and defect characterization algorithms have been designed and implemented on acquired signals. The most efficient structure has been determined, the notch detection quality has been quantified, and the geometric characteristics of notches has been estimated. (author)

  6. Potential development of non-destructive assay for nuclear safeguards

    International Nuclear Information System (INIS)

    Benoit, R.; Cuypers, M.; Guardini, S.

    1983-01-01

    After a brief summary on the role of non-destructive assay in safeguarding the nuclear fuel cycle, its evolution from NDA methods development to other areas is illustrated. These areas are essentially: a) the evaluation of the performances of NDA techniques in field conditions; b) introduction of full automation of measurement instrument operation, using interactive microprocessors and of measurement data handling evaluation and retrieval features; c) introduction of the adequate link and compatibility to assure NDA measurement data transfer in an integrated safeguards data evaluation scheme. In this field, the Joint Research Centre (JRC) of the Commission of the European Communities (CEC) is developing and implementing a number of techniques and methodologies allowing an integrated and rational treatment of the large amount of safeguards data produced. In particular for the non-destructive assay measurements and techniques, the JRC has studied and tested methodologies for the automatic generation and validation of data of inventory verification. In order to apply these techniques successfully in field, the JRC has studied the design requirements of NDA data management and evaluation systems. This paper also discusses the functional requirements of an integrated system for NDA safeguards data evaluation

  7. Non destructive testing in amusement park

    International Nuclear Information System (INIS)

    Dominguez Marrero, Humberto; Hernandez Torres, Debora; Sendoya Puente, Felix; Herrera Palma, Victoria; Suarez Guerra, Yarelis; Moreno Hernandez, Eduardo; Lopez Hernandez, Pedro

    2009-01-01

    In 2006 began the installation of Chinese amusement parks at several places in Havana City. Structural security is one of the principal tasks that should be done, since the beginning of the services of these installations. The use on Non Destructive Testing Techniques (NDT), has to be development and implemented in order to avoid the possibility of failure during services with a consequence threat to safety for the public presented. In this work it is shown the results of application of NDT techniques and recommendations for the quality control of the different welds and mechanical components presented. Techniques as Visual Examination, Liquid Penetrant and Ultrasonic have been used for these purposes in order to obtain a structural diagnostic in the amusement parks. There are also exposed the use and implementation of international recommendations and Standards, which are very rigorous in its applications for the case of recreation industry. This is a consequence to its social service fundamentally to children and teenage people. (Author)

  8. Non-destructive testing of the MEGAPIE target

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Y., E-mail: yong.dai@psi.ch; Wohlmuther, M.; Boutellier, V.; Hahl, S.; Lagotzki, A.; Leu, H.; Linder, H.P.; Schwarz, R.; Spahr, A.; Zanini, L.; Kuster, D.; Gavillet, D.; Wagner, W.

    2016-01-15

    Non-destructive testing (NDT) is one important part of the post-irradiation examination (PIE) of the MEGAPIE target. It includes visual inspection and ultrasonic measurement of the beam window of the T91 LBE container and gamma mapping of the beam window of the AlMg{sub 3} safety-container. The visual inspection showed no visible failure in the proton beam window area of the T91 LBE container. The ultrasonic measurement demonstrated no detectable change in the wall thickness of the T91 beam window, which implies no severe corrosion effect induced by flowing LBE during the four-month irradiation period. The gamma mapping provided the distribution of {sup 22}Na, a spallation product, in the proton beam window area of the AlMg{sub 3} safety-container. The result was used to evaluate the accumulated proton fluence distribution profile, the input data for determining irradiation parameters. A maximum proton fluence of 1.9 × 10{sup 25} p/m2 was deduced. The corresponding displacement damage degree in the T91 beam window was 7.1 dpa. - Highlights: • MEGAPIE is to design, build, operate and explore a liquid lead–bismuth (LBE) spallation target for 1 MW of beam power. • NDT of the target components exposed to high fluxes of high-energy protons and spallation neutrons was conducted. • There are no evident failures and corrosion effect of LBE in the T91 steel liquid metal container after irradiation to 7.1 dpa.

  9. Evaluation of non destructive testing to characterize the resistance of the prefabricated system of columns and floor tiles for single family homes of a level: permeability meter, determination of wave velocity by ultrasound, Schmidt sclerometer and metal detector

    International Nuclear Information System (INIS)

    Quesada Chacon, Dannell

    2014-01-01

    Non destructive testing are determined to be correlated with resistance to compression and flexion of elements belonging to prefabricated system of columns and floor tiles for single family homes of a level. The characteristics of the non destructive testing are described, such as: measurer of permeability, Schmidt sclerometer, determination of wave velocity by ultrasound and metal detector. The columns and floor tiles are elaborated with 2 mixtures of different resistances at 28 days. The first more than 30 MPa and the second less than 25 MPa are sampled together with the control cylinders necessary to obtain the actual resistance according to ASTM C39. Last resistance testings to compression and Schmidt sclerometer are realized to control cylinders to 1, 2, and 4 weeks after being cast. Non destructive testings (permeability meter Torrent, Schmidt sclerometer and determination of wave velocity by ultrasound) are performed in columns and floor tiles to 1, 2, and 4 weeks after being cast. Last resistance testings to flexion is obtained by means of destructive tests of the columns and floor tiles sampled. The correlation of the data obtained is determined to derive values of compression resistance from non destructive testing [es

  10. Qualifying program on Non-Destructive Testing, Visual Inspection of the welding (level 2)

    International Nuclear Information System (INIS)

    Shafee, M. A.

    2011-01-01

    Nondestructive testing is a wide group of analysis technique used in science and industry to evaluate the properties of a material, component or system without causing damage. Common Non-Destructive Testing methods include ultrasonic, magnetic-particle, liquid penetrate, radiographic, visual inspection and eddy-current testing. AAEA put the new book of the Non-Destructive Testing publication series that focused on Q ualifying program on Non-Destructive Testing, visual inspection of welding-level 2 . This book was done in accordance with the Arab standard certification of Non-Destructive Testing (ARAB-NDT-CERT-002) which is agreeing with the ISO-9712 (2005) and IAEA- TEC-DOC-487. It includes twenty one chapters dealing with engineering materials used in industry, the mechanical behavior of metals, metal forming equipments, welding, metallurgy, testing of welds, introduction to Non-Destructive Testing, defects in metals, welding defects and discontinuities, introduction to visual inspection theory, properties and tools of visual testing, visual testing, quality control regulations, standards, codes and specifications, procedures of welding inspections, responsibility of welding test inspector, qualification of Non-Destructive Testing inspector and health safety during working.

  11. An accurate method for determining residual stresses with magnetic non-destructive techniques in welded ferromagnetic steels

    International Nuclear Information System (INIS)

    Vourna, P

    2016-01-01

    The scope of the present research work was to investigate the proper selection criteria for developing a suitable methodology for the accurate determination of residual stresses existing in welded parts. Magnetic non-destructive testing took place by the use of two magnetic non-destructive techniques: by the measurement of the magnetic Barkhausen noise and by the evaluation of the magnetic hysteresis loop parameters. The spatial distribution of residual stresses in welded metal parts by both non-destructive magnetic methods and two diffraction methods was determined. The conduction of magnetic measurements required an initial calibration of ferromagnetic steels. Based on the examined volume of the sample, all methods used were divided into two large categories: the first one was related to the determination of surface residual stress, whereas the second one was related to bulk residual stress determination. The first category included the magnetic Barkhausen noise and the X-ray diffraction measurements, while the second one included the magnetic permeability and the neutron diffraction data. The residual stresses determined by the magnetic techniques were in a good agreement with the diffraction ones. (paper)

  12. Training guidelines in non-destructive testing techniques

    International Nuclear Information System (INIS)

    1987-02-01

    With the conclusion in 1979 of a successful Agency executed UNDP project in Argentina, whose aim was the establishment of a national non-destructive testing centre, the Agency was asked by other countries in the Latin American and Caribbean Region to evaluate the possibility of transferring this success to the whole region. In 1982, with the financial cooperation of UNFSSTD and UNIDO, a regional project was started with the principal objective of assisting the countries in the region to reinforce autonomous NDT capability through regional cooperation. One essential component of this project has been the harmonization of training through the development and use of course syllabi by the 17 countries now participating in the project. To this end, a Regional Working Group was formed and one of its tasks is the development of these syllabi for the more common NDT methods. This publication is a collection of the training programmes elaborated to date which have so far been followed by some 10,000 persons in the region who have received training in NDT as a direct result of the project. These syllabi take into account the development work done by the International Committee for Non-destructive Testing and many national training programmes, and are meant to be an objective guide to assist in the formation of NDT personnel

  13. European Non Destructive Examination Forum (ENDEF)

    Energy Technology Data Exchange (ETDEWEB)

    Deffrennes, M [EC, DG XVII, Nuclear Energy, Brussels (Belgium); Engl, G [Siemens AG Energieerzeugung KWU, Erlangen (Germany); Estorff, U von [EC, JRC/IAM, Petten (Netherlands)

    1998-11-01

    ENDEF, an initiative of the European Commission, DG XVII (Energy) was well supported by the European industrial institutions working in assistance with nuclear industrial organisations in the CEEC`s (Central and Eastern European Countries) and NIS`s (New Independent States). This Forum provides effectively a platform for open discussion between representatives of industrial actors active in the NDE (Non Destructive Examination)/ISI (In Service Inspection) field with the purpose to establish a co-operation pattern between qualified representatives of the EU (European Union) industry to offer a better co-ordinated and well defined assistance to the CEEC`s and NIS in the field of NDE/ISI, and to lay the ground for further industrial co-operation. ENDEF developed a strategy to follow for the establishment of co-operation projects. This strategy is now used to understand the extent of past or present assistance projects and to identify the areas where more co-operation is needed. ENDEF encourages the creation in the NIS`s and CEEC`s of similar forums in order to increase the co-operation and co-ordination. ENDEF is also working in perfect agreement with the European Network ENIQ, piloted by the European plant operators. This identity of views lead to the leadership by the ENDEF co-ordinator of the ENIQ Task 3 involving Applications of the European Methodology for ISI qualification in the CEEC`s and NIS`s and presently fully integrated in ENDEF. (orig.)

  14. Non Destructive Analysis of Uranium by Radiometry

    International Nuclear Information System (INIS)

    Yusuf Nampira

    2007-01-01

    Uranium used in nuclear fuel development activity. the Substance use incurred by regulation safeguard. On that account in uranium acceptance conducted by verification of according to document by the specification of goods. Verification done by analysing performed uranium. The activity require by analyse method which simple and rapid analyses and has accurate result of analyses, is hence done by validation of non destructive uranium analysis that is with count gamma radiation from 235 U and product decay from 238 U. Quantitative analysis of uranium in substance determined by through count radiation-g at energy 185.72 keV and the use assess ratio of gamma radiation count from 235 U to 234 Pa to determine isotope content 235 U in substance. The result of analyses were given result of analysis with above correctness storey level 95% and have limit detect equivalent by 0.0174 mg U in U 3 O 8 . This method use at isotope uranium-235 analysis through count gamma radiation comparing method 235 U/ 234 Pa giving accuracy level 95% at sample equivalent uranium its content in 1 g uranium with isotope 235 U smaller than 75 weight percent. (author)

  15. European Non Destructive Examination Forum (ENDEF)

    International Nuclear Information System (INIS)

    Deffrennes, M.; Engl, G.; Estorff, U. von

    1998-01-01

    ENDEF, an initiative of the European Commission, DG XVII (Energy) was well supported by the European industrial institutions working in assistance with nuclear industrial organisations in the CEEC's (Central and Eastern European Countries) and NIS's (New Independent States). This Forum provides effectively a platform for open discussion between representatives of industrial actors active in the NDE (Non Destructive Examination)/ISI (In Service Inspection) field with the purpose to establish a co-operation pattern between qualified representatives of the EU (European Union) industry to offer a better co-ordinated and well defined assistance to the CEEC's and NIS in the field of NDE/ISI, and to lay the ground for further industrial co-operation. ENDEF developed a strategy to follow for the establishment of co-operation projects. This strategy is now used to understand the extent of past or present assistance projects and to identify the areas where more co-operation is needed. ENDEF encourages the creation in the NIS's and CEEC's of similar forums in order to increase the co-operation and co-ordination. ENDEF is also working in perfect agreement with the European Network ENIQ, piloted by the European plant operators. This identity of views lead to the leadership by the ENDEF co-ordinator of the ENIQ Task 3 involving Applications of the European Methodology for ISI qualification in the CEEC's and NIS's and presently fully integrated in ENDEF. (orig.)

  16. Development of non-destructive testing technique

    International Nuclear Information System (INIS)

    Park, T.Y.; Ro, G.H.; Chung, T.Y.; Lim, B.K.

    1981-01-01

    This report consists of two parts. In the first part, the results of the eddy current examination of steam generator, which is a part of the first inservice inspection of Kori-1 nuclear plant, are summarized. In the second part, the CRT signal interpretation of eddy current tester (EM 3300) on the dentings of steam generator tubings, which was once a controversial issue in evaluating results of Kori-1 steam generators is investigated. As a result of denting study of steam generator tubings, especially partial denting tubings, it becomes clear that CRT signals of eddy current tester are related to the depth and the arc angle of denting but little to the width of it

  17. Dam safety review using non-destructive methods for reinforced concrete structure

    Energy Technology Data Exchange (ETDEWEB)

    Philibert, Alain; Saint-Pierre, Francois; Turcotte, Bernard [Le Groupe S.M. International Inc., Sherbrooke, (Canada)

    2010-07-01

    Dams built at the beginning of the twentieth century include concrete structures that were put in under rehabilitation works. In some cases, the details of the structures are not well documented. In other cases, concrete damage can be hidden under new layers of undamaged material. This requires that the dam safety review in a real investigation gather the information necessary for carrying out the hydraulic and stability studies required by the Dam Safety Act. This paper presented the process of dam safety review using non-destructive methods for reinforced concrete structures. Two reinforced concrete dams built in the 1900's, the Eustic dam on the Coaticook River and the Frontenac dam on the Magog River near Sherbrooke, were evaluated by S.M. International using non-destructive methods such as sonic and ground penetrating radar methods. The studies allowed mapping of concrete damage and provided geometric information on some non visible structure elements that were part of previous reinforcement operations.

  18. Combining data in non-destructive testing

    International Nuclear Information System (INIS)

    Lavayssiere, B.

    1994-03-01

    Non-destructive testing of some components requires quite often the use of several methods such as X-ray, ultrasonics, Eddy Currents. But the efficiency of a NDT method is highly dependent on the fact that the detectability of flaws in a specimen relies on the choice of the best method. Moreover a lot of inspection issues could benefit from the use of more than one test method, as each NDT method has its own physical properties and technological limits. Some questions still remain: how to combine data, at what level and for what functionality. Simple monomethod processes are well-known now. They include techniques like reconstruction which belongs to the so-called ill-posed problems in the field of mathematics. For NDT data processing, it has the ability to estimate real data from distorted ones coming from a probe. But, up to now there has been very few approaches for computer aided combination of results from different advanced techniques. This report presents the various mathematical fields involved towards that goal (statistical decision theory which allows the use of multiple hypothesis, non-linear decision theory for its capability to classify and to discriminate, graph theory to find the optimal path in an hypothesis graph and also fuzzy logic, multiple resolution analysis, artificial intelligence,...) and which combinations of methods are useful. Some images will illustrate this topic in which EDF is involved, and will explain what are the major goals of this work. Combining is not only an improvement of 3D visualisation which would allow to display simultaneously CAD or NDT data for example, but it consists in exploiting multisensor data collected via a variety of sophisticated techniques and presenting this information to the operator without overloading the operator/system capacities in order to reduce the uncertainty and to resolve the ambiguity inherent to mono method inspection. (author). 7 figs., 35 refs

  19. Signal processing for non-destructive testing of railway tracks

    Science.gov (United States)

    Heckel, Thomas; Casperson, Ralf; Rühe, Sven; Mook, Gerhard

    2018-04-01

    Increased speed, heavier loads, altered material and modern drive systems result in an increasing number of rail flaws. The appearance of these flaws also changes continually due to the rapid change in damage mechanisms of modern rolling stock. Hence, interpretation has become difficult when evaluating non-destructive rail testing results. Due to the changed interplay between detection methods and flaws, the recorded signals may result in unclassified types of rail flaws. Methods for automatic rail inspection (according to defect detection and classification) undergo continual development. Signal processing is a key technology to master the challenge of classification and maintain resolution and detection quality, independent of operation speed. The basic ideas of signal processing, based on the Glassy-Rail-Diagram for classification purposes, are presented herein. Examples for the detection of damages caused by rolling contact fatigue also are given, and synergetic effects of combined evaluation of diverse inspection methods are shown.

  20. Training guidelines in non-destructive testing techniques. 1991 edition

    International Nuclear Information System (INIS)

    1991-10-01

    Non-destructive testing methods (NDT), by their very nature, allow components to be fully examined for properties or flaws without interfering with their usefulness. This grouping of inspection methods has grown from a handful of primitive techniques practised by artists to a widely known discipline which is an essential part of quality control, largely as a result of the standards demanded by the nuclear and aerospace industries. Recognizing the need for an international publication of NDT training syllabi, the IAEA Consultants Meeting on ''Qualification and Certification of NDT Personnel'' (Milan, 20-21 May 1986), recommended that the Agency publish the guidelines developed by Regional Working Group of the Latin America and Caribbean project. It was first issued in English in 1987 and has now been re-edited in English and Spanish and enlarged by the addition of programmes for other techniques

  1. Training guidelines in non-destructive testing techniques

    International Nuclear Information System (INIS)

    1991-10-01

    Non-destructive testing methods (NDT), by their very nature, allow components to be fully examined for properties or flaws without interfering with their usefulness. This grouping of inspection methods has grown from a handful of primitive techniques practised by artists to a widely known discipline which is an essential part of quality control, largely as a result of the standards demanded by the nuclear and aerospace industries. Recognizing the need for an international publication of NDT training syllabi, the IAEA Consultants Meeting on ''Qualification and Certification of NDT Personnel'' (Milan, 20-21 May 1986), recommended that the Agency publish the guidelines developed by Regional Working Group of the Latin America and Caribbean project. It was first issued in English in 1987 and has now been re-edited in English and Spanish and enlarged by the addition of programmes for other techniques

  2. Models on reliability of non-destructive testing

    International Nuclear Information System (INIS)

    Simola, K.; Pulkkinen, U.

    1998-01-01

    The reliability of ultrasonic inspections has been studied in e.g. international PISC (Programme for the Inspection of Steel Components) exercises. These exercises have produced a large amount of information on the effect of various factors on the reliability of inspections. The information obtained from reliability experiments are used to model the dependency of flaw detection probability on various factors and to evaluate the performance of inspection equipment, including the sizing accuracy. The information from experiments is utilised in a most effective way when mathematical models are applied. Here, some statistical models for reliability of non-destructive tests are introduced. In order to demonstrate the use of inspection reliability models, they have been applied to the inspection results of intergranular stress corrosion cracking (IGSCC) type flaws in PISC III exercise (PISC 1995). The models are applied to both flaw detection frequency data of all inspection teams and to flaw sizing data of one participating team. (author)

  3. Electromagnetic non-destructive technique for duplex stainless steel characterization

    Science.gov (United States)

    Rocha, João Vicente; Camerini, Cesar; Pereira, Gabriela

    2016-02-01

    Duplex stainless steel (DSS) is a two-phase (ferrite and austenite) material, which exhibits an attractive combination of mechanical properties and high corrosion resistance, being commonly employed for equipment of petrochemical plants, refining units and oil & gas platforms. The best properties of DSS are achieved when the phases are in equal proportions. However, exposition to high temperatures (e.g. welding process) may entail undesired consequences, such as deleterious phases precipitation (e.g. sigma, chi) and different proportion of the original phases, impairing dramatically the mechanical and corrosion properties of the material. A detailed study of the magnetic behavior of DSS microstructure with different ferrite austenite ratios and deleterious phases content was accomplished. The non destructive method evaluates the electromagnetic properties changes in the material and is capable to identify the presence of deleterious phases into DSS microstructure.

  4. New technologies in electromagnetic non-destructive testing

    CERN Document Server

    Huang, Songling

    2016-01-01

    This book introduces novel developments in the field of electromagnetic non-destructive testing and evaluation (NDT/E). The topics include electromagnetic ultrasonic guided wave testing, pulsed eddy current testing, remote field eddy current testing, low frequency eddy current testing, metal magnetic memory testing, and magnetic flux leakage testing. Considering the increasing concern about the safety maintenance of critical structures in various industries and everyday life, these topics presented here will be of particular interest to the readers in the NDT/E field. This book covers both theoretical researches and the engineering applications of the electromagnetic NDT technology. It could serve as a valuable reference for college students and relevant NDT technicians. It is also a useful material for qualification training and higher learning for nondestructive testing professionals.

  5. Modelling, simulation and visualisation for electromagnetic non-destructive testing

    International Nuclear Information System (INIS)

    Ilham Mukriz Zainal Abidin; Abdul Razak Hamzah

    2010-01-01

    This paper reviews the state-of-the art and the recent development of modelling, simulation and visualization for eddy current Non-Destructive Testing (NDT) technique. Simulation and visualization has aid in the design and development of electromagnetic sensors and imaging techniques and systems for Electromagnetic Non-Destructive Testing (ENDT); feature extraction and inverse problems for Quantitative Non-Destructive Testing (QNDT). After reviewing the state-of-the art of electromagnetic modelling and simulation, case studies of Research and Development in eddy current NDT technique via magnetic field mapping and thermography for eddy current distribution are discussed. (author)

  6. The photothermal camera - a new non destructive inspection tool

    International Nuclear Information System (INIS)

    Piriou, M.

    2007-01-01

    The Photothermal Camera, developed by the Non-Destructive Inspection Department at AREVA NP's Technical Center, is a device created to replace penetrant testing, a method whose drawbacks include environmental pollutants, industrial complexity and potential operator exposure. We have already seen how the Photothermal Camera can work alongside or instead of conventional surface inspection techniques such as penetrant, magnetic particle or eddy currents. With it, users can detect without any surface contact ligament defects or openings measuring just a few microns on rough oxidized, machined or welded metal parts. It also enables them to work on geometrically varied surfaces, hot parts or insulating (dielectric) materials without interference from the magnetic properties of the inspected part. The Photothermal Camera method has already been used for in situ inspections of tube/plate welds on an intermediate heat exchanger of the Phenix fast reactor. It also replaced the penetrant method for weld inspections on the ITER vacuum chamber, for weld crack detection on vessel head adapter J-welds, and for detecting cracks brought on by heat crazing. What sets this innovative method apart from others is its ability to operate at distances of up to two meters from the inspected part, as well as its remote control functionality at distances of up to 15 meters (or more via Ethernet), and its emissions-free environmental cleanliness. These make it a true alternative to penetrant testing, to the benefit of operator and environmental protection. (author) [fr

  7. Complex Archaeological Prospection Using Combination of Non-destructive Techniques

    Science.gov (United States)

    Faltýnová, M.; Pavelka, K.; Nový, P.; Šedina, J.

    2015-08-01

    This article describes the use of a combination of non-destructive techniques for the complex documentation of a fabulous historical site called Devil's Furrow, an unusual linear formation lying in the landscape of central Bohemia. In spite of many efforts towards interpretation of the formation, its original form and purpose have not yet been explained in a satisfactory manner. The study focuses on the northern part of the furrow which appears to be a dissimilar element within the scope of the whole Devil's Furrow. This article presents detailed description of relics of the formation based on historical map searches and modern investigation methods including airborne laser scanning, aerial photogrammetry (based on airplane and RPAS) and ground-penetrating radar. Airborne laser scanning data and aerial orthoimages acquired by the Czech Office for Surveying, Mapping and Cadastre were used. Other measurements were conducted by our laboratory. Data acquired by various methods provide sufficient information to determine the probable original shape of the formation and proves explicitly the anthropological origin of the northern part of the formation (around village Lipany).

  8. Complex Archaeological Prospection Using Combination of Non-destructive Techniques

    Directory of Open Access Journals (Sweden)

    M. Faltýnová

    2015-08-01

    Full Text Available This article describes the use of a combination of non-destructive techniques for the complex documentation of a fabulous historical site called Devil’s Furrow, an unusual linear formation lying in the landscape of central Bohemia. In spite of many efforts towards interpretation of the formation, its original form and purpose have not yet been explained in a satisfactory manner. The study focuses on the northern part of the furrow which appears to be a dissimilar element within the scope of the whole Devil’s Furrow. This article presents detailed description of relics of the formation based on historical map searches and modern investigation methods including airborne laser scanning, aerial photogrammetry (based on airplane and RPAS and ground-penetrating radar. Airborne laser scanning data and aerial orthoimages acquired by the Czech Office for Surveying, Mapping and Cadastre were used. Other measurements were conducted by our laboratory. Data acquired by various methods provide sufficient information to determine the probable original shape of the formation and proves explicitly the anthropological origin of the northern part of the formation (around village Lipany.

  9. Non-Destructive Metallic Materials Testing—Recent Research and Future Perspectives

    Directory of Open Access Journals (Sweden)

    João Manuel R. S. Tavares

    2017-10-01

    Full Text Available Non-destructive testing (NDT has become extremely important formicrostructural characterization, mainly by allowing the assessment of metallic material properties in an effective and reasonable manner, in addition to maintaining the integrity of the evaluated metallic samples and applicability in service in many cases [...

  10. Non-destructive digital imaging in poplar allows detailed analysis of adventitious rooting dynamics

    Science.gov (United States)

    R.J. Kodrzycki; R.B. Michaels; A.L. Friend; R.S. Zalesny; Ch.P. Mawata; D.W. McDonald

    2008-01-01

    The dynamics of root formation are difficult to observe directly over time without disturbing the rooting environment. A novel system for a non-destructive, non-invasive root analysis (RootViz FS, Phenotype Screening Corp.) was evaluated for its ability to analyze root formation from cuttings over a 32 day period in three poplar genotypes (DN70, P. Deltoides x...

  11. Non-destructive technique to verify clearance of pipes

    Directory of Open Access Journals (Sweden)

    Savidou Anastasia

    2010-01-01

    Full Text Available A semi-empirical, non-destructive technique to evaluate the activity of gamma ray emitters in contaminated pipes is discussed. The technique is based on in-situ measurements by a portable NaI gamma ray spectrometer. The efficiency of the detector for the pipe and detector configuration was evaluated by Monte Carlo calculations performed using the MCNP code. Gamma ray detector full-energy peak efficiency was predicted assuming a homogeneous activity distribution over the internal surface of the pipe for 344 keV, 614 keV, 662 keV, and 1332 keV photons, representing Eu-152, Ag-118m, Cs-137, and Co-60 contamination, respectively. The effect of inhomogeneity on the accuracy of the technique was also examined. The model was validated against experimental measurements performed using a Cs-137 volume calibration source representing a contaminated pipe and good agreement was found between the calculated and experimental results. The technique represents a sensitive and cost-effective technology for calibrating portable gamma ray spectrometry systems and can be applied in a range of radiation protection and waste management applications.

  12. Resonant ultrasound spectroscopy and non-destructive testing

    Science.gov (United States)

    Migliori, A.; Darling, T. W.

    The use of mechanical resonances to test properties of materials is perhaps older than the industrial revolution. Early documented cases of British railroad engineers tapping the wheels of a train and using the sound to detect cracks perhaps mark the first real use of resonances to test the integrity of high-performance alloys. Attempts were made in the following years to understand the resonances of solids mathematically, based on the shape and composition. But Nobel Laureate Lord Rayleigh best summarized the state of affairs in 1894, stating 'the problem has, for the most part, resisted attack'. More recently, modern computers and electronics have enabled Anderson and co-workers with their work on minerals, and our work at Los Alamos on new materials and manufactured components to advance the use of resonances to a precision non-destructive testing tool that makes anisotropic modulus measurements, defect detection and geometry error detection routine. The result is that resonances can achieve the highest absolute accuracy for any dynamic modulus measurement technique, can be used on the smallest samples, and can also enable detection of errors in certain classes of precision manufactured components faster and more accurately than any other technique.

  13. Training guidelines in non-destructive testing techniques: 2008 ed

    International Nuclear Information System (INIS)

    2008-12-01

    This publication is a revision of IAEA-TECDOC-628/Rev.1 and provides the basic syllabus for systems for training and certification programmes of non-destructive testing (NDT) personnel in accordance with the requirements of international standard ISO 9712 (2005). The training guidelines developed to date have been used by Member States in formulating their national NDT programmes and to provide local end user industries with a skilled workforce. The present publication accommodates the latest advancements in technology and will continue to play an important role towards international harmonization in the field of NDT. This publication contains a body of knowledge for non-destructive testing. It was developed to provide guidelines for trainers, training organizations and certification bodies, detailing the subject matter and the content for each level of certification. It is general in nature but the contents of the training should be adapted to the needs, procedures, materials and products of the customer. The recommended training hours are consistent with the edition of the standard ISO 9712 in effect at the time of preparation. All formal training described in this publication contains a theoretical portion and a practical portion. Guidance is included on the range of equipment and materials needed for instruction in each method. There is a common core of material that is required by level 3 personnel in every method. This common material has been removed from the content for the particular method and included as a separate section. All training should end with an examination and can lead to a certification. Examination and certification are not covered by this publication, but detailed information about this can be found in ISO 9712. This publication is applicable for the following methods: eddy current testing, magnetic particle testing, liquid penetrant testing, radiographic testing, and ultrasonic testing. NDT methods are now widely used in civil engineering

  14. Non-Destructive Radiological Characterisation Of Contaminated And Activated Concrete

    International Nuclear Information System (INIS)

    Cantrel, E.

    2005-01-01

    The decommissioning of nuclear facilities leads to large quantities of concrete and building material wastes. Radioactivity in building structures arise from very different physical processes such as neutron activation (bioshield), diffusion of the contaminants in the material (primary coolant leakage, maintenance and fuel loading) or aerosol deposition. The variety of the building material also extends the range of faced radiological characteristics. Therefore the minimization of concrete waste generation requires extensive characterisations and the availability of different measurement tools and methods. Up to now, these measurements came from the coring and the radiological analysis of the concrete, which is a destructive, long and costly technique. Looking for alternative solutions, SCK-CEN has started to investigate in collaboration with EDF -research and development and CEA (France) several non destructive methods based on gamma spectroscopy and different spectral examinations using mathematical calibration and modelling tools available on the market. Information on in-depth activity distribution can be derived from in situ gamma spectra by modelling absorption laws (peak to peak ratios) and photons interactions (Compton front) in the bulk of the concrete. As they combine modelling and measurement, the different methodologies being evaluated involve a lot of uncertainty sources linked to the measurement environment, to the knowledge available on site (historical background, material composition), to the operator responsible for the data acquisition and to the performance of the equipment. Therefore a detailed sensitivity analysis is required to define the range of applicability and the performances of the different methods

  15. Reliability of non-destructive testing methods

    International Nuclear Information System (INIS)

    Broekhoven, M.J.G.

    1988-01-01

    This contribution regards the results of an evaluation of the reliability of radiography (X-rays and gamma-rays), manual-, and mechanized/automated ultrasonic examination by generally accepted codes/rules, with respect to detection, characterization and sizing/localization of defects. The evaluation is based on the results of examinations, by a number of teams, of 30 test plates, 30 and 50 mm thickness, containing V,U, X and K-shaped welds each containing several types of imperfections (211) in total) typical for steel arc fusion welding, such as porosity, inclusions, lack of fusion or penetration and cracks. Besides, some results are presented obtained from research on advanced UT-techniques, viz. the time-of-flight-diffraction and flaw-tip deflection technique. (author)

  16. Reliability of non-destructive testing methods

    Energy Technology Data Exchange (ETDEWEB)

    Broekhoven, M J.G. [Ministry of Social Affairs, (Netherlands)

    1988-12-31

    This contribution regards the results of an evaluation of the reliability of radiography (X-rays and gamma-rays), manual-, and mechanized/automated ultrasonic examination by generally accepted codes/rules, with respect to detection, characterization and sizing/localization of defects. The evaluation is based on the results of examinations, by a number of teams, of 30 test plates, 30 and 50 mm thickness, containing V,U, X and K-shaped welds each containing several types of imperfections (211) in total) typical for steel arc fusion welding, such as porosity, inclusions, lack of fusion or penetration and cracks. Besides, some results are presented obtained from research on advanced UT-techniques, viz. the time-of-flight-diffraction and flaw-tip deflection technique. (author). 4 refs.

  17. Development of hotcell non-destructive examination techniques

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Uhn; Yu, S. C.; Kang, B. S.; Byun, K. S. [Chungbuk National University, Chungju (Korea)

    2002-01-01

    The purpose of this project is to establish non-destructive examination techniques which needs to determine the status of spent nuclear fuel and/or bundles. Through the project, we will establish an image reconstruction tomography which is a kind of non-destructive techniques in Hotcell. The tomography technique can be used to identify the 2-dimensional density distribution of fission products in the spent fuel rods and/or bundles. And form results of the measurement and analysis of magnetic properties of neutron irradiated material in the press vessel and reactor, we will develop some techniques to test its hardness and defects. In 2001, the first year, we have established mathematical background and necessary data and informations to develop the techniques. We will try to find some experimental results that are necessary in developing the Hotcell non-destructive examination techniques in the coming year. 14 refs., 65 figs., 5 tabs. (Author)

  18. Non-destructive decontamination of building materials

    Science.gov (United States)

    Holecek, Josef; Otahal, Petr

    2015-11-01

    For nondestructive radiation decontamination of surfaces it is necessary to use varnishes, such as ARGONNE, DG1101, DG1108, etc. This text evaluates the use of manufactured strippable coatings for radiation decontamination. To evaluate decontamination capability of such coatings the following varnishes were selected and subsequently used: AZ 1-700 and AXAL 1807S. The varnishes were tested on different building materials surfaces contaminated by short-term radioisotopes of Na-24 or La-140, in water soluble or water insoluble forms. Decontamination quality was assessed by the decontamination efficiency value, defined as the proportion of removed activity to the applied activity. It was found that decontamination efficiency of both used varnishes depends not only on the form of contaminant, but in the case of application of AXAL 1807S varnish it also depends on the method of its application on the contaminated surface. The values of the decontamination efficiency for AZ1-700 varnish range from 46% for decontamination of a soluble form of the radioisotope from concrete surface to 98% for the decontamination of a soluble form of the radioisotope from ceramic tile surface. The decontamination efficiency values determined for AXAL 1807S varnish range from 48% for decontamination of a soluble form of the radioisotope from concrete surface to 96% for decontamination of an insoluble form of the radioisotope from ceramic tile surface. Comparing these values to the values given for the decontaminating varnishes we can conclude that AXAL 1807S varnish is possible to use on all materials, except highly porous materials, such as plasterboard or breeze blocks, or plastic materials. AZ 1-700 varnish can be used for all dry materials except plasterboard.

  19. The utilization of VUJE specialists non-destructive testing qualification at international cooperation with company TECNATOM

    International Nuclear Information System (INIS)

    Kuna, M.

    2006-01-01

    The utilization of VUJE specialists non-destructive testing qualification at cooperation with company TECNATOM. The obtain of QDA qualification for ET examination for possibility of qualified evaluation in the foreign NPP (USA, Brazil). The acquired practical experiences by evaluation of ET data from NPP Angra Brazil and Waltz Mill USA. The obtain of SNT-TC-1A and EPRI qualification for the UT evaluation of penetration tube welds measurements. The practical experience during the measurement on NPP Shearon Harris (Author)

  20. Evaluation of a Non-Destructive Impact Sensor to Determine On-Line Fruit Firmness Evaluación de un Sensor de Impacto No-Destructivo para la Determinación de la Firmeza de Frutos en Líneas de Manipulación

    Directory of Open Access Journals (Sweden)

    Ian Homer

    2010-03-01

    Full Text Available A non-destructive impact sensor to measure on-line fruit firmness was evaluated. This sensor is an adaptation of a static model used in the laboratory to measure fruit quality and was installed in an experimental fruit packing line with a commercial sizer chain. The firmness index is related to the acceleration-time curve supplied by an accelerometer attached to an impacting arm. The main objective of this study was to evaluate sensor performance and sources of variation. We made classification trials on three fruits: peaches (Prunus persica (L. Batsch, apples (Malus domestica Borkh., and pears (Pyrus communis L., as well as working trials, such as placing the fruit, orientation, and others. The sensor works correctly at a speed of 7 fruits s-1 (0.63 m s-1 and allows fruit classification at three levels of firmness using specific software. Good discrimination was obtained only for soft peaches. There were variations in results between different fruits and different parts of the same fruit mainly due to the non-uniformity of fruit shape and lack of ripeness homogeneity of each one.Se evaluó un sensor de impacto no destructivo para medir firmeza de frutas en líneas de manipulación. Este sensor es una adaptación de la versión estática utilizada en algunos laboratorios de calidad de frutas, el cual fue modificado e instalado en una línea experimental de manipulación de fruta que contaba con un calibrador comercial. La firmeza de los frutos está relacionada con la curva de aceleración-tiempo que suministra un acelerómetro unido a un brazo que impacta la fruta. El objetivo del presente trabajo fue evaluar funcionamiento y fuentes de variación del sensor. Para ello se realizaron ensayos de clasificación con duraznos (Prunus persica (L. Batsch, manzanas (Malus domestica Borkh., y peras (Pyrus communis L., y ensayos de funcionamiento como pruebas de posicionamiento del fruto, orientación, entre otras. El sensor funciona correctamente a una

  1. Effectiveness Analysis of a Non-Destructive Single Event Burnout Test Methodology

    CERN Document Server

    Oser, P; Spiezia, G; Fadakis, E; Foucard, G; Peronnard, P; Masi, A; Gaillard, R

    2014-01-01

    It is essential to characterize power MosFETs regarding their tolerance to destructive Single Event Burnouts (SEB). Therefore, several non-destructive test methods have been developed to evaluate the SEB cross-section of power devices. A power MosFET has been evaluated using a test circuit, designed according to standard non-destructive test methods discussed in the literature. Guidelines suggest a prior adaptation of auxiliary components to the device sensitivity before the radiation test. With the first value chosen for the de-coupling capacitor, the external component initiated destructive events and affected the evaluation of the cross-section. As a result, the influence of auxiliary components on the device cross-section was studied. This paper presents the obtained experimental results, supported by SPICE simulations, to evaluate and discuss how the circuit effectiveness depends on the external components.

  2. Modelling and simulation of eddy current non-destructive testing

    International Nuclear Information System (INIS)

    Mansir, H.; Burais, N.; Nicolas, A.

    1986-01-01

    This paper presents the practical configuration for detecting cracks in conducting materials by eddy current non destructive testing. An electromagnetic field formulation is proposed using Maxwell's relations. Geometrical and physical properties of the crack are taken into account by several models, particularly with a new finite element called ''crack element''. Modelisation is applied to sensor impedance calculation with classical numerical methods [fr

  3. Non-destructive testing of tubes by electromagnetic processes

    International Nuclear Information System (INIS)

    Kowarski, A.

    1979-01-01

    This article reviews and assesses the non destructive testing techniques used for locating defects in tubes by electromagnetic processes. These form the basis of many testing devices, the diversity of which results from various factors: range of materials, methods of fabrication, specific defects of the product. There are two distinct main families of devices utilising two different principles: dispersion flow and Foucault currents [fr

  4. Non-destructive controls in the steel tube industry

    International Nuclear Information System (INIS)

    Mondot, J.

    1978-01-01

    The main non-destructive control methods in the tube industry are reviewed: eddy currents, particularly well adapted to small tubes; magnetoscopic testing for weldless tubes; ultrasonic waves widely used for thick weldless tubes and weldings; radiography, to examine tube ends and the known questionable zones; measure of diameters by laser [fr

  5. Non-destructive controls in the mechanical industry

    Energy Technology Data Exchange (ETDEWEB)

    Jarlan, L

    1978-12-01

    The sequence of operations implicating the mechanical industries from the suppliers to their customers is briefly recalled; a description of the field of application of non-destructive control methods in these industries is given. Follows a description of some recent typical applications of the principal methods: radiography, ultrasonic waves, magnetism, acoustic emission, sonic control, tracer techniques.

  6. Laser plasma X-ray for non-destructive inspection

    International Nuclear Information System (INIS)

    Yagi, T.; Kusama, H.

    1995-01-01

    External electric field is applied to the laser produced plasma, and its found that plasma shape in soft X-ray region is changed due to the penetrating electric field. The plasma emits strong hard X-ray, which can be used as a compact light source for non-destructive inspection. (author)

  7. Non-destructive Faraday imaging of dynamically controlled ultracold atoms

    DEFF Research Database (Denmark)

    Gajdacz, Miroslav; Pedersen, Poul Lindholm; Mørch, Troels

    2013-01-01

    We describe an easily implementable method for non-destructive measurements of ultracold atomic clouds based on dark field imaging of spatially resolved Faraday rotation. The signal-to-noise ratio is analyzed theoretically and, in the absence of experimental imperfections, the sensitivity limit...

  8. Material characterization and non destructive testing by ultrasounds; modelling, simulation and experimental validation

    International Nuclear Information System (INIS)

    Noroy-Nadal, M.H.

    2002-06-01

    This memory presents the research concerning the characterization of materials and the Non Destructive Testing (N.D.T) by ultrasonics. The different topics include three steps: modeling, computations and experimental validation. The studied materials concern mainly metals. The memory is divided in four parts. The first one concerns the characterization of materials versus temperature. The determination of the shear modulus G(T) is especially studied for a large temperature range, and around the melting point. The second part is devoted to studies by photothermal devices essentially focused on the modeling of the mechanical displacement and the stress field in coated materials. In this particular field of interest, applications concern either the mechanical characterization of the coating, the defect detection in the structure and finally the evaluation of the coating adhesion. The third section is dedicated to microstructural characterization using acoustic microscopy. The evaluation of crystallographic texture is especially approached, for metallic objects obtained by forming. Before concluding and pointing out some perspectives to this work, the last section concerns the introduction of optimization techniques, applied to the material characterization by acoustic microscopy. (author)

  9. Parallelization of ultrasonic field simulations for non destructive testing

    International Nuclear Information System (INIS)

    Lambert, Jason

    2015-01-01

    The Non Destructive Testing field increasingly uses simulation. It is used at every step of the whole control process of an industrial part, from speeding up control development to helping experts understand results. During this thesis, a fast ultrasonic field simulation tool dedicated to the computation of an ultrasonic field radiated by a phase array probe in an isotropic specimen has been developed. During this thesis, a simulation tool dedicated to the fast computation of an ultrasonic field radiated by a phased array probe in an isotropic specimen has been developed. Its performance enables an interactive usage. To benefit from the commonly available parallel architectures, a regular model (aimed at removing divergent branching) derived from the generic CIVA model has been developed. First, a reference implementation was developed to validate this model against CIVA results, and to analyze its performance behaviour before optimization. The resulting code has been optimized for three kinds of parallel architectures commonly available in workstations: general purpose processors (GPP), many-core co-processors (Intel MIC) and graphics processing units (nVidia GPU). On the GPP and the MIC, the algorithm was reorganized and implemented to benefit from both parallelism levels, multithreading and vector instructions. On the GPU, the multiple steps of field computing have been divided in multiple successive CUDA kernels. Moreover, libraries dedicated to each architecture were used to speedup Fast Fourier Transforms, Intel MKL on GPP and MIC and nVidia cuFFT on GPU. Performance and hardware adequation of the produced codes were thoroughly studied for each architecture. On multiple realistic control configurations, interactive performance was reached. Perspectives to address more complex configurations were drawn. Finally, the integration and the industrialization of this code in the commercial NDT platform CIVA is discussed. (author) [fr

  10. Application of advanced non-destructive testing for testing the integrity of concrete foundations

    International Nuclear Information System (INIS)

    Nguyen Le Son; Nguyen Phuoc Lan; Pham The Hung; Vu Huy Thuc

    2004-01-01

    Solid foundations are integral important part of any structures. Obtaining accurate and timely information on the integrity of structural foundations is essential for project progress and success. Cross-hole sonic method has been widely accepted for quality assurance and quality control on projects with deep foundations, and to assess the integrity of other civil engineering structures. Under the framework of the basic VAEC project (2003) and project VIE/8/013, the Cross-hole sonic method (CHM) was evaluated at Center for Nuclear Techniques, Hochiminh City (CNT). Background information on principle and general description of the method as is typically applied in the evaluation of deep foundations are also summarized. A suitable experimental model of the shaft foundations was prepared, where the artificial defects can be controlled for the Cross-hole sonic logging was conducted by measuring the propagation time of ultrasonic signals between two probes in vertical holes in a shaft. The purpose of the test program is to evaluate the ability of the cross-hole sonic method to identify the defects present in the experimental model, to evaluate the capabilities of the method and the equipped system Cs-97, to improve the presentation of test results to meet requirements for interpreting the quality of drilled shafts by processing the data of Cs-97. The cross-hole sonic testing program is describe. Summarizes the results and analysis of the cross-hole sonic logging are presented to highlight both the applicability and limitations of the method. The cross-hole sonic logging evaluation is a valuable non-destructive method in assessing the integrity of deep foundations. The cross-hole sonic logging tests successfully determined the location and extent of the built-in defects on experimental model shaft. Minimum sizes of defects can be detected were about ≥ 10 cm Cs-97. Effects of the directions, detectable sizes and natures of defects were studied. The apparent velocities

  11. Giant Magnetoresistance Sensors: A Review on Structures and Non-Destructive Eddy Current Testing Applications

    Directory of Open Access Journals (Sweden)

    Damhuji Rifai

    2016-02-01

    Full Text Available Non-destructive eddy current testing (ECT is widely used to examine structural defects in ferromagnetic pipe in the oil and gas industry. Implementation of giant magnetoresistance (GMR sensors as magnetic field sensors to detect the changes of magnetic field continuity have increased the sensitivity of eddy current techniques in detecting the material defect profile. However, not many researchers have described in detail the structure and issues of GMR sensors and their application in eddy current techniques for nondestructive testing. This paper will describe the implementation of GMR sensors in non-destructive testing eddy current testing. The first part of this paper will describe the structure and principles of GMR sensors. The second part outlines the principles and types of eddy current testing probe that have been studied and developed by previous researchers. The influence of various parameters on the GMR measurement and a factor affecting in eddy current testing will be described in detail in the third part of this paper. Finally, this paper will discuss the limitations of coil probe and compensation techniques that researchers have applied in eddy current testing probes. A comprehensive review of previous studies on the application of GMR sensors in non-destructive eddy current testing also be given at the end of this paper.

  12. Giant Magnetoresistance Sensors: A Review on Structures and Non-Destructive Eddy Current Testing Applications

    Science.gov (United States)

    Rifai, Damhuji; Abdalla, Ahmed N.; Ali, Kharudin; Razali, Ramdan

    2016-01-01

    Non-destructive eddy current testing (ECT) is widely used to examine structural defects in ferromagnetic pipe in the oil and gas industry. Implementation of giant magnetoresistance (GMR) sensors as magnetic field sensors to detect the changes of magnetic field continuity have increased the sensitivity of eddy current techniques in detecting the material defect profile. However, not many researchers have described in detail the structure and issues of GMR sensors and their application in eddy current techniques for nondestructive testing. This paper will describe the implementation of GMR sensors in non-destructive testing eddy current testing. The first part of this paper will describe the structure and principles of GMR sensors. The second part outlines the principles and types of eddy current testing probe that have been studied and developed by previous researchers. The influence of various parameters on the GMR measurement and a factor affecting in eddy current testing will be described in detail in the third part of this paper. Finally, this paper will discuss the limitations of coil probe and compensation techniques that researchers have applied in eddy current testing probes. A comprehensive review of previous studies on the application of GMR sensors in non-destructive eddy current testing also be given at the end of this paper. PMID:26927123

  13. The need to qualify Non Destructive Tests (NDT) has been recognized for many years in the European countries engaged in nuclear power generation

    International Nuclear Information System (INIS)

    Walczak, M.; Wojas, M.

    2008-01-01

    The European Network for Inspection Qualification, ENIQ, which groups the major part of the nuclear power plant operators in the European Union and in the Applicant Countries, has developed the European methodology for Qualification of Non Destructive Tests. As qualification of NDT is nowadays a standard method in the nuclear industry and in other industries. CEN (European Committee for Standardization) Technical Committee 138 '' Non Destructive Testing '' has established a Working Group, which is responsible for developing a Standard document detailing the CEN Methodology for the qualification of Non Destructive Tests applicable to all industries carrying out Non-Destructive Tests. This Standard document sets out basic principles and provides recommendations and general guidelines for carrying out qualification of NDT. It describes a methodology for qualification of Non-Destructive Tests, applicable to all NDT methods and considers qualification of equipment, procedure and personnel training. This paper presents a short background of the European Methodology for Qualification of Non-Destructive Tests and the Standard document CEN/TR 14748 '' Non-destructive testing - Methodology for qualification of non-destructive tests ''. (author)

  14. Non-destructive analysis in a study of the religious art objects

    International Nuclear Information System (INIS)

    Vornicu, Nicoleta; Bibire, Cristina; Geba, Maria

    2009-01-01

    The icon Descending of the Saint Spirit from Bucium Church, dating in the year 1814 and was done in tempera on wood technology. The characterization of cultural heritage materials is essential for the comprehension of their degradation mechanisms. The present study aims at identifying the pigments in the various layers, establishing the possible existence of an organic binder and scientifically evaluating the state of preservation. To this end, were used non-destructive methods, as: microscopic (SEM), XRF and spectroscopic (FTIR).

  15. Acceptance criteria for non-destructive examination of double-shell tanks

    International Nuclear Information System (INIS)

    Jensen, C.E.

    1995-09-01

    This supporting document provides requirements for acceptance of relevant indications found during non-destructive examination of double-shell tanks (DSTs) at Hanford 200 areas. Requirements for evaluation of relevant indications are provided to determine acceptability of continued safe operation of the DSTs. Areas of the DSTs considered include the tank wall vapor space, liquid-vapor interface, wetted tank wall, sludge-liquid interface, and the knuckle region

  16. Quantitative impact characterization of aeronautical CFRP materials with non-destructive testing methods

    Energy Technology Data Exchange (ETDEWEB)

    Kiefel, Denis, E-mail: Denis.Kiefel@airbus.com, E-mail: Rainer.Stoessel@airbus.com; Stoessel, Rainer, E-mail: Denis.Kiefel@airbus.com, E-mail: Rainer.Stoessel@airbus.com [Airbus Group Innovations, Munich (Germany); Grosse, Christian, E-mail: Grosse@tum.de [Technical University Munich (Germany)

    2015-03-31

    In recent years, an increasing number of safety-relevant structures are designed and manufactured from carbon fiber reinforced polymers (CFRP) in order to reduce weight of airplanes by taking the advantage of their specific strength into account. Non-destructive testing (NDT) methods for quantitative defect analysis of damages are liquid- or air-coupled ultrasonic testing (UT), phased array ultrasonic techniques, and active thermography (IR). The advantage of these testing methods is the applicability on large areas. However, their quantitative information is often limited on impact localization and size. In addition to these techniques, Airbus Group Innovations operates a micro x-ray computed tomography (μ-XCT) system, which was developed for CFRP characterization. It is an open system which allows different kinds of acquisition, reconstruction, and data evaluation. One main advantage of this μ-XCT system is its high resolution with 3-dimensional analysis and visualization opportunities, which enables to gain important quantitative information for composite part design and stress analysis. Within this study, different NDT methods will be compared at CFRP samples with specified artificial impact damages. The results can be used to select the most suitable NDT-method for specific application cases. Furthermore, novel evaluation and visualization methods for impact analyzes are developed and will be presented.

  17. Quantitative impact characterization of aeronautical CFRP materials with non-destructive testing methods

    International Nuclear Information System (INIS)

    Kiefel, Denis; Stoessel, Rainer; Grosse, Christian

    2015-01-01

    In recent years, an increasing number of safety-relevant structures are designed and manufactured from carbon fiber reinforced polymers (CFRP) in order to reduce weight of airplanes by taking the advantage of their specific strength into account. Non-destructive testing (NDT) methods for quantitative defect analysis of damages are liquid- or air-coupled ultrasonic testing (UT), phased array ultrasonic techniques, and active thermography (IR). The advantage of these testing methods is the applicability on large areas. However, their quantitative information is often limited on impact localization and size. In addition to these techniques, Airbus Group Innovations operates a micro x-ray computed tomography (μ-XCT) system, which was developed for CFRP characterization. It is an open system which allows different kinds of acquisition, reconstruction, and data evaluation. One main advantage of this μ-XCT system is its high resolution with 3-dimensional analysis and visualization opportunities, which enables to gain important quantitative information for composite part design and stress analysis. Within this study, different NDT methods will be compared at CFRP samples with specified artificial impact damages. The results can be used to select the most suitable NDT-method for specific application cases. Furthermore, novel evaluation and visualization methods for impact analyzes are developed and will be presented

  18. International cooperation program on non-destructive inspection. Overview of PINC and PARENT

    International Nuclear Information System (INIS)

    Komura, Ichiro

    2016-01-01

    PINC (The Program for the Inspection of Nickel Alloy Components) and its successor program PARENT (The Program to Assess the Reliability of Emerging Nondestructive Techniques) are the programs on the verification of nondestructive inspection technology for detecting / dimension-evaluating the stress corrosion cracking (SCC) generated in the weld zone of nickel-based alloy. The US Nuclear Regulatory Commission plays a leading role, and the institutions of the United States, Japan, Korea, Sweden, Finland, and Switzerland participate in them. PINC was run from 2003 to 2009, and PARENT is currently underway with a schedule from 2010 to July 2017, including the extension period after July 2015. This paper outlined the implementation items and test results / achievements of PINC and PARENT programs. The target parts of PINC were a safe-end reducer and a reactor bottom instrument tube rest, and the flaw detection test and its analytical evaluation were carried out with a focus on the detectability and the sizing accuracy of defects. As a feature of the verification test of the non-destructive inspection technology in PARENT, two kinds of flaw detection tests, namely blind test and open test, are distinctively carried out. (A.O.)

  19. Non-destructive, preclinical evaluation of root canal anatomy of human teeth with flat-panel detector volume CT (FD-VCT); Zerstoerungsfreie praeklinische Evaluation der Wurzelkanalanatomie menschlicher Zaehne mittels Flaechendetektor-Volumen-CT (FD-VCT)

    Energy Technology Data Exchange (ETDEWEB)

    Heidrich, G.; Hassepass, F.; Dullin, C.; Grabbe, E. [Universitaetsklinikum Goettingen, Abt. Diagnostische Radiologie (Germany); Attin, T.; Hannig, C. [Universitaetsklinikum Goettingen, Abt. fuer Zahnerhaltung, Praeventive Zahnheilkunde und Paradontologie (Germany)

    2005-12-15

    Purpose: Successful endodontic diagnostics and therapy call for adequate depiction of the root canal anatomy with multimodal diagnostic imaging. The aim of the present study is to evaluate visualization of the endodont with flat-panel detector volume CT (FD-VCT). Materials and methods: 13 human teeth were examined with the prototype of a FD-VCT. After data acquisition and generation of volume data sets in volume rendering technology (VRT), the findings obtained were compared to conventional X-rays and cross-section preparations of the teeth. Results: The anatomical structures of the endodont such as root canals, side canals and communications between different root canals as well as dentricles could be detected precisely with FD-VCT. The length of curved root canals was also determined accurately. The spatial resolution of the system is around 140 {mu}m. Only around 73% of the main root canals detected with FD-VCT and 87% of the roots could be visualized with conventional dental X-rays. None of the side canals, shown with FD-VCT, was detectable on conventional X-rays. In all cases the enamel and dentin of the teeth could be well delineated. No differences in image quality could be discerned between stored and freshly extracted teeth, or between primary and adult teeth. (orig.)

  20. Non-destructive microstructural analysis with depth resolution

    Energy Technology Data Exchange (ETDEWEB)

    Zolotoyabko, E. E-mail: zloto@tx.technion.ac.il; Quintana, J.P

    2003-01-01

    A depth-sensitive X-ray diffraction technique has been developed with the aim of studying microstructural modifications in inhomogeneous polycrystalline materials. In that method, diffraction profiles are measured at different X-ray energies varied by small steps. X-rays at higher energies probe deeper layers of material. Depth-resolved structural information is retrieved by comparing energy-dependent diffraction profiles. The method provides non-destructive depth profiling of the preferred orientation, grain size, microstrain fluctuations and residual strains. This technique is applied to the characterization of seashells. Similarly, energy-variable X-ray diffraction can be used for the non-destructive characterization of different laminated structures and composite materials.

  1. Non-Destructive Techniques Based on Eddy Current Testing

    Science.gov (United States)

    García-Martín, Javier; Gómez-Gil, Jaime; Vázquez-Sánchez, Ernesto

    2011-01-01

    Non-destructive techniques are used widely in the metal industry in order to control the quality of materials. Eddy current testing is one of the most extensively used non-destructive techniques for inspecting electrically conductive materials at very high speeds that does not require any contact between the test piece and the sensor. This paper includes an overview of the fundamentals and main variables of eddy current testing. It also describes the state-of-the-art sensors and modern techniques such as multi-frequency and pulsed systems. Recent advances in complex models towards solving crack-sensor interaction, developments in instrumentation due to advances in electronic devices, and the evolution of data processing suggest that eddy current testing systems will be increasingly used in the future. PMID:22163754

  2. Non-destructive elecrochemical monitoring of reinforcement corrosion

    DEFF Research Database (Denmark)

    Nygaard, Peter Vagn

    been widely accepted as a non-destructive ”state of the art” technique for detection of corrosion in concrete structures. And, over the last decade, the trend in corrosion monitoring has moved towards quantitative non-destructive monitoring of the corrosion rate of the steel reinforcement. A few...... corrosion rate measurement instruments have been developed and are commercially available. The main features of these instruments are the combined use of an electrochemical technique for determining the corrosion rate and a so-called ”confinement technique”, which in principle controls the polarised surface...... area of the reinforcement, i.e. the measurement area. Both on-site investigations and laboratory studies have shown that varying corrosion rates are obtained when the various commercially available instruments are used. And in the published studies, conflicting explanations are given illustrating...

  3. Human and organisational factors in the reliability of non-destructive testing (NOT)

    International Nuclear Information System (INIS)

    Norros, L.

    1998-01-01

    Non-destructive testing used in in-service inspections can be seen as a complicated activity system including three mutually related sub-activities: (1) definition of inspection programs and necessary resources, (2) carrying out diagnostic inspections, and (3) interpretation of the results from the view of plant safety and corrective measures. Various studies to investigate and measure the NDT performance have produced disappointing result. No clear correlations between single human factors and performance have been identified even though general agreement exists concerning the significance of human factors to the reliability of testing. Another incentive for our studies has been to test and evaluate the applicability of the international results in the Finnish circumstances. Three successive studies have thus been carried out on the human and organisational factors in non-destructive testing. (author)

  4. Post-Irradiation Non-Destructive Analyses of the AFIP-7 Experiment

    Science.gov (United States)

    Williams, W. J.; Robinson, A. B.; Rabin, B. H.

    2017-12-01

    This article reports the results and interpretation of post-irradiation non-destructive examinations performed on four curved full-size fuel plates that comprise the AFIP-7 experiment. These fuel plates, having a U-10 wt.%Mo monolithic design, were irradiated under moderate operating conditions in the Advanced Test Reactor to assess fuel performance for geometries that are prototypic of research reactor fuel assemblies. Non-destructive examinations include visual examination, neutron radiography, profilometry, and precision gamma scanning. This article evaluates the qualitative and quantitative data taken for each plate, compares corresponding data sets, and presents the results of swelling analyses. These characterization results demonstrate that the fuel meets established irradiation performance requirements for mechanical integrity, geometric stability, and stable and predictable behavior.

  5. A non-destructive DNA sampling technique for herbarium specimens.

    Science.gov (United States)

    Shepherd, Lara D

    2017-01-01

    Herbarium specimens are an important source of DNA for plant research but current sampling methods require the removal of material for DNA extraction. This is undesirable for irreplaceable specimens such as rare species or type material. Here I present the first non-destructive sampling method for extracting DNA from herbarium specimens. DNA was successfully retrieved from robust leaves and/or stems of herbarium specimens up to 73 years old.

  6. Guidebook on non-destructive testing of concrete structures

    International Nuclear Information System (INIS)

    2002-01-01

    The International Atomic Energy Agency has been active in the promotion of non-destructive testing (NDT) technology for many years. NDT is an important component of a number of IAEA regional projects. This guidebook deals with NDT of concrete. This book covers a wide range of NDT methods including industrial radiography, ultrasonic testing, electromagnetic testing, infrared thermography, etc. Codes, standards, specifications and procedures are also covered

  7. Non-destructive test of lock actuator component using neutron radiography technique

    International Nuclear Information System (INIS)

    Juliyanti; Setiawan; Sutiarso

    2012-01-01

    Non-destructive test of lock actuator using neutron radiography technique has been done. The lock actuator is a mechanical system which is controlled by central lock module consisting of electronic circuit which drives the lock actuator works accordingly to open and lock the vehicle door. The non-destructive test using neutron radiography is carried out to identify the type of defect is presence by comparing between the broken and the brand new one. The method used to test the lock actuator component is film method (direct method). The result show that the radiography procedure has complied with the ASTM standard for neutron radiography with background density of 2.2, 7 lines and 3 holes was seen in the sensitivity indicator (SI) and the quite good image quality was obtained. In the brand new actuator is seen that isolator part which separated the coils has melted. By this non-destructive test using neutron radiography technique is able to detect in early stage the type of component's defect inside the lock actuator without to dismantle it. (author)

  8. Recent Advances in Active Infrared Thermography for Non-Destructive Testing of Aerospace Components.

    Science.gov (United States)

    Ciampa, Francesco; Mahmoodi, Pooya; Pinto, Fulvio; Meo, Michele

    2018-02-16

    Active infrared thermography is a fast and accurate non-destructive evaluation technique that is of particular relevance to the aerospace industry for the inspection of aircraft and helicopters' primary and secondary structures, aero-engine parts, spacecraft components and its subsystems. This review provides an exhaustive summary of most recent active thermographic methods used for aerospace applications according to their physical principle and thermal excitation sources. Besides traditional optically stimulated thermography, which uses external optical radiation such as flashes, heaters and laser systems, novel hybrid thermographic techniques are also investigated. These include ultrasonic stimulated thermography, which uses ultrasonic waves and the local damage resonance effect to enhance the reliability and sensitivity to micro-cracks, eddy current stimulated thermography, which uses cost-effective eddy current excitation to generate induction heating, and microwave thermography, which uses electromagnetic radiation at the microwave frequency bands to provide rapid detection of cracks and delamination. All these techniques are here analysed and numerous examples are provided for different damage scenarios and aerospace components in order to identify the strength and limitations of each thermographic technique. Moreover, alternative strategies to current external thermal excitation sources, here named as material-based thermography methods, are examined in this paper. These novel thermographic techniques rely on thermoresistive internal heating and offer a fast, low power, accurate and reliable assessment of damage in aerospace composites.

  9. Recent Advances in Active Infrared Thermography for Non-Destructive Testing of Aerospace Components

    Directory of Open Access Journals (Sweden)

    Francesco Ciampa

    2018-02-01

    Full Text Available Active infrared thermography is a fast and accurate non-destructive evaluation technique that is of particular relevance to the aerospace industry for the inspection of aircraft and helicopters’ primary and secondary structures, aero-engine parts, spacecraft components and its subsystems. This review provides an exhaustive summary of most recent active thermographic methods used for aerospace applications according to their physical principle and thermal excitation sources. Besides traditional optically stimulated thermography, which uses external optical radiation such as flashes, heaters and laser systems, novel hybrid thermographic techniques are also investigated. These include ultrasonic stimulated thermography, which uses ultrasonic waves and the local damage resonance effect to enhance the reliability and sensitivity to micro-cracks, eddy current stimulated thermography, which uses cost-effective eddy current excitation to generate induction heating, and microwave thermography, which uses electromagnetic radiation at the microwave frequency bands to provide rapid detection of cracks and delamination. All these techniques are here analysed and numerous examples are provided for different damage scenarios and aerospace components in order to identify the strength and limitations of each thermographic technique. Moreover, alternative strategies to current external thermal excitation sources, here named as material-based thermography methods, are examined in this paper. These novel thermographic techniques rely on thermoresistive internal heating and offer a fast, low power, accurate and reliable assessment of damage in aerospace composites.

  10. Feasibility Study of Non-Destructive Techniques to Measure Corrosion in SAVY Containers

    Energy Technology Data Exchange (ETDEWEB)

    Davenport, Matthew Nicholas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-07-15

    Stainless Steel SAVY containers are used to transport and store nuclear material. They are prone to interior corrosion in the presence of certain chemicals and a low-oxygen environment. SAVY containers also have relatively thin walls to reduce their weight, making their structural integrity more vulnerable to the effects of corrosion. A nondestructive evaluation system that finds and monitors corrosion within containers in use would improve safety conditions and preclude hazards. Non-destructive testing can determine whether oxidation or corrosion is occurring inside the SAVY containers, and there are a variety of non-destructive testing methods that may be viable. The feasibility study described will objectively decide which method best fits the requirements of the facility and the problem. To improve efficiency, the containers cannot be opened during the non-destructive examination. The chosen technique should also be user-friendly and relatively quick to apply. It must also meet facility requirements regarding wireless technology and maintenance. A feasibility study is an objective search for a new technology or product to solve a particular problem. First, the design, technical, and facility feasibility requirements are chosen and ranked in order of importance. Then each technology considered is given a score based upon a standard ranking system. The technology with the highest total score is deemed the best fit for a certain application.

  11. Isotope techniques in non-destructive testing of dynamic systems

    International Nuclear Information System (INIS)

    Singh, Gursharan; Pant, H.J.

    1996-01-01

    A few applications of gamma scanning and radiotracer techniques for Non-destructive Testing (NDT) of dynamic systems in chemical and petrochemical industries are briefly discussed in this paper. Examples of gamma scanning inspections carried out for troubleshooting of various types of columns such as vacuum, extraction, separator and rectifier, with trays and packed beds and having diameters from 1 meter to 8.4 meters are given. Radiotracer applications for Residence Time Distribution (RTD) studies on different systems like an aniline production reactor in a chemical industry and a laboratory scale solid-liquid fluidized bed column are mentioned. (author)

  12. Non-destructive characterization using pulsed fast-thermal neutrons

    International Nuclear Information System (INIS)

    Womble, P.C.

    1995-01-01

    Explosives, illicit drugs, and other contraband materials contain various chemical elements in quantities and ratios that differentiate them from each other and from innocuous substances. Furthermore, the major chemical elements in coal can provide information about various parameters of importance to the coal industry. In both examples, the non-destructive identification of chemical elements can be performed using pulsed fast-thermal neutrons that, through nuclear reactions, excite the nuclei of the various elements. This technique is being currently developed for the dismantling of nuclear weapons classified as trainers, and for the on-line coal bulk analysis. (orig.)

  13. Non-destructive testing and radiation in industry

    International Nuclear Information System (INIS)

    Woodford, C; Ashby, P.

    2001-01-01

    Non-destructive testing (NDT) is a little known discipline which uses non-invasive and passive techniques to investigate the condition of materials and structures. Some of these techniques employ the use of radioisotopes. The penetrating radiations produced by these materials are applied in various ways to obtain the required information. This presentation is an overview of the application of radioisotopes within the scope of NDT. Notwithstanding the well established use of traditional materials, new forms of radioisotopes are being developed which will extend their capabilities

  14. APPARATUS FOR NON-DESTRUCTIVE INSPECTION OF CANTILEVERED MEMBERS

    Science.gov (United States)

    Taylor, E.R.; Mahoney, C.H.; Lay, C.R.

    1961-10-24

    An apparatus for non-destructive inspection of cantilevered members, such as compressor blades, is described. The member under inspection is vibrated with a regulated source of air under pressure. The amplitude of vibration of the member is maintained at its natural frequency. The frequency of vibration of the member is measured. An indication of an excessive decay or erratic shifting in the measured frequency above an allowable hysteretic decay is provided as an indication of a fault in the member. The member is vibrated for a selected test period. (AEC)

  15. Non-destructive beam profile monitor at HIMAC

    International Nuclear Information System (INIS)

    Sato, S.; Araki, N.; Hosaka, M.

    1995-01-01

    Non-destructive profile monitors (NDPM), based on micro-channel plate (MCP), have been developed and installed in both the synchrotron ring and high-energy beam transport (HEBT) line at HIMAC. Beam test using these monitors have been carried out since April of 1995 to investigate a change of vertical beam size in synchrotron and a possibility of observing beam with high energy by one pass. In this paper the measurement system is mainly reported, and the preliminary results are also briefly presented. (author)

  16. Recent Trends in Electromagnetic Non-Destructive Sensing

    Directory of Open Access Journals (Sweden)

    Klara Capova

    2008-01-01

    Full Text Available The paper deals with material electromagnetic non-destructive testing (eNDT with emphasize on eddy current testing (ECT. Various modifications of ECT sensing are compared and discussed from the desired detected signal characteristics point of view. Except of the optimization of usual probe coils arrangements for the concrete applications, the new magnetic sensors as giant magneto-resistance (GMR and spin dependent tunneling (SDT are presented. The advanced ECT sensors are characterized by their sensitivity, frequency range and sensor dimensions

  17. Augmented reality application for industrial non-destructive inspection training

    Science.gov (United States)

    Amza, Catalin Gheorghe; Zapciu, Aurelian; Teodorescu, Octav

    2018-02-01

    Such a technology - Augmented Reality (AR) has great potential of use, especially for training purposes of new operators on using expensive equipment. In this context, the paper presents an augmented reality training system developed for phased-array ultrasonic non-destructive testing (NDT) equipment. The application has been developed using Unity 5.6.0 game-engine platform integrated with Vuforia sdk toolkit for devices with Android operating system. The test results performed by several NDT operators showed good results, thus proving the potential of using the application in the industrial field.

  18. Non-destructive inspection protocol for reinforced concrete barriers and bridge railings

    Energy Technology Data Exchange (ETDEWEB)

    Chintakunta, Satish R. [Engineering and Software Consultants, Inc., 14123 Robert Paris Ct., Chantilly, VA 20151 (United States); Boone, Shane D. [Federal Highway Administration, Turner Fairbank Highway Research Center, 6300 Georgetown Pike, McLean, VA 22101 (United States)

    2014-02-18

    Reinforced concrete highway barriers and bridge railings serve to prevent errant vehicles from departing the travel way at grade separations. Despite the important role that they play in maintaining safety and their ubiquitous nature, barrier inspection rarely moves beyond visual inspection. In August 2008, a tractor-trailer fatally departed William Preston Lane, Jr. Memorial Bridge after it dislodged a section of the bridge barrier. Investigations following the accident identified significant corrosion of the anchor bolts attaching the bridge railing to the bridge deck. As a result of the information gathered during its investigation of the accident, the National Transportation Safety Board (NTSB) made recommendations to the Federal Highway Administration concerning Non-Destructive Evaluation (NDE) of concrete bridge railings. The Center for nondestructive evaluation (NDE) at Turner Fairbank Highway Research Center in McLean, VA is currently evaluating feasibility of using four technologies - ground penetrating radar (GPR), ultrasonic pulse-echo, digital radiography and infrared thermal imaging methods to develop bridge inspection methods that augment visual inspections, offer reliable measurement techniques, and are practical, both in terms of time and cost, for field inspection work. Controlled samples containing predefined corrosion levels in reinforcing steel were embedded at barrier connection points for laboratory testing. All four NDE techniques were used in the initial phase I testing. An inspection protocol for detecting and measuring the corrosion of reinforced steel embedded in the anchorage system will be developed as part of phase II research. The identified technologies shall be further developed for field testing utilizing a structure with a barrier in good condition and a structure with a barrier in poor condition.

  19. Non-destructive inspection protocol for reinforced concrete barriers and bridge railings

    Science.gov (United States)

    Chintakunta, Satish R.; Boone, Shane D.

    2014-02-01

    Reinforced concrete highway barriers and bridge railings serve to prevent errant vehicles from departing the travel way at grade separations. Despite the important role that they play in maintaining safety and their ubiquitous nature, barrier inspection rarely moves beyond visual inspection. In August 2008, a tractor-trailer fatally departed William Preston Lane, Jr. Memorial Bridge after it dislodged a section of the bridge barrier. Investigations following the accident identified significant corrosion of the anchor bolts attaching the bridge railing to the bridge deck. As a result of the information gathered during its investigation of the accident, the National Transportation Safety Board (NTSB) made recommendations to the Federal Highway Administration concerning Non-Destructive Evaluation (NDE) of concrete bridge railings. The Center for nondestructive evaluation (NDE) at Turner Fairbank Highway Research Center in McLean, VA is currently evaluating feasibility of using four technologies - ground penetrating radar (GPR), ultrasonic pulse-echo, digital radiography and infrared thermal imaging methods to develop bridge inspection methods that augment visual inspections, offer reliable measurement techniques, and are practical, both in terms of time and cost, for field inspection work. Controlled samples containing predefined corrosion levels in reinforcing steel were embedded at barrier connection points for laboratory testing. All four NDE techniques were used in the initial phase I testing. An inspection protocol for detecting and measuring the corrosion of reinforced steel embedded in the anchorage system will be developed as part of phase II research. The identified technologies shall be further developed for field testing utilizing a structure with a barrier in good condition and a structure with a barrier in poor condition.

  20. Laser active thermography for non-destructive testing

    International Nuclear Information System (INIS)

    Semerok, A.; Grisolia, C.; Fomichev, S.V.; Thro, P.Y.

    2013-01-01

    Thermography methods have found their applications in different fields of human activity. The non-destructive feature of these methods along with the additional advantage by automated remote control and tests of nuclear installations without personnel attendance in the contaminated zone are of particular interest. Laser active pyrometry and laser lock-in thermography for in situ non-destructive characterization of micrometric layers on graphite substrates from European tokamaks were under extensive experimental and theoretical studies in CEA (France). The studies were aimed to obtain layer characterization with cross-checking the layer thermal contact coefficients determined by active laser pyrometry and lock-in thermography. The experimental installation comprised a Nd-YAG pulsed repetition rate laser (1 Hz - 10 kHz repetition rate frequency, homogeneous spot) and a home-made pyrometer system based on two pyrometers for the temperature measurements in 500 - 2600 K range. For both methods, the layer characterization was provided by the best fit of the experimental results and simulations. The layer thermal contact coefficients determined by both methods were quite comparable. Though there was no gain in the measurements accuracy, lock-in measurements have proved their advantage as being much more rapid. The obtained experimental and theoretical results are presented. Some practical applications and possible improvements of the methods are discussed. (authors)

  1. Local defect resonance for sensitive non-destructive testing

    Science.gov (United States)

    Adebahr, W.; Solodov, I.; Rahammer, M.; Gulnizkij, N.; Kreutzbruck, M.

    2016-02-01

    Ultrasonic wave-defect interaction is a background of ultrasound activated techniques for imaging and non-destructive testing (NDT) of materials and industrial components. The interaction, primarily, results in acoustic response of a defect which provides attenuation and scattering of ultrasound used as an indicator of defects in conventional ultrasonic NDT. The derivative ultrasonic-induced effects include e.g. nonlinear, thermal, acousto-optic, etc. responses also applied for NDT and defect imaging. These secondary effects are normally relatively inefficient so that the corresponding NDT techniques require an elevated acoustic power and stand out from conventional ultrasonic NDT counterparts for their specific instrumentation particularly adapted to high-power ultrasonic. In this paper, a consistent way to enhance ultrasonic, optical and thermal defect responses and thus to reduce an ultrasonic power required is suggested by using selective ultrasonic activation of defects based on the concept of local defect resonance (LDR). A strong increase in vibration amplitude at LDR enables to reliably detect and visualize the defect as soon as the driving ultrasonic frequency is matched to the LDR frequency. This also provides a high frequency selectivity of the LDR-based imaging, i.e. an opportunity of detecting a certain defect among a multitude of other defects in material. Some examples are shown how to use LDR in non-destructive testing techniques, like vibrometry, ultrasonic thermography and shearography in order to enhance the sensitivity of defect visualization.

  2. Laser active thermography for non-destructive testing

    Science.gov (United States)

    Semerok, A.; Grisolia, C.; Fomichev, S. V.; Thro, P.-Y.

    2013-11-01

    Thermography methods have found their applications in different fields of human activity. The non-destructive feature of these methods along with the additional advantage by automated remote control and tests of nuclear installations without personnel attendance in the contaminated zone are of particular interest. Laser active pyrometry and laser lock-in thermography for in situ non-destructive characterization of micrometric layers on graphite substrates from European tokamaks were under extensive experimental and theoretical studies in CEA (France). The studies were aimed to obtain layer characterization with cross-checking the layer thermal contact coefficients determined by active laser pyrometry and lock-in thermography. The experimental installation comprised a Nd-YAG pulsed repetition rate laser (1 Hz - 10 kHz repetition rate frequency, homogeneous spot) and a home-made pyrometer system based on two pyrometers for the temperature measurements in 500 - 2600 K range. For both methods, the layer characterization was provided by the best fit of the experimental results and simulations. The layer thermal contact coefficients determined by both methods were quite comparable. Though there was no gain in the measurements accuracy, lock-in measurements have proved their advantage as being much more rapid. The obtained experimental and theoretical results are presented. Some practical applications and possible improvements of the methods are discussed.

  3. Non destructive testing of works of art by terahertz analysis

    Science.gov (United States)

    Bodnar, Jean-Luc; Metayer, Jean-Jacques; Mouhoubi, Kamel; Detalle, Vincent

    2013-11-01

    Improvements in technologies and the growing security needs in airport terminals lead to the development of non destructive testing devices using terahertz waves. Indeed, these waves have the advantage of being, on one hand, relatively penetrating. They also have the asset of not being ionizing. It is thus potentially an interesting contribution in the non destructive testing field. With the help of the VISIOM Company, the possibilities of this new industrial analysis method in assisting the restoration of works of art were then approached. The results obtained within this framework are presented here and compared with those obtained by infrared thermography. The results obtained show first that the THZ method, like the stimulated infrared thermography allows the detection of delamination located in murals paintings or in marquetries. They show then that the THZ method seems to allow detecting defects located relatively deeply (10 mm) and defects potentially concealed by other defects. It is an advantage compared to the stimulated infra-red thermography which does not make it possible to obtain these results. Furthermore, they show that the method does not seem sensitive to the various pigments constituting the pictorial layer, to the presence of a layer of "Japan paper" and to the presence of a layer of whitewash. It is not the case of the stimulated infrared thermography. It is another advantage of the THZ method. Finally, they show that the THZ method is limited in the detection of low-size defects. It is a disadvantage compared to the stimulated infrared thermography.

  4. Non-destructive nuclear forensics of radioactive samples

    Energy Technology Data Exchange (ETDEWEB)

    Rogge, R.B. [Canadian Neutron Beam Centre, Chalk River, ON (Canada); Alexander, Q.; Bentoumi, G.; Dimayuga, F. [Atomic Energy of Canada Limited, Chalk River, ON (Canada); Flacau, R. [Canadian Neutron Beam Centre, Chalk River, ON (Canada); Li, G.; Li, L.; Sur, B. [Atomic Energy of Canada Limited, Chalk River, ON (Canada)

    2014-07-01

    It is a matter of public safety and security to be able to examine suspicious packages of unknown origin. If the package is radioactive and sealed (i.e., the radioactive materials contained in the package, including their chemical and physical forms, are unknown), there is a significant risk on how to handle the package and eventually safely dispose of its contents. Within the context of nuclear security, nuclear forensics helps address the key issue of identifying the nature and origin of radioactive and nuclear material in order to improve physical protection measures and prevent future theft or diversion of these materials. Nuclear forensics utilizes analytical techniques, destructive and non-destructive, developed for applications related to nuclear fuel cycles. This paper demonstrates the non-destructive examination techniques that can be used to inspect encapsulated radioactive samples. Results of γ spectroscopy, X-ray spectroscopy, neutron imaging, neutron diffraction, and delayed neutron analysis as applied to an examination of sealed capsules containing unknown radioactive materials are presented. The paper also highlights the value of these techniques to the overall nuclear forensic investigation to determine the origin of these unknown radioactive materials. (author)

  5. Challenges of Non-Destructive Assay Waste Measurement

    International Nuclear Information System (INIS)

    Shull, A.H.

    2003-01-01

    Historically, the Savannah River Site (SRS) routinely produced special nuclear material (SNM), which provided stable measurement conditions for the non-destructive assay (NDA) methods. However, the main mission of SRS has changed from the production of SNM to the processing of waste and material stabilization. Currently, the purpose of processing is to recover the SNM from the waste and stabilization materials, much of which is from other DOE facilities. These missions are usually of a short duration, but require non-destructive assay (NDA) accountability measurements on materials of varying composition and geometric configuration. These missions usually have cost and time constraints, which sometimes require re-application of existing NDA methods to waste measurements. Usually, each new material or re-application of the NDA method to a different SNM campaign requires new standards and timely re-calibration of the method. These constraints provide numerous challenges for the NDA methods, particularly in the area of measurement uncertainty. This paper will discuss the challenges of these situations, mainly from a measurement and statistical point of view and provide some possible solutions to the problems encountered. Specific examples will be discussed for the segmented gamma scanner (SGS), neutron multiplicity counter (NMC) and passive neutron coincidence counter (PNCC), which are some of the most common NDA instruments at SRS

  6. Application of magnetic resonance imaging to non-destructive void detection in watermelon

    Science.gov (United States)

    Saito, K.; Miki, T.; Hayashi, S.; Kajikawa, H.; Shimada, M.; Kawate, Y.; Nishizawa, T.; Ikegaya, D.; Kimura, N.; Takabatake, K.; Sugiura, N.; Suzuki, M.

    A novel application of magnetic resonance imaging (MRI) is described. The possibility of utilizing MRI for non-destructive quality evaluation of watermelons was studied. In this study, we applied MRI to the detection of internal voids in watermelons. In order to increase the measurement rate, we employed a one-dimensional projection profile method instead of observing a two-dimensional cross-sectional image. The void detection was carried out with this technique over 30 samples and 28 samples were correctly evaluated. The measurement rate was 900 ms per sample, which is an acceptable speed for a sorting machine in the agricultural field.

  7. Use of non-destructive controls for the supervision of operating apparatus

    International Nuclear Information System (INIS)

    Ducrot, Bernard.

    1978-01-01

    The scope of application of this paper, that is standard apparatus whether pressure or not, is presented. Then the particular problem of the use of non-destructive controls for the supervision of operating apparatus is outlined. The subject of how to exercise that supervision is developed by replying to four questions: why, when, how, who. A summary of the main advantages and disadvantages of the different control techniquess used is given in a tabular form. A last part deals with a series of practical applications, which show at the same time the interest and difficulties of that type of control [fr

  8. Non-destructive qualification tests for ITER cryogenic axial insulating breaks

    International Nuclear Information System (INIS)

    Kosek, Jacek; Lopez, Roberto; Tommasini, Davide; Rodriguez-Mateos, Felix

    2014-01-01

    In the ITER superconducting magnets the dielectric separation between the CICC (Cable-In-Conduit Conductors) and the helium supply pipes is made through the so-called insulating breaks (IB). These devices shall provide the required dielectric insulation at a 30 kV level under different types of stresses and constraints: thermal, mechanical, dielectric and ionizing radiations. As part of the R and D program, the ITER Organization launched contracts with industrial companies aimed at the qualification of the manufacturing techniques. After reviewing the main functional aspects, this paper describes and discusses the protocol established for non-destructive qualification tests of the prototypes

  9. Non-destructive qualification tests for ITER cryogenic axial insulating breaks

    Energy Technology Data Exchange (ETDEWEB)

    Kosek, Jacek [Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland and CERN, Geneva 23,CH-1211 (Switzerland); Lopez, Roberto; Tommasini, Davide [CERN, Geneva 23,CH-1211 (Switzerland); Rodriguez-Mateos, Felix [CERN, Geneva 23,CH-1211, Switzerland and ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul lez Durance (France)

    2014-01-29

    In the ITER superconducting magnets the dielectric separation between the CICC (Cable-In-Conduit Conductors) and the helium supply pipes is made through the so-called insulating breaks (IB). These devices shall provide the required dielectric insulation at a 30 kV level under different types of stresses and constraints: thermal, mechanical, dielectric and ionizing radiations. As part of the R and D program, the ITER Organization launched contracts with industrial companies aimed at the qualification of the manufacturing techniques. After reviewing the main functional aspects, this paper describes and discusses the protocol established for non-destructive qualification tests of the prototypes.

  10. Guidebook for the fabrication of non-destructive testing (NDT) test specimens

    International Nuclear Information System (INIS)

    2001-01-01

    Non-destructive testing (NDT) test specimens constitute a very important part of training and certification of NDT personnel and are important for carrying out actual inspection and testing, and for achieving international harmonization of NDT practices. The IAEA organized an advisory group of experts to develop a Guidebook for Fabrication of NDT Test Specimens. The experts consulted the ISO/FDIS 9712-1999 requirements for training and certification of personnel and the suitability of various types of NDT test specimens that are needed to meet such requirements This guidebook presents a set of NDT test specimens, and the methodology and procedures for their fabrication

  11. A system for personnel qualification of non-destructive testing procedures from testing and and qualification system in Sweden

    International Nuclear Information System (INIS)

    Kuna, M.; Kubis, S.; Plasek, J.

    1999-01-01

    The method for qualification of non-destructive testing personnel carrying out inspections by means of ultrasonic and eddy-current tests to inspect cladding in BWR reactor pressure vessel and core shroud lid. Development of procedures tests with real artificial cracks, blind tests. Evaluation of results by the Swedish Qualification Commission. Performance of the tests at Oskarshamn-1

  12. Theoretical and practical program in the non-destructive testing by eddy currents - the first level

    International Nuclear Information System (INIS)

    Shaaban, H.I.; Addarwish, J.M.A.

    2014-11-01

    The testing using eddy currents is one of the non-destructive tests that use electromagnetic property as a basis for testing procedures, and there are many other ways to use this principle, including Remote Field Testing and the Magnetic Flux Leakage test. Eddy currents are electrical currents moving in a circular path, and took the name eddy of eddies that form when a liquid or gas is moving in a circular path because of objection obstacles to its track. They are generated in the material using a variable magnetic field. Non-destructive testing by eddy currents is a technique used for the detection of defects and interruptions in a material and it is a process that relies on the generation of small eddy currents in the material of the part to be examined, provided that this part is of an electrically conducting material. This technique and its scientific basis are explained in this book. Also the devices used in this technique and how to use these devices in details are explained. The book contains Twelve chapters: Introduction to non destructive testing - Engineering materials and its mechanical characteristics - Electrical and magnetic characteristics of engineering materials - Introduction to testing by eddy currents - Factors affecting eddy currents - Basis of electrical circuits used in eddy currents testing devices - Probes of eddy currents testing - Eddy currents testing devices (Theoretical) - Analysis of the examination results of testing by eddy currents: techniques and applications - Applications of testing by eddy currents - Eddy currents testing devices (Application) - Practical lessons for the first level in testing by eddy currents.

  13. Non-destructive testing of CFC/Cu joints

    International Nuclear Information System (INIS)

    Casalegno, V.; Ferraris, M.; Salvo, M.; Vesprini, R.; Merola, M.

    2006-01-01

    Reliable non-destructive tests (NDT) are fundamental for the manufacturing of ITER components, especially for high heat flux plasma facing components. NDT include various techniques, which allow inspection of a component without impairing serviceability; it's important to detect and characterize defects (type, size and position) as well as the set-up of acceptance standards in order to predict their influence on the component performance in service conditions. The present study shows a description of NDT used to assess the manufacturing quality of CFC (carbon fibre reinforced carbon matrix composites)/Cu/CuCrZr joints. In the ITER divertor, armor tiles made of CFC are joined to the cooling structure made of precipitation hardened copper alloy CuCrZr; a soft pure Cu interlayer is required between the heat sink and the armour in order to mitigate the stresses at the joint interface. NDT on CFC/Cu joint are difficult because of the different behavior of CFC and copper with regard to physical excitations (e.g. ultrasonic wave) used to test the component; furthermore the response to this input must be accurately studied to identify the detachment of CFC tiles from Cu alloy. The inspected CFC/Cu/CuCrZr joints were obtained through direct casting of pure Cu on modified CFC surface and subsequently through brazing of CFC/Cu joints to CuCrZr by a Cu-based alloy. Different non-destructive methods were used for inspecting these joints: lock-in thermography, ultrasonic inspections, microtomography and microradiography. The NDT tests were followed by metallographic investigation on the samples, since the reliability of a certain non destructive test can be only validated by morphological evidence of the detected defects. This study will undertake a direct comparison of NDT used on CFC/Cu joints in terms of real flaws presence. The purpose of this work is to detect defects at the joining interface as well as in the cast copper ( for instance voids). The experimental work was

  14. Application of golay complementary coded excitation schemes for non-destructive testing of sandwich structures

    Science.gov (United States)

    Arora, Vanita; Mulaveesala, Ravibabu

    2017-06-01

    In recent years, InfraRed Thermography (IRT) has become a widely accepted non-destructive testing technique to evaluate the structural integrity of composite sandwich structures due to its full-field, remote, fast and in-service inspection capabilities. This paper presents a novel infrared thermographic approach named as Golay complementary coded thermal wave imaging is presented to detect disbonds in a sandwich structure having face sheets from Glass/Carbon Fibre Reinforced (GFR/CFR) laminates and core of the wooden block.

  15. Non-destructive study of iron gall inks in manuscripts

    Science.gov (United States)

    Duh, Jelena; Krstić, Dragica; Desnica, Vladan; Fazinić, Stjepko

    2018-02-01

    The aim of this research is to establish an effective procedure of iron gall ink characterization using complementary non-destructive methods. By this, it is possible to better understand correlation of chemical composition of the inks and the state of preservation of iron gall ink manuscripts, as well as the effects of conservation treatment performed upon them. This study was undertaken on a bound 16th century manuscript comprised of different types of paper and ink from the National and University Library in Zagreb. Analytical methods used included Particle Induced X-ray Emission (PIXE) and X-ray Fluorescence (XRF). Paper fibers were identified by optical microscopy and the degradation state, as well as ink differentiation, transit metal migrations and detection of stains, with ultraviolet (UV) and infrared (IR) photography. The techniques applied on original writing materials gave important information about paper and ink composition, its preservation state and efficiency of conservation treatment performed upon them.

  16. Non destructive Testing (NDT) of concrete containing hematite

    International Nuclear Information System (INIS)

    Mohamad Pauzi Ismail; Noor Azreen Masenwat; Suhairy Sani; Nasharuddin Isa; Mohamad Haniza Mahmud

    2014-01-01

    This paper described the results of Non-destructive ultrasonic and rebound hammer measurements on concrete containing hematite. Local hematite stones were used as aggregates to produce high density concrete for application in X-and gamma shielding. Concrete cube samples (150 mm x 150 mm x 150 mm) containing hematite as coarse aggregates were prepared by changing mix ratio, water to cement ratio (w/c) and types of fine aggregate. All samples were cured in water for 7 days and then tested after 28 days. Density, rebound number(N) and ultrasonic pulse velocity (UPV) of the samples were taken before compressed to failure. The measurement results are explained and discussed. (author)

  17. Data fusion: a new concept in non-destructive testing

    International Nuclear Information System (INIS)

    Georgel, B.; Lavayssiere, B.

    1995-01-01

    Non-destructive testing of some components (made of austenitic steel, or of a complex shape for example) requires quite often the use of several methods such as X-ray, ultrasonics, Eddy Currents. Then, a skilled operator is able to perform the expertise of the specimen. The main goal of this paper is to show that 3D diagnosis may be improved in term of reliability and precision by fusion of several NDT techniques. A data fusion algorithm is more that trying to improve the visualisation or the rendering of NDT data sets. It consists for each volume element, in computing a new value representing the combined information and in formulating a diagnosis on this basis. To achieve such a goal, know-how in modeling of physical phenomena and in applied mathematics is crucial. (authors). 4 refs., 2 figs

  18. Catalogue of test specimens for non-destructive examination

    International Nuclear Information System (INIS)

    1985-05-01

    One of the key elements in assuring the integrity of reactor primary circuits is the availability of trustworthy non-destructive methods for detecting dangerous defects that may be present. Various approaches to making such examinations are being developed, including the use of ultrasonic and radiographic techniques. To demonstrate their capability and reliability, they must be tested on steel specimens reproducing the various types of faults which may arise in real primary circuit vessels and piping. Such specimens are costly to fabricate. It is therefore clearly desirable that existing specimens should be made accessible to as many organisations as possible for testing. This catalogue contains detailed Information on forty-odd deliberately flawed plates, blocks, vessels, etc. which have been produced in OECD countries, along with the name of a contact person to whom inquiries should be directed in each case

  19. Non-destructive sampling of ancient insect DNA

    DEFF Research Database (Denmark)

    Thomsen, Philip Francis; Elias, Scott; Gilbert, Tom

    2009-01-01

    BACKGROUND: A major challenge for ancient DNA (aDNA) studies on insect remains is that sampling procedures involve at least partial destruction of the specimens. A recent extraction protocol reveals the possibility of obtaining DNA from past insect remains without causing visual morphological...... of 77-204 base pairs (-bp) in size using species-specific and general insect primers. CONCLUSION/SIGNIFICANCE: The applied non-destructive DNA extraction method shows promising potential on insect museum specimens of historical age as far back as AD 1820, but less so on the ancient permafrost......-preserved insect fossil remains tested, where DNA was obtained from samples up to ca. 26,000 years old. The non-frozen sediment DNA approach appears to have great potential for recording the former presence of insect taxa not normally preserved as macrofossils and opens new frontiers in research on ancient...

  20. Non-destructive Faraday imaging of dynamically controlled ultracold atoms

    Science.gov (United States)

    Gajdacz, Miroslav; Pedersen, Poul; Mørch, Troels; Hilliard, Andrew; Arlt, Jan; Sherson, Jacob

    2013-05-01

    We investigate non-destructive measurements of ultra-cold atomic clouds based on dark field imaging of spatially resolved Faraday rotation. In particular, we pursue applications to dynamically controlled ultracold atoms. The dependence of the Faraday signal on laser detuning, atomic density and temperature is characterized in a detailed comparison with theory. In particular the destructivity per measurement is extremely low and we illustrate this by imaging the same cloud up to 2000 times. The technique is applied to avoid the effect of shot-to-shot fluctuations in atom number calibration. Adding dynamic changes to system parameters, we demonstrate single-run vector magnetic field imaging and single-run spatial imaging of the system's dynamic behavior. The method can be implemented particularly easily in standard imaging systems by the insertion of an extra polarizing beam splitter. These results are steps towards quantum state engineering using feedback control of ultracold atoms.

  1. A new look at trends in non-destructive testing

    International Nuclear Information System (INIS)

    Forsten, J.

    1984-01-01

    Non-destructive testing (NDT) has been performed extensively for several decades. However, the NDT area is not in a static condition, as sophisticated equipment, improved procedures and new innovations keep development going on. Neither is the NDT field isolated from other fields, and this influences strongly the current situation, i.e.: The cost of electronics is decreasing and complex problems can now be solved; Safety requirements on products and components become more stringent; Quality requirements of the whole life span of a product or a component become more accentuated; Improved testing reliability is required; Quality assurance requirements must be imposed on NDT itself; New materials, e.g., fiber reinforced materials, and materials combinations, e.g., sandwich structures, will be used for special purposes; New production techniques, like glueing of metals, put new requirements on the NDT techniques

  2. Application of positron annihilation techniques in non-destructive testing

    International Nuclear Information System (INIS)

    Zeng Hui; Chen Zhiqiang; Jiang Jing; Xue Xudong; Wu Yichu; Liang Jianping; Liu Xiangbing; Wang Rongshan

    2014-01-01

    Background: The investigation of the material damage state is very important for industrial application. Most mechanical damage starts with a change in the microstructure of the material. Positron annihilation techniques are very sensitive probes for detecting defects and damage on an atomic scale in materials, which are of great concern in the engineering applications. Additionally they are apparatus of non-destruction, high-sensitivity and easy-use. Purpose: Our goal is to develop a system to exploit new non-destructive testing (NDT) methods using positron annihilation spectroscopy, a powerful tool to detect vacancy-type defects and their chemical environment. Methods: A positron NDT system was designed and constructed by modifying the 'sandwich structure' of sample-source-sample in conventional Doppler broadening and positron lifetime spectrometers. Doppler broadening and positron lifetime spectra of a single sample can be measured and analyzed by subtracting the contribution of a reference sample. Results: The feasibility and reliability of positron NDT system have been tested by analyzing nondestructively deformation and damage caused by mechanical treatment or by irradiation of metal alloys. This system can be used for detecting defects and damage in thick or large-size samples, as well as for measuring the two-dimension distribution of defects in portable, sensitive, fast way. Conclusion: Positron NDT measurement shows changes in real atomic-scale defects prior to changes in the mechanical properties, which are detectable by other methods of NDT, such as ultrasonic testing and eddy current testing. This system can be developed for use in both the laboratory and field in the future. (authors)

  3. Non destructive technique for cracks detection by an eddy current in differential mode for steel frames

    International Nuclear Information System (INIS)

    Harzalla, S.; Chabaat, M.; Belgacem, F. Bin Muhammad

    2014-01-01

    In this paper, a nondestructive technique is used as a tool to control cracks and microcracks in materials. A simulation by a numerical approach such as the finite element method is employed to detect cracks and eventually; to study their propagation using a crucial parameter such as the stress intensity factor. This approach has been used in the aircraft industry to control cracks. Besides, it makes it possible to highlight the defects of parts while preserving the integrity of the controlled products. On the other side, it is proven that the reliability of the control of defects gives convincing results for the improvement of the quality and the safety of the material. Eddy current testing (ECT) is a standard technique in industry for the detection of surface breaking flaws in magnetic materials such as steels. In this context, simulation tools can be used to improve the understanding of experimental signals, optimize the design of sensors or evaluate the performance of ECT procedures. CEA-LIST has developed for many years semi-analytical models embedded into the simulation platform CIVA dedicated to non-destructive testing. The developments presented herein address the case of flaws located inside a planar and magnetic medium. Simulation results are obtained through the application of the Volume Integral Method (VIM). When considering the ECT of a single flaw, a system of two differential equations is derived from Maxwell equations. The numerical resolution of the system is carried out using the classical Galerkin variant of the Method of Moments. Besides, a probe response is calculated by application of the Lorentz reciprocity theorem. Finally, the approach itself as well as comparisons between simulation results and measured data are presented

  4. Non destructive technique for cracks detection by an eddy current in differential mode for steel frames

    Energy Technology Data Exchange (ETDEWEB)

    Harzalla, S., E-mail: harzallahozil@yahoo.fr; Chabaat, M., E-mail: mchabaat@yahoo.com [Built Environmental Research Laboratory, Civil Engineering Faculty, University of Sciences and Technology Houari Boumediene, B.P. 32 El Alia Bab-Ezzouar, Algiers 16111 (Algeria); Belgacem, F. Bin Muhammad, E-mail: fbmbelgacem@gmail.com [Department of Mathematics, Faculty of Basic Education, PAAET, Al-Aardhia (Kuwait)

    2014-12-10

    In this paper, a nondestructive technique is used as a tool to control cracks and microcracks in materials. A simulation by a numerical approach such as the finite element method is employed to detect cracks and eventually; to study their propagation using a crucial parameter such as the stress intensity factor. This approach has been used in the aircraft industry to control cracks. Besides, it makes it possible to highlight the defects of parts while preserving the integrity of the controlled products. On the other side, it is proven that the reliability of the control of defects gives convincing results for the improvement of the quality and the safety of the material. Eddy current testing (ECT) is a standard technique in industry for the detection of surface breaking flaws in magnetic materials such as steels. In this context, simulation tools can be used to improve the understanding of experimental signals, optimize the design of sensors or evaluate the performance of ECT procedures. CEA-LIST has developed for many years semi-analytical models embedded into the simulation platform CIVA dedicated to non-destructive testing. The developments presented herein address the case of flaws located inside a planar and magnetic medium. Simulation results are obtained through the application of the Volume Integral Method (VIM). When considering the ECT of a single flaw, a system of two differential equations is derived from Maxwell equations. The numerical resolution of the system is carried out using the classical Galerkin variant of the Method of Moments. Besides, a probe response is calculated by application of the Lorentz reciprocity theorem. Finally, the approach itself as well as comparisons between simulation results and measured data are presented.

  5. Waste Inspection Tomography for Non-Destructive Evaluation (WITNDA)

    International Nuclear Information System (INIS)

    Ramar, R.; Priyada, P.; Shivaramu; Venkatraman, B.

    2012-01-01

    A gamma ray Computed Tomography (CT) system developed indigenously for doing feasibility studies on tomographic waste assay and for validating the transmission and emission tomography algorithms. Automation of the data collection has been achieved by integrating four axes Galil based drum rotating driver and HPGe gamma spectroscopy software using windows based Visual Basic (VB) program. Attenuation tomograms using Filter Back Projection (FBP) and Algebraic Reconstruction Technique (ART) and emission tomograms using Maximum Likelihood Expectation Maximization (MLEM) techniques developed and validated. The transmission tomograms of a MS test object of 165 mm OD cylindrical container with MS rods and filled with sand and emission tomograms of a 4.7 mCi 137 Cs source embedded in the test object and its activity quantified. (author)

  6. Evaluation of recycled concrete by means of non destructive tests

    Directory of Open Access Journals (Sweden)

    Di Maio, E. A.

    2003-12-01

    Full Text Available The use of recycled concrete as aggregate for the production of new concretes is a consequence of the shortage of natural resources and the environmental problems due to the storage of residual building materials. In this paper the following results are given: compressive strength, rebound numbers, ultrasonic pulse velocity Break-off pressure and torsional moment, all of them determined on concretes of different strength level elaborated with recycled coarse aggregate in 25% and 75% in respect of a reference concrete (without recycled aggregate. The Break-off and the torsion method present, at 28 days, only one correlation curve; this would allow to estimate the compressive strength using the correlations determined for the same group of materials. It is impossible to apply this procedure when using the ultrasonic method, since the velocity diminishes strongly as the percentage of recycled coarse aggregate increases. With respect to the rebound method, its high dispersion due to the heterogeneous aggregates makes it not advisable in order to perform a strength estimation.

    La escasez de recursos naturales y los problemas ambientales, producto de los depósitos de residuos de construcción y/o demolición, han llevado al uso del hormigón reciclado como árido para la producción de nuevos hormigones. En este trabajo se presentan resultados de resistencia a compresión, números de rebote, velocidades ultrasónicas, presiones Break-off y momentos torsores determinados en hormigones de diferentes niveles de resistencia elaborados con áridos gruesos reciclados en un 25 y 75% respecto de un hormigón de referencia (sin árido reciclado. El método Break-off y el de torsión presentan, a la edad de 28 días, una única curva de correlación, hecho que permitiría estimar la resistencia a compresión utilizando correlaciones determinadas para el mismo conjunto de materiales. Este procedimiento no puede ser aplicado con el método ultrasónico, ya que las velocidades disminuyen fuertemente a medida que se incrementa el porcentaje de árido grueso reciclado utilizado. El ensayo de rebote, por la alta dispersión de resultados que presenta debido a la heterogeneidad de los áridos reciclados, hace que no sea recomendable para estimar la resistencia a compresión.

  7. Automated Non-Destructive Testing Array Evaluation System

    Energy Technology Data Exchange (ETDEWEB)

    Wei, T.; Zavaljevski, N.; Bakhtiari, S.; Miron, A.; Jupperman, D.

    2004-12-31

    Utilities perform eddy current tests on nuclear power plant steam generator (SG) tubes to detect degradation. This report summarizes the status of ongoing research to develop signal processing algorithms that automate analysis of eddy current test data. The research focuses on analyzing array probe data for detecting, classifying, and characterizing degradation in SG tubes.

  8. Automated Non-Destructive Testing Array Evaluation System

    International Nuclear Information System (INIS)

    Wei, T.; Zavaljevski, N.; Bakhtiari, S.; Miron, A.; Kupperman, D.

    2004-01-01

    Utilities perform eddy current tests on nuclear power plant steam generator (SG) tubes to detect degradation. This report summarizes the status of ongoing research to develop signal processing algorithms that automate analysis of eddy current test data. The research focuses on analyzing array probe data for detecting, classifying, and characterizing degradation in SG tubes

  9. Evaluating Corrosion in SAVY Containers using Non-Destructive Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Davenport, Matthew Nicholas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Vaidya, Rajendra U. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Abeyta, Adrian Anthony [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-11-16

    Powerpoint presentation on Ultrasonic and Eddy Current NDT; UT Theory; Eddy current (ECA): How it works; Controlled Corrosion at NM Tech; Results – HCl Corrosion; Waveform Data for 10M HCl; Accuracy Statistics; Results – FeCl3 Pitting; Waveforms for Anhydrous FeCl3; Analyzing Corroded Stainless Steel 316L Plates; 316L Plate to Imitate Pitting; ECA Pit Depth Calibration Curve; C Scan Imaging; UT Pit Detection; SST Containers: Ultrasonic (UT) vs. CMM; UT Data Analysis; UT Conclusions and Observations; ECA Conclusions; Automated System Vision.

  10. Non-destructive examination of the bonding interface in DEMO divertor fingers

    International Nuclear Information System (INIS)

    Richou, Marianne; Missirlian, Marc; Vignal, Nicolas; Cantone, Vincent; Hernandez, Caroline; Norajitra, Prachai; Spatafora, Luigi

    2013-01-01

    Highlights: • SATIR tests on DEMO divertor fingers (integrating or not He cooling system). • Millimeter size artificial defects were manufactured. • Detectability of millimeter size artificial defects was evaluated. • SATIR can detect defect in DEMO divertor fingers. • Simulations are well correlated to SATIR tests. -- Abstract: Plasma facing components (PFCs) with tungsten (W) armor materials for DEMO divertor require a high heat flux removal capability (at least 10 MW/m 2 in steady-state conditions). The reference divertor PFC concept is a finger with a tungsten tile as a protection and sacrificial layer brazed to a thimble made of tungsten alloy W – 1% La 2 O 3 (WL10). Defects may be located at the W thimble to W tile interface. As the number of fingers is considerable (>250,000), it is then a major issue to develop a reliable control procedure in order to control with a non-destructive examination the fabrication processes. The feasibility for detecting defect with infrared thermography SATIR test bed is presented. SATIR is based on the heat transient method and is used as an inspection tool in order to assess component heat transfer capability. SATIR tests were performed on fingers integrating or not the complex He cooling system (steel cartridge with jet holes). Millimeter size artificial defects were manufactured and their detectability was evaluated. Results of this study demonstrate that the SATIR method can be considered as a relevant non-destructive technique examination for the defect detection of DEMO divertor fingers

  11. Comparisons of non-destructive examination standards in the framework of fracture mechanics approach

    International Nuclear Information System (INIS)

    Reale, S.; Corvi, A.

    1993-01-01

    One of the aims of the various Engineering Standards related to Non-destructive Examination (NDE) is to identify and limit some characteristics of defects in a structure, since the degree of damage of a structure can be associated with these defect characteristics. One way that the damage level can be evaluated is by means of Fracture Mechanics. The objective of the present paper is to compare and identify the differences in the flaw acceptance criteria of national NDE Standards so as to suggest some guidelines for a future common European Standard. This paper examines the Standards adopted in France (RCC-MR), Germany (DIN), Italy (ASME) and the UK (BSI). It concentrates on both ultrasonic and radiographic inspection methods. The flaw acceptance criteria in these standards relating to non-destructive tests performed on a component during manufacturing are compared and evaluated by the Fracture Mechanics CEGB R6 procedure. General guidelines and results supporting the significance of the Fracture Mechanics approach are given. (Author)

  12. Non-Destructive Techniques in the Tacis and Phare Nuclear Safety Programmes

    International Nuclear Information System (INIS)

    Bieth, Michel

    2002-01-01

    Decisions regarding the verification of design plant lifetime and potential license renewal periods involve a determination of the component and circuit condition. In Service Inspection of key reactor components becomes a crucial consideration for continued safe plant operation. The determination of the equipment properties by Non Destructive Techniques during periodic intervals is an important aspect of the assessment of fitness-for-service and safe operation of nuclear power plants The Tacis and Phare were established since 1991 by the European Union as support mechanisms through which projects could be identified and addressed satisfactorily. In Nuclear Safety, the countries mainly concerned are Russia, Ukraine, Armenia, and Kazakhstan for the Tacis programme, and Bulgaria, Czech Republic, Hungary, Slovak Republic, Lithuania, Romania and Slovenia for the Phare programme. The Tacis and Phare programs concerning the Nuclear Power Plants consist of: - On Site Assistance and Operational Safety, - Design Safety, - Regulatory Authorities, - Waste management, and are focused on reactor safety issues, contributing to the improvement in the safety of East European reactors and providing technology and safety culture transfer. The main parts of these programmes are related to the On-Site Assistance and to the Design Safety of VVER and RBMK Nuclear power plants where Non Destructive Techniques for In Service Inspection of the primary circuit components are addressed. (authors)

  13. Interactive ultrasonic field simulations for complex non-destructive testing configurations

    International Nuclear Information System (INIS)

    Chouh, Hamza

    2016-01-01

    In order to fulfill increasing reliability and safety requirements, non-destructive testing techniques are constantly evolving and so does their complexity. Consequently, simulation is an essential part of their design. We developed a tool for the simulation of the ultrasonic field radiated by any planar probes into non-destructive testing configurations involving meshed geometries without prominent edges, isotropic and anisotropic, homogeneous and heterogeneous materials, and wave trajectories that can include reflections and transmissions. We approximate the ultrasonic wave fronts by using polynomial interpolators that are local to ultrasonic ray pencils. They are obtained using a surface research algorithm based on pencil tracing and successive subdivisions. Their interpolators enable the computation of the necessary quantities for the impulse responses on each point of a sampling of the transducer surface that fulfills the Shannon criterion. By doing so, we can compute a global impulse response which, when convolved with the excitation signal of the transducer, results in the ultrasonic field. The usage of task parallelism and of SIMD instructions on the most computationally expensive steps yields an important performance boost. Finally, we developed a tool for progressive visualization of field images. It benefits from an image reconstruction technique and schedules field computations in order to accelerate convergence towards the final image. (author) [fr

  14. A non-destructive method for estimating onion leaf area

    Directory of Open Access Journals (Sweden)

    Córcoles J.I.

    2015-06-01

    Full Text Available Leaf area is one of the most important parameters for characterizing crop growth and development, and its measurement is useful for examining the effects of agronomic management on crop production. It is related to interception of radiation, photosynthesis, biomass accumulation, transpiration and gas exchange in crop canopies. Several direct and indirect methods have been developed for determining leaf area. The aim of this study is to develop an indirect method, based on the use of a mathematical model, to compute leaf area in an onion crop using non-destructive measurements with the condition that the model must be practical and useful as a Decision Support System tool to improve crop management. A field experiment was conducted in a 4.75 ha commercial onion plot irrigated with a centre pivot system in Aguas Nuevas (Albacete, Spain, during the 2010 irrigation season. To determine onion crop leaf area in the laboratory, the crop was sampled on four occasions between 15 June and 15 September. At each sampling event, eight experimental plots of 1 m2 were used and the leaf area for individual leaves was computed using two indirect methods, one based on the use of an automated infrared imaging system, LI-COR-3100C, and the other using a digital scanner EPSON GT-8000, obtaining several images that were processed using Image J v 1.43 software. A total of 1146 leaves were used. Before measuring the leaf area, 25 parameters related to leaf length and width were determined for each leaf. The combined application of principal components analysis and cluster analysis for grouping leaf parameters was used to reduce the number of variables from 25 to 12. The parameter derived from the product of the total leaf length (L and the leaf diameter at a distance of 25% of the total leaf length (A25 gave the best results for estimating leaf area using a simple linear regression model. The model obtained was useful for computing leaf area using a non-destructive

  15. Analysis of Radiation Accident of Non-destructive Inspection and Rational Preparing Bills

    International Nuclear Information System (INIS)

    Bae, Junwoo; Yoo, Donghan; Kim, Hee Reyoung

    2013-01-01

    After 2006, according to enactment of Non-destructive Inspection Promotion Act, the number of non-destructive inspection companies and corresponding accident is increased sharply. In this research, it includes characteristic analysis of field of the non-destructive inspection. And from the result of analysis, the purpose of this research is discovering reason for 'Why there is higher accident ratio in non-destructive inspection field, relatively' and preparing effective bill for reducing radiation accidents. The number of worker for non-destructive inspect is increased steadily and non-destructive inspect worker take highest dose. Corresponding to these, it must be needed to prepare bills to protect non-destructive inspect workers. By analysis of accident case, there are many case of carelessness that tools are too heavy to carry it everywhere workers go. And there are some cases caused by deficiency of education that less understanding of radiation and poor operation by less understanding of structure of tools. Also, there is no data specialized to non-destructive inspect field. So, it has to take information from statistical data. Because of this, it is hard to analyze nondestructive inspect field accurately. So, it is required to; preparing rational bills to protect non-destructive inspect workers nondestructive inspect instrument lightening and easy manual which can understandable for low education background people accurate survey data from real worker. To accomplish these, we needs to do; analyze and comprehend the present law about non-destructive inspect worker understand non-destructive inspect instruments accurately and conduct research for developing material developing rational survey to measuring real condition for non-destructive inspect workers

  16. Influence of Kaolin in Fly Ash Based Geopolymer Concrete: Destructive and Non-Destructive Testing

    Science.gov (United States)

    Yahya, Z.; Abdullah, M. M. A. B.; Ramli, N. Mohd; Burduhos-Nergis, D. D.; Razak, R. Abd

    2018-06-01

    Development of geopolymer concrete is mainly to reduce the production of ordinary Portland cement (OPC) that adverse the natural effect. Fly ash is a by-product collected from electrical generating power plant which resulted from burning pulverized coal. Since fly ash is waste materials, it can be recycled for future advantages particularly as pozzolanic materials in construction industry. This study focused on the feasibility of fly ash based geopolymer concrete to which kaolin has been added. The main constituents of geopolymer production for this study were class F fly ash, sodium silicate and sodium hydroxide (NaOH) solution. The concentration of NaOH solution was fixed at 12 Molar, ratio of fly ash/alkaline activator and sodium silicate/NaOH fixed at 1.5 and 2.5, respectively. Kaolin was added in range 5% to 15% from the mass of fly ash and all the samples were cured at room temperature. Destructive and non-destructive test were performed on geopolymer concrete to evaluate the best mix proportions that yield the highest strength as well as the quality of the concrete. Compressive strength, flexural strength, rebound hammer and ultrasonic pulse velocity (UPV) result have been obtained. It shown that 5% replacement of kaolin contributed to maximum compressive strength and flexural strength of 40.4 MPa and 12.35 MPa at 28 days. These result was supported by non-destructive test for the same mix proportion.

  17. Microwave Metamaterial Absorber for Non-Destructive Sensing Applications of Grain

    Directory of Open Access Journals (Sweden)

    Yin Zhang

    2018-06-01

    Full Text Available In this work, we propose a metamaterial absorber at microwave frequencies with significant sensitivity and non-destructive sensing capability for grain samples. This absorber is composed of cross-resonators periodically arranged on an ultrathin substrate, a sensing layer filled with grain samples, and a metal ground. The cross-resonator array is fabricated using the printed circuit board process on an FR-4 board. The performance of the proposed metamaterial is demonstrated with both full-wave simulation and measurement results, and the working mechanism is revealed through multi-reflection interference theory. It can serve as a non-contact sensor for food quality control such as adulteration, variety, etc. by detecting shifts in the resonant frequencies. As a direct application, it is shown that the resonant frequency displays a significant blue shift from 7.11 GHz to 7.52 GHz when the mass fraction of stale rice in the mixture of fresh and stale rice is changed from 0% to 100%. In addition, the absorber shows a distinct difference in the resonant absorption frequency for different varieties of grain, which also makes it a candidate for a grain classification sensor. The presented scheme could open up opportunities for microwave metamaterial absorbers to be applied as efficient sensors in the non-destructive evaluation of agricultural and food product quality.

  18. Training guidelines in non-destructive testing techniques. 2002 edition

    International Nuclear Information System (INIS)

    2002-01-01

    Non-destructive testing (NDT) is a dynamic technology and progresses with time. Since the issuance of IAEA-TECDOC-628 in 1991, the technology has experienced numerous changes. Advancements in knowledge about the behaviour of materials have led to changes in the applicable NDT codes, standards and specifications. In addition, over the last ten years, as a result of extensive research and development activities worldwide, new NDT techniques and equipment have been developed which are accepted by engineering community. To accommodate the latest developments, modifications are required to training materials. The present publication is an updated version of IAEA-TECDOC-628. The modifications were made during an Advisory Group Meeting, held in Vienna from 25-29 June 2001. The content of the first edition of IAEA-TECDOC-628 has been revised based on the experience of the experts, as well as comments of the end-user industries. The time allotment for different topics has been changed without changing the total duration. The details of the topics on each subject have been expanded to include the latest developments in the individual fields. The incorporated changes will help end-the user industries to update their NDT qualification and certification schemes, and course material

  19. Development of non-destructive testing (NDT) technology in Pakistan

    International Nuclear Information System (INIS)

    Khan, A.A.

    2005-01-01

    Non-Destructive Testing (NDT) techniques are being extensively used to improve and maintain the quality of manufactured goods as well as for proper maintenance of industrial plants and equipment. Typical industries that benefit most include Aerospace, Chemical, Heavy Mechanical Fabrication, Conventional and Nuclear Power Generation, Automobiles, Oil and Gas, Shipbuilding, Foundries, and Armaments, etc. As the name implies, with these techniques an industrial product is inspected mostly for defects in its structure without destroying it. Among the most widely used NDT techniques for the detection of internal defects are Radiographic and Ultrasonic Testing. For surface and just below the surface defects Magnetic Particle Testing, Penetrant Testing and Eddy Current Testing are commonly used. In addition to these, there are some NDT methods which have specific applications. These include Acoustic Emission, Thermal and Infrared Testing, Microwave Testing, Computer Tomography, Strain Gauging, Leak Testing and Holography, etc. This paper describes various phases through which the development of NDT technology passed and its present state of the art. It started with the undertaking of a nuclear technology programme and has matured along with it. As it stands we are fully competent to undertake various essential activities related to this technology, namely, (I) raining and certification of NDT personnel at various levels. (II) revision of NDT services to various industrial sectors including nuclear power during manufacture, fabrication, pre-service inspection (PSI) and in-service inspection (ISI). (author)

  20. Digital transfer of non-destructive testing images

    International Nuclear Information System (INIS)

    Nelson, S.

    1996-01-01

    This paper intends to address a possible avenue to assist the Non-Destructive Testing Industry in managing and transferring results to their clients in a more efficient way. Data is sent around the globe in various forms to a multitude of destinations. The problem has been twofold in any industry: how to get the data into a communication network and, how to manage and utilize this data. There are many types of scanners which can digitize the graph which can then be displayed on a computer screen via a software programme. The one presented in this paper has been jointly developed by a Melbourne company, Compu Medics and AGFA Australia. This system can also capture a video signal from Ultrasound Units and display on the screen. The author also explore what can be done with this data. Possibilities are endless and include: sending it via satellite or land line to a remote reader, saving or archiving for future reference and utilising the data base for education

  1. Qualification and authorization of staff carrying out non-destructive testing in Electricite de France

    International Nuclear Information System (INIS)

    Sermadiras, P.; Lhermitte, R.; Boulet, J.

    1985-01-01

    The surveillance carried out by the Group des laboratoires of the Service de la Production thermique on components submitted to Quality Assurance in nuclear power plants of all types requires the use for non-destructive testing of staff who have been given authorization for their particular services. These authorizations are for activities specific to Electricite de France. In the first part, the authors describe the staff of the Groupe des Laboratoires and show how the different levels of authorization (4 levels) are given, taking into account staff qualifications. In the second part, the procedures for qualification and authorization of the staff of outside companies working with and on behalf of the Groupe des Laboratoires are described

  2. Non destructive testing and neutron radiography in 1994; Les controles non destructifs et la neutronographie en 1994

    Energy Technology Data Exchange (ETDEWEB)

    Bayon, G.

    1994-12-31

    Neutron radiography has been considered for a long time as a promising technique; however it plays a minor part in the world of non destructive testing today, due to the lack of suitable neutron sources and lack of new industrial applications. This paper reviews the present status of neutron sources, neutron radiography activities, especially in France (such as the neutron-capture-issued secondary radiation spectrometry), in nuclear, aerospace, aeronautical and metallurgical sectors, and the last applications of neutron dynamic imaging. 9 refs.

  3. Geophysical Methods for Non-Destructive Testing in Civil Engineering

    Science.gov (United States)

    Niederleithinger, E.

    2013-12-01

    Many non-destructive testing (NDT) methods for civil engineering (e. g. ultrasonics, radar) are similar to geophysical techniques. They just differ in scale, material under investigation and vocabulary used. In spite of the fact that the same principles of physics and mathematics apply to both fields, exchange has been limited in the past. But since a few years more and more geophysical knowledge is used in civil engineering. One of the focal points in research is to improve ultrasonic testing of concrete to be able to image the inside even of large, complex structures and to detect any deterioration as early as possible. One of the main issues is the heterogeneity of concrete, including aggregates, reinforcement, cracks and many other features. Our current research focuses on three points. One is the application of state of the art geophysical migration techniques as Reverse Time Migration (RTM) to image vertical faces or the backside of voids and ducts in thick concrete structures, which isn't possible with conventional techniques used in NDT. Second, we have started to use seismic interferometric techniques to interpolate ultrasonic traces, which can't be measured directly for technical reasons. Third, we are using coda wave interferometry to detect concrete degradation due to load, fatigue, temperature or other influences as early as possible. Practical examples of the application of these techniques are given and potential future research directions will be discussed. It will be shown, how a subset of these techniques can be used for innovative monitoring systems for civil infrastructure. Imaging the interior of a concrete body by ultrasonics and reverse time migration(simulated data).

  4. Laser photothermal non-destructive metrology of cracks in un-sintered powder metallurgy manufactured automotive transmission sprockets

    International Nuclear Information System (INIS)

    Tolev, J; Mandelis, A

    2010-01-01

    A non-contact and non-intrusive method of revealing crack presence in un-sintered (green) automotive transmission parts (sprockets), manufactured by means of a powder metallurgy technology based on analysis of photo-thermal radiometric (PTR) signals and their statistical analysis was developed. The inspection methodology relies on the interaction of a modulated laser generated thermal wave with the potential crack and the resulting change in amplitude and phase of the detected signal [1-5]. The crack existence at points in high stress regions of a group of green (unsintered) sprockets was evaluated through frequency scans. The results were validated by independent destructive cross-sectioning of the sprockets following sintering and polishing. Examination of the sectioned sprockets under a microscope at the locations where signal changes was used for correlation with the PTR signals. Statistical analysis confirmed the capabilities of the method to detect the presence of hairline cracks (∼5 - 10 μm size) with excellent sensitivity (91%) and good accuracy (78%) and specificity (61%). This measurement technique and the associated statistical analysis can be used as a simple and reliable on-line inspection methodology of industrial powder metallurgy manufactured steel products for non-destructive quality and feedback control of the parts forming process.

  5. A new non-destructive method for estimating the remanent life of a turbine rotor steel by reversible magnetic permeability

    International Nuclear Information System (INIS)

    Ryu, K.S.; Nahm, S.H.; Park, J.S.; Yu, K.M.; Kim, Y.B.; Son, D.

    2002-01-01

    We present a new magnetic and non-destructive procedure to evaluate the remanent life of 1Cr-1Mo-0.25V steel using the value of reversible magnetic permeability. The method is based on the existence of reversible magnetic permeability in the differential magnetization around the coercive force. The measurement principle is based on the foundation harmonics voltage induced in a coil using a lock-in amplifier tuned to a frequency of the exciting one. Results obtained for reversible magnetic permeability and Vickers hardness on the aged sample show that the peak interval of reversible magnetic permeability (PIRMP) and Vickers hardness decreases as aging time increases. A softening curve is obtained from the correlation between Vickers hardness and the PIRMP. This curve can be used as a non-destructive method to evaluate the remanent life of 1Cr-1Mo-0.25V steel

  6. Status report on the destructive and non-destructive examinations of U-bends removed from Trojan steam generator D

    International Nuclear Information System (INIS)

    Aspden, R.G.

    1981-01-01

    The last status report on the non-destructive examination of U-bends removed from Trojan steam generator D was dated July 7, 1980. As part of this activity, the measurement of wall thicknesses on selected U-bends was planned using an ultrasonic gage. These readings were not made because reproducible results could not be obtained using water as the coupling fluid which was necessary to avoid contamination. Three tubes from the same heat were selected for destructive examination at Westinghouse: one leaking U-bend (R1-C6) and two tubes with no indications (R1-C10 and R1-C22). Results of the examination procedure are presented. The non-destructive examination results from the July 7, 1980 report for 29 U-bends are included

  7. Integrated automatic non-destructive testing in industrial production and in the operation of technical plant

    International Nuclear Information System (INIS)

    Hoeller, P.

    1989-01-01

    The article deals with non-destructive testing (NDT) in automated manufacture and in the automated operation of industrial plant. In both areas of application, the tests are coupled to the process (real time operation) and the results are used for the control of manufacture or of the course of the process. The control process can be coupled to the process in open loop or closed loop. The subject is explained by the following examples: 1) Automated testing of sheets in a steelworks. 2) Automatic NDT on machine parts in tempering and machining by the 3MA system (3MA: micro-magnetic, multi-parameter, micro-structure and stress analysis). 3) Automated ultrasonic testing in manufacture and in the operation of plants with the ALOK data collection and processing system (ALOK: amplitude, running time, location curves). 4) Automated wheel running surface test on Intercity experimental train, and 5) automated level measurement on BWR pressure vessels. (orig./MM) [de

  8. Fracture-mechanical results of non-destructive testing - function, goals, methods

    International Nuclear Information System (INIS)

    Herter, K.H.; Kockelmann, H.; Schuler, X.; Waidele, H.

    2004-01-01

    Non-destructive testing provides data for fracture-mechanical analyses, e.g. defect size and orientation. On the other hand, fracture-mechanical analyses may help to define criteria for non-destructive testing, e.g. sensitivity, inspection intervals and inspection sites. The criteria applied differ as a function of the safety relevance of a component. (orig.) [de

  9. Thermal shock resistance of ceramic fibre composites characterized by non-destructive methods

    Directory of Open Access Journals (Sweden)

    M. Dimitrijević

    2008-12-01

    Full Text Available Alumina based ceramic fibres and alumina based ceramic were used to produce composite material. Behaviour of composite ceramics after thermal shock treatments was investigated. Thermal shock of the samples was evaluated using water quench test. Surface deterioration level of samples was monitored by image analysis before and after a number of quenching cycles. Ultrasonic measurements were done on samples after quench tests. Dynamic Young modulus of elasticity and strength degradation were calculated using measured values of ultrasonic velocities. Strengths deterioration was calculated using the non-destructive measurements and correlated to degradation of surface area and number of quenches. The addition of small amount of ceramic fibres improves the strengths and diminishes the loss of mechanical properties of samples during thermal shock experiments.

  10. Non-destructive thermo-mechanical behavior assessment of glass-ceramics for dental applications

    Science.gov (United States)

    Kordatos, E. Z.; Abdulkadhim, Z.; Feteira, A. M.

    2017-05-01

    Every year millions of people seek dental treatment to either repair damaged, unaesthetic and dysfunctional teeth or replace missing natural teeth. Several dental materials have been developed to meet the stringent requirements in terms of mechanical properties, aesthetics and chemical durability in the oral environment. Glass-ceramics exhibit a suitable combination of these properties for dental restorations. This research is focused on the assessment of the thermomechanical behavior of bio-ceramics and particularly lithium aluminosilicate glass-ceramics (LAS glass-ceramics). Specifically, methodologies based on Infrared Thermography (IRT) have been applied in order the structure - property relationship to be evaluated. Non-crystallized, partially crystallized and fully crystallized glass-ceramic samples have been non-destructively assessed in order their thermo-mechanical behavior to be associated with their micro-structural features.

  11. Assuring the reliability of structural components - experimental data and non-destructive examination requirements

    International Nuclear Information System (INIS)

    Lucia, A.C.

    1984-01-01

    The probability of failure of a structural component can be estimated by either statistical methods or a probabilistic structural reliability approach (where the failure is seen as a level crossing of a damage stochastic process which develops in space and in time). The probabilistic approach has the advantage that it makes available not only an absolute value of the failure probability but also a lot of additional information. The disadvantage of the probabilistic approach is its complexity. It is discussed for the following situations: reliability of a structural component, material properties, data for fatigue crack growth evaluation, a bench mark exercise on reactor pressure vessel failure probability computation, and non-destructive examination for assuring a given level of structural reliability. (U.K.)

  12. Non-destructive linear model for leaf area estimation in Vernonia ferruginea Less

    Directory of Open Access Journals (Sweden)

    MC. Souza

    Full Text Available Leaf area estimation is an important biometrical trait for evaluating leaf development and plant growth in field and pot experiments. We developed a non-destructive model to estimate the leaf area (LA of Vernonia ferruginea using the length (L and width (W leaf dimensions. Different combinations of linear equations were obtained from L, L2, W, W2, LW and L2W2. The linear regressions using the product of LW dimensions were more efficient to estimate the LA of V. ferruginea than models based on a single dimension (L, W, L2 or W2. Therefore, the linear regression “LA=0.463+0.676WL” provided the most accurate estimate of V. ferruginea leaf area. Validation of the selected model showed that the correlation between real measured leaf area and estimated leaf area was very high.

  13. NON-DESTRUCTIVE IN SITU SOIL CARBON ANALYSIS: PRINCIPLE AND RESULTS

    International Nuclear Information System (INIS)

    WIELOPOLSKI, L.; MITRA, S.; HENDREY, G.; ROGERS, H.; TORBERT, A.; PRIOR, S.

    2003-01-01

    Global warming is promoted by anthropogenic CO 2 emissions into the atmosphere, while at the same time it is partially mitigated by carbon sequestration by terrestrial ecosystems. However, improvement in the understanding and monitoring of below ground carbon processes is essential for evaluating strategies for carbon sequestration including quantification of carbon stores for credits. A system for non-destructive in situ carbon monitoring in soil, based on inelastic neutron scattering (INS), is described. The system can be operated in stationary or scanning mode and measures soil to depth of approximately 30 cm. There is a good agreement between results obtained from INS and standard chemical analysis of soil cores collected from the same study site

  14. Inspection with non destructive assay techniques of the aluminium coating of the TRIGA Mark III reactor vat

    International Nuclear Information System (INIS)

    Reyes A, A.I.; Gonzalez M, A.; Castaneda J, G.; Rivera M, H.; Sandoval G, I.

    2001-01-01

    In June 2000, the Reactor Department assigned to the Scientific Research Direction of the National Institute of Nuclear Research requested to the Non-destructive Assays Laboratory (LEND), assigned to the Materials Science Management, the inspection and measurement of thickness of the aluminium coating (liner) of the TRIGA Mark III reactor vat with non-destructive assay techniques, due to that the aluminium coating is exposed mainly to undergo slimming on its back side due to corrosion phenomena. Activity that was able to be carried out from april until august 2001. It is worth pointing out that this type of inspection with these techniques was realized by first time. The non-destructive assays (NDA) are techniques which use indirect physical methods for inspecting the sanitation of components in process or in service, for detect lack of continuity or defects which affect their quality or usefulness. The application of those do not alter the physical, chemical, mechanical or dimensional properties of the part subject of inspection. The results of the application of the ultrasound inspection techniques, industrial radiography and penetrating liquids are presented. (Author)

  15. A comparison between destructive and non-destructive techniques in determining coating thickness

    Science.gov (United States)

    Haider, F. I.; Suryanto; Ani, M. H.; Mahmood, M. H.

    2018-01-01

    Measuring coating thickness is an important part in research works related to coating applications. In general, techniques for measuring coating thickness may be divided into destructive and non-destructive methods which are commonly used depending on the applications. The objective of this study is to compare two methods measuring the coating thickness of electroplating copper coating on the austenitic stainless-steel substrate. The electroplating was carried out in a solution containing 200 g/L CuSO4, 100 g/L H2SO4 at room temperature and current of 40mA/cm2 during 20, 40, 60, 80 and 100 mins as coating periods. And the coating thickness was measured by two methods, cross sectional analysis as a destructive technique and weight gain as a non-destructive technique. The results show that at 20 mins coating time interval, the thickness measured by cross sectional method was 16.67 μm and by weight gain method was 17.37 μm, with difference of 0.7 μm and percentage error of 4.11%. This error increased to 5.27% at 100mins time interval, where the values of the thickness measured by cross sectional and weight gain were 86.33 μm and 81.9 μm respectively, and the difference was 4.43 μm. Moreover, though the weight gain method is fast and gives the indication for the termination of a coating process, information regarding the uniformity, porosity and the presence of cracks cannot be obtained. On the other hand, determining the coating thickness using destructive method will damage the sample.

  16. Development and improvement of synthetic imaging methods for non-destructive ultrasonic testing of complex industrial components

    International Nuclear Information System (INIS)

    Bannouf, S.

    2013-01-01

    The goal of this thesis was, initially, to evaluate phased array methods for ultrasonic Non Destructive Testing (NDT) in order to propose optimizations, or to develop new alternative methods. In particular, this works deals with the detection of defects in complex geometries and/or materials parts. The TFM (Total Focusing Method) algorithm provides high resolution images and several representations of a same defect thanks to different reconstruction modes. These properties have been exploited judiciously in order to propose an adaptive imaging method in immersion configuration. We showed that TFM imaging can be used to characterize more precisely the defects. However, this method presents two major drawbacks: the large amount of data to be processed and a low signal-to-noise ratio (SNR), especially in noisy materials. We developed solutions to these two problems. To overcome the limitation caused by the large number of signals to be processed, we propose an algorithm that defines the sparse array to activate. As for the low SNR, it can be now improved by use of virtual sources and a new filtering method based on the DORT method (Decomposition of the Time Reversal Operator). (author) [fr

  17. Impact to non-destructive testing (NDT) companies of PNRI/PSNT trained NDT personnel

    International Nuclear Information System (INIS)

    De Jesus, Teresita G.

    2002-12-01

    This research discusses the impact to non-destructive testing (NDT) companies of PNRI/PSNT trained NDT personnel to the individual and to the organization that the individual belongs in the midst of competitive, demanding and fast-paced workplace in the NDT industry. Related literature and studies were carefully chosen and reviewed to validate the consistencies of the research design and data gathering relationship to the present undertaking to previous studies were also discussed and analyzed. The research design used were the descriptive-normative survey method together with a questionnaire consisting of six (6) parts. The first part includes queries on personal/demographic profiles of respondents. The second part contains queries on the level of expectation of the respondents of the job-related variables. The third part contains queries on the levels of adequacy of the organization-related variables. The fourth part consists of questions on the impact of the PNRI/PSNT trained NDT personnel before and after the training. It is divided into two sections, first was for the organization and second was for the individual development. The fifth part was on the analysis of the personal-related factors that influence the impact of the PNRI/PSNT trained NDT personnel. The last part was to find out the significant differences on the impact of the training as to methods. A five-point scale was used to quantify the degree of respondents' responses to queries in the questionnaires. In addition, the following statistical formula were used for treatment of gathered data were frequency percentage, ranking, wilcoxon signed ranks test and spearman rho. The null hypotheses that were presented for acceptance or rejection were also tested. Presentation of findings, analysis and interpretations were presented based on the data gathered and the computations. Recommendations were discussed based on the findings. It is recommended that training of NDT personnel in the different NDT

  18. Non-destructive ripeness sensing by using proton NMR [Nuclear Magnetic Resonance

    International Nuclear Information System (INIS)

    Cho, Seong In; Krutz, G.W.; Stroshine, R.L.

    1990-01-01

    More than 80 kinds of fruits and vegetables are available in the United States. But only about 6 of them have their quality standards (Dull, 1986). In the 1990 Fresh Trends survey (Zind, 1990), consumers were asked to rate 16 characteristics important to their decision to purchase fresh produce. The four top ranking factors were ripeness/freshness, taste/flavor, appearance/condition and nutritional value. Of these surveyed, 96% rated ripeness/freshness as extremely important or very important. Therefore, the development of reliable grading or sorting techniques for fresh commodities is essential. Determination of fruit quality often involves cutting and tasting. Non-destructive quality control in fruit and vegetables is a goal of growers and distributors, as well as the food processing industry. Many nondestructive techniques have been evaluated including soft x-ray, optical transmission, near infrared radiation, and machine vision. However, there are few reports of successful non-destructive measurement of sugar content directly in fruit. Higher quality fruit could be harvested and available to consumers if a nondestructive sensor that detects ripeness level directly by measuring sugar content were available. Using proton Nuclear Magnetic Resonance (NMR) principle is the possibility. A nondestructive ripeness (or sweetness) sensor for fruit quality control can be developed with the proton NMR principle (Cho, 1989). Several feasibility studies were necessary for the ripeness sensor development. Main objectives in this paper was to investigate the feasibilities (1) to detect ripeness (or sweetness level) of raw fruit tissue with an high resolution proton NMR spectroscopy (200 MHz) and (2) to measure sugar content of intact fruit with a low resolution proton NMR spectroscopy (10 MHz). 7 refs., 4 figs

  19. Non-destructive Ripeness Sensing by Using Proton NMR [Nuclear Magnetic Resonance

    Science.gov (United States)

    Cho, Seong In; Krutz, G. W.; Stroshine, R. L.; Bellon, V.

    1990-01-01

    More than 80 kinds of fruits and vegetables are available in the United States. But only about 6 of them have their quality standards (Dull, 1986). In the 1990 Fresh Trends survey (Zind, 1990), consumers were asked to rate 16 characteristics important to their decision to purchase fresh produce. The four top ranking factors were ripeness/freshness, taste/flavor, appearance/condition and nutritional value. Of these surveyed, 96% rated ripeness/freshness as extremely important or very important. Therefore, the development of reliable grading or sorting techniques for fresh commodities is essential. Determination of fruit quality often involves cutting and tasting. Non-destructive quality control in fruit and vegetables is a goal of growers and distributors, as well as the food processing industry. Many nondestructive techniques have been evaluated including soft x-ray, optical transmission, near infrared radiation, and machine vision. However, there are few reports of successful non-destructive measurement of sugar content directly in fruit. Higher quality fruit could be harvested and available to consumers if a nondestructive sensor that detects ripeness level directly by measuring sugar content were available. Using proton Nuclear Magnetic Resonance (NMR) principle is the possibility. A nondestructive ripeness (or sweetness) sensor for fruit quality control can be developed with the proton NMR principle (Cho, 1989). Several feasibility studies were necessary for the ripeness sensor development. Main objectives in this paper was to investigate the feasibilities (1) to detect ripeness (or sweetness level) of raw fruit tissue with an high resolution proton NMR spectroscopy (200 MHz) and (2) to measure sugar content of intact fruit with a low resolution proton NMR spectroscopy (10 MHz).

  20. Non-Destructive Testing for Building Diagnostics and Monitoring: Experience Achieved with Case Studies

    Directory of Open Access Journals (Sweden)

    Tavukçuoğlu Ayşe

    2018-01-01

    Full Text Available Building inspection on site, in other words in-situ examinations of buildings is a troublesome work that necessitates the use of non-destructive investigation (NDT techniques. One of the main concerns of non-destructive testing studies is to improve in-situ use of NDT techniques for diagnostic and monitoring studies. The quantitative infrared thermography (QIRT and ultrasonic pulse velocity (UPV measurements have distinct importance in that regard. The joint use of QIRT and ultrasonic testing allows in-situ evaluation and monitoring of historical structures and contemporary ones in relation to moisture, thermal, materials and structural failures while the buildings themselves remain intact. For instances, those methods are useful for detection of visible and invisible cracks, thermal bridges and damp zones in building materials, components and functional systems as well as for soundness assessment of materials and thermal performance assessment of building components. In addition, those methods are promising for moisture content analyses in materials and monitoring the success of conservation treatments or interventions in structures. The in-situ NDT studies for diagnostic purposes should start with the mapping of decay forms and scanning of building surfaces with infrared images. Quantitative analyses are shaped for data acquisition on site and at laboratory from representative sound and problem areas in structures or laboratory samples. Laboratory analyses are needed to support in-situ examinations and to establish the reference data for better interpretation of in situ data. Advances in laboratory tests using IRT and ultrasonic testing are guiding for in-situ materials investigations based on measurable parameters. The knowledge and experience on QIRT and ultrasonic testing are promising for the innovative studies on today’s materials technologies, building science and conservation/maintenance practices. Such studies demand a multi

  1. Non-Destructive Detection and Separation of Radiation Damaged Cells in Miniaturized, Inexpensive Device, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — There is a clear and well-identified need for rapid, efficient, non-destructive detection and isolation of radiation damaged cells. Available commercial technologies...

  2. Rapid and non-destructive discrimination of tea varieties by near ...

    African Journals Online (AJOL)

    Rapid and non-destructive discrimination of tea varieties by near infrared diffuse reflection spectroscopy coupled with classification and regression trees. SM Tan, RM Luo, YP Zhou, H Gong, Z Tan ...

  3. Microwave Detection of Laser Ultrasonic for Non-Destructive Testing, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — In this proposal, we describe a program to develop a high-performance, cost-effective and robust microwave receiver prototype for multi-purpose Non-Destructive...

  4. Simulated Performances of a Very High Energy Tomograph for Non-Destructive Characterization of large objects

    Science.gov (United States)

    Kistler, Marc; Estre, Nicolas; Merle, Elsa

    2018-01-01

    As part of its R&D activities on high-energy X-ray imaging for non-destructive characterization, the Nuclear Measurement Laboratory has started an upgrade of its imaging system currently implemented at the CEA-Cadarache center. The goals are to achieve a sub-millimeter spatial resolution and the ability to perform tomographies on very large objects (more than 100-cm standard concrete or 40-cm steel). This paper presentsresults on the detection part of the imaging system. The upgrade of the detection part needs a thorough study of the performance of two detectors: a series of CdTe semiconductor sensors and two arrays of segmented CdWO4 scintillators with different pixel sizes. This study consists in a Quantum Accounting Diagram (QAD) analysis coupled with Monte-Carlo simulations. The scintillator arrays are able to detect millimeter details through 140 cm of concrete, but are limited to 120 cm for smaller ones. CdTe sensors have lower but more stable performance, with a 0.5 mm resolution for 90 cm of concrete. The choice of the detector then depends on the preferred characteristic: the spatial resolution or the use on large volumes. The combination of the features of the source and the studies on the detectors gives the expected performance of the whole equipment, in terms of signal-over-noise ratio (SNR), spatial resolution and acquisition time.

  5. On the systems of automatic non-destructive control of NPP metallic structures

    International Nuclear Information System (INIS)

    Grebennik, V.S.; Lantukh, V.M.

    1980-01-01

    The main stages of developing automatic systems of non- destructive control (NC) of NPP metallic structures are pointed out. The main requirements for automatic NC systems are formulated. Recommendations on the use of the developed experimental automatic facilities for control of certain NPP components are given. It is noted that the present facilities may be used in the future in development of modular sets of non-destructive control systems [ru

  6. Application of ICT in the non-destructive inspection of explosive device

    International Nuclear Information System (INIS)

    Wang Zhe; Li Tiantuo; Liu Zhiqiang; Pei Zhihua; Wang Zhiping

    2003-01-01

    The inspection of explosive device is an important task in the store of the weapons. The technique of non-destructive examination with radial, especially the ICT, is an effective method. The paper mainly introduces the design and the theories on the inspection system and software system of the application of industrial ICT in the non-destructive examination of explosive device, and gives a reference to the work in such fields

  7. Optical generation,detection and non-destructive testing applications of terahertz waves

    Institute of Scientific and Technical Information of China (English)

    ZHANG; Weili; LIANG; Dachuan; TIAN; Zhen; HAN; Jiaguang; GU; Jianqiang; HE; Mingxia; OUYANG; Chunmei

    2016-01-01

    Optoelectronic terahertz generation and detection play a key role in the applications of non-destructive testing,which involves different areas such as physics,biological,material science,imaging,explosions detection,astronomy applications,semiconductor technology and superconductiong electronics. In this article,we present a reviewof the principle and performance of typical terahertz sources,detectors and non-destructive testing applications. On this basis,the newdevelopment and trends of terahertz radiation detectors are also discussed.

  8. Non-Destructive Measurement of Residual Strain in Connecting Rods Using Neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, Tomohiro [Honda R& D; Bunn, Jeffrey R. [ORNL; Fancher, Christopher M. [ORNL; Seid, Alan [Honda R& D; Motani, Ryuta [Honda R& D; Matsuda, Hideki [Honda R& D; Okayama, Tatsuya [Honda R& D

    2018-04-01

    Increasing the strength of materials is effective in reducing weight and boosting structural part performance, but there are cases in where the residual strain generated during the process of manufacturing of high-strength materials results in a decline of durability. It is therefore important to understand how the residual strain in a manufactured component changes due to processing conditions. In the case of a connecting rod, because the strain load on the connecting rod rib sections is high, it is necessary to clearly understand the distribution of strain in the ribs. However, because residual strain is generally measured by using X-ray diffractometers or strain gauges, measurements are limited to the surface layer of the parts. Neutron beams, however, have a higher penetration depth than X-rays, allowing for strain measurement in the bulk material. The research discussed within this paper consists of non-destructive residual strain measurements in the interior of connecting rods using the 2nd Generation Neutron Residual Stress Mapping Facility (NRSF2) at Oak Ridge National Laboratory, measuring the Fe (211) diffraction peak position of the ferrite phase. The interior strain distribution of connecting rod, which prepared under different manufacturing processes, was revealed. By the visualization of interior strains, clear understandings of differences in various processing conditions were obtained. In addition, it is known that the peak width, which is also obtained during measurement, is suggestive of the size of crystallites in the structure; however the peak width can additionally be caused by microstresses and material dislocations.

  9. Characterization of Old Nuclear Waste Packages Coupling Photon Activation Analysis and Complementary Non-Destructive Techniques

    International Nuclear Information System (INIS)

    Carrel, Frederick; Coulon, Romain; Laine, Frederic; Normand, Stephane; Sari, Adrien; Charbonnier, Bruno; Salmon, Corine

    2013-06-01

    Radiological characterization of nuclear waste packages is an industrial issue in order to select the best mode of storage. The characterization becomes crucial particularly for waste packages produced at the beginning of the French nuclear industry. For the latter, available information is often incomplete and some key parameters are sometimes missing (content of the package, alpha-activity, fissile mass...) In this case, the use of non-destructive methods, both passive and active, is an appropriate solution to characterize nuclear waste packages and to obtain all the information of interest. In this article, we present the results of a complete characterization carried out on the TE 1060 block, which is a nuclear waste package produced during the 1960's in Saclay. This characterization is part of the DEMSAC (Dismantling of Saclay's facilities) project (ICPE part). It has been carried out in the SAPHIR facility, located in Saclay and housing a linear electron accelerator. This work enables to show the great interest of active methods (photon activation analysis and high-energy imaging) as soon as passive techniques encounter severe limitations. (authors)

  10. Community survey on reference blocks and transducers for non-destructive ultrasonic testing

    International Nuclear Information System (INIS)

    Vinche, C.; Borloo, E.; Jehenson, P.

    1978-01-01

    In the frame of the European programmes 'Standards and Reference Substances' and 'Reference Materials and Methods' (BCR) the Commission of the European Communities, in conjunction with National experts launched in 1975 an inquiry on reference blocks and transducers for non-destructive ultrasonic testing. This inquiry which is complementary to a general survey made in 1971-1972 by the Commission on Reference Materials (Ref. EUR Report 1973. EUR 4886. d,f,i,n,e) was felt necessary and prepared by a specialists group from the Community Countries and the Joint Research Centre (JRC), Ispra Establishment (the list of these specialists is indicated on p. 2 of the questionnaire). The results of this survey, collated by the JRC Ispra Members have been discussed by the group of specialists and form the subject of this report. On bases of mailing lists submitted by national specialists, 215 organizations have been contacted; the fields of activity of these organizations are mainly: metallurgy, machine parts, technical assistance, aeronautics, power stations and research, 73 organizations have replied to the questionnaire. Most answers were obained from organizations dealing with metallurgy, machine parts manufacturers and technical consultants. The annexes supply a detailed analysis of the results given, on a national basis

  11. Recent advances in rapid and non-destructive assessment of meat quality using hyperspectral imaging

    Science.gov (United States)

    Tao, Feifei; Ngadi, Michael

    2016-05-01

    Meat is an important food item in human diet. Its production and consumption has greatly increased in the last decades with the development of economies and improvement of peoples' living standards. However, most of the traditional methods for evaluation of meat quality are time-consuming, laborious, inconsistent and destructive to samples, which make them not appropriate for a fast-paced production and processing environment. Development of innovative and non-destructive optical sensing techniques to facilitate simple, fast, and accurate evaluation of quality are attracting increasing attention in the food industry. Hyperspectral imaging is one of the promising techniques. It integrates the combined merits of imaging and spectroscopic techniques. This paper provides a comprehensive review on recent advances in evaluation of the important quality attributes of meat including color, marbling, tenderness, pH, water holding capacity, and also chemical composition attributes such as moisture content, protein content and fat content in pork, beef and lamb. In addition, the future potential applications and trends of hyperspectral imaging are also discussed in this paper.

  12. Avaliação da proporção de fases em juntas soldadas de tubulações de aço inoxidável duplex mediante aplicação de ensaios não destrutivos Evaluation of phases proportions in welded joints of duplex stainless steel by non-destructive testing

    Directory of Open Access Journals (Sweden)

    Guttemberg Chagas de Souza

    2013-06-01

    Full Text Available Os aços inoxidáveis Duplex (AID aliam uma excelente resistência à corrosão com elevada resistência mecânica devido à fina microestrutura bifásica composta por quantidades similares de ferrita (δ e austenita (γ. Portanto, estas ligas são utilizados em tubulações e equipamentos industriais onde se requer elevada relação resistência/peso, especialmente em empreendimentos de construção e montagem off-shore. Entretanto, as condições operacionais, na soldagem de campo, podem promover um significativo desbalanço microestrutural destas fases, resultando em decréscimo das propriedades mencionadas. A inspeção com o ferritoscópio é uma avaliação normalmente utilizada nestas atividades. Durante a avaliação com esta técnica pode ocorrer a rejeição da junta soldada quando o metal de solda se encontra com valores de ferrita fora das faixas estabelecidas pelas especificações de projeto. Assim, torna-se importante a análise destas juntas, com outras técnicas complementares, tal como a utilização das réplicas metalográficas. Este fato motivou a avaliação da proporção de fases em spools de AID de espessuras relativamente finas, soldados no campo, comparando-se as técnicas não destrutivas descritas. Os resultados denotam valores semelhantes, contudo o resultado pode ser influenciado pela forma e condições superficiais da junta soldada.Duplex stainless steels are high strength and corrosion resistant alloys, whose properties are devoted to the fine microstructure composed by similar amounts of ferrite and austenite and also to the high concentrations of Cr, Mo and N in solid solution. Not for coincidence, duplex steels are extensively used in chemical and petrochemical industries. However, welding operations conditions can promote the unbalance of the ferrite/austenite proportions mainly in the welding metal, with decrease of the properties mentioned. For this reason, non destructive measurements of ferrite content

  13. Non destructive characterization of cracks in concrete by ultrasonic auscultation of civil engineering structures

    International Nuclear Information System (INIS)

    Quiviger, A.; Payan, C.; Chaix, J.F.; Zardan, J.P.; Garnier, V.; Salin, J.

    2011-01-01

    Concrete Non Destructive Characterisation is one of the important issues to evaluate the life duration in the present and future civil engineering structures. The damaging modes of the structures often imply the phases of the appearance and after growth of the cracks. We have to detect, identify and characterize them. The characterization result must lead to a diagnosis of the criticality of a crack regarding to the integrity of the structure and its ability to fulfill its function. The Non Destructive Evaluation techniques are numerous but the ultrasonic ones are able to give an answer to both the characterization and the follow-up of the defect on site. Yet if this method is potentially relevant to detect and identify the cracks in the concrete, we have today a certain amount of locks to remove in order to offer robust and reproducible industrial solutions. These locks range from research points like the description of the real propagation of linear or non linear ultrasonic waves in a heterogeneous material, to more industrial concepts such as the development of devices designed to be applied in the concrete control. For this purpose, we present our latest works on this topic. We develop an overview of the problem: first, to extract the most important theoretical solutions to analyse an unstopping and closed crack in concrete with an only one face access. Then we suggest a methodology to apply one of these solutions on site. A first step of this work after having chosen a solution is to check the ability of the technique to detect a crack, and its sensitivity to the length, depth and opening of the crack. We have developed an experimental plan based on theoretical concept to compare the linear and non linear survey on a set of specimens composed of concrete beams cracked to different depths. We describe the devices and give the latest results. The non linear technique is able to extract information on the size of the cracks. It is an important step to progress in

  14. Non destructive characterization of cracks in concrete by ultrasonic auscultation of civil engineering structures

    Energy Technology Data Exchange (ETDEWEB)

    Quiviger, A.; Payan, C.; Chaix, J.F.; Zardan, J.P.; Garnier, V. [EDF, LCND (France); Salin, J. [EDF Paris (France)

    2011-07-01

    Concrete Non Destructive Characterisation is one of the important issues to evaluate the life duration in the present and future civil engineering structures. The damaging modes of the structures often imply the phases of the appearance and after growth of the cracks. We have to detect, identify and characterize them. The characterization result must lead to a diagnosis of the criticality of a crack regarding to the integrity of the structure and its ability to fulfill its function. The Non Destructive Evaluation techniques are numerous but the ultrasonic ones are able to give an answer to both the characterization and the follow-up of the defect on site. Yet if this method is potentially relevant to detect and identify the cracks in the concrete, we have today a certain amount of locks to remove in order to offer robust and reproducible industrial solutions. These locks range from research points like the description of the real propagation of linear or non linear ultrasonic waves in a heterogeneous material, to more industrial concepts such as the development of devices designed to be applied in the concrete control. For this purpose, we present our latest works on this topic. We develop an overview of the problem: first, to extract the most important theoretical solutions to analyse an unstopping and closed crack in concrete with an only one face access. Then we suggest a methodology to apply one of these solutions on site. A first step of this work after having chosen a solution is to check the ability of the technique to detect a crack, and its sensitivity to the length, depth and opening of the crack. We have developed an experimental plan based on theoretical concept to compare the linear and non linear survey on a set of specimens composed of concrete beams cracked to different depths. We describe the devices and give the latest results. The non linear technique is able to extract information on the size of the cracks. It is an important step to progress in

  15. Training Guidelines in Non-Destructive Testing Techniques: Manual for Visual Testing at Level 2

    International Nuclear Information System (INIS)

    2013-01-01

    The International Atomic Energy Agency (IAEA) has been active in the promotion of non-destructive testing (NDT) technology for many decades. The prime reason for this interest has been the need for stringent quality control standards for safe operation of nuclear as well as other industrial installations. The IAEA has successfully executed a number of projects, including technical cooperation projects (national and regional) and coordinated research projects, in which NDT was an important part. Through these projects, a large number of persons have been trained in numerous Member States, leading to the establishment of national certifying bodies responsible for training and certification of NDT personnel. Consequently a state of self-sufficiency in this area of technology has been achieved in many of these States. All along there has been a realization of the need to have well established training guidelines and related books, in order, first, to guide IAEA experts involved in this training programme and, second, to achieve some level of international uniformity and harmonization of training materials and consequent competence of NDT personnel. The syllabuses for training courses have been published in the form of TECDOC publications. The first was IAEA-TECDOC-407 (1987), which contained syllabuses for the five basic NDT methods: liquid penetrant testing, magnetic particle testing, eddy current testing, radiographic testing and ultrasonic testing. To accommodate advancements in NDT technology, later versions of this publication were issued in 1991, 2002 and 2008, with the current version being IAEA-TECDOC- 628/Rev.2 (2008), which includes additional and more advanced NDT methods. The next logical step was to compile textbooks and training manuals in accordance with these syllabuses. Manuals on liquid penetrant, magnetic particle, radiographic, ultrasonic and eddy current testing have already been published in the Training Course Series. These play a vital role in

  16. Non-destructive assessment of the Ancient 'Tholos Acharnon' Tomb building geometry

    Science.gov (United States)

    Santos-Assunçao, Sonia; Dimitriadis, Klisthenis; Konstantakis, Yiannis; Pérez-Gracia, Vega; Anagnostopoulou, Eirini; Solla, Mercedes; Lorenzo, Henrique

    2014-05-01

    Ancient Greek Monuments are considered glorious buildings that still remain on the modern times. Tombs were specifically built according to the architecture of respective epoch. Hence, the main function was to royal families in Greece and other countries. The lack of systematic preservation could promote the damage of the structure. Therefore, a correct maintenance can diminish the impact of the main causes of pathologies. Schist, limestone and sandstone have been the main geological building materials of the Greek Ancient tombs. In order to preserve several of these monumental tombs, in depth non-destructive evaluation by means of Ground-penetrating radar (GPR) is proposed in a scientific mission with partners from Greece and Spain surveying with the 1 GHz and 2.3 GHz antennas. High frequency antennas are able to identify small size cracks or voids. Grandjean et al. [1] used the 300 MHz and 900 MHz antennas, obtaining 2 cm and 5 cm of resolution. Later on, Faize et al. [2] employed a 2.3 GHz antenna to detect anomalies and create a pathological model. The structure of this Mycenaean Tomb (14th - 13th c. BC) is composed by a corridor which is supported by irregular stones and the inner is 8.74 m high and 8.35 m diameter. The surface of the wall is composed by diverse geological materials of irregular shapes that enhance the GPR acquisition difficulty: 1) Passing the GPR antenna in a waved surface may randomly change the directivity of the emission. 2) The roof of the tomb is described by a pseudo-conical form with a decreasing radio for higher levels, with a particular beehive. If the roof of the Tomb is defined by a decreasing radius, innovative processes must be carried out with GPR to non constant radius structures. With GPR, the objective is to define the wall thickness, voids and/or cracks detection as well as other structural heterogeneities. Therefore, the aim is to create a three dimensional model based in the interpolation of the circular profiles. Three

  17. Non-destructive measurements for characterisation of materials and datation of Corona Ferrea of Monza

    International Nuclear Information System (INIS)

    Milazzo, M.; Cicardi, C.; Mannoni, T.; Tuniz, C.

    1997-01-01

    Non-destructive analyses of Corona Ferrea of Monza, a late Roman or Longobard origin, were performed using energy dispersive-XRF portable instrumentation. To irradiate the internal surfaces of the six gold plates which make up the Crown we employed the radioactive isotope americium-241 as the x-radiation source, while to probe the other parts (approximately 200 separate points were studied) we used various types of x-ray tubes equipped with glass capillary to focus the x-rays on single small spots were used. It was not possible to use monochromatic exciting radiation when analysing the Monza Crown; furthermore, none of its surfaces proved to be flat. This meant that the secondary, concentration-dependent x-ray emission from copper could not be calculated, neither was it possible to calculate the influence of surface irregularities on x- ray intensity. We overcame these difficulties by a method that involved calculating the ratios: copper line intensity to gold line intensity (I Cu /I Au ) and silver line intensity to gold line intensity (I Ag / Au ). We then compared these ratios to the same ratios determined in standard samples of gold alloy whose compositions were accurately known and similar to that of the Crown. In this way the secondary excitation effect of copper was allowed for. The method depends upon the ratio of the intensities of two x-ray emission lines from a metal alloy being relatively insensitive to the geometry of irradiation

  18. Non-destructive X-ray examination of weft knitted wire structures

    Science.gov (United States)

    Obermann, M.; Ellouz, M.; Aumann, S.; Martens, Y.; Bartelt, P.; Klöcker, M.; Kordisch, T.; Ehrmann, A.; Weber, M. O.

    2016-07-01

    Conductive yarns or wires are often integrated in smart textiles to enable data or energy transmission. In woven fabrics, these conductive parts are fixed at defined positions and thus protected from external loads. Knitted fabrics, however, have relatively loose structures, resulting in higher impacts of possible mechanical forces on the individual yarns. Hence, metallic wires with smaller diameters in particular are prone to break when integrated in knitted fabrics. In a recent project, wires of various materials including copper, silver and nickel with diameters varying between 0.05 mm and 0.23 mm were knitted in combination with textile yarns. Hand flat knitting machines of appropriate gauges were used to produce different structures. On these samples, non-destructive examinations, using an industrial X-ray system Seifert x|cube (225 kV) equipped with a minifocus X-ray tube, were carried out, directly after knitting as well as after different mechanical treatments (tensile, burst, and washing tests). In this way, structural changes of the stitch geometry could be visualized before failure. In this paper, the loop geometries in the knitted fabrics are depicted depending on knitted structures, wire properties and the applied mechanical load. Consequently, it is shown which metallic wires and yarns are most suitable to be integrated into knitted smart textiles.

  19. Computerized tomography used in non-destructive testing of welded pipes

    Energy Technology Data Exchange (ETDEWEB)

    Iovea, M; Rizescu, C; Georgescu, G; Marinescu, A; Chitescu, P; Sava, T; Neagu, M; Avram, D [Institute of Research and Design for Electrical Engineering, ICPE - Electrostatica Splaiul Unirii 313, Sect. 3, R-74204 Bucharest (Romania)

    1997-12-31

    High quality standards in operation of National Power System is ensured by the use of high performance techniques and systems for Non-Destructive Testing (NDT). In recent years a number of new developments of the non-conventional technologies in the field of NDT have been achieved. In our laboratory there have been developed two computerized technologies using {gamma}-ray computed tomography and ultrasonic imaging methods. The standard techniques for imaging from projection data is computerized tomography. The industrial computerized tomography methods consist in the measurement of thin X - or {gamma}-ray beam attenuation when passing through some selected surface of the tested object, along several directions, so that by means of an adequate mathematical algorithm, a map of linear attenuation coefficients for the scanned surface is obtained. In fact, this map gives the density of materials occurring in the surface plane. Computerized tomography equipment, in various constructive versions, are intended for the following applications: (1) NDT in those fields requiring strict control of product quality, as for instance the nuclear energy, military industry, aeronautics, transportation fields, etc., (2) research in field of materials technology, machine engineering, metallurgy, welding, etc. This paper presents the applications of Computerized Tomography in NDT, by showing the results obtained on welded pipes, as well as the facilities offered by this method. In the final part, the paper presents the concept of a mobile tomography system for industrial pipes testing. (author). 2 figs., 7 refs.

  20. Computerized tomography used in non-destructive testing of welded pipes

    International Nuclear Information System (INIS)

    Iovea, M.; Rizescu, C.; Georgescu, G.; Marinescu, A.; Chitescu, P.; Sava, T.; Neagu, M.; Avram, D.

    1996-01-01

    High quality standards in operation of National Power System is ensured by the use of high performance techniques and systems for Non-Destructive Testing (NDT). In recent years a number of new developments of the non-conventional technologies in the field of NDT have been achieved. In our laboratory there have been developed two computerized technologies using γ-ray computed tomography and ultrasonic imaging methods. The standard techniques for imaging from projection data is computerized tomography. The industrial computerized tomography methods consist in the measurement of thin X - or γ-ray beam attenuation when passing through some selected surface of the tested object, along several directions, so that by means of an adequate mathematical algorithm, a map of linear attenuation coefficients for the scanned surface is obtained. In fact, this map gives the density of materials occurring in the surface plane. Computerized tomography equipment, in various constructive versions, are intended for the following applications: 1) NDT in those fields requiring strict control of product quality, as for instance the nuclear energy, military industry, aeronautics, transportation fields, etc., 2) research in field of materials technology, machine engineering, metallurgy, welding, etc. This paper presents the applications of Computerized Tomography in NDT, by showing the results obtained on welded pipes, as well as the facilities offered by this method. In the final part, the paper presents the concept of a mobile tomography system for industrial pipes testing. (author). 2 figs., 7 refs

  1. R and D non-destructive damage monitoring and diagnosing system for civil infrastructures

    International Nuclear Information System (INIS)

    Ren Weixin; Abu Bakar Mohamad Diah; Cheng Hao

    1998-01-01

    Since civil infrastructures serve as the underpinnings of our highly industrialized society, and much of them are now decaying, it is the time to consider how to maintain these widely spread infrastructures in order to prevent potential catastrophic events. Changes in use and the need to maintain an ageing system require improvements in instrumentation for sensing and recording, data acquisition for diagnosing the possible damage, and algorithm for identifying and monitoring the changes in structural characteristics. Researching and developing a real-time, in-serve health detection and monitoring system has drawn a worldwide attention recently for various types of structures. The paper conceives an integrated non-destructive damage monitoring and diagnosing system for civil infrastructures. The system is a high technology and high-commercialised industrial integrated product involved in research and development. The research activities of the system cover three core parts: structural modelling, structural system identification and damage criterion establishment. The development activities of the system include experimental measurements, data acquisition and processing, instrumentation set-up, computer visualisation, and software development. The state-of -the art theories and practices are systematically merged and integrated in the development of the system, and the system will be verified through the real world application for civil infrastructures. Our research results on the damage criterion based on the changes in structural dynamic properties are also reported in the paper. (Author)

  2. Development of non-destructive examination system for irradiated fuel rods

    International Nuclear Information System (INIS)

    Sumerling, R.; Goldsmith, L.A.; Cross, M.T.; McKee, F.

    1978-12-01

    The development of non-destructive examination (NDE) system for irradiated fuel rods is described. The system is used for testing rods within a concrete cave and consists of three parts: a fully-automated fuel rod-drive machine, designed for easy maintenance; a series of plug-in NDE modules which fit into the central space provided in the machine, plus optical/TV viewing devices and gamma-scan equipment lined up on the rod; and on electronic control equipment situated outside the concrete shielding. The equipment is at present routinely used for viewing, eddy-current testing, gamma-scanning and diameter measurement of rods. The system is flexible in that additional modules can be added later as they are developed, since there is room for three modules of standard size (about 10cm x 10 cm x 3cm) in the machine or one large module taking the full space. New developments include the use of dual frequency eddy-current testing, which allows much greater discrimination against unwanted signals, and measurement of oxide thickness using a high frequency eddy-current probe. (author)

  3. NON-DESTRUCTIVE RADIOCARBON DATING: NATURALLY MUMMIFIED INFANT BUNDLE FROM SW TEXAS

    Energy Technology Data Exchange (ETDEWEB)

    Steelman, K L; Rowe, M W; Turpin, S A; Guilderson, T P; Nightengale, L

    2004-09-07

    Plasma oxidation was used to obtain radiocarbon dates on six different materials from a naturally mummified baby bundle from the Lower Pecos River region of southwest Texas. This bundle was selected because it was thought to represent a single event and would illustrate the accuracy and precision of the plasma oxidation method. Five of the materials were clearly components of the original bundle with 13 dates combined to yield a weighted average of 2135 {+-} 11 B.P. Six dates from a wooden stick of Desert Ash averaged 939 {+-} 14 B.P., indicating that this artifact was not part of the original burial. Plasma oxidation is shown to be a virtually non-destructive alternative to combustion. Because only sub-milligram amounts of material are removed from an artifact over its exposed surface, no visible change in fragile materials has been observed, even under magnification. The method is best applied when natural organic contamination is unlikely and serious consideration of this issue is needed in all cases. If organic contamination is present, it will have to be removed before plasma oxidation to obtain accurate radiocarbon dates.

  4. Training Guidelines in Non-Destructive Testing Techniques: Leak Testing at Level 2

    International Nuclear Information System (INIS)

    2012-01-01

    The International Atomic Energy Agency (IAEA) has been active in the promotion of non-destructive testing (NDT) technology for many decades. The prime reason for this interest has been the need for stringent standards for quality assurance for safe operation of nuclear and other industrial installations. The IAEA successfully executed a number of programmes, including technical cooperation projects (national and regional) and coordinated research projects (CRPs), in which NDT was an important part. Through these programmes, a large number of personnel have been trained in Member States, leading to the establishment of national certifying bodies responsible for the training and certification of NDT personnel. Consequently, a state of self-sufficiency in this area of technology has been achieved in many Member States. All along there has been a realization of the need to have well established training guidelines, in order to orient the IAEA experts who were involved in training and certification programmes, and to achieve some level of international uniformity and harmonization of training materials and certification processes, and consequent competence of NDT personnel.

  5. An overview of non destructive inspection services in nuclear power plants

    International Nuclear Information System (INIS)

    Farley, S.

    2004-01-01

    Worldwide nuclear power plants are obliged by international and local authorities to perform periodical inspection and maintenance of safety relevant components. Non-Destructive Testing (NDT) techniques such as eddy current, ultrasonic, visual, dye penetrant and radiographic testing have been used and continually developed to inspect a wide range of components and materials. Inspecting such components invariably poses an interesting chal-lenge due to complex component geometries, radiation exposure and the material make-up of the component or its welds. As a leader in services to the nuclear industry, Westinghouse has an immense knowl-edge and experience in inspecting and repairing primary circuit components such as steam generators, reactor vessels, core internals, primary coolant pumps and loops, fuel elements and many other components in hazardous environments. To fulfil the requirements posed by authorities and inspection standards, remotely operated manipulators and vehicles have been designed to bring a diverse variety of probes and cameras to the object of inspection. Each inspection process is tested and qualified by the relevant qualification body. In some cases the results of an inspection may require further in depth analysis or even repair of part of the component. These added challenges have often been met by specifically designed and qualified processes such as for the repair of vessel head penetrations or the re-pair of vessel nozzle safe end welds. This presentation will give a general overview of a range of inspection capabilities and give a few examples in which repair was successfully performed. (author)

  6. Manufacturing of reliable actively cooled fusion components - a challenge for non-destructive inspections

    International Nuclear Information System (INIS)

    Reheis, N.; Zabernig, A.; Ploechl, L.

    1994-01-01

    Actively cooled in-vessel components like divertors or limiters require high quality and reliability to ensure safe operation during long term use. Such components are subjected to very severe thermal and mechanical cyclic loads and high power densities. Key requirements for materials in question are e.g. high melting point and thermal conductivity and low atomic mass number. Since no single material can simultaneously meet all of these requirements the selection of materials to be combined in composite components as well as of manufacturing and non-destructive inspection (NDI) methods is a particularly challenging task. Armour materials like graphite intended to face the plasma and help to maintain its desired properties, are bonded to metallic substrates like copper, molybdenum or stainless steel providing cooling and mechanical support. Several techniques such as brazing and active metal casting have been developed and successfully applied for joining materials with different thermophysical properties, pursuing the objective of sufficient heat dissipation from the hot, plasma facing surface to the coolant. NDI methods are an integral part of the manufacturing schedule of these components, starting in the design phase and ending in the final inspection. They apply all kinds of divertor types (monobloc and flat-tile concept). Particular focus is put on the feasibility of detecting small flaws and defects in complex interfaces and on the limits of these techniques. Special test pieces with defined defects acting as standards were inspected. Accompanying metallographic investigations were carried out to compare actual defects with results recorded during NDI

  7. Training methods in non-destructive examination with ultrasonic testing

    International Nuclear Information System (INIS)

    Walte, F.

    1986-01-01

    German concept for inspection of LWR, leak before break, basic safety; General inspection methods; Ultrasonic inspection - basic principle, generation of ultrasound, bulk and surface waves, piezo electric and electromagnetic transducers, energy balance, scattering and adsorption, divergence; Ultra techniques in compliance with KTA-rules - pulse-echo, tandem, throughtransmission; Valuation of ultrasonic indications; Pre- and in-service inspection; Practical part - ultrasonic equipment, ultrasonic piezo electric transducers, wall thickness measurement, crack depth measurement with potential drop technique. (orig.)

  8. Non-destructive test for VHTR fuel using 160kV X-ray system in Hotcell

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Jun; Yoo, Boung Ok; Choo, Yong sun; Baik Sang youl; Kim, Hee Moon; Ahn, Sang Bok [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    The research for VHTR which is one of the next generation reactor has been actively carried out. As a part of the research for VHTR, an irradiation examination for the VHTR fuel was performed to confirm an in-pile behavior in HANARO. The non-destructive test for the irradiated fuel is very important to understand the in-pile behavior of the fuel. Especially, the X-ray system is useful to observe the fuel shape without destruction. A dimensional change and defect of the fuel can be confirmed thorough the Xray system. Also, using the 3-D software and CT technology, the fuel shape can be intuitionally observed. The 450kV and 160kV X-ray system were installed and operated in IMEF hotcell. The 160kV X-ray system relatively using a low voltage is suitable to a small scale sample. And high resolution images can be obtained. In this study, the non-destructive test for the unirradiated and irradiated VHTR fuel were performed using the 160kV X-ray system. Through these test, the possibility for the X-ray inspection of irradiated fuel was confirmed. The non-destructive test for the unirradiated and irradiated VHTR fuel were performed using the 160kV X-ray system. The clear images of the irradiated coated particle were produced without the radiation damage during the Xray inspection. The X-ray images of the VHTR fuel will be utilized as the in-pile performance validation data.

  9. Non-destructive test for VHTR fuel using 160kV X-ray system in Hotcell

    International Nuclear Information System (INIS)

    Kim, Young Jun; Yoo, Boung Ok; Choo, Yong sun; Baik Sang youl; Kim, Hee Moon; Ahn, Sang Bok

    2016-01-01

    The research for VHTR which is one of the next generation reactor has been actively carried out. As a part of the research for VHTR, an irradiation examination for the VHTR fuel was performed to confirm an in-pile behavior in HANARO. The non-destructive test for the irradiated fuel is very important to understand the in-pile behavior of the fuel. Especially, the X-ray system is useful to observe the fuel shape without destruction. A dimensional change and defect of the fuel can be confirmed thorough the Xray system. Also, using the 3-D software and CT technology, the fuel shape can be intuitionally observed. The 450kV and 160kV X-ray system were installed and operated in IMEF hotcell. The 160kV X-ray system relatively using a low voltage is suitable to a small scale sample. And high resolution images can be obtained. In this study, the non-destructive test for the unirradiated and irradiated VHTR fuel were performed using the 160kV X-ray system. Through these test, the possibility for the X-ray inspection of irradiated fuel was confirmed. The non-destructive test for the unirradiated and irradiated VHTR fuel were performed using the 160kV X-ray system. The clear images of the irradiated coated particle were produced without the radiation damage during the Xray inspection. The X-ray images of the VHTR fuel will be utilized as the in-pile performance validation data.

  10. High-Energy X-ray imaging applied to non destructive characterization of large nuclear waste drums

    International Nuclear Information System (INIS)

    Estre, Nicolas; Eck, Daniel; Pettier, Jean-Luc; Payan, Emmanuel; Roure, Christophe; Simon, Eric

    2013-06-01

    As part of its R and D programs on non-destructive testing of nuclear waste drums, CEA is commissioning an irradiation cell named CINPHONIE, at Cadarache. This cell allows high-energy imaging (radiography and tomography) on large volumes (up to 5 m 3 ) and heavy weights (up to 5 tons). A demonstrator has been finalized, based on existing components. The X-ray source is a 9 MeV LINAC which produces Bremsstrahlung X-rays (up to 23 Gy/min at 1 meter in the beam axis). The mechanical bench is digitally controlled on three axes (translation, rotation, elevation) and can handle objects up to 2 t. This bench performs trajectories necessary for acquisition of projections (sinograms) according to different geometries: Translation-Rotation, Fan-Beam and Cone-Beam. Two detection systems both developed by CEA-Leti are available. The first one is a large GADOX scintillating screen (800*600 mm 2 ) coupled to a low-noise pixelated camera. The second one is a multi- CdTe semiconductor detector, offering measurements up to 5 decades of attenuation (equivalent to 25 cm of lead or 180 cm of standard concrete). At the end of the acquisition, a Filtered Back Projection-based algorithm is performed. Then, a density slice (fan-beam tomography) or a density volume (cone-beam tomography or helical tomography) is produced and used to examine the waste. Characterization of LINAC, associated detectors as well as the full acquisition chain, are presented. Experimental performances on phantoms and real drum are discussed and expected limits on defect detectability are evaluated by simulation. The final system, designed to handle objects up to 5 tons is then presented. (authors)

  11. Design of an integrated non-destructive plutonium assay facility

    International Nuclear Information System (INIS)

    Moore, C.B.

    1984-01-01

    The Department of Energy requires improved technology for nuclear materials accounting as an essential part of new plutonium processing facilities. New facilities are being constructed at the Savannah River Plant by the Du Pont Company, Operating Contractor, to recover plutonium from scrap and waste material generated at SRP and other DOE contract processing facilities. This paper covers design concepts and planning required to incorporate state-of-the-art plutonium assay instruments developed at several national laboratories into an integrated, at-line nuclear material accounting facility operating in the production area. 3 figures

  12. Research program plan. Non-destructive examination. Volume 4

    International Nuclear Information System (INIS)

    Muscara, J.

    1985-07-01

    Nondestructive examination/evaluation (NDE) of nuclear reactor components is required during fabrication, before service, and at regularly scheduled shutdowns for periodic inservice inspection (ISI). Any flaws produced during fabrication should be detected by the fabrication and preservice baseline examinations and components containing rejectable flaws should be repaired before the reactor enters service. The purpose of ISI is to ensure that any flaws which develop during service can be detected and evaluated and that unacceptable components are repaired or replaced to maintain safety, as well as to identify possible generic-type defects that may be present or developing in the remainder of the system or other similar systems so that timely corrective actions can be taken. The major thrusts of the research in ultrasonic testing for ISI are (1) to define the influence of inspection variables and procedures on inspection reliability and to determine the impact of inspection unreliability on system safety and (2) to study and evaluate improved techniques for reliable and accurate flaw detection and characterization. This research, therefore, has direct impact on evaluations of and improvements in reactor safety

  13. Computerized hydraulic scanning system for quantitative non destructive examination

    International Nuclear Information System (INIS)

    Gundtoft, H.E.

    1982-01-01

    A hydraulic scanning system with five degrees of freedom is described. It is primarily designed as a universal system for fast and accurate ultrasonic inspection of materials for their internal variation in properties. The whole system is controlled by a minicomputer which also is used for evaluating and presenting of the results of the inspection. (author)

  14. Application of microCT to the non-destructive testing of an additive manufactured titanium component

    Directory of Open Access Journals (Sweden)

    Anton du Plessis

    2015-11-01

    Full Text Available In this paper the application of X-ray microCT to the non-destructive testing of an additive manufactured titanium alloy component of complex geometry is demonstrated. Additive manufacturing of metal components is fast growing and shows great promise, yet these parts may contain defects which affect mechanical properties of the components. In this work a layered form of defect is found by microCT, which would have been very difficult or impossible to detect by other non-destructive testing methods due to the object complexity, defect size and shape and because the pores are entirely contained inside the object and not connected to the surface. Additionally, this test part was subjected to hot isostatic pressing (HIPPING and subsequently scanned. Comparing before and after scans by alignment of the volumes allows visualization and quantification of the pore size changes. The application of X-ray microCT to additive manufacturing is thus demonstrated in this example to be an ideal combination, especially for process improvements and for high value components.

  15. Spectral algorithm for non-destructive damage localisation: Application to an ancient masonry arch model

    Science.gov (United States)

    Masciotta, Maria-Giovanna; Ramos, Luís F.; Lourenço, Paulo B.; Vasta, Marcello

    2017-02-01

    Structural monitoring and vibration-based damage identification methods are fundamental tools for condition assessment and early-stage damage identification, especially when dealing with the conservation of historical constructions and the maintenance of strategic civil structures. However, although the substantial advances in the field, several issues must still be addressed to broaden the application range of such tools and to assert their reliability. This study deals with the experimental validation of a novel method for non-destructive damage identification purposes. This method is based on the use of spectral output signals and has been recently validated by the authors through a numerical simulation. After a brief insight into the basic principles of the proposed approach, the spectral-based technique is applied to identify the experimental damage induced on a masonry arch through statically increasing loading. Once the direct and cross spectral density functions of the nodal response processes are estimated, the system's output power spectrum matrix is built and decomposed in eigenvalues and eigenvectors. The present study points out how the extracted spectral eigenparameters contribute to the damage analysis allowing to detect the occurrence of damage and to locate the target points where the cracks appear during the experimental tests. The sensitivity of the spectral formulation to the level of noise in the modal data is investigated and discussed. As a final evaluation criterion, the results from the spectrum-driven method are compared with the ones obtained from existing non-model based damage identification methods.

  16. Recent advances in seismic non-destructive testing of concrete plate like structures

    International Nuclear Information System (INIS)

    Ryden, N.; Kristensen, A.; Jovall, O.

    2009-01-01

    This paper describes recent advances in seismic/acoustic non-destructive testing of concrete containment walls. The presented technique is focused on the characterization of the mean stiffness (seismic velocities) and thickness of the containment wall. The Impact Echo (IE) method is a well-established technique to measure the thickness of concrete plates or to locate defects in concrete plate like structures. The method relies on a good estimate of the mean velocity through the thickness of the plate and a precisely measured thickness resonant frequency. Recently the underlying theory of the IE method has been redefined and improved based on Lamb waves in a free plate. Based on this theory we have developed a new data processing technique where both propagating and standing Lamb waves are analysed in a combined manner using multichannel data. With this approach the mean velocity through the plate thickness is evaluated by using the fundamental mode Lamb wave dispersion curves. The accuracy and detection ability of the measured resonant frequency is improved by utilizing both amplitude and phase information from the multichannel record. The method has been tested on several nuclear power plants in Sweden and Finland and proved to be more robust compared to conventional IE and surface wave measurements

  17. Non-Destructive Current Sensing for Energy Efficiency Monitoring in Buildings with Environmental Certification.

    Science.gov (United States)

    Mota, Lia Toledo Moreira; Mota, Alexandre de Assis; Coiado, Lorenzo Campos

    2015-07-10

    Nowadays, buildings environmental certifications encourage the implementation of initiatives aiming to increase energy efficiency in buildings. In these certification systems, increased energy efficiency arising from such initiatives must be demonstrated. Thus, a challenge to be faced is how to check the increase in energy efficiency related to each of the employed initiatives without a considerable building retrofit. In this context, this work presents a non-destructive method for electric current sensing to assess implemented initiatives to increase energy efficiency in buildings with environmental certification. This method proposes the use of a sensor that can be installed directly in the low voltage electrical circuit conductors that are powering the initiative under evaluation, without the need for reforms that result in significant costs, repair, and maintenance. The proposed sensor consists of three elements: an air-core transformer current sensor, an amplifying/filtering stage, and a microprocessor. A prototype of the proposed sensor was developed and tests were performed to validate this sensor. Based on laboratory tests, it was possible to characterize the proposed current sensor with respect to the number of turns and cross-sectional area of the primary and secondary coils. Furthermore, using the Least Squares Method, it was possible to determine the efficiency of the air core transformer current sensor (the best efficiency found, considering different test conditions, was 2%), which leads to a linear output response.

  18. Non-destructive analysis of museum objects by fibre-optic Raman spectroscopy.

    Science.gov (United States)

    Vandenabeele, Peter; Tate, Jim; Moens, Luc

    2007-02-01

    Raman spectroscopy is a versatile technique that has frequently been applied for the investigation of art objects. By using mobile Raman instrumentation it is possible to investigate the artworks without the need for sampling. This work evaluates the use of a dedicated mobile spectrometer for the investigation of a range of museum objects in museums in Scotland, including antique Egyptian sarcophagi, a panel painting, painted surfaces on paper and textile, and the painted lid and soundboard of an early keyboard instrument. The investigations of these artefacts illustrate some analytical challenges that arise when analysing museum objects, including fluorescing varnish layers, ambient sunlight, large dimensions of artefacts and the need to handle fragile objects with care. Analysis of the musical instrument (the Mar virginals) was undertaken in the exhibition gallery, while on display, which meant that interaction with the public and health and safety issues had to be taken into account. Experimental set-up for the non-destructive Raman spectroscopic investigation of a textile banner in the National Museums of Scotland.

  19. Review of non-destructive techniques for the quality checking of encapsulated radioactive waste: 2

    International Nuclear Information System (INIS)

    Saunderson, D.H.

    1989-01-01

    Methods for non-destructively evaluating the condition of encapsulated ILW cement/waste monoliths, sealed within a drum, may form one component of a quality checking system. The QCTF have commissioned a wide-ranging survey of techniques that might be applicable to this problem. As a result of previously reported work, high-energy radiography has been identified as being most likely to satisfy the requirements for determining the physical condition of the monolith after encapsulation. Nucleonic methods such as neutron interrogation and high-resolution-spectroscopy can be applied to check on the contents of the drum. Ultrasonic methods were seen to have potential in monitoring the setting and curing processes during the forming of the monolith. The study of various ultrasonic methods for subsequent inspection of sealed drums, ILWRP(85)P27, concluded that they were not likely to be of use for the quality checking process. For completeness, this report covers the remaining techniques that have been considered during the course of the survey, however unlikely their application might be. (author)

  20. Non-Destructive Current Sensing for Energy Efficiency Monitoring in Buildings with Environmental Certification

    Science.gov (United States)

    Mota, Lia Toledo Moreira; Mota, Alexandre de Assis; Coiado, Lorenzo Campos

    2015-01-01

    Nowadays, buildings environmental certifications encourage the implementation of initiatives aiming to increase energy efficiency in buildings. In these certification systems, increased energy efficiency arising from such initiatives must be demonstrated. Thus, a challenge to be faced is how to check the increase in energy efficiency related to each of the employed initiatives without a considerable building retrofit. In this context, this work presents a non-destructive method for electric current sensing to assess implemented initiatives to increase energy efficiency in buildings with environmental certification. This method proposes the use of a sensor that can be installed directly in the low voltage electrical circuit conductors that are powering the initiative under evaluation, without the need for reforms that result in significant costs, repair, and maintenance. The proposed sensor consists of three elements: an air-core transformer current sensor, an amplifying/filtering stage, and a microprocessor. A prototype of the proposed sensor was developed and tests were performed to validate this sensor. Based on laboratory tests, it was possible to characterize the proposed current sensor with respect to the number of turns and cross-sectional area of the primary and secondary coils. Furthermore, using the Least Squares Method, it was possible to determine the efficiency of the air core transformer current sensor (the best efficiency found, considering different test conditions, was 2%), which leads to a linear output response. PMID:26184208

  1. Non-Destructive Current Sensing for Energy Efficiency Monitoring in Buildings with Environmental Certification

    Directory of Open Access Journals (Sweden)

    Lia Toledo Moreira Mota

    2015-07-01

    Full Text Available Nowadays, buildings environmental certifications encourage the implementation of initiatives aiming to increase energy efficiency in buildings. In these certification systems, increased energy efficiency arising from such initiatives must be demonstrated. Thus, a challenge to be faced is how to check the increase in energy efficiency related to each of the employed initiatives without a considerable building retrofit. In this context, this work presents a non-destructive method for electric current sensing to assess implemented initiatives to increase energy efficiency in buildings with environmental certification. This method proposes the use of a sensor that can be installed directly in the low voltage electrical circuit conductors that are powering the initiative under evaluation, without the need for reforms that result in significant costs, repair, and maintenance. The proposed sensor consists of three elements: an air-core transformer current sensor, an amplifying/filtering stage, and a microprocessor. A prototype of the proposed sensor was developed and tests were performed to validate this sensor. Based on laboratory tests, it was possible to characterize the proposed current sensor with respect to the number of turns and cross-sectional area of the primary and secondary coils. Furthermore, using the Least Squares Method, it was possible to determine the efficiency of the air core transformer current sensor (the best efficiency found, considering different test conditions, was 2%, which leads to a linear output response.

  2. NON-DESTRUCTIVE LEAK DETECTION IN GALVANIZED IRON PIPE USING NONLINEAR ACOUSTIC MODULATION METHOD

    Directory of Open Access Journals (Sweden)

    Gigih Priyandoko

    2018-02-01

    Full Text Available Non-destructive testing is a wide group of analysis techniques used in science and industry to evaluate the properties of a structure without causing damage to it. The main objective of this project is to carry out experiment to detect leakage in pipeline using nonlinear acoustic modulation method. The nonlinear acoustic modulation approach with low frequency excitation and high frequency acoustic wave is used to reveal modulations in the presence of leak. The pipe used in this experiment was galvanized iron pipe. The experiment is started with the experiment of undamaged specimen and followed by the experiment of damaged specimen with manually applied leak. The results obtained are being observed and the difference between the specimen without leak and with leak can be distinguished. The distance of the leak and the distance of the outlet detected is nearly accurate to the exact location which is leak at 4.0 m and outlet at 6.0 m. Therefore, the results demonstrate that leakage can be detected using nonlinear acoustic modulation, and proved the objective of distinguish the difference between the results of specimen without leak and with leak has succeeded. The damage detection process can be eased with the knowledge on the signal features.

  3. Analysis of non-destructive current simulators of flux compression generators.

    Science.gov (United States)

    O'Connor, K A; Curry, R D

    2014-06-01

    Development and evaluation of power conditioning systems and high power microwave components often used with flux compression generators (FCGs) requires repeated testing and characterization. In an effort to minimize the cost and time required for testing with explosive generators, non-destructive simulators of an FCG's output current have been developed. Flux compression generators and simulators of FCGs are unique pulsed power sources in that the current waveform exhibits a quasi-exponential increasing rate at which the current rises. Accurately reproducing the quasi-exponential current waveform of a FCG can be important in designing electroexplosive opening switches and other power conditioning components that are dependent on the integral of current action and the rate of energy dissipation. Three versions of FCG simulators have been developed that include an inductive network with decreasing impedance in time. A primary difference between these simulators is the voltage source driving them. It is shown that a capacitor-inductor-capacitor network driving a constant or decreasing inductive load can produce the desired high-order derivatives of the load current to replicate a quasi-exponential waveform. The operation of the FCG simulators is reviewed and described mathematically for the first time to aid in the design of new simulators. Experimental and calculated results of two recent simulators are reported with recommendations for future designs.

  4. Burn up determination of IEAR-1 fuel elements by non destructive gamma ray spectrometry method

    International Nuclear Information System (INIS)

    Soares, A.J.

    1977-01-01

    Measurement of nuclear fuel burn up by non destructive gamma ray spectrometry is discussed, and results of such measurements, made at the Instituto de Energia Atomica (IEA), are given. Specifically, the burn up of an MTR (Material Testing Reactor) fuel element removed from the IEAR-1 swimming pool reactor in 1958 is evaluated from the measured Cs-137 activity, which gives a single 661,6 keV gamma ray. Due to the long decay time of the test element, no other fission decay product activity could be detected. Analysis of measurements, made with a 3'' x 3'' NaI(Tl) detector at 330 distinct points of the element, showed the total burn up to 3.3 +- -+ 0.8 mg. This is in agreement with a calculated value. As the maximum temperature of IEAR-1 fuel elements is of the order of 40 0 C, migration effects of Cs-137 was not considered, this being significant only at fuel temperature in excess of 1000 0 C [pt

  5. Development of imaging and reconstructions algorithms on parallel processing architectures for applications in non-destructive testing

    International Nuclear Information System (INIS)

    Pedron, Antoine

    2013-01-01

    This thesis work is placed between the scientific domain of ultrasound non-destructive testing and algorithm-architecture adequation. Ultrasound non-destructive testing includes a group of analysis techniques used in science and industry to evaluate the properties of a material, component, or system without causing damage. In order to characterise possible defects, determining their position, size and shape, imaging and reconstruction tools have been developed at CEA-LIST, within the CIVA software platform. Evolution of acquisition sensors implies a continuous growth of datasets and consequently more and more computing power is needed to maintain interactive reconstructions. General purpose processors (GPP) evolving towards parallelism and emerging architectures such as GPU allow large acceleration possibilities than can be applied to these algorithms. The main goal of the thesis is to evaluate the acceleration than can be obtained for two reconstruction algorithms on these architectures. These two algorithms differ in their parallelization scheme. The first one can be properly parallelized on GPP whereas on GPU, an intensive use of atomic instructions is required. Within the second algorithm, parallelism is easier to express, but loop ordering on GPP, as well as thread scheduling and a good use of shared memory on GPU are necessary in order to obtain efficient results. Different API or libraries, such as OpenMP, CUDA and OpenCL are evaluated through chosen benchmarks. An integration of both algorithms in the CIVA software platform is proposed and different issues related to code maintenance and durability are discussed. (author) [fr

  6. Response of Edam cheese to non-destructive impact

    Directory of Open Access Journals (Sweden)

    Šárka Nedomová

    2009-01-01

    Full Text Available The behaviour of the Edam cheese during its maturation under dynamic loading has been studied. The block of tested cheese has been loaded by the impact of an aluminium bar. The force between bar and cheese has been recorded. The surface displacements as well as the surface velocities have been obtained at the different points from the point of the bar impact using of the laser vibrometers. Response functions have been evaluated both in the time and frequency domains. It has been found that the degree of the cheese maturity is well characterized by the attenuation of the surface displacement maximum. This maturation is also described by the maximum of the impact force. The spectral analysis of the response functions revealed that there was a dominant frequency, which depends only on the degree of the cheese maturity. The developed method represents a promising procedure for the continuous recording of the cheese ripening.

  7. Non destructive defect detection by spectral density analysis.

    Science.gov (United States)

    Krejcar, Ondrej; Frischer, Robert

    2011-01-01

    The potential nondestructive diagnostics of solid objects is discussed in this article. The whole process is accomplished by consecutive steps involving software analysis of the vibration power spectrum (eventually acoustic emissions) created during the normal operation of the diagnosed device or under unexpected situations. Another option is to create an artificial pulse, which can help us to determine the actual state of the diagnosed device. The main idea of this method is based on the analysis of the current power spectrum density of the received signal and its postprocessing in the Matlab environment with a following sample comparison in the Statistica software environment. The last step, which is comparison of samples, is the most important, because it is possible to determine the status of the examined object at a given time. Nowadays samples are compared only visually, but this method can't produce good results. Further the presented filter can choose relevant data from a huge group of data, which originate from applying FFT (Fast Fourier Transform). On the other hand, using this approach they can be subjected to analysis with the assistance of a neural network. If correct and high-quality starting data are provided to the initial network, we are able to analyze other samples and state in which condition a certain object is. The success rate of this approximation, based on our testing of the solution, is now 85.7%. With further improvement of the filter, it could be even greater. Finally it is possible to detect defective conditions or upcoming limiting states of examined objects/materials by using only one device which contains HW and SW parts. This kind of detection can provide significant financial savings in certain cases (such as continuous casting of iron where it could save hundreds of thousands of USD).

  8. Beam-phase monitoring with non-destructive pickup

    International Nuclear Information System (INIS)

    Bogaty, J.; Clifft, B.E.

    1995-01-01

    An intensity and phase-sensitive capacitive pickup was installed at the entrance to the PII linac. This device is based on an extension of the design of the Beam Current Monitor developed as part of the ATLAS radiation safety system. The purpose of the pickup is to allow the arrival phase of the beam from the ECR source at the entrance to the PII linac to be set to a standard which reproduces previous tune conditions and establishes a standard. The new pickups and associated electronics demonstrated sensitivity well below 1 electrical nanoamp but can handle beam currents of many electrical microamps as well. In addition to phase information, beam current is also measured by the units thus providing a continuous, non-intercepting current readout as well. From the very first use of PII, we established a few open-quotes reference tunesclose quotes for the linac and scaled those tunes for any other beam desired. For such scaling to work properly, the velocity and phase of the beam from the ion source must be fixed and reproducible. In last year's FWP the new ATLAS Master Oscillator System was described. The new system has the ability of easily adjusting the beam arrival phase at the entrance to each of the major sections of the facility - PII, Booster, ATLAS. Our present techniques for establishing the beam arrival phase at the entrance of each of the linac sections are cumbersome and, sometimes, intellectually challenging. The installation of these capacitative pickups at the entrance to each of the linac sections will make the determination and setting of the beam arrival phase direct, simple, and dynamic. This should dramatically shorten our setup time for open-quotes old-tuneclose quotes configurations and increase useful operating hours. Permanent electronics for the PII entrance pickup is under construction

  9. Non-destructive examination of a time capsule recovered from the Gore Park excavations, Hamilton, Ontario

    International Nuclear Information System (INIS)

    MacDonald, B.L.; Vanderstelt, J.

    2015-01-01

    Non-destructive analytical techniques are becoming increasingly important for the study of objects of cultural heritage interest. We present a study that applied two techniques: x-ray fluorescence (XRF) and neutron radiography, for the investigation of a time capsule recovered from an urban construction site in Gore Park, Hamilton. XRF analysis revealed the composition of the artifact, while n-radiography showed that its contents remained intact after being interred for 91 years. Results of this study demonstrate the value of non-destructive techniques for the analysis and preservation of cultural heritage. (author)

  10. Non-destructive analysis for the inspection and control of metalic monuments and historical manuscripts

    International Nuclear Information System (INIS)

    Faubel, W.; Heissler, S.; Klewe-Nebenius, H.; Willin, E.

    2003-01-01

    As a contribution to the increasing efforts to preserve cultural heritage of historical bronze monuments exposed to atmospheric corrosion as well as historical books and manuscripts non-destructive analytical methods are highly desirable enabling an in-situ examination of the surface status of an object. The development and application of novel non-destructive analytical methods based on the photoacoustic and photothermal deflection spectroscopy allowed to investigate the state of bronze patina as well as the effectiveness of conservation procedures for historical manuscripts. (orig.)

  11. Edward's sword? - A non-destructive study of a medieval king's sword

    Science.gov (United States)

    Segebade, Chr.

    2013-04-01

    Non-destructive and instrumental methods including photon activation analysis were applied in an examination of an ancient sword. It was tried to find indication of forgery or, if authentic, any later processing and alteration. Metal components of the hilt and the blade were analysed by instrumental photon activation. Non-destructive metallurgical studies (hardness measurements, microscopic microstructure analysis) are briefly described, too. The results of these investigations did not yield indication of non-authenticity. This stood in agreement with the results of stylistic and scientific studies by weapon experts.

  12. Comparative analysis of non-destructive methods to control fissile materials in large-size containers

    Directory of Open Access Journals (Sweden)

    Batyaev V.F.

    2017-01-01

    Full Text Available The analysis of various non-destructive methods to control fissile materials (FM in large-size containers filled with radioactive waste (RAW has been carried out. The difficulty of applying passive gamma-neutron monitoring FM in large containers filled with concreted RAW is shown. Selection of an active non-destructive assay technique depends on the container contents; and in case of a concrete or iron matrix with very low activity and low activity RAW the neutron radiation method appears to be more preferable as compared with the photonuclear one.

  13. Attributes identification of nuclear material by non-destructive radiation measurement methods

    International Nuclear Information System (INIS)

    Gan Lin

    2002-01-01

    Full text: The nuclear materials should be controlled under the regulation of National Safeguard System. The non-destructive analysis method, which is simple and quick, provide a effective process in determining the nuclear materials, nuclear scraps and wastes. The method play a very important role in the fields of nuclear material control and physical protection against the illegal removal and smuggling of nuclear material. The application of non-destructive analysis in attributes identification of nuclear material is briefly described in this paper. The attributes determined by radioactive detection technique are useful tolls to identify the characterization of special nuclear material (isotopic composition, enrichment etc.). (author)

  14. Comparative analysis of non-destructive methods to control fissile materials in large-size containers

    Science.gov (United States)

    Batyaev, V. F.; Sklyarov, S. V.

    2017-09-01

    The analysis of various non-destructive methods to control fissile materials (FM) in large-size containers filled with radioactive waste (RAW) has been carried out. The difficulty of applying passive gamma-neutron monitoring FM in large containers filled with concreted RAW is shown. Selection of an active non-destructive assay technique depends on the container contents; and in case of a concrete or iron matrix with very low activity and low activity RAW the neutron radiation method appears to be more preferable as compared with the photonuclear one. Note to the reader: the pdf file has been changed on September 22, 2017.

  15. Contribution of expert systems to data processing in non-destructive control

    International Nuclear Information System (INIS)

    Augendre, H.; Perron, M.C.

    1990-01-01

    The increase of non-destructive control in industrial applications requires the development of new data processing methods. The expert system approach is able to provide signal modelling means which are closer to the human behaviour. Such methods used in more traditional programs lead to substantial improvements. These investigations come within our design to apply sophisticated methods to industrial non-destructive control. For defect characterization purposes in ultrasonic control, various supervised learning methods have been investigated in an experimental study. The traditional approach is concerned with statistics based methods, whereas the second one lies in learning logical decision rules valid within a numerical description space [fr

  16. Non-destructive techniques for biomonitoring of spatial, temporal, and demographic patterns of mercury bioaccumulation and maternal transfer in turtles

    International Nuclear Information System (INIS)

    Hopkins, Brittney C.; Hepner, Mark J.; Hopkins, William A.

    2013-01-01

    Mercury (Hg) is a globally ubiquitous pollutant that has received much attention due to its toxicity to humans and wildlife. The development of non-destructive sampling techniques is a critical step for sustainable monitoring of Hg accumulation. We evaluated the efficacy of non-destructive sampling techniques and assessed spatial, temporal, and demographic factors that influence Hg bioaccumulation in turtles. We collected muscle, blood, nail, and eggs from snapping turtles (Chelydra serpentina) inhabiting an Hg contaminated river. As predicted, all Hg tissue concentrations strongly and positively correlated with each other. Additionally, we validated our mathematical models against two additional Hg contaminated locations and found that tissue relationships developed from the validation sites did not significantly differ from those generated from the original sampling site. The models provided herein will be useful for a wide array of systems where biomonitoring of Hg in turtles needs to be accomplished in a conservation-minded fashion. -- Highlights: ► Non-lethal sampling is critical for sustainable monitoring of mercury in wildlife. ► We evaluated the efficacy of non-lethal sampling techniques in turtles. ► We created mathematical models between egg, muscle, blood, and nail tissues. ► Mathematical tissue models were applicable to other mercury contaminated areas. ► Non-lethal techniques will be useful for monitoring contamination in other systems. -- We developed and validated mathematical models that will be useful for biomonitoring Hg accumulation in turtles in a conservation-minded fashion

  17. Finding Infrastructure with Non-Destructive Imaging Technologies (FINDIT)

    Science.gov (United States)

    Tuckwell, G.; Usher, C.; Stringfellow, M.; Chapman, D.; Metje, N.; Roberts, D.

    2017-12-01

    Novel uses for existing technologies and new post-processing techniques have been developed to generate a level and detail of information that will make a step-change to standard practice in mapping and assessing the condition of buried infrastructure. The most appropriate sensing technologies for buried telecommunications ducts have been identified as Ground Penetrating Radar and Acoustic reflectometry. Dielectric permittivity changes in the near-surface can manifest themselves in different ways within GPR data. Numerical modelling work has been undertaken by applying a Kuepper signal and an exploding source, and using various different frequencies to determine minute changes (e.g. cracks in pipes) in an object or feature within the near surface. This modelling demonstrated that there is a clear difference between an empty duct, a duct partially filled with cables and a damaged duct. This was confirmed in a laboratory test on dry sand to determine the detectability of a hole in a plastic pipe. This has formed the foundation new data processing algorithms to detect the presence of such defects in real and synthetic data sets. Future work will focus on the development of a test site and field trials to assess the detectability of defects under realistic field conditions. This ongoing programme of work will be validated and iteratively improved by field trials under controlled and live commercial conditions. Finally the cost/benefit of the new workflows develop evaluated through the development of business models for the application of such techniques in telecoms, water and energy supply sectors. In the UK, the majority of the communication network is buried in ducts which are often several decades old. They have often collapsed or become blocked so that spare capacity cannot be used. There is currently no surface detection technology which can accurately locate the position of these defects (or even accurately locate the ducts in all circumstances), so time

  18. Non-destructive inspection technology using a magnetic transmission sensor; Jiki toka sensor wo mochiita hihakai kensa gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    Obama, H.

    1996-06-01

    A newly developed magnetic sensor for non-destructive inspection has acquired the U.S. patent. The starting point of the invention was an inspection of aluminum broth bags in cup-noodle containers with aluminum leaf cover, which was asked from a food maker. A method was developed, in which the microwave is transmitted through containers below their covers and the reflected wave is detected. Then, development of an inspection apparatus for spot welding parts used for automobiles was requested. Since welding is carried out using large current for the spot welding, magnetic characteristics change greatly, which is a remarkable phenomenon appearing especially for magnetic substances. This was found out to be the same phenomenon as the hardening of swords consisting of high temperature heating, pressurizing, and quenching. This substance with two changes can be considered as another material different from the base metal. Coils fitted to impressions were made, and their test pieces were measured. The correlation coefficient over 0.9 was obtained between measured values and results of tensile strength tests. This apparatus can be applied to the non-destructive inspection of internal defects of castings. 2 figs.

  19. Limits to the Recognizability of Flaws in Non-Destructive Testing Steam-Generator Tubes for Nuclear-Power Plants

    International Nuclear Information System (INIS)

    Kuhlmann, A.; Adamsky, F.-J.

    1965-01-01

    In the Federal Republic of Germany there are nuclear reactors under construction with steam generators inside the reactor pressure-vessel. As a result design repairs of steam- generator tubes are very difficult and cause large shut-down times of the nuclear-power plant. It is known that numerous troubles in operating conventional power plants are results of steam-generator tube damages. Because of the high total costs of these reactors it. is necessary to construct the steam generators especially in such a manner that the load factor of the power plant is as high as possible. The Technischer Überwachungs-Verein Rheinland was charged to supervise and to test fabrication and construction of the steam generators to see that this part of the plant was as free of defects as possible. The experience gained during this work is of interest for manufacture and construction of steam generators for nuclear-power plants in general. This paper deals with the efficiency limits of non-destructive testing steam-generator tubes. The following tests performed will be discussed in detail: (a) Automatic ultrasonic testing of the straight tubes in the production facility; (b) Combined ultrasonic and radiographic testing of the bent tubes and tube weldings; (c) Other non-destructive tests. (author) [fr

  20. Formulations by surface integral equations for numerical simulation of non-destructive testing by eddy currents

    International Nuclear Information System (INIS)

    Vigneron, Audrey

    2015-01-01

    The thesis addresses the numerical simulation of non-destructive testing (NDT) using eddy currents, and more precisely the computation of induced electromagnetic fields by a transmitter sensor in a healthy part. This calculation is the first step of the modeling of a complete control process in the CIVA software platform developed at CEA LIST. Currently, models integrated in CIVA are restricted to canonical (modal computation) or axially-symmetric geometries. The need for more diverse and complex configurations requires the introduction of new numerical modeling tools. In practice the sensor may be composed of elements with different shapes and physical properties. The inspected parts are conductive and may contain dielectric or magnetic elements. Due to the cohabitation of different materials in one configuration, different regimes (static, quasi-static or dynamic) may coexist. Under the assumption of linear, isotropic and piecewise homogeneous material properties, the surface integral equation (SIE) approach allows to reduce a volume-based problem to an equivalent surface-based problem. However, the usual SIE formulations for the Maxwell's problem generally suffer from numerical noise in asymptotic situations, and especially at low frequencies. The objective of this study is to determine a version that is stable for a range of physical parameters typical of eddy-current NDT applications. In this context, a block-iterative scheme based on a physical decomposition is proposed for the computation of primary fields. This scheme is accurate and well-conditioned. An asymptotic study of the integral Maxwell's problem at low frequencies is also performed, allowing to establish the eddy-current integral problem as an asymptotic case of the corresponding Maxwell problem. (author) [fr

  1. Non-destructive testing for plant life assessment

    International Nuclear Information System (INIS)

    2005-01-01

    The International Atomic Energy Agency (IAEA) is promoting industrial applications of nondestructive testing (NDT) technology, which includes radiography testing (RT) and related methods, to assure safety and reliability of operation of industrial facilities and processes. NDT technology is essentially needed for improvement of the quality of industrial products, safe performance of equipment and plants, including safety of metallic and concrete structures and constructions. The IAEA is playing an important role in promoting the NDT use and technology support to Member States, in harmonisation for training and certification of NDT personnel, and in establishing national accreditation and certifying bodies. All these efforts have led to a stage of maturity and self sufficiency in numerous countries especially in the field of training and certification of personnel, and in provision of services to industries. This has had a positive impact on the improvement of the quality of industrial goods and services. NDT methods are primarily used for detection, location and sizing of surface and internal defects (in welds, castings, forging, composite materials, concrete and many more). Various NDT methods are applied for preventive maintenance (aircraft, bridge), for the inspection of raw materials, half-finished and finished products, for in-service-inspection and for plant life assessment studies. NDT is essential for quality control of the facilities and products, and for fitness - for purpose assessment (so-called plant life assessment). NDT evaluates remaining operation life of plant components (processing lines, pipes, vessels) providing an accurate diagnosis that allows predicting extended life operation beyond design life. Status and trends on the NDT for plant life assessment have been discussed in many IAEA meetings related with NDT development, training and education. Experts have largely demonstrated that, using NDT methods, a comprehensive assessment of the life

  2. Early non-destructive biofouling detection in spiral wound RO Membranes using a mobile earth's field NMR

    KAUST Repository

    Fridjonsson, E.O.; Vogt, S.J.; Vrouwenvelder, Johannes S.; Johns, M.L.

    2015-01-01

    We demonstrate the use of Earth's field (EF) Nuclear Magnetic Resonance (NMR) to provide early non-destructive detection of active biofouling of a commercial spiral wound reverse osmosis (RO) membrane module. The RO membrane module was actively biofouled to different extents, by the addition of biodegradable nutrients to the feed stream, as revealed by a subtle feed-channel pressure drop increase. Easily accessible EF NMR parameters (signal relaxation parameters T1, T2 and the total NMR signal modified to be sensitive to stagnant fluid only) were measured and analysed in terms of their ability to detect the onset of biofouling. The EF NMR showed that fouling near the membrane module entrance significantly distorted the flow field through the whole membrane module. The total NMR signal is shown to be suitable for non-destructive early biofouling detection of spiral wound membrane modules, it was readily deployed at high (operational) flow rates, was particularly sensitive to flow field changes due to biofouling and could be deployed at any position along the membrane module axis. In addition to providing early fouling detection, the mobile EF NMR apparatus could also be used to (i) evaluate the production process of spiral wound membrane modules, and (ii) provide an in-situ determination of module cleaning process efficiency.

  3. Early non-destructive biofouling detection in spiral wound RO Membranes using a mobile earth's field NMR

    KAUST Repository

    Fridjonsson, E.O.

    2015-04-20

    We demonstrate the use of Earth\\'s field (EF) Nuclear Magnetic Resonance (NMR) to provide early non-destructive detection of active biofouling of a commercial spiral wound reverse osmosis (RO) membrane module. The RO membrane module was actively biofouled to different extents, by the addition of biodegradable nutrients to the feed stream, as revealed by a subtle feed-channel pressure drop increase. Easily accessible EF NMR parameters (signal relaxation parameters T1, T2 and the total NMR signal modified to be sensitive to stagnant fluid only) were measured and analysed in terms of their ability to detect the onset of biofouling. The EF NMR showed that fouling near the membrane module entrance significantly distorted the flow field through the whole membrane module. The total NMR signal is shown to be suitable for non-destructive early biofouling detection of spiral wound membrane modules, it was readily deployed at high (operational) flow rates, was particularly sensitive to flow field changes due to biofouling and could be deployed at any position along the membrane module axis. In addition to providing early fouling detection, the mobile EF NMR apparatus could also be used to (i) evaluate the production process of spiral wound membrane modules, and (ii) provide an in-situ determination of module cleaning process efficiency.

  4. Role of non destructive techniques for monitoring structural integrity of primary circuit of pressurized water reactor nuclear power plant

    International Nuclear Information System (INIS)

    Sharma, P.K.; Sreenivas, P.

    2015-01-01

    The safety of nuclear installations is ensured by assessing status of primary equipment for performing the intended function reliably and maintaining the integrity of pressure boundaries. The pressure boundary materials undergo material degradation during the plant operation. Pressure boundary materials are subjected to operating stresses and material degradation that results in material properties changes, discontinuities initiation and increase in size of existing discontinuities. Pre-Service Inspection (PSI) is performed to generate reference base line data of initial condition of the pressure boundary. In-Service Inspections (ISI) are performed periodically to confirm integrity of pressure boundaries through comparison with respect to base line data. The non destructive techniques are deployed considering nature of the discontinuities expected to be generated through operating conditions and degradation mechanisms. The paper is prepared considering Pressurized Water Reactor (PWR) Nuclear Power Plant. The paper describes the degradation mechanisms observed in the PWR nuclear power plants and salient aspect of PSI and ISI and considerations in selecting non destructive testing. The paper also emphasises on application of acoustic emission (AE) based condition monitoring systems that can supplement in-service inspections for detecting and locating discontinuities in pressure boundaries. Criticality of flaws can be quantitatively evaluated by determining their size through in-service inspection. Challenges anticipated in deployment of AE based monitoring system and solutions to cater those challenges are also discussed. (author)

  5. The Non-Destructive Test of Steel Corrosion in Reinforced Concrete Bridges Using a Micro-Magnetic Sensor

    Directory of Open Access Journals (Sweden)

    Hong Zhang

    2016-09-01

    Full Text Available This paper presents a non-destructive test method for steel corrosion in reinforced concrete bridges by using a 3-dimensional digital micro-magnetic sensor to detect and analyze the self-magnetic field leakage from corroded reinforced concrete. The setup of the magnetic scanning device and the measurement mode of the micro-magnetic sensor are introduced. The numerical analysis model is also built based on the linear magnetic charge theory. Compared to the self-magnetic field leakage data obtained from magnetic sensor-based measurement and numerical calculation, it is shown that the curves of tangential magnetic field at different lift-off height all intersect near the edge of the steel corrosion zone. The result indicates that the intersection of magnetic field curves can be used to detect and evaluate the range of the inner steel corrosion in engineering structures. The findings of this work propose a new and effective non-destructive test method for steel corrosion, and therefore enlarge the application of the micro-magnetic sensor.

  6. Non destructive analysis apparatus by eddy currents for non magnetic metallic products

    International Nuclear Information System (INIS)

    Coutanceau-Monteil, N.; Billy, F.; Bernard, A.

    1993-01-01

    The device for non destructive testing of nonmagnetic metallic surfaces uses eddy currents with two independent receptors at different positions around the emitting coil which is fed with current impulses and whose axis is parallel to the surface under study. 4 figs

  7. Characterisation of nuclear dispersion fuels. The non-destructive examination of silicon carbide by selenium immersion

    Energy Technology Data Exchange (ETDEWEB)

    Ambler, J.F.R.; Ferguson, I.F.

    1974-07-15

    The non-destructive microscopic examination of silicon-carbide-coated spheres containing uranium carbide, which involves immersing the coated spheres in selenium, is particularly suited for the examination of flaws in the coats but it is not possible to measure coating thicknesses by this method. Some coats are found to be opaque and this is related to their porosity. (auth)

  8. A spatially offset Raman spectroscopy method for non-destructive detection of gelatin-encapsulated powders

    Science.gov (United States)

    Non-destructive subsurface detection of encapsulated, coated, or seal-packaged foods and pharmaceuticals can help prevent distribution and consumption of counterfeit or hazardous products. This study used a Spatially Offset Raman Spectroscopy (SORS) method to detect and identify urea, ibuprofen, and...

  9. An improved technique for non-destructive measurement of the stem ...

    African Journals Online (AJOL)

    It was concluded that the standard volume model based on the non-destructive measurement technique meets the requirements for precision in forest surveys. The precision of the standard volume model for L. gmelinii (a coniferous tree) was superior to that of the model for P. tomentosa (a broad-leaved tree). The electronic ...

  10. A non-destructive approach for assessing decay in preservative treated wood

    NARCIS (Netherlands)

    Machek, L.; Edlund, M.L.; Sierra-Alvarez, R.; Militz, H.

    2004-01-01

    This study investigated the suitability of the non-destructive vibration-impulse excitation technique to assess the attack of preservative-treated wood in contact with the ground. Small stakes (10×5×100 mm3) of treated and untreated Scots pine sapwood were exposed to decay in laboratory-scale

  11. The use of computers for the performance and analysis of non-destructive testing

    International Nuclear Information System (INIS)

    Edelmann, X.; Pfister, O.

    1988-01-01

    Examples of the use of computers in non-destructive testing are related. Ultrasonic testing is especially addressed. The employment of computers means improvements for the user, the possibility of registering the reflector position, storage of test data and help with documentation. The test can be automated. The introduction of expert systems is expected for the future. 8 figs., 12 refs

  12. The non-destructive identification of early Chinese porcelain by PIXE

    International Nuclear Information System (INIS)

    Cheng, H.S.; Zhang, Z.Q.; Zhang, B.; Yang, F.J.

    2004-01-01

    PIXE is used for the non-destructive differentiation of early precious Chinese blue and white porcelain made in Yuan (AD 1206-1368), Ming (AD 1368-1644) Dynasty in Jingdezhen from imitations. Also, ancient celadon made in Song Dynasty (AD 960-1279) is identified by measuring the trace elements contained in the glazes

  13. Fast and Accurate Non-destructive Testing System for Inspection of Canning Tubes

    DEFF Research Database (Denmark)

    Gundtoft, Hans Erik; Nielsen, E.

    1973-01-01

    The authors describe the development of an inspection bench for the non-destructive examination of canning tubes. The bench is original in that the internal diameter is calculated from exact measurement of the outer diameter and the wall thickness. The transducers for inspection and control are r...

  14. Measurement of mango firmness by non-destructive limited compression technique

    NARCIS (Netherlands)

    Penchaiya, P.; Uthairatanakij, A.; Srilaong, V.; Kanlayanarat, S.; Tijskens, L.M.M.; Tansakul, A.

    2015-01-01

    Thai mango 'Nam Dok Mai Si-Thong' has an attractive golden yellow skin colour even in immature fruit, not ready for consumption. Firmness becomes an important quality attribute to assess the ripening stage of the fruit during storage. In this study, the possibility of a non-destructive method

  15. The non-destructive identification of early Chinese porcelain by PIXE

    Science.gov (United States)

    Cheng, H. S.; Zhang, Z. Q.; Zhang, B.; Yang, F. J.

    2004-06-01

    PIXE is used for the non-destructive differentiation of early precious Chinese blue and white porcelain made in Yuan (AD 1206-1368), Ming (AD 1368-1644) Dynasty in Jingdezhen from imitations. Also, ancient celadon made in Song Dynasty (AD 960-1279) is identified by measuring the trace elements contained in the glazes.

  16. Non-destructive methods and means for quality control of structural products

    International Nuclear Information System (INIS)

    Dmitriev, V.V.

    1989-01-01

    Progressive non-destructive methods (acoustic, magnetic, radiation with liquid penetrants) and means of control of structural product quality, allowing to determine the state of products and structures not only immediately after their production but directly at the erected or reconstructed objects are described

  17. Material characterization and non destructive testing by ultrasounds; modelling, simulation and experimental validation; Caracterisation des materiaux et controle non destructif par ultrasons; modelisation, simulation et validation experimentale

    Energy Technology Data Exchange (ETDEWEB)

    Noroy-Nadal, M H

    2002-06-15

    This memory presents the research concerning the characterization of materials and the Non Destructive Testing (N.D.T) by ultrasonics. The different topics include three steps: modeling, computations and experimental validation. The studied materials concern mainly metals. The memory is divided in four parts. The first one concerns the characterization of materials versus temperature. The determination of the shear modulus G(T) is especially studied for a large temperature range, and around the melting point. The second part is devoted to studies by photothermal devices essentially focused on the modeling of the mechanical displacement and the stress field in coated materials. In this particular field of interest, applications concern either the mechanical characterization of the coating, the defect detection in the structure and finally the evaluation of the coating adhesion. The third section is dedicated to microstructural characterization using acoustic microscopy. The evaluation of crystallographic texture is especially approached, for metallic objects obtained by forming. Before concluding and pointing out some perspectives to this work, the last section concerns the introduction of optimization techniques, applied to the material characterization by acoustic microscopy. (author)

  18. The use of portable Non-Destructive Techniques for material decay characterisation of palaeontological Geosites

    Science.gov (United States)

    Gomez-Heras, Miguel; Ortega-Becerril, Jose A.; López-Martínez, Jerónimo; Oliva-Urcia, Belén; Maestro, Adolfo

    2017-04-01

    The conservation of both natural and cultural heritage is regarded as a priority for humankind and it is therefore recognised by the UNESCO since the Convention Concerning the Protection of the World Cultural and Natural Heritage in 1972. The International Union of Geological Sciences launched in 1995 in collaboration with UNESCO the Global Geosites programme to create an inventory of geological heritage sites. Although the conservation of Geosites may face different issues to those of stone-built cultural heritage, much could be learnt from techniques initially used to characterise weathering and material decay in stone-built cultural heritage. This is especially the case for portable Non-Destructive Techniques (NDT). Portable NDT allow characterising on-site the degree of material decay and are, therefore, a good way to assess the state of conservation of certain Geosites whose relevance lies on localised features. Geosites chosen for the outstanding occurrence of dinosaur ichnites, such as those in the Cameros Massif (north-western part of the Iberian Range, Spain), are a good example of this. This communication explores the potential of portable NDT to characterise the state of decay and susceptibility to further decay of dinosaur ichnites in the Cameros Massif. These techniques included: Ultrasound Pulse Velocity determination, Leeb hardness rebound test, colour determination by means of a spectrophotometer and thermal imaging obtained with an infrared camera. Results will show the potential of these techniques to characterise differential weathering patterns in both individual ichnites as well as on tracks in addition to assessing the possible effects of conservation strategies on the long-term preservation of the mentioned Geosites. Research funded by Madrid's Regional Government project Geomateriales 2 S2013/MIT-2914

  19. Non destructive assay of nuclear LEU spent fuels for burnup credit application

    International Nuclear Information System (INIS)

    Lebrun, A.; Bignan, G.

    2001-01-01

    Criticality safety analysis devoted to spent fuel storage and transportation has to be conservative in order to be sure no accident will ever happen. In the spent fuel storage field, the assumption of freshness has been used to achieve the conservative aspect of criticality safety procedures. Nevertheless, after being irradiated in a reactor core, the fuel elements have obviously lost part of their original reactivity. The concept of taking into account this reactivity loss in criticality safety analysis is known as Burnup credit. To be used, Burnup credit involves obtaining evidence of the reactivity loss with a Burnup measurement. Many non destructive assays (NDA) based on neutron as well as on gamma ray emissions are devoted to spent fuel characterization. Heavy nuclei that compose the fuels are modified during irradiation and cooling. Some of them emit neutrons spontaneously and the link to Burnup is a power link. As a result, burn-up determination with passive neutron measurement is extremely accurate. Some gamma emitters also have interesting properties in order to characterize spent fuels but the convenience of the gamma spectrometric methods is very dependent on characteristics of spent fuel. In addition, contrary to the neutron emission, the gamma signal is mostly representative of the peripheral rods of the fuels. Two devices based on neutron methods but combining different NDA methods which have been studied in the past are described in detail: 1. The PYTHON device is a combination of a passive neutron measurement, a collimated total gamma measurement, and an online depletion code. This device, which has been used in several Nuclear Power Plants in western Europe, gives the average Burnup within a 5% uncertainty and also the extremity Burnup, 2. The NAJA device is an automatic device that involves three nuclear methods and an online depletion code. It is designed to cover the whole fuel assembly panel (Active Neutron Interrogation, Passive Neutron

  20. The Combine Use of Semi-destructive and Non-destructive Methods for Tiled Floor Diagnostics

    Science.gov (United States)

    Štainbruch, Jakub; Bayer, Karol; Jiroušek, Tomáš; Červinka, Josef

    2017-04-01

    The combination of semi-destructive and non-destructive methods was used to asset the conditions of a tiled floor in the historical monument Minaret, situated in the park complex of the Chateau Lednice (South Moravia Region, Czech Republic), before its renovation. Another set of measurements is going to be performed after the conservation works are finished. (The comparison of the results collected during pre- and post-remediation measurements will be known and presented during the General Assembly meeting in Wien.) The diagnostic complex of methods consisted of photogrammetry, resistivity drilling and georadar. The survey was aimed to contour extends of air gaps beneath the tiles and the efficiency of filling gaps by means of injection, consolidation and gluing individual layers. The state chateau Lednice creates a part of the Lednice-Valtice precinct, a UNESCO landmark, and belongs among the greatest historic monuments in Southern Moravia. In the chateau park there is a romantic observation tower in the shape of a minaret built according to the plans of Josef Hardtmuth between 1798-1804. The Minaret has been extensively renovated for many decades including the restoration of mosaic floors from Venetian terazzo. During the static works of the Minaret building between 1999-2000, the mosaic floors in the rooms on the second floor were transferred and put back onto concrete slabs. Specifically, the floor was cut up to tiles and these were glued to square slabs which were then attached to the base plate. The transfer was not successful and the floor restoration was finalized between 2016-2017. The damage consisted in separating the original floor from the concrete plate which led to creating gaps. Furthermore, the layers of the floor were not compact. It was necessary to fill the gaps and consolidate and glue the layers. The existence of air gap between individual layers of the tiles and their degradation was detected using two different diagnostic methods: semi

  1. Sampling methods and non-destructive examination techniques for large radioactive waste packages

    International Nuclear Information System (INIS)

    Green, T.H.; Smith, D.L.; Burgoyne, K.E.; Maxwell, D.J.; Norris, G.H.; Billington, D.M.; Pipe, R.G.; Smith, J.E.; Inman, C.M.

    1992-01-01

    Progress is reported on work undertaken to evaluate quality checking methods for radioactive wastes. A sampling rig was designed, fabricated and used to develop techniques for the destructive sampling of cemented simulant waste using remotely operated equipment. An engineered system for the containment of cooling water was designed and manufactured and successfully demonstrated with the drum and coring equipment mounted in both vertical and horizontal orientations. The preferred in-cell orientation was found to be with the drum and coring machinery mounted in a horizontal position. Small powdered samples can be taken from cemented homogeneous waste cores using a hollow drill/vacuum section technique with the preferred subsampling technique being to discard the outer 10 mm layer to obtain a representative sample of the cement core. Cement blends can be dissolved using fusion techniques and the resulting solutions are stable to gelling for periods in excess of one year. Although hydrochloric acid and nitric acid are promising solvents for dissolution of cement blends, the resultant solutions tend to form silicic acid gels. An estimate of the beta-emitter content of cemented waste packages can be obtained by a combination of non-destructive and destructive techniques. The errors will probably be in excess of +/-60 % at the 95 % confidence level. Real-time X-ray video-imaging techniques have been used to analyse drums of uncompressed, hand-compressed, in-drum compacted and high-force compacted (i.e. supercompacted) simulant waste. The results have confirmed the applicability of this technique for NDT of low-level waste. 8 refs., 12 figs., 3 tabs

  2. Non-destructive determination of photosynthetic rates of eight varieties of cassava (Manihot esculenta Crantz)

    International Nuclear Information System (INIS)

    Amadu, A. A.

    2015-07-01

    Cassava is an important food security crop in Ghana and in the wake of climate change there is the need for plant breeders to develop varieties with high water use efficiency as well as high photosynthetic rate in order to adapt to the changing climate. Thus, the photosynthetic rates of eight cassava (Manihot esculenta Crantz) varieties were non-destructively evaluated using photosynthesis meter miniPPM300, from June 2014 to May 2015, with the aim of selecting varieties with high photosynthetic rate for future breeding programmes. The mean photosynthetic rate varied depending on the varieties ranging from 40.5 μmol/m 2 s in Bosom nsia to 45.2 μmol/m 2 s in Gbenze. However, the presence of African cassava mosaic disease (ACMD) marginally reduced the photosynthetic rate to below 40 μmol/m 2 s in all the varieties. Similarly, the chlorophyll content index (CCI) as measured by chlorophyll meter and spectrophotometer also varied from one variety to another; it was low in Nandom (17.9 CCI) and high in Gbenze (39.93 CCI) using the chlorophyll meter and was also reduced by the presence of the virus. Although, the stomatal density varied between the varieties it was not influenced by virus infection. Furthermore, ACMD significantly decreased the leaf surface area from 5705.8mm 2 in uninfected plants to 1251.6mm 2 in infected plants, consequently reducing the number and weight of tubers produced 11 month after planting (MAP). Molecular Testing of the viruses using virus specific primers JSP001/JSP002, EAB555F/EAB555R, EACMV1e/EACMV2e at 6 MAP and 11MAP, showed that the mosaic symptoms were caused by African Cassava Mosaic virus disease. Cassava varieties with high photosynthetic efficiency and low virus infection can be used in cassava improvement programmes in Ghana. (au)

  3. Elemental chemical characterization of coins of currently national circulating by X-ray fluorescence non-destructive techniques

    International Nuclear Information System (INIS)

    Olivera, Paula; Calcina, Esly

    2013-01-01

    Given the frequent counterfeit bills and coins is proposed in this paper to identify the elemental chemical composition; for now, the current official currencies circulating in our country, by Energy Dispersive X-ray Fluorescence technique and non-destructive methods, the goal is to compare with the false and establish the differences that could help identify them immediately taking advantage of the fast response of this technique. Have been identified the elements Al in the coins of 5 cents, Cu and Zn for 10 and 20 cents, Ni, Cu and Zn for 50 cents and a Un Nuevo Sol and Cr, Cu and Zn 2 coins 5 Nuevos Soles. 57 Peruvian coins of different production years and a counterfeit coin of 5 Nuevos Soles have been analyzed, finding Cu and Zn in central part and Fe in circulating edge ring, looking for this one the absence of Ni and Cr, which in the official currency was found. (authors).

  4. NUMERICAL MODELLING AS NON-DESTRUCTIVE METHOD FOR THE ANALYSES AND DIAGNOSIS OF STONE STRUCTURES: MODELS AND POSSIBILITIES

    Directory of Open Access Journals (Sweden)

    Nataša Štambuk-Cvitanović

    1999-12-01

    Full Text Available Assuming the necessity of analysis, diagnosis and preservation of existing valuable stone masonry structures and ancient monuments in today European urban cores, numerical modelling become an efficient tool for the structural behaviour investigation. It should be supported by experimentally found input data and taken as a part of general combined approach, particularly non-destructive techniques on the structure/model within it. For the structures or their detail which may require more complex analyses three numerical models based upon finite elements technique are suggested: (1 standard linear model; (2 linear model with contact (interface elements; and (3 non-linear elasto-plastic and orthotropic model. The applicability of these models depend upon the accuracy of the approach or type of the problem, and will be presented on some characteristic samples.

  5. Interim report task 3: immobilization process/equipment testing - task 3.4: non-destructive evaluation appendices part 2 of 2 to Lawrence Livermore National Laboratory under contract b345772

    International Nuclear Information System (INIS)

    Stewart, M W A; Vance, E R; Day, R A; Lumpkin, G R

    2000-01-01

    Nine appendices are included: Appendix A - Scanning electron micrographs, energy dispersive x-ray spectrometry image analysis and x-ray diffraction results for samples of composition B1-2 - Th/U-doped baseline ceramic; Appendix B - Scanning electron micrographs, energy dispersive x-ray spectrometry image analysis and x-ray diffraction results for samples of composition B1-4 - Th/U-doped baseline + impurities ceramic; Appendix C - Scanning electron micrographs, energy dispersive x-ray spectrometry image analysis and x-ray diffraction results for samples of composition B1-10 - Th/U-doped zirconolite-rich ceramic; Appendix D - Scanning electron micrographs, energy dispersive x-ray spectrometry image analysis and x-ray diffraction results for samples of composition B1-12 - Th/U-doped brannerite-rich ceramic; Appendix E - Scanning electron micrographs, energy dispersive x-ray spectrometry image analysis and x-ray diffraction results for samples of composition B1-14 - Th/U-doped nominally 10 % perovskite ceramic; Appendix F - Scanning electron micrographs, energy dispersive x-ray spectrometry image analysis and x-ray diffraction results for samples of composition B1-16 - Th/U-doped ∼ 10 % phosphate-doped ceramic;Appendix G - Scanning electron micrographs, energy dispersive x-ray spectrometry image analysis and x-ray diffraction results for samples of composition B1-1 - Pu/U-doped baseline ceramic ;Appendix H - Scanning electron micrographs, energy dispersive x-ray spectrometry image analysis and x-ray diffraction results for samples of composition A-7 and B3-13 - Pu/U-doped baseline + impurities ceramics; and, Appendix I - Scanning electron micrographs, energy dispersive x-ray spectrometry image analysis and x-ray diffraction results for samples of composition B1-13 - Pu/U-doped nominally 10% perovskite ceramic

  6. Non-destructive testing process by Eddy current and device using a multifrequency excitation and enabling the elimination of parameters

    International Nuclear Information System (INIS)

    Pigeon, Michel.

    1975-01-01

    A non-destructive testing process by Eddy current is described, in which a probe is moved near the part to be tested; the probe is fed with an excitation current at n different frequencies and the components at each of the n frequencies are analysed in the measurement signal delivered by the probe. It is characterised in that its resistive part X in phase with the excitation current at the same frequency and its reactive part Y in quadrature are determined for each components; parts X 1 and Y 1 of a component at one frequency are modified so that they coincide, in the area corresponding to the defect of a parameter to be eliminated, with parts X 2 and Y 2 of a component at another frequency; parts X 1 and Y 1 thus modified are deducted from parts X 2 and Y 2 and this provides a new set of resistive and reative parts X' and Y', making it possible to obtain a representative curve for which the contribution of the unwanted parameter has been eliminated [fr

  7. Using photons for non-destructive testing of thick materials: a simulation study

    International Nuclear Information System (INIS)

    Oishi, Ryutaro; Nagai, Hideki

    2004-01-01

    Positron annihilation spectroscopy using positron annihilation lifetimes has been successfully studied for non-destructive material testing. A positron inspection probe is annihilated with an electron at the front of the material. The application of the positron lifetime method is restricted to thin materials. A photon with energy exceeding 1.02MeV reaches the materials' depth and can produce a positron through γ-conversion. Such a photon-produced positron is a probe for thick materials. The probability of γ-conversion, however, is low. The method of photon-produced positron annihilation lifetimes is restricted by statistics. We estimated the expected number of events and the statistical uncertainties of the lifetime measurements for a non-destructive test, such as an SUS316 fatigue monitoring, to construct a fatigue-monitoring system

  8. PANDA-A novel instrument for non-destructive sample analysis

    International Nuclear Information System (INIS)

    Turunen, Jani; Peraejaervi, Kari; Poellaenen, Roy; Toivonen, Harri

    2010-01-01

    An instrument known as PANDA (Particles And Non-Destructive Analysis) for non-destructive sample analysis has been designed and built at the Finnish Radiation and Nuclear Safety Authority (STUK). In PANDA the measurement techniques and instruments designed for the basic research are applied to the analysis of environmental samples. PANDA has two vacuum chambers, one for loading samples and the other for measurements. In the measurement chamber there are two individual measurement positions. Currently the first one hosts an HPGe gamma detector and a position-sensitive alpha detector. The second measurement position is intended for precise characterization of found particles. PANDA's data are recorded in event mode and events are timestamped. In the present article the technical design of PANDA is presented in detail. In addition, its performance using depleted uranium particles and an air filter is demonstrated.

  9. Homogeneity test of the ceramic reference materials for non-destructive quantitative

    International Nuclear Information System (INIS)

    Li Li; Fong Songlin; Zhu Jihao; Feng Xiangqian; Xie Guoxi; Yan Lingtong

    2010-01-01

    In order to study elemental composition of ancient porcelain samples, we developed a set of ceramic reference materials for non-destructive quantitative analysis. In this paper,homogeneity of Al, Si, K, Ca, Ti, Mn and Fe contents in the ceramic reference materials is investigated by EDXRF. The F test and the relative standard deviation are used to treat the normalized net counts by SPSS. The results show that apart from the DY2 and JDZ4 reference materials, to which further investigation would be needed, homogeneity of the DH, DY3, JDZ3, JDZ6, GY1, RY1, LQ4, YJ1, YY2 and JY2 meets the requirements of ceramic reference materials for non-destructive quantitative analysis. (authors)

  10. Non-destructive characterization of the materials for future nuclear reactors

    International Nuclear Information System (INIS)

    Snopek, J.; Slugen, V.

    2016-01-01

    For our experiments, we have used Barkhausen noise technique, which is powerful non-destructive method for monitoring stresses in lattices of magnetic materials. We have also used PAS, which is powerful non-destructive method for diagnosing vacancy defects in variable materials. We researched some ODS steels, which are primarily going to be used as fuel cladding or reactor pressure vessel internal components. This thesis describes the behavior of the microstructure of the oxide dispersion strengthened steels at intermediate temperature. Two, in principle, different techniques were used for the characterization of the microstructure of the oxide dispersion strengthened steels thermally aged at 475 grad C and 650 grad C. Both techniques, namely Positron annihilation lifetime spectroscopy (PAS) and Barkhausen noise (BN) measurements are very sensitive to metallurgical modifications and presence of nano-sized imperfections in the crystal lattice. Precipitation of the nano-sized α' phases shift the Barkhausen noise signal. (authors)

  11. Study on personnel qualification for non-destructive tests in the field of reactor safety

    International Nuclear Information System (INIS)

    Trusch, K.; Wuestenberg, H.

    1977-01-01

    The training system for non-destructive testing is described, and the available and necessary personnel is analyzed; the personnel required for reactor safety problems is treated separately. On this basis, the subjects discussed in the study - available personnel, personnel requirements, training, training requirements, and suggestions for realisation - are treated in a general manner to begin with and afterwards with a view to specific problems of reactor safety. The methods employed are adapted to this situation. To obtain the necessary empirical data, questionnaires were set up and distributed, and experts in selected business companies and institutions were interviewed who work in the field of reactor safety or do same training in non-destructive testing. (orig.) [de

  12. Analysis of a Single Hot Particle by a Combination of Non-Destructive Analytical Methods

    Energy Technology Data Exchange (ETDEWEB)

    Hrnecek, E.; Aldave de las Heras, L.; Bielewski, M.; Carlos, R. [EC JRC Institute for Transuranium Elements, Karlsruhe (Germany); Betti, M. [IAEA Environment Laboratories (Monaco)

    2013-07-15

    Radioactive substances are often released to the environment in the form of particles. The determination of their chemical composition is a key factor in the overall understanding of their environmental behaviour. The aim of this investigation was to identify the source of one single radioactive particle collected from the Irish Sea and to understand its fate in the environment and in human body fluids. As the particle was supposed to be analysed for its dissolution behaviour in humans after ingestion, it was necessary to gain as much information as possible beforehand on the chemical and isotopic composition by means of non-destructive analysis such as SEM, SIMS, {mu}-XRF and {mu}-XANES. In this paper, an overview of the different non-destructive methods applied for the analysis of this particle and the results obtained is given. Additionally, the dissolution behaviour in human digestive solutions is discussed. (author)

  13. Human and organisational factors influencing the reliability of non-destructive testing. An international literary survey

    International Nuclear Information System (INIS)

    Kettunen, J.; Norros, L.

    1996-04-01

    The aim of the study is to chart human and organisational factors influencing the reliability of non-destructive testing (NDT). The emphasis will be in ultrasonic testing (UT) and in the planning and execution of in-service inspections during nuclear power plant maintenance outages. Being a literary survey this study is mainly based on the foreign and domestic research available on the topic. In consequence, the results presented in this report reflect the ideas of international research community. In addition to this, Finnish nuclear power plant operators (Imatran Voima Oy and Teollisuuden Voima Oy), independent inspection organisations and the Finnish Centre for Radiation and Nuclear Safety have provided us with valuable information on NDT theory and practice. Especially, a kind of 'big picture' of non-destructive testing has been pursued in the study. (6 figs., 2 tabs.)

  14. Non-destructive control at the Kozloduy NPP; Nerazrushayushchij kontrol` v AEhS `Kozloduy`

    Energy Technology Data Exchange (ETDEWEB)

    Mikhovsky, M [Institute of Mechanics, Bulgarian Academy of Sciences, Sofia (Bulgaria); Skordev, A [SIME-CONTROL, Sofia (Bulgaria); Nichev, V; Tsokov, P; Popova, N [Kombinat Atomna Energetika, Kozloduj (Bulgaria)

    1996-12-31

    A program for technical diagnostics using non-destructive methods is being carried out at the Kozloduy NPP. The main target is to test mechanical equipment integrity (metal control, mechanical stress control, etc.) as well as electrical equipment. Computer methods and simulation are widely used in program implementation. Non-destructive testing is based on methods involving optical, radiation, ultrasonic and magnetic processes. Control procedures are standardised in special technological documents and one of them is described as an example. It refers to ultrasonic control of the austenitic steel welds of the WWER-440 piping system (DU-500). Graphic representing the microstructure of the welds, the distribution of surface ultrasonic wave and the longitudinal and vertically polarised perpendicular waves are presented. 6 refs. 8 figs.

  15. 234Th distributions in coastal and open ocean waters by non-destructive β-counting

    International Nuclear Information System (INIS)

    Miller, L.A.; Svaeren, I.

    2003-01-01

    Non-destructive β-counting analyses of particulate and dissolved 234 Th activities in seawater are simpler but no less precise than traditional radioanalytical methods. The inherent accuracy limitations of the non-destructive β-counting method, particularly in samples likely to be contaminated with anthropogenic nuclides, are alleviated by recounting the samples over several half-lives and fitting the counting data to the 234 Th decay curve. Precision (including accuracy, estimated at an average of 3%) is better than 10% for particulate or 5% for dissolved samples. Thorium-234 distributions in the Skagerrak indicated a vigorous, presumably biological, particle export from the surface waters, and while bottom sediment resuspension was not an effective export mechanism, it did strip thorium from the dissolved phase. In the Greenland and Norwegian Seas, we saw clear evidence of particulate export from the surface waters, but at 75 m, total 234 Th activities were generally in equilibrium with 238 U. (author)

  16. Quality parameters of mango and potential of non-destructive techniques for their measurement- a review

    International Nuclear Information System (INIS)

    Jha, S.N.; Narsaiah, K.; Sharma, A.D.; Singh, M.; Bansal, S.; Kumar, R.

    2010-01-01

    The king of fruits 'Mango' (Mangifera indica L.) is very nutritious and rich in carotenes. India produces about 50% of the total world's mango. Many researchers have reported the maturity indices and quality parameters for determination of harvesting time and eating quality. The methods currently used for determination of quality of mango are mostly based on the biochemical analysis, which leads to destruction of the fruits. Numerous works are being carried out to explore some non-destructive methods such as Near Infrared (NIR), Nuclear Magnetic Resonance (NMR), X-ray and Computed Tomography (CT), electronic nose, machine vision and ultrasound for quality determination of fruits. This paper deals with some recent work reported on quality parameters, harvesting and post-harvest treatments in relation to quality of mango fruits and reviews on some of the potential non-destructive techniques that can be explored for quality determination of mango cultivars. (author)

  17. Application of lock-in thermography non destructive technique to CFC armoured plasma facing components

    International Nuclear Information System (INIS)

    Escourbiac, F.; Constans, S.; Courtois, X.; Durocher, A.

    2007-01-01

    A non destructive testing technique - so called modulated photothermal thermography or lock-in thermography - has been set-up for plasma facing components examination. Reliable measurements of phase contrast were obtained on 8 mm carbon fiber composite (CFC) armoured W7-X divertor component with calibrated flaws. A 3D finite element analysis allowed the correlation of the measured phase contrast and showed that a 4 mm strip flaw can be detected at the CFC/copper interface

  18. Application of the Positron Lifetime Spectroscopy as Method of Non-Destructive Testing

    OpenAIRE

    Somieski , B.; Krause-Rehberg , R.; Salz , H.; Meyendorf , N.

    1995-01-01

    In order to show the suitability of the Positron Lifetime Spectroscopy (POLIS) as a method of Non-Destructive Testing (NDT) several iron alloys / steels were mechanically damaged (tensile stress, fatigue, creeping). The positron annihilation parameters show clear changes during all applied kinds of damage. After tensile stress as well as after creeping a homogeneous distribution of damage in the sample was detected. During the very first elastic cycle of a fatigue experiment, a change in the ...

  19. Contributions to ultrasounds applications in non-destructive tests on materials used in nuclear technologies

    International Nuclear Information System (INIS)

    Stanica, V.

    1979-01-01

    The problems expounded in the paper, besides servjng the practical purpose generated by the need to perform quality tests on fuel element compounds by means of the ultrasounds method, are also interesting to ultrasounds non-destructive tests applied in all industry branches as they assert the necessity of passing from manual to automation tests carried out by installations which should record the signals caused by failures, both to increase the productivjty and especially to transform it into an objective, effective test. (author)

  20. Non destructive testing: a unique R and D platform in Europe in Saclay

    International Nuclear Information System (INIS)

    On, Dinhill

    2012-01-01

    This article presents the 'Gerim 2' R and D platform which is dedicated to non destructive testing (NDT) in the field of information and communication technology (ICT). It is the first of its kind in Europe and is located in Saclay. It possesses a wide spectrum of NDT technologies: contactless ultrasonic testing, ultrasonic adaptive imagery, automated and multi-resolution X-ray tomography, etc. Founded by public research institutions and industrial partners, this centre is dedicated only to research and development

  1. Non-destructive control of cladding thickness of fuel elements for research reactors

    Energy Technology Data Exchange (ETDEWEB)

    Karlov, Y.; Zhukov, Y.; Chashchin, S

    1997-07-01

    The control method of fuel elements for research reactors by means of measuring beta particles back scattering made it possible to perform complete automatic non-destructive control of internal and external claddings at our plant. This control gives high guarantees of the fuel element correspondence to the requirements. The method can be used to control the three-layer items of different geometry, including plates. (author)

  2. Quality assurance and non-destructive testing for nuclear power plants

    International Nuclear Information System (INIS)

    Manlucu, F.A.

    1991-01-01

    This article discussed the quality assurance requirements which have been extensively applied in plant design, fabrication, construction and operation and has played a major role in the excellent safety record of nuclear power plants. The application of non-destructive testing techniques, plays a very important role during the in-service inspection (ISI) in order to prevent dangerous accident and to assure continuous safe operation of nuclear power plants. (IMA). 12 refs

  3. A Non-destructive and Continuous Measurement of Gelatinization of Rice in Rice Cooking Process

    OpenAIRE

    Hagura, Yoshio; Suzuki, Kanichi

    2002-01-01

    A non-destructive and continuous method to measure gelatinization of rice samples in a rice-water system during rice cooking process was examined. An aluminum pot and a lid of a rice cooker were used as two electrode plates, and changes in dielectric properties (capacitance : C, and dielectric dissipation factor : tan δ) of the samples in the rice cooking process were measured by a capacitance meter. Differential scanning calorimetry (DSC) was used to measure gelatinization enthalpy and to de...

  4. Method and equipment for the non-destructive analysis of nuclear fuels

    International Nuclear Information System (INIS)

    Michaelis, W.

    1975-01-01

    This is a method for the non-destructive analysis of the content of fissile isotopes in nuclear fuels. In this analysis a neutron beam is directed to the nuclear fuel which is to be analysed. The beam penetrates the nuclear fuel, thus causing a secondany radiation by nuclear reactions which reaches a space directly surrounding the nuclear fuel and is measuned there. (orig./UA) [de

  5. Questions of qualification exam for non-destructive testing and materials science - the first level

    International Nuclear Information System (INIS)

    Shaaban, H.I.; Addarwish, J.M.A.

    2013-01-01

    The book contains seven chapters: Questions of qualification for magnetic particles testing method - Questions of qualification for liquids penetrant testing method - Questions of qualification for the visual inspection testing method - Questions of qualification for the ultrasonic testing method - Questions of qualification for the eddy current testing method - Questions of rehabilitation for industrial radiographic testing method - Qualification questions about materials science and manufacturing defects of castings and welding and comparison between non-destructive testing methods.

  6. Non-destructive testing. The current state of standards and qualification and certification for leak testing

    International Nuclear Information System (INIS)

    Tamura, Yoshikazu

    2011-01-01

    Domestic standards of the leak testing are enacted as one of Japan Industrial Standards. The conformity is advanced between these domestic standards and ISO (International Organization for Standardization) standard. ISO9712 (Non-destructive testing-Qualification and certification of personnel) was revised to include the leak testing of qualification and certification in 2005. The preparation working group of qualification and certification for leak testing is planning start aiming at the system in one and a half years. (author)

  7. Automatic non-destructive system for quality assurance of welded elements in the aircraft industry

    Science.gov (United States)

    Chady, Tomasz; Waszczuk, Paweł; Szydłowski, Michał; Szwagiel, Mariusz

    2018-04-01

    Flaws that might be a result of the welding process have to be detected, in order to assure high quality thus reliability of elements exploited in aircraft industry. Currently the inspection stage is conducted manually by a qualified workforce. There are no commercially available systems that could support or replace humans in the flaw detection process. In this paper authors present a novel non-destructive system developed for quality assurance purposes of welded elements utilized in the aircraft industry.

  8. Direct non-destructive observation of bulk nucleation in 30% deformed aluminum

    DEFF Research Database (Denmark)

    West, Stine; Schmidt, Søren; Sørensen, Henning Osholm

    2009-01-01

    A 30% deformed aluminum sample was mapped non-destructively using three-dimensional X-ray diffraction (3DXRD) before and after annealing to nucleation of recrystallization. Nuclei appeared in the bulk of the sample. Their positions and volumes were determined, and the crystallographic orientations...... were compared with the orientations of the deformed grains. It was found that nuclei with new orientations can form and their orientations have been related to the dislocation structure in the deformed grains....

  9. Coded excitation for infrared non-destructive testing of carbon fiber reinforced plastics.

    Science.gov (United States)

    Mulaveesala, Ravibabu; Venkata Ghali, Subbarao

    2011-05-01

    This paper proposes a Barker coded excitation for defect detection using infrared non-destructive testing. Capability of the proposed excitation scheme is highlighted with recently introduced correlation based post processing approach and compared with the existing phase based analysis by taking the signal to noise ratio into consideration. Applicability of the proposed scheme has been experimentally validated on a carbon fiber reinforced plastic specimen containing flat bottom holes located at different depths.

  10. Multispectral UV imaging for fast and non-destructive quality control of chemical and physical tablet attributes

    DEFF Research Database (Denmark)

    Klukkert, Marten; Wu, Jian X; Rantanen, Jukka

    2016-01-01

    Monitoring of tablet quality attributes in direct vicinity of the production process requires analytical techniques that allow fast, non-destructive, and accurate tablet characterization. The overall objective of this study was to investigate the applicability of multispectral UV imaging...... as a reliable, rapid technique for estimation of the tablet API content and tablet hardness, as well as determination of tablet intactness and the tablet surface density profile. One of the aims was to establish an image analysis approach based on multivariate image analysis and pattern recognition to evaluate...... the potential of UV imaging for automatized quality control of tablets with respect to their intactness and surface density profile. Various tablets of different composition and different quality regarding their API content, radial tensile strength, intactness, and surface density profile were prepared using...

  11. Development of non-destructive Young's modulus measurement techniques in non-oriented CeF$_{3}$ crystals

    CERN Document Server

    Pietroni, P; Lebeau, M; Majni, G; Rinaldi, D

    2005-01-01

    For a reliable mechanical assembly of scintillating crystals for the application to radiographic systems such as Positron Emission Tomographer (PET) and high-energy physics calorimeters (e.g. in CMS at CERN LHC), the evaluation of the monocrystal elastic constant (Young's modulus) is needed. Its knowledge is also essential in the photoelastic analysis for the determination of residual stresses. In this work non-destructive techniques based on elastic wave propagation are tested. They differ in the mechanical excitation device: instrumented hammer, traditional ultrasonic probes and laser- generated ultrasound. We have analysed three non-oriented cerium fluoride crystal samples produced for scintillation applications. Finally, we have validated the experimental results comparing them with the elastic constant calculated by using the stiffness matrix.

  12. Non-Destructive Inspection of Impact Damage in Composite Aircraft Panels by Ultrasonic Guided Waves and Statistical Processing

    Directory of Open Access Journals (Sweden)

    Margherita Capriotti

    2017-06-01

    Full Text Available This paper discusses a non-destructive evaluation (NDE technique for the detection of damage in composite aircraft structures following high energy wide area blunt impact (HEWABI from ground service equipment (GSE, such as heavy cargo loaders and other heavy equipment. The test structures typically include skin, co-cured stringers, and C-frames that are bolt-connected onto the skin with shear ties. The inspection exploits the waveguide geometry of these structures by utilizing ultrasonic guided waves and a line scan approach. Both a contact prototype and a non-contact prototype were developed and tested on realistic test panels subjected to impact in the laboratory. The results are presented in terms of receiver operating characteristic curves that show excellent probability of detection with low false alarm rates for defects located in the panel skin and stringers.

  13. Non-Destructive Inspection of Impact Damage in Composite Aircraft Panels by Ultrasonic Guided Waves and Statistical Processing.

    Science.gov (United States)

    Capriotti, Margherita; Kim, Hyungsuk E; Scalea, Francesco Lanza di; Kim, Hyonny

    2017-06-04

    This paper discusses a non-destructive evaluation (NDE) technique for the detection of damage in composite aircraft structures following high energy wide area blunt impact (HEWABI) from ground service equipment (GSE), such as heavy cargo loaders and other heavy equipment. The test structures typically include skin, co-cured stringers, and C-frames that are bolt-connected onto the skin with shear ties. The inspection exploits the waveguide geometry of these structures by utilizing ultrasonic guided waves and a line scan approach. Both a contact prototype and a non-contact prototype were developed and tested on realistic test panels subjected to impact in the laboratory. The results are presented in terms of receiver operating characteristic curves that show excellent probability of detection with low false alarm rates for defects located in the panel skin and stringers.

  14. Development of non-destructive Young's modulus measurement techniques in non-oriented CeF3 crystals

    International Nuclear Information System (INIS)

    Pietroni, P.; Paone, N.; Lebeau, M.; Majni, G.; Rinaldi, D.

    2005-01-01

    For a reliable mechanical assembly of scintillating crystals for the application to radiographic systems such as Positron Emission Tomographer (PET) and high-energy physics calorimeters (e.g. in CMS at CERN LHC), the evaluation of the monocrystal elastic constant (Young's modulus) is needed. Its knowledge is also essential in the photoelastic analysis for the determination of residual stresses. In this work non-destructive techniques based on elastic wave propagation are tested. They differ in the mechanical excitation device: instrumented hammer, traditional ultrasonic probes and laser-generated ultrasound. We have analysed three non-oriented cerium fluoride crystal samples produced for scintillation applications. Finally, we have validated the experimental results comparing them with the elastic constant calculated by using the stiffness matrix

  15. Specific features of the determination of the pellet-cladding gap of the fuel rods by non-destructive method

    International Nuclear Information System (INIS)

    Amosov, S.V.; Pavlov, S.V.

    2002-01-01

    This report describes the specific features of determining the pellet-cladding gap of the irradiated WWER-1000 fuel rods by nondestructive method. The method is based on the elastic radial deformation of the cladding up to its contact with the fuel. The value of deformation of cladding till its contacting fuel when radial force changes from F max to 0 is proposed as a measuring parameter for determination of the diametrical gap. Because of the features of compression method, the obtained gap value is not analog of the gap measured on micrograph of the fuel rod cross-section. Results of metallography can provide only qualitative evaluation of its method efficiency. Comparison of the values determined by non-destructive method and metallography for WWER-1000 fuel rods with burnup from 25 to 55 MWd/kg U testified that the results of compression method can be used as a low estimate of the pellet-cladding gap value. (author)

  16. Reliability of non-destructive test techniques in the inspection of pipelines used in the oil industry

    International Nuclear Information System (INIS)

    Carvalho, A.A.; Rebello, J.M.A.; Souza, M.P.V.; Sagrilo, L.V.S.; Soares, S.D.

    2008-01-01

    The aim of this work is to evaluate the reliability of non-destructive test (NDT) techniques for the inspection of pipeline welds employed in the petroleum industry. Radiography, manual and automatic ultrasonic techniques using pulse-echo and time of flight diffraction (TOFD) were employed. Three classes of defects were analyzed: lack of penetration (LP), lack of fusion (LF) and undercut (UC). The tests were carried out on specimen made from pipelines containing defects, which had been artificially inserted on laying the weld bead. The results showed the superiority of the automatic ultrasonic tests for defect detection compared with the manual ultrasonic and radiographic tests. Additionally, artificial neural networks (ANN) were used in the detection and automatic classification of the defects

  17. Characterization of legacy low level waste at the Svafo facility using gamma non-destructive assay and X-ray non-destructive examination techniques - 59289

    International Nuclear Information System (INIS)

    Halliwell, Stephen; Mottershead, Gary; Ekenborg, Fredrik

    2012-01-01

    Document available in abstract form only. Full text of publication follows: Over 7000 drums containing legacy, low level radioactive waste are stored at four SVAFO facilities on the Studsvik site which is located near Nykoeping, Sweden. The vast majority of the waste drums (>6000) were produced between 1969 and 1979. The remainder were produced from 1980 onwards. Characterization of the waste was achieved using a combination of non-destructive techniques via mobile equipment located in the AU building at the Studsvik site. Each drum was weighed and a dose rate measurement was recorded. Gamma spectroscopy was used to measure and estimate radionuclide content. Real time xray examination was performed to identify such prohibited items as free liquids. (authors)

  18. Multi-energy radiography for non-destructive testing of materials and structures for civil engineering

    International Nuclear Information System (INIS)

    Naydenov, S.V.; Ryzhikov, V.

    2003-01-01

    Development of the technological base of modern non-destructive testing require new methods allowing determination of specified properties of materials and structures under study. A traditional direction of works is determination of internal spatial structure of the materials and other constructions. Restoration of this geometrical information is of qualitative character, though provides for determination of technical parameters affecting physical properties of the system. Reconstruction of the chemical composition, density and atomic structure (effective atomic number) is an inverse problem of direct quantitative determination of properties starting from data obtained by means of non-destructive testing. In the present work, we propose the use of multi-energy radiography for reconstruction of the substantial structure of materials. In framework of simple theoretical model it is shown that, using multi-channel absorption of X-rays, important substantial characteristics of materials and multi-compound structures can be readily reconstructed. The results obtained show high efficiency of 2-energy radiography for non-destructive testing in civil engineering

  19. Current developments in mechanized non-destructive testing in nuclear power plants

    International Nuclear Information System (INIS)

    Zeilinger, R.

    2008-01-01

    Nuclear power plants require frequent in-service activities to be carried out conscientiously in areas potentially hazardous to human operators (because of the associated radiation exposure), such as non-destructive testing of pressurized components of the steam system. Locations to be inspected in this way include the reactor pressure vessel, core internals, steam generators, pressurizers, and pipes. The codes to be used as a basis of these inspections demand high absolute positioning and repeating accuracy. These requirements can be met by mechanized test procedures. Accordingly, many new applications of, mostly mobile, robots have been developed over the past few years. The innovative control and sensor systems for stationary and mobile robots now on the market offer a potential for economic application in a large number of new areas in inspection, maintenance and service in nuclear power plants. More progress in this area is expected for the near future. Areva NP founded the new NDT Center, NETEC (Non-destructive Examination Technical Center), as a global technical center for non-destructive materials testing. NETEC is to advance research and development of all basic NDT technologies, robotics included. For many years, intelligeNDT has offered solutions and products for a variety of inspection and testing purposes and locations in nuclear power plants and is involved in continuous further development of the experience collected in nuclear power plants on the spot. (orig.)

  20. Fatigue crack growth monitoring: fracture mechanics and non-destructive testing requirements

    International Nuclear Information System (INIS)

    Williams, S.; Mudge, P.J.

    1982-01-01

    If a fatigue crack is found in a component in service, two options exist if plant integrity is to be maintained: first, the plant can be removed from service and repairs effected or replacements fitted; second, the growth of the crack can be monitored non-destructively until it is either considered to be too large to tolerate, in which case it must be repaired, or until a convenient down time when repair can be effected. The second option has obvious benefits for plant operators, but in such a situation it is essential that errors of the non-destructive estimate of defect size, which will undoubtedly exist, and uncertainties in the fatigue crack growth laws in operation must both be allowed for if a safe extension of service life is to be obtained; i.e. without failure by leakage or fast fracture arising from the fatigue crack. This paper analyses the accuracy required of non-destructive crack measurement techniques to permit the safe monitoring of crack growth by periodic inspection. It then demonstrates that it is possible to achieve adequate crack monitoring using conventional ultrasonic techniques. (author)

  1. Delayed Gamma-Ray Spectroscopy for Non-Destructive Assay of Nuclear Materials

    International Nuclear Information System (INIS)

    Ludewigt, Bernhard; Mozin, Vladimir; Campbell, Luke; Favalli, Andrea; Hunt, Alan W.; Reedy, Edward T.E.; Seipel, Heather

    2015-01-01

    High-energy, beta-delayed gamma-ray spectroscopy is a potential, non-destructive assay techniques for the independent verification of declared quantities of special nuclear materials at key stages of the fuel cycle and for directly assaying nuclear material inventories for spent fuel handling, interim storage, reprocessing facilities, repository sites, and final disposal. Other potential applications include determination of MOX fuel composition, characterization of nuclear waste packages, and challenges in homeland security and arms control verification. Experimental measurements were performed to evaluate fission fragment yields, to test methods for determining isotopic fractions, and to benchmark the modeling code package. Experimental measurement campaigns were carried out at the IAC using a photo-neutron source and at OSU using a thermal neutron beam from the TRIGA reactor to characterize the emission of high-energy delayed gamma rays from 235 U, 239 Pu, and 241 Pu targets following neutron induced fission. Data were collected for pure and combined targets for several irradiation/spectroscopy cycle times ranging from 10/10 seconds to 15/30 minutes.The delayed gamma-ray signature of 241 Pu, a significant fissile constituent in spent fuel, was measured and compared to 239 Pu. The 241 Pu/ 239 Pu ratios varied between 0.5 and 1.2 for ten prominent lines in the 2700-3600 keV energy range. Such significant differences in relative peak intensities make it possible to determine relative fractions of these isotopes in a mixed sample. A method for determining fission product yields by fitting the energy and time dependence of the delayed gamma-ray emission was developed and demonstrated on a limited 235 U data set. De-convolution methods for determining fissile fractions were developed and tested on the experimental data. The use of high count-rate LaBr 3 detectors was investigated as a potential alternative to HPGe detectors. Modeling capabilities were added to an

  2. Diagnosis of structures. Practical applications and future tasks of non-destructive testing; Bauwerksdiagnose. Praktische Anwendungen Zerstoerungsfreier Pruefungen und Zukunftsaufgaben

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2016-05-01

    The preservation of buildings is increasingly becoming the focus of public attention, not least because of traffic restrictions on roads and bridges, which have grown significantly in recent years. Here the building inspectors is of particular importance to assess the causes and extent of repair work as required. This non-destructive testing in the construction industry (ZfPBau method) have become indispensable. However, very few rules are found in construction in contrast to the classical industrial NDT. Also the offers to the qualification of examiners are low, but but in the meantime available. The symposium takes this conflict area to less regulation and a high demand of professional services. One of tasks of the future is the reliable evaluation of existing structures. The foundation was laid by the adoption of the directive for the recalculation of road bridges in 2011 to have results of non-destructive examination incorporated in recalculations. Meanwhile are first experiences on investigations and recalculations of bridges that will be presented at the symposium for the first time. [German] Die Erhaltung von Bauwerken rueckt immer mehr in den Fokus der Oeffentlichkeit, nicht zuletzt durch Verkehrseinschraenkungen an Strassen und Bruecken, die in den letzten Jahren spuerbar zugenommen haben. Dabei kommt den Bauwerkspruefern eine besondere Bedeutung zu, Ursachen und Umfang von Instandsetzungsmassnahmen bedarfsgemaess abzuschaetzen. Hierbei sind zerstoerungsfreie Pruefverfahren im Bauwesen (ZfPBau-Verfahren) nicht mehr wegzudenken. Allerdings sind im Gegensatz zur klassischen industriellen ZfP im Bauwesen sehr wenige Regelwerke anzutreffen. Auch die Angebote zur Qualifizierung von Pruefern sind gering aber mittlerweile vorhanden. Die Fachtagung greift dieses Spannungsfeld geringer Regelsetzung und grossem Bedarf qualifizierter Dienstleistungen auf. Ein Aufgabenfeld der Zukunft ist die zuverlaessige Bewertung von Bestandsbauwerken. Durch das Inkrafttreten der

  3. Operational experience in the non-destructive assay of fissile material in General Electric's nuclear fuel fabrication facility

    International Nuclear Information System (INIS)

    Stewart, J.P.

    1976-01-01

    Operational experience in the non-destructive assay of fissile material in a variety of forms and containers and incorporation of the assay devices into the accountability measurement system for General Electric's Wilmington Fuel Fabrication Facility measurement control programme is detailed. Description of the purpose and related operational requirements of each non-destructive assay system is also included. In addition, the accountability data acquisition and processing system is described in relation to its interaction with the various non-destructive assay devices and scales used for accountability purposes within the facility. (author)

  4. Non-destructive investigations at the Dionisiac Frieze in the Villa of Mysteries, Pompeii

    Science.gov (United States)

    Cristiano, Luigia; Erkul, Ercan; Jepsen, Kalle; Meier, Thomas; Vanacore, Stefano; Stefani, Grete

    2014-05-01

    vertical sections contain reflection horizons of the plaster layer, the second wall layer and the back wall. Additional diffractions of objects with high differences in electrical properties i.e. bricks, cavities, cracks enables to estimate the travelling velocity of electromagnetic waves and the deep penetration. In addition, calculated time slices show areas with concentrated high and low reflection energy of different depth layers of the wall inside structure, which can related to changes in the composition and the water saturation. Ultrasonic experiments with frequencies between about 5 kHz and 500 kHz may be applied to non-destructive testing of structures made of natural stone for example facades, engineering structures, Usually, traveltimes of first-arriving P-waves are measured in ultrasonic transmission experiments. The resolution for changes of uppermost structures in transmission configuration is however limited. Therefore, we firstly perform surface measurements and secondly the full waveform is investigated. That means source and receiver are coupled to nearly plane parts of the object's surface and the receiver is moved along profiles with lengths between about 10 cm to 30 cm. These measurements are simple to perform because the object under consideration has to be accessible only from one side and the source and receiver configuration is easier to control. In this configuration, P-waves show generally very low signal-to-noise ratios but surface waves propagating along the free surface - here Rayleigh waves - show large amplitudes and are well suited for the investigation of superficial layering. Furthermore, surface wave dispersion is sensitive also to gradual changes of the structure with depth as usually present in real structures. This is another advantage of ultrasonic surface wave studies as body waves are not reflected by gradual internal changes in the structure and methods based on reflected body waves may not be applied in these cases. Here, we show

  5. Eficiência da estabilização do solo e qualidade de tijolos prensados de terra crua tratada com aditivos químicos, avaliadas pela combinação de testes destrutivos e não-destrutivos Efficiency of soil stabilization and quality of bricks manufactured with soil added with chemical additives and evaluated through the association of destrutive and non-destructive methods

    Directory of Open Access Journals (Sweden)

    Régis de C. Ferreira

    2004-12-01

    Full Text Available A qualidade de tijolos prensados de terra crua tratada quimicamente é influenciada basicamente pelo tipo de solo, adições químicas e período de cura. O presente trabalho teve como objetivo estudar a combinação de métodos destrutivos e não-destrutivos associados à análise estatística, para a avaliação da qualidade e da eficiência da estabilização de tijolos prensados de terra crua tratada com cimento, cal e silicato de sódio. Os teores de cimento e cal foram 0; 6 e 10%, e a dose de silicato de sódio foi de 4% em relação ao peso seco da mistura solo-aditivo. Após a sua moldagem, os tijolos foram submetidos à cura durante os períodos de 7; 28; 56 e 91 dias. As propriedades físico-mecânicas dos tijolos foram determinadas por meio de testes destrutivos, tais como a resistência à compressão simples e a absorção de água, e não-destrutivos por meio do ensaio acústico do ultra-som. Adotou-se o parâmetro "resistência anisotrópica" para simplificar as interpretações estatísticas. A adição química que conferiu a melhor qualidade técnica aos tijolos, foi a de 10% de cimento. O parâmetro resistência anisotrópica mostrou-se promissor com vistas à avaliação da qualidade técnica dos tijolos.The aim of this research was the studying of the efficiency of soil stabilization and the technical quality of bricks manufactured with two types of soil treated with chemical additives. For this purpose a sandy soil and a clayey one were added of Portland cement, lime and sodium silicate being their mechanical characteristics evaluated through both non-destructive and destructive methods. The Portland cement and lime admixture contents were 0; 6 and 10%, and the sodium silicate dosage was 4%. Those two methods were associated in order to describe precisely a quantitative parameter called "anisotropical resistance". The results showed that such a parameter could be used as a good index for brick's technical quality evaluation.

  6. A Monte Carlo approach applied to ultrasonic non-destructive testing

    Science.gov (United States)

    Mosca, I.; Bilgili, F.; Meier, T.; Sigloch, K.

    2012-04-01

    Non-destructive testing based on ultrasound allows us to detect, characterize and size discrete flaws in geotechnical and architectural structures and materials. This information is needed to determine whether such flaws can be tolerated in future service. In typical ultrasonic experiments, only the first-arriving P-wave is interpreted, and the remainder of the recorded waveform is neglected. Our work aims at understanding surface waves, which are strong signals in the later wave train, with the ultimate goal of full waveform tomography. At present, even the structural estimation of layered media is still challenging because material properties of the samples can vary widely, and good initial models for inversion do not often exist. The aim of the present study is to combine non-destructive testing with a theoretical data analysis and hence to contribute to conservation strategies of archaeological and architectural structures. We analyze ultrasonic waveforms measured at the surface of a variety of samples, and define the behaviour of surface waves in structures of increasing complexity. The tremendous potential of ultrasonic surface waves becomes an advantage only if numerical forward modelling tools are available to describe the waveforms accurately. We compute synthetic full seismograms as well as group and phase velocities for the data. We invert them for the elastic properties of the sample via a global search of the parameter space, using the Neighbourhood Algorithm. Such a Monte Carlo approach allows us to perform a complete uncertainty and resolution analysis, but the computational cost is high and increases quickly with the number of model parameters. Therefore it is practical only for defining the seismic properties of media with a limited number of degrees of freedom, such as layered structures. We have applied this approach to both synthetic layered structures and real samples. The former contributed to benchmark the propagation of ultrasonic surface

  7. Comparative study of destructive and non-destructive methods in the activation analysis of rocks

    International Nuclear Information System (INIS)

    Vasconcellos, M.B.A.

    1978-01-01

    A comparative study between non-destructive thermal neutron activation analysis and activation analysis with radiochemical group separation is made Both methods are applied to the determination of trace elements minor and major elements in rocks. The treatment of the rocks, with special reference to the problems related to grinding and contamination by foreign elements is described. The choice of standards for multielement trace activation analysis is discussed. Two types of computer programs for the evalution of data obtained through Ge-li detector counting are used. All the phases of the destructive and non destructive analysis are described. In the destructive analysis, an adaptation of the group separation scheme developed by Morrison et al for the activation analysis of geological samples is made. The changes introduced make the radiochemical separation simpler and more rapid. Both destructive and non destructive methods are tested by means of the analysis of the United States Geological Survey standard rock AGV-1, which has been analysed by many authors. The same procedure is then applied to some alcaline rocks taken from the apatite mine of Jacupiranga, in the State of Sao Paulo, Brazil. The knowledge of the trace element concentration in these rocks is important for geochemical studies. A detailed study of the possible interferences encountered in the neutron activation analysis of these rocks is made, considering the interferences due to major activities, and to the proximity of the several gamma ray energies of the radioisotopes produced. Finally, the comparative study between the two methods is presented, using statistical tests for the quantitative evalution of results. (Author) [pt

  8. Non-destructive measurement methods for large scale gaseous diffusion process equipment

    International Nuclear Information System (INIS)

    Mayer, R.L.; Hagenauer, R.C.; McGinnis, B.R.

    1994-01-01

    Two measurement methods have been developed to measure non-destructively uranium hold-up in gaseous diffusion plants. These methods include passive neutron and passive γ ray measurements. An additional method, high resolution γ ray spectroscopy, provides supplementary information about additional γ ray emitting isotopes, γ ray correction factors, 235 U/ 234 U ratios and 235 U enrichment. Many of these methods can be used as a general purpose measurement technique for large containers of uranium. Measurement applications for these methods include uranium hold-up, waste measurements, criticality safety and nuclear accountability

  9. Analysis of unbalanced sensor in eddy current method of non destructive testing

    International Nuclear Information System (INIS)

    Chegodaev, V.V.

    2001-01-01

    Different types of sensors are used in eddy current method of non-destructive testing. The choosing of sensor type depends on control object. Different types of sensors can have the same schemes of cut-in in device for formation of information signal. The most common scheme of sensor cut-in is presented. The calculation of output voltage when the sensor is on a segment of the control object, which has not defect is made. The conditions of balancing are adduced and it was shown that the balancing of sensor is very difficult. The methods of compensation or account of voltage of an imbalance are indicated. (author)

  10. Development of a non-destructive method to identify different grades of stainless steel

    International Nuclear Information System (INIS)

    Meor Yusoff Meor Sulaiman

    2003-01-01

    One of the non-destructive methods used for the identification and verification of metals is by the energy-dispersive X-ray fluorescence (EDXRF) technique. EDXRF analysis provides several important advantages such as simultaneous determination of the elements present, enable to analyse a very wide concentration range, fast analysis with no sample preparation. The paper shows how this technique is developed and applied in the identification and verification of different grades of stainless steels. Comparison of the results for certified reference standards obtained from this analysis and that of its certified value shows very small differences between them. (Author)

  11. Development of a non-destructive method to identify different grades of stainless steel

    International Nuclear Information System (INIS)

    Meor Yusoff Meor Sulaiman

    2004-01-01

    One of the non-destructive methods used for the identification and verification of metals is by the energy-dispersive x-ray fluorescence (EDXRF) technique. EDXRF analysis provides several important advantages such as simultaneous determination of the elements present, enable to analyze a very wide concentration range, fast analysis with no tedious sample preparation. The paper shows how this technique is developed and applied in the identification and verification of different grades of stainless steels. Comparison of the results obtained from this analysis with certified reference standards show very small differences between them. (Author)

  12. Tone burst generator for a Non-Destructive Testing system based on ultrasonic guided waves

    OpenAIRE

    Jiménez Sánchez, Daniel

    2011-01-01

    English: This PFC provides a design of a tested and specific tone-burst generator circuit for a Non-Destructive System based on ultrasonid guided waves. This circuit includes a complementary protection circuit for the NDT system working in a pulse-echo configuration. In this paper, a brief state f art about different driving circuits employed in distinct NDE systems is presented. Castellano: El PFC proporciona un diseño electrónico específico y probado de un circuito excitador de salvas (C...

  13. A NEW METHOD FOR NON DESTRUCTIVE ESTIMATION OF Jc IN YBaCuO CERAMIC SAMPLES

    Directory of Open Access Journals (Sweden)

    Giancarlo Cordeiro Costa

    2014-12-01

    Full Text Available This work presents a new method for estimation of Jc as a bulk characteristic of YBCO blocks. The experimental magnetic interaction force between a SmCo permanent magnet and a YBCO block was compared to finite element method (FEM simulations results, allowing us to search a best fitting value to the critical current of the superconducting sample. As FEM simulations were based on Bean model , the critical current density was taken as an unknown parameter. This is a non destructive estimation method. since there is no need of breaking even a little piece of the sample for analysis.

  14. Impact of the 'non-destructive' multiple-readout on the Lorentzian noise

    International Nuclear Information System (INIS)

    Guazzoni, C.; Gatti, E.; Geraci, A.

    2006-01-01

    In this paper, we discuss the effect of 'non-destructive' multiple-readout on the Lorentzian noise. To our knowledge, it is the first time that such interaction is investigated. We have studied the peculiarities of the shape of the optimum weighting function for the multiple-readout technique in the presence of Lorentzian noise and other noise sources. The impact of the Lorentzian noise on the resolution achievable with the multiple-readout technique is analyzed in detail with respect to the interaction between the oscillation time and the characteristic time constant of the Lorentzian noise

  15. Ultrasonic transverse velocity calibration of standard blocks for use in non-destructive testing

    International Nuclear Information System (INIS)

    Silva, C E R; Braz, D S; Maggi, L E; Felix, R P B Costa

    2015-01-01

    Standard blocks are employed in the verification of the equipment used in Ultrasound Non-Destructive Testing. To assure the metrology reliability of all the measurement process, it is necessary to calibrate or certify these Standard blocks. In this work, the transverse wave velocity and main dimensions were assessed according to the specifications ISO Standards. For transverse wave velocity measurement, a 5 MHz transverse wave transducer, a waveform generator, an oscilloscope and a computer with a program developed in LabVIEW TM were used. Concerning the transverse wave velocity calibration, only two Standard blocks of the 4 tested is in accordance with the standard

  16. Non-destructive isotopic uranium assay by multiple delayed neutron measurements

    International Nuclear Information System (INIS)

    Papadopoulos, N.N.; Tsagas, N.F.

    1991-01-01

    The high accuracy and precision required in nuclear safeguards measurements can be achieved by an improved neutron activation technique based on multiple delayed fission neutron counting under various experimental conditions. For the necessary ultrahigh counting statistics required, cyclic activation of multiple subsamples has been applied. The home-made automated flexible analytical system with neutron flux and spectrum differentiation by irradiation position adjustment and cadmium screening, permits the non-destructive determination of the U235 abundance and the total U element concentration needed in nuclear safeguards sample analysis, with a high throughout and a low operational cost. Careful experimental optimization led to considerable improvement of the results

  17. Non-destructive measurement of Xe filling pressure in mercury-free metal halide lamp

    International Nuclear Information System (INIS)

    Motomura, Hideki; Enoki, Kyosuke; Jinno, Masafumi

    2010-01-01

    Mercury-free metal halide lamps (MHLs) for automotive purposes have been developing in the market. When mercury is not used, the electric and emission characteristics of the lamp strongly depend on the xenon filling pressure. Therefore a non-destructive gas pressure estimation technique is required to obtain stable performance of the lamps as commercial products. The authors have developed an estimation method by which the gas pressure is estimated from the current peak value at the initial stage of ignition under pulsed operation. It is shown that accuracy of the order of ±(0.1-0.3) atm is obtained using an empirical formula.

  18. Non-destructive automated express method for determining the inclination of chromium-nickel steels IGC

    International Nuclear Information System (INIS)

    Nazarov, A.A.; Kamenev, Yu.B.; Kuusk, L.V.; Kormin, E.G.; Vasil'ev, A.N.; Sumbaeva, T.E.

    1986-01-01

    Methods of automated control of 18-10-type steel inclination to IGC are developed and a corresponding automated testing complex (ATS) is created. 08Kh18N10T steel samples had two variants of thermal treatment: 1) 1200 deg (5 h), 600 deg (50 h); 2) 1200 deg (5 h). Methods of non-destructive automated control of 18-10-type steel inclination to IGC are developed on the basis of potentiodynamic reactivation (PR) principle. Automated testing complex is developed, which has undergone experimental running and demonstrated a high confidence of results, reliability and easy operation

  19. Non-Destructive Investigation on Short Circuit Capability of Wind-Turbine-Scale IGBT Power Modules

    DEFF Research Database (Denmark)

    Wu, Rui; Iannuzzo, Francesco; Wang, Huai

    2014-01-01

    This paper presents a comprehensive investigation on the short circuit capability of wind-turbine-scale IGBT power modules by means of a 6 kA/1.1 kV non-destructive testing system. A Field Programmable Gate Array (FPGA) supervising unit is adpoted to achieve an accurate time control for short...... circuit test, which enables to define the driving signals with an accuracy of 10 ns. Thanks to the capability and the effectiveness of the constructed setup, oscillations appearing during short circuits of the new-generation 1.7 kV/1 kA IGBT power modules have been evidenced and characterized under...

  20. Non-destructive synchrotron X-ray diffraction mapping of a Roman painting

    International Nuclear Information System (INIS)

    Dooryhee, E.; Anne, M.; Hodeau, J.-L.; Martinetto, P.; Rondot, S.; Bardies, I.; Salomon, J.; Walter, P.; Vaughan, G.B.M.

    2005-01-01

    The history and the properties of materials are deduced not only from their elemental and molecular signatures, but also from their exact phase compositions, and from the structures and the defects of their constituents. Here we implement a non-destructive synchrotron X-ray based method, which combines both the quantitative structural content of diffraction and the imaging mode. As a demonstration case, the pigments of a Roman wall painting are examined. The joined elemental and mineral maps mimic the major features of the painting. Different structural phases made of common atomic elements are differentiated. Textures and graininess are measured and related to the artist's know-how. (orig.)

  1. Non-destructive radiometry inspection technique for locating reinforcements and void/porosity in bridge bearings

    International Nuclear Information System (INIS)

    Yahaya bin Jafar; Jaafar bin Abdullah; Mohamad Azmi bin Ismail.

    1989-01-01

    Defects detection in bridge bearings is very important in controlling quality and safety. Typical manufacturing defects include misalligned or bent steel plates and the presence of voids/porosity within the rubber. A non-destructive radiometry inspection technique was used to locate steel plates position and the presence of voids/porosity in bridge bearing samples provided by the Rubber Research Institute of Malaysia (RRIM). Preliminary studies show that the mentioned defects can readily be determined by this technique. Some of the results are also presented. (author)

  2. Non-destructive Testing by Infrared Thermography Under Random Excitation and ARMA Analysis

    Science.gov (United States)

    Bodnar, J. L.; Nicolas, J. L.; Candoré, J. C.; Detalle, V.

    2012-11-01

    Photothermal thermography is a non-destructive testing (NDT) method, which has many applications in the field of control and characterization of thin materials. This technique is usually implemented under CW or flash excitation. Such excitations are not adapted for control of fragile materials or for multi-frequency analysis. To allow these analyses, in this article, the use of a new control mode is proposed: infrared thermography under random excitation and auto regressive moving average analysis. First, the principle of this NDT method is presented. Then, the method is shown to permit detection, with low energy constraints, of detachments situated in mural paintings.

  3. Topics in acoustics, non destructive testing, and thermo-mechanics of continua

    International Nuclear Information System (INIS)

    Suarez Antola, R.

    2001-03-01

    A small scale physical model of a granular porous medium was studied .Osmosis, filtration and fracture were considered, both experimentally and mathematically.Longitudinal ultrasonic pulse velocity was measured in slender timber and concrete bodies in order to characterized the geometric dispersion effects.A mathematical model is developed to described geometric dispersion in reinforced concrete.A sequential method for non destructive testing of structures by mechanicals vibrations is proposed and theoretically considered.Some simple examples are fully developed from a theoretical stand point

  4. Non-destructive study of ancient documents and books by means of ion beams

    International Nuclear Information System (INIS)

    Ruvalcaba S, J.L.; Monroy, M.

    2004-01-01

    In this work, a non destructive methodology for the analysis of ancient manuscripts and books using an external beam system and the techniques Particle Induced X-ray Emission Spectroscopy (PIXE) and Rutherford Backscattering Spectrometry (RBS) is presented. This application shows the analytical features of the particle accelerator based techniques for the characterization of this kind of historical materials. This methodology was used for the analysis of inks of an European book from XVII century. This is the first study in Mexico of an ancient book using simultaneously PIXE and RBS non-vacuum techniques. (Author) 21 refs., 9 figs

  5. Survey of EEC solid waste arisings and performance of non-destructive assay systems

    International Nuclear Information System (INIS)

    Bremner, W.B.; Adaway, D.W.; Yates, A.

    1992-01-01

    This report covers the work carried out during an one-year contract which surveyed the radioactive solid waste arisings in EEC Member States and also tabulated information on the performance of the non-destructive assay (NDA) system used. The work was jointly carried out with CEA partners at Cadarache and Paris. The tabulated data give information on types, packaging, associated activity, and NDA capability of the utilities or research organisations. Some short comings in NDA capabilities are identified and possible solutions are given

  6. Pipe robots for internal inspection, non-destructive testing and machining of pipelines

    International Nuclear Information System (INIS)

    Reiss, Alexander

    2016-01-01

    Inspector Systems is a specialist in manufacturing of tethered self-propelled pipe robots for internal inspection, non-destructive testing and machining of pipeline systems. Our industrial sectors, which originates from 30 year experience in the nuclear industry, are Gas and Oil (On-/Offshore, Refineries), Chemical, Petrochemical, Water etc. The pipe robots are able to get inserted through poor access points (e.g. valves) and to pass in bi-directional travelling vertical sections and numerous bends with small arc radius. The paper describes the system concept and performance of the pipe robot technology. A modular construction allows to equip the robots with different operational elements for the respective application.

  7. Application of the positron lifetime spectroscopy as method of non-destructive testing

    International Nuclear Information System (INIS)

    Somieski, B.; Krause-Rehberg, R.; Salz, H.; Meyendorf, N.

    1995-01-01

    In order to show the suitability of the Positron Lifetime Spectroscopy (POLIS) as a method of Non-Destructive Testing (NDT) several iron alloys/steels were mechanically damaged (tensile stress, fatigue, creeping). The positron annihilation parameters show clear changes during all applied kinds of damage. After tensile stress as well as after creeping a homogeneous distribution of damage in the sample was detected. During the very first elastic cycle of a fatigue experiment, a change in the defect structure occurs in well annealed materials. A modified spectrometer for in the field mapping is presented. (orig.)

  8. A new facility for non-destructive assay using a 252Cf source.

    Science.gov (United States)

    Stevanato, L; Caldogno, M; Dima, R; Fabris, D; Hao, Xin; Lunardon, M; Moretto, S; Nebbia, G; Pesente, S; Pino, F; Sajo-Bohus, L; Viesti, G

    2013-03-01

    A new laboratory facility for non-destructive analysis (NDA) using a time-tagged (252)Cf source is presented. The system is designed to analyze samples having maximum size of about 20 × 25 cm(2), the material recognition being obtained by measuring simultaneously total and energy dependent transmission of neutrons and gamma rays. The equipment technical characteristics and performances of the NDA system are presented, exploring also limits due to the sample thickness. Some recent applications in the field of cultural heritage are presented. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Synthesis & Studies of New Non-Destructive Read-Out Materials for Optical Storage and Optical Switches

    National Research Council Canada - National Science Library

    Rentzepis, Peter M

    2005-01-01

    .... The optical, chemical and spectroscopic properties of this non-destructive write/read/erase computer memory material have been studied This organic storage system consists of two different molecular...

  10. Applications of Non-destructive methods (GPR and 3D Laser Scanner) in Historic Masonry Arch Bridge Assessment

    Science.gov (United States)

    Alani, Amir; Banks, Kevin

    2014-05-01

    There exist approximately 70,000 masonry arch bridge spans (brick and stone) in the UK with tens of thousands more throughout Europe. A significant number of these bridges are still in operation and form part of the road and rail network systems in many countries. A great majority of these bridges are in desperate need of repair and maintenance. Applications of non-destructive testing methods such as ground penetrating radar (GPR), 3D laser scanning, accelerometer sensors and vibration detecting sensors amongst many others have been used to assess and monitor such structures in the past few years. This presentation provides results of the applications of a 2GHz GPR antenna system and a 3D laser scanner on a historic masonry arch bridge (the Old Bridge, Aylesford) located in Kent, in the south east of England. The older part of the bridge (the mid-span) is 860 years old. The bridge was the subject of a major alteration in 1811. This presentation forms part of a larger ongoing study which is using the two above mentioned non-destructive methods for long-term monitoring of the bridge. The adopted survey planning strategy and technique, data acquisition and processing as well as challenges encountered during actual survey and fieldworks have been discussed in this presentation. As a result of this study the position of different layers of the deck structure has been established with the identification of the original stone base of the bridge. This information in addition to the location of a number of structural ties (anchors - remedial work carried out previously) in the absence of reliable and accurate design details proved to be extremely useful for the modelling of the bridge using the finite element method. Results of the 3D laser scanning of the bridge have also been presented which have provided invaluable data essential for the accurate modelling of the bridge as well as the long term monitoring of the bridge. 2014 EGU-GA GI3.1 Session, organised by COST Action

  11. Checking collagen preservation in archaeological bone by non-destructive studies (Micro-CT and IBA)

    Science.gov (United States)

    Beck, L.; Cuif, J.-P.; Pichon, L.; Vaubaillon, S.; Dambricourt Malassé, A.; Abel, R. L.

    2012-02-01

    The material to be studied is a piece of human skull discovered (1999) in Pleistocene sediments from the Orsang river (Gujarat state, India). From anatomical view point, this skull is highly composite: modern Homo sapiens characters are associated to undoubtedly more ancient features. Absolute dating by 14C is critical to understand this discovery. Prior to dating measurements, non-destructive studies have been carried out. Micro-CT reconstruction (X-ray microtomography) and Ion Beam Analysis (IBA) have been undertaken to check the structural preservation of the fossil and the collagen preservation. PIXE elemental map was used to select well-preserved bone area. RBS/EBS and NRA were used for light element quantification, in particular C, N and O contents. We also demonstrate that the PIXE-RBS/EBS combination is a effective tool for the whole characterization of archaeological and recent bones by analysing in one experiment both mineral and organic fractions. We have shown that the archaeological bone, a fragment of the potentially oldest modern Indian, is enough preserved for radiocarbon dating. We propose that Elastic Backscattering Spectrometry (EBS) using 3 MeV protons could be a good non destructive alternative to conventional CHN method using Carbon-Hydrogen-Nitrogen analyzer for measuring C and N before 14C dating.

  12. Non-destructive investigation of a time capsule using neutron radiography and X-ray fluorescence

    Science.gov (United States)

    MacDonald, B. L.; Vanderstelt, J.; O'Meara, J.; McNeill, F. E.

    2016-01-01

    Non-destructive analytical techniques are becoming increasingly important for the study of objects of cultural heritage interest. This study applied two techniques: X-ray fluorescence and neutron radiography, for the investigation of a capped, tubular metal object recovered from an urban construction site in Gore Park, Hamilton, Canada. The site is an urban park containing a World War I commemorative monument that underwent renovation and relocation. Historical documentation suggested that the object buried underneath the monument was a time capsule containing a paper document listing the names of 1800 Canadians who died during WWI. The purpose of this study was to assess the condition of the object, and to verify if it was what the historical records purported. XRF analysis was used to characterize the elemental composition of the metal artifact, while neutron radiography revealed that its contents were congruent with historical records and remained intact after being interred for 91 years. Results of this study demonstrate the value of non-destructive techniques for the analysis and preservation of cultural heritage.

  13. Checking collagen preservation in archaeological bone by non-destructive studies (Micro-CT and IBA)

    Energy Technology Data Exchange (ETDEWEB)

    Beck, L., E-mail: lucile.beck@cea.fr [C2RMF - UMR171 CNRS, Centre de Recherche et de Restauration des Musees de France, Palais du Louvre, Porte des Lions, 14 quai Francois Mitterrand, 75001 Paris (France); CEA, DEN, Service de Recherches de Metallurgie Physique, Laboratoire JANNUS, 91191 Gif-sur-Yvette (France); Cuif, J.-P. [UMR IDES 8148, Universite Paris XI-Orsay, 91405 Orsay cedex (France); Pichon, L. [C2RMF - UMR171 CNRS, Centre de Recherche et de Restauration des Musees de France, Palais du Louvre, Porte des Lions, 14 quai Francois Mitterrand, 75001 Paris (France); Vaubaillon, S. [CEA, INSTN, Laboratoire JANNUS, 91191 Gif-sur-Yvette (France); Dambricourt Malasse, A. [Departement de Prehistoire, Museum national d' Histoire naturelle, UMR 7194 - CNRS, Institut de Paleontologie Humaine, 1, rue Rene Panhard, 75013 Paris (France); Abel, R.L. [The Natural History Museum, London (United Kingdom)

    2012-02-15

    The material to be studied is a piece of human skull discovered (1999) in Pleistocene sediments from the Orsang river (Gujarat state, India). From anatomical view point, this skull is highly composite: modern Homo sapiens characters are associated to undoubtedly more ancient features. Absolute dating by {sup 14}C is critical to understand this discovery. Prior to dating measurements, non-destructive studies have been carried out. Micro-CT reconstruction (X-ray microtomography) and Ion Beam Analysis (IBA) have been undertaken to check the structural preservation of the fossil and the collagen preservation. PIXE elemental map was used to select well-preserved bone area. RBS/EBS and NRA were used for light element quantification, in particular C, N and O contents. We also demonstrate that the PIXE-RBS/EBS combination is a effective tool for the whole characterization of archaeological and recent bones by analysing in one experiment both mineral and organic fractions. We have shown that the archaeological bone, a fragment of the potentially oldest modern Indian, is enough preserved for radiocarbon dating. We propose that Elastic Backscattering Spectrometry (EBS) using 3 MeV protons could be a good non destructive alternative to conventional CHN method using Carbon-Hydrogen-Nitrogen analyzer for measuring C and N before {sup 14}C dating.

  14. Checking collagen preservation in archaeological bone by non-destructive studies (Micro-CT and IBA)

    International Nuclear Information System (INIS)

    Beck, L.; Cuif, J.-P.; Pichon, L.; Vaubaillon, S.; Dambricourt Malassé, A.; Abel, R.L.

    2012-01-01

    The material to be studied is a piece of human skull discovered (1999) in Pleistocene sediments from the Orsang river (Gujarat state, India). From anatomical view point, this skull is highly composite: modern Homo sapiens characters are associated to undoubtedly more ancient features. Absolute dating by 14 C is critical to understand this discovery. Prior to dating measurements, non-destructive studies have been carried out. Micro-CT reconstruction (X-ray microtomography) and Ion Beam Analysis (IBA) have been undertaken to check the structural preservation of the fossil and the collagen preservation. PIXE elemental map was used to select well-preserved bone area. RBS/EBS and NRA were used for light element quantification, in particular C, N and O contents. We also demonstrate that the PIXE-RBS/EBS combination is a effective tool for the whole characterization of archaeological and recent bones by analysing in one experiment both mineral and organic fractions. We have shown that the archaeological bone, a fragment of the potentially oldest modern Indian, is enough preserved for radiocarbon dating. We propose that Elastic Backscattering Spectrometry (EBS) using 3 MeV protons could be a good non destructive alternative to conventional CHN method using Carbon–Hydrogen–Nitrogen analyzer for measuring C and N before 14 C dating.

  15. A Spatially Offset Raman Spectroscopy Method for Non-Destructive Detection of Gelatin-Encapsulated Powders

    Directory of Open Access Journals (Sweden)

    Kuanglin Chao

    2017-03-01

    Full Text Available Non-destructive subsurface detection of encapsulated, coated, or seal-packaged foods and pharmaceuticals can help prevent distribution and consumption of counterfeit or hazardous products. This study used a Spatially Offset Raman Spectroscopy (SORS method to detect and identify urea, ibuprofen, and acetaminophen powders contained within one or more (up to eight layers of gelatin capsules to demonstrate subsurface chemical detection and identification. A 785-nm point-scan Raman spectroscopy system was used to acquire spatially offset Raman spectra for an offset range of 0 to 10 mm from the surfaces of 24 encapsulated samples, using a step size of 0.1 mm to obtain 101 spectral measurements per sample. As the offset distance was increased, the spectral contribution from the subsurface powder gradually outweighed that of the surface capsule layers, allowing for detection of the encapsulated powders. Containing mixed contributions from the powder and capsule, the SORS spectra for each sample were resolved into pure component spectra using self-modeling mixture analysis (SMA and the corresponding components were identified using spectral information divergence values. As demonstrated here for detecting chemicals contained inside thick capsule layers, this SORS measurement technique coupled with SMA has the potential to be a reliable non-destructive method for subsurface inspection and authentication of foods, health supplements, and pharmaceutical products that are prepared or packaged with semi-transparent materials.

  16. Non-destructive investigation of a time capsule using neutron radiography and X-ray fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    MacDonald, B.L., E-mail: macdonbl@mcmaster.ca [McMaster University, Department of Medical Physics and Applied Radiation Sciences, Hamilton (Canada); Vanderstelt, J., E-mail: joshv@nray.ca [Nray Services Inc., 56A Head Street, Dundas, ON (Canada); O’Meara, J. [University of Guelph, Department of Physics, Guelph (Canada); McNeill, F.E. [McMaster University, Department of Medical Physics and Applied Radiation Sciences, Hamilton (Canada)

    2016-01-15

    Non-destructive analytical techniques are becoming increasingly important for the study of objects of cultural heritage interest. This study applied two techniques: X-ray fluorescence and neutron radiography, for the investigation of a capped, tubular metal object recovered from an urban construction site in Gore Park, Hamilton, Canada. The site is an urban park containing a World War I commemorative monument that underwent renovation and relocation. Historical documentation suggested that the object buried underneath the monument was a time capsule containing a paper document listing the names of 1800 Canadians who died during WWI. The purpose of this study was to assess the condition of the object, and to verify if it was what the historical records purported. XRF analysis was used to characterize the elemental composition of the metal artifact, while neutron radiography revealed that its contents were congruent with historical records and remained intact after being interred for 91 years. Results of this study demonstrate the value of non-destructive techniques for the analysis and preservation of cultural heritage.

  17. Non destructive examination of UN / U-Si fuel pellets using neutrons (preliminary assessment)

    Energy Technology Data Exchange (ETDEWEB)

    Bourke, Mark Andrew [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Vogel, Sven C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Voit, Stewart Lancaster [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mcclellan, Kenneth James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Losko, Adrian S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Tremsin, Anton [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-03-31

    Tomographic imaging and diffraction measurements were performed on nine pellets; four UN/ U Si composite formulations (two enrichment levels), three pure U3Si5 reference formulations (two enrichment levels) and two reject pellets with visible flaws (to qualify the technique). The U-235 enrichments ranged from 0.2 to 8.8 wt.%. The nitride/silicide composites are candidate compositions for use as Accident Tolerant Fuel (ATF). The monophase U3Si5 material was included as a reference. Pellets from the same fabrication batches will be inserted in the Advanced Test Reactor at Idaho during 2016. The goal of the Advanced Non-destructive Fuel Examination work package is the development and application of non-destructive neutron imaging and scattering techniques to ceramic and metallic nuclear fuels. Data reported in this report were collected in the LANSCE run cycle that started in September 2015 and ended in March 2016. Data analysis is ongoing; thus, this report provides a preliminary review of the measurements and provides an overview of the characterized samples.

  18. Non-destructive sampling of rock-dwelling microbial communities using sterile adhesive tape.

    Science.gov (United States)

    Cutler, Nick A; Oliver, Anna E; Viles, Heather A; Whiteley, Andrew S

    2012-12-01

    Building stone provides a habitat for an array of microorganisms, many of which have been demonstrated to have a deleterious effect on the appearance and/or structural integrity of stone masonry. It is essential to understand the composition and structure of stone-dwelling (lithobiontic) microbial communities if successful stone conservation strategies are to be applied, particularly in the face of global environmental change. Ideally, the techniques used to sample such assemblages should be non-destructive due to the sensitive conservation status of many stone buildings. This paper quantitatively assesses the performance of sterile adhesive tape as a non-destructive sampling technique and compares the results of tape sampling with an alternative, destructive, sampling method. We used DNA fingerprinting (TRFLP) to characterise the algal, fungal and bacterial communities living on a stone slab. Our results demonstrate that tape sampling may be used to collect viable quantities of microbial DNA from environmental samples. This technique is ideally suited to the sampling of microbial biofilms, particularly when these communities are dominated by green algae. It provides a good approximation of total community diversity (i.e. the aggregate diversity of epilithic and endolithic communities). Tape sampling is straightforward, rapid and cost effective. When combined with molecular analytical techniques, this sampling method has the potential to make a major contribution to efforts to understand the structure of lithobiontic microbial communities and our ability to predict the response of such communities to future environmental change. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Non-invasive and non-destructive measurements of confluence in cultured adherent cell lines.

    Science.gov (United States)

    Busschots, Steven; O'Toole, Sharon; O'Leary, John J; Stordal, Britta

    2015-01-01

    Many protocols used for measuring the growth of adherent monolayer cells in vitro are invasive, destructive and do not allow for the continued, undisturbed growth of cells within flasks. Protocols often use indirect methods for measuring proliferation. Microscopy techniques can analyse cell proliferation in a non-invasive or non-destructive manner but often use expensive equipment and software algorithms. In this method images of cells within flasks are captured by photographing under a standard inverted phase contract light microscope using a digital camera with a camera lens adaptor. Images are analysed for confluence using ImageJ freeware resulting in a measure of confluence known as an Area Fraction (AF) output. An example of the AF method in use on OVCAR8 and UPN251 cell lines is included. •Measurements of confluence from growing adherent cell lines in cell culture flasks is obtained in a non-invasive, non-destructive, label-free manner.•The technique is quick, affordable and eliminates sample manipulation.•The technique provides an objective, consistent measure of when cells reach confluence and is highly correlated to manual counting with a haemocytometer. The average correlation co-efficient from a Spearman correlation (n = 3) was 0.99 ± 0.008 for OVCAR8 (p = 0.01) and 0.99 ± 0.01 for UPN251 (p = 0.01) cell lines.

  20. Non-destructive screening method for radiation hardened performance of large scale integration

    International Nuclear Information System (INIS)

    Zhou Dong; Xi Shanbin; Guo Qi; Ren Diyuan; Li Yudong; Sun Jing; Wen Lin

    2013-01-01

    The space radiation environment could induce radiation damage on the electronic devices. As the performance of commercial devices is generally superior to that of radiation hardened devices, it is necessary to screen out the devices with good radiation hardened performance from the commercial devices and applying these devices to space systems could improve the reliability of the systems. Combining the mathematical regression analysis with the different physical stressing experiments, we investigated the non-destructive screening method for radiation hardened performance of the integrated circuit. The relationship between the change of typical parameters and the radiation performance of the circuit was discussed. The irradiation-sensitive parameters were confirmed. The pluralistic linear regression equation toward the prediction of the radiation performance was established. Finally, the regression equations under stress conditions were verified by practical irradiation. The results show that the reliability and accuracy of the non-destructive screening method can be elevated by combining the mathematical regression analysis with the practical stressing experiment. (authors)

  1. Early non-destructive biofouling detection and spatial distribution: Application of oxygen sensing optodes

    KAUST Repository

    Farhat, Nadia

    2015-06-11

    Biofouling is a serious problem in reverse osmosis/nanofiltration (RO/NF) applications, reducing membrane performance. Early detection of biofouling plays an essential role in an adequate anti-biofouling strategy. Presently, fouling of membrane filtration systems is mainly determined by measuring changes in pressure drop, which is not exclusively linked to biofouling. Non-destructive imaging of oxygen concentrations (i) is specific for biological activity of biofilms and (ii) may enable earlier detection of biofilm accumulation than pressure drop. The objective of this study was to test whether transparent luminescent planar O2 optodes, in combination with a simple imaging system, can be used for early non-destructive biofouling detection. This biofouling detection is done by mapping the two-dimensional distribution of O2 concentrations and O2 decrease rates inside a membrane fouling simulator (MFS). Results show that at an early stage, biofouling development was detected by the oxygen sensing optodes while no significant increase in pressure drop was yet observed. Additionally, optodes could detect spatial heterogeneities in biofouling distribution at a micro scale. Biofilm development started mainly at the feed spacer crossings. The spatial and quantitative information on biological activity will lead to better understanding of the biofouling processes, contributing to the development of more effective biofouling control strategies.

  2. In-situ Non-destructive Studies on Biofouling Processes in Reverse Osmosis Membrane Systems

    KAUST Repository

    Farhat, Nadia

    2016-12-01

    Reverse osmosis (RO) and nanofiltration (NF) membrane systems are high-pressure membrane filtration processes that can produce high quality drinking water. Biofouling, biofilm formation that exceeds a certain threshold, is a major problem in spiral wound RO and NF membrane systems resulting in a decline in membrane performance, produced water quality, and quantity. In practice, detection of biofouling is typically done indirectly through measurements of performance decline. Existing direct biofouling detection methods are mainly destructive, such as membrane autopsies, where biofilm samples can be contaminated, damaged and resulting in biofilm structural changes. The objective of this study was to test whether transparent luminescent planar oxygen sensing optodes, in combination with a simple imaging system, can be used for in-situ, non-destructive biofouling characterization. Aspects of the study were early detection of biofouling, biofilm spatial patterning in spacer filled channels, and the effect of feed cross-flow velocity, and feed flow temperature. Oxygen sensing optode imaging was found suitable for studying biofilm processes and gave detailed spatial and quantitative biofilm development information enabling better understanding of the biofouling development process. The outcome of this study attests the importance of in-situ, non-destructive imaging in acquiring detailed knowledge on biofilm development in membrane systems contributing to the development of effective biofouling control strategies.

  3. Non-destructive forensic latent fingerprint acquisition with chromatic white light sensors

    Science.gov (United States)

    Leich, Marcus; Kiltz, Stefan; Dittmann, Jana; Vielhauer, Claus

    2011-02-01

    Non-destructive latent fingerprint acquisition is an emerging field of research, which, unlike traditional methods, makes latent fingerprints available for additional verification or further analysis like tests for substance abuse or age estimation. In this paper a series of tests is performed to investigate the overall suitability of a high resolution off-the-shelf chromatic white light sensor for the contact-less and non-destructive latent fingerprint acquisition. Our paper focuses on scanning previously determined regions with exemplary acquisition parameter settings. 3D height field and reflection data of five different latent fingerprints on six different types of surfaces (HDD platter, brushed metal, painted car body (metallic and non-metallic finish), blued metal, veneered plywood) are experimentally studied. Pre-processing is performed by removing low-frequency gradients. The quality of the results is assessed subjectively; no automated feature extraction is performed. Additionally, the degradation of the fingerprint during the acquisition period is observed. While the quality of the acquired data is highly dependent on surface structure, the sensor is capable of detecting the fingerprint on all sample surfaces. On blued metal the residual material is detected; however, the ridge line structure dissolves within minutes after fingerprint placement.

  4. Non-destructive investigations of Swiss museums objects with neutron and x-ray imaging methods

    International Nuclear Information System (INIS)

    Lehmann, E.H.; Deschler, E.; Pernet, L.; Vontobel, P.

    2004-01-01

    Many objects of archaeological relevance found in Switzerland are from the Celtic and Roman era. Because of their uniqueness in most cases it is demanded to perform any investigation with such samples non-destructively. Depending on the structure and size of the objects a transmission experiment performed either with X-ray or neutron can alight inner structures, composition, defects or the principles of the manufacturing procedures. Furthermore, the treatment by conservators and restaurateurs becomes visible in many cases. This report describes some examples of such investigations. In the case of neutron investigations, beside the transmission imaging as a radiograph the three-dimensional structure was observed with a tomography technique. For X-ray radiography, the images were obtained in the same digital format because the similar experimental method (imaging plates) was applied. It becomes evident in the described examples that the combination and complementary use of both methods (neutrons and X-ray) brings insights in different aspects of the samples properties and treatment. This approach to study museums objects stored and exhibit in Switzerland can be extrapolated to other countries where these techniques are also simultaneously available in order to investigate other objects of relevance. The European network COST-G8 entitled 'Non-destructive analysis and testing of museum objects' can help to support initiatives in this direction. (author)

  5. Application of digital radiography for the non-destructive characterization of radioactive waste packages

    International Nuclear Information System (INIS)

    Lierse, C.; Goebel, H.; Kaciniel, E.; Buecherl, T.; Krebs, K.

    1995-01-01

    Digital radiography (DR) using gamma-rays is a powerful tool for the non-destructive determination of various parameters which are relevant within the quality control procedure of radioactive waste packages prior to an interim storage or a final disposal. DR provides information about the waste form and the extent of filling in a typical container. It can identify internal structures and defects, gives their geometric dimensions and helps to detect non-declared inner containers, shielding materials etc. From a digital radiographic image the waste matrix homogeneity may be determined and mean attenuation coefficients as well as density values for selected regions of interest can be calculated. This data provides the basis for an appropriate attenuation correction of gamma emission measurements (gamma scanning) and makes a reliable quantification of gamma emitters in waste containers possible. Information from DR measurements are also used for the selection of interesting height positions of the object which are subsequently inspected in more detail by other non-destructive methods, e. g. by transmission computerized tomography (TCT). The present paper gives important technical specifications of an integrated tomography system (ITS) which is used to perform digital radiography as well as transmission/emission computerized tomography (TCT/ECT) on radioactive waste packages. It describes the DR mode and some of its main applications and shows typical examples of radiographs of real radioactive waste drums

  6. Design of an electron-accelerator-driven compact neutron source for non-destructive assay

    Science.gov (United States)

    Murata, A.; Ikeda, S.; Hayashizaki, N.

    2017-09-01

    The threat of nuclear and radiological terrorism remains one of the greatest challenges to international security, and the threat is constantly evolving. In order to prevent nuclear terrorism, it is important to avoid unlawful import of nuclear materials, such as uranium and plutonium. Development of technologies for non-destructive measurement, detection and recognition of nuclear materials is essential for control at national borders. At Tokyo Institute of Technology, a compact neutron source system driven by an electron-accelerator has been designed for non-destructive assay (NDA). This system is composed of a combination of an S-band (2.856 GHz) RF-gun, a tungsten target to produce photons by bremsstrahlung, a beryllium target, which is suitable for use in generating neutrons because of the low threshold energy of photonuclear reactions, and a moderator to thermalize the fast neutrons. The advantage of this system can accelerate a short pulse beam with a pulse width less than 1 μs which is difficult to produce by neutron generators. The amounts of photons and neutron produced by electron beams were simulated using the Monte Carlo simulation code PHITS 2.82. When the RF-gun is operated with an average electron beam current of 0.1 mA, it is expected that the neutron intensities are 1.19 × 109 n/s and 9.94 × 109 n/s for incident electron beam energies of 5 MeV and 10 MeV, respectively.

  7. Weed control based on real time patchy application of herbicides using image analysis as a non-destructive estimation method for weed infestation and herbicide effects

    DEFF Research Database (Denmark)

    Asif, Ali

    There is an increasing concern about excessive use of herbicides for weed control in arable lands. Usually the whole field is sprayed uniformly, while the distribution of weeds often is non-uniform. Often there are spots in a field where weed pressure is very low and has no significant effect...... on crop yield. The excessive use of spraying can potentially be reduced by spraying only those parts of the field where it has economic importance. The competition relation between weeds and crop was ana-lyzed in context of real time patch spray. A non-destructive image analysis method was developed...

  8. Activity on non-destructive testing as constituent element of the quality management in accordance with ISO 9001:2000 standard at The Institute of Nuclear Physics, Kazakhstan

    International Nuclear Information System (INIS)

    Kadyrzhanov, K.K.; Kislitsin, S.B.; Ablanov, M.B.

    2004-01-01

    An increase of technical and public safety requirements for facilities of nuclear industries, an efficient quality control based on non-destructive testing (NDT) techniques is crucial. Therefore, Institute of Nuclear Physics (INP) through NDT Division makes efforts towards a competent NDT inspection of its facilities starting from research reactor of WWR-K type with a further activity according to the National Program for Development in Nuclear Industry. The additional objective is to harmonize the present codes and standards for Nuclear Industry as an integral part of the INP policy in a quality management according ISO 9001:2000 Standard. (author)

  9. Mechanical and Non-Destructive Study of CFRP Adhesive Bonds Subjected to Pre-Bond Thermal Treatment and De-Icing Fluid Contamination

    Directory of Open Access Journals (Sweden)

    Paweł H. Malinowski

    2018-04-01

    Full Text Available Composite materials are commonly used in many branches of industry. One of the effective methods to join the carbon fibre reinforced polymer (CFRP parts includes the use of adhesives. There is a search on effective methods for quality assurance of bonded parts. In the research here reported the influence of surface pre-bond modification on the adhesive bonds of CFRP plates has been analyzed. Adherends surface modifications, to include defects affecting the bonding quality, were obtained through surface thermal treatment, surface contamination with de-icing fluid and a combination of both the previously described treatments. Characterization of bonded joints was performed by means of mechanical testing, ultrasounds and electromechanical impedance (EMI measurements. The study here proposed has also the aim to evaluate the ability of different destructive and non-destructive techniques to assess the quality of the bonds. While mechanical tests were strongly affected by the surface modifications, results obtained ultrasound and EMI test have demonstrate only a limited ability of these techniques to differentiate between the different samples. In fact, ultrasounds did not show any changes in the bondline, due to pre-bond modifications. However, this technique was able to detect delamination in CFRP for one of the samples thermally treated at 280 °C. Electromechanical impedance (EMI measurements showed similar behavior as mechanical tests for samples thermally treated at 260 °C and 280 °C, and for the sample whose surface modification was made with a combination of thermally and de-icing fluid treatments.

  10. Non Destructive Testing by active infrared thermography coupled with shearography under same optical heat excitation

    Science.gov (United States)

    Theroux, Louis-Daniel; Dumoulin, Jean; Maldague, Xavier

    2014-05-01

    As infrastructures are aging, the evaluation of their health is becoming crucial. To do so, numerous Non Destructive Testing (NDT) methods are available. Among them, thermal shearography and active infrared thermography represent two full field and contactless methods for surface inspection. The synchronized use of both methods presents multiples advantages. Most importantly, both NDT are based on different material properties. Thermography depend on the thermal properties and shearography on the mechanical properties. The cross-correlation of both methods result in a more accurate and exact detection of the defects. For real site application, the simultaneous use of both methods is simplified due to the fact that the excitation method (thermal) is the same. Active infrared thermography is the measure of the temperature by an infrared camera of a surface subjected to heat flux. Observation of the variation of temperature in function of time reveal the presence of defects. On the other hand, shearography is a measure of out-of-plane surface displacement. This displacement is caused by the application of a strain on the surface which (in our case) take the form of a temperature gradient inducing a thermal stress To measure the resulting out-of-plane displacement, shearography exploit the relation between the phase difference and the optical path length. The phase difference is measured by the observation of the interference between two coherent light beam projected on the surface. This interference is due to change in optical path length as the surface is deformed [1]. A series of experimentation have been conducted in laboratory with various sample of concrete reinforced with CFRP materials. Results obtained reveal that with both methods it was possible to detect defects in the gluing. An infrared lamp radiating was used as the active heat source. This is necessary if measurements with shearography are to be made during the heating process. A heating lamp in the

  11. Materials processing issues for non-destructive laser gas sampling (NDLGS)

    Energy Technology Data Exchange (ETDEWEB)

    Lienert, Thomas J [Los Alamos National Laboratory

    2010-12-09

    The Non-Destructive Laser Gas Sampling (NDLGS) process essentially involves three steps: (1) laser drilling through the top of a crimped tube made of 304L stainles steel (Hammar and Svennson Cr{sub eq}/Ni{sub eq} = 1.55, produced in 1985); (2) gas sampling; and (3) laser re-welding of the crimp. All three steps are performed in a sealed chamber with a fused silica window under controlled vacuum conditions. Quality requirements for successful processing call for a hermetic re-weld with no cracks or other defects in the fusion zone or HAZ. It has been well established that austenitic stainless steels ({gamma}-SS), such as 304L, can suffer from solidification cracking if their Cr{sub eq}/Ni{sub eq} is below a critical value that causes solidification to occur as austenite (fcc structure) and their combined impurity level (%P+%S) is above {approx}0.02%. Conversely, for Cr{sub eq}/Ni{sub eq} values above the critical level, solidification occurs as ferrite (bcc structure), and cracking propensity is greatly reduced at all combined impurity levels. The consensus of results from studies of several researchers starting in the late 1970's indicates that the critical Cr{sub eq}/Ni{sub eq} value is {approx}1.5 for arc welds. However, more recent studies by the author and others show that the critical Cr{sub eq}/Ni{sub eq} value increases to {approx}1 .6 for weld processes with very rapid thermal cycles, such as the pulsed Nd:YAG laser beam welding (LBW) process used here. Initial attempts at NDLGS using pulsed LBW resulted in considerable solidification cracking, consistent with the results of work discussed above. After a brief introduction to the welding metallurgy of {gamma}-SS, this presentation will review the results of a study aimed at developing a production-ready process that eliminates cracking. The solution to the cracking issue, developed at LANL, involved locally augmenting the Cr content by applying either Cr or a Cr-rich stainless steel (ER 312) to the top

  12. Toward a simple, repeatable, non-destructive approach to measuring stable-isotope ratios of water within tree stems

    Science.gov (United States)

    Raulerson, S.; Volkmann, T.; Pangle, L. A.

    2017-12-01

    Traditional methodologies for measuring ratios of stable isotopes within the xylem water of trees involve destructive coring of the stem. A recent approach involves permanently installed probes within the stem, and an on-site assembly of pumps, switching valves, gas lines, and climate-controlled structure for field deployment of a laser spectrometer. The former method limits the possible temporal resolution of sampling, and sample size, while the latter may not be feasible for many research groups. We present results from initial laboratory efforts towards developing a non-destructive, temporally-resolved technique for measuring stable isotope ratios within the xylem flow of trees. Researchers have used direct liquid-vapor equilibration as a method to measure isotope ratios of the water in soil pores. Typically, this is done by placing soil samples in a fixed container, and allowing the liquid water within the soil to come into isotopic equilibrium with the headspace of the container. Water can also be removed via cryogenic distillation or azeotropic distillation, with the resulting liquid tested for isotope ratios. Alternatively, the isotope ratios of the water vapor can be directly measured using a laser-based water vapor isotope analyzer. Well-established fractionation factors and the isotope ratios in the vapor phase are then used to calculate the isotope ratios in the liquid phase. We propose a setup which would install a single, removable chamber onto a tree, where vapor samples could non-destructively and repeatedly be taken. These vapor samples will be injected into a laser-based isotope analyzer by a recirculating gas conveyance system. A major part of what is presented here is in the procedure of taking vapor samples at 100% relative humidity, appropriately diluting them with completely dry N2 calibration gas, and injecting them into the gas conveyance system without inducing fractionation in the process. This methodology will be helpful in making

  13. Evaluation of concrete structures affected by alkali-silica reaction and delayed ettringite formation - part 2.

    Science.gov (United States)

    2012-12-01

    This report details the results of a comprehensive research project aimed at evaluating the potential use of : non-destructive testing (NDT) to assess structures affected by ASR and/or DEF. This project was a : collaborative effort between the Univer...

  14. Art, historical and cultural heritage objects studied with different non-destructive analysis

    International Nuclear Information System (INIS)

    Rizzutto, Marcia A.; Tabacniks, Manfredo H.; Added, Nemitala; Campos, Pedro H.O.V.; Curado, Jessica F.; Kajiya, Elizabeth A.M.

    2012-01-01

    Full text: Since 2003, the analysis of art, historical and cultural heritage objects has being performed at the Laboratorio de Analise de Materiais of the Instituto de Fisica of the Universidade de Sao Paulo (LAMFI-USP). Initially the studies were restricted to non-destructive methods using ion beams to characterize the chemical elements present in the objects. Recently, new analytical techniques and procedures have been incorporated to the better characterization of the objects and the examinations were expanded to other non-destructive analytical techniques such as portable X-Ray fluorescence (XRF), digitalized radiography, high resolution photography with visible, UV (ultraviolet) light and reflectography in the infrared region. These non-destructive analytical techniques systematically applied to the objects are helping the better understanding of these objects and allow studying them by examining their main components; their conservation status and also the creative process of the artist, particularly in easel paintings allow making new discoveries. The setup of the external beam in the LAMFI laboratory is configured to allow different simultaneous analysis by PIXE / PIGE (Particle Induced X-ray emission / Particle Induced gamma rays emission), RBS (Rutherford Backscattering) and IBL (Ion Beam Luminescence) and to expand the archaeometric results using ion beams. PIXE and XRF analysis are important to characterize the elements presents in the objects, pigments and others materials. The digitized radiography has provided important information about the internal structure of the objects, the manufacturing process, the internal particles existing and in case of easel paintings it can reveal features of the artist's creative process showing hidden images and the first paintings done by the artist in the background. Some Brazilian paintings studied by IR imaging revealed underlying drawings, which allowed us to discover the process of creation and also some

  15. Art, historical and cultural heritage objects studied with different non-destructive analysis

    Energy Technology Data Exchange (ETDEWEB)

    Rizzutto, Marcia A.; Tabacniks, Manfredo H.; Added, Nemitala; Campos, Pedro H.O.V.; Curado, Jessica F.; Kajiya, Elizabeth A.M. [Universidade de Sao Paulo (IF/USP), SP (Brazil). Inst. de Fisica

    2012-07-01

    Full text: Since 2003, the analysis of art, historical and cultural heritage objects has being performed at the Laboratorio de Analise de Materiais of the Instituto de Fisica of the Universidade de Sao Paulo (LAMFI-USP). Initially the studies were restricted to non-destructive methods using ion beams to characterize the chemical elements present in the objects. Recently, new analytical techniques and procedures have been incorporated to the better characterization of the objects and the examinations were expanded to other non-destructive analytical techniques such as portable X-Ray fluorescence (XRF), digitalized radiography, high resolution photography with visible, UV (ultraviolet) light and reflectography in the infrared region. These non-destructive analytical techniques systematically applied to the objects are helping the better understanding of these objects and allow studying them by examining their main components; their conservation status and also the creative process of the artist, particularly in easel paintings allow making new discoveries. The setup of the external beam in the LAMFI laboratory is configured to allow different simultaneous analysis by PIXE / PIGE (Particle Induced X-ray emission / Particle Induced gamma rays emission), RBS (Rutherford Backscattering) and IBL (Ion Beam Luminescence) and to expand the archaeometric results using ion beams. PIXE and XRF analysis are important to characterize the elements presents in the objects, pigments and others materials. The digitized radiography has provided important information about the internal structure of the objects, the manufacturing process, the internal particles existing and in case of easel paintings it can reveal features of the artist's creative process showing hidden images and the first paintings done by the artist in the background. Some Brazilian paintings studied by IR imaging revealed underlying drawings, which allowed us to discover the process of creation and also some

  16. The detection of structural defects in metallic materials and components using a non-destructive multi-frequency eddy current method

    International Nuclear Information System (INIS)

    Becker, R.

    1980-01-01

    Application of the multi-frequency method in eddy current testing is shown to be usefull for many important and complex problems in the field of non-destructive testing, which cannot be solved by the single frequency method because of principle reasons. Also in the presence of several perturbing signals the method can be applied successfully, thus very often difference coils can be replaced by absolute coils. Introducing the algorithm of multidimensional direction selection, the calibration of the test system is simpler, allowing automization of the calibration process. In addition, the test signals related with the defect parameters can be evaluated in an objective way. (orig./RW) [de

  17. Polychrome glass from Etruscan sites: first non-destructive characterization with synchrotron μ-XRF, μ-XANES and XRPD

    International Nuclear Information System (INIS)

    Arletti, R.; Vezzalini, G.; Quartieri, S.; Ferrari, D.; Merlini, M.; Cotte, M.

    2008-01-01

    This work is devoted to the characterization of a suite of very rare, highly decorated and coloured glass vessels and beads from the VII to the IV century BC. The most serious difficulty in developing this study was that any sampling - even micro-sampling - was absolutely forbidden. As a consequence, the mineralogical and chemical nature of chromophores and opacifiers present in these Iron Age finds were identified by means of the following synchrotron-based, strictly non-destructive, techniques: micro X-ray fluorescence (μ-XRF), Fe K-edge micro X-ray absorption near edge spectroscopy (μ-XANES) and X-ray powder diffraction (XRPD). The μ-XRF mapping evidenced high levels of Pb and Sb in the yellow decorations and the presence of only Sb in the white and light-blue ones. Purple and black glass show high amounts of Mn and Fe, respectively. The XRPD analyses confirmed the presence of lead and calcium antimonates in yellow, turquoise and white decorations. Fe K-edge μ-XANES spectra were collected in different coloured parts of the finds, thus enabling the mapping of the oxidation state of these elements across the samples. In most of the samples iron is present in the reduced form Fe 2+ in the bulk glass of the vessels, and in the oxidized form Fe 3+ in the decorations, indicating that these glass artefacts were produced in at least two distinct processing steps under different furnace conditions. (orig.)

  18. Non-destructive geographical traceability of sea cucumber (Apostichopus japonicus) using near infrared spectroscopy combined with chemometric methods.

    Science.gov (United States)

    Guo, Xiuhan; Cai, Rui; Wang, Shisheng; Tang, Bo; Li, Yueqing; Zhao, Weijie

    2018-01-01

    Sea cucumber is the major tonic seafood worldwide, and geographical origin traceability is an important part of its quality and safety control. In this work, a non-destructive method for origin traceability of sea cucumber ( Apostichopus japonicus ) from northern China Sea and East China Sea using near infrared spectroscopy (NIRS) and multivariate analysis methods was proposed. Total fat contents of 189 fresh sea cucumber samples were determined and partial least-squares (PLS) regression was used to establish the quantitative NIRS model. The ordered predictor selection algorithm was performed to select feasible wavelength regions for the construction of PLS and identification models. The identification model was developed by principal component analysis combined with Mahalanobis distance and scaling to the first range algorithms. In the test set of the optimum PLS models, the root mean square error of prediction was 0.45, and correlation coefficient was 0.90. The correct classification rates of 100% were obtained in both identification calibration model and test model. The overall results indicated that NIRS method combined with chemometric analysis was a suitable tool for origin traceability and identification of fresh sea cucumber samples from nine origins in China.

  19. A non-destructive genotyping system from a single seed for marker-assisted selection in watermelon.

    Science.gov (United States)

    Meru, G; McDowell, D; Waters, V; Seibel, A; Davis, J; McGregor, C

    2013-03-11

    Genomic tools for watermelon breeding are becoming increasingly available. A high throughput genotyping system would facilitate the use of DNA markers in marker-assisted selection. DNA extraction from leaf material requires prior seed germination and is often time-consuming and cost prohibitive. In an effort to develop a more efficient system, watermelon seeds of several genotypes and various seed sizes were sampled by removing ⅓ or ½ sections from the distal ends for DNA extraction, while germinating the remaining proximal parts of the seed. Removing ⅓ of the seed from the distal end had no effect on seed germination percentage or seedling vigor. Different DNA extraction protocols were tested to identify a method that could yield DNA of sufficient quality for amplification by polymerase chain reaction. A sodium dodecyl sulfate extraction protocol with 1% polyvinylpyrrolidone yielded DNA that could be amplified with microsatellite primers and was free of pericarp contamination. In this study, an efficient, non-destructive genotyping protocol for watermelon seed was developed.

  20. Design and manufacturing of nuclear non destructive measurement systems and coupled metrology in order to quantify the radionuclides contaminating the wastes and the processes of the nuclear industry

    International Nuclear Information System (INIS)

    Saurel, N.

    2013-01-01

    The non-destructive nuclear measurement has to provide responses for the main challenges of the nuclear industry such as nuclear facility safety, health, environmental impact, performance, reliability and cost control. The goal of the non-destructive nuclear measurement is to characterize, without any deterioration, an object contaminated by one or more radionuclides. The passive or active nuclear measurement are utilized for quantifying the radionuclides in the effluents, the liquid and solid wastes and the nuclear material hold-up. It is also deployed for the process control. In this case, it is a standard production control but, the most of the time, it controls the validity of the safety domain of the production unit. The results of these measurements are used to establish the radiological inventory or the nuclear material balance. The radiological inventory is needed for the nuclear wastes outlets while the nuclear material balance is needed to follow through with the criticality units. The most important objective is to give the quantitative and/or qualitative value and its uncertainty are confident of the radionuclides contaminating the object. This contaminated object might be of different geometrical shapes, sizes or physico-chemical compositions. In order to be efficient, the non-destructive nuclear measurement has to include the apparatus, the measurement actions, the settings and the use of the coupled methodologies. I relate, in this memoir, my main research and development works that I drove or in which I took part for achieving these goals. These works are about the metrology of nuclear radiations and are used in three main types of measurement which are the gamma spectrometry, the alpha spectrometry and the passive or active neutron counting. (author) [fr