WorldWideScience

Sample records for non-destructive evaluation methods

  1. Corrosion evaluation in insulated pipes by non destructive testing method

    International Nuclear Information System (INIS)

    Abd Razak Hamzah; Azali Muhammad; Mohammad Pauzi Ismail; Abd Nassir Ibrahim; Abd Aziz Mohamed; Sufian Saad; Saharuddin Sayuti; Shukri Ahmad

    2002-01-01

    In engineering plants, detection of corrosion and evaluation of deposit in insulated pipes using radiography method are considered as a very challenging tasks. In General this degradation problem is attributed to water condensation. It causes the formation of deposit and scale inside the pipe, as well as between the insulation and pipe in cold temperature pipes. On the other hand, for hot temperature pipes the main problem is mainly due to corrosion/erosion attack inside the pipe. In the study of corrosion in pipelines, one of the most important parameters to be monitored and measured is the wall thickness. Currently, most pipeline corrosion monitoring and evaluation for both insulated and non-insulated pipes is performed using an ultrasonic method. The most common technique is that based on the A-Scan, using either a normal flaw detector or some form of dedicated equipment. However, with recent development of ultrasonic technology, more advance method, namely B-Scan and C-scan techniques are also available. The most notable disadvantage of using this method is that the insulation covering the pipe has to be removed before the inspection can be carried out and this is considered as not so cost effective. Due to this reason, the possibility of employing other alternative NDT method, namely radiographic testing method were studied. The technique used in this studied are known as tangential technique. In this study it was found that the result found using tangential technique is consistent with the actual thickness of the pipe. Result of this study is presented and discussed in this paper. (Author)

  2. System and method for non-destructive evaluation of surface characteristics of a magnetic material

    Science.gov (United States)

    Jiles, David C.; Sipahi, Levent B.

    1994-05-17

    A system and a related method for non-destructive evaluation of the surface characteristics of a magnetic material. The sample is excited by an alternating magnetic field. The field frequency, amplitude and offset are controlled according to a predetermined protocol. The Barkhausen response of the sample is detected for the various fields and offsets and is analyzed. The system produces information relating to the frequency content, the amplitude content, the average or RMS energy content, as well as count rate information, for each of the Barkhausen responses at each of the excitation levels applied during the protocol. That information provides a contiguous body of data, heretofore unavailable, which can be analyzed to deduce information about the surface characteristics of the material at various depths below the surface.

  3. Non-Destructive Evaluation Method Based On Dynamic Invariant Stress Resultants

    Directory of Open Access Journals (Sweden)

    Zhang Junchi

    2015-01-01

    Full Text Available Most of the vibration based damage detection methods are based on changes in frequencies, mode shapes, mode shape curvature, and flexibilities. These methods are limited and typically can only detect the presence and location of damage. Current methods seldom can identify the exact severity of damage to structures. This paper will present research in the development of a new non-destructive evaluation method to identify the existence, location, and severity of damage for structural systems. The method utilizes the concept of invariant stress resultants (ISR. The basic concept of ISR is that at any given cross section the resultant internal force distribution in a structural member is not affected by the inflicted damage. The method utilizes dynamic analysis of the structure to simulate direct measurements of acceleration, velocity and displacement simultaneously. The proposed dynamic ISR method is developed and utilized to detect the damage of corresponding changes in mass, damping and stiffness. The objectives of this research are to develop the basic theory of the dynamic ISR method, apply it to the specific types of structures, and verify the accuracy of the developed theory. Numerical results that demonstrate the application of the method will reflect the advanced sensitivity and accuracy in characterizing multiple damage locations.

  4. Performance and non-destructive evaluation methods of airborne radome and stealth structures

    Science.gov (United States)

    Panwar, Ravi; Ryul Lee, Jung

    2018-06-01

    In the past few years, great effort has been devoted to the fabrication of highly efficient, broadband radome and stealth (R&S) structures for distinct control, guidance, surveillance and communication applications for airborne platforms. The evaluation of non-planar aircraft R&S structures in terms of their electromagnetic performance and structural damage is still a very challenging task. In this article, distinct measurement techniques are discussed for the electromagnetic performance and non-destructive evaluation (NDE) of R&S structures. This paper deals with an overview of the transmission line method and free space measurement based microwave measurement techniques for the electromagnetic performance evaluation of R&S structures. In addition, various conventional as well as advanced methods, such as millimetre and terahertz wave based imaging techniques with great potential for NDE of load bearing R&S structures, are also discussed in detail. A glimpse of in situ NDE techniques with corresponding experimental setup for R&S structures is also presented. The basic concepts, measurement ranges and their instrumentation, measurement method of different R&S structures and some miscellaneous topics are discussed in detail. Some of the challenges and issues pertaining to the measurement of curved R&S structures are also presented. This study also lists various mathematical models and analytical techniques for the electromagnetic performance evaluation and NDE of R&S structures. The research directions described in this study may be of interest to the scientific community in the aerospace sectors.

  5. Non-destructive evaluation methods to improve quality control in low enrichment MTR fuel plate production

    International Nuclear Information System (INIS)

    Milne, J.M.; Lidington, B.; Hawker, B.M.

    1991-01-01

    This paper summarises some preliminary non-destructive measurements made recently at the Harwell Laboratory on a prototype low enrichment MTR fuel plate. The measurements were intended to indicate the potential of two different techniques for improving quality control in plate production. Pulse Video Thermography (PVT) is being considered as an alternative to ultrasound transmission measurements for the detection and sizing of lack of thermal bonding between the fuel and the clad layers, either to verify the indications from the established ultrasonic methods before destroying the plate or as a replacement method of inspection. High frequency pulse-echo ultrasonics is being considered for providing maps of clad layer thickness on each side of the plate. The measurements have indicated the potential for both methods, but more work is required, using a test plate containing controlled defects, to establish their capability. (orig.)

  6. Non destructive evaluation of ceramics

    International Nuclear Information System (INIS)

    Green, R.E. Jr

    1992-01-01

    While monolithic and composite ceramics have been successfully manufactured, inconsistencies in processing and the unpredictable nature of their failure have limited their use as engineering materials. The optimization of the processing and properties of ceramics and the structures, devices and systems made from them demand the innovative application of modern nondestructive materials characterization techniques to monitor and control as many stages of the production process as possible. This paper will describe the state-of-the-art of nondestructive evaluation techniques for characterization of monolithic ceramics and ceramic composites. Among the techniques to be discussed are laser ultrasonics, acoustic microscopy, thermography, microfocus and x-ray tomography, and micro-photoelasticity. Application of these and other nondestructive evaluation techniques for more effective and efficient real-time process control will result in improved product quality and reliability. 27 refs

  7. Combined Non-destructive Testing (NDT) methods for evaluating concrete quality

    International Nuclear Information System (INIS)

    Mohamad Pauzi Ismail; Noor Azreen Masenwat; Suhairy Sani; Nasharuddin Isa; Mohamad Haniza Mahmud

    2014-01-01

    This paper described the results of combining Non-destructive measurements on concrete. Local crushed granite and hematite were used as coarse aggregates; mining sand and river sand were used as fine aggregates to produce various density and strength of concrete. Concrete samples (150 mm cubes and interlocked blocks) were prepared by changing mix ratio, water to cement ratio (w/c) and types of aggregates. Density, rebound number(N) and ultrasonic pulse velocity (UPV) of the samples were taken before compressed to failure. The measurement results are explained and discussed. (author)

  8. Development of Fracture Toughness Evaluation Method for Composite Materials by Non-Destructive Testing Method

    International Nuclear Information System (INIS)

    Lee, Y. T.; Kim, K. S.

    1998-01-01

    Fracture process of continuous fiber reinforced composites is very complex because various fracture mechanisms such as matrix cracking, debonding, delamination and fiber breaking occur simultaneously during crack growth. If fibers cause crack bridging during crack growth, the stable crack growth and unstable crack growth appear repeatedly. Therefore, it is very difficult to exactly determine tile starting point of crack growth and the fracture toughness at the critical crack length in composites. In this research, fracture toughness test for CFRP was accomplished by using acoustic emission(AE) and recording of tile fracture process in real time by video-microscope. The starting point of crack growth, pop-in point and the point of unstable crack growth can be exactly determined. Each fracture mechanism can be classified by analyzing the fracture process through AE and video-microscope. The more reliable method is the fracture toughness measurement of composite materials was proposed by using the combination of R-curve method, AE and video microscope

  9. Oxidation damage evaluation by non-destructive method for graphite components in high temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Shibata, Taiju; Tada, Tatsuya; Sumita, Junya; Sawa, Kazuhiro

    2008-01-01

    To develop non-destructive evaluation methods for oxidation damage on graphite components in High Temperature Gas-cooled Reactors (HTGRs), the applicability of ultrasonic wave and micro-indentation methods were investigated. Candidate graphites, IG-110 and IG-430, for core components of Very High Temperature Reactor (VHTR) were used in this study. These graphites were oxidized uniformly by air at 500degC. The following results were obtained from this study. (1) Ultrasonic wave velocities with 1 MHz can be expressed empirically by exponential formulas to burn-off, oxidation weight loss. (2) The porous condition of the oxidized graphite could be evaluated with wave propagation analysis with a wave-pore interaction model. It is important to consider the non-uniformity of oxidized porous condition. (3) Micro-indentation method is expected to determine the local oxidation damage. It is necessary to assess the variation of the test data. (author)

  10. Testing an Impedance Non-destructive Method to Evaluate Steel-Fiber Concrete Samples

    Science.gov (United States)

    Komarkova, Tereza; Fiala, Pavel; Steinbauer, Miloslav; Roubal, Zdenek

    2018-02-01

    Steel-fiber reinforced concrete is a composite material characterized by outstanding tensile properties and resistance to the development of cracks. The concrete, however, exhibits such characteristics only on the condition that the steel fibers in the final, hardened composite have been distributed evenly. The current methods to evaluate the distribution and concentration of a fiber composite are either destructive or exhibit a limited capability of evaluating the concentration and orientation of the fibers. In this context, the paper discusses tests related to the evaluation of the density and orientation of fibers in a composite material. Compared to the approaches used to date, the proposed technique is based on the evaluation of the electrical impedance Z in the band close to the resonance of the sensor-sample configuration. Using analytically expressed equations, we can evaluate the monitored part of the composite and its density at various depths of the tested sample. The method employs test blocks of composites, utilizing the resonance of the measuring device and the measured sample set; the desired state occurs within the interval of between f=3 kHz and 400 kHz.

  11. Corrosion and deposit evaluation in industrial plants by non destructive testing method

    International Nuclear Information System (INIS)

    Azali Muhammad; Abd Razak Hamzah; Abd Aziz Mohamed; Mohd Pauzi Ismail; S Saad; S Sayuti; S Ahmad

    2000-01-01

    In petrochemical plants, the detection of corrosion and evaluation of deposit in insulated pipes using a radiography method are very challenging tasks. This main degradation problem experienced by pipelines is due to water condensation. It will cause deposit and scale inside the pipe, as well as between the insulation and pipe for the cold temperature pipes. On the other hand, for the hot temperature pipes the main problem is mainly due to corrosion/erosion attack inside the pipe. In the case of corrosion study one of the most important parameters in a piping or pipeline to be monitored and measured is that the wall thickness. In general, most pipeline corrosion monitoring and evaluation for both insulated and non-insulated pipes is done by using an ultrasonic method. The most common technique for corrosion is that based on the A-Scan, using either a normal flow detector or some form of dedicated equipment. However, with recent development of ultrasonic technology, more advance method, namely B-Scan and C-scan techniques are also available. The most notable disadvantage of using this current method is that the insulation covered the pipe has to be removed before the inspection can be carried out and this is considered as not so cost effective. Due to this reason other alternative NDT method, namely radiographic testing method has been studied. The testing technique used in this studied are tangential technique and double wall radiographic technique which involve studying the changing in density of radiographic film. The result found using tangential technique is consistent with real thickness of the pipe. However for the later technique the result is only achieved with a reasonable accuracy when the changing in wall thickness is very small. The result of the studies is discussed in this paper

  12. Ionizing radiations for non-destructive evaluation

    International Nuclear Information System (INIS)

    Raj, Baldev; Venkataraman, B.

    1989-01-01

    A state of the art of major non-destructive testing (NDT) techniques based on ionising radiations is presented. These techniques are broadly classified into three categories, namely, radiography, radiation gaging and analytical applications. The basic principles behind each method are explained and salient features of each technique which make it suitable for a particular task are described. Several illustrative applications drawn from the nuclear industry are given. The monograph is intended to serve as an introductory guide to scientist and engineers engaged in NDT activities. (M.G.B.). 32 refs., 13 figs., 5 tabs

  13. A Gaussian beam method for ultrasonic non-destructive evaluation modeling

    Science.gov (United States)

    Jacquet, O.; Leymarie, N.; Cassereau, D.

    2018-05-01

    The propagation of high-frequency ultrasonic body waves can be efficiently estimated with a semi-analytic Dynamic Ray Tracing approach using paraxial approximation. Although this asymptotic field estimation avoids the computational cost of numerical methods, it may encounter several limitations in reproducing identified highly interferential features. Nevertheless, some can be managed by allowing paraxial quantities to be complex-valued. This gives rise to localized solutions, known as paraxial Gaussian beams. Whereas their propagation and transmission/reflection laws are well-defined, the fact remains that the adopted complexification introduces additional initial conditions. While their choice is usually performed according to strategies specifically tailored to limited applications, a Gabor frame method has been implemented to indiscriminately initialize a reasonable number of paraxial Gaussian beams. Since this method can be applied for an usefully wide range of ultrasonic transducers, the typical case of the time-harmonic piston radiator is investigated. Compared to the commonly used Multi-Gaussian Beam model [1], a better agreement is obtained throughout the radiated field between the results of numerical integration (or analytical on-axis solution) and the resulting Gaussian beam superposition. Sparsity of the proposed solution is also discussed.

  14. Non-destructive evaluation of material degradation in RPV steel by magnetic methods

    International Nuclear Information System (INIS)

    Takahashi, S.; Kikuchi, H.; Kamada, Y.; Ara, K.; Zhang, L.; Liu, T.

    2004-01-01

    The minor hysteresis loops are measured with increasing magnetic field amplitude, H a , step by step and analyzed in connection with the lattice defects such as dislocations in deformed and neutron irradiated A533B steels. We have defined several new magnetic parameters in the minor loops: they are a pseudo coercive force H c *, a pseudo remanence B R *, a magnetic susceptibility at pseudo coercive force χ H *, pseudo hysteresis loss W f *, pseudo remanence work W r *. H c * is the magnetic field where the magnetization becomes zero in the minor loop. Six coefficients sensitive to lattice defects are obtained by the pseudo magnetic properties and they are independent of H a as well as the magnetic field. These coefficients are effective parameters for nondestructive evaluation of degradation before the initiation of cracking. The minor loops have several advantages for the nondestructive evaluation compared with the major loop. The coefficients have much information about lattice defects and the high accuracy. The measurement is available for low magnetic field of 20 Oe and the H a step is not necessarily fine for the detailed information because of the similarity. (orig.)

  15. Evaluation of non-destructive methods for quality checking of vitrified high level waste

    International Nuclear Information System (INIS)

    Huddleston, J.; Hutchinson, I.G.; Metcalfe, B; Mossop, J.R.; Taylor, B.L.; Wilkins, C.G.

    1990-03-01

    Tomography and X-ray absorptiometry have been performed on a container of vitrified high level waste produced by the FINGAL process in 1966. The glass weighed 40-50 kg and when produced contained 10 14 Bq of β/γ activity. The studies have been carried out without recourse to specialised high activity handling facilities. Measurements were carried out by lowering the glass from a shielded container, through a measurement collar, into one of the original storage holes in the floor of the FINGAL plant. The tomographs showed clearly various artefacts in the glass but no cracks or voids were observed within the resolution of the method (0.5-1 mm). The X-ray absorptiometric measurements were made using a 160 kV tube. They showed the presence of about 7% uranium (determined from the magnitude of its K-absorption edge). The resulting strong absorption of X-rays limited the measurements that could be made. (author)

  16. Non destructive methods for evaluating the mechanical properties of cemented toxic wastes

    Energy Technology Data Exchange (ETDEWEB)

    De Angelis, G. [ENEA, Centro Ricerche Casaccia, Rome (Italy). Dipt. Ambiente

    1999-07-01

    Measurements of resonant frequency and ultrasonic pulse velocity proved quite useful in order to follow the development of mechanical properties of cemented wastes in laboratory scale. Values of the elastic modulus (Young's modulus), shear and Poisson' s ratio have been obtained from these techniques and compared with dimensional movements and mechanical strength determined on the same formulations. The influence of crack formation on resonant frequency and quenching coefficient has also been evaluated in one case, in order to demonstrate the validity of such techniques for verifying any modification in the internal structure of the material. Sclerometric hardness was also determined on small samples and related to the compressive strength. However sclerometric measurements on full scale samples did not prove reliable. [Italian] Misure di frequenza di risonanza e di diffusione degli impulsi ultrasonici si sono rilevate un utile metodo di indagine a livello di laboratorio per meglio comprendere lo sviluppo delle proprieta' meccaniche dei rifiuti tossici condizionati in matrice cementizia. I valori del modulo di elasticita' (o modulo di Young), del modulo a torsione e del rapporto di Poisson, ottenuti mediante queste tecniche, sono stati messi in relazione con le variazioni dimensionali e con le proprieta' meccaniche di campioni ottenuti dallo stesso impasto. In un singolo caso e' stato valutato anche l'effetto che la formazione di crepe nel materiale esercita sul valore del picco di risonanza e sul coefficiente di smorzamento, allo scopo di dimostrare la validita' di queste tecniche nella verifica di modifiche insorte nella struttura interna di tali prodotti. Sono state fatte anche determinazioni di durezza per mezzo dello sclerometro, correlando i valori ottenuti con la resistenza alla compressione, mettendo altresi' in evidenza la non applicabilita' di tale metodo a manufatti preparati industrialmente.

  17. Non-destructive testing and evaluation for structural integrity

    International Nuclear Information System (INIS)

    Baldev Raj; Jayakumar, T.; Rao, B.P.C.

    1995-01-01

    In this paper, a brief description of the physical concepts of non-destructive evaluation (NDE) methods and the physical/derived parameters that are used for assessing defects, stresses and microstructures are given. A few case studies highlighting the importance of non-destructive testing and evaluation for structural integrity assessment are also discussed based on the investigations carried out. Emerging concepts like intelligent processing of materials, expert systems, neural networks, use of multisensors with fusion of data and exploitation of signal analysis and imaging approaches are also addressed in this paper. (author). 92 refs., 1 tab

  18. Short time evaluation of metallic materials' fatigue potential combining destructive and non-destructive testing methods

    International Nuclear Information System (INIS)

    Starke, Peter; Wu, Haoran; Boller, Christian

    2015-01-01

    Fatigue of engineering structures is an issue from an engineering design point. The lifetime of materials being subject to repeated mechanical loads is limited. Different examples of failures and fateful air accidents have caused significant cost and claims to the operators as well as manufacturers in excess of fatalities. Criticality of failure increases with increasing age and the uncertainty of operational loads applied. In such a case a reassessment of a structural materials' condition is in big need should damage tolerance criteria still be met, being the essential ground rule for aeronautical structural design. It is therefore the challenging aim to use a metallic material's microstructure characterizing non-destructive testing (NDT) parameter or a combination of those as a parameter to be scanned over a defined surface of the component considered to more realistically characterize the damage condition and to use this information twofold: (a) to more precisely assess the structural component's residual life and (b) to feed the information recorded back into a specific database belonging to an approach named PHYBAL. The physically based fatigue life evaluation method (PHYBAL) is a short-time procedure for the evaluation of fatigue data based on a small number of fatigue tests performed on un-notched specimens only. This method significantly reduces the effort for experimentation in terms of time and cost by around 90 % and inhibits remarkable scientific as well as economic advantages. The paper highlights the high capability of PHYBAL as well as the suitability for assessing the residual life of aeronautical components also with respect to the application of this approach in the light of structural health monitoring issues.

  19. Advanced uses of radiation in non-destructive evaluation

    International Nuclear Information System (INIS)

    Baldev Raj; Viswanathan, B.; Venkataraman, B.

    1998-01-01

    The increasing demand for newer materials and stringency of specifications, have expanded the scope of advanced uses of radiation in non-destructive evaluation of materials and industrial components. This paper highlights the application of some of the advanced techniques of radiography and residual stress measurements, using x-ray diffraction, for materials characterisation and testing, based on the results obtained at the author's laboratory. The application of positron annihilation techniques based on the use of radioisotopes and high resolution gamma ray spectroscopy, is introduced as non-destructive tools for materials characterisation. Selective examples of significant results obtained using this technique, on the radiation damage and early stages of fatigue damage in technologically important steels are reviewed from recent works at the author's laboratory and elsewhere. The scope of application of charge particle based thin layer activation method is briefly outlined. (author)

  20. Analysis the evaluation of reinforces concrete structure Block 62 by Non Destructive Method, Destructive Method and Esteem Computer Program

    International Nuclear Information System (INIS)

    Mohd Jamil Hashim; Norhazwani Mohd Azahari

    2012-01-01

    The evaluation of old and unrecorded building is a difficult task to work on. This is because no detail record of building component such as reinforce concrete strength test record, type of reinforcement used, construction methods and soil investigation (SI) which make it impossible to analyse. Through NDT building reinforced concrete component is easily evaluated and mean while DT method give assurance through actual sample testing. From these early result detail drawing plans can be rebuild and building forensic work can be done. These data will be fed into the computer program to produce a structure evaluation result whether it is safe or not in accordance to design standard BS8110. (author)

  1. Advanced non-destructive methods for an efficient service performance

    International Nuclear Information System (INIS)

    Rauschenbach, H.; Clossen-von Lanken Schulz, M.; Oberlin, R.

    2015-01-01

    Due to the power generation industry's desire to decrease outage time and extend inspection intervals for highly stressed turbine parts, advanced and reliable Non-destructive methods were developed by Siemens Non-destructive laboratory. Effective outage performance requires the optimized planning of all outage activities as well as modern Non-destructive examination methods, in order to examine the highly stressed components (turbine rotor, casings, valves, generator rotor) reliably and in short periods of access. This paper describes the experience of Siemens Energy with an ultrasonic Phased Array inspection technique for the inspection of radial entry pinned turbine blade roots. The developed inspection technique allows the ultrasonic inspection of steam turbine blades without blade removal. Furthermore advanced Non-destructive examination methods for joint bolts will be described, which offer a significant reduction of outage duration in comparison to conventional inspection techniques. (authors)

  2. Reliability of non-destructive testing methods

    International Nuclear Information System (INIS)

    Broekhoven, M.J.G.

    1988-01-01

    This contribution regards the results of an evaluation of the reliability of radiography (X-rays and gamma-rays), manual-, and mechanized/automated ultrasonic examination by generally accepted codes/rules, with respect to detection, characterization and sizing/localization of defects. The evaluation is based on the results of examinations, by a number of teams, of 30 test plates, 30 and 50 mm thickness, containing V,U, X and K-shaped welds each containing several types of imperfections (211) in total) typical for steel arc fusion welding, such as porosity, inclusions, lack of fusion or penetration and cracks. Besides, some results are presented obtained from research on advanced UT-techniques, viz. the time-of-flight-diffraction and flaw-tip deflection technique. (author)

  3. Reliability of non-destructive testing methods

    Energy Technology Data Exchange (ETDEWEB)

    Broekhoven, M J.G. [Ministry of Social Affairs, (Netherlands)

    1988-12-31

    This contribution regards the results of an evaluation of the reliability of radiography (X-rays and gamma-rays), manual-, and mechanized/automated ultrasonic examination by generally accepted codes/rules, with respect to detection, characterization and sizing/localization of defects. The evaluation is based on the results of examinations, by a number of teams, of 30 test plates, 30 and 50 mm thickness, containing V,U, X and K-shaped welds each containing several types of imperfections (211) in total) typical for steel arc fusion welding, such as porosity, inclusions, lack of fusion or penetration and cracks. Besides, some results are presented obtained from research on advanced UT-techniques, viz. the time-of-flight-diffraction and flaw-tip deflection technique. (author). 4 refs.

  4. Technology Evaluation Report: Non-destructive ...

    Science.gov (United States)

    Technology Evaluation Report HSRP is working to develop tools and information that will help detect the intentional introduction of chemical or biological contaminants in buildings or water systems, the containment of these contaminants, the decontamination of buildings and/or water systems, and the management of wastes generated from decontamination and cleanup operations. Evaluation of the performance of CBI Polymers’ DeconGelTM 1108, Environmental Alternatives, Inc.’s (EAI’s) Rad-Release II (RRII), Environmental Alternatives, Inc.’s SuperGel, and Intek Technologies’ LH-21. The objective of evaluating these technologies was to test their ability to remove radioactive cesium (Cs)-137 from the mixed building material coupons of brick with mortar, tile with grout, granite with mortar, all mortar and all grout coupons.

  5. Mathematical modelling of ultrasonic non-destructive evaluation

    Directory of Open Access Journals (Sweden)

    Larissa Ju Fradkin

    2001-01-01

    Full Text Available High-frequency asymptotics have been used at our Centre to develop codes for modelling pulse propagation and scattering in the near-field of the ultrasonic transducers used in NDE (Non-Destructive Evaluation, particularly of walls of nuclear reactors. The codes are hundreds of times faster than the direct numerical codes but no less accurate.

  6. Online Preventative Non-Destructive Evaluation in Automated Fibre Placement

    NARCIS (Netherlands)

    Tonnaer, R.; Shroff, S.; Groves, R.M.

    2016-01-01

    The strict quality requirements for aerospace composite struc- tures give rise to costly quality control procedures. In automated bre placement (AFP) these procedures rely heavily on manual work and inspection. This research aims at performing preventative non-destructive evaluation of composite

  7. Newly developed non-destructive testing method for evaluation of irradiation brittleness of structural materials using ultrasonic

    International Nuclear Information System (INIS)

    Ishii, Toshimitsu; Ooka, Norikazu; Kato, Yoshiaki; Saito, Junichi; Hoshiya, Taiji; Shibata, Saburo; Kobayashi, Hideo

    1999-01-01

    Surveillance testing is important to evaluate neutron irradiation embrittlement of reactor pressure vessel material for long life operation. An alternative test method for evaluating the irradiation embrittlement of the pressure vessel material will have to be proposed to support the limited number of surveillance test specimens in order to manage the plant life to be extended. In this study, ultrasonic testing for irradiated A533B-1 steel and weld metal was applied to examine material degradation nondestructively. With increasing the shift of Charpy 41 J transition temperature, ultrasonic velocity decreased and attenuation coefficient of ultrasonic wave increased. Especially, the difference of ultrasonic velocity for 5 MHz shear wave between as-received and irradiated material is corresponding to the shift of transition temperature showing material degradation. (author)

  8. Analysis of Within-Test Variability of Non-Destructive Test Methods to Evaluate Compressive Strength of Normal Vibrated and Self-Compacting Concretes

    Science.gov (United States)

    Nepomuceno, Miguel C. S.; Lopes, Sérgio M. R.

    2017-10-01

    Non-destructive tests (NDT) have been used in the last decades for the assessment of in-situ quality and integrity of concrete elements. An important step in the application of NDT methods concerns to the interpretation and validation of the test results. In general, interpretation of NDT results should involve three distinct phases leading to the development of conclusions: processing of collected data, analysis of within-test variability and quantitative evaluation of property under investigation. The analysis of within-test variability can provide valuable information, since this can be compared with that of within-test variability associated with the NDT method in use, either to provide a measure of the quality control or to detect the presence of abnormal circumstances during the in-situ application. This paper reports the analysis of the experimental results of within-test variability of NDT obtained for normal vibrated concrete and self-compacting concrete. The NDT reported includes the surface hardness test, ultrasonic pulse velocity test, penetration resistance test, pull-off test, pull-out test and maturity test. The obtained results are discussed and conclusions are presented.

  9. Non-Destructive Methods for Determining Burn-Up in Nuclear Fuel; Methodes Non Destructives d'Evaluation du Taux de Combustion dans le Combustible Nucleaire; Metody opredeleniya vygoraniya v yadernom toplive bez razrusheniya obraztsa; Metodos No Destructivos para Determinai el Grado de Combustion de los Elementos Combustibles Nucleares

    Energy Technology Data Exchange (ETDEWEB)

    McGonnagle, W. J. [Illinois Institute of Technology, Chicago, IL (United States)

    1966-02-15

    Non-destructive methods for quantitative measurement of burn-up in nuclear reactor fuel elements are useful and desirable. The ideal method for fuel assay would be one that requires no special information about the neutron spectra, radiation history, or cooling time. The irradiated fuel element contains a record of the fuel burn-up. This record is in the form of radioactive and stable isotopes resulting from the fission process. Unfortunately, in the non-destructive as well as the destructive fuel assay methods, the neutron spectrum, irradiation history, and cooling period influence this record. Likewise, the lack of precise nuclear data, such as values of nuclear cross-sections, affects any calculations that can be made. Another difficulty in the non-destructive assay is the presence of high radiation fields which contribute to the ''noise'' background of the measurements. The development of useful and realistic standards is difficult. The non-destructive burn-up methods do serve a useful purpose especially when an approximate value of burn-up is required quickly and economically even though in the present state of the art they lack the desired precision and accuracy. Several non-destructive methods for determining burn-up have been used, are being evaluated, or have been proposed. Various types of spectrometers including the bent crystal, magnetic Compton, Compton coincidence, and scintillation have been used to analyse the gamma radiation from the radioactive material formed during the fission process. Other non-destructive methods include foil activation, neutron transmission, activation analysis, measurement of capture gamma rays, and the measurement of prompt and delayed neutrons. The basic principles of each of the above instruments and methods, their sensitivities and their limitations will be reviewed. Non-destructive methods using stable isotopes produced during the fission process are proposed. In the use of stable isotopes, detailed irradiation history

  10. Non destructive evaluation of containment nuclear plants structures

    Energy Technology Data Exchange (ETDEWEB)

    Garnier, V. [Aix Marseille Univ., Aix en Provence (France). LMA, CNRS UPR 7051, IUT; Verdier, J. [Toulouse Univ. (France). UPS, INSA, LMDC; Sbartai, Z.M. [Bordeaux Univ., Talence (France). I2M; and others

    2015-07-01

    French Projects of Investment for the Future, called ''Research for Nuclear Safety and Radiation Protection'' have been initiated to further research on the causes, the management, the impact of the observed nuclear accidents and to propose and validate solutions to limit the risk and the consequences. In this context the ''Non Destructive Evaluation of nuclear plants containment'' project (ENDE) with eight partners (six research institutes and two industrials) supported by the ''National Agency of Research'', proposes a methodology for the Non Destructive Evaluation of the containment capacity to fulfil its two major functions: strength and leak tightness. The NDE measurements will be performed under conditions representing the specific solicitations of a decennial inspection, and after or during a reference accident. The project aims to develop NDEs, to combine them by data fusion and to select the most efficient combinations with quantitative criteria. The work is based on: - Structuring the knowledge and developing an experimental plan. - Evaluating the material in representative conditions of accidental solicitations (water saturation, porosity, strength, elastic modulus, stress) and the diffuse thermal damage (micro cracks) - Monitoring the transition from diffuse to continuous damage (cracks) and monitoring a crack under stress (opening and width). - Implementing ND Techniques on-site. The ND techniques retained after selection will be implemented on a containment mock-up on the 1/3 scale. This mock-up developed by EDF (Electricite de France) will be available in 2016. It will be comparable to those of real size containment regarding pressure and temperature conditions. The measures deduced from the NDEs will be introduced in another project (Macena) that aims to simulate the water and heat transfers as well as creep occurring in a reference accident. We will present the methodology and the results

  11. Non-destructive evaluation of water ingress in photovoltaic modules

    Energy Technology Data Exchange (ETDEWEB)

    Bora, Mihail; Kotovsky, Jack

    2017-03-07

    Systems and techniques for non-destructive evaluation of water ingress in photovoltaic modules include and/or are configured to illuminate a photovoltaic module comprising a photovoltaic cell and an encapsulant with at least one beam of light having a wavelength in a range from about 1400 nm to about 2700 nm; capture one or more images of the illuminated photovoltaic module, each image relating to a water content of the photovoltaic module; and determine a water content of the photovoltaic module based on the one or more images. Systems preferably include one or more of a light source, a moving mirror, a focusing lens, a beam splitter, a stationary mirror, an objective lens and an imaging module.

  12. Efficiency evaluation test of waste non-destructive analysis device

    International Nuclear Information System (INIS)

    Maeda, Kouichi; Ogasawara, Kensuke; Nisizawa, Ichio

    2000-03-01

    A device for non-destructive analysis of plutonium in alpha solid waste has been installed in NUCEF; Nuclear Fuel Cycle Safety Engineering Research Facility. The device has been designed to determine the amount of radioisotopes in carton-boxes, 45 l steel cans and 200 l steel cans containing relatively low density waste. Considering the waste density and the heterogeneity of radio-sources, the proper distance between the detector and the waste, and the open degree of the collimator have been settled, because real waste may contain several kinds of material and the heterogeneity of radioactivity. It has been confirmed from the evaluation of the detect limit that plutonium of about 8 MBq can be determined with the accuracy of 10% and the device may be proper for the practical application. (author)

  13. A non-destructive method for estimating onion leaf area

    Directory of Open Access Journals (Sweden)

    Córcoles J.I.

    2015-06-01

    Full Text Available Leaf area is one of the most important parameters for characterizing crop growth and development, and its measurement is useful for examining the effects of agronomic management on crop production. It is related to interception of radiation, photosynthesis, biomass accumulation, transpiration and gas exchange in crop canopies. Several direct and indirect methods have been developed for determining leaf area. The aim of this study is to develop an indirect method, based on the use of a mathematical model, to compute leaf area in an onion crop using non-destructive measurements with the condition that the model must be practical and useful as a Decision Support System tool to improve crop management. A field experiment was conducted in a 4.75 ha commercial onion plot irrigated with a centre pivot system in Aguas Nuevas (Albacete, Spain, during the 2010 irrigation season. To determine onion crop leaf area in the laboratory, the crop was sampled on four occasions between 15 June and 15 September. At each sampling event, eight experimental plots of 1 m2 were used and the leaf area for individual leaves was computed using two indirect methods, one based on the use of an automated infrared imaging system, LI-COR-3100C, and the other using a digital scanner EPSON GT-8000, obtaining several images that were processed using Image J v 1.43 software. A total of 1146 leaves were used. Before measuring the leaf area, 25 parameters related to leaf length and width were determined for each leaf. The combined application of principal components analysis and cluster analysis for grouping leaf parameters was used to reduce the number of variables from 25 to 12. The parameter derived from the product of the total leaf length (L and the leaf diameter at a distance of 25% of the total leaf length (A25 gave the best results for estimating leaf area using a simple linear regression model. The model obtained was useful for computing leaf area using a non-destructive

  14. Non-destructive evaluation of concrete using ultrasonic pulse velocity

    International Nuclear Information System (INIS)

    Lawson, I.

    2008-06-01

    Ultrasonic pulse velocity is one of the most popular non-destructive techniques used in the assessment of concrete properties. This thesis investigates the relationship between using ultrasonic pulse velocity (UPV) and the conventional compressive strength tests to determine concrete uniformity. The specimens used in the studies were made of concrete with a paste content of 18% and the constituents of the specimens varied in different water-cement ratios (w/c). The UPV measurement and compressive strength tests were carried out at the concrete age of 2, 7, 15 and 28 days. The UPV and the compressive strength of concrete increase with age, but the growth rate varies with mixture proportion. A relationship curve is drawn between UPV and compressive strength for concrete having different w/c from 0.35 to 0.7. Tests were also performed using Ultrasonic Pulse Velocity Method (UPVM) in detecting discontinuity and determining its depth during the early age of concrete. The test results indicate that the UPVM can be used to assess the in-situ properties of concrete or for quality control on site. The accuracy of the UPVM in detecting discontinuities ranges from 55.75 to 98.70% for ages 3 to 28 (full strength) respectively. (au)

  15. Geophysical Methods for Non-Destructive Testing in Civil Engineering

    Science.gov (United States)

    Niederleithinger, E.

    2013-12-01

    Many non-destructive testing (NDT) methods for civil engineering (e. g. ultrasonics, radar) are similar to geophysical techniques. They just differ in scale, material under investigation and vocabulary used. In spite of the fact that the same principles of physics and mathematics apply to both fields, exchange has been limited in the past. But since a few years more and more geophysical knowledge is used in civil engineering. One of the focal points in research is to improve ultrasonic testing of concrete to be able to image the inside even of large, complex structures and to detect any deterioration as early as possible. One of the main issues is the heterogeneity of concrete, including aggregates, reinforcement, cracks and many other features. Our current research focuses on three points. One is the application of state of the art geophysical migration techniques as Reverse Time Migration (RTM) to image vertical faces or the backside of voids and ducts in thick concrete structures, which isn't possible with conventional techniques used in NDT. Second, we have started to use seismic interferometric techniques to interpolate ultrasonic traces, which can't be measured directly for technical reasons. Third, we are using coda wave interferometry to detect concrete degradation due to load, fatigue, temperature or other influences as early as possible. Practical examples of the application of these techniques are given and potential future research directions will be discussed. It will be shown, how a subset of these techniques can be used for innovative monitoring systems for civil infrastructure. Imaging the interior of a concrete body by ultrasonics and reverse time migration(simulated data).

  16. NonDestructive Evaluation for Industrial & Development Applications

    Energy Technology Data Exchange (ETDEWEB)

    Hunter, James F. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-10-12

    Provide overview of weld inspection for Non-Destructive Testing at LANL. This includes radiography (RT/DR/CR/CT for x-ray & neutron sources), ultrasonic testing (UT/PAUT), dye penetrant inspection (PT), eddy current inspection (ET) and magnetic particle testing (MT). Facilities and capabilities for weld inspection will be summarized with examples.

  17. Visualization of Tooth for Non-Destructive Evaluation from CT Images

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Hui; Chae, Ok Sam [Kyung Hee University, Seoul (Korea, Republic of)

    2009-06-15

    This paper reports an effort to develop 3D tooth visualization system from CT sequence images as a part of the non-destructive evaluation suitable for the simulation of endodontics, orthodontics and other dental treatments. We focus on the segmentation and visualization for the individual tooth. In dental CT images teeth are touching the adjacent teeth or surrounded by the alveolar bones with similar intensity. We propose an improved level set method with shape prior to separate a tooth from other teeth as well as the alveolar bones. Reconstructed 3D model of individual tooth based on the segmentation results indicates that our technique is a very conducive tool for tooth visualization, evaluation and diagnosis. Some comparative visualization results validate the non-destructive function of our method.

  18. Proceedings of the national workshop on non destructive evaluation of structures

    International Nuclear Information System (INIS)

    2013-01-01

    In spite of the care and best efforts to improve the quality of structures, problems do occur, raising alarm. This makes doubtful about the understanding. Distresses in the structures start immediately after construction and these are often concealed under the external finishes. A defect takes time to manifest itself. To add further, structures remain unattended for several years. As it is uneconomical to replace the assets before the intended service life by another capital investment, it is essential to periodically monitor the health of structures throughout its life. Success of both, the construction and restoration work depends on right diagnosis of the problem thorough proper testing techniques. Non destructive evaluation is one of the reliable methods for the scientific assessment of health and prediction of residual service life of structure. The workshop shall provide a platform to students, engineers and professionals for acquaintance with the current state of art technology of non-destructive evaluation techniques. Papers relevant to INIS are indexed separately

  19. A study of non destructive integrity assessment method for structural materials of nuclear reactor. Part 2

    International Nuclear Information System (INIS)

    Totsuka, Nobuo; Matsuzaki, Akihiro

    2011-01-01

    The hardness measurement is one of the most effective way for non destructive integrity assessment evaluating structural materials of nuclear power plants before and after suffering an earthquake. Then an actual evaluation method and effectiveness of the method using portable hardness tester has been reported in the previous Journal. In this study, the developing method which can evaluate more accurately the amount of plastic deformation of the material caused by an earthquake has been reported, based on the experimental results about the hardness change of the material considering the thermal aging due to the plant operation and the cyclic deformation suffered by an earthquake. (author)

  20. Evaluation of corrosion of prestressing steel in concrete using non-destructive techniques

    International Nuclear Information System (INIS)

    Ali, M.G.; Maddocks, A.R.

    2003-01-01

    Use of high strength steel in pre-stressed concrete structures has been in use in Australia for many decades. Highway bridges, among other structures, have extensively used pre-stress-ing and post-tensioning techniques. Although prestressing offers many competitive edges to it's traditional rival reinforced concrete, the consequence of damage to prestressing tendons could be catastrophic. Periodic visual inspections of prestressed concrete bridges throughout the world have demonstrated the growing problem of deterioration of prestressing steel as a result of corrosion. Early detection of damage to prestressing steel therefore is of paramount importance. Unfortunately no reliable and practical non-destructive evaluation technique has been available for assessing the condition of prestressing steel within concrete although a number of techniques appear promising. The following inspection methods have been highlighted in recent literature for their use as non-destructive inspection methods for prestressed concrete structures. In addition to the techniques discussed, a number of destructive, or invasive techniques also exist for determination of the corrosion status of prestressing tendons in prestressed structures. The following non-destructive techniques are discussed in some detail: Radiography; Computed Tomography; Surface Penetrating Radar; Impact Echo; Acoustic Emission Monitoring; Magnetic Field Disturbance Technique; Remnant Magnetism Method; Linear Polarisation Method; Electrical Resistance and Surface Potential Survey. The portability, limitations and use in Australia of these techniques are summarised in a table

  1. Nonconventional concrete hollow blocks evaluation by destructive and non-destructive testing

    Directory of Open Access Journals (Sweden)

    M.S. Rodrigues

    Full Text Available The aim of this study was to evaluate cementitious matrices properties by partial replacement of Portland cement by silica fume (SF or by rice husk ash (RHA, and their application in nonbearing hollow blocks, tested by destructive and non-destructive methods. The following mixtures were produced: reference (100% of Portland cement and Portland cement replacement (10% by mass with SF or RHA. The non-destructive testing showed that the highest values of UPV were obtained for SF-based blocks and RHA-based blocks. The destructive test showed better results for SF-based blocks, but there was no statistical difference between the RHA-based and control ones.

  2. Non-destructive Engineering

    International Nuclear Information System (INIS)

    Ko, Jin Hyeon; Ryu, Taek In; Ko, Jun Bin; Hwang, Yong Hwa

    2006-08-01

    This book gives descriptions of non-destructive engineering on outline of non-destructive test, weld defects, radiographic inspection radiography, ultrasonic inspection, magnetic particle testing, liquid penetrant testing, eddy current inspection method, strain measurement, acoustic emission inspection method, other non-destructive testing like leakage inspection method, and non-destructive mechanics for fault analysis such as Griffiths creaking theory, and stress analysis of creaking.

  3. Non-destructive system to evaluate critical properties of asphalt compaction : [research brief].

    Science.gov (United States)

    2013-12-01

    The Wisconsin Highway Research Program sponsored a two-stage investigation to develop a non-destructive system to evaluate critical compaction properties and characteristics of asphalt pavements during the densification process. Stage One activities ...

  4. Space Qualified Non-Destructive Evaluation and Structural Health Monitoring Technology, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NextGen Aeronautics is proposing an innovative space qualified non-destructive evaluation and health monitoring technology. The technology is built on concepts...

  5. Non-destructive evaluation on mechanical properties of nuclear graphite with porous structure

    International Nuclear Information System (INIS)

    Shibata, Taiju; Hanawa, Satoshi; Sumita, Junya; Tada, Tatsuya; Sawa, Kazuhiro; Iyoku, Tatsuo

    2005-01-01

    As a research subjects of 'Research and development for advanced high temperature gas cooled reactor fuels and graphite components,' we started the study of development of non-destructive evaluation methods for mechanical properties of graphite components. The micro-indentation and ultrasonic wave methods are focused to evaluate the degradation of graphite components in VHTR core. For the micro-indentation method, the test apparatus was designed for the indentation test on graphite specimens with some stress levels. It is expected the stress condition is evaluated by the indentation load-depth characteristics and hardness. For the ultrasonic wave method, ultrasonic wave testing machine and probes were prepared for experiments. It is expected that the stress and inner porous conditions are evaluated by the wave propagation characteristics with wave-pore interaction model. R and D plan to develop the non-destructive evaluation method for graphite is presented in this paper. (This study is the result of contract research in the fiscal year of 2004, Research and development for advanced high temperature gas cooled reactor fuels and graphite components,' which is entrusted to the Japan Atomic Energy Research Institute from the Ministry of Education, Culture, Sports, Science and Technology of Japan.) (author)

  6. National seminar on non-destructive evaluation techniques: proceedings cum souvenir

    International Nuclear Information System (INIS)

    Dutta, N.G.; Kulkarni, P.G.; Purushotham, D.S.C.

    1994-01-01

    This volume contains selected papers presented at the National Seminar on Non-Destructive Evaluation Techniques held at Bhabha Atomic Research Centre, Mumbai during December 8-9, 1994. The papers covered a wide spectrum of non-destructive evaluation activities including that for quality assurance of various nuclear components and structures with the focal theme being computerization and robotics. The papers relevant to INIS are indexed separately

  7. Non-destructive Reliability Evaluation of Electronic Device by ESPI

    International Nuclear Information System (INIS)

    Yoon, Sung Un; Kim, Koung Suk; Kang, Ki Soo; Jo, Seon Hyung

    2001-01-01

    This paper propose electronic speckle pattern interferometry(ESPI) for reliability evaluation of electronic device. Especially, vibration problem in a fan of air conditioner, motor of washing machine and etc. is important factor to design the devices. But, it is difficult to apply previous method, accelerometer to the devices with complex geometry. ESPI, non-contact measurement technique applies a commercial fan of air conditioner to vibration analysis. Vibration mode shapes, natural frequency and the range of the frequency are decided and compared with that of FEM analysis. In mechanical deign of new product, ESPI adds weak point of previous method to supply effective design information

  8. Non-destructive evaluation of UV pulse laser-induced damage performance of fused silica optics.

    Science.gov (United States)

    Huang, Jin; Wang, Fengrui; Liu, Hongjie; Geng, Feng; Jiang, Xiaodong; Sun, Laixi; Ye, Xin; Li, Qingzhi; Wu, Weidong; Zheng, Wanguo; Sun, Dunlu

    2017-11-24

    The surface laser damage performance of fused silica optics is related to the distribution of surface defects. In this study, we used chemical etching assisted by ultrasound and magnetorheological finishing to modify defect distribution in a fused silica surface, resulting in fused silica samples with different laser damage performance. Non-destructive test methods such as UV laser-induced fluorescence imaging and photo-thermal deflection were used to characterize the surface defects that contribute to the absorption of UV laser radiation. Our results indicate that the two methods can quantitatively distinguish differences in the distribution of absorptive defects in fused silica samples subjected to different post-processing steps. The percentage of fluorescence defects and the weak absorption coefficient were strongly related to the damage threshold and damage density of fused silica optics, as confirmed by the correlation curves built from statistical analysis of experimental data. The results show that non-destructive evaluation methods such as laser-induced fluorescence and photo-thermal absorption can be effectively applied to estimate the damage performance of fused silica optics at 351 nm pulse laser radiation. This indirect evaluation method is effective for laser damage performance assessment of fused silica optics prior to utilization.

  9. Dam safety review using non-destructive methods for reinforced concrete structure

    Energy Technology Data Exchange (ETDEWEB)

    Philibert, Alain; Saint-Pierre, Francois; Turcotte, Bernard [Le Groupe S.M. International Inc., Sherbrooke, (Canada)

    2010-07-01

    Dams built at the beginning of the twentieth century include concrete structures that were put in under rehabilitation works. In some cases, the details of the structures are not well documented. In other cases, concrete damage can be hidden under new layers of undamaged material. This requires that the dam safety review in a real investigation gather the information necessary for carrying out the hydraulic and stability studies required by the Dam Safety Act. This paper presented the process of dam safety review using non-destructive methods for reinforced concrete structures. Two reinforced concrete dams built in the 1900's, the Eustic dam on the Coaticook River and the Frontenac dam on the Magog River near Sherbrooke, were evaluated by S.M. International using non-destructive methods such as sonic and ground penetrating radar methods. The studies allowed mapping of concrete damage and provided geometric information on some non visible structure elements that were part of previous reinforcement operations.

  10. Non-destructive evaluation of thermal aging embrittlement of duplex stainless steels

    International Nuclear Information System (INIS)

    Yi, Y.S.; Tomobe, T.; Watanabe, Y.; Shoji, T.

    1993-01-01

    The non-destructive evaluation procedure for detecting thermal aging embrittlement of cast duplex stainless steels has been investigated. As a novel measurement technique for the thermal aging embrittlement, an electrochemical method was used and anodic polarization behaviors were measured on new, service exposed, and laboratory aged materials and then were compared with the results of the mechanical tests and microstructural changes. During the polarization experiments performed in potassium hydroxide solution (KOH), M 23 C 6 carbides on phase boundary were preferentially dissolved, which was comfirmed by the SEM after polarization measurements. The preferential dissolution of M 23 C 6 carbides were obtained. Also, the non-destructive measurement and evaluation method of spinodal decomposition, which has been known as the primary mechanism of embrittlement inferrite phase, was reviewed. When the materials, where spinodal decomposition occurred, were polarized in an acetic acid solution (CH 3 COOH), larger critical anodic current densities were observed than those observed on new materials, and these results were consistent with the result of the microhardness measurement. Concerning these polarization results, a critical electric charge, which was required for stable passive films in passive metals, was defined and the relationship between the microstructural changes and this charge amount was reviewed under various polarization conditions in order to verify the polarization mechanism of the spinodally decomposed ferrite phase

  11. Non-destructive evaluation of the hidden voids in integrated circuit packages using terahertz time-domain spectroscopy

    International Nuclear Information System (INIS)

    Park, Sung-Hyeon; Kim, Hak-Sung; Jang, Jin-Wook

    2015-01-01

    In this work, a terahertz time-domain spectroscopy (THz-TDS) imaging technique was used as a non-destructive inspection method for detecting voids in integrated circuit (IC) packages. Transmission and reflection modes, with an angle of incidence of 30°, were used to detect voids in IC packages. The locations of the detected voids in the IC packages could be calculated by analyzing THz waveforms. Finally, voids that are positioned at the different interfaces in the IC package samples could be successfully detected and imaged. Therefore, this THz-TDS imaging technique is expected to be a promising technique for non-destructive evaluation of IC packages. (paper)

  12. Stress description model by non destructive magnetic methods

    International Nuclear Information System (INIS)

    Flambard, C.; Grossiord, J.L.; Tourrenc, P.

    1983-01-01

    Since a few years, CETIM investigates analysis possibilities of materials, by developing a method founded on observation of ferromagnetic noise. By experiments, correlations have become obvious between state of the material and recorded signal. These correlations open to industrial applications to measure stresses and strains in elastic and plastic ranges. This article starts with a brief historical account and theoretical backgrounds of the method. The experimental frame of this research is described, and the main results are analyzed. Theoretically, a model was built up, and we present it. It seems in agreement with some experimental observations. The main results concerning stress application, thermal and surface treatments (decarbonizing) are presented [fr

  13. Training methods in non-destructive examination with ultrasonic testing

    International Nuclear Information System (INIS)

    Walte, F.

    1986-01-01

    German concept for inspection of LWR, leak before break, basic safety; General inspection methods; Ultrasonic inspection - basic principle, generation of ultrasound, bulk and surface waves, piezo electric and electromagnetic transducers, energy balance, scattering and adsorption, divergence; Ultra techniques in compliance with KTA-rules - pulse-echo, tandem, throughtransmission; Valuation of ultrasonic indications; Pre- and in-service inspection; Practical part - ultrasonic equipment, ultrasonic piezo electric transducers, wall thickness measurement, crack depth measurement with potential drop technique. (orig.)

  14. Numerical modeling for the electromagnetic non-destructive evaluation: application to the non-destructive evaluation of concrete

    International Nuclear Information System (INIS)

    Travassos, L.

    2007-06-01

    Concrete is the most common building material and accounts for a large part of the systems that are necessary for a country to operate smoothly including buildings, roads, and bridges. Nondestructive testing is one of the techniques that can be used to assess the structural condition. It provides non perceptible information that conventional techniques of evaluation unable to do. The main objective of this work is the numerical simulation of a particular technique of nondestructive testing: the radar. The numerical modeling of the radar assessment of concrete structures make it possible to envisage the behavior of the system and its capacity to detect defects in various configurations. To achieve this objective, it was implemented electromagnetic wave propagation models in concrete structures, by using various numerical techniques to examine different aspects of the radar inspection. First of all, we implemented the finite-difference time-domain method in 3D which allows to take into account concrete characteristics such as porosity, salt content and the degree of saturation of the mixture by using Debye models. In addition, a procedure to improve the radiation pattern of bow-tie antennas is presented. This approach involves the Moment Method in conjunction with the Multi objective Genetic Algorithm. Finally, we implemented imaging algorithms which can perform fast and precise characterization of buried targets in inhomogeneous medium by using three different methods. The performance of the proposed algorithms is confirmed by numerical simulations. (author)

  15. Comparative analysis of non-destructive methods to control fissile materials in large-size containers

    Directory of Open Access Journals (Sweden)

    Batyaev V.F.

    2017-01-01

    Full Text Available The analysis of various non-destructive methods to control fissile materials (FM in large-size containers filled with radioactive waste (RAW has been carried out. The difficulty of applying passive gamma-neutron monitoring FM in large containers filled with concreted RAW is shown. Selection of an active non-destructive assay technique depends on the container contents; and in case of a concrete or iron matrix with very low activity and low activity RAW the neutron radiation method appears to be more preferable as compared with the photonuclear one.

  16. Attributes identification of nuclear material by non-destructive radiation measurement methods

    International Nuclear Information System (INIS)

    Gan Lin

    2002-01-01

    Full text: The nuclear materials should be controlled under the regulation of National Safeguard System. The non-destructive analysis method, which is simple and quick, provide a effective process in determining the nuclear materials, nuclear scraps and wastes. The method play a very important role in the fields of nuclear material control and physical protection against the illegal removal and smuggling of nuclear material. The application of non-destructive analysis in attributes identification of nuclear material is briefly described in this paper. The attributes determined by radioactive detection technique are useful tolls to identify the characterization of special nuclear material (isotopic composition, enrichment etc.). (author)

  17. Comparative analysis of non-destructive methods to control fissile materials in large-size containers

    Science.gov (United States)

    Batyaev, V. F.; Sklyarov, S. V.

    2017-09-01

    The analysis of various non-destructive methods to control fissile materials (FM) in large-size containers filled with radioactive waste (RAW) has been carried out. The difficulty of applying passive gamma-neutron monitoring FM in large containers filled with concreted RAW is shown. Selection of an active non-destructive assay technique depends on the container contents; and in case of a concrete or iron matrix with very low activity and low activity RAW the neutron radiation method appears to be more preferable as compared with the photonuclear one. Note to the reader: the pdf file has been changed on September 22, 2017.

  18. Non-destructive evaluation studies for cultural heritage

    International Nuclear Information System (INIS)

    Jayakumar, T.; Babu Rao, C.; Kumar, Anish; Rajkumar, K.V.; Sharma, G.K.; Raj, Baldev

    2009-01-01

    The results of the nondestructive evaluation studies carried out on the Delhi iron pillar and the musical pillars of the Vithala temple at Hampi, Karnataka are discussed. While studies on Delhi iron pillar were carried out with a primary aim to understand the methodology of fabrication of this pillar, the studies on the musical pillars were carried out to finger print/petroligically characterize the stones used in the construction of the musical pillars and to understand the origin of various sounds generated on tapping of the musical pillars by carrying out various acoustic studies. (author)

  19. Evaluation of recycled concrete by means of non destructive tests

    Directory of Open Access Journals (Sweden)

    Di Maio, E. A.

    2003-12-01

    Full Text Available The use of recycled concrete as aggregate for the production of new concretes is a consequence of the shortage of natural resources and the environmental problems due to the storage of residual building materials. In this paper the following results are given: compressive strength, rebound numbers, ultrasonic pulse velocity Break-off pressure and torsional moment, all of them determined on concretes of different strength level elaborated with recycled coarse aggregate in 25% and 75% in respect of a reference concrete (without recycled aggregate. The Break-off and the torsion method present, at 28 days, only one correlation curve; this would allow to estimate the compressive strength using the correlations determined for the same group of materials. It is impossible to apply this procedure when using the ultrasonic method, since the velocity diminishes strongly as the percentage of recycled coarse aggregate increases. With respect to the rebound method, its high dispersion due to the heterogeneous aggregates makes it not advisable in order to perform a strength estimation.

    La escasez de recursos naturales y los problemas ambientales, producto de los depósitos de residuos de construcción y/o demolición, han llevado al uso del hormigón reciclado como árido para la producción de nuevos hormigones. En este trabajo se presentan resultados de resistencia a compresión, números de rebote, velocidades ultrasónicas, presiones Break-off y momentos torsores determinados en hormigones de diferentes niveles de resistencia elaborados con áridos gruesos reciclados en un 25 y 75% respecto de un hormigón de referencia (sin árido reciclado. El método Break-off y el de torsión presentan, a la edad de 28 días, una única curva de correlación, hecho que permitiría estimar la resistencia a compresión utilizando correlaciones determinadas para el mismo conjunto de materiales. Este procedimiento no puede ser aplicado con el método ultras

  20. Yucca mountain container fabrication, closure and non-destructive evaluation development activities

    International Nuclear Information System (INIS)

    Russell, E.W.; Nelson, T.A.

    1990-01-01

    Container fabrication, closure, and non-destructive evaluation process development activities are described. The design parameters for a tuff environment are: no significant hydrostatic or lithostatic loading of the container; very small water flux; benign water, an oxidizing, dilute sodium bicarbonate solution of neutral pH; temperatures reaching 250 C over the first 50 to 100 years, then falling to about 97 C over the remainder of the 300-year container period. The materials under consideration are three austenitic alloys: AISI 304L, AISI 316L, and alloy 825; as well as three copper alloys: CDA 102, CDA 613, and CDA 715. Targets are controlled, uniform microstructures for the base metal, the weld and the heat affected zones of the weld; controlled microchemistry; low residual stresses; small welds and heat-affected zones; and reliable methods of flaw detection by surface and volumetric activities. The recommended procedures and processes for fabricating, closing and evaluating each of the candidate materials are reviewed

  1. Thermographic Non-Destructive Evaluation for Natural Fiber-Reinforced Composite Laminates

    Directory of Open Access Journals (Sweden)

    Hai Zhang

    2018-02-01

    Full Text Available Natural fibers, including mineral and plant fibers, are increasingly used for polymer composite materials due to their low environmental impact. In this paper, thermographic non-destructive inspection techniques were used to evaluate and characterize basalt, jute/hemp and bagasse fibers composite panels. Different defects were analyzed in terms of impact damage, delaminations and resin abnormalities. Of particular interest, homogeneous particleboards of sugarcane bagasse, a new plant fiber material, were studied. Pulsed phase thermography and principal component thermography were used as the post-processing methods. In addition, ultrasonic C-scan and continuous wave terahertz imaging were also carried out on the mineral fiber laminates for comparative purposes. Finally, an analytical comparison of different methods was given.

  2. A spatially offset Raman spectroscopy method for non-destructive detection of gelatin-encapsulated powders

    Science.gov (United States)

    Non-destructive subsurface detection of encapsulated, coated, or seal-packaged foods and pharmaceuticals can help prevent distribution and consumption of counterfeit or hazardous products. This study used a Spatially Offset Raman Spectroscopy (SORS) method to detect and identify urea, ibuprofen, and...

  3. Non-destructive methods and means for quality control of structural products

    International Nuclear Information System (INIS)

    Dmitriev, V.V.

    1989-01-01

    Progressive non-destructive methods (acoustic, magnetic, radiation with liquid penetrants) and means of control of structural product quality, allowing to determine the state of products and structures not only immediately after their production but directly at the erected or reconstructed objects are described

  4. A robust approach to optimal matched filter design in ultrasonic non-destructive evaluation (NDE)

    Science.gov (United States)

    Li, Minghui; Hayward, Gordon

    2017-02-01

    The matched filter was demonstrated to be a powerful yet efficient technique to enhance defect detection and imaging in ultrasonic non-destructive evaluation (NDE) of coarse grain materials, provided that the filter was properly designed and optimized. In the literature, in order to accurately approximate the defect echoes, the design utilized the real excitation signals, which made it time consuming and less straightforward to implement in practice. In this paper, we present a more robust and flexible approach to optimal matched filter design using the simulated excitation signals, and the control parameters are chosen and optimized based on the real scenario of array transducer, transmitter-receiver system response, and the test sample, as a result, the filter response is optimized and depends on the material characteristics. Experiments on industrial samples are conducted and the results confirm the great benefits of the method.

  5. A new non-destructive method for estimating the remanent life of a turbine rotor steel by reversible magnetic permeability

    International Nuclear Information System (INIS)

    Ryu, K.S.; Nahm, S.H.; Park, J.S.; Yu, K.M.; Kim, Y.B.; Son, D.

    2002-01-01

    We present a new magnetic and non-destructive procedure to evaluate the remanent life of 1Cr-1Mo-0.25V steel using the value of reversible magnetic permeability. The method is based on the existence of reversible magnetic permeability in the differential magnetization around the coercive force. The measurement principle is based on the foundation harmonics voltage induced in a coil using a lock-in amplifier tuned to a frequency of the exciting one. Results obtained for reversible magnetic permeability and Vickers hardness on the aged sample show that the peak interval of reversible magnetic permeability (PIRMP) and Vickers hardness decreases as aging time increases. A softening curve is obtained from the correlation between Vickers hardness and the PIRMP. This curve can be used as a non-destructive method to evaluate the remanent life of 1Cr-1Mo-0.25V steel

  6. Quantitative impact characterization of aeronautical CFRP materials with non-destructive testing methods

    Energy Technology Data Exchange (ETDEWEB)

    Kiefel, Denis, E-mail: Denis.Kiefel@airbus.com, E-mail: Rainer.Stoessel@airbus.com; Stoessel, Rainer, E-mail: Denis.Kiefel@airbus.com, E-mail: Rainer.Stoessel@airbus.com [Airbus Group Innovations, Munich (Germany); Grosse, Christian, E-mail: Grosse@tum.de [Technical University Munich (Germany)

    2015-03-31

    In recent years, an increasing number of safety-relevant structures are designed and manufactured from carbon fiber reinforced polymers (CFRP) in order to reduce weight of airplanes by taking the advantage of their specific strength into account. Non-destructive testing (NDT) methods for quantitative defect analysis of damages are liquid- or air-coupled ultrasonic testing (UT), phased array ultrasonic techniques, and active thermography (IR). The advantage of these testing methods is the applicability on large areas. However, their quantitative information is often limited on impact localization and size. In addition to these techniques, Airbus Group Innovations operates a micro x-ray computed tomography (μ-XCT) system, which was developed for CFRP characterization. It is an open system which allows different kinds of acquisition, reconstruction, and data evaluation. One main advantage of this μ-XCT system is its high resolution with 3-dimensional analysis and visualization opportunities, which enables to gain important quantitative information for composite part design and stress analysis. Within this study, different NDT methods will be compared at CFRP samples with specified artificial impact damages. The results can be used to select the most suitable NDT-method for specific application cases. Furthermore, novel evaluation and visualization methods for impact analyzes are developed and will be presented.

  7. Quantitative impact characterization of aeronautical CFRP materials with non-destructive testing methods

    International Nuclear Information System (INIS)

    Kiefel, Denis; Stoessel, Rainer; Grosse, Christian

    2015-01-01

    In recent years, an increasing number of safety-relevant structures are designed and manufactured from carbon fiber reinforced polymers (CFRP) in order to reduce weight of airplanes by taking the advantage of their specific strength into account. Non-destructive testing (NDT) methods for quantitative defect analysis of damages are liquid- or air-coupled ultrasonic testing (UT), phased array ultrasonic techniques, and active thermography (IR). The advantage of these testing methods is the applicability on large areas. However, their quantitative information is often limited on impact localization and size. In addition to these techniques, Airbus Group Innovations operates a micro x-ray computed tomography (μ-XCT) system, which was developed for CFRP characterization. It is an open system which allows different kinds of acquisition, reconstruction, and data evaluation. One main advantage of this μ-XCT system is its high resolution with 3-dimensional analysis and visualization opportunities, which enables to gain important quantitative information for composite part design and stress analysis. Within this study, different NDT methods will be compared at CFRP samples with specified artificial impact damages. The results can be used to select the most suitable NDT-method for specific application cases. Furthermore, novel evaluation and visualization methods for impact analyzes are developed and will be presented

  8. Non-destructive evaluation of welding part of stainless steels by phased array system

    International Nuclear Information System (INIS)

    Tatematsu, Nobuhiro; Matsumoto, Eiji

    2009-01-01

    Recently, more accurate and convenient Non-Destructive Evaluation techniques are required for flaw inspection of structural materials. Phased array ultrasonic transducers are expected as such as NDE technique but there are many subjects to be solved. Furthermore, commercial phased array systems with conventional scanning and imaging techniques have not fulfilled their maximum potential. The purpose of this paper is to improve the phased array system to be applicable to the inhomogeneity evaluation of welding part of stainless steels. (author)

  9. Improving the Repair Planning System for Mining Equipment on the Basis of Non-destructive Evaluation Data

    Science.gov (United States)

    Drygin, Michael; Kuryshkin, Nicholas

    2017-11-01

    The article tells about forming a new concept of scheduled preventive repair system of the equipment at coal mining enterprises, based on the use of modem non-destructive evaluation methods. The approach to the solution for this task is based on the system-oriented analysis of the regulatory documentation, non-destructive evaluation methods and means, experimental studies with compilation of statistics and subsequent grapho-analytical analysis. The main result of the work is a feasible explanation of using non-destructive evaluation methods within the current scheduled preventive repair system, their high efficiency and the potential of gradual transition to condition-based maintenance. In practice wide use of nondestructive evaluation means w;ill allow to reduce significantly the number of equipment failures and to repair only the nodes in pre-accident condition. Considering the import phase-out policy, the solution for this task will allow to adapt the SPR system to Russian market economy conditions and give the opportunity of commercial move by reducing the expenses for maintenance of Russian-made and imported equipment.

  10. Application of the Positron Lifetime Spectroscopy as Method of Non-Destructive Testing

    OpenAIRE

    Somieski , B.; Krause-Rehberg , R.; Salz , H.; Meyendorf , N.

    1995-01-01

    In order to show the suitability of the Positron Lifetime Spectroscopy (POLIS) as a method of Non-Destructive Testing (NDT) several iron alloys / steels were mechanically damaged (tensile stress, fatigue, creeping). The positron annihilation parameters show clear changes during all applied kinds of damage. After tensile stress as well as after creeping a homogeneous distribution of damage in the sample was detected. During the very first elastic cycle of a fatigue experiment, a change in the ...

  11. Method and equipment for the non-destructive analysis of nuclear fuels

    International Nuclear Information System (INIS)

    Michaelis, W.

    1975-01-01

    This is a method for the non-destructive analysis of the content of fissile isotopes in nuclear fuels. In this analysis a neutron beam is directed to the nuclear fuel which is to be analysed. The beam penetrates the nuclear fuel, thus causing a secondany radiation by nuclear reactions which reaches a space directly surrounding the nuclear fuel and is measuned there. (orig./UA) [de

  12. Analysis of a Single Hot Particle by a Combination of Non-Destructive Analytical Methods

    Energy Technology Data Exchange (ETDEWEB)

    Hrnecek, E.; Aldave de las Heras, L.; Bielewski, M.; Carlos, R. [EC JRC Institute for Transuranium Elements, Karlsruhe (Germany); Betti, M. [IAEA Environment Laboratories (Monaco)

    2013-07-15

    Radioactive substances are often released to the environment in the form of particles. The determination of their chemical composition is a key factor in the overall understanding of their environmental behaviour. The aim of this investigation was to identify the source of one single radioactive particle collected from the Irish Sea and to understand its fate in the environment and in human body fluids. As the particle was supposed to be analysed for its dissolution behaviour in humans after ingestion, it was necessary to gain as much information as possible beforehand on the chemical and isotopic composition by means of non-destructive analysis such as SEM, SIMS, {mu}-XRF and {mu}-XANES. In this paper, an overview of the different non-destructive methods applied for the analysis of this particle and the results obtained is given. Additionally, the dissolution behaviour in human digestive solutions is discussed. (author)

  13. Containment nuclear plant structures evaluation by non destructive testing: strategy and results

    OpenAIRE

    GARNIER, Vincent; HENAULT, Jean-Marie; HAFID, Hamid; VERDIER, Jérôme; CHAIX, Jean François; ABRAHAM, Odile; SBARTAÏ, Zoubir Medhi; BALAYSSAC, Jean Pierre; PIWAKOWSKI, Bogdan; VILLAIN, Géraldine; DEROBERT, Xavier; PAYAN, Cédric; RAKOTONARIVO, Sandrine; LAROSE, Eric; SOGBOSSI, Hognon

    2016-01-01

    Containment nuclear plants structures are an ultimate barrier in the event of an accident. Mechanical resistance and tightness are the two functions that they are expected to provide. To evaluate their capacity to perform them, destructive testing cannot be used to characterize the material. Non-Destructive Tests then represent a relevant solution to test concrete and the struc- ture. The article positions NDT within the context of containment structures supervision and maintenance, and prese...

  14. Role of research in non-destructive evaluation for nuclear technology

    International Nuclear Information System (INIS)

    Jayakumar, T.; Rao, B.P.C.; Raj, Baldev

    2010-01-01

    This paper presents the role of research in non-destructive evaluation (NDE) of microstructures and mechanical properties in materials, assessment of manufacturing quality and early detection of in-service damage in nuclear components and structures. A few applications and case studies are discussed based on the results of systematic research and developmental activities pursued in different NDE techniques at the authors' laboratory for three different types of Indian nuclear reactors. (author)

  15. Addition of magnetic markers for non-destructive evaluation of polymer composites

    Directory of Open Access Journals (Sweden)

    Ana Paula Pereira Fulco

    2011-12-01

    Full Text Available Polymer composite pipes are an appealing option as a substitute for conventional steel pipes, particularly due to their inherent corrosion resistance. However, the composite pipes currently used do not allow non-destructive evaluation (NDE using instrumented devices which operate with magnetic sensors. The present work aims at the development of polymer composites with the addition magnetic markers to allow the application non-destructive evaluation techniques which use magnetic sensors. Glass-polyester composite flat, circular plates were fabricated with the addition of ferrite particles (barium ferrite and strontium ferrite and four types of notches were introduced on the plates' surfaces. The influence of these notches on the measured magnetic properties of each material was measured. X-ray diffraction (XRD, X-ray fluorescence (XRF and Brunauer, Emmett, and Teller (BET nitrogen adsorption were used for the characterization of the ferrite particles. Particle dispersion in the polymer matrix was analyzed by scanning electron microscopy (SEM. According to the results, a particular variation in magnetic field was detected over the region surrounding each type of notch. The results suggest that the proposed technique has great potential for damage detection in polymer composites using magnetic sensors and thus constitute a valuable contribution which may ultimately lead to the development of non-destructive evaluation techniques for assessing the structural integrity polymer composite pipes.

  16. An accurate method for determining residual stresses with magnetic non-destructive techniques in welded ferromagnetic steels

    International Nuclear Information System (INIS)

    Vourna, P

    2016-01-01

    The scope of the present research work was to investigate the proper selection criteria for developing a suitable methodology for the accurate determination of residual stresses existing in welded parts. Magnetic non-destructive testing took place by the use of two magnetic non-destructive techniques: by the measurement of the magnetic Barkhausen noise and by the evaluation of the magnetic hysteresis loop parameters. The spatial distribution of residual stresses in welded metal parts by both non-destructive magnetic methods and two diffraction methods was determined. The conduction of magnetic measurements required an initial calibration of ferromagnetic steels. Based on the examined volume of the sample, all methods used were divided into two large categories: the first one was related to the determination of surface residual stress, whereas the second one was related to bulk residual stress determination. The first category included the magnetic Barkhausen noise and the X-ray diffraction measurements, while the second one included the magnetic permeability and the neutron diffraction data. The residual stresses determined by the magnetic techniques were in a good agreement with the diffraction ones. (paper)

  17. Application of optical interferometric techniques for non-destructive evaluation of novel "green" composite materials

    Science.gov (United States)

    Pagliarulo, Vito; Russo, Pietro; Bianco, Vittorio; Ferraro, Pietro; Simeoli, Giorgio; Cimino, Francesca; Ruggiero, Berardo

    2018-04-01

    Nowadays the use of advanced composite materials in aeronautics, both civil and military, in automotive and in sport applications, citing some, is well established. The characteristics of composite materials in terms of weight, fatigue resistance and corrosion resistance make them competitive with respect to conventional ones. On the other side, the fabrication process of the most employed composites reinforced by carbon fibers or glass fibers, needs of complex steps that not always are environmental complaisant. Moreover, such fibers are not themselves "green". For these reasons, in the last decades, the use of natural reinforcing fibers has gained an increasing attention allowing the development of new materials with the same advantages of composite systems but respecting the environment. Furthermore, such materials for their structural complexity are not always compatible with the use of standard non-destructive evaluation as the ultrasounds methods. In this work the efficiency of the employment of optical interferometric techniques as nondestructive evaluation methods in full field modality is proved on novel "green" composite materials. In particular, Electronic Speckle Pattern Interferometry has been tested on different kinds of specimens after flexural tests.

  18. Non-destructive measurement methods for large scale gaseous diffusion process equipment

    International Nuclear Information System (INIS)

    Mayer, R.L.; Hagenauer, R.C.; McGinnis, B.R.

    1994-01-01

    Two measurement methods have been developed to measure non-destructively uranium hold-up in gaseous diffusion plants. These methods include passive neutron and passive γ ray measurements. An additional method, high resolution γ ray spectroscopy, provides supplementary information about additional γ ray emitting isotopes, γ ray correction factors, 235 U/ 234 U ratios and 235 U enrichment. Many of these methods can be used as a general purpose measurement technique for large containers of uranium. Measurement applications for these methods include uranium hold-up, waste measurements, criticality safety and nuclear accountability

  19. NON-DESTRUCTIVE LEAK DETECTION IN GALVANIZED IRON PIPE USING NONLINEAR ACOUSTIC MODULATION METHOD

    Directory of Open Access Journals (Sweden)

    Gigih Priyandoko

    2018-02-01

    Full Text Available Non-destructive testing is a wide group of analysis techniques used in science and industry to evaluate the properties of a structure without causing damage to it. The main objective of this project is to carry out experiment to detect leakage in pipeline using nonlinear acoustic modulation method. The nonlinear acoustic modulation approach with low frequency excitation and high frequency acoustic wave is used to reveal modulations in the presence of leak. The pipe used in this experiment was galvanized iron pipe. The experiment is started with the experiment of undamaged specimen and followed by the experiment of damaged specimen with manually applied leak. The results obtained are being observed and the difference between the specimen without leak and with leak can be distinguished. The distance of the leak and the distance of the outlet detected is nearly accurate to the exact location which is leak at 4.0 m and outlet at 6.0 m. Therefore, the results demonstrate that leakage can be detected using nonlinear acoustic modulation, and proved the objective of distinguish the difference between the results of specimen without leak and with leak has succeeded. The damage detection process can be eased with the knowledge on the signal features.

  20. A NEW METHOD FOR NON DESTRUCTIVE ESTIMATION OF Jc IN YBaCuO CERAMIC SAMPLES

    Directory of Open Access Journals (Sweden)

    Giancarlo Cordeiro Costa

    2014-12-01

    Full Text Available This work presents a new method for estimation of Jc as a bulk characteristic of YBCO blocks. The experimental magnetic interaction force between a SmCo permanent magnet and a YBCO block was compared to finite element method (FEM simulations results, allowing us to search a best fitting value to the critical current of the superconducting sample. As FEM simulations were based on Bean model , the critical current density was taken as an unknown parameter. This is a non destructive estimation method. since there is no need of breaking even a little piece of the sample for analysis.

  1. Fractal dimension analysis for robust ultrasonic non-destructive evaluation (NDE) of coarse grained materials

    Science.gov (United States)

    Li, Minghui; Hayward, Gordon

    2018-04-01

    Over the recent decades, there has been a growing demand on reliable and robust non-destructive evaluation (NDE) of structures and components made from coarse grained materials such as alloys, stainless steels, carbon-reinforced composites and concrete; however, when inspected using ultrasound, the flaw echoes are usually contaminated by high-level, time-invariant, and correlated grain noise originating from the microstructure and grain boundaries, leading to pretty low signal-to-noise ratio (SNR) and the flaw information being obscured or completely hidden by the grain noise. In this paper, the fractal dimension analysis of the A-scan echoes is investigated as a measure of complexity of the time series to distinguish the echoes originating from the real defects and the grain noise, and then the normalized fractal dimension coefficients are applied to the amplitudes as the weighting factor to enhance the SNR and defect detection. Experiments on industrial samples of the mild steel and the stainless steel are conducted and the results confirm the great benefits of the method.

  2. Analysis of unbalanced sensor in eddy current method of non destructive testing

    International Nuclear Information System (INIS)

    Chegodaev, V.V.

    2001-01-01

    Different types of sensors are used in eddy current method of non-destructive testing. The choosing of sensor type depends on control object. Different types of sensors can have the same schemes of cut-in in device for formation of information signal. The most common scheme of sensor cut-in is presented. The calculation of output voltage when the sensor is on a segment of the control object, which has not defect is made. The conditions of balancing are adduced and it was shown that the balancing of sensor is very difficult. The methods of compensation or account of voltage of an imbalance are indicated. (author)

  3. Non-destructive automated express method for determining the inclination of chromium-nickel steels IGC

    International Nuclear Information System (INIS)

    Nazarov, A.A.; Kamenev, Yu.B.; Kuusk, L.V.; Kormin, E.G.; Vasil'ev, A.N.; Sumbaeva, T.E.

    1986-01-01

    Methods of automated control of 18-10-type steel inclination to IGC are developed and a corresponding automated testing complex (ATS) is created. 08Kh18N10T steel samples had two variants of thermal treatment: 1) 1200 deg (5 h), 600 deg (50 h); 2) 1200 deg (5 h). Methods of non-destructive automated control of 18-10-type steel inclination to IGC are developed on the basis of potentiodynamic reactivation (PR) principle. Automated testing complex is developed, which has undergone experimental running and demonstrated a high confidence of results, reliability and easy operation

  4. Photothermal Analysis Applied To Non-Destructive Evaluation Of Paint On Polymer Substrates

    Science.gov (United States)

    Vergne, D.; Busse, G.

    1988-10-01

    The decoration and protection quality of coatings on polymers is of considerable interest for industrial applications. However, at present there is no non-destructive (NDE) method to monitor the quality of these coatings during the manufacturing process or while they are in use. As an approach for such a method we use photothermal analysis where the propagation and reflection of optically generated thermal waves is investigated. We found that one can monitor the drying process, the effect of surface temperature treatment, and coating thickness (accuracy + 2 μm in 50 μm thickness). The information obtained with this remote NDE method is adequate for most industrial applications, eg car manufacturing.

  5. Yucca Mountain project container fabrication, closure and non-destructive evaluation development activities

    International Nuclear Information System (INIS)

    Russell, E.W.; Nelson, T.A.

    1989-06-01

    In this presentation, container fabrication, closure, and non-destructive evaluation (NDE) process development activities are described. All of these activities are interrelated, and will contribute to the metal barrier selection activity. The plan is to use a corrosion-resistant material in the form of a cylinder with a wall thickness of ∼1cm (2cm for pure copper.) The materials under consideration include the three austenitic alloys: stainless steel-304L, stainless steel-316L and alloy 825, as well as the three copper alloys: CDA 102, CDA 613, and CDA 715. This document reviews the recommended procedures and processes for fabricating, closing and evaluating each of the candidate materials

  6. Comparative study of destructive and non-destructive methods in the activation analysis of rocks

    International Nuclear Information System (INIS)

    Vasconcellos, M.B.A.

    1978-01-01

    A comparative study between non-destructive thermal neutron activation analysis and activation analysis with radiochemical group separation is made Both methods are applied to the determination of trace elements minor and major elements in rocks. The treatment of the rocks, with special reference to the problems related to grinding and contamination by foreign elements is described. The choice of standards for multielement trace activation analysis is discussed. Two types of computer programs for the evalution of data obtained through Ge-li detector counting are used. All the phases of the destructive and non destructive analysis are described. In the destructive analysis, an adaptation of the group separation scheme developed by Morrison et al for the activation analysis of geological samples is made. The changes introduced make the radiochemical separation simpler and more rapid. Both destructive and non destructive methods are tested by means of the analysis of the United States Geological Survey standard rock AGV-1, which has been analysed by many authors. The same procedure is then applied to some alcaline rocks taken from the apatite mine of Jacupiranga, in the State of Sao Paulo, Brazil. The knowledge of the trace element concentration in these rocks is important for geochemical studies. A detailed study of the possible interferences encountered in the neutron activation analysis of these rocks is made, considering the interferences due to major activities, and to the proximity of the several gamma ray energies of the radioisotopes produced. Finally, the comparative study between the two methods is presented, using statistical tests for the quantitative evalution of results. (Author) [pt

  7. Development of a non-destructive method to identify different grades of stainless steel

    International Nuclear Information System (INIS)

    Meor Yusoff Meor Sulaiman

    2003-01-01

    One of the non-destructive methods used for the identification and verification of metals is by the energy-dispersive X-ray fluorescence (EDXRF) technique. EDXRF analysis provides several important advantages such as simultaneous determination of the elements present, enable to analyse a very wide concentration range, fast analysis with no sample preparation. The paper shows how this technique is developed and applied in the identification and verification of different grades of stainless steels. Comparison of the results for certified reference standards obtained from this analysis and that of its certified value shows very small differences between them. (Author)

  8. Development of a non-destructive method to identify different grades of stainless steel

    International Nuclear Information System (INIS)

    Meor Yusoff Meor Sulaiman

    2004-01-01

    One of the non-destructive methods used for the identification and verification of metals is by the energy-dispersive x-ray fluorescence (EDXRF) technique. EDXRF analysis provides several important advantages such as simultaneous determination of the elements present, enable to analyze a very wide concentration range, fast analysis with no tedious sample preparation. The paper shows how this technique is developed and applied in the identification and verification of different grades of stainless steels. Comparison of the results obtained from this analysis with certified reference standards show very small differences between them. (Author)

  9. Application of the positron lifetime spectroscopy as method of non-destructive testing

    International Nuclear Information System (INIS)

    Somieski, B.; Krause-Rehberg, R.; Salz, H.; Meyendorf, N.

    1995-01-01

    In order to show the suitability of the Positron Lifetime Spectroscopy (POLIS) as a method of Non-Destructive Testing (NDT) several iron alloys/steels were mechanically damaged (tensile stress, fatigue, creeping). The positron annihilation parameters show clear changes during all applied kinds of damage. After tensile stress as well as after creeping a homogeneous distribution of damage in the sample was detected. During the very first elastic cycle of a fatigue experiment, a change in the defect structure occurs in well annealed materials. A modified spectrometer for in the field mapping is presented. (orig.)

  10. Enhancing the capabilities of eddy current techniques for non-destructive evaluation of austenitic stainless steels

    International Nuclear Information System (INIS)

    Rao, B.P.C.; Thirunavukkarasu, S.; Sasi, B.; Jayakumar, T.; Baldev Raj

    2010-01-01

    Eddy current non-destructive evaluation (NDE) techniques find many applications during fabrication and in-service inspection of components made of stainless steel. In recent years, concurrent developments in electromagnetic field detection sensors such as giant magneto-resistive (GMR), giant-magneto impedance (GMI) and SQUIDs sensors, computers, microelectronics, and incorporating advanced signal and image processing techniques, have paved the way for enhancing the capabilities of existing eddy current (EC) techniques for examination of austenitic stainless steel (SS) plates, tubes and other geometries and several innovative methodologies have been developed. This paper highlights a few such applications in EC testing to austenitic stainless steel components used in fast reactors. (author)

  11. Additive Manufacturing (AM) Activities and Non-Destructive Evaluation (NDE) at GSFC

    Science.gov (United States)

    Jones, Justin S.

    2017-01-01

    NASA personnel will be meeting with a delegation from the Japan Aerospace Exploration Agency (JAXA) Office of Safety and Mission Assurance (OSMA) at Langley Research Center on 2217 through 3217. The purpose of the meeting is a technical interchange between NASA and JAXA to discuss Non-Destructive Evaluation (NDE) of Additive Manufacturing (AM) parts and the HALT process (relates to accelerated life testing). The visitors will be a small group of Japanese citizens. Goddard Space Flight Center (GSFC) has been asked to participate in the meeting, either in person or via teleconference. This presentation covers NDE efforts at GSFC and provides a cursory overview of AM and lab capabilities.

  12. Non-Destructive Evaluation of Kissing Bonds using Local Defect Resonance (LDR) Spectroscopy: A Simulation Study

    Science.gov (United States)

    Delrue, S.; Tabatabaeipour, M.; Hettler, J.; Van Den Abeele, K.

    With the growing demand from industry to optimize and further develop existing Non-Destructive Testing & Evaluation (NDT&E) techniques or new methods to detect and characterize incipient damage with high sensitivity and increased quality, ample efforts have been devoted to better understand the typical behavior of kissing bonds, such as delaminations and cracks. Recently, it has been shown experimentally that the nonlinear ultrasonic response of kissing bonds could be enhanced by using Local Defect Resonance (LDR) spectroscopy. LDR spectroscopy is an efficient NDT technique that takes advantage of the characteristic fre- quencies of the defect (defect resonances) in order to provide maximum acoustic wave-defect interaction. In fact, for nonlinear methodologies, the ultrasonic excitation of the sample should occur at either multiples or integer ratios of the characteristic defect resonance frequencies, in order to obtain the highest signal-to-noise response in the nonlinear LDR spectroscopy. In this paper, the potential of using LDR spectroscopy for the detection, localization and characterization of kissing bonds is illustrated using a 3D simulation code for elastic wave propagation in materials containing closed but dynamically active cracks or delaminations. Using the model, we are able to define an appropriate method, based on the Scaling Subtraction Method (SSM), to determine the local defect resonance frequencies of a delamination in a composite plate and to illustrate an increase in defect nonlinearity due to LDR. The simulation results will help us to obtain a better understanding of the concept of LDR and to assist in the further design and testing of LDR spectroscopy for the detection, localization and characterization of kissing bonds.

  13. Investigation and development of a non-destructive system to evaluate critical properties of asphalt pavements during the compaction process.

    Science.gov (United States)

    2013-10-01

    The purpose of this report is to present findings from a two-stage investigation to develop a non-destructive system to : evaluate critical properties and characteristics of asphalt pavements during the compaction process. The first stage aligned : c...

  14. Sampling methods and non-destructive examination techniques for large radioactive waste packages

    International Nuclear Information System (INIS)

    Green, T.H.; Smith, D.L.; Burgoyne, K.E.; Maxwell, D.J.; Norris, G.H.; Billington, D.M.; Pipe, R.G.; Smith, J.E.; Inman, C.M.

    1992-01-01

    Progress is reported on work undertaken to evaluate quality checking methods for radioactive wastes. A sampling rig was designed, fabricated and used to develop techniques for the destructive sampling of cemented simulant waste using remotely operated equipment. An engineered system for the containment of cooling water was designed and manufactured and successfully demonstrated with the drum and coring equipment mounted in both vertical and horizontal orientations. The preferred in-cell orientation was found to be with the drum and coring machinery mounted in a horizontal position. Small powdered samples can be taken from cemented homogeneous waste cores using a hollow drill/vacuum section technique with the preferred subsampling technique being to discard the outer 10 mm layer to obtain a representative sample of the cement core. Cement blends can be dissolved using fusion techniques and the resulting solutions are stable to gelling for periods in excess of one year. Although hydrochloric acid and nitric acid are promising solvents for dissolution of cement blends, the resultant solutions tend to form silicic acid gels. An estimate of the beta-emitter content of cemented waste packages can be obtained by a combination of non-destructive and destructive techniques. The errors will probably be in excess of +/-60 % at the 95 % confidence level. Real-time X-ray video-imaging techniques have been used to analyse drums of uncompressed, hand-compressed, in-drum compacted and high-force compacted (i.e. supercompacted) simulant waste. The results have confirmed the applicability of this technique for NDT of low-level waste. 8 refs., 12 figs., 3 tabs

  15. Dynamic laser speckle for non-destructive quality evaluation of bread

    Science.gov (United States)

    Stoykova, E.; Ivanov, B.; Shopova, M.; Lyubenova, T.; Panchev, I.; Sainov, V.

    2010-10-01

    Coherent illumination of a diffuse object yields a randomly varying interference pattern, which changes over time at any modification of the object. This phenomenon can be used for detection and visualization of physical or biological activity in various objects (e.g. fruits, seeds, coatings) through statistical description of laser speckle dynamics. The present report aims at non-destructive full-field evaluation of bread by spatial-temporal characterization of laser speckle. The main purpose of the conducted experiments was to prove the ability of the dynamic speckle method to indicate activity within the studied bread samples. In the set-up for acquisition and storage of dynamic speckle patterns an expanded beam from a DPSS laser (532 nm and 100mW) illuminated the sample through a ground glass diffuser. A CCD camera, adjusted to focus the sample, recorded regularly a sequence of images (8 bits and 780 x 582 squared pixels, sized 8.1 × 8.1 μm) at sampling frequency 0.25 Hz. A temporal structure function was calculated to evaluate activity of the bread samples in time using the full images in the sequence. In total, 7 samples of two types of bread were monitored during a chemical and physical process of bread's staling. Segmentation of images into matrixes of isometric fragments was also utilized. The results proved the potential of dynamic speckle as effective means for monitoring the process of bread staling and ability of this approach to differentiate between different types of bread.

  16. A Spatially Offset Raman Spectroscopy Method for Non-Destructive Detection of Gelatin-Encapsulated Powders

    Directory of Open Access Journals (Sweden)

    Kuanglin Chao

    2017-03-01

    Full Text Available Non-destructive subsurface detection of encapsulated, coated, or seal-packaged foods and pharmaceuticals can help prevent distribution and consumption of counterfeit or hazardous products. This study used a Spatially Offset Raman Spectroscopy (SORS method to detect and identify urea, ibuprofen, and acetaminophen powders contained within one or more (up to eight layers of gelatin capsules to demonstrate subsurface chemical detection and identification. A 785-nm point-scan Raman spectroscopy system was used to acquire spatially offset Raman spectra for an offset range of 0 to 10 mm from the surfaces of 24 encapsulated samples, using a step size of 0.1 mm to obtain 101 spectral measurements per sample. As the offset distance was increased, the spectral contribution from the subsurface powder gradually outweighed that of the surface capsule layers, allowing for detection of the encapsulated powders. Containing mixed contributions from the powder and capsule, the SORS spectra for each sample were resolved into pure component spectra using self-modeling mixture analysis (SMA and the corresponding components were identified using spectral information divergence values. As demonstrated here for detecting chemicals contained inside thick capsule layers, this SORS measurement technique coupled with SMA has the potential to be a reliable non-destructive method for subsurface inspection and authentication of foods, health supplements, and pharmaceutical products that are prepared or packaged with semi-transparent materials.

  17. Non-destructive screening method for radiation hardened performance of large scale integration

    International Nuclear Information System (INIS)

    Zhou Dong; Xi Shanbin; Guo Qi; Ren Diyuan; Li Yudong; Sun Jing; Wen Lin

    2013-01-01

    The space radiation environment could induce radiation damage on the electronic devices. As the performance of commercial devices is generally superior to that of radiation hardened devices, it is necessary to screen out the devices with good radiation hardened performance from the commercial devices and applying these devices to space systems could improve the reliability of the systems. Combining the mathematical regression analysis with the different physical stressing experiments, we investigated the non-destructive screening method for radiation hardened performance of the integrated circuit. The relationship between the change of typical parameters and the radiation performance of the circuit was discussed. The irradiation-sensitive parameters were confirmed. The pluralistic linear regression equation toward the prediction of the radiation performance was established. Finally, the regression equations under stress conditions were verified by practical irradiation. The results show that the reliability and accuracy of the non-destructive screening method can be elevated by combining the mathematical regression analysis with the practical stressing experiment. (authors)

  18. Non-destructive investigations of Swiss museums objects with neutron and x-ray imaging methods

    International Nuclear Information System (INIS)

    Lehmann, E.H.; Deschler, E.; Pernet, L.; Vontobel, P.

    2004-01-01

    Many objects of archaeological relevance found in Switzerland are from the Celtic and Roman era. Because of their uniqueness in most cases it is demanded to perform any investigation with such samples non-destructively. Depending on the structure and size of the objects a transmission experiment performed either with X-ray or neutron can alight inner structures, composition, defects or the principles of the manufacturing procedures. Furthermore, the treatment by conservators and restaurateurs becomes visible in many cases. This report describes some examples of such investigations. In the case of neutron investigations, beside the transmission imaging as a radiograph the three-dimensional structure was observed with a tomography technique. For X-ray radiography, the images were obtained in the same digital format because the similar experimental method (imaging plates) was applied. It becomes evident in the described examples that the combination and complementary use of both methods (neutrons and X-ray) brings insights in different aspects of the samples properties and treatment. This approach to study museums objects stored and exhibit in Switzerland can be extrapolated to other countries where these techniques are also simultaneously available in order to investigate other objects of relevance. The European network COST-G8 entitled 'Non-destructive analysis and testing of museum objects' can help to support initiatives in this direction. (author)

  19. Non-destructive testing method for determining the solvent diffusion coefficient in the porous materials products

    Science.gov (United States)

    Belyaev, V. P.; Mishchenko, S. V.; Belyaev, P. S.

    2018-01-01

    Ensuring non-destructive testing of products in industry is an urgent task. Most of the modern methods for determining the diffusion coefficient in porous materials have been developed for bodies of a given configuration and size. This leads to the need for finished products destruction to make experimental samples from them. The purpose of this study is the development of a dynamic method that allows operatively determine the diffusion coefficient in finished products from porous materials without destroying them. The method is designed to investigate the solvents diffusion coefficient in building constructions from materials having a porous structure: brick, concrete and aerated concrete, gypsum, cement, gypsum or silicate solutions, gas silicate blocks, heat insulators, etc. A mathematical model of the method is constructed. The influence of the design and measuring device operating parameters on the method accuracy is studied. The application results of the developed method for structural porous products are presented.

  20. Infrared thermography non-destructive evaluation of lithium-ion battery

    Science.gov (United States)

    Wang, Zi-jun; Li, Zhi-qiang; Liu, Qiang

    2011-08-01

    The power lithium-ion battery with its high specific energy, high theoretical capacity and good cycle-life is a prime candidate as a power source for electric vehicles (EVs) and hybrid electric vehicles (HEVs). Safety is especially important for large-scale lithium-ion batteries, especially the thermal analysis is essential for their development and design. Thermal modeling is an effective way to understand the thermal behavior of the lithium-ion battery during charging and discharging. With the charging and discharging, the internal heat generation of the lithium-ion battery becomes large, and the temperature rises leading to an uneven temperature distribution induces partial degradation. Infrared (IR) Non-destructive Evaluation (NDE) has been well developed for decades years in materials, structures, and aircraft. Most thermographic methods need thermal excitation to the measurement structures. In NDE of battery, the thermal excitation is the heat generated from carbon and cobalt electrodes in electrolyte. A technique named "power function" has been developed to determine the heat by chemical reactions. In this paper, the simulations of the transient response of the temperature distribution in the lithium-ion battery are developed. The key to resolving the security problem lies in the thermal controlling, including the heat generation and the internal and external heat transfer. Therefore, three-dimensional modelling for capturing geometrical thermal effects on battery thermal abuse behaviour is required. The simulation model contains the heat generation during electrolyte decomposition and electrical resistance component. Oven tests are simulated by three-dimensional model and the discharge test preformed by test system. Infrared thermography of discharge is recorded in order to analyze the security of the lithium-ion power battery. Nondestructive detection is performed for thermal abuse analysis and discharge analysis.

  1. Non-destructive evaluation of timber structures in a historical building of Tiradentes , MG

    Directory of Open Access Journals (Sweden)

    Luciana Barbosa de Abreu

    2013-09-01

    Full Text Available Problems related to the durability of wood are commonly found in historical buildings structures. Preservation and conservation resolutions must be adopted, in order to avoid losses and substitutions, which mischaracterize buildings. Non-destructive methods for detecting deterioration should be used in order to substantiate decisions and increase the longevity of historical heritage. This work was carried out in order to perform non-destructive essays to infer about the integrity of a beam and a pillar of the original construction of the Sobrado Ramalho, a historical building of the city of Tiradentes, MG. The equipments utilized were the Stress Wave Timer and resistograph. Samples of the elements were taken for analysis of density. The results showed that, in both structures, to calculate the dynamic modulus of elasticity, there was no significant difference for the application of stress wave timer on the alignments studied. There was no significant difference between the directions of application of the resistograph on the pillar, due to its apparent entirety and regular sessions, practically square, and to not being loaded eccentrically. In the case of the beam, there was significant difference, presumably because it has cracks in its traction line. The equipments, unknown by professionals of heritage conservation allow promising methodologies for inspection of timber structures in service.

  2. Fracture-mechanical results of non-destructive testing - function, goals, methods

    International Nuclear Information System (INIS)

    Herter, K.H.; Kockelmann, H.; Schuler, X.; Waidele, H.

    2004-01-01

    Non-destructive testing provides data for fracture-mechanical analyses, e.g. defect size and orientation. On the other hand, fracture-mechanical analyses may help to define criteria for non-destructive testing, e.g. sensitivity, inspection intervals and inspection sites. The criteria applied differ as a function of the safety relevance of a component. (orig.) [de

  3. Selection of non-destructive assay methods: Neutron counting or calorimetric assay?

    International Nuclear Information System (INIS)

    Cremers, T.L.; Wachter, J.R.

    1994-01-01

    The transition of DOE facilities from production to D ampersand D has lead to more measurements of product, waste, scrap, and other less attractive materials. Some of these materials are difficult to analyze by either neutron counting or calorimetric assay. To determine the most efficacious analysis method, variety of materials, impure salts and hydrofluorination residues have been assayed by both calorimetric assay and neutron counting. New data will be presented together with a review of published data. The precision and accuracy of these measurements are compared to chemistry values and are reported. The contribution of the gamma ray isotopic determination measurement to the overall error of the calorimetric assay or neutron assay is examined and discussed. Other factors affecting selection of the most appropriate non-destructive assay method are listed and considered

  4. Non-destructive Testing of Wood Defects Based on Discriminant Analysis Method

    Directory of Open Access Journals (Sweden)

    Wenshu LIN

    2015-09-01

    Full Text Available The defects of wood samples were tested by the technique of stress wave and ultrasonic technology, and the testing results were comparatively analyzed by using the Fisher discriminant analysis in the statistic software of SPSS. The differences of defect detection sensitivity and accuracy for stress wave and ultrasonic under different wood properties and defects were concluded. Therefore, in practical applications, according to different situations the corresponding wood non- destructive testing method should be used, or the two detection methods are applied at the same time in order to compensate for its shortcomings with each other to improve the ability to distinguish the timber defects. The results can provide a reference for further improvement of the reliability of timber defects detection.

  5. Resolution enhancement for ultrasonic echographic technique in non destructive testing with an adaptive deconvolution method

    International Nuclear Information System (INIS)

    Vivet, L.

    1989-01-01

    The ultrasonic echographic technique has specific advantages which makes it essential in a lot of Non Destructive Testing (NDT) investigations. However, the high acoustic power necessary to propagate through highly attenuating media can only be transmitted by resonant transducers, which induces severe limitations of the resolution on the received echograms. This resolution may be improved with deconvolution methods. But one-dimensional deconvolution methods come up against problems in non destructive testing when the investigated medium is highly anisotropic and inhomogeneous (i.e. austenitic steel). Numerous deconvolution techniques are well documented in the NDT literature. But they often come from other application fields (biomedical engineering, geophysics) and we show they do not apply well to specific NDT problems: frequency-dependent attenuation and non-minimum phase of the emitted wavelet. We therefore introduce a new time-domain approach which takes into account the wavelet features. Our method solves the deconvolution problem as an estimation one and is performed in two steps: (i) A phase correction step which takes into account the phase of the wavelet and estimates a phase-corrected echogram. The phase of the wavelet is only due to the transducer and is assumed time-invariant during the propagation. (ii) A band equalization step which restores the spectral content of the ideal reflectivity. The two steps of the method are performed using fast Kalman filters which allow a significant reduction of the computational effort. Synthetic and actual results are given to prove that this is a good approach for resolution improvement in attenuating media [fr

  6. Thermal shock resistance of ceramic fibre composites characterized by non-destructive methods

    Directory of Open Access Journals (Sweden)

    M. Dimitrijević

    2008-12-01

    Full Text Available Alumina based ceramic fibres and alumina based ceramic were used to produce composite material. Behaviour of composite ceramics after thermal shock treatments was investigated. Thermal shock of the samples was evaluated using water quench test. Surface deterioration level of samples was monitored by image analysis before and after a number of quenching cycles. Ultrasonic measurements were done on samples after quench tests. Dynamic Young modulus of elasticity and strength degradation were calculated using measured values of ultrasonic velocities. Strengths deterioration was calculated using the non-destructive measurements and correlated to degradation of surface area and number of quenches. The addition of small amount of ceramic fibres improves the strengths and diminishes the loss of mechanical properties of samples during thermal shock experiments.

  7. Magnetic non-destructive evaluation of ruptures of tensile armor in oil risers

    International Nuclear Information System (INIS)

    Pérez-Benitez, J A; Padovese, L R

    2012-01-01

    Risers are flexible multilayered pipes formed by an inner flexible metal structure surrounded by polymer layers and spiral wound steel ligaments, also known as armor wires. Since these risers are used to link subsea pipelines to floating oil and gas production installations, and their failure could produce catastrophic consequences, some methods have been proposed to monitor the armor integrity. However, until now there is no practical method that allows the automatic non-destructive detection of individual armor wire rupture. In this work we show a method using magnetic Barkhausen noise that has shown high efficiency in the detection of armor wire rupture. The results are examined under the cyclic and static load conditions of the riser. This work also analyzes the theory behind the singular dependence of the magnetic Barkhausen noise on the applied tension in riser armor wires. (paper)

  8. Non destructive method to follow the phase sigma in a duplex stainless steel

    International Nuclear Information System (INIS)

    Silva, E.M.; Andrade, A.L.S. Souza; Fialho, W.M.L.; Araujo, B.R.; Silva, J.H.R.; Leite, Josinaldo P.; Silva, Eloy M.; Leite, Joao P.

    2014-01-01

    Duplex stainless steels are subject to embrittlement due to the formation of sigma phase, which is one with the greatest effect of weakening because they are rich in chromium and deplete the matrix of this element. In this paper, a non-destructive methodology based on measurements of Hall voltage, is presented for monitoring the formation of sigma phase at temperatures of 800 deg C and 900 deg C. Different field intensities are generated by an electromagnet and the flow of field lines is detected by a Hall effect sensor. Hall voltage measurements are proportional to the formation of sigma phase generated by different times of aging methods. The results are correlated with results of microscopic, hardness and X-ray diffraction. It was showed that exist a correlation between the Hall voltage and the amount of sigma phase. The formation of this phase influences the signal voltage by reducing the voltage. (author)

  9. Control of abusive water addition to Octopus vulgaris with non-destructive methods.

    Science.gov (United States)

    Mendes, Rogério; Schimmer, Ove; Vieira, Helena; Pereira, João; Teixeira, Bárbara

    2018-01-01

    Abusive water addition to octopus has evidenced the need for quick non-destructive methods for product qualification in the industry and control of fresh commercial products in markets. Electric conductivity (EC)/pH and dielectric property measurements were selected to detect water uptake in octopus. A significant EC decrease was determined after soaking octopus in freshwater for 4 h. EC reflected the water uptake of octopus and the correspondent concentration decrease of available ions in the interstitial fluid. Significant correlations were determined between octopus water uptake, EC (R = -0.940) and moisture/protein (M/P) ratio (R = 0.923) changes. Seasonal and spatial variation in proximate composition did not introduce any uncertainty in EC discrimination of freshwater tampering. Immersion in 5 g L -1 sodium tripolyphosphate (STPP) increased EC to a value similar to control octopus. EC false negatives resulting from the use of additives (STPP and citric acid) were eliminated with the additional determination of pH. Octopus soaked in freshwater, STPP and citric acid can also be clearly discriminated from untreated samples (control) and also from frozen (thawed) ones using the dielectric properties. No significant differences in the dielectric property scores were found between octopus sizes or geographical locations. Simultaneous EC/pH or dielectric property measurements can be used in a handheld device for non-destructive water addition detection in octopus. M/P ratio can be used as a reference destructive method. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  10. Quality evaluation of soil-cement-plant residue bricks by the combination of destructive and non-destructive tests

    Directory of Open Access Journals (Sweden)

    Regis de C. Ferreira

    Full Text Available ABSTRACT Residues from agricultural activity can be used to improve the quality of soil-based bricks, constituting an interesting alternative for their destination. The technical quality of soil-cement-plant residue bricks was evaluated by the combination of non-destructive and destructive methods. A predominant clayey soil, Portland cement and residues of husks of both rice and Brachiaria brizantha cv. Marandu (0, 10, 20, 30 and 40%, in mass, in substitution to the 10% cement content were used. The bricks were submitted to destructive (water absorption and compressive strength and nondestructive (ultrasound tests for their physical and mechanical characterization. Results from both destructive and non-destructive tests were combined to determine the quantitative parameter named “anisotropic resistance” in order to evaluate the quality of the bricks. The addition that promoted best technical quality was 10% residue content, regardless of the residue type. The anisotropic resistance proved to be adequate for the technical quality evaluation of the bricks.

  11. QUANTITATIVE NON-DESTRUCTIVE EVALUATION (QNDE) OF THE ELASTIC MODULI OF POROUS TIAL ALLOYS

    International Nuclear Information System (INIS)

    Yeheskel, O.

    2008-01-01

    The elastic moduli of γ-TiA1 were studied in porous samples consolidated by various techniques e.g. cold isostatic pressing (CIP), pressure-less sintering, or hot isostatic pressing (HIP). Porosity linearly affects the dynamic elastic moduli of samples. The results indicate that the sound wave velocities and the elastic moduli affected by the processing route and depend not only on the attained density but also on the consolidation temperature. In this paper we show that there is linear correlation between the shear and the longitudinal sound velocities in porous TiA1. This opens the way to use a single sound velocity as a tool for quantitative non-destructive evaluation (QNDE) of porous TiA1 alloys. Here we demonstrate the applicability of an equation derived from the elastic theory and used previously for porous cubic metals

  12. Specific features of the determination of the pellet-cladding gap of the fuel rods by non-destructive method

    International Nuclear Information System (INIS)

    Amosov, S.V.; Pavlov, S.V.

    2002-01-01

    This report describes the specific features of determining the pellet-cladding gap of the irradiated WWER-1000 fuel rods by nondestructive method. The method is based on the elastic radial deformation of the cladding up to its contact with the fuel. The value of deformation of cladding till its contacting fuel when radial force changes from F max to 0 is proposed as a measuring parameter for determination of the diametrical gap. Because of the features of compression method, the obtained gap value is not analog of the gap measured on micrograph of the fuel rod cross-section. Results of metallography can provide only qualitative evaluation of its method efficiency. Comparison of the values determined by non-destructive method and metallography for WWER-1000 fuel rods with burnup from 25 to 55 MWd/kg U testified that the results of compression method can be used as a low estimate of the pellet-cladding gap value. (author)

  13. Application of advanced non-destructive testing to evaluate the foundation depth of the existing structures

    International Nuclear Information System (INIS)

    Nguyen Le Son; Nguyen Phuoc Lan; Pham The Hung; Vu Huy Thuc; Phan Chanh Vu; Bui Xuan Huy; Tran Thanh Luan; Nguyen Kien Chinh; Le Danh Chuan

    2004-01-01

    The applications of Parallel Seismic Test to evaluate deep foundations of the existing structures are still new in Vietnam. Under the framework of the basic VAEC project (2003) and project VIE/8/013, the parallel seismic test method (PSM) was evaluated at Center for Nuclear Techniques, Hochiminh City. Background information on principle and general description of the method as it is typically applied in the evaluation of deep foundations are also summarized. A suitable test site was selected, where the foundation depths can be controlled for the parallel seismic tests were conducted by impacting the driven piles, and the travel times down the pile, through the soil, to a receiver located in an adjacent water-filled borehole were measured. The primary objective of the test program is to evaluated the accuracy of method in determining the pile length, to evaluate the capabilities of the method and the equipped system SPL-97, to define the type of material which comprises a deep foundation, the distance of the compression wave can travel through the adjacent soil before the signal attenuates beyond recognition and the ware velocities in the various soil strata encountered. The parallel seismic testing program is described and results are presented. Parallel seismic tests, as conventionally practiced, i.e. with short distance between a structure and an access hole, can be used to define the bottom of the piles, as well as to identify the material type from the computed velocity in the structural material. The conventional approach of using changes of slop of the plot versus first arrival to identify the bottom of a deep foundation works best when the piles are in a soil with uniform stiffness and the accuracy of the evaluated depths can be obtained about ± 0.5 m. Supplementing this approach of interpretation by the examining the amplitudes of the first arrival on a plot with the same scale for all records allows one to better interpret signals in more common

  14. Evaluating different approaches to non-destructive nitrogen status diagnosis of rice using portable RapidSCAN active canopy sensor.

    Science.gov (United States)

    Lu, Junjun; Miao, Yuxin; Shi, Wei; Li, Jingxin; Yuan, Fei

    2017-10-26

    RapidSCAN is a new portable active crop canopy sensor with three wavebands in red, red-edge, and near infrared spectral regions. The objective of this study was to determine the potential and practical approaches of using this sensor for non-destructive diagnosis of rice nitrogen (N) status. Sixteen plot experiments and ten on-farm experiments were conducted from 2014 to 2016 in Jiansanjiang Experiment Station of the China Agricultural University and Qixing Farm in Northeast China. Two mechanistic and three semi-empirical approaches using the sensor's default vegetation indices, normalized difference vegetation index and normalized difference red edge, were evaluated in comparison with the top performing vegetation indices selected from 51 tested indices. The results indicated that the most practical and stable method of using the RapidSCAN sensor for rice N status diagnosis is to calculate N sufficiency index with the default vegetation indices and then to estimate N nutrition index non-destructively (R 2  = 0.50-0.59). This semi-empirical approach achieved a diagnosis accuracy rate of 59-76%. The findings of this study will facilitate the application of the RapidSCAN active sensor for rice N status diagnosis across growth stages, cultivars and site-years, and thus contributing to precision N management for sustainable intensification of agriculture.

  15. Space Qualified Non-Destructive Evaluation and Structural Health Monitoring Technology, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Encouraged by Phase I accomplishments, the proposed Phase II program will significantly mature and align the development of a Space Qualified Non-Destructive...

  16. Time Domain Terahertz Axial Computed Tomography Non Destructive Evaluation, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to demonstrate key elements of feasibility for a high speed automated time domain terahertz computed axial tomography (TD-THz CT) non destructive...

  17. Time Domain Terahertz Axial Computed Tomography Non Destructive Evaluation, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — In this Phase 2 project, we propose to develop, construct, and deliver to NASA a computed axial tomography time-domain terahertz (CT TD-THz) non destructive...

  18. Non destructive method of determination of depth profiling with ESCA spectroscopy by angular distribution

    International Nuclear Information System (INIS)

    Pijolat, Michele.

    1979-07-01

    The aim of this study has been to determine the possibilities of photoelectron spectroscopy ESCA for depth profiling in the first hundred angstrom of a compound. First of all, the technique ESCA has been described in an analytical point of view. Then, the common sputter profiling method has been tested, and a model to deduce the concentrations profile has been formulated. However the analysis of the various effects due to the sputtering events showed that this method is able to give only the profile shape with a bad depth resolution. A new non destructive method based on the analysed depth dependence with photoelectrons emission angle is settled. A computational method (simplexe optimization) is used to deduce the concentrations profile. Simulation have revealed the necessity of submitting constraints proper to the system physical properties and allowed to state the applicability range of the method. The interface profiles Ag-Pd, Ag-Al 2 O 3 and SiO 2 -Si have been measured, and the surface segregation in CuNi alloy has been studied [fr

  19. Non-Destructive Evaluation for Corrosion Monitoring in Concrete: A Review and Capability of Acoustic Emission Technique

    Science.gov (United States)

    Zaki, Ahmad; Chai, Hwa Kian; Aggelis, Dimitrios G.; Alver, Ninel

    2015-01-01

    Corrosion of reinforced concrete (RC) structures has been one of the major causes of structural failure. Early detection of the corrosion process could help limit the location and the extent of necessary repairs or replacement, as well as reduce the cost associated with rehabilitation work. Non-destructive testing (NDT) methods have been found to be useful for in-situ evaluation of steel corrosion in RC, where the effect of steel corrosion and the integrity of the concrete structure can be assessed effectively. A complementary study of NDT methods for the investigation of corrosion is presented here. In this paper, acoustic emission (AE) effectively detects the corrosion of concrete structures at an early stage. The capability of the AE technique to detect corrosion occurring in real-time makes it a strong candidate for serving as an efficient NDT method, giving it an advantage over other NDT methods. PMID:26251904

  20. Non-Destructive Evaluation for Corrosion Monitoring in Concrete: A Review and Capability of Acoustic Emission Technique

    Directory of Open Access Journals (Sweden)

    Ahmad Zaki

    2015-08-01

    Full Text Available Corrosion of reinforced concrete (RC structures has been one of the major causes of structural failure. Early detection of the corrosion process could help limit the location and the extent of necessary repairs or replacement, as well as reduce the cost associated with rehabilitation work. Non-destructive testing (NDT methods have been found to be useful for in-situ evaluation of steel corrosion in RC, where the effect of steel corrosion and the integrity of the concrete structure can be assessed effectively. A complementary study of NDT methods for the investigation of corrosion is presented here. In this paper, acoustic emission (AE effectively detects the corrosion of concrete structures at an early stage. The capability of the AE technique to detect corrosion occurring in real-time makes it a strong candidate for serving as an efficient NDT method, giving it an advantage over other NDT methods.

  1. Non-destructive evaluation of containment walls in nuclear power plants

    Science.gov (United States)

    Garnier, V.; Payan, C.; Lott, M.; Ranaivomanana, N.; Balayssac, J. P.; Verdier, J.; Larose, E.; Zhang, Y.; Saliba, J.; Boniface, A.; Sbartai, Z. M.; Piwakowski, B.; Ciccarone, C.; Hafid, H.; Henault, J. M.; Buffet, F. Ouvrier

    2017-02-01

    Two functions are regularly tested on containment walls in order to anticipate a possible accident. The first is mechanical to resist a possible internal over-pressure and the second is to prevent leakage. The AAPR reference accident is the rupture of a pipe in the primary circuit of a nuclear plant. In this case, the pressure and temperature can reach 5 bar and 180°C in 20 seconds. The national project `Non-destructive testing of the containment structures of nuclear plants' aims at studying the non-destructive techniques capable to evaluate the concrete properties and its damaging and cracks. This 4-year-project is segmented into two parts. The first consists in developing and selecting the most relevant NDEs in the laboratory to reach these goals. These evaluations are developed in conditions representing the real conditions of the stresses generated during ten-yearly visits of the plants or those related to an accident. The second part consists in applying the selected techniques to two containment structures under pressure. The first structure is proposed by ONERA and the second is a mockup of a containment wall on a 1/3 scale made by EDF within the VeRCoRs project. Communication is focused on the part of the project that concerns the damage and crack process characterization by means of NDT. The tests are done in 3 or 4 points bending in order to study the cracks' generation, their propagation, as well as their opening and closing. The main ultrasonic techniques developed concern linear or non-linear acoustic: acoustic emission [1], Locadiff [2], energy diffusion, surface wave's velocity and attenuation, DAET [3]. The recorded data contribute to providing the mapping of the investigated parameters, either in volume, in surface or globally. Digital image correlation is an important additional asset to validate the coherence of the data. The spatial normalization of the data in the specimen space allows proposing algorithms on the combination of the

  2. Non-destructive methods of control of thermo-physical properties of fuel rods

    International Nuclear Information System (INIS)

    Kruglov, A B; Kruglov, V B; Kharitonov, V S; Struchalin, P G; Galkin, A G

    2017-01-01

    Information about the change of thermal properties of the fuel elements needed for a successful and safe operation of the nuclear power plant. At present, the existing amount of information on the fuel thermal conductivity change and “fuel-shell” thermal resistance is insufficient. Also, there is no technique that would allow for the measurement of these properties on the non-destructive way of irradiated fuel elements. We propose a method of measuring the thermal conductivity of the fuel in the fuel element and the contact thermal resistance between the fuel and the shell without damaging the integrity of the fuel element, which is based on laser flash method. The description of the experimental setup, implementing methodology, experiments scheme. The results of test experiments on mock-ups of the fuel elements and their comparison with reference data, as well as the results of numerical modeling of thermal processes that occur during the measurement. Displaying harmonization of numerical calculation with the experimental thermograms layout shell portions of the fuel cell, confirming the correctness of the calculation model. (paper)

  3. About a sequential method for non destructive testing of structures by mechanical vibrations

    International Nuclear Information System (INIS)

    Suarez Antola, R.

    2001-01-01

    The presence and growth of cracks voids or fields of pores under applied forces or environmental actions can produce a meaningful lowering in the proper frequencies of normal modes of mechanical vibration in structures.A quite general expression for the square of modes proper frequency as a functional of displacement field,density field and elastic moduli fields is used as a starting point.The effect of defects on frequency are modeled as equivalent changes in density and elastic moduli fields,introducing the concept of region of influence of each defect.An approximate expression is obtained which relates the relative lowering in the square of modes proper frequency with position,size,shape and orientation of defects in mode displacement field.Some simple examples of structural elements with cracks or fields of pores are considered.the connection with linear elastic fracture mechanics is briefly exemplified.A sequential method is proposed for non-destructive testing of structures using mechanical vibrations combined with properly chosen local nondestructive testing methods

  4. Burn up determination of IEAR-1 fuel elements by non destructive gamma ray spectrometry method

    International Nuclear Information System (INIS)

    Soares, A.J.

    1977-01-01

    Measurement of nuclear fuel burn up by non destructive gamma ray spectrometry is discussed, and results of such measurements, made at the Instituto de Energia Atomica (IEA), are given. Specifically, the burn up of an MTR (Material Testing Reactor) fuel element removed from the IEAR-1 swimming pool reactor in 1958 is evaluated from the measured Cs-137 activity, which gives a single 661,6 keV gamma ray. Due to the long decay time of the test element, no other fission decay product activity could be detected. Analysis of measurements, made with a 3'' x 3'' NaI(Tl) detector at 330 distinct points of the element, showed the total burn up to 3.3 +- -+ 0.8 mg. This is in agreement with a calculated value. As the maximum temperature of IEAR-1 fuel elements is of the order of 40 0 C, migration effects of Cs-137 was not considered, this being significant only at fuel temperature in excess of 1000 0 C [pt

  5. Spatial distribution pattern analysis of subtidal macroalgae assemblages by a non-destructive rapid assessment method

    Science.gov (United States)

    Guinda, Xabier; Juanes, José Antonio; Puente, Araceli; Echavarri-Erasun, Beatriz

    2012-01-01

    The extensive field work carried out over the last century has allowed the worldwide description of general distribution patterns and specific composition of rocky intertidal communities. However, the information concerning subtidal communities on hard substrates is more recent and scarce due to the difficulties associated with working in such environments. In this work, a non-destructive method is applied to the study and mapping of subtidal rocky bottom macroalgae assemblages on the coast of Cantabria (N Spain) which is quick, easy and economical. Gelidium corneum and Cystoseira baccata were the dominant species, however, the composition and coverage of macroalgae assemblages varied significantly at different locations and depth ranges. The high presence of Laminaria ochroleuca and Saccorhiza polyschides, characteristic of colder waters, shows the transitional character of this coastal area. The results obtained throughout this study have been very useful to the application of the European Water Framework Directive (WFD 2000/60/EC) and could be of great interest for the future conservation and management of these ecosystems (e.g. Habitats Directive 92/43/EEC).

  6. Non-Destructive Lichen Biomass Estimation in Northwestern Alaska: A Comparison of Methods

    Science.gov (United States)

    Rosso, Abbey; Neitlich, Peter; Smith, Robert J.

    2014-01-01

    Terrestrial lichen biomass is an important indicator of forage availability for caribou in northern regions, and can indicate vegetation shifts due to climate change, air pollution or changes in vascular plant community structure. Techniques for estimating lichen biomass have traditionally required destructive harvesting that is painstaking and impractical, so we developed models to estimate biomass from relatively simple cover and height measurements. We measured cover and height of forage lichens (including single-taxon and multi-taxa “community” samples, n = 144) at 73 sites on the Seward Peninsula of northwestern Alaska, and harvested lichen biomass from the same plots. We assessed biomass-to-volume relationships using zero-intercept regressions, and compared differences among two non-destructive cover estimation methods (ocular vs. point count), among four landcover types in two ecoregions, and among single-taxon vs. multi-taxa samples. Additionally, we explored the feasibility of using lichen height (instead of volume) as a predictor of stand-level biomass. Although lichen taxa exhibited unique biomass and bulk density responses that varied significantly by growth form, we found that single-taxon sampling consistently under-estimated true biomass and was constrained by the need for taxonomic experts. We also found that the point count method provided little to no improvement over ocular methods, despite increased effort. Estimated biomass of lichen-dominated communities (mean lichen cover: 84.9±1.4%) using multi-taxa, ocular methods differed only nominally among landcover types within ecoregions (range: 822 to 1418 g m−2). Height alone was a poor predictor of lichen biomass and should always be weighted by cover abundance. We conclude that the multi-taxa (whole-community) approach, when paired with ocular estimates, is the most reasonable and practical method for estimating lichen biomass at landscape scales in northwest Alaska. PMID:25079228

  7. Non-destructive lichen biomass estimation in northwestern Alaska: a comparison of methods.

    Directory of Open Access Journals (Sweden)

    Abbey Rosso

    Full Text Available Terrestrial lichen biomass is an important indicator of forage availability for caribou in northern regions, and can indicate vegetation shifts due to climate change, air pollution or changes in vascular plant community structure. Techniques for estimating lichen biomass have traditionally required destructive harvesting that is painstaking and impractical, so we developed models to estimate biomass from relatively simple cover and height measurements. We measured cover and height of forage lichens (including single-taxon and multi-taxa "community" samples, n = 144 at 73 sites on the Seward Peninsula of northwestern Alaska, and harvested lichen biomass from the same plots. We assessed biomass-to-volume relationships using zero-intercept regressions, and compared differences among two non-destructive cover estimation methods (ocular vs. point count, among four landcover types in two ecoregions, and among single-taxon vs. multi-taxa samples. Additionally, we explored the feasibility of using lichen height (instead of volume as a predictor of stand-level biomass. Although lichen taxa exhibited unique biomass and bulk density responses that varied significantly by growth form, we found that single-taxon sampling consistently under-estimated true biomass and was constrained by the need for taxonomic experts. We also found that the point count method provided little to no improvement over ocular methods, despite increased effort. Estimated biomass of lichen-dominated communities (mean lichen cover: 84.9±1.4% using multi-taxa, ocular methods differed only nominally among landcover types within ecoregions (range: 822 to 1418 g m-2. Height alone was a poor predictor of lichen biomass and should always be weighted by cover abundance. We conclude that the multi-taxa (whole-community approach, when paired with ocular estimates, is the most reasonable and practical method for estimating lichen biomass at landscape scales in northwest Alaska.

  8. Non-destructive lichen biomass estimation in northwestern Alaska: a comparison of methods.

    Science.gov (United States)

    Rosso, Abbey; Neitlich, Peter; Smith, Robert J

    2014-01-01

    Terrestrial lichen biomass is an important indicator of forage availability for caribou in northern regions, and can indicate vegetation shifts due to climate change, air pollution or changes in vascular plant community structure. Techniques for estimating lichen biomass have traditionally required destructive harvesting that is painstaking and impractical, so we developed models to estimate biomass from relatively simple cover and height measurements. We measured cover and height of forage lichens (including single-taxon and multi-taxa "community" samples, n = 144) at 73 sites on the Seward Peninsula of northwestern Alaska, and harvested lichen biomass from the same plots. We assessed biomass-to-volume relationships using zero-intercept regressions, and compared differences among two non-destructive cover estimation methods (ocular vs. point count), among four landcover types in two ecoregions, and among single-taxon vs. multi-taxa samples. Additionally, we explored the feasibility of using lichen height (instead of volume) as a predictor of stand-level biomass. Although lichen taxa exhibited unique biomass and bulk density responses that varied significantly by growth form, we found that single-taxon sampling consistently under-estimated true biomass and was constrained by the need for taxonomic experts. We also found that the point count method provided little to no improvement over ocular methods, despite increased effort. Estimated biomass of lichen-dominated communities (mean lichen cover: 84.9±1.4%) using multi-taxa, ocular methods differed only nominally among landcover types within ecoregions (range: 822 to 1418 g m-2). Height alone was a poor predictor of lichen biomass and should always be weighted by cover abundance. We conclude that the multi-taxa (whole-community) approach, when paired with ocular estimates, is the most reasonable and practical method for estimating lichen biomass at landscape scales in northwest Alaska.

  9. Static characterization of a soft elastomeric capacitor for non destructive evaluation applications

    International Nuclear Information System (INIS)

    Saleem, Hussam; Laflamme, Simon; Zhang, Huanhuan; Geiger, Randall; Kessler, Michael; Rajan, Krishna

    2014-01-01

    A large and flexible strain transducer consisting of a soft elastomeric capacitor (SEC) has been proposed by the authors. Arranged in a network setup, the sensing strategy offers tremendous potential at conducting non-destructive evaluation of large-scale surfaces. In prior work, the authors have demonstrated the performance of the sensor at tracking strain history, localizing cracks, and detecting vibration signatures. In this paper, we characterize the static performance of the proposed SEC. The characterization includes sensitivity of the signal, and temperature and humidity dependences. Tests are conducted on a simply supported aluminum beam subjected to bending as well as on a free standing sensor. The performance of the SEC is compared against off-the-shelf resistance-based strain gauges with resolution of 1 με. A sensitivity of 1190 pF/ε is obtained experimentally, in agreement with theory. Results also show the sensor linearity over the given level of strain, showing the promise of the SEC at monitoring of surface strain

  10. Static characterization of a soft elastomeric capacitor for non destructive evaluation applications

    Science.gov (United States)

    Saleem, Hussam; Laflamme, Simon; Zhang, Huanhuan; Geiger, Randall; Kessler, Michael; Rajan, Krishna

    2014-02-01

    A large and flexible strain transducer consisting of a soft elastomeric capacitor (SEC) has been proposed by the authors. Arranged in a network setup, the sensing strategy offers tremendous potential at conducting non-destructive evaluation of large-scale surfaces. In prior work, the authors have demonstrated the performance of the sensor at tracking strain history, localizing cracks, and detecting vibration signatures. In this paper, we characterize the static performance of the proposed SEC. The characterization includes sensitivity of the signal, and temperature and humidity dependences. Tests are conducted on a simply supported aluminum beam subjected to bending as well as on a free standing sensor. The performance of the SEC is compared against off-the-shelf resistance-based strain gauges with resolution of 1 μɛ. A sensitivity of 1190 pF/ɛ is obtained experimentally, in agreement with theory. Results also show the sensor linearity over the given level of strain, showing the promise of the SEC at monitoring of surface strain.

  11. Development of non-destructive evaluation system using an HTS-SQUID gradiometer for magnetized materials

    Science.gov (United States)

    Kawano, J.; Tsukamoto, A.; Adachi, S.; Oshikubo, Y.; Hato, T.; Tanabe, K.; Okamura, T.

    We have developed a new eddy-current non-destructive evaluation (NDE) system using an HTS SQUID gradiometer with the aim of applying it to practical materials with magnetization. The new NDE system employs a LN2-cooled external Cu pickup coil and an HTS SQUID chip placed in a magnetic shield made of HTS material. The HTS SQUID chip consists of an HTS planar gradiometer manufactured by using a ramp-edge junction technology and a multi-turn HTS thin film input coil coupled with the flip-chip configuration. The first-order coaxial gradiometric Cu pickup coil with a diameter of 16 mm and the baseline of 5.6 mm was used in the present NDE experiments. By using this NDE system, we could observe defect-induced magnetic signals without an appreciable influence of magnetization up to 10 mT. We also examined the ability of detecting deep-lying defects and compared with the results obtained using our previous NDE system.

  12. PHOTOACOUSTIC NON-DESTRUCTIVE EVALUATION AND IMAGING OF CARIES IN DENTAL SAMPLES

    International Nuclear Information System (INIS)

    Li, T.; Dewhurst, R. J.

    2010-01-01

    Dental caries is a disease wherein bacterial processes damage hard tooth structure. Traditional dental radiography has its limitations for detecting early stage caries. In this study, a photoacoustic (PA) imaging system with the near-infrared light source has been applied to postmortem dental samples to obtain 2-D and 3-D images. Imaging results showed that the PA technique can be used to image human teeth caries. For non-destructive photoacoustic evaluation and imaging, the induced temperature and pressure rises within biotissues should not cause physical damage to the tissue. For example, temperature rises above 5 deg. C within live human teeth will cause pulpal necrosis. Therefore, several simulations based on the thermoelastic effect have been applied to predict temperature and pressure fields within samples. Predicted temperature levels are below corresponding safety limits, but care is required to avoid nonlinear absorption phenomena. Furthermore, PA imaging results from the phantom provide evidence for high sensitivity, which shows the imaging potential of the PA technique for detecting early stage disease.

  13. A non-destructive selection method for faster growth at suboptimal temperature in common bean (Phaseolus vulgaris)

    NARCIS (Netherlands)

    Drijfhout, E.; Oeveren, J.C. van; Jansen, R.C.

    1991-01-01

    A non-destructive method has been developed to select common bean (Phaseolus vulgaris L.) plants whose growth is less effected at a suboptimal temperature. Shoot weight was determined at a suboptimal (14°C) and optimal temperature (20°C), 38 days after sowing and accessions identified with a

  14. A non-destructive ammonium detection method as indicator for freshness for packed fish: Application on cod

    NARCIS (Netherlands)

    Heising, J.K.; Dekker, M.; Bartels, P.V.; Boekel, van M.A.J.S.

    2012-01-01

    This paper introduces a non-destructive method for monitoring headspace ammonium as an indicator for changes in the freshness status of packed fish. Electrodes in an aqueous phase in the package monitor changes in the concentration of ammonia produced in/on the packed fish and released in the

  15. SAFT-assisted sound beam focusing using phased arrays (PA-SAFT) for non-destructive evaluation

    Science.gov (United States)

    Nanekar, Paritosh; Kumar, Anish; Jayakumar, T.

    2015-04-01

    Focusing of sound has always been a subject of interest in ultrasonic non-destructive evaluation. An integrated approach to sound beam focusing using phased array and synthetic aperture focusing technique (PA-SAFT) has been developed in the authors' laboratory. The approach involves SAFT processing on ultrasonic B-scan image collected by a linear array transducer using a divergent sound beam. The objective is to achieve sound beam focusing using fewer elements than the ones required using conventional phased array. The effectiveness of the approach is demonstrated on aluminium blocks with artificial flaws and steel plate samples with embedded volumetric weld flaws, such as slag and clustered porosities. The results obtained by the PA-SAFT approach are found to be comparable to those obtained by conventional phased array and full matrix capture - total focusing method approaches.

  16. The Combine Use of Semi-destructive and Non-destructive Methods for Tiled Floor Diagnostics

    Science.gov (United States)

    Štainbruch, Jakub; Bayer, Karol; Jiroušek, Tomáš; Červinka, Josef

    2017-04-01

    The combination of semi-destructive and non-destructive methods was used to asset the conditions of a tiled floor in the historical monument Minaret, situated in the park complex of the Chateau Lednice (South Moravia Region, Czech Republic), before its renovation. Another set of measurements is going to be performed after the conservation works are finished. (The comparison of the results collected during pre- and post-remediation measurements will be known and presented during the General Assembly meeting in Wien.) The diagnostic complex of methods consisted of photogrammetry, resistivity drilling and georadar. The survey was aimed to contour extends of air gaps beneath the tiles and the efficiency of filling gaps by means of injection, consolidation and gluing individual layers. The state chateau Lednice creates a part of the Lednice-Valtice precinct, a UNESCO landmark, and belongs among the greatest historic monuments in Southern Moravia. In the chateau park there is a romantic observation tower in the shape of a minaret built according to the plans of Josef Hardtmuth between 1798-1804. The Minaret has been extensively renovated for many decades including the restoration of mosaic floors from Venetian terazzo. During the static works of the Minaret building between 1999-2000, the mosaic floors in the rooms on the second floor were transferred and put back onto concrete slabs. Specifically, the floor was cut up to tiles and these were glued to square slabs which were then attached to the base plate. The transfer was not successful and the floor restoration was finalized between 2016-2017. The damage consisted in separating the original floor from the concrete plate which led to creating gaps. Furthermore, the layers of the floor were not compact. It was necessary to fill the gaps and consolidate and glue the layers. The existence of air gap between individual layers of the tiles and their degradation was detected using two different diagnostic methods: semi

  17. Review of the Air-Coupled Impact-Echo Method for Non-Destructive Testing

    Science.gov (United States)

    Nowotarski, Piotr; Dubas, Sebastian; Milwicz, Roman

    2017-10-01

    The article presents the general idea of Air-Coupled Impact-Echo (ACIE) method which is one of the non-destructive testing (NDT) techniques used in the construction industry. One of the main advantages of the general Impact Echo (IE) method is that it is sufficient to access from one side to that of the structure which greatly facilitate research in the road facilities or places which are difficult to access and diagnose. The main purpose of the article is to present state-of-the-art related to ACIE method based on the publications available at Thomson Reuters Web of Science Core Collection database (WOS) with the further analysis of the mentioned methods. Deeper analysis was also performed for the newest publications published within last 3 years related to ACIE for investigation on the subject of main focus of the researchers and scientists to try to define possible regions where additional examination and work is necessary. One of the main conclusions that comes from the performed analysis is that ACIE methods can be widely used for performing NDT of concrete structures and can be performed faster than standard IE method thanks to the Air-coupled sensors. What is more, 92.3% of the analysed recent research described in publications connected with ACIE was performed in laboratories, and only 23.1% in-situ on real structures. This indicates that method requires further research to prepare test stand ready to perform analysis on real objects outside laboratory conditions. Moreover, algorithms that are used for data processing and later presentation in ACIE method are still being developed and there is no universal solution available for all kinds of the existing and possible to find defects, which indicates possible research area for further works. Authors are of the opinion that emerging ACIE method could be good opportunity for ND testing especially for concrete structures. Development and refinement of test stands that will allow to perform in-situ tests could

  18. Evaluation of the MIT-Scan-T2 for non-destructive PCC pavement thickness determination.

    Science.gov (United States)

    2008-07-01

    The MIT-Scan-T2 device is marketed as a non-destructive way to determine pavement thickness on both : HMA and PCC pavements. PCC pavement thickness determination is an important incentivedisincentive : measurement for the Iowa DOT and contractors. Th...

  19. Numerical modeling for the electromagnetic non-destructive evaluation: application to the non-destructive evaluation of concrete; Modelisation numerique pour l'evaluation non destructive electromagnetique: application au controle non destructif des structures en beton

    Energy Technology Data Exchange (ETDEWEB)

    Travassos, L

    2007-06-15

    Concrete is the most common building material and accounts for a large part of the systems that are necessary for a country to operate smoothly including buildings, roads, and bridges. Nondestructive testing is one of the techniques that can be used to assess the structural condition. It provides non perceptible information that conventional techniques of evaluation unable to do. The main objective of this work is the numerical simulation of a particular technique of nondestructive testing: the radar. The numerical modeling of the radar assessment of concrete structures make it possible to envisage the behavior of the system and its capacity to detect defects in various configurations. To achieve this objective, it was implemented electromagnetic wave propagation models in concrete structures, by using various numerical techniques to examine different aspects of the radar inspection. First of all, we implemented the finite-difference time-domain method in 3D which allows to take into account concrete characteristics such as porosity, salt content and the degree of saturation of the mixture by using Debye models. In addition, a procedure to improve the radiation pattern of bow-tie antennas is presented. This approach involves the Moment Method in conjunction with the Multi objective Genetic Algorithm. Finally, we implemented imaging algorithms which can perform fast and precise characterization of buried targets in inhomogeneous medium by using three different methods. The performance of the proposed algorithms is confirmed by numerical simulations. (author)

  20. A non-destructive evaluation of transverse hydrogen cracking in high strength flux-cored weld metal

    International Nuclear Information System (INIS)

    Sterjovski, Z.; Carr, D. G.; Holdstock, R.; Nolan, D.; Norrish, J.

    2007-01-01

    Transverse hydrogen cracking in high strength weld metal (WM) is a potentially serious problem in thick-sections, especially in highly restrained structures. This paper presents preliminary re suits for which transverse weld metal hydrogen cracking was purposefully generated in 40 mm thick high strength WM to study the effectiveness of various non-destructive testing methods in locating and sizing transverse cracks. Transverse WM hydrogen cracking was intentionally produced by: increasing diffusible hydrogen levels through the introduction of 2% hydrogen in CO 2 shielding gas and minimizing interpass temperature and time; increasing the cracking susceptibility of the micro structure by increasing cooling rate with a large-scale test plate and maintaining an interpass temperature below 70 deg C; increasing stress levels with the use of stiffeners and end welds; and rapid postweld cooling to a temperature lower than 100 deg C. The extent of transverse weld metal hydrogen cracking was evaluated by non-destructive testing (NDT), which included conventional ultrasonic testing, radiography, acoustic emission monitoring and magnetic particle inspection. It was established that conventional ultrasonic testing was the most effective of the NDT techniques used. Acoustic emission monitoring revealed that two different types of emissions emanated from the weld metal and that the majority of emissions occurred within the first 48 hours of welding, although there was some evidence of cracking well after this initial 48 hour period. Larger sized cracks were observed near the transverse stiffeners (and weld ends) where tensile residual stresses (both longitudinal and transverse) were thought to be highest and the micro structure was therefore more susceptible to cracking. Additionally, numerous finer cracks were located in the top third of the plate (in the thickness direction) and on both sides of the weld centre line

  1. Non-destructive controls

    International Nuclear Information System (INIS)

    Nouvet, A.

    1978-01-01

    The non-destructive controls permit, while respecting their integrity, the direct and individual examination of parts or complete objects as they are manufactured, as well as to follow the evolution of their eventual defects while in operation. The choice of control methods depends on the manufacturing process and shapes of parts, on the physical properties of their components as well as the nature, position and size of the defects which are likely to be detected. Whether it is a question of controls by means of ionizing radiation, flux of neutrons, ultrasons, acoustic source, sweating, magnetoscopy. Foucault currents, thermography, detection of leaks or non-destructive metallography, each has a limited field of application such that they are less competitive than complementary [fr

  2. Development and improvement of synthetic imaging methods for non-destructive ultrasonic testing of complex industrial components

    International Nuclear Information System (INIS)

    Bannouf, S.

    2013-01-01

    The goal of this thesis was, initially, to evaluate phased array methods for ultrasonic Non Destructive Testing (NDT) in order to propose optimizations, or to develop new alternative methods. In particular, this works deals with the detection of defects in complex geometries and/or materials parts. The TFM (Total Focusing Method) algorithm provides high resolution images and several representations of a same defect thanks to different reconstruction modes. These properties have been exploited judiciously in order to propose an adaptive imaging method in immersion configuration. We showed that TFM imaging can be used to characterize more precisely the defects. However, this method presents two major drawbacks: the large amount of data to be processed and a low signal-to-noise ratio (SNR), especially in noisy materials. We developed solutions to these two problems. To overcome the limitation caused by the large number of signals to be processed, we propose an algorithm that defines the sparse array to activate. As for the low SNR, it can be now improved by use of virtual sources and a new filtering method based on the DORT method (Decomposition of the Time Reversal Operator). (author) [fr

  3. Portable non-destructive assay methods for screening and segregation of radioactive waste

    International Nuclear Information System (INIS)

    Simpson, Alan; Jones, Stephanie; Clapham, Martin; Lucero, Randy

    2011-01-01

    Significant cost-savings and operational efficiency may be realised by performing rapid non-destructive classification of radioactive waste at or near its point of retrieval or generation. There is often a need to quickly categorize and segregate bulk containers (drums, crates etc.) into waste streams defined at various boundary levels (based on its radioactive hazard) in order to meet disposal regulations and consignor waste acceptance criteria. Recent improvements in gamma spectroscopy technologies have provided the capability to perform rapid in-situ analysis using portable and hand-held devices such as battery-operated medium and high resolution detectors including lanthanum halide and high purity germanium (HPGe). Instruments and technologies that were previously the domain of complex lab systems are now widely available as touch-screen 'off-the-shelf' units. Despite such advances, the task of waste stream screening and segregation remains a complex exercise requiring a detailed understanding of programmatic requirements and, in particular, the capability to ensure data quality when operating in the field. This is particularly so when surveying historical waste drums and crates containing heterogeneous debris of unknown composition. The most widely used portable assay method is based upon far-field High Resolution Gamma Spectroscopy (HRGS) assay using HPGe detectors together with a well engineered deployment cart (such as the PSC TechniCART TM technology). Hand-held Sodium Iodide (NaI) detectors are often also deployed and may also be used to supplement the HPGe measurements in locating hot spots. Portable neutron slab monitors may also be utilised in cases where gamma measurements alone are not suitable. Several case histories are discussed at various sites where this equipment has been used for in-situ characterization of debris waste, sludge, soil, high activity waste, depleted and enriched uranium, heat source and weapons grade plutonium, fission products

  4. Development of new non destructive methods for bituminized radioactive waste drums characterization; Developpement de nouvelles methodes de caracterisation non destructive pour des dechets radioactifs enrobes dans du bitume

    Energy Technology Data Exchange (ETDEWEB)

    Pin, P

    2004-10-15

    Radioactive waste constitute a major issue for the nuclear industry. One of the key points is their characterization to optimize their management: treatment and packaging, orientation towards the suited disposal. This thesis proposes an evaluation method of the low-energy photon attenuation, based on the gamma-ray spectra Compton continuum. Effectively, the {sup 241}Am measurement by gamma-ray spectrometry is difficult due to the low energy of its main gamma-ray (59.5 keV). The photon attenuation strongly depends on the bituminous mix composition, which includes very absorbing elements. As the Compton continuum also depends on this absorption, it is possible to link the 59.5 keV line attenuation to the Compton level. Another technique is proposed to characterize uranium thanks to its fluorescence X-rays induced by the gamma emitters already present in the waste. The uranium present in the drums disturbs the neutron measurements and its measurement by self-induced X-ray fluorescence allows to correct this interference. Due to various causes of error, the total uncertainty is around 50 % on the activity of the radioisotope {sup 241}Am, corrected by the peak to Compton technique. The same uncertainty is announced on the uranium mass measured by self induced X-ray fluorescence. As a consequence of these promising results, the two methods were included in the industrial project of the 'Marcoule Sorting Unit'. One major advantage is that they do not imply any additional material because they use information already present in the gamma-ray spectra. (author)

  5. Non-destructive high-resolution thermal imaging techniques to evaluate wildlife and delicate biological samples

    International Nuclear Information System (INIS)

    Lavers, C; Franklin, P; Franklin, P; Plowman, A; Sayers, G; Bol, J; Shepard, D; Fields, D

    2009-01-01

    Thermal imaging cameras now allows routine monitoring of dangerous yet endangered wildlife in captivity. This study looks at the potential applications of radiometrically calibrated thermal data to wildlife, as well as providing parameters for future materials applications. We present a non-destructive active testing technique suitable for enhancing imagery contrast of thin or delicate biological specimens yielding improved thermal contrast at room temperature, for analysis of sample thermal properties. A broad spectrum of animals is studied with different textured surfaces, reflective and emissive properties in the infra red part of the electromagnetic spectrum. Some surface features offer biomimetic materials design opportunities.

  6. Non-destructive high-resolution thermal imaging techniques to evaluate wildlife and delicate biological samples

    Energy Technology Data Exchange (ETDEWEB)

    Lavers, C; Franklin, P; Franklin, P; Plowman, A; Sayers, G; Bol, J; Shepard, D; Fields, D, E-mail: brnc-radarcomms1@nrta.mod.u [Sensors Team, Plymouth University at Britannia Royal Naval College, Dartmouth, Devon (United Kingdom) and Paignton Zoological Park, Paignton, Devon (United Kingdom); Thermal Wave Imaging, Inc., 845 Livernoise St, Ferndale, MI (United States); Buckfast Butterfly and Otter Sanctuary, Buckfast, Devon (United Kingdom)

    2009-07-01

    Thermal imaging cameras now allows routine monitoring of dangerous yet endangered wildlife in captivity. This study looks at the potential applications of radiometrically calibrated thermal data to wildlife, as well as providing parameters for future materials applications. We present a non-destructive active testing technique suitable for enhancing imagery contrast of thin or delicate biological specimens yielding improved thermal contrast at room temperature, for analysis of sample thermal properties. A broad spectrum of animals is studied with different textured surfaces, reflective and emissive properties in the infra red part of the electromagnetic spectrum. Some surface features offer biomimetic materials design opportunities.

  7. Non-destructive Inspection of Top-Down Construction Joints of Column in SRC Structure using Ultrasonic Method

    International Nuclear Information System (INIS)

    Park, Seok Kyun; Baek, Un Chan; Lee, Han Bum; Kim, Myoung Mo

    2000-01-01

    The joint treatment of concrete is one of the technical problems in top down construction method. Joints created with the top down construction result in serious weakness from the aspects of both structural and water-barrier function. Ultrasonic method was used for the inspection of top down construction joints of a various column in SRC structure in this study. The advantages and limitations of this method for non-destructive inspection in top down construction joints are investigated. As a result, it has been verified that the semi-direct measurement method is more effective than the other methods for detecting the voids of construction joints using ultrasonic method

  8. Study of development of non-destructive method for determining FGR from high burned PWR type fuel rod

    International Nuclear Information System (INIS)

    Yanagisawa, Kazuaki; Miyanishi, Hideyuki; Kitagawa, Isamu; Iida, Shozo; Ito, Tadaharu; Amano, Hidetoshi.

    1991-11-01

    Experimental study was made to evaluate the FGR (Fission Product Gas Release) from high burned PWR type fuel rods by means of non-destructive method through measurement of the gamma activity of 85 Kr isotope which was accumulated in the fuel top plenum. Experimental result shows that it is possible to know the amounts of FGR at fuel plenum by the equations given in the followings. FGR = 0.28C/V f or FGR = 0.07C where, FGR (%) is the amounts of Xe and Kr released from UO 2 fuel, C (counts/h) the radioactivity of 85 Kr at plenum of the tested fuel rod and V f (ml) the plenum volume of the tested fuel rod, respectively. The present study was made by using 14 x 14 PWR type fuel rods preirradiated up to the burn-up of 42.1 MWd/kgU, followed by the pulse irradiation at Nuclear Safety Research Reactor of Japan Atomic Energy Research Institute (JAERI). The FGR of the tested segmented fuel rods were measured by puncturing and found to range from 0.6% to 12% according to the magnitude of the deposited energy given by pulse. Estimated experimental error bands against the above equations were within plus minus 30%. (author)

  9. Post-harvest Quality Evaluation of Grapes using Non-destructive Electronic Nose

    Directory of Open Access Journals (Sweden)

    RAJIN S. M. Ataul Karim

    2015-10-01

    Full Text Available Over the past decades, electronic nose has opened a variety of possibilities and is becoming one of the most important non-destructive odour inspection technologies in the food industry. The objective of this study is to determine the quality degradation of the fruit by monitoring the change in the volatile compound while kept in storage using a lab manufactured electronic nose. Here, grapes are chosen as the fruit sample for experiment. Principal component analysis (PCA is used to determine the ability of the electronic nose to distinguish the different quality of the fruit stored over an interval of time. The result shows that using PCA analysis, the electronic nose is able to identify a clear distinction between the aromas of grapes stored for different time intervals.

  10. Project GRETE: evaluation of non destructive testing techniques for monitoring of material degradation

    International Nuclear Information System (INIS)

    Coste, J.F.

    2001-01-01

    The material aging of major critical components of nuclear installations due to in-service conditions may lead to a degradation of their mechanical characteristics. The early detection of material changes and their monitoring using innovative non destructive testing techniques would allow to plan actions in order to prevent the apparition of macroscopic damage (e.g. cracks). One major difficulty in using these particular techniques is to correlate the changes in the measured NDT signals to the microstructural changes in the material due to aging. This problem may be solved through careful microstructural examinations of the material damage. The objective of the project GRETE is to illustrate the potential use of NDT techniques for the monitoring of material degradation through two examples: neutron irradiation of reactor pressure vessel steel and thermal fatigue of piping. The purpose of this paper is to present the project and its programme of work. (author)

  11. Non-destructive testing of electronic parts

    International Nuclear Information System (INIS)

    Widenhorn, G.

    1980-01-01

    The requirements on quality, safety, faultlessness and reliability of electric components increase because of the high complexity of the appliances in which they are used. By means of examples a survey is given on the common non-destructive testing methods, testing operation and evaluation of test results on electric components which must meet in their application high requirements on quality and reliability. Defective components, especially those with hidden failures are sorted out by non-destructive testing and the failure frequency of the appliances and plants in testing and operation is greatly reduced. (orig.) [de

  12. The detection of structural defects in metallic materials and components using a non-destructive multi-frequency eddy current method

    International Nuclear Information System (INIS)

    Becker, R.

    1980-01-01

    Application of the multi-frequency method in eddy current testing is shown to be usefull for many important and complex problems in the field of non-destructive testing, which cannot be solved by the single frequency method because of principle reasons. Also in the presence of several perturbing signals the method can be applied successfully, thus very often difference coils can be replaced by absolute coils. Introducing the algorithm of multidimensional direction selection, the calibration of the test system is simpler, allowing automization of the calibration process. In addition, the test signals related with the defect parameters can be evaluated in an objective way. (orig./RW) [de

  13. Determination of burnup for IEAR-1 fuel elements by non destructive method of gamma spectrometry

    International Nuclear Information System (INIS)

    Madi Filho, T.; Holland, L.

    1982-01-01

    Burnup determination, by non-destructive gamma spectrometry of spent fuel with high and low activity of IEAR-1 reactor, using Cs-137 as burnup monitor, were done. To measure the Cs-137 distribution in these elements a Ge(Li) detector, with volume equal to 73,7 cm 3 , in two measurement systems with defined geometry and good colimation, was used. The IEA-14 taken from the core about 20 years ago, presents a gamma spectra due to Cs-137. The IEA-80, with cooling time approximately to 5 years, shows a more complex gamma spectrum due to other fission products still found in significant quantities. The IEA-14 measures were done in a measurement system used outside the reactor pool (S.I.), being the global efficiency of this system obtained by using a plane, calibrated and extense Ag-110 m source. Detailed measures of gamma transmission, using Cs-137 as a calibrated and punctiforme source, showed the high homogenity of the fuel plates. (E.G.) [pt

  14. Miniaturized Time Domain Terahertz Non Destructive Evaluation for In-Orbit Inspection of Inflatable Habitats and Thermal Protection Systems, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Picometrix's time-domain terahertz (TD-THz) non-destructive evaluation (NDE) technology could be used to inspect space flight structures such as inflatable space...

  15. Miniaturized Time Domain Terahertz Non Destructive Evaluation for In-Orbit Inspection of Inflatable Habitats and Thermal Protection Systems, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Picometrix's time-domain terahertz (TD-THz) non-destructive evaluation (NDE) technology could be used to inspect space flight structures such as inflatable space...

  16. Performance values for non destructive assay (NDA) techniques applied to safeguards: the 2002 evaluation by the ESARDA NDA Working Group

    International Nuclear Information System (INIS)

    Guardini, S.

    2003-01-01

    The first evaluation of NDA performance values undertaken by the ESARDA Working Group for Standards and Non Destructive Assay Techniques (WGNDA) was published in 1993. Almost 10 years later the Working Group decided to review those values, to report about improvements and to issue new performance values for techniques which were not applied in the early nineties, or were at that time only emerging. Non-Destructive Assay techniques have become more and more important in recent years, and they are used to a large extent in nuclear material accountancy and control both by operators and control authorities. As a consequence, the performance evaluation for NDA techniques is of particular relevance to safeguards authorities in optimising Safeguards operations and reducing costs. Performance values are important also for NMAC regulators, to define detection levels, limits for anomalies, goal quantities and to negotiate basic audit rules. This paper presents the latest evaluation of ESARDA Performance Values (EPVs) for the most common NDA techniques currently used for the assay of nuclear materials for Safeguards purposes. The main topics covered by the document are: techniques for plutonium bearing materials: PuO 2 and MOX; techniques for U-bearing materials; techniques for U and Pu in liquid form; techniques for spent fuel assay. This issue of the performance values is the result of specific international round robin exercises, field measurements and ad hoc experiments, evaluated and discussed in the ESARDA NDA Working Group. (author)

  17. A fracture mechanics and reliability based method to assess non-destructive testings for pressure vessels

    International Nuclear Information System (INIS)

    Kitagawa, Hideo; Hisada, Toshiaki

    1979-01-01

    Quantitative evaluation has not been made on the effects of carrying out preservice and in-service nondestructive tests for securing the soundness, safety and maintainability of pressure vessels, spending large expenses and labor. Especially the problems concerning the time and interval of in-service inspections lack the reasonable, quantitative evaluation method. In this paper, the problems of pressure vessels are treated by having developed the analysis method based on reliability technology and probability theory. The growth of surface cracks in pressure vessels was estimated, using the results of previous studies. The effects of nondestructive inspection on the defects in pressure vessels were evaluated, and the influences of many factors, such as plate thickness, stress, the accuracy of inspection and so on, on the effects of inspection, and the method of evaluating the inspections at unequal intervals were investigated. The analysis of reliability taking in-service inspection into consideration, the evaluation of in-service inspection and other affecting factors through the typical examples of analysis, and the review concerning the time of inspection are described. The method of analyzing the reliability of pressure vessels, considering the growth of defects and preservice and in-service nondestructive tests, was able to be systematized so as to be practically usable. (Kako, I.)

  18. Evaluation of Cs-134 and Cs-137 in sugar by non-destructive analysis

    Energy Technology Data Exchange (ETDEWEB)

    Correira, Filipe Lopes de Barros; Santos Júnior, José Araújo dos; Amaral, Romilton dos Santos; Santos, Josineide Marques do Nascimento; Medeiros, Nilson Vicente da Silva; Santos Junior, Otávio Pereira dos, E-mail: filipelbck@gmail.com, E-mail: jaraujo@ufpe.br, E-mail: romilton@ufpe.br, E-mail: josineide.santos@ufpe.br, E-mail: nilson.medeiros@ufpe.br, E-mail: otavio.santos@vitoria.ifpe.edu.br [Universidade Federal de Pernambuco (RAE/UFPE), Recife, PE (Brazil). Departamento de Energia Nuclear. Grupo de Radioecologia; Vieira, José Wilson, E-mail: jose.wilson59@uol.com.br [Instituto Federal de Pernambuco (IFPE), Recife (Brazil); Valois, Rhaiana Caminha, E-mail: rhaianavalois@hotmail.com [Colégio Militar do Recife, PE (Brazil)

    2017-07-01

    The spread of anthropogenic radioisotopes in the environment comes from nuclear tests and accidents that occurred in the past, which justifies constant monitoring, to guarantee the safety and control of the activities that involve these applications. Brazil, when exporting some food products, depending on the country of origin, a radiometric report is required, especially for sugar that has high world consumption and the possibility of contamination of the population, when radioisotope is present. Therefore, the investigation of the levels of Cs-134 and Cs-137 in sugar matrices is necessary to predict radioecological emergency situations. The National Nuclear Energy Commission, the agency that oversees nuclear applications in Brazil, With Resolution No. 102 of December 22, 2010 approved regulatory positions, including levels of action for food control, recommended to restrict the marketing of food products in Brazil. General, whose specific activity is higher than the limit of 1.0 kBq / kg for the said isotopes of cesium independently. Aiming for improvements in the analyzes that are already performed in the Laboratory of Radioecology and Environmental Control of the Department of Nuclear Energy of the Federal University of Pernambuco to assurance the quality of sugar marketed in Brazil, a standard procedure for the analysis of these radionuclides in this matrix was determined. High resolution gamma spectrometry with non-destructive analysis was used to perform the tests. Priority was given to parameters that directly influence the qualitative and quantitative analysis of these radioactive elements, such as calibration in energy and efficiency, resolution, influence of self-absorption, counting statistics directly associated with the time of analysis, influence of background radiation and geometry analysis. (author)

  19. Evaluation of Cs-134 and Cs-137 in sugar by non-destructive analysis

    International Nuclear Information System (INIS)

    Correira, Filipe Lopes de Barros; Santos Júnior, José Araújo dos; Amaral, Romilton dos Santos; Santos, Josineide Marques do Nascimento; Medeiros, Nilson Vicente da Silva; Santos Junior, Otávio Pereira dos; Valois, Rhaiana Caminha

    2017-01-01

    The spread of anthropogenic radioisotopes in the environment comes from nuclear tests and accidents that occurred in the past, which justifies constant monitoring, to guarantee the safety and control of the activities that involve these applications. Brazil, when exporting some food products, depending on the country of origin, a radiometric report is required, especially for sugar that has high world consumption and the possibility of contamination of the population, when radioisotope is present. Therefore, the investigation of the levels of Cs-134 and Cs-137 in sugar matrices is necessary to predict radioecological emergency situations. The National Nuclear Energy Commission, the agency that oversees nuclear applications in Brazil, With Resolution No. 102 of December 22, 2010 approved regulatory positions, including levels of action for food control, recommended to restrict the marketing of food products in Brazil. General, whose specific activity is higher than the limit of 1.0 kBq / kg for the said isotopes of cesium independently. Aiming for improvements in the analyzes that are already performed in the Laboratory of Radioecology and Environmental Control of the Department of Nuclear Energy of the Federal University of Pernambuco to assurance the quality of sugar marketed in Brazil, a standard procedure for the analysis of these radionuclides in this matrix was determined. High resolution gamma spectrometry with non-destructive analysis was used to perform the tests. Priority was given to parameters that directly influence the qualitative and quantitative analysis of these radioactive elements, such as calibration in energy and efficiency, resolution, influence of self-absorption, counting statistics directly associated with the time of analysis, influence of background radiation and geometry analysis. (author)

  20. Non-destructive flavour evaluation of red onion (Allium cepa L.) ecotypes: an electronic-nose-based approach.

    Science.gov (United States)

    Russo, Mariateresa; di Sanzo, Rosa; Cefaly, Vittoria; Carabetta, Sonia; Serra, Demetrio; Fuda, Salvatore

    2013-11-15

    This work reports preliminary results on the potential of a metal oxide sensor (MOS)-based electronic nose, as a non-destructive method to discriminate three "Tropea Red Onion" PGI ecotypes (TrT, TrMC and TrA) from each other and the common red onion (RO), which is usually used to counterfeit. The signals from the sensor array were processed using a canonical discriminant function analysis (DFA) pattern recognition technique. The DFA on onion samples showed a clear separation among the four onion groups with an overall correct classification rate (CR) of 97.5%. Onion flavour is closely linked to pungency and thus to the pyruvic acid content. The e-nose analysis results are in good agreement with pyruvic acid analysis. This work demonstrated that artificial olfactory systems have potential for use as an innovative, rapid and specific non-destructive technique, and may provide a method to protect food products against counterfeiting. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Reports from the Yayoi symposium on quantitative non-destructive evaluation, (1)

    International Nuclear Information System (INIS)

    1990-02-01

    The report consists of four parts. The first part deals with nondestructive evaluation in the nuclear power industry, focusing on in-service inspection in nuclear power plant, eddy current crack detection test of steam generator heat-exchanger tube, and nondestructive test of thin-wall components. The second part discusses inverse problems and quantification for nondestructive evaluation, centering on the identification of defect by boundary element method, quantification by using supersonic wave, defect shape recognition by the electrical potential method, and a neural network applied to crack type recognition. The third part deals with the application of electromagnetic phenomena to nondestructive evaluation, focusing on a superconducting quantum interference device, electromagnetic measurement in the iron industry, and nondestructive measurement of residual stress by magnetic process. The fourth part discusses visualization techniques for nondestructive evaluation, focusing on image processing, neutron radiography, X-ray CT, defect diagnosis by infrared rays, and visualization of magnetic field. (N.K.)

  2. Evaluation of stress-induced martensite phase in ferromagnetic shape memory alloy Fe-30.2at%Pd by non-destructive Barkhausen noise

    Science.gov (United States)

    Furuya, Yasubumi; Okazaki, Teiko; Ueno, Takasi; Spearing, Mark; Wutting, Manfred

    2005-05-01

    Barkhausen noise (BHN) method seems a useful tecnique to non-destructive evaluation of martensite phase transformation of ferromagnetic shape memory alloy, which is used as the filler of our proposing "Smart Composite Board". The concept of design for "Smart Composite Board" which can combine the non-destructive magnetic inspection and shape recovery function in the material itself was formerly proposed. In the present study, we survey the possibility of Barkhausen noise (BHN) method to detect the transformation of microscopic martensite phase caused by stress-loading in Fe-30.2at%Pd thin foil, which has a stable austenite phase (fcc structure) at room temperature. The BHN voltage was measured at loading stress up to 100 MPa in temperature range of 300K to 373K. Stress-induced martensite twin was observed by laser microscope above loading stress of 25 MPa. A phase transformation caused by loading stress were analyzed also by X-ray diffraction. The signals of BHN are analyzed by the time of magnetization and the noise frequency. BHN caused by grain boundaries appears in the lower frequency range (1kHz-3kHz) and BHN by martensite twin in the higher frequency range (8kHz-10kHz). The envelope of the BHN voltage as a function of time of magnetization shows a peak due to austenite phase at weak magnetic field. The BHN envelope due to martensite twins creates additional two peaks at intermediate magnetic field. BHN method turns out to be a powerful technique for non-destructive evaluation of the phase transformation of ferromagnetic shape memory alloy.

  3. Significantly improving nuclear resonance fluorescence non-destructive assay by using the integral resonance transmission method and photofission

    International Nuclear Information System (INIS)

    Angell, Christopher T.; Hayakawa, Takehito; Shizuma, Toshiyuki; Hajima, Ryoichi

    2013-01-01

    Non-destructive assay (NDA) of 239 Pu in spent nuclear fuel or melted fuel using a γ-ray beam is possible using self absorption and the integral resonance transmission method. The method uses nuclear resonance absorption where resonances in 239 Pu remove photons from the beam, and the selective absorption is detected by measuring the decrease in scattering in a witness target placed in the beam after the fuel, consisting of the isotope of interest, namely 239 Pu. The method is isotope specific, and can use photofission or scattered γ-rays to assay the 239 Pu. It overcomes several problems related to NDA of melted fuel, including the radioactivity of the fuel, and the unknown composition and geometry. This talk will explain the general method, and how photofission can be used to assay specific isotopes, and present example calculations. (author)

  4. Example value-impact analysis of non-destructive examination methods used for inservice inspection of BWR piping

    International Nuclear Information System (INIS)

    Tabatabai, A.S.; Simonen, F.A.

    1985-12-01

    This paper describes work recently completed at Pacific Northwest Laboratory (PNL) to use value-impact (V/I) analysis methods to help guide research to improve the effectiveness of inservice inspection (ISI) procedures at nuclear power plants. The example developed at PNL uses the results of probabilistic fracture mechanics and probabilistic risk analysis (PRA) studies to compare three generic categories of non-destructive examination (NDE) methods. These NDE methods are used to detect possible pipe cracks such as those induced by intergranular stress corrosion (IGSCC). The results of the analysis of this example include (1) quantification of the effectiveness of ISI in increasing plant safety in terms of reduction in core-melt frequency, (2) estimates of the industry cost of performing ISI, (3) estimates of radiation exposures to plant personnel as a result of performing ISI, and (4) potential areas of improvement in the NDE and ISI process

  5. A Non-Destructive Culturing and Cell Sorting Method for Cardiomyocytes and Neurons Using a Double Alginate Layer

    Science.gov (United States)

    Terazono, Hideyuki; Kim, Hyonchol; Hayashi, Masahito; Hattori, Akihiro; Nomura, Fumimasa; Kaneko, Tomoyuki; Yasuda, Kenji

    2012-01-01

    A non-destructive method of collecting cultured cells after identifying their in situ functional characteristics is proposed. In this method, cells are cultivated on an alginate layer in a culture dish and released by spot application of a calcium chelate buffer that locally melts the alginate layer and enables the collection of cultured cells at the single-cell level. Primary hippocampal neurons, beating human embryonic stem (hES) cell-derived cardiomyocytes, and beating hES cell-derived cardiomyocyte clusters cultivated on an alginate layer were successfully released and collected with a micropipette. The collected cells were recultured while maintaining their physiological function, including beating, and elongated neurites. These results suggest that the proposed method may eventually facilitate the transplantation of ES- or iPS-derived cardiomyocytes and neurons differentiated in culture. PMID:22870332

  6. A non-destructive culturing and cell sorting method for cardiomyocytes and neurons using a double alginate layer.

    Directory of Open Access Journals (Sweden)

    Hideyuki Terazono

    Full Text Available A non-destructive method of collecting cultured cells after identifying their in situ functional characteristics is proposed. In this method, cells are cultivated on an alginate layer in a culture dish and released by spot application of a calcium chelate buffer that locally melts the alginate layer and enables the collection of cultured cells at the single-cell level. Primary hippocampal neurons, beating human embryonic stem (hES cell-derived cardiomyocytes, and beating hES cell-derived cardiomyocyte clusters cultivated on an alginate layer were successfully released and collected with a micropipette. The collected cells were recultured while maintaining their physiological function, including beating, and elongated neurites. These results suggest that the proposed method may eventually facilitate the transplantation of ES- or iPS-derived cardiomyocytes and neurons differentiated in culture.

  7. Comparison between beamforming and super resolution imaging algorithms for non-destructive evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Chengguang [College of Mechatronic Engineering and Automation, National University of Defense Technology, Changsha 410073, PR China and Department of Mechanical Engineering, University of Bristol, Queen' s Building, University Walk, Bristol BS8 1TR (United Kingdom); Drinkwater, Bruce W. [Department of Mechanical Engineering, University of Bristol, Queen' s Building, University Walk, Bristol BS8 1TR (United Kingdom)

    2014-02-18

    In this paper the performance of total focusing method is compared with the widely used time-reversal MUSIC super resolution technique. The algorithms are tested with simulated and experimental ultrasonic array data, each containing different noise levels. The simulated time domain signals allow the effects of array geometry, frequency, scatterer location, scatterer size, scatterer separation and random noise to be carefully controlled. The performance of the imaging algorithms is evaluated in terms of resolution and sensitivity to random noise. It is shown that for the low noise situation, time-reversal MUSIC provides enhanced lateral resolution when compared to the total focusing method. However, for higher noise levels, the total focusing method shows robustness, whilst the performance of time-reversal MUSIC is significantly degraded.

  8. Comparison between beamforming and super resolution imaging algorithms for non-destructive evaluation

    International Nuclear Information System (INIS)

    Fan, Chengguang; Drinkwater, Bruce W.

    2014-01-01

    In this paper the performance of total focusing method is compared with the widely used time-reversal MUSIC super resolution technique. The algorithms are tested with simulated and experimental ultrasonic array data, each containing different noise levels. The simulated time domain signals allow the effects of array geometry, frequency, scatterer location, scatterer size, scatterer separation and random noise to be carefully controlled. The performance of the imaging algorithms is evaluated in terms of resolution and sensitivity to random noise. It is shown that for the low noise situation, time-reversal MUSIC provides enhanced lateral resolution when compared to the total focusing method. However, for higher noise levels, the total focusing method shows robustness, whilst the performance of time-reversal MUSIC is significantly degraded

  9. Non-destructive electrochemical techniques applied to the corrosion evaluation of the liner structures in nuclear power plants

    International Nuclear Information System (INIS)

    Martinez, I.; Castillo, A.; Andrade, C.

    2008-01-01

    The liner structure in nuclear power plants provides containment for the operation and therefore the study of its durability and integrity during its service life is an important issue. There are several causes for the deterioration of the liner, which in general involve corrosion due to its metallic nature. The present paper is aimed at describing the assessment of corrosion problems of two liners from two different nuclear power plants, which were evaluated using non-destructive electrochemical techniques. In spite of the testing difficulties arisen, from the results extracted it can be concluded that the electrochemical techniques applied are adequate for the corrosion evaluation. They provide important information about the integrity of the structure and allow for its evolution with time to be assessed

  10. Non-destructive testing (NDT) of metal cracks using a high Tc rf-SQUID and eddy current method

    Energy Technology Data Exchange (ETDEWEB)

    Lu, D.F.; Fan, C.; Ruan, J.Z. [Midwest Superconductivity Inc., Lawrence, KS (United States)] [and others

    1994-12-31

    A SQUID is the most sensitive device to detect change in magnetic field. A non-destructive testing (NDT) device using high temperature SQUIDs and eddy current method will be much more sensitive than those currently used eddy current systems, yet much cheaper than one with low temperature SQUIDs. In this paper, we present our study of such a NDT device using a high temperature superconducting rf-SQUID as a gradiometer sensor. The result clearly demonstrates the expected sensitivity of the system, and indicates the feasibility of building a portable HTS SQUID NDT device with the help from cryocooler industry. Such a NDT device will have a significant impact on metal corrosion or crack detection technology.

  11. Non-destructive testing (NDT) of metal cracks using a high Tc rf-SQUID and eddy current method

    International Nuclear Information System (INIS)

    Lu, D.F.; Fan, C.; Ruan, J.Z.

    1994-01-01

    A SQUID is the most sensitive device to detect change in magnetic field. A non-destructive testing (NDT) device using high temperature SQUIDs and eddy current method will be much more sensitive than those currently used eddy current systems, yet much cheaper than one with low temperature SQUIDs. In this paper, we present our study of such a NDT device using a high temperature superconducting rf-SQUID as a gradiometer sensor. The result clearly demonstrates the expected sensitivity of the system, and indicates the feasibility of building a portable HTS SQUID NDT device with the help from cryocooler industry. Such a NDT device will have a significant impact on metal corrosion or crack detection technology

  12. Non-destructive evaluation of impact damage on carbon fiber laminates: Comparison between ESPI and Shearography

    Energy Technology Data Exchange (ETDEWEB)

    Pagliarulo, V., E-mail: v.pagliarulo@isasi.cnr.it; Ferraro, P. [CNR National Research Council, ISASI, Institute of Applied Sciences and Intelligent Systems, via Campi Flegrei 34, 80078 Pozzuoli, NA (Italy); Lopresto, V.; Langella, A. [Dpt. Of Chemicals, Materials and Production Engin., University of Naples “Federico II”, P.leTecchio 80, Naples (Italy); Antonucci, V.; Ricciardi, M. R. [CNR National Research Council, IPCB, Institute of Polymer Composites and Biomedical Materials, P.E. Fermi, Portici (Italy)

    2016-06-28

    The aim of this paper is to investigate the ability of two different interferometric NDT techniques to detect and evaluate barely visible impact damage on composite laminates. The interferometric techniques allow to investigate large and complex structures. Electronic Speckle Pattern Interferometry (ESPI) works through real-time surface illumination by visible laser (i.e. 532 nm) and the range and the accuracy are related to the wavelength. While the ESPI works with the “classic” holographic configuration, that is reference beam and object beam, the Shearography uses the object image itself as reference: two object images are overlapped creating a shear image. This makes the method much less sensitive to external vibrations and noise but with one difference, it measures the first derivative of the displacement. In this work, different specimens at different impact energies have been investigated by means of both methods. The delaminated areas have been estimated and compared.

  13. Non-destructive evaluation of the water content of concretes by low energy gamma backscattering

    International Nuclear Information System (INIS)

    Raghunath, V.M.; Bhatnagar, P.K.; Meenakshisundaram, V.

    1983-01-01

    A method of estimating the water content of various concretes mixed with neutron absorbers like boron or rare earths is described. This makes use of the fact that a large buildup of low energy photons in the 20 - 100 keV range is observed in the backscattered spectrum from water when compared to conrete. A 4.36 mCi 137 Cs (662 keV) source is used with a 1 mm thick NaI scintillator as the detector to measure the backscattered radiation in the energy range. Calibration curves for evaluating the water content in borated concretes, ordinary conretes of different thickness, and a mortar brick are reported. It has been possible to estimate the water content to within 0.25% (by weight) by this method. (orig.)

  14. Non-destructive evaluation of the water content of concretes by low energy gamma backscattering

    Energy Technology Data Exchange (ETDEWEB)

    Raghunath, V M; Bhatnagar, P K; Meenakshisundaram, V [Reactor Research Centre, Kalpakkam (India). Safety Research Lab.

    1983-02-15

    A method of estimating the water content of various concretes mixed with neutron absorbers like boron or rare earths is described. This makes use of the fact that a large buildup of low energy photons in the 20 - 100 keV range is observed in the backscattered spectrum from water when compared to concrete. A 4.36 mCi /sup 137/Cs (662 keV) source is used with a 1 mm thick NaI scintillator as the detector to measure the backscattered radiation in the energy range. Calibration curves for evaluating the water content in borated concretes, ordinary concretes of different thickness, and a mortar brick are reported. It has been possible to estimate the water content to within 0.25% (by weight) by this method.

  15. Determination of the Optimum Harvest Window for Apples Using the Non-Destructive Biospeckle Method

    Directory of Open Access Journals (Sweden)

    Anna Skic

    2016-05-01

    Full Text Available Determination of the optimum harvest window plays a key role in the agro-food chain as the quality of fruit depends on the right harvesting time and appropriate storage conditions during the postharvest period. Usually, indices based on destructive measurements are used for this purpose, like the De Jager Index (PFW-1, FARS index and the most popular Streif Index. In this study, we proposed a biospeckle method for the evaluation of the optimum harvest window (OHW of the “Ligol” and “Szampion” apple cultivars. The experiment involved eight different maturity stages, of which four were followed by long cold storage and shelf life to assist the determination of the optimum harvest window. The biospeckle activity was studied in relation to standard quality attributes (firmness, acidity, starch, soluble solids content, Streif Index and physiological parameters (respiration and ethylene emission of both apple cultivars. Changes of biospeckle activity (BA over time showed moderate relationships with biochemical changes during apple maturation and ripening. The harvest date suggested by the Streif Index and postharvest quality indicators matched with characteristic decrease in BA. The ability of biospeckle method to characterize the biological state of apples was confirmed by significant correlations of BA with firmness, starch index, total soluble solids and Streif Index, as well as good match with changes in carbon dioxide and ethylene emission. However, it should be noted that correlations between variables changing over time are not as meaningful as independent observations. Also, it is a well-known property of the Pearson’s correlation that its value is highly susceptible to outlier data. Due to its non-selective nature the BA reflected only the current biological state of the fruit and could be affected by many other factors. The investigations showed that the optimum harvest window for apples was indicated by the characteristic drop of

  16. Determination of the Optimum Harvest Window for Apples Using the Non-Destructive Biospeckle Method.

    Science.gov (United States)

    Skic, Anna; Szymańska-Chargot, Monika; Kruk, Beata; Chylińska, Monika; Pieczywek, Piotr Mariusz; Kurenda, Andrzej; Zdunek, Artur; Rutkowski, Krzysztof P

    2016-05-10

    Determination of the optimum harvest window plays a key role in the agro-food chain as the quality of fruit depends on the right harvesting time and appropriate storage conditions during the postharvest period. Usually, indices based on destructive measurements are used for this purpose, like the De Jager Index (PFW-1), FARS index and the most popular Streif Index. In this study, we proposed a biospeckle method for the evaluation of the optimum harvest window (OHW) of the "Ligol" and "Szampion" apple cultivars. The experiment involved eight different maturity stages, of which four were followed by long cold storage and shelf life to assist the determination of the optimum harvest window. The biospeckle activity was studied in relation to standard quality attributes (firmness, acidity, starch, soluble solids content, Streif Index) and physiological parameters (respiration and ethylene emission) of both apple cultivars. Changes of biospeckle activity (BA) over time showed moderate relationships with biochemical changes during apple maturation and ripening. The harvest date suggested by the Streif Index and postharvest quality indicators matched with characteristic decrease in BA. The ability of biospeckle method to characterize the biological state of apples was confirmed by significant correlations of BA with firmness, starch index, total soluble solids and Streif Index, as well as good match with changes in carbon dioxide and ethylene emission. However, it should be noted that correlations between variables changing over time are not as meaningful as independent observations. Also, it is a well-known property of the Pearson's correlation that its value is highly susceptible to outlier data. Due to its non-selective nature the BA reflected only the current biological state of the fruit and could be affected by many other factors. The investigations showed that the optimum harvest window for apples was indicated by the characteristic drop of BA during pre

  17. Non-destructive evaluation of the cladding thickness in LEU fuel plates by accurate ultrasonic scanning technique

    Energy Technology Data Exchange (ETDEWEB)

    Borring, J.; Gundtoft, H.E.; Borum, K.K.; Toft, P. [Riso National Lab. (Denmark)

    1997-08-01

    In an effort to improve their ultrasonic scanning technique for accurate determination of the cladding thickness in LEU fuel plates, new equipment and modifications to the existing hardware and software have been tested and evaluated. The authors are now able to measure an aluminium thickness down to 0.25 mm instead of the previous 0.35 mm. Furthermore, they have shown how the measuring sensitivity can be improved from 0.03 mm to 0.01 mm. It has now become possible to check their standard fuel plates for DR3 against the minimum cladding thickness requirements non-destructively. Such measurements open the possibility for the acceptance of a thinner nominal cladding than normally used today.

  18. Non-destructive evaluation of the cladding thickness in LEU fuel plates by accurate ultrasonic scanning technique

    International Nuclear Information System (INIS)

    Borring, J.; Gundtoft, H.E.; Borum, K.K.; Toft, P.

    1997-01-01

    In an effort to improve their ultrasonic scanning technique for accurate determination of the cladding thickness in LEU fuel plates, new equipment and modifications to the existing hardware and software have been tested and evaluated. The authors are now able to measure an aluminium thickness down to 0.25 mm instead of the previous 0.35 mm. Furthermore, they have shown how the measuring sensitivity can be improved from 0.03 mm to 0.01 mm. It has now become possible to check their standard fuel plates for DR3 against the minimum cladding thickness requirements non-destructively. Such measurements open the possibility for the acceptance of a thinner nominal cladding than normally used today

  19. Evaluation of non-destructive density determination for QA/QC acceptance testing : research project capsule.

    Science.gov (United States)

    2017-08-01

    LTRCs Geotechnical and Asphalt groups will be conducting two separate field and laboratory evaluations. The Geotechnical group will evaluate field densities of soil layers and the asphalt group will evaluate field densities on asphalt pavement lay...

  20. Development and optimization of thermographic techniques for Non-Destructive Evaluation of multilayered structures

    Science.gov (United States)

    Gavrilov, Dmitry J.

    Quality control of modern materials is of the utmost importance in science and industry. Methods for nondestructive evaluation of material properties and the presence of defects are numerous. They differ in terms of their sensitivity and applicability in various conditions, and they provide different kinds of data such as the speed of sound in the material, its hardness, radiation absorption, etc. Based on measured characteristics an analyst makes a decision on the material studied. This work addresses a class of methods known as active thermographic analysis. Thermography analyzes the temperature of the surface of the sample under different external conditions. By keeping track of temperature changes at the surface caused by a deposition of heat on the sample one can determine its material properties such as theand processing the data captured it is possible to make decisions on parameters of this sample. Among the data which can be acquired are such important information as the location of internal defects (e.g., detachments, hollows, inclusions), thickness of the material layers, thermal parameters of the material and the location of internal defects (e.g., detachments, hollows, inclusions). The first part of this research investigates a method for analysis of layered composite materials using the approach based on interference of so called temperature waves. As demonstrated using the expressions derived, one can determine the thermal properties of the layers of the sample by applying a harmonically modulated heat flux to the surfaces and measuring the phase of the periodically changing surface temperature. This approach can be of use in the field of designing and analysis of composite thermal insulation coatings. In the second part of this work a method of analyzing objects of fine art was investigated, particularly - detection of subsurface defects. In the process of preserving art it is of primary importance to determine whether restoration is necessary

  1. A method of non-destructive quantitative analysis of the ancient ceramics with curved surface

    International Nuclear Information System (INIS)

    He Wenquan; Xiong Yingfei

    2002-01-01

    Generally the surface of the sample should be smooth and flat in XRF analysis, but the ancient ceramics and hardly match this condition. Two simple methods are put forward in fundamental method and empirical correction method of XRF analysis, so the analysis of little sample or the sample with curved surface can be easily completed

  2. Review of fiber optic methods for strain monitoring and non-destructive testing

    NARCIS (Netherlands)

    Bruinsma, A.J.A.

    1989-01-01

    A number of fiber optic methods has been developed for the inspection of critical components of mechanical structures. For inspection from a remote location various methods have been developed for the detection of cracks and strain. Some of these monitoring methods use a fiber mesh or OTDR

  3. Infrared image processing devoted to thermal non-contact characterization-Applications to Non-Destructive Evaluation, Microfluidics and 2D source term distribution for multispectral tomography

    International Nuclear Information System (INIS)

    Batsale, Jean-Christophe; Pradere, Christophe

    2015-01-01

    The cost of IR cameras is more and more decreasing. Beyond the preliminary calibration step and the global instrumentation, the infrared image processing is then one of the key step for achieving in very broad domains.Generally the IR images are coming from the transient temperature field related to the emission of a black surface in response to an external or internal heating (active IR thermography). The first applications were devoted to the so called thermal Non-Destructive Evaluation methods by considering a thin sample and 1D transient heat diffusion through the sample (transverse diffusion). With simplified assumptions related to the transverse diffusion, the in-plane diffusion and transport phenomena can be also considered.A general equation can be applied in order to balance the heat transfer at the pixel scale or between groups of pixels in order to estimate several fields of thermophysical properties (heterogeneous field of in-plane diffusivity, flow distributions, source terms).There is a lot of possible strategies to process the space and time distributed big amount of data (previous integral transformation of the images, compression, elimination of the non useful areas...), generally based on the necessity to analyse the derivative versus space and time of the temperature field. Several illustrative examples related to the Non-Destructive Evaluation of heterogeneous solids, the thermal characterization of chemical reactions in microfluidic channels and the design of systems for multispectral tomography, will be presented. (paper)

  4. A rapid non-destructive method for quantification of fungal infection on barley and malt

    DEFF Research Database (Denmark)

    Bodevin, Sabrina; Larsen, Tone Glarborg; Lok, Finn

    indicate that the videometerlab® equipment can accurately evaluate the percentage of global fungal infection in kernels. Discussion: We believe that this system will be able to discriminate between kernels infected from non-infected ones in mixed samples. This system will allow to quantify the level...

  5. Resolution improvement of ultrasonic echography methods in non destructive testing by adaptative deconvolution

    International Nuclear Information System (INIS)

    Vivet, L.

    1989-01-01

    The ultrasonic echography has a lot of advantages which make it attractive for nondestructive testing. But the important acoustic energy useful to go through very attenuating materials can be got only with resonant translators, that is a limit for the resolution on measured echograms. This resolution can be improved by deconvolution. But this method is a problem for austenitic steel. Here is developed a method of time deconvolution which allows to take in account the characteristics of the wave. A first step of phase correction and a second step of spectral equalization which gives back the spectral contents of ideal reflectivity. The two steps use fast Kalman filters which reduce the cost of the method

  6. The Assessment of Cement Mortars after Thermal Degradation by Acoustic Non-destructive Methods

    Science.gov (United States)

    Topolář, L.; Štefková, D.; Hoduláková, M.

    2017-10-01

    Thanks, the terrorist attacks on the worldwide interest in the design of structures for fire greatly increased. One of the advantages of concrete over other building materials is its inherent fire-resistive properties. The concrete structural components still must be able to withstand dead and live loads without collapse even though the rise in temperature causes a decrease in the strength and modulus of elasticity for concrete and steel reinforcement. In addition, fully developed fires cause expansion of structural components and the resulting stresses and strains must be resisted. This paper reports the results of measurements by Impact-echo method and measurement by ultrasound. Both methods are based on the acoustic properties of the material which are dependent on its condition. These acoustic methods allow identifying defects and are thus suitable for monitoring the building structure condition. The results are obtained in the laboratory during the degradation of composite materials based on cement by high-temperature.

  7. Calculated and experimental substantiation of the thermal method for non-destructive testing of fuel elements

    International Nuclear Information System (INIS)

    Maksimov, N.M.; Soldatenko, V.A.; Petrovichev, V.I.; Salimov, S.E.; Aleksandrov, K.A.; Kurov, D.A.

    1985-01-01

    The main systems and methods of thermal testing, their potentialities and advantages, thermal irradiation photodetectors are described. Possible fields of application of thermal testing in nuclear engineering are discussed. Calculations of the fuel element nonstationary temperature field in the three-dimensional geometry in the presence of such an effect as fuel exfaliation from cladding are presented. The developed method and equipment for fuel element thermal testing are described. Preliminary experimental data being in agreement with the calculated ones and opening the prospects for flaw detecting are presened

  8. Non-destructive Determination of Martensitic Content by Means of Magnetic Methods

    Energy Technology Data Exchange (ETDEWEB)

    Niffenegger, M.; Bauer, R.; Kalkhof, D

    2003-07-01

    The detection of material degradation in a pre-cracked stage would be very advantageous. Therefore the main objective of the EC 5th Framework Programme Project CRETE (Contract No. FIS5-1999-00280) was to assess the capability and the reliability of innovative NDT-inspection techniques for the detection of material degradation, induced by low cycle fatigue (LCF) and neutron irradiation of metastable austenitic and ferritic low-alloy steel. Within work package WP6 and WP7 several project partners tested aged or irradiated samples, using various advanced measuring techniques, such as acoustic, magnetic and thermoelectric ones. These indirect methods require a careful interpretation of the measured signal in terms of micro-structural evolutions due to ageing of the material. Therefore the material had to be characterized in its undamaged, as well as in its damaged state. Based on results from former investigations, main attention was paid to the content of martensitic phase as an indicator for fatigue. Since most NDT-methods are considered as indirect methods for the detection of martensite, neutron diffraction was applied as a reference method for a quantitative determination of martensite. The material characterization performed at PSI and INSA de Lyon is published in the PSI Bericht Nr. 03-17, July 2003, (ISSN 1019-0643). The present report only describes the magnetic methods applied at PSI for the detection of material degradation and summarises the results obtained in WP3 of the CRETE project. The report is issued simultaneously as a PSI report and the CRETE work package WP3 report. At PSI the following magnetic methods were applied to LCF specimens: (1) Ferromaster for measuring the magnetic permeability, (2) Eddy current impedance measuring by means of a Giant Magneto Resistance sensor (GMR), (3) Remanence field measurements using high sensitive Fluxgate and SQUID sensors. With these methods three sets of fatigue specimens, made from different metastable

  9. EURATOM safeguards efforts in the development of spent fuel verification methods by non-destructive assay

    Energy Technology Data Exchange (ETDEWEB)

    Matloch, L.; Vaccaro, S.; Couland, M.; De Baere, P.; Schwalbach, P. [Euratom, Communaute europeenne de l' energie atomique - CEEA (European Commission (EC))

    2015-07-01

    The back end of the nuclear fuel cycle continues to develop. The European Commission, particularly the Nuclear Safeguards Directorate of the Directorate General for Energy, implements Euratom safeguards and needs to adapt to this situation. The verification methods for spent nuclear fuel, which EURATOM inspectors can use, require continuous improvement. Whereas the Euratom on-site laboratories provide accurate verification results for fuel undergoing reprocessing, the situation is different for spent fuel which is destined for final storage. In particular, new needs arise from the increasing number of cask loadings for interim dry storage and the advanced plans for the construction of encapsulation plants and geological repositories. Various scenarios present verification challenges. In this context, EURATOM Safeguards, often in cooperation with other stakeholders, is committed to further improvement of NDA methods for spent fuel verification. In this effort EURATOM plays various roles, ranging from definition of inspection needs to direct participation in development of measurement systems, including support of research in the framework of international agreements and via the EC Support Program to the IAEA. This paper presents recent progress in selected NDA methods. These methods have been conceived to satisfy different spent fuel verification needs, ranging from attribute testing to pin-level partial defect verification. (authors)

  10. Application of a robust vibration-based non-destructive method for detection of fatigue cracks in structures

    International Nuclear Information System (INIS)

    Razi, Pejman; Esmaeel, Ramadan A; Taheri, Farid

    2011-01-01

    This paper presents the application of a novel vibration-based technique for detecting fatigue cracks in structures. The method utilizes the empirical mode decomposition method (EMD) to establish an effective energy-based damage index. To investigate the feasibility of the method, fatigue cracks of different sizes were introduced in an aluminum beam subjected to a cyclic load under a three-point bending configuration. The vibration signals corresponding to the healthy and the damaged states of the beam were acquired via piezoceramic sensors. The signals were then processed by the proposed methodology to obtain the damage indices. In addition, for the sake of comparison, the frequency and damping analysis were performed on the test specimen. The results of this study concluded with two major observations. Firstly, the method was highly successful in not only predicting the presence of the fatigue crack, but also in quantifying its progression. Secondly, the proposed energy-based damage index was proved to be superior to the frequency-based methods in terms of sensitivity to the damage detection and quantification. As a result, this technique could be regarded as an efficient non-destructive tool, since it is simple, cost-effective and does not rely on analytical modeling of structures. In addition, the capability of the finite element method (FEM) in mimicking the experiments, and hence for consideration as an effective tool for conducting future parametric studies, was also investigated

  11. Photoshop® Assisted Spectroscopy: An Economical and Non-Destructive Method for Tracking Color Shift.

    Science.gov (United States)

    Wright, Kristi; Herro, Holly

    Many historically and culturally significant objects from the mid-to-late 20 th century were created with media which contains light sensitive dyes that present problems for collection custodians and conservators. The conservation staff at the National Library of Medicine (NLM), National Institutes of Health, conducted a multi-phase project on the aging of ballpoint pen ink in a variety of enclosure types that ultimately culminated in the development of a new method to detect color shift in documents with light sensitive media. This article offers instructions on how to detect color shift in digitized materials using Photoshop® Assisted Spectroscopy.

  12. A non-destructive method to measure the thermal properties of frozen soils during phase transition

    Directory of Open Access Journals (Sweden)

    Bin Zhang

    2015-04-01

    Full Text Available Frozen soils cover about 40% of the land surface on the earth and are responsible for the global energy balances affecting the climate. Measurement of the thermal properties of frozen soils during phase transition is important for analyzing the thermal transport process. Due to the involvement of phase transition, the thermal properties of frozen soils are rather complex. This paper introduces the uses of a multifunctional instrument that integrates time domain reflectometry (TDR sensor and thermal pulse technology (TPT to measure the thermal properties of soil during phase transition. With this method, the extent of phase transition (freezing/thawing was measured with the TDR module; and the corresponding thermal properties were measured with the TPT module. Therefore, the variation of thermal properties with the extent of freezing/thawing can be obtained. Wet soils were used to demonstrate the performance of this measurement method. The performance of individual modules was first validated with designed experiments. The new sensor was then used to monitor the properties of soils during freezing–thawing process, from which the freezing/thawing degree and thermal properties were simultaneously measured. The results are consistent with documented trends of thermal properties variations.

  13. Bulk Electrical Cable Non-Destructive Examination Methods for Nuclear Power Plant Cable Aging Management Programs

    Energy Technology Data Exchange (ETDEWEB)

    Glass, Samuel W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Jones, Anthony M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Fifield, Leonard S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hartman, Trenton S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-09-01

    This Pacific Northwest National Laboratory milestone report describes progress to date on the investigation of nondestructive test methods focusing particularly on bulk electrical test methods that provide key indicators of cable aging and damage. The work includes a review of relevant literature as well as hands-on experimental verification of inspection capabilities. As nuclear power plants consider applying for second, or subsequent, license renewal to extend their operating period from 60 years to 80 years, it is important to understand how the materials installed in plant systems and components will age during that time and develop aging management programs to assure continued safe operation under normal and design basis events (DBE). Normal component and system tests typically confirm the cables can perform their normal operational function. The focus of the cable test program, however, is directed toward the more demanding challenge of assuring the cable function under accident or DBE. The industry has adopted 50% elongation at break (EAB) relative to the un-aged cable condition as the acceptability standard. All tests are benchmarked against the cable EAB test. EAB, however, is a destructive test so the test programs must apply an array of other nondestructive examination (NDE) tests to assure or infer the overall set of cable’s system integrity. Assessment of cable integrity is further complicated in many cases by vendor’s use of dissimilar material for jacket and insulation. Frequently the jacket will degrade more rapidly than the underlying insulation. Although this can serve as an early alert to cable damage, direct test of the cable insulation without violating the protective jacket becomes problematic. This report addresses the range of bulk electrical NDE cable tests that are or could be practically implemented in a field-test situation with a particular focus on frequency domain reflectometry (FDR). The FDR test method offers numerous advantages

  14. Non-destructive test method of determination of surface defects in objects

    International Nuclear Information System (INIS)

    Gibbons, C.B.; Sewell, M.H.; Taber, R.C.

    1975-01-01

    In the radiographic method, adsorbed radioactive gas, e.g. krypton 85, is used to determine surface defects such as failures, cracks, and breaks on, e.g. nozzle turbine blades. The surface defects preferably retain the radioactive gas. The defects can be identified by means of a radiographic silver halide emulsion or dispersion made intensive to high energy radiation which is put on the surface or held at a distance to it. Piazine, thiuram disulphide, nitro-1,2,3-benzothiazole or a combination of thiuram disulphide and piazine are amongst others suitable as desensitizing agents. To prevent the adsorbed gases from diffusing out of the defects, the surface can be coated with an insulating mass of e.g. a polymer. The silver halide emulsions are in the form of single, double, or ammoniac emulsions. (DG/LH) [de

  15. Study of different ultrasonic focusing methods applied to non destructive testing

    International Nuclear Information System (INIS)

    El Amrani, M.

    1995-01-01

    The work presented in this thesis concerns the study of different ultrasonic focusing techniques applied to Nondestructive Testing (mechanical focusing and electronic focusing) and compares their capabilities. We have developed a model to predict the ultrasonic field radiated into a solid by water-coupled transducers. The model is based upon the Rayleigh integral formulation, modified to take account the refraction at the liquid-solid interface. The model has been validated by numerous experiments in various configurations. Running this model and the associated software, we have developed new methods to optimize focused transducers and studied the characteristics of the beam generated by transducers using various focusing techniques. (author). 120 refs., 95 figs., 4 appends

  16. Numeric ultrasonic image processing method: application to non-destructive testing of stainless austenitic steel welds

    International Nuclear Information System (INIS)

    Corneloup, G.

    1988-09-01

    A bibliographic research on the means used to improve the ultrasonic inspection of heterogeneous materials such as stainless austenitic steel welds has shown, taking into account the first analysis, a signal assembly in the form of an image (space, time) which carries an original solution to fault detection in highly noisy environments. A numeric grey-level ultrasonic image processing detection method is proposed based on the research of a certain determinism, in the way which the ultrasonic image evolves in space and time in the presence of a defect: the first criterion studies the horizontal stability of the gradients in the image and the second takes into account the time-transient nature of the defect echo. A very important rise in the signal-to-noise ratio obtained in welding inspections evidencing defects (real and artificial) is shown with the help of a computerized ultrasonic image processing/management system, developed for this application [fr

  17. Applications of Non-destructive methods (GPR and 3D Laser Scanner) in Historic Masonry Arch Bridge Assessment

    Science.gov (United States)

    Alani, Amir; Banks, Kevin

    2014-05-01

    There exist approximately 70,000 masonry arch bridge spans (brick and stone) in the UK with tens of thousands more throughout Europe. A significant number of these bridges are still in operation and form part of the road and rail network systems in many countries. A great majority of these bridges are in desperate need of repair and maintenance. Applications of non-destructive testing methods such as ground penetrating radar (GPR), 3D laser scanning, accelerometer sensors and vibration detecting sensors amongst many others have been used to assess and monitor such structures in the past few years. This presentation provides results of the applications of a 2GHz GPR antenna system and a 3D laser scanner on a historic masonry arch bridge (the Old Bridge, Aylesford) located in Kent, in the south east of England. The older part of the bridge (the mid-span) is 860 years old. The bridge was the subject of a major alteration in 1811. This presentation forms part of a larger ongoing study which is using the two above mentioned non-destructive methods for long-term monitoring of the bridge. The adopted survey planning strategy and technique, data acquisition and processing as well as challenges encountered during actual survey and fieldworks have been discussed in this presentation. As a result of this study the position of different layers of the deck structure has been established with the identification of the original stone base of the bridge. This information in addition to the location of a number of structural ties (anchors - remedial work carried out previously) in the absence of reliable and accurate design details proved to be extremely useful for the modelling of the bridge using the finite element method. Results of the 3D laser scanning of the bridge have also been presented which have provided invaluable data essential for the accurate modelling of the bridge as well as the long term monitoring of the bridge. 2014 EGU-GA GI3.1 Session, organised by COST Action

  18. Implementation of Non-Destructive Evaluation and Process Monitoring in DLP-based Additive Manufacturing

    Science.gov (United States)

    Kovalenko, Iaroslav; Verron, Sylvain; Garan, Maryna; Šafka, Jiří; Moučka, Michal

    2017-04-01

    This article describes a method of in-situ process monitoring in the digital light processing (DLP) 3D printer. It is based on the continuous measurement of the adhesion force between printing surface and bottom of a liquid resin bath. This method is suitable only for the bottom-up DPL printers. Control system compares the force at the moment of unsticking of printed layer from the bottom of the tank, when it has the largest value in printing cycle, with theoretical value. Implementation of suggested algorithm can make detection of faults during the printing process possible.

  19. Non-destructive evaluation of bacteria-infected watermelon seeds using Vis/NIR hyperspectral imaging

    Science.gov (United States)

    It is needed to minimize the economic loss by sorting infected seeds from healthy seeds before seeding. However, current methods of detecting infection seeds such as seedling grow-out, enzyme-linked immunosorbent assay (ELISA), polymerase chain reaction (PCR), and real-time polymerase chain reaction...

  20. Using the World-Wide Web to Facilitate Communications of Non-Destructive Evaluation

    Science.gov (United States)

    McBurney, Sean

    1995-01-01

    The high reliability required for Aeronautical components is a major reason for extensive Nondestructive Testing and Evaluation. Here at Langley Research Center (LaRC), there are highly trained and certified personal to conduct such testing to prevent hazards from occurring in the workplace and on the research projects for the National Aeronautics and Space Administration (NASA). The purpose of my studies was to develop a communication source to educate others of the services and equipment offered here. This was accomplished by creating documents that are accessible to all in the industry via the World Wide Web.

  1. Non-destructive evaluation of nuclear material storage container integrity using an acoustic technique

    International Nuclear Information System (INIS)

    Miller, R.F.; Pechersky, M.J.; Raju, P.K.

    1994-01-01

    A non-intrusive method for determining the gas mixture in a sealed container using acoustics has been conceived. Analysis has shown that it is possible to both excite the acoustic resonance of the gas cavity, and detect when resonance occurs from the outside surface of the container. The resonant frequency of the acoustic cavity is dependent on the molecular weight of the gas that fills it. A change in the mixture of gases within the cavity alters the gas molecular weight and can produce a detectable change in the resonant frequency of the cavity. This concept provides a method of monitoring and/or analyzing the gas mixture in a sealed container without taking physical samples. An advantage of this technique is that it eliminates safety and contamination risks associated with breaching a pressure boundary and taking a sample of potentially hazardous gases in order to monitor or analyze the mixture

  2. Non-destructive geographical traceability of sea cucumber (Apostichopus japonicus) using near infrared spectroscopy combined with chemometric methods.

    Science.gov (United States)

    Guo, Xiuhan; Cai, Rui; Wang, Shisheng; Tang, Bo; Li, Yueqing; Zhao, Weijie

    2018-01-01

    Sea cucumber is the major tonic seafood worldwide, and geographical origin traceability is an important part of its quality and safety control. In this work, a non-destructive method for origin traceability of sea cucumber ( Apostichopus japonicus ) from northern China Sea and East China Sea using near infrared spectroscopy (NIRS) and multivariate analysis methods was proposed. Total fat contents of 189 fresh sea cucumber samples were determined and partial least-squares (PLS) regression was used to establish the quantitative NIRS model. The ordered predictor selection algorithm was performed to select feasible wavelength regions for the construction of PLS and identification models. The identification model was developed by principal component analysis combined with Mahalanobis distance and scaling to the first range algorithms. In the test set of the optimum PLS models, the root mean square error of prediction was 0.45, and correlation coefficient was 0.90. The correct classification rates of 100% were obtained in both identification calibration model and test model. The overall results indicated that NIRS method combined with chemometric analysis was a suitable tool for origin traceability and identification of fresh sea cucumber samples from nine origins in China.

  3. Improvement and evaluation of vegerable seed quality by the use of non-destructive technologies

    DEFF Research Database (Denmark)

    Olesen, Merete Halkjær

    and HC=CH structures which represent some of the functional groups in lipids.The same differences in absorbance bands were observed between seeds with different germination capacities. Correct classification of seed germination ranged from 89.5 % to 98.3 %, using extended canonical variance analysis...... are all supposed to influence germination of the seed. To increase the number of non-germinating seeds, seed samples were exposed to accelerated ageing (41 °C for 72 h). This also provides an opportunity to evaluate the difference between NIR spectra of aged and non-aged seeds. Lipids play a major role...... in both ageing and germination. During accelerated ageing lipid peroxidation leads to deterioration of cell membranes and this leads to reduced germination capacity of the seeds. Assignment of difference between scatter corrected absorbance spectra of aged and non-aged seeds leads to 12 the CH2, CH3...

  4. Non-destructive evaluation utilizing imaging plates for field radiography applications

    International Nuclear Information System (INIS)

    White, Brian S.

    2016-01-01

    The oil and gas industry has utilized film radiography for the evaluation of pipeline welds for many years. The world has evolved, and today people are easily sharing digital images as part of the information revolution. Computed radiography is ready to replace film radiography for portable outdoor use applications. Computed radiography technology adoption has been contingent upon achieving acceptable image quality and getting enough imaging plate use cycles to be profitable. Image quality is dependent upon shot conditions, imaging plate type, reader settings, and scatter control. Likewise, the number of achievable use cycles is dependent upon the imaging plate design for durability and the user's operating environment. This presentation reviews the basic principles of storage phosphor imaging plates. Usage criteria and guidelines for optimum image quality and maximized overall use cycles will be discussed for various imaging plate types. A comparison of film and computed radiography imaging plate technology will be presented.

  5. Linear Array Ultrasonic Testing Of A Thick Concrete Specimens For Non-Destructive Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Clayton, Dwight A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Khazanovich, Lev [Univ. of Minnesota, Minneapolis, MN (United States); Zammerachi, Mattia [Univ. of Minnesota, Minneapolis, MN (United States); Ezell, N. Dianne Bull [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-04-01

    The University of Minnesota and Oak Ridge National Laboratory are collaborating on the design and construction of a concrete specimen with sufficient reinforcement density and cross-sectional size to represent a light water reactor (LWR) containment wall with various defects. The preliminary analysis of the collected data using extended synthetic aperture focussin technique (SAFT) reconstruction indicated a great potential of the ultrasound array technology for locating relatively shallow distresses. However, the resolution and reliability of the analysis is inversely proportional to the defect depth and the amount of reinforcement between the measurement point and the defect location. The objective of this round of testing is to evaluate repeatability of the obtained reconstructions from measurements with different frequencies as well as to examine the effect of the duration of the sending ultrasound signal on the resulting reconstructions. Two series of testing are performed in this study. The objective of the first series is to evaluate repeatability of the measurements and resulting reconstructed images. The measurements use three center frequencies. Five measurements are performed at each location with and without lifting the device. The analysis of the collected data suggested that a linear array ultrasound system can produce reliably repeatable reconstructions using 50 kHz signals for relatively shallow depths (less than 0.5 m). However, for reconstructions at the greater depths the use of lower frequency and/or signal filtering to reduce the effect of signal noise may be required. The objective of the second series of testing is to obtain measurements with various impulse signal durations. The entire grid on the smooth surface is tested with four different various impulse signal durations. An analysis of the resulting extended SAFT reconstructions suggested that Kirchhoff-based migration leads to easier interpreting reconstructions when shorter duration

  6. Computer assisted tomography for the non-destructive evaluation of hydrogen-induced cracking in steel

    International Nuclear Information System (INIS)

    Tapping, R.L.; Sawicka, B.D.

    1986-06-01

    Computer assisted tomography (CAT) was used to assess hydrogen-induced cracking in steel exposed to an H 2 S-saturated ('sour') environment. In this case the environment was the NACE TM-02-84 test for susceptibility to hydrogen-induced cracking. The feasibility of using CAT in this application was shown in a previous paper. This study extends the application of CAT to a quantitative assessment of the cracking. Optimal parameters for CAT imaging in such an application are determined and the advantages of using CAT in comparison to traditional inspection methods are discussed

  7. Non-destructive evaluation of degradation in EB-PVD thermal barrier coatings by infrared reflectance spectroscopy

    International Nuclear Information System (INIS)

    Flattum, Richard Y.; Cooney, Adam T.

    2013-01-01

    At room temperature and atmospheric conditions infrared reflectance spectroscopy and X-ray diffraction were employed for the detection of the phase transformation and residual stress within thermal barrier coatings (TBC). The TBC's samples initially consisted of the porous ceramic topcoat deposited by electron beam plasma vapor deposition, a bond coat and a superalloy substrate. Reflectance spectroscopy scans were performed from 7497 cm −1 to 68 cm −1 to analysis the fingerprint region as well as the chemical bonding region. These regions should indicate if a detectable change within the TBC response is a result of thermal degradation of the microstructure and the changes in yttrium dispersion throughout the yttrium stabilized zirconium. The thermal degradation was induced by thermal cycling the samples to 1100° C and then cooling them in an atmospheric environment. X-ray diffraction was also used to detect the phase composition within the TBC samples and see if either would clearly identify failure prior to actual spallation. The eventual measurability and quantify-ability of the phase changes within the TBC's may be used as an effective non-destructive evaluation (NDE) technique that would allow personnel in the field to know when servicing of the turbine blade was necessary.

  8. Mirage effect sensor with simple detector and with multiple detector: application to non destructive evaluation by photothermal excitation

    International Nuclear Information System (INIS)

    Charbonnier, Francois

    1990-01-01

    Local photothermal excitation of absorbing sample provides spatial and temporal temperature distribution inside this sample and its neighbouring medium. Optical, thermal and geometrical characteristics (thickness, presence of a defect...) modify surface temperature evolution. The realization of an optical instrument using mirage effect, sensitive and accurate, has came out of two industrial applications of non destructive evaluation: - automatic set-up for absolute measurement of thermal losses on concentrical pipes interface.- set up for quantitative measurement of optical absorption losses on multi coated laser mirrors. To obtain images and compensate acquisition slowness due to investigated thermal phenomenons, a synchronous integration signal process from a multi detector, is described. Experimental set-up using mirage effect detected by a linear CCD reading sensor is realized on this principle. Some examples prove feasibility of this parallel measurement along an excitation line. At last, high frequency parallel synchronous detection with sequential cut-out demodulation was tested and succeeded with a 50 kHz optical signal. (author) [fr

  9. The application of non-destructive methods in the diagnostics of the approach pavement at the bridges

    Science.gov (United States)

    Miskiewicz, M.; Lachowicz, J.; Tysiac, P.; Jaskula, P.; Wilde, K.

    2018-05-01

    The article presents the possibility of using non-destructive methods of road pavement diagnostics as an alternative to traditional means to assess the reasons for premature cracks adjacent to bridge objects. Two scanning methods were used: laser scanning to measure geometric surface deformation and ground penetrating radar (GPR) inspection to assess the road pavement condition. With the use of a laser scanner, an effective tool for road deformation assessment several approach pavement surfaces next to the bridges were scanned. As the result, a point cloud was obtained including spatial information about the pavement deformation. The data accuracy was about 3 mm, the deformations were presented in the form of deviation maps between the reference surface and the actual surface. Moreover characteristic pavement surface cross-sections were presented. The in situ measurements of the GPR method were performed and analysed in order to detect non-homogeneity in the density of structural layers of the pavement. Due to the analysis of the permittivity of individual layers, it was possible to detect non-homogeneity areas. The performed GPR measurements were verified by standard invasive tests carried out by drilling boreholes and taking cores from the pavement and testing the compaction and air voids content in asphalt layers. As a result of the measurements made by both methods significant differences in layer compacting factor values were diagnosed. The factor was much smaller in the area directly next to the bridgehead and much larger in the zone located a few meters away. The research showed the occurrence of both design and erection errors as well as those related to the maintenance of engineering structures.

  10. Performance Values for Non-Destructive Assay (NDA) Technique Applied to Wastes: Evaluation by the ESARDA NDA Working Group

    International Nuclear Information System (INIS)

    Rackham, Jamie; Weber, Anne-Laure; Chard, Patrick

    2012-01-01

    The first evaluation of NDA performance values was undertaken by the ESARDA Working Group for Standards and Non Destructive Assay Techniques and was published in 1993. Almost ten years later in 2002 the Working Group reviewed those values and reported on improvements in performance values and new measurement techniques that had emerged since the original assessment. The 2002 evaluation of NDA performance values did not include waste measurements (although these had been incorporated into the 1993 exercise), because although the same measurement techniques are generally applied, the performance is significantly different compared to the assay of conventional Safeguarded special nuclear material. It was therefore considered more appropriate to perform a separate evaluation of performance values for waste assay. Waste assay is becoming increasingly important within the Safeguards community, particularly since the implementation of the Additional Protocol, which calls for declaration of plutonium and HEU bearing waste in addition to information on existing declared material or facilities. Improvements in the measurement performance in recent years, in particular the accuracy, mean that special nuclear materials can now be accounted for in wastes with greater certainty. This paper presents an evaluation of performance values for the NDA techniques in common usage for the assay of waste containing special nuclear material. The main topics covered by the document are: 1- Techniques for plutonium bearing solid wastes 2- Techniques for uranium bearing solid wastes 3 - Techniques for assay of fissile material in spent fuel wastes. Originally it was intended to include performance values for measurements of uranium and plutonium in liquid wastes; however, as no performance data for liquid waste measurements was obtained it was decided to exclude liquid wastes from this report. This issue of the performance values for waste assay has been evaluated and discussed by the ESARDA

  11. Performance Values for Non-Destructive Assay (NDA) Technique Applied to Wastes: Evaluation by the ESARDA NDA Working Group

    Energy Technology Data Exchange (ETDEWEB)

    Rackham, Jamie [Babcock International Group, Sellafield, Seascale, Cumbria, (United Kingdom); Weber, Anne-Laure [Institut de Radioprotection et de Surete Nucleaire Fontenay-Aux-Roses (France); Chard, Patrick [Canberra, Forss Business and Technology park, Thurso, Caithness (United Kingdom)

    2012-12-15

    The first evaluation of NDA performance values was undertaken by the ESARDA Working Group for Standards and Non Destructive Assay Techniques and was published in 1993. Almost ten years later in 2002 the Working Group reviewed those values and reported on improvements in performance values and new measurement techniques that had emerged since the original assessment. The 2002 evaluation of NDA performance values did not include waste measurements (although these had been incorporated into the 1993 exercise), because although the same measurement techniques are generally applied, the performance is significantly different compared to the assay of conventional Safeguarded special nuclear material. It was therefore considered more appropriate to perform a separate evaluation of performance values for waste assay. Waste assay is becoming increasingly important within the Safeguards community, particularly since the implementation of the Additional Protocol, which calls for declaration of plutonium and HEU bearing waste in addition to information on existing declared material or facilities. Improvements in the measurement performance in recent years, in particular the accuracy, mean that special nuclear materials can now be accounted for in wastes with greater certainty. This paper presents an evaluation of performance values for the NDA techniques in common usage for the assay of waste containing special nuclear material. The main topics covered by the document are: 1- Techniques for plutonium bearing solid wastes 2- Techniques for uranium bearing solid wastes 3 - Techniques for assay of fissile material in spent fuel wastes. Originally it was intended to include performance values for measurements of uranium and plutonium in liquid wastes; however, as no performance data for liquid waste measurements was obtained it was decided to exclude liquid wastes from this report. This issue of the performance values for waste assay has been evaluated and discussed by the ESARDA

  12. Development and characterization of enhanced green fluorescent protein and luciferase expressing cell line for non-destructive evaluation of tissue engineering constructs.

    NARCIS (Netherlands)

    Blum, J.S.; Temenoff, J.S.; Park, H.; Jansen, J.A.; Mikos, A.G.; Barry, M.A.

    2004-01-01

    This study investigates the utility of genetically modified cells developed for the qualitative and quantitative non-destructive evaluation of cells on biomaterials. The Fisher rat fibroblastic cell line has been genetically modified to stably express the reporter genes enhanced green fluorescence

  13. PlantSize Offers an Affordable, Non-destructive Method to Measure Plant Size and Color in Vitro

    Directory of Open Access Journals (Sweden)

    Dóra Faragó

    2018-02-01

    Full Text Available Plant size, shape and color are important parameters of plants, which have traditionally been measured by destructive and time-consuming methods. Non-destructive image analysis is an increasingly popular technology to characterize plant development in time. High throughput automatic phenotyping platforms can simultaneously analyze multiple morphological and physiological parameters of hundreds or thousands of plants. Such platforms are, however, expensive and are not affordable for many laboratories. Moreover, determination of basic parameters is sufficient for most studies. Here we describe a non-invasive method, which simultaneously measures basic morphological and physiological parameters of in vitro cultured plants. Changes of plant size, shape and color is monitored by repeated photography with a commercial digital camera using neutral white background. Images are analyzed with the MatLab-based computer application PlantSize, which simultaneously calculates several parameters including rosette size, convex area, convex ratio, chlorophyll and anthocyanin contents of all plants identified on the image. Numerical data are exported in MS Excel-compatible format. Subsequent data processing provides information on growth rates, chlorophyll and anthocyanin contents. Proof-of-concept validation of the imaging technology was demonstrated by revealing small but significant differences between wild type and transgenic Arabidopsis plants overexpressing the HSFA4A transcription factor or the hsfa4a knockout mutant, subjected to different stress conditions. While HSFA4A overexpression was associated with better growth, higher chlorophyll and lower anthocyanin content in saline conditions, the knockout hsfa4a mutant showed hypersensitivity to various stresses. Morphological differences were revealed by comparing rosette size, shape and color of wild type plants with phytochrome B (phyB-9 mutant. While the technology was developed with Arabidopsis plants

  14. Shake and stew: a non-destructive PCR-ready DNA isolation method from a single preserved fish larva.

    Science.gov (United States)

    Alvarado Bremer, J R; Smith, B L; Moulton, D L; Lu, C-P; Cornic, M

    2014-01-01

    A rapid non-destructive alternative to isolate DNA from an individual fish larva is presented, based on the suspension of epithelial cells through vortex forces, and the release of DNA in a heated alkaline solution. DNA from >6056 fish larvae isolated using this protocol has yielded a high PCR amplification success rate (>93%), suggesting its applicability to other taxonomic groups or sources when tissue amount is the limiting factor. © 2014 The Fisheries Society of the British Isles.

  15. The photothermal camera - a new non destructive inspection tool; La camera photothermique - une nouvelle methode de controle non destructif

    Energy Technology Data Exchange (ETDEWEB)

    Piriou, M. [AREVA NP Centre Technique SFE - Zone Industrielle et Portuaire Sud - BP13 - 71380 Saint Marcel (France)

    2007-07-01

    The Photothermal Camera, developed by the Non-Destructive Inspection Department at AREVA NP's Technical Center, is a device created to replace penetrant testing, a method whose drawbacks include environmental pollutants, industrial complexity and potential operator exposure. We have already seen how the Photothermal Camera can work alongside or instead of conventional surface inspection techniques such as penetrant, magnetic particle or eddy currents. With it, users can detect without any surface contact ligament defects or openings measuring just a few microns on rough oxidized, machined or welded metal parts. It also enables them to work on geometrically varied surfaces, hot parts or insulating (dielectric) materials without interference from the magnetic properties of the inspected part. The Photothermal Camera method has already been used for in situ inspections of tube/plate welds on an intermediate heat exchanger of the Phenix fast reactor. It also replaced the penetrant method for weld inspections on the ITER vacuum chamber, for weld crack detection on vessel head adapter J-welds, and for detecting cracks brought on by heat crazing. What sets this innovative method apart from others is its ability to operate at distances of up to two meters from the inspected part, as well as its remote control functionality at distances of up to 15 meters (or more via Ethernet), and its emissions-free environmental cleanliness. These make it a true alternative to penetrant testing, to the benefit of operator and environmental protection. (author) [French] La Camera Photothermique, developpee par le departement des Examens Non Destructifs du Centre Technique de AREVA NP, est un equipement destine a remplacer le ressuage, source de pollution pour l'environnement, de complexite pour l'industrialisation et eventuellement de dosimetrie pour les operateurs. Il a ete demontre que la Camera Photothermique peut etre utilisee en complement ou en remplacement des

  16. Destructive and non-destructive methods of measuring the quantity and isotopic composition of fissile materials for purposes of national safeguards in the German Democratic Republic

    International Nuclear Information System (INIS)

    Villun, K.; Gruner, V.; Siebert, Kh.U.; Hoffmann, D.

    1979-01-01

    The authors give a brief description of the destructive and non-destructive methods of measuring the quantity and isotopic composition of fissile materials used in the nuclear materials accounting and control system of the German Democratic Republic. They cite examples of the use of gamma-spectrometry, X-ray fluorescence analysis, neutron activation, radiochemical techniques, mass-spectrometry and alpha-spectrometry. (author)

  17. The Effect of Localized Damage on the Electrical Conductivity of Bare Carbon Fiber Tow and its Use as a Non-Destructive Evaluation Tool for Composite Overwrapped Pressure Vessels

    Science.gov (United States)

    Wentzel, Daniel

    2015-01-01

    Composite materials are beneficial because of their high specific strength and low weight. Safety, Destructive testing and destructive testing, Non-Destructive Testing (NDT) and Non-Destructive Evaluation (NDE). Problem: Neither NDT nor NDE can provide sufficient data to determine life expectancy or quantify the damage state of a composite material.

  18. Magnetic Non-destructive Testing of Plastically Deformed Mild Steel

    Directory of Open Access Journals (Sweden)

    Jozef Pala

    2004-01-01

    Full Text Available The Barkhausen noise analysis and coercive field measurement have been used as magnetic non-destructive testing methods for plastically deformed high quality carbon steel specimens. The strain dependence of root mean square value and power spectrum of the Barkhausen noise and the coercive field are explained in terms of the dislocation density. The specimens have been subjected to different magnetizing frequencies to show the overlapping nature of the Barkhausen noise. The results are discussed in the context of usage of magnetic non-destructive testing to evaluate the plastic deformation of high quality carbon steel products.

  19. The role of ultrasonic velocity and Schmidt hammer hardness - The simple and economical non-destructive test for the evaluation of mechanical properties of weathered granite

    Science.gov (United States)

    Jobli, Ahmad Fadzil; Hampden, Ahmad Zaidi; Tawie, Rudy

    2017-08-01

    One of the most significant techniques for evaluation of rock strength is by using the simple and economical non-destructive test (NDT). Previous literatures confirm that there were good correlations between NDTs to the strength properties of granite rocks. The present work deals with the use of Ultrasonic Pulse Velocity and Schmidt Hammer Hardness test to predict the mechanical properties of weathered granite. Cylindrical specimens with the length to diameter ratio of two were prepared for this study and were characterized based on different weathering states. Each of the rock specimens was tested under non-destructive test and then followed by uniaxial compression test to assess the mechanical properties. It was found that good correlations established between the NDTs and the uniaxial compressive strength. The correlation between uniaxial compressive strength and rebound hardness number was demonstrated by exponential form; UCS = 6.31e0.057N, while linear correlations was obtained between the uniaxial compressive strength and the ultrasonic pulse velocity; UCS = 0.023Vp - 21.43. It was also noticed that the increase of uniaxial compression strength was parallel to the increase of elastic modulus and can be presented by a linear equation; UCS = 1.039Et50 + 4.252. Based on the reported results, it is clear that the mechanical properties or weathered granite can be estimated by means of non-destructive test.

  20. Non-Destructive Method by Gamma Sampling Measurements for Radiological Characterization of a Steam Generator: Physical and Numerical Modeling for ANIMMA (23-27 June 2013)

    International Nuclear Information System (INIS)

    Auge, G.; Rottner, B.; Dubois, C.

    2013-06-01

    The radiological characterization of a steam generator consists of evaluating the global radiological activity in the tube bundle. In this paper, we present a non-destructive method and the results analysis of the gamma sampling measurements from a sample of U-tubes in the bundle. On site, the implementation of the methodology is fairly easy. But the analysis of the results is more complicated due to the long path of the gamma ray (from 60 Co quite penetrating), and also the heterogeneous activity of U-tubes bundle, which have not the same life cycle. We explain why the periodic spatial arrangement complicates also the analysis. Furthermore, we have taken into account the environment of all tubes measured because of all the external influence activity of others U-tubes (the nearest, the most distant and potential hot spot). A great amount of independent influence coefficient had to be considered (roughly 18 million). Based on a physical and numerical modeling, and using a Cholesky algorithm solving the problem and saving time machine. (authors)

  1. NUMERICAL MODELLING AS NON-DESTRUCTIVE METHOD FOR THE ANALYSES AND DIAGNOSIS OF STONE STRUCTURES: MODELS AND POSSIBILITIES

    Directory of Open Access Journals (Sweden)

    Nataša Štambuk-Cvitanović

    1999-12-01

    Full Text Available Assuming the necessity of analysis, diagnosis and preservation of existing valuable stone masonry structures and ancient monuments in today European urban cores, numerical modelling become an efficient tool for the structural behaviour investigation. It should be supported by experimentally found input data and taken as a part of general combined approach, particularly non-destructive techniques on the structure/model within it. For the structures or their detail which may require more complex analyses three numerical models based upon finite elements technique are suggested: (1 standard linear model; (2 linear model with contact (interface elements; and (3 non-linear elasto-plastic and orthotropic model. The applicability of these models depend upon the accuracy of the approach or type of the problem, and will be presented on some characteristic samples.

  2. Magnetic Flux Leakage Sensing and Artificial Neural Network Pattern Recognition-Based Automated Damage Detection and Quantification for Wire Rope Non-Destructive Evaluation.

    Science.gov (United States)

    Kim, Ju-Won; Park, Seunghee

    2018-01-02

    In this study, a magnetic flux leakage (MFL) method, known to be a suitable non-destructive evaluation (NDE) method for continuum ferromagnetic structures, was used to detect local damage when inspecting steel wire ropes. To demonstrate the proposed damage detection method through experiments, a multi-channel MFL sensor head was fabricated using a Hall sensor array and magnetic yokes to adapt to the wire rope. To prepare the damaged wire-rope specimens, several different amounts of artificial damages were inflicted on wire ropes. The MFL sensor head was used to scan the damaged specimens to measure the magnetic flux signals. After obtaining the signals, a series of signal processing steps, including the enveloping process based on the Hilbert transform (HT), was performed to better recognize the MFL signals by reducing the unexpected noise. The enveloped signals were then analyzed for objective damage detection by comparing them with a threshold that was established based on the generalized extreme value (GEV) distribution. The detected MFL signals that exceed the threshold were analyzed quantitatively by extracting the magnetic features from the MFL signals. To improve the quantitative analysis, damage indexes based on the relationship between the enveloped MFL signal and the threshold value were also utilized, along with a general damage index for the MFL method. The detected MFL signals for each damage type were quantified by using the proposed damage indexes and the general damage indexes for the MFL method. Finally, an artificial neural network (ANN) based multi-stage pattern recognition method using extracted multi-scale damage indexes was implemented to automatically estimate the severity of the damage. To analyze the reliability of the MFL-based automated wire rope NDE method, the accuracy and reliability were evaluated by comparing the repeatedly estimated damage size and the actual damage size.

  3. Aging material evaluation and studies by non-destructive techniques (AMES-NDT) - a European network project

    International Nuclear Information System (INIS)

    Dobmann, Gerd; Debarberis, Luigi; Coste, Jean-Francois

    2001-01-01

    This paper presents results obtained in a round-robin action organized in a concerted action of ten partners in the EURATOM program of the European Community. The objective of the research was to document the state of the art of available non-destructive testing (NDT) techniques in order to characterize material aging phenomena based on a reduction of Charpy-V energy and a shift in the fracture appearance transition temperature. Therefore, samples from the Japanese nuclear reactor pressure vessel JRQ-steel (ASMT Standard A533-B Class 1) have been thermally treated at 700 deg. C for 18 h with a subsequent water quenching. Besides micromagnetic and electromagnetic NDT, the positron annihilation technique, ultrasonic reverberation by using Laser ultrasonics and the thermo-electrical power have been applied to characterize the aged material states

  4. Surface integral formulation of Maxwell's equations for simulation of non-destructive testing by eddy currents. Preliminary study on the implementation of the fast multipole method

    International Nuclear Information System (INIS)

    Lim, T.

    2011-01-01

    To simulate numerically a non-destructive by eddy current testing (NDT-CF), the sensor response can be modeled through a semi-analytical approach by volume integral equations. Faster than the finite element method, this approach is however restricted to the study of plane or cylindrical parts (without taking into account the edge effects) because of the complexity of the expression of the dyadic Green function for more general configurations. However, there is an industrial demand to extend the capabilities of the CF model in complex configurations (deformed plates, edges effects...). We were thus brought to formulate the electromagnetic problem differently, by setting ourselves the goal of maintaining a semi-analytical approach. The surface integral equation (SIE) expresses the volume problem by an equivalent transmission one at the interfaces (2D) between homogeneous sub-domains. This problem is approached by a linear system (by the method of moments), whose number of unknowns is reduced due to the nature of the surfacic mesh. Therefore, this system can be solved by a direct solver for small configurations. That enabled us to treat several various positions of the sensor for only one inversion of the impedance matrix. The numerical results obtained using this formulation involve plates with consideration of edge effects such as edge and corner. They are consistent with results obtained by the finite element method. For larger configurations, we conducted a preliminary study for the adaptation of an acceleration method of the matrix vector product involved in an iterative solver (fast multipole method or FMM) to define the conditions under which the FMM calculation works correctly (accuracy, convergence...) in the NDT's domain. A special attention has been given to the choice of basis functions (which have to satisfy an Hdiv conforming property) and on the evaluation of near interactions (which are weakly singular). (author) [fr

  5. Application of non-destructive methods for qualification of the U3O8-Al and U3Si2-Al dispersion fuels in the IEA-R1 Reactor

    International Nuclear Information System (INIS)

    Silva, Jose Eduardo Rosa da

    2011-01-01

    IPEN/CNEN-SP manufactures fuels to be used in its nuclear research reactor - the IEA-R1. To qualify those fuels, it is necessary to check if they have a good performance under irradiation. As Brazil doesn't have nuclear research reactors with high neutron fluxes, or suitable hot cells for carrying out post-irradiation examination of nuclear fuels, IPEN/CNEN-SP has conducted a fuel qualification program based on the use of uranium compounds, internationally tested and qualified to be used in research reactors, and has gotten experience in the technological development stages for the manufacturing of fuel plates, irradiation and non-destructive post-irradiation testing. Fuel elements containing low volume fractions of fuel in the dispersion were manufactured and irradiated successfully directly in the core of the IEA-R1. However, there are plans to increase the uranium density of these fuels. The objective of this thesis work was to study and to propose a set of non-destructive methods to qualify the dispersions fuels U 3 O 8 -Al e U 3 Si 2 -Al with high uranium density produced at IPEN/CNEN-SP. For that, the irradiation resources in the IEA-R1, and the application of non-destructive methods in the reactor pool available in the Institution were considered. The proposal is to specify, manufacture and irradiate fuel mini plates in IEA-R1 at the maximum densities, qualified internationally, and to monitor their general conditions during the period of irradiation, using non-destructive methods in the reactor pool. In addition to the non-destructive visual inspection and sipping methods, already used at the Institution, the infrastructure for dimensional sub-aquatic testing to evaluate the swelling of irradiated fuel mini plates was completed. The analyses of the results will provide means to assess and decide whether or not to continue with the irradiation of mini plates, until the desired burnup for the irradiation tests at IEA-R1 are reached. (author)

  6. Detection Of Cracks In Composite Materials Using Hybrid Non-Destructive Testing Method Based On Vibro-Thermography And Time-Frequency Analysis Of Ultrasonic Excitation Signal

    Directory of Open Access Journals (Sweden)

    Prokopowicz Wojciech

    2015-09-01

    Full Text Available The theme of the publication is to determine the possibility of diagnosing damage in composite materials using vibrio-thermography and frequency analysis and time-frequency of excitation signal. In order to verify the proposed method experiments were performed on a sample of the composite made in the technology of pressing prepregs. Analysis of the recorded signals and the thermograms were performed in MatLab environment. Hybrid non-destructive testing method based on thermogram and appropriate signal processing algorithm clearly showed damage in the sample composite material.

  7. Innovation in Non Destructive Testing

    NARCIS (Netherlands)

    Wassink, C.H.P.

    2012-01-01

    In many established companies the pace of innovation is low. The Non-Destructive Testing sector is an example of a sector where the pace of innovation is very slow. Non-Destructive Testing (NDT) refers to the set of non-invasive activities used to determine the condition of objects or installations

  8. Weed control based on real time patchy application of herbicides using image analysis as a non-destructive estimation method for weed infestation and herbicide effects

    DEFF Research Database (Denmark)

    Asif, Ali

    There is an increasing concern about excessive use of herbicides for weed control in arable lands. Usually the whole field is sprayed uniformly, while the distribution of weeds often is non-uniform. Often there are spots in a field where weed pressure is very low and has no significant effect...... on crop yield. The excessive use of spraying can potentially be reduced by spraying only those parts of the field where it has economic importance. The competition relation between weeds and crop was ana-lyzed in context of real time patch spray. A non-destructive image analysis method was developed...

  9. A non-destructive, ultrasonic method for the determination of internal pressure and gas composition in an LWR fuel rod on-going and future programme

    International Nuclear Information System (INIS)

    Ferrandis, J.; Leveque, G.; Villard, J.

    2006-01-01

    Several possible non-destructive methods have been investigated in the past to measure the internal gas pressure e.g., measurement of 85 Kr directly, or after accumulation in the plenum by freezing with liquid nitrogen. However no satisfactory resolution to the problem has been found, so at present there is no rapid and accurate method of determining the fission gas pressure in a fuel rod without puncturing the cladding. This procedure is time-consuming and expensive and as a consequence a relatively small number of measurements are generally made compared with the number of fuel rods irradiated. In this paper it is proposed a new method for the measurement of pressure that is: Non-destructive; Non-invasive (i.e., allows re-irradiation of the measured rod); Easy to operate - directly in the reactor pool; Can be used on the critical path; Is inexpensive compared with the methods currently in use. This method is also being adapted to the on line measurement of fission gas release on fuel irradiation in research reactors. This method is based on the application of acoustic technology

  10. Non-destructive monitoring of mouse embryo development and its qualitative evaluation at the molecular level using Raman spectroscopy

    Science.gov (United States)

    Ishigaki, Mika; Hashimoto, Kosuke; Sato, Hidetoshi; Ozaki, Yukihiro

    2017-03-01

    Current research focuses on embryonic development and quality not only by considering fundamental biology, but also by aiming to improve assisted reproduction technologies, such as in vitro fertilization. In this study, we explored the development of mouse embryo and its quality based on molecular information, obtained nondestructively using Raman spectroscopy. The detailed analysis of Raman spectra measured in situ during embryonic development revealed a temporary increase in protein content after fertilization. Proteins with a β-sheet structure—present in the early stages of embryonic development—are derived from maternal oocytes, while α-helical proteins are additionally generated by switching on a gene after fertilization. The transition from maternal to embryonic control during development can be non-destructively profiled, thus facilitating the in situ assessment of structural changes and component variation in proteins generated by metabolic activity. Furthermore, it was indicated that embryos with low-grade morphology had high concentrations of lipids and hydroxyapatite. This technique could be used for embryo quality testing in the future.

  11. Characterization of Nuclear Materials Using Complex of Non-Destructive and Mass-Spectroscopy Methods of Measurements

    International Nuclear Information System (INIS)

    Gorbunova, A.; Kramchaninov, A.

    2015-01-01

    Information and Analytical Centre for nuclear materials investigations was established in Russian Federation in the February 2 of 2009 by ROSATOM State Atomic Energy Corporation (the order #80). Its purpose is in preventing unauthorized access to nuclear materials and excluding their illicit traffic. Information and Analytical Centre includes analytical laboratory to provide composition and properties of nuclear materials of unknown origin for their identification. According to Regulation the Centre deals with: · identification of nuclear materials of unknown origin to provide information about their composition and properties; · arbitration analyzes of nuclear materials; · comprehensive research of nuclear and radioactive materials for developing techniques characterization of materials; · interlaboratory measurements; · measurements for control and accounting; · confirmatory measurements. Complex of non-destructive and mass-spectroscopy techniques was developed for the measurements. The complex consists of: · gamma-ray techniques on the base of MGAU, MGA and FRAM codes for uranium and plutonium isotopic composition; · gravimetrical technique with gamma-spectroscopy in addition for uranium content; · calorimetric technique for plutonium mass; · neutron multiplicity technique for plutonium mass; · measurement technique on the base of mass-spectroscopy for uranium isotopic composition; · measurement technique on the base of mass-spectroscopy for metallic impurities. Complex satisfies the state regulation requirements of ensuring the uniformity of measurements including the Russian Federation Federal Law on Ensuring the Uniformity of Measurements #102-FZ, Interstate Standard GOST R ISO/IEC 17025-2006, National Standards of Russian Federation GOST R 8.563-2009, GOST R 8.703-2010, Federal Regulations NRB-99/2009, OSPORB 99/2010. Created complex is provided in reference materials, equipment end certificated techniques. The complex is included in accredited

  12. Non-destructive evaluation of fiber-reinforced composites with a fast 2D fiber-optic laser-ultrasound scanner

    Science.gov (United States)

    Pelivanov, Ivan; Buma, Takashi; Xia, Jinjun; Wei, Chen-Wei; Shtokolov, Alex; O'Donnell, Matthew

    2015-03-01

    Laser ultrasonic (LU) inspection represents an attractive, non-contact method to evaluate composite materials. Current non-contact systems, however, have relatively low sensitivity compared to contact piezoelectric detection. They are also difficult to adjust, very expensive, and strongly influenced by environmental noise. Here, we demonstrate that most of these drawbacks can be eliminated by combining a new generation of compact, inexpensive fiber lasers with new developments in fiber telecommunication optics and an optimally designed balanced probe scheme. In particular, a new type of a balanced fiber-optic Sagnac interferometer is presented as part of an all-optical LU pump-probe system for high speed non-destructive testing and evaluation (NDT&E) of aircraft composites. The performance of the LU system is demonstrated on a composite sample typically used in the aircraft industry. Wide-band ultrasound probe signals are generated directly at the sample surface with a pulsed diode-pumped laser delivering nanosecond laser pulses at a 1 kHz repetition rate with a pulse energy of 2 mJ. A balanced fiber-optic Sagnac interferometer is employed to detect pressure signals in a 1-10 MHz frequency range at the same point (an 8 μm focal spot) on the composite surface. A fast (up to 100 mm/s) 2D translation system is employed to move the sample during scanning and produce a complete B-scan consisting of one thousand A-scans in less than a second. The sensitivity of this system, in terms of the noise equivalent pressure, is found to be only 10 dB above the Nyquist thermal noise limit. To our knowledge, this is the best reported sensitivity for a non-contact ultrasonic detector of this dimension.

  13. Non-destructive inservice inspections

    International Nuclear Information System (INIS)

    Kauppinen, P.; Sarkimo, M.; Lahdenperae, K.

    1998-01-01

    In order to assess the possible damages occurring in the components and structures of operating nuclear power plants during service the main components and structures are periodically inspected by non-destructive testing techniques. The reliability of non-destructive testing techniques applied in these inservice inspections is of major importance because the decisions concerning the needs for repair of components are mainly based on the results of inspections. One of the targets of this research program has been to improve the reliability of non-destructive testing. This has been addressed in the sub-projects which are briefly summarised here. (author)

  14. Evaluation of bridge decks using non-destructive evaluation (NDE) at near highway speeds for effective asset management.

    Science.gov (United States)

    2015-06-01

    Remote sensing technologies allow for the condition evaluation of bridge decks at near highway speed. : Data collection at near highway speed for assessment of the top of the concrete deck and proof of : concept testing for the underside of the deck ...

  15. Eddy currents non-destructive testing. use of a numeric/symbolic method to separate and characterize the transitions of a signal

    International Nuclear Information System (INIS)

    Benas, J.C.; Lefevre, F.; Gaillard, P.; Georgel, B.

    1995-01-01

    This paper presents an original numeric/symbolic method for solving an inverse problem in the field of non-destructive testing. The purpose of this method is to characterize the transitions of a signal even when they are superimposed. Its principle is to solve as many direct problems as necessary to obtain the solution, and to use some hypothesis to manage the reasoning of the process. The direct problem calculation yields to a 'model signal', and the solution is reached when the model signal is close to the measured one. This method calculates the directions of minimization thanks to a symbolic reasoning based on the peaks of the residual signal. The results of the method are good and seem very promising. (authors). 13 refs., 13 figs., 5 tabs

  16. Non-destructive quality evaluation of pepper (Capsicum annuum L.) seeds using LED-induced hyperspectral reflectance imaging

    Science.gov (United States)

    In this study, we develop a viability evaluation method for pepper (Capsicum annuum L.) seed based on hyperspectral reflectance imaging. The reflectance spectra of pepper seeds in the 400–700 nm range are collected from hyperspectral reflectance images obtained using blue, green, and red LED illumin...

  17. Low frequency electrical and magnetic methods for non-destructive analysis of fiber dispersion in fiber reinforced cementitious composites: an overview.

    Science.gov (United States)

    Faifer, Marco; Ferrara, Liberato; Ottoboni, Roberto; Toscani, Sergio

    2013-01-21

    Non-destructive analysis of fiber dispersion in structural elements made of Fiber Reinforced Concrete (FRC) and Fiber Reinforced Cementitious Composites (FRCCs) plays a significant role in the framework of quality control and performance prediction. In this paper, the research activity of the authors in the aforementioned field all over the last lustrum will be reviewed. A method based on the measurement of the inductance of a probe to be placed on the specimen will be presented and its progressive development will be described. Obtained correlation with actual fiber dispersion, as checked by means of destructive methods, as well as with the mechanical performance of the composite will also be presented, in an attempt to address the significance of the method from an engineering application perspective.

  18. Image analysis as a non-destructive method to assess regrowth of weeds after repeated flame weeding

    DEFF Research Database (Denmark)

    Rask, Anne Merete; Kristoffersen, Palle; Andreasen, Christian

    2013-01-01

    picture of the long-term effect of repeated treatments. Image analysis was most useful for assessing the effect of repeated treatments when weed cover was relatively low (below 40%) and when plots contained relatively much withered plant material. However, when weed cover is close to 100%, dry weight......, and therefore it may influence the long-term effect of repeated treatments. Visual assessment of weed cover or image analysis do not affect the remaining parts of the weed plants after treatment, but the methods may have other disadvantages. In order to evaluate and compare three methods we measured changes...... in vegetation cover of perennial ryegrass after flaming by (1) a simple image analysis programme counting green pixels, (2) visual assessment of images and (3) by taking biomass samples. Plants were flame treated with eight different dosages (0, 20, 30, 35, 45, 60, 90 and 180 kg propane ha-1) and with various...

  19. Cell wall proteome of sugarcane stems: comparison of a destructive and a non-destructive extraction method showed differences in glycoside hydrolases and peroxidases.

    Science.gov (United States)

    Calderan-Rodrigues, Maria Juliana; Jamet, Elisabeth; Douché, Thibaut; Bonassi, Maria Beatriz Rodrigues; Cataldi, Thaís Regiani; Fonseca, Juliana Guimarães; San Clemente, Hélène; Pont-Lezica, Rafael; Labate, Carlos Alberto

    2016-01-11

    Sugarcane has been used as the main crop for ethanol production for more than 40 years in Brazil. Recently, the production of bioethanol from bagasse and straw, also called second generation (2G) ethanol, became a reality with the first commercial plants started in the USA and Brazil. However, the industrial processes still need to be improved to generate a low cost fuel. One possibility is the remodeling of cell walls, by means of genetic improvement or transgenesis, in order to make the bagasse more accessible to hydrolytic enzymes. We aimed at characterizing the cell wall proteome of young sugarcane culms, to identify proteins involved in cell wall biogenesis. Proteins were extracted from the cell walls of 2-month-old culms using two protocols, non-destructive by vacuum infiltration vs destructive. The proteins were identified by mass spectrometry and bioinformatics. A predicted signal peptide was found in 84 different proteins, called cell wall proteins (CWPs). As expected, the non-destructive method showed a lower percentage of proteins predicted to be intracellular than the destructive one (33% vs 44%). About 19% of CWPs were identified with both methods, whilst the infiltration protocol could lead to the identification of 75% more CWPs. In both cases, the most populated protein functional classes were those of proteins related to lipid metabolism and oxido-reductases. Curiously, a single glycoside hydrolase (GH) was identified using the non-destructive method whereas 10 GHs were found with the destructive one. Quantitative data analysis allowed the identification of the most abundant proteins. The results highlighted the importance of using different protocols to extract proteins from cell walls to expand the coverage of the cell wall proteome. Ten GHs were indicated as possible targets for further studies in order to obtain cell walls less recalcitrant to deconstruction. Therefore, this work contributed to two goals: enlarge the coverage of the sugarcane

  20. New tasks for non-destructive testing

    International Nuclear Information System (INIS)

    1990-01-01

    The proceedings contain 29 lectures and 43 posters which were presented in Trier at the annual meeting of the DGZfP in May 1990. The contributions report on further development of non-destructive testing methods towards more reliability, both of inspections and with regard to interpretation of the results. (MM) [de

  1. Non destructive method to follow the phase sigma in a duplex stainless steel; Metodologia nao destrutiva para acompanhamento da fase sigma, em um aco inoxidavel duplex

    Energy Technology Data Exchange (ETDEWEB)

    Silva, E.M.; Andrade, A.L.S. Souza; Fialho, W.M.L.; Araujo, B.R., E-mail: edgard@ifpb.edu.br [Instituto Federal de Educacao Ciencia e Tecnologia da Paraiba (IFPB), Joao Pessoa, PB (Brazil); Silva, J.H.R.; Leite, Josinaldo P.; Silva, Eloy M. [Instituto Federal de Educacao Ciencia e Tecnologia do Ceara (IFCE), CE (Brazil); Leite, Joao P. [Universidade Federal da Paraiba (UFPB), PB (Brazil)

    2014-07-01

    Duplex stainless steels are subject to embrittlement due to the formation of sigma phase, which is one with the greatest effect of weakening because they are rich in chromium and deplete the matrix of this element. In this paper, a non-destructive methodology based on measurements of Hall voltage, is presented for monitoring the formation of sigma phase at temperatures of 800 deg C and 900 deg C. Different field intensities are generated by an electromagnet and the flow of field lines is detected by a Hall effect sensor. Hall voltage measurements are proportional to the formation of sigma phase generated by different times of aging methods. The results are correlated with results of microscopic, hardness and X-ray diffraction. It was showed that exist a correlation between the Hall voltage and the amount of sigma phase. The formation of this phase influences the signal voltage by reducing the voltage. (author)

  2. The study on defects in aluminum 2219-T6 thick butt friction stir welds with the application of multiple non-destructive testing methods

    International Nuclear Information System (INIS)

    Li, Bo; Shen, Yifu; Hu, Weiye

    2011-01-01

    Research highlights: → Friction stir weld-defect forming mechanisms of thick butt-joints. → Relationship between weld-defects and friction stir welding process parameters. → Multiple non-destructive testing methods applied to friction stir welds. → Empirical criterion basing on mass-conservation for inner material-loss defects. → Nonlinear correlation between weld strengths and root-flaw lengths. -- Abstract: The present study focused on the relationship between primary friction stir welding process parameters and varied types of weld-defect discovered in aluminum 2219-T6 friction stir butt-welds of thick plates, meanwhile, the weld-defect forming mechanisms were investigated. Besides a series of optical metallographic examinations for friction stir butt welds, multiple non-destructive testing methods including X-ray detection, ultrasonic C-scan testing, ultrasonic phased array inspection and fluorescent penetrating fluid inspection were successfully used aiming to examine the shapes and existence locations of different weld-defects. In addition, precipitated Al 2 Cu phase coarsening particles were found around a 'kissing-bond' defect within the weld stirred nugget zone by means of scanning electron microscope and energy dispersive X-ray analysis. On the basis of volume conservation law in material plastic deformation, a simple empirical criterion for estimating the existence of inner material-loss defects was proposed. Defect-free butt joints were obtained after process optimization of friction stir welding for aluminum 2219-T6 plates in 17-20 mm thickness. Process experiments proved that besides of tool rotation speed and travel speed, more other appropriate process parameter variables played important roles at the formation of high-quality friction stir welds, such as tool-shoulder target depth, spindle tilt angle, and fixture clamping conditions on the work-pieces. Furthermore, the nonlinear correlation between weld tensile strengths and weld crack

  3. Light Water Reactor Sustainability (LWRS) Program – Non-Destructive Evaluation (NDE) R&D Roadmap for Determining Remaining Useful Life of Aging Cables in Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Simmons, Kevin L.; Ramuhalli, Pradeep; Brenchley, David L.; Coble, Jamie B.; Hashemian, Hash; Konnik, Robert; Ray, Sheila

    2012-09-14

    The purpose of the non-destructive evaluation (NDE) R&D Roadmap for Cables is to support the Materials Aging and Degradation (MAaD) R&D pathway. The focus of the workshop was to identify the technical gaps in detecting aging cables and predicting their remaining life expectancy. The workshop was held in Knoxville, Tennessee, on July 30, 2012, at Analysis and Measurement Services Corporation (AMS) headquarters. The workshop was attended by 30 experts in materials, electrical engineering, U.S. Nuclear Regulatory Commission (NRC), U.S. Department of Energy (DOE) National Laboratories (Oak Ridge National Laboratory, Pacific Northwest National Laboratory, Argonne National Laboratory, and Idaho National Engineering Laboratory), NDE instrumentation development, universities, commercial NDE services and cable manufacturers, and Electric Power Research Institute (EPRI). The motivation for the R&D roadmap comes from the need to address the aging management of in-containment cables at nuclear power plants (NPPs).

  4. Light Water Reactor Sustainability (LWRS) Program – Non-Destructive Evaluation (NDE) R&D Roadmap for Determining Remaining Useful Life of Aging Cables in Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Simmons, K.L.; Ramuhali, P.; Brenchley, D.L.; Coble, J.B.; Hashemian, H.M.; Konnick, R.; Ray, S.

    2012-09-01

    Executive Summary [partial] The purpose of the non-destructive evaluation (NDE) R&D Roadmap for Cables is to support the Materials Aging and Degradation (MAaD) R&D pathway. A workshop was held to gather subject matter experts to develop the NDE R&D Roadmap for Cables. The focus of the workshop was to identify the technical gaps in detecting aging cables and predicting their remaining life expectancy. The workshop was held in Knoxville, Tennessee, on July 30, 2012, at Analysis and Measurement Services Corporation (AMS) headquarters. The workshop was attended by 30 experts in materials, electrical engineering, and NDE instrumentation development from the U.S. Nuclear Regulatory Commission (NRC), U.S. Department of Energy (DOE) National Laboratories (Oak Ridge National Laboratory, Pacific Northwest National Laboratory, Argonne National Laboratory, and Idaho National Engineering Laboratory), universities, commercial NDE service vendors and cable manufacturers, and the Electric Power Research Institute (EPRI).

  5. Application of non-destructive impedance-based monitoring technique for cyclic fatigue evaluation of endodontic nickel-titanium rotary instruments.

    Science.gov (United States)

    Chang, Yau-Zen; Liu, Mou-Chuan; Pai, Che-An; Lin, Chun-Li; Yen, Kuang-I

    2011-06-01

    This study investigates the application of non-destructive testing based on the impedance theory in the cyclic fatigue evaluation of endodontic Ni-Ti rotary instruments. Fifty Ni-Ti ProTaper instruments were divided into five groups (n=10 in Groups A to E). Groups A to D were subjected to cyclic fatigue within an artificial canal (Group E was the control group). The mean value of the total life limit (TLL), defined as the instrument being rotated until fracture occurred was found to be 104 s in Group A. Each rotary instrument in Groups B, C and D were rotated until the tested instruments reached 80% (84 s), 60% (62 s) and 40% (42 s) of the TLL. After fatigue testing, each rotary instrument was mounted onto a custom-developed non-destructive testing device to give the tip of the instrument a progressive sideways bend in four mutually perpendicular directions to measure the corresponding impedance value (including the resistance and the reactance). The results indicated that the impedance value showed the same trend as the resistance, implying that the impedance was primarily affected by the resistance. The impedance value for the instruments in the 80% and 60% TLL groups increased by about 6 mΩ (about 7.5%) more than that of the instruments in the intact and 40% TLL groups. The SEM analysis result showed that crack striations were only found at the tip of the thread on the cracked surface of the instrument, consistent with the impedance measurements that found the impedance value of the cracked surface to be significantly different from those in other surfaces. These findings indicate that the impedance value may represent an effective parameter for evaluating the micro-structural status of Ni-Ti rotary instruments subjected to fatigue loading. Copyright © 2010 IPEM. Published by Elsevier Ltd. All rights reserved.

  6. Non-Destructive Quality Evaluation of Pepper (Capsicum annuum L. Seeds Using LED-Induced Hyperspectral Reflectance Imaging

    Directory of Open Access Journals (Sweden)

    Changyeun Mo

    2014-04-01

    Full Text Available In this study, we developed a viability evaluation method for pepper (Capsicum annuum L. seeds based on hyperspectral reflectance imaging. The reflectance spectra of pepper seeds in the 400–700 nm range are collected from hyperspectral reflectance images obtained using blue, green, and red LED illumination. A partial least squares–discriminant analysis (PLS-DA model is developed to classify viable and non-viable seeds. Four spectral ranges generated with four types of LEDs (blue, green, red, and RGB, which were pretreated using various methods, are investigated to develop the classification models. The optimal PLS-DA model based on the standard normal variate for RGB LED illumination (400–700 nm yields discrimination accuracies of 96.7% and 99.4% for viable seeds and nonviable seeds, respectively. The use of images based on the PLS-DA model with the first-order derivative of a 31.5-nm gap for red LED illumination (600–700 nm yields 100% discrimination accuracy for both viable and nonviable seeds. The results indicate that a hyperspectral imaging technique based on LED light can be potentially applied to high-quality pepper seed sorting.

  7. Non-destructive evaluation of bacteria-infected watermelon seeds using visible/near-infrared hyperspectral imaging.

    Science.gov (United States)

    Lee, Hoonsoo; Kim, Moon S; Song, Yu-Rim; Oh, Chang-Sik; Lim, Hyoun-Sub; Lee, Wang-Hee; Kang, Jum-Soon; Cho, Byoung-Kwan

    2017-03-01

    There is a need to minimize economic damage by sorting infected seeds from healthy seeds before seeding. However, current methods of detecting infected seeds, such as seedling grow-out, enzyme-linked immunosorbent assays, the polymerase chain reaction (PCR) and the real-time PCR have a critical drawbacks in that they are time-consuming, labor-intensive and destructive procedures. The present study aimed to evaluate the potential of visible/near-infrared (Vis/NIR) hyperspectral imaging system for detecting bacteria-infected watermelon seeds. A hyperspectral Vis/NIR reflectance imaging system (spectral region of 400-1000 nm) was constructed to obtain hyperspectral reflectance images for 336 bacteria-infected watermelon seeds, which were then subjected to partial least square discriminant analysis (PLS-DA) and a least-squares support vector machine (LS-SVM) to classify bacteria-infected watermelon seeds from healthy watermelon seeds. The developed system detected bacteria-infected watermelon seeds with an accuracy > 90% (PLS-DA: 91.7%, LS-SVM: 90.5%), suggesting that the Vis/NIR hyperspectral imaging system is effective for quarantining bacteria-infected watermelon seeds. The results of the present study show that it is possible to use the Vis/NIR hyperspectral imaging system for detecting bacteria-infected watermelon seeds. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  8. Non-destructive vacuum decay method for pre-filled syringe closure integrity testing compared with dye ingress testing and high-voltage leak detection.

    Science.gov (United States)

    Simonetti, Andrea; Amari, Filippo

    2015-01-01

    solution, preventing possible prefilled syringe plunger movement during container closure integrity testing execution, is presented as well. The growing need to meet sterile drug products' regulatory, quality, and safety expectations has progressively driven new developments and improvements both in container closure integrity testing methods and in the respective equipment, over the last years. Indeed, container closure integrity testing establishes the container closure system capability to provide required protection to the drug product and to demonstrate maintenance of product sterility over its shelf life. This article describes the development of four container closure integrity testing approaches for the evaluation of glass prefilled syringe closure integrity, including two destructive (pharmacopoeial and Novartis specific dye ingress test) and two non-destructive (vacuum decay and high-voltage leak detection) methods. The important finding from the validation of comparative studies was that the vacuum decay method resulted in the most effective, reliable and repeatable detection of defective samples, whether the defect was exposed to sterile water, to drug product, or to air. Complete sets of known defects were created for this purpose (5 μm, 10 μm, 20 μm certified leakages by laser drilled holes and capillary tubes). All investigations and studies were conducted at Bonfiglioli Engineering S.r.l. (Vigarano Pieve, Ferrara, Italy) and at Novartis Vaccines (Sovicille, Siena, Italy). © PDA, Inc. 2015.

  9. Non-Destructive Testing for Control of Radioactive Waste Package

    Science.gov (United States)

    Plumeri, S.; Carrel, F.

    2015-10-01

    Characterization and control of radioactive waste packages are important issues in the management of a radioactive waste repository. Therefore, Andra performs quality control inspection on radwaste package before disposal to ensure the compliance of the radwast characteristics with Andra waste disposal specifications and to check the consistency between Andra measurements results and producer declared properties. Objectives of this quality control are: assessment and improvement of producer radwaste packages quality mastery, guarantee of the radwaste disposal safety, maintain of the public confidence. To control radiological characteristics of radwaste package, non-destructive passive methods (gamma spectrometry and neutrons counting) are commonly used. These passive methods may not be sufficient, for instance to control the mass of fissile material contained inside radwaste package. This is particularly true for large concrete hull of heterogeneous radwaste containing several actinides mixed with fission products like 137Cs. Non-destructive active methods, like measurement of photofission delayed neutrons, allow to quantify the global mass of actinides and is a promising method to quantify mass of fissile material. Andra has performed different non-destructive measurements on concrete intermediate-level short lived nuclear waste (ILW-SL) package to control its nuclear material content. These tests have allowed Andra to have a first evaluation of the performance of photofission delayed neutron measurement and to identify development needed to have a reliable method, especially for fissile material mass control in intermediate-level long lived waste package.

  10. A new non-destructive and standardless method for the determination of thin films by XRF measurement

    International Nuclear Information System (INIS)

    Gries, W.H.; Wybenga, F.T.

    1981-01-01

    The thickness of thin uniform films can be determined by measuring the signal ratio of a fluorescent line at two different take-off angles and using the result in either of two mathematical relationships which link the ratio to the film thickness. A zinc sulphide film on silica is used as an example for application of this method

  11. Non-destructive residual pressure self-measurement method for the sensing chip of optical Fabry-Perot pressure sensor.

    Science.gov (United States)

    Wang, Xue; Wang, Shuang; Jiang, Junfeng; Liu, Kun; Zhang, Xuezhi; Xiao, Mengnan; Xiao, Hai; Liu, Tiegen

    2017-12-11

    We introduce a simple residual pressure self-measurement method for the Fabry-Perot (F-P) cavity of optical MEMS pressure sensor. No extra installation is required and the structure of the sensor is unchanged. In the method, the relationship between residual pressure and external pressure under the same diaphragm deflection condition at different temperatures is analyzed by using the deflection formula of the circular plate with clamped edges and the ideal gas law. Based on this, the residual pressure under the flat condition can be obtained by pressure scanning process and calculation process. We carried out the experiment to compare the residual pressures of two batches MEMS sensors fabricated by two kinds of bonding process. The measurement result indicates that our approach is reliable enough for the measurement.

  12. Eficiência da estabilização do solo e qualidade de tijolos prensados de terra crua tratada com aditivos químicos, avaliadas pela combinação de testes destrutivos e não-destrutivos Efficiency of soil stabilization and quality of bricks manufactured with soil added with chemical additives and evaluated through the association of destrutive and non-destructive methods

    Directory of Open Access Journals (Sweden)

    Régis de C. Ferreira

    2004-12-01

    Full Text Available A qualidade de tijolos prensados de terra crua tratada quimicamente é influenciada basicamente pelo tipo de solo, adições químicas e período de cura. O presente trabalho teve como objetivo estudar a combinação de métodos destrutivos e não-destrutivos associados à análise estatística, para a avaliação da qualidade e da eficiência da estabilização de tijolos prensados de terra crua tratada com cimento, cal e silicato de sódio. Os teores de cimento e cal foram 0; 6 e 10%, e a dose de silicato de sódio foi de 4% em relação ao peso seco da mistura solo-aditivo. Após a sua moldagem, os tijolos foram submetidos à cura durante os períodos de 7; 28; 56 e 91 dias. As propriedades físico-mecânicas dos tijolos foram determinadas por meio de testes destrutivos, tais como a resistência à compressão simples e a absorção de água, e não-destrutivos por meio do ensaio acústico do ultra-som. Adotou-se o parâmetro "resistência anisotrópica" para simplificar as interpretações estatísticas. A adição química que conferiu a melhor qualidade técnica aos tijolos, foi a de 10% de cimento. O parâmetro resistência anisotrópica mostrou-se promissor com vistas à avaliação da qualidade técnica dos tijolos.The aim of this research was the studying of the efficiency of soil stabilization and the technical quality of bricks manufactured with two types of soil treated with chemical additives. For this purpose a sandy soil and a clayey one were added of Portland cement, lime and sodium silicate being their mechanical characteristics evaluated through both non-destructive and destructive methods. The Portland cement and lime admixture contents were 0; 6 and 10%, and the sodium silicate dosage was 4%. Those two methods were associated in order to describe precisely a quantitative parameter called "anisotropical resistance". The results showed that such a parameter could be used as a good index for brick's technical quality evaluation.

  13. Coupling of modal and finite elements methods for the diffraction of guided elastics waves: application to non destructive testing

    International Nuclear Information System (INIS)

    Baronian, V.

    2009-11-01

    A typical nondestructive examination based on guided elastic waves can be simulated by considering an elastic 2D (a plate) or 3D (a rod) guide that contains a defect (a crack, a local heterogeneity due to a weld etc.). Our aim is to solve numerically the problem of the scattering by a defect of a mode propagating in a guide. This has been achieved by developing a method that couples i) finite elements in the smallest possible region of the guide that contains the defect, with ii) the modal decomposition of waves outside this region. The main challenge consists in finding the right linking condition of both representations. A decisive tool is the obtaining of an orthogonality relation which makes it possible to project the finite element solution onto guided modes. For this, the problem is formulated in terms of hybrid vectors (displacement/stress) for which a bi-orthogonality relation exists, namely, the Fraser's relation. It is then possible to derive an exact (transparent) condition on the artificial boundaries of the finite element domain; the modal series taken into account being necessarily truncated, transparency is achieved only approximately. Eventually, this boundary condition is integrated in a variational approach (in terms of displacement) in order to develop a finite element method. The transparent boundary condition being expressed in terms of the hybrid vectors, the stress normal to the artificial boundary is introduced as a supplementary unknown, together with a mixed formulation. Both 2D and 3D isotropic guides with free boundary conditions have been considered numerically. Guided modes are computed thanks to an original modeling approach also based on the hybrid (displacement/stress) vectors; interestingly, bi-orthogonality relation expressed in a discrete form is preserved. The code implementing these methods leads to fast computations of the scattering matrix of a defect; once this matrix has been computed at various frequencies, the defect

  14. Development of non-destructive testing. Turkey

    International Nuclear Information System (INIS)

    1991-01-01

    A National Scheme for the qualification and certification of Non-Destructive Testing (NDT) personnel in various methods has been established as the first stage of implementation. Systematic training in such methods as radiography (RT), ultrasonics (UT), magnetic particles (MT), liquid penetrant (PT) and eddy currents (ET) at levels I, II and some at III has been initiated and should be continued. Direct link with the industry and continuous effort to extend practical applications is strongly recommended

  15. Non destructive methods applied on condenser tubes of copper alloys, stainless steel and titanium in the various standards and specifications

    International Nuclear Information System (INIS)

    Richter, H.; Heckhaeuser, H.

    1982-01-01

    For condenser tubes the Eddy current method is mostly applied and is found to be a suitable instrument to fulfil the demand to segregate tubes with harmful, injurious defects. Depending on individual special requirements ultrasonic testing may be performed as a additional test to increase the defect detection probability. Most standards applicable for condenser tubes do give preference the exclusive requirements ''test standard'' and ''sensitivity level'' which practically cannot maintain identical or strictly comparable test results relating to different equipment and test data. For a mutual understanding between the various partners involved additional test data should be taken into consideration as to allow clear interpretations of results anticipated. The type of artificial defects specified should take into account, that the exclusive mean of this defect is to establish the sensitivity and not to simulate any natural defect occuring in the tube to be tested. Regarding the physical interactions of EC and UT is recommended to specify bore holes drilled through the wall for EC and longitudinal notches on outside and/or inside surface for UT. For setting purpose the size of bore hole and notch should be selected such as to maintain easy reproducable preparation and sufficient clear and reliable responses

  16. Case study of a non-destructive treatment method for the remediation of military structures containing polychlorinated biphenyl contaminated paint.

    Science.gov (United States)

    Saitta, Erin K H; Gittings, Michael J; Novaes-Card, Simone; Quinn, Jacqueline; Clausen, Christian; O'Hara, Suzanne; Yestrebsky, Cherie L

    2015-08-01

    Restricted by federal regulations and limited remediation options, buildings contaminated with paint laden with polychlorinated biphenyls (PCBs) have high costs associated with the disposal of hazardous materials. As opposed to current remediation methods which are often destructive and a risk to the surrounding environment, this study suggests a non-metal treatment system (NMTS) and a bimetallic treatment system (BTS) as versatile remediation options for painted industrial structures including concrete buildings, and metal machine parts. In this field study, four areas of a discontinued Department of Defense site were treated and monitored over 3 weeks. PCB levels in paint and treatment system samples were analyzed through gas chromatography/electron capture detection (GC-ECD). PCB concentrations were reduced by 95 percent on painted concrete and by 60-97 percent on painted metal with the majority of the PCB removal occurring within the first week of application. Post treatment laboratory studies including the utilization of an activated metal treatment system (AMTS) further degraded PCBs in BTS and NMTS by up to 82 percent and 99 percent, respectively, indicating that a two-step remediation option is viable. These findings demonstrate that the NMTS and BTS can be an effective, nondestructive, remediation process for large painted structures, allowing for the reuse or sale of remediated materials that otherwise may have been disposed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Economic importance of non-destructive testing

    International Nuclear Information System (INIS)

    Loebert, P.

    1979-01-01

    On May 21 to 23, 1979, the annual meeting of the Deutsche Gesellschaft fuer Zerstoerungsfreie Pruefung took place in Lindau near the Bodensee lake. About 600 experts from Germany and abroad participated in the meeting, whose general subject was 'The Economic Importance of Non-Destructive Testing'. Theoretical problems and practical investigations were discussed in a number of papers on special subjects. Apart from the 33 papers, there was also a poster show with 53 stands with texts, drawings, diagrams, and figures where the authors informed those interested on the latest state of knowledge in testing. The short papers were read in six sessions under the headings of rentability of non-destructive testing, X-ray methods, electromagnetic methods, and ultrasonic methods 1 and 2. (orig.) [de

  18. Non-destructive thermal wave method applied to study thermal properties of fast setting time endodontic cement

    International Nuclear Information System (INIS)

    Picolloto, A. M.; Mariucci, V. V. G.; Szpak, W.; Medina, A. N.; Baesso, M. L.; Astrath, N. G. C.; Astrath, F. B. G.; Bento, A. C.; Santos, A. D.; Moraes, J. C. S.

    2013-01-01

    The thermal wave method is applied for thermal properties measurement in fast endodontic cement (CER). This new formula is developed upon using Portland cement in gel and it was successfully tested in mice with good biocompatibility and stimulated mineralization. Recently, thermal expansion and setting time were measured, conferring to this material twice faster hardening than the well known Angelus Mineral trioxide aggregate (MTA) the feature of fast hardening (∼7 min) and with similar thermal expansion (∼12 μstrain/ °C). Therefore, it is important the knowledge of thermal properties like thermal diffusivity, conductivity, effusivity in order to match thermally the tissue environment upon its application in filling cavities of teeth. Photothermal radiometry technique based on Xe illumination was applied in CER disks 600 μm thick for heating, with prepared in four particle sizes (25, 38, 45, and 53) μm, which were added microemulsion gel with variation volumes (140, 150, 160, and 170) μl. The behavior of the thermal diffusivity CER disks shows linear decay for increase emulsion volume, and in contrast, thermal diffusivity increases with particles sizes. Aiming to compare to MTA, thermal properties of CER were averaged to get the figure of merit for thermal diffusivity as (44.2 ± 3.6) × 10 −3 cm 2 /s, for thermal conductivity (228 ± 32) mW/cm K, the thermal effusivity (1.09 ± 0.06) W s 0.5 /cm 2 K and volume heat capacity (5.2 ± 0.7) J/cm 3 K, which are in excellent agreement with results of a disk prepared from commercial MTA-Angelus (grain size < 10 μm using 57 μl of distilled water)

  19. Non-destructive thermal wave method applied to study thermal properties of fast setting time endodontic cement

    Science.gov (United States)

    Picolloto, A. M.; Mariucci, V. V. G.; Szpak, W.; Medina, A. N.; Baesso, M. L.; Astrath, N. G. C.; Astrath, F. B. G.; Santos, A. D.; Moraes, J. C. S.; Bento, A. C.

    2013-11-01

    The thermal wave method is applied for thermal properties measurement in fast endodontic cement (CER). This new formula is developed upon using Portland cement in gel and it was successfully tested in mice with good biocompatibility and stimulated mineralization. Recently, thermal expansion and setting time were measured, conferring to this material twice faster hardening than the well known Angelus Mineral trioxide aggregate (MTA) the feature of fast hardening (˜7 min) and with similar thermal expansion (˜12 μstrain/ °C). Therefore, it is important the knowledge of thermal properties like thermal diffusivity, conductivity, effusivity in order to match thermally the tissue environment upon its application in filling cavities of teeth. Photothermal radiometry technique based on Xe illumination was applied in CER disks 600 μm thick for heating, with prepared in four particle sizes (25, 38, 45, and 53) μm, which were added microemulsion gel with variation volumes (140, 150, 160, and 170) μl. The behavior of the thermal diffusivity CER disks shows linear decay for increase emulsion volume, and in contrast, thermal diffusivity increases with particles sizes. Aiming to compare to MTA, thermal properties of CER were averaged to get the figure of merit for thermal diffusivity as (44.2 ± 3.6) × 10-3 cm2/s, for thermal conductivity (228 ± 32) mW/cm K, the thermal effusivity (1.09 ± 0.06) W s0.5/cm2 K and volume heat capacity (5.2 ± 0.7) J/cm3 K, which are in excellent agreement with results of a disk prepared from commercial MTA-Angelus (grain size < 10 μm using 57 μl of distilled water).

  20. Non-destructive thermal wave method applied to study thermal properties of fast setting time endodontic cement

    Energy Technology Data Exchange (ETDEWEB)

    Picolloto, A. M.; Mariucci, V. V. G.; Szpak, W.; Medina, A. N.; Baesso, M. L.; Astrath, N. G. C.; Astrath, F. B. G.; Bento, A. C., E-mail: acbento@uem.br [Departamento de Física, Grupo de Espectroscopia Fotoacústica e Fototérmica, Universidade Estadual de Maringá – UEM, Av. Colombo 5790, 87020-900 Maringá, Paraná (Brazil); Santos, A. D.; Moraes, J. C. S. [Departamento de Física e Química, Universidade Estadual Paulista Júlio de Mesquita Filho – UNESP, Av. Brasil 56, 15385-000 Ilha Solteira, SP (Brazil)

    2013-11-21

    The thermal wave method is applied for thermal properties measurement in fast endodontic cement (CER). This new formula is developed upon using Portland cement in gel and it was successfully tested in mice with good biocompatibility and stimulated mineralization. Recently, thermal expansion and setting time were measured, conferring to this material twice faster hardening than the well known Angelus Mineral trioxide aggregate (MTA) the feature of fast hardening (∼7 min) and with similar thermal expansion (∼12 μstrain/ °C). Therefore, it is important the knowledge of thermal properties like thermal diffusivity, conductivity, effusivity in order to match thermally the tissue environment upon its application in filling cavities of teeth. Photothermal radiometry technique based on Xe illumination was applied in CER disks 600 μm thick for heating, with prepared in four particle sizes (25, 38, 45, and 53) μm, which were added microemulsion gel with variation volumes (140, 150, 160, and 170) μl. The behavior of the thermal diffusivity CER disks shows linear decay for increase emulsion volume, and in contrast, thermal diffusivity increases with particles sizes. Aiming to compare to MTA, thermal properties of CER were averaged to get the figure of merit for thermal diffusivity as (44.2 ± 3.6) × 10{sup −3} cm{sup 2}/s, for thermal conductivity (228 ± 32) mW/cm K, the thermal effusivity (1.09 ± 0.06) W s{sup 0.5}/cm{sup 2} K and volume heat capacity (5.2 ± 0.7) J/cm{sup 3} K, which are in excellent agreement with results of a disk prepared from commercial MTA-Angelus (grain size < 10 μm using 57 μl of distilled water)

  1. Literature studies and tests of non-destructive testing methods with possible applications for concrete construction in nuclear power plants

    International Nuclear Information System (INIS)

    Ulriksen, Peter

    2010-09-01

    The present report details a survey of methods suitable for detecting delamination in nuclear power-plant cooling-water channels. It is also a close-up study of the russian instrument A1220 Monolith manufactured by ACSYS. The measuring principle is that echoes from discontinuities within the concrete are recorded as a function of time. By assuming a velocity this time can be converted to a depth. The instrument is known for operating with shear-waves at 55 kHz and it has generated impressive images of structures in the concrete like rebars, voids, thickness and horizontal cracks (delamination). Since the instrument simultaneously introduces three novelties, i.e. -Dry-point coupling between transducer and concrete -Shear waves -Transmitter and receiver consisting of several elements there is reason to try and understand which of the novelties is responsible for the good results and what requirements there would be on the methodology. A special interest is directed towards the possibility to use the instrument together with an automated X-Y-scanner with the purpose to obtain high resolution 3D imagery. A such survey is possible to perform with the instrument, but as soon as the number of measuring points comes above a couple of hundreds the task becomes tiresome. It is suitable to perform automated measurements with a grid of 1 cm. It was discovered that it is possible to connect S-wave as well as P-wave transducers to the instrument. Delamination can be detected with several methods. Thermography should be mentioned but will not be treated in this report. The best options are supposed to be: -Profiling with the A1220 instrument in dry channels -Profiling with a sonar in a water filled channel -Vibration measurements using a water-jet in a dry channel -Impedance measurements in a dry channel Impedance measurements are well developed regarding theory and improvements can take place in the methodology. This can hopefully be performed in a future project. The

  2. Qualifying program on Non-Destructive Testing, Visual Inspection of the welding (level 2)

    International Nuclear Information System (INIS)

    Shafee, M. A.

    2011-01-01

    Nondestructive testing is a wide group of analysis technique used in science and industry to evaluate the properties of a material, component or system without causing damage. Common Non-Destructive Testing methods include ultrasonic, magnetic-particle, liquid penetrate, radiographic, visual inspection and eddy-current testing. AAEA put the new book of the Non-Destructive Testing publication series that focused on Q ualifying program on Non-Destructive Testing, visual inspection of welding-level 2 . This book was done in accordance with the Arab standard certification of Non-Destructive Testing (ARAB-NDT-CERT-002) which is agreeing with the ISO-9712 (2005) and IAEA- TEC-DOC-487. It includes twenty one chapters dealing with engineering materials used in industry, the mechanical behavior of metals, metal forming equipments, welding, metallurgy, testing of welds, introduction to Non-Destructive Testing, defects in metals, welding defects and discontinuities, introduction to visual inspection theory, properties and tools of visual testing, visual testing, quality control regulations, standards, codes and specifications, procedures of welding inspections, responsibility of welding test inspector, qualification of Non-Destructive Testing inspector and health safety during working.

  3. Non-destructive evaluation of porosity and its effect on mechanical properties of carbon fiber reinforced polymer composite materials

    Science.gov (United States)

    Bhat, M. R.; Binoy, M. P.; Surya, N. M.; Murthy, C. R. L.; Engelbart, R. W.

    2012-05-01

    In this work, an attempt is made to induce porosity of varied levels in carbon fiber reinforced epoxy based polymer composite laminates fabricated using prepregs by varying the fabrication parameters such as applied vacuum, autoclave pressure and curing temperature. Different NDE tools have been utilized to evaluate the porosity content and correlate with measurable parameters of different NDE techniques. Primarily, ultrasonic imaging and real time digital X-ray imaging have been tried to obtain a measurable parameter which can represent or reflect the amount of porosity contained in the composite laminate. Also, effect of varied porosity content on mechanical properties of the CFRP composite materials is investigated through a series of experimental investigations. The outcome of the experimental approach has yielded interesting and encouraging trend as a first step towards developing an NDE tool for quantification of effect of varied porosity in the polymer composite materials.

  4. A Non-Destructive Optical Method for the DP Measurement of Paper Insulation Based on the Free Fibers in Transformer Oil

    Directory of Open Access Journals (Sweden)

    Lei Peng

    2018-03-01

    Full Text Available In order to explore a non-destructive method for measuring the polymerization degree (DP of paper insulation in transformer, a new method that based on the optical properties of free fiber particles in transformer oil was studied. The chromatic dispersion images of fibers with different aging degree were obtained by polarizing microscope, and the eigenvalues (r, b, and Mahalanobis distance of the images were extracted by the RGB (red, blue, and green tricolor analysis method. Then, the correlation between the three eigenvalues and DP of paper insulation were simulated respectively. The results showed that the color of images changed from blue-purple to orange-yellow gradually with the increase of aging degree. For the three eigenvalues, the relationship between Mahalanobis distance and DP had the best goodness of fit (R2 = 0.98, higher than that of r (0.94 and b (0.94. The mean square error of the relationship between Mahalanobis distance and DP (52.17 was also significantly lower than that of r and b (97.58, 98.05. Therefore, the DP of unknown paper insulation could be calculated by the simulated relationship of Mahalanobis distance and DP.

  5. In situ mobile subaquatic archaeometry evaluated by non-destructive Raman microscopy of gemstones lying under impure waters

    Science.gov (United States)

    Smith, David C.

    2003-08-01

    A series of laboratory simulations have been made in order to evaluate the credibility of carrying out physico-chemical analysis of cultural heritage items by Raman spectral fingerprinting using a mobile Raman microscope in situ under natural impure water in subaquatic or submarine conditions. Three different kinds of gemstone (zircon, microcline and sodalite) were successively placed under different kinds of impure water into which a low power microscope objective was immersed to eliminate the normal aerial pathway between the objective and the object to be analysed. According to the nature of the impurities (inorganic or organic, dissolved or suspended, transparent or coloured) the results obtained variously gave Raman band intensities stronger than, similar to or weaker than those of spectra obtained without water, i.e. in air. The significant point is that after only minor spectral treatment the less good spectra nevertheless yielded exploitable data with most, if not all, of the key Raman bands being detected. Thus the problems of fluorescence or peak absences under water are of a similar degree of magnitude to the other problems inherent with the Raman spectroscopic technique in aerial conditions, e.g. relative peak intensities varying with crystal orientation; peak positions varying with chemical composition. These results indicate that even if at certain sites of submerged cities or sunken ships, the combination of animal, vegetal, mineral and microbial impurities join together to inhibit or hinder the success of subaquatic or submarine archaeometry, there will certainly be other sites where such activity is indeed credible.

  6. A non-destructive surface burn detection method for ferrous metals based on acoustic emission and ensemble empirical mode decomposition: from laser simulation to grinding process

    International Nuclear Information System (INIS)

    Yang, Zhensheng; Wu, Haixi; Yu, Zhonghua; Huang, Youfang

    2014-01-01

    Grinding is usually done in the final finishing of a component. As a result, the surface quality of finished products, e.g., surface roughness, hardness and residual stress, are affected by the grinding procedure. However, the lack of methods for monitoring of grinding makes it difficult to control the quality of the process. This paper focuses on the monitoring approaches for the surface burn phenomenon in grinding. A non-destructive burn detection method based on acoustic emission (AE) and ensemble empirical mode decomposition (EEMD) was proposed for this purpose. To precisely extract the AE features caused by phase transformation during burn formation, artificial burn was produced to mimic grinding burn by means of laser irradiation, since laser-induced burn involves less mechanical and electrical noise. The burn formation process was monitored by an AE sensor. The frequency band ranging from 150 to 400 kHz was believed to be related to surface burn formation in the laser irradiation process. The burn-sensitive frequency band was further used to instruct feature extraction during the grinding process based on EEMD. Linear classification results evidenced a distinct margin between samples with and without surface burn. This work provides a practical means for grinding burn detection. (paper)

  7. Non-destructive control of castings

    International Nuclear Information System (INIS)

    Boutault, J.; Mascre, C.

    1978-01-01

    The object of non-destructive control in foundries is to verify the metal structure, the absence of unacceptable discontinuity, total tightness, etc. This leads to a range of very varied controls according to the importance of the series, the quality level required by the specifications, the nature of the alloy. The originality of the solutions which are imperative for castings is shown through examples: casting of high quality complex forms in short series; very thick unit parts; very large series of parts requiring on efficient automation of non-destructive control. Lastly the publishing of testing methods and interpretating rules, which are the base of a friendly understanding between constructors and founders are recalled [fr

  8. Non-destructive methods for peat layer assessment in oligotrophic peat bogs: a case study from Poiana Ştampei, Romania

    Directory of Open Access Journals (Sweden)

    Iuliana F. Gheorghe

    2011-01-01

    Full Text Available Practices currently employed in the investigation and characterisation of peat deposits are destructive and may irremediable perturb peat bog development even in cases when exploitation is not carried out. We investigated the correlation between vegetation characteristics in the active area of Poiana Ştampei peat bog, Romania, and the underlying peat layer depth, aiming at establishing a non-destructive method of peat layer depth estimation. The presence of the Sphagneto-Eriophoretum vaginati association, dominated by Sphagnum fimbriatum, Eriophorum vaginatum, Andromeda polifolia, Vaccinium oxycoccos, V. myrtillus, V. vitis-idaea, Polytrichum commune, Picea excelsa, Pinus sylvestris and Betula verrucosa was found to predict the existence of the peat layer but not its depth. Out of the seven identified vegetation types, one type was associated with a very thin or no peat layer, one type was characterised by the presence of a thick (over 100 cm peat layer and five types indicated the presence of variable average depths of the peat layer. pH values correlated with peat layer depth only within the vegetation type associated with thick peat layers.

  9. Evaluation of the veracity of one work by the artist Di Cavalcanti through non-destructive techniques: XRF, imaging and brush stroke analysis

    International Nuclear Information System (INIS)

    Kajiya, E.A.M.; Campos, P.H.O.V.; Rizzutto, M.A.; Appoloni, C.R.; Lopes, F.

    2014-01-01

    This paper presents systematic studies and analysis that contributed to the identification of the forgery of a work by the artist Emiliano Augusto Cavalcanti de Albuquerque e Melo, known as Di Cavalcanti. The use of several areas of expertise such as brush stroke analysis (“pinacologia”), applied physics, and art history resulted in an accurate diagnosis for ascertaining the authenticity of the work entitled “Violeiro” (1950). For this work we used non-destructive methods such as techniques of infrared, ultraviolet, visible and tangential light imaging combined with chemical analysis of the pigments by portable X-Ray Fluorescence (XRF) and graphic gesture analysis. Each applied method of analysis produced specific information that made possible the identification of materials and techniques employed and we concluded that this work is not consistent with patterns characteristic of the artist Di Cavalcanti. - Highlights: • Identification of the forgery of an easel painting of Di Cavalcanti. • Diagnosis for ascertaining the authenticity of the work entitled “Violeiro” (1950). • X-Ray fluorescence spectroscopy and image analysis. • Image analyses allow some identification as hidden underlying lines. • Materials and techniques not characteristic of the artist

  10. Application of NIRS coupled with PLS regression as a rapid, non-destructive alternative method for quantification of KBA in Boswellia sacra

    Science.gov (United States)

    Al-Harrasi, Ahmed; Rehman, Najeeb Ur; Mabood, Fazal; Albroumi, Muhammaed; Ali, Liaqat; Hussain, Javid; Hussain, Hidayat; Csuk, René; Khan, Abdul Latif; Alam, Tanveer; Alameri, Saif

    2017-09-01

    In the present study, for the first time, NIR spectroscopy coupled with PLS regression as a rapid and alternative method was developed to quantify the amount of Keto-β-Boswellic Acid (KBA) in different plant parts of Boswellia sacra and the resin exudates of the trunk. NIR spectroscopy was used for the measurement of KBA standards and B. sacra samples in absorption mode in the wavelength range from 700-2500 nm. PLS regression model was built from the obtained spectral data using 70% of KBA standards (training set) in the range from 0.1 ppm to 100 ppm. The PLS regression model obtained was having R-square value of 98% with 0.99 corelationship value and having good prediction with RMSEP value 3.2 and correlation of 0.99. It was then used to quantify the amount of KBA in the samples of B. sacra. The results indicated that the MeOH extract of resin has the highest concentration of KBA (0.6%) followed by essential oil (0.1%). However, no KBA was found in the aqueous extract. The MeOH extract of the resin was subjected to column chromatography to get various sub-fractions at different polarity of organic solvents. The sub-fraction at 4% MeOH/CHCl3 (4.1% of KBA) was found to contain the highest percentage of KBA followed by another sub-fraction at 2% MeOH/CHCl3 (2.2% of KBA). The present results also indicated that KBA is only present in the gum-resin of the trunk and not in all parts of the plant. These results were further confirmed through HPLC analysis and therefore it is concluded that NIRS coupled with PLS regression is a rapid and alternate method for quantification of KBA in Boswellia sacra. It is non-destructive, rapid, sensitive and uses simple methods of sample preparation.

  11. Agreement on economic and technological cooperation between the Federal Republic of Germany and the GDR. Project part 3.2, ''NDT and QA''. Project task 2.11. Experiments with the full-size vessel in Stuttgart for selection of practice-relevant non-destructive testing methods for evaluation of the value and performance of recurrent inspections of reactor components. Final report

    International Nuclear Information System (INIS)

    Betzold, K.; Brinette, R.; Bonitz, F.

    1992-01-01

    The efficiency of NDT methods such as ALOK, SAFT, EMUS, LLT, phased array, and multi-frequency eddy current testing which are generally used for reactor components recurrent inspection has been verified with experiments using two test specimens. These are a section of a main coolant pipe and the full-size vessel installed at MPA-Stuttgart, furnished with PWR test bodies with artificial defects and artificially applied natural defects. The defects have been detected with commercial probes as well as with probes optimized for the NDT methods EMUS, LLT, phased array, and multi-frequency eddy current testing. Type, location, orientation and geometry of the defects have been measured, also recording the influence of type of defect on the efficiency of the NDT methods, in order to reveal problems linked with the various methods as well as their advantages. Further tests have been made for evaluation of a combination of ALOK and SAFT using novel, specifically developed test probes, and a combination of ALOK and phased array testing. (orig.) [de

  12. A Reliable and Non-destructive Method for Monitoring the Stromal pH in Isolated Chloroplasts Using a Fluorescent pH Probe

    Directory of Open Access Journals (Sweden)

    Pai-Hsiang Su

    2017-12-01

    nigericin required to collapse the ΔpHenv was then studied. The establishment of a non-destructive method of monitoring the stromal pH will be valuable for studying the roles of the ΔpHenv in chloroplast physiology.

  13. Non-Destructive Testing for Concrete Structure

    International Nuclear Information System (INIS)

    Tengku Sarah Tengku Amran; Noor Azreen Masenwat; Mohamad Pauzi Ismail

    2015-01-01

    Nondestructive testing (NDT) is a technique to determine the integrity of a material, component or structure. It is essential in the inspection of alteration, repair and new construction in the building industry. There are a number of non-destructive testing techniques that can be applied to determine the integrity of concrete in a completed structure. Each has its own advantages and limitations. For concrete, these problems relate to strength, cracking, dimensions, delamination, and inhomogeneities. NDT is reasonably good and reliable tool to measure the property of concrete which also gives the fair indication of the compressive strength development. This paper discussed the concrete inspection using combined methods of NDT. (author)

  14. Fundamentals for remote structural health monitoring of wind turbine blades - a pre-project. Annex B - Sensors and non-destructive testing methods for damage detection in wind turbine blades

    Energy Technology Data Exchange (ETDEWEB)

    Lading, L.; McGugan, M.; Sendrup, P.; Rheinlaender, J.; Rusborg, J.

    2002-05-01

    This annex provides a description of the sensor schemes and the non-destructive testing (NDT) methods that have been investigated in this project. Acoustic emission and fibre optic sensors are described in some detail whereas only the key features of well-established NDT methods are presented. Estimates of the cost of different sensor systems are given and the advantages and disadvantages of the different schemes is discussed. (au)

  15. Potential development of non-destructive assay for nuclear safeguards

    International Nuclear Information System (INIS)

    Benoit, R.; Cuypers, M.; Guardini, S.

    1983-01-01

    After a brief summary on the role of non-destructive assay in safeguarding the nuclear fuel cycle, its evolution from NDA methods development to other areas is illustrated. These areas are essentially: a) the evaluation of the performances of NDA techniques in field conditions; b) introduction of full automation of measurement instrument operation, using interactive microprocessors and of measurement data handling evaluation and retrieval features; c) introduction of the adequate link and compatibility to assure NDA measurement data transfer in an integrated safeguards data evaluation scheme. In this field, the Joint Research Centre (JRC) of the Commission of the European Communities (CEC) is developing and implementing a number of techniques and methodologies allowing an integrated and rational treatment of the large amount of safeguards data produced. In particular for the non-destructive assay measurements and techniques, the JRC has studied and tested methodologies for the automatic generation and validation of data of inventory verification. In order to apply these techniques successfully in field, the JRC has studied the design requirements of NDA data management and evaluation systems. This paper also discusses the functional requirements of an integrated system for NDA safeguards data evaluation

  16. Non-Destructive Evaluation of the Leaf Nitrogen Concentration by In-Field Visible/Near-Infrared Spectroscopy in Pear Orchards

    Directory of Open Access Journals (Sweden)

    Jie Wang

    2017-03-01

    Full Text Available Non-destructive and timely determination of leaf nitrogen (N concentration is urgently needed for N management in pear orchards. A two-year field experiment was conducted in a commercial pear orchard with five N application rates: 0 (N0, 165 (N1, 330 (N2, 660 (N3, and 990 (N4 kg·N·ha−1. The mid-portion leaves on the year’s shoot were selected for the spectral measurement first and then N concentration determination in the laboratory at 50 and 80 days after full bloom (DAB. Three methods of in-field spectral measurement (25° bare fibre under solar conditions, black background attached to plant probe, and white background attached to plant probe were compared. We also investigated the modelling performances of four chemometric techniques (principal components regression, PCR; partial least squares regression, PLSR; stepwise multiple linear regression, SMLR; and back propagation neural network, BPNN and three vegetation indices (difference spectral index, normalized difference spectral index, and ratio spectral index. Due to the low correlation of reflectance obtained by the 25° field of view method, all of the modelling was performed on two spectral datasets—both acquired by a plant probe. Results showed that the best modelling and prediction accuracy were found in the model established by PLSR and spectra measured with a black background. The randomly-separated subsets of calibration (n = 1000 and validation (n = 420 of this model resulted in high R2 values of 0.86 and 0.85, respectively, as well as a low mean relative error (<6%. Furthermore, a higher coefficient of determination between the leaf N concentration and fruit yield was found at 50 DAB samplings in both 2015 (R2 = 0.77 and 2014 (R2 = 0.59. Thus, the leaf N concentration was suggested to be determined at 50 DAB by visible/near-infrared spectroscopy and the threshold should be 24–27 g/kg.

  17. Avaliação da nutrição de plantações jovens de eucalipto por análise foliar e métodos não destrutivos Nutrition evaluation in young Eucalyptus plantation by foliar analysis and non-destructive methods

    Directory of Open Access Journals (Sweden)

    Ana Carla Madeira

    2009-12-01

    Full Text Available Avaliou-se o crescimento e estado nutritivo de jovens Eucalyptus por análise foliar tradicional (teores de N, P e pigmentos fotossintéticos e com o medidor de clorofila SPAD-502. Efectuou-se uma gestão diferenciada dos resíduos de abate da plantação anterior, com incorporação dos resíduos no solo (I, remoção dos resíduos (R, e distribuição dos resíduos à superfície (S; aplicou-se um fertilizante azotado (IF, RF e SF e introduziuse uma leguminosa do género Lupinus (IL e RL. Não houve diferenças significativas no crescimento entre I, R e S. A aplicação de fertilizante intensificou o crescimento em SF e IF. O teor foliar de N foi no início positivamente afectado pelo Lupinus (IL e RL. Após a primeira aplicação de fertilizante, este teor foi significativamente superior em IF, RF e SF, esbatendo-se a diferença entre tratamentos após as aplicações seguintes; semelhante padrão foi observado para os pigmentos e o SPAD. Os valores de SPAD correlacionaram-se (PThe growth and nutritional state of young Eucalyptus was evaluated by foliar analysis (contents of N, P and photosynthetic pigments and the SPAD-502 chlorophyll meter. An experimental system was used with different harvest residues management, such as incorporation of residues into the soil (I, removal of residues (R, and distribution of residues on the soil surface (S, with N fertiliser application (IF, RF and SF, and with the leguminous Lupinus seeding (IL and RL. No significant differences in growth were found between the I, R and S. Application of fertiliser increased growth in the SF and IF. Initially, foliar N content was positively affected by the leguminous (RL and IL. After the first fertiliser application, a higher N content was observed in the IF, RF and SF, the differences being reduced in the following applications; a similar trend was observed for extracted pigments and SPAD values. Foliar N contents were correlated (P<0.05 with SPAD values. The

  18. Study on a new calibration methods of in-situ HPGe γ spectrometers used for non-destructive analyzing radioactivity in nuclear facilities decommissioning

    International Nuclear Information System (INIS)

    Xiao Xuefu; Song Lijun; Wang Yulai; Wen Fuping; Liao Haitao; Ban Ying; Xia Yihua; Li Ruixiang; Li Hang; Tu Xingmin

    2007-06-01

    A new calibration technique, which is the Monte Carlo modeling technique, of in-situ HPGe γ spectrometers used for non-destructive analyzing radioactivity in nuclear facilities decommissioning, is presented. A series of assay for some stainless steel pipes and tanks in some nuclear facilities/laboratories of CIAE are taken on site with the in-situ HPGe γ spectrometer. At the same time, some examples are taken and analyzed in laboratories. The relative bias/variation between the values of activity measured by in-situ HPGe γ spectrometers on site and that analyzed in laboratory is less than ±45.0%. (authors)

  19. Evaluation of granite weathering in the Jeroným Mine using non-destructive methods

    Czech Academy of Sciences Publication Activity Database

    Lednická, Markéta; Kaláb, Zdeněk

    2012-01-01

    Roč. 9, č. 2 (2012), s. 211-220 ISSN 1214-9705 R&D Projects: GA ČR GA105/09/0089 Institutional support: RVO:68145535 Keywords : weathering * granite, mine * ultrasonic pulse velocity * Schmidt hammer Subject RIV: DH - Mining, incl. Coal Mining Impact factor: 0.530, year: 2011 http://www.irsm.cas.cz/abstracts/AGG/02_12/10_Lednicka_Kalab.pdf

  20. Defect reconstruction by non-destructive analyzing methods as basis for fracture mechanical evaluation

    International Nuclear Information System (INIS)

    Mueller, W.

    1988-01-01

    This document presents several techniques for the analysis and characterization of defects. The use of sector scan imaging systems is described, together with the Amplitude and Transit-Time Locus Curves (ALOK) searching and analyzing system. Information is also provided on ultrasonic holography and Line Synthetic Aperture Focussing Technique (LSAFT). (TEC)

  1. Defect reconstruction by non-destructive analyzing methods as basis for fracture mechanical evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, W

    1988-12-31

    This document presents several techniques for the analysis and characterization of defects. The use of sector scan imaging systems is described, together with the Amplitude and Transit-Time Locus Curves (ALOK) searching and analyzing system. Information is also provided on ultrasonic holography and Line Synthetic Aperture Focussing Technique (LSAFT). (TEC). 4 refs.

  2. Aplicações da tomografia de ressonância magnética nuclear como método não-destrutivo para avaliar os efeitos de injúrias mecânicas em goiabas 'Paluma' e 'Pedro Sato' Applications of the nuclear magnetic resonance tomography as a non-destructive method to evaluate the effects of mechanical injuries in 'Paluma' and 'Pedro Sato' guavas

    Directory of Open Access Journals (Sweden)

    Ben-Hur Mattiuz

    2002-12-01

    Full Text Available Objetivou-se determinar o potencial do uso da tomografia de ressonância magnética, como método não-destrutivo, para avaliar os efeitos das injúrias mecânicas em goiabas. Foram utilizados frutos no estádio de maturação "de vez" das cultivares Paluma e Pedro Sato. Na injúria por impacto, os frutos foram deixados cair, em queda livre, de uma altura de 1,20 m, sofrendo dois impactos, em lados opostos de sua porção equatorial. Na injúria por compressão, os frutos foram submetidos a um peso de 29,4 N, por 15 minutos. Para a injúria por corte, foram efetuados dois cortes, no sentido longitudinal dos frutos, de exatamente 30 mm de comprimento por 2 mm de profundidade. Os frutos injuriados foram armazenados sob condições de ambiente (22 ± 2 °C e 40 %UR. Foram realizadas análises com tomógrafo de ressonância magnética Varian Inova de 2 Tesla. As imagens foram obtidas a partir da detecção dos prótons de hidrogênio (¹H. Para cada fruto, foram obtidos tomogramas simétricos a partir do centro do fruto. A tomografia de ressonância magnética nuclear mostrou-se uma ferramenta eficaz na detecção de injúrias internas de frutos. O estresse físico causado pelo impacto produziu um colapso interno nos lóculos desses frutos (internal bruising, levando à perda da integridade celular e a conseqüente liquefação dos tecidos placentários. A cultivar Pedro Sato mostrou uma suscetibilidade maior à injúria por impacto que a 'Paluma'. A injúria por compressão tornou-se mais evidente no pericarpo externo do fruto, de ambas as cultivares. A injúria por corte levou a lignificação dos tecidos no local injuriado e deformações superficiais devido à perda acentuada de matéria fresca no local da lesão, evidentes no sexto dia de avaliação.The present study reports on the potential of the use of the tomography of magnetic resonance, as a non-destructive method, to evaluate the effects of the mechanical injuries in guava fruits

  3. Non-destructive testing at Chalk River

    International Nuclear Information System (INIS)

    Hilborn, J.W.

    1976-01-01

    In 1969 CRNL recognized the need for a strong group skilled in non-destructive test procedures. Within two years a new branch called Quality Control Branch was staffed and working. This branch engages in all aspects of non-destructive testing including development of new techniques, new applications of known technology, and special problems in support of operating reactors. (author)

  4. Signal processing for non-destructive testing of railway tracks

    Science.gov (United States)

    Heckel, Thomas; Casperson, Ralf; Rühe, Sven; Mook, Gerhard

    2018-04-01

    Increased speed, heavier loads, altered material and modern drive systems result in an increasing number of rail flaws. The appearance of these flaws also changes continually due to the rapid change in damage mechanisms of modern rolling stock. Hence, interpretation has become difficult when evaluating non-destructive rail testing results. Due to the changed interplay between detection methods and flaws, the recorded signals may result in unclassified types of rail flaws. Methods for automatic rail inspection (according to defect detection and classification) undergo continual development. Signal processing is a key technology to master the challenge of classification and maintain resolution and detection quality, independent of operation speed. The basic ideas of signal processing, based on the Glassy-Rail-Diagram for classification purposes, are presented herein. Examples for the detection of damages caused by rolling contact fatigue also are given, and synergetic effects of combined evaluation of diverse inspection methods are shown.

  5. Development of a non-destructive micro-analytical method for stable carbon isotope analysis of transmission electron microscope (TEM) samples

    Energy Technology Data Exchange (ETDEWEB)

    Hode, Tomas [Department of Geology, Portland State University, Portland, P.O. Box 751, OR 97201 (United States)], E-mail: hode@pdx.edu; Kristiansson, Per; Elfman, Mikael [Division of Nuclear Physics, Department of Physics, Lund Institute of Technology, Lund University, P.O. Box 118, SE-221 00 Lund (Sweden); Hugo, Richard C.; Cady, Sherry L. [Department of Geology, Portland State University, Portland, P.O. Box 751, OR 97201 (United States)

    2009-10-01

    The biogenicity of ancient morphological microfossil-like objects can be established by linking morphological (e.g. cell remnants and extracellular polymeric matrix) and chemical (e.g. isotopes, biomarkers and biominerals) evidence indicative of microorganisms or microbial activity. We have developed a non-destructive micro-analytical ion beam system capable of measuring with high spatial resolution the stable carbon isotope ratios of thin samples used for transmission electron microscopy. The technique is based on elastic scattering of alpha particles with an energy of 2.751 MeV. At this energy the {sup 13}C cross section is enhanced relative to the pure Rutherford cross section for {sup 13}C, whereas the {sup 12}C cross section is reduced relative to its pure Rutherford cross section. Here we report the initial results of this experimental approach used to characterize ultramicrotomed sections of sulfur-embedded graphite and microbial cells.

  6. Training guidelines in non-destructive testing techniques

    International Nuclear Information System (INIS)

    1987-02-01

    With the conclusion in 1979 of a successful Agency executed UNDP project in Argentina, whose aim was the establishment of a national non-destructive testing centre, the Agency was asked by other countries in the Latin American and Caribbean Region to evaluate the possibility of transferring this success to the whole region. In 1982, with the financial cooperation of UNFSSTD and UNIDO, a regional project was started with the principal objective of assisting the countries in the region to reinforce autonomous NDT capability through regional cooperation. One essential component of this project has been the harmonization of training through the development and use of course syllabi by the 17 countries now participating in the project. To this end, a Regional Working Group was formed and one of its tasks is the development of these syllabi for the more common NDT methods. This publication is a collection of the training programmes elaborated to date which have so far been followed by some 10,000 persons in the region who have received training in NDT as a direct result of the project. These syllabi take into account the development work done by the International Committee for Non-destructive Testing and many national training programmes, and are meant to be an objective guide to assist in the formation of NDT personnel

  7. Can non-destructive inspection be reliable

    International Nuclear Information System (INIS)

    Silk, M.G.; Stoneham, A.M.; Temple, J.A.G.

    1988-01-01

    The paper on inspection is based on the book ''The reliability of non-destructive inspection: assessing the assessment of structures under stress'' by the present authors (published by Adam Hilger 1987). Emphasis is placed on the reliability of inspection and whether cracks in welds or flaws in components can be detected. The need for non-destructive testing and the historical attitudes to non-destructive testing are outlined, along with the case of failure. Factors influencing reliable inspection are discussed, and defect detection trials involving round robin tests are described. The development of reliable inspection techniques and the costs of reliability and unreliability are also examined. (U.K.)

  8. Rapid tracking of metals and other minerals in solid contaminated environments matters (soil, waste) thanks to non-destructive and rapid on-site methods with x-fluorescence. Extended abstract

    International Nuclear Information System (INIS)

    Bouzonville, A.; Colin, A.; Durin, L.; Gruffat, V.; Chassagnac, T.

    2008-05-01

    Rapid tracking of metals and other minerals in solid contaminated environments matters greatly to the various firms working in waste disposal. In order to facilitate decision-making that rely on non-destructive and rapid onsite methods of analysis, a review of such methods has been carried out though Scientific publications and Technical reports. Only X-fluorescence is presented as suitable, albeit with some limitations. In order to check the collected bibliographical data and to test both the limits and the limitations imposed by the use of portable XRF instruments, several series of experiments were conducted using two types of portable instruments: a gun-like instrument and a portable-class instrument. With the help of such instruments, the experiments were mainly oriented towards applications that are neglected in field research with regards to waste materials such as: - bulky curbside refuse, - contaminated land, - sludge from the dredging of ports and rivers, - steelwork slurries and dust particles. As these instruments make it possible to obtain samples before analysis, more in-depth evaluation of this aspect is relevant. Thus the number of samples to be analyzed, the kind of conditioning (grinding, sifting), the moisture, are parameters that require evaluation for each individual case and each different type of waste matter. Such aspect can be especially iffy when heterogeneous waste matter like recycling refuse is handled. In fact, the precision of the instruments usually do not cover the regulation thresholds or the techniques that are require by users. It is therefore necessary for the users of these instruments to be aware of the utilization limits and to develop protocols that are suitable for each situation, in order to get readings that are representative and can be interpreted. (authors)

  9. Trends of non-destructive analytical methods for identification of biodiesel feedstock in diesel-biodiesel blend according to European Commission Directive 2012/0288/EC and detecting diesel-biodiesel blend adulteration: A brief review.

    Science.gov (United States)

    Mazivila, Sarmento Júnior

    2018-04-01

    Discrimination of biodiesel feedstock present in diesel-biodiesel blend is challenging due to the great similarity in the spectral profile as well as digital image profile of each type of feedstock employed in biodiesel production. Once the marketed diesel-biodiesel blend is subsidized, in which motivates adulteration in biofuel blend by cheaper supplies with high solubility to obtain profits associated with the subsidies involved in biodiesel production. Non-destructive analytical methods based on qualitative and quantitative analysis for detecting marketed diesel-biodiesel blend adulteration are reviewed. Therefore, at the end is discussed the advantage of the qualitative analysis over quantitative analysis, when the systems require immediate decisions such as to know if the marketed diesel-biodiesel blend is unadulterated or adulterated in order to aid the analyst in selecting the most appropriate green analytical procedure for detecting diesel-biodiesel blend adulteration proceeding in fast way. This critical review provides a brief review on the non-destructive analytical methods reported in scientific literature based on different first-order multivariate calibration models coupled with spectroscopy data and digital image data to identify the type of biodiesel feedstock present in diesel-biodiesel blend in order to meets the strategies adopted by European Commission Directive 2012/0288/EC as well as to monitoring diesel-biodiesel adulteration. According to that Directive, from 2020 biodiesel produced from first-generation feedstock, that is, oils employed in human food such as sunflower, soybean, rapeseed, palm oil, among other oils should not be subsidized. Therefore, those non-destructive analytical methods here reviewed are helpful for discrimination of biodiesel feedstock present in diesel-biodiesel blend according to European Commission Directive 2012/0288/EC as well as for detecting diesel-biodiesel blend adulteration. Copyright © 2017 Elsevier B

  10. 1998 Annual Study Report. Standards development of chemical analysis and non destructive inspection methods for pure titanium metals; 1998 nendo seika hokokusho. Jun chitan no shiken hyoka hoho no hyojunka

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    This study was conducted to standardize the chemical analysis and non-destructive inspection methods for pure titanium metals of industrial grade. These methods are among those serving bases for international standardization of products. The chemical analysis is aimed at quantitative analysis of trace impurities, in particular, present in pure titanium metals of industrial grade by developing and standardizing the inductively coupled plasma atomic emission spectroscopy, known for its low detectable limit, and, at the same time, spark and glow discharged atomic emission spectrometry as the improved routine analysis methods. These methods, although being used by, e.g., steel makers, have not been standardized because the effects of titanium-peculiar matrix are not elucidated. The non-destructive testing is aimed at standardization of the techniques useful for automatic production lines. More concretely, these include optical methods aided by a laser or CCD camera for plate surface defect inspection, ultrasonic methods for plate internal defect inspection, and pressure differential methods for air-tightness of welded pipes. They have not been used yet for automatic production lines. (NEDO)

  11. Non destructive nuclear measurements for control and characterization purpose

    International Nuclear Information System (INIS)

    Lyoussi, Abdallah

    2002-01-01

    In this report for accreditation to supervise researches, the author proposes a large and rather precise overview of his research works which dealt with the upstream and downstream parts of the nuclear fuel cycle. After having discussed the different needs associated with non destructive nuclear measurements during the fuel cycle, the author describes his past research activities. In the following parts, he discusses control and characterization methods associated with the upstream and downstream parts of the fuel cycle: fuel density variation measurement, non destructive control of uranium-235 content of enriched uranium ingots, examination of induced photo-fissions in radioactive waste parcels, use of electron accelerator for simultaneous neutron and photon examination, measurement of the spatial distribution of the photonic component from the Mini Linatron, association of non destructive measurement techniques

  12. Effectiveness Analysis of a Non-Destructive Single Event Burnout Test Methodology

    CERN Document Server

    Oser, P; Spiezia, G; Fadakis, E; Foucard, G; Peronnard, P; Masi, A; Gaillard, R

    2014-01-01

    It is essential to characterize power MosFETs regarding their tolerance to destructive Single Event Burnouts (SEB). Therefore, several non-destructive test methods have been developed to evaluate the SEB cross-section of power devices. A power MosFET has been evaluated using a test circuit, designed according to standard non-destructive test methods discussed in the literature. Guidelines suggest a prior adaptation of auxiliary components to the device sensitivity before the radiation test. With the first value chosen for the de-coupling capacitor, the external component initiated destructive events and affected the evaluation of the cross-section. As a result, the influence of auxiliary components on the device cross-section was studied. This paper presents the obtained experimental results, supported by SPICE simulations, to evaluate and discuss how the circuit effectiveness depends on the external components.

  13. Non-destructive controls in the mechanical industry

    Energy Technology Data Exchange (ETDEWEB)

    Jarlan, L

    1978-12-01

    The sequence of operations implicating the mechanical industries from the suppliers to their customers is briefly recalled; a description of the field of application of non-destructive control methods in these industries is given. Follows a description of some recent typical applications of the principal methods: radiography, ultrasonic waves, magnetism, acoustic emission, sonic control, tracer techniques.

  14. Non-destructive testing of electronic component packages

    International Nuclear Information System (INIS)

    Anderle, C.

    1975-01-01

    A non-destructive method of investigating packaged parts of semiconductor components by X radiation is described and the relevant theoretical relations limiting this technique are derived. The application of the technique is demonstrated in testing several components. The described method is iNsimple and quick. (author)

  15. Electromagnetic non-destructive technique for duplex stainless steel characterization

    Science.gov (United States)

    Rocha, João Vicente; Camerini, Cesar; Pereira, Gabriela

    2016-02-01

    Duplex stainless steel (DSS) is a two-phase (ferrite and austenite) material, which exhibits an attractive combination of mechanical properties and high corrosion resistance, being commonly employed for equipment of petrochemical plants, refining units and oil & gas platforms. The best properties of DSS are achieved when the phases are in equal proportions. However, exposition to high temperatures (e.g. welding process) may entail undesired consequences, such as deleterious phases precipitation (e.g. sigma, chi) and different proportion of the original phases, impairing dramatically the mechanical and corrosion properties of the material. A detailed study of the magnetic behavior of DSS microstructure with different ferrite austenite ratios and deleterious phases content was accomplished. The non destructive method evaluates the electromagnetic properties changes in the material and is capable to identify the presence of deleterious phases into DSS microstructure.

  16. Modelling and simulation of eddy current non-destructive testing

    International Nuclear Information System (INIS)

    Mansir, H.; Burais, N.; Nicolas, A.

    1986-01-01

    This paper presents the practical configuration for detecting cracks in conducting materials by eddy current non destructive testing. An electromagnetic field formulation is proposed using Maxwell's relations. Geometrical and physical properties of the crack are taken into account by several models, particularly with a new finite element called ''crack element''. Modelisation is applied to sensor impedance calculation with classical numerical methods [fr

  17. Non-destructive testing of tubes by electromagnetic processes

    International Nuclear Information System (INIS)

    Kowarski, A.

    1979-01-01

    This article reviews and assesses the non destructive testing techniques used for locating defects in tubes by electromagnetic processes. These form the basis of many testing devices, the diversity of which results from various factors: range of materials, methods of fabrication, specific defects of the product. There are two distinct main families of devices utilising two different principles: dispersion flow and Foucault currents [fr

  18. Non-destructive controls in the steel tube industry

    International Nuclear Information System (INIS)

    Mondot, J.

    1978-01-01

    The main non-destructive control methods in the tube industry are reviewed: eddy currents, particularly well adapted to small tubes; magnetoscopic testing for weldless tubes; ultrasonic waves widely used for thick weldless tubes and weldings; radiography, to examine tube ends and the known questionable zones; measure of diameters by laser [fr

  19. Non-destructive Faraday imaging of dynamically controlled ultracold atoms

    DEFF Research Database (Denmark)

    Gajdacz, Miroslav; Pedersen, Poul Lindholm; Mørch, Troels

    2013-01-01

    We describe an easily implementable method for non-destructive measurements of ultracold atomic clouds based on dark field imaging of spatially resolved Faraday rotation. The signal-to-noise ratio is analyzed theoretically and, in the absence of experimental imperfections, the sensitivity limit...

  20. Non Destructive Analysis of Uranium by Radiometry

    International Nuclear Information System (INIS)

    Yusuf Nampira

    2007-01-01

    Uranium used in nuclear fuel development activity. the Substance use incurred by regulation safeguard. On that account in uranium acceptance conducted by verification of according to document by the specification of goods. Verification done by analysing performed uranium. The activity require by analyse method which simple and rapid analyses and has accurate result of analyses, is hence done by validation of non destructive uranium analysis that is with count gamma radiation from 235 U and product decay from 238 U. Quantitative analysis of uranium in substance determined by through count radiation-g at energy 185.72 keV and the use assess ratio of gamma radiation count from 235 U to 234 Pa to determine isotope content 235 U in substance. The result of analyses were given result of analysis with above correctness storey level 95% and have limit detect equivalent by 0.0174 mg U in U 3 O 8 . This method use at isotope uranium-235 analysis through count gamma radiation comparing method 235 U/ 234 Pa giving accuracy level 95% at sample equivalent uranium its content in 1 g uranium with isotope 235 U smaller than 75 weight percent. (author)

  1. Study of different ultrasonic focusing methods applied to non destructive testing; Etude de differentes methodes de focalisation ultrasonore appliquees au controle non destructif

    Energy Technology Data Exchange (ETDEWEB)

    El Amrani, M.

    1995-11-17

    The work presented in this thesis concerns the study of different ultrasonic focusing techniques applied to Nondestructive Testing (mechanical focusing and electronic focusing) and compares their capabilities. We have developed a model to predict the ultrasonic field radiated into a solid by water-coupled transducers. The model is based upon the Rayleigh integral formulation, modified to take account the refraction at the liquid-solid interface. The model has been validated by numerous experiments in various configurations. Running this model and the associated software, we have developed new methods to optimize focused transducers and studied the characteristics of the beam generated by transducers using various focusing techniques. (author). 120 refs., 95 figs., 4 appends.

  2. High-Resolution and Non-destructive Evaluation of the Spatial Distribution of Nitrate and Its Dynamics in Spinach (Spinacia oleracea L. Leaves by Near-Infrared Hyperspectral Imaging

    Directory of Open Access Journals (Sweden)

    Hao-Yu Yang

    2017-11-01

    Full Text Available Nitrate is an important component of the nitrogen cycle and is therefore present in all plants. However, excessive nitrogen fertilization results in a high nitrate content in vegetables, which is unhealthy for humans. Understanding the spatial distribution of nitrate in leaves is beneficial for improving nitrogen assimilation efficiency and reducing its content in vegetables. In this study, near-infrared (NIR hyperspectral imaging was used for the non-destructive and effective evaluation of nitrate content in spinach (Spinacia oleracea L. leaves. Leaf samples with different nitrate contents were collected under various fertilization conditions, and reference data were obtained using reflectometer apparatus RQflex 10. Partial least squares regression analysis revealed that there was a high correlation between the reference data and NIR spectra (r2 = 0.74, root mean squared error of cross-validation = 710.16 mg/kg. Furthermore, the nitrate content in spinach leaves was successfully mapped at a high spatial resolution, clearly displaying its distribution in the petiole, vein, and blade. Finally, the mapping results demonstrated dynamic changes in the nitrate content in intact leaf samples under different storage conditions, showing the value of this non-destructive tool for future analyses of the nitrate content in vegetables.

  3. Non-destructive analysis in a study of the religious art objects

    International Nuclear Information System (INIS)

    Vornicu, Nicoleta; Bibire, Cristina; Geba, Maria

    2009-01-01

    The icon Descending of the Saint Spirit from Bucium Church, dating in the year 1814 and was done in tempera on wood technology. The characterization of cultural heritage materials is essential for the comprehension of their degradation mechanisms. The present study aims at identifying the pigments in the various layers, establishing the possible existence of an organic binder and scientifically evaluating the state of preservation. To this end, were used non-destructive methods, as: microscopic (SEM), XRF and spectroscopic (FTIR).

  4. Combining data in non-destructive testing

    International Nuclear Information System (INIS)

    Lavayssiere, B.

    1994-03-01

    Non-destructive testing of some components requires quite often the use of several methods such as X-ray, ultrasonics, Eddy Currents. But the efficiency of a NDT method is highly dependent on the fact that the detectability of flaws in a specimen relies on the choice of the best method. Moreover a lot of inspection issues could benefit from the use of more than one test method, as each NDT method has its own physical properties and technological limits. Some questions still remain: how to combine data, at what level and for what functionality. Simple monomethod processes are well-known now. They include techniques like reconstruction which belongs to the so-called ill-posed problems in the field of mathematics. For NDT data processing, it has the ability to estimate real data from distorted ones coming from a probe. But, up to now there has been very few approaches for computer aided combination of results from different advanced techniques. This report presents the various mathematical fields involved towards that goal (statistical decision theory which allows the use of multiple hypothesis, non-linear decision theory for its capability to classify and to discriminate, graph theory to find the optimal path in an hypothesis graph and also fuzzy logic, multiple resolution analysis, artificial intelligence,...) and which combinations of methods are useful. Some images will illustrate this topic in which EDF is involved, and will explain what are the major goals of this work. Combining is not only an improvement of 3D visualisation which would allow to display simultaneously CAD or NDT data for example, but it consists in exploiting multisensor data collected via a variety of sophisticated techniques and presenting this information to the operator without overloading the operator/system capacities in order to reduce the uncertainty and to resolve the ambiguity inherent to mono method inspection. (author). 7 figs., 35 refs

  5. Non destructive assay (NDA) techniques

    International Nuclear Information System (INIS)

    Mafra Guidicini, Olga; Llacer, Carlos D.; Rojo, Marcelo

    2001-01-01

    In the IAEA Safeguards System the basic verification method used is nuclear material accountancy, with containment and surveillance as important complementary measures. If nuclear material accountancy is to be effective, IAEA inspectors have to make independent measurements to verify declared material quantities. Most of the equipment available to the inspectors is designed to measure gamma rays and/or neutrons emitted by various nuclear materials. Equipment is also available to measure the gross weight of an item containing nuclear material. These types of measurement techniques are generally grouped under the title of nondestructive assay (NDA). The paper describes the NDA techniques and instruments used to verify the total amount of nuclear material held at a nuclear facility. (author)

  6. Non-destructive testing. V. 2

    International Nuclear Information System (INIS)

    Farley, J.M.; Nichols, R.W.

    1988-01-01

    The book entitled 'Non-destructive Testing' Volume 2, contains the proceedings of the fourth European Conference, organized by the British Institute of Non-Destructive Testing and held in London, September 1987. The volume contains seven chapters which examine the reliability of NDT, the economics of NDT and the use of NDT in:- civil engineering; oil, gas, coal and petrochemical industries; iron and steel industries; aerospace industry; and the nuclear and electricity supply industries. The seven chapters contain 78 papers, of which 19 are selected for INIS and indexed separately. (U.K.)

  7. European Non Destructive Examination Forum (ENDEF)

    International Nuclear Information System (INIS)

    Deffrennes, M.; Engl, G.; Estorff, U. von

    1998-01-01

    Non destructive examination (NDE) during fabrication, Pre-service inspection (PSI) and In service inspection (ISI) are considered key issues for the safe use of nuclear energy. They are important elements of plant lifetime management which is a critical item in decision making on nuclear policies. The European non destructive examination forum (ENDEF) founded by European Commission provides a platform for open discussion between representatives of the European industries with the purpose to establish cooperation between EU, Central and Eastern European Countries and New Independent States in the field of NDE and ISI

  8. Relationship between Corrosion Level of Rebar Embedded in Concrete, Corrosion Potential and Current Density Measured by Non-destructive Test Method

    International Nuclear Information System (INIS)

    Chung, Lan; Cho, Seung Ho; Roh, Young Sook; Kim, Joong Koo

    2004-01-01

    The purpose of this study is to identify corrosion mechanism and develop qualitative measurement method of corrosion level. Fist of all, structural behavior of each different level of corrosion states have been evaluated. And mathematical models that can predict corrosion level in terms of electric potential and corrosion intensity are proposed. Corrosion rate in reinforcing bar was investigated in this study using accelerated corrosion method due to electric potential differences based on Faradays law. Total 288 measurement spots were designed in terms of corrosion rates, diameter of reinforcing bars, and concrete cover thickness. Corrosion current densities and corrosion potentials of concrete were measured on these specimens using Gecor device. This study suggested the relationship between corrosion levels, and measured electric current density as follows

  9. Non-destructive testing of concrete structures with the impact-echo method; Zerstoerungsfreie Pruefung von Betonbauteilen mit dem Impact-Echo-Verfahren

    Energy Technology Data Exchange (ETDEWEB)

    Algernon, Daniel; Feistkorn, Sascha; Scherrer, Michael [SVTI Schweizerischer Verein fuer technische Inspektionen, Wallisellen (Switzerland). Nuklearinspektorat

    2016-05-01

    The impact-echo method is based on the use of elastic waves. It was developed in the 1980 for the testing of concrete structures and is currently widespread. Main application areas are the component and coating thickness measurement and detection of delaminations, voids and other defects. Specifically, the method is also used to check the injection faults of clamping channels. Another application is the determination of mechanical material parameters such as the modulus of elasticity. Since the original development of the method has undergone several enhancements. The conversion of a single-point measurement method towards a area component testing, the use by the optimized measurement data acquisition and evaluation enlarged and delivered an important prerequisite for increasing the efficiency. The use of air-coupled sensors not only increases the measurement speed but also provides advantages in rough component surfaces. The imaging analysis in conjunction with signal processing algorithms simplifies the interpretation and allows statistical evaluation. [German] Das Impact-Echo-Verfahren beruht auf der Nutzung elastischer Wellen. Es wurde in den 1980er Jahren fuer die Pruefung von Stahlbetonbauteilen entwickelt und ist derzeit weit verbreitet. Haupteinsatzgebiete sind die Bauteil- und Schichtdickenmessung sowie die Detektion von Delaminationen, Hohl- und anderen Fehlstellen. Insbesondere wird das Verfahren auch zur Pruefung des Verpresszustandes von Spannkanaelen herangezogen. Eine weitere Anwendung ist die Bestimmung mechanischer Materialparameter wie dem Elastizitaetsmodul. Seit der urspruenglichen Entwicklung hat das Verfahren verschiedene Weiterentwicklungen erfahren. Die Ueberfuehrung von einem Einzelpunktmessverfahren hin zu einer flaechigen Bauteilpruefung hat die Einsatzmoeglichkeiten durch die optimierte Messdatenaufnahme und -auswertung vergroessert und eine wichtige Voraussetzung zur Erhoehung der Leistungsfaehigkeit geliefert. Der Einsatz

  10. X-ray tomography as a non-destructive tool for evaluating the preservation of primary isotope signatures and mineralogy of Mesozoic fossils

    Science.gov (United States)

    Santillan, J. D.; Boyce, J. W.; Eagle, R.; Martin, T.; Tuetken, T.; Eiler, J.

    2010-12-01

    The stable isotope compositions of carbonate and phosphate components in fossil teeth and bone are widely used to infer information on paleoclimate and the physiology of extinct organisms. Recently the potential for measuring the body temperatures of extinct vertebrates from analyses of 13C-18O bond ordering in fossil teeth has been demonstrated (Eagle et al. 2010). The interpretation of these isotopic signatures relies on an assessment of the resistance of fossil bioapatite to alteration, as diffusion within, and partial recrystallization, or replacement of the original bioapatite will lead to measured compositions that represent mixtures between primary and secondary phases and/or otherwise inaccurate apparent temperatures. X-ray computed tomography (CT) allows 3-D density maps of teeth to be made at micron-scale resolution. Such density maps have the potential to record textural evidence for alteration, recrystallization, or replacement of enamel. Because it is non-destructive, CT can be used prior to stable isotope analysis to identify potentially problematic samples without consuming or damaging scientifically significant specimens. As a test, we have applied CT to tooth fragments containing both dentin and enamel from Late Jurassic sauropods and a Late Cretaceous theropod that yielded a range of clumped isotope temperatures from anomalously high ˜60oC to physiologically plausible ≤40oC. This range of temperatures suggests partial, high-temperature modification of some specimens, but possible preservation of primary signals in others. Three-dimensional CT volumes generated using General Electric Phoenix|x-ray CT instruments were compared with visible light and back-scattered electron images of the same samples. The tube-detector combination used for the CT study consisted of a 180 kV nanofocus transmission tube coupled with a 127 micron pixel pitch detector ( ˜3-12μ m voxel edges), allowing us to clearly map out alteration zones in high contrast, while

  11. A system for personnel qualification of non-destructive testing procedures from testing and and qualification system in Sweden

    International Nuclear Information System (INIS)

    Kuna, M.; Kubis, S.; Plasek, J.

    1999-01-01

    The method for qualification of non-destructive testing personnel carrying out inspections by means of ultrasonic and eddy-current tests to inspect cladding in BWR reactor pressure vessel and core shroud lid. Development of procedures tests with real artificial cracks, blind tests. Evaluation of results by the Swedish Qualification Commission. Performance of the tests at Oskarshamn-1

  12. Training Guidelines in Non-destructive Testing Techniques. 2013 Edition

    International Nuclear Information System (INIS)

    2014-12-01

    The IAEA promotes industrial applications of radiation technology, including non-destructive testing (NDT), through activities such as Technical Cooperation Projects (national and regional) and Coordinated Research Projects. Through this cooperation, Member States have initiated national programmes for the training and certification of NDT personnel. National certifying bodies have also been established based on International Organization for Standardization (ISO) standards. As part of these efforts, the IAEA has been actively involved in developing training materials. Consequently, IAEA-TECDOC-407, Training Guidelines in Non-destructive Testing Techniques, was published in 1987, then revised and expanded as IAEA-TECDOC-628 in 1991. Revisions of IAEA-TECDOC-628 were considered essential to meet the demands of end-user industries in Member States, and revised and expanded versions were issued in 2002 and 2008. These latter versions included work conducted by the International Committee for Non-Destructive Testing (ICNDT) and many national NDT societies. It is one of the publications referred to in ISO 9712:2005, Non-destructive Testing: Qualification and Certification of Personnel, which in turn is an internationally accepted standard, revised as ISO 9712:2012, Non-destructive Testing: Qualification and Certification of NDT Personnel. This publication is an updated version of IAEA-TECDOC-628. The content of which has been revised following the changes of ISO 9712 converging with EN 473 and becoming EN ISO 9712:2012, based on the experience of experts and comments from end-user industries. The details of the topics on each subject have been expanded to include the latest developments in the respective methods. The incorporated changes will assist the end-user industries to update their NDT qualification and certification schemes and course materials. This publication, like the previous versions, will continue to play an important role in international harmonization

  13. Utilization of radiation in non destructive tests

    International Nuclear Information System (INIS)

    Lopes, R.T.; Jesus, E.F.O. de; Junqueira, M.M.; Matos, J.A. de; Castello Branco, L.M.; Barros Junior, J.D.; Borges, J.C.

    1987-01-01

    The Nuclear Instrumentation Laboratory from COPPE/UFRJ has been developed techniques for using nuclear radiations to obtain images for non-destructive materials testing and medicine. With this objective, some prototypes of transmission computerized tomography systems using parallel beans and fan beans, with computer automation, including the mathematical process of image reprocessing and presentation in videos or printers are constructed [pt

  14. Subcritical fracture propagation in rocks: An examination using the methods of fracture mechanics and non-destructive testing. Ph.D. Thesis

    Science.gov (United States)

    Swanson, P. L.

    1984-01-01

    An experimental investigation of tensile rock fracture is presented with an emphasis on characterizing time dependent crack growth using the methods of fracture mechanics. Subcritical fracture experiments were performed in moist air on glass and five different rock types at crack velocities using the double torsion technique. The experimental results suggest that subcritical fracture resistance in polycrystals is dominated by microstructural effects. Evidence for gross violations of the assumptions of linear elastic fracture mechanics and double torsion theory was found in the tests on rocks. In an effort to obtain a better understanding of the physical breakdown processes associated with rock fracture, a series of nondestructive evaluation tests were performed during subcritical fracture experiments on glass and granite. Comparison of the observed process zone shape with that expected on the basis of a critical normal principal tensile stress criterion shows that the zone is much more elongated in the crack propagation direction than predicted by the continuum based microcracking model alone.

  15. A non-destructive DNA sampling technique for herbarium specimens.

    Science.gov (United States)

    Shepherd, Lara D

    2017-01-01

    Herbarium specimens are an important source of DNA for plant research but current sampling methods require the removal of material for DNA extraction. This is undesirable for irreplaceable specimens such as rare species or type material. Here I present the first non-destructive sampling method for extracting DNA from herbarium specimens. DNA was successfully retrieved from robust leaves and/or stems of herbarium specimens up to 73 years old.

  16. Non destructive testing of green parts in powder metallurgy

    International Nuclear Information System (INIS)

    Accary, A.

    1979-01-01

    The non destructive testing of green parts is potentially advantageous by making possible a lowering of the material and energy consumption as well as the production of parts with a 100% reliability. After a survey of the possible methods and of the defects to be detected it is shown that the goal can be achieved using a 'blind detection' method and that the difficulty of the problem depends on the size and shape of the part to be controled. The gravimetric, dimensional, γ absorption and thermal diffusivity methods are then examined. It is concluded that a unit control is paying only if it allows to enter the high reliability part market. Used statisticaly the non destructive testing of green parts can possibly lead to savings on materials and energy [fr

  17. Training guidelines in non-destructive testing techniques: 2008 ed

    International Nuclear Information System (INIS)

    2008-12-01

    This publication is a revision of IAEA-TECDOC-628/Rev.1 and provides the basic syllabus for systems for training and certification programmes of non-destructive testing (NDT) personnel in accordance with the requirements of international standard ISO 9712 (2005). The training guidelines developed to date have been used by Member States in formulating their national NDT programmes and to provide local end user industries with a skilled workforce. The present publication accommodates the latest advancements in technology and will continue to play an important role towards international harmonization in the field of NDT. This publication contains a body of knowledge for non-destructive testing. It was developed to provide guidelines for trainers, training organizations and certification bodies, detailing the subject matter and the content for each level of certification. It is general in nature but the contents of the training should be adapted to the needs, procedures, materials and products of the customer. The recommended training hours are consistent with the edition of the standard ISO 9712 in effect at the time of preparation. All formal training described in this publication contains a theoretical portion and a practical portion. Guidance is included on the range of equipment and materials needed for instruction in each method. There is a common core of material that is required by level 3 personnel in every method. This common material has been removed from the content for the particular method and included as a separate section. All training should end with an examination and can lead to a certification. Examination and certification are not covered by this publication, but detailed information about this can be found in ISO 9712. This publication is applicable for the following methods: eddy current testing, magnetic particle testing, liquid penetrant testing, radiographic testing, and ultrasonic testing. NDT methods are now widely used in civil engineering

  18. Non-destructive tests of capsules for JMTR irradiation examination

    International Nuclear Information System (INIS)

    Tanaka, Hidetaka; Nagao, Yoshiharu; Sato, Masashi; Osawa, Kenji

    2007-03-01

    Irradiation examination are increasing in advanced irradiation research for accurate prediction control and evaluation of irradiation parameter such as neutron fluence, etc. by using JMTR. Irradiation capsule internals are therefore structurally complicated recently. This report described the procedure of non destructive tests such as radiographic test, penetrant test, ultrasonic test, etc. for inspection of irradiation capsules in JMTR, and the result of Test-case of confirmation procedure for internal parts of irradiation capsules. (author)

  19. Non-destructive, preclinical evaluation of root canal anatomy of human teeth with flat-panel detector volume CT (FD-VCT)

    International Nuclear Information System (INIS)

    Heidrich, G.; Hassepass, F.; Dullin, C.; Grabbe, E.; Attin, T.; Hannig, C.

    2005-01-01

    Purpose: Successful endodontic diagnostics and therapy call for adequate depiction of the root canal anatomy with multimodal diagnostic imaging. The aim of the present study is to evaluate visualization of the endodont with flat-panel detector volume CT (FD-VCT). Materials and methods: 13 human teeth were examined with the prototype of a FD-VCT. After data acquisition and generation of volume data sets in volume rendering technology (VRT), the findings obtained were compared to conventional X-rays and cross-section preparations of the teeth. Results: The anatomical structures of the endodont such as root canals, side canals and communications between different root canals as well as dentricles could be detected precisely with FD-VCT. The length of curved root canals was also determined accurately. The spatial resolution of the system is around 140 μm. Only around 73% of the main root canals detected with FD-VCT and 87% of the roots could be visualized with conventional dental X-rays. None of the side canals, shown with FD-VCT, was detectable on conventional X-rays. In all cases the enamel and dentin of the teeth could be well delineated. No differences in image quality could be discerned between stored and freshly extracted teeth, or between primary and adult teeth. (orig.)

  20. Non-destructive microstructural analysis with depth resolution

    Energy Technology Data Exchange (ETDEWEB)

    Zolotoyabko, E. E-mail: zloto@tx.technion.ac.il; Quintana, J.P

    2003-01-01

    A depth-sensitive X-ray diffraction technique has been developed with the aim of studying microstructural modifications in inhomogeneous polycrystalline materials. In that method, diffraction profiles are measured at different X-ray energies varied by small steps. X-rays at higher energies probe deeper layers of material. Depth-resolved structural information is retrieved by comparing energy-dependent diffraction profiles. The method provides non-destructive depth profiling of the preferred orientation, grain size, microstrain fluctuations and residual strains. This technique is applied to the characterization of seashells. Similarly, energy-variable X-ray diffraction can be used for the non-destructive characterization of different laminated structures and composite materials.

  1. Non-destructive examination system of vitreous body

    Science.gov (United States)

    Shibata, Takuma; Gong, Jin; Watanabe, Yosuke; Kabir, M. Hasnat; Masato, Makino; Furukawa, Hidemitsu; Nishitsuka, Koichi

    2014-04-01

    Eyeball plays a quite important role in acquiring the vision. Vitreous body occupies the largest part of the eyeball and consists of biological, elastic, transparent, gel materials. In the present medical examination, the non-destructive examination method of the vitreous body has not been well established. Here, we focus on an application of dynamic light scattering to this topic. We tried to apply our lab-made apparatus, scanning microscopic light scattering (SMILS), which was specially designed for observing the nanometer-scale network structure in gel materials. In order to examine the vitreous body using SMILS method, a commercial apparatus, nano Partica (Horiba Co. Ltd.) was also customized. We analyzed vitreous body using both the SMILS and the customized nano Partica. We successfully examined the vitreous bodies of healthy pigs in non-destructive way.

  2. Feasibility Study of Non-Destructive Techniques to Measure Corrosion in SAVY Containers

    Energy Technology Data Exchange (ETDEWEB)

    Davenport, Matthew Nicholas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-07-15

    Stainless Steel SAVY containers are used to transport and store nuclear material. They are prone to interior corrosion in the presence of certain chemicals and a low-oxygen environment. SAVY containers also have relatively thin walls to reduce their weight, making their structural integrity more vulnerable to the effects of corrosion. A nondestructive evaluation system that finds and monitors corrosion within containers in use would improve safety conditions and preclude hazards. Non-destructive testing can determine whether oxidation or corrosion is occurring inside the SAVY containers, and there are a variety of non-destructive testing methods that may be viable. The feasibility study described will objectively decide which method best fits the requirements of the facility and the problem. To improve efficiency, the containers cannot be opened during the non-destructive examination. The chosen technique should also be user-friendly and relatively quick to apply. It must also meet facility requirements regarding wireless technology and maintenance. A feasibility study is an objective search for a new technology or product to solve a particular problem. First, the design, technical, and facility feasibility requirements are chosen and ranked in order of importance. Then each technology considered is given a score based upon a standard ranking system. The technology with the highest total score is deemed the best fit for a certain application.

  3. Guidebook on non-destructive testing of concrete structures

    International Nuclear Information System (INIS)

    2002-01-01

    The International Atomic Energy Agency has been active in the promotion of non-destructive testing (NDT) technology for many years. NDT is an important component of a number of IAEA regional projects. This guidebook deals with NDT of concrete. This book covers a wide range of NDT methods including industrial radiography, ultrasonic testing, electromagnetic testing, infrared thermography, etc. Codes, standards, specifications and procedures are also covered

  4. Non-destructive control in nuclear construction

    International Nuclear Information System (INIS)

    Banus; Barbier; Launay

    1978-01-01

    Having recalled the characteristics of the fundamental components of the main primary circuit of nuclear boilers (900 MW) and the means appropriated for their control, it is recalled that the 'French Electricity Board's specifications and control rules' often prescribe more severe criteria than those existing in the U.S.A. Then practical examples of non-destructive controls concerning the steam generator end plates, vessel stainless steel linings, pump attachements, steam generator pipes are given [fr

  5. Non-Destructive Radiological Characterisation Of Contaminated And Activated Concrete

    International Nuclear Information System (INIS)

    Cantrel, E.

    2005-01-01

    The decommissioning of nuclear facilities leads to large quantities of concrete and building material wastes. Radioactivity in building structures arise from very different physical processes such as neutron activation (bioshield), diffusion of the contaminants in the material (primary coolant leakage, maintenance and fuel loading) or aerosol deposition. The variety of the building material also extends the range of faced radiological characteristics. Therefore the minimization of concrete waste generation requires extensive characterisations and the availability of different measurement tools and methods. Up to now, these measurements came from the coring and the radiological analysis of the concrete, which is a destructive, long and costly technique. Looking for alternative solutions, SCK-CEN has started to investigate in collaboration with EDF -research and development and CEA (France) several non destructive methods based on gamma spectroscopy and different spectral examinations using mathematical calibration and modelling tools available on the market. Information on in-depth activity distribution can be derived from in situ gamma spectra by modelling absorption laws (peak to peak ratios) and photons interactions (Compton front) in the bulk of the concrete. As they combine modelling and measurement, the different methodologies being evaluated involve a lot of uncertainty sources linked to the measurement environment, to the knowledge available on site (historical background, material composition), to the operator responsible for the data acquisition and to the performance of the equipment. Therefore a detailed sensitivity analysis is required to define the range of applicability and the performances of the different methods

  6. A rapid and non-destructive method to assess leaf injury caused by the cassava green mite, Mononychellus tanajoa (Bondar) (Acarina: Tetranychidae)

    DEFF Research Database (Denmark)

    Tomkiewicz, Jonna; Skovgård, Henrik; Nachman, Gösta

    1993-01-01

    . The difference in photosynthetically active area that arises between uninjured and injured plants over a period of time provides a measure of spider mite injury that can be related to growth and yield. The method integrates the injury inflicted over a period of time, allows successive observations of the same...

  7. Non-destructive determination of nitrogen in malting barleys by instrumental photon activation analysis and its comparison with the Dumas method

    Czech Academy of Sciences Publication Activity Database

    Krausová, Ivana; Mizera, Jiří; Dostálek, P.; Řanda, Zdeněk

    2018-01-01

    Roč. 124, č. 1 (2018), s. 4-8 ISSN 0046-9750 R&D Projects: GA ČR(CZ) GBP108/12/G108 Institutional support: RVO:61389005 Keywords : nitrogen * instrumental photon activation analysis * Dumas method * malting barley Subject RIV: GM - Food Processing OBOR OECD: Food and beverages Impact factor: 0.859, year: 2016

  8. Residual stress analysis of a multi-layer thin film structure by destructive (curvature) and non-destructive (x-ray) methods

    International Nuclear Information System (INIS)

    Chen, P.C.; Oshida, Y.

    1989-01-01

    Multi-layer thin film which has structure of Cu/Cr/K/Cr/Cu prepared by sputtering process was analyzed for interfacial stresses for as-deposited conditions. This structure was also annealed at 150 degrees C, and 350 degrees C for around 15 min. in a vacuum and cooled slowly down for stress analyses. Equations for residual stress estimations for homogeneous material system using layer removal technique (stress relief) is now applied for inhomogeneous system (multi-layer structure). The results are compared with the data obtained from x-ray diffraction technique by using sin 2 Ψ - 2 θ method, for Cu layer. From the present analyses, the data obtained using layer removal seem to be qualitatively consistent with but not quantitatively in agreement with x-ray method

  9. An economical non-destructive method for estimating eelgrass, Zostera marina (Potamogetonaceae leaf growth rates: formal development and use in northwestern Baja California

    Directory of Open Access Journals (Sweden)

    Elena Solana-Arellano

    2008-09-01

    Full Text Available Seagrass beds provide much of the primary production in estuaries; host many fishes and fish larvae, and abate erosion. The present study presents original analytical methods for estimating mean leaf-growth rates of eelgrass (Zostera marina. The method was calibrated by using data collected in a Z. marina meadow at Punta Banda estuary in Baja California, Mexico. The analytical assessments were based on measurements of leaf length and standard regression procedures. We present a detailed explanation of the formal procedures involved in the derivation of these analytical methods. The measured daily leaf-growth rate was 10.9 mm d-1 leaf-1. The corresponding value projected by our method was 10.2 mm d-1 leaf-1. The associated standard errors were of 0.53 and 0.56 mm d-1 leaf-1 respectively. The method was validated by projecting leaf-growth rates from an independent data set, which gave consistent results. The use of the method to obtain the mean leaf growth rate of a transplanted plot is also illustrated. Comparison of our leaf-growth data with previously reported assessments show the significant forcing of sea-surface temperature on eelgrass leaf dynamics. The formal constructs provided here are of general scope and can be applied to equivalent eelgrass data sets in a straightforward manner. Rev. Biol. Trop. 56 (3: 1003-1013. Epub 2008 September 30.Las praderas de pastos marinos abaten la erosión y aportan gran parte de la productividad primaria de los esteros y son refugio de muchos peces y sus larvas. El presente trabajo introduce métodos analíticos para estimar las tasas medias de crecimiento foliar de Zostera marina L. y sus varianzas. La calibración del método se llevó a cabo utilizando datos de una pradera de esta fanerógama en el Estero de Punta Banda Baja California, México. Las referidas estimaciones analíticas, se basan en medias de longitud foliar y en procedimientos estandarizados de regresión. Dichas determinaciones son por

  10. Assessing diet composition of seahorses in the wild using a non destructive method: Hippocampus reidi (Teleostei: Syngnathidae as a study-case

    Directory of Open Access Journals (Sweden)

    André Luiz da Costa Castro

    Full Text Available This paper presents the results of the first analysis of the natural diet of Hippocampus reidi, one of the most sought after seahorse species in the international aquarium trade. Its main goals were to investigate food items and prey categories consumed by the species, and to discuss feeding strategy and inter and intra-individual components of niche breadth. Data were gathered from October 2005 to September 2006 at the Mamanguape estuary, State of Paraíba, NE Brazil. Food items from seahorses anaesthetized with clove oil were obtained by using a modified version of the flushing method, and were counted and identified to the lowest possible taxonomic level. Specimens were marked and had their height, sex, life and reproductive stage recorded, and then returned to the same place where they were found for the further assessment of anaesthetization/gut flushing on seahorses. Food items were analyzed using frequency of occurrence, relative abundance, index of preponderance and prey-specific abundance using the points method. The graphic method of Amundsen et al. (1996 was used to interpret the feeding strategy and contribution to niche breadth. Nematodes and crustaceans were the most important items found, the latter item usually being the most commonly found in the gut contents of syngnathids. No significant differences in diet composition were found between reproductive stages, however, a higher proportion of large items were consumed by the larger seahorses. The feeding strategy and niche breadth analysis suggests that H. reidi has a generalist feeding strategy, with high variation between phenotypes. Our results suggest that the anaesthetization-flushing technique has the potential to be a useful tool in seahorse research.

  11. Practical Uses of Neutron Radiography for Non-Destructive Testing

    International Nuclear Information System (INIS)

    Middleton, M.F.; de Beer, F.; Pazsit, Imre; Li, Kewen; Hilson, Jodie

    2006-01-01

    Over the past nine years, a research collaboration has been developed around the use of neutron radiography in non-destructive testing of porous rocks and other materials. This paper is a review of that work, with a critical reflection on the future potential of the technique. Neutrons are ideal for detecting water concentration, due to the high attenuation of neutrons by hydrogen, in porous or semi-porous media. Problems, which involve the determination of water concentration in porous media, are particularly amenable for neutron radiography analysis. In this context, water concentration in porous media is important in groundwater studies, petroleum reservoir studies, studies of geothermal systems, the understanding of water absorption in building materials, and more recently in mineral exploration and processing applications. Beyond these applications, neutron analysis of flawed and corroded aircraft parts has emerged as a valuable tool to support conventional non-destructive testing (NDT) techniques. Such investigations, using neutron radiography of aircraft parts, have been active in the United States, Canada and South Africa for over two decades. In 2001, an Australian Research Council (ARC) grant enabled the informal collaboration to establish a semi-portable neutron imaging system in Australia. Preliminary results of that ongoing research will also be presented herein. In overview, neutron radiography presents a powerful non-destructive testing method, which in many new areas of application remains to be evaluated. It has proven to be most valuable where water detection, in quantities greater than approximately 0.1 percent of the total volume, is required. This concentration is not a limitation on the technique, but only current applications. It has been demonstrated to be powerful tool to detect natural substances containing bound-water and neutron-attenuating minerals, such as clay, Glauconite and the various water-rich iron-bearing minerals (e.g. Goethite

  12. Standard test method for non-destructive assay of nuclear material in waste by passive and active neutron counting using a differential Die-away system

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2009-01-01

    1.1 This test method covers a system that performs nondestructive assay (NDA) of uranium or plutonium, or both, using the active, differential die-away technique (DDT), and passive neutron coincidence counting. Results from the active and passive measurements are combined to determine the total amount of fissile and spontaneously-fissioning material in drums of scrap or waste. Corrections are made to the measurements for the effects of neutron moderation and absorption, assuming that the effects are averaged over the volume of the drum and that no significant lumps of nuclear material are present. These systems are most widely used to assay low-level and transuranic waste, but may also be used for the measurement of scrap materials. The examples given within this test method are specific to the second-generation Los Alamos National Laboratory (LANL) passive-active neutron assay system. 1.1.1 In the active mode, the system measures fissile isotopes such as 235U and 239Pu. The neutrons from a pulsed, 14-MeV ne...

  13. Non-destructive evaluation of chlorophyll content in quinoa and amaranth leaves by simple and multiple regression analysis of RGB image components

    DEFF Research Database (Denmark)

    Riccardi, M.; Mele, G.; Pulvento, C.

    2014-01-01

    Leaf chlorophyll content provides valuable information about physiological status of plants; it is directly linked to photosynthetic potential and primary production. In vitro assessment by wet chemical extraction is the standard method for leaf chlorophyll determination. This measurement is expe...

  14. Criticality Safety Evaluation for Small Sample Preparation and Non-Destructive Assay (NDA) Operations in Wing 7 Basement of the CMR Facility

    Energy Technology Data Exchange (ETDEWEB)

    Kunkle, Paige Elizabeth [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Zhang, Ning [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-08-02

    Nuclear Criticality Safety (NCS) has reviewed the fissionable material small sample preparation and NDA operations in Wing 7 Basement of the CMR Facility. This is a Level-1 evaluation conducted in accordance with NCS-AP-004 [Reference 1], formerly NCS-GUIDE-01, and the guidance set forth on use of the Standard Criticality Safety Requirements (SCSRs) [Reference 2]. As stated in Reference 2, the criticality safety evaluation consists of both the SCSR CSED and the SCSR Application CSED. The SCSR CSED is a Level-3 CSED [Reference 3]. This Level-1 CSED is the SCSR Application CSED. This SCSR Application (Level-1) evaluation does not derive controls, it simply applies controls derived from the SCSR CSED (Level-3) for the application of operations conducted here. The controls derived in the SCSR CSED (Level-3) were evaluated via the process described in Section 6.6.5 of SD-130 (also reproduced in Section 4.3.5 of NCS-AP-004 [Reference 1]) and were determined to not meet the requirements for consideration of elevation into the safety basis documentation for CMR. According to the guidance set forth on use of the SCSRs [Reference 2], the SCSR CSED (Level-3) is also applicable to the CMR Facility because the process and the normal and credible abnormal conditions in question are bounded by those that are described in the SCSR CSED. The controls derived in the SCSR CSED include allowances for solid materials and solution operations. Based on the operations conducted at this location, there are less-than-accountable (LTA) amounts of 233U. Based on the evaluation documented herein, the normal and credible abnormal conditions that might arise during the execution of this process will remain subcritical with the following recommended controls.

  15. Non-destructive Assessment of Relief Marking Parameters of Heat Shrinkable Installation Parts for Aviation Technology

    Directory of Open Access Journals (Sweden)

    Kondratov Aleksandr P.

    2017-01-01

    Full Text Available The article explains a new method of relief marking of heat-shrinkable tubing and sleeves made of polymer materials with “shape memory effect.” Method of instrument evaluation of relief marking stereometry of installation parts for aviation equipment, made of polyvinyl chloride, polyethyleneterephthalate and polystyrene was developed and the results were explained. Parameters of pin-point relief marking and compliance of point forms to the Braille font standard were determined with the use of the non-destructive method based on the color of interference pattern with precision of 0.02 mm.

  16. Evaluating the effect of crumb rubber and nano silica on the properties of high volume fly ash roller compacted concrete pavement using non-destructive techniques

    Directory of Open Access Journals (Sweden)

    Bashar S. Mohammed

    2018-06-01

    Full Text Available The major problems related to roller compacted concrete (RCC pavement are high rigidity, lower tensile strength which causes a tendency of cracking due to thermal or plastic shrinkage, flexural and fatigue loads. Furthermore, RCC pavement does not support the use of dowel bars or reinforcement due to the way it is placed and compacted, these also aided in cracking and consequently increased maintenance cost. To address these issues, high volume fly ash (HVFA RCC pavement was developed by partially replacing 50% cement by volume with fly ash. Crumb rubber was used as a partial replacement to fine aggregate in HVFA RCC pavement at 0%, 10%, 20%, and 30% replacement by volume. Nano silica was added at 0%, 1%, 2% and 3% by weight of cementitious materials to improve early strength development in HVFA RCC pavement and mitigate the loss of strength due to the incorporation of crumb rubber. The nondestructive technique using the rebound hammer test (RHT and ultrasonic pulse velocity (UPV were used to evaluate the effect of crumb rubber and nano silica on the performance of HVFA RCC pavement. The results showed that the use of HVFA as cement replacement decreases both the unit weight, compressive strength, rebound number (RN. Furthermore, the unit weight, compressive strength, RN, UPV and dynamic modulus of elasticity of HVFA RCC pavement all decreases with increase in crumb rubber content and increases with the addition of nano-silica. Combined UPV-RN (SonReb models for predicting the 28 days strength of HVFA RCC pavement based on combining UPV and RN were developed using multivariable regression (double power, bilinear, and double exponential models. The exponential combined SonReb model is the most suitable for predicting the compressive strength of HVFA RCC pavement using UPV and RN as the independent variable with better predicting ability, higher correlation compared to the single variable models. Keywords: Crumb rubber, High volume fly ash, Nano

  17. Some Non-Destructive Testing Methods Applicable to Sintered Materials; Quelques Methodes d'Essais Non Destructifs Applicables aux Materiaux Frittes; Nekotorye metody nedestruktivnykh ispytanii, primenimye k spechennym materialam; Algunos Metodos de Ensayo No Destructivo Aplicables a los Materiales Sinterizados

    Energy Technology Data Exchange (ETDEWEB)

    Labusca, Elena; Mirion, I.; Andreescu, N.; Alecu, M.; Biscoveanu, I. [Institut de Physique Atomique, Bucarest (Romania)

    1965-10-15

    Bearing in mind the specific granular structure of sintered materials produced from powders, whose compaction process is linked with the sintering treatment, we have experimented with methods of checking the degree of sintering and certain other properties. The non-destructive methods used include: (1) Examination of the crystalline structure of solid sinters, using metallography and electron microscopy. These methods show the homogeneity of the structure, the grain size and orientation, the presence of various flaws such as inclusions and pores, and the actual course of the sintering process, including crystal formation, grain growth, etc. In certain cases the microscopic examination can be combined with micro-hardness tests. This examination of the microcrystalline structure is one of the principal methods of checking the quality of sintered materials, and is irreplaceable by any other method. (2) The degree of compaction, which is the main factor in determining the quality of sintered materials, can also be checked by measuring certain properties such as electrical and thermal conductivity in relation to density, since for sintered materials conductivity is directly proportional to the degree of sintering. We have also tested and found satisfactory a method for checking porosity, and have obtained interesting experimental data, especially on free porosity, which is susceptible to gaseous inclusions. The paper gives experimental data on the application of these methods to certain sintered materials of importance in nuclear technology. (author) [French] En tenant compte de la structure specifique granulaire des materiaux frittes, elabores a partir de poudres, pour lesquels le proces de consolidation evolue en fonction du traitement de frittage, on a experimente des methodes de controle du degre de frittage et de quelques proprietes. Parmi les methodes non destructives utilisees, les auteurs citent les suivantes: 1. Examen de la structure cristalline des corps

  18. Safeguards and Non-destructive Assay

    International Nuclear Information System (INIS)

    Carchon, R.; Bruggeman, M.

    2001-01-01

    SCK-CEN's programme on safeguards and non-destructive assay includes: (1) various activities to assure nuclear materials accountancy; (2) contributes to the implementation of Integrated Safeguards measures in Belgium and to assist the IAEA through the Belgian Support Programme; (3) renders services to internal and external customers in the field of safeguards; (4) improves passive neutron coincidence counting techniques for waste assay and safeguards verification measurements by R and D on correlation algorithms implemented via software or dedicated hardware; (5) improves gamma assay techniques for waste assay by implementing advanced scanning techniques and different correlation algorithms; and (6) develops numerical calibration techniques. Major achievements in these areas in 2000 are reported

  19. Non-destructive testing: significant facts

    International Nuclear Information System (INIS)

    Espejo, Hector; Ruch, Marta C.

    2006-01-01

    In the last fifty years different organisations, both public and private, have been assigned to the mission of introducing into the country the most relevant aspects of the modern technological discipline 'Non Destructive Testing' (NDT) through a manifold of activities, such as training and education, research, development, technical assistance and services, personnel qualification/certification and standardisation. A review is given of the significant facts in this process, in which the Argentine Atomic Energy Commission, CNEA, played a leading part, a balance of the accomplishments is made and a forecast of the future of the activity is sketched. (author) [es

  20. Estimativa da área foliar de plantas de lima ácida 'Tahiti' usando métodos não-destrutivos Leaf area estimative of young 'Tahiti' lime using non-destructive methods

    Directory of Open Access Journals (Sweden)

    Maurício Antonio Coelho Filho

    2005-04-01

    Full Text Available O objetivo desse estudo foi avaliar métodos não-destrutivos para a determinação da área foliar de plantas jovens de lima ácida 'Tahiti'(Citrus latifolia Tan., em campo. Foram utilizadas informações de variáveis biométricas de 28 plantas jovens (0,07 a 1,44 m² e imagens digitais da área frontal de cada planta (silhueta de copa. Essas variáveis foram correlacionadas com medidas diretas (contagem total de folhas x área foliar média. Como resultado, foi possível estimar a área foliar total das plantas (AFT com base na equação: AFT = 88,936 x DI - 1,4017 (R²=0,75, em que DI representa o diâmetro do caule 5 cm abaixo do ponto em que a copa foi enxertada, e a silhueta da planta em m² (IM: AFT = 2,4951 x IM (R²=0,72. A área foliar dos ramos secundários das plantas (AFR pode ser estimada mediante uma equação exponencial envolvendo o diâmetro do ramo (DR: AFR = 0,0144e277,02 x DR (R²=0,71. Estas metodologias podem ser utilizadas quando o interesse for por um valor médio de área foliar no pomar, não sendo indicadas quando é necessária elevada precisão, pois os erros são elevados.The objective of this study was to evaluate non-destructive methods of estimating total leaf area of young 'Tahiti' lime (Citrus latifolia Tan. plants grown in the field. Information of biometrical variables of 28 young plants (0.07 to 1.44 m² and digitized image of front area of each plant (plant silhouette were used. These variables were correlated to the direct measurements (leaves and average leaf area counting. As a result, it was possible to estimate total plant leaf area (AFT based upon the equation: AFT = 88.936 x DI - 1.4017 (R²=0.75, where DI stands for the trunk diameter taken 5 cm below the graft and the silhouette area in m² (IM: AFT = 2.4951 x IM (R²=0.72. The leaf area of secondary branches (AFR can be estimated by an exponential equation with the branch diameter (DR: AFR = 0.0144e277.02 x DR (R²=0.71. These methodologies can

  1. Application of magnetic resonance imaging to non-destructive void detection in watermelon

    Science.gov (United States)

    Saito, K.; Miki, T.; Hayashi, S.; Kajikawa, H.; Shimada, M.; Kawate, Y.; Nishizawa, T.; Ikegaya, D.; Kimura, N.; Takabatake, K.; Sugiura, N.; Suzuki, M.

    A novel application of magnetic resonance imaging (MRI) is described. The possibility of utilizing MRI for non-destructive quality evaluation of watermelons was studied. In this study, we applied MRI to the detection of internal voids in watermelons. In order to increase the measurement rate, we employed a one-dimensional projection profile method instead of observing a two-dimensional cross-sectional image. The void detection was carried out with this technique over 30 samples and 28 samples were correctly evaluated. The measurement rate was 900 ms per sample, which is an acceptable speed for a sorting machine in the agricultural field.

  2. Non-destructive testing of rocket fuse by thermal neutron radiography

    International Nuclear Information System (INIS)

    An Fulin; Li Furong

    1999-01-01

    A neutron radiography system in reactor horizontal hole of Tsinghua University was introduced, and its capability of neutron radiography was evaluated by theory and experiment, the non-destructive testing for rocket fuse is successful

  3. Non-destructive testing; Examenes no destructivos

    Energy Technology Data Exchange (ETDEWEB)

    Calva, Mauricio; Loske, Achim [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1988-12-31

    The application of non-destructive testing (NDT) in several technical and industrial fields is pointed out, standing out its utilization in the detection of future failures without affecting the examined element. Likewise, the different types of NDTs and their processes, such as x-rays, ultrasoud, magnetic particles, induced currents, penetrating fluids, and optical means, are described. The Non-Destructive Tests Laboratory of the Instituto de Investigaciones Electricas (IIE), plans to create new and more reliable systems independent from the operator`s capacity, to contribute to fulfill the inspection and quality control needs of the generating Mexican power plants. [Espanol] Se senala la aplicacion de los examenes no destructivos (END) a diversos campos tecnicos e industriales, destacando su utilizacion en la deteccion de futuras fallas sin afectar el elemento examinado. Asimismo, se describen los diferentes tipos de END y sus procesos, tales como radiografia, ultrasonido, particulas magneticas, corrientes inducidas, liquidos penetrantes y metodos opticos. El Laboratorio de Pruebas no Destructivas, del Instituto de Investigaciones Electricas (IIE), planea crear sistemas novedosos mas confiables, que no dependan de la capacidad del operador, para contribuir a satisfacer las necesidades de inspeccion y control de calidad que se presentan en las plantas generadoras de energia mexicanas.

  4. Developments in non-destructive beam diagnostics

    International Nuclear Information System (INIS)

    Fraser, J.S.

    1981-01-01

    With the large average beam currents being achieved in accelerators and storage rings, there is an increasing need for non-destructive beam diagnostic devices. For continuous beams, position monitors of the capacitive pick-up type are replaced by resonant devices that respond to the transverse displacement of the beam centroid. Bunch length monitors of the SLAC type using resonant cavities operating in the TM 010 mode can be used for continuous beams. The more detailed information derivable from beam profile scanners requires development of improved non-destructive devices. Profile monitors which scan the visible light produced by high current beams may be more reliable than ones using the residual ionization if the light intensity from gas molecules following nonionizing collisions with beam particles gives a measure of the beam current density independent of the local electron density. The intense Balmer series lines from neutral hydrogen beams have been used successfully to measure beam profiles. At CRNL and at LASL, beam light profile monitors are being developed for high average current accelerators. Three or more projections will be recorded to allow tomographic reconstruction of the two-dimensional beam current density. Light detection is either by intensified Reticons or ISIT vidicons. The use of three or more beam light monitors on a beam transport line will also permit estimates of the transverse emittance to be made through the reconstruction technique

  5. Non-destructive testing; Examenes no destructivos

    Energy Technology Data Exchange (ETDEWEB)

    Calva, Mauricio; Loske, Achim [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1987-12-31

    The application of non-destructive testing (NDT) in several technical and industrial fields is pointed out, standing out its utilization in the detection of future failures without affecting the examined element. Likewise, the different types of NDTs and their processes, such as x-rays, ultrasoud, magnetic particles, induced currents, penetrating fluids, and optical means, are described. The Non-Destructive Tests Laboratory of the Instituto de Investigaciones Electricas (IIE), plans to create new and more reliable systems independent from the operator`s capacity, to contribute to fulfill the inspection and quality control needs of the generating Mexican power plants. [Espanol] Se senala la aplicacion de los examenes no destructivos (END) a diversos campos tecnicos e industriales, destacando su utilizacion en la deteccion de futuras fallas sin afectar el elemento examinado. Asimismo, se describen los diferentes tipos de END y sus procesos, tales como radiografia, ultrasonido, particulas magneticas, corrientes inducidas, liquidos penetrantes y metodos opticos. El Laboratorio de Pruebas no Destructivas, del Instituto de Investigaciones Electricas (IIE), planea crear sistemas novedosos mas confiables, que no dependan de la capacidad del operador, para contribuir a satisfacer las necesidades de inspeccion y control de calidad que se presentan en las plantas generadoras de energia mexicanas.

  6. Fundamental investigation of hybrid high-temperature superconductor-semiconductor sensors for magnetic signals in non-destructive evaluation. Final report; Grundlegende Untersuchungen hybrider Hochtemperatursupraleiter-Halbleiter-Magnetfelddetektoren auf Siliziumsubstraten fuer Anwendungen in der zerstoerungsfreien Pruefung. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Seidel, P.; Schmidl, F.; Linzen, S.; Schmidt, F.; Scherbel, J.

    2002-11-01

    A new magnetic sensor was realized using a Hall magnetometer coupled to an antenna out of high-temperature superconducting material. The resolution of the magnetometer was improved and a noise-limited field resolution of the system of 2.7 nT/{radical}(Hz) was obtained. The necessary thin film technology was developed and optimized. Further improvements will result in 0.5 nT/{radical}(Hz). The sensors were realized as single sensors as well as sensor arrays and successfully tested in a system for non-destructive evaluation. Within this system the cooling was established by a cryocooler which also cools down the electronics to about 80 K. (orig.) [German] Es wurde ein neuartiger Magnetfeldsensor realisiert, bei dem ein Hallmagnetometer mit einer Antenne aus Hochtemperatursupraleitenden Material gekoppelt wird. Die Magnetometerempfindlichkeit wird dadurch kiar verbessert und eine rauschbegrenzte Feldaufloesung des Systems von 2,7 nT{radical}(/Hz) erreicht. Die zur Herstellung noetige hybride Duennschichttechnologie wurde entwickelt und optimiert. Durch Layoutverbesserungen erscheinen Aufloesungen von 0,5 nT/{radical}(Hz) realisierbar. Die Sensoren wurden als Einzelsensor und Sensorarrays realisiert und in einer Anlage zur zerstoerungsfreien Pruefung erfolgreich getestet. Dabei erfolgte die Kuehlung mittels Kleinkuehler, der auch die Verarbeitungselektronik auf 80 K kuehlt. (orig.)

  7. Non destructive testing in amusement park

    International Nuclear Information System (INIS)

    Dominguez Marrero, Humberto; Hernandez Torres, Debora; Sendoya Puente, Felix; Herrera Palma, Victoria; Suarez Guerra, Yarelis; Moreno Hernandez, Eduardo; Lopez Hernandez, Pedro

    2009-01-01

    In 2006 began the installation of Chinese amusement parks at several places in Havana City. Structural security is one of the principal tasks that should be done, since the beginning of the services of these installations. The use on Non Destructive Testing Techniques (NDT), has to be development and implemented in order to avoid the possibility of failure during services with a consequence threat to safety for the public presented. In this work it is shown the results of application of NDT techniques and recommendations for the quality control of the different welds and mechanical components presented. Techniques as Visual Examination, Liquid Penetrant and Ultrasonic have been used for these purposes in order to obtain a structural diagnostic in the amusement parks. There are also exposed the use and implementation of international recommendations and Standards, which are very rigorous in its applications for the case of recreation industry. This is a consequence to its social service fundamentally to children and teenage people. (Author)

  8. Non destructive testing of works of art by terahertz analysis

    Science.gov (United States)

    Bodnar, Jean-Luc; Metayer, Jean-Jacques; Mouhoubi, Kamel; Detalle, Vincent

    2013-11-01

    Improvements in technologies and the growing security needs in airport terminals lead to the development of non destructive testing devices using terahertz waves. Indeed, these waves have the advantage of being, on one hand, relatively penetrating. They also have the asset of not being ionizing. It is thus potentially an interesting contribution in the non destructive testing field. With the help of the VISIOM Company, the possibilities of this new industrial analysis method in assisting the restoration of works of art were then approached. The results obtained within this framework are presented here and compared with those obtained by infrared thermography. The results obtained show first that the THZ method, like the stimulated infrared thermography allows the detection of delamination located in murals paintings or in marquetries. They show then that the THZ method seems to allow detecting defects located relatively deeply (10 mm) and defects potentially concealed by other defects. It is an advantage compared to the stimulated infra-red thermography which does not make it possible to obtain these results. Furthermore, they show that the method does not seem sensitive to the various pigments constituting the pictorial layer, to the presence of a layer of "Japan paper" and to the presence of a layer of whitewash. It is not the case of the stimulated infrared thermography. It is another advantage of the THZ method. Finally, they show that the THZ method is limited in the detection of low-size defects. It is a disadvantage compared to the stimulated infrared thermography.

  9. Application of ICT in the non-destructive inspection of explosive device

    International Nuclear Information System (INIS)

    Wang Zhe; Li Tiantuo; Liu Zhiqiang; Pei Zhihua; Wang Zhiping

    2003-01-01

    The inspection of explosive device is an important task in the store of the weapons. The technique of non-destructive examination with radial, especially the ICT, is an effective method. The paper mainly introduces the design and the theories on the inspection system and software system of the application of industrial ICT in the non-destructive examination of explosive device, and gives a reference to the work in such fields

  10. Evaluation of non destructive testing to characterize the resistance of the prefabricated system of columns and floor tiles for single family homes of a level: permeability meter, determination of wave velocity by ultrasound, Schmidt sclerometer and metal detector

    International Nuclear Information System (INIS)

    Quesada Chacon, Dannell

    2014-01-01

    Non destructive testing are determined to be correlated with resistance to compression and flexion of elements belonging to prefabricated system of columns and floor tiles for single family homes of a level. The characteristics of the non destructive testing are described, such as: measurer of permeability, Schmidt sclerometer, determination of wave velocity by ultrasound and metal detector. The columns and floor tiles are elaborated with 2 mixtures of different resistances at 28 days. The first more than 30 MPa and the second less than 25 MPa are sampled together with the control cylinders necessary to obtain the actual resistance according to ASTM C39. Last resistance testings to compression and Schmidt sclerometer are realized to control cylinders to 1, 2, and 4 weeks after being cast. Non destructive testings (permeability meter Torrent, Schmidt sclerometer and determination of wave velocity by ultrasound) are performed in columns and floor tiles to 1, 2, and 4 weeks after being cast. Last resistance testings to flexion is obtained by means of destructive tests of the columns and floor tiles sampled. The correlation of the data obtained is determined to derive values of compression resistance from non destructive testing [es

  11. Laser active thermography for non-destructive testing

    International Nuclear Information System (INIS)

    Semerok, A.; Grisolia, C.; Fomichev, S.V.; Thro, P.Y.

    2013-01-01

    Thermography methods have found their applications in different fields of human activity. The non-destructive feature of these methods along with the additional advantage by automated remote control and tests of nuclear installations without personnel attendance in the contaminated zone are of particular interest. Laser active pyrometry and laser lock-in thermography for in situ non-destructive characterization of micrometric layers on graphite substrates from European tokamaks were under extensive experimental and theoretical studies in CEA (France). The studies were aimed to obtain layer characterization with cross-checking the layer thermal contact coefficients determined by active laser pyrometry and lock-in thermography. The experimental installation comprised a Nd-YAG pulsed repetition rate laser (1 Hz - 10 kHz repetition rate frequency, homogeneous spot) and a home-made pyrometer system based on two pyrometers for the temperature measurements in 500 - 2600 K range. For both methods, the layer characterization was provided by the best fit of the experimental results and simulations. The layer thermal contact coefficients determined by both methods were quite comparable. Though there was no gain in the measurements accuracy, lock-in measurements have proved their advantage as being much more rapid. The obtained experimental and theoretical results are presented. Some practical applications and possible improvements of the methods are discussed. (authors)

  12. Laser active thermography for non-destructive testing

    Science.gov (United States)

    Semerok, A.; Grisolia, C.; Fomichev, S. V.; Thro, P.-Y.

    2013-11-01

    Thermography methods have found their applications in different fields of human activity. The non-destructive feature of these methods along with the additional advantage by automated remote control and tests of nuclear installations without personnel attendance in the contaminated zone are of particular interest. Laser active pyrometry and laser lock-in thermography for in situ non-destructive characterization of micrometric layers on graphite substrates from European tokamaks were under extensive experimental and theoretical studies in CEA (France). The studies were aimed to obtain layer characterization with cross-checking the layer thermal contact coefficients determined by active laser pyrometry and lock-in thermography. The experimental installation comprised a Nd-YAG pulsed repetition rate laser (1 Hz - 10 kHz repetition rate frequency, homogeneous spot) and a home-made pyrometer system based on two pyrometers for the temperature measurements in 500 - 2600 K range. For both methods, the layer characterization was provided by the best fit of the experimental results and simulations. The layer thermal contact coefficients determined by both methods were quite comparable. Though there was no gain in the measurements accuracy, lock-in measurements have proved their advantage as being much more rapid. The obtained experimental and theoretical results are presented. Some practical applications and possible improvements of the methods are discussed.

  13. Challenges of Non-Destructive Assay Waste Measurement

    International Nuclear Information System (INIS)

    Shull, A.H.

    2003-01-01

    Historically, the Savannah River Site (SRS) routinely produced special nuclear material (SNM), which provided stable measurement conditions for the non-destructive assay (NDA) methods. However, the main mission of SRS has changed from the production of SNM to the processing of waste and material stabilization. Currently, the purpose of processing is to recover the SNM from the waste and stabilization materials, much of which is from other DOE facilities. These missions are usually of a short duration, but require non-destructive assay (NDA) accountability measurements on materials of varying composition and geometric configuration. These missions usually have cost and time constraints, which sometimes require re-application of existing NDA methods to waste measurements. Usually, each new material or re-application of the NDA method to a different SNM campaign requires new standards and timely re-calibration of the method. These constraints provide numerous challenges for the NDA methods, particularly in the area of measurement uncertainty. This paper will discuss the challenges of these situations, mainly from a measurement and statistical point of view and provide some possible solutions to the problems encountered. Specific examples will be discussed for the segmented gamma scanner (SGS), neutron multiplicity counter (NMC) and passive neutron coincidence counter (PNCC), which are some of the most common NDA instruments at SRS

  14. Improvement of non-destructive fissile mass assays in α low-level waste drums: A matrix correction method based on neutron capture gamma-rays and a neutron generator

    Science.gov (United States)

    Jallu, F.; Loche, F.

    2008-08-01

    Within the framework of radioactive waste control, non-destructive assay (NDA) methods may be employed. The active neutron interrogation (ANI) method is now well-known and effective in quantifying low α-activity fissile masses (mainly 235U, 239Pu, 241Pu) with low densities, i.e. less than about 0.4, in radioactive waste drums of volumes up to 200 l. The PROMpt Epithermal and THErmal interrogation Experiment (PROMETHEE [F. Jallu, A. Mariani, C. Passard, A.-C. Raoux, H. Toubon, Alpha low level waste control: improvement of the PROMETHEE 6 assay system performances. Nucl. Technol. 153 (January) (2006); C. Passard, A. Mariani, F. Jallu, J. Romeyer-Dherber, H. Recroix, M. Rodriguez, J. Loridon, C. Denis, PROMETHEE: an alpha low level waste assay system using passive and active neutron measurement methods. Nucl. Technol. 140 (December) (2002) 303-314]) based on ANI has been under development since 1996 to reach the incinerating α low level waste (LLW) criterion of about 50 Bq[α] per gram of crude waste (≈50 μg Pu) in 118 l drums on the date the drums are conditioned. Difficulties arise when dealing with matrices containing neutron energy moderators such as H and neutron absorbents such as Cl. These components may have a great influence on the fissile mass deduced from the neutron signal measured by ANI. For example, the calibration coefficient measured in a 118 l drum containing a cellulose matrix (density d = 0.144 g cm -3) may be 50 times higher than that obtained in a poly-vinyl-chloride matrix ( d = 0.253 g cm -3). Without any information on the matrix, the fissile mass is often overestimated due to safety procedures and by considering the most disadvantageous calibration coefficient corresponding to the most absorbing and moderating calibration matrix. The work discussed in this paper was performed at the CEA Nuclear Measurement Laboratory in France. It concerns the development of a matrix effect correction method, which consists in identifying and quantifying

  15. Improvement of non-destructive fissile mass assays in α low-level waste drums: A matrix correction method based on neutron capture gamma-rays and a neutron generator

    International Nuclear Information System (INIS)

    Jallu, F.; Loche, F.

    2008-01-01

    Within the framework of radioactive waste control, non-destructive assay (NDA) methods may be employed. The active neutron interrogation (ANI) method is now well-known and effective in quantifying low α-activity fissile masses (mainly 235 U, 239 Pu, 241 Pu) with low densities, i.e. less than about 0.4, in radioactive waste drums of volumes up to 200 l. The PROMpt Epithermal and THErmal interrogation Experiment (PROMETHEE [F. Jallu, A. Mariani, C. Passard, A.-C. Raoux, H. Toubon, Alpha low level waste control: improvement of the PROMETHEE 6 assay system performances. Nucl. Technol. 153 (January) (2006); C. Passard, A. Mariani, F. Jallu, J. Romeyer-Dherber, H. Recroix, M. Rodriguez, J. Loridon, C. Denis, PROMETHEE: an alpha low level waste assay system using passive and active neutron measurement methods. Nucl. Technol. 140 (December) (2002) 303-314]) based on ANI has been under development since 1996 to reach the incinerating α low level waste (LLW) criterion of about 50 Bq[α] per gram of crude waste (∼50 μg Pu) in 118 l drums on the date the drums are conditioned. Difficulties arise when dealing with matrices containing neutron energy moderators such as H and neutron absorbents such as Cl. These components may have a great influence on the fissile mass deduced from the neutron signal measured by ANI. For example, the calibration coefficient measured in a 118 l drum containing a cellulose matrix (density d = 0.144 g cm -3 ) may be 50 times higher than that obtained in a poly-vinyl-chloride matrix (d = 0.253 g cm -3 ). Without any information on the matrix, the fissile mass is often overestimated due to safety procedures and by considering the most disadvantageous calibration coefficient corresponding to the most absorbing and moderating calibration matrix. The work discussed in this paper was performed at the CEA Nuclear Measurement Laboratory in France. It concerns the development of a matrix effect correction method, which consists in identifying and

  16. Improvement of non-destructive fissile mass assays in {alpha} low-level waste drums: A matrix correction method based on neutron capture gamma-rays and a neutron generator

    Energy Technology Data Exchange (ETDEWEB)

    Jallu, F. [Commissariat a l' Energie Atomique, CEA, DEN, Nuclear Measurement Laboratory, Bat. 224, 13108 Saint Paul lez Durance (France)], E-mail: fanny.jallu@cea.fr; Loche, F. [Commissariat a l' Energie Atomique, CEA, DEN, Nuclear Measurement Laboratory, Bat. 224, 13108 Saint Paul lez Durance (France)

    2008-08-15

    Within the framework of radioactive waste control, non-destructive assay (NDA) methods may be employed. The active neutron interrogation (ANI) method is now well-known and effective in quantifying low {alpha}-activity fissile masses (mainly {sup 235}U, {sup 239}Pu, {sup 241}Pu) with low densities, i.e. less than about 0.4, in radioactive waste drums of volumes up to 200 l. The PROMpt Epithermal and THErmal interrogation Experiment (PROMETHEE [F. Jallu, A. Mariani, C. Passard, A.-C. Raoux, H. Toubon, Alpha low level waste control: improvement of the PROMETHEE 6 assay system performances. Nucl. Technol. 153 (January) (2006); C. Passard, A. Mariani, F. Jallu, J. Romeyer-Dherber, H. Recroix, M. Rodriguez, J. Loridon, C. Denis, PROMETHEE: an alpha low level waste assay system using passive and active neutron measurement methods. Nucl. Technol. 140 (December) (2002) 303-314]) based on ANI has been under development since 1996 to reach the incinerating {alpha} low level waste (LLW) criterion of about 50 Bq[{alpha}] per gram of crude waste ({approx}50 {mu}g Pu) in 118 l drums on the date the drums are conditioned. Difficulties arise when dealing with matrices containing neutron energy moderators such as H and neutron absorbents such as Cl. These components may have a great influence on the fissile mass deduced from the neutron signal measured by ANI. For example, the calibration coefficient measured in a 118 l drum containing a cellulose matrix (density d = 0.144 g cm{sup -3}) may be 50 times higher than that obtained in a poly-vinyl-chloride matrix (d = 0.253 g cm{sup -3}). Without any information on the matrix, the fissile mass is often overestimated due to safety procedures and by considering the most disadvantageous calibration coefficient corresponding to the most absorbing and moderating calibration matrix. The work discussed in this paper was performed at the CEA Nuclear Measurement Laboratory in France. It concerns the development of a matrix effect correction

  17. European Non Destructive Examination Forum (ENDEF)

    Energy Technology Data Exchange (ETDEWEB)

    Deffrennes, M [EC, DG XVII, Nuclear Energy, Brussels (Belgium); Engl, G [Siemens AG Energieerzeugung KWU, Erlangen (Germany); Estorff, U von [EC, JRC/IAM, Petten (Netherlands)

    1998-11-01

    ENDEF, an initiative of the European Commission, DG XVII (Energy) was well supported by the European industrial institutions working in assistance with nuclear industrial organisations in the CEEC`s (Central and Eastern European Countries) and NIS`s (New Independent States). This Forum provides effectively a platform for open discussion between representatives of industrial actors active in the NDE (Non Destructive Examination)/ISI (In Service Inspection) field with the purpose to establish a co-operation pattern between qualified representatives of the EU (European Union) industry to offer a better co-ordinated and well defined assistance to the CEEC`s and NIS in the field of NDE/ISI, and to lay the ground for further industrial co-operation. ENDEF developed a strategy to follow for the establishment of co-operation projects. This strategy is now used to understand the extent of past or present assistance projects and to identify the areas where more co-operation is needed. ENDEF encourages the creation in the NIS`s and CEEC`s of similar forums in order to increase the co-operation and co-ordination. ENDEF is also working in perfect agreement with the European Network ENIQ, piloted by the European plant operators. This identity of views lead to the leadership by the ENDEF co-ordinator of the ENIQ Task 3 involving Applications of the European Methodology for ISI qualification in the CEEC`s and NIS`s and presently fully integrated in ENDEF. (orig.)

  18. European Non Destructive Examination Forum (ENDEF)

    International Nuclear Information System (INIS)

    Deffrennes, M.; Engl, G.; Estorff, U. von

    1998-01-01

    ENDEF, an initiative of the European Commission, DG XVII (Energy) was well supported by the European industrial institutions working in assistance with nuclear industrial organisations in the CEEC's (Central and Eastern European Countries) and NIS's (New Independent States). This Forum provides effectively a platform for open discussion between representatives of industrial actors active in the NDE (Non Destructive Examination)/ISI (In Service Inspection) field with the purpose to establish a co-operation pattern between qualified representatives of the EU (European Union) industry to offer a better co-ordinated and well defined assistance to the CEEC's and NIS in the field of NDE/ISI, and to lay the ground for further industrial co-operation. ENDEF developed a strategy to follow for the establishment of co-operation projects. This strategy is now used to understand the extent of past or present assistance projects and to identify the areas where more co-operation is needed. ENDEF encourages the creation in the NIS's and CEEC's of similar forums in order to increase the co-operation and co-ordination. ENDEF is also working in perfect agreement with the European Network ENIQ, piloted by the European plant operators. This identity of views lead to the leadership by the ENDEF co-ordinator of the ENIQ Task 3 involving Applications of the European Methodology for ISI qualification in the CEEC's and NIS's and presently fully integrated in ENDEF. (orig.)

  19. Non-destructive examination of the bonding interface in DEMO divertor fingers

    International Nuclear Information System (INIS)

    Richou, Marianne; Missirlian, Marc; Vignal, Nicolas; Cantone, Vincent; Hernandez, Caroline; Norajitra, Prachai; Spatafora, Luigi

    2013-01-01

    Highlights: • SATIR tests on DEMO divertor fingers (integrating or not He cooling system). • Millimeter size artificial defects were manufactured. • Detectability of millimeter size artificial defects was evaluated. • SATIR can detect defect in DEMO divertor fingers. • Simulations are well correlated to SATIR tests. -- Abstract: Plasma facing components (PFCs) with tungsten (W) armor materials for DEMO divertor require a high heat flux removal capability (at least 10 MW/m 2 in steady-state conditions). The reference divertor PFC concept is a finger with a tungsten tile as a protection and sacrificial layer brazed to a thimble made of tungsten alloy W – 1% La 2 O 3 (WL10). Defects may be located at the W thimble to W tile interface. As the number of fingers is considerable (>250,000), it is then a major issue to develop a reliable control procedure in order to control with a non-destructive examination the fabrication processes. The feasibility for detecting defect with infrared thermography SATIR test bed is presented. SATIR is based on the heat transient method and is used as an inspection tool in order to assess component heat transfer capability. SATIR tests were performed on fingers integrating or not the complex He cooling system (steel cartridge with jet holes). Millimeter size artificial defects were manufactured and their detectability was evaluated. Results of this study demonstrate that the SATIR method can be considered as a relevant non-destructive technique examination for the defect detection of DEMO divertor fingers

  20. Comparisons of non-destructive examination standards in the framework of fracture mechanics approach

    International Nuclear Information System (INIS)

    Reale, S.; Corvi, A.

    1993-01-01

    One of the aims of the various Engineering Standards related to Non-destructive Examination (NDE) is to identify and limit some characteristics of defects in a structure, since the degree of damage of a structure can be associated with these defect characteristics. One way that the damage level can be evaluated is by means of Fracture Mechanics. The objective of the present paper is to compare and identify the differences in the flaw acceptance criteria of national NDE Standards so as to suggest some guidelines for a future common European Standard. This paper examines the Standards adopted in France (RCC-MR), Germany (DIN), Italy (ASME) and the UK (BSI). It concentrates on both ultrasonic and radiographic inspection methods. The flaw acceptance criteria in these standards relating to non-destructive tests performed on a component during manufacturing are compared and evaluated by the Fracture Mechanics CEGB R6 procedure. General guidelines and results supporting the significance of the Fracture Mechanics approach are given. (Author)

  1. Training guidelines in non-destructive testing techniques. 1991 edition

    International Nuclear Information System (INIS)

    1991-10-01

    Non-destructive testing methods (NDT), by their very nature, allow components to be fully examined for properties or flaws without interfering with their usefulness. This grouping of inspection methods has grown from a handful of primitive techniques practised by artists to a widely known discipline which is an essential part of quality control, largely as a result of the standards demanded by the nuclear and aerospace industries. Recognizing the need for an international publication of NDT training syllabi, the IAEA Consultants Meeting on ''Qualification and Certification of NDT Personnel'' (Milan, 20-21 May 1986), recommended that the Agency publish the guidelines developed by Regional Working Group of the Latin America and Caribbean project. It was first issued in English in 1987 and has now been re-edited in English and Spanish and enlarged by the addition of programmes for other techniques

  2. Non-destructive study of iron gall inks in manuscripts

    Science.gov (United States)

    Duh, Jelena; Krstić, Dragica; Desnica, Vladan; Fazinić, Stjepko

    2018-02-01

    The aim of this research is to establish an effective procedure of iron gall ink characterization using complementary non-destructive methods. By this, it is possible to better understand correlation of chemical composition of the inks and the state of preservation of iron gall ink manuscripts, as well as the effects of conservation treatment performed upon them. This study was undertaken on a bound 16th century manuscript comprised of different types of paper and ink from the National and University Library in Zagreb. Analytical methods used included Particle Induced X-ray Emission (PIXE) and X-ray Fluorescence (XRF). Paper fibers were identified by optical microscopy and the degradation state, as well as ink differentiation, transit metal migrations and detection of stains, with ultraviolet (UV) and infrared (IR) photography. The techniques applied on original writing materials gave important information about paper and ink composition, its preservation state and efficiency of conservation treatment performed upon them.

  3. Training guidelines in non-destructive testing techniques

    International Nuclear Information System (INIS)

    1991-10-01

    Non-destructive testing methods (NDT), by their very nature, allow components to be fully examined for properties or flaws without interfering with their usefulness. This grouping of inspection methods has grown from a handful of primitive techniques practised by artists to a widely known discipline which is an essential part of quality control, largely as a result of the standards demanded by the nuclear and aerospace industries. Recognizing the need for an international publication of NDT training syllabi, the IAEA Consultants Meeting on ''Qualification and Certification of NDT Personnel'' (Milan, 20-21 May 1986), recommended that the Agency publish the guidelines developed by Regional Working Group of the Latin America and Caribbean project. It was first issued in English in 1987 and has now been re-edited in English and Spanish and enlarged by the addition of programmes for other techniques

  4. Contribution of expert systems to data processing in non-destructive control

    International Nuclear Information System (INIS)

    Augendre, H.; Perron, M.C.

    1990-01-01

    The increase of non-destructive control in industrial applications requires the development of new data processing methods. The expert system approach is able to provide signal modelling means which are closer to the human behaviour. Such methods used in more traditional programs lead to substantial improvements. These investigations come within our design to apply sophisticated methods to industrial non-destructive control. For defect characterization purposes in ultrasonic control, various supervised learning methods have been investigated in an experimental study. The traditional approach is concerned with statistics based methods, whereas the second one lies in learning logical decision rules valid within a numerical description space [fr

  5. Models on reliability of non-destructive testing

    International Nuclear Information System (INIS)

    Simola, K.; Pulkkinen, U.

    1998-01-01

    The reliability of ultrasonic inspections has been studied in e.g. international PISC (Programme for the Inspection of Steel Components) exercises. These exercises have produced a large amount of information on the effect of various factors on the reliability of inspections. The information obtained from reliability experiments are used to model the dependency of flaw detection probability on various factors and to evaluate the performance of inspection equipment, including the sizing accuracy. The information from experiments is utilised in a most effective way when mathematical models are applied. Here, some statistical models for reliability of non-destructive tests are introduced. In order to demonstrate the use of inspection reliability models, they have been applied to the inspection results of intergranular stress corrosion cracking (IGSCC) type flaws in PISC III exercise (PISC 1995). The models are applied to both flaw detection frequency data of all inspection teams and to flaw sizing data of one participating team. (author)

  6. New technologies in electromagnetic non-destructive testing

    CERN Document Server

    Huang, Songling

    2016-01-01

    This book introduces novel developments in the field of electromagnetic non-destructive testing and evaluation (NDT/E). The topics include electromagnetic ultrasonic guided wave testing, pulsed eddy current testing, remote field eddy current testing, low frequency eddy current testing, metal magnetic memory testing, and magnetic flux leakage testing. Considering the increasing concern about the safety maintenance of critical structures in various industries and everyday life, these topics presented here will be of particular interest to the readers in the NDT/E field. This book covers both theoretical researches and the engineering applications of the electromagnetic NDT technology. It could serve as a valuable reference for college students and relevant NDT technicians. It is also a useful material for qualification training and higher learning for nondestructive testing professionals.

  7. Application of positron annihilation techniques in non-destructive testing

    International Nuclear Information System (INIS)

    Zeng Hui; Chen Zhiqiang; Jiang Jing; Xue Xudong; Wu Yichu; Liang Jianping; Liu Xiangbing; Wang Rongshan

    2014-01-01

    Background: The investigation of the material damage state is very important for industrial application. Most mechanical damage starts with a change in the microstructure of the material. Positron annihilation techniques are very sensitive probes for detecting defects and damage on an atomic scale in materials, which are of great concern in the engineering applications. Additionally they are apparatus of non-destruction, high-sensitivity and easy-use. Purpose: Our goal is to develop a system to exploit new non-destructive testing (NDT) methods using positron annihilation spectroscopy, a powerful tool to detect vacancy-type defects and their chemical environment. Methods: A positron NDT system was designed and constructed by modifying the 'sandwich structure' of sample-source-sample in conventional Doppler broadening and positron lifetime spectrometers. Doppler broadening and positron lifetime spectra of a single sample can be measured and analyzed by subtracting the contribution of a reference sample. Results: The feasibility and reliability of positron NDT system have been tested by analyzing nondestructively deformation and damage caused by mechanical treatment or by irradiation of metal alloys. This system can be used for detecting defects and damage in thick or large-size samples, as well as for measuring the two-dimension distribution of defects in portable, sensitive, fast way. Conclusion: Positron NDT measurement shows changes in real atomic-scale defects prior to changes in the mechanical properties, which are detectable by other methods of NDT, such as ultrasonic testing and eddy current testing. This system can be developed for use in both the laboratory and field in the future. (authors)

  8. Non-destructive testing of CFC/Cu joints

    International Nuclear Information System (INIS)

    Casalegno, V.; Ferraris, M.; Salvo, M.; Vesprini, R.; Merola, M.

    2006-01-01

    Reliable non-destructive tests (NDT) are fundamental for the manufacturing of ITER components, especially for high heat flux plasma facing components. NDT include various techniques, which allow inspection of a component without impairing serviceability; it's important to detect and characterize defects (type, size and position) as well as the set-up of acceptance standards in order to predict their influence on the component performance in service conditions. The present study shows a description of NDT used to assess the manufacturing quality of CFC (carbon fibre reinforced carbon matrix composites)/Cu/CuCrZr joints. In the ITER divertor, armor tiles made of CFC are joined to the cooling structure made of precipitation hardened copper alloy CuCrZr; a soft pure Cu interlayer is required between the heat sink and the armour in order to mitigate the stresses at the joint interface. NDT on CFC/Cu joint are difficult because of the different behavior of CFC and copper with regard to physical excitations (e.g. ultrasonic wave) used to test the component; furthermore the response to this input must be accurately studied to identify the detachment of CFC tiles from Cu alloy. The inspected CFC/Cu/CuCrZr joints were obtained through direct casting of pure Cu on modified CFC surface and subsequently through brazing of CFC/Cu joints to CuCrZr by a Cu-based alloy. Different non-destructive methods were used for inspecting these joints: lock-in thermography, ultrasonic inspections, microtomography and microradiography. The NDT tests were followed by metallographic investigation on the samples, since the reliability of a certain non destructive test can be only validated by morphological evidence of the detected defects. This study will undertake a direct comparison of NDT used on CFC/Cu joints in terms of real flaws presence. The purpose of this work is to detect defects at the joining interface as well as in the cast copper ( for instance voids). The experimental work was

  9. Data fusion: a new concept in non-destructive testing

    International Nuclear Information System (INIS)

    Georgel, B.; Lavayssiere, B.

    1995-01-01

    Non-destructive testing of some components (made of austenitic steel, or of a complex shape for example) requires quite often the use of several methods such as X-ray, ultrasonics, Eddy Currents. Then, a skilled operator is able to perform the expertise of the specimen. The main goal of this paper is to show that 3D diagnosis may be improved in term of reliability and precision by fusion of several NDT techniques. A data fusion algorithm is more that trying to improve the visualisation or the rendering of NDT data sets. It consists for each volume element, in computing a new value representing the combined information and in formulating a diagnosis on this basis. To achieve such a goal, know-how in modeling of physical phenomena and in applied mathematics is crucial. (authors). 4 refs., 2 figs

  10. Catalogue of test specimens for non-destructive examination

    International Nuclear Information System (INIS)

    1985-05-01

    One of the key elements in assuring the integrity of reactor primary circuits is the availability of trustworthy non-destructive methods for detecting dangerous defects that may be present. Various approaches to making such examinations are being developed, including the use of ultrasonic and radiographic techniques. To demonstrate their capability and reliability, they must be tested on steel specimens reproducing the various types of faults which may arise in real primary circuit vessels and piping. Such specimens are costly to fabricate. It is therefore clearly desirable that existing specimens should be made accessible to as many organisations as possible for testing. This catalogue contains detailed Information on forty-odd deliberately flawed plates, blocks, vessels, etc. which have been produced in OECD countries, along with the name of a contact person to whom inquiries should be directed in each case

  11. Non-destructive sampling of ancient insect DNA

    DEFF Research Database (Denmark)

    Thomsen, Philip Francis; Elias, Scott; Gilbert, Tom

    2009-01-01

    BACKGROUND: A major challenge for ancient DNA (aDNA) studies on insect remains is that sampling procedures involve at least partial destruction of the specimens. A recent extraction protocol reveals the possibility of obtaining DNA from past insect remains without causing visual morphological...... of 77-204 base pairs (-bp) in size using species-specific and general insect primers. CONCLUSION/SIGNIFICANCE: The applied non-destructive DNA extraction method shows promising potential on insect museum specimens of historical age as far back as AD 1820, but less so on the ancient permafrost......-preserved insect fossil remains tested, where DNA was obtained from samples up to ca. 26,000 years old. The non-frozen sediment DNA approach appears to have great potential for recording the former presence of insect taxa not normally preserved as macrofossils and opens new frontiers in research on ancient...

  12. Non-destructive Faraday imaging of dynamically controlled ultracold atoms

    Science.gov (United States)

    Gajdacz, Miroslav; Pedersen, Poul; Mørch, Troels; Hilliard, Andrew; Arlt, Jan; Sherson, Jacob

    2013-05-01

    We investigate non-destructive measurements of ultra-cold atomic clouds based on dark field imaging of spatially resolved Faraday rotation. In particular, we pursue applications to dynamically controlled ultracold atoms. The dependence of the Faraday signal on laser detuning, atomic density and temperature is characterized in a detailed comparison with theory. In particular the destructivity per measurement is extremely low and we illustrate this by imaging the same cloud up to 2000 times. The technique is applied to avoid the effect of shot-to-shot fluctuations in atom number calibration. Adding dynamic changes to system parameters, we demonstrate single-run vector magnetic field imaging and single-run spatial imaging of the system's dynamic behavior. The method can be implemented particularly easily in standard imaging systems by the insertion of an extra polarizing beam splitter. These results are steps towards quantum state engineering using feedback control of ultracold atoms.

  13. Modelling, simulation and visualisation for electromagnetic non-destructive testing

    International Nuclear Information System (INIS)

    Ilham Mukriz Zainal Abidin; Abdul Razak Hamzah

    2010-01-01

    This paper reviews the state-of-the art and the recent development of modelling, simulation and visualization for eddy current Non-Destructive Testing (NDT) technique. Simulation and visualization has aid in the design and development of electromagnetic sensors and imaging techniques and systems for Electromagnetic Non-Destructive Testing (ENDT); feature extraction and inverse problems for Quantitative Non-Destructive Testing (QNDT). After reviewing the state-of-the art of electromagnetic modelling and simulation, case studies of Research and Development in eddy current NDT technique via magnetic field mapping and thermography for eddy current distribution are discussed. (author)

  14. Non-destructive analysis for the inspection and control of metalic monuments and historical manuscripts

    International Nuclear Information System (INIS)

    Faubel, W.; Heissler, S.; Klewe-Nebenius, H.; Willin, E.

    2003-01-01

    As a contribution to the increasing efforts to preserve cultural heritage of historical bronze monuments exposed to atmospheric corrosion as well as historical books and manuscripts non-destructive analytical methods are highly desirable enabling an in-situ examination of the surface status of an object. The development and application of novel non-destructive analytical methods based on the photoacoustic and photothermal deflection spectroscopy allowed to investigate the state of bronze patina as well as the effectiveness of conservation procedures for historical manuscripts. (orig.)

  15. Edward's sword? - A non-destructive study of a medieval king's sword

    Science.gov (United States)

    Segebade, Chr.

    2013-04-01

    Non-destructive and instrumental methods including photon activation analysis were applied in an examination of an ancient sword. It was tried to find indication of forgery or, if authentic, any later processing and alteration. Metal components of the hilt and the blade were analysed by instrumental photon activation. Non-destructive metallurgical studies (hardness measurements, microscopic microstructure analysis) are briefly described, too. The results of these investigations did not yield indication of non-authenticity. This stood in agreement with the results of stylistic and scientific studies by weapon experts.

  16. Assuring the reliability of structural components - experimental data and non-destructive examination requirements

    International Nuclear Information System (INIS)

    Lucia, A.C.

    1984-01-01

    The probability of failure of a structural component can be estimated by either statistical methods or a probabilistic structural reliability approach (where the failure is seen as a level crossing of a damage stochastic process which develops in space and in time). The probabilistic approach has the advantage that it makes available not only an absolute value of the failure probability but also a lot of additional information. The disadvantage of the probabilistic approach is its complexity. It is discussed for the following situations: reliability of a structural component, material properties, data for fatigue crack growth evaluation, a bench mark exercise on reactor pressure vessel failure probability computation, and non-destructive examination for assuring a given level of structural reliability. (U.K.)

  17. Non-destructive decontamination of building materials

    Science.gov (United States)

    Holecek, Josef; Otahal, Petr

    2015-11-01

    For nondestructive radiation decontamination of surfaces it is necessary to use varnishes, such as ARGONNE, DG1101, DG1108, etc. This text evaluates the use of manufactured strippable coatings for radiation decontamination. To evaluate decontamination capability of such coatings the following varnishes were selected and subsequently used: AZ 1-700 and AXAL 1807S. The varnishes were tested on different building materials surfaces contaminated by short-term radioisotopes of Na-24 or La-140, in water soluble or water insoluble forms. Decontamination quality was assessed by the decontamination efficiency value, defined as the proportion of removed activity to the applied activity. It was found that decontamination efficiency of both used varnishes depends not only on the form of contaminant, but in the case of application of AXAL 1807S varnish it also depends on the method of its application on the contaminated surface. The values of the decontamination efficiency for AZ1-700 varnish range from 46% for decontamination of a soluble form of the radioisotope from concrete surface to 98% for the decontamination of a soluble form of the radioisotope from ceramic tile surface. The decontamination efficiency values determined for AXAL 1807S varnish range from 48% for decontamination of a soluble form of the radioisotope from concrete surface to 96% for decontamination of an insoluble form of the radioisotope from ceramic tile surface. Comparing these values to the values given for the decontaminating varnishes we can conclude that AXAL 1807S varnish is possible to use on all materials, except highly porous materials, such as plasterboard or breeze blocks, or plastic materials. AZ 1-700 varnish can be used for all dry materials except plasterboard.

  18. Non-Destructive Metallic Materials Testing—Recent Research and Future Perspectives

    Directory of Open Access Journals (Sweden)

    João Manuel R. S. Tavares

    2017-10-01

    Full Text Available Non-destructive testing (NDT has become extremely important formicrostructural characterization, mainly by allowing the assessment of metallic material properties in an effective and reasonable manner, in addition to maintaining the integrity of the evaluated metallic samples and applicability in service in many cases [...

  19. Non-destructive digital imaging in poplar allows detailed analysis of adventitious rooting dynamics

    Science.gov (United States)

    R.J. Kodrzycki; R.B. Michaels; A.L. Friend; R.S. Zalesny; Ch.P. Mawata; D.W. McDonald

    2008-01-01

    The dynamics of root formation are difficult to observe directly over time without disturbing the rooting environment. A novel system for a non-destructive, non-invasive root analysis (RootViz FS, Phenotype Screening Corp.) was evaluated for its ability to analyze root formation from cuttings over a 32 day period in three poplar genotypes (DN70, P. Deltoides x...

  20. The photothermal camera - a new non destructive inspection tool

    International Nuclear Information System (INIS)

    Piriou, M.

    2007-01-01

    The Photothermal Camera, developed by the Non-Destructive Inspection Department at AREVA NP's Technical Center, is a device created to replace penetrant testing, a method whose drawbacks include environmental pollutants, industrial complexity and potential operator exposure. We have already seen how the Photothermal Camera can work alongside or instead of conventional surface inspection techniques such as penetrant, magnetic particle or eddy currents. With it, users can detect without any surface contact ligament defects or openings measuring just a few microns on rough oxidized, machined or welded metal parts. It also enables them to work on geometrically varied surfaces, hot parts or insulating (dielectric) materials without interference from the magnetic properties of the inspected part. The Photothermal Camera method has already been used for in situ inspections of tube/plate welds on an intermediate heat exchanger of the Phenix fast reactor. It also replaced the penetrant method for weld inspections on the ITER vacuum chamber, for weld crack detection on vessel head adapter J-welds, and for detecting cracks brought on by heat crazing. What sets this innovative method apart from others is its ability to operate at distances of up to two meters from the inspected part, as well as its remote control functionality at distances of up to 15 meters (or more via Ethernet), and its emissions-free environmental cleanliness. These make it a true alternative to penetrant testing, to the benefit of operator and environmental protection. (author) [fr

  1. Characterisation of nuclear dispersion fuels. The non-destructive examination of silicon carbide by selenium immersion

    Energy Technology Data Exchange (ETDEWEB)

    Ambler, J.F.R.; Ferguson, I.F.

    1974-07-15

    The non-destructive microscopic examination of silicon-carbide-coated spheres containing uranium carbide, which involves immersing the coated spheres in selenium, is particularly suited for the examination of flaws in the coats but it is not possible to measure coating thicknesses by this method. Some coats are found to be opaque and this is related to their porosity. (auth)

  2. Measurement of mango firmness by non-destructive limited compression technique

    NARCIS (Netherlands)

    Penchaiya, P.; Uthairatanakij, A.; Srilaong, V.; Kanlayanarat, S.; Tijskens, L.M.M.; Tansakul, A.

    2015-01-01

    Thai mango 'Nam Dok Mai Si-Thong' has an attractive golden yellow skin colour even in immature fruit, not ready for consumption. Firmness becomes an important quality attribute to assess the ripening stage of the fruit during storage. In this study, the possibility of a non-destructive method

  3. FY 1999 project on the development of new industry support type international standards. Standards development of chemical analysis and non-destructive inspection methods for pure titanium metals; 1999 nendo shinki sangyo shiengata kokusai hyojun kaihatsu jigyo seika hokokusho. Junchitan no shiken hyoka hoho no hyojunka

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    To propose it to ISOTC79 and ISOTC135, study was conducted for standardization of chemical analysis method and non-destructive inspection method for industrial use pure titanium. As the chemical analysis method, the inductively coupled plasma atomic emission spectrometry which has good detection limit was developed, and at the same time, the standardization of spark and/or glow discharged atomic emission spectrometry was developed. As the non-destructive inspection method, developmental study on the following was carried out: surface defect inspection method of pure titanium metals by laser scanning inspection system or CCD camera; internal defect inspection of pure titanium sheet and coil by plate wave ultrasonic inspection method; internal defect inspection of pure titanium bar by eddy current method; inspection of very small leakage of pressurized fluid through defects in pure titanium pipe and tube by pressure differential testing method. As a result of the study, standards of system performance and tolerance were determined in analysis of Pd, Si, Al, Cu, Mo, Zr, Nb, Ta and Y. Further, analytical conditions and application ranges of the spark discharged atomic emission spectrometry were made definite in terms of 19 elements including Mn, Fe, Ni, Cr, Sn, Pb, Si, Al, V, Cu, Mo, Zr, Nb, Ta, Co, B, Y, C and W. (NEDO)

  4. Non-destructive technique to verify clearance of pipes

    Directory of Open Access Journals (Sweden)

    Savidou Anastasia

    2010-01-01

    Full Text Available A semi-empirical, non-destructive technique to evaluate the activity of gamma ray emitters in contaminated pipes is discussed. The technique is based on in-situ measurements by a portable NaI gamma ray spectrometer. The efficiency of the detector for the pipe and detector configuration was evaluated by Monte Carlo calculations performed using the MCNP code. Gamma ray detector full-energy peak efficiency was predicted assuming a homogeneous activity distribution over the internal surface of the pipe for 344 keV, 614 keV, 662 keV, and 1332 keV photons, representing Eu-152, Ag-118m, Cs-137, and Co-60 contamination, respectively. The effect of inhomogeneity on the accuracy of the technique was also examined. The model was validated against experimental measurements performed using a Cs-137 volume calibration source representing a contaminated pipe and good agreement was found between the calculated and experimental results. The technique represents a sensitive and cost-effective technology for calibrating portable gamma ray spectrometry systems and can be applied in a range of radiation protection and waste management applications.

  5. Quantificação de clorofilas em folhas de macieiras 'Royal Gala' e 'Fuji' com métodos ópticos não-destrutivos Quantification of chlorophylls in leaves of 'Royal Gala' and 'Fuji' apple trees with non-destructive optical methods

    Directory of Open Access Journals (Sweden)

    Cassandro Vidal Talamini do Amarante

    2008-09-01

    non-destructive assessment at the field. Chroma meters can also be used to assess non-destructively plant tissues color and, therefore, to quantify chlorophylls in leaves. This work was carried out to evaluate the viability of using a chroma meter as an alternative to the leaf chlorophyll meter for non-destructive quantification of chlorophylls in the leaves of 'Royal Gala' and 'Fuji' apple trees. Leaves of both cultivars, with colors ranging from yellow-green (chlorotic to dark green, were individually assessed with the chlorophyll meter (SPAD-502 and the chroma meter (Minolta CR-400, at the L, C, and hº color space, and, thereafter, destructively assessed for total chlorophyll and chlorophylls a and b. The chlorophyll meter reading and the hº/(LxC ratio for the chroma meter increased with the increment of chlorophylls content in the leaves of 'Royal Gala' and 'Fuji' apple trees. The adjusted models between chlorophylls content versus chlorophyll meter readings and the hº/(LxC ratio for the chroma meter had similar R² in both cultivars. The results show that the chroma meter is a viable alternative for non-destructive assessment of chlorophylls (µg.cm-2 in apple trees, especially of chlorophyll a and total chlorophyll. For that purpose, it requires the calibration between the hº/(LxC ratio of the chroma meter and the chlorophylls extracted from leaves of concerned cultivar.

  6. Non-Destructive Testing for Building Diagnostics and Monitoring: Experience Achieved with Case Studies

    Directory of Open Access Journals (Sweden)

    Tavukçuoğlu Ayşe

    2018-01-01

    Full Text Available Building inspection on site, in other words in-situ examinations of buildings is a troublesome work that necessitates the use of non-destructive investigation (NDT techniques. One of the main concerns of non-destructive testing studies is to improve in-situ use of NDT techniques for diagnostic and monitoring studies. The quantitative infrared thermography (QIRT and ultrasonic pulse velocity (UPV measurements have distinct importance in that regard. The joint use of QIRT and ultrasonic testing allows in-situ evaluation and monitoring of historical structures and contemporary ones in relation to moisture, thermal, materials and structural failures while the buildings themselves remain intact. For instances, those methods are useful for detection of visible and invisible cracks, thermal bridges and damp zones in building materials, components and functional systems as well as for soundness assessment of materials and thermal performance assessment of building components. In addition, those methods are promising for moisture content analyses in materials and monitoring the success of conservation treatments or interventions in structures. The in-situ NDT studies for diagnostic purposes should start with the mapping of decay forms and scanning of building surfaces with infrared images. Quantitative analyses are shaped for data acquisition on site and at laboratory from representative sound and problem areas in structures or laboratory samples. Laboratory analyses are needed to support in-situ examinations and to establish the reference data for better interpretation of in situ data. Advances in laboratory tests using IRT and ultrasonic testing are guiding for in-situ materials investigations based on measurable parameters. The knowledge and experience on QIRT and ultrasonic testing are promising for the innovative studies on today’s materials technologies, building science and conservation/maintenance practices. Such studies demand a multi

  7. Questions of qualification exam for non-destructive testing and materials science - the first level

    International Nuclear Information System (INIS)

    Shaaban, H.I.; Addarwish, J.M.A.

    2013-01-01

    The book contains seven chapters: Questions of qualification for magnetic particles testing method - Questions of qualification for liquids penetrant testing method - Questions of qualification for the visual inspection testing method - Questions of qualification for the ultrasonic testing method - Questions of qualification for the eddy current testing method - Questions of rehabilitation for industrial radiographic testing method - Qualification questions about materials science and manufacturing defects of castings and welding and comparison between non-destructive testing methods.

  8. Radioisotopes in non-destructive testing

    International Nuclear Information System (INIS)

    Domanus, J.C.

    1976-12-01

    After defining nondestructive testing (NDT) and comparing this concept with destructive testing, a short description is given of NDT methods other than radiologic. The basic concepts of radiologic methods are discussed and the principles of radiography are explained. Radiation sources and gamma radiography machines are next reviewed and radiographic inspection of weldings and castings is described. A brief description is given of the radiographic darkroom and accessories. Other radioisotope methods, such as neutron radiography, are shortly reviewed. Cost estimations for radioisotopic equipment conclude the report. (author)

  9. Complex Archaeological Prospection Using Combination of Non-destructive Techniques

    Science.gov (United States)

    Faltýnová, M.; Pavelka, K.; Nový, P.; Šedina, J.

    2015-08-01

    This article describes the use of a combination of non-destructive techniques for the complex documentation of a fabulous historical site called Devil's Furrow, an unusual linear formation lying in the landscape of central Bohemia. In spite of many efforts towards interpretation of the formation, its original form and purpose have not yet been explained in a satisfactory manner. The study focuses on the northern part of the furrow which appears to be a dissimilar element within the scope of the whole Devil's Furrow. This article presents detailed description of relics of the formation based on historical map searches and modern investigation methods including airborne laser scanning, aerial photogrammetry (based on airplane and RPAS) and ground-penetrating radar. Airborne laser scanning data and aerial orthoimages acquired by the Czech Office for Surveying, Mapping and Cadastre were used. Other measurements were conducted by our laboratory. Data acquired by various methods provide sufficient information to determine the probable original shape of the formation and proves explicitly the anthropological origin of the northern part of the formation (around village Lipany).

  10. Complex Archaeological Prospection Using Combination of Non-destructive Techniques

    Directory of Open Access Journals (Sweden)

    M. Faltýnová

    2015-08-01

    Full Text Available This article describes the use of a combination of non-destructive techniques for the complex documentation of a fabulous historical site called Devil’s Furrow, an unusual linear formation lying in the landscape of central Bohemia. In spite of many efforts towards interpretation of the formation, its original form and purpose have not yet been explained in a satisfactory manner. The study focuses on the northern part of the furrow which appears to be a dissimilar element within the scope of the whole Devil’s Furrow. This article presents detailed description of relics of the formation based on historical map searches and modern investigation methods including airborne laser scanning, aerial photogrammetry (based on airplane and RPAS and ground-penetrating radar. Airborne laser scanning data and aerial orthoimages acquired by the Czech Office for Surveying, Mapping and Cadastre were used. Other measurements were conducted by our laboratory. Data acquired by various methods provide sufficient information to determine the probable original shape of the formation and proves explicitly the anthropological origin of the northern part of the formation (around village Lipany.

  11. Non-destructive examination of grouted waste

    International Nuclear Information System (INIS)

    Benny, H.L.

    1994-01-01

    This data report contains the results of ultrasonic pulse velocity (UPV) and unconfined compressive strength (USC) measurements on a grouted simulant of 106AN tank waste. This testing program was conducted according to the requirements detailed in WHC-1993a. If successful, these methods could lead to a system for the remote verification of waste form quality. The objectives of this testing program were: to determine if a relationship exists between the velocity of ultrasonic compression waves and the unconfined compressive strength of simulated grouted waste, and if so, determine if the relationship is a valid method for grout quality assessment; and to determine if a relationship exists between the attenuation of wave amplitude and the age of test specimens. The first objective was met, in that a relationship between the UPV waves and USC was determined. This method appears to provide a valid measure of the quality of the grouted waste, as discussed in Sections 3.0 and 4.0. The second objective, to determine if the attenuation of UPV waves was related to the age of test specimens was partially met. A relationship does exist between wave amplitude and age, but it is doubtful that this method alone can be used to verify the overall quality of grouted waste. Section 2.0 describes the test methods, with the results detailed in Section 3.0. A discussion of the results are provided in Section 4.0

  12. Non-destructive testing of the MEGAPIE target

    Science.gov (United States)

    Dai, Y.; Wohlmuther, M.; Boutellier, V.; Hahl, S.; Lagotzki, A.; Leu, H.; Linder, H. P.; Schwarz, R.; Spahr, A.; Zanini, L.; Kuster, D.; Gavillet, D.; Wagner, W.

    2016-01-01

    Non-destructive testing (NDT) is one important part of the post-irradiation examination (PIE) of the MEGAPIE target. It includes visual inspection and ultrasonic measurement of the beam window of the T91 LBE container and gamma mapping of the beam window of the AlMg3 safety-container. The visual inspection showed no visible failure in the proton beam window area of the T91 LBE container. The ultrasonic measurement demonstrated no detectable change in the wall thickness of the T91 beam window, which implies no severe corrosion effect induced by flowing LBE during the four-month irradiation period. The gamma mapping provided the distribution of 22Na, a spallation product, in the proton beam window area of the AlMg3 safety-container. The result was used to evaluate the accumulated proton fluence distribution profile, the input data for determining irradiation parameters. A maximum proton fluence of 1.9 × 1025 p/m2 was deduced. The corresponding displacement damage degree in the T91 beam window was 7.1 dpa.

  13. Application of advanced non-destructive testing for testing the integrity of concrete foundations

    International Nuclear Information System (INIS)

    Nguyen Le Son; Nguyen Phuoc Lan; Pham The Hung; Vu Huy Thuc

    2004-01-01

    Solid foundations are integral important part of any structures. Obtaining accurate and timely information on the integrity of structural foundations is essential for project progress and success. Cross-hole sonic method has been widely accepted for quality assurance and quality control on projects with deep foundations, and to assess the integrity of other civil engineering structures. Under the framework of the basic VAEC project (2003) and project VIE/8/013, the Cross-hole sonic method (CHM) was evaluated at Center for Nuclear Techniques, Hochiminh City (CNT). Background information on principle and general description of the method as is typically applied in the evaluation of deep foundations are also summarized. A suitable experimental model of the shaft foundations was prepared, where the artificial defects can be controlled for the Cross-hole sonic logging was conducted by measuring the propagation time of ultrasonic signals between two probes in vertical holes in a shaft. The purpose of the test program is to evaluate the ability of the cross-hole sonic method to identify the defects present in the experimental model, to evaluate the capabilities of the method and the equipped system Cs-97, to improve the presentation of test results to meet requirements for interpreting the quality of drilled shafts by processing the data of Cs-97. The cross-hole sonic testing program is describe. Summarizes the results and analysis of the cross-hole sonic logging are presented to highlight both the applicability and limitations of the method. The cross-hole sonic logging evaluation is a valuable non-destructive method in assessing the integrity of deep foundations. The cross-hole sonic logging tests successfully determined the location and extent of the built-in defects on experimental model shaft. Minimum sizes of defects can be detected were about ≥ 10 cm Cs-97. Effects of the directions, detectable sizes and natures of defects were studied. The apparent velocities

  14. Non-destructive splitter of twisted light

    OpenAIRE

    Li, Yan; Zhou, Zhi-Yuan; Ding, Dong-Sheng; Zhang, Wei; Shi, Shuai; Shi, Bao-Sen; Guo, Guang-Can

    2015-01-01

    Efficiently discriminating beams carrying different orbital angular momentum (OAM) is of fundamental importance for various applications including high capacity optical communication and quantum information processing. We design and experimentally verify a distinguished method for effectively splitting different OAM-carried beams by introducing Dove prisms in a ring cavity. Because of rotational symmetry broken of two OAM-carried beams with opposite topological charges, their transmission spe...

  15. Development of non-destructive testing (NDT) technology in Pakistan

    International Nuclear Information System (INIS)

    Khan, A.A.

    2005-01-01

    Non-Destructive Testing (NDT) techniques are being extensively used to improve and maintain the quality of manufactured goods as well as for proper maintenance of industrial plants and equipment. Typical industries that benefit most include Aerospace, Chemical, Heavy Mechanical Fabrication, Conventional and Nuclear Power Generation, Automobiles, Oil and Gas, Shipbuilding, Foundries, and Armaments, etc. As the name implies, with these techniques an industrial product is inspected mostly for defects in its structure without destroying it. Among the most widely used NDT techniques for the detection of internal defects are Radiographic and Ultrasonic Testing. For surface and just below the surface defects Magnetic Particle Testing, Penetrant Testing and Eddy Current Testing are commonly used. In addition to these, there are some NDT methods which have specific applications. These include Acoustic Emission, Thermal and Infrared Testing, Microwave Testing, Computer Tomography, Strain Gauging, Leak Testing and Holography, etc. This paper describes various phases through which the development of NDT technology passed and its present state of the art. It started with the undertaking of a nuclear technology programme and has matured along with it. As it stands we are fully competent to undertake various essential activities related to this technology, namely, (I) raining and certification of NDT personnel at various levels. (II) revision of NDT services to various industrial sectors including nuclear power during manufacture, fabrication, pre-service inspection (PSI) and in-service inspection (ISI). (author)

  16. Development of hotcell non-destructive examination techniques

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Uhn; Yu, S. C.; Kang, B. S.; Byun, K. S. [Chungbuk National University, Chungju (Korea)

    2002-01-01

    The purpose of this project is to establish non-destructive examination techniques which needs to determine the status of spent nuclear fuel and/or bundles. Through the project, we will establish an image reconstruction tomography which is a kind of non-destructive techniques in Hotcell. The tomography technique can be used to identify the 2-dimensional density distribution of fission products in the spent fuel rods and/or bundles. And form results of the measurement and analysis of magnetic properties of neutron irradiated material in the press vessel and reactor, we will develop some techniques to test its hardness and defects. In 2001, the first year, we have established mathematical background and necessary data and informations to develop the techniques. We will try to find some experimental results that are necessary in developing the Hotcell non-destructive examination techniques in the coming year. 14 refs., 65 figs., 5 tabs. (Author)

  17. Development of non-destructive testing technique

    International Nuclear Information System (INIS)

    Park, T.Y.; Ro, G.H.; Chung, T.Y.; Lim, B.K.

    1981-01-01

    This report consists of two parts. In the first part, the results of the eddy current examination of steam generator, which is a part of the first inservice inspection of Kori-1 nuclear plant, are summarized. In the second part, the CRT signal interpretation of eddy current tester (EM 3300) on the dentings of steam generator tubings, which was once a controversial issue in evaluating results of Kori-1 steam generators is investigated. As a result of denting study of steam generator tubings, especially partial denting tubings, it becomes clear that CRT signals of eddy current tester are related to the depth and the arc angle of denting but little to the width of it

  18. Non-destructive assay of radioactive waste

    International Nuclear Information System (INIS)

    Eid, C.; Bernard, P.

    1990-01-01

    The nuclear fuel cycle generates a large variety of waste containing Pu. After treatment and conditioning the final destination of this waste is either to be disposed by shallow land burial or in underground geological repositories. The method of disposal is determined by the quantity of Pu contained in the waste to be disposed of. For this reason and taking into account the rigorous requirements of the safety authorities concerning the protection of people and the environment, it is most important to determine accurately the Pu contents in the waste. Separate abstracts were prepared for 28 papers in this book

  19. Computerized tomographic in non-destructive testing

    International Nuclear Information System (INIS)

    Lopes, R.T.

    1988-01-01

    The process of computerized tomography has been developed for medical imaging purposes using tomographs with X-ray, and little attention has been given to others possibles applications of technique, because of its cost. As an alternative for the problem, we constructed a Tomographic System (STAC-1), using gamma-rays, for nonmedical applications. In this work we summarize the basic theory of reconstructing images using computerized tomography and we describe the considerations leading to the development of the experimental system. The method of reconstruction image implanted in the system is the filtered backprojection or convolution, with a digital filters system to carried on a pre-filtering in the projections. The experimental system is described, with details of control and the data processing. An alternative and a complementary system, using film as a detector is shown in preliminary form . This thesis discuss and shows the theorical and practical aspects, considered in the construction of the STAC-1, and also its limitations and apllications [pt

  20. The utilization of VUJE specialists non-destructive testing qualification at international cooperation with company TECNATOM

    International Nuclear Information System (INIS)

    Kuna, M.

    2006-01-01

    The utilization of VUJE specialists non-destructive testing qualification at cooperation with company TECNATOM. The obtain of QDA qualification for ET examination for possibility of qualified evaluation in the foreign NPP (USA, Brazil). The acquired practical experiences by evaluation of ET data from NPP Angra Brazil and Waltz Mill USA. The obtain of SNT-TC-1A and EPRI qualification for the UT evaluation of penetration tube welds measurements. The practical experience during the measurement on NPP Shearon Harris (Author)

  1. Non-destructive, preclinical evaluation of root canal anatomy of human teeth with flat-panel detector volume CT (FD-VCT); Zerstoerungsfreie praeklinische Evaluation der Wurzelkanalanatomie menschlicher Zaehne mittels Flaechendetektor-Volumen-CT (FD-VCT)

    Energy Technology Data Exchange (ETDEWEB)

    Heidrich, G.; Hassepass, F.; Dullin, C.; Grabbe, E. [Universitaetsklinikum Goettingen, Abt. Diagnostische Radiologie (Germany); Attin, T.; Hannig, C. [Universitaetsklinikum Goettingen, Abt. fuer Zahnerhaltung, Praeventive Zahnheilkunde und Paradontologie (Germany)

    2005-12-15

    Purpose: Successful endodontic diagnostics and therapy call for adequate depiction of the root canal anatomy with multimodal diagnostic imaging. The aim of the present study is to evaluate visualization of the endodont with flat-panel detector volume CT (FD-VCT). Materials and methods: 13 human teeth were examined with the prototype of a FD-VCT. After data acquisition and generation of volume data sets in volume rendering technology (VRT), the findings obtained were compared to conventional X-rays and cross-section preparations of the teeth. Results: The anatomical structures of the endodont such as root canals, side canals and communications between different root canals as well as dentricles could be detected precisely with FD-VCT. The length of curved root canals was also determined accurately. The spatial resolution of the system is around 140 {mu}m. Only around 73% of the main root canals detected with FD-VCT and 87% of the roots could be visualized with conventional dental X-rays. None of the side canals, shown with FD-VCT, was detectable on conventional X-rays. In all cases the enamel and dentin of the teeth could be well delineated. No differences in image quality could be discerned between stored and freshly extracted teeth, or between primary and adult teeth. (orig.)

  2. Laser plasma X-ray for non-destructive inspection

    International Nuclear Information System (INIS)

    Yagi, T.; Kusama, H.

    1995-01-01

    External electric field is applied to the laser produced plasma, and its found that plasma shape in soft X-ray region is changed due to the penetrating electric field. The plasma emits strong hard X-ray, which can be used as a compact light source for non-destructive inspection. (author)

  3. Development of a transient photocurrent response method for non-destructive analysis of defects in solar cells; Entwicklung einer Transient Photocurrent Response-Methode zur zerstoerungsfreien Untersuchung von Stoerstellen in Solarzellen

    Energy Technology Data Exchange (ETDEWEB)

    Sperling, A

    1995-01-01

    A new measuring method for the destruction-free characterisation of impurities in basically large-surface [(20x20) mm{sup 2}]solar cells or photo detectors is explained. During this TPCR measuring method the transient photocurrent signal, generated by a repeating, rectangular, monochromatic irradiation, is recorded in dependence on the darkness between the irradiation pulses and on the temperature of the cells. (orig.) [Deutsch] Es wird ein neues Messverfahren zur zerstoerungsfreien Charakterisierung von Verunreinigungen in der Basis grossflaechiger [(20x20) mm{sup 2}] Solarzellen bzw. Photodetektoren vorgestellt. Bei diesem TPCR-Messverfahren wird das durch eine repetierende, rechteckfoermige, monochromatische Bestrahlung erzeugte transiente Photostrom-Signal in Abhaengigkeit von der Dunkelzeit zwischen den Bestrahlungspulsen und von der Tempeatur der Zelle aufgenommen. (orig./HW)

  4. Non-destructive testing of the MEGAPIE target

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Y., E-mail: yong.dai@psi.ch; Wohlmuther, M.; Boutellier, V.; Hahl, S.; Lagotzki, A.; Leu, H.; Linder, H.P.; Schwarz, R.; Spahr, A.; Zanini, L.; Kuster, D.; Gavillet, D.; Wagner, W.

    2016-01-15

    Non-destructive testing (NDT) is one important part of the post-irradiation examination (PIE) of the MEGAPIE target. It includes visual inspection and ultrasonic measurement of the beam window of the T91 LBE container and gamma mapping of the beam window of the AlMg{sub 3} safety-container. The visual inspection showed no visible failure in the proton beam window area of the T91 LBE container. The ultrasonic measurement demonstrated no detectable change in the wall thickness of the T91 beam window, which implies no severe corrosion effect induced by flowing LBE during the four-month irradiation period. The gamma mapping provided the distribution of {sup 22}Na, a spallation product, in the proton beam window area of the AlMg{sub 3} safety-container. The result was used to evaluate the accumulated proton fluence distribution profile, the input data for determining irradiation parameters. A maximum proton fluence of 1.9 × 10{sup 25} p/m2 was deduced. The corresponding displacement damage degree in the T91 beam window was 7.1 dpa. - Highlights: • MEGAPIE is to design, build, operate and explore a liquid lead–bismuth (LBE) spallation target for 1 MW of beam power. • NDT of the target components exposed to high fluxes of high-energy protons and spallation neutrons was conducted. • There are no evident failures and corrosion effect of LBE in the T91 steel liquid metal container after irradiation to 7.1 dpa.

  5. Non-destructive control of cladding thickness of fuel elements for research reactors

    Energy Technology Data Exchange (ETDEWEB)

    Karlov, Y.; Zhukov, Y.; Chashchin, S

    1997-07-01

    The control method of fuel elements for research reactors by means of measuring beta particles back scattering made it possible to perform complete automatic non-destructive control of internal and external claddings at our plant. This control gives high guarantees of the fuel element correspondence to the requirements. The method can be used to control the three-layer items of different geometry, including plates. (author)

  6. Non-destructive control at the Kozloduy NPP; Nerazrushayushchij kontrol` v AEhS `Kozloduy`

    Energy Technology Data Exchange (ETDEWEB)

    Mikhovsky, M [Institute of Mechanics, Bulgarian Academy of Sciences, Sofia (Bulgaria); Skordev, A [SIME-CONTROL, Sofia (Bulgaria); Nichev, V; Tsokov, P; Popova, N [Kombinat Atomna Energetika, Kozloduj (Bulgaria)

    1996-12-31

    A program for technical diagnostics using non-destructive methods is being carried out at the Kozloduy NPP. The main target is to test mechanical equipment integrity (metal control, mechanical stress control, etc.) as well as electrical equipment. Computer methods and simulation are widely used in program implementation. Non-destructive testing is based on methods involving optical, radiation, ultrasonic and magnetic processes. Control procedures are standardised in special technological documents and one of them is described as an example. It refers to ultrasonic control of the austenitic steel welds of the WWER-440 piping system (DU-500). Graphic representing the microstructure of the welds, the distribution of surface ultrasonic wave and the longitudinal and vertically polarised perpendicular waves are presented. 6 refs. 8 figs.

  7. The Non-Destructive Test of Steel Corrosion in Reinforced Concrete Bridges Using a Micro-Magnetic Sensor

    Directory of Open Access Journals (Sweden)

    Hong Zhang

    2016-09-01

    Full Text Available This paper presents a non-destructive test method for steel corrosion in reinforced concrete bridges by using a 3-dimensional digital micro-magnetic sensor to detect and analyze the self-magnetic field leakage from corroded reinforced concrete. The setup of the magnetic scanning device and the measurement mode of the micro-magnetic sensor are introduced. The numerical analysis model is also built based on the linear magnetic charge theory. Compared to the self-magnetic field leakage data obtained from magnetic sensor-based measurement and numerical calculation, it is shown that the curves of tangential magnetic field at different lift-off height all intersect near the edge of the steel corrosion zone. The result indicates that the intersection of magnetic field curves can be used to detect and evaluate the range of the inner steel corrosion in engineering structures. The findings of this work propose a new and effective non-destructive test method for steel corrosion, and therefore enlarge the application of the micro-magnetic sensor.

  8. The need to qualify Non Destructive Tests (NDT) has been recognized for many years in the European countries engaged in nuclear power generation

    International Nuclear Information System (INIS)

    Walczak, M.; Wojas, M.

    2008-01-01

    The European Network for Inspection Qualification, ENIQ, which groups the major part of the nuclear power plant operators in the European Union and in the Applicant Countries, has developed the European methodology for Qualification of Non Destructive Tests. As qualification of NDT is nowadays a standard method in the nuclear industry and in other industries. CEN (European Committee for Standardization) Technical Committee 138 '' Non Destructive Testing '' has established a Working Group, which is responsible for developing a Standard document detailing the CEN Methodology for the qualification of Non Destructive Tests applicable to all industries carrying out Non-Destructive Tests. This Standard document sets out basic principles and provides recommendations and general guidelines for carrying out qualification of NDT. It describes a methodology for qualification of Non-Destructive Tests, applicable to all NDT methods and considers qualification of equipment, procedure and personnel training. This paper presents a short background of the European Methodology for Qualification of Non-Destructive Tests and the Standard document CEN/TR 14748 '' Non-destructive testing - Methodology for qualification of non-destructive tests ''. (author)

  9. Spectral algorithm for non-destructive damage localisation: Application to an ancient masonry arch model

    Science.gov (United States)

    Masciotta, Maria-Giovanna; Ramos, Luís F.; Lourenço, Paulo B.; Vasta, Marcello

    2017-02-01

    Structural monitoring and vibration-based damage identification methods are fundamental tools for condition assessment and early-stage damage identification, especially when dealing with the conservation of historical constructions and the maintenance of strategic civil structures. However, although the substantial advances in the field, several issues must still be addressed to broaden the application range of such tools and to assert their reliability. This study deals with the experimental validation of a novel method for non-destructive damage identification purposes. This method is based on the use of spectral output signals and has been recently validated by the authors through a numerical simulation. After a brief insight into the basic principles of the proposed approach, the spectral-based technique is applied to identify the experimental damage induced on a masonry arch through statically increasing loading. Once the direct and cross spectral density functions of the nodal response processes are estimated, the system's output power spectrum matrix is built and decomposed in eigenvalues and eigenvectors. The present study points out how the extracted spectral eigenparameters contribute to the damage analysis allowing to detect the occurrence of damage and to locate the target points where the cracks appear during the experimental tests. The sensitivity of the spectral formulation to the level of noise in the modal data is investigated and discussed. As a final evaluation criterion, the results from the spectrum-driven method are compared with the ones obtained from existing non-model based damage identification methods.

  10. Acceptance criteria for non-destructive examination of double-shell tanks

    International Nuclear Information System (INIS)

    Jensen, C.E.

    1995-09-01

    This supporting document provides requirements for acceptance of relevant indications found during non-destructive examination of double-shell tanks (DSTs) at Hanford 200 areas. Requirements for evaluation of relevant indications are provided to determine acceptability of continued safe operation of the DSTs. Areas of the DSTs considered include the tank wall vapor space, liquid-vapor interface, wetted tank wall, sludge-liquid interface, and the knuckle region

  11. Using photons for non-destructive testing of thick materials: a simulation study

    International Nuclear Information System (INIS)

    Oishi, Ryutaro; Nagai, Hideki

    2004-01-01

    Positron annihilation spectroscopy using positron annihilation lifetimes has been successfully studied for non-destructive material testing. A positron inspection probe is annihilated with an electron at the front of the material. The application of the positron lifetime method is restricted to thin materials. A photon with energy exceeding 1.02MeV reaches the materials' depth and can produce a positron through γ-conversion. Such a photon-produced positron is a probe for thick materials. The probability of γ-conversion, however, is low. The method of photon-produced positron annihilation lifetimes is restricted by statistics. We estimated the expected number of events and the statistical uncertainties of the lifetime measurements for a non-destructive test, such as an SUS316 fatigue monitoring, to construct a fatigue-monitoring system

  12. Non-destructive characterization of the materials for future nuclear reactors

    International Nuclear Information System (INIS)

    Snopek, J.; Slugen, V.

    2016-01-01

    For our experiments, we have used Barkhausen noise technique, which is powerful non-destructive method for monitoring stresses in lattices of magnetic materials. We have also used PAS, which is powerful non-destructive method for diagnosing vacancy defects in variable materials. We researched some ODS steels, which are primarily going to be used as fuel cladding or reactor pressure vessel internal components. This thesis describes the behavior of the microstructure of the oxide dispersion strengthened steels at intermediate temperature. Two, in principle, different techniques were used for the characterization of the microstructure of the oxide dispersion strengthened steels thermally aged at 475 grad C and 650 grad C. Both techniques, namely Positron annihilation lifetime spectroscopy (PAS) and Barkhausen noise (BN) measurements are very sensitive to metallurgical modifications and presence of nano-sized imperfections in the crystal lattice. Precipitation of the nano-sized α' phases shift the Barkhausen noise signal. (authors)

  13. 234Th distributions in coastal and open ocean waters by non-destructive β-counting

    International Nuclear Information System (INIS)

    Miller, L.A.; Svaeren, I.

    2003-01-01

    Non-destructive β-counting analyses of particulate and dissolved 234 Th activities in seawater are simpler but no less precise than traditional radioanalytical methods. The inherent accuracy limitations of the non-destructive β-counting method, particularly in samples likely to be contaminated with anthropogenic nuclides, are alleviated by recounting the samples over several half-lives and fitting the counting data to the 234 Th decay curve. Precision (including accuracy, estimated at an average of 3%) is better than 10% for particulate or 5% for dissolved samples. Thorium-234 distributions in the Skagerrak indicated a vigorous, presumably biological, particle export from the surface waters, and while bottom sediment resuspension was not an effective export mechanism, it did strip thorium from the dissolved phase. In the Greenland and Norwegian Seas, we saw clear evidence of particulate export from the surface waters, but at 75 m, total 234 Th activities were generally in equilibrium with 238 U. (author)

  14. Quality parameters of mango and potential of non-destructive techniques for their measurement- a review

    International Nuclear Information System (INIS)

    Jha, S.N.; Narsaiah, K.; Sharma, A.D.; Singh, M.; Bansal, S.; Kumar, R.

    2010-01-01

    The king of fruits 'Mango' (Mangifera indica L.) is very nutritious and rich in carotenes. India produces about 50% of the total world's mango. Many researchers have reported the maturity indices and quality parameters for determination of harvesting time and eating quality. The methods currently used for determination of quality of mango are mostly based on the biochemical analysis, which leads to destruction of the fruits. Numerous works are being carried out to explore some non-destructive methods such as Near Infrared (NIR), Nuclear Magnetic Resonance (NMR), X-ray and Computed Tomography (CT), electronic nose, machine vision and ultrasound for quality determination of fruits. This paper deals with some recent work reported on quality parameters, harvesting and post-harvest treatments in relation to quality of mango fruits and reviews on some of the potential non-destructive techniques that can be explored for quality determination of mango cultivars. (author)

  15. Recent advances in seismic non-destructive testing of concrete plate like structures

    International Nuclear Information System (INIS)

    Ryden, N.; Kristensen, A.; Jovall, O.

    2009-01-01

    This paper describes recent advances in seismic/acoustic non-destructive testing of concrete containment walls. The presented technique is focused on the characterization of the mean stiffness (seismic velocities) and thickness of the containment wall. The Impact Echo (IE) method is a well-established technique to measure the thickness of concrete plates or to locate defects in concrete plate like structures. The method relies on a good estimate of the mean velocity through the thickness of the plate and a precisely measured thickness resonant frequency. Recently the underlying theory of the IE method has been redefined and improved based on Lamb waves in a free plate. Based on this theory we have developed a new data processing technique where both propagating and standing Lamb waves are analysed in a combined manner using multichannel data. With this approach the mean velocity through the plate thickness is evaluated by using the fundamental mode Lamb wave dispersion curves. The accuracy and detection ability of the measured resonant frequency is improved by utilizing both amplitude and phase information from the multichannel record. The method has been tested on several nuclear power plants in Sweden and Finland and proved to be more robust compared to conventional IE and surface wave measurements

  16. Review of non-destructive techniques for the quality checking of encapsulated radioactive waste: 2

    International Nuclear Information System (INIS)

    Saunderson, D.H.

    1989-01-01

    Methods for non-destructively evaluating the condition of encapsulated ILW cement/waste monoliths, sealed within a drum, may form one component of a quality checking system. The QCTF have commissioned a wide-ranging survey of techniques that might be applicable to this problem. As a result of previously reported work, high-energy radiography has been identified as being most likely to satisfy the requirements for determining the physical condition of the monolith after encapsulation. Nucleonic methods such as neutron interrogation and high-resolution-spectroscopy can be applied to check on the contents of the drum. Ultrasonic methods were seen to have potential in monitoring the setting and curing processes during the forming of the monolith. The study of various ultrasonic methods for subsequent inspection of sealed drums, ILWRP(85)P27, concluded that they were not likely to be of use for the quality checking process. For completeness, this report covers the remaining techniques that have been considered during the course of the survey, however unlikely their application might be. (author)

  17. Non-Destructive Techniques Based on Eddy Current Testing

    Science.gov (United States)

    García-Martín, Javier; Gómez-Gil, Jaime; Vázquez-Sánchez, Ernesto

    2011-01-01

    Non-destructive techniques are used widely in the metal industry in order to control the quality of materials. Eddy current testing is one of the most extensively used non-destructive techniques for inspecting electrically conductive materials at very high speeds that does not require any contact between the test piece and the sensor. This paper includes an overview of the fundamentals and main variables of eddy current testing. It also describes the state-of-the-art sensors and modern techniques such as multi-frequency and pulsed systems. Recent advances in complex models towards solving crack-sensor interaction, developments in instrumentation due to advances in electronic devices, and the evolution of data processing suggest that eddy current testing systems will be increasingly used in the future. PMID:22163754

  18. Non-destructive elecrochemical monitoring of reinforcement corrosion

    DEFF Research Database (Denmark)

    Nygaard, Peter Vagn

    been widely accepted as a non-destructive ”state of the art” technique for detection of corrosion in concrete structures. And, over the last decade, the trend in corrosion monitoring has moved towards quantitative non-destructive monitoring of the corrosion rate of the steel reinforcement. A few...... corrosion rate measurement instruments have been developed and are commercially available. The main features of these instruments are the combined use of an electrochemical technique for determining the corrosion rate and a so-called ”confinement technique”, which in principle controls the polarised surface...... area of the reinforcement, i.e. the measurement area. Both on-site investigations and laboratory studies have shown that varying corrosion rates are obtained when the various commercially available instruments are used. And in the published studies, conflicting explanations are given illustrating...

  19. The non-destructive control, a major constituent of quality

    International Nuclear Information System (INIS)

    Anon.

    1998-01-01

    The number of continuous research and development works about non-destructive control in all sectors of activity is justified by the increasing need for high quality materials without anomalies. This paper gives a overview of the state of the art and of the recent trends in non-destructive testing researches in different sectors: aeronautics, nuclear industry, automotive industry. New studies and techniques are presented: ultrasonic testing of welds on large diameter pipes, automated applications of ultrasonic testing, ultrasound/computer-aided design coupling, pressure vessels inspection using acoustic emission testing (leaks detection, application to composite materials), numerical radiography (image visualisation and processing), magnetic testing (steel damage detection using Barkhausen noise testing), 'shearography' (detection of the loss of thickness in pipes due to corrosion), X-ray tomography (density measurement of sintered steels, fluid flow calculations in automobile parts). (J.S.)

  20. Contributions to ultrasounds applications in non-destructive tests on materials used in nuclear technologies

    International Nuclear Information System (INIS)

    Stanica, V.

    1979-01-01

    The problems expounded in the paper, besides servjng the practical purpose generated by the need to perform quality tests on fuel element compounds by means of the ultrasounds method, are also interesting to ultrasounds non-destructive tests applied in all industry branches as they assert the necessity of passing from manual to automation tests carried out by installations which should record the signals caused by failures, both to increase the productivjty and especially to transform it into an objective, effective test. (author)

  1. A Non-destructive and Continuous Measurement of Gelatinization of Rice in Rice Cooking Process

    OpenAIRE

    Hagura, Yoshio; Suzuki, Kanichi

    2002-01-01

    A non-destructive and continuous method to measure gelatinization of rice samples in a rice-water system during rice cooking process was examined. An aluminum pot and a lid of a rice cooker were used as two electrode plates, and changes in dielectric properties (capacitance : C, and dielectric dissipation factor : tan δ) of the samples in the rice cooking process were measured by a capacitance meter. Differential scanning calorimetry (DSC) was used to measure gelatinization enthalpy and to de...

  2. Using magnetic levitation for non-destructive quality control of plastic parts.

    Science.gov (United States)

    Hennek, Jonathan W; Nemiroski, Alex; Subramaniam, Anand Bala; Bwambok, David K; Yang, Dian; Harburg, Daniel V; Tricard, Simon; Ellerbee, Audrey K; Whitesides, George M

    2015-03-04

    Magnetic levitation (MagLev) enables rapid and non-destructive quality control of plastic parts. The feasibility of MagLev as a method to: i) rapidly assess injection-molded plastic parts for defects during process optimization, ii) monitor the degradation of plastics after exposure to harsh environmental conditions, and iii) detect counterfeit polymers by density is demonstrated. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Human and organisational factors in the reliability of non-destructive testing (NOT)

    International Nuclear Information System (INIS)

    Norros, L.

    1998-01-01

    Non-destructive testing used in in-service inspections can be seen as a complicated activity system including three mutually related sub-activities: (1) definition of inspection programs and necessary resources, (2) carrying out diagnostic inspections, and (3) interpretation of the results from the view of plant safety and corrective measures. Various studies to investigate and measure the NDT performance have produced disappointing result. No clear correlations between single human factors and performance have been identified even though general agreement exists concerning the significance of human factors to the reliability of testing. Another incentive for our studies has been to test and evaluate the applicability of the international results in the Finnish circumstances. Three successive studies have thus been carried out on the human and organisational factors in non-destructive testing. (author)

  4. Post-Irradiation Non-Destructive Analyses of the AFIP-7 Experiment

    Science.gov (United States)

    Williams, W. J.; Robinson, A. B.; Rabin, B. H.

    2017-12-01

    This article reports the results and interpretation of post-irradiation non-destructive examinations performed on four curved full-size fuel plates that comprise the AFIP-7 experiment. These fuel plates, having a U-10 wt.%Mo monolithic design, were irradiated under moderate operating conditions in the Advanced Test Reactor to assess fuel performance for geometries that are prototypic of research reactor fuel assemblies. Non-destructive examinations include visual examination, neutron radiography, profilometry, and precision gamma scanning. This article evaluates the qualitative and quantitative data taken for each plate, compares corresponding data sets, and presents the results of swelling analyses. These characterization results demonstrate that the fuel meets established irradiation performance requirements for mechanical integrity, geometric stability, and stable and predictable behavior.

  5. Recent advances in rapid and non-destructive assessment of meat quality using hyperspectral imaging

    Science.gov (United States)

    Tao, Feifei; Ngadi, Michael

    2016-05-01

    Meat is an important food item in human diet. Its production and consumption has greatly increased in the last decades with the development of economies and improvement of peoples' living standards. However, most of the traditional methods for evaluation of meat quality are time-consuming, laborious, inconsistent and destructive to samples, which make them not appropriate for a fast-paced production and processing environment. Development of innovative and non-destructive optical sensing techniques to facilitate simple, fast, and accurate evaluation of quality are attracting increasing attention in the food industry. Hyperspectral imaging is one of the promising techniques. It integrates the combined merits of imaging and spectroscopic techniques. This paper provides a comprehensive review on recent advances in evaluation of the important quality attributes of meat including color, marbling, tenderness, pH, water holding capacity, and also chemical composition attributes such as moisture content, protein content and fat content in pork, beef and lamb. In addition, the future potential applications and trends of hyperspectral imaging are also discussed in this paper.

  6. Non destructive testing and neutron radiography in 1994

    International Nuclear Information System (INIS)

    Bayon, G.

    1994-01-01

    Neutron radiography has been considered for a long time as a promising technique; however it plays a minor part in the world of non destructive testing today, due to the lack of suitable neutron sources and lack of new industrial applications. This paper reviews the present status of neutron sources, neutron radiography activities, especially in France (such as the neutron-capture-issued secondary radiation spectrometry), in nuclear, aerospace, aeronautical and metallurgical sectors, and the last applications of neutron dynamic imaging. 9 refs

  7. Non-destructive test of lock actuator component using neutron radiography technique

    International Nuclear Information System (INIS)

    Juliyanti; Setiawan; Sutiarso

    2012-01-01

    Non-destructive test of lock actuator using neutron radiography technique has been done. The lock actuator is a mechanical system which is controlled by central lock module consisting of electronic circuit which drives the lock actuator works accordingly to open and lock the vehicle door. The non-destructive test using neutron radiography is carried out to identify the type of defect is presence by comparing between the broken and the brand new one. The method used to test the lock actuator component is film method (direct method). The result show that the radiography procedure has complied with the ASTM standard for neutron radiography with background density of 2.2, 7 lines and 3 holes was seen in the sensitivity indicator (SI) and the quite good image quality was obtained. In the brand new actuator is seen that isolator part which separated the coils has melted. By this non-destructive test using neutron radiography technique is able to detect in early stage the type of component's defect inside the lock actuator without to dismantle it. (author)

  8. Study on personnel qualification for non-destructive tests in the field of reactor safety

    International Nuclear Information System (INIS)

    Trusch, K.; Wuestenberg, H.

    1977-01-01

    The training system for non-destructive testing is described, and the available and necessary personnel is analyzed; the personnel required for reactor safety problems is treated separately. On this basis, the subjects discussed in the study - available personnel, personnel requirements, training, training requirements, and suggestions for realisation - are treated in a general manner to begin with and afterwards with a view to specific problems of reactor safety. The methods employed are adapted to this situation. To obtain the necessary empirical data, questionnaires were set up and distributed, and experts in selected business companies and institutions were interviewed who work in the field of reactor safety or do same training in non-destructive testing. (orig.) [de

  9. Non-Destructive Current Sensing for Energy Efficiency Monitoring in Buildings with Environmental Certification.

    Science.gov (United States)

    Mota, Lia Toledo Moreira; Mota, Alexandre de Assis; Coiado, Lorenzo Campos

    2015-07-10

    Nowadays, buildings environmental certifications encourage the implementation of initiatives aiming to increase energy efficiency in buildings. In these certification systems, increased energy efficiency arising from such initiatives must be demonstrated. Thus, a challenge to be faced is how to check the increase in energy efficiency related to each of the employed initiatives without a considerable building retrofit. In this context, this work presents a non-destructive method for electric current sensing to assess implemented initiatives to increase energy efficiency in buildings with environmental certification. This method proposes the use of a sensor that can be installed directly in the low voltage electrical circuit conductors that are powering the initiative under evaluation, without the need for reforms that result in significant costs, repair, and maintenance. The proposed sensor consists of three elements: an air-core transformer current sensor, an amplifying/filtering stage, and a microprocessor. A prototype of the proposed sensor was developed and tests were performed to validate this sensor. Based on laboratory tests, it was possible to characterize the proposed current sensor with respect to the number of turns and cross-sectional area of the primary and secondary coils. Furthermore, using the Least Squares Method, it was possible to determine the efficiency of the air core transformer current sensor (the best efficiency found, considering different test conditions, was 2%), which leads to a linear output response.

  10. Non-Destructive Current Sensing for Energy Efficiency Monitoring in Buildings with Environmental Certification

    Science.gov (United States)

    Mota, Lia Toledo Moreira; Mota, Alexandre de Assis; Coiado, Lorenzo Campos

    2015-01-01

    Nowadays, buildings environmental certifications encourage the implementation of initiatives aiming to increase energy efficiency in buildings. In these certification systems, increased energy efficiency arising from such initiatives must be demonstrated. Thus, a challenge to be faced is how to check the increase in energy efficiency related to each of the employed initiatives without a considerable building retrofit. In this context, this work presents a non-destructive method for electric current sensing to assess implemented initiatives to increase energy efficiency in buildings with environmental certification. This method proposes the use of a sensor that can be installed directly in the low voltage electrical circuit conductors that are powering the initiative under evaluation, without the need for reforms that result in significant costs, repair, and maintenance. The proposed sensor consists of three elements: an air-core transformer current sensor, an amplifying/filtering stage, and a microprocessor. A prototype of the proposed sensor was developed and tests were performed to validate this sensor. Based on laboratory tests, it was possible to characterize the proposed current sensor with respect to the number of turns and cross-sectional area of the primary and secondary coils. Furthermore, using the Least Squares Method, it was possible to determine the efficiency of the air core transformer current sensor (the best efficiency found, considering different test conditions, was 2%), which leads to a linear output response. PMID:26184208

  11. Non-Destructive Current Sensing for Energy Efficiency Monitoring in Buildings with Environmental Certification

    Directory of Open Access Journals (Sweden)

    Lia Toledo Moreira Mota

    2015-07-01

    Full Text Available Nowadays, buildings environmental certifications encourage the implementation of initiatives aiming to increase energy efficiency in buildings. In these certification systems, increased energy efficiency arising from such initiatives must be demonstrated. Thus, a challenge to be faced is how to check the increase in energy efficiency related to each of the employed initiatives without a considerable building retrofit. In this context, this work presents a non-destructive method for electric current sensing to assess implemented initiatives to increase energy efficiency in buildings with environmental certification. This method proposes the use of a sensor that can be installed directly in the low voltage electrical circuit conductors that are powering the initiative under evaluation, without the need for reforms that result in significant costs, repair, and maintenance. The proposed sensor consists of three elements: an air-core transformer current sensor, an amplifying/filtering stage, and a microprocessor. A prototype of the proposed sensor was developed and tests were performed to validate this sensor. Based on laboratory tests, it was possible to characterize the proposed current sensor with respect to the number of turns and cross-sectional area of the primary and secondary coils. Furthermore, using the Least Squares Method, it was possible to determine the efficiency of the air core transformer current sensor (the best efficiency found, considering different test conditions, was 2%, which leads to a linear output response.

  12. Non destructive characterization of cracks in concrete by ultrasonic auscultation of civil engineering structures

    International Nuclear Information System (INIS)

    Quiviger, A.; Payan, C.; Chaix, J.F.; Zardan, J.P.; Garnier, V.; Salin, J.

    2011-01-01

    Concrete Non Destructive Characterisation is one of the important issues to evaluate the life duration in the present and future civil engineering structures. The damaging modes of the structures often imply the phases of the appearance and after growth of the cracks. We have to detect, identify and characterize them. The characterization result must lead to a diagnosis of the criticality of a crack regarding to the integrity of the structure and its ability to fulfill its function. The Non Destructive Evaluation techniques are numerous but the ultrasonic ones are able to give an answer to both the characterization and the follow-up of the defect on site. Yet if this method is potentially relevant to detect and identify the cracks in the concrete, we have today a certain amount of locks to remove in order to offer robust and reproducible industrial solutions. These locks range from research points like the description of the real propagation of linear or non linear ultrasonic waves in a heterogeneous material, to more industrial concepts such as the development of devices designed to be applied in the concrete control. For this purpose, we present our latest works on this topic. We develop an overview of the problem: first, to extract the most important theoretical solutions to analyse an unstopping and closed crack in concrete with an only one face access. Then we suggest a methodology to apply one of these solutions on site. A first step of this work after having chosen a solution is to check the ability of the technique to detect a crack, and its sensitivity to the length, depth and opening of the crack. We have developed an experimental plan based on theoretical concept to compare the linear and non linear survey on a set of specimens composed of concrete beams cracked to different depths. We describe the devices and give the latest results. The non linear technique is able to extract information on the size of the cracks. It is an important step to progress in

  13. Non destructive characterization of cracks in concrete by ultrasonic auscultation of civil engineering structures

    Energy Technology Data Exchange (ETDEWEB)

    Quiviger, A.; Payan, C.; Chaix, J.F.; Zardan, J.P.; Garnier, V. [EDF, LCND (France); Salin, J. [EDF Paris (France)

    2011-07-01

    Concrete Non Destructive Characterisation is one of the important issues to evaluate the life duration in the present and future civil engineering structures. The damaging modes of the structures often imply the phases of the appearance and after growth of the cracks. We have to detect, identify and characterize them. The characterization result must lead to a diagnosis of the criticality of a crack regarding to the integrity of the structure and its ability to fulfill its function. The Non Destructive Evaluation techniques are numerous but the ultrasonic ones are able to give an answer to both the characterization and the follow-up of the defect on site. Yet if this method is potentially relevant to detect and identify the cracks in the concrete, we have today a certain amount of locks to remove in order to offer robust and reproducible industrial solutions. These locks range from research points like the description of the real propagation of linear or non linear ultrasonic waves in a heterogeneous material, to more industrial concepts such as the development of devices designed to be applied in the concrete control. For this purpose, we present our latest works on this topic. We develop an overview of the problem: first, to extract the most important theoretical solutions to analyse an unstopping and closed crack in concrete with an only one face access. Then we suggest a methodology to apply one of these solutions on site. A first step of this work after having chosen a solution is to check the ability of the technique to detect a crack, and its sensitivity to the length, depth and opening of the crack. We have developed an experimental plan based on theoretical concept to compare the linear and non linear survey on a set of specimens composed of concrete beams cracked to different depths. We describe the devices and give the latest results. The non linear technique is able to extract information on the size of the cracks. It is an important step to progress in

  14. Recent Advances in Active Infrared Thermography for Non-Destructive Testing of Aerospace Components.

    Science.gov (United States)

    Ciampa, Francesco; Mahmoodi, Pooya; Pinto, Fulvio; Meo, Michele

    2018-02-16

    Active infrared thermography is a fast and accurate non-destructive evaluation technique that is of particular relevance to the aerospace industry for the inspection of aircraft and helicopters' primary and secondary structures, aero-engine parts, spacecraft components and its subsystems. This review provides an exhaustive summary of most recent active thermographic methods used for aerospace applications according to their physical principle and thermal excitation sources. Besides traditional optically stimulated thermography, which uses external optical radiation such as flashes, heaters and laser systems, novel hybrid thermographic techniques are also investigated. These include ultrasonic stimulated thermography, which uses ultrasonic waves and the local damage resonance effect to enhance the reliability and sensitivity to micro-cracks, eddy current stimulated thermography, which uses cost-effective eddy current excitation to generate induction heating, and microwave thermography, which uses electromagnetic radiation at the microwave frequency bands to provide rapid detection of cracks and delamination. All these techniques are here analysed and numerous examples are provided for different damage scenarios and aerospace components in order to identify the strength and limitations of each thermographic technique. Moreover, alternative strategies to current external thermal excitation sources, here named as material-based thermography methods, are examined in this paper. These novel thermographic techniques rely on thermoresistive internal heating and offer a fast, low power, accurate and reliable assessment of damage in aerospace composites.

  15. Recent Advances in Active Infrared Thermography for Non-Destructive Testing of Aerospace Components

    Directory of Open Access Journals (Sweden)

    Francesco Ciampa

    2018-02-01

    Full Text Available Active infrared thermography is a fast and accurate non-destructive evaluation technique that is of particular relevance to the aerospace industry for the inspection of aircraft and helicopters’ primary and secondary structures, aero-engine parts, spacecraft components and its subsystems. This review provides an exhaustive summary of most recent active thermographic methods used for aerospace applications according to their physical principle and thermal excitation sources. Besides traditional optically stimulated thermography, which uses external optical radiation such as flashes, heaters and laser systems, novel hybrid thermographic techniques are also investigated. These include ultrasonic stimulated thermography, which uses ultrasonic waves and the local damage resonance effect to enhance the reliability and sensitivity to micro-cracks, eddy current stimulated thermography, which uses cost-effective eddy current excitation to generate induction heating, and microwave thermography, which uses electromagnetic radiation at the microwave frequency bands to provide rapid detection of cracks and delamination. All these techniques are here analysed and numerous examples are provided for different damage scenarios and aerospace components in order to identify the strength and limitations of each thermographic technique. Moreover, alternative strategies to current external thermal excitation sources, here named as material-based thermography methods, are examined in this paper. These novel thermographic techniques rely on thermoresistive internal heating and offer a fast, low power, accurate and reliable assessment of damage in aerospace composites.

  16. Multi-energy radiography for non-destructive testing of materials and structures for civil engineering

    International Nuclear Information System (INIS)

    Naydenov, S.V.; Ryzhikov, V.

    2003-01-01

    Development of the technological base of modern non-destructive testing require new methods allowing determination of specified properties of materials and structures under study. A traditional direction of works is determination of internal spatial structure of the materials and other constructions. Restoration of this geometrical information is of qualitative character, though provides for determination of technical parameters affecting physical properties of the system. Reconstruction of the chemical composition, density and atomic structure (effective atomic number) is an inverse problem of direct quantitative determination of properties starting from data obtained by means of non-destructive testing. In the present work, we propose the use of multi-energy radiography for reconstruction of the substantial structure of materials. In framework of simple theoretical model it is shown that, using multi-channel absorption of X-rays, important substantial characteristics of materials and multi-compound structures can be readily reconstructed. The results obtained show high efficiency of 2-energy radiography for non-destructive testing in civil engineering

  17. Surface integral formulation of Maxwell's equations for simulation of non-destructive testing by eddy currents. Preliminary study on the implementation of the fast multipole method; Formulation integrale surfacique des equations de Maxwell pour la simulation de controles non destructifs par courant de Foucault. Etude preliminaire a la mise en oeuvre de la methode multipole rapide.

    Energy Technology Data Exchange (ETDEWEB)

    Lim, T.

    2011-04-28

    To simulate numerically a non-destructive by eddy current testing (NDT-CF), the sensor response can be modeled through a semi-analytical approach by volume integral equations. Faster than the finite element method, this approach is however restricted to the study of plane or cylindrical parts (without taking into account the edge effects) because of the complexity of the expression of the dyadic Green function for more general configurations. However, there is an industrial demand to extend the capabilities of the CF model in complex configurations (deformed plates, edges effects...). We were thus brought to formulate the electromagnetic problem differently, by setting ourselves the goal of maintaining a semi-analytical approach. The surface integral equation (SIE) expresses the volume problem by an equivalent transmission one at the interfaces (2D) between homogeneous sub-domains. This problem is approached by a linear system (by the method of moments), whose number of unknowns is reduced due to the nature of the surfacic mesh. Therefore, this system can be solved by a direct solver for small configurations. That enabled us to treat several various positions of the sensor for only one inversion of the impedance matrix. The numerical results obtained using this formulation involve plates with consideration of edge effects such as edge and corner. They are consistent with results obtained by the finite element method. For larger configurations, we conducted a preliminary study for the adaptation of an acceleration method of the matrix vector product involved in an iterative solver (fast multipole method or FMM) to define the conditions under which the FMM calculation works correctly (accuracy, convergence...) in the NDT's domain. A special attention has been given to the choice of basis functions (which have to satisfy an Hdiv conforming property) and on the evaluation of near interactions (which are weakly singular). (author) [French] Pour simuler

  18. In situ non-destructive measurement of biofilm thickness and topology in an interferometric optical microscope

    Energy Technology Data Exchange (ETDEWEB)

    Larimer, Curtis [Pacific Northwest National Laboratory, Battelle for the USDOE, PO Box 999, MSIN P7-50 Richland WA 99354 USA; Suter, Jonathan D. [Pacific Northwest National Laboratory, Battelle for the USDOE, PO Box 999, MSIN P7-50 Richland WA 99354 USA; Bonheyo, George [Pacific Northwest National Laboratory, Battelle for the USDOE, PO Box 999, MSIN P7-50 Richland WA 99354 USA; Addleman, Raymond Shane [Pacific Northwest National Laboratory, Battelle for the USDOE, PO Box 999, MSIN P7-50 Richland WA 99354 USA

    2016-03-15

    Biofilms are ubiquitous and deleteriously impact a wide range of industrial processes, medical and dental health issues, and environmental problems such as transport of invasive species and the fuel efficiency of ocean going vessels. Biofilms are difficult to characterize when fully hydrated, especially in a non-destructive manner, because of their soft structure and water-like bulk properties. Herein we describe a non-destructive high resolution method of measuring and monitoring the thickness and topology of live biofilms of using white light interferometric optical microscopy. Using this technique, surface morphology, surface roughness, and biofilm thickness can be measured non-destructively and with high resolution as a function of time without disruption of the biofilm activity and processes. The thickness and surface topology of a P. putida biofilm were monitored growing from initial colonization to a mature biofilm. Typical bacterial growth curves were observed. Increase in surface roughness was a leading indicator of biofilm growth.

  19. Isotope techniques in non-destructive testing of dynamic systems

    International Nuclear Information System (INIS)

    Singh, Gursharan; Pant, H.J.

    1996-01-01

    A few applications of gamma scanning and radiotracer techniques for Non-destructive Testing (NDT) of dynamic systems in chemical and petrochemical industries are briefly discussed in this paper. Examples of gamma scanning inspections carried out for troubleshooting of various types of columns such as vacuum, extraction, separator and rectifier, with trays and packed beds and having diameters from 1 meter to 8.4 meters are given. Radiotracer applications for Residence Time Distribution (RTD) studies on different systems like an aniline production reactor in a chemical industry and a laboratory scale solid-liquid fluidized bed column are mentioned. (author)

  20. Non-destructive characterization using pulsed fast-thermal neutrons

    International Nuclear Information System (INIS)

    Womble, P.C.

    1995-01-01

    Explosives, illicit drugs, and other contraband materials contain various chemical elements in quantities and ratios that differentiate them from each other and from innocuous substances. Furthermore, the major chemical elements in coal can provide information about various parameters of importance to the coal industry. In both examples, the non-destructive identification of chemical elements can be performed using pulsed fast-thermal neutrons that, through nuclear reactions, excite the nuclei of the various elements. This technique is being currently developed for the dismantling of nuclear weapons classified as trainers, and for the on-line coal bulk analysis. (orig.)

  1. Non-destructive testing and radiation in industry

    International Nuclear Information System (INIS)

    Woodford, C; Ashby, P.

    2001-01-01

    Non-destructive testing (NDT) is a little known discipline which uses non-invasive and passive techniques to investigate the condition of materials and structures. Some of these techniques employ the use of radioisotopes. The penetrating radiations produced by these materials are applied in various ways to obtain the required information. This presentation is an overview of the application of radioisotopes within the scope of NDT. Notwithstanding the well established use of traditional materials, new forms of radioisotopes are being developed which will extend their capabilities

  2. APPARATUS FOR NON-DESTRUCTIVE INSPECTION OF CANTILEVERED MEMBERS

    Science.gov (United States)

    Taylor, E.R.; Mahoney, C.H.; Lay, C.R.

    1961-10-24

    An apparatus for non-destructive inspection of cantilevered members, such as compressor blades, is described. The member under inspection is vibrated with a regulated source of air under pressure. The amplitude of vibration of the member is maintained at its natural frequency. The frequency of vibration of the member is measured. An indication of an excessive decay or erratic shifting in the measured frequency above an allowable hysteretic decay is provided as an indication of a fault in the member. The member is vibrated for a selected test period. (AEC)

  3. Non-destructive beam profile monitor at HIMAC

    International Nuclear Information System (INIS)

    Sato, S.; Araki, N.; Hosaka, M.

    1995-01-01

    Non-destructive profile monitors (NDPM), based on micro-channel plate (MCP), have been developed and installed in both the synchrotron ring and high-energy beam transport (HEBT) line at HIMAC. Beam test using these monitors have been carried out since April of 1995 to investigate a change of vertical beam size in synchrotron and a possibility of observing beam with high energy by one pass. In this paper the measurement system is mainly reported, and the preliminary results are also briefly presented. (author)

  4. Recent Trends in Electromagnetic Non-Destructive Sensing

    Directory of Open Access Journals (Sweden)

    Klara Capova

    2008-01-01

    Full Text Available The paper deals with material electromagnetic non-destructive testing (eNDT with emphasize on eddy current testing (ECT. Various modifications of ECT sensing are compared and discussed from the desired detected signal characteristics point of view. Except of the optimization of usual probe coils arrangements for the concrete applications, the new magnetic sensors as giant magneto-resistance (GMR and spin dependent tunneling (SDT are presented. The advanced ECT sensors are characterized by their sensitivity, frequency range and sensor dimensions

  5. Augmented reality application for industrial non-destructive inspection training

    Science.gov (United States)

    Amza, Catalin Gheorghe; Zapciu, Aurelian; Teodorescu, Octav

    2018-02-01

    Such a technology - Augmented Reality (AR) has great potential of use, especially for training purposes of new operators on using expensive equipment. In this context, the paper presents an augmented reality training system developed for phased-array ultrasonic non-destructive testing (NDT) equipment. The application has been developed using Unity 5.6.0 game-engine platform integrated with Vuforia sdk toolkit for devices with Android operating system. The test results performed by several NDT operators showed good results, thus proving the potential of using the application in the industrial field.

  6. Edward’s sword? – A non-destructive study of a medieval king’s sword

    International Nuclear Information System (INIS)

    Segebade, Chr.

    2013-01-01

    Non-destructive and instrumental methods including photon activation analysis were applied in an examination of an ancient sword. It was tried to find indication of forgery or, if authentic, any later processing and alteration. Metal components of the hilt and the blade were analysed by instrumental photon activation. Non-destructive metallurgical studies (hardness measurements, microscopic microstructure analysis) are briefly described, too. The results of these investigations did not yield indication of non-authenticity. This stood in agreement with the results of stylistic and scientific studies by weapon experts.

  7. Edward's sword? - A non-destructive study of a medieval king's sword

    Energy Technology Data Exchange (ETDEWEB)

    Segebade, Chr. [Idaho Accelerator Centre, Idaho State University, 1500 Alvin Ricken Drive, Pocatello, ID 83201 (United States)

    2013-04-19

    Non-destructive and instrumental methods including photon activation analysis were applied in an examination of an ancient sword. It was tried to find indication of forgery or, if authentic, any later processing and alteration. Metal components of the hilt and the blade were analysed by instrumental photon activation. Non-destructive metallurgical studies (hardness measurements, microscopic microstructure analysis) are briefly described, too. The results of these investigations did not yield indication of non-authenticity. This stood in agreement with the results of stylistic and scientific studies by weapon experts.

  8. Local defect resonance for sensitive non-destructive testing

    Science.gov (United States)

    Adebahr, W.; Solodov, I.; Rahammer, M.; Gulnizkij, N.; Kreutzbruck, M.

    2016-02-01

    Ultrasonic wave-defect interaction is a background of ultrasound activated techniques for imaging and non-destructive testing (NDT) of materials and industrial components. The interaction, primarily, results in acoustic response of a defect which provides attenuation and scattering of ultrasound used as an indicator of defects in conventional ultrasonic NDT. The derivative ultrasonic-induced effects include e.g. nonlinear, thermal, acousto-optic, etc. responses also applied for NDT and defect imaging. These secondary effects are normally relatively inefficient so that the corresponding NDT techniques require an elevated acoustic power and stand out from conventional ultrasonic NDT counterparts for their specific instrumentation particularly adapted to high-power ultrasonic. In this paper, a consistent way to enhance ultrasonic, optical and thermal defect responses and thus to reduce an ultrasonic power required is suggested by using selective ultrasonic activation of defects based on the concept of local defect resonance (LDR). A strong increase in vibration amplitude at LDR enables to reliably detect and visualize the defect as soon as the driving ultrasonic frequency is matched to the LDR frequency. This also provides a high frequency selectivity of the LDR-based imaging, i.e. an opportunity of detecting a certain defect among a multitude of other defects in material. Some examples are shown how to use LDR in non-destructive testing techniques, like vibrometry, ultrasonic thermography and shearography in order to enhance the sensitivity of defect visualization.

  9. Non-destructive nuclear forensics of radioactive samples

    Energy Technology Data Exchange (ETDEWEB)

    Rogge, R.B. [Canadian Neutron Beam Centre, Chalk River, ON (Canada); Alexander, Q.; Bentoumi, G.; Dimayuga, F. [Atomic Energy of Canada Limited, Chalk River, ON (Canada); Flacau, R. [Canadian Neutron Beam Centre, Chalk River, ON (Canada); Li, G.; Li, L.; Sur, B. [Atomic Energy of Canada Limited, Chalk River, ON (Canada)

    2014-07-01

    It is a matter of public safety and security to be able to examine suspicious packages of unknown origin. If the package is radioactive and sealed (i.e., the radioactive materials contained in the package, including their chemical and physical forms, are unknown), there is a significant risk on how to handle the package and eventually safely dispose of its contents. Within the context of nuclear security, nuclear forensics helps address the key issue of identifying the nature and origin of radioactive and nuclear material in order to improve physical protection measures and prevent future theft or diversion of these materials. Nuclear forensics utilizes analytical techniques, destructive and non-destructive, developed for applications related to nuclear fuel cycles. This paper demonstrates the non-destructive examination techniques that can be used to inspect encapsulated radioactive samples. Results of γ spectroscopy, X-ray spectroscopy, neutron imaging, neutron diffraction, and delayed neutron analysis as applied to an examination of sealed capsules containing unknown radioactive materials are presented. The paper also highlights the value of these techniques to the overall nuclear forensic investigation to determine the origin of these unknown radioactive materials. (author)

  10. Non-destructive Testing by Infrared Thermography Under Random Excitation and ARMA Analysis

    Science.gov (United States)

    Bodnar, J. L.; Nicolas, J. L.; Candoré, J. C.; Detalle, V.

    2012-11-01

    Photothermal thermography is a non-destructive testing (NDT) method, which has many applications in the field of control and characterization of thin materials. This technique is usually implemented under CW or flash excitation. Such excitations are not adapted for control of fragile materials or for multi-frequency analysis. To allow these analyses, in this article, the use of a new control mode is proposed: infrared thermography under random excitation and auto regressive moving average analysis. First, the principle of this NDT method is presented. Then, the method is shown to permit detection, with low energy constraints, of detachments situated in mural paintings.

  11. Non-destructive pollution exposure assessment in the European hedgehog (Erinaceus europaeus): IV hair versus soil analysis in exposure and risk assessment of organochlorine compounds

    NARCIS (Netherlands)

    Havé, D' H.; Scheirs, J.; Covaci, A.; Brink, van den N.W.; Verhagen, R.; Coen, De W.

    2007-01-01

    Few ecotoxicological studies on mammals use non-destructive methodologies, despite the growing ethical concern over the use of destructive sampling methods. In the present study we assessed exposure of hedgehogs (Erinaceus europaeus) to polychlorinated biphenyls (PCBs),

  12. Non-destructive inspection protocol for reinforced concrete barriers and bridge railings

    Energy Technology Data Exchange (ETDEWEB)

    Chintakunta, Satish R. [Engineering and Software Consultants, Inc., 14123 Robert Paris Ct., Chantilly, VA 20151 (United States); Boone, Shane D. [Federal Highway Administration, Turner Fairbank Highway Research Center, 6300 Georgetown Pike, McLean, VA 22101 (United States)

    2014-02-18

    Reinforced concrete highway barriers and bridge railings serve to prevent errant vehicles from departing the travel way at grade separations. Despite the important role that they play in maintaining safety and their ubiquitous nature, barrier inspection rarely moves beyond visual inspection. In August 2008, a tractor-trailer fatally departed William Preston Lane, Jr. Memorial Bridge after it dislodged a section of the bridge barrier. Investigations following the accident identified significant corrosion of the anchor bolts attaching the bridge railing to the bridge deck. As a result of the information gathered during its investigation of the accident, the National Transportation Safety Board (NTSB) made recommendations to the Federal Highway Administration concerning Non-Destructive Evaluation (NDE) of concrete bridge railings. The Center for nondestructive evaluation (NDE) at Turner Fairbank Highway Research Center in McLean, VA is currently evaluating feasibility of using four technologies - ground penetrating radar (GPR), ultrasonic pulse-echo, digital radiography and infrared thermal imaging methods to develop bridge inspection methods that augment visual inspections, offer reliable measurement techniques, and are practical, both in terms of time and cost, for field inspection work. Controlled samples containing predefined corrosion levels in reinforcing steel were embedded at barrier connection points for laboratory testing. All four NDE techniques were used in the initial phase I testing. An inspection protocol for detecting and measuring the corrosion of reinforced steel embedded in the anchorage system will be developed as part of phase II research. The identified technologies shall be further developed for field testing utilizing a structure with a barrier in good condition and a structure with a barrier in poor condition.

  13. Non-destructive inspection protocol for reinforced concrete barriers and bridge railings

    Science.gov (United States)

    Chintakunta, Satish R.; Boone, Shane D.

    2014-02-01

    Reinforced concrete highway barriers and bridge railings serve to prevent errant vehicles from departing the travel way at grade separations. Despite the important role that they play in maintaining safety and their ubiquitous nature, barrier inspection rarely moves beyond visual inspection. In August 2008, a tractor-trailer fatally departed William Preston Lane, Jr. Memorial Bridge after it dislodged a section of the bridge barrier. Investigations following the accident identified significant corrosion of the anchor bolts attaching the bridge railing to the bridge deck. As a result of the information gathered during its investigation of the accident, the National Transportation Safety Board (NTSB) made recommendations to the Federal Highway Administration concerning Non-Destructive Evaluation (NDE) of concrete bridge railings. The Center for nondestructive evaluation (NDE) at Turner Fairbank Highway Research Center in McLean, VA is currently evaluating feasibility of using four technologies - ground penetrating radar (GPR), ultrasonic pulse-echo, digital radiography and infrared thermal imaging methods to develop bridge inspection methods that augment visual inspections, offer reliable measurement techniques, and are practical, both in terms of time and cost, for field inspection work. Controlled samples containing predefined corrosion levels in reinforcing steel were embedded at barrier connection points for laboratory testing. All four NDE techniques were used in the initial phase I testing. An inspection protocol for detecting and measuring the corrosion of reinforced steel embedded in the anchorage system will be developed as part of phase II research. The identified technologies shall be further developed for field testing utilizing a structure with a barrier in good condition and a structure with a barrier in poor condition.

  14. Modelos alométricos para estimativa da área foliar de mangueira pelo método não destrutivo = Allometric models for estimating leaf area of hose by non destructive method

    Directory of Open Access Journals (Sweden)

    Samuel Ferreira da Silva

    2015-03-01

    Full Text Available A área foliar é uma das mais importantes medidas de avaliação do crescimento vegetativo; sendo assim, o conhecimento sobre tal aspecto permite estimar a perda de água por transpiração, devido às folhas serem os principais órgãos responsáveis pelas trocas gasosas entre a planta e o ambiente, tornando-se importante o seu estudo. Dessa forma, objetivou-se com a realização deste trabalho testar e obter o melhor modelo matemático para estimativa da área foliar da mangueira (Mangifera indica L. cv. Haden em função das suas dimensões alométricas. Utilizou-se um pomar localizado na propriedade São Domingos, no município de Alegre, sul do Estado do Espírito Santo, onde foram coletadas 80 folhas de 20 mangueiras em outubro de 2013. As regressões foram determinadas considerando-se a área foliar real (AFR como variável dependente, e o comprimento (C, a largura (L e o produto das dimensões lineares (C x L de cada folha, como variáveis independentes. Com base nos resultados obtidos, concluiu-se que a equação polinomial y=4,7677+ 0,6934x -0,0001x2 foi o melhor modelo matemático para estimar a área foliar da mangueira, com R² de 0,97. Os modelos que utilizam C x L são os mais adequados para estimar a área das folhas da mangueira, uma vez que apresentam maior correlação. = Leaf area is one of the most important measures for evaluating the vegetative growth, and that their knowledge allows estimating water loss through transpiration, due to the leaves being the main organ responsible for gas exchange between the plant and the environment, making it important to its study. Thus, we intended to test this work and get the best mathematical model to estimate leaf area of mango (Mangifera indica L. cv. Haden according to their dimensions Allometric. We used a greengrocer located in São Domingos property in the municipality of Alegre, southern Espírito Santo, which was collected 80 sheets of 20 hoses in October 2013. The

  15. Non-destructive estimation of leaf area for different plant ages and accessions of Capsicum annuum L.

    NARCIS (Netherlands)

    Swart, de E.A.M.; Groenwold, R.; Kanne, H.J.; Stam, P.; Marcelis, L.F.M.; Voorrips, R.E.

    2004-01-01

    Accurate measurements of leaf area are important for agronomic and physiological studies. To be able to perform repeated measurements of leaf area on single (genetically unique) plants, a method was developed to estimate leaf area from non-destructive measurements in Capsicum annuum L. independent

  16. Application of golay complementary coded excitation schemes for non-destructive testing of sandwich structures

    Science.gov (United States)

    Arora, Vanita; Mulaveesala, Ravibabu

    2017-06-01

    In recent years, InfraRed Thermography (IRT) has become a widely accepted non-destructive testing technique to evaluate the structural integrity of composite sandwich structures due to its full-field, remote, fast and in-service inspection capabilities. This paper presents a novel infrared thermographic approach named as Golay complementary coded thermal wave imaging is presented to detect disbonds in a sandwich structure having face sheets from Glass/Carbon Fibre Reinforced (GFR/CFR) laminates and core of the wooden block.

  17. Non-Destructive Inspection Methods for Propulsion Systems and Components

    Science.gov (United States)

    1979-04-01

    tandis qu’une piice samne restera, silencieuse. 11 est alora possible de concevoir des proc4- dures industrielles d’acceptation ou rejet . Le C.E.T.I.H. a...rdalisation do coon turbomachine. ou noteurs thermiques do hauto. perfomance. ndce..ite l& miss on oeuvre do matdriaux at techniques de plus en plus...Instruments lea plum avances actuoliomont pour traitor lea problimes industriels d’~mimmion aconstique. IIAt/ Localimation La localimation eat mimple

  18. Introduction to non-destructive testing of materials: part II

    International Nuclear Information System (INIS)

    Ahmed, M.; Ahmed, B.

    2001-01-01

    Ultrasonic waves are mechanical vibrations that require a medium, which functions as carrier. Ultrasonics are widely used in non-destructive testing of materials in which high frequency sound waves are introduced into the material being inspected. If the frequency of sound waves in within the range 10 to 20,000 Hz, the sound is audible, i.e. the range of hearing, above 20,000 Hz, the sound waves are referred to as Ultrasound or Ultrasonics. Sound waves do not cause any permanent change in material although its transient presence is very noticeable. An energy transport through a sound wave is possible only when constituent particles are connected to each other by elastic forces. Liquids and Gases are also suitable media for the transmission of sound. In vacuum no matter exists and thus no sound transmission is possible. At the end of this article advantages and limitations of ultrasonic testing are also given. (A.B.)

  19. Non destructive Testing (NDT) of concrete containing hematite

    International Nuclear Information System (INIS)

    Mohamad Pauzi Ismail; Noor Azreen Masenwat; Suhairy Sani; Nasharuddin Isa; Mohamad Haniza Mahmud

    2014-01-01

    This paper described the results of Non-destructive ultrasonic and rebound hammer measurements on concrete containing hematite. Local hematite stones were used as aggregates to produce high density concrete for application in X-and gamma shielding. Concrete cube samples (150 mm x 150 mm x 150 mm) containing hematite as coarse aggregates were prepared by changing mix ratio, water to cement ratio (w/c) and types of fine aggregate. All samples were cured in water for 7 days and then tested after 28 days. Density, rebound number(N) and ultrasonic pulse velocity (UPV) of the samples were taken before compressed to failure. The measurement results are explained and discussed. (author)

  20. A new look at trends in non-destructive testing

    International Nuclear Information System (INIS)

    Forsten, J.

    1984-01-01

    Non-destructive testing (NDT) has been performed extensively for several decades. However, the NDT area is not in a static condition, as sophisticated equipment, improved procedures and new innovations keep development going on. Neither is the NDT field isolated from other fields, and this influences strongly the current situation, i.e.: The cost of electronics is decreasing and complex problems can now be solved; Safety requirements on products and components become more stringent; Quality requirements of the whole life span of a product or a component become more accentuated; Improved testing reliability is required; Quality assurance requirements must be imposed on NDT itself; New materials, e.g., fiber reinforced materials, and materials combinations, e.g., sandwich structures, will be used for special purposes; New production techniques, like glueing of metals, put new requirements on the NDT techniques

  1. Non destructive technique for cracks detection by an eddy current in differential mode for steel frames

    International Nuclear Information System (INIS)

    Harzalla, S.; Chabaat, M.; Belgacem, F. Bin Muhammad

    2014-01-01

    In this paper, a nondestructive technique is used as a tool to control cracks and microcracks in materials. A simulation by a numerical approach such as the finite element method is employed to detect cracks and eventually; to study their propagation using a crucial parameter such as the stress intensity factor. This approach has been used in the aircraft industry to control cracks. Besides, it makes it possible to highlight the defects of parts while preserving the integrity of the controlled products. On the other side, it is proven that the reliability of the control of defects gives convincing results for the improvement of the quality and the safety of the material. Eddy current testing (ECT) is a standard technique in industry for the detection of surface breaking flaws in magnetic materials such as steels. In this context, simulation tools can be used to improve the understanding of experimental signals, optimize the design of sensors or evaluate the performance of ECT procedures. CEA-LIST has developed for many years semi-analytical models embedded into the simulation platform CIVA dedicated to non-destructive testing. The developments presented herein address the case of flaws located inside a planar and magnetic medium. Simulation results are obtained through the application of the Volume Integral Method (VIM). When considering the ECT of a single flaw, a system of two differential equations is derived from Maxwell equations. The numerical resolution of the system is carried out using the classical Galerkin variant of the Method of Moments. Besides, a probe response is calculated by application of the Lorentz reciprocity theorem. Finally, the approach itself as well as comparisons between simulation results and measured data are presented

  2. Non destructive technique for cracks detection by an eddy current in differential mode for steel frames

    Energy Technology Data Exchange (ETDEWEB)

    Harzalla, S., E-mail: harzallahozil@yahoo.fr; Chabaat, M., E-mail: mchabaat@yahoo.com [Built Environmental Research Laboratory, Civil Engineering Faculty, University of Sciences and Technology Houari Boumediene, B.P. 32 El Alia Bab-Ezzouar, Algiers 16111 (Algeria); Belgacem, F. Bin Muhammad, E-mail: fbmbelgacem@gmail.com [Department of Mathematics, Faculty of Basic Education, PAAET, Al-Aardhia (Kuwait)

    2014-12-10

    In this paper, a nondestructive technique is used as a tool to control cracks and microcracks in materials. A simulation by a numerical approach such as the finite element method is employed to detect cracks and eventually; to study their propagation using a crucial parameter such as the stress intensity factor. This approach has been used in the aircraft industry to control cracks. Besides, it makes it possible to highlight the defects of parts while preserving the integrity of the controlled products. On the other side, it is proven that the reliability of the control of defects gives convincing results for the improvement of the quality and the safety of the material. Eddy current testing (ECT) is a standard technique in industry for the detection of surface breaking flaws in magnetic materials such as steels. In this context, simulation tools can be used to improve the understanding of experimental signals, optimize the design of sensors or evaluate the performance of ECT procedures. CEA-LIST has developed for many years semi-analytical models embedded into the simulation platform CIVA dedicated to non-destructive testing. The developments presented herein address the case of flaws located inside a planar and magnetic medium. Simulation results are obtained through the application of the Volume Integral Method (VIM). When considering the ECT of a single flaw, a system of two differential equations is derived from Maxwell equations. The numerical resolution of the system is carried out using the classical Galerkin variant of the Method of Moments. Besides, a probe response is calculated by application of the Lorentz reciprocity theorem. Finally, the approach itself as well as comparisons between simulation results and measured data are presented.

  3. Non-destructive measurement of Xe filling pressure in mercury-free metal halide lamp

    International Nuclear Information System (INIS)

    Motomura, Hideki; Enoki, Kyosuke; Jinno, Masafumi

    2010-01-01

    Mercury-free metal halide lamps (MHLs) for automotive purposes have been developing in the market. When mercury is not used, the electric and emission characteristics of the lamp strongly depend on the xenon filling pressure. Therefore a non-destructive gas pressure estimation technique is required to obtain stable performance of the lamps as commercial products. The authors have developed an estimation method by which the gas pressure is estimated from the current peak value at the initial stage of ignition under pulsed operation. It is shown that accuracy of the order of ±(0.1-0.3) atm is obtained using an empirical formula.

  4. Non-destructive synchrotron X-ray diffraction mapping of a Roman painting

    International Nuclear Information System (INIS)

    Dooryhee, E.; Anne, M.; Hodeau, J.-L.; Martinetto, P.; Rondot, S.; Bardies, I.; Salomon, J.; Walter, P.; Vaughan, G.B.M.

    2005-01-01

    The history and the properties of materials are deduced not only from their elemental and molecular signatures, but also from their exact phase compositions, and from the structures and the defects of their constituents. Here we implement a non-destructive synchrotron X-ray based method, which combines both the quantitative structural content of diffraction and the imaging mode. As a demonstration case, the pigments of a Roman wall painting are examined. The joined elemental and mineral maps mimic the major features of the painting. Different structural phases made of common atomic elements are differentiated. Textures and graininess are measured and related to the artist's know-how. (orig.)

  5. Topics in acoustics, non destructive testing, and thermo-mechanics of continua

    International Nuclear Information System (INIS)

    Suarez Antola, R.

    2001-03-01

    A small scale physical model of a granular porous medium was studied .Osmosis, filtration and fracture were considered, both experimentally and mathematically.Longitudinal ultrasonic pulse velocity was measured in slender timber and concrete bodies in order to characterized the geometric dispersion effects.A mathematical model is developed to described geometric dispersion in reinforced concrete.A sequential method for non destructive testing of structures by mechanicals vibrations is proposed and theoretically considered.Some simple examples are fully developed from a theoretical stand point

  6. Non-destructive evaluation of stream generator tubes and pressure tubes from the PHWR reactors, using the rotating magnetic field method

    International Nuclear Information System (INIS)

    Premel, D.; Placko, D.; Grimberg, R.; Savin, A.

    2001-01-01

    This work presents a new type of eddy current transducer with a rotating magnetic field devoted to the inspection of steam generator tubes and pressure tubes from the PHWR reactors. A theoretical model has been developed that permits the calculations of the emf induced in the reception coils in the presence of the copper or magnetite deposits, anti-vibration railing and garter springs. (authors)

  7. Waste Inspection Tomography for Non-Destructive Evaluation (WITNDA)

    International Nuclear Information System (INIS)

    Ramar, R.; Priyada, P.; Shivaramu; Venkatraman, B.

    2012-01-01

    A gamma ray Computed Tomography (CT) system developed indigenously for doing feasibility studies on tomographic waste assay and for validating the transmission and emission tomography algorithms. Automation of the data collection has been achieved by integrating four axes Galil based drum rotating driver and HPGe gamma spectroscopy software using windows based Visual Basic (VB) program. Attenuation tomograms using Filter Back Projection (FBP) and Algebraic Reconstruction Technique (ART) and emission tomograms using Maximum Likelihood Expectation Maximization (MLEM) techniques developed and validated. The transmission tomograms of a MS test object of 165 mm OD cylindrical container with MS rods and filled with sand and emission tomograms of a 4.7 mCi 137 Cs source embedded in the test object and its activity quantified. (author)

  8. Automated Non-Destructive Testing Array Evaluation System

    Energy Technology Data Exchange (ETDEWEB)

    Wei, T.; Zavaljevski, N.; Bakhtiari, S.; Miron, A.; Jupperman, D.

    2004-12-31

    Utilities perform eddy current tests on nuclear power plant steam generator (SG) tubes to detect degradation. This report summarizes the status of ongoing research to develop signal processing algorithms that automate analysis of eddy current test data. The research focuses on analyzing array probe data for detecting, classifying, and characterizing degradation in SG tubes.

  9. Automated Non-Destructive Testing Array Evaluation System

    International Nuclear Information System (INIS)

    Wei, T.; Zavaljevski, N.; Bakhtiari, S.; Miron, A.; Kupperman, D.

    2004-01-01

    Utilities perform eddy current tests on nuclear power plant steam generator (SG) tubes to detect degradation. This report summarizes the status of ongoing research to develop signal processing algorithms that automate analysis of eddy current test data. The research focuses on analyzing array probe data for detecting, classifying, and characterizing degradation in SG tubes

  10. Evaluating Corrosion in SAVY Containers using Non-Destructive Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Davenport, Matthew Nicholas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Vaidya, Rajendra U. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Abeyta, Adrian Anthony [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-11-16

    Powerpoint presentation on Ultrasonic and Eddy Current NDT; UT Theory; Eddy current (ECA): How it works; Controlled Corrosion at NM Tech; Results – HCl Corrosion; Waveform Data for 10M HCl; Accuracy Statistics; Results – FeCl3 Pitting; Waveforms for Anhydrous FeCl3; Analyzing Corroded Stainless Steel 316L Plates; 316L Plate to Imitate Pitting; ECA Pit Depth Calibration Curve; C Scan Imaging; UT Pit Detection; SST Containers: Ultrasonic (UT) vs. CMM; UT Data Analysis; UT Conclusions and Observations; ECA Conclusions; Automated System Vision.

  11. Evaluation of four methods for estimating leaf area of isolated trees

    Science.gov (United States)

    P.J. Peper; E.G. McPherson

    2003-01-01

    The accurate modeling of the physiological and functional processes of urban forests requires information on the leaf area of urban tree species. Several non-destructive, indirect leaf area sampling methods have shown good performance for homogenous canopies. These methods have not been evaluated for use in urban settings where trees are typically isolated and...

  12. Diagnosis of structures. Practical applications and future tasks of non-destructive testing; Bauwerksdiagnose. Praktische Anwendungen Zerstoerungsfreier Pruefungen und Zukunftsaufgaben

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2016-05-01

    The preservation of buildings is increasingly becoming the focus of public attention, not least because of traffic restrictions on roads and bridges, which have grown significantly in recent years. Here the building inspectors is of particular importance to assess the causes and extent of repair work as required. This non-destructive testing in the construction industry (ZfPBau method) have become indispensable. However, very few rules are found in construction in contrast to the classical industrial NDT. Also the offers to the qualification of examiners are low, but but in the meantime available. The symposium takes this conflict area to less regulation and a high demand of professional services. One of tasks of the future is the reliable evaluation of existing structures. The foundation was laid by the adoption of the directive for the recalculation of road bridges in 2011 to have results of non-destructive examination incorporated in recalculations. Meanwhile are first experiences on investigations and recalculations of bridges that will be presented at the symposium for the first time. [German] Die Erhaltung von Bauwerken rueckt immer mehr in den Fokus der Oeffentlichkeit, nicht zuletzt durch Verkehrseinschraenkungen an Strassen und Bruecken, die in den letzten Jahren spuerbar zugenommen haben. Dabei kommt den Bauwerkspruefern eine besondere Bedeutung zu, Ursachen und Umfang von Instandsetzungsmassnahmen bedarfsgemaess abzuschaetzen. Hierbei sind zerstoerungsfreie Pruefverfahren im Bauwesen (ZfPBau-Verfahren) nicht mehr wegzudenken. Allerdings sind im Gegensatz zur klassischen industriellen ZfP im Bauwesen sehr wenige Regelwerke anzutreffen. Auch die Angebote zur Qualifizierung von Pruefern sind gering aber mittlerweile vorhanden. Die Fachtagung greift dieses Spannungsfeld geringer Regelsetzung und grossem Bedarf qualifizierter Dienstleistungen auf. Ein Aufgabenfeld der Zukunft ist die zuverlaessige Bewertung von Bestandsbauwerken. Durch das Inkrafttreten der

  13. Non-Destructive Thermography Analysis of Impact Damage on Large-Scale CFRP Automotive Parts

    Science.gov (United States)

    Maier, Alexander; Schmidt, Roland; Oswald-Tranta, Beate; Schledjewski, Ralf

    2014-01-01

    Laminated composites are increasingly used in aeronautics and the wind energy industry, as well as in the automotive industry. In these applications, the construction and processing need to fulfill the highest requirements regarding weight and mechanical properties. Environmental issues, like fuel consumption and CO2-footprint, set new challenges in producing lightweight parts that meet the highly monitored standards for these branches. In the automotive industry, one main aspect of construction is the impact behavior of structural parts. To verify the quality of parts made from composite materials with little effort, cost and time, non-destructive test methods are increasingly used. A highly recommended non-destructive testing method is thermography analysis. In this work, a prototype for a car’s base plate was produced by using vacuum infusion. For research work, testing specimens were produced with the same multi-layer build up as the prototypes. These specimens were charged with defined loads in impact tests to simulate the effect of stone chips. Afterwards, the impacted specimens were investigated with thermography analysis. The research results in that work will help to understand the possible fields of application and the usage of thermography analysis as the first quick and economic failure detection method for automotive parts. PMID:28788464

  14. Non-invasive and non-destructive measurements of confluence in cultured adherent cell lines.

    Science.gov (United States)

    Busschots, Steven; O'Toole, Sharon; O'Leary, John J; Stordal, Britta

    2015-01-01

    Many protocols used for measuring the growth of adherent monolayer cells in vitro are invasive, destructive and do not allow for the continued, undisturbed growth of cells within flasks. Protocols often use indirect methods for measuring proliferation. Microscopy techniques can analyse cell proliferation in a non-invasive or non-destructive manner but often use expensive equipment and software algorithms. In this method images of cells within flasks are captured by photographing under a standard inverted phase contract light microscope using a digital camera with a camera lens adaptor. Images are analysed for confluence using ImageJ freeware resulting in a measure of confluence known as an Area Fraction (AF) output. An example of the AF method in use on OVCAR8 and UPN251 cell lines is included. •Measurements of confluence from growing adherent cell lines in cell culture flasks is obtained in a non-invasive, non-destructive, label-free manner.•The technique is quick, affordable and eliminates sample manipulation.•The technique provides an objective, consistent measure of when cells reach confluence and is highly correlated to manual counting with a haemocytometer. The average correlation co-efficient from a Spearman correlation (n = 3) was 0.99 ± 0.008 for OVCAR8 (p = 0.01) and 0.99 ± 0.01 for UPN251 (p = 0.01) cell lines.

  15. Non-Destructive Thermography Analysis of Impact Damage on Large-Scale CFRP Automotive Parts

    Directory of Open Access Journals (Sweden)

    Alexander Maier

    2014-01-01

    Full Text Available Laminated composites are increasingly used in aeronautics and the wind energy industry, as well as in the automotive industry. In these applications, the construction and processing need to fulfill the highest requirements regarding weight and mechanical properties. Environmental issues, like fuel consumption and CO2-footprint, set new challenges in producing lightweight parts that meet the highly monitored standards for these branches. In the automotive industry, one main aspect of construction is the impact behavior of structural parts. To verify the quality of parts made from composite materials with little effort, cost and time, non-destructive test methods are increasingly used. A highly recommended non-destructive testing method is thermography analysis. In this work, a prototype for a car’s base plate was produced by using vacuum infusion. For research work, testing specimens were produced with the same multi-layer build up as the prototypes. These specimens were charged with defined loads in impact tests to simulate the effect of stone chips. Afterwards, the impacted specimens were investigated with thermography analysis. The research results in that work will help to understand the possible fields of application and the usage of thermography analysis as the first quick and economic failure detection method for automotive parts.

  16. Non-Destructive Thermography Analysis of Impact Damage on Large-Scale CFRP Automotive Parts.

    Science.gov (United States)

    Maier, Alexander; Schmidt, Roland; Oswald-Tranta, Beate; Schledjewski, Ralf

    2014-01-14

    Laminated composites are increasingly used in aeronautics and the wind energy industry, as well as in the automotive industry. In these applications, the construction and processing need to fulfill the highest requirements regarding weight and mechanical properties. Environmental issues, like fuel consumption and CO₂-footprint, set new challenges in producing lightweight parts that meet the highly monitored standards for these branches. In the automotive industry, one main aspect of construction is the impact behavior of structural parts. To verify the quality of parts made from composite materials with little effort, cost and time, non-destructive test methods are increasingly used. A highly recommended non-destructive testing method is thermography analysis. In this work, a prototype for a car's base plate was produced by using vacuum infusion. For research work, testing specimens were produced with the same multi-layer build up as the prototypes. These specimens were charged with defined loads in impact tests to simulate the effect of stone chips. Afterwards, the impacted specimens were investigated with thermography analysis. The research results in that work will help to understand the possible fields of application and the usage of thermography analysis as the first quick and economic failure detection method for automotive parts.

  17. Design of eddy current probes and signal inversion for non-destructive testing

    International Nuclear Information System (INIS)

    Ravat, C.

    2008-01-01

    Non destructive testing is widely used in aerospace industry and nuclear industry. The growing complexity of industrial processes and manufactured parts, the increasing need of safety in service and the will of life span optimization, require more and more complex quality evaluations to be set up. Among the different anomalies to consider, sub-millimetric breaking surface notches have to be subject to special care. Indeed, it often constitutes a start to larger notches, which can cause the destruction of parts. Penetrant testing is nowadays widely used for that kind of defect, owing to its good performances. Nevertheless, it should be eventually dropped because of environmental norms. Among the possible substitution solutions, the use of eddy currents (EC) for conductive parts is a reliable, fast and inexpensive alternative. The study is about the conception and the use of multi-elements EC probe structures featuring microsensors for non destructive testing of surface breaking defects. A methodology has been established in order to develop such structures and to compare their performances within the framework of sub-millimetric surface breaking notch research. These structures has been employed for calibrated notches evaluation with a specific acquisition bench. Original detection and defect characterization algorithms have been designed and implemented on acquired signals. The most efficient structure has been determined, the notch detection quality has been quantified, and the geometric characteristics of notches has been estimated. (author)

  18. Non-destructive sampling of rock-dwelling microbial communities using sterile adhesive tape.

    Science.gov (United States)

    Cutler, Nick A; Oliver, Anna E; Viles, Heather A; Whiteley, Andrew S

    2012-12-01

    Building stone provides a habitat for an array of microorganisms, many of which have been demonstrated to have a deleterious effect on the appearance and/or structural integrity of stone masonry. It is essential to understand the composition and structure of stone-dwelling (lithobiontic) microbial communities if successful stone conservation strategies are to be applied, particularly in the face of global environmental change. Ideally, the techniques used to sample such assemblages should be non-destructive due to the sensitive conservation status of many stone buildings. This paper quantitatively assesses the performance of sterile adhesive tape as a non-destructive sampling technique and compares the results of tape sampling with an alternative, destructive, sampling method. We used DNA fingerprinting (TRFLP) to characterise the algal, fungal and bacterial communities living on a stone slab. Our results demonstrate that tape sampling may be used to collect viable quantities of microbial DNA from environmental samples. This technique is ideally suited to the sampling of microbial biofilms, particularly when these communities are dominated by green algae. It provides a good approximation of total community diversity (i.e. the aggregate diversity of epilithic and endolithic communities). Tape sampling is straightforward, rapid and cost effective. When combined with molecular analytical techniques, this sampling method has the potential to make a major contribution to efforts to understand the structure of lithobiontic microbial communities and our ability to predict the response of such communities to future environmental change. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Analysis of Radiation Accident of Non-destructive Inspection and Rational Preparing Bills

    International Nuclear Information System (INIS)

    Bae, Junwoo; Yoo, Donghan; Kim, Hee Reyoung

    2013-01-01

    After 2006, according to enactment of Non-destructive Inspection Promotion Act, the number of non-destructive inspection companies and corresponding accident is increased sharply. In this research, it includes characteristic analysis of field of the non-destructive inspection. And from the result of analysis, the purpose of this research is discovering reason for 'Why there is higher accident ratio in non-destructive inspection field, relatively' and preparing effective bill for reducing radiation accidents. The number of worker for non-destructive inspect is increased steadily and non-destructive inspect worker take highest dose. Corresponding to these, it must be needed to prepare bills to protect non-destructive inspect workers. By analysis of accident case, there are many case of carelessness that tools are too heavy to carry it everywhere workers go. And there are some cases caused by deficiency of education that less understanding of radiation and poor operation by less understanding of structure of tools. Also, there is no data specialized to non-destructive inspect field. So, it has to take information from statistical data. Because of this, it is hard to analyze nondestructive inspect field accurately. So, it is required to; preparing rational bills to protect non-destructive inspect workers nondestructive inspect instrument lightening and easy manual which can understandable for low education background people accurate survey data from real worker. To accomplish these, we needs to do; analyze and comprehend the present law about non-destructive inspect worker understand non-destructive inspect instruments accurately and conduct research for developing material developing rational survey to measuring real condition for non-destructive inspect workers

  20. Influence of Kaolin in Fly Ash Based Geopolymer Concrete: Destructive and Non-Destructive Testing

    Science.gov (United States)

    Yahya, Z.; Abdullah, M. M. A. B.; Ramli, N. Mohd; Burduhos-Nergis, D. D.; Razak, R. Abd

    2018-06-01

    Development of geopolymer concrete is mainly to reduce the production of ordinary Portland cement (OPC) that adverse the natural effect. Fly ash is a by-product collected from electrical generating power plant which resulted from burning pulverized coal. Since fly ash is waste materials, it can be recycled for future advantages particularly as pozzolanic materials in construction industry. This study focused on the feasibility of fly ash based geopolymer concrete to which kaolin has been added. The main constituents of geopolymer production for this study were class F fly ash, sodium silicate and sodium hydroxide (NaOH) solution. The concentration of NaOH solution was fixed at 12 Molar, ratio of fly ash/alkaline activator and sodium silicate/NaOH fixed at 1.5 and 2.5, respectively. Kaolin was added in range 5% to 15% from the mass of fly ash and all the samples were cured at room temperature. Destructive and non-destructive test were performed on geopolymer concrete to evaluate the best mix proportions that yield the highest strength as well as the quality of the concrete. Compressive strength, flexural strength, rebound hammer and ultrasonic pulse velocity (UPV) result have been obtained. It shown that 5% replacement of kaolin contributed to maximum compressive strength and flexural strength of 40.4 MPa and 12.35 MPa at 28 days. These result was supported by non-destructive test for the same mix proportion.

  1. Microwave Metamaterial Absorber for Non-Destructive Sensing Applications of Grain

    Directory of Open Access Journals (Sweden)

    Yin Zhang

    2018-06-01

    Full Text Available In this work, we propose a metamaterial absorber at microwave frequencies with significant sensitivity and non-destructive sensing capability for grain samples. This absorber is composed of cross-resonators periodically arranged on an ultrathin substrate, a sensing layer filled with grain samples, and a metal ground. The cross-resonator array is fabricated using the printed circuit board process on an FR-4 board. The performance of the proposed metamaterial is demonstrated with both full-wave simulation and measurement results, and the working mechanism is revealed through multi-reflection interference theory. It can serve as a non-contact sensor for food quality control such as adulteration, variety, etc. by detecting shifts in the resonant frequencies. As a direct application, it is shown that the resonant frequency displays a significant blue shift from 7.11 GHz to 7.52 GHz when the mass fraction of stale rice in the mixture of fresh and stale rice is changed from 0% to 100%. In addition, the absorber shows a distinct difference in the resonant absorption frequency for different varieties of grain, which also makes it a candidate for a grain classification sensor. The presented scheme could open up opportunities for microwave metamaterial absorbers to be applied as efficient sensors in the non-destructive evaluation of agricultural and food product quality.

  2. Training guidelines in non-destructive testing techniques. 2002 edition

    International Nuclear Information System (INIS)

    2002-01-01

    Non-destructive testing (NDT) is a dynamic technology and progresses with time. Since the issuance of IAEA-TECDOC-628 in 1991, the technology has experienced numerous changes. Advancements in knowledge about the behaviour of materials have led to changes in the applicable NDT codes, standards and specifications. In addition, over the last ten years, as a result of extensive research and development activities worldwide, new NDT techniques and equipment have been developed which are accepted by engineering community. To accommodate the latest developments, modifications are required to training materials. The present publication is an updated version of IAEA-TECDOC-628. The modifications were made during an Advisory Group Meeting, held in Vienna from 25-29 June 2001. The content of the first edition of IAEA-TECDOC-628 has been revised based on the experience of the experts, as well as comments of the end-user industries. The time allotment for different topics has been changed without changing the total duration. The details of the topics on each subject have been expanded to include the latest developments in the individual fields. The incorporated changes will help end-the user industries to update their NDT qualification and certification schemes, and course material

  3. Resonant ultrasound spectroscopy and non-destructive testing

    Science.gov (United States)

    Migliori, A.; Darling, T. W.

    The use of mechanical resonances to test properties of materials is perhaps older than the industrial revolution. Early documented cases of British railroad engineers tapping the wheels of a train and using the sound to detect cracks perhaps mark the first real use of resonances to test the integrity of high-performance alloys. Attempts were made in the following years to understand the resonances of solids mathematically, based on the shape and composition. But Nobel Laureate Lord Rayleigh best summarized the state of affairs in 1894, stating 'the problem has, for the most part, resisted attack'. More recently, modern computers and electronics have enabled Anderson and co-workers with their work on minerals, and our work at Los Alamos on new materials and manufactured components to advance the use of resonances to a precision non-destructive testing tool that makes anisotropic modulus measurements, defect detection and geometry error detection routine. The result is that resonances can achieve the highest absolute accuracy for any dynamic modulus measurement technique, can be used on the smallest samples, and can also enable detection of errors in certain classes of precision manufactured components faster and more accurately than any other technique.

  4. Digital transfer of non-destructive testing images

    International Nuclear Information System (INIS)

    Nelson, S.

    1996-01-01

    This paper intends to address a possible avenue to assist the Non-Destructive Testing Industry in managing and transferring results to their clients in a more efficient way. Data is sent around the globe in various forms to a multitude of destinations. The problem has been twofold in any industry: how to get the data into a communication network and, how to manage and utilize this data. There are many types of scanners which can digitize the graph which can then be displayed on a computer screen via a software programme. The one presented in this paper has been jointly developed by a Melbourne company, Compu Medics and AGFA Australia. This system can also capture a video signal from Ultrasound Units and display on the screen. The author also explore what can be done with this data. Possibilities are endless and include: sending it via satellite or land line to a remote reader, saving or archiving for future reference and utilising the data base for education

  5. Checking collagen preservation in archaeological bone by non-destructive studies (Micro-CT and IBA)

    Science.gov (United States)

    Beck, L.; Cuif, J.-P.; Pichon, L.; Vaubaillon, S.; Dambricourt Malassé, A.; Abel, R. L.

    2012-02-01

    The material to be studied is a piece of human skull discovered (1999) in Pleistocene sediments from the Orsang river (Gujarat state, India). From anatomical view point, this skull is highly composite: modern Homo sapiens characters are associated to undoubtedly more ancient features. Absolute dating by 14C is critical to understand this discovery. Prior to dating measurements, non-destructive studies have been carried out. Micro-CT reconstruction (X-ray microtomography) and Ion Beam Analysis (IBA) have been undertaken to check the structural preservation of the fossil and the collagen preservation. PIXE elemental map was used to select well-preserved bone area. RBS/EBS and NRA were used for light element quantification, in particular C, N and O contents. We also demonstrate that the PIXE-RBS/EBS combination is a effective tool for the whole characterization of archaeological and recent bones by analysing in one experiment both mineral and organic fractions. We have shown that the archaeological bone, a fragment of the potentially oldest modern Indian, is enough preserved for radiocarbon dating. We propose that Elastic Backscattering Spectrometry (EBS) using 3 MeV protons could be a good non destructive alternative to conventional CHN method using Carbon-Hydrogen-Nitrogen analyzer for measuring C and N before 14C dating.

  6. Checking collagen preservation in archaeological bone by non-destructive studies (Micro-CT and IBA)

    Energy Technology Data Exchange (ETDEWEB)

    Beck, L., E-mail: lucile.beck@cea.fr [C2RMF - UMR171 CNRS, Centre de Recherche et de Restauration des Musees de France, Palais du Louvre, Porte des Lions, 14 quai Francois Mitterrand, 75001 Paris (France); CEA, DEN, Service de Recherches de Metallurgie Physique, Laboratoire JANNUS, 91191 Gif-sur-Yvette (France); Cuif, J.-P. [UMR IDES 8148, Universite Paris XI-Orsay, 91405 Orsay cedex (France); Pichon, L. [C2RMF - UMR171 CNRS, Centre de Recherche et de Restauration des Musees de France, Palais du Louvre, Porte des Lions, 14 quai Francois Mitterrand, 75001 Paris (France); Vaubaillon, S. [CEA, INSTN, Laboratoire JANNUS, 91191 Gif-sur-Yvette (France); Dambricourt Malasse, A. [Departement de Prehistoire, Museum national d' Histoire naturelle, UMR 7194 - CNRS, Institut de Paleontologie Humaine, 1, rue Rene Panhard, 75013 Paris (France); Abel, R.L. [The Natural History Museum, London (United Kingdom)

    2012-02-15

    The material to be studied is a piece of human skull discovered (1999) in Pleistocene sediments from the Orsang river (Gujarat state, India). From anatomical view point, this skull is highly composite: modern Homo sapiens characters are associated to undoubtedly more ancient features. Absolute dating by {sup 14}C is critical to understand this discovery. Prior to dating measurements, non-destructive studies have been carried out. Micro-CT reconstruction (X-ray microtomography) and Ion Beam Analysis (IBA) have been undertaken to check the structural preservation of the fossil and the collagen preservation. PIXE elemental map was used to select well-preserved bone area. RBS/EBS and NRA were used for light element quantification, in particular C, N and O contents. We also demonstrate that the PIXE-RBS/EBS combination is a effective tool for the whole characterization of archaeological and recent bones by analysing in one experiment both mineral and organic fractions. We have shown that the archaeological bone, a fragment of the potentially oldest modern Indian, is enough preserved for radiocarbon dating. We propose that Elastic Backscattering Spectrometry (EBS) using 3 MeV protons could be a good non destructive alternative to conventional CHN method using Carbon-Hydrogen-Nitrogen analyzer for measuring C and N before {sup 14}C dating.

  7. Checking collagen preservation in archaeological bone by non-destructive studies (Micro-CT and IBA)

    International Nuclear Information System (INIS)

    Beck, L.; Cuif, J.-P.; Pichon, L.; Vaubaillon, S.; Dambricourt Malassé, A.; Abel, R.L.

    2012-01-01

    The material to be studied is a piece of human skull discovered (1999) in Pleistocene sediments from the Orsang river (Gujarat state, India). From anatomical view point, this skull is highly composite: modern Homo sapiens characters are associated to undoubtedly more ancient features. Absolute dating by 14 C is critical to understand this discovery. Prior to dating measurements, non-destructive studies have been carried out. Micro-CT reconstruction (X-ray microtomography) and Ion Beam Analysis (IBA) have been undertaken to check the structural preservation of the fossil and the collagen preservation. PIXE elemental map was used to select well-preserved bone area. RBS/EBS and NRA were used for light element quantification, in particular C, N and O contents. We also demonstrate that the PIXE-RBS/EBS combination is a effective tool for the whole characterization of archaeological and recent bones by analysing in one experiment both mineral and organic fractions. We have shown that the archaeological bone, a fragment of the potentially oldest modern Indian, is enough preserved for radiocarbon dating. We propose that Elastic Backscattering Spectrometry (EBS) using 3 MeV protons could be a good non destructive alternative to conventional CHN method using Carbon–Hydrogen–Nitrogen analyzer for measuring C and N before 14 C dating.

  8. In-situ Non-destructive Studies on Biofouling Processes in Reverse Osmosis Membrane Systems

    KAUST Repository

    Farhat, Nadia

    2016-12-01

    Reverse osmosis (RO) and nanofiltration (NF) membrane systems are high-pressure membrane filtration processes that can produce high quality drinking water. Biofouling, biofilm formation that exceeds a certain threshold, is a major problem in spiral wound RO and NF membrane systems resulting in a decline in membrane performance, produced water quality, and quantity. In practice, detection of biofouling is typically done indirectly through measurements of performance decline. Existing direct biofouling detection methods are mainly destructive, such as membrane autopsies, where biofilm samples can be contaminated, damaged and resulting in biofilm structural changes. The objective of this study was to test whether transparent luminescent planar oxygen sensing optodes, in combination with a simple imaging system, can be used for in-situ, non-destructive biofouling characterization. Aspects of the study were early detection of biofouling, biofilm spatial patterning in spacer filled channels, and the effect of feed cross-flow velocity, and feed flow temperature. Oxygen sensing optode imaging was found suitable for studying biofilm processes and gave detailed spatial and quantitative biofilm development information enabling better understanding of the biofouling development process. The outcome of this study attests the importance of in-situ, non-destructive imaging in acquiring detailed knowledge on biofilm development in membrane systems contributing to the development of effective biofouling control strategies.

  9. Non-destructive forensic latent fingerprint acquisition with chromatic white light sensors

    Science.gov (United States)

    Leich, Marcus; Kiltz, Stefan; Dittmann, Jana; Vielhauer, Claus

    2011-02-01

    Non-destructive latent fingerprint acquisition is an emerging field of research, which, unlike traditional methods, makes latent fingerprints available for additional verification or further analysis like tests for substance abuse or age estimation. In this paper a series of tests is performed to investigate the overall suitability of a high resolution off-the-shelf chromatic white light sensor for the contact-less and non-destructive latent fingerprint acquisition. Our paper focuses on scanning previously determined regions with exemplary acquisition parameter settings. 3D height field and reflection data of five different latent fingerprints on six different types of surfaces (HDD platter, brushed metal, painted car body (metallic and non-metallic finish), blued metal, veneered plywood) are experimentally studied. Pre-processing is performed by removing low-frequency gradients. The quality of the results is assessed subjectively; no automated feature extraction is performed. Additionally, the degradation of the fingerprint during the acquisition period is observed. While the quality of the acquired data is highly dependent on surface structure, the sensor is capable of detecting the fingerprint on all sample surfaces. On blued metal the residual material is detected; however, the ridge line structure dissolves within minutes after fingerprint placement.

  10. Application of digital radiography for the non-destructive characterization of radioactive waste packages

    International Nuclear Information System (INIS)

    Lierse, C.; Goebel, H.; Kaciniel, E.; Buecherl, T.; Krebs, K.

    1995-01-01

    Digital radiography (DR) using gamma-rays is a powerful tool for the non-destructive determination of various parameters which are relevant within the quality control procedure of radioactive waste packages prior to an interim storage or a final disposal. DR provides information about the waste form and the extent of filling in a typical container. It can identify internal structures and defects, gives their geometric dimensions and helps to detect non-declared inner containers, shielding materials etc. From a digital radiographic image the waste matrix homogeneity may be determined and mean attenuation coefficients as well as density values for selected regions of interest can be calculated. This data provides the basis for an appropriate attenuation correction of gamma emission measurements (gamma scanning) and makes a reliable quantification of gamma emitters in waste containers possible. Information from DR measurements are also used for the selection of interesting height positions of the object which are subsequently inspected in more detail by other non-destructive methods, e. g. by transmission computerized tomography (TCT). The present paper gives important technical specifications of an integrated tomography system (ITS) which is used to perform digital radiography as well as transmission/emission computerized tomography (TCT/ECT) on radioactive waste packages. It describes the DR mode and some of its main applications and shows typical examples of radiographs of real radioactive waste drums

  11. Mapping of mechanical properties of cast iron melts using non-destructive structuroscopy

    Directory of Open Access Journals (Sweden)

    J. Dočekal

    2008-07-01

    Full Text Available The contribution is focused on mapping of mechanical properties using methods of non-destructive structuroscopy of cast irons, which are a result of research at TU of Liberec and Institute of Physics of ASCR. Investigated samples become from melts of FOCAM s.r.o Olomouc Foundry shop. It compares data of mechanical properties obtained using ultrasound method with data from magnetic spot method and MAT. These are interpreted by mathematic models applicable in practice. In the following it concerns to derivation of loading tensile curve method, which can be used to obtain yield and fatigue strength limits even for cast irons with flake graphite. In spite of promising results reported by literature the experiments are bothered with error. This method can be applied to structure checking both before casting and at vendor inspection of castings.

  12. Characterization of spent fuel assemblies for storage facilities using non destructive assay

    International Nuclear Information System (INIS)

    Lebrun, A.; Bignan, G.; Recroix, H.; Huver, M.

    1999-01-01

    Many non destructive assay (NDA) techniques have been developed by the French Atomic Energy Commission (CEA) for spent fuel characterization and management. Passive and active neutron methods as well as gamma spectrometric methods have been carried out and applied to industrial devices like PYTHON TM and NAJA. Many existing NDA methods can be successfully applied to storage, but the most promising are the neutron methods combined with on line evolution codes. For dry storage applications, active neutron measurements require further R and D to achieve accurate results. Characterization data given by NDA instruments can now be linked to automatic fuel recognition. Both information can feed the storage management software in order to meet the storage operation requirements like: fissile mass inventory, operators declaration consistency or automatic selection of proper storage conditions. (author)

  13. Parallelization of ultrasonic field simulations for non destructive testing

    International Nuclear Information System (INIS)

    Lambert, Jason

    2015-01-01

    The Non Destructive Testing field increasingly uses simulation. It is used at every step of the whole control process of an industrial part, from speeding up control development to helping experts understand results. During this thesis, a fast ultrasonic field simulation tool dedicated to the computation of an ultrasonic field radiated by a phase array probe in an isotropic specimen has been developed. During this thesis, a simulation tool dedicated to the fast computation of an ultrasonic field radiated by a phased array probe in an isotropic specimen has been developed. Its performance enables an interactive usage. To benefit from the commonly available parallel architectures, a regular model (aimed at removing divergent branching) derived from the generic CIVA model has been developed. First, a reference implementation was developed to validate this model against CIVA results, and to analyze its performance behaviour before optimization. The resulting code has been optimized for three kinds of parallel architectures commonly available in workstations: general purpose processors (GPP), many-core co-processors (Intel MIC) and graphics processing units (nVidia GPU). On the GPP and the MIC, the algorithm was reorganized and implemented to benefit from both parallelism levels, multithreading and vector instructions. On the GPU, the multiple steps of field computing have been divided in multiple successive CUDA kernels. Moreover, libraries dedicated to each architecture were used to speedup Fast Fourier Transforms, Intel MKL on GPP and MIC and nVidia cuFFT on GPU. Performance and hardware adequation of the produced codes were thoroughly studied for each architecture. On multiple realistic control configurations, interactive performance was reached. Perspectives to address more complex configurations were drawn. Finally, the integration and the industrialization of this code in the commercial NDT platform CIVA is discussed. (author) [fr

  14. A comparison between destructive and non-destructive techniques in determining coating thickness

    Science.gov (United States)

    Haider, F. I.; Suryanto; Ani, M. H.; Mahmood, M. H.

    2018-01-01

    Measuring coating thickness is an important part in research works related to coating applications. In general, techniques for measuring coating thickness may be divided into destructive and non-destructive methods which are commonly used depending on the applications. The objective of this study is to compare two methods measuring the coating thickness of electroplating copper coating on the austenitic stainless-steel substrate. The electroplating was carried out in a solution containing 200 g/L CuSO4, 100 g/L H2SO4 at room temperature and current of 40mA/cm2 during 20, 40, 60, 80 and 100 mins as coating periods. And the coating thickness was measured by two methods, cross sectional analysis as a destructive technique and weight gain as a non-destructive technique. The results show that at 20 mins coating time interval, the thickness measured by cross sectional method was 16.67 μm and by weight gain method was 17.37 μm, with difference of 0.7 μm and percentage error of 4.11%. This error increased to 5.27% at 100mins time interval, where the values of the thickness measured by cross sectional and weight gain were 86.33 μm and 81.9 μm respectively, and the difference was 4.43 μm. Moreover, though the weight gain method is fast and gives the indication for the termination of a coating process, information regarding the uniformity, porosity and the presence of cracks cannot be obtained. On the other hand, determining the coating thickness using destructive method will damage the sample.

  15. Delayed Gamma-Ray Spectroscopy for Non-Destructive Assay of Nuclear Materials

    International Nuclear Information System (INIS)

    Ludewigt, Bernhard; Mozin, Vladimir; Campbell, Luke; Favalli, Andrea; Hunt, Alan W.; Reedy, Edward T.E.; Seipel, Heather

    2015-01-01

    High-energy, beta-delayed gamma-ray spectroscopy is a potential, non-destructive assay techniques for the independent verification of declared quantities of special nuclear materials at key stages of the fuel cycle and for directly assaying nuclear material inventories for spent fuel handling, interim storage, reprocessing facilities, repository sites, and final disposal. Other potential applications include determination of MOX fuel composition, characterization of nuclear waste packages, and challenges in homeland security and arms control verification. Experimental measurements were performed to evaluate fission fragment yields, to test methods for determining isotopic fractions, and to benchmark the modeling code package. Experimental measurement campaigns were carried out at the IAC using a photo-neutron source and at OSU using a thermal neutron beam from the TRIGA reactor to characterize the emission of high-energy delayed gamma rays from 235 U, 239 Pu, and 241 Pu targets following neutron induced fission. Data were collected for pure and combined targets for several irradiation/spectroscopy cycle times ranging from 10/10 seconds to 15/30 minutes.The delayed gamma-ray signature of 241 Pu, a significant fissile constituent in spent fuel, was measured and compared to 239 Pu. The 241 Pu/ 239 Pu ratios varied between 0.5 and 1.2 for ten prominent lines in the 2700-3600 keV energy range. Such significant differences in relative peak intensities make it possible to determine relative fractions of these isotopes in a mixed sample. A method for determining fission product yields by fitting the energy and time dependence of the delayed gamma-ray emission was developed and demonstrated on a limited 235 U data set. De-convolution methods for determining fissile fractions were developed and tested on the experimental data. The use of high count-rate LaBr 3 detectors was investigated as a potential alternative to HPGe detectors. Modeling capabilities were added to an

  16. The non-destructive analysis of fluid inclusions in minerals using the proton microprobe

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, C.G.; Van Achterbergy, E. [Commonwealth Scientific and Industrial Research Organisation (CSIRO), North Ryde, NSW (Australia). Div. of Exploration Geoscience; Heinrich, C.A. [ETH Zentrum, Zurich, (Switzerland). Department Erdwissenschaften; Mernagh, T.P. [Max-Planck-Institut fuer Chemie (Otto-Hahn-Institut), Mainz (Germany); Zaw, K. [Tasmania Univ., Sandy Bay, TAS (Australia)

    1996-12-31

    The study of ore forming fluids trapped as fluid inclusions in minerals is the key to understanding fluid flow paths at the time of ore formation and to predicting the location of ore bodies within large-scale magmatic hydrothermal systems. The large penetration depths and the predictable nature of MeV proton trajectories and X-ray absorption enables reliable modelling of PIXE yields and the development of standardless quantitative analytical methods. This permits quantitative microanalysis of minerals at ppm levels, and more recently has enabled the development of methods for quantitative trace-element imaging and the quantitative, non-destructive analysis of individual fluid inclusions. This paper reports on recent developments in Proton Microprobe techniques with special emphasis on ore systems and fluid inclusion analysis. 6 refs., 2 figs.

  17. The non-destructive analysis of fluid inclusions in minerals using the proton microprobe

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, C G; Van Achterbergy, E [Commonwealth Scientific and Industrial Research Organisation (CSIRO), North Ryde, NSW (Australia). Div. of Exploration Geoscience; Heinrich, C A [ETH Zentrum, Zurich, (Switzerland). Department Erdwissenschaften; Mernagh, T P [Max-Planck-Institut fuer Chemie (Otto-Hahn-Institut), Mainz (Germany); Zaw, K [Tasmania Univ., Sandy Bay, TAS (Australia)

    1997-12-31

    The study of ore forming fluids trapped as fluid inclusions in minerals is the key to understanding fluid flow paths at the time of ore formation and to predicting the location of ore bodies within large-scale magmatic hydrothermal systems. The large penetration depths and the predictable nature of MeV proton trajectories and X-ray absorption enables reliable modelling of PIXE yields and the development of standardless quantitative analytical methods. This permits quantitative microanalysis of minerals at ppm levels, and more recently has enabled the development of methods for quantitative trace-element imaging and the quantitative, non-destructive analysis of individual fluid inclusions. This paper reports on recent developments in Proton Microprobe techniques with special emphasis on ore systems and fluid inclusion analysis. 6 refs., 2 figs.

  18. Usage of FTIR-ATR as Non-Destructive Analysis of Selected Toxic Dyes

    Directory of Open Access Journals (Sweden)

    Bartošová Alica

    2017-06-01

    Full Text Available The degradation of the environment which is due to the discharge of polluting wastewater from industrial sources poses a real problem in several countries. Textile industries use large volumes of water in their operations, discharging thus large volume of wastewater into the environment, most of which is untreated. The wastewater contains a variety of chemicals from various stages of process operations, including desizing, scouring, bleaching and dyeing. The main purpose of this paper is to introduce Infrared Spectrometry with Fourier transformation as a non-destructive method for study, identifation and rapid determination of selected representatives of cationic (Methylene Blue, azo (Congo Red, Eriochrome Black T and nitroso (Naphthol Green B dyes. In conjunction with the ATR technique, FTIR offers a reliable detection method of dyes without extraction by other dangerous substances.

  19. Usage of FTIR-ATR as Non-Destructive Analysis of Selected Toxic Dyes

    Science.gov (United States)

    Bartošová, Alica; Blinová, Lenka; Sirotiak, Maroš; Michalíková, Anna

    2017-06-01

    The degradation of the environment which is due to the discharge of polluting wastewater from industrial sources poses a real problem in several countries. Textile industries use large volumes of water in their operations, discharging thus large volume of wastewater into the environment, most of which is untreated. The wastewater contains a variety of chemicals from various stages of process operations, including desizing, scouring, bleaching and dyeing. The main purpose of this paper is to introduce Infrared Spectrometry with Fourier transformation as a non-destructive method for study, identifation and rapid determination of selected representatives of cationic (Methylene Blue), azo (Congo Red, Eriochrome Black T) and nitroso (Naphthol Green B) dyes. In conjunction with the ATR technique, FTIR offers a reliable detection method of dyes without extraction by other dangerous substances. Spectral interpretation of dye spectra revealed valuable information about the identification and characterization of each group of dyes.

  20. A versatile passive and active non-destructive device for spent fuel assemblies monitoring

    International Nuclear Information System (INIS)

    Berne, R.; Bignan, G.; Andrieu, G.; Dethan, B.

    1993-01-01

    The monitoring of spent fuel assemblies in reactor pools or in reprocessing plants with NDA methods is interesting (non-destructivity, non-intrusivity) for process control, safety-criticality and/or nuclear material management. In this context, the authors present the results of the development and design of a prototype device (physical methods used, qualification...) called PYTHON. The aim of PYTHON is to check the declared characteristic values of an irradiated assembly before taking it into a transport cask for safety criticality control. The PYTHON device consists of a detector head in two sections and a 252 Cf source if active neutron counting is to be used. Each section of the detection head consists of two detectors: one fission chamber and one ionization chamber