WorldWideScience

Sample records for non-degenerate coupled parametric

  1. Quantum phase fluctuations of coherent and thermal light coupled to a non-degenerate parametric oscillator beyond rotating wave approximation

    Science.gov (United States)

    Alam, Mohosin; Mandal, Swapan; Wahiddin, Mohamed Ridza

    2017-09-01

    The essence of the rotating wave approximation (RWA) is to eliminate the non-conserving energy terms from the interaction Hamiltonian. The cost of using RWA is heavy if the frequency of the input radiation field is low (e.g. below optical region). The well known Bloch-Siegert effect is the out come of the inclusion of the terms which are normally neglected under RWA. We investigate the fluctuations of the quantum phase of the coherent light and the thermal light coupled to a nondegenerate parametric oscillator (NDPO). The Hamiltonian and hence the equations of motion involving the signal and idler modes are framed by using the strong (classical) pump condition. These differential equations are nonlinear in nature and are found coupled to each other. Without using the RWA, we obtain the analytical solutions for the signal and idler fields. These solutions are obtained up to the second orders in dimensionless coupling constants. The analytical expressions for the quantum phase fluctuation parameters due to Carruther's and Nieto are obtained in terms of the coupling constants and the initial photon numbers of the input radiation field. Moreover, we keep ourselves confined to the Pegg-Barnett formalism for measured phase operators. With and without using the RWA, we compare the quantum phase fluctuations for coherent and thermal light coupled to the NDPO. In spite of the significant departures (quantitative), the qualitative features of the phase fluctuation parameters for the input thermal light are identical for NDPO with and without RWA. On the other hand, we report some interesting results of input coherent light coupled to the NDPO which are substantially different from their RWA counterpart. In spite of the various quantum optical phenomena in a NDPO, we claim that it is the first effort where the complete analytical approach towards the solutions and hence the quantum phase fluctuations of input radiation fields coupled to it are obtained beyond rotating wave

  2. Non-degenerate parametric amplification and filtering in biomimetic hair flow sensors

    NARCIS (Netherlands)

    Droogendijk, H.; Bruinink, C.M.; Sanders, R.G.P.; Krijnen, G.J.M.

    2011-01-01

    We report non-degenerate parametric amplification in our biomimetic MEMS hair-based flow-sensors with improved responsivity and sharp filtering through AC-biasing. To the best of our knowledge, this is the first flow sensor with tunable filtering by non-degenerate electromechanical parametric amplif

  3. Tuneable, non-degenerated, nonlinear, parametrically-excited amplifier

    Science.gov (United States)

    Dolev, Amit; Bucher, Izhak

    2016-01-01

    The proposed parametric amplifier scheme can be tuned to amplify a wide range of input frequencies by altering the parametric excitation with no need to physically modify the oscillator. Parametric amplifiers had been studied extensively, although most of the work focused on amplifiers that are parametrically excited at a frequency twice the amplifier's natural frequency. These amplifiers are confined to amplifying predetermined frequencies. The proposed parametric amplifier's bandwidth is indeed tuneable to nearly any input frequency, not bound to be an integer multiple of a natural frequency. In order to tune the stiffness and induce a variable frequency parametric excitation, a digitally controlled electromechanical element must be incorporated in the realization. We introduce a novel parametric amplifier with nonlinearity, Duffing type hardening, that bounds the otherwise unlimited amplitude. Moreover, we present a multi degree of freedom system in which a utilization of the proposed method enables the projection of low frequency vector forces on any eigenvector and corresponding natural frequency of the system, and thus to transform external excitations to a frequency band where signal levels are considerably higher. Using the method of multiple scales, analytical expressions for the responses have been retrieved and verified numerically. Parametric studies of the amplifiers' gain, sensitivities and spatial projection of the excitation on the system eigenvectors were carried out analytically. The results demonstrate the advantage of the proposed approach over existing schemes. Practical applications envisaged for the proposed method will be outlined.

  4. Observation of non-degenerate photorefractive parametric amplification

    DEFF Research Database (Denmark)

    Pedersen, H.C.; Johansen, P.M.

    1996-01-01

    We report on the first experimental observation of so-called nondegenerate photorefractive parametric amplification. We show that due to this effect it is possible for a weakly modulated photoinduced grating to be parametrically amplified via nonlinear interaction with a strongly modulated...

  5. Revisiting non-degenerate parametric down-conversion

    Indian Academy of Sciences (India)

    Joseph Akeyo Omolo

    2008-12-01

    The quantum dynamics of a two-mode non-resonant parametric down-conversion process is studied by recasting the time evolution equations for the basic operators in an equivalent spin equation form with simpler exact solutions for a pump field with harmonic time dependence. Expectation values of suitable operators for studying important features such as squeezing and quantum revivals are presented in simple forms.

  6. The SU(1, 1) Perelomov number coherent states and the non-degenerate parametric amplifier

    Energy Technology Data Exchange (ETDEWEB)

    Ojeda-Guillén, D., E-mail: dojedag@ipn.mx; Granados, V. D. [Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional, Ed. 9, Unidad Profesional Adolfo López Mateos, C.P. 07738 México D. F. (Mexico); Mota, R. D. [Escuela Superior de Ingeniería Mecánica y Eléctrica, Unidad Culhuacán, Instituto Politécnico Nacional, Av. Santa Ana No. 1000, Col. San Francisco Culhuacán, Delegación Coyoacán, C.P. 04430, México D. F. (Mexico)

    2014-04-15

    We construct the Perelomov number coherent states for an arbitrary su(1, 1) group operation and study some of their properties. We introduce three operators which act on Perelomov number coherent states and close the su(1, 1) Lie algebra. By using the tilting transformation we apply our results to obtain the energy spectrum and eigenfunctions of the non-degenerate parametric amplifier. We show that these eigenfunctions are the Perelomov number coherent states of the two-dimensional harmonic oscillator.

  7. Modeling and measurement of the noise figure of a cascaded non-degenerate phase-sensitive parametric amplifier.

    Science.gov (United States)

    Tong, Zhi; Bogris, Adonis; Lundström, Carl; McKinstrie, C J; Vasilyev, Michael; Karlsson, Magnus; Andrekson, Peter A

    2010-07-01

    Semi-classical noise characteristics are derived for the cascade of a non-degenerate phase-insensitive (PI) and a phase-sensitive (PS) fiber optical parametric amplifier (FOPA). The analysis is proved to be consistent with the quantum theory under the large-photon number assumption. Based on this, we show that the noise figure (NF) of the PS-FOPA at the second stage can be obtained via relative-intensity-noise (RIN) subtraction method after averaging the signal and idler NFs. Negative signal and idler NFs are measured, and 16 dB PS gain is estimated when considering the combined signal and idler input, which is believed to be the lowest measured NF of a non-degenerate PS amplifier to this date. The limitation of the RIN subtraction method attributed to pump transferred noise and Raman phonon induced noise is also discussed.

  8. The solution of the time-dependent Fokker-Planck equation of non-degenerate optical parametric amplification and its application to the optimum realization of EPR paradox

    Institute of Scientific and Technical Information of China (English)

    Zhao Chao-Ying; Tan Wei-Han

    2007-01-01

    In this paper,the solution of the time-dependent Fokker-Planck equation of non-degenerate optical parametric amplification is used to deduce the condition demonstrating the Einstein-Podolsky-Rosen (EPR) paradox.The analytics and numerical calculation show the influence of pump depletion on the error in the measurement of continuous variables.The optimum realization of EPR paradox can be achieved by adjusting the parameter of squeezing.This result is of practical importance when the realistic experimental conditions are taken into consideration.

  9. Mixing Angles and Non-Degenerate Systems of Particles

    CERN Document Server

    Duret, Q; Duret, Quentin; Machet, Bruno

    2006-01-01

    Defining, in the framework of quantum field theory, their mass eigenstates through their matricial propagator, we show why the mixing matrices of non-degenerate coupled systems should not be parametrized as unitary. This is how, for leptonic binary systems, two-angles solutions with discrete values pi/4 [pi/2] and pi/2 [pi] arise when weak leptonic currents of mass eigenstates approximately satisfy the two properties of universality and vanishing of their non-diagonal neutral components. Charged weak currents are also discussed, which leads to a few remarks concerning oscillations. We argue that quarks, which cannot be defined on shell because of the confinement property, are instead more naturally endowed with unitary Cabibbo-like mixing matrices, involving a single unconstrained mixing angle. The similarity between neutrinos and neutral kaons is outlined, together with the role of the symmetry by exchange of families.

  10. Parametrization of the QCD coupling in the evolution equations

    Energy Technology Data Exchange (ETDEWEB)

    Ermolaev, B.I. [H. Niewodniczanski Nuclear Physics Institute PAN, 31-342 Krakow (Poland); Ioffe Physico-Technical Institute, 194021 St. Petersburg (Russian Federation)], E-mail: boris.ermolaev@cern.ch; Troyan, S.I. [St. Petersburg Institute of Nuclear Physics, 188300 Gatchina (Russian Federation)

    2008-08-21

    We examine the parametrization of the QCD coupling in the evolution equations, including DGLAP. Our conclusion is that the well-known parametrization, where the argument of the coupling is k{sub perpendicular}{sup 2}/{beta} or just k{sub perpendicular}{sup 2}, stands only if the lowest integration limit in the transverse momentum space (the starting point {mu}{sup 2} of the Q{sup 2}-evolution) obeys the relation {mu}>>{lambda}{sub QCD}exp({pi}/2), otherwise the coupling should be replaced by the more complicated expression presented in Eq. (29)

  11. Parametrization of the QCD coupling in the Evolution Equations

    CERN Document Server

    Ermolaev, B I

    2008-01-01

    We examine the parametrization of the QCD coupling in the Evolution Equations, including DGLAP. Our conclusion is that the well-known parametrization, where the argument of the coupling is k^2_{\\perp}/\\beta or just k^2_{\\perp}, stands only if the lowest integration limit in the transverse momentum space (the starting point mu^2 of the Q^2 -evolution) obeys the relation mu >> Lambda_{QCD} \\exp {(\\pi/2)}, otherwise the coupling should be replaced by the more complicated expression presented in Eq. (37).

  12. Coupled parametric processes in binary nonlinear photonic structures

    CERN Document Server

    Saygin, M Yu

    2016-01-01

    We study parametric interactions in a new type of nonlinear photonic structures, which is realized in the vicinity of a pair of nonlinear crystals. In this kind of structure, which we call binary, multiple nonlinear optical processes can be implemented simultaneously, owing to multiple phase-matching conditions, fulfilled separately in the constituent crystals. The coupling between the nonlinear processes by means of modes sharing similar frequency is attained by the spatially-broadband nature of the parametric fields. We investigate the spatial properties of the fields generated in the binary structure constructed from periodically poled crystals for the two examples: 1) single parametric down-conversion, and 2) coupled parametric down-conversion and up-conversion processes. The efficacy of the fields' generation in these examples is analyzed through comparison with the cases of traditional single periodically poled crystal and aperiodic photonic structure, respectively. It has been shown that the relative s...

  13. Parametric strong mode-coupling in carbon nanotube mechanical resonators

    Science.gov (United States)

    Li, Shu-Xiao; Zhu, Dong; Wang, Xin-He; Wang, Jiang-Tao; Deng, Guang-Wei; Li, Hai-Ou; Cao, Gang; Xiao, Ming; Guo, Guang-Can; Jiang, Kai-Li; Dai, Xing-Can; Guo, Guo-Ping

    2016-08-01

    Carbon nanotubes (CNTs) have attracted much attention for use in nanomechanical devices because of their exceptional properties, such as large resonant frequencies, low mass, and high quality factors. Here, we report the first experimental realization of parametric strong coupling between two mechanical modes on a single CNT nanomechanical resonator, by applying an extra microwave pump. This parametric pump method can be used to couple mechanical modes with arbitrary frequency differences. The properties of the mechanical resonator are detected by single-electron tunneling at low temperature, which is found to be strongly coupled to both modes. The coupling strength between the two modes can be tuned by the pump power, setting the coupling regime from weak to strong. This tunability may be useful in further phonon manipulations in carbon nanotubes.Carbon nanotubes (CNTs) have attracted much attention for use in nanomechanical devices because of their exceptional properties, such as large resonant frequencies, low mass, and high quality factors. Here, we report the first experimental realization of parametric strong coupling between two mechanical modes on a single CNT nanomechanical resonator, by applying an extra microwave pump. This parametric pump method can be used to couple mechanical modes with arbitrary frequency differences. The properties of the mechanical resonator are detected by single-electron tunneling at low temperature, which is found to be strongly coupled to both modes. The coupling strength between the two modes can be tuned by the pump power, setting the coupling regime from weak to strong. This tunability may be useful in further phonon manipulations in carbon nanotubes. Electronic supplementary information (ESI) available: Fit of the quality factor and similar results in more devices. See DOI: 10.1039/c6nr02853e

  14. Global chaos synchronization of coupled parametrically excited pendula

    Indian Academy of Sciences (India)

    O I Olusola; U E Vincent; A N Njah

    2009-12-01

    In this paper, we study the synchronization behaviour of two linearly coupled parametrically excited chaotic pendula. The stability of the synchronized state is examined using Lyapunov stability theory and linear matrix inequality (LMI); and some sufficient criteria for global asymptotic synchronization are derived from which an estimated critical coupling is determined. Numerical solutions are presented to verify the theoretical analysis. We also examined the transition to stable synchronous state and show that this corresponds to a boundary crisis of the chaotic attractor.

  15. Resonator coupled Josephson junctions; parametric excitations and mutual locking

    DEFF Research Database (Denmark)

    Jensen, H. Dalsgaard; Larsen, A.; Mygind, Jesper

    1991-01-01

    Self-pumped parametric excitations and mutual locking in systems of Josephson tunnel junctions coupled to multimode resonators are reported. For the very large values of the coupling parameter, obtained with small Nb-Al2O3-Nb junctions integrated in superconducting microstrip resonators, the DC I......-V characteristic shows an equidistant series of current steps generated by subharmonic pumping of the fundamental resonator mode. This is confirmed by measurement of frequency and linewidth of the emitted Josephson radiation...

  16. Couplings in parametrically excited inclined cables systems

    OpenAIRE

    Michon, Guilhem; Berlioz, Alain; Lamarque, Claude-Henri

    2008-01-01

    Cables in stayed bridges are subjected to important dynamic solicitations for which dynamic model are now well established. Due to their design, such structures highlight resonance phenomena and instabilities frequently observed. Nevertheless, some structures exhibit important vibration amplitudes that can not be explained simply. Measurement recently performed on a bridge point a coupling of the cable with the deck or the pillar. The present paper suggests to consider the deck flexibility co...

  17. Cascade of parametric resonances in coupled Josephson junctions

    Science.gov (United States)

    Shukrinov, Yu. M.; Azemtsa-Donfack, H.; Rahmonov, I. R.; Botha, A. E.

    2016-06-01

    We found that the coupled system of Josephson junctions under external electromagnetic radiation demonstrates a cascade of parametric instabilities. These instabilities appear along the IV characteristics within bias current intervals corresponding to Shapiro step subharmonics and lead to charging in the superconducting layers. The amplitudes of the charge oscillations increase with increasing external radiation power. We demonstrate the existence of longitudinal plasma waves at the corresponding bias current values. An essential advantage of the parametric instabilities in the case of subharmonics is the lower amplitude of radiation that is needed for the creation of the longitudinal plasma wave. This fact gives a unique possibility to create and control longitudinal plasma waves in layered superconductors. We propose a novel experiment for studying parametric instabilities and the charging of superconducting layers based on the simultaneous variation of the bias current and radiation amplitude.

  18. Raman-Suppressing Coupling for Optical Parametric Oscillator

    Science.gov (United States)

    Savchenkov, Anatoliy; Maleki, Lute; Matsko, Andrey; Rubiola, Enrico

    2007-01-01

    A Raman-scattering-suppressing input/ output coupling scheme has been devised for a whispering-gallery-mode optical resonator that is used as a four-wave-mixing device to effect an all-optical parametric oscillator. Raman scattering is undesired in such a device because (1) it is a nonlinear process that competes with the desired nonlinear four-wave conversion process involved in optical parametric oscillation and (2) as such, it reduces the power of the desired oscillation and contributes to output noise. The essence of the present input/output coupling scheme is to reduce output loading of the desired resonator modes while increasing output loading of the undesired ones.

  19. Parametrization of the QCD coupling in Hard and Regge processes

    CERN Document Server

    Ermolaev, B I

    2008-01-01

    We examine the parametrization of the QCD coupling in the Bethe-Salpeter equations for the hard and Regge processes and determine the argument of alpha_s of the factorized gluon. Our analysis shows that for the hard processes alpha_s = alpha_s(k^2_T/(1- beta)) where k^2_T and beta are the longitudinal and transverse moment of the soft parton. On the other hand, in the Regge processes alpha_s = alpha_s(k^2_T}/beta). We have also shown that the well-known parametrization alpha_s = alpha_s(k^2_T) in the DGLAP equations stands only if the lowest integration limit, mu^2, over k^2_T (the starting point of the Q^2 -evolution) obeys the relation mu >> Lambda_{QCD} exp {(\\pi/2)}, otherwise the coupling should be replaced by the more complicated expression.

  20. Modified gravitational instability of degenerate and non-degenerate dusty plasma

    Science.gov (United States)

    Jain, Shweta; Sharma, Prerana

    2016-09-01

    The gravitational instability of strongly coupled dusty plasma (SCDP) is studied considering degenerate and non-degenerate dusty plasma situations. The SCDP system is assumed to be composed of the electrons, ions, neutrals, and strongly coupled dust grains. First, in the high density regime, due to small interparticle distance, the electrons are considered degenerate, whereas the neutrals, dust grains, and ions are treated non-degenerate. In this case, the dynamics of inertialess electrons are managed by Fermi pressure and Bohm potential, while the inertialess ions are by only thermal pressure. Second, in the non-degenerate regime, both the electrons and ions are governed by the thermal pressure. The generalized hydrodynamic model and the normal mode analysis technique are employed to examine the low frequency waves and gravitational instability in both degenerate and non-degenerate cases. The general dispersion relation is discussed for a characteristic timescale which provides two regimes of frequency, i.e., hydrodynamic regime and kinetic regime. Analytical solutions reveal that the collisions reduce the growth rate and have a strong impact on structure formation in both degenerate and non-degenerate circumstances. Numerical estimation on the basis of observed parameters for the degenerate and non-degenerate cases is presented to show the effects of dust-neutral collisions and dust effective velocity in the presence of polarization force. The values of Jeans length and Jeans mass have been estimated for degenerate white dwarfs as Jeans length L J = 1.3 × 10 5 cm and Jeans mass M J = 0.75 × 10 - 3 M⊙ and for non-degenerate laboratory plasma Jeans length L J = 6.86 × 10 16 cm and Jeans mass M J = 0.68 × 10 10 M⊙. The stability of the SCDP system is discussed using the Routh-Hurwitz criterion.

  1. Strong environmental coupling in a Josephson parametric amplifier

    Energy Technology Data Exchange (ETDEWEB)

    Mutus, J. Y.; White, T. C.; Barends, R.; Chen, Yu; Chen, Z.; Chiaro, B.; Dunsworth, A.; Jeffrey, E.; Kelly, J.; Neill, C.; O' Malley, P. J. J.; Roushan, P.; Sank, D.; Vainsencher, A.; Wenner, J.; Cleland, A. N.; Martinis, John M., E-mail: martinis@physics.ucsb.edu [Department of Physics, University of California, Santa Barbara, California 93106-9530 (United States); Megrant, A. [Department of Physics, University of California, Santa Barbara, California 93106-9530 (United States); Department of Materials, University of California, Santa Barbara, California 93106 (United States); Sundqvist, K. M. [Department of Electrical and Computer Engineering, Texas A and M University, College Station, Texas 77843 (United States)

    2014-06-30

    We present a lumped-element Josephson parametric amplifier designed to operate with strong coupling to the environment. In this regime, we observe broadband frequency dependent amplification with multi-peaked gain profiles. We account for this behavior using the “pumpistor” model which allows for frequency dependent variation of the external impedance. Using this understanding, we demonstrate control over the complexity of gain profiles through added variation in the environment impedance at a given frequency. With strong coupling to a suitable external impedance, we observe a significant increase in dynamic range, and large amplification bandwidth up to 700 MHz giving near quantum-limited performance.

  2. Investigation of coupled optical parametric oscillators for novel applications

    Science.gov (United States)

    Ding, Yujie J.

    2016-03-01

    In this proceedings article, we summarize our previous results on the novel applications using the coupled optical parametric oscillators (OPO's). In a conventional OPO, a single pump wavelength is capable of generating a pair of the signal and idler beams by placing a bulk nonlinear crystal inside an OPO cavity. When a nonlinear crystal composite consisting of periodically-inverted KTiOPO4 (KTP) plates bonded together by the adhesive-free-bonded (AFB) technique is used instead of the bulk nonlinear crystal, the optical parametric oscillation takes place at two sets of the new wavelengths for the signal and idler beams due to the phase shifts occurring at the interfaces of the adjacent domains making up the composite. These two sets of the signal and idler waves are effectively generated by the two OPO's being coupled to each other. These signals and idlers exhibit ultrastability in terms of their frequency separation. We review the progress made by us on the applications being realized by using such coupled OPO's such as THz generation and restoration of the blurred images after propagating through a distortion plate and a phase plate simulating atmospheric turbulence.

  3. Non-degenerate 2-photon excitation in scattering medium for fluorescence microscopy

    CERN Document Server

    Yang, Mu-Han; Saisan, Payam A; Tian, Peifang; Ferri, Christopher G L; AnnaDevor,; Fainman, Yeshaiahu

    2016-01-01

    Non-degenerate 2-photon excitation (ND-2PE) of a fluorophore with two laser beams of different photon energies offers an independent degree of freedom in tuning of the photon flux for each beam. This feature takes advantage of the infrared wavelengths used in 3-photon microscopy to achieve an increased penetration depth, while preserving a relatively high degenerate 2-photon excitation (D-2PE) cross section, exceeding that achievable with 3-photon excitation. Here, using spatially and temporally aligned Ti:Sapphire laser and optical parametric oscillator beams operating at near infrared (NIR) and short-wavelength infrared (SWIR) optical frequencies, respectively, we provide a practical demonstration that the emission intensity of a fluorophore excited in the non-degenerate regime in a scattering medium is more efficient than the commonly used D-2PE.

  4. Coupled mode parametric resonance in a vibrating screen model

    CERN Document Server

    Slepyan, Leonid I

    2013-01-01

    We consider a simple dynamic model of the vibrating screen operating in the parametric resonance (PR) mode. This model was used in the course of designing and setting of such a screen in LPMC. The PR-based screen compares favorably with conventional types of such machines, where the transverse oscillations are excited directly. It is characterized by larger values of the amplitude and by insensitivity to damping in a rather wide range. The model represents an initially strained system of two equal masses connected by a linearly elastic string. Self-equilibrated, longitudinal, harmonic forces act on the masses. Under certain conditions this results in transverse, finite-amplitude oscillations of the string. The problem is reduced to a system of two ordinary differential equations coupled by the geometric nonlinearity. Damping in both the transverse and longitudinal oscillations is taken into account. Free and forced oscillations of this mass-string system are examined analytically and numerically. The energy e...

  5. Geometric phases for non-degenerate and degenerate mixed states

    CERN Document Server

    Singh, K; Basu, K; Chen, J L; Du Jiang Feng

    2003-01-01

    This paper focuses on the geometric phase of general mixed states under unitary evolution. Here we analyze both non-degenerate as well as degenerate states. Starting with the non-degenerate case, we show that the usual procedure of subtracting the dynamical phase from the total phase to yield the geometric phase for pure states, does not hold for mixed states. To this end, we furnish an expression for the geometric phase that is gauge invariant. The parallelity conditions are shown to be easily derivable from this expression. We also extend our formalism to states that exhibit degeneracies. Here with the holonomy taking on a non-abelian character, we provide an expression for the geometric phase that is manifestly gauge invariant. As in the case of the non-degenerate case, the form also displays the parallelity conditions clearly. Finally, we furnish explicit examples of the geometric phases for both the non-degenerate as well as degenerate mixed states.

  6. Non-degenerate 2-photon excitation for fluorescence microscopy in scattering medium (Conference Presentation)

    Science.gov (United States)

    Fainman, Yeshaiahu; Yang, Mu-Han; Abashin, Maxim; Saisan, Payam; Tian, Peifang; Ferri, Christopher; Devor, Anna

    2016-10-01

    Non-degenerate 2-photon excitation of a fluorophore with two laser beams of different photon energies may offer independent degree of freedom in tuning of the photon flux (i.e., the power) for each beam. Wereport a practical demonstration that the emission intensity of a fluorophore excited in the non-degenerate regime in scattering medium is more efficient than the commonly used degenerate 2-photon excitation. In our experiments we use spatially and temporally aligned Ti:Sapphiremode-locked laser and optical parametric oscillator beams operating at near infrared (NIR) and short-wavelength infrared (SWIR) optical frequencies, respectively. The non-degenerate 2-photon excitation mechanism takes advantage of the infrared wavelengths used in 3-photon microscopy to achieve increased penetration depth, while preserving relatively high 2-photon excitation cross section, exceeding that achievable with the 3-photon excitation. Importantly, independent control of power for each beam implies that the flux requirement for the higher photon energy NIR beam, which experiences higher scattering in biological tissue, can be relaxed at the expense of increasing the flux of the lower photon energy SWIR beam which experiences lower scattering, thus promising deeper penetration with higher efficiency of excitation.Applications for in vivo brain imaging will be also discussed.

  7. Parametric resonance of intrinsic localized modes in coupled cantilever arrays

    Science.gov (United States)

    Kimura, Masayuki; Matsushita, Yasuo; Hikihara, Takashi

    2016-08-01

    In this study, the parametric resonances of pinned intrinsic localized modes (ILMs) were investigated by computing the unstable regions in parameter space consisting of parametric excitation amplitude and frequency. In the unstable regions, the pinned ILMs were observed to lose stability and begin to fluctuate. A nonlinear Klein-Gordon, Fermi-Pasta-Ulam-like, and mixed lattices were investigated. The pinned ILMs, particularly in the mixed lattice, were destabilized by parametric resonances, which were determined by comparing the shapes of the unstable regions with those in the Mathieu differential equation. In addition, traveling ILMs could be generated by parametric excitation.

  8. The Husain-Kuchar Model Time Variables and Non-degenerate Metrics

    CERN Document Server

    Barbero, J F G; Tresguerres, R; Tiemblo, Alfredo; Treseguerres, Romualdo

    1998-01-01

    We study the Husain-Kuchar model by introducing a new action principle similar to the self-dual action used in the Ashtekar variables approach to Quantum Gravity. This new action has several interesting features; among them, the presence of a scalar time variable that allows the definition of geometric observables without adding new degrees of freedom, the appearance of a natural non-degenerate four-metric and the possibility of coupling ordinary matter.

  9. Active Control of Parametric Vibrations in Coupled Rotor-Blade Systems

    DEFF Research Database (Denmark)

    Christensen, Rene Hardam; Santos, Ilmar

    2003-01-01

    In rotor-blade systems basis as well as parametric vibration modes will appear due to the vibration coupling among flexible rotating blades and hub rigid body motion. Parametric vibration will typically occur when the hub operates at a constant angular velocity. Operating at constant velocity...

  10. Design of the Advanced Virgo non-degenerate recycling cavities

    Energy Technology Data Exchange (ETDEWEB)

    Granata, M; Barsuglia, M [Laboratoire Astroparticule et Cosmologie (APC) 10 rue Alice Domon et Leonie Duquet, 75013 Paris (France); Flaminio, R [Laboratoire des Materiaux Avances (LMA), IN2P3/CNRS F-69622 Villeurbanne, Lyon (France); Freise, A [School of Physics and Astronomy, University of Birmingham Birmingham, B15 2TT (United Kingdom); Hild, S [Institute for Gravitational Research, Department of Physics and Astronomy University of Glasgow, Glasgow, G12 8QQ (United Kingdom); Marque, J, E-mail: granata@apc.univ-paris7.f [European Gravitational Observatory (EGO) I-56021 Cascina (Italy)

    2010-05-01

    Advanced Virgo is the project to upgrade the interferometric gravitational wave detector Virgo, and it foresees the implementation of power and signal non-degenerate recycling cavities. Such cavities suppress the build-up of high order modes of the resonating sidebands, with some advantage for the commissioning of the detector and the build-up of the gravitational signal. Here we present the baseline design of the Advanced Virgo non-degenerate recycling cavities, giving some preliminary results of simulations about the tolerances of this design to astigmatism, mirror figure errors and thermal lensing.

  11. Non-Degenerate Four- Wave Mixing in Microstructure Fibres

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xia; REN Xiao-Min; WANG Zi-Nan; XU Yong-Zhao; ZHANG Rui-Rui; HUANG Yong-Qing; CHEN Xue

    2007-01-01

    Non-degenerate four wave mixing based on third-order susceptibility χ3 in high nonlinearity microstructure fibres is experimentally demonstrated. The Stokes and anti-Stokes peaks are observed simultaneously by launching 10-fs pulses from an 800nm Ti:sapphire laser into the fibre.

  12. Full and semi-analytic analyses of two-pump parametric amplification with pump depletion

    DEFF Research Database (Denmark)

    Steffensen, Henrik; Ott, Johan Raunkjær; Rottwitt, Karsten

    2011-01-01

    This paper solves the four coupled equations describing non-degenerate four-wave mixing, with the focus on amplifying a signal in a fiber optical parametric amplifier (FOPA). Based on the full analytic solution, a simple approximate solution describing the gain is developed. The advantage of this...... gain spectrum with a bandwidth in the 100-nm range, centered on the zero-dispersion wavelength. When running the FOPA in depletion, this range can be slightly increased. © 2011 Optical Society of America....

  13. Mode competition in a system of two parametrically driven pendulums with nonlinear coupling

    NARCIS (Netherlands)

    Banning, E.J.; Weele, van der J.P.; Ross, J.C.; Kettenis, M.M.

    1997-01-01

    This paper is part three in a series on the dynamics of two coupled, parametrically driven pendulums. In the previous parts Banning and van der Weele (1995) and Banning et al. (1997) studied the case of linear coupling; the present paper deals with the changes brought on by the inclusion of a nonlin

  14. Parametric Design Optimization Of A Novel Permanent Magnet Coupling Using Finite Element Analysis

    DEFF Research Database (Denmark)

    Högberg, Stig; Mijatovic, Nenad; Holbøll, Joachim;

    2014-01-01

    A parametric design optimization routine has been applied to a novel magnetic coupling with improved recyclability. Coupling designs are modeled in a 3-D finite element environ- ment, and evaluated by three design objectives: pull-out torque, torque density by magnet mass, and torque density...

  15. Longitudinal dielectric permeability in quantum non-degenerate and maxwellian collisional plasma with constant collision frequency

    OpenAIRE

    Latyshev, A. V.; Yushkanov, A. A.

    2013-01-01

    The formula for dielectric function of non-degenerate and maxwellian collisional plasmas is transformed to the form, convenient for research. Graphic comparison of longitudinal dielectric functions of quantum and classical non-degenerate collisional plasmas is made.

  16. Post-selection free, integrated optical source of non-degenerate, polarization entangled photon pairs

    CERN Document Server

    Herrmann, Harald; Thomas, Abu; Poppe, Andreas; Sohler, Wolfgang; Silberhorn, Christine

    2013-01-01

    We present an integrated source of polarization entangled photon pairs in the telecom regime, which is based on type II-phasematched parametric down-conversion (PDC) in a Ti-indiffused waveguide in periodically poled lithium niobate. The domain grating -- consisting of an interlaced bi-periodic structure -- is engineered to provide simultaneous phase-matching of two PDC processes, and enables the direct generation of non-degenerate, polarization entangled photon pairs with a brightness of $B=7\\times10^3$ pairs/(s mW GHz). The spatial separation of the photon pairs is accomplished by a fiber-optical multiplexer facilitating a high compactness of the overall source. Visibilities exceeding 95% and a violation of the Bell inequality with $S=2.57\\pm0.06$ could be demonstrated.

  17. Shapiro and parametric resonances in coupled Josephson junctions

    Science.gov (United States)

    Gaafar, Ma A.; Shukrinov, Yu M.; Foda, A.

    2012-11-01

    The effect of microwave irradiation on the phase dynamics of intrinsic Josephson junctions in high temperature superconductors is investigated. We compare the current-voltage characteristics for a stack of coupled Josephson junctions under external irradiation calculated in the framework of CCJJ and CCJJ+DC models.

  18. Mode competition in a system of two coupled, parametrically driven pendulums: the Hamiltonian case

    NARCIS (Netherlands)

    Banning, E.J.; Weele, van der J.P.

    1995-01-01

    We study the mode competition in a Hamiltonian system of two parametrically driven pendulums, linearly coupled by a torsion spring. First we make a classification of all the periodic motions in four main types: the trivial motion, two `normal modes¿, and a mixed motion. Next we determine the stabili

  19. Stable integrated hyper-parametric oscillator based on coupled optical microcavities

    CERN Document Server

    Armaroli, Andrea; Dumeige, Yannick

    2015-01-01

    We propose a flexible scheme based on three coupled optical microcavities which permits to achieve stable oscillations in the microwave range, the frequency of which depends only on the cavity coupling rates. We find the different dynamical regimes (soft and hard excitation) to affect the oscillation intensity but not their period. This configuration may permit to implement compact hyper-parametric sources on an integrated optical circuit, with interesting applications in communications, sensing and metrology.

  20. PARAMETRIC MATCHING SELECTION OF MULTI-MEDIUM COUPLING SHOCK ABSORBER

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    To achieve the dual demand of resisting violent impact and attenuating vibration in vibration-impact-safety of protection for precision equipment such as MEMS packaging system, a theoretical mathematical model of multi-medium coupling shock absorber is presented. The coupling of quadratic damping, linear damping, Coulomb damping and nonlinear spring are considered in the model. The approximate theoretical calculating formulae are deduced by introducing transformation-tactics. The contrasts between the analytical results and numerical integration results are developed. The resisting impact characteristics of the model are also analyzed in progress. In the meantime,the optimum model of the parameters matching selection for design of the shock absorber is built.The example design is illustrated to confirm the validity of the modeling method and the theoretical solution.

  1. Multisolitonic solutions from a B\\"acklund transformation for a parametric coupled Korteweg-de Vries system

    CERN Document Server

    Vega, L Cortés; Sotomayor, A

    2014-01-01

    We obtain a B\\"acklund transformation for a parametric coupled KdV system. We prove the associated permutability theorem corresponding to such transformation and we generate new multi-solitonic and periodic solutions for the system. We introduce a generalized Gardner transformation and obtain from the associated $\\varepsilon$- deformed system the infinite sequence of conserved quantities for the parametric coupled system.

  2. Self-induced parametric amplification arising from nonlinear elastic coupling in a micromechanical resonating disk gyroscope.

    Science.gov (United States)

    Nitzan, Sarah H; Zega, Valentina; Li, Mo; Ahn, Chae H; Corigliano, Alberto; Kenny, Thomas W; Horsley, David A

    2015-01-01

    Parametric amplification, resulting from intentionally varying a parameter in a resonator at twice its resonant frequency, has been successfully employed to increase the sensitivity of many micro- and nano-scale sensors. Here, we introduce the concept of self-induced parametric amplification, which arises naturally from nonlinear elastic coupling between the degenerate vibration modes in a micromechanical disk-resonator, and is not externally applied. The device functions as a gyroscope wherein angular rotation is detected from Coriolis coupling of elastic vibration energy from a driven vibration mode into a second degenerate sensing mode. While nonlinear elasticity in silicon resonators is extremely weak, in this high quality-factor device, ppm-level nonlinear elastic effects result in an order-of-magnitude increase in the observed sensitivity to Coriolis force relative to linear theory. Perfect degeneracy of the primary and secondary vibration modes is achieved through electrostatic frequency tuning, which also enables the phase and frequency of the parametric coupling to be varied, and we show that the resulting phase and frequency dependence of the amplification follow the theory of parametric resonance. We expect that this phenomenon will be useful for both fundamental studies of dynamic systems with low dissipation and for increasing signal-to-noise ratio in practical applications such as gyroscopes.

  3. Observation of Quantum Beating from Two Coupled Parametric Six-Wave Mixing Signals in Rb

    Institute of Scientific and Technical Information of China (English)

    ZHU Chang-Jun; HE Jun-Fang; ZHAI Xue-Jun; XUE Bing

    2008-01-01

    Two processes of coupled difference-frequency axially phase-matched parametric six-wave mixing are carried out in Rb vapour by two-photon excitation using fs laser pulses, and parametric six-wave mixing signals in the infrared and near infrared regime are detected. The infrared parametric six-wave mixing signals are up-converted into the visible spectral range by sum-frequency mixing with the pump laser in a LiI03 crystal. Moreover, quantum beating at 608cm-1, corresponding to the 7s - 5d energy difference in Rb, is observed from the sum-frequency signal at 495 nm. As a result, we obtain modulated light signals in the visible, near infrared and infrared spectral ranges, and study the interference between 7s and 5d states of Rb.

  4. Duality relation among the Hamiltonian structures of a parametric coupled Korteweg-de Vries system

    Directory of Open Access Journals (Sweden)

    Restuccia Alvaro

    2016-01-01

    Full Text Available We obtain the full Hamiltonian structure for a parametric coupled KdV system. The coupled system arises from four different real basic lagrangians. The associated Hamiltonian functionals and the corresponding Poisson structures follow from the geometry of a constrained phase space by using the Dirac approach for constrained systems. The overall algebraic structure for the system is given in terms of two pencils of Poisson structures with associated Hamiltonians depending on the parameter of the Poisson pencils. The algebraic construction we present admits the most general space of observables related to the coupled system. We then construct two master lagrangians for the coupled system whose field equations are the ε-parametric Gardner equations obtained from the coupled KdV system through a Gardner transformation. In the weak limit ε → 0 the lagrangians reduce to the ones of the coupled KdV system while, after a suitable redefinition of the fields, in the strong limit ε → ∞ we obtain the lagrangians of the coupled modified KdV system. The Hamiltonian structures of the coupled KdV system follow from the Hamiltonian structures of the master system by taking the two limits ε → 0 and ε → ∞.

  5. Duality relation among the Hamiltonian structures of a parametric coupled Korteweg-de Vries system

    Science.gov (United States)

    Restuccia, Alvaro; Sotomayor, Adrián

    2016-01-01

    We obtain the full Hamiltonian structure for a parametric coupled KdV system. The coupled system arises from four different real basic lagrangians. The associated Hamiltonian functionals and the corresponding Poisson structures follow from the geometry of a constrained phase space by using the Dirac approach for constrained systems. The overall algebraic structure for the system is given in terms of two pencils of Poisson structures with associated Hamiltonians depending on the parameter of the Poisson pencils. The algebraic construction we present admits the most general space of observables related to the coupled system. We then construct two master lagrangians for the coupled system whose field equations are the ɛ-parametric Gardner equations obtained from the coupled KdV system through a Gardner transformation. In the weak limit ɛ → 0 the lagrangians reduce to the ones of the coupled KdV system while, after a suitable redefinition of the fields, in the strong limit ɛ → ∞ we obtain the lagrangians of the coupled modified KdV system. The Hamiltonian structures of the coupled KdV system follow from the Hamiltonian structures of the master system by taking the two limits ɛ → 0 and ɛ → ∞.

  6. Femtosecond Non-degenerate Four Wave Mixing Spectroscopy: The Two Color Photon Echo Peak Shift

    CERN Document Server

    Prall, B S

    2005-01-01

    The couplings between multiple electronic states and electronic and nuclear coordinates are examined for condensed phase systems by femtosecond degenerate and non-degenerate four wave mixing. The two-color photon echo peak shift experiment is developed which allows measurement of the correlation between transition frequencies in two different spectral regions. Two-color photon echo peak shift (2C3PEPS) experiments are used to study coupling between electronic states in the lutetium bisphthalocyanine anion, LuPc2−. Electronically induced mixing between exciton and charge resonance states leads to correlations in transition energies for the two observed transitions. This correlation generates non-zero 2C3PEPS which, when compared with 1C3PEPS, allows experimental determination of the degree of mixing, which was in good agreement with theoretical predictions. By exploiting a coherently excited nuclear wavepacket, the nuclear dependence on the electronic mixing between exciton and charge resonance state...

  7. Full hamiltonian structure for a parametric coupled Korteweg-de Vries system

    CERN Document Server

    Restuccia, A

    2014-01-01

    We obtain the full hamiltonian structure for a parametric coupled KdV system. The coupled system arises from four different real basic lagrangians. The associated hamiltonian functionals and the corresponding Poisson structures follow from the geometry of a constrained phase space by using the Dirac approach for constrained systems. The overall algebraic structure for the system is given in terms of two pencils of Poisson structures with associated hamiltonians depending on the parameter of the Poisson pencils. The algebraic construction we present admits the most general space of observables related to the coupled system.

  8. Tunable, continuous-wave single-resonant optical parametric oscillator with output coupling for resonant wave

    Science.gov (United States)

    Xiong-Hua, Zheng; Bao-Fu, Zhang; Zhong-Xing, Jiao; Biao, Wang

    2016-01-01

    We present a continuous-wave singly-resonant optical parametric oscillator with 1.5% output coupling of the resonant signal wave, based on an angle-polished MgO-doped periodically poled lithium niobate (MgO:PPLN), pumped by a commercial Nd:YVO4 laser at 1064 nm. The output-coupled optical parametric oscillator delivers a maximum total output power of 4.19 W with 42.8% extraction efficiency, across a tuning range of 1717 nm in the near- and mid-infrared region. This indicates improvements of 1.87 W in output power, 19.1% in extraction efficiency and 213 nm in tuning range extension in comparison with the optical parametric oscillator with no output coupling, while at the expense of increasing the oscillation threshold by a factor of ˜ 2. Moreover, it is confirmed that the finite output coupling also contributes to the reduction of the thermal effects in crystal. Project supported by the National Natural Science Foundation of China (Grant Nos. 61308056, 11204044, 11232015, and 11072271), the Research Fund for the Doctoral Program of Higher Education of China (Grant Nos. 20120171110005 and 20130171130003), the Fundamental Research Funds for the Central Universities of China (Grant No. 14lgpy07), and the Opening Project of Science and Technology on Reliability Physics and Application Technology of Electronic Component Laboratory, China (Grant No. ZHD201203).

  9. Spatio-temporal study of non-degenerate two-wave mixing in bacteriorhodopsin films.

    Science.gov (United States)

    Blaya, Salvador; González, Alejandro; Acebal, Pablo; Carretero, Luis

    2016-10-31

    A spatio-temporal analysis of non-degenerate two-wave mixing in a saturable absorber, such as bacteriorhodopsin (bR) film, is performed. To do this, a theoretical model describing the temporal variation of the intensities is developed by taking into account the dielectric constant as a function of bR population. A good agreement between theory and experimental measurements is obtained. Thus, the dependence of the optical gain and the main dielectric constant parameters are studied at different intensities and frequencies. As a result, the best intensity-frequency zones where higher coupling is reached are proposed, and it is also demonstrated that non-uniform patterns, which evolve over time as a function of frequency difference, can be observed.

  10. Sensitivity enhancement of remotely coupled NMR detectors using wirelessly powered parametric amplification.

    Science.gov (United States)

    Qian, Chunqi; Murphy-Boesch, Joseph; Dodd, Stephen; Koretsky, Alan

    2012-09-01

    A completely wireless detection coil with an integrated parametric amplifier has been constructed to provide local amplification and transmission of MR signals. The sample coil is one element of a parametric amplifier using a zero-bias diode that mixes the weak MR signal with a strong pump signal that is obtained from an inductively coupled external loop. The NMR sample coil develops current gain via reduction in the effective coil resistance. Higher gain can be obtained by adjusting the level of the pumping power closer to the oscillation threshold, but the gain is ultimately constrained by the bandwidth requirement of MRI experiments. A feasibility study here shows that on a NaCl/D(2) O phantom, (23) Na signals with 20 dB of gain can be readily obtained with a concomitant bandwidth of 144 kHz. This gain is high enough that the integrated coil with parametric amplifier, which is coupled inductively to external loops, can provide sensitivity approaching that of direct wire connection.

  11. Relativistic force field: parametric computations of proton-proton coupling constants in (1)H NMR spectra.

    Science.gov (United States)

    Kutateladze, Andrei G; Mukhina, Olga A

    2014-09-05

    Spin-spin coupling constants in (1)H NMR carry a wealth of structural information and offer a powerful tool for deciphering molecular structures. However, accurate ab initio or DFT calculations of spin-spin coupling constants have been very challenging and expensive. Scaling of (easy) Fermi contacts, fc, especially in the context of recent findings by Bally and Rablen (Bally, T.; Rablen, P. R. J. Org. Chem. 2011, 76, 4818), offers a framework for achieving practical evaluation of spin-spin coupling constants. We report a faster and more precise parametrization approach utilizing a new basis set for hydrogen atoms optimized in conjunction with (i) inexpensive B3LYP/6-31G(d) molecular geometries, (ii) inexpensive 4-31G basis set for carbon atoms in fc calculations, and (iii) individual parametrization for different atom types/hybridizations, not unlike a force field in molecular mechanics, but designed for the fc's. With the training set of 608 experimental constants we achieved rmsd <0.19 Hz. The methodology performs very well as we illustrate with a set of complex organic natural products, including strychnine (rmsd 0.19 Hz), morphine (rmsd 0.24 Hz), etc. This precision is achieved with much shorter computational times: accurate spin-spin coupling constants for the two conformers of strychnine were computed in parallel on two 16-core nodes of a Linux cluster within 10 min.

  12. Non-degenerate solutions of universal Whitham hierarchy

    CERN Document Server

    Takasaki, Kanehisa; Teo, Lee Peng

    2010-01-01

    The notion of non-degenerate solutions for the dispersionless Toda hierarchy is generalized to the universal Whitham hierarchy of genus zero with $M+1$ marked points. These solutions are characterized by a Riemann-Hilbert problem (generalized string equations) with respect to two-dimensional canonical transformations, and may be thought of as a kind of general solutions of the hierarchy. The Riemann-Hilbert problem contains $M$ arbitrary functions $H_a(z_0,z_a)$, $a = 1,...,M$, which play the role of generating functions of two-dimensional canonical transformations. The solution of the Riemann-Hilbert problem is described by period maps on the space of $(M+1)$-tuples $(z_\\alpha(p) : \\alpha = 0,1,...,M)$ of conformal maps from $M$ disks of the Riemann sphere and their complements to the Riemann sphere. The period maps are defined by an infinite number of contour integrals that generalize the notion of harmonic moments. The $F$-function (free energy) of these solutions is also shown to have a contour integral r...

  13. Two mode coupling in a single ion oscillator via parametric resonance

    CERN Document Server

    Gorman, Dylan J; Selvarajan, Sankaranarayanan; Daniilidis, Nikos; Häffner, Hartmut

    2014-01-01

    Atomic ions, confined in radio-frequency Paul ion traps, are a promising candidate to host a future quantum information processor. In this letter, we demonstrate a method to couple two motional modes of a single trapped ion, where the coupling mechanism is based on applying electric fields rather than coupling the ion's motion to a light field. This reduces the design constraints on the experimental apparatus considerably. As an application of this mechanism, we cool a motional mode close to its ground state without accessing it optically. As a next step, we apply this technique to measure the mode's heating rate, a crucial parameter determining the trap quality. In principle, this method can be used to realize a two-mode quantum parametric amplifier.

  14. EFFECTS OF PARAMETRIC VARIATIONS ON SEISMIC ANALYSIS METHODS FOR NON-CLASSICALLY DAMPED COUPLED SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    XU,J.; DEGRASSI,G.

    2000-04-02

    A comprehensive benchmark program was developed by Brookhaven National Laboratory (BNL) to perform an evaluation of state-of-the-art methods and computer programs for performing seismic analyses of coupled systems with non-classical damping. The program, which was sponsored by the US Nuclear Regulatory Commission (NRC), was designed to address various aspects of application and limitations of these state-of-the-art analysis methods to typical coupled nuclear power plant (NPP) structures with non-classical damping, and was carried out through analyses of a set of representative benchmark problems. One objective was to examine the applicability of various analysis methods to problems with different dynamic characteristics unique to coupled systems. The examination was performed using parametric variations for three simple benchmark models. This paper presents the comparisons and evaluation of the program participants' results to the BNL exact solutions for the applicable ranges of modeling dynamic characteristic parameters.

  15. Exploiting vibrational strong coupling to make an optical parametric oscillator out of a Raman laser

    CERN Document Server

    del Pino, Javier; Feist, Johannes

    2016-01-01

    When the collective coupling of the rovibrational states in organic molecules and confined electromagnetic modes is sufficiently strong, the system enters into vibrational strong coupling, leading to the formation of hybrid light-matter quasiparticles. In this work we demonstrate theoretically how this hybridization in combination with stimulated Raman scattering can be utilized to widen the capabilities of Raman laser devices. We explore the conditions under which the lasing threshold can be diminished and the system can be transformed into an optical parametric oscillator. Finally, we show how the dramatic reduction of the many final molecular states into two collective excitations can be used to create an all-optical switch with output in the mid-infrared.

  16. Exploiting Vibrational Strong Coupling to Make an Optical Parametric Oscillator Out of a Raman Laser

    Science.gov (United States)

    del Pino, Javier; Garcia-Vidal, Francisco J.; Feist, Johannes

    2016-12-01

    When the collective coupling of the rovibrational states in organic molecules and confined electromagnetic modes is sufficiently strong, the system enters into vibrational strong coupling, leading to the formation of hybrid light-matter quasiparticles. In this Letter, we demonstrate theoretically how this hybridization in combination with stimulated Raman scattering can be utilized to widen the capabilities of Raman laser devices. We explore the conditions under which the lasing threshold can be diminished and the system can be transformed into an optical parametric oscillator. Finally, we show how the dramatic reduction of the many final molecular states into two collective excitations can be used to create an all-optical switch with output in the midinfrared.

  17. Parametrization of pair correlation function and static structure factor of the one component plasma across coupling regimes

    CERN Document Server

    Desbiens, Nicolas; Clérouin, Jean

    2016-01-01

    We present a parametrization of the pair correlation function and the static structure factor of the Coulomb one component plasma (OCP) from the weakly coupled regime to the strongly coupled regime. Recent experiments strongly suggest that the OCP model can play the role of a reference system for warm dense matter. It can provide the ionic static structure factor that is necessary to interpret the x-ray Thomson scattering measurements, for instance. We illustrate this with the interpretation of a x-ray diffraction spectrum recently measured, using a Bayesian method that requires many evaluations of the static structure factor to automatically calibrate the parameters. For strongly coupled dusty plasmas, the proposed parametrization of the Coulomb OCP pair correlation function can be related to the Yukawa one, including screening. Further prospects to parametrize the static structure of Yukawa systems are also discussed.

  18. Relativistic Force Field: Parametrization of (13)C-(1)H Nuclear Spin-Spin Coupling Constants.

    Science.gov (United States)

    Kutateladze, Andrei G; Mukhina, Olga A

    2015-11-01

    Previously, we reported a reliable DU8 method for natural bond orbital (NBO)-aided parametric scaling of Fermi contacts to achieve fast and accurate prediction of proton-proton spin-spin coupling constants (SSCC) in (1)H NMR. As sophisticated NMR experiments for precise measurements of carbon-proton SSCCs are becoming more user-friendly and broadly utilized by the organic chemistry community to guide and inform the process of structure determination of complex organic compounds, we have now developed a fast and accurate method for computing (13)C-(1)H SSCCs. Fermi contacts computed with the DU8 basis set are scaled using selected NBO parameters in conjunction with empirical scaling coefficients. The method is optimized for inexpensive B3LYP/6-31G(d) geometries. The parametric scaling is based on a carefully selected training set of 274 ((3)J), 193 ((2)J), and 143 ((1)J) experimental (13)C-(1)H spin-spin coupling constants reported in the literature. The DU8 basis set, optimized for computing Fermi contacts, which by design had evolved from optimization of a collection of inexpensive 3-21G*, 4-21G, and 6-31G(d) bases, offers very short computational (wall) times even for relatively large organic molecules containing 15-20 carbon atoms. The most informative SSCCs for structure determination, i.e., (3)J, were computed with an accuracy of 0.41 Hz (rmsd). The new unified approach for computing (1)H-(1)H and (13)C-(1)H SSCCs is termed "DU8c".

  19. A parallel-architecture parametric equalizer for air-coupled capacitive ultrasonic transducers.

    Science.gov (United States)

    McSweeney, Sean G; Wright, William M D

    2012-01-01

    Parametric equalization is rarely applied to ultrasonic transducer systems, for which it could be used on either the transmitter or the receiver to achieve a desired response. An optimized equalizer with both bump and cut capabilities would be advantageous for ultrasonic systems in applications in which variations in the transducer performance or the properties of the propagating medium produce a less-than-desirable signal. Compensation for non-ideal transducer response could be achieved using equalization on a device-by-device basis. Additionally, calibration of ultrasonic systems in the field could be obtained by offline optimization of equalization coefficients. In this work, a parametric equalizer for ultrasonic applications has been developed using multiple bi-quadratic filter elements arranged in a novel parallel arrangement to increase the flexibility of the equalization. The equalizer was implemented on a programmable system-on-chip (PSOC) using a small number of parallel 4th-order infinite impulse response switchedcapacitor band-pass filters. Because of the interdependency of the required coefficients for the switched capacitors, particle swarm optimization (PSO) was used to determine the optimum values. The response of a through-transmission system using air-coupled capacitive ultrasonic transducers was then equalized to idealized Hamming function or brick-wall frequencydomain responses. In each case, there was excellent agreement between the equalized signals and the theoretical model, and the fidelity of the time-domain response was maintained. The bandwidth and center frequency response of the system were significantly improved. It was also shown that the equalizer could be used on either the transmitter or the receiver, and the system could compensate for the effects of transmitterreceiver misalignment.

  20. Ghost imaging with different frequencies through non-degenerated four-wave mixing.

    Science.gov (United States)

    Yu, Ya; Wang, Chengyuan; Liu, Jun; Wang, Jinwen; Cao, Mingtao; Wei, Dong; Gao, Hong; Li, Fuli

    2016-08-08

    As a novel imaging method, ghost imaging has been widely explored in various fields of research, such as lensless ghost imaging, computational ghost imaging, turbulence-free ghost imaging. Recently, ghost imaging in non-degenerated system with pseudo-thermal light has been discussed theoretically, however, to our best knowledge, no experimental evidence has been proven yet. In this paper, we propose a new approach to realize ghost imaging with different frequencies, which are generated through a non-degenerated four-wave mixing(FWM) process in Rb vapor. In our experiment, by employing pseudo-thermal light as the probe beam, we found that the generated FWM signal has a strong second-order correlation with the original thermal light. On basis of that, we successfully implement non-degenerate ghost imaging, and reconstruct highly similar images of objects.

  1. Magnetic-free non-reciprocity and isolation based on parametrically modulated coupled-resonator loops

    Science.gov (United States)

    Estep, Nicholas A.; Sounas, Dimitrios L.; Soric, Jason; Alù, Andrea

    2014-12-01

    Non-reciprocal components, which are essential to many modern communication systems, are almost exclusively based on magneto-optical materials, severely limiting their applicability. A practical and inexpensive route to magnetic-free non-reciprocity could revolutionize radio-frequency and nanophotonic communication networks. Angular-momentum biasing was recently proposed as a means of realizing isolation for sound waves travelling in a rotating medium, and envisaged as a path towards compact, linear integrated non-reciprocal electromagnetic components. Inspired by this concept, here we demonstrate a subwavelength, linear radio-frequency non-reciprocal circulator free from magnetic materials and bias. The scheme is based on the parametric modulation of three identical, strongly and symmetrically coupled resonators. Their resonant frequencies are modulated by external signals with the same amplitude and a relative phase difference of 120°, imparting an effective electronic angular momentum to the system. We observe giant non-reciprocity, with up to six orders of magnitude difference in transmission for opposite directions. Furthermore, the device topology is tunable in real time, and can be directly embedded in a conventional integrated circuit.

  2. Rupture dynamics along bimaterial interfaces: a parametric study of the shear-normal traction coupling

    Science.gov (United States)

    Scala, Antonio; Festa, Gaetano; Vilotte, Jean-Pierre

    2017-01-01

    Earthquake ruptures often develop along faults separating materials with dissimilar elastic properties. Due to the broken symmetry, the propagation of the rupture along the bimaterial interface is driven by the coupling between interfacial sliding and normal traction perturbations. We numerically investigate in-plane rupture growth along a planar interface, under slip weakening friction, separating two dissimilar isotropic linearly elastic half-spaces, and we perform a parametric study of the classical Prakash-Clifton regularisation, for different material contrasts. In particular the mesh-dependence and the regularisation-dependence of the numerical solutions are analysed in this parameter space. When the regularisation involves a slip-rate dependent relaxation time, a characteristic sliding distance is identified below which numerical solutions no longer depend on the regularisation parameter, i.e. they are physically well-posed solutions. Such regularisation provides an adaptive high-frequency filter of the slip-induced normal traction perturbations, following the dynamic shrinking of the dissipation zone during the acceleration phase. In contrast, a regularisation involving a constant relaxation time leads to numerical solutions that always depend on the regularisation parameter since it fails in adapting to the shrinking of the process zone. Dynamic regularisation is further investigated using a non-local regularisation based on a relaxation time that depends on the dynamic length of the dissipation zone. Such reformulation is shown to provide similar results as the dynamic time scale regularisation proposed by Prakash-Clifton when the slip rate is replaced by the maximum slip rate along the sliding interface. This leads to the identification of a dissipative length scale associated with the coupling between interfacial sliding and normal traction perturbations, together with a scaling law between the maximum slip rate and the dynamic size of the process zone

  3. Lamb shift of non-degenerate energy level systems placed between two infinite parallel conducting plates

    CERN Document Server

    Billaud, B

    2012-01-01

    The issue of the observability of the Lamb shift in systems with non-degenerate energy levels is put to question. To this end, we compute the Lamb shift of such systems in the electromagnetic environment provided by two infinite parallel conducting plates, which is instrumental in demonstrating the existence of the so-called Casimir effect. A formula giving the relative change in the Lamb shift (as compared to the standard one in vacuum) is explicitly obtained for spherical semiconductor Quantum Dots (QD). It suggests a possibility of QD non-degenerate energy spectrum fine-tuning for experimental purposes as well as a {\\it Gedankenexperiment} to observe the Lamb shift in spherical semiconductor quantum dots.

  4. Parametric study on coupling loss in subsize ITER Nb3Sn cabled specimen

    NARCIS (Netherlands)

    Nijhuis, Arend; Kate, ten Herman H.J.; Bruzzone, Pierluigi; Bottura, Luca

    1996-01-01

    The cable in conduit conductors for the various ITER coils are required to function under pulse conditions and fields up to 13 T. A parametric study, restricted to a limited variation of the reference cable lay out, is carried out to clarify the quantitative impact of various cable parameters on the

  5. Parametric studh on coupling loss in subsize ITER Nb3Sn cabled specimens

    NARCIS (Netherlands)

    Nijhuis, Arend; ten Kate, Herman H.J.; Bruzzone, Pierluigi; Bottura, Luca

    1996-01-01

    The cable in conduit conductors for the various ITER coils are required to function under pulse conditions and fields up to 13 T. A parametric study, restricted to a limited variation of the reference cable lay out, is carried out to clarify the quantitative impact of various cable parameters on the

  6. Analytical Study of Nonclassical Behaviour for a Disturbed Non-Degenerated Parameter Amplifier

    Institute of Scientific and Technical Information of China (English)

    PANG Qian-Jun

    2007-01-01

    We analytically discuss the nonclassical behaviour for a disturbed non-degenerated parameter amplifier.The thermal Glauber-Sudarshan diagonal presentation (GSP)function for the system is derived.The detailed analysis on the threshold temperatures of both the individual photon subsystem and the complete photon-photon complex is presented.The offect of the photon-photon interaction on the threshold temperature is observed.

  7. From non-degenerate conducting polymers to dense matter in the massive Gross-Neveu model

    CERN Document Server

    Thies, M; Thies, Michael; Urlichs, Konrad

    2005-01-01

    Using results from the theory of non-degenerate conducting polymers like cis-polyacetylene, we generalize our previous work on baryonic matter in the massless Gross-Neveu model to finite bare fermion mass. In the large N limit, the exact ground state is constructed analytically, in close analogy to the bipolaron lattice in polymers. These findings are contrasted to the standard scenario with a first order phase transition as a function of density.

  8. Broadband Polarization-Insensitive Wavelength Conversion Based on Non-Degenerate Four-Wave Mixing in a Silicon Nanowire

    DEFF Research Database (Denmark)

    Pu, Minhao; Hu, Hao; Ji, Hua

    2012-01-01

    We experimentally demonstrate broadband polarization-insensitive one-to-two wavelength conversion of a 10-Gb/s DPSK data signal based on non-degenerate four-wave mixing in a silicon nanowire with bit-error rate measurements.......We experimentally demonstrate broadband polarization-insensitive one-to-two wavelength conversion of a 10-Gb/s DPSK data signal based on non-degenerate four-wave mixing in a silicon nanowire with bit-error rate measurements....

  9. Electromagnetically induced absorption in a non-degenerate three-level ladder system

    CERN Document Server

    Whiting, Daniel J; Keaveney, James; Zentile, Mark A; Adams, Charles S; Hughes, Ifan G

    2015-01-01

    We investigate, theoretically and experimentally, the transmission of light through a thermal vapour of three-level ladder-type atoms, in the presence of 2 counter-propagating control fields. A simple theoretical model predicts the presence of electromagnetically induced absorption (EIA) in this pure three-level system when the control field is resonant. Experimentally, we use $^{87}$Rb in a large magnetic field of 0.62~T to reach the hyperfine Paschen-Back regime and realise a non-degenerate three-level system. Experimental observations verify the predictions over a wide range of detunings.

  10. Coupled-cluster Green's function: Analysis of properties originating in the exponential parametrization of the ground-state wave function

    Science.gov (United States)

    Peng, Bo; Kowalski, Karol

    2016-12-01

    In this paper we derive basic properties of the Green's-function matrix elements stemming from the exponential coupled-cluster (CC) parametrization of the ground-state wave function. We demonstrate that all intermediates used to express the retarded (or, equivalently, ionized) part of the Green's function in the ω representation can be expressed only through connected diagrams. Similar properties are also shared by the first-order ω derivative of the retarded part of the CC Green's function. Moreover, the first-order ω derivative of the CC Green's function can be evaluated analytically. This result can be generalized to any order of ω derivatives. Through the Dyson equation, derivatives of the corresponding CC self-energy operator can be evaluated analytically. In analogy to the CC Green's function, the corresponding CC self-energy operator can be represented by connected terms. Our analysis can easily be generalized to the advanced part of the CC Green's function.

  11. Selecting the pre-detection characteristics for fiber coupling of parametric down-converted biphoton modes

    Science.gov (United States)

    Anwar, Ali; Chithrabhanu, P.; Reddy, Salla Gangi; Lal, Nijil; Singh, R. P.

    2017-01-01

    Photon modes have an important role in characterizing the quantum sources of light. The two main pre-detection factors affecting the biphoton mode coupling in SPDC are the pump beam focusing parameter and the crystal thickness. We present the numerical and experimental results on the effect of pump focusing on conditional down-converted photon modes for a Type-I BBO crystal. We experimentally verify that biphoton coupling efficiency decreases asymptotically with pump beam focusing parameter. We attribute this behaviour to (a) the asymmetry in the spatial distribution of down-converted photons with the pump beam focusing parameter and (b) the ellipticity of biphoton modes introduced due to the focusing of the pump beam. We also show the ellipticity experimentally as well as quantify it with the focusing parameter. These results may be useful in selecting optimum conditions for generating efficient fiber coupled sources of heralded single photons and entangled photons for quantum information applications.

  12. Sound energy decay in coupled spaces using a parametric analytical solution of a diffusion equation.

    Science.gov (United States)

    Luizard, Paul; Polack, Jean-Dominique; Katz, Brian F G

    2014-05-01

    Sound field behavior in performance spaces is a complex phenomenon. Issues regarding coupled spaces present additional concerns due to sound energy exchanges. Coupled volume concert halls have been of increasing interest in recent decades because this architectural principle offers the possibility to modify the hall's acoustical environment in a passive way by modifying the coupling area. Under specific conditions, the use of coupled reverberation chambers can provide non-exponential sound energy decay in the main room, resulting in both high clarity and long reverberation which are antagonistic parameters in a single volume room. Previous studies have proposed various sound energy decay models based on statistical acoustics and diffusion theory. Statistical acoustics assumes a perfectly uniform sound field within a given room whereas measurements show an attenuation of energy with increasing source-receiver distance. While previously proposed models based on diffusion theory use numerical solvers, the present study proposes a heuristic model of sound energy behavior based on an analytical solution of the commonly used diffusion equation and physically justified approximations. This model is validated by means of comparisons to scale model measurements and numerical geometrical acoustics simulations, both applied to the same simple concert hall geometry.

  13. Parametric Assessment of Water Use Vulnerability Variations Using SWAT and Fuzzy TOPSIS Coupled with Entropy

    OpenAIRE

    Kwangjai Won; Eun-Sung Chung; Sung-Uk Choi

    2015-01-01

    This study assessed the water use vulnerability to include the uncertainty of the weighting values of evaluation criteria and the annual variations of performance values using fuzzy TOPSIS coupled with the Shannon entropy method. This procedure was applied to 12 major basins covering about 88% territory of South Korea. Hydrological components were simulated using Soil and Water Assessment Tool (SWAT) of which parameters were optimally calibrated using SWAT-CUP model. The 15 indicators includ...

  14. Non-degenerate light quark masses from 2+1f lattice QCD+QED

    Energy Technology Data Exchange (ETDEWEB)

    Drury, Shane [Southampton U.; Blum, Thomas [RIKEN BNL; Hayakawa, Masashi [Nagoya U.; Izubuchi, Taku [RIKEN BNL; Sachrajda, Chris [Southampton U.; Zhou, Ran [Indiana U.

    2014-01-01

    We report on a calculation of the effects of isospin breaking in Lattice QCD+QED. This involves using Chiral Perturbation Theory with Electromagnetic corrections to find the renormalized, non-degenerate, light quark masses. The calculations are carried out on QCD ensembles generated by the RBC and UKQCD collaborations using Domain Wall Fermions and the Iwasaki and Iwasaki+DSDR Gauge Actions with unitary pion masses down to 170 MeV. Non-compact QED is treated in the quenched approximation. The simulations use a $32^3$ lattice size with $a^{-1}=2.28(3)$ GeV (Iwasaki) and 1.37(1) (Iwasaki+DSDR). This builds on previous work from the RBC/UKQCD collaboration with lattice spacing $a^{-1}=1.78(4)$ GeV.

  15. A Non-Degenerate Code of Deleterious Variants in Mendelian Loci Contributes to Complex Disease Risk

    Science.gov (United States)

    Blair, David R.; Lyttle, Christopher S.; Mortensen, Jonathan M.; Bearden, Charles F.; Jensen, Anders Boeck; Khiabanian, Hossein; Melamed, Rachel; Rabadan, Raul; Bernstam, Elmer V.; Brunak, Søren; Jensen, Lars Juhl; Nicolae, Dan; Shah, Nigam H.; Grossman, Robert L.; Cox, Nancy J.; White, Kevin P.; Rzhetsky, Andrey

    2013-01-01

    Summary Whereas countless highly penetrant variants have been associated with Mendelian disorders, the genetic etiologies underlying complex diseases remain largely unresolved. Here, we examine the extent to which Mendelian variation contributes to complex disease risk by mining the medical records of over 110 million patients. We detect thousands of associations between Mendelian and complex diseases, revealing a non-degenerate, phenotypic code that links each complex disorder to a unique collection of Mendelian loci. Using genome-wide association results, we demonstrate that common variants associated with complex diseases are enriched in the genes indicated by this “Mendelian code.” Finally, we detect hundreds of comorbidity associations among Mendelian disorders, and we use probabilistic genetic modeling to demonstrate that Mendelian variants likely contribute non-additively to the risk for a subset of complex diseases. Overall, this study illustrates a complementary approach for mapping complex disease loci and provides unique predictions concerning the etiologies of specific diseases. PMID:24074861

  16. Addressing model error through atmospheric stochastic physical parametrizations: impact on the coupled ECMWF seasonal forecasting system.

    Science.gov (United States)

    Weisheimer, Antje; Corti, Susanna; Palmer, Tim; Vitart, Frederic

    2014-06-28

    The finite resolution of general circulation models of the coupled atmosphere-ocean system and the effects of sub-grid-scale variability present a major source of uncertainty in model simulations on all time scales. The European Centre for Medium-Range Weather Forecasts has been at the forefront of developing new approaches to account for these uncertainties. In particular, the stochastically perturbed physical tendency scheme and the stochastically perturbed backscatter algorithm for the atmosphere are now used routinely for global numerical weather prediction. The European Centre also performs long-range predictions of the coupled atmosphere-ocean climate system in operational forecast mode, and the latest seasonal forecasting system--System 4--has the stochastically perturbed tendency and backscatter schemes implemented in a similar way to that for the medium-range weather forecasts. Here, we present results of the impact of these schemes in System 4 by contrasting the operational performance on seasonal time scales during the retrospective forecast period 1981-2010 with comparable simulations that do not account for the representation of model uncertainty. We find that the stochastic tendency perturbation schemes helped to reduce excessively strong convective activity especially over the Maritime Continent and the tropical Western Pacific, leading to reduced biases of the outgoing longwave radiation (OLR), cloud cover, precipitation and near-surface winds. Positive impact was also found for the statistics of the Madden-Julian oscillation (MJO), showing an increase in the frequencies and amplitudes of MJO events. Further, the errors of El Niño southern oscillation forecasts become smaller, whereas increases in ensemble spread lead to a better calibrated system if the stochastic tendency is activated. The backscatter scheme has overall neutral impact. Finally, evidence for noise-activated regime transitions has been found in a cluster analysis of mid

  17. Parametric Design of Hydrodynamic Coupling%液力偶合器参数化设计系统的开发

    Institute of Scientific and Technical Information of China (English)

    刘刚

    2012-01-01

    利用UG二次开发,对液力偶合器进行参数化设计,并开发液力偶合器参数化设计系统。通过改变偶合器的5个参数:有效直径、腔型半径、叶片缩进距离、叶片数量、泵轮与涡轮间隙,得到满足需求的偶合器三维图形。%Parametric design of the hydrodynamic coupling is proposed using the secondary development of UG, and exploiting parametric design system of hydrodynamic coupling. Through changing the five different parameters, namely, effective diameter, chamber radius, blade indent distance, blade number, and interspace between pump and turbine, the three dimensional model of coupling which suffice the requirement is achieved.

  18. Parametric Assessment of Water Use Vulnerability Variations Using SWAT and Fuzzy TOPSIS Coupled with Entropy

    Directory of Open Access Journals (Sweden)

    Kwangjai Won

    2015-08-01

    Full Text Available This study assessed the water use vulnerability to include the uncertainty of the weighting values of evaluation criteria and the annual variations of performance values using fuzzy TOPSIS coupled with the Shannon entropy method. This procedure was applied to 12 major basins covering about 88% territory of South Korea. Hydrological components were simulated using Soil and Water Assessment Tool (SWAT of which parameters were optimally calibrated using SWAT-CUP model. The 15 indicators including hydrological and anthropogenic factors were selected, based on three aspects of climate exposure, sensitivity and adaptive capacity. Their weighting values were objectively quantified using the Entropy method. All performance values of 12 basins obtained from statistic Korea and SWAT simulation were normalized with the consideration of the annual variations from 1991 to 2014 using triangular fuzzy numbers (TFNs. Then, Fuzzy Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS technique was used to quantify the water use vulnerability and rank 12 basins as follows: A12 (Hyeongsan River > A6 (Seomjin River > A5 (Youngsan River > A8 (Mangyung River > A2 (Ansung River > A9 (Dongjin River > A10 (Nakdong River > A3 (Geum River > A4 (Sapgyo River > A11 (Taehwa River > A7 (Tamjin River > A1 (Han River. This framework can be used to determine the spatial priority for sustainable water resources plan and applied to derive the climate change vulnerability on sustainable water resources.

  19. Higher-Order Squeezing of Quantum Field and the Generalized Uncertainty Relations in Non-Degenerate Four-Wave Mixing

    Science.gov (United States)

    Li, Xi-Zeng; Su, Bao-Xia

    1996-01-01

    It is found that the field of the combined mode of the probe wave and the phase-conjugate wave in the process of non-degenerate four-wave mixing exhibits higher-order squeezing to all even orders. And the generalized uncertainty relations in this process are also presented.

  20. Formation of Black Hole X-Ray Binaries with Non-degenerate Donors in Globular Clusters

    Science.gov (United States)

    Ivanova, Natalia; da Rocha, Cassio A.; Van, Kenny X.; Nandez, Jose L. A.

    2017-07-01

    In this Letter, we propose a formation channel for low-mass X-ray binaries with black hole accretors and non-degenerate donors via grazing tidal encounters with subgiants. We estimate that in a typically dense globular cluster with a core density of 105 stars pc-3, the formation rates are about one binary per Gyr per 50-100 retained black holes. The donors—stripped subgiants—will be strongly underluminous when compared to subgiant or giant branch stars of the same colors. The products of tidal stripping are underluminous by at least one magnitude for several hundred million years when compared to normal stars of the same color, and differ from underluminous red stars that could be produced by non-catastrophic mass transfer in an ordinary binary. The dynamically formed binaries become quiescent LMXBs, with lifetimes of about a Gyr. The expected number of X-ray binaries is one per 50-200 retained black holes, while the expected number of strongly underluminous subsubgiant is about half this. The presence of strongly underluminous stars in a GC may be indicative of the presence of black holes.

  1. A theory for non-degenerate four-wave mixing in doped graphene

    Science.gov (United States)

    Margulis, Vl. A.; Muryumin, E. E.; Gaiduk, E. A.

    2017-03-01

    We present a theoretical study of the nonlinear optical (NLO) response of doped graphene to two coherent laser beams, of frequencies ω1 and ω2, resulting in the generation of radiation at frequency ωσ = 2ω1 -ω2 . The two main ingredients of the developed theory are the interplay of interband and intraband electron motion, induced by the incident light waves, and the finite lifetime of excited electronic states, caused by electron scattering. Adopting a tight-binding approximation for the π-electronic band structure of graphene and the Genkin-Mednis formalism of the nonlinear conductivity theory of semiconductors, we calculate the third-order NLO susceptibility χ (3) (-ωσ ;ω1 ,ω1 , -ω2) responsible for the non-degenerate four-wave mixing process under consideration. Our calculations show the resonant enhancement of the |χ (3) | (up to a value of 2.8 ×10-7 esu) when the frequencies ω1 and ω2 of the input beams are mat"ched to provide a resonance for the output photon energy ℏωσ with an effective optical gap of 2EF in the π-electronic band structure of doped graphene (EF is the Fermi energy of charge carriers in the graphene, tunable by an external gate voltage). The results obtained may be of practical interest for generating mid-infrared radiation from doped graphene pumped with two near-infrared laser beams.

  2. Tunable broadband intense IR pulse generation at non-degenerate wavelengths using group delay compensation in a dual-crystal OPA scheme.

    Science.gov (United States)

    Rezvani, Seyed Ali; Zhang, Qingbin; Hong, Zuofei; Lu, Peixiang

    2016-05-16

    A robust group delay compensated dual-crystal optical parametric amplification (DOPA) scheme is proposed that will be used to prove the positive effect of group delay compensation on a DOPA as predicted by the simulations in the previously published literature. Through simple adjustments, it is also capable of providing 20 fs pulses (theoretically compressible to 12 fs, corresponding to sub-four-cycle for 1300 nm components), broadband IR pulses at non-degenerate wavelengths using short pulse (broadband) pump laser. In our table-top DOPA system, group delay compensation has been realized using a simple optical crystal. Our design provides output power in order of 100 mW. We managed to achieve minimum 20 nm improvement on the bandwidth, compared to single-crystal OPA (SOPA) structure whilst keeping total conversion efficiency above 30%. Adjusting our configuration by optimizing the phase-matching angles of the two BBO crystals, we also have realized a practical scheme that benefitting from group delay compensation can obtain 75 nm bandwidth improvement while keeping the conversion efficiency constant. This achievement will open the doors to the realm of multiple crystals OPA systems and provide a solution to the imposed limitation on the effective lengths of applicable non-linear crystals and hence limited power gain of such broadband OPA systems.

  3. Polarization effect in parametric amplifier

    Institute of Scientific and Technical Information of China (English)

    Junhe Zhou; Jianping Chen; Xinwan Li; Guiling Wu; Yiping Wang

    2005-01-01

    @@ Polarization effect in parametric amplifiers is studied. Coupled equations are derived from the basic propagation equations and numerical solutions are given for both one-wavelength-pump and two-wavelengthpump systems. Several parametric amplifiers driven by pumps at one wavelength and two wavelengths are analyzed and the polarization independent parametric amplifier is proposed.

  4. Parametrized post Newtonian approximation in teleparallel model with a scalar field coupled to torsion and boundary term

    CERN Document Server

    Sadjadi, H Mohseni

    2016-01-01

    We study the parameterized post Newtonian approximation in teleparallel model of gravity with a scalar field. The scalar field is non-minimally coupled to the scalar torsion as well as to the boundary term introduced in [1]. We show that, in contrast to the case where the scalar field is only coupled to the scalar torsion, the presence of the new coupling affects the parameterized post Newtonian parameters. These parameters for different situations are obtained and discussed.

  5. The tensor hypercontracted parametric reduced density matrix algorithm: coupled-cluster accuracy with O(r^4) scaling

    CERN Document Server

    Shenvi, Neil; Yang, Yang; Yang, Weitao; Schwerdtfeger, Christine; Mazziotti, David

    2013-01-01

    Tensor hypercontraction is a method that allows the representation of a high-rank tensor as a product of lower-rank tensors. In this paper, we show how tensor hypercontraction can be applied to both the electron repulsion integral (ERI) tensor and the two-particle excitation amplitudes used in the parametric reduced density matrix (pRDM) algorithm. Because only O(r) auxiliary functions are needed in both of these approximations, our overall algorithm can be shown to scale as O(r4), where r is the number of single-particle basis functions. We apply our algorithm to several small molecules, hydrogen chains, and alkanes to demonstrate its low formal scaling and practical utility. Provided we use enough auxiliary functions, we obtain accuracy similar to that of the traditional pRDM algorithm, somewhere between that of CCSD and CCSD(T).

  6. The tensor hypercontracted parametric reduced density matrix algorithm: coupled-cluster accuracy with O(r(4)) scaling.

    Science.gov (United States)

    Shenvi, Neil; van Aggelen, Helen; Yang, Yang; Yang, Weitao; Schwerdtfeger, Christine; Mazziotti, David

    2013-08-07

    Tensor hypercontraction is a method that allows the representation of a high-rank tensor as a product of lower-rank tensors. In this paper, we show how tensor hypercontraction can be applied to both the electron repulsion integral tensor and the two-particle excitation amplitudes used in the parametric 2-electron reduced density matrix (p2RDM) algorithm. Because only O(r) auxiliary functions are needed in both of these approximations, our overall algorithm can be shown to scale as O(r(4)), where r is the number of single-particle basis functions. We apply our algorithm to several small molecules, hydrogen chains, and alkanes to demonstrate its low formal scaling and practical utility. Provided we use enough auxiliary functions, we obtain accuracy similar to that of the standard p2RDM algorithm, somewhere between that of CCSD and CCSD(T).

  7. Parametric analysis of the operation of nocturnal radiative cooling panels coupled with in room PCM ceiling panels

    DEFF Research Database (Denmark)

    Bourdakis, Eleftherios; Kazanci, Ongun Berk; Péan, T.Q.

    2017-01-01

    03:00 and get activated when the temperature in the storage tank was below 21°C, 69.8°F, activate the heat pump no earlier than 05:00 and get activated when the temperature in the storage tank was below 15°C, 59°F, and lastly have a temperature difference between the output of the solar panels......The scope of this parametric simulation study was to identify the optimal combination of set-points for different parameters of a radiant PCM ceiling panels cooling system that will result in the best indoor thermal environment with the least possible energy use. The results showed that for each...

  8. Si-prism-array coupled terahertz-wave parametric oscillator with pump light totally reflected at the terahertz-wave exit surface.

    Science.gov (United States)

    Zhang, Ruiliang; Qu, Yanchen; Zhao, Weijiang; Liu, Chuang; Chen, Zhenlei

    2016-09-01

    A Si-prism-array coupled terahertz (THz)-wave parametric oscillator with the pump totally reflected at the THz-wave exit surface (PR-Si-TPO) is demonstrated by manufacturing an 800 nm air gap between the crystal and the Si-prism array. Influence on the total reflection of the pump from the Si prisms is eliminated and efficient coupling of the THz wave is ensured by using this air gap. When the THz-wave frequency varies from 1.8 to 2.3 THz, compared with a Si-prism-array coupled TPO (Si-TPO) with the pump transmitting through the crystal directly, the THz-wave output energy is enhanced by 20-50 times, and the oscillating threshold is reduced by 10%-35%. Furthermore, the high end of the THz-wave frequency tuning range of the PR-Si-TPO is expanded to 3.66 THz compared with 2.5 THz for the Si-TPO.

  9. Residual degeneracy from non-degenerate Landau levels of ultracold atoms in light-induced gauge potentials

    Science.gov (United States)

    Farias, B.; Melo, J. Lemos de; Furtado, C.

    2016-10-01

    We study non-degenerate Landau levels of ultracold trapped atoms in two dimensions, subject to an U (1) × U(1) Abelian gauge field and a lateral confining potential along a specific direction. The Landau-level degeneracy is removed due to the presence of the lateral confining potential that makes the single-particle energy spectrum explicitly dependent on the transverse momentum. The effect of the finite size of the atomic cloud on the energy spectrum is to split each Landau level into a set of sub-levels, once the transverse momentum becomes quantized. We show that under appropriate conditions some energy sub-levels overlap leading to a residual degeneracy of the system. Through numerical calculations, we map the residual degeneracy as a function of the effective magnetic field strength. Finally, we briefly discuss future studies on the transport properties of this atomic system that can be considered an optically induced atomic waveguide.

  10. Optomechanical coupling between two optical cavities: cooling of a micro-mirror and parametric normal mode splitting

    CERN Document Server

    Kumar, Tarun; ManMohan,

    2011-01-01

    We propose a technique aimed at cooling a harmonically oscillating mirror mechanically coupled to another vibrating mirror to its quantum mechanical ground state. Our method involves optmechanical coupling between two optical cavities. We show that the cooling can be controlled by the mechanical coupling strength between the two movable mirrors, the phase difference between the mechanical modes of the two oscillating mirrors and the photon number in each cavity. We also show that both mechanical and optical cooling can be achieved by transferring energy from one cavity to the other. We also analyze the occurrence of normal-mode splitting (NMS). We find that a hybridization of the two oscillating mirrors with the fluctuations of the two driving optical fields occurs and leads to a splitting of the mechanical and optical fluctuation spectra.

  11. Longitudinal dielectric permeability into quantum non-degenerate and maxwellian plasma with frequency of collisions proportional to the module of a wave vector

    CERN Document Server

    Latyshev, A V

    2013-01-01

    Formulas for the longitudinal dielectric permeability in quantum non-degenerate and maxwellian collisional plasma with the frequency of collisions proportional to the module of the wave vector, in Mermin's approach, are received. Equation of Shr\\"{o}dinger - Boltzmann with integral of collisions relaxation type in Mermin's approach is applied. It is spent numerical and graphic comparison of the real and imaginary parts of dielectric function of non-degenerate and maxwellian collisional quantum plasma with a constant and a variable frequencies of collisions. It is shown, that the longitudinal dielectric function weakly depends on a wave vector.

  12. Non-Degenerate Four-Wave Mixing in a Silicon Nanowire and its Application for One-to-Six WDM Multicasting

    DEFF Research Database (Denmark)

    Pu, Minhao; Hu, Hao; Ji, Hua

    2011-01-01

    We present WDM multicasting based on non-degenerate four-wave mixing in a silicon nanowire. A one-to-six phase-preserving wavelength multicasting of 10 Gb/s differential phase-shift-keying data is experimentally demonstrated with bit-error rate measurements.......We present WDM multicasting based on non-degenerate four-wave mixing in a silicon nanowire. A one-to-six phase-preserving wavelength multicasting of 10 Gb/s differential phase-shift-keying data is experimentally demonstrated with bit-error rate measurements....

  13. Applications of Kinetic Inductance: Parametric Amplifier & Phase Shifter, 2DEG Coupled Co-planar Structures & Microstrip to Slotline Transition at RF Frequencies

    Science.gov (United States)

    Surdi, Harshad

    Kinetic inductance springs from the inertia of charged mobile carriers in alternating electric fields and it is fundamentally different from the magnetic inductance which is only a geometry dependent property. The magnetic inductance is proportional to the volume occupied by the electric and magnetic fields and is often limited by the number of turns of the coil. Kinetic inductance on the other hand is inversely proportional to the density of electrons or holes that exert inertia, the unit mass of the charge carriers and the momentum relaxation time of these charge carriers, all of which can be varied merely by modifying the material properties. Highly sensitive and broadband signal amplifiers often broaden the field of study in astrophysics. Quantum-noise limited travelling wave kinetic inductance parametric amplifiers offer a noise figure of around 0.5 K +/- 0.3 K as compared to 20 K in HEMT signal amplifiers and can be designed to operate to cover the entire W-band (75 GHz -- 115 GHz). The research cumulating to this thesis involves applying and exploiting kinetic inductance properties in designing a W-band orthogonal mode transducer, quadratic gain phase shifter with a gain of ~49 dB over a meter of microstrip transmission line. The phase shifter will help in measuring the maximum amount of phase shift Deltaφmax(I) that can be obtained from half a meter transmission line which helps in predicting the gain of a travelling wave parametric amplifier. In another project, a microstrip to slot line transition is designed and optimized to operate at 150 GHz and 220 GHz frequencies, that is used as a part of horn antenna coupled microwave kinetic inductance detector proposed to operate from 138 GHz to 250 GHz. In the final project, kinetic inductance in a 2D electron gas (2DEG) is explored by design, simulation, fabrication and experimentation. A transmission line model of a 2DEG proposed by Burke (1999), is simulated and verified experimentally by fabricating a

  14. Hybrid-free Josephson Parametric Converter

    Science.gov (United States)

    Frattini, N. E.; Narla, A.; Sliwa, K. M.; Shankar, S.; Hatridge, M.; Devoret, M. H.

    A necessary component for any quantum computation architecture is the ability to perform efficient quantum operations. In the microwave regime of superconducting qubits, these quantum-limited operations can be realized with a non-degenerate Josephson junction based three-wave mixer, the Josephson Parametric Converter (JPC). Currently, the quantum signal of interest must pass through a lossy 180 degree hybrid to be presented as a differential drive to the JPC. This hybrid therefore places a limit on the quantum efficiency of the system and also increases the device footprint. We present a new design for the JPC eliminating the need for any external hybrid. We also show that this design has nominally identical performance to the conventional JPC. Work supported by ARO, AFOSR and YINQE.

  15. Coupled-cluster Green's function: Analysis of properties originating in the exponential parametrization of the ground-state wave function

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Bo; Kowalski, Karol

    2016-12-23

    In this paper we derive basic properties of the Green’s function matrix elements stemming from the exponential coupled cluster (CC) parametrization of the ground-state wave function. We demon- strate that all intermediates used to express retarded (or equivalently, ionized) part of the Green’s function in the ω-representation can be expressed through connected diagrams only. Similar proper- ties are also shared by the first order ω-derivatives of the retarded part of the CC Green’s function. This property can be extended to any order ω-derivatives of the Green’s function. Through the Dyson equation of CC Green’s function, the derivatives of corresponding CC self-energy can be evaluated analytically. In analogy to the CC Green’s function, the corresponding CC self-energy is expressed in terms of connected diagrams only. Moreover, the ionized part of the CC Green’s func- tion satisfies the non-homogeneous linear system of ordinary differential equations, whose solution may be represented in the exponential form. Our analysis can be easily generalized to the advanced part of the CC Green’s function.

  16. SN~2012cg: Evidence for Interaction Between a Normal Type Ia Supernova and a Non-degenerate Binary Companion

    Science.gov (United States)

    Marion, G. H.; Brown, Peter J.; Vinkó, Jozsef; Silverman, Jeffrey M.; Sand, David J.; Challis, Peter; Kirshner, Robert P.; Wheeler, J. Craig; Berlind, Perry; Brown, Warren R.; Calkins, Michael L.; Camacho, Yssavo; Dhungana, Govinda; Foley, Ryan J.; Friedman, Andrew S.; Graham, Melissa L.; Howell, D. Andrew; Hsiao, Eric Y.; Irwin, Jonathan M.; Jha, Saurabh W.; Kehoe, Robert; Macri, Lucas M.; Maeda, Keiichi; Mandel, Kaisey; McCully, Curtis; Pandya, Viraj; Rines, Kenneth J.; Wilhelmy, Steven; Zheng, Weikang

    2016-04-01

    We report evidence for excess blue light from the Type Ia supernova (Sn Ia) SN 2012cg at 15 and 16 days before maximum B-band brightness. The emission is consistent with predictions for the impact of the supernova on a non-degenerate binary companion. This is the first evidence for emission from a companion to a normal SN Ia. Sixteen days before maximum light, the B-V color of SN 2012cg is 0.2 mag bluer than for other normal SN Ia. At later times, this supernova has a typical SN Ia light curve, with extinction-corrected {M}B=-19.62+/- 0.02 mag and {{Δ }}{m}15(B)=0.86+/- 0.02. Our data set is extensive, with photometry in seven filters from five independent sources. Early spectra also show the effects of blue light, and high-velocity features are observed at early times. Near maximum, the spectra are normal with a silicon velocity vSi = -10,500 km s-1. Comparing the early data with models by Kasen favors a main-sequence companion of about six solar masses. It is possible that many other SN Ia have main-sequence companions that have eluded detection because the emission from the impact is fleeting and faint.

  17. SN~2012cg: Evidence for Interaction Between a Normal Type Ia Supernova and a Non-Degenerate Binary Companion

    CERN Document Server

    Marion, G H; Vinkó, Jozsef; Silverman, Jeffrey M; Sand, David J; Challis, Peter; Kirshner, Robert P; Wheeler, J Craig; Berlind, Perry; Brown, Warren R; Calkins, Michael L; Dhungana, Govinda; Foley, Ryan J; Friedman, Andrew S; Graham, Melissa L; Howell, D Andrew; Hsiao, Eric Y; Irwin, Jonathan M; Kehoe, Robert; Macri, Lucas M; Mandel, Kaisey; McCully, Curtis; Rines, Kenneth J; Wilhelmy, Steven; Zheng, Weikang

    2015-01-01

    We report evidence for excess blue light from the Type Ia supernova SN~2012cg at fifteen and sixteen days before maximum B-band brightness. The emission is consistent with predictions for the impact of the supernova on a non-degenerate binary companion. This is the first evidence for emission from a companion to a normal SN~Ia. Sixteen days before maximum light, the B-V color of SN~2012cg is 0.2 mag bluer than for other normal SN~Ia. At later times, this supernova has a typical SN~Ia light curve, with extinction-corrected M_B = -19.62 \\pm 0.02 mag and Delta m_{15}(B) = 0.86 \\pm 0.02. Our data set is extensive, with photometry in 7 filters from 5 independent sources. Early spectra also show the effects of blue light, and high-velocity features are observed at early times. Near maximum, the spectra are normal with a silicon velocity v_{Si} = -10,500 km/s. Comparing the early data with models by Kasen (2010) favors a main-sequence companion of about 6 solar masses. It is possible that many other SN Ia have main-...

  18. Realization of Gain with Electromagnetically Induced Transparency System with Non-degenerate Zeeman Sublevels in $^{87}$Rb

    CERN Document Server

    Zhou, Minchuan; Shahriar, Selim M

    2016-01-01

    Previously, we had proposed an optically-pumped five-level Gain EIT (GEIT) system, which has a transparency dip superimposed on a gain profile and exhibits a negative dispersion suitable for the white-light-cavity signal-recycling (WLC-SR) scheme of the interferometeric gravitational wave detector [Phys. Rev. D. 92, 082002 (2015)]. Using this system as the negative dispersion medium (NDM) in the WLC-SR, we get an enhancement in the quantum noise (QN) limited sensitivity-bandwidth product by a factor of ~18. Here, we show how to realize this GEIT system in a realistic platform, using non-degenerate Zeeman sublevels in alkali atoms. Specifically we choose $^{87}$Rb atoms, which produce the negative dispersion around 795nm. The current LIGO operates at 1064nm but future LIGO may operate at a wavelength that is consistent with this atomic system. We present a theoretical analysis for the susceptibilities of the system. To account for the QN from the GEIT system, it is necessary to use the master equation (ME) app...

  19. Transverse electric conductivity and dielectric permeability in quantum non-degenerate and maxwellian collisional plasma with variable collision frequency in Mermin's approach

    CERN Document Server

    Latyshev, A V

    2013-01-01

    Formulas for transverse conductance and dielectric permeability in quantum non-degenerate and Maxwellian collisional plasma with arbitrary variable collision frequency in Mermin's approach are deduced. Frequency of collisions of particles depends arbitrarily on a wave vector. The special case of frequency of collisions proportional to the module of a wave vector is considered. The graphic analysis of the real and imaginary parts of dielectric function is made.

  20. Human cells derived from degenerate intervertebral discs respond differently to those derived from non-degenerate intervertebral discs following application of dynamic hydrostatic pressure.

    Science.gov (United States)

    Le Maitre, Christine Lyn; Frain, Jennie; Fotheringham, Andrew P; Freemont, Anthony J; Hoyland, Judith Alison

    2008-01-01

    The intervertebral disc (IVD) is one of the body's most important load-bearing structures with the major mechanical force experienced in the nucleus pulposus (NP) being hydrostatic pressure (HP). Physiological levels of HP have an anabolic effect on IVD matrix metabolism in cells derived from non-degenerate animal and herniated IVD while excessive HP has a catabolic effect. However, no studies have investigated the response of non-degenerate and degenerate human disc cells derived from non-herniated discs to HP. Here we investigate the effect of physiological HP on such cells using a novel loading rig. Human IVD cells (both NP and AF) cultured in alginate were subjected to dynamic HP (0.8-1.7 MPa 0.5 Hz) for 2 h. Cell viability was assessed, RNA extracted and qRT-PCR for 18 s, c-fos, Sox-9, collagen type II, aggrecan and MMP-3 performed. Cell viability was unaffected by the loading regime. In non-degenerate NP cells, HP increased c-fos, aggrecan, Sox-9 and collagen type II (significantly so in the case of c-fos and aggrecan), but not MMP-3 gene expression. In contrast, application of HP to AF or degenerate NP cells had no effect on target gene expression. Our data shows that cells obtained from the healthy NP respond to dynamic HP by up-regulating genes indicative of healthy matrix homeostasis. However, responses differed in degenerate NP cells suggesting that an altered mechanotransduction pathway may be operational.

  1. Parametric and Non-Parametric System Modelling

    DEFF Research Database (Denmark)

    Nielsen, Henrik Aalborg

    1999-01-01

    considered. It is shown that adaptive estimation in conditional parametric models can be performed by combining the well known methods of local polynomial regression and recursive least squares with exponential forgetting. The approach used for estimation in conditional parametric models also highlights how....... For this purpose non-parametric methods together with additive models are suggested. Also, a new approach specifically designed to detect non-linearities is introduced. Confidence intervals are constructed by use of bootstrapping. As a link between non-parametric and parametric methods a paper dealing with neural...... the focus is on combinations of parametric and non-parametric methods of regression. This combination can be in terms of additive models where e.g. one or more non-parametric term is added to a linear regression model. It can also be in terms of conditional parametric models where the coefficients...

  2. 非简并偏振纠缠源用于光纤量子通信%Non degenerate polarization entanglement source used in fiber quantum communication

    Institute of Scientific and Technical Information of China (English)

    江云坤; 潘万艺; 欧阳兰文

    2013-01-01

    In this paper,one polarization entanglement experiment based on the spontaneous parametric down conversion (SPDC) is reported.In the experiment,using the process of SPDC in a two-BBO crystal geometry,a source of polarization-entanglement photon pairs in 810 and 1550 nm has been generated.Parametric photons are collected by the single mode fiber coupled single photon pairs and the coincidence counts are 200 counts per second (cps).In order to verify the generated entanglement states,the degree ofentanglement correlation has been measured with two polarization-analyzer systems.The interference visibility of the prepared entanglement state is almost 90% in the setup.%报道了一个基于自发参量下转换(SPDC)的偏振纠缠实验.采用两块BBO晶体粘合的方法,利用SPDC过程制备810和1550nm的偏振纠缠光子对源.用单模光纤耦合来收集参量光子对,在产生的纠缠态中,两光子符合计数为200 cps(每秒钟计数).为了验证产生的纠缠态,利用两个偏振分析器系统测量纠缠相关度,其中,干涉可见度约为90%.

  3. High resolution time-to-space conversion of sub-picosecond pulses at 1.55µm by non-degenerate SFG in PPLN crystal.

    Science.gov (United States)

    Shayovitz, Dror; Herrmann, Harald; Sohler, Wolfgang; Ricken, Raimund; Silberhorn, Christine; Marom, Dan M

    2012-11-19

    We demonstrate high resolution and increased efficiency background-free time-to-space conversion using spectrally resolved non-degenerate and collinear SFG in a bulk PPLN crystal. A serial-to-parallel resolution factor of 95 and a time window of 42 ps were achieved. A 60-fold increase in conversion efficiency slope compared with our previous work using a BBO crystal [D. Shayovitz and D. M. Marom, Opt. Lett. 36, 1957 (2011)] was recorded. Finally the measured 40 GHz narrow linewidth of the output SFG signal implies the possibility to extract phase information by employing coherent detection techniques.

  4. Parametric logic: Foundations

    Institute of Scientific and Technical Information of China (English)

    林作铨; 李未

    1995-01-01

    Parametric logic is introduced. The language, semantics and axiom system of parametric logic are defined. Completeness theorem of parametric logic is provided. Parametric logic has formal ability powerful enough to capture a wide class of logic as its special cases, and therefore can be viewed as a uniform basis for modern logics.

  5. Parametric versus non-parametric simulation

    OpenAIRE

    Dupeux, Bérénice; Buysse, Jeroen

    2014-01-01

    Most of ex-ante impact assessment policy models have been based on a parametric approach. We develop a novel non-parametric approach, called Inverse DEA. We use non parametric efficiency analysis for determining the farm’s technology and behaviour. Then, we compare the parametric approach and the Inverse DEA models to a known data generating process. We use a bio-economic model as a data generating process reflecting a real world situation where often non-linear relationships exist. Results s...

  6. Nanoscale electromechanical parametric amplifier

    Energy Technology Data Exchange (ETDEWEB)

    Aleman, Benjamin Jose; Zettl, Alexander

    2016-09-20

    This disclosure provides systems, methods, and apparatus related to a parametric amplifier. In one aspect, a device includes an electron source electrode, a counter electrode, and a pumping electrode. The electron source electrode may include a conductive base and a flexible conductor. The flexible conductor may have a first end and a second end, with the second end of the flexible conductor being coupled to the conductive base. A cross-sectional dimension of the flexible conductor may be less than about 100 nanometers. The counter electrode may be disposed proximate the first end of the flexible conductor and spaced a first distance from the first end of the flexible conductor. The pumping electrode may be disposed proximate a length of the flexible conductor and spaced a second distance from the flexible conductor.

  7. Nanoscale electromechanical parametric amplifier

    Science.gov (United States)

    Aleman, Benjamin Jose; Zettl, Alexander

    2016-09-20

    This disclosure provides systems, methods, and apparatus related to a parametric amplifier. In one aspect, a device includes an electron source electrode, a counter electrode, and a pumping electrode. The electron source electrode may include a conductive base and a flexible conductor. The flexible conductor may have a first end and a second end, with the second end of the flexible conductor being coupled to the conductive base. A cross-sectional dimension of the flexible conductor may be less than about 100 nanometers. The counter electrode may be disposed proximate the first end of the flexible conductor and spaced a first distance from the first end of the flexible conductor. The pumping electrode may be disposed proximate a length of the flexible conductor and spaced a second distance from the flexible conductor.

  8. Non-degenerate four-wave mixing in an optically injection-locked InAs/InP quantum dot Fabry–Perot laser

    Energy Technology Data Exchange (ETDEWEB)

    Huang, H.; Schires, K.; Grillot, F. [Télécom ParisTech, Ecole Nationale Supérieure des Télécommunications, CNRS LTCI, 46 rue Barrault, 75013 Paris Cedex (France); Poole, P. J. [National Research Council Canada, 1200 Montreal Road, Ottawa, Ontario K1A 0R6 (Canada)

    2015-04-06

    Non-degenerate four-wave mixing in an InAs/InP quantum dot Fabry–Perot laser is investigated with an optical injection-locking scheme. Wavelength conversion is obtained for frequency detunings ranging from +2.5 THz to −3.5 THz. The normalized conversion efficiency is maintained above −40 dB between −1.5 and +0.5 THz with an optical signal-to-noise ratio above 20 dB and a maximal third-order nonlinear susceptibility normalized to material gain of 2 × 10{sup −19} m{sup 3}/V{sup 2}. In addition, we show that injection-locking at different positions in the gain spectrum has an impact on the nonlinear conversion process and the symmetry between up- and down- converted signals.

  9. Generation of ultrafast pulse via combined effects of stimulated Raman scattering and non-degenerate two-photon absorption in silicon nanophotonic chip

    Indian Academy of Sciences (India)

    Jianwei Wu; Fengguang Luo; Mingcui Cao

    2009-04-01

    A project of ultrafast pulse generation has been presented and demonstrated by utilizing the combined nonlinear effects of stimulated Raman scattering (SRS) and non-degenerate two-photon absorption (TPA) based on silicon nanophotonic chip, in which a continuous wave (CW) and an ultrafast dark pulse are co-propagating in the silicon chip so that the CW will be modulated inversely by the dark pulse during the propagation. As a result, an ultrafast bright pulse is achieved using the technique. Simulation results show that an ultrafast pulse with a pulsewidth (full-width at half-maximum (FWHM)) of about 50 fs is generated at the end of a 5-mm long silicon chip, when the initial conditions, including an input maximum of 0.5 W and FWHM of ∼ 176 fs for dark pulse, and CW with power of 5 W, are chosen.

  10. Parametrizing Algebraic Curves

    OpenAIRE

    Lemmermeyer, Franz

    2011-01-01

    We present the technique of parametrization of plane algebraic curves from a number theorist's point of view and present Kapferer's simple and beautiful (but little known) proof that nonsingular curves of degree > 2 cannot be parametrized by rational functions.

  11. On Parametric (and Non-Parametric Variation

    Directory of Open Access Journals (Sweden)

    Neil Smith

    2009-11-01

    Full Text Available This article raises the issue of the correct characterization of ‘Parametric Variation’ in syntax and phonology. After specifying their theoretical commitments, the authors outline the relevant parts of the Principles–and–Parameters framework, and draw a three-way distinction among Universal Principles, Parameters, and Accidents. The core of the contribution then consists of an attempt to provide identity criteria for parametric, as opposed to non-parametric, variation. Parametric choices must be antecedently known, and it is suggested that they must also satisfy seven individually necessary and jointly sufficient criteria. These are that they be cognitively represented, systematic, dependent on the input, deterministic, discrete, mutually exclusive, and irreversible.

  12. Evolutionary algorithm based optimization of hydraulic machines utilizing a state-of-the-art block coupled CFD solver and parametric geometry and mesh generation tools

    Science.gov (United States)

    S, Kyriacou; E, Kontoleontos; S, Weissenberger; L, Mangani; E, Casartelli; I, Skouteropoulou; M, Gattringer; A, Gehrer; M, Buchmayr

    2014-03-01

    An efficient hydraulic optimization procedure, suitable for industrial use, requires an advanced optimization tool (EASY software), a fast solver (block coupled CFD) and a flexible geometry generation tool. EASY optimization software is a PCA-driven metamodel-assisted Evolutionary Algorithm (MAEA (PCA)) that can be used in both single- (SOO) and multiobjective optimization (MOO) problems. In MAEAs, low cost surrogate evaluation models are used to screen out non-promising individuals during the evolution and exclude them from the expensive, problem specific evaluation, here the solution of Navier-Stokes equations. For additional reduction of the optimization CPU cost, the PCA technique is used to identify dependences among the design variables and to exploit them in order to efficiently drive the application of the evolution operators. To further enhance the hydraulic optimization procedure, a very robust and fast Navier-Stokes solver has been developed. This incompressible CFD solver employs a pressure-based block-coupled approach, solving the governing equations simultaneously. This method, apart from being robust and fast, also provides a big gain in terms of computational cost. In order to optimize the geometry of hydraulic machines, an automatic geometry and mesh generation tool is necessary. The geometry generation tool used in this work is entirely based on b-spline curves and surfaces. In what follows, the components of the tool chain are outlined in some detail and the optimization results of hydraulic machine components are shown in order to demonstrate the performance of the presented optimization procedure.

  13. Parametric and energy consumption optimization of Basic Red 2 removal by electrocoagulation/egg shell adsorption coupling using response surface methodology in a batch system.

    Science.gov (United States)

    de Carvalho, Helder Pereira; Huang, Jiguo; Zhao, Meixia; Liu, Gang; Yang, Xinyu; Dong, Lili; Liu, Xingjuan

    2016-01-01

    In this study, response surface methodology (RSM) model was applied for optimization of Basic Red 2 (BR2) removal using electrocoagulation/eggshell (ES) coupling process in a batch system. Central composite design was used to evaluate the effects and interactions of process parameters including current density, reaction time, initial pH and ES dosage on the BR2 removal efficiency and energy consumption. The analysis of variance revealed high R(2) values (≥85%) indicating that the predictions of RSM models are adequately applicable for both responses. The optimum conditions when the dye removal efficiency of 93.18% and energy consumption of 0.840 kWh/kg were observed were 11.40 mA/cm(2) current density, 5 min and 3 s reaction time, 6.5 initial pH and 10.91 g/L ES dosage.

  14. Controlling Parametric Resonance

    DEFF Research Database (Denmark)

    Galeazzi, Roberto; Pettersen, Kristin Ytterstad

    2012-01-01

    Parametric resonance is a resonant phenomenon which takes place in systems characterized by periodic variations of some parameters. While seen as a threatening condition, whose onset can drive a system into instability, this chapter advocates that parametric resonance may become an advantage if t...

  15. Zero-voltage nondegenerate parametric mode in Josephson tunnel junctions

    DEFF Research Database (Denmark)

    Pedersen, Niels Falsig

    1976-01-01

    A new parametric mode in a Josephson tunnel junction biased in the zero-voltage mode is suggested. It is a nondegenerate parametric excitation where the junction plasma resonance represents the input circuit, and a junction geometrical resonance represents the idler circuit. This nondegenerate mo...... for such a coupling. Journal of Applied Physics is copyrighted by The American Institute of Physics....

  16. Bifurcations in dynamical systems with parametric excitation

    NARCIS (Netherlands)

    Fatimah, Siti

    2002-01-01

    This thesis is a collection of studies on coupled nonconservative oscillator systems which contain an oscillator with parametric excitation. The emphasis this study will, on the one hand, be on the bifurcations of the simple solutions such as fixed points and periodic orbits, and on the other hand o

  17. A THEORY FOR BROADBAND VARACTOR PARAMETRIC AMPLIFIERS

    Science.gov (United States)

    design and synthesis of broadband varactor parametric amplifiers. The circuit considered in this thesis is that of linear variable capacitors embedded...second and more important inherent property is that, due to the frequency-coupling action of the variable capacitor , the scattering coefficient at the

  18. Parametrically Driven Nonlinear Oscillators with an Impurity

    Institute of Scientific and Technical Information of China (English)

    张卓; 唐翌

    2002-01-01

    By virtue of the method of multiple scales, we study a chain of parametrically driven nonlinear oscillators with a mass impurity. An equation is presented to describe the nonlinear wave of small amplitude in the chain.In our derivation, the equation is applicable to any eigenmode of coupled pendulum. Our result shows that a nonpropagation soliton emerges as the lowest or highest eigenmode of coupled pendulum is excited, and the impurity tends to pin the nonpropagation soliton excitation.

  19. About Bifurcational Parametric Simplification

    CERN Document Server

    Gol'dshtein, V; Yablonsky, G

    2015-01-01

    A concept of "critical" simplification was proposed by Yablonsky and Lazman in 1996 for the oxidation of carbon monoxide over a platinum catalyst using a Langmuir-Hinshelwood mechanism. The main observation was a simplification of the mechanism at ignition and extinction points. The critical simplification is an example of a much more general phenomenon that we call \\emph{a bifurcational parametric simplification}. Ignition and extinction points are points of equilibrium multiplicity bifurcations, i.e., they are points of a corresponding bifurcation set for parameters. Any bifurcation produces a dependence between system parameters. This is a mathematical explanation and/or justification of the "parametric simplification". It leads us to a conjecture that "maximal bifurcational parametric simplification" corresponds to the "maximal bifurcation complexity." This conjecture can have practical applications for experimental study, because at points of "maximal bifurcation complexity" the number of independent sys...

  20. Use of non-degenerate human osteochondral tissue and confocal laser scanning microscopy for the study of chondrocyte death at cartilage surgery

    Directory of Open Access Journals (Sweden)

    Huntley J. S.

    2005-02-01

    (211±18.3µm in the superficial zone (SZ than the mid-zone (50.5±13.6µm; P=0.022, or SZ death from a scalpel cut (33.0±8.5µm; P=0.0009. Similarly, in unfixed samples viewed from the surface perspective, the margin of death for the surgical harvester (277±7.2µm was significantly (P<0.0001 greater than that for the scalpel (38.8±7.2µm. If macroscopically and microscopically non-degenerate, then human lateral femoral condylar cartilage from the anterior cut of knee resections has normal biophysical parameters (water content and lack of swelling on excision. The surgical harvester (Acufex, used in human osteochondral grafting, caused a substantial margin of cell death at the periphery of the graft, and the SZ appeared to be especially vulnerable. This effect may be important in terms of limiting the reparative capacity of the SZ. The harmful effect on viability is likely to impede lateral repair which is fundamental to subsequent structural and functional integrity.

  1. DWPF Welder Parametric Study

    Energy Technology Data Exchange (ETDEWEB)

    Plodinec, M.J.

    1998-11-20

    After being filled with glass, DWPF canistered waste forms will be welded closed using an upset resistance welding process. This final closure weld must be leaktight, and must remain so during extended storage at SRS. As part of the DWPF Startup Test Program, a parametric study (DWPF-WP-24) has been performed to determine a range of welder operating parameters which will produce acceptable welds. The parametric window of acceptable welds defined by this study is 90,000 + 15,000 lb of force, 248,000 + 22,000 amps of current, and 95 + 15 cycles* for the time of application of the current.

  2. Parametric Differentiation and Integration

    Science.gov (United States)

    Chen, Hongwei

    2009-01-01

    Parametric differentiation and integration under the integral sign constitutes a powerful technique for calculating integrals. However, this topic is generally not included in the undergraduate mathematics curriculum. In this note, we give a comprehensive review of this approach, and show how it can be systematically used to evaluate most of the…

  3. Parametric Differentiation and Integration

    Science.gov (United States)

    Chen, Hongwei

    2009-01-01

    Parametric differentiation and integration under the integral sign constitutes a powerful technique for calculating integrals. However, this topic is generally not included in the undergraduate mathematics curriculum. In this note, we give a comprehensive review of this approach, and show how it can be systematically used to evaluate most of the…

  4. Multiple Frequency Parametric Sonar

    Science.gov (United States)

    2015-09-28

    300003 1 MULTIPLE FREQUENCY PARAMETRIC SONAR STATEMENT OF GOVERNMENT INTEREST [0001] The invention described herein may be manufactured and...beams. However, the multiple nonlinear interactions are not taken advantage of in order to generate additional efficiencies, bandwidth, and SNR...array. [0050] It will be understood that many additional changes in details, materials , steps, and arrangements of parts which have been described

  5. Parametric Room Acoustic Workflows

    DEFF Research Database (Denmark)

    Parigi, Dario; Svidt, Kjeld; Molin, Erik

    2017-01-01

    The paper investigates and assesses different room acoustics software and the opportunities they offer to engage in parametric acoustics workflow and to influence architectural designs. The first step consists in the testing and benchmarking of different tools on the basis of accuracy, speed and ...

  6. Parametric frequency dividers in satellite communications

    OpenAIRE

    Kosmopoulos, S. A.; Lo Forti, R.; Saggese, E.

    1990-01-01

    The performance of two different parametric frequency dividers, using GaAs varactor diodes in a balanced circuit configuration implemented by planar (microstrip) or quasi-planar (finline, coupled finline ) elements respectively, is presented. The almost phase noise free operation of these devices allows the construction of efficient miniature synthesizers or carrier recovering schemes, incorporated on the space segment of Ku- or Ka-band satellite communications systems.

  7. Heat Transfer Parametric System Identification

    Science.gov (United States)

    1993-06-01

    Transfer Parametric System Identification 6. AUTHOR(S Parker, Gregory K. 7. PERFORMING ORGANIZATION NAME(S) AND AOORESS(ES) 8. PERFORMING ORGANIZATION...distribution is unlimited. Heat Transfer Parametric System Identification by Gregory K. Parker Lieutenant, United States Navy BS., DeVry Institute of...Modeling Concept ........ ........... 3 2. Lumped Parameter Approach ...... ......... 4 3. Parametric System Identification ....... 4 B. BASIC MODELING

  8. Towards Stabilizing Parametric Active Contours

    DEFF Research Database (Denmark)

    Liu, Jinchao; Fan, Zhun; Olsen, Søren Ingvor;

    2014-01-01

    Numerical instability often occurs in evolving of parametric active contours. This is mainly due to the undesired change of parametrization during evolution. In this paper, we propose a new tangential diffusion term to compensate this undesired change. As a result, the parametrization will converge...

  9. Relational Parametricity for Computational Effects

    CERN Document Server

    Møgelberg, Rasmus Ejlers

    2009-01-01

    According to Strachey, a polymorphic program is parametric if it applies a uniform algorithm independently of the type instantiations at which it is applied. The notion of relational parametricity, introduced by Reynolds, is one possible mathematical formulation of this idea. Relational parametricity provides a powerful tool for establishing data abstraction properties, proving equivalences of datatypes, and establishing equalities of programs. Such properties have been well studied in a pure functional setting. Many programs, however, exhibit computational effects, and are not accounted for by the standard theory of relational parametricity. In this paper, we develop a foundational framework for extending the notion of relational parametricity to programming languages with effects.

  10. Parametric Explosion Spectral Model

    Energy Technology Data Exchange (ETDEWEB)

    Ford, S R; Walter, W R

    2012-01-19

    Small underground nuclear explosions need to be confidently detected, identified, and characterized in regions of the world where they have never before occurred. We develop a parametric model of the nuclear explosion seismic source spectrum derived from regional phases that is compatible with earthquake-based geometrical spreading and attenuation. Earthquake spectra are fit with a generalized version of the Brune spectrum, which is a three-parameter model that describes the long-period level, corner-frequency, and spectral slope at high-frequencies. Explosion spectra can be fit with similar spectral models whose parameters are then correlated with near-source geology and containment conditions. We observe a correlation of high gas-porosity (low-strength) with increased spectral slope. The relationship between the parametric equations and the geologic and containment conditions will assist in our physical understanding of the nuclear explosion source.

  11. MEMS digital parametric loudspeaker

    KAUST Repository

    Carreno, Armando Arpys Arevalo

    2016-03-23

    This paper reports on the design and fabrication of MEMS actuator arrays suitable for Digital Sound reconstruction and Parametric Directional Loudspeakers. Two distinct versions of the device were fabricated: one using the electrostatic principle actuation and the other one, the piezoelectric principle. Both versions used similar membrane dimensions, with a diameter of 500 μm. These devices are the smallest Micro-Machined Ultrasound Transducer (MUT) arrays that can be operated for both modes: Digital Sound Reconstruction and Parametric Loudspeaker. The chips consist of an array with 256 transducers, in a footprint of 12 mm by 12 mm. The total single chip size is: 2.3 cm by 2.3 cm, including the contact pads. © 2016 IEEE.

  12. Parametric Resonance in Dynamical Systems

    CERN Document Server

    Nijmeijer, Henk

    2012-01-01

    Parametric Resonance in Dynamical Systems discusses the phenomenon of parametric resonance and its occurrence in mechanical systems,vehicles, motorcycles, aircraft and marine craft, and micro-electro-mechanical systems. The contributors provide an introduction to the root causes of this phenomenon and its mathematical equivalent, the Mathieu-Hill equation. Also included is a discussion of how parametric resonance occurs on ships and offshore systems and its frequency in mechanical and electrical systems. This book also: Presents the theory and principles behind parametric resonance Provides a unique collection of the different fields where parametric resonance appears including ships and offshore structures, automotive vehicles and mechanical systems Discusses ways to combat, cope with and prevent parametric resonance including passive design measures and active control methods Parametric Resonance in Dynamical Systems is ideal for researchers and mechanical engineers working in application fields such as MEM...

  13. Parametric Models of Periodogram

    Indian Academy of Sciences (India)

    P. Mohan; A. Mangalam; S. Chattopadhyay

    2014-09-01

    The maximum likelihood estimator is used to determine fit parameters for various parametric models of the Fourier periodogram followed by the selection of the best-fit model amongst competing models using the Akaike information criteria. This analysis, when applied to light curves of active galactic nuclei can be used to infer the presence of quasi-periodicity and break or knee frequencies. The extracted information can be used to place constraints on the mass, spin and other properties of the putative central black hole and the region surrounding it through theoretical models involving disk and jet physics.

  14. Parametrics in Urban Design

    DEFF Research Database (Denmark)

    Steinø, Nicolai; Obeling, Esben

    2013-01-01

    . Therefore, the design of urban space happens in a space of power. And this is something which traditionally the average urban dweller does not have. Urban designers communicate about urban space design in a professional language and through graphics which are not always intelligible to laypersons...... the given time and resource limits. And again, the lay person, whether she is a resident, a local business person, or a NGO representative, is left with little influence, when it comes to the design of urban space. With the advent of parametric design tools, this need no longer be the case. Rather than...

  15. Design and experimental application of a novel non-degenerate universal primer set that amplifies prokaryotic 16S rRNA genes with a low possibility to amplify eukaryotic rRNA genes.

    Science.gov (United States)

    Mori, Hiroshi; Maruyama, Fumito; Kato, Hiromi; Toyoda, Atsushi; Dozono, Ayumi; Ohtsubo, Yoshiyuki; Nagata, Yuji; Fujiyama, Asao; Tsuda, Masataka; Kurokawa, Ken

    2014-01-01

    The deep sequencing of 16S rRNA genes amplified by universal primers has revolutionized our understanding of microbial communities by allowing the characterization of the diversity of the uncultured majority. However, some universal primers also amplify eukaryotic rRNA genes, leading to a decrease in the efficiency of sequencing of prokaryotic 16S rRNA genes with possible mischaracterization of the diversity in the microbial community. In this study, we compared 16S rRNA gene sequences from genome-sequenced strains and identified candidates for non-degenerate universal primers that could be used for the amplification of prokaryotic 16S rRNA genes. The 50 identified candidates were investigated to calculate their coverage for prokaryotic and eukaryotic rRNA genes, including those from uncultured taxa and eukaryotic organelles, and a novel universal primer set, 342F-806R, covering many prokaryotic, but not eukaryotic, rRNA genes was identified. This primer set was validated by the amplification of 16S rRNA genes from a soil metagenomic sample and subsequent pyrosequencing using the Roche 454 platform. The same sample was also used for pyrosequencing of the amplicons by employing a commonly used primer set, 338F-533R, and for shotgun metagenomic sequencing using the Illumina platform. Our comparison of the taxonomic compositions inferred by the three sequencing experiments indicated that the non-degenerate 342F-806R primer set can characterize the taxonomic composition of the microbial community without substantial bias, and is highly expected to be applicable to the analysis of a wide variety of microbial communities.

  16. Output radiation from a degenerate parametric oscillator

    CERN Document Server

    Tesfa, S

    2007-01-01

    We study the squeezing as well as the statistical properties of the output radiation from a degenerate parametric oscillator coupled to a squeezed vacuum reservoir employing the stochastic differential equations associated with the normal ordering. It is found that the degree of squeezing of the output radiation is less than the corresponding cavity radiation. However, for output radiation the correlation of the quadrature operators evaluated at different times also exhibits squeezing, which is the reason for quenching of the overall noise in one of the quadrature components of the squeezing spectrum even when the oscillator is coupled to a vacuum reservoir. Moreover, coupling the oscillator to the squeezed vacuum reservoir enhances the squeezing exponentially and it also increases the mean photon number.

  17. White-light parametric instabilities in plasmas.

    Science.gov (United States)

    Santos, J E; Silva, L O; Bingham, R

    2007-06-08

    Parametric instabilities driven by partially coherent radiation in plasmas are described by a generalized statistical Wigner-Moyal set of equations, formally equivalent to the full wave equation, coupled to the plasma fluid equations. A generalized dispersion relation for stimulated Raman scattering driven by a partially coherent pump field is derived, revealing a growth rate dependence, with the coherence width sigma of the radiation field, scaling with 1/sigma for backscattering (three-wave process), and with 1/sigma1/2 for direct forward scattering (four-wave process). Our results demonstrate the possibility to control the growth rates of these instabilities by properly using broadband pump radiation fields.

  18. Parametric Room Acoustic Workflows

    DEFF Research Database (Denmark)

    Parigi, Dario; Svidt, Kjeld; Molin, Erik

    2017-01-01

    The paper investigates and assesses different room acoustics software and the opportunities they offer to engage in parametric acoustics workflow and to influence architectural designs. The first step consists in the testing and benchmarking of different tools on the basis of accuracy, speed...... and interoperability with Grasshopper 3d. The focus will be placed to the benchmarking of three different acoustic analysis tools based on raytracing. To compare the accuracy and speed of the acoustic evaluation across different tools, a homogeneous set of acoustic parameters is chosen. The room acoustics parameters...... included in the set are reverberation time (EDT, RT30), clarity (C50), loudness (G), and definition (D50). Scenarios are discussed for determining at different design stages the most suitable acoustic tool. Those scenarios are characterized, by the use of less accurate but fast evaluation tools to be used...

  19. Parametric lattice Boltzmann method

    Science.gov (United States)

    Shim, Jae Wan

    2017-06-01

    The discretized equilibrium distributions of the lattice Boltzmann method are presented by using the coefficients of the Lagrange interpolating polynomials that pass through the points related to discrete velocities and using moments of the Maxwell-Boltzmann distribution. The ranges of flow velocity and temperature providing positive valued distributions vary with regulating discrete velocities as parameters. New isothermal and thermal compressible models are proposed for flows of the level of the isothermal and thermal compressible Navier-Stokes equations. Thermal compressible shock tube flows are simulated by only five on-lattice discrete velocities. Two-dimensional isothermal and thermal vortices provoked by the Kelvin-Helmholtz instability are simulated by the parametric models.

  20. Avoiding the parametric roll

    Science.gov (United States)

    Acomi, Nicoleta; Ancuţa, Cristian; Andrei, Cristian; Boştinǎ, Alina; Boştinǎ, Aurel

    2016-12-01

    Ships are mainly built to sail and transport cargo at sea. Environmental conditions and state of the sea are communicated to vessels through periodic weather forecasts. Despite officers being aware of the sea state, their sea time experience is a decisive factor when the vessel encounters severe environmental conditions. Another important factor is the loading condition of the vessel, which triggers different behaviour in similar marine environmental conditions. This paper aims to analyse the behaviour of a port container vessel in severe environmental conditions and to estimate the potential conditions of parametric roll resonance. Octopus software simulation is employed to simulate vessel motions under certain conditions of the sea, with possibility to analyse the behaviour of ships and the impact of high waves on ships due to specific wave encounter situations. The study should be regarded as a supporting tool during the decision making process.

  1. Parametric modal transition systems

    DEFF Research Database (Denmark)

    Beneš, Nikola; Křetínský, Jan; Larsen, Kim Guldstrand;

    2011-01-01

    Modal transition systems (MTS) is a well-studied specification formalism of reactive systems supporting a step-wise refinement methodology. Despite its many advantages, the formalism as well as its currently known extensions are incapable of expressing some practically needed aspects in the refin......Modal transition systems (MTS) is a well-studied specification formalism of reactive systems supporting a step-wise refinement methodology. Despite its many advantages, the formalism as well as its currently known extensions are incapable of expressing some practically needed aspects...... in the refinement process like exclusive, conditional and persistent choices. We introduce a new model called parametric modal transition systems (PMTS) together with a general modal refinement notion that overcome many of the limitations and we investigate the computational complexity of modal refinement checking....

  2. Mode competition in a system of two parametrically driven pendulums: the role of symmetry

    NARCIS (Netherlands)

    Banning, E.J.; Weele, van der J.P.; Kettenis, M.M.

    1997-01-01

    This paper is the final part in a series of four on the dynamics of two coupled, parametrically driven pendulums. In the previous three parts (Banning and van der Weele, Mode competition in a system of two parametrically driven pendulums; the Hamiltonian case, Physica A 220 (1995) 485¿533; Banning e

  3. Parametric Timing Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Vivancos, E; Healy, C; Mueller, F; Whalley, D

    2001-05-09

    Embedded systems often have real-time constraints. Traditional timing analysis statically determines the maximum execution time of a task or a program in a real-time system. These systems typically depend on the worst-case execution time of tasks in order to make static scheduling decisions so that tasks can meet their deadlines. Static determination of worst-case execution times imposes numerous restrictions on real-time programs, which include that the maximum number of iterations of each loop must be known statically. These restrictions can significantly limit the class of programs that would be suitable for a real-time embedded system. This paper describes work-in-progress that uses static timing analysis to aid in making dynamic scheduling decisions. For instance, different algorithms with varying levels of accuracy may be selected based on the algorithm's predicted worst-case execution time and the time allotted for the task. We represent the worst-case execution time of a function or a loop as a formula, where the unknown values affecting the execution time are parameterized. This parametric timing analysis produces formulas that can then be quickly evaluated at run-time so dynamic scheduling decisions can be made with little overhead. Benefits of this work include expanding the class of applications that can be used in a real-time system, improving the accuracy of dynamic scheduling decisions, and more effective utilization of system resources. This paper describes how static timing analysis can be used to aid in making dynamic scheduling decisions. The WCET of a function or a loop is represented as a formula, where the values affecting the execution time are parameterized. Such formulas can then be quickly evaluated at run-time so dynamic scheduling decisions can be made when scheduling a task or choosing algorithms within a task. Benefits of this parametric timing analysis include expanding the class of applications that can be used in a real

  4. Non-parametric versus parametric methods in environmental sciences

    Directory of Open Access Journals (Sweden)

    Muhammad Riaz

    2016-01-01

    Full Text Available This current report intends to highlight the importance of considering background assumptions required for the analysis of real datasets in different disciplines. We will provide comparative discussion of parametric methods (that depends on distributional assumptions (like normality relative to non-parametric methods (that are free from many distributional assumptions. We have chosen a real dataset from environmental sciences (one of the application areas. The findings may be extended to the other disciplines following the same spirit.

  5. Parametric scramjet analysis

    Science.gov (United States)

    Choi, Jongseong

    The performance of a hypersonic flight vehicle will depend on existing materials and fuels; this work presents the performance of the ideal scramjet engine for three different combustion chamber materials and three different candidate fuels. Engine performance is explored by parametric cycle analysis for the ideal scramjet as a function of material maximum service temperature and the lower heating value of jet engine fuels. The thermodynamic analysis is based on the Brayton cycle as similarly employed in describing the performance of the ramjet, turbojet, and fanjet ideal engines. The objective of this work is to explore material operating temperatures and fuel possibilities for the combustion chamber of a scramjet propulsion system to show how they relate to scramjet performance and the seven scramjet engine parameters: specific thrust, fuel-to-air ratio, thrust-specific fuel consumption, thermal efficiency, propulsive efficiency, overall efficiency, and thrust flux. The information presented in this work has not been done by others in the scientific literature. This work yields simple algebraic equations for scramjet performance which are similar to that of the ideal ramjet, ideal turbojet and ideal turbofan engines.

  6. Parametric Mass Reliability Study

    Science.gov (United States)

    Holt, James P.

    2014-01-01

    The International Space Station (ISS) systems are designed based upon having redundant systems with replaceable orbital replacement units (ORUs). These ORUs are designed to be swapped out fairly quickly, but some are very large, and some are made up of many components. When an ORU fails, it is replaced on orbit with a spare; the failed unit is sometimes returned to Earth to be serviced and re-launched. Such a system is not feasible for a 500+ day long-duration mission beyond low Earth orbit. The components that make up these ORUs have mixed reliabilities. Components that make up the most mass-such as computer housings, pump casings, and the silicon board of PCBs-typically are the most reliable. Meanwhile components that tend to fail the earliest-such as seals or gaskets-typically have a small mass. To better understand the problem, my project is to create a parametric model that relates both the mass of ORUs to reliability, as well as the mass of ORU subcomponents to reliability.

  7. 基于谐波干扰的轧机主传动机电耦合系统参激振动机理研究%Study on parametrically excited vibration in the rolling mill electromechanical coupling system based on harmonic disturbance

    Institute of Scientific and Technical Information of China (English)

    张瑞成; 王佩佩

    2013-01-01

    在考虑轧机电气系统谐波转矩及机械摩擦因数的基础上,建立直流电动机-轧机主传动机电耦合系统的模型。采用多尺度法求解该机电耦合模型在主参数共振情况下的一阶近似解,给出了振子的频率响应方程,用数值方法研究了定常解的稳定性,并应用Poincare映射方法和最大Lyapunov指数分析了谐波角频率对轧机主传动机电耦合系统非线性参激共振的影响。%The electromechanical coupling model of a rolling mill and DC motor system is established based on the mechanical friction factor and the harmonic torque of the rolling mill electrical system .By means of a multiple-scales method,the existence and stability of periodic solutions in a first order approximation close to the main parametric resonance are investigated ,and the frequency-response equation is provided .Bifurcations of the system and regions of chaotic solutions are found .And the impacts of the harmonic angular frequency on the rolling mill electromechanical coupling nonlinear parametric excitation resonance are ana -lyzed by the Poincare mapping method and the maximum Lyapunov exponent .

  8. Interacting parametrized post-Friedmann method

    Science.gov (United States)

    Richarte, Martín G.; Xu, Lixin

    2016-04-01

    We apply the interacting parametrized post-Friedmann (IPPF) method to coupled dark energy models where the interaction is proportional to dark matter density at background level. In the first case, the dark components are treated as fluids and the growth of dark matter perturbations only feel the interaction via the modification of background quantities provided dark matter follows geodesic. We also perform a Markov Chain Monte-Carlo analysis which combines several cosmological probes including the cosmic microwave background (WMAP9+Planck) data, baryon acoustic oscillation (BAO) measurements, JLA sample of supernovae, Hubble constant (HST), and redshift-space distortion (RSD) measurements through the fσ 8(z) data points. The joint observational analysis of Planck+WP+JLA+BAO+HST+ RSD data leads to a coupling parameter, ξ c=0.00140_{-0.00080}^{+0.00079} at 1σ level for vanishing momentum transfer potential. On the other hand, we deal with a coupled quintessence model which exhibits a violation of the equivalence principle coming form a coupling term in the modified Euler equation; as a result of that the local Hubble expansion rate and the effective gravitational coupling are both enhanced. Provided that the interaction is parallel to scalar field velocity the momentum transfer potential is switched on, leading to a lower interaction coupling ξ c=0.00136_{-0.00073}^{+0.00080} at 1σ level when Planck+WP+JLA+BAO+HST+RSD data are combined. Besides, the CMB power spectrum shows up a correlation between the coupling parameter ξ c and the position of acoustic peaks or their amplitudes. The first peak's height increases when ξ c takes larger values and its position is shifted. We also obtain the matter power spectrum may be affected by the strength of interaction coupling over scales bigger than 10^{-2} h Mpc^{-1}, reducing its amplitude in relation to the vanilla model.

  9. Planar Parametrization in Isogeometric Analysis

    DEFF Research Database (Denmark)

    Gravesen, Jens; Evgrafov, Anton; Nguyen, Dang-Manh

    2012-01-01

    Before isogeometric analysis can be applied to solving a partial differential equation posed over some physical domain, one needs to construct a valid parametrization of the geometry. The accuracy of the analysis is affected by the quality of the parametrization. The challenge of computing...... and maintaining a valid geometry parametrization is particularly relevant in applications of isogemetric analysis to shape optimization, where the geometry varies from one optimization iteration to another. We propose a general framework for handling the geometry parametrization in isogeometric analysis and shape...... are suitable for our framework. The non-linear methods we consider are based on solving a constrained optimization problem numerically, and are divided into two classes, geometry-oriented methods and analysis-oriented methods. Their performance is illustrated through a few numerical examples....

  10. Planar Parametrization in Isogeometric Analysis

    DEFF Research Database (Denmark)

    Gravesen, Jens; Evgrafov, Anton; Nguyen, Dang-Manh;

    2012-01-01

    Before isogeometric analysis can be applied to solving a partial differential equation posed over some physical domain, one needs to construct a valid parametrization of the geometry. The accuracy of the analysis is affected by the quality of the parametrization. The challenge of computing...... and maintaining a valid geometry parametrization is particularly relevant in applications of isogemetric analysis to shape optimization, where the geometry varies from one optimization iteration to another. We propose a general framework for handling the geometry parametrization in isogeometric analysis and shape...... are suitable for our framework. The non-linear methods we consider are based on solving a constrained optimization problem numerically, and are divided into two classes, geometry-oriented methods and analysis-oriented methods. Their performance is illustrated through a few numerical examples....

  11. Parametric Coding of Stereo Audio

    Directory of Open Access Journals (Sweden)

    Erik Schuijers

    2005-06-01

    Full Text Available Parametric-stereo coding is a technique to efficiently code a stereo audio signal as a monaural signal plus a small amount of parametric overhead to describe the stereo image. The stereo properties are analyzed, encoded, and reinstated in a decoder according to spatial psychoacoustical principles. The monaural signal can be encoded using any (conventional audio coder. Experiments show that the parameterized description of spatial properties enables a highly efficient, high-quality stereo audio representation.

  12. Highly efficient non-degenerate four-wave mixing under dual-mode injection in InP/InAs quantum-dash and quantum-dot lasers at 1.55 μm

    Energy Technology Data Exchange (ETDEWEB)

    Sadeev, T., E-mail: tagir@mailbox.tu-berlin.de; Arsenijević, D. [Institut für Festkörperphysik, Technische Universität Berlin, Berlin 10623 (Germany); Huang, H.; Schires, K. [Télécom Paristech, Université Paris-Saclay, 46 rue Barrault, CNRS LTCI 75634 Paris Cedex 13 (France); Grillot, F. [Télécom Paristech, Université Paris-Saclay, 46 rue Barrault, CNRS LTCI 75634 Paris Cedex 13 (France); Center for High Technology Materials, University of New-Mexico, Albuquerque, New Mexico 1313 (United States); Bimberg, D. [Institut für Festkörperphysik, Technische Universität Berlin, Berlin 10623 (Germany); King Abdulaziz University, 22254 Jeddah (Saudi Arabia)

    2015-11-09

    This work reports on non-degenerate four-wave mixing under dual-mode injection in metalorganic vapor phase epitaxy grown InP/InAs quantum-dash and quantum dot Fabry-Perot laser operating at 1550 nm. High values of normalized conversion efficiency of −18.6 dB, optical signal-to-noise ratio of 37 dB, and third order optical susceptibility normalized to material gain χ{sup (3)}/g{sub 0} of ∼4 × 10{sup −19} m{sup 3}/V{sup 3} are measured for 1490 μm long quantum-dash lasers. These values are similar to those obtained with distributed-feedback lasers and semiconductor optical amplifiers, which are much more complicated to fabricate. On the other hand, due to the faster gain saturation and enhanced modulation of carrier populations, quantum-dot lasers demonstrate 12 dB lower conversion efficiency and 4 times lower χ{sup (3)}/g{sub 0} compared to quantum dash lasers.

  13. Parametric Resonance in the Early Universe - A Fitting Analysis

    CERN Document Server

    Figueroa, Daniel G.

    2017-01-01

    Particle production via parametric resonance in the early Universe, is a non-perturbative, non-linear and out-of-equilibrium phenomenon. Although it is a well studied topic, whenever a new scenario exhibits parametric resonance, a full re-analysis is normally required. To avoid this tedious task, many works present often only a simplified linear treatment of the problem. In order to surpass this circumstance in the future, we provide a fitting analysis of parametric resonance through all its relevant stages: initial linear growth, non-linear evolution, and relaxation towards equilibrium. Using lattice simulations in an expanding grid in $3+1$ dimensions, we parametrise the dynamics' outcome scanning over the relevant ingredients: role of the oscillatory field, particle coupling strength, initial conditions, and background expansion rate. We emphasise the inaccuracy of the linear calculation of the decay time of the oscillatory field, and propose a more appropriate definition of this scale based on the subsequ...

  14. Epicyclic helical channels for parametric resonance ionization cooling

    Energy Technology Data Exchange (ETDEWEB)

    Johson, Rolland Paul [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Derbenev, Yaroslav [Muons, Inc., Batavia, IL (United States)

    2015-08-23

    Proposed next-generation muon colliders will require major technical advances to achieve rapid muon beam cooling requirements. Parametric-resonance Ionization Cooling (PIC) is proposed as the final 6D cooling stage of a high-luminosity muon collider. In PIC, a half-integer parametric resonance causes strong focusing of a muon beam at appropriately placed energy absorbers while ionization cooling limits the beam’s angular spread. Combining muon ionization cooling with parametric resonant dynamics in this way should then allow much smaller final transverse muon beam sizes than conventional ionization cooling alone. One of the PIC challenges is compensation of beam aberrations over a sufficiently wide parameter range while maintaining the dynamical stability with correlated behavior of the horizontal and vertical betatron motion and dispersion. We explore use of a coupling resonance to reduce the dimensionality of the problem and to shift the dynamics away from non-linear resonances. PIC simulations are presented.

  15. The Dangers of Parametrics

    Science.gov (United States)

    Prince, Frank A.

    2017-01-01

    Building a parametric cost model is hard work. The data is noisy and often does not behave like we want it to. We need statistics to give us an indication of the goodness of our models, but; statistics can be manipulated and mislead. On top of all of that, our own very human biases can lead us astray; causing us to see patterns in the noise and draw false conclusions from the data. Yet, it is the data itself that is the foundation for making better cost estimates and cost models. I believe the mistake we often make is we believe that our models are representative of the data; that our models summarize the experiences, the knowledge, and the stories contained in the data. However, it is the opposite that is true. Our models are but imitations of reality. They give us trends, but not truth. The experiences, the knowledge, and the stories that we need in order to make good cost estimates is bound up in the data. You cannot separate good cost estimating from a knowledge of the historical data. One final thought. It is our attempts to make sense out of the randomness that leads us astray. In order to make progress as cost modelers and cost estimators, we must accept that there are real limitations on our ability to model the past and predict the future. I do not believe we should throw up our hands and say this is the best we can do. Rather, to see real improvement we must first recognize these limitations, avoid the easy but misleading solutions, and seek to find ways to better model the world we live in. I don't have any simple solutions. Perhaps the answers lie in better data or in a totally different approach to simulating how the world works. All I know is that we must do our best to speak truth to ourselves and our customers. Misleading ourselves and our customers will, in the end, result in an inability to have a positive impact on those we serve.

  16. White light parametric instabilities

    Science.gov (United States)

    Santos, Jorge; Bingham, Robert

    2005-10-01

    The Wigner formalism of quantum mechanics provides an alternative formulation to describe waves propagating in a dispersive medium. However the wave equation describes a two mode problem, and all previous theoretical models, based on the Wigner-Moyal equation, only deal with the single mode problem, where propagation is assumed to obey a Schr"odinger-like equation. We first present a formulation to describe the laser propagation in a cold plasma based on the Wigner formalism generalized to Klein-Gordon like-fields. We constructed a 2x2 Wigner matrix on the basis of the Hamiltonian form of the Klein-Gordon equation of a charged scalar particle field. The system of coupled transport equations governing the evolution of the photon densities in phase-space is then derived; this system is formally equivalent to the full wave equation. The system of transport equations for the photons is coupled with the relativistic fluid equations for the plasma. A general dispersion relation is obtained and, from first principles, the effect of a broadband radiation spectrum on stimulated Raman scattering is studied.

  17. Parametric Verification of Weighted Systems

    DEFF Research Database (Denmark)

    Christoffersen, Peter; Hansen, Mikkel; Mariegaard, Anders

    2015-01-01

    This paper addresses the problem of parametric model checking for weighted transition systems. We consider transition systems labelled with linear equations over a set of parameters and we use them to provide semantics for a parametric version of weighted CTL where the until and next operators ar...... finitely many iterations. To demonstrate the utility of our technique, we have implemented a prototype tool that computes the constraints on parameters for model checking problems.......This paper addresses the problem of parametric model checking for weighted transition systems. We consider transition systems labelled with linear equations over a set of parameters and we use them to provide semantics for a parametric version of weighted CTL where the until and next operators...... are themselves indexed with linear equations. The parameters change the model-checking problem into a problem of computing a linear system of inequalities that characterizes the parameters that guarantee the satisfiability. To address this problem, we use parametric dependency graphs (PDGs) and we propose...

  18. Parametric functional principal component analysis.

    Science.gov (United States)

    Sang, Peijun; Wang, Liangliang; Cao, Jiguo

    2017-03-10

    Functional principal component analysis (FPCA) is a popular approach in functional data analysis to explore major sources of variation in a sample of random curves. These major sources of variation are represented by functional principal components (FPCs). Most existing FPCA approaches use a set of flexible basis functions such as B-spline basis to represent the FPCs, and control the smoothness of the FPCs by adding roughness penalties. However, the flexible representations pose difficulties for users to understand and interpret the FPCs. In this article, we consider a variety of applications of FPCA and find that, in many situations, the shapes of top FPCs are simple enough to be approximated using simple parametric functions. We propose a parametric approach to estimate the top FPCs to enhance their interpretability for users. Our parametric approach can also circumvent the smoothing parameter selecting process in conventional nonparametric FPCA methods. In addition, our simulation study shows that the proposed parametric FPCA is more robust when outlier curves exist. The parametric FPCA method is demonstrated by analyzing several datasets from a variety of applications. © 2017, The International Biometric Society.

  19. Analytical solutions of coupled-mode equations for microring resonators

    Indian Academy of Sciences (India)

    ZHAO C Y

    2016-06-01

    We present a study on analytical solutions of coupled-mode equations for microring resonators with an emphasis on occurrence of all-optical EIT phenomenon, obtained by using a cofactor. As concrete examples, analytical solutions for a $3 \\times 3$ linearly distributed coupler and a circularly distributed coupler are obtained. The former corresponds to a non-degenerate eigenvalue problem and the latter corresponds to a degenerate eigenvalue problem. For comparison and without loss of generality, analytical solution for a $4 \\times 4$ linearly distributed coupler is also obtained. This paper may be of interest to optical physics and integrated photonics communities.

  20. Non-degenerate Low Energy Leptogenesis

    CERN Document Server

    Geng, Chao-Qiang

    2009-01-01

    We study a simple extension of the standard model to tackle the neutrino masses, matter-antimatter asymmetry and dark matter (DM) in the universe, and the lithium problems. In our model, the baryon asymmetry is achieved by the low energy leptogenesis mechanism without requiring any degeneracy of masses, DM is provided by the neutral component of the inert scalar doublet, and the lithium problems are solved by using its negatively charged component. The new particles proposed in the model are within the reach at the future colliders. We also show that our model satisfies the electroweak precision tests.

  1. Degenerate parametric oscillation in quantum membrane optomechanics

    Science.gov (United States)

    Benito, Mónica; Sánchez Muñoz, Carlos; Navarrete-Benlloch, Carlos

    2016-02-01

    The promise of innovative applications has triggered the development of many modern technologies capable of exploiting quantum effects. But in addition to future applications, such quantum technologies have already provided us with the possibility of accessing quantum-mechanical scenarios that seemed unreachable just a few decades ago. With this spirit, in this work we show that modern optomechanical setups are mature enough to implement one of the most elusive models in the field of open system dynamics: degenerate parametric oscillation. Introduced in the eighties and motivated by its alleged implementability in nonlinear optical resonators, it rapidly became a paradigm for the study of dissipative phase transitions whose corresponding spontaneously broken symmetry is discrete. However, it was found that the intrinsic multimode nature of optical cavities makes it impossible to experimentally study the model all the way through its phase transition. In contrast, here we show that this long-awaited model can be implemented in the motion of a mechanical object dispersively coupled to the light contained in a cavity, when the latter is properly driven with multichromatic laser light. We focus on membranes as the mechanical element, showing that the main signatures of the degenerate parametric oscillation model can be studied in state-of-the-art setups, thus opening the possibility of analyzing spontaneous symmetry breaking and enhanced metrology in one of the cleanest dissipative phase transitions. In addition, the ideas put forward in this work would allow for the dissipative preparation of squeezed mechanical states.

  2. Quantum transformation limits in multiwave parametric interactions

    Science.gov (United States)

    Saygin, M. Yu

    2016-10-01

    The possibility to realize multiple nonlinear optical processes in a single crystal as means to produce multicolor quantum states favours stability and compactness of optical settings. Hence, this approach can be advantageous compared to the traditional one based on cascaded arrangement of optical elements. However, it comes with an obstacle—the class of accessible quantum states is narrower than that of the cascade counterpart. In this letter, we study this task using an example of three coupled nonlinear optical processes, namely, one parametric down-conversion and two of sum-frequency generation. To this end, the singular value decomposition has been applied to find the cascade representation of the compound field evolution. We have found the link between the parameters of the multiwave processes and the relevant cascade parameters—beam-splitting and squeezing parameters, by means of which the generated quantum states have been characterized. The relation between the squeezing parameters that has been found in the course of this work shows that the squeezing resource, produced in the parametric down-conversion, is shared among the modes involved in the compound interactions. Moreover, we have shown that the degree of two-mode entanglement carried by the up-converted frequencies cannot exceed that of the down-converted frequencies.

  3. Rotary bistable and Parametrically Excited Vibration Energy Harvesting

    Science.gov (United States)

    Kurmann, L.; Jia, Y.; Hoffmann, D.; Manoli, Y.; Woias, P.

    2016-11-01

    Parametric resonance is a type of nonlinear vibration phenomenon [1], [2] induced from the periodic modulation of at least one of the system parameters and has the potential to exhibit interesting higher order nonlinear behaviour [3]. Parametrically excited vibration energy harvesters have been previously shown to enhance both the power amplitude [4] and the frequency bandwidth [5] when compared to the conventional direct resonant approach. However, to practically activate the more profitable regions of parametric resonance, additional design mechanisms [6], [7] are required to overcome a critical initiation threshold amplitude. One route is to establish an autoparametric system where external direct excitation is internally coupled to parametric excitation [8]. For a coupled two degrees of freedom (DoF) oscillatory system, principal autoparametric resonance can be achieved when the natural frequency of the first DoF f1 is twice that of the second DoF f2 and the external excitation is in the vicinity of f1. This paper looks at combining rotary and translatory motion and use autoparametric resonance phenomena.

  4. Parametric Fires for Structural Design

    DEFF Research Database (Denmark)

    Hertz, Kristian

    2012-01-01

    The authorities, the construction association, and a number of companies in Denmark have supported the author writing a guide for design of building structures for parametric fires. The guide is published by the ministry as a supplement to the building regulations. However, consultants and contra......The authorities, the construction association, and a number of companies in Denmark have supported the author writing a guide for design of building structures for parametric fires. The guide is published by the ministry as a supplement to the building regulations. However, consultants...... and contractors have asked for a reference in English in order to make the guide-lines and the background for them available internationally. The paper therefore presents recommendations from the design guide especially concerning how to assess parametric design fires based on the opening factor method for large...

  5. Validity of Parametrized Quark Propagator

    Institute of Scientific and Technical Information of China (English)

    ZHUJi-Zhen; ZHOULi-Juan; MAWei-Xing

    2005-01-01

    Based on an extensively study of the Dyson-Schwinger equations for a fully dressed quark propagator in the “rainbow”approximation, a parametrized fully dressed quark propagator is proposed in this paper. The parametrized propagator describes a confining quark propagator in hadron since it is analytic everywhere in complex p2-plane and has no Lemmann representation. The validity of the new propagator is discussed by comparing its predictions on selfenergy functions A/(p2), Bl(p2) and effective mass M$(p2) of quark with flavor f to their corresponding theoretical results produced by Dyson-Schwinger equations. Our comparison shows that the parametrized quark propagator is a good approximation to the fully dressed quark propagator given by the solutions of Dyson-Schwinger equations in the rainbow approximation and is convenient to use in any theoretical calculations.

  6. Validity of Parametrized Quark Propagator

    Institute of Scientific and Technical Information of China (English)

    ZHU Ji-Zhen; ZHOU Li-Juan; MA Wei-Xing

    2005-01-01

    Based on an extensively study of the Dyson-Schwinger equations for a fully dressed quark propagator in the "rainbow" approximation, a parametrized fully dressed quark propagator is proposed in this paper. The parametrized propagator describes a confining quark propagator in hadron since it is analytic everywhere in complex p2-plane and has no Lemmann representation. The validity of the new propagator is discussed by comparing its predictions on selfenergy functions Af(p2), Bf(p2) and effective mass Mf(p2) of quark with flavor f to their corresponding theoretical results produced by Dyson-Schwinger equations. Our comparison shows that the parametrized quark propagator is a good approximation to the fully dressed quark propagator given by the solutions of Dyson-Schwinger equations in the rainbow approximation and is convenient to use in any theoretical calculations.

  7. Parametric Thinking in Urban Design

    DEFF Research Database (Denmark)

    Steinø, Nicolai

    2010-01-01

    The paper states that most applications of parametric mod- elling to architecture and urban design fall into one of two strands of either form for form’s sake, or the negotiation of environmental con- cerns, while approaches which allow scenarios to be easily tested and modified without the appli...... of the paper. The pros and cons of this simple approach is discussed, and the paper con- cludes, that while it does not represent a suitable solution in all cases, it fills a gap among the existing approaches to parametric urban de- sign.......The paper states that most applications of parametric mod- elling to architecture and urban design fall into one of two strands of either form for form’s sake, or the negotiation of environmental con- cerns, while approaches which allow scenarios to be easily tested and modified without...

  8. Productivity improvement in Korean rice farming: parametric and non-parametric analysis

    OpenAIRE

    Kwon, Oh Sang; Lee, Hyunok

    2004-01-01

    The published empirical literature on frontier production functions is dominated by two broadly defined estimation approaches – parametric and non‐parametric. Using panel data on Korean rice production, parametric and non‐parametric production frontiers are estimated and compared with estimated productivity. The non‐parametric approach employs two alternative measures based on the Malmquist index and the Luenberger indicator, while the parametric approach is closely related to the time‐varian...

  9. Dressed Gain from the Parametrically Amplified Four-Wave Mixing Process in an Atomic Vapor

    Science.gov (United States)

    Zhang, Zhaoyang; Wen, Feng; Che, Junling; Zhang, Dan; Li, Changbiao; Zhang, Yanpeng; Xiao, Min

    2015-01-01

    With a forward cone emitting from the strong pump laser in a thermal rubidium atomic vapor, we investigate the non-degenerate parametrically amplified four-wave mixing (PA-FWM) process with dressing effects in a three-level “double-Λ” configuration both theoretically and experimentally. By seeding a weak probe field into the Stokes or anti-Stokes channel of the FWM, the gain processes are generated in the bright twin beams which are called conjugate and probe beams, respectively. However, the strong dressing effect of the pump beam will dramatically affect the gain factors both in the probe and conjugate channels, and can inevitably impose an influence on the quantum effects such as entangled degree and the quantum noise reduction between the two channels. We systematically investigate the intensity evolution of the dressed gain processes by manipulating the atomic density, the Rabi frequency and the frequency detuning. Such dressing effects are also visually evidenced by the observation of Autler-Townes splitting of the gain peaks. The investigation can contribute to the development of quantum information processing and quantum communications. PMID:26463588

  10. Compact dual-crystal optical parametric amplification for broadband IR pulse generation using a collinear geometry.

    Science.gov (United States)

    Hong, Zuofei; Zhang, Qingbin; Lu, Peixiang

    2013-04-22

    A novel compact dual-crystal optical parametric amplification (DOPA) scheme, collinearly pumped by a Ti:sapphire laser (0.8 μm), is theoretically investigated for efficiently generating broadband IR pulses at non-degenerate wavelengths (1.2 μm~1.4 μm and 1.8 μm~2.1 μm). By inserting a pair of barium fluoride (BaF(2)) wedges between two thin β-barium borate (BBO) crystals, the group velocity mismatch (GVM) between the three interacting pulses can be compensated simultaneously. In this case, the obtained signal spectrum centered at 1.3 μm is nearly 20% broader and the conversion efficiency is increased, but also the pulse contrast and beam quality are improved due to the better temporal overlap. Furthermore, sub-two-cycle idler pulses with carrier-envelope phase (CEP) fluctuation of sub-100-mrad root mean square (RMS) can be generated. Because a tunable few-cycle IR pulse with millijoule energy is attainable in this scheme, it will contribute to ultrafast community and be particularly useful as a driving or controlling field for the generation of ultrafast coherent x-ray supercontinuum.

  11. Biological parametric mapping with robust and non-parametric statistics.

    Science.gov (United States)

    Yang, Xue; Beason-Held, Lori; Resnick, Susan M; Landman, Bennett A

    2011-07-15

    Mapping the quantitative relationship between structure and function in the human brain is an important and challenging problem. Numerous volumetric, surface, regions of interest and voxelwise image processing techniques have been developed to statistically assess potential correlations between imaging and non-imaging metrices. Recently, biological parametric mapping has extended the widely popular statistical parametric mapping approach to enable application of the general linear model to multiple image modalities (both for regressors and regressands) along with scalar valued observations. This approach offers great promise for direct, voxelwise assessment of structural and functional relationships with multiple imaging modalities. However, as presented, the biological parametric mapping approach is not robust to outliers and may lead to invalid inferences (e.g., artifactual low p-values) due to slight mis-registration or variation in anatomy between subjects. To enable widespread application of this approach, we introduce robust regression and non-parametric regression in the neuroimaging context of application of the general linear model. Through simulation and empirical studies, we demonstrate that our robust approach reduces sensitivity to outliers without substantial degradation in power. The robust approach and associated software package provide a reliable way to quantitatively assess voxelwise correlations between structural and functional neuroimaging modalities. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. A quantum parametric oscillator with trapped ions

    CERN Document Server

    Ding, Shiqian; Hablutzel, Roland; Loh, Huanqian; Matsukevich, Dzmitry

    2015-01-01

    A system of harmonic oscillators coupled via nonlinear interaction is a fundamental model in many branches of physics, from biophysics to electronics and condensed matter physics. In quantum optics, weak nonlinear interaction between light modes has enabled, for example, the preparation of squeezed states of light and generation of entangled photon pairs. While strong nonlinear interaction between the modes has been realized in circuit QED systems, achieving significant interaction strength on the level of single quanta in other physical systems remains a challenge. Here we experimentally demonstrate such interaction that is equivalent to photon up- and down-conversion using normal modes of motion in a system of two Yb ions. The nonlinearity is induced by the intrinsic anharmonicity of the Coulomb interaction between the ions and can be used to simulate fully quantum operation of a degenerate optical parametric oscillator. We exploit this interaction to directly measure the parity and Wigner functions of ion ...

  13. Oceanic stochastic parametrizations in a seasonal forecast system

    CERN Document Server

    Andrejczuk, M; Juricke, S; Palmer, T N; Weisheimer, A; Zanna, L

    2015-01-01

    We study the impact of three stochastic parametrizations in the ocean component of a coupled model, on forecast reliability over seasonal timescales. The relative impacts of these schemes upon the ocean mean state and ensemble spread are analyzed. The oceanic variability induced by the atmospheric forcing of the coupled system is, in most regions, the major source of ensemble spread. The largest impact on spread and bias came from the Stochastically Perturbed Parametrization Tendency (SPPT) scheme - which has proven particularly effective in the atmosphere. The key regions affected are eddy-active regions, namely the western boundary currents and the Southern Ocean. However, unlike its impact in the atmosphere, SPPT in the ocean did not result in a significant decrease in forecast error. Whilst there are good grounds for implementing stochastic schemes in ocean models, our results suggest that they will have to be more sophisticated. Some suggestions for next-generation stochastic schemes are made.

  14. Parametric resonance in the system of long Josephson junctions

    Science.gov (United States)

    Rahmonov, I. R.; Shukrinov, Yu. M.; Irie, A.

    2014-08-01

    The phase dynamics of the system of long Josephson junctions whose length exceeds the Josephson penetration depth has been studied. The possibility of the appearance of a longitudinal plasma wave and parametric resonance has been demonstrated. Both inductive and capacitive couplings between Josephson junctions have been taken into account in the calculations. The current-voltage characteristics, as well as time evolution of the spatial distribution of the electric charge in superconducting layers and the magnetic field, have been calculated in all Josephson junctions of the system. The coexistence of the longitudinal plasma wave and fluxon states has been observed in the region of parametric resonance beginning with a certain length of the Josephson junction. This indicates the appearance of a new unique collective excitation in the system of coupled Josephson junctions, namely, a composite state of the Josephson current, electric field, and vortex magnetic field.

  15. Parametric study of the stability properties of a thermo hydraulic channel coupled to punctual kinetics; Estudio parametrico de las propiedades de estabilidad de un canal termohidraulico acoplado a cinetica puntual

    Energy Technology Data Exchange (ETDEWEB)

    Cecenas F, M.; Campos G, R.M. [Instituto de Investigaciones Electricas, Reforma 113, Col. Palmira, Temixco, Morelos (Mexico)]. e-mail: mcf@iie.org.mx

    2005-07-01

    The reason of decay is the indicator of stability usually used in the literature to evaluate stability of boiling water reactors, however, in the operation of this type of reactors is considered the length of boiling like an auxiliary parameter for the evaluation of stability. In this work its are studied the variation of these two indicators when modifying a given an operation parameter in a model of a thermo hydraulic channel coupled to punctual kinetics, maintaining all the other input constant variables. The parameters selected for study are the axial profile of power, the subcooling, the flow of coolant and the thermal power. The study is supplemented by means of real data of plant using the one Benchmark of Ringhals, and the results for the case of the ratio of decay its are compared with the decay reasons obtained by means of autoregression models of the local instrumentation of neutron flux. (Author)

  16. Parametric programming of industrial robots

    Directory of Open Access Journals (Sweden)

    Szulczyński Paweł

    2015-06-01

    Full Text Available This article proposes the use of parametric design software, commonly used by architects, in order to obtain complex trajectory and program code for industrial robots. The paper describes the drawbacks of existing solutions and proposes a new script to obtain a correct program. The result of the algorithm was verified experimentally.

  17. Relational Parametricity and Separation Logic

    DEFF Research Database (Denmark)

    Birkedal, Lars; Yang, Hongseok

    2008-01-01

    Separation logic is a recent extension of Hoare logic for reasoning about programs with references to shared mutable data structures. In this paper, we provide a new interpretation of the logic for a programming language with higher types. Our interpretation is based on Reynolds's relational...... parametricity, and it provides a formal connection between separation logic and data abstraction. Udgivelsesdato: 2008...

  18. Parametrized Post-Newtonian Limit of Teleparallel Dark Energy Model

    CERN Document Server

    Li, Jung-Tsung; Geng, Chao-Qiang

    2013-01-01

    We study the post-Newtonian limit in the teleparallel equivalent of General Relativity with a scalar field which non-minimally couples to gravity. The metric perturbation is obtained from the vierbein field expansion with respect to the Minkowski background. Due to the structure of the teleparallel gravity Lagrangian, the potential of the scalar field shows no effect to the parametrized post-Newtonian parameters, and compatible results with Solar System observations are found.

  19. Aircraft Trajectory Optimization Using Parametric Optimization Theory

    OpenAIRE

    Valenzuela Romero, Alfonso

    2012-01-01

    In this thesis, a study of the optimization of aircraft trajectories using parametric optimization theory is presented. To that end, an approach based on the use of predefined trajectory patterns and parametric optimization is proposed. The trajectory pat

  20. A Defect Effect to Light Transmission through Acute Bending Coupled Cavity Waveguide in a Two-Dimensional Photonic Crystal

    Institute of Scientific and Technical Information of China (English)

    HUANG Yin; LU Yan-Wu

    2009-01-01

    @@ Light propagation through a coupled-defect waveguide with a 63.5°bend in a two-dimensional (2D) photonic crystal is investigated. The waveguide modes are non-degenerate monopole state and dipole defect state of a square lattice for two different branches. To increase the transmission in the bending waveguide, we propose a method to rotate the localized state by introducing a new type defect with a sheared square rod into coupled cavity. The higher coupling efficiency and transmission in the bending waveguide are obtained with proper shear shift.

  1. Parametric Instability: An Elementary Demonstration and Discussion.

    Science.gov (United States)

    Case, William

    1980-01-01

    Discusses parametric oscillators and parametric instability. A simple, easy-to-construct system which exhibits parametric instability is presented. The two lowest-order resonances are described and analyzed in detail. The analysis stresses the physical and intuitive aspects of the problem. (Author/HM)

  2. Non-Parametric Inference in Astrophysics

    CERN Document Server

    Wasserman, L H; Nichol, R C; Genovese, C; Jang, W; Connolly, A J; Moore, A W; Schneider, J; Wasserman, Larry; Miller, Christopher J.; Nichol, Robert C.; Genovese, Chris; Jang, Woncheol; Connolly, Andrew J.; Moore, Andrew W.; Schneider, Jeff; group, the PICA

    2001-01-01

    We discuss non-parametric density estimation and regression for astrophysics problems. In particular, we show how to compute non-parametric confidence intervals for the location and size of peaks of a function. We illustrate these ideas with recent data on the Cosmic Microwave Background. We also briefly discuss non-parametric Bayesian inference.

  3. Parametric or nonparametric? A parametricness index for model selection

    CERN Document Server

    Liu, Wei; 10.1214/11-AOS899

    2012-01-01

    In model selection literature, two classes of criteria perform well asymptotically in different situations: Bayesian information criterion (BIC) (as a representative) is consistent in selection when the true model is finite dimensional (parametric scenario); Akaike's information criterion (AIC) performs well in an asymptotic efficiency when the true model is infinite dimensional (nonparametric scenario). But there is little work that addresses if it is possible and how to detect the situation that a specific model selection problem is in. In this work, we differentiate the two scenarios theoretically under some conditions. We develop a measure, parametricness index (PI), to assess whether a model selected by a potentially consistent procedure can be practically treated as the true model, which also hints on AIC or BIC is better suited for the data for the goal of estimating the regression function. A consequence is that by switching between AIC and BIC based on the PI, the resulting regression estimator is si...

  4. Influence of Surge Motion on the Probability of Parametric Roll in a Stationary Sea State

    DEFF Research Database (Denmark)

    Jensen, Jørgen Juncher; Vidic-Perunovic, Jelena; Pedersen, Preben Terndrup

    2007-01-01

    A typical parametric roll scenario for a ship in head waves implies that the roll motion is coupled with vertical motion of the vessel. The added resistance of the ship is increased when the bow pitches down in a wave crest. As a consequence, the ship speed is slowed down and, hence, the roll...... resonance condition might be changed. In an attempt to study the influence of this speed variation in waves on parametric roll, the procedure for estimation of probability of parametric roll by Jensen and Pedersen (2006) has been extended to account for the surge motion of the vessel....

  5. Low Noise Frequency Comb Sources Based on Synchronously Pumped Doubly Resonant Optical Parametric Oscillators

    Science.gov (United States)

    Wan, Chenchen

    Optical frequency combs are coherent light sources consist of thousands of equally spaced frequency lines. Frequency combs have achieved success in applications of metrology, spectroscopy and precise pulse manipulation and control. The most common way to generate frequency combs is based on mode-locked lasers which has the output spectrum of comb structures. To generate stable frequency combs, the output from mode-locked lasers need to be phase stabilized. The whole comb lines will be stabilized if the pulse train repetition rate corresponding to comb spacing and the pulse carrier envelope offset (CEO) frequency are both stabilized. The output from a laser always has fluctuations in parameters known as noise. In laser applications, noise is an important factor to limit the performance and often need to be well controlled. For example in precision measurement such as frequency metrology and precise spectroscopy, low laser intensity and phase noise is required. In mode-locked lasers there are different types of noise like intensity noise, pulse temporal position noise also known as timing jitter, optical phase noise. In term for frequency combs, these noise dynamics is more complex and often related. Understanding the noise behavior is not only of great interest in practical applications but also help understand fundamental laser physics. In this dissertation, the noise of frequency combs and mode-locked lasers will be studied in two projects. First, the CEO frequency phase noise of a synchronously pumped doubly resonant optical parametric oscillators (OPO) will be explored. This is very important for applications of the OPO as a coherent frequency comb source. Another project will focus on the intensity noise coupling in a soliton fiber oscillator, the finding of different noise coupling in soliton pulses and the dispersive waves generated from soliton perturbation can provide very practical guidance for low noise soliton laser design. OPOs are used to generate

  6. Parametric resonance in the early Universe—a fitting analysis

    Science.gov (United States)

    Figueroa, Daniel G.; Torrentí, Francisco

    2017-02-01

    Particle production via parametric resonance in the early Universe, is a non-perturbative, non-linear and out-of-equilibrium phenomenon. Although it is a well studied topic, whenever a new scenario exhibits parametric resonance, a full re-analysis is normally required. To avoid this tedious task, many works present often only a simplified linear treatment of the problem. In order to surpass this circumstance in the future, we provide a fitting analysis of parametric resonance through all its relevant stages: initial linear growth, non-linear evolution, and relaxation towards equilibrium. Using lattice simulations in an expanding grid in 3+1 dimensions, we parametrize the dynamics' outcome scanning over the relevant ingredients: role of the oscillatory field, particle coupling strength, initial conditions, and background expansion rate. We emphasize the inaccuracy of the linear calculation of the decay time of the oscillatory field, and propose a more appropriate definition of this scale based on the subsequent non-linear dynamics. We provide simple fits to the relevant time scales and particle energy fractions at each stage. Our fits can be applied to post-inflationary preheating scenarios, where the oscillatory field is the inflaton, or to spectator-field scenarios, where the oscillatory field can be e.g. a curvaton, or the Standard Model Higgs.

  7. A parametrization of the abstract Ramsey theorem

    CERN Document Server

    Mijares, Jose G

    2010-01-01

    We give a parametrization with perfect subsets of $2^{\\infty}$ of the abstract Ramsey theorem (see \\cite{todo}) Our main tool is an extension of the parametrized version of the combinatorial forcing developed in \\cite{nash} and \\cite{todo}, used in \\cite{mij} to the obtain a parametrization of the abstract Ellentuck theorem. As one of the consequences, we obtain a parametrized version of the Hales-Jewett theorem. Finally, we conclude that the family of perfectly ${\\cal S}$-Ramsey subsets of $2^{\\infty}\\times {\\cal R}$ is closed under the Souslin operation. {\\bf Key words and phrases}: Ramsey theorem, Ramsey space, parametrization.

  8. Parametric Thinking in Urban Design

    DEFF Research Database (Denmark)

    Steinø, Nicolai

    2010-01-01

    The paper states that most applications of parametric mod- elling to architecture and urban design fall into one of two strands of either form for form’s sake, or the negotiation of environmental con- cerns, while approaches which allow scenarios to be easily tested and modified without...... of the paper. The pros and cons of this simple approach is discussed, and the paper con- cludes, that while it does not represent a suitable solution in all cases, it fills a gap among the existing approaches to parametric urban de- sign....... the application of complex and expensive technolo- gies are mostly absent, although they seem appropriate in urban de- sign. A survey of existing approaches confirms the statement, and an example of the application of basic knowledge of geometry and para- metric thinking to urban design forms the argument...

  9. Parametric Optimization of Hospital Design

    DEFF Research Database (Denmark)

    Holst, Malene Kirstine; Kirkegaard, Poul Henning; Christoffersen, L.D.

    2013-01-01

    Present paper presents a parametric performancebased design model for optimizing hospital design. The design model operates with geometric input parameters defining the functional requirements of the hospital and input parameters in terms of performance objectives defining the design requirements...... and preferences of the hospital with respect to performances. The design model takes point of departure in the hospital functionalities as a set of defined parameters and rules describing the design requirements and preferences....

  10. Parametric Optimization of Hospital Design

    DEFF Research Database (Denmark)

    Holst, Malene Kirstine; Kirkegaard, Poul Henning; Christoffersen, L.D.

    2013-01-01

    Present paper presents a parametric performancebased design model for optimizing hospital design. The design model operates with geometric input parameters defining the functional requirements of the hospital and input parameters in terms of performance objectives defining the design requirements...... and preferences of the hospital with respect to performances. The design model takes point of departure in the hospital functionalities as a set of defined parameters and rules describing the design requirements and preferences....

  11. Parametric Dwarf Spheroidal Tidal Interaction

    CERN Document Server

    Fleck, J J; Fleck, Jean-Julien; Kuhn, Jeff R.

    2003-01-01

    The time dependent tidal interaction of the Local Group Dwarf Spheroidal (dS) Galaxies with the Milky Way (MW) can fundamentally affect their dynamical properties. The model developed here extends earlier numerical descriptions of dS-MW tidal interactions. We explore the dynamical evolution of dS systems in circular or elliptical MW orbits in the framework of a parametric oscillator. An analytic model is developed and compared with more general numerical solutions and N-body simulation experiments.

  12. Parametric and non-parametric modeling of short-term synaptic plasticity. Part II: Experimental study.

    Science.gov (United States)

    Song, Dong; Wang, Zhuo; Marmarelis, Vasilis Z; Berger, Theodore W

    2009-02-01

    This paper presents a synergistic parametric and non-parametric modeling study of short-term plasticity (STP) in the Schaffer collateral to hippocampal CA1 pyramidal neuron (SC) synapse. Parametric models in the form of sets of differential and algebraic equations have been proposed on the basis of the current understanding of biological mechanisms active within the system. Non-parametric Poisson-Volterra models are obtained herein from broadband experimental input-output data. The non-parametric model is shown to provide better prediction of the experimental output than a parametric model with a single set of facilitation/depression (FD) process. The parametric model is then validated in terms of its input-output transformational properties using the non-parametric model since the latter constitutes a canonical and more complete representation of the synaptic nonlinear dynamics. Furthermore, discrepancies between the experimentally-derived non-parametric model and the equivalent non-parametric model of the parametric model suggest the presence of multiple FD processes in the SC synapses. Inclusion of an additional set of FD process in the parametric model makes it replicate better the characteristics of the experimentally-derived non-parametric model. This improved parametric model in turn provides the requisite biological interpretability that the non-parametric model lacks.

  13. Multicloud convective parametrizations with crude vertical structure

    Energy Technology Data Exchange (ETDEWEB)

    Khouider, Boualem [University of Victoria, Mathematics and Statistics, PO BOX 3045 STN CSC, Victoria, BC (Canada); Majda, Andrew J. [New York University, Department of Mathematics and Center for Atmosphere/Ocean Sciences, Courant Institute, New York, NY (United States)

    2006-11-15

    Recent observational analysis reveals the central role of three multi-cloud types, congestus, stratiform, and deep convective cumulus clouds, in the dynamics of large scale convectively coupled Kelvin waves, westward propagating two-day waves, and the Madden-Julian oscillation. The authors have recently developed a systematic model convective parametrization highlighting the dynamic role of the three cloud types through two baroclinic modes of vertical structure: a deep convective heating mode and a second mode with low level heating and cooling corresponding respectively to congestus and stratiform clouds. The model includes a systematic moisture equation where the lower troposphere moisture increases through detrainment of shallow cumulus clouds, evaporation of stratiform rain, and moisture convergence and decreases through deep convective precipitation and a nonlinear switch which favors either deep or congestus convection depending on whether the troposphere is moist or dry. Here several new facets of these multi-cloud models are discussed including all the relevant time scales in the models and the links with simpler parametrizations involving only a single baroclinic mode in various limiting regimes. One of the new phenomena in the multi-cloud models is the existence of suitable unstable radiative convective equilibria (RCE) involving a larger fraction of congestus clouds and a smaller fraction of deep convective clouds. Novel aspects of the linear and nonlinear stability of such unstable RCE's are studied here. They include new modes of linear instability including mesoscale second baroclinic moist gravity waves, slow moving mesoscale modes resembling squall lines, and large scale standing modes. The nonlinear instability of unstable RCE's to homogeneous perturbations is studied with three different types of nonlinear dynamics occurring which involve adjustment to a steady deep convective RCE, periodic oscillation, and even heteroclinic chaos in

  14. Digital spectral analysis parametric, non-parametric and advanced methods

    CERN Document Server

    Castanié, Francis

    2013-01-01

    Digital Spectral Analysis provides a single source that offers complete coverage of the spectral analysis domain. This self-contained work includes details on advanced topics that are usually presented in scattered sources throughout the literature.The theoretical principles necessary for the understanding of spectral analysis are discussed in the first four chapters: fundamentals, digital signal processing, estimation in spectral analysis, and time-series models.An entire chapter is devoted to the non-parametric methods most widely used in industry.High resolution methods a

  15. Automated parametrical antenna modelling for ambient assisted living applications

    Science.gov (United States)

    Kazemzadeh, R.; John, W.; Mathis, W.

    2012-09-01

    In this paper a parametric modeling technique for a fast polynomial extraction of the physically relevant parameters of inductively coupled RFID/NFC (radio frequency identification/near field communication) antennas is presented. The polynomial model equations are obtained by means of a three-step procedure: first, full Partial Element Equivalent Circuit (PEEC) antenna models are determined by means of a number of parametric simulations within the input parameter range of a certain antenna class. Based on these models, the RLC antenna parameters are extracted in a subsequent model reduction step. Employing these parameters, polynomial equations describing the antenna parameter with respect to (w.r.t.) the overall antenna input parameter range are extracted by means of polynomial interpolation and approximation of the change of the polynomials' coefficients. The described approach is compared to the results of a reference PEEC solver with regard to accuracy and computation effort.

  16. Resonant Dampers for Parametric Instabilities in Gravitational Wave Detectors

    CERN Document Server

    Gras, Slawek; Barsotti, Lisa; Evans, Matthew

    2015-01-01

    Advanced gravitational wave interferometric detectors will operate at their design sensitivity with nearly 1MW of laser power stored in the arm cavities. Such large power may lead to the uncontrolled growth of acoustic modes in the test masses due to the transfer of optical energy to the mechanical modes of the arm cavity mirrors. These parametric instabilities have the potential of significantly compromising the detector performance and control. Here we present the design of "acoustic mode dampers" that use the piezoelectric effect to reduce the coupling of optical to mechanical energy. Experimental measurements carried on an Advanced LIGO-like test mass shown a 10-fold reduction in the amplitude of several mechanical modes, thus suggesting that this technique can greatly mitigate the impact of parametric instabilities in advanced detectors.

  17. Modeling of autoresonant control of a parametrically excited screen machine

    Science.gov (United States)

    Abolfazl Zahedi, S.; Babitsky, Vladimir

    2016-10-01

    Modelling of nonlinear dynamic response of a screen machine described by the nonlinear coupled differential equations and excited by the system of autoresonant control is presented. The displacement signal of the screen is fed to the screen excitation directly by means of positive feedback. Negative feedback is used to fix the level of screen amplitude response within the expected range. The screen is anticipated to vibrate with a parametric resonance and the excitation, stabilization and control response of the system are studied in the stable mode. Autoresonant control is thoroughly investigated and output tracking is reported. The control developed provides the possibility of self-tuning and self-adaptation mechanisms that allow the screen machine to maintain a parametric resonant mode of oscillation under a wide range of uncertainty of mass and viscosity.

  18. Cascaded Parametric Amplification for Highly Efficient Terahertz Generation

    CERN Document Server

    Ravi, Koustuban; Cirmi, Giovanni; Reichert, Fabian; Schimpf, Damian N; Muecke, Oliver D; Kaertner, Franz X

    2016-01-01

    A highly efficient, practical approach to high-energy terahertz (THz) generation based on spectrally cascaded optical parametric amplification (THz-COPA) is introduced. The THz wave initially generated by difference frequency generation between a strong narrowband optical pump and optical seed (0.1-10% of pump energy) kick-starts a repeated or cascaded energy down-conversion of pump photons. This helps to greatly surpass the quantum-defect efficiency and results in exponential growth of THz energy over crystal length. In cryogenically cooled periodically poled lithium niobate, energy conversion efficiencies >8% for 100 ps pulses are predicted. The calculations account for cascading effects, absorption, dispersion and laser-induced damage. Due to the coupled nonlinear interaction of multiple triplets of waves, THz-COPA exhibits physics distinct from conventional three-wave mixing parametric amplifiers. This in turn governs optimal phase-matching conditions, evolution of optical spectra as well as limitations o...

  19. Universal Parametrization of Thermal Photon Production in Hadronic Matter

    Science.gov (United States)

    Heffernan, Matthew; Hohler, Paul; Rapp, Ralf

    2014-09-01

    As the production of photons and dileptons from high-energy collisions is able to provide information on the high temperature and high density phases of nuclear matter, an improved and universal parametrization of the rather involved microscopic calculations is key to honing the theory behind this production. We focus on photon emission rates from hadronic many-body calculations of the in-medium rho spectral function, which includes the effects of baryons and antibaryons. Across a range of temperatures from 0.1 to 0.18 GeV and baryon chemical potentials from 0 to 0.4 GeV, a parametrization of thermal photon rates for energies from 0.2 to 5 GeV is numerically determined through the use of nested fitting methods. This provides a fully functional description of thermal photon production largely within an unprecedented 20% of the calculated values from the spectral function, a significant reduction in error from available parametrizations. The contribution of photons and dileptons from pion-pion bremsstrahlung is evaluated for the importance of its contribution. The functional form, coupled with the comparison to the bremsstrahlung production of thermal photons, will provide a baseline for guiding future studies. As the production of photons and dileptons from high-energy collisions is able to provide information on the high temperature and high density phases of nuclear matter, an improved and universal parametrization of the rather involved microscopic calculations is key to honing the theory behind this production. We focus on photon emission rates from hadronic many-body calculations of the in-medium rho spectral function, which includes the effects of baryons and antibaryons. Across a range of temperatures from 0.1 to 0.18 GeV and baryon chemical potentials from 0 to 0.4 GeV, a parametrization of thermal photon rates for energies from 0.2 to 5 GeV is numerically determined through the use of nested fitting methods. This provides a fully functional description of

  20. Parametric resonance in ideal magnetohydrodynamics

    Science.gov (United States)

    Zaqarashvili

    2000-08-01

    We show that an external nonelectromagnetic periodic inhomogeneous force sets up a parametric resonance in an ideal magnetohydrodynamics. Alfven waves with certain wavelengths grow exponentially in amplitude. Nonlinear interaction between the resonant harmonics produces the long-term modulation of amplitudes. The mechanism of the energy transformation from an external nonelectromagnetic force to magnetic oscillations of the system presented here can be used in understanding the physical background of the gravitational action on the magnetized medium. Future application of this theory to several astrophysical problems is briefly discussed.

  1. Acceleration of the direct reconstruction of linear parametric images using nested algorithms.

    Science.gov (United States)

    Wang, Guobao; Qi, Jinyi

    2010-03-01

    Parametric imaging using dynamic positron emission tomography (PET) provides important information for biological research and clinical diagnosis. Indirect and direct methods have been developed for reconstructing linear parametric images from dynamic PET data. Indirect methods are relatively simple and easy to implement because the image reconstruction and kinetic modeling are performed in two separate steps. Direct methods estimate parametric images directly from raw PET data and are statistically more efficient. However, the convergence rate of direct algorithms can be slow due to the coupling between the reconstruction and kinetic modeling. Here we present two fast gradient-type algorithms for direct reconstruction of linear parametric images. The new algorithms decouple the reconstruction and linear parametric modeling at each iteration by employing the principle of optimization transfer. Convergence speed is accelerated by running more sub-iterations of linear parametric estimation because the computation cost of the linear parametric modeling is much less than that of the image reconstruction. Computer simulation studies demonstrated that the new algorithms converge much faster than the traditional expectation maximization (EM) and the preconditioned conjugate gradient algorithms for dynamic PET.

  2. Parametric Instability Analysis of Deepwater Top-Tensioned Risers Considering Variable Tension Along the Length

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jie; TANG Yougang

    2015-01-01

    Parametric instability of a riser is caused by fluctuation of its tension in time due to the heave motion of floating plat-form. Many studies have tackled the problem of parametric instability of a riser with constant tension. However, tension in the riser actually varies linearly from the top to the bottom due to the effect of gravity. This paper presents the parametric instability analysis of deepwater top-tensioned risers (TTR) considering the linearly varying tension along the length. Firstly, the governing equation of transverse motion of TTR under parametric excitation is established. This equation is reduced to a system of ordinary differential equations by using the Galerkin method. Then the parametric instability of TTR for three calculation models are investigated by ap-plying the Floquet theory. The results show that the natural frequencies of TTR with variable tension are evidently reduced, the pa-rametric instability zones are significantly increased and the maximum allowable amplitude of platform heave is much smaller under the same damping; The nodes and antinodes of mode shape are no longer uniformly distributed along the axial direction and the am-plitude also changes with depth, which leads to coupling between the modes. The combination resonance phenomenon occurs as a result of mode coupling, which causes more serious damage.

  3. Parametric nanomechanical amplification at very high frequency.

    Science.gov (United States)

    Karabalin, R B; Feng, X L; Roukes, M L

    2009-09-01

    Parametric resonance and amplification are important in both fundamental physics and technological applications. Here we report very high frequency (VHF) parametric resonators and mechanical-domain amplifiers based on nanoelectromechanical systems (NEMS). Compound mechanical nanostructures patterned by multilayer, top-down nanofabrication are read out by a novel scheme that parametrically modulates longitudinal stress in doubly clamped beam NEMS resonators. Parametric pumping and signal amplification are demonstrated for VHF resonators up to approximately 130 MHz and provide useful enhancement of both resonance signal amplitude and quality factor. We find that Joule heating and reduced thermal conductance in these nanostructures ultimately impose an upper limit to device performance. We develop a theoretical model to account for both the parametric response and nonequilibrium thermal transport in these composite nanostructures. The results closely conform to our experimental observations, elucidate the frequency and threshold-voltage scaling in parametric VHF NEMS resonators and sensors, and establish the ultimate sensitivity limits of this approach.

  4. Raman-noise induced quantum limits for $\\chi^{(3)}$ nondegenerate phase-sensitive amplification and quadrature squeezing

    CERN Document Server

    Voss, P L; Kumar, P; Voss, Paul L.; K\\"{o}pr\\"{u}l\\"{u}, Kahraman G.; Kumar, Prem

    2004-01-01

    We present a quantum theory of nondegenerate phase-sensitive parametric amplification in a $\\chi^{(3)}$ nonlinear medium. The non-zero response time of the Kerr $(\\chi^{(3)})$ nonlinearity determines the quantum-limited noise figure of $\\chi^{(3)}$ parametric amplification, as well as the limit on quadrature squeezing. This non-zero response time of the nonlinearity requires coupling of the parametric process to a molecular-vibration phonon bath, causing the addition of excess noise through spontaneous Raman scattering. We present analytical expressions for the quantum-limited noise figure of frequency non-degenerate and frequency degenerate $\\chi^{(3)}$ parametric amplifiers operated as phase-sensitive amplifiers. We also present results for frequency non-degenerate quadrature squeezing. We show that our non-degenerate squeezing theory agrees with the degenerate squeezing theory of Boivin and Shapiro as degeneracy is approached. We have also included the effect of linear loss on the phase-sensitive process.

  5. Parametric programming of CNC machine tools

    Directory of Open Access Journals (Sweden)

    Gołębski Rafał

    2017-01-01

    Full Text Available The article presents the possibilities of parametric programming of CNC machine tools for the SINUMERIK 840D sl control system. The kinds and types of the definition of variables for the control system under discussion described. On the example of the longitudinal cutting cycle, parametric programming possibilities are shown. The program’s code and its implementation in the control system is described in detail. The principle of parametric programming in a high-level language is also explained.

  6. Parametric resonance in neutrino oscillations in matter

    Indian Academy of Sciences (India)

    E Kh Akhmedov

    2000-01-01

    Neutrino oscillations in matter can exhibit a specific resonance enhancement - parametric resonance, which is different from the MSW resonance. Oscillations of atmospheric and solar neutrinos inside the earth can undergo parametric enhancement when neutrino trajectories cross the core of the earth. In this paper we review the parametric resonance of neutrino oscillations in matter. In particular, physical interpretation of the effect and the prospects of its experimental observation in oscillations of solar and atmospheric neutrinos in the earth are discussed.

  7. APT cost scaling: Preliminary indications from a Parametric Costing Model (PCM)

    Energy Technology Data Exchange (ETDEWEB)

    Krakowski, R.A.

    1995-02-03

    A Parametric Costing Model has been created and evaluate as a first step in quantitatively understanding important design options for the Accelerator Production of Tritium (APT) concept. This model couples key economic and technical elements of APT in a two-parameter search of beam energy and beam power that minimizes costs within a range of operating constraints. The costing and engineering depth of the Parametric Costing Model is minimal at the present {open_quotes}entry level{close_quotes}, and is intended only to demonstrate a potential for a more-detailed, cost-based integrating design tool. After describing the present basis of the Parametric Costing Model and giving an example of a single parametric scaling run derived therefrom, the impacts of choices related to resistive versus superconducting accelerator structures and cost of electricity versus plant availability ({open_quotes}load curve{close_quotes}) are reported. Areas of further development and application are suggested.

  8. Chaotic parametric soliton-like pulses in ferromagnetic-film active ring resonators

    Energy Technology Data Exchange (ETDEWEB)

    Grishin, S. V., E-mail: grishfam@sgu.ru; Golova, T. M.; Morozova, M. A.; Romanenko, D. V. [Tchernyshevsky State University (Russian Federation); Seleznev, E. P. [Saratov Branch, Russian Academy of Sciences, Kotel’nikov Institute of Radio Engineering and Electronics (Russian Federation); Sysoev, I. V.; Sharaevskii, Yu. P. [Tchernyshevsky State University (Russian Federation)

    2015-10-15

    The generation of quasi-periodic sequences of parametric soliton-like pulses in an active ring resonator with a ferromagnetic film via the three-wave parametric instability of a magnetostatic surface wave is studied theoretically and experimentally. These dissipative structures form in time due to the competition between the cubic nonlinearity caused by parametric coupling between spin waves and the time dispersion caused by the resonant cavity that is present in a self-oscillatory system. The development of dynamic chaos due to the parametric instability of a magnetostatic surface wave results in irregular behavior of a phase. However, this behavior does not break a quasi-periodic pulse sequence when the gain changes over a wide range. The generated soliton-like pulses have a chaotic nature, which is supported by the maximum Lyapunov exponent estimated from experimental time series.

  9. Nonlinear Container Ship Model for the Study of Parametric Roll Resonance

    DEFF Research Database (Denmark)

    Holden, Christian; Galeazzi, Roberto; Rodríguez, Claudio

    2007-01-01

    Parametric roll is a critical phenomenon for ships, whose onset may cause roll oscillations up to 40, leading to very dangerous situations and possibly capsizing. Container ships have been shown to be particularly prone to parametric roll resonance when they are sailing in moderate to heavy head...... seas. A Matlab/Simulinkr parametric roll benchmark model for a large container ship has been implemented and validated against a wide set of experimental data. The model is a part of a Matlab/Simulink Toolbox (MSS, 2007). The benchmark implements a 3rd-order nonlinear model where the dynamics of roll...... is strongly coupled with the heave and pitch dynamics. The implemented model has shown good accuracy in predicting the container ship motions, both in the vertical plane and in the transversal one. Parametric roll has been reproduced for all the data sets in which it happened, and the model provides realistic...

  10. Influence of collisions on parametric instabilities induced by lower hybrid waves in tokamak plasmas

    Science.gov (United States)

    Castaldo, C.; Di Siena, A.; Fedele, R.; Napoli, F.; Amicucci, L.; Cesario, R.; Schettini, G.

    2016-01-01

    Parametric instabilities induced at the plasma edge by lower hybrid wave power externally coupled to tokamak plasmas have, via broadening of the antenna spectrum, strong influence on the power deposition and current drive in the core. For modeling the parametric instabilities at the tokamak plasma edge in lower hybrid current drive experiments, the effect of the collisions has been neglected so far. In the present work, a specific collisional parametric dispersion relation, useful to analyze these nonlinear phenomena near the lower hybrid antenna mouth, is derived for the first time, based on a kinetic model. Numerical solutions show that in such cold plasma regions the collisions prevent the onset of the parametric instabilities. This result is important for present lower hybrid current drive experiments, as well as in fusion reactor scenarios.

  11. Angle-Resolved Spectroscopy of Parametric Fluorescence

    CERN Document Server

    Hsu, Feng-kuo

    2013-01-01

    The parametric fluorescence from a nonlinear crystal forms a conical radiation pattern. We measure the angular and spectral distributions of parametric fluorescence in a beta-barium borate crystal pumped by a 405-nm diode laser employing angle-resolved imaging spectroscopy. The experimental angle-resolved spectra and the generation efficiency of parametric down conversion are compared with a plane-wave theoretical analysis. The parametric fluorescence is used as a broadband light source for the calibration of the instrument spectral response function in the wavelength range from 450 to 1000 nm.

  12. Triminimal parametrization of quark mixing matrix

    Science.gov (United States)

    He, Xiao-Gang; Li, Shi-Wen; Ma, Bo-Qiang

    2008-12-01

    Starting from a new zeroth order basis for quark mixing (CKM) matrix based on the quark-lepton complementarity and the tribimaximal pattern of lepton mixing, we derive a triminimal parametrization of a CKM matrix with three small angles and a CP-violating phase as its parameters. This new triminimal parametrization has the merits of fast convergence and simplicity in application. With the quark-lepton complementary relations, we derive relations between the two unified triminimal parametrizations for quark mixing obtained in this work and for lepton mixing obtained by Pakvasa-Rodejohann-Weiler. Parametrization deviating from quark-lepton complementarity is also discussed.

  13. Interactive Dimensioning of Parametric Models

    KAUST Repository

    Kelly, T.

    2015-05-01

    We propose a solution for the dimensioning of parametric and procedural models. Dimensioning has long been a staple of technical drawings, and we present the first solution for interactive dimensioning: A dimension line positioning system that adapts to the view direction, given behavioral properties. After proposing a set of design principles for interactive dimensioning, we describe our solution consisting of the following major components. First, we describe how an author can specify the desired interactive behavior of a dimension line. Second, we propose a novel algorithm to place dimension lines at interactive speeds. Third, we introduce multiple extensions, including chained dimension lines, controls for different parameter types (e.g. discrete choices, angles), and the use of dimension lines for interactive editing. Our results show the use of dimension lines in an interactive parametric modeling environment for architectural, botanical, and mechanical models. © 2015 The Author(s) Computer Graphics Forum © 2015 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

  14. Metastable states in parametrically excited multimode Hamiltonian systems

    CERN Document Server

    Kirr, E

    2003-01-01

    Consider a linear autonomous Hamiltonian system with time periodic bound state solutions. In this paper we study their dynamics under time almost periodic perturbations which are small, localized and Hamiltonian. The analysis proceeds through a reduction of the original infinite dimensional dynamical system to the dynamics of two coupled subsystems: a dominant m-dimensional system of ordinary differential equations (normal form), governing the projections onto the bound states and an infinite dimensional dispersive wave equation. The present work generalizes previous work of the authors, where the case of a single bound state is considered. Here, the interaction picture is considerably more complicated and requires deeper analysis, due to a multiplicity of bound states and the very general nature of the perturbation's time dependence. Parametric forcing induces coupling of bound states to continuum radiation modes, bound states directly to bound states, as well as coupling among bound states, which is mediate...

  15. Muon Tracking Studies in a Skew Parametric Resonance Ionization Cooling Channel

    Energy Technology Data Exchange (ETDEWEB)

    Sy, Amy [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Afanaciev, Andre [George Washington Univ., Washington, DC (United States); Derbenev, Yaroslav S. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Johnson, Rolland [Muons, Inc., Batavia, IL (United States); Morozov, Vasiliy [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States)

    2015-09-01

    Skew Parametric-resonance Ionization Cooling (SPIC) is an extension of the Parametric-resonance Ionization Cooling (PIC) framework that has previously been explored as the final 6D cooling stage of a high-luminosity muon collider. The addition of skew quadrupoles to the PIC magnetic focusing channel induces coupled dynamic behavior of the beam that is radially periodic. The periodicity of the radial motion allows for the avoidance of unwanted resonances in the horizontal and vertical transverse planes, while still providing periodic locations at which ionization cooling components can be implemented. A first practical implementation of the magnetic field components required in the SPIC channel is modeled in MADX. Dynamic features of the coupled correlated optics with and without induced parametric resonance are presented and discussed.

  16. Astigmatism transfer phenomena in the optical parametric amplification process

    Science.gov (United States)

    Li, Wenkai; Chen, Yun; Li, Yanyan; Xu, Yi; Guo, Xiaoyang; Lu, Jun; Leng, Yuxin

    2017-01-01

    We numerically and experimentally investigate the astigmatism transfer phenomena in femtosecond optical parametric amplification (OPA). We model the OPA process based on the coupled second-order three-wave nonlinear propagation equations. The numerical and experimental results support that the input pump pulse astigmatism can be transferred into the idler pulse but not the signal pulse, and the idler pulse astigmatism originating from spatial walk-off is less than the idler pulse astigmatism received from the pump. Thus, we can provide a clear understanding of astigmatism transfer mechanisms in the OPA process, and make better use of broadband tunable OPA sources.

  17. Motion-light parametric amplifier and entanglement distributor

    CERN Document Server

    Peng, A

    2002-01-01

    We propose a scheme for entangling the motional mode of a trapped atom with a propagating light field via a cavity-mediated parametric interaction. We then show that if this light field is subsequently coupled to a second distant atom via a cavity-mediated linear-mixing interaction, it is possible to transfer the entanglement from the light beam to the motional mode of the second atom to create an EPR-type entangled state of the positions and momenta of two distantly-separated atoms.

  18. On the assessment of parametric roll in random sea

    DEFF Research Database (Denmark)

    Jensen, Jørgen Juncher; Olsen, Anders Smærup

    2006-01-01

    domain simulations needed (typically 60-100s to cover the structural memory effects in the response) the calculation of the upcrossing rate of a given level of the re-sponse is very fast. Thus complicated non-linear effects can be included. An application for roll motions of ships will be discussed...... roll in the example has not been possible due to shortcomings in the present model of the GZ curve and the lack of a coupling to pitch. However, provided more accurate hydrostatic and hydrodynamic models are used, parametric roll could be accounted for, too, in the proposed stochastic procedure....

  19. Optical detection of terahertz using nonlinear parametric upconversion.

    Science.gov (United States)

    Khan, M Jalal; Chen, Jerry C; Kaushik, Sumanth

    2008-12-01

    We extend our work to perform sensitive, room-temperature optical detection of terahertz (THz) by using nonlinear parametric upconversion. THz radiation at 700 GHz is mixed with pump light at 1,550 nm in a bulk GaAs crystal to generate an idler wave at 1,555.6 nm. The idler is separated, coupled into optical fiber, and detected using a gated Geiger-mode avalanche photodiode. The resulting THz detector has a power sensitivity of 4.5 pW/Hz and a timing resolution of 1 ns.

  20. Parametric resonance of entropy perturbations in massless preheating

    Science.gov (United States)

    Moghaddam, Hossein Bazrafshan; Brandenberger, Robert H.; Cai, Yi-Fu; Ferreira, Elisa G. M.

    2015-07-01

    In this paper, we revisit the question of possible preheating of entropy modes in a two-field model with a massless inflaton coupled to a matter scalar field. Using a perturbative approximation to the covariant method we demonstrate that there is indeed a parametric instability of the entropy mode which then at second-order leads to exponential growth of the curvature fluctuation on super-Hubble scale. Back-reaction effects shut off the induced curvature fluctuations, but possibly not early enough to prevent phenomenological problems. This confirms previous results obtained using different methods and resolves a controversy in the literature.

  1. Parametrization of nuclear parton distributions

    Indian Academy of Sciences (India)

    M Hirai; S Kumano; M Miyama

    2001-08-01

    Optimum nuclear parton distributions are obtained by analysing available experimental data on electron and muon deep inelastic scattering (DIS). The distributions are given at 2 = 1 GeV2 with a number of parameters, which are determined by a 2 analysis of the data. Valencequark distributions are relatively well determined at medium , but they are slightly dependent on the assumed parametrization form particularly at small . Although antiquark distributions are shadowed at small , their behavior is not obvious at medium from the 2 data. The gluon distributions could not be restricted well by the inclusive DIS data; however, the analysis tends to support the gluon shadowing at small . We provide analytical expressions and computer subroutines for calculating the nuclear parton distributions, so that other researchers could use them for applications to other high-energy nuclear reactions.

  2. Design of parametric software tools

    DEFF Research Database (Denmark)

    Sabra, Jakob Borrits; Mullins, Michael

    2011-01-01

    the operations and functions of the design method. To evaluate the prototype potentials, surveys with architectural and healthcare design companies are conducted. Evaluation is done by the administration of questionnaires being part of the development of the tools. The results show that architects, designers......The studies investigate the field of evidence-based design used in architectural design practice and propose a method using 2D/3D CAD applications to: 1) enhance integration of evidence-based design knowledge in architectural design phases with a focus on lighting and interior design and 2) assess...... fulfilment of evidence-based design criterion regarding light distribution and location in relation to patient safety in architectural health care design proposals. The study uses 2D/3D CAD modelling software Rhinoceros 3D with plug-in Grasshopper to create parametric tool prototypes to exemplify...

  3. Developing a Parametric Urban Design Tool

    DEFF Research Database (Denmark)

    Steinø, Nicolai; Obeling, Esben

    2014-01-01

    Parametric urban design is a potentially powerful tool for collaborative urban design processes. Rather than making one- off designs which need to be redesigned from the ground up in case of changes, parametric design tools make it possible keep the design open while at the same time allowing...

  4. Parametrizations of Positive Matrices With Applications

    CERN Document Server

    Tseng, M C; Ramakrishna, V; Zhou, Hong

    2006-01-01

    This paper reviews some characterizations of positive matrices and discusses which lead to useful parametrizations. It is argued that one of them, which we dub the Schur-Constantinescu parametrization is particularly useful. Two new applications of it are given. One shows all block-Toeplitz states are PPT. The other application is to relaxation rates.

  5. Parametric form of QCD travelling waves

    OpenAIRE

    Peschanski, R.

    2005-01-01

    We derive parametric travelling-wave solutions of non-linear QCD equations. They describe the evolution towards saturation in the geometric scaling region. The method, based on an expansion in the inverse of the wave velocity, leads to a solvable hierarchy of differential equations. A universal parametric form of travelling waves emerges from the first two orders of the expansion.

  6. Nonlinear parametric instability of wind turbine wings

    DEFF Research Database (Denmark)

    Larsen, Jesper Winther; Nielsen, Søren R.K.

    2006-01-01

    Nonlinear rotor dynamic is characterized by parametric excitation of both linear and nonlinear terms caused by centrifugal and Coriolis forces when formulated in a moving frame of reference. Assuming harmonically varying support point motions from the tower, the nonlinear parametric instability...

  7. Observation of Parametric Instability in Advanced LIGO

    CERN Document Server

    Evans, Matthew; Fritschel, Peter; Miller, John; Barsotti, Lisa; Martynov, Denis; Brooks, Aidan; Coyne, Dennis; Abbott, Rich; Adhikari, Rana; Arai, Koji; Bork, Rolf; Kells, Bill; Rollins, Jameson; Smith-Lefebvre, Nicolas; Vajente, Gabriele; Yamamoto, Hiroaki; Derosa, Ryan; Effler, Anamaria; Kokeyama, Keiko; Betzweiser, Joseph; Frolov, Valera; Mullavey, Adam; O`Reilly, Brian; Dwyer, Sheila; Izumi, Kiwamu; Kawabe, Keita; Landry, Michael; Sigg, Daniel; Ballmer, Stefan; Massinger, Thomas J; Staley, Alexa; Mueller, Chris; Grote, Hartmut; Ward, Robert; King, Eleanor; Blair, David; Ju, Li; Zhao, Chunnong

    2015-01-01

    Parametric instabilities have long been studied as a potentially limiting effect in high-power interferometric gravitational wave detectors. Until now, however, these instabilities have never been observed in a kilometer-scale interferometer. In this work we describe the first observation of parametric instability in an Advanced LIGO detector, and the means by which it has been removed as a barrier to progress.

  8. Why preferring parametric forecasting to nonparametric methods?

    Science.gov (United States)

    Jabot, Franck

    2015-05-07

    A recent series of papers by Charles T. Perretti and collaborators have shown that nonparametric forecasting methods can outperform parametric methods in noisy nonlinear systems. Such a situation can arise because of two main reasons: the instability of parametric inference procedures in chaotic systems which can lead to biased parameter estimates, and the discrepancy between the real system dynamics and the modeled one, a problem that Perretti and collaborators call "the true model myth". Should ecologists go on using the demanding parametric machinery when trying to forecast the dynamics of complex ecosystems? Or should they rely on the elegant nonparametric approach that appears so promising? It will be here argued that ecological forecasting based on parametric models presents two key comparative advantages over nonparametric approaches. First, the likelihood of parametric forecasting failure can be diagnosed thanks to simple Bayesian model checking procedures. Second, when parametric forecasting is diagnosed to be reliable, forecasting uncertainty can be estimated on virtual data generated with the fitted to data parametric model. In contrast, nonparametric techniques provide forecasts with unknown reliability. This argumentation is illustrated with the simple theta-logistic model that was previously used by Perretti and collaborators to make their point. It should convince ecologists to stick to standard parametric approaches, until methods have been developed to assess the reliability of nonparametric forecasting. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Nonlinear parametric instability of wind turbine wings

    DEFF Research Database (Denmark)

    Larsen, Jesper Winther; Nielsen, Søren R.K.

    2006-01-01

    Nonlinear rotor dynamic is characterized by parametric excitation of both linear and nonlinear terms caused by centrifugal and Coriolis forces when formulated in a moving frame of reference. Assuming harmonically varying support point motions from the tower, the nonlinear parametric instability o...

  10. Semi-Parametric Modelling of Correlation Dynamics

    NARCIS (Netherlands)

    C.M. Hafner (Christian); D.J.C. van Dijk (Dick); Ph.H.B.F. Franses (Philip Hans)

    2005-01-01

    textabstractIn this paper we develop a new semi-parametric model for conditional correlations, which combines parametric univariate GARCH-type specifications for the individual conditional volatilities with nonparametric kernel regression for the conditional correlations. This approach not only

  11. Parametric form of QCD travelling waves

    OpenAIRE

    Peschanski, R.

    2005-01-01

    We derive parametric travelling-wave solutions of non-linear QCD equations. They describe the evolution towards saturation in the geometric scaling region. The method, based on an expansion in the inverse of the wave velocity, leads to a solvable hierarchy of differential equations. A universal parametric form of travelling waves emerges from the first two orders of the expansion.

  12. Parametric dispersion and amplification of acoustohelicon waves in piezoelectric semiconductors

    Science.gov (United States)

    Neogi, A.; Ghosh, S.

    1991-01-01

    Assuming that the origin of the nonlinear interaction lies in the second-order optical susceptibility arising from the nonlinear induced current density and using the coupled-mode theory, the parametric dispersion and amplification of acoustohelicon waves is analytically investigated in a longitudinally magnetized piezoelectric semiconductor of noncentrosymmetric nature. The relevant experiments have not been reported. The threshold value of the pump electric field E0th and its corresponding excitation intensity is obtained. The longitudinal magnetic field decreases the required magnitude of E0th for the excitation of parametric amplification. The phenomenon of self-defocusing of the signal in the prevailing case is found to be a consequence of the negative dispersive characteristics exhibited by the acoustohelicon waves. Numerical analyses are performed for an InSb crystal at 77 K, duly irradiated by frequency-doubled pulsed 10.6-μm CO2 lasers. The parametric gain constant is observed to be maximum when the cyclotron frequency ωc attains the magnitude equal to that of ω0, the incident laser frequency (=1.78×1014 s-1 ).

  13. Generalized Parametrization Dependence in Quantum Gravity

    CERN Document Server

    Gies, Holger; Lippoldt, Stefan

    2015-01-01

    We critically examine the gauge, and field-parametrization dependence of renormalization group flows in the vicinity of non-Gau\\ss{}ian fixed points in quantum gravity. While physical observables are independent of such calculational specifications, the construction of quantum gravity field theories typically relies on off-shell quantities such as $\\beta$ functions and generating functionals and thus face potential stability issues with regard to such generalized parametrizations. We analyze a two-parameter class of covariant gauge conditions, the role of momentum-dependent field rescalings and a class of field parametrizations. Using the product of Newton and cosmological constant as an indicator, the principle of minimum sensitivity identifies stationary points in this parametrization space which show a remarkable insensitivity to the parametrization. In the most insensitive cases, the quantized gravity system exhibits a non-Gau\\ss{}ian UV stable fixed point, lending further support to asymptotically free q...

  14. Triply-resonant Continuous Wave Parametric Source with a Microwatt Pump

    CERN Document Server

    Martin, Aude; Combrié, Sylvain; Lehoucq, Gaëlle; Debuisschert, Thierry; Lian, Jin; Sokolov, Sergey; Mosk, Allard P; de Rossi, Alfredo

    2016-01-01

    We demonstrate a nanophotonic parametric light source with a record high normalized conversion efficiency of $3\\times 10^6\\, W^{-2}$, owing to resonantly enhanced four wave mixing in coupled high-Q photonic crystal resonators. The rate of spontaneously emitted photons reaches 14 MHz.

  15. Mode competition in a system of two parametrically driven pendulums; the dissipative case

    NARCIS (Netherlands)

    Banning, E.J.; Weele, van der J.P.; Ross, J.C.; Kettenis, M.M.; Kleine, de E.

    1997-01-01

    In this paper we study the dynamics of a system of two linearly coupled, parametrically driven pendulums, subject to viscous dissipation. It is a continuation of the previous paper (E.J. Banning and J.P. van der Weele (1995)), in which we treated the Hamiltonian case. The damping has several importa

  16. Parametric resonance of capillary waves at the interface between two immiscible Bose-Einstein condensates

    NARCIS (Netherlands)

    Kobyakov, D.; Bychkov, V.; Lundh, E.; Bezett, A.H.; Marklund, M.

    2012-01-01

    We study the parametric resonance of capillary waves on the interface between two immiscible Bose-Einstein condensates pushed towards each other by an oscillating force. Guided by analytical models, we solve numerically the coupled Gross-Pitaevskii equations for a two-component Bose-Einstein condens

  17. Body-centered cubic dissipative crystal formation in a dispersive and diffractive optical parametric oscillator.

    Science.gov (United States)

    Tlidi, M; Pieroux, D; Mandel, Paul

    2003-09-15

    We show that coupling diffraction and chromatic dispersion lead to body-centered cubic and hexagonally packed cylinders of dissipative optical crystals in a degenerate optical parametric oscillator. The stabilization of these crystals is a direct consequence of the interaction between the modulational and the quasi-neutral modes.

  18. Continuous-wave singly resonant optical parametric oscillator placed inside a ring laser

    DEFF Research Database (Denmark)

    Abitan, Haim; Buchhave, Preben

    2003-01-01

    A cw singly resonant optical parametric oscillator (SRO) was built and placed inside the cavity of a ring laser. The system consists of a diode-end-pumped Nd:YVO4 ring laser with intracavity periodically poled lithium niobate as the nonlinear gain medium of the SRO. When the laser was operated...... the laser was coupled with the SRO. The results show that it is preferable to couple a SRO with a unidirectional ring laser....

  19. Phase synchronization and anti-phase synchronization of chaos for degenerate optical parametric oscillator

    Institute of Scientific and Technical Information of China (English)

    Feng Xiu-Qin; Shen Ke

    2005-01-01

    We have investigated chaotic synchronization in the generalized sense for the degenerate optical parametric oscillator (DOPO). The numerical results show that two unidirectional coupling DOPOs in chaos can be completely phase synchronization or anti-phase synchronization with a suitable coupling coefficient under which the maximum condition Lyapunov exponent (MCLE) is negative. Phase synchronization and anti-phase synchronization of chaos can be realized through positive and negative coupling. On the other hand, the different synchronization states depend on the coupling types used in the DOPO systems.

  20. Parametric Matching of Drivetrain For Parallel Hybrid Electric Vehicle

    National Research Council Canada - National Science Library

    Zhang Zhongwei; Yu Hao; Li Yingli

    2013-01-01

    ...; this thesis presents a simulation analysis of the PHEV and the influence on vehicle characteristic by component parameters of drivetrain, and studies the parametric choice and proper parametric...

  1. Ionization Cooling using Parametric Resonances

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Rolland P.

    2008-06-07

    Ionization Cooling using Parametric Resonances was an SBIR project begun in July 2004 and ended in January 2008 with Muons, Inc., (Dr. Rolland Johnson, PI), and Thomas Jefferson National Accelerator Facility (JLab) (Dr. Yaroslav Derbenev, Subcontract PI). The project was to develop the theory and simulations of Parametric-resonance Ionization Cooling (PIC) so that it could be used to provide the extra transverse cooling needed for muon colliders in order to relax the requirements on the proton driver, reduce the site boundary radiation, and provide a better environment for experiments. During the course of the project, the theoretical understanding of PIC was developed and a final exposition is ready for publication. Workshops were sponsored by Muons, Inc. in May and September of 2007 that were devoted to the PIC technique. One outcome of the workshops was the interesting and somewhat unexpected realization that the beam emittances using the PIC technique can get small enough that space charge forces can be important. A parallel effort to develop our G4beamline simulation program to include space charge effects was initiated to address this problem. A method of compensating for chromatic aberrations by employing synchrotron motion was developed and simulated. A method of compensating for spherical aberrations using beamline symmetry was also developed and simulated. Different optics designs have been developed using the OptiM program in preparation for applying our G4beamline simulation program, which contains all the power of the Geant4 toolkit. However, no PIC channel design that has been developed has had the desired cooling performance when subjected to the complete G4beamline simulation program. This is believed to be the consequence of the difficulties of correcting the aberrations associated with the naturally large beam angles and beam sizes of the PIC method that are exacerbated by the fringe fields of the rather complicated channel designs that have been

  2. Optimal Parametric Feedback Excitation of Nonlinear Oscillators

    Science.gov (United States)

    Braun, David J.

    2016-01-01

    An optimal parametric feedback excitation principle is sought, found, and investigated. The principle is shown to provide an adaptive resonance condition that enables unprecedentedly robust movement generation in a large class of oscillatory dynamical systems. Experimental demonstration of the theory is provided by a nonlinear electronic circuit that realizes self-adaptive parametric excitation without model information, signal processing, and control computation. The observed behavior dramatically differs from the one achievable using classical parametric modulation, which is fundamentally limited by uncertainties in model information and nonlinear effects inevitably present in real world applications.

  3. Linear Parametric Model Checking of Timed Automata

    DEFF Research Database (Denmark)

    Hune, Tohmas Seidelin; Romijn, Judi; Stoelinga, Mariëlle

    2001-01-01

    of a subclass of parametric timed automata (L/U automata), for which the emptiness problem is decidable, contrary to the full class where it is know to be undecidable. Also we present a number of lemmas enabling the verication eort to be reduced for L/U automata in some cases. We illustrate our approach......We present an extension of the model checker Uppaal capable of synthesize linear parameter constraints for the correctness of parametric timed automata. The symbolic representation of the (parametric) state-space is shown to be correct. A second contribution of this paper is the identication...

  4. Theory of parametrically amplified electron-phonon superconductivity

    Science.gov (United States)

    Babadi, Mehrtash; Knap, Michael; Martin, Ivar; Refael, Gil; Demler, Eugene

    2017-07-01

    Ultrafast optical manipulation of ordered phases in strongly correlated materials is a topic of significant theoretical, experimental, and technological interest. Inspired by a recent experiment on light-induced superconductivity in fullerenes [M. Mitrano et al., Nature (London) 530, 461 (2016), 10.1038/nature16522], we develop a comprehensive theory of light-induced superconductivity in driven electron-phonon systems with lattice nonlinearities. In analogy with the operation of parametric amplifiers, we show how the interplay between the external drive and lattice nonlinearities lead to significantly enhanced effective electron-phonon couplings. We provide a detailed and unbiased study of the nonequilibrium dynamics of the driven system using the real-time Green's function technique. To this end, we develop a Floquet generalization of the Migdal-Eliashberg theory and derive a numerically tractable set of quantum Floquet-Boltzmann kinetic equations for the coupled electron-phonon system. We study the role of parametric phonon generation and electronic heating in destroying the transient superconducting state. Finally, we predict the transient formation of electronic Floquet bands in time- and angle-resolved photoemission spectroscopy experiments as a consequence of the proposed mechanism.

  5. Theory of parametrically amplified electron-phonon superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Babadi, Mehrtash; Knap, Michael; Martin, Ivar; Refael, Gil; Demler, Eugene

    2017-07-01

    Ultrafast optical manipulation of ordered phases in strongly correlated materials is a topic of significant theoretical, experimental, and technological interest. Inspired by a recent experiment on light-induced superconductivity in fullerenes [M. Mitrano et al., Nature (London) 530, 461 (2016)], we develop a comprehensive theory of light-induced superconductivity in driven electron-phonon systemswith lattice nonlinearities. In analogy with the operation of parametric amplifiers, we show how the interplay between the external drive and lattice nonlinearities lead to significantly enhanced effective electron-phonon couplings. We provide a detailed and unbiased study of the nonequilibrium dynamics of the driven system using the real-time Green's function technique. To this end, we develop a Floquet generalization of the Migdal-Eliashberg theory and derive a numerically tractable set of quantum Floquet-Boltzmann kinetic equations for the coupled electron-phonon system. We study the role of parametric phonon generation and electronic heating in destroying the transient superconducting state. Finally, we predict the transient formation of electronic Floquet bands in time-and angle-resolved photoemission spectroscopy experiments as a consequence of the proposed mechanism.

  6. Airy beam optical parametric oscillator.

    Science.gov (United States)

    Aadhi, A; Chaitanya, N Apurv; Jabir, M V; Vaity, Pravin; Singh, R P; Samanta, G K

    2016-05-04

    Airy beam, a non-diffracting waveform, has peculiar properties of self-healing and self-acceleration. Due to such unique properties, the Airy beam finds many applications including curved plasma wave-guiding, micro-particle manipulation, optically mediated particle clearing, long distance communication, and nonlinear frequency conversion. However, many of these applications including laser machining of curved structures, generation of curved plasma channels, guiding of electric discharges in a curved path, study of nonlinear propagation dynamics, and nonlinear interaction demand Airy beam with high power, energy, and wavelength tunability. Till date, none of the Airy beam sources have all these features in a single device. Here, we report a new class of coherent sources based on cubic phase modulation of a singly-resonant optical parametric oscillator (OPO), producing high-power, continuous-wave (cw), tunable radiation in 2-D Airy intensity profile existing over a length >2 m. Based on a MgO-doped periodically poled LiNbO3 crystal pumped at 1064 nm, the Airy beam OPO produces output power more than 8 W, and wavelength tunability across 1.51-1.97 μm. This demonstration gives new direction for the development of sources of arbitrary structured beams at any wavelength, power, and energy in all time scales (cw to femtosecond).

  7. Enhanced parametric processes in binary metamaterials

    OpenAIRE

    Gorkunov, Maxim V.; Shadrivov, Ilya V.; Kivshar, Yuri S.

    2005-01-01

    We suggest double-resonant (binary) metamaterials composed of two types of magnetic resonant elements, and demonstrate that in the nonlinear regime such metamaterials provide unique possibilities for phase-matched parametric interaction and enhanced second-harmonic generation.

  8. Parametric methods for spatial point processes

    DEFF Research Database (Denmark)

    Møller, Jesper

    (This text is submitted for the volume ‘A Handbook of Spatial Statistics' edited by A.E. Gelfand, P. Diggle, M. Fuentes, and P. Guttorp, to be published by Chapmand and Hall/CRC Press, and planned to appear as Chapter 4.4 with the title ‘Parametric methods'.) 1 Introduction This chapter considers...... inference procedures for parametric spatial point process models. The widespread use of sensible but ad hoc methods based on summary statistics of the kind studied in Chapter 4.3 have through the last two decades been supplied by likelihood based methods for parametric spatial point process models....... The increasing development of such likelihood based methods, whether frequentist or Bayesian, has lead to more objective and efficient statistical procedures. When checking a fitted parametric point process model, summary statistics and residual analysis (Chapter 4.5) play an important role in combination...

  9. Robust and Efficient Parametric Face Alignment

    NARCIS (Netherlands)

    Tzimiropoulos, Georgios; Zafeiriou, Stefanos; Pantic, Maja

    2011-01-01

    We propose a correlation-based approach to parametric object alignment particularly suitable for face analysis applications which require efficiency and robustness against occlusions and illumination changes. Our algorithm registers two images by iteratively maximizing their correlation coefficient

  10. Investigation for parametric vibration of rolling mill

    Institute of Scientific and Technical Information of China (English)

    唐华平; 丁睿; 吴运新; 钟掘

    2002-01-01

    The vibration unsteady condition of rolling mill caused by flexural vibration of strip has been investigated. The parametric flexural vibration equation of rolled strip has been established. The parametric flexural vibration stability of rolled strip has been studied and the regions of stability and unstability have been determined based on Floquet theory and perturbation method. The flexural-vibration of strip is unstable when the frequency of variable tension is two times as the natural frequency of flexural-vibration strip. The characteristic of current in a temp driving motor's main loop has been studied and tested, it has been proved that there are 6 harmonic component and 12 harmonic component in main loop of driving motor electricity. The vertical vibration of working roller has been tested, the test result approves that the running unsteady is caused by parametric vibration. It attaches importance to the parametric vibration of rolling mill.

  11. Conformally covariant parametrizations for relativistic initial data

    Science.gov (United States)

    Delay, Erwann

    2017-01-01

    We revisit the Lichnerowicz-York method, and an alternative method of York, in order to obtain some conformally covariant systems. This type of parametrization is certainly more natural for non constant mean curvature initial data.

  12. Cantor Digitalis: chironomic parametric synthesis of singing

    National Research Council Canada - National Science Library

    Feugère, Lionel; d’Alessandro, Christophe; Doval, Boris; Perrotin, Olivier

    2017-01-01

    .... The sound generation system is based on a parametric synthesizer that features a spectral voice source model, a vocal tract model consisting of parallel filters for vocalic formants and cascaded...

  13. Parametrically disciplined operation of a vibratory gyroscope

    Science.gov (United States)

    Shcheglov, Kirill V. (Inventor); Hayworth, Ken J. (Inventor); Challoner, A. Dorian (Inventor); Peay, Chris S. (Inventor)

    2008-01-01

    Parametrically disciplined operation of a symmetric nearly degenerate mode vibratory gyroscope is disclosed. A parametrically-disciplined inertial wave gyroscope having a natural oscillation frequency in the neighborhood of a sub-harmonic of an external stable clock reference is produced by driving an electrostatic bias electrode at approximately twice this sub-harmonic frequency to achieve disciplined frequency and phase operation of the resonator. A nearly symmetric parametrically-disciplined inertial wave gyroscope that can oscillate in any transverse direction and has more than one bias electrostatic electrode that can be independently driven at twice its oscillation frequency at an amplitude and phase that disciplines its damping to zero in any vibration direction. In addition, operation of a parametrically-disciplined inertial wave gyroscope is taught in which the precession rate of the driven vibration pattern is digitally disciplined to a prescribed non-zero reference value.

  14. Self-organization in Kerr-cavity-soliton formation in parametric frequency combs

    Science.gov (United States)

    Wen, Y. Henry; Lamont, Michael R. E.; Strogatz, Steven H.; Gaeta, Alexander L.

    2016-12-01

    We show that self-organization and synchronization underlie Kerr-cavity-soliton formation in parametric frequency combs. By reducing the Lugiato-Lefever equation to a set of phase equations, we find that self-organization arises from a two-stage process via pump-degenerate and pump-nondegenerate four-wave mixing. The reduced phase equations are akin to the Kuramoto model of coupled oscillators and intuitively explain the origin of the pump phase offset, predict antisymmetrization of the intracavity field before phase synchronization, and clarify the role of chaos in Kerr-cavity-soliton formation in parametric combs.

  15. Parametric Transverse Patterns in Broad Aperture Lasers

    DEFF Research Database (Denmark)

    Grigorieva, E.V.; Kashchenko, S.A.; Mosekilde, Erik

    1998-01-01

    Parametrically generated optical patterns are investigated for finite and large-scale transverse aperture lasers. Standing and rotating patterns as well as periodic and chaotic pattern alternations are described in the framework of the amplitude equation formalism. Sensitive dependence on the geo......Parametrically generated optical patterns are investigated for finite and large-scale transverse aperture lasers. Standing and rotating patterns as well as periodic and chaotic pattern alternations are described in the framework of the amplitude equation formalism. Sensitive dependence...

  16. Chaos control of parametric driven Duffing oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Leisheng; Mei, Jie; Li, Lijie, E-mail: L.Li@swansea.ac.uk [College of Engineering, Swansea University, Swansea SA2 8PP (United Kingdom)

    2014-03-31

    Duffing resonators are typical dynamic systems, which can exhibit chaotic oscillations, subject to certain driving conditions. Chaotic oscillations of resonating systems with negative and positive spring constants are identified to investigate in this paper. Parametric driver imposed on these two systems affects nonlinear behaviours, which has been theoretically analyzed with regard to variation of driving parameters (frequency, amplitude). Systematic calculations have been performed for these two systems driven by parametric pumps to unveil the controllability of chaos.

  17. Parametric Design of Modular Fixture Structure

    Institute of Scientific and Technical Information of China (English)

    陈冰冰

    2001-01-01

    Based on an example of its typical structure, the concept of modular fixture structure module is presented, and the structure module system of modular fixture is summarized. Then the parametric design of structure is discussed, and its advantages are also emphasized.Furthermore, some specific methods are provided, such as the selection of fixture components, the determination and input of parameters, drawing representative model,and the creation of drawing. Finally an applied example of strcture parametric design is presented.

  18. Upper quantum Lyapunov exponent and parametric oscillators

    Science.gov (United States)

    Jauslin, H. R.; Sapin, O.; Guérin, S.; Wreszinski, W. F.

    2004-11-01

    We introduce a definition of upper Lyapunov exponent for quantum systems in the Heisenberg representation, and apply it to parametric quantum oscillators. We provide a simple proof that the upper quantum Lyapunov exponent ranges from zero to a positive value, as the parameters range from the classical system's region of stability to the instability region. It is also proved that in the instability region the parametric quantum oscillator satisfies the discrete quantum Anosov relations defined by Emch, Narnhofer, Sewell, and Thirring.

  19. Programmatic Formation: Practical Applications of Parametric Design

    OpenAIRE

    Madkour, Yehia; Erhan, Halil; Neumann, Oliver

    2009-01-01

    Programmatic Formation explores design as a responsive process.The study we present engages the complexity of the surroundings using parametric and generative design methods. It illustrates that responsiveness of designs can be achieved beyond geometric explorations.The parametric models can combine and respond simultaneously to design and its programmatic factors, such as performance-sensitive design-decisions, and constraints.We demonstrate this through a series of case st...

  20. Narrow linewidth pulsed optical parametric oscillator

    Indian Academy of Sciences (India)

    S Das

    2010-11-01

    Tunable narrow linewidth radiation by optical parametric oscillation has many applications, particularly in spectroscopic investigation. In this paper, different techniques such as injection seeding, use of spectral selecting element like grating, grating and etalon in combination, grazing angle of incidence, entangled cavity configuration and type-II phase matching have been discussed for generating tunable narrow linewidth radiation by singly resonant optical parametric oscillation process.

  1. Parametric resonance in concrete beam-columns

    OpenAIRE

    Sharma,Mamta R.; Singh,Arbind K; Benipal,Gurmail S

    2014-01-01

    A dynamic instability, called parametric resonance, is exhibited by undampedelastic beam-columns when under the action of pulsating axial force. The scope of the existing theory of parametric resonance is restricted to physically linear beam-columns undergoing finite lateral displacements. In this Paper, the dynamic behaviour of physically nonlinear elastic cracked concrete beam-columns under pulsating axial force and constant lateral force is investigated. The constitutive equations derived ...

  2. Chaos control of parametric driven Duffing oscillators

    Science.gov (United States)

    Jin, Leisheng; Mei, Jie; Li, Lijie

    2014-03-01

    Duffing resonators are typical dynamic systems, which can exhibit chaotic oscillations, subject to certain driving conditions. Chaotic oscillations of resonating systems with negative and positive spring constants are identified to investigate in this paper. Parametric driver imposed on these two systems affects nonlinear behaviours, which has been theoretically analyzed with regard to variation of driving parameters (frequency, amplitude). Systematic calculations have been performed for these two systems driven by parametric pumps to unveil the controllability of chaos.

  3. Influence of classic noise on entangled state formation in parametric systems

    Science.gov (United States)

    Martynov, V. O.; Mironov, V. A.; Smirnov, L. A.

    2017-04-01

    A study of ‘high temperature’ entangled states in a system of two parametrically coupled quantum oscillators placed into independent thermal baths is performed taking into account partially coherent parametric pump. Processes in an open system are considered based on the Heisenberg–Langevin formalism. We obtain a closed system of equations for the averaged quadratic correlation functions in quantum stochastic problem as a result of Markov processes approximation. On the basis of numerical calculations the dynamics of the logarithmic negativity, which is the measure of entanglement in the system, is investigated. It is shown that the partial coherence of the parametric pump makes the lifetime of the entangled states finite. The threshold characteristics of the formation and existence of these states are specified.

  4. Single-shot read-out of a superconducting qubit using a Josephson parametric oscillator

    Science.gov (United States)

    Krantz, Philip; Bengtsson, Andreas; Simoen, Michaël; Gustavsson, Simon; Shumeiko, Vitaly; Oliver, W. D.; Wilson, C. M.; Delsing, Per; Bylander, Jonas

    2016-05-01

    We propose and demonstrate a read-out technique for a superconducting qubit by dispersively coupling it with a Josephson parametric oscillator. We employ a tunable quarter wavelength superconducting resonator and modulate its resonant frequency at twice its value with an amplitude surpassing the threshold for parametric instability. We map the qubit states onto two distinct states of classical parametric oscillation: one oscillating state, with 185+/-15 photons in the resonator, and one with zero oscillation amplitude. This high contrast obviates a following quantum-limited amplifier. We demonstrate proof-of-principle, single-shot read-out performance, and present an error budget indicating that this method can surpass the fidelity threshold required for quantum computing.

  5. Single-shot read-out of a superconducting qubit using a Josephson parametric oscillator

    Science.gov (United States)

    Krantz, Philip; Bengtsson, Andreas; Simoen, Michaël; Gustavsson, Simon; Shumeiko, Vitaly; Oliver, W. D.; Wilson, C. M.; Delsing, Per; Bylander, Jonas

    2016-01-01

    We propose and demonstrate a read-out technique for a superconducting qubit by dispersively coupling it with a Josephson parametric oscillator. We employ a tunable quarter wavelength superconducting resonator and modulate its resonant frequency at twice its value with an amplitude surpassing the threshold for parametric instability. We map the qubit states onto two distinct states of classical parametric oscillation: one oscillating state, with 185±15 photons in the resonator, and one with zero oscillation amplitude. This high contrast obviates a following quantum-limited amplifier. We demonstrate proof-of-principle, single-shot read-out performance, and present an error budget indicating that this method can surpass the fidelity threshold required for quantum computing. PMID:27156732

  6. SEMI PARAMETRIC ESTIMATION OF RISK-RETURN RELATIONSHIPS

    OpenAIRE

    Juan Carlos Escanciano; Juan Carlos Pardo-Fernández; Ingrid Van Keilegom

    2013-01-01

    This article proposes semi-parametric least squares estimation of parametric risk-return relationships, i.e. parametric restrictions between the conditional mean and the conditional variance of excess returns given a set of unobservable parametric factors. A distinctive feature of our estimator is that it does not require a parametric model for the conditional mean and variance. We establish consistency and asymptotic normality of the estimates. The theory is non-standard due to the presence ...

  7. Parametrizing arbitrary galaxy morphologies: potentials and pitfalls

    Science.gov (United States)

    Andrae, René; Jahnke, Knud; Melchior, Peter

    2011-02-01

    Given the enormous galaxy data bases of modern sky surveys, parametrizing galaxy morphologies is a very challenging task due to the huge number and variety of objects. We assess the different problems faced by existing parametrization schemes (CAS, Gini, M20, Sérsic profile, shapelets) in an attempt to understand why parametrization is so difficult and in order to suggest improvements for future parametrization schemes. We demonstrate that morphological observables (e.g. steepness of the radial light profile, ellipticity, asymmetry) are intertwined and cannot be measured independently of each other. We present strong arguments in favour of model-based parametrization schemes, namely reliability assessment, disentanglement of morphological observables and point spread function modelling. Furthermore, we demonstrate that estimates of the concentration and Sérsic index obtained from the Zurich Structure & Morphology catalogue are in excellent agreement with theoretical predictions. We also demonstrate that the incautious use of the concentration index for classification purposes can cause a severe loss of the discriminative information contained in a given data sample. Moreover, we show that, for poorly resolved galaxies, concentration index and M20 suffer from strong discontinuities, i.e. similar morphologies are not necessarily mapped to neighbouring points in the parameter space. This limits the reliability of these parameters for classification purposes. Two-dimensional Sérsic profiles accounting for centroid and ellipticity are identified as the currently most reliable parametrization scheme in the regime of intermediate signal-to-noise ratios and resolutions, where asymmetries and substructures do not play an important role. We argue that basis functions provide good parametrization schemes in the regimes of high signal-to-noise ratios and resolutions. Concerning Sérsic profiles, we show that scale radii cannot be compared directly for profiles of different

  8. Optical parametric amplification beyond the slowly varying amplitude approximation

    Indian Academy of Sciences (India)

    M Hosseini Farzad

    2007-09-01

    The coupled-wave equations describing optical parametric amplification (OPA) are usually solved in the slowly varying amplitude (SVA) approximation regime, in which the second-order derivatives of the signal and idler amplitudes are ignored and in fact the electromagnetic effects due to exit face of the medium is not involved. Here, an analytical plane-wave solution of these coupled-wave equations in a non-absorbing medium is presented. The solutions are derived beyond the SVA approximation up to order of = (coupling constant over the wave number). The intensity distributions of the signal and the idler waves show a periodic behavior about their corresponding distributions of SVA-adapted solution. This behavior can be explained by the interference of the forward propagating signal (idler) wave and the corresponding backward one resulted from the reflection by the end face of the medium. Furthermore, this interference pattern in the medium can in turn serve as a periodic source for the next generations of the signal and idler waves. Therefore, the superposition of the waves, generated from different points of this periodic source, at the exit face of the medium shows an oscillatory behavior of the transmitted signal (idler) wave in terms of normalized coupling constant, . This study also shows that this effect is more considerable for high intensity pump beam, high relative refractive index and short length of the nonlinear medium.

  9. Mems Q-Factor Enhancement Using Parametric Amplification: Theoretical Study and Design of a Parametric Device

    CERN Document Server

    Grasser, L; Parrain, F; Roux, X Le; Gilles, J -P

    2008-01-01

    Parametric amplification is an interesting way of artificially increasing a MEMS Quality factor and could be helpful in many kinds of applications. This paper presents a theoretical study of this principle, based on Matlab/Simulink simulations, and proposes design guidelines for parametric structures. A new device designed with this approach is presented together with the corresponding FEM simulation results.

  10. Comparison of reliability techniques of parametric and non-parametric method

    Directory of Open Access Journals (Sweden)

    C. Kalaiselvan

    2016-06-01

    Full Text Available Reliability of a product or system is the probability that the product performs adequately its intended function for the stated period of time under stated operating conditions. It is function of time. The most widely used nano ceramic capacitor C0G and X7R is used in this reliability study to generate the Time-to failure (TTF data. The time to failure data are identified by Accelerated Life Test (ALT and Highly Accelerated Life Testing (HALT. The test is conducted at high stress level to generate more failure rate within the short interval of time. The reliability method used to convert accelerated to actual condition is Parametric method and Non-Parametric method. In this paper, comparative study has been done for Parametric and Non-Parametric methods to identify the failure data. The Weibull distribution is identified for parametric method; Kaplan–Meier and Simple Actuarial Method are identified for non-parametric method. The time taken to identify the mean time to failure (MTTF in accelerating condition is the same for parametric and non-parametric method with relative deviation.

  11. Non-parametric Tuning of PID Controllers A Modified Relay-Feedback-Test Approach

    CERN Document Server

    Boiko, Igor

    2013-01-01

    The relay feedback test (RFT) has become a popular and efficient  tool used in process identification and automatic controller tuning. Non-parametric Tuning of PID Controllers couples new modifications of classical RFT with application-specific optimal tuning rules to form a non-parametric method of test-and-tuning. Test and tuning are coordinated through a set of common parameters so that a PID controller can obtain the desired gain or phase margins in a system exactly, even with unknown process dynamics. The concept of process-specific optimal tuning rules in the nonparametric setup, with corresponding tuning rules for flow, level pressure, and temperature control loops is presented in the text.   Common problems of tuning accuracy based on parametric and non-parametric approaches are addressed. In addition, the text treats the parametric approach to tuning based on the modified RFT approach and the exact model of oscillations in the system under test using the locus of a perturbedrelay system (LPRS) meth...

  12. Fiber-optic parametric amplifier and oscillator based on intracavity parametric pump technique.

    Science.gov (United States)

    Luo, Zhengqian; Zhong, Wen-De; Tang, Ming; Cai, Zhiping; Ye, Chenchun; Xiao, Xiaosheng

    2009-01-15

    A cost-effective fiber optical parametric amplifier (FOPA) based on the laser intracavity pump technique has been proposed and demonstrated experimentally. The parametric process is realized by inserting a 1 km highly nonlinear dispersion-shifted fiber (HNL-DSF) into a fiber ring-laser cavity that consists of a high-power erbium-doped fiber (EDF) amplifier and two highly reflective fiber Bragg gratings. Compared with the conventional parametric pump schemes, the proposed pumping technique is free from a tunable semiconductor laser as the pump source and also the pump phase modulation. When the oscillating power of 530 mW in the EDF laser cavity is achieved to pump the HNL-DSF, a peak parametric gain of 27.5 dB and a net gain over 45 nm are obtained. Moreover, a widely tunable fiber-optic parametric oscillator is further developed using the FOPA as a gain medium.

  13. Phase noise suppression through parametric filtering

    Science.gov (United States)

    Cassella, Cristian; Strachan, Scott; Shaw, Steven W.; Piazza, Gianluca

    2017-02-01

    In this work, we introduce and experimentally demonstrate a parametric phase noise suppression technique, which we call "parametric phase noise filtering." This technique is based on the use of a solid-state parametric amplifier operating in its instability region and included in a non-autonomous feedback loop connected at the output of a noisy oscillator. We demonstrate that such a system behaves as a parametrically driven Duffing resonator and can operate at special points where it becomes largely immune to the phase fluctuations that affect the oscillator output signal. A prototype of a parametric phase noise filter (PFIL) was designed and fabricated to operate in the very-high-frequency range. The PFIL prototype allowed us to significantly reduce the phase noise at the output of a commercial signal generator operating around 220 MHz. Noise reduction of 16 dB (40×) and 13 dB (20×) were obtained, respectively, at 1 and 10 kHz offsets from the carrier frequency. The demonstration of this phase noise suppression technique opens up scenarios in the development of passive and low-cost phase noise cancellation circuits for any application demanding high quality frequency generation.

  14. Phase mismatched optical parametric generation in semiconductor magnetoplasma

    Science.gov (United States)

    Dubey, Swati; Ghosh, S.; Jain, Kamal

    2017-05-01

    Optical parametric generation involves the interaction of pump, signal, and idler waves satisfying law of conservation of energy. Phase mismatch parameter plays important role for the spatial distribution of the field along the medium. In this paper instead of exactly matching wave vector, a small mismatch is admitted with a degree of phase velocity mismatch between these waves. Hence the medium must possess certain finite coherence length. This wave mixing process is well explained by coupled mode theory and one dimensional hydrodynamic model. Based on this scheme, expressions for threshold pump field and transmitted intensity have been derived. It is observed that the threshold pump intensity and transmitted intensity can be manipulated by varying doping concentration and magnetic field under phase mismatched condition. A compound semiconductor crystal of n-InSb is assumed to be shined at 77 K by a 10.6μm CO2 laser with photon energy well below band gap energy of the crystal, so that only free charge carrier influence the optical properties of the medium for the I.R. parametric generation in a semiconductor plasma medium. Favorable parameters were explored to incite the said process keeping in mind the cost effectiveness and conversion efficiency of the process.

  15. Parametrizing linear generalized Langevin dynamics from explicit molecular dynamics simulations

    Science.gov (United States)

    Gottwald, Fabian; Karsten, Sven; Ivanov, Sergei D.; Kühn, Oliver

    2015-06-01

    Fundamental understanding of complex dynamics in many-particle systems on the atomistic level is of utmost importance. Often the systems of interest are of macroscopic size but can be partitioned into a few important degrees of freedom which are treated most accurately and others which constitute a thermal bath. Particular attention in this respect attracts the linear generalized Langevin equation, which can be rigorously derived by means of a linear projection technique. Within this framework, a complicated interaction with the bath can be reduced to a single memory kernel. This memory kernel in turn is parametrized for a particular system studied, usually by means of time-domain methods based on explicit molecular dynamics data. Here, we discuss that this task is more naturally achieved in frequency domain and develop a Fourier-based parametrization method that outperforms its time-domain analogues. Very surprisingly, the widely used rigid bond method turns out to be inappropriate in general. Importantly, we show that the rigid bond approach leads to a systematic overestimation of relaxation times, unless the system under study consists of a harmonic bath bi-linearly coupled to the relevant degrees of freedom.

  16. Parametrizing linear generalized Langevin dynamics from explicit molecular dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Gottwald, Fabian; Karsten, Sven; Ivanov, Sergei D., E-mail: sergei.ivanov@uni-rostock.de; Kühn, Oliver [Institute of Physics, Rostock University, Universitätsplatz 3, 18055 Rostock (Germany)

    2015-06-28

    Fundamental understanding of complex dynamics in many-particle systems on the atomistic level is of utmost importance. Often the systems of interest are of macroscopic size but can be partitioned into a few important degrees of freedom which are treated most accurately and others which constitute a thermal bath. Particular attention in this respect attracts the linear generalized Langevin equation, which can be rigorously derived by means of a linear projection technique. Within this framework, a complicated interaction with the bath can be reduced to a single memory kernel. This memory kernel in turn is parametrized for a particular system studied, usually by means of time-domain methods based on explicit molecular dynamics data. Here, we discuss that this task is more naturally achieved in frequency domain and develop a Fourier-based parametrization method that outperforms its time-domain analogues. Very surprisingly, the widely used rigid bond method turns out to be inappropriate in general. Importantly, we show that the rigid bond approach leads to a systematic overestimation of relaxation times, unless the system under study consists of a harmonic bath bi-linearly coupled to the relevant degrees of freedom.

  17. Robust Near-Hovering Flight Controller for Model-Scale Helicopters Via Parametric Approach

    Institute of Scientific and Technical Information of China (English)

    Zhigang Zhou; Yongan Zhang∗

    2015-01-01

    This paper aims to provide a parametric design for robust flight controller of the model⁃scale helicopter. The main contributions lie in two aspects. Firstly, under near⁃hovering condition, a procedure is presented for simplification of the highly nonlinear and under⁃actuated model of the model⁃scale helicopter. This nonlinear system is linearized around the trim values of the chosen flight mode, followed by decomposing this high⁃order linear model into three lower⁃order subsystems according to the coupling properties among channels. After decomposition, the three subsystems are obtained which include the coupling subsystem between the roll ( pitch) motion and the lateral ( longitudinal) motion, the subsystem of the yaw motion and the subsystem of the vertical motion. Secondly, by using eigenstructure assignment, the problem of flight controller design can be converted into solving two optimization problems and the linear robust controllers of these subsystems are designed through solving these optimization problems. Besides, this paper contrasts and analyzed the performances of the LQR controller and the parametric controller. The results demonstrate the effectiveness and the robustness against the parametric perturbations of the parametric controller.

  18. Model reduction of parametrized systems

    CERN Document Server

    Ohlberger, Mario; Patera, Anthony; Rozza, Gianluigi; Urban, Karsten

    2017-01-01

    The special volume offers a global guide to new concepts and approaches concerning the following topics: reduced basis methods, proper orthogonal decomposition, proper generalized decomposition, approximation theory related to model reduction, learning theory and compressed sensing, stochastic and high-dimensional problems, system-theoretic methods, nonlinear model reduction, reduction of coupled problems/multiphysics, optimization and optimal control, state estimation and control, reduced order models and domain decomposition methods, Krylov-subspace and interpolatory methods, and applications to real industrial and complex problems. The book represents the state of the art in the development of reduced order methods. It contains contributions from internationally respected experts, guaranteeing a wide range of expertise and topics. Further, it reflects an important effor t, carried out over the last 12 years, to build a growing research community in this field. Though not a textbook, some of the chapters ca...

  19. Constructing parametric triangular patches with boundary conditions

    Institute of Scientific and Technical Information of China (English)

    Hui Liu; Jun Ma; Fuhua Cheng

    2008-01-01

    The problem of constructing a parametric triangular patch to smoothly connect three surface patches is studied. Usually, these surface patches are defined on different parameter spaces. Therefore, it is necessary to define interpolation conditions, with values from the given surface patches, on the boundary of the triangular patch that can ensure smooth transition between different parameter spaces. In this paper we present a new method to define boundary conditions. Boundary conditions defined by the new method have the same parameter space if the three given surface patches can be converted into the same form through affine transformation. Consequently, any of the classic methods for constructing functional triangular patches can be used directly to construct a parametric triangular patch to connect given surface patches with G continuity. The resulting parametric triangular patch preserves precision of the applied classic method.

  20. Modeling personnel turnover in the parametric organization

    Science.gov (United States)

    Dean, Edwin B.

    1991-01-01

    A model is developed for simulating the dynamics of a newly formed organization, credible during all phases of organizational development. The model development process is broken down into the activities of determining the tasks required for parametric cost analysis (PCA), determining the skills required for each PCA task, determining the skills available in the applicant marketplace, determining the structure of the model, implementing the model, and testing it. The model, parameterized by the likelihood of job function transition, has demonstrated by the capability to represent the transition of personnel across functional boundaries within a parametric organization using a linear dynamical system, and the ability to predict required staffing profiles to meet functional needs at the desired time. The model can be extended by revisions of the state and transition structure to provide refinements in functional definition for the parametric and extended organization.

  1. Parametric modelling of a knee joint prosthesis.

    Science.gov (United States)

    Khoo, L P; Goh, J C; Chow, S L

    1993-01-01

    This paper presents an approach for the establishment of a parametric model of knee joint prosthesis. Four different sizes of a commercial prosthesis are used as an example in the study. A reverse engineering technique was employed to reconstruct the prosthesis on CATIA, a CAD (computer aided design) system. Parametric models were established as a result of the analysis. Using the parametric model established and the knee data obtained from a clinical study on 21 pairs of cadaveric Asian knees, the development of a prototype prosthesis that suits a patient with a very small knee joint is presented. However, it was found that modification to certain parameters may be inevitable due to the uniqueness of the Asian knee. An avenue for rapid modelling and eventually economical production of a customized knee joint prosthesis for patients is proposed and discussed.

  2. Non-parametric partitioning of SAR images

    Science.gov (United States)

    Delyon, G.; Galland, F.; Réfrégier, Ph.

    2006-09-01

    We describe and analyse a generalization of a parametric segmentation technique adapted to Gamma distributed SAR images to a simple non parametric noise model. The partition is obtained by minimizing the stochastic complexity of a quantized version on Q levels of the SAR image and lead to a criterion without parameters to be tuned by the user. We analyse the reliability of the proposed approach on synthetic images. The quality of the obtained partition will be studied for different possible strategies. In particular, one will discuss the reliability of the proposed optimization procedure. Finally, we will precisely study the performance of the proposed approach in comparison with the statistical parametric technique adapted to Gamma noise. These studies will be led by analyzing the number of misclassified pixels, the standard Hausdorff distance and the number of estimated regions.

  3. Parametric Conversion Using Custom MOS Varactors

    Directory of Open Access Journals (Sweden)

    Iniewski Krzysztof (Kris

    2006-01-01

    Full Text Available The possible role of customized MOS varactors in amplification, mixing, and frequency control of future millimeter wave CMOS RFICs is outlined. First, the parametric conversion concept is revisited and discussed in terms of modern RF communications systems. Second, the modeling, design, and optimization of MOS varactors are reconsidered in the context of their central role in parametric circuits. Third, a balanced varactor structure is proposed for robust oscillator frequency control in the presence of large extrinsic noise expected in tightly integrated wireless communicators. Main points include the proposal of a subharmonic pumping scheme based on the MOS varactor, a nonequilibrium elastance-voltage model, optimal varactor layout suggestions, custom m-CMOS varactor design and measurement, device-level balanced varactor simulations, and parametric circuit evaluation based on measured device characteristics.

  4. Parametric Study Of Window Frame Geometry

    DEFF Research Database (Denmark)

    Zajas, Jan Jakub; Heiselberg, Per

    2013-01-01

    This paper describes a parametric study on window frame geometry with the goal of designing frames with very good thermal properties. Three different parametric frame models are introduced, deseribed by a number of variables. In the first part of the study, a process of sensitivity analysis...... is conducted to determine which of the parameters describing the frame have the highest impact on its thermal performance. Afterwards, an optimization process is conducted on each frame in order to optimize the design with regard to three objectives: minimizing the thermal transmittance, maxim izing the net...

  5. Using Parametrics to Facilitate Collaborative Urban Design

    DEFF Research Database (Denmark)

    Steinø, Nicolai; Benbih, Karima; Obeling, Esben

    2013-01-01

    in the context of the urban South which is characterized by high urban growth rates, weak planning systems and modest means. The current state of planning and urban development in Morocco is introduced as a context for discussing collaborative urban design and parametric urban design, and some tentative......Collaborative urban design faces three inherent dilemmas of limitations to time and resources, of barriers to language and communication between professionals and stakeholders, and of the reciprocal nature of the relation between influence and understanding. Parametric design tools may address all...

  6. Parametric Study Of Window Frame Geometry

    DEFF Research Database (Denmark)

    Zajas, Jan Jakub; Heiselberg, Per

    2013-01-01

    This paper describes a parametric study on window frame geometry with the goal of designing frames with very good thermal properties. Three different parametric frame models are introduced, deseribed by a number of variables. In the first part of the study, a process of sensitivity analysis is co...... energy gain factor and minimizing the material use. Since the objectives contradiet each other, it was found that it is not possible to identifY a single solution that satisfies all these goals. lnstead, a compromise between the objectives has to be found....

  7. Hamiltonian dynamics of the parametrized electromagnetic field

    CERN Document Server

    G., J Fernando Barbero; Villaseñor, Eduardo J S

    2015-01-01

    We study the Hamiltonian formulation for a parametrized electromagnetic field with the purpose of clarifying the interplay between parametrization and gauge symmetries. We use a geometric approach which is tailor-made for theories where embeddings are part of the dynamical variables. Our point of view is global and coordinate free. The most important result of the paper is the identification of sectors in the primary constraint submanifold in the phase space of the model where the number of independent components of the Hamiltonian vector fields that define the dynamics changes. This explains the non-trivial behavior of the system and some of its pathologies.

  8. Parametric Methods for Order Tracking Analysis

    DEFF Research Database (Denmark)

    Jensen, Tobias Lindstrøm; Nielsen, Jesper Kjær

    2017-01-01

    Order tracking analysis is often used to find the critical speeds at which structural resonances are excited by a rotating machine. Typically, order tracking analysis is performed via non-parametric methods. In this report, however, we demonstrate some of the advantages of using a parametric method...... for order tracking analysis. Specifically, we show that we get a much better time and frequency resolution, obtain a much more robust and accurate estimate of the RPM profile, and are able to perform accurate order tracking analysis even without the tachometer signal....

  9. Hamiltonian dynamics of the parametrized electromagnetic field

    Science.gov (United States)

    Barbero G, J. Fernando; Margalef-Bentabol, Juan; Villaseñor, Eduardo J. S.

    2016-06-01

    We study the Hamiltonian formulation for a parametrized electromagnetic field with the purpose of clarifying the interplay between parametrization and gauge symmetries. We use a geometric approach which is tailor-made for theories where embeddings are part of the dynamical variables. Our point of view is global and coordinate free. The most important result of the paper is the identification of sectors in the primary constraint submanifold in the phase space of the model where the number of independent components of the Hamiltonian vector fields that define the dynamics changes. This explains the non-trivial behavior of the system and some of its pathologies.

  10. Parametric injection for monoenergetic electron acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Oguchi, A; Takano, K; Hotta, E; Nemoto, K [Department of Energy Sciences Tokyo Institute of Technology 4259 Nagatsuta-cho Midori-ku Yokohama 226-8502 Japan (Japan); Zhidkov, A [Central Research Instistute of Electric Power Industry 2-6-1 Nagasaka Yokosuka Kanagawa 240-0196 Japan (Japan); Nakajima, K [High Energy Accelerator Research Organization, KEK 1-1 Oho Tsukuba Ibaraki 305-0801 Japan (Japan)], E-mail: blue-ayu@plasma.es.titech.ac.jp

    2008-05-01

    Electrons are accelerated in the laser wakefield (LWFA). This mechanism has been studied by 2D or 3D Particle In Cell simulation. However, how the electrons are injected in the wakefield is not understood. In this paper, we consider about the process of self -injection and propose new scheme. When plasma electron density modulates, parametric resonance of electron momentum is induced. The parametric resonance depends on laser waist modulation. We carried out 2D PIC simulation with the initial condition decided from resonance condition. Moreover, we analyze experimental result that generated 200-250 MeV monoenergetic electron beam with 400TW intense laser in CAEP in China.

  11. The Stellar parametrization using Artificial Neural Network

    CERN Document Server

    Giridhar, Sunetra; Kunder, Andrea; Muneer, S; Kumar, G Selva

    2012-01-01

    An update on recent methods for automated stellar parametrization is given. We present preliminary results of the ongoing program for rapid parametrization of field stars using medium resolution spectra obtained using Vainu Bappu Telescope at VBO, Kavalur, India. We have used Artificial Neural Network for estimating temperature, gravity, metallicity and absolute magnitude of the field stars. The network for each parameter is trained independently using a large number of calibrating stars. The trained network is used for estimating atmospheric parameters of unexplored field stars.

  12. Parametric Amplification For Detecting Weak Optical Signals

    Science.gov (United States)

    Hemmati, Hamid; Chen, Chien; Chakravarthi, Prakash

    1996-01-01

    Optical-communication receivers of proposed type implement high-sensitivity scheme of optical parametric amplification followed by direct detection for reception of extremely weak signals. Incorporates both optical parametric amplification and direct detection into optimized design enhancing effective signal-to-noise ratios during reception in photon-starved (photon-counting) regime. Eliminates need for complexity of heterodyne detection scheme and partly overcomes limitations imposed on older direct-detection schemes by noise generated in receivers and by limits on quantum efficiencies of photodetectors.

  13. A Comparison of Parametric and Non-Parametric Methods Applied to a Likert Scale.

    Science.gov (United States)

    Mircioiu, Constantin; Atkinson, Jeffrey

    2017-05-10

    A trenchant and passionate dispute over the use of parametric versus non-parametric methods for the analysis of Likert scale ordinal data has raged for the past eight decades. The answer is not a simple "yes" or "no" but is related to hypotheses, objectives, risks, and paradigms. In this paper, we took a pragmatic approach. We applied both types of methods to the analysis of actual Likert data on responses from different professional subgroups of European pharmacists regarding competencies for practice. Results obtained show that with "large" (>15) numbers of responses and similar (but clearly not normal) distributions from different subgroups, parametric and non-parametric analyses give in almost all cases the same significant or non-significant results for inter-subgroup comparisons. Parametric methods were more discriminant in the cases of non-similar conclusions. Considering that the largest differences in opinions occurred in the upper part of the 4-point Likert scale (ranks 3 "very important" and 4 "essential"), a "score analysis" based on this part of the data was undertaken. This transformation of the ordinal Likert data into binary scores produced a graphical representation that was visually easier to understand as differences were accentuated. In conclusion, in this case of Likert ordinal data with high response rates, restraining the analysis to non-parametric methods leads to a loss of information. The addition of parametric methods, graphical analysis, analysis of subsets, and transformation of data leads to more in-depth analyses.

  14. Direct and parametric synchronization of a graphene self-oscillator

    Science.gov (United States)

    Houri, S.; Cartamil-Bueno, S. J.; Poot, M.; Steeneken, P. G.; van der Zant, H. S. J.; Venstra, W. J.

    2017-02-01

    We explore the dynamics of a graphene nanomechanical oscillator coupled to a reference oscillator. Circular graphene drums are forced into self-oscillation, at a frequency f osc , by means of photothermal feedback induced by illuminating the drum with a continuous-wave red laser beam. Synchronization to a reference signal, at a frequency f sync , is achieved by shining a power-modulated blue laser onto the structure. We investigate two regimes of synchronization as a function of both detuning and signal strength for direct ( f sync ≈ f o s c ) and parametric locking ( f sync ≈ 2 f osc ) . We detect a regime of phase resonance, where the phase of the oscillator behaves as an underdamped second-order system, with the natural frequency of the phase resonance showing a clear power-law dependence on the locking signal strength. The phase resonance is qualitatively reproduced using a forced van der Pol-Duffing-Mathieu equation.

  15. Parametric localized modes in quadratic nonlinear photonic structures

    DEFF Research Database (Denmark)

    Sukhorukov, Andrey A.; Kivshar, Yuri S.; Bang, Ole;

    2001-01-01

    We analyze two-color spatially localized nonlinear modes formed by parametrically coupled fundamental and second-harmonic fields excited at quadratic (or chi2) nonlinear interfaces embedded in a linear layered structure-a quadratic nonlinear photonic crystal. For a periodic lattice of nonlinear...... interfaces, we derive an effective discrete model for the amplitudes of the fundamental and second-harmonic waves at the interfaces (the so-called discrete chi2 equations) and find, numerically and analytically, the spatially localized solutions-discrete gap solitons. For a single nonlinear interface...... in a linear superlattice, we study the properties of two-color localized modes, and describe both similarities to and differences from quadratic solitons in homogeneous media....

  16. Parametric Approach to Trajectory Tracking Control of Robot Manipulators

    Directory of Open Access Journals (Sweden)

    Shijie Zhang

    2013-01-01

    Full Text Available The mathematic description of the trajectory of robot manipulators with the optimal trajectory tracking problem is formulated as an optimal control problem, and a parametric approach is proposed for the optimal trajectory tracking control problem. The optimal control problem is first solved as an open loop optimal control problem by using a time scaling transform and the control parameterization method. Then, by virtue of the relationship between the optimal open loop control and the optimal closed loop control along the optimal trajectory, a practical method is presented to calculate an approximate optimal feedback gain matrix, without having to solve an optimal control problem involving the complex Riccati-like matrix differential equation coupled with the original system dynamics. Simulation results of 2-link robot manipulator are presented to show the effectiveness of the proposed method.

  17. An on-chip diamond optical parametric oscillator

    CERN Document Server

    Hausmann, B J M; Venkataraman, V; Deotare, P; Loncar, M

    2013-01-01

    Efficient, on-chip optical nonlinear processes are of great interest for the development of compact, robust, low-power consuming systems for applications in spectroscopy, metrology, sensing and classical and quantum optical information processing. Diamond holds promise for these applications, owing to its exceptional properties. However, although significant progress has been made in the development of an integrated diamond photonics platform, optical nonlinearities in diamond have not been explored much apart from Raman processes in bulk samples. Here, we demonstrate optical parametric oscillations (OPO) via four wave mixing (FWM) in single crystal diamond (SCD) optical networks on-chip consisting of waveguide-coupled microring resonators. Threshold powers as low as 20mW are enabled by ultra-high quality factor (1*10^6) diamond ring resonators operating at telecom wavelengths, and up to 20 new wavelengths are generated from a single-frequency pump laser. We also report the inferred nonlinear refractive index...

  18. Quantum correlation in degenerate optical parametric oscillators with mutual injections

    CERN Document Server

    Takata, Kenta

    2015-01-01

    We theoretically and numerically study the quantum dynamics of two degenerate optical parametric oscillators with mutual injections. The cavity mode in the optical coupling path between the two oscillator facets is explicitly considered. Stochastic equations for the oscillators and mutual injection path based on the positive $P$ representation are derived. The system of two gradually pumped oscillators with out-of-phase mutual injections are simulated, and their quantum states are investigated. When the incoherent loss of the oscillators other than the mutual injections is small, the squeezed quadratic amplitudes $\\hat{p}$ in the oscillators are positively correlated near the oscillation threshold. It indicates finite quantum correlation, and the entanglement between the intracavity subharmonic fields. When with a small loss of the injection path, each oscillator around the phase transition point forms macroscopic superposition for a small pump noise. It suggests that the low-loss injection path works as a sq...

  19. Harmonic entanglement in a degenerate parametric down-conversion

    Energy Technology Data Exchange (ETDEWEB)

    Tesfa, Sintayehu [Physics Department, Addis Ababa University, PO Box 1176, Addis Ababa (Ethiopia)], E-mail: sint_tesfa@yahoo.com

    2008-03-28

    A detailed study of the harmonic entanglement and two-mode squeezing of radiation generated in a degenerate parametric down-conversion process when the cavity is coupled to a two-mode vacuum reservoir is presented. It is found that there is a quadrature entanglement between the harmonically related fundamental and residual pump modes where the superimposed radiation exhibits a higher degree of two-mode squeezing. It turns out that the two-mode squeezing can exist when there is no entanglement, since the correlations leading to these phenomena are essentially different. It is also shown that the more the external pumping radiation is down-converted by the nonlinear crystal, the stronger the entanglement and intensity of the two-mode radiation would be; this condition is not generally true for squeezing.

  20. Analysis of the Rotationally Resolved, Non-Degenerate (a''_1) and Degenerate (e') Vibronic Bands in the tilde{A}^2E'' ← tilde{X}^2A'_2 Transition of NO_3.

    Science.gov (United States)

    Tran, Henry; Miller, Terry A.

    2016-06-01

    The magnitude of the Jahn-Teller (JT) effect in NO_3 has been the subject of considerable research in our group and other groups around the world. The rotational contour of the 4^1_0 vibronic band was first described by Hirota and coworkers using an oblate symmetric top. Near-infrared band of the nitrate radical NO_3 observed by diode laser spectroscopy. J. Chem. Phys., 107:2829, 1997.} Deev et al. argued that an asymmetric top was required to describe the 2^1_0 band, although their spectrum was not completely rotationally resolved. These discrepancies suggest that a rotational analysis will provide considerable experimental information on the geometry of NO_3. Our group has collected high-resolution, rotationally resolved spectra of the vibronic tilde{A}^2E'' ← tilde{X}^2A'_2 transitions. We have completed analysis of the 3^1_0 and 3^1_04^1_0 parallel bands with a_1'' symmetry by using an oblate symmetric top with spin-rotation and centrifugal distortions. Several other parallel bands are now also reasonably understood. This analysis is consistent with a D3h geometry for NO_3. In order to analyze the perpendicular bands with e' symmetry, we have adapted the oblate symmetric top Hamiltonian from the previous analysis to include spin-orbit coupling, coriolis coupling, and Watson Terms (JT distortions) that allow the oblate symmetric top Hamiltonian to transition continuously to the distorted limit of C2v symmetry. Preliminary analysis of the 2^1_0 and 2^1_04^2_0 bands has shown generally good agreement between model and experimental spectra. Our results indicate only modest JT distortions, although we do find evidence of multiple perturbations between these bands and high vibrational levels of the tilde{X} state. We will present our adapted Hamiltonian and the analysis of the 3^1_0, 3^1_04^1_0, 2^1_0, and 2^1_04^2_0 bands. E. Hirota, T. Ishiwata, K. Kawaguchi, M. Fujitake, N. Ohashi, and I. Tanaka. Near-infrared band of the nitrate radical NO_3 observed by diode

  1. Parametric sensitivity and runaway in tubular reactors

    Energy Technology Data Exchange (ETDEWEB)

    Morbidelli, M.; Varma, A.

    1982-09-01

    Parametric sensitivity of tubular reactors is analyzed to provide critical values of the heat of reaction and heat transfer parameters defining runaway and stable operations for all positive-order exothermic reactions with finite activation energies, and for all reactor inlet temperatures. Evaluation of the critical values does not involve any trial and error.

  2. A parametric reconstruction of the deceleration parameter

    Science.gov (United States)

    Mamon, Abdulla Al; Das, Sudipta

    2017-07-01

    The present work is based on a parametric reconstruction of the deceleration parameter q( z) in a model for the spatially flat FRW universe filled with dark energy and non-relativistic matter. In cosmology, the parametric reconstruction technique deals with an attempt to build up a model by choosing some specific evolution scenario for a cosmological parameter and then estimate the values of the parameters with the help of different observational datasets. In this paper, we have proposed a logarithmic parametrization of q( z) to probe the evolution history of the universe. Using the type Ia supernova, baryon acoustic oscillation and the cosmic microwave background datasets, the constraints on the arbitrary model parameters q0 and q1 are obtained (within 1σ and 2σ confidence limits) by χ 2-minimization technique. We have then reconstructed the deceleration parameter, the total EoS parameter ω _tot, the jerk parameter and have compared the reconstructed results of q( z) with other well-known parametrizations of q( z). We have also shown that two model selection criteria (namely, the Akaike information criterion and Bayesian information criterion) provide a clear indication that our reconstructed model is well consistent with other popular models.

  3. New Logic Circuit with DC Parametric Excitation

    Science.gov (United States)

    Sugahara, Masanori; Kaneda, Hisayoshi

    1982-12-01

    It is shown that dc parametric excitation is possible in a circuit named JUDO, which is composed of two resistively-connected Josephson junctions. Simulation study proves that the circuit has large gain and properties suitable for the construction of small, high-speed logic circuits.

  4. Detection of Parametric Roll on Ships

    DEFF Research Database (Denmark)

    Galeazzi, Roberto; Blanke, Mogens; Poulsen, Niels Kjølstad

    2012-01-01

    Recent years have shown several incidents with dramatic damage on container vessels caused by parametric resonance. When the resonance starts, the roll oscillation at a sub-harmonic frequency of the wave excitation may be completely unexpected. Timely warning about the onset of the resonance phen...

  5. Parametrization of Fully Dressed Quark Propagator

    Institute of Scientific and Technical Information of China (English)

    MA Wei-Xing; ZHU Ji-Zhen; ZHOU Li-Juan; SHEN Peng-Nian; HU Zhao-Hui

    2005-01-01

    Based on an extensive study of the Dyson-Schwinger equations for a fully dressed quark propagator in the "rainbow" approximation, a parametrized form of the quark propagator is suggested. The corresponding quark selfform of the quark propagator proposed in this work describes a confining quark propagation, and is quite convenient to be used in any numerical calculations.

  6. Interdisciplinary parametric design: the XXL experience

    NARCIS (Netherlands)

    Turrin, M.; Sariyildiz, I.S.; Paul, J.C.

    2015-01-01

    Focusing on large span structures for sport buildings, the paper tackles the role of parametric modelling and performance simulations, to enhance the integration between architectural and engineering design. The general approach contrasts post-engineering processes. In post-engineering, technical pe

  7. Function Parametrization - a Fast Inverse Mapping Method

    NARCIS (Netherlands)

    van Milligen, B. P.; Cardozo, N. J. L.

    1991-01-01

    Function parametrization (FP) is a method to invert computer models that map physical parameters describing the state of a physical system onto measurements. It find a mapping of the measurements onto the physical parameters that requires little computing time to evaluate. The major advantages of FP

  8. Parametric Architectural Design with Point-clouds

    DEFF Research Database (Denmark)

    Zwierzycki, Mateusz; Evers, Henrik Leander; Tamke, Martin

    2016-01-01

    This paper investigates the efforts and benefits of the implementation of point clouds into architectural design processes and tools. Based on a study on the principal work processes of designers with point clouds the prototypical plugin/library - Volvox - was developed for the parametric modelli...

  9. A general framework for parametric survival analysis.

    Science.gov (United States)

    Crowther, Michael J; Lambert, Paul C

    2014-12-30

    Parametric survival models are being increasingly used as an alternative to the Cox model in biomedical research. Through direct modelling of the baseline hazard function, we can gain greater understanding of the risk profile of patients over time, obtaining absolute measures of risk. Commonly used parametric survival models, such as the Weibull, make restrictive assumptions of the baseline hazard function, such as monotonicity, which is often violated in clinical datasets. In this article, we extend the general framework of parametric survival models proposed by Crowther and Lambert (Journal of Statistical Software 53:12, 2013), to incorporate relative survival, and robust and cluster robust standard errors. We describe the general framework through three applications to clinical datasets, in particular, illustrating the use of restricted cubic splines, modelled on the log hazard scale, to provide a highly flexible survival modelling framework. Through the use of restricted cubic splines, we can derive the cumulative hazard function analytically beyond the boundary knots, resulting in a combined analytic/numerical approach, which substantially improves the estimation process compared with only using numerical integration. User-friendly Stata software is provided, which significantly extends parametric survival models available in standard software. Copyright © 2014 John Wiley & Sons, Ltd.

  10. Interdisciplinary parametric design: the XXL experience

    NARCIS (Netherlands)

    Turrin, M.; Sariyildiz, I.S.; Paul, J.C.

    2015-01-01

    Focusing on large span structures for sport buildings, the paper tackles the role of parametric modelling and performance simulations, to enhance the integration between architectural and engineering design. The general approach contrasts post-engineering processes. In post-engineering, technical

  11. Parametric Primitives for Hand Gesture Recognition

    DEFF Research Database (Denmark)

    Baby, Sanmohan; Krüger, Volker

    2009-01-01

    Imitation learning is considered to be an effective way of teaching humanoid robots and action recognition is the key step to imitation learning. In this paper  an online algorithm to recognize parametric actions with object context is presented. Objects are key instruments in understanding an ac...

  12. The fast parametric slantlet transform with applications

    Science.gov (United States)

    Agaian, Sos S.; Tourshan, Khaled; Noonan, Joseph P.

    2004-05-01

    Transform methods have played an important role in signal and image processing applications. Recently, Selesnick has constructed the new orthogonal discrete wavelet transform, called the slantlet wavelet, with two zero moments and with improved time localization. The discrete slantlet wavelet transform is carried out by an existing filterbank which lacks a tree structure and has a complexity problem. The slantlet wavelet has been successfully applied in compression and denoising. In this paper, we present a new class of orthogonal parametric fast Haar slantlet transform system where the slantlet wavelet and Haar transforms are special cases of it. We propose designing the slantlet wavelet transform using Haar slantlet transform matrix. A new class of parametric filterbanks is developed. The behavior of the parametric Haar slantlet transforms in signal and image denoising is presented. We show that the new technique performs better than the slantlet wavelet transform in denoising for piecewise constant signals. We also show that the parametric Haar slantlet transform performs better than the cosine and Fourier transforms for grey level images.

  13. Parametric Primitives for Hand Gesture Recognition

    DEFF Research Database (Denmark)

    Baby, Sanmohan; Krüger, Volker

    2009-01-01

    Imitation learning is considered to be an effective way of teaching humanoid robots and action recognition is the key step to imitation learning. In this paper  an online algorithm to recognize parametric actions with object context is presented. Objects are key instruments in understanding...

  14. Robustness analysis for real parametric uncertainty

    Science.gov (United States)

    Sideris, Athanasios

    1989-01-01

    Some key results in the literature in the area of robustness analysis for linear feedback systems with structured model uncertainty are reviewed. Some new results are given. Model uncertainty is described as a combination of real uncertain parameters and norm bounded unmodeled dynamics. Here the focus is on the case of parametric uncertainty. An elementary and unified derivation of the celebrated theorem of Kharitonov and the Edge Theorem is presented. Next, an algorithmic approach for robustness analysis in the cases of multilinear and polynomic parametric uncertainty (i.e., the closed loop characteristic polynomial depends multilinearly and polynomially respectively on the parameters) is given. The latter cases are most important from practical considerations. Some novel modifications in this algorithm which result in a procedure of polynomial time behavior in the number of uncertain parameters is outlined. Finally, it is shown how the more general problem of robustness analysis for combined parametric and dynamic (i.e., unmodeled dynamics) uncertainty can be reduced to the case of polynomic parametric uncertainty, and thus be solved by means of the algorithm.

  15. Parametric Transverse Patterns in Broad Aperture Lasers

    DEFF Research Database (Denmark)

    Grigorieva, E.V.; Kashchenko, S.A.; Mosekilde, Erik

    1998-01-01

    Parametrically generated optical patterns are investigated for finite and large-scale transverse aperture lasers. Standing and rotating patterns as well as periodic and chaotic pattern alternations are described in the framework of the amplitude equation formalism. Sensitive dependence...... on the geometrical size of the system is demonstrated even in the case of large-scale systems....

  16. Absence of Long-Range Coherence in the Parametric Emission from Photonic Wires

    OpenAIRE

    Wouters, M.; Carusotto, I.

    2005-01-01

    We analytically investigate the spatial coherence properties of the signal emission from one-dimensional optical parametric oscillators. Because of the reduced dimensionality, quantum fluctuations are able to destroy the long-range phase coherence even far above threshold. The spatial decay of coherence is exponential and, for realistic parameters of semiconductor photonic wires in the strong exciton-photon coupling regime, it is predicted to occur on an experimentally accessible length scale.

  17. Derivation of the density matrix of a single photon produced in parametric down-conversion

    Science.gov (United States)

    Kolenderski, Piotr; Wasilewski, Wojciech

    2009-07-01

    We discuss an effective numerical method of density matrix determination of fiber coupled single photon generated in process of spontaneous parametric down conversion in type I noncollinear configuration. The presented theory has been successfully applied in case of source utilized to demonstrate the experimental characterization of spectral state of single photon, what was reported in Wasilewski, Kolenderski, and Frankowski [Phys. Rev. Lett. 99, 123601 (2007)].

  18. PARAMETRICAL WORDS IN THE SENTIMENT LEXICON

    Directory of Open Access Journals (Sweden)

    Elena Brunova

    2013-12-01

    Full Text Available In this paper, the main features of parametrical words within a sentiment lexicon are determined. The data for the research are client reviews in the Russian language taken from the bank client rating; the domain under study is bank service quality. The lexicon structure and the fragments from the lexicon database are presented. The sentiment lexicon includes two major classes (positive and negative words and three minor classes (increments, polarity modifiers, and polarity anti-modifiers. This lexicon is used as the main tool for the sentiment analysis carried out by two methods: the Naïve Bayes and the REGEX algorithms.Parametrical words are referred to as the words denoting the value of some domain-specific parameter, e.g. a battery life, or time of waiting. To distinguish the main features of parametrical words, the parameters relevant for the bank service quality domain are determined. The results of the research demonstrate that parametrical words can be ranged neither in the positive class, nor in the negative one. The words denoting the increase of a parameter should be ranged in the increment class, as they intensify positive or negative emotions. The words denoting the decrease of a parameter should be ranged in a new class which may be called the decrement class, as they reduce positive or negative emotions. The revised lexicon structure including the decrement class is proposed. The evident progress on the way to the lexicon universalization can be achieved by distinguishing two special classes for lexical increments and decrements. Another helpful idea is to extract bigrams or trigrams which could include parametrical words and the domain attributes they refer to.

  19. Continuous-wave, two-crystal, singly-resonant optical parametric oscillator: theory and experiment.

    Science.gov (United States)

    Samanta, G K; Aadhi, A; Ebrahim-Zadeh, M

    2013-04-22

    We present theoretical and experimental study of a continuous-wave, two-crystal, singly-resonant optical parametric oscillator (T-SRO) comprising two identical 30-mm-long crystals of MgO:sPPLT in a four- mirror ring cavity and pumped with two separate pump beams in the green. The idler beam after each crystal is completely out-coupled, while the signal radiation is resonant inside the cavity. Solving the coupled amplitude equations under undepleted pump approximation, we calculate the maximum threshold reduction, parametric gain acceptance bandwidth and closest possible attainable wavelength separation in arbitrary dual-wavelength generation and compare with the experimental results. Although the T-SRO has two identical crystals, the acceptance bandwidth of the device is equal to that of a single-crystal SRO. Due to the division of pump power in two crystals, the T-SRO can handle higher total pump power while lowering crystal damage risk and thermal effects. We also experimentally verify the high power performance of such scheme, providing a total output power of 6.5 W for 16.2 W of green power at 532 nm. We verified coherent energy coupling between the intra-cavity resonant signal waves resulting Raman spectral lines. Based on the T-SRO scheme, we also report a new technique to measure the temperature acceptance bandwidth of the single-pass parametric amplifier across the OPO tuning range.

  20. Influence of stochastic sea ice parametrization on climate and the role of atmosphere-sea ice-ocean interaction.

    Science.gov (United States)

    Juricke, Stephan; Jung, Thomas

    2014-06-28

    The influence of a stochastic sea ice strength parametrization on the mean climate is investigated in a coupled atmosphere-sea ice-ocean model. The results are compared with an uncoupled simulation with a prescribed atmosphere. It is found that the stochastic sea ice parametrization causes an effective weakening of the sea ice. In the uncoupled model this leads to an Arctic sea ice volume increase of about 10-20% after an accumulation period of approximately 20-30 years. In the coupled model, no such increase is found. Rather, the stochastic perturbations lead to a spatial redistribution of the Arctic sea ice thickness field. A mechanism involving a slightly negative atmospheric feedback is proposed that can explain the different responses in the coupled and uncoupled system. Changes in integrated Antarctic sea ice quantities caused by the stochastic parametrization are generally small, as memory is lost during the melting season because of an almost complete loss of sea ice. However, stochastic sea ice perturbations affect regional sea ice characteristics in the Southern Hemisphere, both in the uncoupled and coupled model. Remote impacts of the stochastic sea ice parametrization on the mean climate of non-polar regions were found to be small.

  1. Bending-induced mode non-degeneracy and coupling in chalcogenide negative curvature fibers.

    Science.gov (United States)

    Wei, Chengli; Menyuk, Curtis R; Hu, Jonathan

    2016-05-30

    We study bend loss in chalcogenide negative curvature fibers with different polarizations, different tube wall thicknesses, and different bend directions relative to the mode polarization. The coupling between the core mode and tube modes induces bend loss peaks in the two non-degenerate modes at the same bend radius. There is as much as a factor of 28 difference between the losses of the two polarization modes. The fiber with a larger tube wall thickness, corresponding to a smaller inner tube diameter, can sustain a smaller bend radius. The bend loss is sensitive to the bend direction when coupling occurs between the core mode and tube modes. A bend loss of 0.2 dB/m at a bend radius of 16 cm, corresponding to 0.2 dB/turn, can be achieved in a chalcogenide negative curvature fiber.

  2. Longitudinal, degenerate, and transversal parametric oscillation in a photorefractive media

    DEFF Research Database (Denmark)

    Pedersen, H.C.; Johansen, P.M.

    1996-01-01

    We present a theoretical model of photorefractive parametric oscillation that covers, for the first time, to our knowledge, the occurrence of the whole spectrum of parametric processes from transversal over degenerate to longitudinal parametric oscillation. It is shown that inclusion of so......-called noneigenwaves is essential for completing the model. We report on the first experiment that shows the transition from transversal over degenerate to longitudinal parametric oscillation. The experimental observations agree well with the theoretical predictions....

  3. Matter coupling in N = 4 supergravity

    NARCIS (Netherlands)

    Roo, M. de

    1985-01-01

    An arbitrary number of abelian vector multiplets is coupled to N = 4 supergravity. The resulting action is invariant under global SO(n,6), where n is the number of vector multiplets, and under local SU(4) × U(1) transformations. The scalar fields of the theory parametrize the manifold [SO(n,6)/SO(n

  4. Parametric Audio Based Decoder and Music Synthesizer for Mobile Applications

    NARCIS (Netherlands)

    Oomen, A.W.J.; Szczerba, M.Z.; Therssen, D.

    2011-01-01

    This paper reviews parametric audio coders and discusses novel technologies introduced in a low-complexity, low-power consumption audiodecoder and music synthesizer platform developed by the authors. Thedecoder uses parametric coding scheme based on the MPEG-4 Parametric Audio standard. In order to

  5. Fault detection and isolation in systems with parametric faults

    DEFF Research Database (Denmark)

    Stoustrup, Jakob; Niemann, Hans Henrik

    1999-01-01

    The problem of fault detection and isolation of parametric faults is considered in this paper. A fault detection problem based on parametric faults are associated with internal parameter variations in the dynamical system. A fault detection and isolation method for parametric faults is formulated...

  6. Open standard CMO for parametric modelling based on semantic web

    NARCIS (Netherlands)

    Bonsma, P.; Bonsma, I.; Zayakova, T.; Van Delft, A.; Sebastian, R.; Böhms, M.

    2015-01-01

    The Open Standard Concept Modelling Ontology (CMO) with Extensions makes it possible to store parametric modelling semantics and parametric geometry in a Semantic Web environment. The parametric and geometrical part of CMO with Extensions is developed within the EU project Proficient. The nature of

  7. Parametric Audio Based Decoder and Music Synthesizer for Mobile Applications

    NARCIS (Netherlands)

    Oomen, A.W.J.; Szczerba, M.Z.; Therssen, D.

    2011-01-01

    This paper reviews parametric audio coders and discusses novel technologies introduced in a low-complexity, low-power consumption audiodecoder and music synthesizer platform developed by the authors. Thedecoder uses parametric coding scheme based on the MPEG-4 Parametric Audio standard. In order to

  8. Microwave parametric amplifiers using externally pumped Josephson junctions

    DEFF Research Database (Denmark)

    Sørensen, O. H.; Mygind, Jesper; Pedersen, Niels Falsig

    1978-01-01

    Externally pumped parametric amplifiers are discussed. Theory and experiments on the singly degenerate parametric amplifier based on a Josephson junction are presented. Advantages and limitations of the singly degenerate and doubly degenerate parametric amplifiers are discussed. Some plans and pr...... and proposals for future research are presented....

  9. Large temporal window contrast measurement using optical parametric amplification and low-sensitivity detectors

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Rahul C [Los Alamos National Laboratory; Johnson, Randall P [Los Alamos National Laboratory; Shimada, Tsutomu [Los Alamos National Laboratory; Hegelich, Bjorn M [Los Alamos National Laboratory

    2008-01-01

    To address few-shot pulse contrast measurement, we present a correlator coupling the high gain of an optical parametric amplification scheme with large pulse tilt. This combination enables a low sensitivity charge coupled device (CCD) to observe features in the pulse intensity within a 50 ps single-shot window with inter-window dynamic range > 10{sup 7} and < 0.5 mJ input energy. Partitioning of the single window with optical densities to boost the CCD dynamic range is considered.

  10. Coupled transfers; Transferts couples

    Energy Technology Data Exchange (ETDEWEB)

    Nicolas, X.; Lauriat, G.; Jimenez-Rondan, J. [Universite de Marne-la-Vallee, Lab. d' Etudes des Transferts d' Energie et de Matiere (LETEM), 77 (France); Bouali, H.; Mezrhab, A. [Faculte des Sciences, Dept. de Physique, Lab. de Mecanique et Energetique, Oujda (Morocco); Abid, C. [Ecole Polytechnique Universitaire de Marseille, IUSTI UMR 6595, 13 Marseille (France); Stoian, M.; Rebay, M.; Lachi, M.; Padet, J. [Faculte des Sciences, Lab. de Thermomecanique, UTAP, 51 - Reims (France); Mladin, E.C. [Universitaire Polytechnique Bucarest, Faculte de Genie Mecanique, Bucarest (Romania); Mezrhab, A. [Faculte des Sciences, Lab. de Mecanique et Energetique, Dept. de Physique, Oujda (Morocco); Abid, C.; Papini, F. [Ecole Polytechnique, IUSTI, 13 - Marseille (France); Lorrette, C.; Goyheneche, J.M.; Boechat, C.; Pailler, R. [Laboratoire des Composites ThermoStructuraux, UMR 5801, 33 - Pessac (France); Ben Salah, M.; Askri, F.; Jemni, A.; Ben Nasrallah, S. [Ecole Nationale d' Ingenieurs de Monastir, Lab. d' Etudes des Systemes Thermiques et Energetiques (Tunisia); Grine, A.; Desmons, J.Y.; Harmand, S. [Laboratoire de Mecanique et d' Energetique, 59 - Valenciennes (France); Radenac, E.; Gressier, J.; Millan, P. [ONERA, 31 - Toulouse (France); Giovannini, A. [Institut de Mecanique des Fluides de Toulouse, 31 (France)

    2005-07-01

    This session about coupled transfers gathers 30 articles dealing with: numerical study of coupled heat transfers inside an alveolar wall; natural convection/radiant heat transfer coupling inside a plugged and ventilated chimney; finite-volume modeling of the convection-conduction coupling in non-stationary regime; numerical study of the natural convection/radiant heat transfer coupling inside a partitioned cavity; modeling of the thermal conductivity of textile reinforced composites: finite element homogenization on a full periodical pattern; application of the control volume method based on non-structured finite elements to the problems of axisymmetrical radiant heat transfers in any geometries; modeling of convective transfers in transient regime on a flat plate; a conservative method for the non-stationary coupling of aero-thermal engineering codes; measurement of coupled heat transfers (forced convection/radiant transfer) inside an horizontal duct; numerical simulation of the combustion of a water-oil emulsion droplet; numerical simulation study of heat and mass transfers inside a reactor for nano-powders synthesis; reduction of a combustion and heat transfer model of a direct injection diesel engine; modeling of heat transfers inside a knocking operated spark ignition engine; heat loss inside an internal combustion engine, thermodynamical and flamelet model, composition effects of CH{sub 4}H{sub 2} mixtures; experimental study and modeling of the evolution of a flame on a solid fuel; heat transfer for laminar subsonic jet of oxygen plasma impacting an obstacle; hydrogen transport through a A-Si:H layer submitted to an hydrogen plasma: temperature effects; thermal modeling of the CO{sub 2} laser welding of a magnesium alloy; radiant heat transfer inside a 3-D environment: application of the finite volume method in association with the CK model; optimization of the infrared baking of two types of powder paints; optimization of the emission power of an infrared

  11. Phonon-assisted nonlinear optical processes in ultrashort-pulse pumped optical parametric amplifiers

    Science.gov (United States)

    Isaienko, Oleksandr; Robel, István

    2016-03-01

    Optically active phonon modes in ferroelectrics such as potassium titanyl phosphate (KTP) and potassium titanyl arsenate (KTA) in the ~7-20 THz range play an important role in applications of these materials in Raman lasing and terahertz wave generation. Previous studies with picosecond pulse excitation demonstrated that the interaction of pump pulses with phonons can lead to efficient stimulated Raman scattering (SRS) accompanying optical parametric oscillation or amplification processes (OPO/OPA), and to efficient polariton-phonon scattering. In this work, we investigate the behavior of infrared OPAs employing KTP or KTA crystals when pumped with ~800-nm ultrashort pulses of duration comparable to the oscillation period of the optical phonons. We demonstrate that under conditions of coherent impulsive Raman excitation of the phonons, when the effective χ(2) nonlinearity cannot be considered instantaneous, the parametrically amplified waves (most notably, signal) undergo significant spectral modulations leading to an overall redshift of the OPA output. The pump intensity dependence of the redshifted OPA output, the temporal evolution of the parametric gain, as well as the pump spectral modulations suggest the presence of coupling between the nonlinear optical polarizations PNL of the impulsively excited phonons and those of parametrically amplified waves.

  12. Nonlinear Container Ship Model for the Study of Parametric Roll Resonance

    Directory of Open Access Journals (Sweden)

    Christian Holden

    2007-10-01

    Full Text Available Parametric roll is a critical phenomenon for ships, whose onset may cause roll oscillations up to +-40 degrees, leading to very dangerous situations and possibly capsizing. Container ships have been shown to be particularly prone to parametric roll resonance when they are sailing in moderate to heavy head seas. A Matlab/Simulink parametric roll benchmark model for a large container ship has been implemented and validated against a wide set of experimental data. The model is a part of a Matlab/Simulink Toolbox (MSS, 2007. The benchmark implements a 3rd-order nonlinear model where the dynamics of roll is strongly coupled with the heave and pitch dynamics. The implemented model has shown good accuracy in predicting the container ship motions, both in the vertical plane and in the transversal one. Parametric roll has been reproduced for all the data sets in which it happened, and the model provides realistic results which are in good agreement with the model tank experiments.

  13. On the ponderomotive force and the effect of loss reaction on parametric instability

    Institute of Scientific and Technical Information of China (English)

    Wu Jun; Wu Jian; Cesar La Hoz

    2007-01-01

    In this paper, the growth rate, ponderomotive force and the exciting condition for parametric instability are derived by considering the loss reaction using a new method. On the basis of the hydrodynamic equations, we take the production and loss reactions in plasma into account to derive the coupling equations for the electron plasma oscillation and ion acoustic oscillation, and obtain the growth rate for the parametric instability, the ponderomotive force and the exciting condition. The result shows that (a) the production reaction has no effect on the parametric instability, and the effect of loss reaction on the parametric instability is a damping one, (b) the more intensive the external field or pump is, the larger the growth rate is, (c) there exist two modes of the ponderomotive force, i.e. the high frequency mode and the low frequency mode, and (d) when ponderomotive force counteracts the damping force, the oscillations become non-damping and non-driving. The ratio of the electron plasma oscillation to ion acoustic oscillation is independent of the loss reaction and the external field.

  14. Parametric instabilities in 3D periodically focused beams with space charge

    Science.gov (United States)

    Hofmann, Ingo; Boine-Frankenheim, Oliver

    2017-01-01

    Parametric resonances of beam eigenmodes with a periodic focusing system under the effect of space charge—also called structural instabilities—are the collective counterparts to parametric resonances of single particles or of mechanical systems. Their common feature is that an exponential instability is driven by a temporal modulation of a system parameter. Thus, they are complementary to the more commonly considered space charge single particle resonances, where space charge pseudo-multipole terms are assumed to exist already at finite level in the initial distribution. This article elaborates on the characteristics of such parametric instabilities in 3D bunched beams—as typical in linear accelerators—for modes of second (envelope), third and fourth order, including the transverse coupled "sum envelope instabilities" recently discovered for 2D beams. Noteworthy results are the finding that parametric resonances can be in competition with single particle resonances of twice the order due to overlapping stopbands; furthermore the surprisingly good applicability of the stopband positions and widths obtained from previously published 2D linearised Vlasov stability theory to the 3D non-Kapchinskij-Vladimirskij particle-in-cell code studies presented here.

  15. Theory of Polarization Attraction in Parametric Amplifiers Based on Telecommunication Fibers

    CERN Document Server

    Guasoni, Massimiliano; Wabnitz, Stefan

    2012-01-01

    We develop from first principles the coupled wave equations that describe polarization-sensitive parametric amplification based on four-wave mixing in standard (randomly birefringent) optical fibers. We show that in the small-signal case these equations can be solved analytically, and permit us to predict the gain experienced by the signal beam as well as its state of polarization (SOP) at the fiber output. We find that, independently of its initial value, the output SOP of a signal within the parametric gain bandwidth is solely determined by the pump SOP. We call this effect of pulling the polarization of the signal towards a reference SOP as polarization attraction, and such parametric amplifier as the FWM-polarizer. Our theory is valid beyond the zero polarization mode dispersion (PMD) limit, and it takes into account moderate deviations of the PMD from zero. In particular, our theory is capable of analytically predicting the rate of degradation of the efficiency of the parametric amplifier which is caused...

  16. Effective fiber-coupling of entangled photons for quantum communication

    CERN Document Server

    Bovino, F A; Colla, A M; Castagnoli, G C; Giuseppe, G D; Sergienko, A V

    2003-01-01

    We report on theoretical and experimental demonstration of high-efficiency coupling of two-photon entangled states produced in the nonlinear process of spontaneous parametric down conversion into a single-mode fiber. We determine constraints for the optimal coupling parameters. This result is crucial for practical implementation of quantum key distribution protocols with entangled states.

  17. Using Parametrics to Facilitate Collaborative Urban Design

    DEFF Research Database (Denmark)

    Steinø, Nicolai; Benbih, Karima; Obeling, Esben

    2013-01-01

    Collaborative urban design faces three inherent dilemmas of limitations to time and resources, of barriers to language and communication between professionals and stakeholders, and of the reciprocal nature of the relation between influence and understanding. Parametric design tools may address all...... of these dilemmas, as they provide a fast way to test different design scenarios and make it possible keep designs open while at the same time allowing for a level of detailing which is high enough to facilitate an understanding of the generic qualities of proposed designs. This is particularly relevant...... in the context of the urban South which is characterized by high urban growth rates, weak planning systems and modest means. The current state of planning and urban development in Morocco is introduced as a context for discussing collaborative urban design and parametric urban design, and some tentative...

  18. QUALITY PARAMETRES OF EMMER WHEAT LANDRACES

    Directory of Open Access Journals (Sweden)

    Petr KONVALINA

    2009-03-01

    Full Text Available Emmer wheat, Triticum dicoccum SCHUEBL, is an old variety of cereals which has been traditionally grown in aride areas. Nowdays, it is mainly grown in Italy, Spain, Turkey, Austria and in the Czech republic. This article deals with a study of quality parametres and selected economic parametres of 6 varieties coming from the genetic resources of emmer wheat. High crude protein content in grain was proved during the trials. Nevertheless, such a characteristic is not suitable for the classical bakery processing (production of leavened products. Low figure of the harvest index is supposed to be the most problematic economic character. However, emmer wheat is a suitable variety for organic farming system. Growing of emmer wheat contributes to an extension of the agrobiodiversity in the countryside and to the suistainable development of a region.

  19. Blending Parametric Patches with Subdivision Surfaces

    Institute of Scientific and Technical Information of China (English)

    李桂清; 李华

    2002-01-01

    In this paper the problem of blending parametric surfaces using subdivision patches is discussed. A new approach, named removing-boundary, is presented to generate piecewise-smooth subdivision surfaces through discarding the outmost quadrilaterals of the open meshes derived by each subdivision step. Then the approach is employed both to blend parametric bicubic B-spline surfaces and to fill n-sided holes. It is easy to produce piecewisesmooth subdivision surfaces with both convex and concave corners on the boundary, and limit surfaces are guaranteed to be C2 continuous on the boundaries except for a few singular points by the removing-boundary approach. Thus the blending method is very efficient and the blending surface generated is of good effect.

  20. Parametric Design Strategies for Collaborative Urban Design

    DEFF Research Database (Denmark)

    Steinø, Nicolai; Yıldırım, Miray Baş; Özkar, Mine

    2013-01-01

    to the collaboration between professionals, participation by different non-professional stakeholders, such as residents, local authorities, non-governmental organizations and investors, is another important component of collaborative urban design processes. The involvement of community in decision making process...... urban space, subject to urban renewal. A key aspect of the workshop therefore, was to develop different design scenarios and to use parametric design software to communicate the scenarios spatially, as well as to mediate between them. Parametric urban design is a potentially powerful tool...... is working alone with distributed design problem packages which means decomposition of design problems into tasks and working on them individually. On the other hand, collaborative design is based on communication. Participants work together on design problems in an integrated design process. In addition...

  1. Probabilistic Reachability for Parametric Markov Models

    DEFF Research Database (Denmark)

    Hahn, Ernst Moritz; Hermanns, Holger; Zhang, Lijun

    2011-01-01

    Given a parametric Markov model, we consider the problem of computing the rational function expressing the probability of reaching a given set of states. To attack this principal problem, Daws has suggested to first convert the Markov chain into a finite automaton, from which a regular expression...... is computed. Afterwards, this expression is evaluated to a closed form function representing the reachability probability. This paper investigates how this idea can be turned into an effective procedure. It turns out that the bottleneck lies in the growth of the regular expression relative to the number...... of states (n(log n)).We therefore proceed differently, by tightly intertwining the regular expression computation with its evaluation. This allows us to arrive at an effective method that avoids this blow up in most practical cases. We give a detailed account of the approach, also extending to parametric...

  2. Rayleigh-type parametric chemical oscillation.

    Science.gov (United States)

    Ghosh, Shyamolina; Ray, Deb Shankar

    2015-09-28

    We consider a nonlinear chemical dynamical system of two phase space variables in a stable steady state. When the system is driven by a time-dependent sinusoidal forcing of a suitable scaling parameter at a frequency twice the output frequency and the strength of perturbation exceeds a threshold, the system undergoes sustained Rayleigh-type periodic oscillation, wellknown for parametric oscillation in pipe organs and distinct from the usual forced quasiperiodic oscillation of a damped nonlinear system where the system is oscillatory even in absence of any external forcing. Our theoretical analysis of the parametric chemical oscillation is corroborated by full numerical simulation of two well known models of chemical dynamics, chlorite-iodine-malonic acid and iodine-clock reactions.

  3. Rayleigh-type parametric chemical oscillation

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Shyamolina; Ray, Deb Shankar, E-mail: pcdsr@iacs.res.in [Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032 (India)

    2015-09-28

    We consider a nonlinear chemical dynamical system of two phase space variables in a stable steady state. When the system is driven by a time-dependent sinusoidal forcing of a suitable scaling parameter at a frequency twice the output frequency and the strength of perturbation exceeds a threshold, the system undergoes sustained Rayleigh-type periodic oscillation, wellknown for parametric oscillation in pipe organs and distinct from the usual forced quasiperiodic oscillation of a damped nonlinear system where the system is oscillatory even in absence of any external forcing. Our theoretical analysis of the parametric chemical oscillation is corroborated by full numerical simulation of two well known models of chemical dynamics, chlorite-iodine-malonic acid and iodine-clock reactions.

  4. Parametric Beamformer for Synthetic Aperture Ultrasound Imaging

    DEFF Research Database (Denmark)

    Nikolov, Svetoslav; Tomov, Borislav Gueorguiev; Jensen, Jørgen Arendt

    2006-01-01

    . The beamformer consists of a number of identical beamforming blocks, each processing data from several channels and producing part of the image. A number of these blocks can be accommodated in a modern field-programmable gate array device (FPGA), and a whole synthetic aperture system can be implemented using......In this paper a parametric beamformer, which can handle all imaging modalities including synthetic aperture imaging, is presented. The image lines and apodization coefficients are specified parametrically, and the lines can have arbitrary orientation and starting point in 3D coordinates...... several FPGAs. For the current implementation, the input data is sampled at 4 times the center frequency of the excitation pulse and is match-filtered in the frequency domain. In-phase and quadrature data are beamformed with a sub-sample precision of the focusing delays of 1/16th of the sampling period...

  5. Diode-pumped optical parametric oscillator.

    Science.gov (United States)

    Geiger, A R; Hemmati, H; Farr, W H; Prasad, N S

    1996-02-01

    Diode-pumped optical parametric oscillation has been demonstrated for the first time to our knowledge in a single Nd:MgO:LiNbO(3) nonlinear crystal. The crystal is pumped by a semiconductor diode laser array at 812 nm. The Nd(3+) ions absorb the 812-nm radiation to generate 1084-nm laser oscillation. On internal Q switching the 1084-nm radiation pumps the LiNbO(3) host crystal that is angle cut at 46.5 degrees and generates optical parametric oscillation. The oscillation threshold that is due to the 1084-nm laser pump with a pulse length of 80 ns in a 1-mm-diameter beam was measured to be approximately 1 mJ and produced 0.5-mJ output at 3400-nm signal wavelength.

  6. Parametric Return Density Estimation for Reinforcement Learning

    CERN Document Server

    Morimura, Tetsuro; Kashima, Hisashi; Hachiya, Hirotaka; Tanaka, Toshiyuki

    2012-01-01

    Most conventional Reinforcement Learning (RL) algorithms aim to optimize decision- making rules in terms of the expected re- turns. However, especially for risk man- agement purposes, other risk-sensitive crite- ria such as the value-at-risk or the expected shortfall are sometimes preferred in real ap- plications. Here, we describe a parametric method for estimating density of the returns, which allows us to handle various criteria in a unified manner. We first extend the Bellman equation for the conditional expected return to cover a conditional probability density of the returns. Then we derive an extension of the TD-learning algorithm for estimating the return densities in an unknown environment. As test instances, several parametric density estimation algorithms are presented for the Gaussian, Laplace, and skewed Laplace dis- tributions. We show that these algorithms lead to risk-sensitive as well as robust RL paradigms through numerical experiments.

  7. Parametrizing modified gravity for cosmological surveys

    Science.gov (United States)

    Gleyzes, Jérôme

    2017-09-01

    One of the challenges in testing gravity with cosmology is the vast freedom opened when extending General Relativity. For linear perturbations, one solution consists in using the effective field theory of dark energy. Even then, the theory space is described in terms of a handful of free functions of time. This needs to be reduced to a finite number of parameters to be practical for cosmological surveys. We explore in this article how well simple parametrizations, with a small number of parameters, can fit observables computed from complex theories. Imposing the stability of linear perturbations appreciably reduces the theory space we explore. We find that observables are not extremely sensitive to short time-scale variations and that simple, smooth parametrizations are usually sufficient to describe this theory space. Using the Bayesian information criterion, we find that using two parameters for each function (an amplitude and a power-law index) is preferred over complex models for 86% of our theory space.

  8. Parametric resonance in spherical immersed elastic shells

    CERN Document Server

    Ko, William

    2014-01-01

    We perform a stability analysis for a fluid-structure interaction problem in which a spherical elastic shell or membrane is immersed in a 3D viscous, incompressible fluid. The shell is an idealised structure having zero thickness, and has the same fluid lying both inside and outside. The problem is formulated mathematically using the immersed boundary framework in which Dirac delta functions are employed to capture the two-way interaction between fluid and immersed structure. The elastic structure is driven parametrically via a time-periodic modulation of the elastic membrane stiffness. We perform a Floquet stability analysis, considering the case of both a viscous and inviscid fluid, and demonstrate that the forced fluid-membrane system gives rise to parametric resonances in which the solution becomes unbounded even in the presence of viscosity. The analytical results are validated using numerical simulations with a 3D immersed boundary code for a range of wavenumbers and physical parameter values. Finally, ...

  9. Revisiting Parametric Types and Virtual Classes

    DEFF Research Database (Denmark)

    Madsen, Anders Bach; Ernst, Erik

    2010-01-01

    This paper presents a conceptually oriented updated view on the relationship between parametric types and virtual classes. The traditional view is that parametric types excel at structurally oriented composition and decomposition, and virtual classes excel at specifying mutually recursive families...... of classes whose relationships are preserved in derived families. Conversely, while class families can be specified using a large number of F-bounded type parameters, this approach is complex and fragile; and it is difficult to use traditional virtual classes to specify object composition in a structural...... manner, because virtual classes are closely tied to nominal typing. This paper adds new insight about the dichotomy between these two approaches; it illustrates how virtual constraints and type refinements, as recently introduced in gbeta and Scala, enable structural treatment of virtual types; finally...

  10. Parametric X-rays at FAST

    Energy Technology Data Exchange (ETDEWEB)

    Sen, Tanaji [Fermilab

    2016-06-01

    We discuss the generation of parametric X-rays (PXR) in the photoinjector at the new FAST facility at Fermilab. Detailed calculations of the intensity spectrum, energy and angular widths and spectral brilliance with a diamond crystal are presented. We also report on expected results with PXR generated while the beam is channeling. The low emittance electron beam makes this facility a promising source for creating brilliant X-rays.

  11. Parametric optimization of inverse trapezoid oleophobic surfaces

    DEFF Research Database (Denmark)

    Cavalli, Andrea; Bøggild, Peter; Okkels, Fridolin

    2012-01-01

    In this paper, we introduce a comprehensive and versatile approach to the parametric shape optimization of oleophobic surfaces. We evaluate the performance of inverse trapezoid microstructures in terms of three objective parameters: apparent contact angle, maximum sustainable hydrostatic pressure...... ratio. The inclusion of mechanical robustness in combination with conventional performance characteristics favors solutions relevant for practical applications, as mechanical stability is a critical issue not often addressed in idealized models....

  12. Bridge Engineering-Oriented Parametric Model

    Institute of Scientific and Technical Information of China (English)

    周凌远; 李乔

    2004-01-01

    A new model is proposed to improve the efficiency of structural modeling. In this model, the bridge structural components are expressed with component description, parametric description and geometric description in a software system. This model provides both convenience and flexibility for users in structural modeling process. The object-oriented method is applied in the model implementation. A bridge analysis preprocessor is developed on the basis of this model. It provides an effective way for bridge modeling.

  13. Multi-Parametric Toolbox 3.0

    OpenAIRE

    Herceg, Martin; Kvasnica, Michal; Jones, Colin; Morari, Manfred

    2013-01-01

    The Multi-Parametric Toolbox is a col- lection of algorithms for modeling, control, analysis, and deployment of constrained optimal controllers developed under Matlab. It features a powerful ge- ometric library that extends the application of the toolbox beyond optimal control to various problems arising in computational geometry. The new version 3.0 is a complete rewrite of the original toolbox with a more flexible structure that offers faster integration of new algorithms. The numerical sid...

  14. An introduction to statistical parametric speech synthesis

    Indian Academy of Sciences (India)

    Simon King

    2011-10-01

    Statistical parametric speech synthesis, based on hidden Markov model-like models, has become competitive with established concatenative techniques over the last few years. This paper offers a non-mathematical introduction to this method of speech synthesis. It is intended to be complementary to the wide range of excellent technical publications already available. Rather than offer a comprehensive literature review, this paper instead gives a small number of carefully chosen references which are good starting points for further reading.

  15. Multidimensional Scaling Visualization using Parametric Similarity Indices

    OpenAIRE

    Tenreiro Machado, J. A.; António M. Lopes; Alexandra M. Galhano

    2015-01-01

    In this paper, we apply multidimensional scaling (MDS) and parametric similarity indices (PSI) in the analysis of complex systems (CS). Each CS is viewed as a dynamical system, exhibiting an output time-series to be interpreted as a manifestation of its behavior. We start by adopting a sliding window to sample the original data into several consecutive time periods. Second, we define a given PSI for tracking pieces of data. We then compare the windows for different values of the parameter, an...

  16. Simple parametrization of the. pi. -N amplitude

    Energy Technology Data Exchange (ETDEWEB)

    McLeod, R.J.; Afnan, I.R.

    1985-07-01

    We present a simple parametrization of the S-, P-, and D-wave ..pi..-N amplitudes using separable potentials for T/sub ..pi../<1 GeV. The effect of the inelasticity is included in the Green's function while maintaining consistency with unitarity. The P/sub 11/ amplitude is written as a pole plus nonpole in order to describe pion absorption in A> or =2.

  17. Parametric motivation bases of floranimic nomination

    Directory of Open Access Journals (Sweden)

    Olga P. Ryabko

    2016-09-01

    Full Text Available The period of further development in the cognitive theory of nomination has been extensive in recent years. Our research has been concentrated on the formation of conceptual foundations in cognitive theory of flora nomination. The macrofield of flora namings embraces three microfields: parametric, pragmatic and locative-temporal ones. They determine motivation processes in cognitive theory of flora nomination, i.e., the presentation of systematic qualities in flora namings in the English language. The description and characterization of such qualities presupposes the existence of their taxonomic organization and methodology criteria, both general and practical ones. Flora namings on the phenomenological level are considered to be the products of naöve-cognitive consciousness of language speakers. They are determined, from the one hand, by the external perceptive adaptations (parametric nomination and, from the other hand, by practical needs (pure pragmatic nomination and local-temporal nomination. In this article we have concentrated on the complex parametric motivated basis of flora nomination. It is presented by a number of qualities, firstly, by dominative qualities («form», «appearance and manner of growth», «color», secondly, by peripheral qualities («odour», «taste», «size» and, finally, by minor qualities («sound», «weight», «genger». In the structure of complex parametric nomination the only one conerete qualitative element from the whole combination of qualities becomes the leading one. The cultural-archetypal dominant element determines. In each concrete situation, the choice of preferable prototypal motivated quality.

  18. Parametric study of laser photovoltaic energy converters

    Science.gov (United States)

    Walker, G. H.; Heinbockel, J. H.

    1987-01-01

    Photovoltaic converters are of interest for converting laser power to electrical power in a space-based laser power system. This paper describes a model for photovoltaic laser converters and the application of this model to a neodymium laser silicon photovoltaic converter system. A parametric study which defines the sensitivity of the photovoltaic parameters is described. An optimized silicon photovoltaic converter has an efficiency greater than 50 percent for 1000 W/sq cm of neodymium laser radiation.

  19. Parametric Landau damping of space charge modes

    CERN Document Server

    Macridin, Alexandru; Stern, Eric; Amundson, James; Spentzouris, Panagiotis

    2016-01-01

    Landau damping is the mechanism of plasma and beam stabilization; it is caused by energy transfer from collective modes to incoherent motion of resonant particles. Normally this resonance requires the wave frequency in the particle frame to match the resonant particles frequency. Using the Synergia modeling package to study transverse coherent modes of bunched beams with space charge, we have identified a new kind of damping mechanism, parametric Landau damping, driven by the modulation of the wave-particle interaction.

  20. Parametric Portfolio Policies with Common Volatility Dynamics

    OpenAIRE

    Ergemen, Yunus Emre; Taamouti, Abderrahim

    2015-01-01

    A parametric portfolio policy function is considered that incorporates common stock volatility dynamics to optimally determine portfolio weights. Reducing dimension of the traditional portfolio selection problem significantly, only a number of policy parameters corresponding to first- and second-order characteristics are estimated based on a standard method-of-moments technique. The method, allowing for the calculation of portfolio weight and return statistics, is illustrated with an empirica...

  1. Modified Empirical Parametrization of Fragmentation Cross Sections

    CERN Document Server

    Sümmerer, K

    2000-01-01

    New experimental data obtained mainly at the GSI/FRS facility allow to modify the empirical parametrization of fragmentation cross sections, EPAX. It will be shown that minor modifications of the parameters lead to a much better reproduction of measured cross sections. The most significant changes refer to the description of fragmentation yields close to the projectile and of the memory effect of neutron-deficient projectiles.

  2. Multidimensional Scaling Visualization using Parametric Similarity Indices

    OpenAIRE

    Tenreiro Machado, J. A.; Lopes, António M.; Alexandra M. Galhano

    2015-01-01

    In this paper, we apply multidimensional scaling (MDS) and parametric similarity indices (PSI) in the analysis of complex systems (CS). Each CS is viewed as a dynamical system, exhibiting an output time-series to be interpreted as a manifestation of its behavior. We start by adopting a sliding window to sample the original data into several consecutive time periods. Second, we define a given PSI for tracking pieces of data. We then compare the windows for different values of the parameter, an...

  3. A parametrized optimized effective potential for atoms

    Energy Technology Data Exchange (ETDEWEB)

    Sarsa, A; Galvez, F J; BuendIa, E [Departamento de FIsica Moderna, Facultad de Ciencias, Universidad de Granada, E-18071 Granada (Spain)

    2003-11-28

    The optimized effective potential equations for atoms have been solved by parametrizing the potential. The expansion is tailored to match the known asymptotic behaviour of the effective potential at both short and long distances. Both single configuration and multi-configuration trial wavefunctions are implemented. Applications to several atomic systems are presented, improving on previous works. The results obtained here are very close to those calculated in either the Hartree-Fock (HF) or the multi-configurational HF framework.

  4. A variable parameter parametric snake method

    Science.gov (United States)

    Marouf, A.; Houacine, A.

    2015-12-01

    In this paper, we introduce a new approach to parametric snake method by using variable snake parameters. Adopting fixed parameter values for all points of the snake, as usual, constitutes by itself a limitation that leads to poor performances in terms of convergence and tracking properties. A more adapted choice should be the one that allows selection depending on the image region properties as on the contour shape and position. However, such variability is not an easy task in general and a precise method need to be defined to assure contour point dependent tuning at iterations. We were particularly interested in applying this idea to the recently presented parametric method [1]. In the work mentioned, an attraction term is used to improve the convergence of the standard parametric snake without a significant increase in computational load. We show here, that improved performances can ensue from applying variable parameter concepts. For this purpose, the method is first analyzed and then a procedure is developed to assure an automatic variable parameter tuning. The interest of our approach is illustrated through object segmentation results.

  5. Free response approach in a parametric system

    Science.gov (United States)

    Huang, Dishan; Zhang, Yueyue; Shao, Hexi

    2017-07-01

    In this study, a new approach to predict the free response in a parametric system is investigated. It is proposed in the special form of a trigonometric series with an exponentially decaying function of time, based on the concept of frequency splitting. By applying harmonic balance, the parametric vibration equation is transformed into an infinite set of homogeneous linear equations, from which the principal oscillation frequency can be computed, and all coefficients of harmonic components can be obtained. With initial conditions, arbitrary constants in a general solution can be determined. To analyze the computational accuracy and consistency, an approach error function is defined, which is used to assess the computational error in the proposed approach and in the standard numerical approach based on the Runge-Kutta algorithm. Furthermore, an example of a dynamic model of airplane wing flutter on a turbine engine is given to illustrate the applicability of the proposed approach. Numerical solutions show that the proposed approach exhibits high accuracy in mathematical expression, and it is valuable for theoretical research and engineering applications of parametric systems.

  6. parfm : Parametric Frailty Models in R

    Directory of Open Access Journals (Sweden)

    Marco Munda

    2012-11-01

    Full Text Available Frailty models are getting more and more popular to account for overdispersion and/or clustering in survival data. When the form of the baseline hazard is somehow known in advance, the parametric estimation approach can be used advantageously. Nonetheless, there is no unified widely available software that deals with the parametric frailty model. The new parfm package remedies that lack by providing a wide range of parametric frailty models in R. The gamma, inverse Gaussian, and positive stable frailty distributions can be specified, together with five different baseline hazards. Parameter estimation is done by maximising the marginal log-likelihood, with right-censored and possibly left-truncated data. In the multivariate setting, the inverse Gaussian may encounter numerical difficulties with a huge number of events in at least one cluster. The positive stable model shows analogous difficulties but an ad-hoc solution is implemented, whereas the gamma model is very resistant due to the simplicity of its Laplace transform.

  7. Stellar parametrization from Gaia RVS spectra

    CERN Document Server

    Recio-Blanco, A; Prieto, C Allende; Fustes, D; Manteiga, M; Arcay, B; Bijaoui, A; Dafonte, C; Ordenovic, C; Blanco, D Ordoñez

    2016-01-01

    Among the myriad of data collected by the ESA Gaia satellite, about 150 million spectra will be delivered by the Radial Velocity Spectrometer (RVS) for stars as faint as G_RVS~16. A specific stellar parametrization will be performed for most of these RVS spectra. Some individual chemical abundances will also be estimated for the brightest targets. We describe the different parametrization codes that have been specifically developed or adapted for RVS spectra within the GSP-spec working group of the analysis consortium. The tested codes are based on optimization (FERRE and GAUGUIN), projection (MATISSE) or pattern recognition methods (Artificial Neural Networks). We present and discuss their expected performances in the recovered stellar atmospheric parameters (Teff, log(g), [M/H]) for B- to K- type stars. The performances for the determinations of [alpha/Fe] ratios are also presented for cool stars. For all the considered stellar types, stars brighter than G_RVS~12.5 will be very efficiently parametrized by t...

  8. Ising and Bloch domain walls in a two-dimensional parametrically driven Ginzburg-Landau equation model with nonlinearity management

    DEFF Research Database (Denmark)

    Gaididei, Yu. B.; Christiansen, Peter Leth

    2008-01-01

    We study a parametrically driven Ginzburg-Landau equation model with nonlinear management. The system is made of laterally coupled long active waveguides placed along a circumference. Stationary solutions of three kinds are found: periodic Ising states and two types of Bloch states, staggered...... and unstaggered. The stability of these states is investigated analytically and numerically. The nonlinear dynamics of the Bloch states are described by a complex Ginzburg-Landau equation with linear and nonlinear parametric driving. The switching between the staggered and unstaggered Bloch states under...

  9. A probabilistic strategy for parametric catastrophe insurance

    Science.gov (United States)

    Figueiredo, Rui; Martina, Mario; Stephenson, David; Youngman, Benjamin

    2017-04-01

    Economic losses due to natural hazards have shown an upward trend since 1980, which is expected to continue. Recent years have seen a growing worldwide commitment towards the reduction of disaster losses. This requires effective management of disaster risk at all levels, a part of which involves reducing financial vulnerability to disasters ex-ante, ensuring that necessary resources will be available following such events. One way to achieve this is through risk transfer instruments. These can be based on different types of triggers, which determine the conditions under which payouts are made after an event. This study focuses on parametric triggers, where payouts are determined by the occurrence of an event exceeding specified physical parameters at a given location, or at multiple locations, or over a region. This type of product offers a number of important advantages, and its adoption is increasing. The main drawback of parametric triggers is their susceptibility to basis risk, which arises when there is a mismatch between triggered payouts and the occurrence of loss events. This is unavoidable in said programmes, as their calibration is based on models containing a number of different sources of uncertainty. Thus, a deterministic definition of the loss event triggering parameters appears flawed. However, often for simplicity, this is the way in which most parametric models tend to be developed. This study therefore presents an innovative probabilistic strategy for parametric catastrophe insurance. It is advantageous as it recognizes uncertainties and minimizes basis risk while maintaining a simple and transparent procedure. A logistic regression model is constructed here to represent the occurrence of loss events based on certain loss index variables, obtained through the transformation of input environmental variables. Flood-related losses due to rainfall are studied. The resulting model is able, for any given day, to issue probabilities of occurrence of loss

  10. Four five-parametric and five four-parametric independent confluent Heun potentials for the stationary Klein-Gordon equation

    Science.gov (United States)

    Tarloyan, A. S.; Ishkhanyan, T. A.; Ishkhanyan, A. M.

    2016-04-01

    We present in total fifteen potentials for which the stationary Klein-Gordon equation is solvable in terms of the confluent Heun functions. Because of the symmetry of the confluent Heun equation with respect to the transposition of its regular singularities, only nine of the potentials are independent. Four of these independent potentials are five-parametric. One of them possesses a four-parametric ordinary hypergeometric sub-potential, another one possesses a four-parametric confluent hypergeometric sub-potential, and one potential possesses four-parametric sub-potentials of both hypergeometric types. The fourth five-parametric potential has a three-parametric confluent hypergeometric sub-potential, which is, however, only conditionally integrable. The remaining five independent Heun potentials are four-parametric and have solutions only in terms of irreducible confluent Heun functions.

  11. A Stable Parametric Finite Element Discretization of Two-Phase Navier--Stokes Flow

    CERN Document Server

    Barrett, John W; Nürnberg, Robert

    2013-01-01

    We present a parametric finite element approximation of two-phase flow. This free boundary problem is given by the Navier--Stokes equations in the two phases, which are coupled via jump conditions across the interface. Using a novel variational formulation for the interface evolution gives rise to a natural discretization of the mean curvature of the interface. The parametric finite element approximation of the evolving interface is then coupled to a standard finite element approximation of the two-phase Navier--Stokes equations in the bulk. Here enriching the pressure approximation space with the help of an XFEM function ensures good volume conservation properties for the two phase regions. In addition, the mesh quality of the parametric approximation of the interface in general does not deteriorate over time, and an equidistribution property can be shown for a semidiscrete continuous-in-time variant of our scheme in two space dimensions. Moreover, our finite element approximation can be shown to be uncondit...

  12. Light non-degenerate composite partners at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Delaunay, Cédric [LAPTH, Université de Savoie, CNRS,B.P.110, F-74941 Annecy-le-Vieux (France); CERN Physics Department, Theory Division,CH-1211 Geneva 23 (Switzerland); Flacke, Thomas [Department of Physics, Korea Advanced Institute of Science and Technology,335 Gwahak-ro, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Gonzalez-Fraile, J. [Departament d’Estructura i Constituents de la Matèria and ICC-UB,Universitat de Barcelona, 647 Diagonal, E-08028 Barcelona (Spain); Lee, Seung J. [Department of Physics, Korea Advanced Institute of Science and Technology,335 Gwahak-ro, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); School of Physics, Korea Institute for Advanced Study,Seoul 130-722 (Korea, Republic of); Panico, Giuliano [CERN Physics Department, Theory Division,CH-1211 Geneva 23 (Switzerland); Perez, Gilad [CERN Physics Department, Theory Division,CH-1211 Geneva 23 (Switzerland); Department of Particle Physics and Astrophysics, Weizmann Institute of Science,Rehovot 76100 (Israel)

    2014-02-13

    We study the phenomenological implications of a large degree of compositeness for the light generation quarks in composite pseudo-Nambu-Goldstone-boson Higgs models. We focus in particular on phenomenologically viable scenarios where the right-handed up-type quarks have a sizable mixing with the strong dynamics. For concreteness we assume the latter to be characterized by an SO(5)/SO(4) symmetry with fermionic resonances in the SO(4) singlet and fourplet representations. Singlet partners dominantly decay to a Higgs boson and jets. Since no dedicated searches are currently looking for these final states, singlet partners can still be rather light. Conversely, some fourplet partner components dominantly decay to an electroweak gauge boson and a jet, a type of signature which has been analysed at the LHC. We have reinterpreted various ATLAS and CMS analyses in order to constrain the parameter space of this class of models. In the limit of first two generation degeneracy, as in minimal flavor violation or U(2)-symmetric flavor models, fourplet partners need to be relatively heavy, with masses above 1.8 TeV, or the level of compositeness needs to be rather small. The situation is significantly different in models which deviate from the first two generation degeneracy paradigm, as charm quark parton distribution functions are suppressed relative to the up quark ones. We find that the right-handed charm quark component can be mostly composite together with their partners being as light as 600 GeV, while the right-handed up quark needs either to be mostly elementary or to have partners as heavy as 2 TeV. Models where right-handed up-type quarks are fully composite fermions are also analysed and yield qualitatively similar conclusions. Finally, we consider the case where both the fourplet and the singlet states are present. We demonstrate that in this case the fourplet bounds could be significantly weaken due to a combination of smaller production rates and the opening of new channels including cascade processes.

  13. Some new examples of non-degenerate quiver potentials

    CERN Document Server

    de Völcsey, Louis de Thanhoffer

    2010-01-01

    We prove a technical result which allows us to establish the non-degeneracy of potentials on quivers in some previously unknown cases. Our result applies to McKay quivers and also to potentials derived from geometric helices on Del Pezzo surfaces. On the other hand we also give an example of a skew group ring with a degenerate potential. This shows that for 3-CY orders Iyama-Reiten mutations cannot always be iterated indefinitely.

  14. Quantum spatial propagation of squeezed light in a degenerate parametric amplifier

    Science.gov (United States)

    Deutsch, Ivan H.; Garrison, John C.

    1992-01-01

    Differential equations which describe the steady state spatial evolution of nonclassical light are established using standard quantum field theoretic techniques. A Schroedinger equation for the state vector of the optical field is derived using the quantum analog of the slowly varying envelope approximation (SVEA). The steady state solutions are those that satisfy the time independent Schroedinger equation. The resulting eigenvalue problem then leads to the spatial propagation equations. For the degenerate parametric amplifier this method shows that the squeezing parameter obey nonlinear differential equations coupled by the amplifier gain and phase mismatch. The solution to these differential equations is equivalent to one obtained from the classical three wave mixing steady state solution to the parametric amplifier with a nondepleted pump.

  15. Observation of Quantum Beat in Rb by Parametric Four-Wave Mixing

    Institute of Scientific and Technical Information of China (English)

    ZHU Chang-Jun; HE Jun-Fang; XUE Bing; ZHAI Xue-Jun

    2007-01-01

    @@ Two coupled parametric four-wave-mixing processes in Rb atoms are studied using perturbation theory, which reveals clear evidence of the appearance of quantum beat at 608cm-1, corresponding to the energy difference of the 7s - 5d states of Rb atoms, in the parametric four-wave-mixing signals. A pump-probe technique is utilized to observe the quantum beat. Time-varying characteristics of the quantum beat are investigated using time-dependent Fourier transform. The results show that the time-varying characteristics of the quantum beat not only offers a sensitive detecting method for observing the decay of atomic wave packets, but also provides a potential tool for monitoring the dissociation of molecules.

  16. PARAMETRIC IDENTIFICATION AND SENSITIVITY ANALYSIS FOR AUTONOMOUS UNDERWATER VEHICLES IN DIVING PLANE

    Institute of Scientific and Technical Information of China (English)

    XU Feng; ZOU Zao-jian; YIN Jian-chuan; CAO Jian

    2012-01-01

    The inherent strongly nonlinear and coupling performance of the Autonomous Underwater Vehicles (AUV),maneuvering motion in the diving plane determines its difficulty in parametric identification.The motion parameters in diving plane are obtained by executing the Zigzag-like motion based on a mathematical model of maneuvering motion.A separate identification method is put forward for parametric identification by investigating the motion equations.Support vector machine is proposed to estimate the hydrodynamic derivatives by analyzing the data of surge,heave and pitch motions.Compared with the standard coefficients,the identified parameters show the validation of the proposed identification method.Sensitivity analysis based on numerical simulation demonstrates that poor sensitive derivative gives bad estimation results.Finally the motion simulation is implemented based on the dominant sensitive derivatives to verify the reconstructed model.

  17. Degenerate optomechanical parametric oscillators: cooling in the vicinity of a critical point

    CERN Document Server

    Degenfeld-Schonburg, Peter; Hartmann, Michael J; Navarrete-Benlloch, Carlos

    2015-01-01

    Degenerate optomechanical parametric oscillators are optical resonators in which a mechanical degree of freedom is coupled to a cavity mode that is nonlinearly amplified via parametric down-conversion of an external pumping laser. Below a critical pumping power the down-converted field is purely quantum-mechanical, making the theoretical description of such systems very challenging. Here we introduce a theoretical approach that is capable of describing this regime, even at the critical point itself. We find that the down-converted field can induce significant mechanical cooling and identify the process responsible of this as a "cooling by heating" mechanism. Moreover, we show that, contrary to naive expectations and semi-classical predictions, cooling is not optimal at the critical point, where the photon number is largest. Our approach opens the possibility for analyzing further hybrid dissipative quantum systems in the vicinity of critical points.

  18. Noise performance of phase-insensitive frequency multicasting in parametric mixer with finite dispersion.

    Science.gov (United States)

    Tong, Zhi; Wiberg, Andreas O J; Myslivets, Evgeny; Huynh, Chris K; Kuo, Bill P P; Alic, Nikola; Radic, Stojan

    2013-07-29

    Noise performance of dual-pump, multi-sideband parametric mixer operated in phase-insensitive mode is investigated theoretically and experimentally. It is shown that, in case when a large number of multicasting idlers are generated, the noise performance is strictly dictated by the dispersion characteristics of the mixer. We find that the sideband noise performance is significantly degraded in anomalous dispersion region permitting nonlinear noise amplification. In contrast, in normal dispersion region, the noise performance converges to the level of four-sideband parametric process, rather than deteriorates with increased sideband creation. Low noise generation mandates precise dispersion-induced phase mismatch among pump and sideband waves in order to control the noise coupling. We measure the noise performance improvement for a many-sideband, multi-stage mixer by incorporating new design technique.

  19. Emergence of chaos in starlike networks of dissipative nonlinear oscillators by localized parametric excitations

    Science.gov (United States)

    Chacón, R.; García-Hoz, A. Martínez; Martínez, J. A.

    2017-05-01

    We study the effectiveness of locally controlling the impulse transmitted by parametric periodic excitations at inducing and suppressing chaos in starlike networks of driven damped pendula, leading to asynchronous chaotic states and equilibria, respectively. We found that the inducing (suppressor) effect of increasing (decreasing) the impulse transmitted by the parametric excitations acting on particular nodes depends strongly on their number and degree of connectivity as well as the coupling strength. Additionally, we provide a theoretical analysis explaining the basic physical mechanisms of the emergence and suppression of chaos as well as the main features of the chaos-control scenario. Our findings constitute proof of the impulse-induced control of chaos in a simple model of complex networks, thus opening the way to its application to real-world networks.

  20. Superconducting qubit in a nonstationary transmission line cavity: Parametric excitation, periodic pumping, and energy dissipation

    Science.gov (United States)

    Zhukov, A. A.; Shapiro, D. S.; Remizov, S. V.; Pogosov, W. V.; Lozovik, Yu. E.

    2017-02-01

    We consider a superconducting qubit coupled to the nonstationary transmission line cavity with modulated frequency taking into account energy dissipation. Previously, it was demonstrated that in the case of a single nonadiabatical modulation of a cavity frequency there are two channels of a two-level system excitation which are due to the absorption of Casimir photons and due to the counterrotating wave processes responsible for the dynamical Lamb effect. We show that the parametric periodical modulation of the resonator frequency can increase dramatically the excitation probability. Remarkably, counterrotating wave processes under such a modulation start to play an important role even in the resonant regime. Our predictions can be used to control qubit-resonator quantum states as well as to study experimentally different channels of a parametric qubit excitation.

  1. LHC HXSWG interim recommendations to explore the coupling structure of a Higgs-like particle

    CERN Document Server

    David, A; Duehrssen, M; Grazzini, M; Grojean, C; Passarino, G; Schumacher, M; Spira, M; Weiglein, G; Zanetti, M

    2012-01-01

    This document presents an interim framework in which the coupling structure of a Higgs-like particle can be studied. After discussing different options and approximations, recommendations on specific benchmark parametrizations to be used to fit the data are given.

  2. Unpolarized coupled DGLAP evolution equation at small-

    Indian Academy of Sciences (India)

    Saurav Bhattacharjee; Ranjit Baishya; Jayanata Kumar Sarma

    2013-01-01

    In this paper, we have obtained the solution of the unpolarized coupled Dokshitzer–Gribove–Lipatov–Alterelli–Parisi (DGLAP) evolution equation in leading order at the small- limit. Here, we have used a Taylor series expansion, separation of functions and then the method of characteristics to solve the evolution equations. We have also calculated -evolution of singlet and gluon distribution functions and the results are compared with E665 and NNPDF data for singlet structure function and GRV1998 and MRST2004 gluon parametrizations. It is shown that our results are in good agreement with the parametrizations especially at small-x and high-2 region. From global parametrizations and our results, we have seen that the singlet and gluon distribution functions increase when 2 increases for fixed values of .

  3. Parametrization of orographic thermal effect on the deep convection triggering in Global Model

    Science.gov (United States)

    Jingmei, Y.; Jean-Yves, G.; Alain, L.

    2013-05-01

    The work is based on the hypothesis that anabatic winds (or valley breeze) is an important mechanism of deep convection triggering. Induced by the temperature difference between the mountain surface and the environmental air, anabatic winds own a kinetic energy which may eventually overcome the Planet Boundary Layer inhibition (CIN, Convective Inhibition) and allows the associated convection to develop into the free troposphere. This sub-grid scale phenomenon needs a special parametrization in general circulation models (GCMs). Its lack of representation in present GCM versions is thought of being the cause of the deficit of deep convection systems genesis observed in certain orographical zones, as Mount Cameroun in West Africa for example. A valley breeze parametrization has been designed and built in a GCM (LMDZ). The model computes kinetic energy of the valley breeze in relation to the sub-grid scale orographical characteristics (elevation, slope, orientation). It consists of a grid slim layer along the mountain surface. It is coupled with a multi-layers conductive-capacitive soil model. The coupling is accomplished by using the energy budget at the surface of the mountain. The model was tested in the dynamical mode by systematic sensitivity analysis to the principal parameters and to the environmental conditions. It has then been implemented in the 1D version of the GCM (SCM, Single Column Model), coupled with the Emanuel deep convection scheme, and tested against a radiative-convective equilibrium case and the Hapex campaign case. The stationnary solution of the aeraulic part of the model has been adopted for the GCM. The parametrization finally has been introduced in the 3D version of the GCM, in the diagnostic mode (without coupling to the convection process). It gives a spatial distribution of the triggering frequency of deep convection in coherence with that of the satellite image observation in the West Africa region, during the West African Monsoon

  4. Parametric study of modern airship productivity

    Science.gov (United States)

    Ardema, M. D.; Flaig, K.

    1980-01-01

    A method for estimating the specific productivity of both hybrid and fully buoyant airships is developed. Various methods of estimating structural weight of deltoid hybrids are discussed and a derived weight estimating relationship is presented. Specific productivity is used as a figure of merit in a parametric study of fully buoyant ellipsoidal and deltoid hybrid semi-buoyant vehicles. The sensitivity of results as a function of assumptions is also determined. No airship configurations were found to have superior specific productivity to transport airplanes.

  5. Parametric uncertain identification of a robotic system

    Science.gov (United States)

    Angel, L.; Viola, J.; Hernández, C.

    2016-07-01

    This paper presents the parametric uncertainties identification of a robotic system of one degree of freedom. A MSC-ADAMS / MATLAB co-simulation model was built to simulate the uncertainties that affect the robotic system. For a desired trajectory, a set of dynamic models of the system was identified in presence of variations in the mass, length and friction of the system employing least squares method. Using the input-output linearization technique a linearized model plant was defined. Finally, the maximum multiplicative uncertainty of the system was modelled giving the controller desired design conditions to achieve a robust stability and performance of the closed loop system.

  6. Non-Parametric Estimation of Correlation Functions

    DEFF Research Database (Denmark)

    Brincker, Rune; Rytter, Anders; Krenk, Steen

    In this paper three methods of non-parametric correlation function estimation are reviewed and evaluated: the direct method, estimation by the Fast Fourier Transform and finally estimation by the Random Decrement technique. The basic ideas of the techniques are reviewed, sources of bias are pointed...... out, and methods to prevent bias are presented. The techniques are evaluated by comparing their speed and accuracy on the simple case of estimating auto-correlation functions for the response of a single degree-of-freedom system loaded with white noise....

  7. Generalized fairing algorithm of parametric cubic splines

    Institute of Scientific and Technical Information of China (English)

    WANG Yuan-jun; CAO Yuan

    2006-01-01

    Kjellander has reported an algorithm for fairing uniform parametric cubic splines. Poliakoff extended Kjellander's algorithm to non-uniform case. However, they merely changed the bad point's position, and neglected the smoothing of tangent at bad point. In this paper, we present a fairing algorithm that both changed point's position and its corresponding tangent vector. The new algorithm possesses the minimum property of energy. We also proved Poliakoff's fairing algorithm is a deduction of our fairing algorithm. Several fairing examples are given in this paper.

  8. Parametric Portfolio Policies with Common Volatility Dynamics

    DEFF Research Database (Denmark)

    Ergemen, Yunus Emre; Taamouti, Abderrahim

    A parametric portfolio policy function is considered that incorporates common stock volatility dynamics to optimally determine portfolio weights. Reducing dimension of the traditional portfolio selection problem significantly, only a number of policy parameters corresponding to first- and second......-order characteristics are estimated based on a standard method-of-moments technique. The method, allowing for the calculation of portfolio weight and return statistics, is illustrated with an empirical application to 30 U.S. industries to study the economic activity before and after the recent financial crisis....

  9. Lottery spending: a non-parametric analysis.

    Science.gov (United States)

    Garibaldi, Skip; Frisoli, Kayla; Ke, Li; Lim, Melody

    2015-01-01

    We analyze the spending of individuals in the United States on lottery tickets in an average month, as reported in surveys. We view these surveys as sampling from an unknown distribution, and we use non-parametric methods to compare properties of this distribution for various demographic groups, as well as claims that some properties of this distribution are constant across surveys. We find that the observed higher spending by Hispanic lottery players can be attributed to differences in education levels, and we dispute previous claims that the top 10% of lottery players consistently account for 50% of lottery sales.

  10. Lottery spending: a non-parametric analysis.

    Directory of Open Access Journals (Sweden)

    Skip Garibaldi

    Full Text Available We analyze the spending of individuals in the United States on lottery tickets in an average month, as reported in surveys. We view these surveys as sampling from an unknown distribution, and we use non-parametric methods to compare properties of this distribution for various demographic groups, as well as claims that some properties of this distribution are constant across surveys. We find that the observed higher spending by Hispanic lottery players can be attributed to differences in education levels, and we dispute previous claims that the top 10% of lottery players consistently account for 50% of lottery sales.

  11. High-Energy Optical Parametric Waveform Synthesizer

    OpenAIRE

    Muecke, Oliver D.; Cirmi, G.; Fang, S.; Rossi, G. M.; Chia, Shih-Hsuan; Kärtner, F. X.; Manzoni, C.; Farinello, P.; Cerullo, and G.

    2014-01-01

    We discuss the ongoing development of a phase-stable, multi-mJ 3-channel parametric waveform synthesizer generating a 2-octave-wide spectrum (0.52-2.4μm). After two amplification stages, the combined >125-μJ output supports 1.9-fs waveforms. First preliminary FROG-characterization results of the second-stage outputs demonstrate the feasibility to recompress all three channels simultaneously close to the Fourier limit. Energy scaling to ~2 mJ is achieved after three amplification stages. The f...

  12. Parametric Regression Models Using Reversed Hazard Rates

    Directory of Open Access Journals (Sweden)

    Asokan Mulayath Variyath

    2014-01-01

    Full Text Available Proportional hazard regression models are widely used in survival analysis to understand and exploit the relationship between survival time and covariates. For left censored survival times, reversed hazard rate functions are more appropriate. In this paper, we develop a parametric proportional hazard rates model using an inverted Weibull distribution. The estimation and construction of confidence intervals for the parameters are discussed. We assess the performance of the proposed procedure based on a large number of Monte Carlo simulations. We illustrate the proposed method using a real case example.

  13. SYNTHESIZED EXPECTED BAYESIAN METHOD OF PARAMETRIC ESTIMATE

    Institute of Scientific and Technical Information of China (English)

    Ming HAN; Yuanyao DING

    2004-01-01

    This paper develops a new method of parametric estimate, which is named as "synthesized expected Bayesian method". When samples of products are tested and no failure events occur, thedefinition of expected Bayesian estimate is introduced and the estimates of failure probability and failure rate are provided. After some failure information is introduced by making an extra-test, a synthesized expected Bayesian method is defined and used to estimate failure probability, failure rateand some other parameters in exponential distribution and Weibull distribution of populations. Finally,calculations are performed according to practical problems, which show that the synthesized expected Bayesian method is feasible and easy to operate.

  14. A computer application for parametric aircraft design

    Science.gov (United States)

    Fraqueiro, Filipe R.; Albuquerque, Pedro F.; Gamboa, Pedro V.

    2016-11-01

    The present work describes the development and final result of a graphical user interface tailored for a mission-based parametric aircraft design optimization code which targets the preliminary design phase of unmanned aerial vehicles. This development was built from the XFLR5 open source platform and further benefits from two-dimensional aerodynamic data obtained from XFOIL. For a better understanding, the most important graphical windows are shown. In order to demonstrate the graphical user interface interaction with the aircraft designer, the results of a case study which maximizes payload are presented.

  15. Falsifying Oscillation Properties of Parametric Biological Models

    Directory of Open Access Journals (Sweden)

    Thao Dang

    2013-08-01

    Full Text Available We propose an approach to falsification of oscillation properties of parametric biological models, based on the recently developed techniques for testing continuous and hybrid systems. In this approach, an oscillation property can be specified using a hybrid automaton, which is then used to guide the exploration in the state and input spaces to search for the behaviors that do not satisfy the property. We illustrate the approach with the Laub-Loomis model for spontaneous oscillations during the aggregation stage of Dictyostelium.

  16. Parametric Architectural Design with Point-clouds

    DEFF Research Database (Denmark)

    Zwierzycki, Mateusz; Evers, Henrik Leander; Tamke, Martin

    2016-01-01

    This paper investigates the efforts and benefits of the implementation of point clouds into architectural design processes and tools. Based on a study on the principal work processes of designers with point clouds the prototypical plugin/library - Volvox - was developed for the parametric modelling...... environment Grasshopper in Rhino. The prototype allows us to discuss the necessary technical layer for the task, benchmark the tool, and finally to evaluate the benefits, that this approach has for architectural practice, through a series of use cases....

  17. Parametric control systems design with applications in missile control

    Institute of Scientific and Technical Information of China (English)

    DUAN GuangRen; YU HaiHua; TAN Feng

    2009-01-01

    This paper considers parametric control of high-order descriptor linear systems via proportional plus derivative feedback.By employing general parametric solutions to a type of so-called high-order Sylvester matrix equations,complete parametric control approaches for high-order linear systems are presented.The proposed approaches give simple complete parametric expressions for the feedback gains and the closed-loop eigenvector matrices,and produce all the design degrees of freedom.Furthermore,Important special cases are particularly treated.Based on the proposed parametric design approaches,a parametric method for the gain-scheduling controller design of a linear time-varying system is proposed and the design of a BTT missile autopilot is carried out.The simulation results show that the method is superior to the traditional one in sense of either global stability or system performance.

  18. Synchronization of chaos in non-identical parametrically excited systems

    Energy Technology Data Exchange (ETDEWEB)

    Idowu, B.A. [Department of Physics, Lagos State University, Ojo (Nigeria)], E-mail: babaidowu@yahoo.com; Vincent, U.E. [Department of Physics, Olabisi Onabanjo University, P.M.B 2002, Ago-Iwoye (Nigeria)], E-mail: ue_vincent@yahoo.com; Njah, A.N. [Department of Physics, University of Agriculture, Abeokuta (Nigeria)

    2009-03-15

    In this paper, we investigate the synchronization of chaotic systems consisting of non-identical parametrically excited oscillators. The active control technique is employed to design control functions based on Lyapunov stability theory and Routh-Hurwitz criteria so as to achieve global chaos synchronization between a parametrically excited gyroscope and each of the parametrically excited pendulum and Duffing oscillator. Numerical simulations are implemented to verify the results.

  19. Global synchronization of two parametrically excited systems using active control

    Energy Technology Data Exchange (ETDEWEB)

    Lei Youming [Department of Applied Mathematics, Northwestern Polytechnical University, Xi' an 710072 (China)] e-mail: leiyouming@nwpu.edu.cn; Xu Wei [Department of Applied Mathematics, Northwestern Polytechnical University, Xi' an 710072 (China)] e-mail: weixu@nwpu.edu.cn; Shen Jianwei [Department of Applied Mathematics, Northwestern Polytechnical University, Xi' an 710072 (China); Fang Tong [Department of Engineering Mechanics, Northwestern Polytechnical University, Xi' an 710072 (China)

    2006-04-01

    In this paper, we apply an active control technique to synchronize a kind of two parametrically excited chaotic systems. Based on Lyapunov stability theory and Routh-Hurwitz criteria, some generic sufficient conditions for global asymptotic synchronization are obtained. Illustrative examples on synchronization of two Duffing systems subject to a harmonic parametric excitation and that of two parametrically excited chaotic pendulums are considered here. Numerical simulations show the validity and feasibility of the proposed method.

  20. Characterization of a multimode coplanar waveguide parametric amplifier

    Energy Technology Data Exchange (ETDEWEB)

    Simoen, M., E-mail: simoen@chalmers.se; Krantz, P.; Bylander, Jonas; Shumeiko, V.; Delsing, P. [Department of Microtechnology and Nanoscience (MC2), Chalmers University of Technology, Göteborg SE-412 96 (Sweden); Chang, C. W. S.; Wilson, C. M. [Institute for Quantum Computing and Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada); Wustmann, W. [Department of Microtechnology and Nanoscience (MC2), Chalmers University of Technology, Göteborg SE-412 96 (Sweden); Laboratory for Physical Sciences, College Park, Maryland 20740 (United States)

    2015-10-21

    We characterize a Josephson parametric amplifier based on a flux-tunable quarter-wavelength resonator. The fundamental resonance frequency is ∼1 GHz, but we use higher modes of the resonator for our measurements. An on-chip tuning line allows for magnetic flux pumping of the amplifier. We investigate and compare degenerate parametric amplification, involving a single mode, and nondegenerate parametric amplification, using a pair of modes. We show that we reach quantum-limited noise performance in both cases.

  1. Tuneable frequency up-conversion based on biased asymmetric coupled quantum well structure

    Energy Technology Data Exchange (ETDEWEB)

    Hu Zhenhua [Department of Physics, Science College, Wuhan University of Technology, 430063, Wuhan, Hubei (China); Huang Dexiu, E-mail: hzh267@sohu.com [Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, 430074, Wuhan, Hubei (China)

    2011-02-01

    The behaviours of the optical nonlinear susceptibility {chi}{sup (3)} responsible for the phase-conjugate beam of frequency conversion in non-degenerate four-wave mixing (NDFWM) are studied for a biased asymmetric coupled quantum well (ACQW) structure. It is shown that the frequency up-conversion peak position determined by {chi}{sup (3)} is very sensitive to the external inverse electric field strength applied among the grown direction of quantum well but its value is insensitive to that. In other words, the frequency up-conversion peak has a large shift but its value maintains a constant when the electric field strength increases in a small bias range. The characteristics of the tuneable-frequency and the power balance of the ACQW structure may provide the high-efficient wavelength conversion in the optical communication system.

  2. Scalar-tensor black holes coupled to Born-Infeld nonlinear electrodynamics

    CERN Document Server

    Stefanov, Ivan Zh; Todorov, Michail D

    2007-01-01

    The non-existence of asymptotically flat, neutral black holes and asymptotically flat, charged black holes in the Maxwell electrodynamics, with non-trivial scalar field has been proved for a large class of scalar-tensor theories. The no-scalar-hair theorems, however, do not apply in the case of non-linear electrodynamics. In the present work numerical solutions describing charged black holes coupled to Born-Infeld type non-linear electrodynamics in scalar-tensor theories of gravity with massless scalar field are found. The causal structure and properties of the solutions are studied, and a comparison between these solutions and the corresponding solutions in the General Relativity is made. The presence of the scalar field leads to a much more simple causal structure. The present class of black holes has a single, non-degenerate horizon, i.e., its causal structure resembles that of the Schwarzschild black hole.

  3. Scalar-tensor black holes coupled to Euler-Heisenberg nonlinear electrodynamics

    CERN Document Server

    Stefanov, Ivan Zh; Todorov, Michail D

    2007-01-01

    The no-scalar-hair conjecture rules out the existence of asymptotically flat black holes with a scalar dressing for a large class of theories. No-scalar-hair theorems have been proved for the cases of neutral black holes and for charged black holes in the Maxwell electrodynamics. These theorems, however, do not apply in the case of non-linear electrodynamics. In the present work numerical solutions describing charged black holes coupled to Euler-Heisenberg type non-linear electrodynamics in scalar-tensor theories of gravity with massless scalar field are found. In comparison to the corresponding solution in General Relativity the presented solution has a simpler causal structure the reason for which is the presence of the scalar field. The present class of black holes has a single, non-degenerate horizon, i.e., its causal structure resembles that of the Schwarzschild black hole.

  4. Controlling the dynamic range of a Josephson parametric amplifier

    Energy Technology Data Exchange (ETDEWEB)

    Eichler, Christopher; Wallraff, Andreas [ETH Zuerich, Department of Physics, Zuerich (Switzerland)

    2014-12-01

    One of the central challenges in the development of parametric amplifiers is the control of the dynamic range relative to its gain and bandwidth, which typically limits quantum limited amplification to signals which contain only a few photons per inverse bandwidth. Here, we discuss the control of the dynamic range of Josephson parametric amplifiers by using Josephson junction arrays. We discuss gain, bandwidth, noise, and dynamic range properties of both a transmission line and a lumped element based parametric amplifier. Based on these investigations we derive useful design criteria, which may find broad application in the development of practical parametric amplifiers. (orig.)

  5. Non-Intrusive Solution of Stochastic and Parametric Equations

    KAUST Repository

    Matthies, Hermann

    2015-01-07

    Many problems depend on parameters, which may be a finite set of numerical values, or mathematically more complicated objects like for example processes or fields. We address the situation where we have an equation which depends on parameters; stochastic equations are a special case of such parametric problems where the parameters are elements from a probability space. One common way to represent this dependability on parameters is by evaluating the state (or solution) of the system under investigation for different values of the parameters. But often one wants to evaluate the solution quickly for a new set of parameters where it has not been sampled. In this situation it may be advantageous to express the parameter dependent solution with an approximation which allows for rapid evaluation of the solution. Such approximations are also called proxy or surrogate models, response functions, or emulators. All these methods may be seen as functional approximations—representations of the solution by an “easily computable” function of the parameters, as opposed to pure samples. The most obvious methods of approximation used are based on interpolation, in this context often labelled as collocation. In the frequent situation where one has a “solver” for the equation for a given parameter value, i.e. a software component or a program, it is evident that this can be used to independently—if desired in parallel—solve for all the parameter values which subsequently may be used either for the interpolation or in the quadrature for the projection. Such methods are therefore uncoupled for each parameter value, and they additionally often carry the label “non-intrusive”. Without much argument all other methods— which produce a coupled system of equations–are almost always labelled as “intrusive”, meaning that one cannot use the original solver. We want to show here that this not necessarily the case. Another approach is to choose some other projection onto

  6. A parametric reconstruction of the deceleration parameter

    CERN Document Server

    Mamon, Abdulla Al

    2016-01-01

    The present work is based on a parametric reconstruction of the deceleration parameter $q(z)$ in a model for the spatially flat FRW universe filled with dark energy and non- relativistic matter. We have proposed a divergence-free logarithmic parametrization of $q(z)$ to probe the entire evolution history of the universe. Using the SN Ia and Hubble parameter datasets, the constraints on the arbitrary model parameters $q_{0}$ and $q_{1}$ are obtained (within $1\\sigma$ and $2\\sigma$ confidence limits) by $\\chi^{2}$-minimization technique. We have then reconstructed the deceleration parameter, the total EoS parameter $\\omega_{tot}$, the jerk parameter and have compared the reconstructed results with the spatially flat $\\Lambda$CDM model. It has been found that the behavior of $q(z)$ and $\\omega_{tot}$ in our model are very similar (within $1\\sigma$ confidence limit) to that of the $\\Lambda$CDM model if we consider Type Ia Supernova (SN Ia) dataset only, but the evolutions of $q(z)$ and $\\omega_{tot}$ are differen...

  7. Supramodal parametric working memory processing in humans.

    Science.gov (United States)

    Spitzer, Bernhard; Blankenburg, Felix

    2012-03-07

    Previous studies of delayed-match-to-sample (DMTS) frequency discrimination in animals and humans have succeeded in delineating the neural signature of frequency processing in somatosensory working memory (WM). During retention of vibrotactile frequencies, stimulus-dependent single-cell and population activity in prefrontal cortex was found to reflect the task-relevant memory content, whereas increases in occipital alpha activity signaled the disengagement of areas not relevant for the tactile task. Here, we recorded EEG from human participants to determine the extent to which these mechanisms can be generalized to frequency retention in the visual and auditory domains. Subjects performed analogous variants of a DMTS frequency discrimination task, with the frequency information presented either visually, auditorily, or by vibrotactile stimulation. Examining oscillatory EEG activity during frequency retention, we found characteristic topographical distributions of alpha power over visual, auditory, and somatosensory cortices, indicating systematic patterns of inhibition and engagement of early sensory areas, depending on stimulus modality. The task-relevant frequency information, in contrast, was found to be represented in right prefrontal cortex, independent of presentation mode. In each of the three modality conditions, parametric modulations of prefrontal upper beta activity (20-30 Hz) emerged, in a very similar manner as recently found in vibrotactile tasks. Together, the findings corroborate a view of parametric WM as supramodal internal scaling of abstract quantity information and suggest strong relevance of previous evidence from vibrotactile work for a more general framework of quantity processing in human working memory.

  8. Parametric Symmetry Breaking in a Nonlinear Resonator

    Science.gov (United States)

    Leuch, Anina; Papariello, Luca; Zilberberg, Oded; Degen, Christian L.; Chitra, R.; Eichler, Alexander

    2016-11-01

    Much of the physical world around us can be described in terms of harmonic oscillators in thermodynamic equilibrium. At the same time, the far-from-equilibrium behavior of oscillators is important in many aspects of modern physics. Here, we investigate a resonating system subject to a fundamental interplay between intrinsic nonlinearities and a combination of several driving forces. We have constructed a controllable and robust realization of such a system using a macroscopic doubly clamped string. We experimentally observe a hitherto unseen double hysteresis in both the amplitude and the phase of the resonator's response function and present a theoretical model that is in excellent agreement with the experiment. Our work unveils that the double hysteresis is a manifestation of an out-of-equilibrium symmetry breaking between parametric phase states. Such a fundamental phenomenon, in the most ubiquitous building block of nature, paves the way for the investigation of new dynamical phases of matter in parametrically driven many-body systems and motivates applications ranging from ultrasensitive force detection to low-energy computing memory units.

  9. Quantum metrology with unitary parametrization processes.

    Science.gov (United States)

    Liu, Jing; Jing, Xiao-Xing; Wang, Xiaoguang

    2015-02-24

    Quantum Fisher information is a central quantity in quantum metrology. We discuss an alternative representation of quantum Fisher information for unitary parametrization processes. In this representation, all information of parametrization transformation, i.e., the entire dynamical information, is totally involved in a Hermitian operator H. Utilizing this representation, quantum Fisher information is only determined by H and the initial state. Furthermore, H can be expressed in an expanded form. The highlights of this form is that it can bring great convenience during the calculation for the Hamiltonians owning recursive commutations with their partial derivative. We apply this representation in a collective spin system and show the specific expression of H. For a simple case, a spin-half system, the quantum Fisher information is given and the optimal states to access maximum quantum Fisher information are found. Moreover, for an exponential form initial state, an analytical expression of quantum Fisher information by H operator is provided. The multiparameter quantum metrology is also considered and discussed utilizing this representation.

  10. Enhanced higher order parametric x radiation production

    Science.gov (United States)

    Dinova, Kay L.

    1992-12-01

    This thesis examines parametric x-radiation (PXR) which is the Bragg scattering of the virtual photons associated with the Coulomb field of relativistic charged particle from the atomic planes of a crystal. Higher order parametric x-radiation from the (002) planes of a thick mosaic graphite crystal have been observed. The raw PXR data was collected using a SiLi detector and a Pulse Height Analyzer (PHA) software program. The data was corrected for various effects including attenuation, detector drift, and efficiency. The absolute number of photons per electron was obtained by using the fluorescent x-ray yield from a tin foil backing on the graphite crystal to determine the LINAC current. The number of photons per electron observed greatly exceeds the expected values. Comparison of the ratio of intensity of a given order to the first order I(n)/I(I) to the theoretical ratio shows that the ratios increase with order. Not only is the absolute intensity greater than expected, but the higher orders (compared to the first order) are larger than expected. Lastly, the intensity for various crystal angle orientations and a fixed detector angle was measured.

  11. Parametric Optomechanical Oscillations in Two-dimensional Slot-type High-Q Photonic Crystal Cavities

    Energy Technology Data Exchange (ETDEWEB)

    Zheng J.; Stein A.; Li, Y.; Aras, M.S.; Shepard, K.L.; Wong, C.W.

    2012-05-22

    We experimentally demonstrate an optomechanical cavity based on an air-slot photonic crystal cavity with optical quality factor Q{sub o} = 4.2 x 10{sup 4} and a small modal volume of 0.05 cubic wavelengths. The optical mode is coupled with the in-plane mechanical modes with frequencies up to hundreds of MHz. The fundamental mechanical mode shows a frequency of 65 MHz and a mechanical quality factor of 376. The optical spring effect, optical damping, and amplification are observed with a large experimental optomechanical coupling rate g{sub om}/2{pi} of 154 GHz/nm, corresponding to a vacuum optomechanical coupling rate g*/2{pi} of 707 kHz. With sub-mW or less input power levels, the cavity exhibits strong parametric oscillations. The phase noise of the photonic crystal optomechanical oscillator is also measured.

  12. Curing dark energy instability with parametrized post-Friedmann treatment

    CERN Document Server

    Richarte, Martín G

    2014-01-01

    We review the parametrized post-Friedmann (PPF) method within the framework of interacting dark energy model for a FRW background. We assess the possibility of using such treatment for curing a "bad" interaction from its large-scale instabilities, usually presented within the standard linear perturbation theory. Regarding the Markov Chain Monte-Carlo analysis, our global fitting combines several cosmological probes including the cosmic microwave background (WMAP9+Planck) data, barion acoustic oscillation (BAO) measurements, JLA sample of supernovae, Hubble constant (HST), and redshift-space distorsion (RSD) measurements through the ${\\rm f}\\sigma_{8}{\\rm (z)}$ data points. The joint observational analysis of ${\\rm Planck+WP+JLA+BAO+HST+RSD}$ data leads to a coupling parameter, $\\xi_{c}=0.00140_{-0.00080}^{+0.00079}$ at $1\\sigma$ level for vanishing momentum transfer potential, whereas the aforesaid value is reduced in a $0.022\\%$ when the momentum transfer potential is switched on. The CMB power spectrum show...

  13. A new parametric equation of state and quark stars

    Institute of Scientific and Technical Information of China (English)

    NA Xue-Sen; XU Ren-Xin

    2011-01-01

    It is still a matter of debate to understand the equation of state of cold matter with supra-nuclear density in compact stars because of unknown non-perturbative strong interaction between quarks. Nevertheless,it is speculated from an astrophysical view point that quark clusters could form in cold quark matter due to strong coupling at realistic baryon densities. Although it is hard to calculate this conjectured matter from first principles, one can expect that the inter-cluster interaction will share some general features with the nucleonnucleon interaction successfully depicted by various models. We adopt a two-Gaussian component soft-core potential with these general features and show that quark clusters can form stable simple cubic crystal structure if we assume that the wave function of quark clusters have a Gaussian form. With this parametrization, the Tolman-Oppenheimer-Volkoff equation is solved with reasonably constrained parameter space to give massradius relations of crystalline solid quark stars. With baryon number densities truncated at 2n0 at surface and the range of the interaction fixed at 2 fm we can reproduce similar mass-radius relations to that obtained with bag model equations of state. The maximum mass ranges from ~ 0.5M⊙ to>~ 3M⊙. The recently measured high pulsar mass (~>2M⊙) is then used to constrain the parameters of this simple interaction potential.

  14. Hollow cathode modeling: II. Physical analysis and parametric study

    Science.gov (United States)

    Sary, Gaétan; Garrigues, Laurent; Boeuf, Jean-Pierre

    2017-05-01

    A numerical emissive hollow cathode model which couples plasma and thermal aspects of the NASA NSTAR cathode has been presented in a companion paper and simulation results obtained using the plasma model were compared to experimental data. We now compare simulation results with measurements using the full coupled model. Inside the cathode, the simulated plasma density profile agrees with the experimental data up to the ±50% experimental uncertainty while the simulated emitter temperature differs from measurements by at most 5 K. We then proceed to an analysis of the cathode discharge both inside the cathode where electron emission is dominant and outside in the near plume where electron transport instabilities are important. As observed previously in the literature, the total emitted electron current is much larger (34 {{A}}) than the set discharge current collected at the anode (13 {{A}}) while ionization plays a negligible role. Extracted electrons are emitted from a region much shorter than the full emitter (0.9 {{cm}} versus 2.5 {{cm}}). The influence of an applied axial magnetic field in the plume is also assessed and we observe that it leads to a 10-fold increase of the plasma density 1 cm downstream of the orifice entrance while the simulated discharge potential at the anode is increased from 10 {{V}} up to 35.5 {{V}}. Lastly, we perform a parametric study on both the operating point (discharge current, mass flow rate) and design (inner radius) of the cathode. The simulated useful operating envelope is shown to be limited at low discharge current mostly because of the probable ion sputtering of the emitter and at high discharge current because of emitter evaporation, plasma oscillations and sputtering of the keeper electrode. The behavior of the cathode is also analyzed w.r.t. its internal radius and simulation results show that the useful emitter length scales linearly with the cathode radius.

  15. Entrepreneurial Couples

    DEFF Research Database (Denmark)

    Dahl, Michael S.; Van Praag, Mirjam; Thompson, Peter

    2015-01-01

    We study motivations for and outcomes of couples starting up a joint firm, using a sample of 1,069 Danish couples that established a joint enterprise between 2001 and 2010, while comparing them to a set of comparable firms and couples. The main motivation for joint entrepreneurship is to create...

  16. Under what kind of parametric fluctuations is spatiotemporal regularity the most robust?

    Indian Academy of Sciences (India)

    Manish Dev Shrimali; Swarup Poria; Sudeshna Sinha

    2010-06-01

    It was observed that the spatiotemporal chaos in lattices of coupled chaotic maps was suppressed to a spatiotemporal fixed point when some fractions of the regular coupling connections were replaced by random links. Here we investigate the effects of different kinds of parametric fluctuations on the robustness of this spatiotemporal fixed point regime. In particular we study the spatiotemporal dynamics of the network with noisy interaction parameters, namely fluctuating fraction of random links and fluctuating coupling strengths. We consider three types of fluctuations: (i) noisy in time, but homogeneous in space; (ii) noisy in space, but fixed in time; (iii) noisy in both space and time. We find that the effect of different kinds of parametric noise on the dynamics is quite distinct: quenched spatial fluctuations are the most detrimental to spatiotemporal regularity; patiotemporal fluctuations yield phenomena similar to that observed when parameters are held constant at the mean value, and interestingly, spatiotemporal regularity is most robust under spatially uniform temporal fluctuations, which in fact yields a larger fixed point range than that obtained under constant mean-value parameters.

  17. Parametric decays in relativistic magnetized electron-positron plasmas with relativistic temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, Rodrigo A.; Munoz, Victor [Departamento de Fisica, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago (Chile); Asenjo, Felipe A. [Institute for Fusion Studies, University of Texas at Austin, Austin, Texas 78712 (United States); Alejandro Valdivia, J. [Departamento de Fisica, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago (Chile); Centro para el Desarrollo de la Nanociencia y la Nanotecnologia, CEDENNA, Santiago (Chile)

    2012-08-15

    The nonlinear evolution of a circularly polarized electromagnetic wave in an electron-positron plasma propagating along a constant background magnetic field is considered, by studying its parametric decays. Relativistic effects, of the particle motion in the wave field and of the plasma temperature, are included to obtain the dispersion relation of the decays. The exact dispersion relation of the pump wave has been previously calculated within the context of a relativistic fluid theory and presents two branches: an electromagnetic and an Alfven one. We investigate the parametric decays for the pump wave in these two branches, including the anomalous dispersion zone of the Alfven branch where the group velocity is negative. We solve the nonlinear dispersion relation for different pump wave amplitudes and plasma temperatures, finding various resonant and nonresonant wave couplings. We are able to identify these couplings and study their behavior as we modify the plasma parameters. Some of these couplings are suppressed for larger amplitudes or temperatures. We also find two kinds of modulational instabilities, one involving two sideband daughter waves and another involving a forward-propagating electroacoustic mode and a sideband daughter wave.

  18. Observation of Geometric Parametric Instability Induced by the Periodic Spatial Self-Imaging of Multimode Waves.

    Science.gov (United States)

    Krupa, Katarzyna; Tonello, Alessandro; Barthélémy, Alain; Couderc, Vincent; Shalaby, Badr Mohamed; Bendahmane, Abdelkrim; Millot, Guy; Wabnitz, Stefan

    2016-05-06

    Spatiotemporal mode coupling in highly multimode physical systems permits new routes for exploring complex instabilities and forming coherent wave structures. We present here the first experimental demonstration of multiple geometric parametric instability sidebands, generated in the frequency domain through resonant space-time coupling, owing to the natural periodic spatial self-imaging of a multimode quasi-continuous-wave beam in a standard graded-index multimode fiber. The input beam was launched in the fiber by means of an amplified microchip laser emitting sub-ns pulses at 1064 nm. The experimentally observed frequency spacing among sidebands agrees well with analytical predictions and numerical simulations. The first-order peaks are located at the considerably large detuning of 123.5 THz from the pump. These results open the remarkable possibility to convert a near-infrared laser directly into a broad spectral range spanning visible and infrared wavelengths, by means of a single resonant parametric nonlinear effect occurring in the normal dispersion regime. As further evidence of our strong space-time coupling regime, we observed the striking effect that all of the different sideband peaks were carried by a well-defined and stable bell-shaped spatial profile.

  19. Stochastic parametrization of multiscale processes using a dual-grid approach.

    Science.gov (United States)

    Shutts, Glenn; Allen, Thomas; Berner, Judith

    2008-07-28

    Some speculative proposals are made for extending current stochastic sub-gridscale parametrization methods using the techniques adopted from the field of computer graphics and flow visualization. The idea is to emulate sub-filter-scale physical process organization and time evolution on a fine grid and couple the implied coarse-grained tendencies with a forecast model. A two-way interaction is envisaged so that fine-grid physics (e.g. deep convective clouds) responds to forecast model fields. The fine-grid model may be as simple as a two-dimensional cellular automaton or as computationally demanding as a cloud-resolving model similar to the coupling strategy envisaged in 'super-parametrization'. Computer codes used in computer games and visualization software illustrate the potential for cheap but realistic simulation where emphasis is placed on algorithmic stability and visual realism rather than pointwise accuracy in a predictive sense. In an ensemble prediction context, a computationally cheap technique would be essential and some possibilities are outlined. An idealized proof-of-concept simulation is described, which highlights technical problems such as the nature of the coupling.

  20. Bifurcations and sensitivity in parametric nonlinear programming

    Science.gov (United States)

    Lundberg, Bruce N.; Poore, Aubrey B.

    1990-01-01

    The parametric nonlinear programming problem is that of determining the behavior of solution(s) as a parameter or vector of parameters alpha belonging to R(sup r) varies over a region of interest for the problem: Minimize over x the set f(x, alpha):h(x, alpha) = 0, g(x, alpha) is greater than or equal to 0, where f:R(sup (n+r)) approaches R, h:R(sup (n+r)) approaches R(sup q) and g:R(sup (n+r)) approaches R(sup p) are assumed to be at least twice continuously differentiable. Some of these parameters may be fixed but not known precisely and others may be varied to enhance the performance of the system. In both cases a fundamentally important problem in the investigation of global sensitivity of the system is to determine the stability boundaries of the regions in parameter space which define regions of qualitatively similar solutions. The objective is to explain how numerical continuation and bifurcation techniques can be used to investigate the parametric nonlinear programming problem in a global sense. Thus, first the problem is converted to a closed system of parameterized nonlinear equations whose solution set contains all local minimizers of the original problem. This system, which will be represented as F(z,alpha) = O, will include all Karush-Kuhn-Tucker and Fritz John points, both feasible and infeasible solutions, and relative minima, maxima, and saddle points of the problem. The local existence and uniqueness of a solution path (z(alpha), alpha) of this system as well as the solution type persist as long as a singularity in the Jacobian D(sub z)F(z,alpha) is not encountered. Thus the nonsingularity of this Jacobian is characterized in terms of conditions on the problem itself. Then, a class of efficient predictor-corrector continuation procedures for tracing solution paths of the system F(z,alpha) = O which are tailored specifically to the parametric programming problem are described. Finally, these procedures and the obtained information are illustrated

  1. Parametric instabilities of large amplitude Alfven waves with obliquely propagating sidebands

    Science.gov (United States)

    Vinas, A. F.; Goldstein, M. L.

    1992-01-01

    This paper presents a brief report on properties of the parametric decay and modulational, filamentation, and magnetoacoustic instabilities of a large amplitude, circularly polarized Alfven wave. We allow the daughter and sideband waves to propagate at an arbitrary angle to the background magnetic field so that the electrostatic and electromagnetic characteristics of these waves are coupled. We investigate the dependance of these instabilities on dispersion, plasma/beta, pump wave amplitude, and propagation angle. Analytical and numerical results are compared with numerical simulations to investigate the full nonlinear evolution of these instabilities.

  2. Fibre Optical Parametric Amplification in Defect Bragg Fibres with Zero Dispersion Slow Light Effect

    Institute of Scientific and Technical Information of China (English)

    XIAO Li; ZHANG Wei; HUANG Yi-Dong; PENG Jiang-De; ZHAO Hong; YANG Ke-Wu

    2008-01-01

    Nonfinearity enhancement by slow light effect and strong light confinement in defect Bragg fibres is demonstrated and analysed in applications of fibre optical parametric amplifiers. Broadband low group velocity and zero dispersion as well as the strong light confinement by band gap enhances the nonlinear coefficient up to more than one order than the conventional high nonlinear fibres.Moreover,the zero dispersion wavelength of coupled core mode can be designed arbitrarily,under which the phase-matching bandwidth of the nonlinear process can be extended.

  3. General analysis of group velocity effects in collinear optical parametric amplifiers and generators.

    Science.gov (United States)

    Arisholm, Gunnar

    2007-05-14

    Group velocity mismatch (GVM) is a major concern in the design of optical parametric amplifiers (OPAs) and generators (OPGs) for pulses shorter than a few picoseconds. By simplifying the coupled propagation equations and exploiting their scaling properties, the number of free parameters for a collinear OPA is reduced to a level where the parameter space can be studied systematically by simulations. The resulting set of figures show the combinations of material parameters and pulse lengths for which high performance can be achieved, and they can serve as a basis for a design.

  4. Parametric Decay Instability of Near-Acoustic Waves in Fluid and Kinetic Regimes

    Science.gov (United States)

    Affolter, M.; Anderegg, F.; Driscoll, C. F.; Valentini, F.

    2016-10-01

    We present quantitative measurements of parametric wave-wave coupling rates and decay instabilities in the range 10 meV Δω /2. In contrast, at higher temperatures, the mz = 2 wave is more unstable. The instability threshold is reduced from the cold fluid prediction as the plasma temperature is increased, which is in qualitative agreement with Vlasov simulations, but is not yet understood theoretically. Supported by DOE/HEDLP Grant DE-SC0008693 and DOE Fusion Energy Science Postdoctoral Research Program administered by the Oak Ridge Institute for Science and Education.

  5. Near-field heat transfer between graphene monolayers: Dispersion relation and parametric analysis

    Science.gov (United States)

    Yin, Ge; Yang, Jiang; Ma, Yungui

    2016-12-01

    Plasmon polaritons in graphene can enhance near-field heat transfer. In this work, we give a complete parametric analysis on the near-field heat transfer between two graphene monolayers that allows transfer efficiencies several orders-of-magnitude larger than blackbody radiation. Influences of major parameters are conclusively clarified from the changes of the interlayer supermode coupling and their dispersion relations. The method to maximize the near-field heat flux is discussed. The generalized Stefan-Boltzmann formula is proposed to describe the near-field heat transfer dominated by evanescent wave tunneling. Our results are of practical significance in guiding the design of thermal management systems.

  6. Parametric uncertainty modeling for robust control

    DEFF Research Database (Denmark)

    Rasmussen, K.H.; Jørgensen, Sten Bay

    1999-01-01

    The dynamic behaviour of a non-linear process can often be approximated with a time-varying linear model. In the presented methodology the dynamics is modeled non-conservatively as parametric uncertainty in linear lime invariant models. The obtained uncertainty description makes it possible...... method can be utilized in identification of a nominal model with uncertainty description. The method is demonstrated on a binary distillation column operating in the LV configuration. The dynamics of the column is approximated by a second order linear model, wherein the parameters vary as the operating...... to perform robustness analysis on a control system using the structured singular value. The idea behind the proposed method is to fit a rational function to the parameter variation. The parameter variation can then be expressed as a linear fractional transformation (LFT), It is discussed how the proposed...

  7. Gain Characteristics of Fiber Optical Parametric Amplifier

    Institute of Scientific and Technical Information of China (English)

    高明义; 姜淳; 胡卫生

    2004-01-01

    The theory model of fiber optical parametric amplifier (FOPA) was introduced, which is based on optical nonlinear effect. And then numerical simulation was done to analyze and discuss the gain spectral characteristics of one-pump and two-pump FOPA. The results show that for one-pump FOPA, when pump wavelength is near to fiber zero-dispersion wavelength(ZDW), the gain flatness is better, and with the increase of the pump power, fiber length and its nonlinear coefficient, the gain value will increase while the gain bandwidth will become narrow. For two-pump FOPA, when the pump central wavelength is near to fiber ZDW, the gain flatness is better. Moreover, by decreasing the space of two pumps wavelength, the gain flatness can be improved. Finally, some problems existing in FOPA were addressed.

  8. Large-scale parametric survival analysis.

    Science.gov (United States)

    Mittal, Sushil; Madigan, David; Cheng, Jerry Q; Burd, Randall S

    2013-10-15

    Survival analysis has been a topic of active statistical research in the past few decades with applications spread across several areas. Traditional applications usually consider data with only a small numbers of predictors with a few hundreds or thousands of observations. Recent advances in data acquisition techniques and computation power have led to considerable interest in analyzing very-high-dimensional data where the number of predictor variables and the number of observations range between 10(4) and 10(6). In this paper, we present a tool for performing large-scale regularized parametric survival analysis using a variant of the cyclic coordinate descent method. Through our experiments on two real data sets, we show that application of regularized models to high-dimensional data avoids overfitting and can provide improved predictive performance and calibration over corresponding low-dimensional models.

  9. Optical Vortex Solitons in Parametric Wave Mixing

    CERN Document Server

    Alexander, T J; Buryak, A V; Sammut, R A; Alexander, Tristram J.; Kivshar, Yuri S.; Buryak, Alexander V.; Sammut, Rowland A.

    2000-01-01

    We analyze two-component spatial optical vortex solitons supported by degenerate three- or four-wave mixing in a nonlinear bulk medium. We study two distinct cases of such solitons, namely, parametric vortex solitons due to phase-matched second-harmonic generation in a optical medium with competing quadratic and cubic nonlinear response, and vortex solitons in the presence of third-harmonic generation in a cubic medium. We find, analytically and numerically, the structure of two-component vortex solitons, and also investigate modulational instability of their plane-wave background. In particular, we predict and analyze in detail novel types of vortex solitons, a `halo-vortex', consisting of a two-component vortex core surrounded by a bright ring of its harmonic field, and a `ring-vortex' soliton which is a vortex in a harmonic field that guides a bright localized ring-like mode of a fundamental frequency field.

  10. Normal dispersion femtosecond fiber optical parametric oscillator.

    Science.gov (United States)

    Nguyen, T N; Kieu, K; Maslov, A V; Miyawaki, M; Peyghambarian, N

    2013-09-15

    We propose and demonstrate a synchronously pumped fiber optical parametric oscillator (FOPO) operating in the normal dispersion regime. The FOPO generates chirped pulses at the output, allowing significant pulse energy scaling potential without pulse breaking. The output average power of the FOPO at 1600 nm was ∼60  mW (corresponding to 1.45 nJ pulse energy and ∼55% slope power conversion efficiency). The output pulses directly from the FOPO were highly chirped (∼3  ps duration), and they could be compressed outside of the cavity to 180 fs by using a standard optical fiber compressor. Detailed numerical simulation was also performed to understand the pulse evolution dynamics around the laser cavity. We believe that the proposed design concept is useful for scaling up the pulse energy in the FOPO using different pumping wavelengths.

  11. uvmcmcfit: Parametric models to interferometric data fitter

    Science.gov (United States)

    Bussmann, Shane; Leung, Tsz Kuk (Daisy); Conley, Alexander

    2016-06-01

    Uvmcmcfit fits parametric models to interferometric data. It is ideally suited to extract the maximum amount of information from marginally resolved observations with interferometers like the Atacama Large Millimeter Array (ALMA), Submillimeter Array (SMA), and Plateau de Bure Interferometer (PdBI). uvmcmcfit uses emcee (ascl:1303.002) to do Markov Chain Monte Carlo (MCMC) and can measure the goodness of fit from visibilities rather than deconvolved images, an advantage when there is strong gravitational lensing and in other situations. uvmcmcfit includes a pure-Python adaptation of Miriad’s (ascl:1106.007) uvmodel task to generate simulated visibilities given observed visibilities and a model image and a simple ray-tracing routine that allows it to account for both strongly lensed systems (where multiple images of the lensed galaxy are detected) and weakly lensed systems (where only a single image of the lensed galaxy is detected).

  12. Shortcomings of New Parametrizations of Inflation

    CERN Document Server

    Martin, Jerome; Vennin, Vincent

    2016-01-01

    In the hope of avoiding model dependence of the cosmological observables, phenomenological parametrizations of Cosmic Inflation have recently been proposed. Typically, they are expressed in terms of two parameters associated with an expansion of the inflationary quantities matching the belief that inflation is characterized by two numbers only, the tensor-to-scalar ratio and the scalar spectral index. We give different arguments and examples showing that these new approaches are either not generic or insufficient to make predictions at the accuracy level needed by the cosmological data. We conclude that disconnecting inflation from high energy physics and gravity might not be the most promising way to learn about the physics of the early Universe.

  13. Lipschitz Parametrization of Probabilistic Graphical Models

    CERN Document Server

    Honorio, Jean

    2012-01-01

    We show that the log-likelihood of several probabilistic graphical models is Lipschitz continuous with respect to the lp-norm of the parameters. We discuss several implications of Lipschitz parametrization. We present an upper bound of the Kullback-Leibler divergence that allows understanding methods that penalize the lp-norm of differences of parameters as the minimization of that upper bound. The expected log-likelihood is lower bounded by the negative lp-norm, which allows understanding the generalization ability of probabilistic models. The exponential of the negative lp-norm is involved in the lower bound of the Bayes error rate, which shows that it is reasonable to use parameters as features in algorithms that rely on metric spaces (e.g. classification, dimensionality reduction, clustering). Our results do not rely on specific algorithms for learning the structure or parameters. We show preliminary results for activity recognition and temporal segmentation.

  14. Parametric analysis of open plan offices

    Science.gov (United States)

    Nogueira, Flavia F.; Viveiros, Elvira B.

    2002-11-01

    The workspace has been undergoing many changes. Open plan offices are being favored instead of ones of traditional design. In such offices, workstations are separated by partial height barriers, which allow a certain degree of visual privacy and some sound insulation. The challenge in these offices is to provide acoustic privacy for the workstations. Computer simulation was used as a tool for this investigation. Two simple models were generated and their results compared to experimental data measured in two real offices. After validating the approach, models with increasing complexity were generated. Lastly, an ideal office with 64 workstations was created and a parametric survey performed. Nine design parameters were taken as variables and the results are discussed in terms of sound pressure level, in octave bands, and intelligibility index.

  15. Examples in parametric inference with R

    CERN Document Server

    Dixit, Ulhas Jayram

    2016-01-01

    This book discusses examples in parametric inference with R. Combining basic theory with modern approaches, it presents the latest developments and trends in statistical inference for students who do not have an advanced mathematical and statistical background. The topics discussed in the book are fundamental and common to many fields of statistical inference and thus serve as a point of departure for in-depth study. The book is divided into eight chapters: Chapter 1 provides an overview of topics on sufficiency and completeness, while Chapter 2 briefly discusses unbiased estimation. Chapter 3 focuses on the study of moments and maximum likelihood estimators, and Chapter 4 presents bounds for the variance. In Chapter 5, topics on consistent estimator are discussed. Chapter 6 discusses Bayes, while Chapter 7 studies some more powerful tests. Lastly, Chapter 8 examines unbiased and other tests. Senior undergraduate and graduate students in statistics and mathematics, and those who have taken an introductory cou...

  16. A parametric approach to irregular fatigue prediction

    Science.gov (United States)

    Erismann, T. H.

    1972-01-01

    A parametric approach to irregular fatigue protection is presented. The method proposed consists of two parts: empirical determination of certain characteristics of a material by means of a relatively small number of well-defined standard tests, and arithmetical application of the results obtained to arbitrary loading histories. The following groups of parameters are thus taken into account: (1) the variations of the mean stress, (2) the interaction of these variations and the superposed oscillating stresses, (3) the spectrum of the oscillating-stress amplitudes, and (4) the sequence of the oscillating-stress amplitudes. It is pointed out that only experimental verification can throw sufficient light upon possibilities and limitations of this (or any other) prediction method.

  17. New algorithms for evaluating parametric surface

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Through generalization of mathematical model of surface lofting program in the CONSURF system, the definitions for two generalized Ball surfaces and their recursive algorithms are given. Furthermore, the conversion al gorithms from Bézier surface to these two generalized Ball surfaces are presented. On the basis of these algorithms, two more efficient algorithms for evaluating parametric surfaces are also derived. One uses generalized Ball forms directly for evaluating surface, and the other converts the given Bézier surface to a generalized Ball surface firstly, and then evalu ates the surface. Both theoretical analysis and example computations show that the two new algorithms are more efficient than the de Casteljau algorithm. Especially when Wang-Ball surface is used, the time complexity is reduced from cubic to quadratic of the degree of the surface. If these algorithms are applied to displaying, interactive rendering, designing, intersection-finding, offsetting and approximating for surfaces, considerable economic results can be achieved.

  18. Stellar parametrization from Gaia RVS spectra

    Science.gov (United States)

    Recio-Blanco, A.; de Laverny, P.; Allende Prieto, C.; Fustes, D.; Manteiga, M.; Arcay, B.; Bijaoui, A.; Dafonte, C.; Ordenovic, C.; Ordoñez Blanco, D.

    2016-01-01

    Context. Among the myriad of data collected by the ESA Gaia satellite, about 150 million spectra will be delivered by the Radial Velocity Spectrometer (RVS) for stars as faint as GRVS~ 16. A specific stellar parametrization will be performed on most of these RVS spectra, i.e. those with enough high signal-to-noise ratio (S/N), which should correspond to single stars that have a magnitude in the RVS band brighter than ~14.5. Some individual chemical abundances will also be estimated for the brightest targets. Aims: We describe the different parametrization codes that have been specifically developed or adapted for RVS spectra within the GSP-Spec working group of the analysis consortium. The tested codes are based on optimisation (FERRE and GAUGUIN), projection (MATISSE), or pattern-recognition methods (Artificial Neural Networks). We present and discuss each of their expected performances in the recovered stellar atmospheric parameters (effective temperature, surface gravity, overall metallicity) for B- to K-type stars. The performances for determining of [α/Fe] ratios are also presented for cool stars. Methods: Each code has been homogeneously tested with a large grid of RVS simulated synthetic spectra of BAFGK-spectral types (dwarfs and giants), with metallicities varying from 10-2.5 to 10+ 0.5 the solar metallicity, and taking variations of ±0.4 dex in the composition of the α-elements into consideration. The tests were performed for S/N ranging from ten to 350. Results: For all the stellar types we considered, stars brighter than GRVS~ 12.5 are very efficiently parametrized by the GSP-Spec pipeline, including reliable estimations of [α/Fe]. Typical internal errors for FGK metal-rich and metal-intermediate stars are around 40 K in Teff, 0.10 dex in log(g), 0.04 dex in [M/H], and 0.03 dex in [α/Fe] at GRVS = 10.3. They degrade to 155 K in Teff, 0.15 dex in log(g), 0.10 dex in [M/H], and 0.1 dex in [α/Fe] at GRVS~ 12. Similar accuracies in Teff and [M/H] are

  19. Parametric Design Strategies for Collaborative Urban Design

    DEFF Research Database (Denmark)

    Steinø, Nicolai; Yıldırım, Miray Baş; Özkar, Mine

    2013-01-01

    to the collaboration between professionals, participation by different non-professional stakeholders, such as residents, local authorities, non-governmental organizations and investors, is another important component of collaborative urban design processes. The involvement of community in decision making process...... for collaborative urban design processes. Rather than making one-off designs which need to be redesigned from the ground up in case of changes, parametric design tools make it possible keep the design open while at the same time allowing for a level of detailing which is high enough to facilitate an understanding...... of the generic qualities of proposed designs. Yet, in any collaborative urban design process, some aspects – or parameters – are more likely to be relevant to deliberate than others. And they are not likely to be the same for different design cases. In one case, density and building style may be topical, while...

  20. Product directivity models for parametric loudspeakers.

    Science.gov (United States)

    Shi, Chuang; Gan, Woon-Seng

    2012-03-01

    In a recent work, the beamsteering characteristics of parametric loudspeakers were validated in an experiment. It was shown that based on the product directivity model, the locations and amplitudes of the mainlobe and grating lobes could be predicted within acceptable errors. However, the measured amplitudes of sidelobes have not been able to match the theoretical results accurately. In this paper, the original theories behind the product directivity model are revisited, and three modified product directivity models are proposed: (i) the advanced product directivity model, (ii) the exponential product directivity model, and (iii) the combined product directivity model. The proposed product directivity models take the radii of equivalent Gaussian sources into account and obtain better predictions of sidelobes for the difference frequency waves. From the comparison between measurement results and numerical solutions, all the proposed models outperform the original product directivity model in terms of selected sidelobe predictions by about 10 dB.

  1. Parametric estimation of ultra wideband radar targets

    Institute of Scientific and Technical Information of China (English)

    Fan Ping; Jing Zhanrong

    2009-01-01

    Based on the analysis of impulse response properties, a scattering model of ultra wideband (UWB) radar targets is developed to estimate the target parameters exactly. With this model, two algorithms of multiple signal classification (MUSIC), and matrix pencil (MP), are introduced to calculate the scattering center parame-ters of targets and their performances are compared. The simulation experiments show that there are no differ-ences in the estimation precision of MUSIC and MP methods when the signal-to-noise ratio (SNR) is larger than 13 dB. However, the MP method has a better performance than that of MUSIC method when the SNR is smaller than 13 dB. Besides, the time consuming of MP method is leas than that of MUSIC method. Therefore, the MP algorithm is preferred for the parametric estimation of UWB radar targets.

  2. mu analysis with real parametric uncertainty

    Science.gov (United States)

    Young, Peter M.; Newlin, Matthew P.; Doyle, John C.

    1991-01-01

    The authors give a broad overview, from a LFT (linear fractional transformation)/mu perspective, of some of the theoretical and practical issues associated with robustness in the presence of real parametric uncertainty, with a focus on computation. Recent results on the properties of mu in the mixed case are reviewed, including issues of NP completeness, continuity, computation of bounds, the equivalence of mu and its bounds, and some direct comparisons with Kharitonov-type analysis methods. In addition, some advances in the computational aspects of the problem, including a novel branch and bound algorithm, are briefly presented together with numerical results. The results suggest that while the mixed mu problem may have inherently combinatoric worst-case behavior, practical algorithms with modest computational requirements can be developed for problems of medium size (less than 100 parameters) that are of engineering interest.

  3. Simplifying the circuit of Josephson parametric converters

    Science.gov (United States)

    Abdo, Baleegh; Brink, Markus; Chavez-Garcia, Jose; Keefe, George

    Josephson parametric converters (JPCs) are quantum-limited three-wave mixing devices that can play various important roles in quantum information processing in the microwave domain, including amplification of quantum signals, transduction of quantum information, remote entanglement of qubits, nonreciprocal amplification, and circulation of signals. However, the input-output and biasing circuit of a state-of-the-art JPC consists of bulky components, i.e. two commercial off-chip broadband 180-degree hybrids, four phase-matched short coax cables, and one superconducting magnetic coil. Such bulky hardware significantly hinders the integration of JPCs in scalable quantum computing architectures. In my talk, I will present ideas on how to simplify the JPC circuit and show preliminary experimental results

  4. Multidimensional Scaling Visualization Using Parametric Entropy

    Science.gov (United States)

    Lopes, António M.; Tenreiro Machado, J. A.; Galhano, Alexandra M.

    2015-12-01

    This paper studies complex systems using a generalized multidimensional scaling (MDS) technique. Complex systems are characterized by time-series responses, interpreted as a manifestation of their dynamics. Two types of time-series are analyzed, namely 18 stock markets and the gross domestic product per capita of 18 countries. For constructing the MDS charts, indices based on parametric entropies are adopted. Multiparameter entropies allow the variation of the parameters leading to alternative sets of charts. The final MDS maps are then assembled by means of Procrustes’ method that maximizes the fit between the individual charts. Therefore, the proposed method can be interpreted as a generalization to higher dimensions of the standard technique that represents (and discretizes) items by means of single “points” (i.e. zero-dimensional “objects”). The MDS plots, involving one-, two- and three-dimensional “objects”, reveal a good performance in capturing the correlations between data.

  5. Parametric excitation of whistler waves by HF heater

    Science.gov (United States)

    Kuo, S. P.; Lee, M. C.

    1989-01-01

    Possible generation of whistler waves by Tromso HF heater is investigated. It is shown that the HF heater wave can parametrically decay into a whistler wave and a Langmuir wave. Since whistler waves may have a broad range of frequency, the simultaneously excited Langmuir waves can have a much broader frequency bandwidth than those excited by the parametric decay instability.

  6. Schwinger-type parametrization of open string worldsheets

    CERN Document Server

    Playle, Sam

    2016-01-01

    A parametrization of (super) moduli space near the corners corresponding to bosonic or Neveu-Schwarz open string degenerations is introduced for worldsheets of arbitrary topology. With this parametrization, Feynman graph polynomials arise as the $\\alpha ' \\to 0$ limit of objects on moduli space. Furthermore, the integration measures of string theory take on a very simple and elegant form.

  7. Schwinger-type parametrization of open string worldsheets

    Science.gov (United States)

    Playle, Sam; Sciuto, Stefano

    2017-03-01

    A parametrization of (super) moduli space near the corners corresponding to bosonic or Neveu-Schwarz open string degenerations is introduced for worldsheets of arbitrary topology. With this parametrization, Feynman graph polynomials arise as the α‧ → 0 limit of objects on moduli space. Furthermore, the integration measures of string theory take on a very simple and elegant form.

  8. Schwinger-type parametrization of open string worldsheets

    Directory of Open Access Journals (Sweden)

    Sam Playle

    2017-03-01

    Full Text Available A parametrization of (super moduli space near the corners corresponding to bosonic or Neveu–Schwarz open string degenerations is introduced for worldsheets of arbitrary topology. With this parametrization, Feynman graph polynomials arise as the α′→0 limit of objects on moduli space. Furthermore, the integration measures of string theory take on a very simple and elegant form.

  9. Spatiotemporal structures in the internally pumped optical parametric oscillator

    DEFF Research Database (Denmark)

    Lodahl, Peter; Bache, Morten; Saffman, Mark

    2001-01-01

    We analyze pattern formation in doubly resonant second-harmonic generation in the presence of a competing parametric process, also named the internally pumped optical parametric oscillator. Different scenarios are established where either the up- or down-conversion processes dominate the spatiote...... patterns and gray solitons. Estimates of the thresholds for pattern formation under experimentally relevant conditions are given....

  10. Parametric hazard rate models for long-term sickness absence

    NARCIS (Netherlands)

    Koopmans, Petra C.; Roelen, Corne A. M.; Groothoff, Johan W.

    2009-01-01

    In research on the time to onset of sickness absence and the duration of sickness absence episodes, Cox proportional hazard models are in common use. However, parametric models are to be preferred when time in itself is considered as independent variable. This study compares parametric hazard rate m

  11. Applying Parametric Fault Detection to a Mechanical System

    DEFF Research Database (Denmark)

    Felício, P.; Stoustrup, Jakob; Niemann, H.

    2002-01-01

    A way of doing parametric fault detection is described. It is based on the representation of parameter changes as linear fractional transformations (lfts). We describe a model with parametric uncertainty. Then a stabilizing controller is chosen and its robustness properties are studied via mu...

  12. A Theoretical Evaluation of Optical Parametric Amplification in BBO Crystal

    Institute of Scientific and Technical Information of China (English)

    邵敏; 薛绍林; 林尊琪

    2005-01-01

    The noncollinear optical parametric amplification in BBO crystal is theoretically investigated. The phase matching angle, gain bandwidth, optimal noncollinear angle and conversion efficiency for both type-Ⅰ and type-Ⅱ BBO are simulated. The numerical simulation results are important to the practical optical parametric amplification experiments with BBO crystal.

  13. Involute Spur Gear Template Development by Parametric Technique ...

    African Journals Online (AJOL)

    Nekky Umera

    cylindrical coordinate systems to create the involute curve profile. Since spur gear ... with 3 module, 30 Teeth, 20° pressure angle based on parametric technique by using ... and a set of points P2 to P5 is created in the ZY plane. Joining these ..... a three-dimensional part directly from a parametric solid modeled gear file.

  14. Parametric excitation of plasma oscillations in Josephson Junctions

    DEFF Research Database (Denmark)

    Pedersen, Niels Falsig; Samuelsen, Mogens Rugholm; Særmark, Knud

    1973-01-01

    A theory is presented for parametric excitation of plasma oscillations in a Josephson junction biased in the zero voltage mode. A threshold curve for the onset of the parametric excitation is deduced via the stability properties of a Mathieu differential equation obtained by a self...

  15. Using a Parametric Solid Modeler as an Instructional Tool

    Science.gov (United States)

    Devine, Kevin L.

    2008-01-01

    This paper presents the results of a quasi-experimental study that brought 3D constraint-based parametric solid modeling technology into the high school mathematics classroom. This study used two intact groups; a control group and an experimental group, to measure the extent to which using a parametric solid modeler during instruction affects…

  16. Parametric hazard rate models for long-term sickness absence

    NARCIS (Netherlands)

    Koopmans, Petra C.; Roelen, Corne A. M.; Groothoff, Johan W.

    2009-01-01

    In research on the time to onset of sickness absence and the duration of sickness absence episodes, Cox proportional hazard models are in common use. However, parametric models are to be preferred when time in itself is considered as independent variable. This study compares parametric hazard rate m

  17. Magnus Expansion Approach to Parametric Oscillator Systems in a Thermal Bath

    Science.gov (United States)

    Zhu, Beilei; Rexin, Tobias; Mathey, Ludwig

    2016-10-01

    We develop a Magnus formalism for periodically driven systems which provides an expansion both in the driving term and in the inverse driving frequency, applicable to isolated and dissipative systems. We derive explicit formulas for a driving term with a cosine dependence on time, up to fourth order. We apply these to the steady state of a classical parametric oscillator coupled to a thermal bath, which we solve numerically for comparison. Beyond dynamical stabilisation at second order, we find that the higher orders further renormalise the oscillator frequency, and additionally create a weakly renormalised effective temperature. The renormalised oscillator frequency is quantitatively accurate almost up to the parametric instability, as we confirm numerically. Additionally, a cut-off dependent term is generated, which indicates the break down of the hierarchy of time scales of the system, as a precursor to the instability. Finally, we apply this formalism to a parametrically driven chain, as an example for the control of the dispersion of a many-body system.

  18. Parametric Study of Cylindrical Dielectric Resonator Antenna (CDRA Feeder with Symmetric Parabolic Reflector

    Directory of Open Access Journals (Sweden)

    S.M. Ali

    2015-06-01

    Full Text Available In this study a parabolic reflector antenna is designed and fabricated for IEEE 802.11a WLAN application. Initially, a single element circular tuning slot coupled Cylindrical Dielectric Resonator Antenna (CDRA feeder is designed and fabricated for a symmetric parabolic reflector. Subsequently, the designed feeder is integrated at the focal point of the parabolic reflector to provide unidirectional radiation pattern with improved gain and sidelobe levels. The measured fractional impedance bandwidth achieved for the proposed antenna is 1.8% for S11<-10 dB from 5.32 to 5.52 GHz. A radiation pattern with broadside radiation and low back radiation has been obtained. A good measurement gain of approximately 13 dB is achieved over the bandwidth by placing CDRA feeder at the focal point of the parabolic reflector. In addition, a comprehensive parametric study has been conducted to realize the effect of slot size and position on the resonance frequency of the designed feeder. Furthermore, a parametric study of various reflector parameters has also been performed to study the effect of size, depth and focal point of the parabolic reflector on gain of the antenna. Important design factors have been identified from the parametric study of the antenna. The experimental and measured results show that the designed antenna is suitable for IEEE WLAN 802.11a wireless application.

  19. Parametric system identification of resonant micro/nanosystems operating in a nonlinear response regime

    Science.gov (United States)

    Sabater, A. B.; Rhoads, J. F.

    2017-02-01

    The parametric system identification of macroscale resonators operating in a nonlinear response regime can be a challenging research problem, but at the micro- and nanoscales, experimental constraints add additional complexities. For example, due to the small and noisy signals micro/nanoresonators produce, a lock-in amplifier is commonly used to characterize the amplitude and phase responses of the systems. While the lock-in enables detection, it also prohibits the use of established time-domain, multi-harmonic, and frequency-domain methods, which rely upon time-domain measurements. As such, the only methods that can be used for parametric system identification are those based on fitting experimental data to an approximate solution, typically derived via perturbation methods and/or Galerkin methods, of a reduced-order model. Thus, one could view the parametric system identification of micro/nanosystems operating in a nonlinear response regime as the amalgamation of four coupled sub-problems: nonparametric system identification, or proper experimental design and data acquisition; the generation of physically consistent reduced-order models; the calculation of accurate approximate responses; and the application of nonlinear least-squares parameter estimation. This work is focused on the theoretical foundations that underpin each of these sub-problems, as the methods used to address one sub-problem can strongly influence the results of another. To provide context, an electromagnetically transduced microresonator is used as an example. This example provides a concrete reference for the presented findings and conclusions.

  20. Parametrization of turbulent fluxes over inhomogeneous landscapes

    Science.gov (United States)

    Panin, G. N.; Bernhofer, Ch.

    2008-12-01

    Reasons for the nonclosure of the heat balance in the atmospheric boundary layers over natural land surfaces are analyzed. Results of measuring the heat-balance components over different land surfaces are used. The Cabauw (Netherlands) data (obtained throughout 1996 over a grass surface with intermittent shrubs and single trees) and the data from the Anchor station in Germany (measured over coniferous forest in 2000-2001) are analyzed. In all, the analysis involves about fifty thousand independent values of the heat-balance components measured in the experiments, which should be indicative of the reliability of the results obtained in the paper. The data have shown that the heat balance is not closed and the imbalance is 50-250 W/m2. The sum of the latent and sensible heat fluxes λ E + H = STF is found to be systematically smaller than the difference between the net radiation and the heat flux into the ground R n - G. It is shown that the main cause of a systematic heat imbalance in the atmospheric boundary layers over inhomogeneous land surfaces is that the methods of surface-flux measurement and estimation are based on the theory that requires the hypothesis of stationarity and horizontal homogeneity. Direct data analysis has shown that the heat imbalance increases with landscape inhomogeneity. In the paper, a parametrization of the heat imbalance is carried out and the coefficient k f ( z {0/ ef }/ L ef ) is introduced as a measure of inhomogeneity. For this, data from the experiments FIFE, KUREX, TARTEX, SADE, etc., are also used. Empirical formulas are presented to refine the results of direct measurements and calculations of surface fluxes over natural (inhomogeneous) land surfaces from profile and standard (using bulk parametrizations) data. These formulas can also be used to determine surface fluxes over inhomogeneous underlying land surfaces in order to take into account so-called subgrid-scale effects in constructing prediction models.

  1. Time reversal of parametrical driving and the stability of the parametrically excited pendulum

    Science.gov (United States)

    Stannarius, Ralf

    2009-02-01

    It is well known that the periodic driving of a parametrically excited pendulum can stabilize or destabilize its stationary states, depending upon the frequency, wave form, and amplitude of the parameter modulations. We discuss the effect of time reversal of the periodic driving function for the parametric pendulum at small elongations. Such a time reversal usually leads to different solutions of the equations of motion and to different stability properties of the system. Two interesting exceptions are discussed, and two conditions are formulated for which the character of the solutions of the system is not influenced by a time reversal of the driving function, even though the trajectories of the dynamic variables are different.

  2. Comparative Study of Parametric and Non-parametric Approaches in Fault Detection and Isolation

    DEFF Research Database (Denmark)

    Katebi, S.D.; Blanke, M.; Katebi, M.R.

    This report describes a comparative study between two approaches to fault detection and isolation in dynamic systems. The first approach uses a parametric model of the system. The main components of such techniques are residual and signature generation for processing and analyzing. The second...... approach is non-parametric in the sense that the signature analysis is only dependent on the frequency or time domain information extracted directly from the input-output signals. Based on these approaches, two different fault monitoring schemes are developed where the feature extraction and fault decision...... algorithms employed are adopted from the template matching in pattern recognition. Extensive simulation studies are performed to demonstrate satisfactory performance of the proposed techniques. The advantages and disadvantages of each approach are discussed and analyzed....

  3. Parametric study of different perturbations applied to the reactor of the NPP Ringhals-1with the coupled codes RELAP5/PARCSv2.7; Estudio parametrico de diferentes perturbaciones aplicadas al reactor de la Central Nuclear de Ringhals 1 con los codigos acoplados RELAP5/PARCSv2.7

    Energy Technology Data Exchange (ETDEWEB)

    Abarca, A.; Barrachina, T.; Miro, R.; Ginestar, D.; Verdu, G.

    2011-07-01

    It has been implemented in the attached code a new method of inducing instabilities in NPP with BWR reactor, through disturbances in the moderator density based on the shape and amplitude of the power modes. This method has been tested and verified with the simulations presented here. The results of the simulations under the conditions of the Record 9' of Ringhals-1 nuclear power plant with the coupled codes show that the type of stability depends on the perturbed mode and amplitudes of these disturbances, that is, the stability of the reactor not only depends on the conditions thermohydraulics previous to the swing, but also the disturbance that starts the swing.

  4. Non-parametric approach to the study of phenotypic stability.

    Science.gov (United States)

    Ferreira, D F; Fernandes, S B; Bruzi, A T; Ramalho, M A P

    2016-02-19

    The aim of this study was to undertake the theoretical derivations of non-parametric methods, which use linear regressions based on rank order, for stability analyses. These methods were extension different parametric methods used for stability analyses and the result was compared with a standard non-parametric method. Intensive computational methods (e.g., bootstrap and permutation) were applied, and data from the plant-breeding program of the Biology Department of UFLA (Minas Gerais, Brazil) were used to illustrate and compare the tests. The non-parametric stability methods were effective for the evaluation of phenotypic stability. In the presence of variance heterogeneity, the non-parametric methods exhibited greater power of discrimination when determining the phenotypic stability of genotypes.

  5. Parametric Analog Signal Amplification Applied to Nanoscale CMOS Technologies

    CERN Document Server

    Oliveira, João P

    2012-01-01

    This book is dedicated to the analysis of parametric amplification with special emphasis on the MOS discrete-time implementation. This implementation is demonstrated by the presentation of several circuits where the MOS parametric amplifier cell is used: small gain amplifier, comparator with embedded pre-amplification, discrete-time mixer/IIR-Filter, and analog-to-digital converter (ADC).  Experimental results are shown to validate the overall design technique. Provides the complete theoretical analysis, supported by electrical simulations, of the parametric amplification technique in both continuous time and discrete time domains; Describes the design flow of an ADC fully based on discrete-time parametric amplification in CMOS technology; Presents a high speed time-interleaved pipeline ADC, based on parametric MOS amplification techniques described, complementing theory discussed with experimental results.

  6. APPLICATION OF PARAMETRIC AND NON-PARAMETRIC BENCHMARKING METHODS IN COST EFFICIENCY ANALYSIS OF THE ELECTRICITY DISTRIBUTION SECTOR

    Directory of Open Access Journals (Sweden)

    Andrea Furková

    2007-06-01

    Full Text Available This paper explores the aplication of parametric and non-parametric benchmarking methods in measuring cost efficiency of Slovak and Czech electricity distribution companies. We compare the relative cost efficiency of Slovak and Czech distribution companies using two benchmarking methods: the non-parametric Data Envelopment Analysis (DEA and the Stochastic Frontier Analysis (SFA as the parametric approach. The first part of analysis was based on DEA models. Traditional cross-section CCR and BCC model were modified to cost efficiency estimation. In further analysis we focus on two versions of stochastic frontier cost functioin using panel data: MLE model and GLS model. These models have been applied to an unbalanced panel of 11 (Slovakia 3 and Czech Republic 8 regional electricity distribution utilities over a period from 2000 to 2004. The differences in estimated scores, parameters and ranking of utilities were analyzed. We observed significant differences between parametric methods and DEA approach.

  7. Entrepreneurial Couples

    DEFF Research Database (Denmark)

    Dahl, Michael S.; Van Praag, Mirjam; Thompson, Peter

    We study possible motivations for co-entrepenurial couples to start up a joint firm, using a sample of 1,069 Danish couples that established a joint enterprise between 2001 and 2010. We compare their pre-entry characteristics, firm performance and postdissolution private and financial outcomes...... with a selected set of comparable firms and couples. We find evidence that couples often establish a business together because one spouse – most commonly the female – has limited outside opportunities in the labor market. However, the financial benefits for each of the spouses, and especially the female...

  8. Entrepreneurial Couples

    DEFF Research Database (Denmark)

    Dahl, Michael S.; Van Praag, Mirjam; Thompson, Peter

    2015-01-01

    We study possible motivations for co-entreprenurial couples to start up a joint firm, using a sample of 1,069 Danish couples that established a joint enterprise between 2001 and 2010. We compare their pre-entry characteristics, firm performance and post-dissolution private and financial outcomes...... with a selected set of comparable firms and couples. We find evidence that couples often establish a business together because one spouse – most commonly the female – has limited outside opportunities in the labor market. However, the financial benefits for each of the spouses, and especially the female...

  9. Entrepreneurial Couples

    DEFF Research Database (Denmark)

    Dahl, Michael S.; Van Praag, Mirjam; Thompson, Peter

    We study possible motivations for co-entrepenurial couples to start up a joint firm, us-ing a sample of 1,069 Danish couples that established a joint enterprise between 2001 and 2010. We compare their pre-entry characteristics, firm performance and post-dissolution private and financial outcomes...... with a selected set of comparable firms and couples. We find evidence that couples often establish a business together because one spouse - most commonly the female - has limited outside opportunities in the labor market. However, the financial benefits for each of the spouses, and especially the female...

  10. Optimization of linear parametric circuits by the control of stability

    Directory of Open Access Journals (Sweden)

    Yu. I. Shapovalov

    2013-07-01

    Full Text Available Introduction. A brief description of the symbolic frequency method for linear parametric circuit analysis is adduced. In particular it comes to parametric transfer functions and assessment of asymptotic stability of such circuits. The formulation of optimization task. The objective function formation is done via two functions - the function of goal defined by desirable circuit characteristics (goal of optimization and function characteristics of circuit defined by the selected values of the varied parameters during optimization of electrical circuit characteristics. The coincidence degree of these two functions is objective function which is formed on their basis by the chosen method. The procedure of optimization. The solution of optimization task is determining the values с0* and m* that provide minimum value of objective function, satisfy the condition of circuit stability and conditions of physical parametric element realizability Example. There is example of single-circuit parametric amplifier optimization using the objective function based on the calculation of parametric circuit transfer function with a symbolic representation of the parametric capacity parameters. Conclusions. Frequency symbolic analysis method allows solving optimization task of parametric linear circuits designing in the frequency domain based on use of the frequency symbolic transfer functions which are approximated by trigonometric polynomials of Fourier, particularly in complex form.

  11. Variable Relation Parametric Model on Graphics Modelon for Collaboration Design

    Institute of Scientific and Technical Information of China (English)

    DONG Yu-de; ZHAO Han; LI Yan-feng

    2005-01-01

    A new approach to variable relation parametric model for collaboration design based on the graphic modelon has been put forward. The paper gives a parametric description model of graphic modelon, and relating method for different graphic modelon based on variable constraint. At the same time, with the aim of engineering application in the collaboration design, the autonmous constraint in modelon and relative constraint between two modelons are given. Finally, with the tool of variable and relation dbase, the solving method of variable relating and variable-driven among different graphic modelon in a part, and doubleacting variable relating parametric method among different parts for collaboration are given.

  12. Nonlinear cross-talk mitigation in polychromatic parametric sampling gate.

    Science.gov (United States)

    Ataie, Vahid; Wiberg, Andreas O J; Alic, Nikola; Radic, Stojan

    2013-02-25

    New technique for cancellation of nonlinear cross-talk in polychromatic parametric sampling gate is described and quantified. The method relies on a newly derived look-up table method that achieves equalization and suppresses nonlinear response associated with parametric sampling operation. The new cancellation scheme is implemented in a framework of a specific parametric photonics assisted analog-to-digital conversion (ADC) copy-and-sample-all (CaSA) architecture. A 20 dB improvement in total harmonic distortion is demonstrated experimentally.

  13. Observation of Three Mode Parametric Interactions in Long Optical Cavities

    CERN Document Server

    Zhao, C; Fan, Y; Slagmolen, S Gras B J J; Miao, H; Blair, P Barriga D G; Hosken, D J; Brooks, A F; Veitch, P J; Mudge, D; Munch, J

    2008-01-01

    We report the first observation of three-mode opto-acoustic parametric interactions of the type predicted to cause parametric instabilities in an 80 m long, high optical power cavity that uses suspended sapphire mirrors. Resonant interaction occurs between two distinct optical modes and an acoustic mode of one mirror when the difference in frequency between the two optical cavity modes is close to the frequency of the acoustic mode. Experimental results validate the theory of parametric instability in high power optical cavities.

  14. Parametric resonance induced chaos in magnetic damped driven pendulum

    Energy Technology Data Exchange (ETDEWEB)

    Khomeriki, Giorgi, E-mail: giokhomeriki123@gmail.com

    2016-07-15

    A damped driven pendulum with a magnetic driving force, appearing from a solenoid, where ac current flows is considered. The solenoid acts on the magnet, which is located at a free end of the pendulum. In this system the existence and interrelation of chaos and parametric resonance is theoretically examined. Derived analytical results are supported by numerical simulations and conducted experiments. - Highlights: • A damped magnetic pendulum is considered driven by off resonant magnetic field. • Our system is chaotic only when the conditions for parametric resonance are fulfilled. • Conducted experiments give a good agreement with theory and numerical simulations. • Calculated Lyapunov exponents are compared with parametric instability growth rates.

  15. Parametric Design of Outdoor Broadcasting Studio Based on Schema Theory

    Directory of Open Access Journals (Sweden)

    Zhu Li

    2016-01-01

    Full Text Available This paper mainly demonstrates that the schema is an important way for the architect to cognize architecture form logic. It connects schema to algorithm of parametric design in order to seek the “algorithm schema” generation in parametric design of architecture. Meanwhile, this paper discusses the generative process and methods of the “algorithm schema” in parametric design of architecture by describing a case of outdoor broadcasting studio of Hunan Economic Radio. It also reveals the importance of “algorithm schema” for the cognition and architectural form logic generation.

  16. Parametric roll resonance monitoring using signal-based detection

    DEFF Research Database (Denmark)

    Galeazzi, Roberto; Blanke, Mogens; Falkenberg, Thomas

    2015-01-01

    Extreme roll motion of ships can be caused by several phenomena, one of which is parametric roll resonance. Several incidents occurred unexpectedly around the millennium and caused vast fiscal losses on large container vessels. The phenomenon is now well understood and some consider parametric ro......-based monitoring system is a simple and effective mean to provide timely warning of resonance conditions...... algorithms in real conditions, and to evaluate the frequency of parametric roll events on the selected vessels. Detection performance is scrutinised through the validation of the detected events using owners’ standard methods, and supported by available wave radar data. Further, a bivariate statistical...

  17. Bifurcation topology transfer in nonlinear nanocantilever arrays subject to parametric and internal resonances

    Directory of Open Access Journals (Sweden)

    Souayeh Saoussen

    2014-01-01

    Full Text Available The collective nonlinear dynamics of a coupled array of nanocantilevers is investigated while taking into account the main sources of nonlinearities. The amplitude and phase equations of this device, subject to parametric and internal resonances, are analytically derived by means of a multi-modal Galerkin discretization coupled with a multiscale analysis. Based on the steady-state solutions of these equations, the frequency responses are numerically computed for a two-beam array. The effects of different parameters are investigated and several dynamical aspects are confirmed by numerical simulations. Particularly, we have demonstrated that the bifurcation topology transfer is imposed by the first nanocantilever and it can be general to the collective nonlinear dynamics of the NEMS array.

  18. A Broadband Quantum-Limited Josephson Parametric Amplifier, Part I: Exp.

    Science.gov (United States)

    White, T. C.; Barends, R.; Bochmann, J.; Campbell, B.; Chen, Y.; Chen, Z.; Chiaro, B.; Dunsworth, A.; Jeffrey, E.; Kelly, J.; Megrant, A.; Mutus, J. Y.; Neill, C.; O'Malley, P.; Quintana, C.; Roushan, P.; Sank, D.; Vainsencher, A.; Wenner, J.; Cleland, A. N.; Martinis, J. M.

    2014-03-01

    While Josephson parametric amplifiers (JPA) have achieved noise performance near the quantum limit, their bandwidth and saturation power is constrained by the resonant design. For a 50 ohm environment the relationship between junction critical current, frequency, and coupled Q means that bandwidth and saturation vary inversely. We present a device in which the coupled Q was lowered by engineering the environment impedance, increasing both bandwidth and saturation power without changing the resonator circuit parameters. The 50 ohm environment was transformed to 15 ohms at the resonator using a hybrid co-planar waveguide/micro-strip transmission line to create a broadband impedance matching network. This device exhibits regions with near quantum-limited bandwidth exceeding 700 MHz and saturation powers as high as -105 dBm.

  19. Off-axis QEPAS using a pulsed nanosecond Mid-Infrared Optical Parametric Oscillator

    CERN Document Server

    Lassen, Mikael; Feng, Yuyang; peremans, Andre; Petersen, Jan C

    2016-01-01

    A trace gas sensor, based on quartz-enhanced photoacoustic spectroscopy (QEPAS), consisting of two acoustically coupled micro-resonators (mR) with an o?-axis 20 kHz quartz tuning fork (QTF) is demonstrated. The complete acoustically coupled mR system is optimized based on finite element simulations and experimentally verified. The QEPAS sensor is pumped resonantly by a nanosecond pulsed single-mode mid-infrared optical parametric oscillator (MIR OPO). The sensor is used for spectroscopic measurements on methane in the 3.1 um to 3.5 um wavelength region with a resolution bandwidth of 1 cm^-1 and a detection limit of 0.8 ppm. An Allan deviation analysis shows that the detection limit at optimum integration time for the QEPAS sensor is 32 ppbv@190s and that the background noise is solely due to the thermal noise of the QTF.

  20. Parametric resonance after hilltop inflation caused by an inhomogeneous inflaton field

    CERN Document Server

    Antusch, Stefan; Nolde, David; Orani, Stefano

    2015-01-01

    We study preheating after hilltop inflation where the inflaton couples to another scalar field, e.g. a right-handed sneutrino, which provides a mechanism for generating the correct initial conditions for inflation and also a decay channel for the inflaton that allows for reheating and non-thermal leptogenesis. In the presence of such a coupling, we find that after the known phases of preheating during which the inflaton field becomes fully inhomogeneous, there can be a subsequent preheating phase where the fluctuations of the other field get resonantly enhanced, from initial vacuum fluctuations up to amplitudes of the same order (and even larger) as the ones of the inflaton field. This resonant enhancement differs from the usual parametric resonance as the inflaton field is highly inhomogeneous at the time the enhancement takes place. We study this effect using lattice simulations as well as semi-analytically with a generalized Floquet analysis for inhomogeneous background fields.

  1. Analytical parametrization and shape classification of anomalous HH production in EFT approach

    CERN Document Server

    Carvalho Antunes De Oliveira, Alexandra; De Castro Manzano, Pablo; Dorigo, Tommaso; Goertz, Florian; Gouzevitch, Maxime; Tosi, Mia

    2016-01-01

    In this document we study the effect of anomalous Higgs boson couplings on non-resonant pair production of Higgs bosons (HH) at the LHC. We explore the space of the five parameters $\\kappa_\\lambda$, $\\kappa_t$, $c_2$, $c_{g}$, and $c_{2g}$ in terms of the corresponding kinematics of the final state, and describe a suggested partition of the space into a limited number of regions featuring similar phenomenology in the kinematics of HH final state, along with a corresponding set of representative benchmark points. We also provide an analytical parametrization of the cross-section modifications that the variation of anomalous couplings produces with respect to standard model HH production along with a recipe to translate our results into other parameter-space bases. Finally, we provide a preliminary analysis of variations in the topology of the final state within each region based on recent LHC results.

  2. Observation of geometric parametric instability induced by the periodic spatial self-imaging of multimode waves

    CERN Document Server

    Krupa, Katarzyna; Barthélémy, Alain; Couderc, Vincent; Shalaby, Badr Mohamed; Bendahmane, Abdelkrim; Millot, Guy; Wabnitz, Stefan

    2016-01-01

    Spatio-temporal mode coupling in highly multimode physical systems permits new routes for exploring complex instabilities and forming coherent wave structures. We present here the first experimental demonstration of multiple geometric parametric instability sidebands, generated in the frequency domain through resonant space-time coupling, owing to the natural periodic spatial self-imaging of a multimode quasi-continuous-wave beam in a standard graded-index multimode fiber. The input beam was launched in the fiber by means of an amplified microchip laser emitting sub-nanosecond pulses at 1064 nm. The experimentally observed frequency spacing among sidebands agrees well with analytical predictions and numerical simulations. The first order peaks are located at the considerably large detuning of 123.5 THz from the pump. These results open the remarkable possibility to convert a near-infrared laser directly into a broad spectral range spanning visible and infrared wavelengths, by means of a single resonant parame...

  3. In-plane Auto-Parametric Vibration of Inclined Cables under Random Transverse Excitation

    Institute of Scientific and Technical Information of China (English)

    WANG Bo; ZHANG Hai-long; XU Feng; GUO Cui-cui

    2008-01-01

    In-plane auto-parametric stochastic vibration of inclined cables subjected to Gaussian white noise in transverse bridge orientation is investigated. Based on Newton's laws of motion and Galerkin's modal truncation principle, the influences of geometry nonlinearity induced by sag and large displacement of cables and the initial equilibrium state are taken into account. Meanwhile, the three-dimensional non-linear differential equations of inclined cables for coupling vibration are deduced, equivalent stochastic linearization method is applied to derive the 1A-dimensional first-order nonlinear differential equations of state vectors, and the Runge-Kutta integration method is utilized to obtain the root mean square (RMS) response. Results show that when the transverse random excitation imposed on the stayed cable exceeds a critical value, the in-plane transverse vibration of the cable are excited due to the auto-parametric nonlinear coupling, and the critical value of random excitation increases with the damping ratio. In this motion, the cable response possesses non-stationary characteristics, even though the loading keeps stationary.

  4. Separation and purification of enzymes by continuous pH-parametric pumping

    Energy Technology Data Exchange (ETDEWEB)

    Huang, S.Y.; Lin, C.K.; Juang, L.Y.

    1985-10-01

    Trypsin and chymotrypsin were separated from porcine pancreas extract by continuous pH-parametric pumping. CHOM (chicken ovomucoid) was convalently bound to laboratory-prepared crab chitin with glutaraldehyde to form an affinity adsorbent of trypsin. The pH levels of top and bottom feeds were 8.0 and 2.5, respectively. Similar inhibitor, DKOM (duck ovomucoid), and pH levels 8.0 and 2.0 for top and bottom feeds, respectively, were used for separation and purification of chymotrypsin. e-Amino caproyl-D-tryptophan methyl ester was coupled to chitosan to form an affinity adsorbent for stem bromelain. The pH levels were 8.7 and 3.0. Separation continued fairly well with high yield, e.g., 95% recovery of trypsin after continuous pumping of 10 cycles. Optimum operational conditions for concentration and purification of these enzymes were investigated. The results showed that the continuous pH-parametric pumping coupled with affinity chromatography is effective for concentration and purification of enzymes. 19 references.

  5. Human pose tracking by parametric annealing

    CERN Document Server

    Kaliamoorthi, Prabhu

    2012-01-01

    Model based methods to marker-free motion capture have a very high computational overhead that make them unattractive. In this paper we describe a method that improves on existing global optimization techniques to tracking articulated objects. Our method improves on the state-of-the-art Annealed Particle Filter (APF) by reusing samples across annealing layers and by using an adaptive parametric density for diffusion. We compare the proposed method with APF on a scalable problem and study how the two methods scale with the dimensionality, multi-modality and the range of search. Then we perform sensitivity analysis on the parameters of our algorithm and show that it tolerates a wide range of parameter settings. We also show results on tracking human pose from the widely-used Human Eva I dataset. Our results show that the proposed method reduces the tracking error despite using less than 50% of the computational resources as APF. The tracked output also shows a significant qualitative improvement over APF as dem...

  6. Selected Parametric Effects on Materials Flammability Limits

    Science.gov (United States)

    Hirsch, David B.; Juarez, Alfredo; Peyton, Gary J.; Harper, Susana A.; Olson, Sandra L.

    2011-01-01

    NASA-STD-(I)-6001B Test 1 is currently used to evaluate the flammability of materials intended for use in habitable environments of U.S. spacecraft. The method is a pass/fail upward flame propagation test conducted in the worst case configuration, which is defined as a combination of a material s thickness, test pressure, oxygen concentration, and temperature that make the material most flammable. Although simple parametric effects may be intuitive (such as increasing oxygen concentrations resulting in increased flammability), combinations of multi-parameter effects could be more complex. In addition, there are a variety of material configurations used in spacecraft. Such configurations could include, for example, exposed free edges where fire propagation may be different when compared to configurations commonly employed in standard testing. Studies involving combined oxygen concentration, pressure, and temperature on flammability limits have been conducted and are summarized in this paper. Additional effects on flammability limits of a material s thickness, mode of ignition, burn-length criteria, and exposed edges are presented. The information obtained will allow proper selection of ground flammability test conditions, support further studies comparing flammability in 1-g with microgravity and reduced gravity environments, and contribute to persuasive scientific cases for rigorous space system fire risk assessments.

  7. Properties of Graphene Based Parametric Pump

    Institute of Scientific and Technical Information of China (English)

    LUO Song-Lin; WEI Ya-Dong

    2009-01-01

    The adiabatic parametric electron pump of the infinite zigzag graphene ribbons and the infinite armchair graphene ribbons is investigated by the tight binding method. The pumping signals are added by two gates around the ribbons. It is shown that the dc current can be pumped out by cyclically varying the two gate voltages and the pumped current strongly depends on the driving frequency, the pumping amplitude and the phase difference of the gate voltages. The pumped current is mediated by the graphene energy levels and its peaks occur around the energies where transmission coefficients and density of states are large. The pump current may give one peak or two opposite peaks corresponding to each transmission peak or transmission pair peaks. The height and width of the current peaks increase with the amplitude of the pumping driving voltages. The pumped current is antisymmetric about the phase difference φ=π and for small pumping amplitude the pumped current is a sinusoidal function of the phase difference. Some graphene ribbons, although with different widths, have very similar contours of the transmission coefficients and give the same pumped current figures.

  8. Science Parametrics for TPF-Type Missions

    CERN Document Server

    Brown, Robert A

    2014-01-01

    We propose a science metric for pure-search missions of the scale of the Terrestrial Planet Finder. The metric is the expected number $N$ of discovered earthlike planets as a function of total exposure time $\\Sigma\\tau$. We estimate $N(\\Sigma\\tau)$ for a range of mission parameters: aperture $D=4-16$ m, inner working angle $IWA=0.0196''-0.3135''$, and $\\Sigma\\tau=10-1000$ d. Our technique involves (1) building a prioritized stack of all possible search observations of stars in the input catalog, including revisits, (2) constructing design reference missions by repeatedly selecting the observation with highest merit from the top of the stack, (3) estimating the density of $N$ by convolving the Bernoullian densities of executed observations, and (4) investigating the parametrical variations of $N$, $D$, $IWA$, and $\\Sigma\\tau$. For example, near the center of the range of parameters -- at $D=8$ m, $IWA=0.0784''$, $\\Sigma\\tau=100$ d -- we estimate $N=40$, that $N\\sim\\Sigma\\tau^{0.272}$, and that a factor-two imp...

  9. Design criteria for ultrafast optical parametric amplifiers

    Science.gov (United States)

    Manzoni, C.; Cerullo, G.

    2016-10-01

    Optical parametric amplifiers (OPAs) exploit second-order nonlinearity to transfer energy from a fixed frequency pump pulse to a variable frequency signal pulse, and represent an easy way of tuning over a broad range the frequency of an otherwise fixed femtosecond laser system. OPAs can also act as broadband amplifiers, transferring energy from a narrowband pump to a broadband signal and thus considerably shortening the duration of the pump pulse. Due to these unique properties, OPAs are nowadays ubiquitous in ultrafast laser laboratories, and are employed by many users, such as solid state physicists, atomic/molecular physicists, chemists and biologists, who are not experts in ultrafast optics. This tutorial paper aims at providing the non-specialist reader with a self-consistent guide to the physical foundations of OPAs, deriving the main equations describing their performance and discussing how they can be used to understand their most important working parameters (frequency tunability, bandwidth, pulse energy/repetition rate scalability, control over the carrier-envelope phase of the generated pulses). Based on this analysis, we derive practical design criteria for OPAs, showing how their performance depends on the type of the nonlinear interaction (crystal type, phase-matching configuration, crystal length), on the characteristics of the pump pulse (frequency, duration, energy, repetition rate) and on the OPA architecture.

  10. Multidimensional Scaling Visualization Using Parametric Similarity Indices

    Directory of Open Access Journals (Sweden)

    J. A. Tenreiro Machado

    2015-03-01

    Full Text Available In this paper, we apply multidimensional scaling (MDS and parametric similarity indices (PSI in the analysis of complex systems (CS. Each CS is viewed as a dynamical system, exhibiting an output time-series to be interpreted as a manifestation of its behavior. We start by adopting a sliding window to sample the original data into several consecutive time periods. Second, we define a given PSI for tracking pieces of data. We then compare the windows for different values of the parameter, and we generate the corresponding MDS maps of ‘points’. Third, we use Procrustes analysis to linearly transform the MDS charts for maximum superposition and to build a globalMDS map of “shapes”. This final plot captures the time evolution of the phenomena and is sensitive to the PSI adopted. The generalized correlation, theMinkowski distance and four entropy-based indices are tested. The proposed approach is applied to the Dow Jones Industrial Average stock market index and the Europe Brent Spot Price FOB time-series.

  11. Parametric Deduction Optimization for Surface Roughness

    Directory of Open Access Journals (Sweden)

    Tian-Syung Lan

    2010-01-01

    Full Text Available Problem statement: Surface roughness is a major consideration in modern Computer Numerical Control (CNC turning industry. Most existing optimization researches for CNC finish turning were either accomplished within certain manufacturing circumstances, or achieved through numerous equipment operations. Therefore, a general deduction optimization scheme is deemed to be necessary for the industry. Approach: In this study, four parameters (cutting depth, feed rate, speed, tool nose runoff with three levels (low, medium, high were considered to optimize the surface roughness for Computer Numerical Control (CNC finish turning. Additionally, twenty-seven fuzzy control rules using trapezoid membership function with respective to seventeen linguistic grades for the surface roughness were constructed. Considering thirty input and eighty output intervals, the defuzzification using center of gravity was moreover completed. Through the Taguchi experiment, the optimum general deduction parameters can then be received. Results: The confirmation experiment for optimum deduction parameters was furthermore performed on an ECOCA-3807 CNC lathe. It was shown that the surface roughness from the fuzzy deduction optimization parameters are significantly advanced comparing to those from benchmark. Conclusion: This study not only proposed a parametric deduction optimization scheme using orthogonal array, but also contributed the satisfactory fuzzy approach to the surface roughness for CNC turning with profound insight.

  12. Parametric Testing of Launch Vehicle FDDR Models

    Science.gov (United States)

    Schumann, Johann; Bajwa, Anupa; Berg, Peter; Thirumalainambi, Rajkumar

    2011-01-01

    For the safe operation of a complex system like a (manned) launch vehicle, real-time information about the state of the system and potential faults is extremely important. The on-board FDDR (Failure Detection, Diagnostics, and Response) system is a software system to detect and identify failures, provide real-time diagnostics, and to initiate fault recovery and mitigation. The ERIS (Evaluation of Rocket Integrated Subsystems) failure simulation is a unified Matlab/Simulink model of the Ares I Launch Vehicle with modular, hierarchical subsystems and components. With this model, the nominal flight performance characteristics can be studied. Additionally, failures can be injected to see their effects on vehicle state and on vehicle behavior. A comprehensive test and analysis of such a complicated model is virtually impossible. In this paper, we will describe, how parametric testing (PT) can be used to support testing and analysis of the ERIS failure simulation. PT uses a combination of Monte Carlo techniques with n-factor combinatorial exploration to generate a small, yet comprehensive set of parameters for the test runs. For the analysis of the high-dimensional simulation data, we are using multivariate clustering to automatically find structure in this high-dimensional data space. Our tools can generate detailed HTML reports that facilitate the analysis.

  13. Supercritical extraction of oleaginous: parametric sensitivity analysis

    Directory of Open Access Journals (Sweden)

    Santos M.M.

    2000-01-01

    Full Text Available The economy has become universal and competitive, thus the industries of vegetable oil extraction must advance in the sense of minimising production costs and, at the same time, generating products that obey more rigorous patterns of quality, including solutions that do not damage the environment. The conventional oilseed processing uses hexane as solvent. However, this solvent is toxic and highly flammable. Thus the search of substitutes for hexane in oleaginous extraction process has increased in the last years. The supercritical carbon dioxide is a potential substitute for hexane, but it is necessary more detailed studies to understand the phenomena taking place in such process. Thus, in this work a diffusive model for semi-continuous (batch for the solids and continuous for the solvent isothermal and isobaric extraction process using supercritical carbon dioxide is presented and submitted to a parametric sensitivity analysis by means of a factorial design in two levels. The model parameters were disturbed and their main effects analysed, so that it is possible to propose strategies for high performance operation.

  14. Action Quantization, Energy Quantization, and Time Parametrization

    Science.gov (United States)

    Floyd, Edward R.

    2017-03-01

    The additional information within a Hamilton-Jacobi representation of quantum mechanics is extra, in general, to the Schrödinger representation. This additional information specifies the microstate of ψ that is incorporated into the quantum reduced action, W. Non-physical solutions of the quantum stationary Hamilton-Jacobi equation for energies that are not Hamiltonian eigenvalues are examined to establish Lipschitz continuity of the quantum reduced action and conjugate momentum. Milne quantization renders the eigenvalue J. Eigenvalues J and E mutually imply each other. Jacobi's theorem generates a microstate-dependent time parametrization t-τ =partial _E W even where energy, E, and action variable, J, are quantized eigenvalues. Substantiating examples are examined in a Hamilton-Jacobi representation including the linear harmonic oscillator numerically and the square well in closed form. Two byproducts are developed. First, the monotonic behavior of W is shown to ease numerical and analytic computations. Second, a Hamilton-Jacobi representation, quantum trajectories, is shown to develop the standard energy quantization formulas of wave mechanics.

  15. Parametrization of the driven betatron oscillation

    Directory of Open Access Journals (Sweden)

    R. Miyamoto

    2008-08-01

    Full Text Available An AC dipole is a magnet which produces a sinusoidally oscillating dipole field and excites coherent transverse beam oscillations in a synchrotron. By observing this driven coherent oscillation, the linear optical parameters can be directly measured at locations of the beam position monitors. The driven oscillations induced by an AC dipole will generate a phase space ellipse which differs from that of free oscillations. If not properly accounted for, this difference can lead to misinterpretations of the actual optical parameters, for instance, 6% or more in the cases of the Tevatron, RHIC, or LHC. This paper shows that the effect of an AC dipole on the observed linear optics is identical to that of a thin lens quadrupole. By introducing a new amplitude function to describe this new phase space ellipse, the motion produced by an AC dipole becomes easier to interpret. The introduction of this new amplitude function also helps measurements of the normal Courant-Snyder parameters based on beam position data taken under the influence of an AC dipole. This new parametrization of driven oscillations is presented and is used to interpret data taken in the FNAL Tevatron using an AC dipole.

  16. A scale invariance criterion for LES parametrizations

    Directory of Open Access Journals (Sweden)

    Urs Schaefer-Rolffs

    2015-01-01

    Full Text Available Turbulent kinetic energy cascades in fluid dynamical systems are usually characterized by scale invariance. However, representations of subgrid scales in large eddy simulations do not necessarily fulfill this constraint. So far, scale invariance has been considered in the context of isotropic, incompressible, and three-dimensional turbulence. In the present paper, the theory is extended to compressible flows that obey the hydrostatic approximation, as well as to corresponding subgrid-scale parametrizations. A criterion is presented to check if the symmetries of the governing equations are correctly translated into the equations used in numerical models. By applying scaling transformations to the model equations, relations between the scaling factors are obtained by demanding that the mathematical structure of the equations does not change.The criterion is validated by recovering the breakdown of scale invariance in the classical Smagorinsky model and confirming scale invariance for the Dynamic Smagorinsky Model. The criterion also shows that the compressible continuity equation is intrinsically scale-invariant. The criterion also proves that a scale-invariant turbulent kinetic energy equation or a scale-invariant equation of motion for a passive tracer is obtained only with a dynamic mixing length. For large-scale atmospheric flows governed by the hydrostatic balance the energy cascade is due to horizontal advection and the vertical length scale exhibits a scaling behaviour that is different from that derived for horizontal length scales.

  17. Parametric and Non-Parametric Vibration-Based Structural Identification Under Earthquake Excitation

    Science.gov (United States)

    Pentaris, Fragkiskos P.; Fouskitakis, George N.

    2014-05-01

    The problem of modal identification in civil structures is of crucial importance, and thus has been receiving increasing attention in recent years. Vibration-based methods are quite promising as they are capable of identifying the structure's global characteristics, they are relatively easy to implement and they tend to be time effective and less expensive than most alternatives [1]. This paper focuses on the off-line structural/modal identification of civil (concrete) structures subjected to low-level earthquake excitations, under which, they remain within their linear operating regime. Earthquakes and their details are recorded and provided by the seismological network of Crete [2], which 'monitors' the broad region of south Hellenic arc, an active seismic region which functions as a natural laboratory for earthquake engineering of this kind. A sufficient number of seismic events are analyzed in order to reveal the modal characteristics of the structures under study, that consist of the two concrete buildings of the School of Applied Sciences, Technological Education Institute of Crete, located in Chania, Crete, Hellas. Both buildings are equipped with high-sensitivity and accuracy seismographs - providing acceleration measurements - established at the basement (structure's foundation) presently considered as the ground's acceleration (excitation) and at all levels (ground floor, 1st floor, 2nd floor and terrace). Further details regarding the instrumentation setup and data acquisition may be found in [3]. The present study invokes stochastic, both non-parametric (frequency-based) and parametric methods for structural/modal identification (natural frequencies and/or damping ratios). Non-parametric methods include Welch-based spectrum and Frequency response Function (FrF) estimation, while parametric methods, include AutoRegressive (AR), AutoRegressive with eXogeneous input (ARX) and Autoregressive Moving-Average with eXogeneous input (ARMAX) models[4, 5

  18. Parametric modeling of DSC-MRI data with stochastic filtration and optimal input design versus non-parametric modeling.

    Science.gov (United States)

    Kalicka, Renata; Pietrenko-Dabrowska, Anna

    2007-03-01

    In the paper MRI measurements are used for assessment of brain tissue perfusion and other features and functions of the brain (cerebral blood flow - CBF, cerebral blood volume - CBV, mean transit time - MTT). Perfusion is an important indicator of tissue viability and functioning as in pathological tissue blood flow, vascular and tissue structure are altered with respect to normal tissue. MRI enables diagnosing diseases at an early stage of their course. The parametric and non-parametric approaches to the identification of MRI models are presented and compared. The non-parametric modeling adopts gamma variate functions. The parametric three-compartmental catenary model, based on the general kinetic model, is also proposed. The parameters of the models are estimated on the basis of experimental data. The goodness of fit of the gamma variate and the three-compartmental models to the data and the accuracy of the parameter estimates are compared. Kalman filtering, smoothing the measurements, was adopted to improve the estimate accuracy of the parametric model. Parametric modeling gives a better fit and better parameter estimates than non-parametric and allows an insight into the functioning of the system. To improve the accuracy optimal experiment design related to the input signal was performed.

  19. Efficient fiber coupling of down-conversion photon pairs

    CERN Document Server

    Dragan, A

    2004-01-01

    We develop and apply an effective analytic theory of a non-collinear, broadband type-I parametric down-conversion to study a coupling efficiency of the generated photon pairs into single mode optical fibers. We derive conditions necessary for highly efficient coupling for single and double type-I crystal producing polarization entangled states of light. We compare the obtained approximate analytic expressions with the exact numerical solutions and discuss the results for a case of BBO crystals.

  20. Cases of coupled vibrations and prametric instability in rotating machines

    OpenAIRE

    Luneno, Jean-Claude

    2012-01-01

    The principal task in this research project was to analyse the causes and consequences of coupled vibrations and parametric instability in hydropower rotors; where both horizontal and vertical machines are involved. Vibration is a well-known undesirable behavior of dynamical systems characterised by persistent periodic, quasi-periodic or chaotic motions. Vibrations generate noise and cause fatigue, which initiates cracks in mechanical structures. Motions coupling can in some cases augment the...