Non-Darcy Mixed Convection in a Doubly Stratified Porous Medium with Soret-Dufour Effects
Directory of Open Access Journals (Sweden)
D. Srinivasacharya
2014-01-01
Full Text Available This paper presents the nonsimilarity solutions for mixed convection heat and mass transfer along a semi-infinite vertical plate embedded in a doubly stratified fluid saturated porous medium in the presence of Soret and Dufour effects. The flow in the porous medium is described by employing the Darcy-Forchheimer based model. The nonlinear governing equations and their associated boundary conditions are initially cast into dimensionless forms and then solved numerically. The influence of pertinent parameters on dimensionless velocity, temperature, concentration, heat, and mass transfer in terms of the local Nusselt and Sherwood numbers is discussed and presented graphically.
Directory of Open Access Journals (Sweden)
A. M. Elaiw
2012-01-01
Full Text Available We study the effect of variable viscosity on the flow and vortex instability for non-Darcy mixed convection boundary layer flow on a nonisothermal horizontal plat surface in a saturated porous medium. The variation of viscosity is expressed as an exponential function of temperature. The analysis of the disturbance flow is based on linear stability theory. The base flow equations and the resulting eigenvalue problem are solved using finite difference schemes. It is found that the variable viscosity effect enhances the heat transfer rate and destabilizes the flow for liquid heating, while the opposite trend is true for gas heating.
International Nuclear Information System (INIS)
Kandasamy, R.; Muhaimin; Hashim, I.; Ruhaila
2008-01-01
The effects of variable viscosity, thermophoresis and non-Darcy mixed convection flow with heat and mass transfer over a porous wedge are presented here, taking into account the homogeneous chemical reaction of first order. The fluid viscosity is assumed to vary as an inverse linear function of temperature. Favorable comparison with previously published work is performed. The governing fundamental equations are approximated by a system of nonlinear ordinary differential equations and are solved numerically by using the Runge Kutta Gill and shooting methods. The steady-state velocity, temperature and concentration profiles are shown graphically. It is observed that due to the presence of first-order chemical reaction the concentration decreases with increasing values of the chemical reaction parameter. The results also showed that the particle deposition rates were strongly influenced by thermophoresis and buoyancy force, particularly for opposing flow and hot surfaces. Numerical results for the skin-friction coefficient, wall heat and mass transfer are obtained and reported graphically for various parametric conditions to show interesting aspects of the solution
El-Amin, Mohamed; Salama, Amgad; El-Amin, Ammaarah A.; Gorla, Rama Subba Reddy
2013-01-01
In this paper, the effects of thermal dispersion and variable viscosity on the non-Darcy free, mixed, and forced convection heat transfer along a vertical flat plate embedded in a fluid-saturated porous medium are investigated. Forchheimer extension
Microbial enhancement of non-Darcy flow: Theoretical consideration
Energy Technology Data Exchange (ETDEWEB)
Shi, Jianxin; Schneider, D.R.
1995-12-31
In the near well-bore region and perforations, petroleum fluids usually flow at high velocities and may exhibit non-Darcy-flow behavior. Microorganisms can increase permeability and porosity by removing paraffin or asphaltene accumulations. They can also reduce interfacial tension by producing biosurfactants. These changes can significantly affect non-Darcy flow behavior. Theoretical analysis shows that microbial activities can enhance production by decreasing the turbulence pressure drop and in some cases increasing the drag force exerted to the oil phase. This implies that the effects of microbial activities on non-Darcy flow are important and should be considered in the evaluation of microbial well stimulation and enhanced oil recovery.
El-Amin, Mohamed
2013-01-01
In this paper, the effects of thermal dispersion and variable viscosity on the non-Darcy free, mixed, and forced convection heat transfer along a vertical flat plate embedded in a fluid-saturated porous medium are investigated. Forchheimer extension is employed in the flow equation to express the non-Darcy model. The fluid viscosity varies as an inverse linear function of temperature. The coefficient of thermal diffusivity has been assumed to be the sum of the molecular diffusivity and the dynamic diffusivity due to mechanical dispersion. Similarity solutions of the governing equations, for an isothermally heated plate, are obtained. Effects of the physical parameters, which govern the problem, on the rate of heat transfer in terms of Nusselt number, the slip velocity, and the boundary layer thickness, for the two cases Darcy and non-Darcy, are shown on graphs or entered in tables. © 2013 by Begell House, Inc.
Non-Darcy behavior of two-phase channel flow.
Xu, Xianmin; Wang, Xiaoping
2014-08-01
We study the macroscopic behavior of two-phase flow in porous media from a phase-field model. A dissipation law is first derived from the phase-field model by homogenization. For simple channel geometry in pore scale, the scaling relation of the averaged dissipation rate with the velocity of the two-phase flow can be explicitly obtained from the model which then gives the force-velocity relation. It is shown that, for the homogeneous channel surface, Dacry's law is still valid with a significantly modified permeability including the contribution from the contact line slip. For the chemically patterned surfaces, the dissipation rate has a non-Darcy linear scaling with the velocity, which is related to a depinning force for the patterned surface. Our result offers a theoretical understanding on the prior observation of non-Darcy behavior for the multiphase flow in either simulations or experiments.
Non-darcy flow behavior mean high-flux injection wells in porous and fractured formations
Energy Technology Data Exchange (ETDEWEB)
Wu, Yu-Shu
2003-04-25
This paper presents a study of non-Darcy fluid flow through porous and fractured rock, which may occur near wells during high-flux injection of waste fluids into underground formations. Both numerical and analytical models are used in this study. General non-Darcy flow is described using the Forchheimer equation, implemented in a three-dimensional, multiphase flow reservoir simulator. The non-Darcy flow through a fractured reservoir is handled using a general dual continuum approach, covering commonly used conceptual models, such as double porosity, dual permeability, explicit fracture, etc. Under single-phase flow conditions, an approximate analytical solution, as an extension of the Warren-Root solution, is discussed. The objectives of this study are (1) to obtain insights into the effect of non-Darcy flow on transient pressure behavior through porous and fractured reservoirs and (2) to provide type curves for well test analyses of non-Darcy flow wells. The type curves generated include various types of drawdown, injection, and buildup tests with non-Darcy flow occurring in porous and fractured reservoirs. In addition, non-Darcy flow into partially penetrating wells is also considered. The transient-pressure type curves for flow in fractured reservoirs are based on the double-porosity model. Type curves provided in this work for non-Darcy flow in porous and fractured reservoirs will find their applications in well test interpretation using a type-curve matching technique.
Numerical simulation of single-phase and multiphase non-Darcy flowin porous and fractured reservoirs
Energy Technology Data Exchange (ETDEWEB)
Wu, Yu-Shu
2000-06-02
A numerical method as well as a theoretical study of non-Darcy fluid flow of through porous and fractured reservoirs is described. The non-Darcy flow is handled in a three-dimensional, multiphase flow reservoir simulator, while the model formulation incorporates the Forchheimer equation for describing single-phase or multiphase non-Darcy flow and displacement. The numerical scheme has been verified by comparing its results against those of analytical methods. Numerical solutions are used to obtain some insight into the physics of non-Darcy flow and displacement in reservoirs. In addition, several type curves are provided for well-test analyses of non-Darcy flow to demonstrate a methodology for modeling this type of flow in porous and fractured rocks, including flow in geothermal reservoirs.
Study on the REV Size of Fractured Rock in the Non-Darcy Flow Based on the Dual-Porosity Model
Directory of Open Access Journals (Sweden)
Yuan Wang
2018-01-01
Full Text Available For the problem of whether the representative elementary volume (REV obtained in the Darcy flow is also applicable to the case of the non-Darcy flow, the study on the REV size within the non-Darcy flow is proposed tentatively. The concept of the REV in the non-Darcy flow is based on the definition of the REV. According to the determination of the REV in the Darcy flow, the intrinsic permeability k and non-Darcy coefficient β are used simultaneously for the determination of the REV in the non-Darcy flow. The pore pressure cohesive element (PPCE is developed with the subroutine in ABAQUS. Then the simulation method of the Darcy and non-Darcy flow in the fractured rock mass is built using the PPCE. The proposed plan is examined through the comparison with existing research results. It is validated that this technic is efficient and accurate in simulating the Darcy and non-Darcy flow in the fractured rock mass. Combined with fracture networks generated by Monte Carlo Simulation technique, the PPCE is applied to the study on the REV size. Both conditions of the Darcy and non-Darcy flow are simulated for comparison. The simulation results of this model show that the REV of the non-Darcy flow is inconsistent with the REV of the Darcy flow, and the REV of the non-Darcy flow is more significant than the REV of the Darcy flow. The intrinsic permeability k tensors obtained in the Darcy flow and the non-Darcy flow are basically the same.
Wang, Jianxiu; Liu, Xiaotian; Wu, Yuanbin; Liu, Shaoli; Wu, Lingao; Lou, Rongxiang; Lu, Jiansheng; Yin, Yao
2017-06-01
High-velocity non-Darcy flow produced larger drawdown than Darcy flow under the same pumping rate. When the non-Darcy flow caused by curtain met non-Darcy flow caused by pumping wells, superposition and amplification effect occurred in the coupling area, the non-Darcy flow was defined as coupling non-Darcy flow. The coupling non-Darcy flow can be produced and controlled using different combination of curtain and pumping wells in foundation pit dewatering to obtain the maximum drawdown using the minimum pumping rate. The Qianjiang Century City Station foundation pit of Hangzhou subway, China, was selected as background. Field experiments were performed to observe the coupling non-Darcy flow in round gravel. A generalized conceptual model was established to study the coupling effect under different combination of curtain and pumping wells. Numerical simulations of the coupling non-Darcy flow in foundation pit dewatering were carried out based on the Forchheimer equation. The non-Darcy flow area and flow velocity were influenced by the coupling effect. Short filter tube, large pumping rate, small horizontal distance between filter tube and diaphragm wall, and small vertical distance between the filter tube and confined aquifer roof effectively strengthened the coupling effect and obtained a large drawdown. The pumping wells installed close to a curtain was an intentional choice designed to create coupling non-Darcy flow and obtain the maximize drawdown. It can be used in the dewatering of a long and narrow foundation pit, such as a subway foundation pit.
Combined effect of magnetic field and thermal dispersion on a non-darcy mixed convection
El-Amin, Mohamed; Sun, Shuyu
2011-01-01
This paper is devoted to investigate the influences of thermal dispersion and magnetic field on a hot semi-infinite vertical porous plate embedded in a saturated Darcy-Forchheimer-Brinkman porous medium. The coefficient of thermal diffusivity has been assumed to be the sum of the molecular diffusivity and the dynamic diffusivity due to mechanical dispersion. The effects of transverse magnetic field parameter (Hartmann number Ha), Reynolds number Re (different velocities), Prandtl number Pr (different types of fluids) and dispersion parameter on the wall shear stress and the heat transfer rate are discussed. © 2011 Science Press, Institute of Engineering Thermophysics, CAS and Springer-Verlag Berlin Heidelberg.
Combined effect of magnetic field and thermal dispersion on a non-darcy mixed convection
El-Amin, Mohamed
2011-05-21
This paper is devoted to investigate the influences of thermal dispersion and magnetic field on a hot semi-infinite vertical porous plate embedded in a saturated Darcy-Forchheimer-Brinkman porous medium. The coefficient of thermal diffusivity has been assumed to be the sum of the molecular diffusivity and the dynamic diffusivity due to mechanical dispersion. The effects of transverse magnetic field parameter (Hartmann number Ha), Reynolds number Re (different velocities), Prandtl number Pr (different types of fluids) and dispersion parameter on the wall shear stress and the heat transfer rate are discussed. © 2011 Science Press, Institute of Engineering Thermophysics, CAS and Springer-Verlag Berlin Heidelberg.
Non-Darcy Flow Experiments of Water Seepage through Rough-Walled Rock Fractures
Directory of Open Access Journals (Sweden)
Xiao-dong Ni
2018-01-01
Full Text Available The knowledge of flow phenomena in fractured rocks is very important for groundwater-resources management in hydrogeological engineering. The most commonly used tool to approximate the non-Darcy behavior of the flow velocity is the well-known Forchheimer equation, deploying the “inertial” coefficient β that can be estimated experimentally. Unfortunately, the factor of roughness is imperfectly considered in the literature. In order to do this, we designed and manufactured a seepage apparatus that can provide different roughness and aperture in the test; the rough fracture surface is established combining JRC and 3D printing technology. A series of hydraulic tests covering various flows were performed. Experimental data suggest that Forchheimer coefficients are to some extent affected by roughness and aperture. At last, favorable semiempirical Forchheimer equation which can consider fracture aperture and roughness was firstly derived. It is believed that such studies will be quite useful in identifying the limits of applicability of the well-known “cubic law,” in further improving theoretical/numerical models associated with fluid flow through a rough fracture.
Measurements of gas permeability and non-Darcy flow in gas-water-hydrate systems
Energy Technology Data Exchange (ETDEWEB)
Ersland, G.; Husebo, J.; Graue, A.; Kvamme, B. [Bergen Univ., Bergen (Norway). Dept. of Physics and Technology; Baldwin, B. [Green Country Petrophysics LLC, Dewey, OK (United States); Stevens, J.; Howard, J. [ConocoPhillips, OK (United States)
2008-07-01
Storage of carbon dioxide (CO{sub 2}) in natural gas hydrate reservoirs may offer stable long-term storage of a greenhouse gas while benefiting from methane production, without requiring heat. By exposing hydrate to a thermodynamically preferred hydrate former, CO{sub 2}, the hydrate may be maintained macroscopically in the solid state and retain the stability of the formation. However, there is concern over the flow capacity in such reservoirs. This depends on several factors, notably thermodynamic destabilization of hydrate in small pores due to capillary effects; the presence of liquid channels separating the hydrate from the mineral surfaces; and, the connectivity of gas or liquid filled pores and channels. This paper described a technique for measuring gas permeability in gas-water-hydrate systems. It reported on several experiments that measured gas permeability during stages of hydrate growth in sandstone core plugs. Interactions between minerals and surrounding molecules were also discussed. The formation of methane hydrate in porous media was monitored and quantified with magnetic resonance imaging (MRI). MRI images of hydrate growth within the porous rock were provided along with measurements of gas permeability and non-Darcy flow effects at various hydrate saturations. Gas permeability was measured at steady state flow of methane through the hydrate-bearing core sample. Significant gas permeability was recorded for porous sandstone even when hydrates occupied up to 60 per cent of the pore space. It was concluded that MRI imaging can be used effectively to map and quantify hydrate saturation in sandstone core plugs. 27 refs., 2 tabs., 10 figs.
Evidence of non-Darcy flow and non-Fickian transport in fractured media at laboratory scale
Directory of Open Access Journals (Sweden)
C. Cherubini
2013-07-01
Full Text Available During a risk assessment procedure as well as when dealing with cleanup and monitoring strategies, accurate predictions of solute propagation in fractured rocks are of particular importance when assessing exposure pathways through which contaminants reach receptors. Experimental data obtained under controlled conditions such as in a laboratory allow to increase the understanding of the fundamental physics of fluid flow and solute transport in fractures. In this study, laboratory hydraulic and tracer tests have been carried out on an artificially created fractured rock sample. The tests regard the analysis of the hydraulic loss and the measurement of breakthrough curves for saline tracer pulse inside a rock sample of parallelepiped shape (0.60 × 0.40 × 0.08 m. The convolution theory has been applied in order to remove the effect of the acquisition apparatus on tracer experiments. The experimental results have shown evidence of a non-Darcy relationship between flow rate and hydraulic loss that is best described by Forchheimer's law. Furthermore, in the flow experiments both inertial and viscous flow terms are not negligible. The observed experimental breakthrough curves of solute transport have been modeled by the classical one-dimensional analytical solution for the advection–dispersion equation (ADE and the single rate mobile–immobile model (MIM. The former model does not properly fit the first arrival and the tail while the latter, which recognizes the existence of mobile and immobile domains for transport, provides a very decent fit. The carried out experiments show that there exists a pronounced mobile–immobile zone interaction that cannot be neglected and that leads to a non-equilibrium behavior of solute transport. The existence of a non-Darcian flow regime has showed to influence the velocity field in that it gives rise to a delay in solute migration with respect to the predicted value assuming linear flow. Furthermore, the
Akbarnejad, Shahin; Saffari Pour, Mohsen; Jonsson, Lage Tord Ingemar; Jönsson, Pӓr Göran
2017-02-01
Ceramic foam filters (CFFs) are used to remove solid particles and inclusions from molten metal. In general, molten metal which is poured on the top of a CFF needs to reach a certain height to build the required pressure (metal head) to prime the filter. To estimate the required metal head, it is necessary to obtain permeability coefficients using permeametry experiments. It has been mentioned in the literature that to avoid fluid bypassing, during permeametry, samples need to be sealed. However, the effect of fluid bypassing on the experimentally obtained pressure gradients seems not to be explored. Therefore, in this research, the focus was on studying the effect of fluid bypassing on the experimentally obtained pressure gradients as well as the empirically obtained Darcy and non-Darcy permeability coefficients. Specifically, the aim of the research was to investigate the effect of fluid bypassing on the liquid permeability of 30, 50, and 80 pores per inch (PPI) commercial alumina CFFs. In addition, the experimental data were compared to the numerically modeled findings. Both studies showed that no sealing results in extremely poor estimates of the pressure gradients and Darcy and non-Darcy permeability coefficients for all studied filters. The average deviations between the pressure gradients of the sealed and unsealed 30, 50, and 80 PPI samples were calculated to be 57.2, 56.8, and 61.3 pct. The deviations between the Darcy coefficients of the sealed and unsealed 30, 50, and 80 PPI samples found to be 9, 20, and 31 pct. The deviations between the non-Darcy coefficients of the sealed and unsealed 30, 50, and 80 PPI samples were calculated to be 59, 58, and 63 pct.
Effect of Induced Magnetic Field on MHD Mixed Convection Flow in Vertical Microchannel
Jha, B. K.; Aina, B.
2017-08-01
The present work presents a theoretical investigation of an MHD mixed convection flow in a vertical microchannel formed by two electrically non-conducting infinite vertical parallel plates. The influence of an induced magnetic field arising due to motion of an electrically conducting fluid is taken into consideration. The governing equations of the motion are a set of simultaneous ordinary differential equations and their exact solutions in dimensionless form have been obtained for the velocity field, the induced magnetic field and the temperature field. The expressions for the induced current density and skin friction have also been obtained. The effects of various non-dimensional parameters such as rarefaction, fluid wall interaction, the Hartmann number and the magnetic Prandtl number on the velocity, the induced magnetic field, the temperature, the induced current density, and skin friction have been presented in a graphical form. It is found that the effect of the Hartmann number and magnetic Prandtl number on the induced current density is found to have a decreasing nature at the central region of the microchannel.
Sukop, Michael C.; Huang, Haibo; Alvarez, Pedro F.; Variano, Evan A.; Cunningham, Kevin J.
2013-01-01
Lattice Boltzmann flow simulations provide a physics-based means of estimating intrinsic permeability from pore structure and accounting for inertial flow that leads to departures from Darcy's law. Simulations were used to compute intrinsic permeability where standard measurement methods may fail and to provide better understanding of departures from Darcy's law under field conditions. Simulations also investigated resolution issues. Computed tomography (CT) images were acquired at 0.8 mm interscan spacing for seven samples characterized by centimeter-scale biogenic vuggy macroporosity from the extremely transmissive sole-source carbonate karst Biscayne aquifer in southeastern Florida. Samples were as large as 0.3 m in length; 7–9 cm-scale-length subsamples were used for lattice Boltzmann computations. Macroporosity of the subsamples was as high as 81%. Matrix porosity was ignored in the simulations. Non-Darcy behavior led to a twofold reduction in apparent hydraulic conductivity as an applied hydraulic gradient increased to levels observed at regional scale within the Biscayne aquifer; larger reductions are expected under higher gradients near wells and canals. Thus, inertial flows and departures from Darcy's law may occur under field conditions. Changes in apparent hydraulic conductivity with changes in head gradient computed with the lattice Boltzmann model closely fit the Darcy-Forchheimer equation allowing estimation of the Forchheimer parameter. CT-scan resolution appeared adequate to capture intrinsic permeability; however, departures from Darcy behavior were less detectable as resolution coarsened.
Chang, Chun; Ju, Yang; Xie, Heping; Zhou, Quanlin; Gao, Feng
2017-07-04
Two-phase flow interfacial dynamics in rough fractures is fundamental to understanding fluid transport in fractured media. The Haines jump of non-Darcy flow in porous media has been investigated at pore scales, but its fundamental processes in rough fractures remain unclear. In this study, the micron-scale Haines jump of the air-water interface in rough fractures was investigated under drainage conditions, with the air-water interface tracked using dyed water and an imaging system. The results indicate that the interfacial velocities represent significant Haines jumps when the meniscus passes from a narrow "throat" to a wide "body", with jump velocities as high as five times the bulk drainage velocity. Locally, each velocity jump corresponds to a fracture aperture variation; statistically, the velocity variations follow an exponential function of the aperture variations at a length scale of ~100 µm to ~100 mm. This spatial-scale-invariant correlation may indicate that the high-speed local velocities during the Haines jump would not average out spatially for a bulk system. The results may help in understanding the origin of interface instabilities and the resulting non-uniform phase distribution, as well as the micron-scale essence of the spatial and temporal instability of two-phase flow in fractured media at the macroscopic scale.
Murthy, P.V.S.N.
2011-12-26
Thermo-diffusion effect on free convection heat and mass transfer from a vertical surface embedded in a liquid saturated thermally stratified non - Darcy porous medium has been analyzed using a local non-similar procedure. The wall temperature and concentration are constant and the medium is linearly stratified in the vertical direction with respect to the thermal conditions. The fluid flow, temperature and concentration fields are affected by the complex interactions among the diffusion ratio Le, buoyancy ratio N, thermo-diffusion parameter Sr and stratification parameter ?. Non-linear interactions of all these parameters on the convective transport has been analyzed and variation of heat and mass transfer coefficients with thermo-diffusion parameter in the thermally stratified non-Darcy porous media is presented through computer generated plots.
Murthy, P.V.S.N.; El-Amin, Mohamed
2011-01-01
Thermo-diffusion effect on free convection heat and mass transfer from a vertical surface embedded in a liquid saturated thermally stratified non - Darcy porous medium has been analyzed using a local non-similar procedure. The wall temperature and concentration are constant and the medium is linearly stratified in the vertical direction with respect to the thermal conditions. The fluid flow, temperature and concentration fields are affected by the complex interactions among the diffusion ratio Le, buoyancy ratio N, thermo-diffusion parameter Sr and stratification parameter ?. Non-linear interactions of all these parameters on the convective transport has been analyzed and variation of heat and mass transfer coefficients with thermo-diffusion parameter in the thermally stratified non-Darcy porous media is presented through computer generated plots.
s-Processing from MHD-induced mixing and isotopic abundances in presolar SiC grains
Palmerini, S.; Trippella, O.; Busso, M.; Vescovi, D.; Petrelli, M.; Zucchini, A.; Frondini, F.
2018-01-01
In the past years the observational evidence that s-process elements from Sr to Pb are produced by stars ascending the so-called Asymptotic Giant Branch (or "AGB") could not be explained by self-consistent models, forcing researchers to extensive parameterizations. The crucial point is to understand how protons can be injected from the envelope into the He-rich layers, yielding the formation of 13C and then the activation of the 13C (α,n)16O reaction. Only recently, attempts to solve this problem started to consider quantitatively physically-based mixing mechanisms. Among them, MHD processes in the plasma were suggested to yield mass transport through magnetic buoyancy. In this framework, we compare results of nucleosynthesis models for Low Mass AGB Stars (M≲ 3M⊙), developed from the MHD scenario, with the record of isotopic abundance ratios of s-elements in presolar SiC grains, which were shown to offer precise constraints on the 13C reservoir. We find that n-captures driven by magnetically-induced mixing can indeed account for the SiC data quite well and that this is due to the fact that our 13C distribution fulfils the above constraints rather accurately. We suggest that similar tests should be now performed using different physical models for mixing. Such comparisons would indeed improve decisively our understanding of the formation of the neutron source.
International Nuclear Information System (INIS)
Malvandi, A.; Safaei, M.R.; Kaffash, M.H.; Ganji, D.D.
2015-01-01
In the current study, an MHD mixed convection of alumina/water nanofluid inside a vertical annular pipe is investigated theoretically. The model used for the nanofluid mixture involves Brownian motion and thermophoretic diffusivities in order to take into account the effects of nanoparticle migration. Since the thermophoresis is the main mechanism of the nanoparticle migration, different temperature gradients have been imposed using the asymmetric heating. Considering hydrodynamically and thermally fully developed flow, the governing equations have been reduced to two-point ordinary boundary value differential equations and they have been solved numerically. It is revealed that the imposed thermal asymmetry would change the direction of nanoparticle migration and distorts the velocity, temperature and nanoparticle concentration profiles. Moreover, it is shown that the advantage of nanofluids in heat transfer enhancement is reduced in the presence of a magnetic field. - Highlights: • MHD mixed convection of alumina/water nanofluid inside a vertical annulus. • The effects of nanoparticle migration on rheological and thermophysical characteristics. • The effects of asymmetric heating on nanoparticle migration. • The effects of asymmetric heating on the heat transfer enhancement. • Inclusion of nanoparticles in presence of a magnetic field has a negative effect on performance
Flow Reversal of Fully-Developed Mixed MHD Convection in Vertical Channels
International Nuclear Information System (INIS)
Saleh, H.; Hashim, I.
2010-01-01
The present analysis is concerned with flow reversal phenomena of the fully-developed laminar combined free and forced MHD convection in a vertical parallel-plate channel. The effect of viscous dissipation is taken into account. Flow reversal adjacent to the cold (or hot) wall is found to exist within the channel as Gr/Re is above (or below) a threshold value. Parameter zones for the occurrence of reversed flow are presented. (fundamental areas of phenomenology(including applications))
Directory of Open Access Journals (Sweden)
Muhammad Ramzan
Full Text Available The aim of present paper is to study the series solution of time dependent MHD second grade incompressible nanofluid towards a stretching sheet. The effects of mixed convection and thermal radiation are also taken into account. Because of nanofluid model, effects Brownian motion and thermophoresis are encountered. The resulting nonlinear momentum, heat and concentration equations are simplified using appropriate transformations. Series solutions have been obtained for velocity, temperature and nanoparticle fraction profiles using Homotopy Analysis Method (HAM. Convergence of the acquired solution is discussed critically. Behavior of velocity, temperature and concentration profiles on the prominent parameters is depicted and argued graphically. It is observed that temperature and concentration profiles show similar behavior for thermophoresis parameter Νt but opposite tendency is noted in case of Brownian motion parameter Νb. It is further analyzed that suction parameter S and Hartman number Μ depict decreasing behavior on velocity profile.
Armaghani, T.; Esmaeili, H.; Mohammadpoor, Y. A.; Pop, I.
2018-01-01
In this paper, the steady mixed convection flow and heat transfer of water-copper oxide nanofluid in an open C-shaped enclosure is investigated numerically. The enclosure is under constant magnetic field. Effects of Richardson number, magnetic and nanofluid volume fraction parameters are studied and discussed. The nanofluid with a cold temperature of T C and a velocity of u c enters the enclosure from the top right corner and exits from the bottom right corner. The vertical wall of the left side is subjected to a hot and constant temperature T h . Also, other walls are insulated. It is found that the heat transfer is increased via increasing the Hartmann and Reynolds numbers. For low Reynolds numbers, the enhances of the Hartman number leads to a slightly increases of the average Nusselt number, but for high Reynolds numbers, the average Nusselt number gets an ascending trend and the increase in the Hartmann number shows its effect more pronounced. Also, with increase in Ri, the effect of nanofluid on the heat transfer increases. Due to practical impotence, the study of mixed convection heat transfer in enclosures and various shaped of cavities has attracted remarkable attentions in the past few decades. Significant applications of the mixed convection flow can be found in atmospheric flows, solar energy storage, heat exchangers, lubrication technology, drying technologies, cooling of the electronic devices, etc. The present results are original and new for the problem of MHD mixed convection flow and heat transfer in an open C-shaped enclosure using water-copper oxide nanofluid. Comparison of the obtained results with those from the open literature (Mahmoodi et al. [24]) is acceptable.
El-Amin, Mohamed
2010-11-27
A boundary layer analysis was presented to study the non-Darcy-free convection of a power-law fluid over a non-isothermal two-dimensional body embedded in a porous medium. The Ostwald-de Waele power-law model was used to characterize the non-Newtonian fluid behavior. Similarity solutions were obtained with variations in surface temperature or surface heat flux. In view of the fact that most of the non-Newtonian fluids have large Prandtl numbers, this study was directed toward such fluids. The effects of the porous medium parameters, k1 and k2, body shape parameter, m, and surface thermal variations parameter, p, as well as the power-law index, n, were examined. © 2010 Springer Science+Business Media B.V.
El-Amin, Mohamed; Sun, Shuyu; El-Ameen, M. A.; Jaha, Y. A.; Gorla, Rama Subba Reddy
2010-01-01
A boundary layer analysis was presented to study the non-Darcy-free convection of a power-law fluid over a non-isothermal two-dimensional body embedded in a porous medium. The Ostwald-de Waele power-law model was used to characterize the non-Newtonian fluid behavior. Similarity solutions were obtained with variations in surface temperature or surface heat flux. In view of the fact that most of the non-Newtonian fluids have large Prandtl numbers, this study was directed toward such fluids. The effects of the porous medium parameters, k1 and k2, body shape parameter, m, and surface thermal variations parameter, p, as well as the power-law index, n, were examined. © 2010 Springer Science+Business Media B.V.
Zhang, Rui-Han; Zhang, Lie-Hui; Wang, Rui-He; Zhao, Yu-Long; Huang, Rui
2018-06-01
Reservoir development for unconventional resources such as tight gas reservoirs is in increasing demand due to the rapid decline of production in conventional reserves. Compared with conventional reservoirs, fluid flow in water-bearing tight gas reservoirs is subject to more nonlinear multiphase flow and gas slippage in nano/micro matrix pores because of the strong collisions between rock and gas molecules. Economic gas production from tight gas reservoirs depends on extensive application of water-based hydraulic fracturing of horizontal wells, associated with non-Darcy flow at a high flow rate, geomechanical stress sensitivity of un-propped natural fractures, complex flow geometry and multiscale heterogeneity. How to efficiently and accurately predict the production performance of a multistage fractured horizontal well (MFHW) is challenging. In this paper, a novel multicontinuum, multimechanism, two-phase simulator is established based on unstructured meshes and the control volume finite element method to analyze the production performance of MFHWs. The multiple interacting continua model and discrete fracture model are coupled to integrate the unstimulated fractured reservoir, induced fracture networks (stimulated reservoir volumes, SRVs) and irregular discrete hydraulic fractures. Several simulations and sensitivity analyses are performed with the developed simulator for determining the key factors affecting the production performance of MFHWs. Two widely applied fracturing models, classic hydraulic fracturing which generates long double-wing fractures and the volumetric fracturing aimed at creating large SRVs, are compared to identify which of them can make better use of tight gas reserves.
Energy Technology Data Exchange (ETDEWEB)
Malvandi, A., E-mail: amirmalvandi@aut.ac.ir [Department of Mechanical Engineering, Neyshabur Branch, Islamic Azad University, Neyshabur (Iran, Islamic Republic of); Safaei, M.R. [Young Researchers and Elite Club, Mashhad Branch, Islamic Azad University, Mashhad (Iran, Islamic Republic of); Kaffash, M.H. [Department of Mechanical Engineering, Neyshabur Branch, Islamic Azad University, Neyshabur (Iran, Islamic Republic of); Ganji, D.D. [Mechanical Engineering Department, Babol University of Technology, Babol (Iran, Islamic Republic of)
2015-05-15
In the current study, an MHD mixed convection of alumina/water nanofluid inside a vertical annular pipe is investigated theoretically. The model used for the nanofluid mixture involves Brownian motion and thermophoretic diffusivities in order to take into account the effects of nanoparticle migration. Since the thermophoresis is the main mechanism of the nanoparticle migration, different temperature gradients have been imposed using the asymmetric heating. Considering hydrodynamically and thermally fully developed flow, the governing equations have been reduced to two-point ordinary boundary value differential equations and they have been solved numerically. It is revealed that the imposed thermal asymmetry would change the direction of nanoparticle migration and distorts the velocity, temperature and nanoparticle concentration profiles. Moreover, it is shown that the advantage of nanofluids in heat transfer enhancement is reduced in the presence of a magnetic field. - Highlights: • MHD mixed convection of alumina/water nanofluid inside a vertical annulus. • The effects of nanoparticle migration on rheological and thermophysical characteristics. • The effects of asymmetric heating on nanoparticle migration. • The effects of asymmetric heating on the heat transfer enhancement. • Inclusion of nanoparticles in presence of a magnetic field has a negative effect on performance.
Shateyi, Stanford; Marewo, Gerald T.
2018-05-01
We numerically investigate a mixed convection model for a magnetohydrodynamic (MHD) Jeffery fluid flowing over an exponentially stretching sheet. The influence of thermal radiation and chemical reaction is also considered in this study. The governing non-linear coupled partial differential equations are reduced to a set of coupled non-linear ordinary differential equations by using similarity functions. This new set of ordinary differential equations are solved numerically using the Spectral Quasi-Linearization Method. A parametric study of physical parameters involved in this study is carried out and displayed in tabular and graphical forms. It is observed that the velocity is enhanced with increasing values of the Deborah number, buoyancy and thermal radiation parameters. Furthermore, the temperature and species concentration are decreasing functions of the Deborah number. The skin friction coefficient increases with increasing values of the magnetic parameter and relaxation time. Heat and mass transfer rates increase with increasing values of the Deborah number and buoyancy parameters.
Ferdows, M.; Khan, M.S.; Alam, M.M.; Sun, S.
2012-01-01
Magnetohydrodynamic (MHD) boundary layer flow of a nanofluid over an exponentially stretching sheet was studied. The governing boundary layer equations are reduced into ordinary differential equations by a similarity transformation. The transformed equations are solved numerically using the Nactsheim-Swigert shooting technique together with Runge-Kutta six-order iteration schemes. The effects of the governing parameters on the flow field and heat transfer characteristics were obtained and discussed. The numerical solutions for the wall skin friction coefficient, the heat and mass transfer coefficient, and the velocity, temperature, and concentration profiles are computed, analyzed, and discussed graphically. Comparison with previously published work is performed and excellent agreement is observed. 2012 M. Ferdows et al.
Energy Technology Data Exchange (ETDEWEB)
Azam, Mohammad, E-mail: azam09mebuet@gmail.com; Hasanuzzaman, Md., E-mail: hasanuzzaman138@gmail.com; Saha, Sumon, E-mail: sumonsaha@me.buet.ac.bd [Department of Mechanical Engineering, Bangladesh University of Engineering and Technology, Dhaka 1000 (Bangladesh)
2016-07-12
The present study investigates the thermal mixing scenarios of steady magneto-hydrodynamic (MHD) mixed convection in a two-dimensional lid-driven trapezoidal cavity filled with Cu-water nanofluid. The top wall of the cavity slides with a uniform velocity from left to right direction, while the other walls are fixed. The bottom wall is kept with a constant higher temperature than the top one. The governing mass, momentum and energy equations are expressed in non-dimensional forms and Galerkin finite element method has been employed to solve these equations. Special attention is paid on investigating the onset of transition from laminar to chaos at pure mixed convection case. Hence, the computations are carried out for a wide range of Reynolds numbers (Re = 0.1 − 400) and Grashof numbers (Gr = 10{sup −2} − 1.6 × 10{sup 5}) at unity Richardson number and fixed Hartmann number (Ha = 10). The variation of average Nusselt number of the bottom heated wall indicates the influence of governing parameters (Re and Gr) on heat transfer characteristics. The results are presented and explained through the visualisation of isotherms, streamlines and heatlines.
Mishra, A.; Sharma, B. K.
2017-11-01
A numerical study of an oscillatory unsteady MHD flow and heat and mass transfer in a vertical rotating channel with an inclined uniform magnetic field and the Hall effect is carried out. The conservation equations of momentum, energy, and species are formulated in a rotating frame of reference with inclusion of the buoyancy effects and Lorentz forces. The Lorentz forces are determined by using the generalized Ohm law with the Hall parameter taken into account. The obtained coupled partial differential equations are nondimensionalized and solved numerically by using the explicit finite difference method. The effects of various model parameters, like the Hall parameter, Hartmann number, wall suction/injection parameter, rotation parameter, angle of magnetic field inclination, Prandtl number, Schmidt number, etc., on the channel velocities, skin friction coefficients, Nusselt number, and the Sherwood number are examined. It is found that the influence of the Hartmann number and Hall parameter on the channel velocities and skin friction coefficients is dependent on the value of the wall suction/injection parameter.
International Nuclear Information System (INIS)
Falgarone, Edith; Rieutord, Michel; Richard, Denis; Zahn, Jean-Paul; Dauchot, Olivier; Daviaud, Francois; Dubrulle, Berengere; Laval, Jean-Philippe; Noullez, Alain; Bourgoin, Mickael; Odier, Philippe; Pinton, Jean-Francois; Leveque, Emmanuel; Chainais, Pierre; Abry, Patrice; Mordant, Nicolas; Michel, Olivier; Marie, Louis; Chiffaudel, Arnaud; Daviaud, Francois; Petrelis, Francois; Fauve, Stephan; Nore, C.; Brachet, M.-E.; Politano, H.; Pouquet, A.; Leorat, Jacques; Grapin, Roland; Brun, Sacha; Delour, Jean; Arneodo, Alain; Muzy, Jean-Francois; Magnaudet, Jacques; Braza, Marianna; Boree, Jacques; Maurel, S.; Ben, L.; Moreau, J.; Bazile, R.; Charnay, G.; Lewandowski, Roger; Laveder, Dimitri; Bouchet, Freddy; Sommeria, Joel; Le Gal, P.; Eloy, C.; Le Dizes, S.; Schneider, Kai; Farge, Marie; Bottausci, Frederic; Petitjeans, Philippe; Maurel, Agnes; Carlier, Johan; Anselmet, Fabien
2001-05-01
This publication gathers extended summaries of presentations proposed during two days on astrophysics and magnetohydrodynamics (MHD). The first session addressed astrophysics and MHD: The cold interstellar medium, a low ionized turbulent plasma; Turbulent convection in stars; Turbulence in differential rotation; Protoplanetary disks and washing machines; gravitational instability and large structures; MHD turbulence in the sodium von Karman flow; Numerical study of the dynamo effect in the Taylor-Green eddy geometry; Solar turbulent convection under the influence of rotation and of the magnetic field. The second session addressed the description of turbulence: Should we give up cascade models to describe the spatial complexity of the velocity field in a developed turbulence?; What do we learn with RDT about the turbulence at the vicinity of a plane surface?; Qualitative explanation of intermittency; Reduced model of Navier-Stokes equations: quickly extinguished energy cascade; Some mathematical properties of turbulent closure models. The third session addressed turbulence and coherent structures: Alfven wave filamentation and formation of coherent structures in dispersive MHD; Statistical mechanics for quasi-geo-strophic turbulence: applications to Jupiter's coherent structures; Elliptic instabilities; Physics and modelling of turbulent detached unsteady flows in aerodynamics and fluid-structure interaction; Intermittency and coherent structures in a washing machine: a wavelet analysis of joint pressure/velocity measurements; CVS filtering of 3D turbulent mixing layer using orthogonal wavelets. The last session addressed experimental methods: Lagrangian velocity measurements; Energy dissipation and instabilities within a locally stretched vortex; Study by laser imagery of the generation and breakage of a compressed eddy flow; Study of coherent structures of turbulent boundary layer at high Reynolds number
Qayyum, Sajid; Hayat, Tasawar; Shehzad, Sabir Ali; Alsaedi, Ahmed
2018-03-01
This article concentrates on the magnetohydrodynamic (MHD) stagnation point flow of tangent hyperbolic nanofluid in the presence of buoyancy forces. Flow analysis caused due to stretching surface. Characteristics of heat transfer are examined under the influence of thermal radiation and heat generation/absorption. Newtonian conditions for heat and mass transfer are employed. Nanofluid model includes Brownian motion and thermophoresis. The governing nonlinear partial differential systems of the problem are transformed into a systems of nonlinear ordinary differential equations through appropriate variables. Impact of embedded parameters on the velocity, temperature and nanoparticle concentration fields are presented graphically. Numerical computations are made to obtain the values of skin friction coefficient, local Nusselt and Sherwood numbers. It is concluded that velocity field enhances in the frame of mixed convection parameter while reverse situation is observed due to power law index. Effect of Brownian motion parameter on the temperature and heat transfer rate is quite reverse. Moreover impact of solutal conjugate parameter on the concentration and local Sherwood number is quite similar.
Magnetohydrodynamic (MHD) power generation
International Nuclear Information System (INIS)
Chandra, Avinash
1980-01-01
The concept of MHD power generation, principles of operation of the MHD generator, its design, types, MHD generator cycles, technological problems to be overcome, the current state of the art in USA and USSR are described. Progress of India's experimental 5 Mw water-gas fired open cycle MHD power generator project is reported in brief. (M.G.B.)
s-PROCESSING IN AGB STARS REVISITED. II. ENHANCED {sup 13}C PRODUCTION THROUGH MHD-INDUCED MIXING
Energy Technology Data Exchange (ETDEWEB)
Trippella, O.; Busso, M.; Palmerini, S.; Maiorca, E. [Department of Physics, University of Perugia, and INFN, Section of Perugia, via A. Pascoli, I-06123 Perugia (Italy); Nucci, M. C., E-mail: oscar.trippella@fisica.unipg.it [Department of Mathematics and Informatics, University of Perugia, via Vanvitelli, I-06123 Perugia and INFN, Section of Perugia, via A. Pascoli, I-06123 Perugia (Italy)
2016-02-20
Slow neutron captures are responsible for the production of about 50% of elements heavier than iron, mainly occurring during the asymptotic giant branch phase of low-mass stars (1 ≲ M/M{sub ⊙} ≲ 3), where the main neutron source is the {sup 13}C(α, n){sup 16}O reaction. This last reaction is activated from locally produced {sup 13}C, formed by partial mixing of hydrogen into the He-rich layers. We present here the first attempt to describe a physical mechanism for the formation of the {sup 13}C reservoir, studying the mass circulation induced by magnetic buoyancy without adding new free parameters to those already involved in stellar modeling. Our approach represents the application to the stellar layers relevant for s-processing of recent exact analytical 2D and 3D models for magneto-hydrodynamic processes at the base of convective envelopes in evolved stars in order to promote downflows of envelope material for mass conservation during the occurrence of a dredge-up phenomenon. We find that the proton penetration is characterized by small concentrations, but is extended over a large fractional mass of the He-layers, thus producing {sup 13}C reservoirs of several 10{sup −3} M{sub ⊙}. The ensuing {sup 13}C-enriched zone has an almost flat profile, while only a limited production of {sup 14}N occurs. In order to verify the effects of our new findings we show how the abundances of the main s-component nuclei can be accounted for in solar proportions and how our large {sup 13}C-reservoir allows us to solve a few so far unexplained features in the abundance distribution of post-AGB objects.
Neoclassical MHD descriptions of tokamak plasmas
International Nuclear Information System (INIS)
Callen, J.D.; Kim, Y.B.; Sundaram, A.K.
1988-01-01
Considerable progress has been made in extending neoclassical MHD theory and in exploring the linear instabilities, nonlinear behavior and turbulence models it implies for tokamak plasmas. The areas highlighted in this paper include: extension of the neoclassical MHD equations to include temperature-gradient and heat flow effects; the free energy and entropy evolution implied by this more complete description; a proper ballooning mode formalism analysis of the linear instabilities; a new rippling mode type instability; numerical simulation of the linear instabilities which exhibit a smooth transition from resistive ballooning modes at high collisionality to neoclassical MHD modes at low collisionality; numerical simulation of the nonlinear growth of a single helicity tearing mode; and a Direct-Interaction-Approximation model of neoclassical MHD turbulence and the anomalous transport it induces which substantially improves upon previous mixing length model estimates. 34 refs., 2 figs
MHD pilot industrial applications
International Nuclear Information System (INIS)
Freeman, M.; Riviere-Wekstein, G.
1994-01-01
MHD industrial applications (and their historical developments) are sketched in the fields of nuclear fission, nuclear fusion and marine vehicles propelling. Nuclear fission projects resulted in promising prototypes between 1972 and 1980, especially for liquid-metal MHD generators. All of them have been stopped by the scientific policies of the governments. Nuclear fusion projects used mainly the equilibrium plasma of tokamak type reactors; some military projects used pulsed plasma to perform pulsed MHD generators. Marine vehicle propelling is the most advanced field. By june 1992, the japanese sea-going boat 'Yamato 1' was sailing with two MHD propellers. A few months later, the building of 'Yamato 2' has begun
International Nuclear Information System (INIS)
Takeda, Tatsuoki
1985-01-01
In this article analyses of the MHD stabilities which govern the global behavior of a fusion plasma are described from the viewpoint of the numerical computation. First, we describe the high accuracy calculation of the MHD equilibrium and then the analysis of the linear MHD instability. The former is the basis of the stability analysis and the latter is closely related to the limiting beta value which is a very important theoretical issue of the tokamak research. To attain a stable tokamak plasma with good confinement property it is necessary to control or suppress disruptive instabilities. We, next, describe the nonlinear MHD instabilities which relate with the disruption phenomena. Lastly, we describe vectorization of the MHD codes. The above MHD codes for fusion plasma analyses are relatively simple though very time-consuming and parts of the codes which need a lot of CPU time concentrate on a small portion of the codes, moreover, the codes are usually used by the developers of the codes themselves, which make it comparatively easy to attain a high performance ratio on the vector processor. (author)
Directory of Open Access Journals (Sweden)
Muthuraj R.
2012-01-01
Full Text Available A mathematical model is developed to examine the effect of chemical reaction on MHD mixed convective heat and mass transfer flow of a couple-stress fluid in vertical porous space in the presence of temperature dependent heat source with travelling thermal waves. The dimensionless governing equations are assumed to be made up of two parts: a mean part corresponding to the fully developed mean flow, and a small perturbed part, using amplitude as a small parameter. The analytical solution of perturbed part have been carried out by using the long-wave approximation. The expressions for the zeroth-order and the first order solutions are obtained and the results of the heat and mass transfer characteristics are presented graphically for various values of parameters entering into the problem. It is noted that velocity of the fluid increases with the increase of the couple stress parameter and increasing the chemical reaction parameter leads suppress the velocity of the fluid. Cross velocity decreases with an increase of the phase angle. The increase of the chemical reaction parameter and Schmidt number lead to decrease the fluid concentration. The hydrodynamic case for a non-porous space in the absence of the temperature dependent heat source for Newtonian fluid can be captured as a limiting case of our analysis by taking, and α1→0, Da→∞, a→∞.
Petrick, Michael; Pierson, Edward S.; Schreiner, Felix
1980-01-01
According to the present invention, coal combustion gas is the primary working fluid and copper or a copper alloy is the electrodynamic fluid in the MHD generator, thereby eliminating the heat exchangers between the combustor and the liquid-metal MHD working fluids, allowing the use of a conventional coalfired steam bottoming plant, and making the plant simpler, more efficient and cheaper. In operation, the gas and liquid are combined in a mixer and the resulting two-phase mixture enters the MHD generator. The MHD generator acts as a turbine and electric generator in one unit wherein the gas expands, drives the liquid across the magnetic field and thus generates electrical power. The gas and liquid are separated, and the available energy in the gas is recovered before the gas is exhausted to the atmosphere. Where the combustion gas contains sulfur, oxygen is bubbled through a side loop to remove sulfur therefrom as a concentrated stream of sulfur dioxide. The combustor is operated substoichiometrically to control the oxide level in the copper.
Generalized reduced MHD equations
International Nuclear Information System (INIS)
Kruger, S.E.; Hegna, C.C.; Callen, J.D.
1998-07-01
A new derivation of reduced magnetohydrodynamic (MHD) equations is presented. A multiple-time-scale expansion is employed. It has the advantage of clearly separating the three time scales of the problem associated with (1) MHD equilibrium, (2) fluctuations whose wave vector is aligned perpendicular to the magnetic field, and (3) those aligned parallel to the magnetic field. The derivation is carried out without relying on a large aspect ratio assumption; therefore this model can be applied to any general toroidal configuration. By accounting for the MHD equilibrium and constraints to eliminate the fast perpendicular waves, equations are derived to evolve scalar potential quantities on a time scale associated with the parallel wave vector (shear-alfven wave time scale), which is the time scale of interest for MHD instability studies. Careful attention is given in the derivation to satisfy energy conservation and to have manifestly divergence-free magnetic fields to all orders in the expansion parameter. Additionally, neoclassical closures and equilibrium shear flow effects are easily accounted for in this model. Equations for the inner resistive layer are derived which reproduce the linear ideal and resistive stability criterion of Glasser, Greene, and Johnson
Energy Technology Data Exchange (ETDEWEB)
NONE
1980-03-01
Examination was conducted in detail on an MHD generation system by coal combustion, with the results reported. Concerning a gas table calculation program in coal combustion, it was prepared assuming 100% slag removal ratio in the combustor as the primary approximation. A combustor for MHD generation needs to efficiently burn fuel using high temperature pre-heated air as the oxidant, to fully dissociate/electrolytically dissociate seed, and to supply to the generation channel a high speed combustion gas plasma having a high electrical conductivity which is required for MHD generation. This year, an examination was conducted on technological problems in burning coal in an MHD combustor. As for the NOx elimination system in an MHD generation plant, an examination was made if the method studied so far in MHD generation using heavy oil as the fuel is applicable to coal. Also investigated and reviewed were various characteristics, change in physical properties, recovery method, etc., in a mixed state of seed and slag in the case of coal combustion MHD. (NEDO)
Proceedings of the workshop on nonlinear MHD and extended MHD
International Nuclear Information System (INIS)
1998-01-01
Nonlinear MHD simulations have proven their value in interpreting experimental results over the years. As magnetic fusion experiments reach higher performance regimes, more sophisticated experimental diagnostics coupled with ever expanding computer capabilities have increased both the need for and the feasibility of nonlinear global simulations using models more realistic than regular ideal and resistive MHD. Such extended-MHD nonlinear simulations have already begun to produce useful results. These studies are expected to lead to ever more comprehensive simulation models in the future and to play a vital role in fully understanding fusion plasmas. Topics include the following: (1) current state of nonlinear MHD and extended-MHD simulations; (2) comparisons to experimental data; (3) discussions between experimentalists and theorists; (4) /equations for extended-MHD models, kinetic-based closures; and (5) paths toward more comprehensive simulation models, etc. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database
Proceedings of the workshop on nonlinear MHD and extended MHD
Energy Technology Data Exchange (ETDEWEB)
NONE
1998-12-01
Nonlinear MHD simulations have proven their value in interpreting experimental results over the years. As magnetic fusion experiments reach higher performance regimes, more sophisticated experimental diagnostics coupled with ever expanding computer capabilities have increased both the need for and the feasibility of nonlinear global simulations using models more realistic than regular ideal and resistive MHD. Such extended-MHD nonlinear simulations have already begun to produce useful results. These studies are expected to lead to ever more comprehensive simulation models in the future and to play a vital role in fully understanding fusion plasmas. Topics include the following: (1) current state of nonlinear MHD and extended-MHD simulations; (2) comparisons to experimental data; (3) discussions between experimentalists and theorists; (4) /equations for extended-MHD models, kinetic-based closures; and (5) paths toward more comprehensive simulation models, etc. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.
Directory of Open Access Journals (Sweden)
N. Sandeep
2015-12-01
Full Text Available The aim of the present study is to investigate the influence of non-uniform heat source/sink, mass transfer and chemical reaction on an unsteady mixed convection boundary layer flow of a magneto-micropolar fluid past a stretching/shrinking sheet in the presence of viscous dissipation and suction/injection. The governing equations of the flow, heat and mass transfer are transformed into system of nonlinear ordinary differential equations by using similarity transformation and then solved numerically using Shooting technique with Matlab Package. The influence of non-dimensional governing parameters on velocity, microrotation, temperature and concentration profiles are discussed and presented with the help of their graphical representations. Also, friction factor, heat and mass transfer rates have been computed and presented through tables. Under some special conditions, present results are compared with the existed results to check the accuracy and validity of the present study. An excellent agreement is observed with the existed results.
O'Connell, R.; Forest, C. B.; Plard, F.; Kendrick, R.; Lovell, T.; Thomas, M.; Bonazza, R.; Jensen, T.; Politzer, P.; Gerritsen, W.; McDowell, M.
1997-11-01
A MHD experiment is being constructed which will have the possibility of showing dynamo action: the self--generation of currents from fluid motion. The design allows sufficient experimental flexibility and diagnostic access to study a variety of issues central to dynamo theory, including mean--field electrodynamics and saturation (backreaction physics). Initially, helical flows required for dynamo action will be driven by propellers embedded in liquid sodium. The flow fields will first be measured using laser doppler velocimetry in a water experiment with an identical fluid Reynolds number. The magnetic field evolution will then be predicted using a MHD code, replacing the water with sodium; if growing magnetic fields are found, the experiment will be repeated with sodium.
International Nuclear Information System (INIS)
1991-10-01
The current MHD program being implemented is a result of a consensus established in public meetings held by the Department of Energy in 1984. Essential elements of the current program include: (1) develop technical and environmental data for the integrated MHD topping cycle system through POC testing (1,000 hours); (2) develop technical and environmental data for the integrated MHD bottoming cycle sub system through POC testing (4,000 hours); (3) design, construct, and operate a seed regeneration POC facility (SRPF) capable of processing spent seed materials from the MHD bottoming cycle; (4) prepare conceptual designs for a site specific MHD retrofit plant; and (5) continue system studies and supporting research necessary for system testing. The current MHD program continues to be directed toward coal fired power plant applications, both stand-alone and retrofit. Development of a plant should enhance the attractiveness of MHD for applications other than electrical power. MHD may find application in electrical energy intensive industries and in the defense sector
International Nuclear Information System (INIS)
Petit, J.P.
1995-01-01
Jean-Pierre PETIT, one of the best MHD specialists, is telling this technology story and he is insisting on its military consequences. Civil MHD is only one iceberg emerged part, including a lot of leader technologies, interesting he defense. 3 notes
Directory of Open Access Journals (Sweden)
M. Schüssler
Full Text Available Two aspects of solar MHD are discussed in relation to the work of the MHD simulation group at KIS. Photospheric magneto-convection, the nonlinear interaction of magnetic field and convection in a strongly stratified, radiating fluid, is a key process of general astrophysical relevance. Comprehensive numerical simulations including radiative transfer have significantly improved our understanding of the processes and have become an important tool for the interpretation of observational data. Examples of field intensification in the solar photosphere ('convective collapse' are shown. The second line of research is concerned with the dynamics of flux tubes in the convection zone, which has far-reaching implications for our understanding of the solar dynamo. Simulations indicate that the field strength in the region where the flux is stored before erupting to form sunspot groups is of the order of 10^{5} G, an order of magnitude larger than previous estimates based on equipartition with the kinetic energy of convective flows.
Key words. Solar physics · astrophysics and astronomy (photosphere and chromosphere; stellar interiors and dynamo theory; numerical simulation studies.
MHD channel performance for potential early commercial MHD power plants
International Nuclear Information System (INIS)
Swallom, D.W.
1981-01-01
The commercial viability of full and part load early commercial MHD power plants is examined. The load conditions comprise a mass flow of 472 kg/sec in the channel, Rosebud coal, 34% by volume oxygen in the oxidizer preheated to 922 K, and a one percent by mass seeding with K. The full load condition is discussed in terms of a combined cycle plant with optimized electrical output by the MHD channel. Various electrical load parameters, pressure ratios, and magnetic field profiles are considered for a baseload MHD generator, with a finding that a decelerating flow rate yields slightly higher electrical output than a constant flow rate. Nominal and part load conditions are explored, with a reduced gas mass flow rate and an enriched oxygen content. An enthalpy extraction of 24.6% and an isentropic efficiency of 74.2% is predicted for nominal operation of a 526 MWe MHD generator, with higher efficiencies for part load operation
Magnetic levitation and MHD propulsion
Energy Technology Data Exchange (ETDEWEB)
Tixador, P [CNRS/CRTBT-LEG, 38 - Grenoble (France)
1994-04-01
Magnetic levitation and MHD propulsion are now attracting attention in several countries. Different superconducting MagLev and MHD systems will be described concentrating on, above all, the electromagnetic aspect. Some programmes occurring throughout the world will be described. Magnetic levitated trains could be the new high speed transportation system for the 21st century. Intensive studies involving MagLev trains using superconductivity have been carried our in Japan since 1970. The construction of a 43 km long track is to be the next step. In 1991 a six year programme was launched in the United States to evaluate the performances of MagLev systems for transportation. The MHD (MagnetoHydroDynamic) offers some interesting advantages (efficiency, stealth characteristics, ..) for naval propulsion and increasing attention is being paid towards it nowadays. Japan is also up at the top with the tests of Yamato I, a 260 ton MHD propulsed ship. (orig.).
Magnetic levitation and MHD propulsion
International Nuclear Information System (INIS)
Tixador, P.
1994-01-01
Magnetic levitation and MHD propulsion are now attracting attention in several countries. Different superconducting MagLev and MHD systems will be described concentrating on, above all, the electromagnetic aspect. Some programmes occurring throughout the world will be described. Magnetic levitated trains could be the new high speed transportation system for the 21st century. Intensive studies involving MagLev trains using superconductivity have been carried our in Japan since 1970. The construction of a 43 km long track is to be the next step. In 1991 a six year programme was launched in the United States to evaluate the performances of MagLev systems for transportation. The MHD (MagnetoHydroDynamic) offers some interesting advantages (efficiency, stealth characteristics, ..) for naval propulsion and increasing attention is being paid towards it nowadays. Japan is also up at the top with the tests of Yamato I, a 260 ton MHD propulsed ship. (orig.)
Experimental rigs for MHD studies
International Nuclear Information System (INIS)
Venkataramani, N.; Jayakumar, R.; Iyer, D.R.; Dixit, N.S.
1976-01-01
An MHD experimental rig is a miniature MHD installation consisting of basic equipments necessary for specific investigations. Some of the experimental rigs used in the investigations being carried out at the Bhabha Atomic Research Centre, Bombay (India) are dealt with. The experiments included diagnostics and evaluation of materials in seeded combustion plasmas and argon plasmas. The design specifications, schematics and some of the results of the investigations are also mentioned. (author)
1990-10-01
The current magnetohydrodynamic MHD program being implemented is a result of a consensus established in public meetings held by the Department of Energy in 1984. The public meetings were followed by the formulation of a June 1984 Coal-Fired MHD Preliminary Transition and Program Plan. This plan focused on demonstrating the proof-of-concept (POC) of coal-fired MHD electric power plants by the early 1990s. MHD test data indicate that while there are no fundamental technical barriers impeding the development of MHD power plants, technical risk remains. To reduce the technical risk three key subsystems (topping cycle, bottoming cycle, and seed regeneration) are being assembled and tested separately. The program does not require fabrication of a complete superconducting magnet, but rather the development and testing of superconductor cables. The topping cycle system test objectives can be achieved using a conventional iron core magnet system already in place at a DOE facility. Systems engineering-derived requirements and analytical modeling to support scale-up and component design guide the program. In response to environmental, economic, engineering, and utility acceptance requirements, design choices and operating modes are tested and refined to provide technical specifications for meeting commercial criteria. These engineering activities are supported by comprehensive and continuing systems analyses to establish realistic technical requirements and cost data. Essential elements of the current program are to: develop technical and environmental data for the integrated MHD topping cycle and bottoming cycle systems through POC testing (1000 and 4000 hours, respectively); design, construct, and operate a POC seed regeneration system capable of processing spent seed materials from the MHD bottoming cycle; prepare conceptual designs for a site specific MHD retrofit plant; and continue supporting research necessary for system testing.
Energy Technology Data Exchange (ETDEWEB)
NONE
1980-03-01
Examination was conducted in detail on an MHD generation system by coal combustion, with the results reported. Concerning a gas table calculation program in coal combustion, it was prepared assuming 100% slag removal ratio in the combustor as the primary approximation. A combustor for MHD generation needs to efficiently burn fuel using high temperature pre-heated air as the oxidant, to fully dissociate/electrolytically dissociate seed, and to supply to the generation channel a high speed combustion gas plasma having a high electrical conductivity which is required for MHD generation. This year, an examination was conducted on technological problems in burning coal in an MHD combustor. As for the NOx elimination system in an MHD generation plant, an examination was made if the method studied so far in MHD generation using heavy oil as the fuel is applicable to coal. Also investigated and reviewed were various characteristics, change in physical properties, recovery method, etc., in a mixed state of seed and slag in the case of coal combustion MHD. (NEDO)
Directory of Open Access Journals (Sweden)
Pau Baya
2011-05-01
Full Text Available Remenat (Catalan (Mixed, "revoltillo" (Scrambled in Spanish, is a dish which, in Catalunya, consists of a beaten egg cooked with vegetables or other ingredients, normally prawns or asparagus. It is delicious. Scrambled refers to the action of mixing the beaten egg with other ingredients in a pan, normally using a wooden spoon Thought is frequently an amalgam of past ideas put through a spinner and rhythmically shaken around like a cocktail until a uniform and dense paste is made. This malleable product, rather like a cake mixture can be deformed pulling it out, rolling it around, adapting its shape to the commands of one’s hands or the tool which is being used on it. In the piece Mixed, the contortion of the wood seeks to reproduce the plasticity of this slow heavy movement. Each piece lays itself on the next piece consecutively like a tongue of incandescent lava slowly advancing but with unstoppable inertia.
Linear ideal MHD stability calculations for ITER
International Nuclear Information System (INIS)
Hogan, J.T.
1988-01-01
A survey of MHD stability limits has been made to address issues arising from the MHD--poloidal field design task of the US ITER project. This is a summary report on the results obtained to date. The study evaluates the dependence of ballooning, Mercier and low-n ideal linear MHD stability on key system parameters to estimate overall MHD constraints for ITER. 17 refs., 27 figs
Problems in nonlinear resistive MHD
International Nuclear Information System (INIS)
Turnbull, A.D.; Strait, E.J.; La Haye, R.J.; Chu, M.S.; Miller, R.L.
1998-01-01
Two experimentally relevant problems can relatively easily be tackled by nonlinear MHD codes. Both problems require plasma rotation in addition to the nonlinear mode coupling and full geometry already incorporated into the codes, but no additional physics seems to be crucial. These problems discussed here are: (1) nonlinear coupling and interaction of multiple MHD modes near the B limit and (2) nonlinear coupling of the m/n = 1/1 sawtooth mode with higher n gongs and development of seed islands outside q = 1
MHD simulation of Columbia HBT
International Nuclear Information System (INIS)
Li, X.L.
1987-01-01
The plasma of Columbia High Beta Tokamak (HBT) is studied numerically by using the two dimensional resistive MHD model. The main object of this work is to understand the high beta formation process of HBT plasma and to compare the simulation with the experiments. 21 refs., 48 figs., 2 tabs
Neoclassical MHD equations for tokamaks
International Nuclear Information System (INIS)
Callen, J.D.; Shaing, K.C.
1986-03-01
The moment equation approach to neoclassical-type processes is used to derive the flows, currents and resistive MHD-like equations for studying equilibria and instabilities in axisymmetric tokamak plasmas operating in the banana-plateau collisionality regime (ν* approx. 1). The resultant ''neoclassical MHD'' equations differ from the usual reduced equations of resistive MHD primarily by the addition of the important viscous relaxation effects within a magnetic flux surface. The primary effects of the parallel (poloidal) viscous relaxation are: (1) Rapid (approx. ν/sub i/) damping of the poloidal ion flow so the residual flow is only toroidal; (2) addition of the bootstrap current contribution to Ohm's laws; and (3) an enhanced (by B 2 /B/sub theta/ 2 ) polarization drift type term and consequent enhancement of the perpendicular dielectric constant due to parallel flow inertia, which causes the equations to depend only on the poloidal magnetic field B/sub theta/. Gyroviscosity (or diamagnetic vfiscosity) effects are included to properly treat the diamagnetic flow effects. The nonlinear form of the neoclassical MHD equations is derived and shown to satisfy an energy conservation equation with dissipation arising from Joule and poloidal viscous heating, and transport due to classical and neoclassical diffusion
Stabilities of MHD rotational discontinuities
International Nuclear Information System (INIS)
Wang, S.
1984-11-01
In this paper, the stabilities of MHD rotational discontinuities are analyzed. The results show that the rotational discontinuities in an incompressible magnetofluid are not always stable with respect to infinitesimal perturbation. The instability condition in a special case is obtained. (author)
MHD stability of tandem mirrors
International Nuclear Information System (INIS)
Poulsen, P.; Molvik, A.; Shearer, J.
1982-01-01
The TMX-Upgrade experiment was described, and the manner in which various plasma parameters could be affected was discussed. The initial analysis of the MHD stability of the tandem mirror was also discussed, with emphasis on the negative tandem configuration
MHD Integrated Topping Cycle Project
Energy Technology Data Exchange (ETDEWEB)
1992-01-01
The overall objective of the project is to design and construct prototypical hardware for an integrated MHD topping cycle, and conduct long duration proof-of-concept tests of integrated system at the US DOE Component Development and Integration Facility in Butte, Montana. The results of the long duration tests will augment the existing engineering design data base on MHD power train reliability, availability, maintainability, and performance, and will serve as a basis for scaling up the topping cycle design to the next level of development, an early commercial scale power plant retrofit. The components of the MHD power train to be designed, fabricated, and tested include: A slagging coal combustor with a rated capacity of 50 MW thermal input, capable of operation with an Eastern (Illinois {number sign}6) or Western (Montana Rosebud) coal, a segmented supersonic nozzle, a supersonic MHD channel capable of generating at least 1.5 MW of electrical power, a segmented supersonic diffuser section to interface the channel with existing facility quench and exhaust systems, a complete set of current control circuits for local diagonal current control along the channel, and a set of current consolidation circuits to interface the channel with the existing facility inverter.
Numerical computation of MHD equilibria
International Nuclear Information System (INIS)
Atanasiu, C.V.
1982-10-01
A numerical code for a two-dimensional MHD equilibrium computation has been carried out. The code solves the Grad-Shafranov equation in its integral form, for both formulations: the free-boundary problem and the fixed boundary one. Examples of the application of the code to tokamak design are given. (author)
Nonlinear evolution of MHD instabilities
International Nuclear Information System (INIS)
Bateman, G.; Hicks, H.R.; Wooten, J.W.; Dory, R.A.
1975-01-01
A 3-D nonlinear MHD computer code was used to study the time evolution of internal instabilities. Velocity vortex cells are observed to persist into the nonlinear evolution. Pressure and density profiles convect around these cells for a weak localized instability, or convect into the wall for a strong instability. (U.S.)
Magnetic levitation and MHD propulsion
Tixador, P.
1994-04-01
Magnetic levitation and MHD propulsion are now attracting attention in several countries. Different superconducting MagLev and MHD systems will be described concentrating on, above all, the electromagnetic aspect. Some programmes occurring throughout the world will be described. Magnetic levitated trains could be the new high speed transportation system for the 21st century. Intensive studies involving MagLev trains using superconductivity have been carried out in Japan since 1970. The construction of a 43 km long track is to be the next step. In 1991 a six year programme was launched in the United States to evaluate the performances of MagLev systems for transportation. The MHD (MagnetoHydroDynamic) offers some interesting advantages (efficiency, stealth characteristics, ...) for naval propulsion and increasing attention is being paid towards it nowadays. Japan is also up at the top with the tests of Yamato I, a 260 ton MHD propulsed ship. Depuis quelques années nous assistons à un redémarrage de programmes concernant la lévitation et la propulsion supraconductrices. Différents systèmes supraconducteurs de lévitation et de propulsion seront décrits en examinant plus particulièrement l'aspect électromagnétique. Quelques programmes à travers le monde seront abordés. Les trains à sustentation magnétique pourraient constituer un nouveau mode de transport terrestre à vitesse élevée (500 km/h) pour le 21^e siècle. Les japonais n'ont cessé de s'intéresser à ce système avec bobine supraconductrice. Ils envisagent un stade préindustriel avec la construction d'une ligne de 43 km. En 1991 un programme américain pour une durée de six ans a été lancé pour évaluer les performances des systèmes à lévitation pour le transport aux Etats Unis. La MHD (Magnéto- Hydro-Dynamique) présente des avantages intéressants pour la propulsion navale et un regain d'intérêt apparaît à l'heure actuelle. Le japon se situe là encore à la pointe des d
Several hundred megawatt MHD units
International Nuclear Information System (INIS)
Pishchikov, S.; Pinkhasik, D.; Sidorov, V.
1978-01-01
The features are described of the future MHD unit U-25 tested at the Institute of High Temperatures of the Academy of Sciences of the USSR. The attainable thermal load of the combustion chamber is 290x10 6 kJ/m 3 .h. Three types of channel were tested, i.e., the Faraday channel divided into sections with modular insulating walls, the diagonal channel without metal body, and an improved Faraday channel with an output of 20 MW. The described MHD generator is equipped with an inverter which transforms direct current into alternating current, continuously adjusts the load from no-load operation to short-circuit connection and maintains the desired electrical voltage independently of the changes in loading. A new technique of connecting and disconnecting the oxygen equipment was developed which considerably reduces the time of start-up and shut-down. Natural gas is used for heating the air heaters. All equipment used in the operation of the MHD generator is remote controlled by computer or manually. (J.B.)
Several hundred megawatt MHD units
Energy Technology Data Exchange (ETDEWEB)
Pishchikov, S; Pinkhasik, D; Sidorov, V
1978-07-01
The features are described of the future MHD unit U-25 tested at the Institute of High Temperatures of the Academy of Sciences of the USSR. The attainable thermal load of the combustion chamber is 290x10/sup 6/ kJ/m/sup 3/.h. Three types of channel were tested, i.e., the Faraday channel divided into sections with modular insulating walls, the diagonal channel without metal body, and an improved Faraday channel with an output of 20 MW. The described MHD generator is equipped with an inverter which transforms direct current into alternating current, continuously adjusts the load from no-load operation to short-circuit connection and maintains the desired electrical voltage independently of the changes in loading. A new technique of connecting and disconnecting the oxygen equipment was developed which considerably reduces the time of start-up and shut-down. Natural gas is used for heating the air heaters. All equipment used in the operation of the MHD generator is remote controlled by computer or manually.
Route analysis for MHD equilibria
International Nuclear Information System (INIS)
Kikuchi, Fumio; Aizawa, Tatsuhiko
1982-01-01
In Tokamak facilities which are promising in nuclear fusion reactor development, the plasma in the core is often described by MHD approximation. Specifically, since an axisymmetric torus is approximately assumed as the first wall (shell) shape in actual Tokamak facilities, the Grad-Shafranov equation to be satisfied by an axisymmetric equilibrium solution for ideal MHD fluid must be solved, and the characteristics of its solution must be clarified. This paper shows the outline of the numerical calculation which employs both the incremental method taking the particular incremental nodal point values as the control parameters and the interaction method in accordance with Newton method at the same time, the analysis objective being a non-linear eigenvalue problem dealing the boundary of plasma region with surrounding vacuum region as the free boundary. Next, the detailed route analysis of the equilibrium solution is performed, utilizing the above numerical calculation technique, to clarify the effect of shell shape on the behaviour of the equilibrium solution. As the shape of the shell, a rectangular section torus, which have a notch depression at a part of the shell inner boundary, is considered. In the paper, the fundamental MHD equation and its approximate solution by the finite element method, the behaviour of plasma equilibrium solution in a shell having a notch, and the effect of notch shapes on plasma behaviour are described. This analysis verifies the effectiveness of the calculation method. (Wakatsuki, Y.)
Advanced energy utilization MHD power generation
International Nuclear Information System (INIS)
2008-01-01
The 'Technical Committee on Advanced Energy Utilization MHD Power Generation' was started to establish advanced energy utilization technologies in Japan, and has been working for three years from June 2004 to May 2007. This committee investigated closed cycle MHD, open cycle MHD, and liquid metal MHD power generation as high-efficiency power generation systems on the earth. Then, aero-space application and deep space exploration technologies were investigated as applications of MHD technology. The spin-off from research and development on MHD power generation such as acceleration and deceleration of supersonic flows was expected to solve unstart phenomena in scramjet engine and also to solve abnormal heating of aircrafts by shock wave. In addition, this committee investigated researches on fuel cells, on secondary batteries, on connection of wind power system to power grid, and on direct energy conversion system from nuclear fusion reactor for future. The present technical report described results of investigations by the committee. (author)
International Nuclear Information System (INIS)
Yvars, M.
1979-10-01
The materials considered for the insulating walls of a M.H.D. converter are Al 2 O 3 , and the calcium or strontium zirconates. For the conducting walls electricity conducting oxides are being considered such as ZrO 2 or CrO 3 La essentially. The principle of M.H.D. systems is recalled, the materials considered are described as is their behaviour in the corrosive atmospheres of M.H.D. streams [fr
MHD stability properties of a system of reduced toroidal MHD equations
International Nuclear Information System (INIS)
Maschke, E.K.; Morros Tosas, J.; Urquijo, G.
1993-01-01
A system of reduced toroidal magneto-hydrodynamic (MHD) equations is derived from a general scalar representation of the complete MHD system, using an ordering in terms of the inverse aspect ratio ε of a toroidal plasma. It is shown that the energy principle for the reduced equations is identical with the usual energy principle of the complete MHD system, to the appropriate order in ε. Thus, the reduced equations have the same ideal MHD stability limits as the full MHD equations. (authors). 6 refs
Design of MHD generator systems
International Nuclear Information System (INIS)
Buende, R.; Raeder, J.
1975-01-01
By assessment of the influence of the combustion efficiency on the electric output of the MHD generator, it can be shown that the construction and efficiency of the generator strongly depend on these parameters. The solutions of this system of equations are discussed. Following a derivation of criteria and boundary conditions of the design and a determination of the specific construction costs of individual system components, it is shown how the single design parameters influence the operational characteristics of such a system, especially the output, efficiency and energy production costs. (GG/LH) [de
Axisymmetric MHD stable sloshing ion distributions
International Nuclear Information System (INIS)
Berk, H.L.; Dominguez, N.; Roslyakov, G.V.
1986-07-01
The MHD stability of a sloshing ion distribution is investigated in a symmetric mirror cell. Fokker-Planck calculations show that stable configurations are possible for ion injection energies that are at least 150 times greater than the electron temperture. Special axial magnetic field profiles are suggested to optimize the favorable MHD properties
MHD (Magnetohydrodynamics) recovery and regeneration
Energy Technology Data Exchange (ETDEWEB)
McIlroy, R. A. [Babcock and Wilcox Co., Alliance, OH (United States). Research Center; Probert, P. B. [Babcock and Wilcox Co., Alliance, OH (United States). Research Center; Lahoda, E. J. [Westinghouse Electric Corp., Pittsburgh, PA (United States); Swift, W. M. [Argonne National Lab. (ANL), Argonne, IL (United States); Jackson, D. M. [Univ. of Tennessee Space Inst. (UTSI), Tullahoma, TN (United States); Prasad, J. [Univ. of Tennessee Space Inst. (UTSI), Tullahoma, TN (United States); Martin, J. [Hudson Engineering (United States); Rogers, C. [Hudson Engineering (United States); Ho, K. K. [Babcock and Wilcox Co., Alliance, OH (United States). Research Center; Senary, M. K. [Babcock and Wilcox Co., Alliance, OH (United States). Research Center; Lee, S. [Univ. of Akron, OH (United States)
1988-10-01
A two-phase program investigating MHD seed regeneration is described. In Phase I, bench scale experiments were carried out to demonstrate the technical feasibility of a proposed Seed Regeneration Process. The Phase I data has been used for the preliminary design of a Proof-of-Concept (POC) plant which will be built and tested in Phase II. The Phase I data will also be used to estimate the costs of a 300 Mw(t) demonstration plant for comparison with other processes. The Seed Regeneration Process consists of two major subprocesses; a Westinghouse Dry Reduction process and a modified Tampella (sulfur) Recovery process. The Westinghouse process reduces the recovered spent seed (i.e., potassium sulfate) to potassium polysulfide in a rotary kiln. The reduction product is dissolved in water to form green liquor, clarified to remove residual coal ash, and sent to the Tampella sulfur release system. The sulfur is released using carbon dioxide from flue gas in a two stage reaction. The sulfur is converted to elemental sulfur as a marketable by product. The potassium is crystallized from the green liquor and dried to the anhydrous form for return to the MHD unit.
Generation of compressible modes in MHD turbulence
Energy Technology Data Exchange (ETDEWEB)
Cho, Jungyeon [Chungnam National Univ., Daejeon (Korea); Lazarian, A. [Univ. of Wisconsin, Madison, WI (United States)
2005-05-01
Astrophysical turbulence is magnetohydrodynamic (MHD) in nature. We discuss fundamental properties of MHD turbulence and in particular the generation of compressible MHD waves by Alfvenic turbulence and show that this process is inefficient. This allows us to study the evolution of different types of MHD perturbations separately. We describe how to separate MHD fluctuations into three distinct families: Alfven, slow, and fast modes. We find that the degree of suppression of slow and fast modes production by Alfvenic turbulence depends on the strength of the mean field. We review the scaling relations of the modes in strong MHD turbulence. We show that Alfven modes in compressible regime exhibit scalings and anisotropy similar to those in incompressible regime. Slow modes passively mimic Alfven modes. However, fast modes exhibit isotropy and a scaling similar to that of acoustic turbulence both in high and low {beta} plasmas. We show that our findings entail important consequences for star formation theories, cosmic ray propagation, dust dynamics, and gamma ray bursts. We anticipate many more applications of the new insight to MHD turbulence and expect more revisions of the existing paradigms of astrophysical processes as the field matures. (orig.)
MHD intermediate shock discontinuities: Pt. 1
International Nuclear Information System (INIS)
Kennel, C.F.; Blandford, R.D.; Coppi, P.
1989-01-01
Recent numerical investigations have focused attention once more on the role of intermediate shocks in MHD. Four types of intermediate shock are identified using a graphical representation of the MHD Rankine-Hugoniot conditions. This same representation can be used to exhibit the close relationship of intermediate shocks to switch-on shocks and rotational discontinuities. The conditions under which intermediate discontinuities can be found are elucidated. The variations in velocity, pressure, entropy and magnetic-field jumps with upstream parameters in intermediate shocks are exhibited graphically. The evolutionary arguments traditionally advanced against intermediate shocks may fail because the equations of classical MHD are not strictly hyperbolic. (author)
Liquid metal MHD generator systems
International Nuclear Information System (INIS)
Satyamurthy, P.; Dixit, N.S.; Venkataramani, N.; Rohatgi, V.K.
1985-01-01
Liquid Metal MHD (LMMHD) Generator Systems are becoming increasingly important in space and terrestrial applications due to their compactness and versatility. This report gives the current status and economic viability of LMMHD generators coupled to solar collectors, fast breeder reactors, low grade heat sources and conventional high grade heat sources. The various thermodynamic cycles in the temperatures range of 100degC-2000degC have been examined. The report also discusses the present understanding of various loss mechanisms inherent in LMMHD systems and the techniques for overcoming these losses. A small mercury-air LMMHD experimental facility being set up in Plasma Physics Division along with proposals for future development of this new technology is also presented in this report. (author)
MHD equilibrium with toroidal rotation
International Nuclear Information System (INIS)
Li, J.
1987-03-01
The present work attempts to formulate the equilibrium of axisymmetric plasma with purely toroidal flow within ideal MHD theory. In general, the inertial term Rho(v.Del)v caused by plasma flow is so complicated that the equilibrium equation is completely different from the Grad-Shafranov equation. However, in the case of purely toroidal flow the equilibrium equation can be simplified so that it resembles the Grad-Shafranov equation. Generally one arbitrary two-variable functions and two arbitrary single variable functions, instead of only four single-variable functions, are allowed in the new equilibrium equations. Also, the boundary conditions of the rotating (with purely toroidal fluid flow, static - without any fluid flow) equilibrium are the same as those of the static equilibrium. So numerically one can calculate the rotating equilibrium as a static equilibrium. (author)
3D simulation studies of tokamak plasmas using MHD and extended-MHD models
International Nuclear Information System (INIS)
Park, W.; Chang, Z.; Fredrickson, E.; Fu, G.Y.
1996-01-01
The M3D (Multi-level 3D) tokamak simulation project aims at the simulation of tokamak plasmas using a multi-level tokamak code package. Several current applications using MHD and Extended-MHD models are presented; high-β disruption studies in reversed shear plasmas using the MHD level MH3D code, ω *i stabilization and nonlinear island saturation of TAE mode using the hybrid particle/MHD level MH3D-K code, and unstructured mesh MH3D ++ code studies. In particular, three internal mode disruption mechanisms are identified from simulation results which agree which agree well with experimental data
Performance of the CNEN MHD Blow-Down Loop Facility
Energy Technology Data Exchange (ETDEWEB)
Bertolini, E.; Brown, R.; Gasparotto, M.; Gay, P.; Toschi, R. [Laboratorio Conversione Diretta, CNEN, Frascati (Italy)
1968-11-15
The CNEN facility has been designed, manufactured and used for alkali-seeded noble gas MHD energy conversion research, as the major experimental effort during the first five-year CNEN Research Programme on MHD. The main specifications and the general arrangement with information on preliminary commissioning tests of some components were given at the Salzburg Symposium. Since then the facility has been successfully commissioned and from March 1967 has been working on MHD experiments. Efforts were made to reduce any adverse effects on the experimental MHD results that were due to inherent limitations of an experimental apparatus (particularly under open-circuit conditions). Great emphasis was placed on problems of caesium vaporization and the mixing with helium, the purity level of the mixture, measurements and the control system. The insulation of the plasma from ground was carefully treated, increasing the ratio between insulator resistance and typical plasma resistance as much as possible. Fluidynamic tests at room and high temperatures have shown that stability in the gas parameters (temperature, pressure and mass flow) can be maintained within few per cent for tens of seconds after a transient, giving a behaviour similar to a continuously running system. The high- temperature, alumina pebble-bed heater has successfully operated, bringing the helium-caesium mixtures up to 2000 Degree-Sign K and up to 4 atm abs pressure, and undergoing seven thermal cycles, for a total of more than 2000 hours operation at top temperature. Preheated generator ducts using alumina as insulator and tantalum for electrodes performed satisfactorily, very much attention having been given in the design to reduction of thermal shocks and to obviating possible paths for caesium leakage and short-circuiting of electrode leads. The pulsed liquid nitrogen precooled magnet has been run for about 50 pulses at high field ( Asymptotically-Equal-To 4.5 tesla) with an operating time of about 10
Towards Integrated Pulse Detonation Propulsion and MHD Power
Litchford, Ron J.; Thompson, Bryan R.; Lineberry, John T.
1999-01-01
The interest in pulse detonation engines (PDE) arises primarily from the advantages that accrue from the significant combustion pressure rise that is developed in the detonation process. Conventional rocket engines, for example, must obtain all of their compression from the turbopumps, while the PDE provides additional compression in the combustor. Thus PDE's are expected to achieve higher I(sub sp) than conventional rocket engines and to require smaller turbopumps. The increase in I(sub sp) and the decrease in turbopump capacity must be traded off against each other. Additional advantages include the ability to vary thrust level by adjusting the firing rate rather than throttling the flow through injector elements. The common conclusion derived from these aggregated performance attributes is that PDEs should result in engines which are smaller, lower in cost, and lighter in weight than conventional engines. Unfortunately, the analysis of PDEs is highly complex due to their unsteady operation and non-ideal processes. Although the feasibility of the basic PDE concept has been proven in several experimental and theoretical efforts, the implied performance improvements have yet to be convincingly demonstrated. Also, there are certain developmental issues affecting the practical application of pulse detonation propulsion systems which are yet to be fully resolved. Practical detonation combustion engines, for example, require a repetitive cycle of charge induction, mixing, initiation/propagation of the detonation wave, and expulsion/scavenging of the combustion product gases. Clearly, the performance and power density of such a device depends upon the maximum rate at which this cycle can be successfully implemented. In addition, the electrical energy required for direct detonation initiation can be significant, and a means for direct electrical power production is needed to achieve self-sustained engine operation. This work addresses the technological issues associated
Characteristics of laminar MHD fluid hammer in pipe
International Nuclear Information System (INIS)
Huang, Z.Y.; Liu, Y.J.
2016-01-01
As gradually wide applications of MHD fluid, transportation as well as control with pumps and valves is unavoidable, which induces MHD fluid hammer. The paper attempts to combine MHD effect and fluid hammer effect and to investigate the characteristics of laminar MHD fluid hammer. A non-dimensional fluid hammer model, based on Navier–Stocks equations, coupling with Lorentz force is numerically solved in a reservoir–pipe–valve system with uniform external magnetic field. The MHD effect is represented by the interaction number which associates with the conductivity of the MHD fluid as well as the external magnetic field and can be interpreted as the ratio of Lorentz force to Joukowsky force. The transient numerical results of pressure head, average velocity, wall shear stress, velocity profiles and shear stress profiles are provided. The additional MHD effect hinders fluid motion, weakens wave front and homogenizes velocity profiles, contributing to obvious attenuation of oscillation, strengthened line packing and weakened Richardson annular effect. Studying the characteristics of MHD laminar fluid hammer theoretically supplements the gap of knowledge of rapid-transient MHD flow and technically provides beneficial information for MHD pipeline system designers to better devise MHD systems. - Highlights: • Characteristics of laminar MHD fluid hammer are discussed by simulation. • MHD effect has significant influence on attenuation of wave. • MHD effect strengthens line packing. • MHD effect inhibits Richardson annular effect.
Convective heat transfer in MHD channels and its influence on channel performance
International Nuclear Information System (INIS)
Ahluwalia, R.K.; Doss, E.D.
1980-01-01
The limitations of the integral boundary layer methods and the potential of the differential boundary layer method in analyzing MHD channel flows are assessed. The sensitivity of results from the integral method to the parametrization of boundary layer profiles and calculation of wall heat transfer is established. A mixing-length type turbulence model for flow on rough walls is developed and validated by comparison with experimental data. The turbulence model is used in a quasi-three-dimensional boundary layer model to evaluate the influence of wall roughness and pressure gradients on the flow characteristics and performance of MHD channels. The behaviors of skin friction and Stanton number calculated from the analytical model are found to differ considerably from the empirical correlations valid for non-MHD flows without pressure gradients
MHD instabilities in heliotron/torsatron
International Nuclear Information System (INIS)
Wakatani, Masahiro; Nakamura, Yuji; Ichiguchi, Katsuji
1992-01-01
Recent theoretical results on MHD instabilities in heliotron/torsatron are reviewed. By comparing the results with experimental data in Heliotron E, Heliotron DR and ATF, it is pointed out that resistive interchange modes are the most crucial instabilities, since the magnetic hill occupies a substantial region of the plasma column. Development of three-dimensional MHD equilibrium codes has made significant progress. By applying the local stability criteria shown by D 1 (ideal MHD mode) and D R (resistive MHD mode) to the equilibria given by the three-dimensional codes such as BETA and VMEC, stability thresholds for the low n ideal modes or the low n resistive modes may be estimated with resonable accuracy, where n is a toroidal mode number. (orig.)
International Nuclear Information System (INIS)
Dunn, P.F.
1978-01-01
The basic features of the two-phase liquid-metal MHD energy conversion under development at Argonne National Laboratory are presented. The results of system studies on the Rankine-cycle and the open-cycle coal-fired cycle options are discussed. The liquid-metal MHD experimental facilities are described in addition to the system's major components, the generator, mixer and nozzle-separator-diffuser
MHD stability analysis of helical system plasmas
International Nuclear Information System (INIS)
Nakamura, Yuji
2000-01-01
Several topics of the MHD stability studies in helical system plasmas are reviewed with respect to the linear and ideal modes mainly. Difference of the method of the MHD stability analysis in helical system plasmas from that in tokamak plasmas is emphasized. Lack of the cyclic (symmetric) coordinate makes an analysis more difficult. Recent topic about TAE modes in a helical system is also described briefly. (author)
Investigations on high speed MHD liquid flow
International Nuclear Information System (INIS)
Yamasaki, Takasuke; Kamiyama, Shin-ichi.
1982-01-01
Lately, the pressure drop problem of MHD two-phase flow in a duct has been investigated theoretically and experimentally in conjunction with the problems of liquid metal MHD two-phase flow power-generating cycle or of liquid metal boiling two-phase flow in the blanket of a nuclear fusion reactor. Though many research results have been reported so far for MHD single-phase flow, the hydrodynamic studies on high speed two-phase flow are reported only rarely, specifically the study dealing with the generation of cavitation is not found. In the present investigation, the basic equation was derived, analyzing the high speed MHD liquid flow in a diverging duct as the one-dimensional flow of homogeneous two-phase fluid of small void ratio. Furthermore, the theoretical solution for the effect of magnetic field on cavitation-generating conditions was tried. The pressure distribution in MHD flow in a duct largely varies with load factor, and even if the void ratio is small, the pressure distribution in two-phase flow is considerably different from that in single-phase flow. Even if the MHD two-phase flow in a duct is subsonic flow at the throat, the critical conditions may be achieved sometimes in a diverging duct. It was shown that cavitation is more likely to occur as magnetic field becomes more intense if it is generated downstream of the throat. This explains the experimental results qualitatively. (Wakatsuki, Y.)
Scaling, Intermittency and Decay of MHD Turbulence
International Nuclear Information System (INIS)
Lazarian, A.; Cho, Jungyeon
2005-01-01
We discuss a few recent developments that are important for understanding of MHD turbulence. First, MHD turbulence is not so messy as it is usually believed. In fact, the notion of strong non-linear coupling of compressible and incompressible motions along MHD cascade is not tenable. Alfven, slow and fast modes of MHD turbulence follow their own cascades and exhibit degrees of anisotropy consistent with theoretical expectations. Second, the fast decay of turbulence is not related to the compressibility of fluid. Rates of decay of compressible and incompressible motions are very similar. Third, viscosity by neutrals does not suppress MHD turbulence in a partially ionized gas. Instead, MHD turbulence develops magnetic cascade at scales below the scale at which neutrals damp ordinary hydrodynamic motions. Forth, density statistics does not exhibit the universality that the velocity and magnetic field do. For instance, at small Mach numbers the density is anisotropic, but it gets isotropic at high Mach numbers. Fifth, the intermittency of magnetic field and velocity are different. Both depend on whether the measurements are done in a local system of reference oriented along the local magnetic field or in the global system of reference related to the mean magnetic field
Ullah, Imran; Bhattacharyya, Krishnendu; Shafie, Sharidan; Khan, Ilyas
2016-01-01
Numerical results are presented for the effect of first order chemical reaction and thermal radiation on mixed convection flow of Casson fluid in the presence of magnetic field. The flow is generated due to unsteady nonlinearly stretching sheet placed inside a porous medium. Convective conditions on wall temperature and wall concentration are also employed in the investigation. The governing partial differential equations are converted to ordinary differential equations using suitable transformations and then solved numerically via Keller-box method. It is noticed that fluid velocity rises with increase in radiation parameter in the case of assisting flow and is opposite in the case of opposing fluid while radiation parameter has no effect on fluid velocity in the forced convection. It is also seen that fluid velocity and concentration enhances in the case of generative chemical reaction whereas both profiles reduces in the case of destructive chemical reaction. Further, increase in local unsteadiness parameter reduces fluid velocity, temperature and concentration. Over all the effects of physical parameters on fluid velocity, temperature and concentration distribution as well as on the wall shear stress, heat and mass transfer rates are discussed in detail.
MHD stability, operational limits and disruptions
International Nuclear Information System (INIS)
1999-01-01
The present physics understandings of magnetohydrodynamic (MHD) stability of tokamak plasmas, the threshold conditions for onset of MHD instability, and the resulting operational limits on attainable plasma pressure (beta limit) and density (density limit), and the consequences of plasma disruption and disruption related effects are reviewed and assessed in the context of their application to a future DT burning reactor prototype tokamak experiment such as ITER. The principal considerations covered within the MHD stability and beta limit assessments are (i) magnetostatic equilibrium, ideal MHD stability and the resulting ideal MHD beta limit; (ii) sawtooth oscillations and the coupling of sawtooth activity to other types of MHD instability; (iii) neoclassical island resistive tearing modes and the corresponding limits on beta and energy confinement; (iv) wall stabilization of ideal MHD instabilities and resistive wall instabilities; (v) mode locking effects of non-axisymmetric error fields; (vi) edge localized MHD instabilities (ELMs, etc.); and (vii) MHD instabilities and beta/pressure gradient limits in plasmas with actively modified current and magnetic shear profiles. The principal considerations covered within the density limit assessments are (i) empirical density limits; (ii) edge power balance/radiative density limits in ohmic and L-mode plasmas; and (iii) edge parameter related density limits in H-mode plasmas. The principal considerations covered in the disruption assessments are (i) disruption causes, frequency and MHD instability onset; (ii) disruption thermal and current quench characteristics; (iii) vertical instabilities (VDEs), both before and after disruption, and plasma and in-vessel halo currents; (iv) after disruption runaway electron formation, confinement and loss; (v) fast plasma shutdown (rapid externally initiated dissipation of plasma thermal and magnetic energies); (vi) means for disruption avoidance and disruption effect mitigation; and
MHD diffuser model test program
Energy Technology Data Exchange (ETDEWEB)
Idzorek, J J
1976-07-01
Experimental results of the aerodynamic performance of seven candidate diffusers are presented to assist in determining their suitability for joining an MHD channel to a steam generator at minimum spacing. The three dimensional diffusers varied in area ratio from 2 to 3.8 and wall half angle from 2 to 5 degrees. The program consisted of five phases: (1) tailoring a diffuser inlet nozzle to a 15 percent blockage; (2) comparison of isolated diffusers at enthalpy ratios 0.5 to 1.0 with respect to separation characteristics and pressure recovery coefficients; (3) recording the optimum diffuser exit flow distribution; (4) recording the internal flow distribution within the steam generator when attached to the diffuser; and (5) observing isolated diffuser exhaust dynamic characteristics. The 2 and 2-1/3 degree half angle rectangular diffusers showed recovery coefficients equal to 0.48 with no evidence of flow separation or instability. Diffusion at angles greater than these produced flow instabilities and with angles greater than 3 degrees random flow separation and reattachment.
MHD diffuser model test program
International Nuclear Information System (INIS)
Idzorek, J.J.
1976-07-01
Experimental results of the aerodynamic performance of seven candidate diffusers are presented to assist in determining their suitability for joining an MHD channel to a steam generator at minimum spacing. The three dimensional diffusers varied in area ratio from 2 to 3.8 and wall half angle from 2 to 5 degrees. The program consisted of five phases: (1) tailoring a diffuser inlet nozzle to a 15 percent blockage; (2) comparison of isolated diffusers at enthalpy ratios 0.5 to 1.0 with respect to separation characteristics and pressure recovery coefficients; (3) recording the optimum diffuser exit flow distribution; (4) recording the internal flow distribution within the steam generator when attached to the diffuser; and (5) observing isolated diffuser exhaust dynamic characteristics. The 2 and 2-1/3 degree half angle rectangular diffusers showed recovery coefficients equal to 0.48 with no evidence of flow separation or instability. Diffusion at angles greater than these produced flow instabilities and with angles greater than 3 degrees random flow separation and reattachment
MHD waveguides in space plasma
International Nuclear Information System (INIS)
Mazur, N. G.; Fedorov, E. N.; Pilipenko, V. A.
2010-01-01
The waveguide properties of two characteristic formations in the Earth's magnetotail-the plasma sheet and the current (neutral) sheet-are considered. The question of how the domains of existence of different types of MHD waveguide modes (fast and slow, body and surface) in the (k, ω) plane and their dispersion properties depend on the waveguide parameters is studied. Investigation of the dispersion relation in a number of particular (limiting) cases makes it possible to obtain a fairly complete qualitative pattern of all the branches of the dispersion curve. Accounting for the finite size of perturbations across the wave propagation direction reveals new additional effects such as a change in the critical waveguide frequencies, the excitation of longitudinal current at the boundaries of the sheets, and a change in the symmetry of the fundamental mode. Knowledge of the waveguide properties of the plasma and current sheets can explain the occurrence of preferred frequencies in the low-frequency fluctuation spectra in the magnetotail. In satellite observations, the type of waveguide mode can be determined from the spectral properties, as well as from the phase relationships between plasma oscillations and magnetic field oscillations that are presented in this paper.
Nonequilibrium fluctuations in micro-MHD effects on electrodeposition
International Nuclear Information System (INIS)
Aogaki, Ryoichi; Morimoto, Ryoichi; Asanuma, Miki
2010-01-01
In copper electrodeposition under a magnetic field parallel to electrode surface, different roles of two kinds of nonequilibrium fluctuations for micro-magnetohydrodynamic (MHD) effects are discussed; symmetrical fluctuations are accompanied by the suppression of three dimensional (3D) nucleation by micro-MHD flows (the 1st micro-MHD effect), whereas asymmetrical fluctuations controlling 2D nucleation yield secondary nodules by larger micro-MHD flows (the 2nd micro-MHD effect). Though the 3D nucleation with symmetrical fluctuations is always suppressed by the micro-MHD flows, due to the change in the rate-determining step from electron transfer to mass transfer, the 2D nucleation with asymmetrical fluctuations newly turns unstable, generating larger micro-MHD flows. As a result, round semi-spherical deposits, i.e., secondary nodules are yielded. Using computer simulation, the mechanism of the 2nd micro-MHD effect is validated.
Method of operating a MHD power plant
International Nuclear Information System (INIS)
Wysk, S.R.
1982-01-01
A fossil fuel is burned substoichiometrically in the combustor of a mhd power plant to produce a high temperature, fuelrich product gas. The product gas is passed through a mhd channel to generate electricity. A reducing agent, preferably natural gas or hydrocarbon, is injected into the fuelrich product gas leaving the mhd generator; and the resulting mixture is held at a temperature in the range of 950 to 1500 0 C for about 1 second to permit the reducing agent to decompose a portion of the nitrogen oxides formed in the combustor. The fuel-rich product gas then passes thru an afterburner wherein combustion is completed and any excess reducing agent is consumed
Numerical study of MHD supersonic flow control
Ryakhovskiy, A. I.; Schmidt, A. A.
2017-11-01
Supersonic MHD flow around a blunted body with a constant external magnetic field has been simulated for a number of geometries as well as a range of the flow parameters. Solvers based on Balbas-Tadmor MHD schemes and HLLC-Roe Godunov-type method have been developed within the OpenFOAM framework. The stability of the solution varies depending on the intensity of magnetic interaction The obtained solutions show the potential of MHD flow control and provide insights into for the development of the flow control system. The analysis of the results proves the applicability of numerical schemes, that are being used in the solvers. A number of ways to improve both the mathematical model of the process and the developed solvers are proposed.
Investigations of MHD activity in ASDEX discharges
International Nuclear Information System (INIS)
Stambaugh, R.; Gernhardt, J.; Klueber, O.; Wagner, F.
1984-06-01
This report makes a strong attempt to relate some specific observations of MHD activity in ADEX discharges to observations made on the Doublet III and PDX tokamaks and to theoretical work on high β MHD modes at GA and PPPL. Three topics are discussed. The first topic is the detailed analysis of the time history of MHD activity in a β discharge. The β limit discharge in ASDEX is identified as a discharge in which, during constant neutral beam power, β reaches a maximum and then decreases, often to a lower steady level if the heating pulse is long enough. During the L phase of this discharge, the MHD activity observed in the B coils is both a continuous and bursting coupled m >= 1 mode of the 'fishbone' type. When β is rising in the H phase, this mode disappears; only ELMs are present. At βsub(max), a different mode appears, the m=2, n=1 tearing mode, which grows rapidly as β decreases. The second topic is the very new observation of the fishbone-like mode in a discharge heated by combined neutral beam and ion cyclotron heating power. The mode characteristics are modulated by sawtooth oscillations in a manner consistent with the importance of q(0) in the stability of this mode. The third topic is the search for ELM precursors in discharges designed to have no other competing and complicating MHD activity. In these cases nonaxisymmetric precursors to the Hsub(α) spike were observed. Hence, it appears that an MHD mode, rather than an energy balance problem, must be the origin of the ELM. (orig./GG)
MHD deceleration of fusion reaction products
International Nuclear Information System (INIS)
Chow, S.; Bohachevsky, I.O.
1979-04-01
The feasibility of magnetohydrodynamic (MHD) deceleration of fuel pellet debris ions exiting from an inertial confinement fusion (ICF) reactor cavity is investigated using one-dimensional flow equations. For engineering reasons, induction-type devices are emphasized; their performance characteristics are similar to those of electrode-type decelerators. Results of the analysis presented in this report indicate that MHD decelerators can be designed within conventional magnet technology to not only decelerate the high-energy fusion pellet debris ions but also to produce some net electric power in the process
Safety and reliability in superconducting MHD magnets
International Nuclear Information System (INIS)
Laverick, C.; Powell, J.; Hsieh, S.; Reich, M.; Botts, T.; Prodell, A.
1979-07-01
This compilation adapts studies on safety and reliability in fusion magnets to similar problems in superconducting MHD magnets. MHD base load magnet requirements have been identified from recent Francis Bitter National Laboratory reports and that of other contracts. Information relevant to this subject in recent base load magnet design reports for AVCO - Everett Research Laboratories and Magnetic Corporation of America is included together with some viewpoints from a BNL workshop on structural analysis needed for superconducting coils in magnetic fusion energy. A summary of design codes used in large bubble chamber magnet design is also included
Compact torus theory: MHD equilibrium and stability
International Nuclear Information System (INIS)
Barnes, D.C.; Seyler, C.E.; Anderson, D.V.
1979-01-01
Field reversed theta pinches have demonstrated the production and confinement of compact toroidal configurations with surprisingly good MHD stability. In these observations, the plasma is either lost by diffusion or by the loss of the applied field or is disrupted by an n = 2 (where n is the toroidal mode number) rotating instability only after 30 to 100 MHD times, when the configuration begins to rotate rigidly above a critical speed. These experiments have led one to investigate the equilibrium, stability, and rotation of a very elongated, toroidally axisymmetric configuration with no toroidal field. Many of the above observations are explained by recent results of these investigations which are summarized
Gravitational instability in isotropic MHD plasma waves
Cherkos, Alemayehu Mengesha
2018-04-01
The effect of compressive viscosity, thermal conductivity and radiative heat-loss functions on the gravitational instability of infinitely extended homogeneous MHD plasma has been investigated. By taking in account these parameters we developed the six-order dispersion relation for magnetohydrodynamic (MHD) waves propagating in a homogeneous and isotropic plasma. The general dispersion relation has been developed from set of linearized basic equations and solved analytically to analyse the conditions of instability and instability of self-gravitating plasma embedded in a constant magnetic field. Our result shows that the presence of viscosity and thermal conductivity in a strong magnetic field substantially modifies the fundamental Jeans criterion of gravitational instability.
Free-boundary perturbed MHD equilibria
International Nuclear Information System (INIS)
Nührenberg, C
2012-01-01
The concept of perturbed ideal MHD equilibria [Boozer A H and Nuhrenberg C 2006 Phys. Plasmas 13 102501] is employed to study the influence of external error-fields and of small plasma-pressure changes on toroidal plasma equilibria. In tokamak and stellarator free-boundary calculations, benchmarks were successful of the perturbed-equilibrium version of the CAS3D stability code [Nührenberg C et al. 2009 Phys. Rev. Lett. 102 235001] with the ideal MHD equilibrium code NEMEC [Hirshman S P et al. 1986 Comput. Phys. Commun. 43 143].
MHD power station with coal gasification
International Nuclear Information System (INIS)
Brzozowski, W.S.; Dul, J.; Pudlik, W.
1976-01-01
A description is given of the proposed operating method of a MHD-power station including a complete coal gasification into lean gas with a simultaneous partial gas production for the use of outside consumers. A comparison with coal gasification methods actually being used and full capabilities of power stations heated with coal-derived gas shows distinct advantages resulting from applying the method of coal gasification with waste heat from MHD generators working within the boundaries of the thermal-electric power station. (author)
MHD equilibrium of heliotron J plasmas
International Nuclear Information System (INIS)
Suzuki, Yasuhiro; Nakamura, Yuji; Kondo, Katsumi; Nakajima, Noriyoshi; Hayashi, Takaya
2004-01-01
MHD equilibria of Heliotron J plasma are investigated by using HINT code. By assuming some profiles of the current density, effects of the net toroidal currents on the magnetohydrodynamics (MHD) equilibrium are investigated. If the rotational transform can be controlled by the currents, the generation of good flux surfaces is expected. In order to study equilibria with self-consistent bootstrap current, the boozer coordinates are constructed by converged HINT equilibrium as a preliminary study. Obtained spectra are compared with ones of VMEC code and both results are consistent. (author)
Bifurcation theory for toroidal MHD instabilities
International Nuclear Information System (INIS)
Maschke, E.K.; Morros Tosas, J.; Urquijo, G.
1992-01-01
Using a general representation of magneto-hydrodynamics in terms of stream functions and potentials, proposed earlier, a set of reduced MHD equations for the case of toroidal geometry had been derived by an appropriate ordering with respect to the inverse aspect ratio. When all dissipative terms are neglected in this reduced system, it has the same linear stability limits as the full ideal MHD equations, to the order considered. When including resistivity, thermal conductivity and viscosity, we can apply bifurcation theory to investigate nonlinear stationary solution branches related to various instabilities. In particular, we show that a stationary solution of the internal kink type can be found
PHYSICAL PERFORMANCE AND BODY COMPOSITION IN MAINTENANCE HEMODIALYSIS (MHD PATIENTS
Directory of Open Access Journals (Sweden)
M Zhang
2012-06-01
Conclusions: These findings indicate that adult MHD pts had a higher % body fat. Measures of physical performance were markedly reduced in MHD pts as compared to Normals. Physical performance in MHD, measured especially by 6-MW, correlated negatively with some measures of body composition, particularly with LBMI.
Closed cycle MHD specialist meeting. Progress report, 1971--1972
International Nuclear Information System (INIS)
Rietjens, L.H.
1972-04-01
Abstracts of the conference papers on closed cycle MHD research are presented. The general areas of discussion are the following: results on closed cycle experiments; plasma properties, and instabilities and stabilization in nonequilibrium plasmas; loss mechanisms, current distributions, electrode effects, boundary layers, and gas dynamic effects; and design concepts of large MHD generators, and nuclear MHD power plants. (GRA)
3D simulation studies of tokamak plasmas using MHD and extended-MHD models
International Nuclear Information System (INIS)
Park, W.; Chang, Z.; Fredrickson, E.; Fu, G.Y.; Pomphrey, N.; Sugiyama, L.E.
1997-01-01
The M3D (Multi-level 3D) tokamak simulation project aims at the simulation of tokamak plasmas using a multi-level tokamak code package. Several current applications using MHD and Extended-MHD models are presented; high-β disruption studies in reversed shear plasmas using the MHD level MH3D code, ω *i stabilization and nonlinear island rotation studies using the two-fluid level MH3D-T code, studies of nonlinear saturation of TAE modes using the hybrid particle/MHD level MH3D-K code, and unstructured mesh MH3D ++ code studies. In particular, three internal mode disruption mechanisms are identified from simulation results which agree well with experimental data
The SOL width and the MHD interchange instability in tokamaks
Energy Technology Data Exchange (ETDEWEB)
Kerner, W [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking; Pogutse, O [Kurchatov institute, Moscow (Russian Federation)
1994-07-01
Instabilities in the SOL plasma can strongly influence the SOL plasma behaviour and in particular the SOL width. The SOL stability analysis shows that there exists a critical ratio of the thermal energy and the magnetic energy. If the SOL beta is greater than this critical value, the magnetic field cannot prevent the plasma displacement and a strong MHD instability in the SOL occurs. In the opposite case only slower resistive instabilities can develop. A theoretical investigation of the SOL plasma stability is presented for JET single-null and double-null divertor configurations. The dependence of the stability threshold on the SOL beta and on the sheath resistance is established. Applying a simple mixing length argument gives the scaling of the SOL width. 5 refs., 2 figs.
MHD equilibrium and stability in heliotron plasmas
Energy Technology Data Exchange (ETDEWEB)
Ichiguchi, Katsuji [National Inst. for Fusion Science, Toki, Gifu (Japan)
1999-09-01
Recent topics in the theoretical magnetohydrodynamic (MHD) analysis in the heliotron configuration are overviewed. Particularly, properties of three-dimensional equilibria, stability boundary of the interchange mode, effects of the net toroidal current including the bootstrap current and the ballooning mode stability are focused. (author)
MHD stability of vertically asymmetric tokamak equilibria
International Nuclear Information System (INIS)
Dalhed, H.E.; Grimm, R.C.; Johnson, J.L.
1981-03-01
The ideal MHD stability properties of a special class of vertically asymmetric tokamak equilibria are examined. The calculations confirm that no major new physical effects are introduced and the modifications can be understood by conventional arguments. The results indicate that significant departures from up-down symmetry can be tolerated before the reduction in β becomes important for reactor operation
Principal characteristics of SFC type MHD generator
International Nuclear Information System (INIS)
Kayukawa, Naoyuki; Oikawa, Shun-ichi; Aoki, Yoshiaki; Seidou, Tadashi; Okinaka, Noriyuki
1988-01-01
This paper describes the experimental and analytical results obtained for an MHD channel with a two dimensionally shaped magnetic field configuration called 'the SFC-type'. The power generating performance was examined under various load conditions and B-field intensities with a 2 MWt shock tunnel MHD facility. It is demonstrated that the power output performance and the enthalpy extraction scaling law of the conventional uniform B-field MHD generator (UFC-type) were significantly improved by the SFC-design of the spatial distribution of the magnetic field. The arcing processes were also examined by a high speed camera and the post-test observation of arc spot traces on electrodes. Further, the characteristic frequencies of each of the so-called micro and constricted arcs were clarified by spectral analyses. The critical current densities, which define the transient conditions of each from the diffuse-to micro arc, and from the micro-to constricted arc modes could be clearly obtained by the present spectral analysis method. We also investigated the three-dimensional behavior under strong magnetic field based on the coupled electrical and hydrodynamical equations for both of the middle scale SFC-and UFC-type generators. Finally, it is concluded from the above mentioned various aspects that the shaped 2-D magnetic field design will offer a most useful means for the realization of a compact, high efficiency and a long duration open-cycle MHD generator. (author)
On the stability of dissipative MHD equilibria
International Nuclear Information System (INIS)
Teichmann, J.
1979-04-01
The global stability of stationary equilibria of dissipative MHD is studied uisng the direct Liapunov method. Sufficient and necessary conditions for stability of the linearized Euler-Lagrangian system with the full dissipative operators are given. The case of the two-fluid isentropic flow is discussed. (orig.)
MHD Ballooning Instability in the Plasma Sheet
International Nuclear Information System (INIS)
Cheng, C.Z.; Zaharia, S.
2003-01-01
Based on the ideal-MHD model the stability of ballooning modes is investigated by employing realistic 3D magnetospheric equilibria, in particular for the substorm growth phase. Previous MHD ballooning stability calculations making use of approximations on the plasma compressibility can give rise to erroneous conclusions. Our results show that without making approximations on the plasma compressibility the MHD ballooning modes are unstable for the entire plasma sheet where beta (sub)eq is greater than or equal to 1, and the most unstable modes are located in the strong cross-tail current sheet region in the near-Earth plasma sheet, which maps to the initial brightening location of the breakup arc in the ionosphere. However, the MHD beq threshold is too low in comparison with observations by AMPTE/CCE at X = -(8 - 9)R(sub)E, which show that a low-frequency instability is excited only when beq increases over 50. The difficulty is mitigated by considering the kinetic effects of ion gyrorad ii and trapped electron dynamics, which can greatly increase the stabilizing effects of field line tension and thus enhance the beta(sub)eq threshold [Cheng and Lui, 1998]. The consequence is to reduce the equatorial region of the unstable ballooning modes to the strong cross-tail current sheet region where the free energy associated with the plasma pressure gradient and magnetic field curvature is maximum
Quantum chaos theory and the spectrum of ideal-MHD instabilities in toroidal plasmas
International Nuclear Information System (INIS)
Dewar, Robert L.; Carolin, Nuehrenberg; Tatsuno, Tomoya
2004-01-01
In a fully 3-D system such as a stellarator, the toroidal mode number n ceases to be a good quantum number - all ns within a given mode family being coupled. It is found that the discrete spectrum of unstable ideal MHD (magnetohydrodynamic) instabilities ceases to exist unless MHD is modified (regularized) by introducing a short-perpendicular-wavelength cutoff. Attempts to use ray tracing to estimate the regularized MHD spectrum fail due to the occurrence of chaotic ray trajectories. In quantum chaos theory, strong chaos in the semiclassical limit leads to eigenvalue statistics the same as those of a suitable ensemble of random matrices. For instance, the probability distribution function for the separation between neighboring eigenvalues is as derived from random matrix theory and goes to zero at zero separation. This contrasts with the Poissonian distribution found in separable systems, showing that a signature of quantum chaos is level repulsion. In order to determine whether eigenvalues of the regularized MHD problem obey the same statistics as those of the Schroedinger equation in both the separable 1-D case and the chaotic 3-D cases, we have assembled data sets of ideal MHD eigenvalues for a Suydam-unstable cylindrical (1-D) equilibrium using Mathematica and a Mercier-unstable (3-D) equilibrium using the CAS3D code. In the 1-D case, we find that the unregularized Suydam-approximation spectrum has an anomalous peak at zero eigenvalue separation. On the other hand, regularization by restricting the domain of κsub(perpendicular) recovers the expected Poissonian distribution. In the 3-D case we find strong evidence of level repulsion within mode families, but mixing mode families produces Poissonian statistics. (author)
Nonlinear MHD dynamo operating at equipartition
DEFF Research Database (Denmark)
Archontis, V.; Dorch, Bertil; Nordlund, Åke
2007-01-01
Context.We present results from non linear MHD dynamo experiments with a three-dimensional steady and smooth flow that drives fast dynamo action in the kinematic regime. In the saturation regime, the system yields strong magnetic fields, which undergo transitions between an energy-equipartition a......Context.We present results from non linear MHD dynamo experiments with a three-dimensional steady and smooth flow that drives fast dynamo action in the kinematic regime. In the saturation regime, the system yields strong magnetic fields, which undergo transitions between an energy......, and that it can saturate at a level significantly higher than intermittent turbulent dynamos, namely at energy equipartition, for high values of the magnetic and fluid Reynolds numbers. The equipartition solution however does not remain time-independent during the simulation but exhibits a much more intricate...
Neoclassical MHD equilibria with ohmic current
International Nuclear Information System (INIS)
Tokuda, Shinji; Takeda, Tatsuoki; Okamoto, Masao.
1989-01-01
MHD equilibria of tokamak plasmas with neoclassical current effects (neoclassical conductivity and bootstrap current) were calculated self-consistently. Neoclassical effects on JFT-2M tokamak plasmas, sustained by ohmic currents, were studied. Bootstrap currents flow little for L-mode type equilibria because of low attainable values of poloidal beta, β J . H-mode type equilibria give bootstrap currents of 30% ohmic currents for β J attained by JFT-2M and 100% for β J ≥ 1.5, both of which are sufficient to change the current profiles and the resultant MHD equilibria. Neoclassical conductivity which has roughly half value of the classical Spitzer conductivity brings peaked ohmic current profiles to yield low safety factor at the magnetic axis. Neoclassical conductivity reduces the value of effective Z(Z eff ) which is necessary to give the observed one-turn voltage but it needs impurities accumulating at the center when such peaked current profiles are not observed. (author)
Regular shock refraction in planar ideal MHD
International Nuclear Information System (INIS)
Delmont, P; Keppens, R
2010-01-01
We study the classical problem of planar shock refraction at an oblique density discontinuity, separating two gases at rest, in planar ideal (magneto)hydrodynamics. In the hydrodynamical case, 3 signals arise and the interface becomes Richtmyer-Meshkov unstable due to vorticity deposition on the shocked contact. In the magnetohydrodynamical case, on the other hand, when the normal component of the magnetic field does not vanish, 5 signals will arise. The interface then typically remains stable, since the Rankine-Hugoniot jump conditions in ideal MHD do not allow for vorticity deposition on a contact discontinuity. We present an exact Riemann solver based solution strategy to describe the initial self similar refraction phase. Using grid-adaptive MHD simulations, we show that after reflection from the top wall, the interface remains stable.
Evolution of the MHD sheet pinch
International Nuclear Information System (INIS)
Matthaeus, W.H.; Montgomery, D.
1979-01-01
A magnetohydrodynamic (MHD) problem of recurrent interest for both astrophysical and laboratory plasmas is the evolution of the unstable sheet pinch, a current sheet across which a dc magnetic field reverses sign. The evolution of such a sheet pinch is followed with a spectral-method, incompressible, two-dimensional, MHD turbulence code. Spectral diagnostics are employed, as are contour plots of vector potential (magnetic field lines), electric current density, and velocity stream function (velocity streamlines). The nonlinear effect which seems most important is seen to be current filamentation: the concentration of the current density onto sets of small measure near a mgnetic X point. A great deal of turbulence is apparent in the current distribution, which, for high Reynolds numbers, requires large spatial grids (greater than or equal to (64) 2 ). 11 figures, 1 table
Impulsive relaxation process in MHD driven reconnection
International Nuclear Information System (INIS)
Kitabata, H.; Hayashi, T.; Sato, T.
1997-01-01
Compressible magnetohydrodynamic (MHD) simulation is carried out in order to investigate energy relaxation process of the driven magnetic reconnection in an open finite system through a long time calculation. It is found that a very impulsive energy release occurs in an intermittent fashion through magnetic reconnection for a continuous magnetic flux injection on the boundary. We focus our attention on the detailed process in the impulsive phase, which is the reconnection rate is remarkably enhanced up. (author)
MHD simulations on an unstructured mesh
International Nuclear Information System (INIS)
Strauss, H.R.; Park, W.; Belova, E.; Fu, G.Y.; Sugiyama, L.E.
1998-01-01
Two reasons for using an unstructured computational mesh are adaptivity, and alignment with arbitrarily shaped boundaries. Two codes which use finite element discretization on an unstructured mesh are described. FEM3D solves 2D and 3D RMHD using an adaptive grid. MH3D++, which incorporates methods of FEM3D into the MH3D generalized MHD code, can be used with shaped boundaries, which might be 3D
Hopes for commercial use of MHD
International Nuclear Information System (INIS)
1968-01-01
Magnetohydrodynamics (MHD) is the study of the motion of fluids and gases in magnetic fields. After 25 years of theoretical and experimental work, it seems commercially promising for a new type of power station, where heat would be converted directly into electricity by generators without moving parts. Nuclear reactors would be well suited as the heat sources. At an Agency symposium in Warsaw in July it was felt that international cooperation is essential to develop the technique for industrial use. (author)
MHD instability studies in ISX-B
International Nuclear Information System (INIS)
Pare, V.K.; Dunlap, J.L.; Navarro, A.P.; Burris, R.D.
1979-01-01
MHD instabilities in Ohmically and beam heated ISX-B plasmas have been studied using collimated x-ray and Mirnov loop diagnostics. The diagnostic systems will be described and the instability signals will be illustrated for a variety of discharges. The latter will include those observed in connection with low and high β operation, density clamping, pellet injection, and deliberate introduction of toroidal field ripple
Status report on the Indian MHD programme
International Nuclear Information System (INIS)
Ambasankaran, C.
1978-03-01
MHD programme in India, which has been started recently as a collaborative effort by the Bhabha Atomic Research Centre and Bharat Heavy Electricals Ltd., with the technical consultation provided by the High Temperature Institute, Moscow, is described. The basic considerations which led to the launching of this project and the details of the experimental plant for R and D work are spelt out. (K.B.)
Statistical Theory of the Ideal MHD Geodynamo
Shebalin, J. V.
2012-01-01
A statistical theory of geodynamo action is developed, using a mathematical model of the geodynamo as a rotating outer core containing an ideal (i.e., no dissipation), incompressible, turbulent, convecting magnetofluid. On the concentric inner and outer spherical bounding surfaces the normal components of the velocity, magnetic field, vorticity and electric current are zero, as is the temperature fluctuation. This allows the use of a set of Galerkin expansion functions that are common to both velocity and magnetic field, as well as vorticity, current and the temperature fluctuation. The resulting dynamical system, based on the Boussinesq form of the magnetohydrodynamic (MHD) equations, represents MHD turbulence in a spherical domain. These basic equations (minus the temperature equation) and boundary conditions have been used previously in numerical simulations of forced, decaying MHD turbulence inside a sphere [1,2]. Here, the ideal case is studied through statistical analysis and leads to a prediction that an ideal coherent structure will be found in the form of a large-scale quasistationary magnetic field that results from broken ergodicity, an effect that has been previously studied both analytically and numerically for homogeneous MHD turbulence [3,4]. The axial dipole component becomes prominent when there is a relatively large magnetic helicity (proportional to the global correlation of magnetic vector potential and magnetic field) and a stationary, nonzero cross helicity (proportional to the global correlation of velocity and magnetic field). The expected angle of the dipole moment vector with respect to the rotation axis is found to decrease to a minimum as the average cross helicity increases for a fixed value of magnetic helicity and then to increase again when average cross helicity approaches its maximum possible value. Only a relatively small value of cross helicity is needed to produce a dipole moment vector that is aligned at approx.10deg with the
The CHEASE code for toroidal MHD equilibria
Energy Technology Data Exchange (ETDEWEB)
Luetjens, H. [Ecole Polytechnique, 91 - Palaiseau (France). Centre de Physique Theorique; Bondeson, A. [Chalmers Univ. of Technology, Goeteborg (Sweden). Inst. for Electromagnetic Field Theory and Plasma Physics; Sauter, O. [ITER-San Diego, La Jolla, CA (United States)
1996-03-01
CHEASE solves the Grad-Shafranov equation for the MHD equilibrium of a Tokamak-like plasma with pressure and current profiles specified by analytic forms or sets of data points. Equilibria marginally stable to ballooning modes or with a prescribed fraction of bootstrap current can be computed. The code provides a mapping to magnetic flux coordinates, suitable for MHD stability calculations or global wave propagation studies. The code computes equilibrium quantities for the stability codes ERATO, MARS, PEST, NOVA-W and XTOR and for the global wave propagation codes LION and PENN. The two-dimensional MHD equilibrium (Grad-Shafranov) equation is solved in variational form. The discretization uses bicubic Hermite finite elements with continuous first order derivates for the poloidal flux function {Psi}. The nonlinearity of the problem is handled by Picard iteration. The mapping to flux coordinates is carried out with a method which conserves the accuracy of the cubic finite elements. The code uses routines from the CRAY libsci.a program library. However, all these routines are included in the CHEASE package itself. If CHEASE computes equilibrium quantities for MARS with fast Fourier transforms, the NAG library is required. CHEASE is written in standard FORTRAN-77, except for the use of the input facility NAMELIST. CHEASE uses variable names with up to 8 characters, and therefore violates the ANSI standard. CHEASE transfers plot quantities through an external disk file to a plot program named PCHEASE using the UNIRAS or the NCAR plot package. (author) figs., tabs., 34 refs.
Elms: MHD Instabilities at the transport barrier
Energy Technology Data Exchange (ETDEWEB)
Huysmans, G.T.A
2005-07-01
Significant progress has been made in recent years both on the experimental characterisation of ELMs (edge localized modes) and the theory and modelling of ELMs. The observed maximum pressure gradient is in good agreement with the calculated ideal MHD stability limits due to peeling-ballooning modes. The dependence on plasma current and plasma shape are also reproduced by the ideal MHD model. It will be a challenge to verify experimentally the influence of the extensions to the ideal MHD theory such as the possibly incomplete diamagnetic stabilisation, the influence of shear flow, finite resistivity or the stabilizing influence of the separatrix on peeling modes. The observations of the filamentary structures find their explanation in the theory and simulations of the early non-linear phase of the evolution of ballooning modes. One of the remaining open questions is what determines the size of the ELM and its duration. This is related to the loss mechanism of energy and density. Some heuristic descriptions of possible mechanisms have been proposed in literature but none of the models so far makes quantitative predictions on the ELM size. Also the numerical simulations are not yet advanced to the point where the full ELM crash can be modelled. The theory and simulations of the ELMs are necessary to decide between the possible parameters, such as the collisionality or the parallel transport time, that are proposed for the extrapolation of ELM sizes to ITER.
Elms: MHD Instabilities at the transport barrier
International Nuclear Information System (INIS)
Huysmans, G.T.A.
2005-01-01
Significant progress has been made in recent years both on the experimental characterisation of ELMs (edge localized modes) and the theory and modelling of ELMs. The observed maximum pressure gradient is in good agreement with the calculated ideal MHD stability limits due to peeling-ballooning modes. The dependence on plasma current and plasma shape are also reproduced by the ideal MHD model. It will be a challenge to verify experimentally the influence of the extensions to the ideal MHD theory such as the possibly incomplete diamagnetic stabilisation, the influence of shear flow, finite resistivity or the stabilizing influence of the separatrix on peeling modes. The observations of the filamentary structures find their explanation in the theory and simulations of the early non-linear phase of the evolution of ballooning modes. One of the remaining open questions is what determines the size of the ELM and its duration. This is related to the loss mechanism of energy and density. Some heuristic descriptions of possible mechanisms have been proposed in literature but none of the models so far makes quantitative predictions on the ELM size. Also the numerical simulations are not yet advanced to the point where the full ELM crash can be modelled. The theory and simulations of the ELMs are necessary to decide between the possible parameters, such as the collisionality or the parallel transport time, that are proposed for the extrapolation of ELM sizes to ITER
The Statistical Mechanics of Ideal MHD Turbulence
Shebalin, John V.
2003-01-01
Turbulence is a universal, nonlinear phenomenon found in all energetic fluid and plasma motion. In particular. understanding magneto hydrodynamic (MHD) turbulence and incorporating its effects in the computation and prediction of the flow of ionized gases in space, for example, are great challenges that must be met if such computations and predictions are to be meaningful. Although a general solution to the "problem of turbulence" does not exist in closed form, numerical integrations allow us to explore the phase space of solutions for both ideal and dissipative flows. For homogeneous, incompressible turbulence, Fourier methods are appropriate, and phase space is defined by the Fourier coefficients of the physical fields. In the case of ideal MHD flows, a fairly robust statistical mechanics has been developed, in which the symmetry and ergodic properties of phase space is understood. A discussion of these properties will illuminate our principal discovery: Coherent structure and randomness co-exist in ideal MHD turbulence. For dissipative flows, as opposed to ideal flows, progress beyond the dimensional analysis of Kolmogorov has been difficult. Here, some possible future directions that draw on the ideal results will also be discussed. Our conclusion will be that while ideal turbulence is now well understood, real turbulence still presents great challenges.
MHD thrust vectoring of a rocket engine
Labaune, Julien; Packan, Denis; Tholin, Fabien; Chemartin, Laurent; Stillace, Thierry; Masson, Frederic
2016-09-01
In this work, the possibility to use MagnetoHydroDynamics (MHD) to vectorize the thrust of a solid propellant rocket engine exhaust is investigated. Using a magnetic field for vectoring offers a mass gain and a reusability advantage compared to standard gimbaled, elastomer-joint systems. Analytical and numerical models were used to evaluate the flow deviation with a 1 Tesla magnetic field inside the nozzle. The fluid flow in the resistive MHD approximation is calculated using the KRONOS code from ONERA, coupling the hypersonic CFD platform CEDRE and the electrical code SATURNE from EDF. A critical parameter of these simulations is the electrical conductivity, which was evaluated using a set of equilibrium calculations with 25 species. Two models were used: local thermodynamic equilibrium and frozen flow. In both cases, chlorine captures a large fraction of free electrons, limiting the electrical conductivity to a value inadequate for thrust vectoring applications. However, when using chlorine-free propergols with 1% in mass of alkali, an MHD thrust vectoring of several degrees was obtained.
Energetic particle effects on global MHD modes
International Nuclear Information System (INIS)
Cheng, C.Z.
1990-01-01
The effects of energetic particles on MHD type modes are studied by analytical theories and the nonvariational kinetic-MHD stability code (NOVA-K). In particular we address the problems of (1) the stabilization of ideal MHD internal kink modes and the excitation of resonant ''fishbone'' internal modes and (2) the alpha particle destabilization of toroidicity-induced Alfven eigenmodes (TAE) via transit resonances. Analytical theories are presented to help explain the NOVA-K results. For energetic trapped particles generated by neutral-beam injection (NBI) or ion cyclotron resonant heating (ICRH), a stability window for the n=1 internal kink mode in the hot particle beat space exists even in the absence of core ion finite Larmor radius effect (finite ω *i ). On the other hand, the trapped alpha particles are found to resonantly excite instability of the n=1 internal mode and can lower the critical beta threshold. The circulating alpha particles can strongly destabilize TAE modes via inverse Landau damping associated with the spatial gradient of the alpha particle pressure. 23 refs., 5 figs
Magnetohydrodynamic (MHD) simulation of solar prominence formation
International Nuclear Information System (INIS)
Bao, J.
1987-01-01
Formation of Kippenhahn-Schluter type solar prominences by chromospheric mass injection is studied via numerical simulation. The numerical model is based on a two-dimensional, time-dependent magnetohydrodynamic (MHD) theory. In addition, an analysis of gravitational thermal MHD instabilities related to condensation is performed by using the small-perturbation method. The conclusions are: (1) Both quiescent and active-region prominences can be formed by chromospheric mass injection, provided certain optimum conditions are satisfied. (2) Quiescent prominences cannot be formed without condensation, though enough mass is supplied from chromosphere. The mass of a quiescent prominence is composed of both the mass injected from the chromosphere and the mass condensed from the corona. On the other hand, condensation is not important to active region prominence formation. (3) In addition to channeling and supporting effects, the magnetic field plays another important role, i.e. containing the prominence material. (4) In the model cases, prominences are supported by the Lorentz force, the gas-pressure gradient and the mass-injection momentum. (5) Due to gravity, more MHD condensation instability modes appear in addition to the basic condensation mode
The CHEASE code for toroidal MHD equilibria
International Nuclear Information System (INIS)
Luetjens, H.
1996-03-01
CHEASE solves the Grad-Shafranov equation for the MHD equilibrium of a Tokamak-like plasma with pressure and current profiles specified by analytic forms or sets of data points. Equilibria marginally stable to ballooning modes or with a prescribed fraction of bootstrap current can be computed. The code provides a mapping to magnetic flux coordinates, suitable for MHD stability calculations or global wave propagation studies. The code computes equilibrium quantities for the stability codes ERATO, MARS, PEST, NOVA-W and XTOR and for the global wave propagation codes LION and PENN. The two-dimensional MHD equilibrium (Grad-Shafranov) equation is solved in variational form. The discretization uses bicubic Hermite finite elements with continuous first order derivates for the poloidal flux function Ψ. The nonlinearity of the problem is handled by Picard iteration. The mapping to flux coordinates is carried out with a method which conserves the accuracy of the cubic finite elements. The code uses routines from the CRAY libsci.a program library. However, all these routines are included in the CHEASE package itself. If CHEASE computes equilibrium quantities for MARS with fast Fourier transforms, the NAG library is required. CHEASE is written in standard FORTRAN-77, except for the use of the input facility NAMELIST. CHEASE uses variable names with up to 8 characters, and therefore violates the ANSI standard. CHEASE transfers plot quantities through an external disk file to a plot program named PCHEASE using the UNIRAS or the NCAR plot package. (author) figs., tabs., 34 refs
MHD power generation for the synthetic-fuels industry
International Nuclear Information System (INIS)
Jones, M.S. Jr.
1982-01-01
The integration of open cycle MHD with various processes for the recovery of hydrocarbons for heavy oil deposits, oil sands, and oil shales are examined along with its use in producing medium Btu gas, synthetic natural gas and solvent refined coal. The major features of the MHD cycle which are of interest are: (a) the ability to produce hydrogen through the shift reaction by introducing H 2 O into the substoichiometric combustion product flow exiting the MHD diffuser, (b) the use of high temperature waste heat in the MHD exhaust, and (c) the ability of the seed in the MHD flow to remove sulfur from the combustion products. Therefore the use of the MHD cycle allows coal to be used in an environmentally acceptable manner in place of hydrocarbons which are now used to produce process heat and hydrogen. The appropriate plant sizes are in the range of 25 to 50 MWe and the required MHD generator enthalpy extraction efficiencies are low. Sale of electricity produced, over and above that used in the process, can provide a revenue stream which can improve the economics of the hydrocarbon processing. This, coupled with the replacement of coal for hydrocarbons in certain phases of the process, should improve the overall economics, while not requiring a high level of performance by the MHD components. Therefore, this area should be an early target of opportunity for the commercialization of MHD
MHD power plants - a reality of the 80's
International Nuclear Information System (INIS)
Pishchikov, S.
1981-01-01
A 300 MW MHD generator and a conventional turbogenerator of the same capacity will be used for the first MHD power block assembly projected in the USSR. The power plant's own consumption will not exceed 12% and the availability will be approximately 50%. Compared with a conventional power generating unit of a capacity of 500 MW the projected unit will provide fuel savings of at least 23%. The project is based on almost seven years long experience with the U-25 experimental MHD facility. Similar to the U-25, the MHD power plant projected will be fired with natural gas. (B.S.)
MHD power plants - a reality of the 80's
Energy Technology Data Exchange (ETDEWEB)
Pishchikov, S
1981-02-01
A 300 MW MHD generator and a conventional turbogenerator of the same capacity will be used for the first MHD power block assembly projected in the USSR. The power plant's own consumption will not exceed 12% and the availability will be approximately 50%. Compared with a conventional power generating unit of a capacity of 500 MW the projected unit will provide fuel savings of at least 23%. The project is based on almost seven years long experience with the U-25 experimental MHD facility. Similar to the U-25, the MHD power plant projected will be fired with natural gas.
MHD instabilities in astrophysical plasmas: very different from MHD instabilities in tokamaks!
Goedbloed, J. P.
2018-01-01
The extensive studies of MHD instabilities in thermonuclear magnetic confinement experiments, in particular of the tokamak as the most promising candidate for a future energy producing machine, have led to an 'intuitive' description based on the energy principle that is very misleading for
Nonlinear MHD Waves in a Prominence Foot
Ofman, L.; Knizhnik, K.; Kucera, T.; Schmieder, B.
2015-11-01
We study nonlinear waves in a prominence foot using a 2.5D MHD model motivated by recent high-resolution observations with Hinode/Solar Optical Telescope in Ca ii emission of a prominence on 2012 October 10 showing highly dynamic small-scale motions in the prominence material. Observations of Hα intensities and of Doppler shifts show similar propagating fluctuations. However, the optically thick nature of the emission lines inhibits a unique quantitative interpretation in terms of density. Nevertheless, we find evidence of nonlinear wave activity in the prominence foot by examining the relative magnitude of the fluctuation intensity (δI/I ˜ δn/n). The waves are evident as significant density fluctuations that vary with height and apparently travel upward from the chromosphere into the prominence material with quasi-periodic fluctuations with a typical period in the range of 5-11 minutes and wavelengths <2000 km. Recent Doppler shift observations show the transverse displacement of the propagating waves. The magnetic field was measured with the THEMIS instrument and was found to be 5-14 G. For the typical prominence density the corresponding fast magnetosonic speed is ˜20 km s-1, in qualitative agreement with the propagation speed of the detected waves. The 2.5D MHD numerical model is constrained with the typical parameters of the prominence waves seen in observations. Our numerical results reproduce the nonlinear fast magnetosonic waves and provide strong support for the presence of these waves in the prominence foot. We also explore gravitational MHD oscillations of the heavy prominence foot material supported by dipped magnetic field structure.
MHD dynamo action in space plasmas
International Nuclear Information System (INIS)
Faelthammar, C.G.
1984-05-01
Electric currents are now recognized to play a major role in the physical process of the Earths magnetosphere as well as in distant astrophysical plasmas. In driving these currents MHD dynamos as well as generators of a thermoelectric nature are important. The primary source of power for the Earths magnetospheric process is the solar wind, which supplies a voltage of the order of 200 kV across the magnetosphere. The direction of the large-scale solar wind electric field varies of many different time scales. The power input to the magnetosphere is closely correlated with the direction of the large-scale solar wind electric field in such a fashion as to mimick the response of a half-wave rectifier with a down-to-dusk conduction direction. Behind this apparently simple response there are complex plasma physical processes that are still very incompletely understood. They are intimately related to auroras, magnetic storms, radiation belts and changes in magnetospheric plasma populations. Similar dynamo actions should occur at other planets having magnetospheres. Recent observations seem to indicate that part of the power input to the Earths magnetosphere comes through MHD dynamo action of a forced plasma flow inside the flanks of the magnetopause and may play a role in other parts of the magnetosphere, too. An example of a cosmical MHD connected to a solid load is the corotating plasma of Jupiters inner magnetosphere, sweeping past the plants inner satelites. In particular the electric currents thereby driven to and from the satellite Io have attracted considerable interest.(author)
NONLINEAR MHD WAVES IN A PROMINENCE FOOT
Energy Technology Data Exchange (ETDEWEB)
Ofman, L. [Catholic University of America, Washington, DC 20064 (United States); Knizhnik, K.; Kucera, T. [NASA Goddard Space Flight Center, Code 671, Greenbelt, MD 20771 (United States); Schmieder, B. [LESIA, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités, UPMC Univ. Paris 06, Univ. Paris-Diderot, Sorbonne Paris Cit, 5 place Jules Janssen, F-92195 Meudon (France)
2015-11-10
We study nonlinear waves in a prominence foot using a 2.5D MHD model motivated by recent high-resolution observations with Hinode/Solar Optical Telescope in Ca ii emission of a prominence on 2012 October 10 showing highly dynamic small-scale motions in the prominence material. Observations of Hα intensities and of Doppler shifts show similar propagating fluctuations. However, the optically thick nature of the emission lines inhibits a unique quantitative interpretation in terms of density. Nevertheless, we find evidence of nonlinear wave activity in the prominence foot by examining the relative magnitude of the fluctuation intensity (δI/I ∼ δn/n). The waves are evident as significant density fluctuations that vary with height and apparently travel upward from the chromosphere into the prominence material with quasi-periodic fluctuations with a typical period in the range of 5–11 minutes and wavelengths <2000 km. Recent Doppler shift observations show the transverse displacement of the propagating waves. The magnetic field was measured with the THEMIS instrument and was found to be 5–14 G. For the typical prominence density the corresponding fast magnetosonic speed is ∼20 km s{sup −1}, in qualitative agreement with the propagation speed of the detected waves. The 2.5D MHD numerical model is constrained with the typical parameters of the prominence waves seen in observations. Our numerical results reproduce the nonlinear fast magnetosonic waves and provide strong support for the presence of these waves in the prominence foot. We also explore gravitational MHD oscillations of the heavy prominence foot material supported by dipped magnetic field structure.
Annular MHD Physics for Turbojet Energy Bypass
Schneider, Steven J.
2011-01-01
The use of annular Hall type MHD generator/accelerator ducts for turbojet energy bypass is evaluated assuming weakly ionized flows obtained from pulsed nanosecond discharges. The equations for a 1-D, axisymmetric MHD generator/accelerator are derived and numerically integrated to determine the generator/accelerator performance characteristics. The concept offers a shockless means of interacting with high speed inlet flows and potentially offers variable inlet geometry performance without the complexity of moving parts simply by varying the generator loading parameter. The cycle analysis conducted iteratively with a spike inlet and turbojet flying at M = 7 at 30 km altitude is estimated to have a positive thrust per unit mass flow of 185 N-s/kg. The turbojet allowable combustor temperature is set at an aggressive 2200 deg K. The annular MHD Hall generator/accelerator is L = 3 m in length with a B(sub r) = 5 Tesla magnetic field and a conductivity of sigma = 5 mho/m for the generator and sigma= 1.0 mho/m for the accelerator. The calculated isentropic efficiency for the generator is eta(sub sg) = 84 percent at an enthalpy extraction ratio, eta(sub Ng) = 0.63. The calculated isentropic efficiency for the accelerator is eta(sub sa) = 81 percent at an enthalpy addition ratio, eta(sub Na) = 0.62. An assessment of the ionization fraction necessary to achieve a conductivity of sigma = 1.0 mho/m is n(sub e)/n = 1.90 X 10(exp -6), and for sigma = 5.0 mho/m is n(sub e)/n = 9.52 X 10(exp -6).
MHD simulations of molybdenum X-pinches
International Nuclear Information System (INIS)
Ivanenkov, G.V.; Stepnevski, V.
2002-01-01
One investigates into compression of molybdenum X-pinches applying numerical MHD-models with parabolic and conical initial geometry. The second model describing plasma axial motion in greater detail offers a real geometry of a discharge and is applicable to loads characterized by higher masses in contrast to the first one. Both models enabled to describe all basic phases of compression including origination of a minidiode, occurrence of a narrow neck, microexplosion of a hot point and origination of shock waves followed by sausage instability [ru
MHD oxidant intermediate temperature ceramic heater study
Carlson, A. W.; Chait, I. L.; Saari, D. P.; Marksberry, C. L.
1981-09-01
The use of three types of directly fired ceramic heaters for preheating oxygen enriched air to an intermediate temperature of 1144K was investigated. The three types of ceramic heaters are: (1) a fixed bed, periodic flow ceramic brick regenerative heater; (2) a ceramic pebble regenerative heater. The heater design, performance and operating characteristics under conditions in which the particulate matter is not solidified are evaluated. A comparison and overall evaluation of the three types of ceramic heaters and temperature range determination at which the particulate matter in the MHD exhaust gas is estimated to be a dry powder are presented.
MHD power conversion employing liquid metals
International Nuclear Information System (INIS)
Houben, J.W.M.A.; Massee, P.
1969-02-01
The work performed in the field of MHD generation of electricity by means of liquid metals is described. It is shown that the study of two-phase flows is essential in this topic of research; two-phase flows are therefore described. Two types of generators which can be utilized with liquid metals have been studied. The results of this study are described. A short survey of the prospects of other liquid metal systems which emerge from a study of the literature is given. Finally, conclusions are drawn concerning possibilities for further investigation
MHD equilibrium identification on ASDEX-Upgrade
International Nuclear Information System (INIS)
McCarthy, P.J.; Schneider, W.; Lakner, K.; Zehrfeld, H.P.; Buechl, K.; Gernhardt, J.; Gruber, O.; Kallenbach, A.; Lieder, G.; Wunderlich, R.
1992-01-01
A central activity accompanying the ASDEX-Upgrade experiment is the analysis of MHD equilibria. There are two different numerical methods available, both using magnetic measurements which reflect equilibrium states of the plasma. The first method proceeds via a function parameterization (FP) technique, which uses in-vessel magnetic measurements to calculate up to 66 equilibrium parameters. The second method applies an interpretative equilibrium code (DIVA) for a best fit to a different set of magnetic measurements. Cross-checks with the measured particle influxes from the inner heat shield and the divertor region and with visible camera images of the scrape-off layer are made. (author) 3 refs., 3 figs
International Nuclear Information System (INIS)
Huysmans, G.
1998-03-01
One of the aims of the JET, the Joint European Torus, project is to optimise the maximum fusion performance as measured by the neutron rate. At present, two different scenarios are developed at JET to achieve the high performance the so-called Hot-Ion H-mode scenario and the more recent development of the Optimised Shear scenario. Both scenarios have reached similar values of the neutron rate in Deuterium plasmas, up to 5 10 17 neutrons/second. Both scenarios are characterised by a transport barrier, i.e., a region in the plasma where the confinement is improved. The Hot-Ion H-mode has a transport barrier at the plasma boundary just inside the separatrix, an Optimised Shear plasma exhibits a transport barrier at about mid radius. Associated with the improved confinement of the transport barriers are locally large pressure gradients. It is these pressure gradients which, either directly or indirectly, can drive MHD instabilities. The instabilities limit the maximum performance. In the optimised shear scenario a global MHD instability leads to a disruptive end of the discharge. In the Hot-Ion H-mode plasmas, so-called Outer Modes can occur which are localised at the plasma boundary and lead to a saturation of the plasma performance. In this paper, two examples of the MHD instabilities are discussed and identified by comparing the experimentally observed modes with theoretical calculations from the ideal MHD code MISHKA-1. Also, the MHD stability boundaries of the two scenarios are presented. Section 3 contains a discussion of the mode observed just before the disruption
On nonlinear MHD-stability of toroidal magnetized plasma
International Nuclear Information System (INIS)
Ilgisonis, V.I.; Pastukhov, V.P.
1994-01-01
The variational approach to analyze the nonlinear MHD stability of ideal plasma in toroidal magnetic field is proposed. The potential energy functional to be used is expressed in terms of complete set of independent Lagrangian invariants, that allows to take strictly into account all the restrictions inherent in the varied functions due to MHD dynamic equations. (author). 3 refs
A hybrid LLR-MHD model of kink perturbations in EXTRAP
International Nuclear Information System (INIS)
Lehnert, B.
1987-07-01
In high-beta systems, such as Extrap and other Z-pinch configurations, kinetic large Larmor radius (LLR) phenomena introduce strong phase-mixing and dispersive effects and a corresponding 'kinetic damping' which cannot be treated in terms of MHD theory. In this paper a first attempt is made to include these effects by proposing a hybrid LLR-MHD model in which the kinetic phenomena enter as constraints on the possible forms of the plasma perturbations. The latter then become restricted to a limited class which can be treated in terms of MHD theory. The present model does not claim to produce stability conditions which are exact in all details, but should merely provide a picture of the general relationship between the basic plasma parameters in a state of marginal stability. For kink perturbations in Extrap stability relations have thus been obtained between the pinch and conductor currents, the pinch radius and the axial conductor distance, and the number of contained ion Larmor radii. These relations appear to be consistent with so far obtained experimental data. A short discussion on the effects of a superimposed axial magnetic field has been included. At this stage only experiments can verify whether or not the present simple model becomes relevant to Extrap stability. (author)
Ideal MHD stability and characteristics of edge localized modes on CFETR
Li, Ze-Yu; Chan, V. S.; Zhu, Yi-Ren; Jian, Xiang; Chen, Jia-Le; Cheng, Shi-Kui; Zhu, Ping; Xu, Xue-Qiao; Xia, Tian-Yang; Li, Guo-Qiang; Lao, L. L.; Snyder, P. B.; Wang, Xiao-Gang; the CFETR Physics Team
2018-01-01
Investigation on the equilibrium operation regime, its ideal magnetohydrodynamics (MHD) stability and edge localized modes (ELM) characteristics is performed for the China Fusion Engineering Test Reactor (CFETR). The CFETR operation regime study starts with a baseline scenario (R = 5.7 m, B T = 5 T) derived from multi-code integrated modeling, with key parameters {{β }N},{{β }T},{{β }p} varied to build a systematic database. These parameters, under profile and pedestal constraints, provide the foundation for the engineering design. The long wavelength low-n global ideal MHD stability of the CFETR baseline scenario, including the wall stabilization effect, is evaluated by GATO. It is found that the low-n core modes are stable with a wall at r/a = 1.2. An investigation of intermediate wavelength ideal MHD modes (peeling ballooning modes) is also carried out by multi-code benchmarking, including GATO, ELITE, BOUT++ and NIMROD. A good agreement is achieved in predicting edge-localized instabilities. Nonlinear behavior of ELMs for the baseline scenario is simulated using BOUT++. A mix of grassy and type I ELMs is identified. When the size and magnetic field of CFETR are increased (R = 6.6 m, B T = 6 T), collisionality correspondingly increases and the instability is expected to shift to grassy ELMs.
Algorithm and exploratory study of the Hall MHD Rayleigh-Taylor instability
International Nuclear Information System (INIS)
Gardiner, Thomas Anthony
2010-01-01
This report is concerned with the influence of the Hall term on the nonlinear evolution of the Rayleigh-Taylor (RT) instability. This begins with a review of the magnetohydrodynamic (MHD) equations including the Hall term and the wave modes which are present in the system on time scales short enough that the plasma can be approximated as being stationary. In this limit one obtains what are known as the electron MHD (EMHD) equations which support two characteristic wave modes known as the whistler and Hall drift modes. Each of these modes is considered in some detail in order to draw attention to their key features. This analysis also serves to provide a background for testing the numerical algorithms used in this work. The numerical methods are briefly described and the EMHD solver is then tested for the evolution of whistler and Hall drift modes. These methods are then applied to study the nonlinear evolution of the MHD RT instability with and without the Hall term for two different configurations. The influence of the Hall term on the mixing and bubble growth rate are analyzed.
Technical support for open-cycle MHD program
Energy Technology Data Exchange (ETDEWEB)
None
1978-05-01
The support program for open-cycle MHD at Argonne National Lab is developing the analytical tools needed to investigate the performance of the major components in the combined-cycle MHD/steam power system. The analytical effort is centered on the primary components of the system that are unique to MHD and also on the integration of these analytical representations into a model of the entire power producing system. The present project activities include modeling of the combustor, MHD channel, slag separator, and the high-temperature air preheater. In addition, these models are combined into a complete system model, which is at present capable of carrying out optimizations of the entire system on either thermodynamic efficiency or with less confidence, cost of electrical power. Also, in support of the open-cycle program, considerable effort has gone into the formulation of a CDIF Test Plan and a National MHD Test Program.
Priority pollutant analysis of MHD-derived combustion products
Parks, Katherine D.
An important factor in developing Magnetohydrodynamics (MHD) for commercial applications is environmental impact. Consequently, an effort was initiated to identify and quantify any possible undesirable minute chemical constituents in MHD waste streams, with special emphasis on the priority pollutant species. This paper discusses how priority pollutant analyses were used to accomplish the following goals at the University of Tennessee Space Institute (UTSI): comparison of the composition of solid combustion products collected from various locations along a prototypical MHD flow train during the firing of Illinois No. 6 and Montana Rosebud coals; comparison of solid waste products generated from MHD and conventional power plant technologies; and identification of a suitable disposal option for various MHD derived combustion products. Results from our ongoing research plans for gas phase sampling and analysis of priority pollutant volatiles, semi-volatiles, and metals are discussed.
Preliminary results of MHD stability in HL-1 tokamak
International Nuclear Information System (INIS)
Zheng Yongzhen; Ma Tengcai; Xiao Zhenggui Cai Renfang
1987-01-01
In this paper, MHD activities of HL-1 tokamak plasma are studied with Fourier transform and correlatio analysis. The poloidal modes m = 1, 2, 3,4 and toroidal modes n of MHD magnetic fluctuation signals are detected. Methods for suppressing MHD instabilities are suggested and tested, after MHD instabilities are studied in HL-1. The effects of MHD characteristics in the beginning stage of discharge on the whole process of discharge are analyzed. The disruption, in HL-1 device could be divided into three kinds: internal disruption, minor disruption and major disruption. The result shows that HL-1 will have a better operation condition if internal disruption appears. In is end, the stable operation region of HL-1 tokamak is also given
Energy Technology Data Exchange (ETDEWEB)
NONE
1970-07-01
Compiled are the results of studies conducted in fiscal 1970 on MHD (magnetohydrodynamic) power generation. In the operation test and modification of the 1000kW-class MHD power generator, modification is carried out involving the combustion system, seed collecting method, and power generation channel, and reviews through experiments are conducted about the analysis and control of the boundary layer structure. In the operation test of the MHD power generator designed for prolonged operation, a test operation for resistance to heat and seeds continues more than 100 hours using a cold wall type power generation channel constituted of water cooled ceramics, and the ceramics are analyzed for failure and loss. Studies are also conducted involving MHD power generator heat exchangers, seed collecting methods, electrode materials for MHD power generators, heat-resistant materials for MHD power generators, thermal performance rating for MHD power plants, etc. In the research and development of superconductive electromagnets, superconductive electromagnets are developed and tested for 1000kW-class MHD power generators, and studies are conducted on turbine type helium liquefiers, superinsulated superconductive electromagnetic field generators, etc. (NEDO)
MHD simulations on an unstructured mesh
International Nuclear Information System (INIS)
Strauss, H.R.; Park, W.
1996-01-01
We describe work on a full MHD code using an unstructured mesh. MH3D++ is an extension of the PPPL MH3D resistive full MHD code. MH3D++ replaces the structured mesh and finite difference / fourier discretization of MH3D with an unstructured mesh and finite element / fourier discretization. Low level routines which perform differential operations, solution of PDEs such as Poisson's equation, and graphics, are encapsulated in C++ objects to isolate the finite element operations from the higher level code. The high level code is the same, whether it is run in structured or unstructured mesh versions. This allows the unstructured mesh version to be benchmarked against the structured mesh version. As a preliminary example, disruptions in DIIID reverse shear equilibria are studied numerically with the MH3D++ code. Numerical equilibria were first produced starting with an EQDSK file containing equilibrium data of a DIII-D L-mode negative central shear discharge. Using these equilibria, the linearized equations are time advanced to get the toroidal mode number n = 1 linear growth rate and eigenmode, which is resistively unstable. The equilibrium and linear mode are used to initialize 3D nonlinear runs. An example shows poloidal slices of 3D pressure surfaces: initially, on the left, and at an intermediate time, on the right
Resistive MHD studies of TFTR discharges
International Nuclear Information System (INIS)
Hughes, M.H.; Phillips, M.W.; Sabbagh, S.A.; Budny, R.V.
1991-01-01
MHD instabilities, thought to be resistive in character, are frequently observed in the supershot operating regime of TFTR (var-epsilon β p ≤ 0.7). These instabilities are always accompanied by substantial degradation of the confinement. Similarly of interest are recent experiments at much larger β p (var-epsilon β p ≤ 1.6), achieved through ramping the current during the beam heating phase of the discharge. In this latter regime the confinement can exceed three times the corresponding L-mode value and the β value normalized to I/aB can be as large as 4.7. Representative discharges from each of these operating regimes have been analyzed using a linear resistive MHD stability code with equilibrium pressure and q profiles obtained initially from the TRANSP analysis code. The main difference between the two types of discharge, as far as stability is concerned is shown to be the shape of the current density profile. The sensitivity to the assumed parameters is discussed. 1 ref
A civil engineering approach to ideal MHD
International Nuclear Information System (INIS)
Jensen, V.O.
1992-01-01
It is well known that a magnetic field can be conceived as a medium where an isotropic compressive stress, B 2 /2μ 0 , is superimposed on a tensile stress, B 2 /μ 0 , parallel to the lines of force. When a stationary ideal MHD plasma is present in the magnetic field, the particle pressure adds to the magnetic stresses to form a combined stress tensor. Calculations of plasma equilibria based on this concept are very similar to calculations in civil engineering of static structures based on compressive, tensile, and shear stresses. Therefore the very simple physical pictures known from civil engineering when used in plasma physics provide simple physical understanding and facilitate the physical interpretation of the results. In an earlier paper the concept was used to derive and discuss the equilibrium equations for θ-, Z-, and screw pinches and the Grad-Shafranov shift in a tokamak plasma with circular cross sections of the flux surfaces. Here the concept is used to discuss the virial theorem and to obtain a simple physical interpretation of this theorem. We also reconsider the Grad-Shafranov shift in a tokamak plasma and show that a situation where all flux surfaces have circular cross sections cannot be an exact solution to the ideal MHD equations. (author) 3 refs., 3 figs
MHD Flow Towards a Permeable Surface with Prescribed Wall Heat Flux
International Nuclear Information System (INIS)
Ishak, Anuar; Nazar, Roslinda; Pop, Ioan
2009-01-01
The steady magnetohydrodynamic (MHD) mixed convection flow towards a vertical permeable surface with prescribed heat flux is investigated. The governing partial differential equations are transformed into a system of ordinary differential equations, which is then solved numerically by a finite-difference method. The features of the flow and heat transfer characteristics for different values of the governing parameters are analysed and discussed. Both assisting and opposing flows are considered. It is found that dual solutions exist for the assisting flow, besides the solutions usually reported in the literature for the opposing fow
MHD stability limits in the TCV Tokamak
International Nuclear Information System (INIS)
Reimerdes, H.
2001-07-01
Magnetohydrodynamic (MHD) instabilities can limit the performance and degrade the confinement of tokamak plasmas. The Tokamak a Configuration Variable (TCV), unique for its capability to produce a variety of poloidal plasma shapes, has been used to analyse various instabilities and compare their behaviour with theoretical predictions. These instabilities are perturbations of the magnetic field, which usually extend to the plasma edge where they can be detected with magnetic pick-up coils as magnetic fluctuations. A spatially dense set of magnetic probes, installed inside the TCV vacuum vessel, allows for a fast observation of these fluctuations. The structure and temporal evolution of coherent modes is extracted using several numerical methods. In addition to the setup of the magnetic diagnostic and the implementation of analysis methods, the subject matter of this thesis focuses on four instabilities, which impose local and global stability limits. All of these instabilities are relevant for the operation of a fusion reactor and a profound understanding of their behaviour is required in order to optimise the performance of such a reactor. Sawteeth, which are central relaxation oscillations common to most standard tokamak scenarios, have a significant effect on central plasma parameters. In TCV, systematic scans of the plasma shape have revealed a strong dependence of their behaviour on elongation κ and triangularity δ, with high κ, and low δ leading to shorter sawteeth with smaller crashes. This shape dependence is increased by applying central electron cyclotron heating. The response to additional heating power is determined by the role of ideal or resistive MHD in triggering the sawtooth crash. For plasma shapes where additional heating and consequently, a faster increase of the central pressure shortens the sawteeth, the low experimental limit of the pressure gradient within the q = 1 surface is consistent with ideal MHD predictions. The observed decrease
Sheikholeslami, M.; Li, Zhixiong; Shamlooei, M.
2018-06-01
Control volume based finite element method (CVFEM) is applied to simulate H2O based nanofluid radiative and convective heat transfer inside a porous medium. Non-Darcy model is employed for porous media. Influences of Hartmann number, nanofluid volume fraction, radiation parameter, Darcy number, number of undulations and Rayleigh number on nanofluid behavior were demonstrated. Thermal conductivity of nanofluid is estimated by means of previous experimental correlation. Results show that Nusselt number enhances with augment of permeability of porous media. Effect of Hartmann number on rate of heat transfer is opposite of radiation parameter.
MHD generator performance analysis for the Advanced Power Train study
Pian, C. C. P.; Hals, F. A.
1984-01-01
Comparative analyses of different MHD power train designs for early commercial MHD power plants were performed for plant sizes of 200, 500, and 1000 MWe. The work was conducted as part of the first phase of a planned three-phase program to formulate an MHD Advanced Power Train development program. This paper presents the results of the MHD generator design and part-load analyses. All of the MHD generator designs were based on burning of coal with oxygen-enriched air preheated to 1200 F. Sensitivities of the MHD generator design performance to variations in power plant size, coal type, oxygen enrichment level, combustor heat loss, channel length, and Mach number were investigated. Basd on these sensitivity analyses, together with the overall plant performance and cost-of-electricity analyses, as well as reliability and maintenance considerations, a recommended MHD generator design was selected for each of the three power plants. The generators for the 200 MWe and 500 MWe power plant sizes are supersonic designs. A subsonic generator design was selected for the 1000 MWe plant. Off-design analyses of part-load operation of the supersonic channel selected for the 200 MWe power plant were also conductd. The results showed that a relatively high overall net plant efficiency can be maintained during part-laod operation with a supersonic generator design.
GRADSPMHD: A parallel MHD code based on the SPH formalism
Vanaverbeke, S.; Keppens, R.; Poedts, S.
2014-03-01
We present GRADSPMHD, a completely Lagrangian parallel magnetohydrodynamics code based on the SPH formalism. The implementation of the equations of SPMHD in the “GRAD-h” formalism assembles known results, including the derivation of the discretized MHD equations from a variational principle, the inclusion of time-dependent artificial viscosity, resistivity and conductivity terms, as well as the inclusion of a mixed hyperbolic/parabolic correction scheme for satisfying the ∇ṡB→ constraint on the magnetic field. The code uses a tree-based formalism for neighbor finding and can optionally use the tree code for computing the self-gravity of the plasma. The structure of the code closely follows the framework of our parallel GRADSPH FORTRAN 90 code which we added previously to the CPC program library. We demonstrate the capabilities of GRADSPMHD by running 1, 2, and 3 dimensional standard benchmark tests and we find good agreement with previous work done by other researchers. The code is also applied to the problem of simulating the magnetorotational instability in 2.5D shearing box tests as well as in global simulations of magnetized accretion disks. We find good agreement with available results on this subject in the literature. Finally, we discuss the performance of the code on a parallel supercomputer with distributed memory architecture. Catalogue identifier: AERP_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AERP_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 620503 No. of bytes in distributed program, including test data, etc.: 19837671 Distribution format: tar.gz Programming language: FORTRAN 90/MPI. Computer: HPC cluster. Operating system: Unix. Has the code been vectorized or parallelized?: Yes, parallelized using MPI. RAM: ˜30 MB for a
Energy Technology Data Exchange (ETDEWEB)
None
1979-01-01
Progress is reported on the following tasks: characterization of coal for open-cycle MHD power generation systems; compressive creep and strength studies of MHD preheater materials; preparation of coals for utilization in direct coal-fired MHD generation; characterization of volatile matter in coal; MHD materials evaluation; operability of the Moderate Temperature Slag Flow Facility; slag-seed equilibria and separations related to the MHD system; thermionic emission of coal and electrode materials; MHD instrumentation, consolidated inversion simulator, and data acquisition; combined MHD-steam plant cycle analysis and control; and slag physical properties - electrical and thermal conductivity. (WHK)
Mechanism of power generation - the MHD way
International Nuclear Information System (INIS)
Rangachari, S.; Ramash, V.R.; Subramanian, C.K.
1975-01-01
The basic physical principles of magnetohydrodynamics and the application of this principle for power generation (direct energy conversion) are explained. A magnetohydrodynamic generator (MHDG) is described both in the Faraday and Hall modes. The advantages of the Faraday mode and the Hall mode for different geometries of the generator are mentioned. The conductor used is a fluid - an ionised gas (plasma) or a liquid metal at high temperature. The difficulties in maintaining high temperature and high velocity for the gas and very low temperature at the same time side by side for superconducting magnets to produce a strong magnetic field, are pointed out. The most commonly used gas is purified air. The advantages of MHD generators and the present power crisis have compelled further research in this field in spite of the high costs involved. (A.K.)
Measured MHD equilibrium in Alcator C
International Nuclear Information System (INIS)
Pribyl, P.A.
1986-03-01
A method of processing data from a set of partial Rogowski loops is developed to study the MHD equilibrium in Alcator C. Time dependent poloidal fields in the vicinity of the plasma are calculated from measured currents, with field penetration effects being accounted for. Fields from eddy currents induced by the plasma in the tokamak structure are estimated as well. Each of the set of twelve B/sub θ/ measurements can then be separated into a component from the plasma current and a component from currents external to the pickup loops. Harmonic solutions to Maxwell's equations in toroidal coordinates are fit to these measurements in order to infer the fields everywhere in the vacuum region surrounding the plasma. Using this diagnostic, plasma current, position, shape, and the Shafranov term Λ = β/sub p/ + l/sub i//2 - 1 may be computed, and systematic studies of these plasma parameters are undertaken for Alcator C plasmas
Ideal MHD properties for proposed noncircular tokamaks
International Nuclear Information System (INIS)
Helton, F.J.; Greene, J.M.
1986-01-01
We obtain Double Dee, TFXC-C, Big Dee, and JET equlibria which are optimized with respect to both shape and current profile for stability to ideal MHD modes. With a wall reasonably far from the plasma surface we find that the external kink constrains q 1 to be above two, where q 1 is the plasma surface value of the safety factor, and the ballooning mode limits the value of β. Then a relevant stable β value for the Double Dee reactor design is over 7%. Such a Double Dee equilibrium is not in a separated second stability region and thus does not have a problem with accessibility. A relevant stable β value for the TFCX-C reactor design is over 6%. Equivalent relevant stable β values for the Big Dee (17%) and JET (7%) are included for calibration purposes. We compare these relevant stable β values with the β's determined by two recent scaling laws
MHD simulation of the Bastille day event
Energy Technology Data Exchange (ETDEWEB)
Linker, Jon, E-mail: linkerj@predsci.com; Torok, Tibor; Downs, Cooper; Lionello, Roberto; Titov, Viacheslav; Caplan, Ronald M.; Mikić, Zoran; Riley, Pete [Predictive Science Inc., 9990 Mesa Rim Road, Suite 170, San Diego CA, USA 92121 (United States)
2016-03-25
We describe a time-dependent, thermodynamic, three-dimensional MHD simulation of the July 14, 2000 coronal mass ejection (CME) and flare. The simulation starts with a background corona developed using an MDI-derived magnetic map for the boundary condition. Flux ropes using the modified Titov-Demoulin (TDm) model are used to energize the pre-event active region, which is then destabilized by photospheric flows that cancel flux near the polarity inversion line. More than 10{sup 33} ergs are impulsively released in the simulated eruption, driving a CME at 1500 km/s, close to the observed speed of 1700km/s. The post-flare emission in the simulation is morphologically similar to the observed post-flare loops. The resulting flux rope that propagates to 1 AU is similar in character to the flux rope observed at 1 AU, but the simulated ICME center passes 15° north of Earth.
Magnetic stresses in ideal MHD plasmas
DEFF Research Database (Denmark)
Jensen, V.O.
1995-01-01
The concept of magnetic stresses in ideal MHD plasma theory is reviewed and revisited with the aim of demonstrating its advantages as a basis for calculating and understanding plasma equilibria. Expressions are derived for the various stresses that transmit forces in a magnetized plasma...... and it is shown that the resulting magnetic forces on a finite volume element can be obtained by integrating the magnetic stresses over the surface of the element. The concept is used to rederive and discuss the equilibrium conditions for axisymmetric toroidal plasmas, including the virial theorem...... and the Shafranov shift. The method had pedagogical merits as it simplifies the calculations, improves the physical understanding and facilitates an assessment of the approximations made in the calculations....
3-D nonlinear evolution of MHD instabilities
International Nuclear Information System (INIS)
Bateman, G.; Hicks, H.R.; Wooten, J.W.
1977-03-01
The nonlinear evolution of ideal MHD internal instabilities is investigated in straight cylindrical geometry by means of a 3-D initial-value computer code. These instabilities are characterized by pairs of velocity vortex cells rolling off each other and helically twisted down the plasma column. The cells persist until the poloidal velocity saturates at a few tenths of the Alfven velocity. The nonlinear phase is characterized by convection around these essentially fixed vortex cells. For example, the initially centrally peaked temperature profile is convected out and around to form an annulus of high temperature surrounding a small region of lower temperature. Weak, centrally localized instabilities do not alter the edge of the plasma. Strong, large-scale instabilities, resulting from a stronger longitudinal equilibrium current, drive the plasma against the wall. After three examples of instability are analyzed in detail, the numerical methods and their verification are discussed
The Biermann catastrophe of numerical MHD
Graziani, C.; Tzeferacos, P.; Lee, D.; Lamb, D. Q.; Weide, K.; Fatenejad, M.; Miller, J.
2016-05-01
The Biermann Battery effect is frequently invoked in cosmic magnetogenesis and studied in High-Energy Density laboratory physics experiments. Unfortunately, direct implementation of the Biermann effect in MHD codes is known to produce unphysical magnetic fields at shocks whose value does not converge with resolution. We show that this convergence breakdown is due to naive discretization, which fails to account for the fact that discretized irrotational vector fields have spurious solenoidal components that grow without bound near a discontinuity. We show that careful consideration of the kinetics of ion viscous shocks leads to a formulation of the Biermann effect that gives rise to a convergent algorithm. We note a novel physical effect a resistive magnetic precursor in which Biermann-generated field in the shock “leaks” resistively upstream. The effect appears to be potentially observable in experiments at laser facilities.
Nonlinear MHD analysis for LHD plasmas
International Nuclear Information System (INIS)
Ichiguchi, K.; Nakajima, N.; Wakatani, M.; Carreras, B.A.
2003-01-01
The nonlinear behavior of the interchange modes with multi-helicity in the Large Helical Device is analyzed based on the reduced MHD equations. In the equilibrium at sufficiently low beta value, the saturation of a single mode and the following excitation of other single mode whose resonant surface is close to that of the saturated mode are slowly repeated. This sequence leads to the local deformation of the pressure profile. Increasing the beta value with the pressure profile fixed, a bursting phenomenon due to the overlap of multiple modes is observed in the kinetic energy, which results in the global reduction of the pressure profile. Increasing the beta value using the pressure profile saturated at the lower beta value suppresses the bursting behavior. This result indicates the possibility that the pressure profile is self-organized so that the LHD plasma should attain the high beta regime through a stable path. (author)
Averaged description of 3D MHD equilibrium
International Nuclear Information System (INIS)
Medvedev, S.Yu.; Drozdov, V.V.; Ivanov, A.A.; Martynov, A.A.; Pashekhonov, Yu.Yu.; Mikhailov, M.I.
2001-01-01
A general approach by S.A.Galkin et al. in 1991 to 2D description of MHD equilibrium and stability in 3D systems was proposed. The method requires a background 3D equilibrium with nested flux surfaces to generate the metric of a Riemannian space in which the background equilibrium is described by the 2D equation of Grad-Shafranov type. The equation can be solved then varying plasma profiles and shape to get approximate 3D equilibria. In the framework of the method both planar axis conventional stellarators and configurations with spatial magnetic axis can be studied. In the present report the formulation and numerical realization of the equilibrium problem for stellarators with planar axis is reviewed. The input background equilibria with nested flux surfaces are taken from vacuum magnetic field approximately described by analytic scalar potential
Two dimensional MHD flows between porous boundaries
International Nuclear Information System (INIS)
Gratton, F.T.
1994-01-01
Similarity solutions of dissipative MHD equations representing conducting fluids injected through porous walls and flowing out in both directions from the center of the channel, are studied as a function of four non dimensional parameters, Reynolds number R e , magnetic Reynolds number R m , Alfvenic Mach number, M A , and pressure gradient coefficient, C. The effluence is restrained by an external magnetic field normal to the walls. When R m m >>1, the solution may model a collision of plasmas of astrophysical interest. In this case the magnetic field lines help to drive the outflow acting jointly with the pressure gradient. The law for C as a function of the other parameters is given for several asymptotic limits. (author). 3 refs, 6 figs
The Stellar IMF from Isothermal MHD Turbulence
Haugbølle, Troels; Padoan, Paolo; Nordlund, Åke
2018-02-01
We address the turbulent fragmentation scenario for the origin of the stellar initial mass function (IMF), using a large set of numerical simulations of randomly driven supersonic MHD turbulence. The turbulent fragmentation model successfully predicts the main features of the observed stellar IMF assuming an isothermal equation of state without any stellar feedback. As a test of the model, we focus on the case of a magnetized isothermal gas, neglecting stellar feedback, while pursuing a large dynamic range in both space and timescales covering the full spectrum of stellar masses from brown dwarfs to massive stars. Our simulations represent a generic 4 pc region within a typical Galactic molecular cloud, with a mass of 3000 M ⊙ and an rms velocity 10 times the isothermal sound speed and 5 times the average Alfvén velocity, in agreement with observations. We achieve a maximum resolution of 50 au and a maximum duration of star formation of 4.0 Myr, forming up to a thousand sink particles whose mass distribution closely matches the observed stellar IMF. A large set of medium-size simulations is used to test the sink particle algorithm, while larger simulations are used to test the numerical convergence of the IMF and the dependence of the IMF turnover on physical parameters predicted by the turbulent fragmentation model. We find a clear trend toward numerical convergence and strong support for the model predictions, including the initial time evolution of the IMF. We conclude that the physics of isothermal MHD turbulence is sufficient to explain the origin of the IMF.
Resonant MHD modes with toroidal coupling
International Nuclear Information System (INIS)
Connor, J.W.; Hastie, R.J.; Taylor, J.B.
1990-07-01
This is part 2 of a study of resonant perturbations, such as resistive tearing and ballooning modes, in a torus. These are described by marginal ideal mhd equations in the regions between resonant surfaces; matching across these surfaces provides the dispersion relation. In part 1 we described how all the necessary information from the ideal mhd calculations could be represented by a so-called E-matrix. We also described the calculation of this E-matrix for tearing modes (even parity in perturbed magnetic field) in a large aspect ratio torus. There the toroidal modes comprise coupled cylinder tearing modes and the E-matrix is a generalization of the familiar Δ' quantity in a cylinder. In the present paper we discuss resistive ballooning, or twisting-modes, which have odd-parity in perturbed magnetic field. We show that, unlike the tearing modes, these odd-parity modes are instrinsically toroidal and are not directly related to the odd-parity modes in a cylinder. This is evident from the analysis of the high-n limit in ballooning-space, where a transition from a stable Δ' to an unstable Δ' occurs for the twisting mode when the ballooning effect exceeds the interchange effect, which can occur even at large aspect ratio (as in a tokamak). Analysis of the high-n limit in coordinate space, rather than ballooning space, clarifies this singular behaviour and indicates how one may define twisting-mode Δ'. It also yields a prescription for treating low-n twisting modes and a method for calculating an E-matrix for resistive ballooning modes in a large aspect ratio tokamak. The elements of this matrix are given in terms of cylindrical tearing mode solutions
Energy Technology Data Exchange (ETDEWEB)
NONE
1969-07-01
Compiled are the results of studies conducted in fiscal 1969 on MHD (magnetohydrodynamic) power generation. In the operation test and modification of the 1,000kW-class MHD power generator, the operation test continues from the preceding fiscal year using high-temperature air as oxidant, and the growth of boundary layer in the channel is determined. In the operation test of the MHD power generator designed for prolonged operation, insulation walls, electrode materials, and structures capable of prolonged operation are developed and tested. In the research of MHD power generator heat exchangers, studies are made about the bulkhead type and heat accumulator types (stationary type, rotary type, and falling-grain type). In addition, studies are conducted about seed collecting methods, MHD power generator electrode materials, heat-resisting insulators, and thermal performance rating. In the research and development of superconductive electromagnets, studies are conducted about superconductive electromagnets for 1kW MHD power generators, ferromagnetic superconductive electromagnets for 1,000kW-class MHD power generators, 45-kilogauss col type superconductive electromagnets, turbine type helium liquefier, high current density col type superconductive electromagnets, superinsulated magnetic field generators, etc. (NEDO)
MHD stability limits in the TCV Tokamak
Energy Technology Data Exchange (ETDEWEB)
Reimerdes, H. [Ecole Polytechnique Federale de Lausanne, Centre de Recherches en Physique des Plasmas (CRPP), CH-1015 Lausanne (Switzerland)
2001-07-01
Magnetohydrodynamic (MHD) instabilities can limit the performance and degrade the confinement of tokamak plasmas. The Tokamak a Configuration Variable (TCV), unique for its capability to produce a variety of poloidal plasma shapes, has been used to analyse various instabilities and compare their behaviour with theoretical predictions. These instabilities are perturbations of the magnetic field, which usually extend to the plasma edge where they can be detected with magnetic pick-up coils as magnetic fluctuations. A spatially dense set of magnetic probes, installed inside the TCV vacuum vessel, allows for a fast observation of these fluctuations. The structure and temporal evolution of coherent modes is extracted using several numerical methods. In addition to the setup of the magnetic diagnostic and the implementation of analysis methods, the subject matter of this thesis focuses on four instabilities, which impose local and global stability limits. All of these instabilities are relevant for the operation of a fusion reactor and a profound understanding of their behaviour is required in order to optimise the performance of such a reactor. Sawteeth, which are central relaxation oscillations common to most standard tokamak scenarios, have a significant effect on central plasma parameters. In TCV, systematic scans of the plasma shape have revealed a strong dependence of their behaviour on elongation {kappa} and triangularity {delta}, with high {kappa}, and low {delta} leading to shorter sawteeth with smaller crashes. This shape dependence is increased by applying central electron cyclotron heating. The response to additional heating power is determined by the role of ideal or resistive MHD in triggering the sawtooth crash. For plasma shapes where additional heating and consequently, a faster increase of the central pressure shortens the sawteeth, the low experimental limit of the pressure gradient within the q = 1 surface is consistent with ideal MHD predictions. The
Alpha-Driven MHD and MHD-Induced Alpha Loss in TFTR DT Experiments
Chang, Zuoyang
1996-11-01
Theoretical calculation and numerical simulation indicate that there can be interesting interactions between alpha particles and MHD activity which can adversely affect the performance of a tokamak reactor (e.g., ITER). These interactions include alpha-driven MHD, like the toroidicity-induced-Alfven-eigenmode (TAE) and MHD induced alpha particle losses or redistribution. Both phenomena have been observed in recent TFTR DT experiments. Weak alpha-driven TAE activity was observed in a NBI-heated DT experiment characterized by high q0 ( >= 2) and low core magnetic shear. The TAE mode appears at ~30-100 ms after the neutral beam turning off approximately as predicted by theory. The mode has an amplitude measured by magnetic coils at the edge tildeB_p ~1 mG, frequency ~150-190 kHz and toroidal mode number ~2-3. It lasts only ~ 30-70 ms and has been seen only in DT discharges with fusion power level about 1.5-2.0 MW. Numerical calculation using NOVA-K code shows that this type of plasma has a big TAE gap. The calculated TAE frequency and mode number are close to the observation. (2) KBM-induced alpha particle loss^1. In some high-β, high fusion power DT experiments, enhanced alpha particle losses were observed to be correlated to the high frequency MHD modes with f ~100-200 kHz (the TAE frequency would be two-times higher) and n ~5-10. These modes are localized around the peak plasma pressure gradient and have ballooning characteristics. Alpha loss increases by 30-100% during the modes. Particle orbit simulations show the added loss results from wave-particle resonance. Linear instability analysis indicates that the plasma is unstable to the kinetic MHD ballooning modes (KBM) driven primarily by strong local pressure gradients. ----------------- ^1Z. Chang, et al, Phys. Rev. Lett. 76 (1996) 1071. In collaberation with R. Nazikian, G.-Y. Fu, S. Batha, R. Budny, L. Chen, D. Darrow, E. Fredrickson, R. Majeski, D. Mansfield, K. McGuire, G. Rewoldt, G. Taylor, R. White, K
Energy Technology Data Exchange (ETDEWEB)
NONE
1990-07-01
Experimental disk MHD facilities are predesigned, and commercial-scale (1,000 MWt) MHD/steam systems are investigated. The predesigns of the disk MHD facilities indicate that enthalpy extraction is 8.7% for a 10 MWt open cycle MHD generator, and increases to 37% for a 5 MWt closed cycle MHD generator. Commercial (1,000 MWt) MHD/steam systems are studied for 4 types. Of these types, the open cycle disk MHD generator shows the lowest efficiency of 42.8%, while the closed cycle disk MHD generator the highest efficiency of 50.0%. The open cycle linear generator, although showing an efficiency of 49.4%, may be the lowest-cost type, when the necessary heat source, heat exchangers and the like are taken into consideration. For the design of superconducting magnet, it is necessary to further investigate whether the one for the test facility is applicable to the commercial systems. (NEDO)
Conversion software for ANSYS APDL 2 FLUENT MHD magnetic file
International Nuclear Information System (INIS)
Ghita, G.; Ionescu, S.; Prisecaru, I.
2016-01-01
The present paper describes the improvements made to the conversion software for ANSYS APDL 2 FLUENT MHD Magnetic File which is able to extract the data from ANSYS APDL file and write down a file containing the magnetic field data in FLUENT magneto hydro dynamics (MHD) format. The MHD module has some features for the uniform and non uniform magnetic field but it is limited for sinusoidal or pulsed, square wave, having a fixed duty cycle of 50%. The present software, ANSYS APDL 2 FLUENT MHD Magnetic File, suffered major modifications in comparison with the last one. The most important improvement consists in a new graphical interface, which has 3D graphical interface for the input file but also for the output file. Another improvement has been made for processing time, the new version is two times faster comparing with the old one. (authors)
Numerical Simulation of 3D Viscous MHD Flows
National Research Council Canada - National Science Library
Golovachov, Yurii P; Kurakin, Yurii A; Schmidt, Alexander A; Van Wie, David M
2003-01-01
.... Flows in hypersonic intakes are considered. Preliminary results showed that local MHD interaction in the inlet part of the intake model was the most effective for control over plasma flow field...
Diagnostic development and support of MHD (magnetohydrodynamics) test facilities
Energy Technology Data Exchange (ETDEWEB)
1989-07-01
Mississippi State University (MSU) is developing diagnostic instruments for Magnetohydrodynamics (MHD) power train data acquisition and for support of MHD component development test facilities. Microprocessor-controlled optical instruments, initially developed for HRSR support, are being refined, and new systems to measure temperatures and gas-seed-slag stream characteristics are being developed. To further data acquisition and analysis capabilities, the diagnostic systems are being interfaced with MHD Energy Center computers. Technical support for the diagnostic needs of the national MHD research effort is being provided. MSU personnel will also cooperate with government agencies and private industries to improve the transformation of research and development results into processes, products and services applicable to their needs.
Formation, structure, and stability of MHD intermediate shocks
International Nuclear Information System (INIS)
Wu, C.C.
1990-01-01
Contrary to the usual belief that MHD intermediate shocks are extraneous, the author has recently shown by numerical solutions of dissipative MHD equations that intermediate shocks are admissible and can be formed through nonlinear wave steepening from continuous waves. In this paper, the formation, structure and stability of intermediate shocks in dissipative MHD are considered in detail. The differences between the conventional theory and his are pointed out and clarified. He shows that all four types of intermediate shocks can be formed from smooth waves. He also shows that there are free parameters in the structure of the intermediate shocks, and that these parameters are related to the shock stability. In addition, he shows that a rotational discontinuity can not exist with finite width, indicate how this is related to the existence of time-dependent intermediate shocks, and show why the conventional theory is not a good approximation to dissipative MHD solutions whenever there is rotation in magnetic field
Unsteady MHD free convective flow past a vertical porous plate ...
African Journals Online (AJOL)
user
International Journal of Engineering, Science and Technology .... dimensional MHD boundary layer on the body with time varying temperature. ... flow of an electrically conducting fluid past an infinite vertical porous flat plate coinciding with.
Generalized similarity method in unsteady two-dimensional MHD ...
African Journals Online (AJOL)
user
International Journal of Engineering, Science and Technology. Vol. 1, No. 1, 2009 ... temperature two-dimensional MHD laminar boundary layer of incompressible fluid. ...... Φ η is Blasius solution for stationary boundary layer on the plate,. ( ). 0.
Combined effects of radiation and chemical reaction on MHD flow ...
African Journals Online (AJOL)
(2016) have studied unsteady MHD flow in porous media over exponentially accelerated plate ... boundary layer flow of heat and mass transfer over a moving vertical plate with suction. ... flow considering free convection over a porous plate.
Electrode materials for an open-cycle MHD generator channel
International Nuclear Information System (INIS)
Telegin, G.P.; Romanov, A.I.; Akopov, F.A.; Gokhshtejn, Ya.P.; Rekov, A.I.
1983-01-01
The results of investigations, technological developments and tests of high temperature materials for MHD electrodes on the base of zirconium dioxide, stabilized with oxides of calcium, yttrium, neodymium, and dioxide of cerium, chromites, tamping masses from stabilized dioxide of zirconium, cermets are considered. It is established that binary and ternary solutions on the base of zirconium dioxide and alloyed chromites are the perspective materials for the MHD electrodes on pure fuel
Present state of research and development of MHD power generation
International Nuclear Information System (INIS)
Ikeda, Shigeru
1978-01-01
MHD power generation can obtain electric energy directly from the heat energy of high speed plasma flow, and the power generating plant of 1 million kW can be realized by this method. When the MHD power generation method is combined before conventional thermal power generation method, the thermal efficiency can be raised to about 60% as compared with 38% in thermal power generation plants. The research and development of MHD power generation are in progress in USA and USSR. The research and development in Japan are in the second stage now after the first stage project for 10 years, and the Mark 7 generator with 100 kW electric output for 200 hr continuous operation is under construction. The MHD power generation is divided into three types according to the conductive fluids used, namely combustion type for thermal power generation, unequilibrated type and liquid metal type for nuclear power generation. The principle of MHD power generation and the constitution of the plant are explained. In Japan, the Mark 2 generator generated 1,180 kW for 1 min in 1971, and the Mark 3 generator generated 1.9 kW continuously for 110 hr in 1967. The MHD generator with superconducting magnet succeeded in 1969 to generate 25 kW for 6 min. The second stage project aimes at collecting design data and obtaining operational experience for the construction of 10 MW class pilot plant, and the Mark 7 and 8 generators are planned. (Kako, I.)
Electromagnetic properties of a modular MHD thruster
Kom, C. H.; Brunet, Y.
1999-04-01
The magnetic field of an annular MHD thruster made of independent superconducting modules has been studied with analytical and numerical methods. This configuration allows to obtain large magnetized volumes and high induction levels with rapidly decreasing stray fields. When some inductors are out of order, the thruster remains still operational, but the stray fields increase in the vicinity of the failure. For given structural materials and superconductors, it is possible to determine the size of the conductor in order to reduce the electromagnetic forces and the peak field supported by the conductors. For an active field of 10 T in a 6 m ray annular active channel of a thruster with 24 modules, the peak field is exactly 15.6 T in the Nb3Sn conductors and the structure has to sustain 10^8 N/m forces. The necessity to place some magnetic or superconducting shield is discussed, particularly when the thruster is in a degraded regime. Nous présentons une étude analytique et numérique du champ magnétique d'un propulseur MHD naval annulaire, constitué de secteurs inducteurs supraconducteurs. Cette configuration nécessite des champs magnétiques élevés dans des volumes importants, et permet une décroissance rapide des champs de fuite. Lorsque quelques inducteurs sont en panne, le propulseur reste toujours opérationnel, mais les champs de fuite sont importants aux environs des modules hors service. Étant donné un matériau supraconducteur, il est possible de déterminer la forme des inducteurs dans le but de réduire à la fois les forces électromagnétiques et le surchamp supporté par le bobinage. Pour un propulseur annulaire constitué de 24 modules inducteurs, et un champ actif de 10 T au centre de la partie active du canal (r = 6 m) on obtient avec du Nb3Sn un champ maximun sur le conducteur de 15,5 T et la structure supporte une force de 10^8 N/m. De plus, la nécessité de placer des écrans magnétique ou supraconducteur en régime dégradé (mise
Global and kinetic MHD simulation by the Gpic-MHD code
International Nuclear Information System (INIS)
Naitou, Hiroshi; Yamada, Yusuke; Kajiwara, Kenji; Lee, Wei-li; Tokuda, Shinji; Yagi, Masatoshi
2011-01-01
In order to implement large-scale and high-beta tokamak simulation, a new algorithm of the electromagnetic gyrokinetic PIC (particle-in-cell) code was proposed and installed on the Gpic-MHD code [Gyrokinetic PIC code for magnetohydrodynamic (MHD) simulation]. In the new algorithm, the vortex equation and the generalized ohm's law along the magnetic field are derived from the basic equations of the gyrokinetic Vlasov, Poisson, and Ampere system and are used to describe the spatio-temporal evolution of the field quantities of the electrostatic potential φ and the longitudinal component of the vector potential A z . Particle information is mainly used to estimate second order moments in the generalized ohm's law. Because the lower order moments of the charge density and the longitudinal current density are not used explicitly to determine φ and A z , the numerical noise induced by the discreteness of particle quantities reduces drastically. Another advantage of the algorithm is that the longitudinal induced electric field, E Tz =-∂A z /∂t, is explicitly estimated by the generalized ohm's law and used in the equations of motion. The particle velocities along the magnetic field are used (v z -formulation) instead of generalized momentums (p z -formulation), hence there is no problem of 'cancellation', which appear when estimating A z from the Ampere's law in the p z -formulation. The successful simulation of the collisionless internal kink mode by new Gpic-MHD with the realistic values of the large-scale and high-beta, revealed the usefulness of the new algorithm. (author)
EVIDENCE OF ACTIVE MHD INSTABILITY IN EULAG-MHD SIMULATIONS OF SOLAR CONVECTION
Energy Technology Data Exchange (ETDEWEB)
Lawson, Nicolas; Strugarek, Antoine; Charbonneau, Paul, E-mail: nicolas.laws@gmail.ca, E-mail: strugarek@astro.umontreal.ca, E-mail: paulchar@astro.umontreal.ca [Département de Physique, Université de Montréal, C.P. 6128 Succ. Centre-ville, Montréal, Qc H3C 3J7 (Canada)
2015-11-10
We investigate the possible development of magnetohydrodynamical instabilities in the EULAG-MHD “millennium simulation” of Passos and Charbonneau. This simulation sustains a large-scale magnetic cycle characterized by solar-like polarity reversals taking place on a regular multidecadal cadence, and in which zonally oriented bands of strong magnetic fields accumulate below the convective layers, in response to turbulent pumping from above in successive magnetic half-cycles. Key aspects of this simulation include low numerical dissipation and a strongly sub-adiabatic fluid layer underlying the convectively unstable layers corresponding to the modeled solar convection zone. These properties are conducive to the growth and development of two-dimensional instabilities that are otherwise suppressed by stronger dissipation. We find evidence for the action of a non-axisymmetric magnetoshear instability operating in the upper portions of the stably stratified fluid layers. We also investigate the possibility that the Tayler instability may be contributing to the destabilization of the large-scale axisymmetric magnetic component at high latitudes. On the basis of our analyses, we propose a global dynamo scenario whereby the magnetic cycle is driven primarily by turbulent dynamo action in the convecting layers, but MHD instabilities accelerate the dissipation of the magnetic field pumped down into the overshoot and stable layers, thus perhaps significantly influencing the magnetic cycle period. Support for this scenario is found in the distinct global dynamo behaviors observed in an otherwise identical EULAG-MHD simulations, using a different degree of sub-adiabaticity in the stable fluid layers underlying the convection zone.
Reduction of impurity contamination in a working gas for closed-cycle MHD power generation
International Nuclear Information System (INIS)
Endo, N.; Yoshikawa, K.; Shioda, S.
1989-01-01
The reduction of impurity contamination in a working inert gas for closed-cycle MHD power generation is examined. A conceptual operation system of regenerative heat exchangers is proposed for minimizing the amount of combustion gas which mixes in the working inert gas. Experiments have shown that this mixing can be reduced significantly by evacuating and flushing the heat exchangers after being heated by combustion gas. Calculations have shown that, among the main molecular contaminants in the working inert gas, CO 2 , H 2 O and O 2 can be removed as compounds with the seed material, while N 2 and H 2 can be reduced by a partial purification of the circulating working inert gas. (author)
Energy Technology Data Exchange (ETDEWEB)
NONE
1981-03-01
'Research on MHD generation system' was implemented by its expert committee in the electric joint study group, with the results of fiscal 1980 reported. This year, a detailed conceptual design was carried out on a coal fired MHD generation system, with points for the technological development concretely examined. In addition, investigation was conducted on the progress of MHD generation technology, development situation of other generation systems, state of energy resources, etc., in various foreign countries. In the conceptual design of the coal fired MHD generation plant, the system structure of a 2,000 MWt class commercial MHD generation plant was explained, as were the conceptual design of the structural elements and proposals for a 500 MWt class demonstration plant and an 100 MWt class experimental plant, for example. In the overseas trend of R and D on MHD generation, investigations were made concerning the U.S., Soviet Union, and China, with details compiled for such items as generation plants, combustors, generation channels, heat resisting materials, superconducting magnets, heat exchangers, seed slags, inverters, boilers and environments, and commercial plants. (NEDO)
The structure of ideal MHD Alfven modes
International Nuclear Information System (INIS)
Turnbull, A.D.; Chu, M.S.; Lao, L.L.; Greene, J.M.; Strait, E.J.; Chance, M.S.
1991-01-01
Continuum Alfven modes have undergone a resurgence in interest with the recent realization that so-called Toroidicity-Induced Alfven Eigenmodes (TAE modes) can be destabilized either by energetic beam ions in a strongly heated plasma or by alpha particles in a burning plasma. The GATO Ideal MHD Stability code, which minimizes the potential energy according to a variational formulation, has now been modified to isolate and calculate stable continuum eigenmodes. The existence of the TAE mode and its associated gap has been verified, using this code, for a circular cross-section, finite aspect ratio equilibrium. Moreover, the eigenfrequencies and eigenmodes obtained from this variational calculation are found to be in extremely good quantitative agreement with those obtained from the non-variational NOVA code. A systematic survey of the stable continuum has further revealed a surprising diversity in the structure of the continuum Alfven modes; the logarithmic singularity can be so broad, in some cases, as to occupy the whole cross-section. This has important implications for heating experiments which aim to locally excite the plasma by rf waves in the Alfven frequency range. The structure of several representative examples is discussed. The Alfven continuum, in general, and the TAE mode and its associated gap, in particular, are also found to be strongly modified by cross-sectional shaping. The dependence of the spectrum on various shaping factors is explored
Analysis of Linear MHD Power Generators
Energy Technology Data Exchange (ETDEWEB)
Witalis, E A
1965-02-15
The finite electrode size effects on the performance of an infinitely long MHD power generation duct are calculated by means of conformal mapping. The general conformal transformation is deduced and applied in a graphic way. The analysis includes variations in the segmentation degree, the Hall parameter of the gas and the electrode/insulator length ratio as well as the influence of the external circuitry and loading. A general criterion for a minimum of the generator internal resistance is given. The same criterion gives the conditions for the occurrence of internal current leakage between adjacent electrodes. It is also shown that the highest power output at a prescribed efficiency is always obtained when the current is made to flow between exactly opposed electrodes. Curves are presented showing the power-efficiency relations and other generator properties as depending on the segmentation degree and the Hall parameter in the cases of axial and transverse power extraction. The implications of limiting the current to flow between a finite number of identical electrodes are introduced and combined with the condition for current flow between opposed electrodes. The characteristics of generators with one or a few external loads can then be determined completely and examples are given in a table. It is shown that the performance of such generators must not necessarily be inferior to that of segmented generators with many independent loads. However, the problems of channel end losses and off-design loading have not been taken into consideration.
Perturbed solutions of fixed boundary MHD equilibria
International Nuclear Information System (INIS)
Portone, A.
2004-01-01
In this study, the fixed boundary plasma MHD equilibrium problem is solved by the finite element method; then, by perturbing the flux at the plasma boundary nodes, linear formulae are derived linking the variation of several plasma parameters of interest to the variation of the currents flowing in the external circuits. On the basis of these formulae it is shown how it is possible to efficiently solve two central problems in plasma engineering, namely (1) the optimization of the currents in a given set of coils necessary to maintain a specified equilibrium configuration and (2) the derivation of a linear dynamic model describing the plasma axisymmetric displacement (n = 0 mode) about a given magnetic configuration. A case study-based on the ITER reference equilibrium magnetic configuration at burn-is analysed both in terms of equilibrium currents optimality as well as axisymmetric stability features. The results obtained by these formulae are also compared with the predictions of a non-linear free boundary code and of a linear, dynamic model. As shown, the formulae derived here are in good agreement with such predictions, confirming the validity of the present approach. (author)
Alpha particle effects on MHD ballooning
International Nuclear Information System (INIS)
1991-01-01
During the period, as the first step towards the goal of detail understanding of the effects of alpha particle on MHD Ballooning Modes, a new numerical approach to investigate the stability of low-frequency fluctuations in high temperature tokamaks was developed by solving the gyrokinetic equations for the ion and electron directly as an initial value problem. The advantage of this approach is the inclusion of many important kinetic features of the problem without approximations and computationally more economical than particle-pushing simulation. The ion-temperature-gradient-mode was investigated to benchmark this new simulation technique. Previous results in literature were recovered. Both the adiabatic electron model and the full drift-kinetic electron model are studied. Numerical result shows that the full drift-kinetic electron model is more unstable. The development of subcycling technique to handle the fast electron bounce time is particularly significant to apply this new approach to the alpha particle problem since alpha particle bounce frequency is also significantly higher than the mode frequency. This new numerical technique will be the basis of future study of the microstability in high temperature tokamaks with alpha particles (or any energetic species). 15 refs., 13 figs
Study on closed cycle MHD generation systems; Closed cycle MHD hatsuden system no kento
Energy Technology Data Exchange (ETDEWEB)
NONE
1988-03-01
The closed cycle noble gas MHD generation systems are surveyed and studied. The concept of closed cycle noble gas MHD generation is confirmed to extract high enthalpy, and now going into the engineering demonstration stage from the basic research stage. These systems have various characteristics. The highest working temperature is around 1,700 degrees C, which is close to that associated with the existing techniques. Use of helium or argon gas as the working fluid makes the system relatively free of various problems, e.g., corrosion. It can attain a much higher efficiency than the combined cycle involving gas turbine. It suffers less heat loss in the passages, is suitable for small- to medium-capacity power generation systems, and copes with varying load. The compact power generation passages decrease required size of the superconducting magnet. The technical problems to be solved include optimization of power generation conditions, demonstration of durability of the power generation passages, injection/recovery of the seed material, treatment of the working gas to remove molecular impurities, and development of heat exchangers serviceable at high temperature produced by direct combustion of coal. The conceptual designs of the triple combined system are completed. (NEDO)
Report on studies on closed cycle MHD power generation; Closed cycle MHD hatsuden kento hokokusho
Energy Technology Data Exchange (ETDEWEB)
NONE
1991-04-01
Summarized herein are results of the studies on closed cycle MHD (CCMHD) power generation by the study committee. The studied system is based on the MHD gas turbine combined Brayton cycle of about 500,000 kW in output power, firing natural gas as the fuel, and the conceptual design works therefor are completed. The major findings are: the overall plant efficiency: 54.2% at the power transmission side, plot area required per unit power output: 0.04 m{sup 2}/KW, unit construction cost: 251,000 yen/KW, and unit power generation cost: 10.2 yen/KWh. This system will be more operable than the gas turbine combined cycle with steam system, because start-up time, output change rate, optimum load and so on are constrained not on the power generator side but on the gas turbine side. The expected environmental effects include the exhaust gas NOX concentration being equivalent with that associated with the conventional power generator of 2-stage combustion system, quantity of combustion gases to be treated being approximately 40% of that associated with the gas turbine combined cycle, and reduced CO2 gas emissions, resulting from enhanced power generation efficiency. It is expected that the CCMHD system can exhibit higher efficiency than the high-temperature gas turbine combined cycle system. (NEDO)
An Arbitrary Lagrangian-Eulerian Discretization of MHD on 3D Unstructured Grids
Energy Technology Data Exchange (ETDEWEB)
Rieben, R N; White, D A; Wallin, B K; Solberg, J M
2006-06-12
We present an arbitrary Lagrangian-Eulerian (ALE) discretization of the equations of resistive magnetohydrodynamics (MHD) on unstructured hexahedral grids. The method is formulated using an operator-split approach with three distinct phases: electromagnetic diffusion, Lagrangian motion, and Eulerian advection. The resistive magnetic dynamo equation is discretized using a compatible mixed finite element method with a 2nd order accurate implicit time differencing scheme which preserves the divergence-free nature of the magnetic field. At each discrete time step, electromagnetic force and heat terms are calculated and coupled to the hydrodynamic equations to compute the Lagrangian motion of the conducting materials. By virtue of the compatible discretization method used, the invariants of Lagrangian MHD motion are preserved in a discrete sense. When the Lagrangian motion of the mesh causes significant distortion, that distortion is corrected with a relaxation of the mesh, followed by a 2nd order monotonic remap of the electromagnetic state variables. The remap is equivalent to Eulerian advection of the magnetic flux density with a fictitious mesh relaxation velocity. The magnetic advection is performed using a novel variant of constrained transport (CT) that is valid for unstructured hexahedral grids with arbitrary mesh velocities. The advection method maintains the divergence free nature of the magnetic field and is second order accurate in regions where the solution is sufficiently smooth. For regions in which the magnetic field is discontinuous (e.g. MHD shocks) the method is limited using a novel variant of algebraic flux correction (AFC) which is local extremum diminishing (LED) and divergence preserving. Finally, we verify each stage of the discretization via a set of numerical experiments.
A MHD channel study for the ETF conceptual design
Wang, S. Y.; Staiger, P. J.; Smith, J. M.
1981-01-01
The procedures and computations used to identify an MHD channel for a 540 mW(I) EFT-scale plant are presented. Under the assumed constraints of maximum E(x), E(y), J(y) and Beta; results show the best plant performance is obtained for active length, L is approximately 12 M, whereas in the initial ETF studies, L is approximately 16 M. As MHD channel length is reduced from 16 M, the channel enthalpy extraction falls off, slowly. This tends to reduce the MHD power output; however, the shorter channels result in lower heat losses to the MHD channel cooling water which allows for the incorporation of more low pressure boiler feedwater heaters into the system and an increase in steam plant efficiency. The net result of these changes is a net increase in the over all MHD/steam plant efficiency. In addition to the sensitivity of various channel parameters, the trade-offs between the level of oxygen enrichment and the electrical stress on the channel are also discussed.
Linear and Nonlinear MHD Wave Processes in Plasmas. Final Report
International Nuclear Information System (INIS)
Tataronis, J. A.
2004-01-01
This program treats theoretically low frequency linear and nonlinear wave processes in magnetized plasmas. A primary objective has been to evaluate the effectiveness of MHD waves to heat plasma and drive current in toroidal configurations. The research covers the following topics: (1) the existence and properties of the MHD continua in plasma equilibria without spatial symmetry; (2) low frequency nonresonant current drive and nonlinear Alfven wave effects; and (3) nonlinear electron acceleration by rf and random plasma waves. Results have contributed to the fundamental knowledge base of MHD activity in symmetric and asymmetric toroidal plasmas. Among the accomplishments of this research effort, the following are highlighted: Identification of the MHD continuum mode singularities in toroidal geometry. Derivation of a third order ordinary differential equation that governs nonlinear current drive in the singular layers of the Alfven continuum modes in axisymmetric toroidal geometry. Bounded solutions of this ODE implies a net average current parallel to the toroidal equilibrium magnetic field. Discovery of a new unstable continuum of the linearized MHD equation in axially periodic circular plasma cylinders with shear and incompressibility. This continuum, which we named ''accumulation continuum'' and which is related to ballooning modes, arises as discrete unstable eigenfrequency accumulate on the imaginary frequency axis in the limit of large mode numbers. Development of techniques to control nonlinear electron acceleration through the action of multiple coherent and random plasmas waves. Two important elements of this program aye student participation and student training in plasma theory
Further analysis of MHD acceleration for a hypersonic wind tunnel
International Nuclear Information System (INIS)
Christiansen, M.J.; Schmidt, H.J.; Chapman, J.N.
1995-01-01
A previously completed MHD study of the use of an MHD accelerator with seeded air from a state-of-the-art arc heater, was generally hailed as showing that the system studied has some promise of meeting the most critical hypersonic testing requirements. However, some concerns existed about certain aspects of the results. This paper discusses some of these problems and presents analysis of potential solutions. Specifically the problems addressed are; reducing the amount of seed in the flow, reducing test chamber temperatures, and reducing the oxygen dissociation. Modeling techniques are used to study three design variables of the MHD accelerator. The accelerator channel inlet Mach number, the accelerator channel divergence angle, and the magnetic field strength are all studied. These variables are all optimized to meet the goals for seed, temperature, and dissociated oxygen reduction. The results of this paper are encouraging, showing that all three goals can be met. General relationships are observed as to how the design variables affect the performance of the MHD accelerator facility. This paper expands on the results presented in the UTSI report and further supports the feasibility of MHD acceleration as a means to provide hypersonic flight simulation
Resistive MHD Stability Analysis in Near Real-time
Glasser, Alexander; Kolemen, Egemen
2017-10-01
We discuss the feasibility of a near real-time calculation of the tokamak Δ' matrix, which summarizes MHD stability to resistive modes, such as tearing and interchange modes. As the operational phase of ITER approaches, solutions for active feedback tokamak stability control are needed. It has been previously demonstrated that an ideal MHD stability analysis is achievable on a sub- O (1 s) timescale, as is required to control phenomena comparable with the MHD-evolution timescale of ITER. In the present work, we broaden this result to incorporate the effects of resistive MHD modes. Such modes satisfy ideal MHD equations in regions outside narrow resistive layers that form at singular surfaces. We demonstrate that the use of asymptotic expansions at the singular surfaces, as well as the application of state transition matrices, enable a fast, parallelized solution to the singular outer layer boundary value problem, and thereby rapidly compute Δ'. Sponsored by US DOE under DE-SC0015878 and DE-FC02-04ER54698.
Results from a large-scale MHD propulsion experiment
International Nuclear Information System (INIS)
Petrick, M.; Libera, J.; Bouillard, J.X.; Pierson, E.S.; Hill, D.
1992-01-01
This paper reports on magnetohydrodynamic (MHD) thrusters which have long been recognized as potentially attractive candidates for ship propulsion because such systems eliminate the conventional rotating drive components. The MHD thruster is essentially an electromagnet (EM) pump operating in seawater. An electrical current is passed directly through the seawater and interacts with an applied magnetic field; the interaction of the magnetic field and the electrode current in the seawater results in a Lorentz force acting on the water, and the reaction to this force propels the vessel forward. The concept of EM propulsion has been examined periodically during the past 35 years as an alternative method of propulsion for surface ships and submersibles. The conclusions reached in early studies were that MHD thrusters restricted to fields of 2T (the state-of-the-art at that time) were impractical and very inefficient. With the evolution of superconducting magnet technology, later studies investigated the performance of MHD thrusters with much higher magnetic field strengths and concluded that at higher fields (>6 T) practical MHD propulsion systems appear possible
International Nuclear Information System (INIS)
1968-01-01
Proceedings of a Symposium on Magnetohydrodynamic Electrical Power Generation held by the IAEA at Warsaw, 24-30 July 1968. The meeting was attended by some 300 participants from 21 countries and three international organizations. In contrast to the Symposium held two years ago, much more emphasis was placed on the economic aspects of using MHD generators in large-scale power generation. Among closed- cycle systems, the prospects of linking an ultra-high-temperature reactor with an MHD generator were explored, and the advantages gained by having a liquid-metal generator as a 'topper' in a conventional steam generating plant were presented. Comments were made about the disproportionate effect of end and boundary conditions in experimental MHD generators on the main plasma parameters, and estimates were made of the interrelationship to be expected in real generators. The estimates will have to await confirmation until results are obtained on large-scale prototype MHD systems. Progress in materials research, in design and construction of auxiliary equipment such as heat exchangers, supercooled magnets (which are- now commercially available), etc., is accompanied by sophisticated ideas of plant design. The Proceedings are complemented by three Round Table Discussions in which chosen experts from various countries discuss the outlook for closed-cycle gas, closed-cycle liquid-metal and open-cycle MHD, and give their views as to the most fruitful course to follow to achieve economic full-scale power generation. Contents: (Vol. I) 1. Closed-Cycle MHD with Gaseous Working Fluids: (a) Diagnostics (3 papers); (b) Steady-state non-equilibrium ionization (8 papers); (c) Transient non-equilibrium ionization (7 papers); (d) Pre-ionization and gas discharge (4 papers); (e) Fields and flow in MHD channels (10 papers); (0 Instabilities (8 papers); (g) Generator design and performance studies (6 papers); (Vol. II) (h) Shock waves (6 papers); (i) Power generation experiments (13 papers
HIDENEK: an implicit particle simulation of kinetic-MHD phenomena in three-dimensional plasmas
International Nuclear Information System (INIS)
Tanaka, Motohiko.
1993-05-01
An advanced 'kinetic-MHD' simulation method and its applications to plasma physics are given in this lecture. This method is quite suitable for studying strong nonlinear, kinetic processes associated with large space-scale, low-frequency electromagnetic phenomena of plasmas. A full set of the Maxwell equations, and the Newton-Lorentz equations of motion for particle ions and guiding-center electrons are adopted. In order to retain only the low-frequency waves and instabilities, implicit particle-field equations are derived. The present implicit-particle method is proved to reproduce the MHD eigenmodes such as Alfven, magnetosonic and kinetic Alfven waves in a thermally near-equilibrium plasma. In the second part of the lecture, several physics applications are shown. These include not only the growth of the instabilities of beam ions against the background plasmas and helical kink of the current, but they also demonstrate nonlinear results such as pitch-angle scattering of the ions. Recent progress in the simulation of the Kelvin-Helmholtz instability is also presented with a special emphasis on the mixing of plasma particles. (author)
MHD phenomena in a neutral beam heated high beta, low qa disruption
International Nuclear Information System (INIS)
Chu, M.S.; Greene, J.M.; Kim, J.S.; Lao, L.; Snider, R.T.; Stambaugh, R.D.; Strait, E.J.; Taylor, T.S.
1988-01-01
A neutral beam heated, β maximizing discharge at low q a in Doublet III ending in disruption is studied and correlated with theoretical models. This discharge achieved MHD β-values close to the theoretical Troyon-Sykes-Wesson limit in its evolution. The MHD phenomena of this discharge are analysed. The sequence of events leading to the high β disruptions is hypothesized as follows: the current and pressure profiles are broadened continuously by neutral beam injection. A last sawtooth internal disruption initiates an (m/n = 2/1) island through current profile steepening around the q=2 surface. The loss of plasma through stochastic field lines slows the island rotation and enhances its interaction with the limiter. The resultant enhanced island growth through island cooling or profile change enlarged the edge stochastic region. The overlapping of the edge stochastic region with the sawtooth mixing region precipitated the pressure disruption. Thus, in our hypothetical model for this discharge, β increase by neutral beam heating does not directly cause the disruption but ushers the plasma indirectly towards it through the profile broadening process and contributes to the destabilization of the 1/1 and 2/1 tearing modes. (author). 26 refs, 12 figs
International Nuclear Information System (INIS)
Niemann, R.C.; Mataya, K.F.; Smith, R.P.; McWilliams, D.A.; Borden, R.; Streeter, M.H.; Wickson, R.; Privalov, N.P.
1978-01-01
In order to facilitate the rapid development of MHD technology for the generation of electrical energy, the U.S. and U.S.S.R. are jointly conducting research within the framework of the Program of Scientific and Technical Cooperation. The Institute for High Temperature (IVTAN) of the U.S.S.R. has designed and fabricated a special MHD facility which uses as its base much of the equipment of the existing U-25 Facility. The new MHD fow train consisting of a combustor, magnet, channel, and diffuser is named U-25B. The U.S. has provided a superconducting magnet system for the U-25B MHD Facility. As a result of these joint efforts, a unique and broad range of experimental test conditions similar to those that will exist in operation of commercial MHD generators has been created. The United States Superconducting Magnet System (U.S. SCMS) was designed, fabricated, and delivered to the U-25B Facility by the Argonne National Laboratory (ANL) under the sponsorship of the U.S. Department of Energy. The following description focuses on the cryogenic-related aspects of the magnet system commissioning and operation in the U.S.S.R
Helium refrigerator-liquefier system for MHD generator
International Nuclear Information System (INIS)
Akiyama, Y.; Ishii, H.; Mori, Y.; Yamamoto, M.; Wada, R.; Ando, M.
1974-01-01
MHD power generators have been investigated in the Electro-Technical Laboratory as one of the National Research and Development Programmes. A helium refrigerator-liquefier system has been developed to cool the superconducting magnet for a 1000 kW class MHD power generator. The turboexpander with low temperature gas bearings and an alternator had been developed for the MHD project at the Electro-Technical Laboratory previously. The liquefaction capacity is 250 iota/h and the refrigeration power is 2.9 kW at 20 K. The superconducting magnet is 50 tons and the cryostat has a liquid helium volume of 2700 iota. The evaporation rate is 60 to 80 iota/h. It takes, in all 2 to 3 weeks to fill the cryostat with liquid helium. (author)
Outline of fast analyzer for MHD equilibrium 'FAME'
International Nuclear Information System (INIS)
Sakata, Shinya; Haginoya, Hirofumi; Tsuruoka, Takuya; Aoyagi, Tetsuo; Saito, Naoyuki; Harada, Hiroo; Tani, Keiji; Watanabe, Hideto.
1994-03-01
The FAME (Fast Analyzer for Magnetohydrodynamic (MHD) Equilibrium) system has been developed in order to provide more than 100 MHD equilibria in time series which are enough for the non-stationary analysis of the experimental data of JT-60 within about 20 minutes shot interval. The FAME is an MIMD type small scale parallel computer with 20 microprocessors which are connected by a multi-stage switching system. The maximum theoretical speed is 250 MFLOPS. For the software system of FAME, MHD equilibrium analysis code SELENE and its input data production code FBI are tuned up taking the parallel processing into consideration. Consequently, the computational performance of the FAME system becomes more than 7 times faster than the existing general purpose computer FACOM M780-10s. This report summarizes the outline of the FAME system including hardware, soft-ware and peripheral equipments. (author)
MHD Flows in Compact Astrophysical Objects Accretion, Winds and Jets
Beskin, Vasily S
2010-01-01
Accretion flows, winds and jets of compact astrophysical objects and stars are generally described within the framework of hydrodynamical and magnetohydrodynamical (MHD) flows. Analytical analysis of the problem provides profound physical insights, which are essential for interpreting and understanding the results of numerical simulations. Providing such a physical understanding of MHD Flows in Compact Astrophysical Objects is the main goal of this book, which is an updated translation of a successful Russian graduate textbook. The book provides the first detailed introduction into the method of the Grad-Shafranov equation, describing analytically the very broad class of hydrodynamical and MHD flows. It starts with the classical examples of hydrodynamical accretion onto relativistic and nonrelativistic objects. The force-free limit of the Grad-Shafranov equation allows us to analyze in detail the physics of the magnetospheres of radio pulsars and black holes, including the Blandford-Znajek process of energy e...
Diagnostic development and support of MHD test facilities
Energy Technology Data Exchange (ETDEWEB)
1990-01-01
The Diagnostic Instrumentation and Analysis Laboratory (DIAL) at Mississippi State University (MSU) is developing diagnostic instruments for MHD power train data acquisition and for support of MHD component development test facilities. Microprocessor-controlled optical instruments, initially developed for Heat Recovery/Seed Recovery support, are being refined, and new systems to measure temperatures and gas-seed-slag stream characteristics are being developed. To further data acquisition and analysis capabilities, the diagnostic systems are being interfaced with DIAL's computers. Technical support for the diagnostic needs of the national MHD research effort is being provided. DIAL personnel will also cooperate with government agencies and private industries to improve the transformation of research and development results into processes, products and services applicable to their needs. 25 figs., 6 tabs.
Criteria for Scaled Laboratory Simulations of Astrophysical MHD Phenomena
International Nuclear Information System (INIS)
Ryutov, D. D.; Drake, R. P.; Remington, B. A.
2000-01-01
We demonstrate that two systems described by the equations of the ideal magnetohydrodynamics (MHD) evolve similarly, if the initial conditions are geometrically similar and certain scaling relations hold. The thermodynamic properties of the gas must be such that the internal energy density is proportional to the pressure. The presence of the shocks is allowed. We discuss the applicability conditions of the ideal MHD and demonstrate that they are satisfied with a large margin both in a number of astrophysical objects, and in properly designed simulation experiments with high-power lasers. This allows one to perform laboratory experiments whose results can be used for quantitative interpretation of various effects of astrophysical MHD. (c) 2000 The American Astronomical Society
Pseudo-MHD ballooning modes in tokamak plasmas
International Nuclear Information System (INIS)
Callen, J.D.; Hegna, C.C.
1996-08-01
The MHD description of a plasma is extended to allow electrons to have both fluid-like and adiabatic-regime responses within an instability eigenmode. In the resultant open-quotes pseudo-MHDclose quotes model, magnetic field line bending is reduced in the adiabatic electron regime. This makes possible a new class of ballooning-type, long parallel extent, MHD-like instabilities in tokamak plasmas for α > s 2 (2 7/3 /9) (r p /R 0 ) or-d√Β/dr > (2 1/6 /3)(s/ R 0q ), which is well below the ideal-MHD stability boundary. The marginally stable pressure profile is similar in both magnitude and shape to that observed in ohmically heated tokamak plasmas
Numerical study of the axisymmetric ideal MHD stability of Extrap
International Nuclear Information System (INIS)
Benda, M.
1993-04-01
A numerical study of the free-boundary axisymmetric (n=0) ideal magnetohydrodynamical (MHD) motions of the Extrap device is presented. The dependence of stability on current profiles in the plasma and currents in the external conductors is investigated. Results are shown for linear growth-rates and nonlinear saturation amplitudes and their dependence on plasma radius as well as on the conducting shell radius. A method combined of two different algorithms has been developed and tested. The interior region of the plasma is simulated by means of a Lagrangian Finite Element Method (FEM) for ideal magnetohydrodynamics, The method is based on a nonlinear radiation principle for the Lagrangian description of ideal MHD. The Boundary Element Method (BEM) is used together with the Lagrangian FEM to simulate nonlinear motion of an ideal MHD plasma behaviour in a vacuum region under the influence of external magnetic fields. 31 refs
Diagnostic development and support of MHD test facilities
International Nuclear Information System (INIS)
Shepard, W.S.; Cook, R.L.
1990-01-01
The Diagnostic Instrumentation and Analysis Laboratory (DIAL) at Mississippi State University (MSU) is developing diagnostic instruments for MHD power train data acquisition and for support of MHD component development test facilities. Microprocessor-controlled optical instruments, initially developed for Heat Recovery/ Seed Recovery support, are being refined, and new systems to measure temperatures and gas-seed-slag stream characteristics are being developed. To further data acquisition and analysis capabilities, the diagnostic systems are being interfaced with DIAL's computers. Technical support for the diagnostic needs of the national MHD research effort is being provided. DIAL personnel will also cooperate with government agencies and private industries to improve the transformation of research and development results into processes, products and services applicable to their needs
Energy Technology Data Exchange (ETDEWEB)
Carrasse, J. [Societe Alsthom, Paris (France)
1966-12-15
This paper studies the energetic and chemical aspects of the operation of a combined MHD-steam power station using the combustion gases from a fossil fuel in an open circuit with potassium seeding. It describes a process for the recovery of energy by endothermal chemical gasification of the fuel. The author first recalls briefly the thermal and chemical conditions to be met throughout the length of the gas flow and points out that it is vital to ensure as much recycling of energy as possible from below to above the MHD generator, at the expense of the conventional power station located further on in the system. The paper then describes the various processes intended to ensure the thermal operating conditions required, including preheating of the air, oxygen enrichment etc. The last part of the paper, which goes into greater detail while taking the foregoing considerations into account, explains the principle and various feasible methods of application of a process at present under study and experimentation. In this process some of the heat energy of the gases discharged from the MHD duct is recycled, partly in chemical form and partly as a limited amount of gas preheat. For this purpose the fuel, mixed with oxidizing agents such as water vapour or carbon dioxide, is gasified, at about 950 Degree-Sign C and after a series of collectively endothermal reactions, into a gas composed mainly of carbon monoxide, hydrogen, nitrogen and excess water vapour and carbon dioxide. It is thus possible to avoid the employment of very high temperature heat exchangers working with seeded gas. The paper stresses the extraction of seeding material, which is simple and can here take place to a great extent in liquid form (fused salts) due to the fact that operation is in the temperature range around 1000 Degree-Sign C. Consideration is finally given to the use after treatment (cooling, extraction of seeding material, absorption of excess H{sub 2}O and CO{sub 2}, compression and re
A performance analysis for MHD power cycles operating at maximum power density
International Nuclear Information System (INIS)
Sahin, Bahri; Kodal, Ali; Yavuz, Hasbi
1996-01-01
An analysis of the thermal efficiency of a magnetohydrodynamic (MHD) power cycle at maximum power density for a constant velocity type MHD generator has been carried out. The irreversibilities at the compressor and the MHD generator are taken into account. The results obtained from power density analysis were compared with those of maximum power analysis. It is shown that by using the power density criteria the MHD cycle efficiency can be increased effectively. (author)
MHD turbulent dynamo in astrophysics: Theory and numerical simulation
Chou, Hongsong
2001-10-01
This thesis treats the physics of dynamo effects through theoretical modeling of magnetohydrodynamic (MHD) systems and direct numerical simulations of MHD turbulence. After a brief introduction to astrophysical dynamo research in Chapter 1, the following issues in developing dynamic models of dynamo theory are addressed: In Chapter 2, nonlinearity that arises from the back reaction of magnetic field on velocity field is considered in a new model for the dynamo α-effect. The dependence of α-coefficient on magnetic Reynolds number, kinetic Reynolds number, magnetic Prandtl number and statistical properties of MHD turbulence is studied. In Chapter 3, the time-dependence of magnetic helicity dynamics and its influence on dynamo effects are studied with a theoretical model and 3D direct numerical simulations. The applicability of and the connection between different dynamo models are also discussed. In Chapter 4, processes of magnetic field amplification by turbulence are numerically simulated with a 3D Fourier spectral method. The initial seed magnetic field can be a large-scale field, a small-scale magnetic impulse, and a combination of these two. Other issues, such as dynamo processes due to helical Alfvénic waves and the implication and validity of the Zeldovich relation, are also addressed in Appendix B and Chapters 4 & 5, respectively. Main conclusions and future work are presented in Chapter 5. Applications of these studies are intended for astrophysical magnetic field generation through turbulent dynamo processes, especially when nonlinearity plays central role. In studying the physics of MHD turbulent dynamo processes, the following tools are developed: (1)A double Fourier transform in both space and time for the linearized MHD equations (Chapter 2 and Appendices A & B). (2)A Fourier spectral numerical method for direct simulation of 3D incompressible MHD equations (Appendix C).
A kinetic-MHD model for low frequency phenomena
International Nuclear Information System (INIS)
Cheng, C.Z.
1991-07-01
A hybrid kinetic-MHD model for describing low-frequency phenomena in high beta anisotropic plasmas that consist of two components: a low energy core component and an energetic component with low density. The kinetic-MHD model treats the low energy core component by magnetohydrodynamic (MHD) description, the energetic component by kinetic approach such as the gyrokinetic equation, and the coupling between the dynamics of these two components through plasma pressure in the momentum equation. The kinetic-MHD model optimizes both the physics contents and the theoretical efforts in studying low frequency MHD waves and transport phenomena in general magnetic field geometries, and can be easily modified to include the core plasma kinetic effects if necessary. It is applicable to any magnetized collisionless plasma system where the parallel electric field effects are negligibly small. In the linearized limit two coupled eigenmode equations for describing the coupling between the transverse Alfven type and the compressional Alfven type waves are derived. The eigenmode equations are identical to those derived from the full gyrokinetic equation in the low frequency limit and were previously analyzed both analytically nd numerically to obtain the eigenmode structure of the drift mirror instability which explains successfully the multi-satellite observation of antisymmetric field-aligned structure of the compressional magnetic field of Pc 5 waves in the magnetospheric ring current plasma. Finally, a quadratic form is derived to demonstrate the stability of the low-frequency transverse and compressional Alfven type instabilities in terms of the pressure anisotropy parameter τ and the magnetic field curvature-pressure gradient parameter. A procedure for determining the stability of a marginally stable MHD wave due to wave-particle resonances is also presented
Characterizing electrostatic turbulence in tokamak plasmas with high MHD activity
Energy Technology Data Exchange (ETDEWEB)
Guimaraes-Filho, Z O; Santos Lima, G Z dos; Caldas, I L; Nascimento, I C; Kuznetsov, Yu K [Instituto de Fisica, Universidade de Sao Paulo, Caixa Postal 66316, 05315-970, Sao Paulo, SP (Brazil); Viana, R L, E-mail: viana@fisica.ufpr.b [Departamento de Fisica, Universidade Federal do Parana, Caixa Postal 19044, 81531-990, Curitiba, PR (Brazil)
2010-09-01
One of the challenges in obtaining long lasting magnetic confinement of fusion plasmas in tokamaks is to control electrostatic turbulence near the vessel wall. A necessary step towards achieving this goal is to characterize the turbulence level and so as to quantify its effect on the transport of energy and particles of the plasma. In this paper we present experimental results on the characterization of electrostatic turbulence in Tokamak Chauffage Alfven Bresilien (TCABR), operating in the Institute of Physics of University of Sao Paulo, Brazil. In particular, we investigate the effect of certain magnetic field fluctuations, due to magnetohydrodynamical (MHD) instabilities activity, on the spectral properties of electrostatic turbulence at plasma edge. In some TCABR discharges we observe that this MHD activity may increase spontaneously, following changes in the edge safety factor, or after changes in the radial electric field achieved by electrode biasing. During the high MHD activity, the magnetic oscillations and the plasma edge electrostatic turbulence present several common linear spectral features with a noticeable dominant peak in the same frequency. In this article, dynamical analyses were applied to find other alterations on turbulence characteristics due to the MHD activity and turbulence enhancement. A recurrence quantification analysis shows that the turbulence determinism radial profile is substantially changed, becoming more radially uniform, during the high MHD activity. Moreover, the bicoherence spectra of these two kinds of fluctuations are similar and present high bicoherence levels associated with the MHD frequency. In contrast with the bicoherence spectral changes, that are radially localized at the plasma edge, the turbulence recurrence is broadly altered at the plasma edge and the scrape-off layer.
Energy Technology Data Exchange (ETDEWEB)
Galkowski, A. [Institute of Atomic Energy, Otwock-Swierk (Poland)
1994-12-31
Non-linear ideal MHD equilibria in axisymmetric system with flows are examined, both in 1st and 2nd ellipticity regions. Evidence of the bifurcation of solutions is provided and numerical solutions of several problems in a tokamak geometry are given, exhibiting bifurcation phenomena. Relaxation of plasma in the presence of zero-order flows is studied in a realistic toroidal geometry. The field aligned flow allows equilibria with finite pressure gradient but with homogeneous temperature distribution. Numerical calculations have been performed for the 1st and 2nd ellipticity regimes of the extended Grad-Shafranov-Schlueter equation. Numerical technique, alternative to the well-known Grad`s ADM methods has been proposed to deal with slow adiabatic evolution of toroidal plasma with flows. The equilibrium problem with prescribed adiabatic constraints may be solved by simultaneous calculations of flux surface geometry and original profile functions. (author). 178 refs, 37 figs, 5 tabs.
Spectrum of resistive MHD modes in cylindrical plasmas
International Nuclear Information System (INIS)
Ryu, C.M.; Grimm, R.C.
1983-07-01
A numerical study of the normal modes of a compressible resistive MHD fluid in cylindrical geometry is presented. Resistivity resolves the shear Alfven and slow magnetosonic continua of ideal MHD into discrete spectra and gives rise to heavily damped modes whose frequencies lie on specific lines in the complex plane. Fast magnetosonic waves are less affected but are also damped. Overstable modes arise from the shear Alfven spectrum. The stabilizing effect of favorable average curvature is shown. Eigenfunctions illustrating the nature of typical normal modes are displayed
Present state of the theory of a MHD-dynamo
Energy Technology Data Exchange (ETDEWEB)
Soward, A M; Roberts, P H
1976-01-01
A review is given of the state of the theory of a MHD-dynamo, that is, the theory of self-excited magnetic fields in homogeneous moving liquids. A description is given of two basic approaches-the turbulent dynamos of Steinbeck, Krause and Redler and the high-conductivity dynamo of Braginski, and a look is also taken at the relation between these dynamos. Finally a look is taken at the results of recent studies of the total problem of a MHD-dynamo, that is, at the results of recent attempts to solve the electro- and hydrodynamic equations and to obtain self-excited fields. 6 figs., 122 ref. (SJR)
High pressure MHD coal combustors investigation, phase 2
Iwata, H.; Hamberg, R.
1981-05-01
A high pressure MHD coal combustor was investigated. The purpose was to acquire basic design and support engineering data through systematic combustion experiments at the 10 and 20 thermal megawatt size and to design a 50 MW/sub t/ combustor. This combustor is to produce an electrically conductive plasma generated by the direct combustion of pulverized coal with hot oxygen enriched vitiated air that is seeded with potassium carbonate. Vitiated air and oxygen are used as the oxidizer, however, preheated air will ultimately be used as the oxidizer in coal fired MHD combustors.
Temperature oscillating regimes in Tore Supra diagnosed by MHD activity
International Nuclear Information System (INIS)
Maget, P.; Imbeaux, F.; Giruzzi, G.; Udintsev, V.S.; Huysmans, G.T.A.; Segui, J.-L.; Goniche, M.; Moreau, Ph.; Sabot, R.; Garbet, X.
2006-01-01
This paper describes what we can learn on the regimes of spontaneous electron temperature oscillations discovered in Tore Supra from the analysis of MHD activity. Since the first observations of this oscillating behaviour of plasma equilibrium, and its interpretation as a predator-prey system involving lower hybrid waves power deposition and electron confinement, analysis of MHD modes has confirmed the reality of safety factor profile oscillations. This points towards the importance of rational values of the safety factor in the transition to transport barriers in reversed magnetic shear plasmas
Extended MHD Effects in High Energy Density Experiments
Seyler, Charles
2016-10-01
The MHD model is the workhorse for computational modeling of HEDP experiments. Plasma models are inheritably limited in scope, but MHD is expected to be a very good model for studying plasmas at the high densities attained in HEDP experiments. There are, however, important ways in which MHD fails to adequately describe the results, most notably due to the omission of the Hall term in the Ohm's law (a form of extended MHD or XMHD). This talk will discuss these failings by directly comparing simulations of MHD and XMHD for particularly relevant cases. The methodology is to simulate HEDP experiments using a Hall-MHD (HMHD) code based on a highly accurate and robust Discontinuous Galerkin method, and by comparison of HMHD to MHD draw conclusions about the impact of the Hall term. We focus on simulating two experimental pulsed power machines under various scenarios. We examine the MagLIF experiment on the Z-machine at Sandia National Laboratories and liner experiments on the COBRA machine at Cornell. For the MagLIF experiment we find that power flow in the feed leads to low density plasma ablation into the region surrounding the liner. The inflow of this plasma compresses axial magnetic flux onto the liner. In MHD this axial flux tends to resistively decay, whereas in HMHD a force-free current layer sustains the axial flux on the liner leading to a larger ratio of axial to azimuthal flux. During the liner compression the magneto-Rayleigh-Taylor instability leads to helical perturbations due to minimization of field line bending. Simulations of a cylindrical liner using the COBRA machine parameters can under certain conditions exhibit amplification of an axial field due to a force-free low-density current layer separated by some distance from the liner. This results in a configuration in which there is predominately axial field on the liner inside the current layer and azimuthal field outside the layer. We are currently attempting to experimentally verify the simulation
An innovative method for ideal and resistive MHD stability analysis of tokamaks
International Nuclear Information System (INIS)
Tokuda, S.
2001-01-01
An advanced asymptotic matching method of ideal and resistive MHD stability analysis in tokamaks is reported. A solution method for the two dimensional Newcomb equation, a dispersion relation for an unstable ideal MHD mode in tokamaks and a new scheme for solving resistive MHD inner layer equations as an initial value problem are reported. (author)
An innovative method for ideal and resistive MHD stability analysis of tokamaks
International Nuclear Information System (INIS)
Tokuda, S.
2001-01-01
An advanced asymptotic matching method of ideal and resistive MHD stability analysis in tokamak is reported. The report explains a solution method of two-dimensional Newcomb equation, dispersion relation for an unstable ideal MHD mode in tokamak, and a new scheme for solving resistive MHD inner layer equations as an initial-value problem. (author)
Dynamics of nonlinear resonant slow MHD waves in twisted flux tubes
Directory of Open Access Journals (Sweden)
R. Erdélyi
2002-01-01
Full Text Available Nonlinear resonant magnetohydrodynamic (MHD waves are studied in weakly dissipative isotropic plasmas in cylindrical geometry. This geometry is suitable and is needed when one intends to study resonant MHD waves in magnetic flux tubes (e.g. for sunspots, coronal loops, solar plumes, solar wind, the magnetosphere, etc. The resonant behaviour of slow MHD waves is confined in a narrow dissipative layer. Using the method of simplified matched asymptotic expansions inside and outside of the narrow dissipative layer, we generalise the so-called connection formulae obtained in linear MHD for the Eulerian perturbation of the total pressure and for the normal component of the velocity. These connection formulae for resonant MHD waves across the dissipative layer play a similar role as the well-known Rankine-Hugoniot relations connecting solutions at both sides of MHD shock waves. The key results are the nonlinear connection formulae found in dissipative cylindrical MHD which are an important extension of their counterparts obtained in linear ideal MHD (Sakurai et al., 1991, linear dissipative MHD (Goossens et al., 1995; Erdélyi, 1997 and in nonlinear dissipative MHD derived in slab geometry (Ruderman et al., 1997. These generalised connection formulae enable us to connect solutions obtained at both sides of the dissipative layer without solving the MHD equations in the dissipative layer possibly saving a considerable amount of CPU-time when solving the full nonlinear resonant MHD problem.
MHD instabilities in astrophysical plasmas: very different from MHD instabilities in tokamaks!
Goedbloed, J. P.
2018-01-01
The extensive studies of MHD instabilities in thermonuclear magnetic confinement experiments, in particular of the tokamak as the most promising candidate for a future energy producing machine, have led to an ‘intuitive’ description based on the energy principle that is very misleading for most astrophysical plasmas. The ‘intuitive’ picture almost directly singles out the dominant stabilizing field line bending energy of the Alfvén waves and, consequently, concentrates on expansion schemes that minimize that contribution. This happens when the wave vector {{k}}0 of the perturbations, on average, is perpendicular to the magnetic field {B}. Hence, all macroscopic instabilities of tokamaks (kinks, interchanges, ballooning modes, ELMs, neoclassical tearing modes, etc) are characterized by satisfying the condition {{k}}0 \\perp {B}, or nearly so. In contrast, some of the major macroscopic instabilities of astrophysical plasmas (the Parker instability and the magneto-rotational instability) occur when precisely the opposite condition is satisfied: {{k}}0 \\parallel {B}. How do those instabilities escape from the dominance of the stabilizing Alfvén wave? The answer to that question involves, foremost, the recognition that MHD spectral theory of waves and instabilities of laboratory plasmas could be developed to such great depth since those plasmas are assumed to be in static equilibrium. This assumption is invalid for astrophysical plasmas where rotational and gravitational accelerations produce equilibria that are at best stationary, and the associated spectral theory is widely, and incorrectly, believed to be non-self adjoint. These complications are addressed, and cured, in the theory of the Spectral Web, recently developed by the author. Using this method, an extensive survey of instabilities of astrophysical plasmas demonstrates how the Alfvén wave is pushed into insignificance under these conditions to give rise to a host of instabilities that do not
Energy Technology Data Exchange (ETDEWEB)
Antolin, P.; De Moortel, I. [School of Mathematics and Statistics, University of St. Andrews, St. Andrews, Fife KY16 9SS (United Kingdom); Van Doorsselaere, T. [Centre for mathematical Plasma Astrophysics, Mathematics Department, KU Leuven, Celestijnenlaan 200B bus 2400, B-3001 Leuven (Belgium); Yokoyama, T., E-mail: patrick.antolin@st-andrews.ac.uk [Department of Earth and Planetary Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan)
2016-10-20
In the highly structured solar corona, resonant absorption is an unavoidable mechanism of energy transfer from global transverse MHD waves to local azimuthal Alfvén waves. Due to its localized nature, direct detection of this mechanism is extremely difficult. Yet, it is the leading theory explaining the observed fast damping of the global transverse waves. However, at odds with this theoretical prediction are recent observations that indicate that in the low-amplitude regime such transverse MHD waves can also appear decay-less, a still unsolved phenomenon. Recent numerical work has shown that Kelvin–Helmholtz instabilities (KHI) often accompany transverse MHD waves. In this work, we combine 3D MHD simulations and forward modeling to show that for currently achieved spatial resolution and observed small amplitudes, an apparent decay-less oscillation is obtained. This effect results from the combination of periodic brightenings produced by the KHI and the coherent motion of the KHI vortices amplified by resonant absorption. Such an effect is especially clear in emission lines forming at temperatures that capture the boundary dynamics rather than the core, and reflects the low damping character of the local azimuthal Alfvén waves resonantly coupled to the kink mode. Due to phase mixing, the detected period can vary depending on the emission line, with those sensitive to the boundary having shorter periods than those sensitive to the loop core. This allows us to estimate the density contrast at the boundary.
Survey of linear MHD stability in tokamak configurations
International Nuclear Information System (INIS)
Wakatani, M.
1977-01-01
The results found by MHD stability studies for both low-beta and high-beta tokamaks are reviewed. The stability against kink-ballooning modes in equilibria surrounded by vacuum or a layer of force free currents is considered. Internal kink modes and the relation to interchange modes, which should be considered after external kink modes are suppressed, are surveyed
Effect of chemical reaction on unsteady MHD free convective two ...
African Journals Online (AJOL)
The effect of flow parameters on the coefficient of skin friction, Nusselt number and Sherwood number are also tabulated and discussed appropriately. It was observed that the increase in chemical reaction coefficient/parameter suppresses both velocity and concentration profiles. Keywords: Chemical Reaction, MHD, ...
MHD Hele-Shaw flow of Rivlin-Ericksen fluid
International Nuclear Information System (INIS)
Ghosh, B.C.; Sengupta, P.R.
1995-01-01
In this paper, an attempt has been made to study the MHD Hele-Shaw flow of Rivlin-Ericksen visco-elastic fluid assuming the pressure gradient to be proportional to exp (-nt). The velocity components are obtained and the effect of visco-elasticity is discussed on velocity components. (author). 8 refs
Thermosolutal MHD flow and radiative heat transfer with viscous ...
African Journals Online (AJOL)
This paper investigates double diffusive convection MHD flow past a vertical porous plate in a chemically active fluid with radiative heat transfer in the presence of viscous work and heat source. The resulting nonlinear dimensionless equations are solved by asymptotic analysis technique giving approximate analytic ...
Free convection effects and radiative heat transfer in MHD Stokes ...
Indian Academy of Sciences (India)
The present note deals with the effects of radiative heat transfer and free convection in MHD for a ﬂow of an electrically conducting, incompressible, dusty viscous ﬂuid past an impulsively started vertical non-conducting plate, under the inﬂuence of transversely applied magnetic ﬁeld. The heat due to viscous dissipation and ...
Hall effects on MHD flow past an accelerated plate
International Nuclear Information System (INIS)
Soundalgekar, V.M.; Ravi, S.; Hiremath, S.B.
1980-01-01
An exact solution of the MHD flow of an incompressible, electrically conducting, viscous fluid past a uniformly accelerated plate is presented. The velocity profiles are shown graphically and the numerical values of axial and transverse components of skin friction are tabulated. At high values of the Hall parameter, ωtau, the velocity is found to be oscillatory near the plate. (author)
Initial assessment of the MHD stability of TMX-U
International Nuclear Information System (INIS)
Nexsen, W.E.
1983-01-01
In its operation to date TMX-U has reached values of beta which, for all except the hot electron beta, are close to the proposal values and has not encountered MHD stability problems. The hot electron beta values are presently limited by gyrotron output power and pulse length as well as ion confinement time. Further exploration of stability awaits full thermal barrier operation
A high current density DC magnetohydrodynamic (MHD) micropump
Homsy, Alexandra; Koster, Sander; Hogen-Koster, S.; Eijkel, Jan C.T.; van den Berg, Albert; Lucklum, F.; Verpoorte, E.; de Rooij, Nico F.
2005-01-01
This paper describes the working principle of a DC magnetohydrodynamic (MHD) micropump that can be operated at high DC current densities (J) in 75-µm-deep microfluidic channels without introducing gas bubbles into the pumping channel. The main design feature for current generation is a micromachined
A high current density DC magnetohydrodynamic (MHD) micropump
Homsy, A; Koster, Sander; Eijkel, JCT; van den Berg, A; Lucklum, F; Verpoorte, E; de Rooij, NF
2005-01-01
This paper describes the working principle of a DC magnetohydrodynamic (MHD) micropump that can be operated at high DC current densities (J) in 75-mu m-deep microfluidic channels without introducing gas bubbles into the pumping channel. The main design feature for current generation is a
Standing Slow MHD Waves in Radiatively Cooling Coronal Loops ...
Indian Academy of Sciences (India)
The standing slow magneto-acoustic oscillations in cooling coronal loops ... turbation and, eventually, reduces the MHD equations to a 1D system modelling ..... where the function Q is expanded in power series with respect to ǫ, i.e.,. Q = Q0 + ...
Construction of a Roe linearization for the ideal MHD equations
International Nuclear Information System (INIS)
Cargo, P.; Gallice, G.; Raviart, P.A.
1996-01-01
In [3], Munz has constructed a Roe linearization for the equations of gas dynamics in Lagrangian coordinates. We extend this construction to the case of the ideal magnetohydrodynamics equations again in Lagrangian coordinates. As a consequence we obtain a Roe linearization for the MHD equations in Eulerian coordinates. (author)
Ideal MHD stability analysis of KSTAR target AT mode
International Nuclear Information System (INIS)
Yi, S.M.; Kim, J.H.; You, K.I.; Kim, J.Y.
2009-01-01
Full text: A main research objective of KSTAR (Korea Superconducting Tokamak Advanced Research) device is to demonstrate the steady-state operation capability of high-performance AT (Advanced Tokamak) mode. To meet this goal, it is critical for KSTAR to have a good MHD stability boundary, particularly against the high-beta ideal instabilities such as the external kink and the ballooning modes. To support this MHD stability KSTAR has been designed to have a strong plasma shape and a close interval between plasma and passive- plate wall. During the conceptual design phase of KSTAR, a preliminary study was performed to estimate the high beta MHD stability limit of KSTAR target AT mode using PEST and VACUUM codes and it was shown that the target AT mode can be stable up to β N ∼ 5 with a well-defined plasma pressure and current profiles. Recently, a new calculation has been performed to estimate the ideal stability limit in various KSTAR operating conditions using DCON code, and it has been observed that there is some difference between the new and old calculation results, particularly in the dependence of the maximum β N value on the toroidal mode number. Here, we thus present a more detailed analysis of the ideal MHD stability limit of KSTAR target AT mode using various codes, which include GATO as well as PEST and DCON, in the comparison of calculation results among the three codes. (author)
Superconducting dipole magnet for the UTSI MHD facility
International Nuclear Information System (INIS)
Wang, S.T.; Niemann, R.C.; Turner, L.R.
1978-01-01
The Argonne National Laboratory is designing and will build a large superconducting dipole magnet system for use in the Coal Fired Flow MHD Research Facility at the University of Tennessee Space Institute (UTSI). Presented in detail are the conceptual design of the magnet geometry, conductor design, cryostability evaluation, magnetic pressure computation, structural design, cryostat design, the cryogenics system design, and magnet instrumentations and control
Merging of coronal and heliospheric numerical two dimensional MHD models
Czech Academy of Sciences Publication Activity Database
Odstrčil, Dušan; Linker, J. A.; Lionello, R.; Mikic, Z.; Riley, P.; Pizzo, J. V.; Luhmann, J. G.
2002-01-01
Roč. 107, A12 (2002), s. SSH14-1 - SSH14-11 ISSN 0148-0227 R&D Projects: GA AV ČR IAA3003003 Institutional research plan: CEZ:AV0Z1003909 Keywords : coronal mass ejection * interplanetary shock * numerical MHD simulation Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 2.245, year: 2002
Conducting grids to stabilize MHD generator plasmas against ionization instabilities
International Nuclear Information System (INIS)
Veefkind, A.
1972-09-01
Ionization instabilities in MHD generators may be suppressed by the use of grids that short circuit the AC electric field component corresponding to the direction of maximum growth. An analysis of the influence of the corresponding boundary conditions has been performed in order to obtain more quantitative information about the stabilizing effect of this system
CASTOR: Normal-mode analysis of resistive MHD plasmas
Kerner, W.; Goedbloed, J. P.; Huysmans, G. T. A.; Poedts, S.; Schwarz, E.
1998-01-01
The CASTOR (complex Alfven spectrum of toroidal plasmas) code computes the entire spectrum of normal-modes in resistive MHD for general tokamak configurations. The applied Galerkin method, in conjunction with a Fourier finite-element discretisation, leads to a large scale eigenvalue problem A (x)
2-D skin-current toroidal-MHD-equilibrium code
International Nuclear Information System (INIS)
Feinberg, B.; Niland, R.A.; Coonrod, J.; Levine, M.A.
1982-09-01
A two-dimensional, toroidal, ideal MHD skin-current equilibrium computer code is described. The code is suitable for interactive implementation on a minicomptuer. Some examples of the use of the code for design and interpretation of toroidal cusp experiments are presented
Numerical Calculation of the Output Power of a MHD Generator
Directory of Open Access Journals (Sweden)
Adrian CARABINEANU
2014-12-01
Full Text Available Using Lazăr Dragoş’s analytic solution for the electric potential we perform some numerical calculations in order to find the characteristics of a Faraday magnetohydrodymamics (MHD power generator (total power, useful power and Joule dissipation power.
Modified NASA-Lewis chemical equilibrium code for MHD applications
Sacks, R. A.; Geyer, H. K.; Grammel, S. J.; Doss, E. D.
1979-01-01
A substantially modified version of the NASA-Lewis Chemical Equilibrium Code was recently developed. The modifications were designed to extend the power and convenience of the Code as a tool for performing combustor analysis for MHD systems studies. The effect of the programming details is described from a user point of view.
A Fast MHD Code for Gravitationally Stratified Media using ...
Indian Academy of Sciences (India)
namic (MHD) algorithms are important for numerical modelling of highly .... include OpenMP-style pragma-based programming, e.g., developed by PGI, HMPP, .... Thus, the formula (10) returns the one-dimensional index for a field point. A.
Mixed convective heat transfer from a vertical plate embedded
Indian Academy of Sciences (India)
Abstract. The effect of melting and solute dispersion on heat and mass transfer in non-Darcy fluid flow over a vertical surface has been studied numerically in the present article. The flow is assumed to be laminar and steady state. Using similarity transformations, the governing boundary layer equations are transformed into ...
Energy Technology Data Exchange (ETDEWEB)
NONE
1981-01-01
The members of MHD project examination subcommittee made an investigative tour of the U.S. on the state of development of MHD generation. This report of the 2nd part explains opinions and the present status of the R and D on MHD generation by each of the 19 institutions visited. The U.S. research on MHD generation is under the leadership of DOE, whereby the budget for the development is so large as nearly one hundred million dollars have been provided for several years. The purpose is the effective use of domestic coal. General Electric is of the opinion that a combined gas turbine system will be put to practical use earlier because MHD takes time for practicability despite its highest efficiency in coal-utilized power generation. Yet, GE thinks MHD will be more attractive in the future. Reynolds Metal is considering application of MHD generation to the electro-chemical industry at present. According to Reynolds, combined supply of electric output and heat of MHD can reduce the use of calorie per ton of aluminum from 240 MBTU to 100. Montana Power is promoting practicability through a combined plan with DOE-built MHD generation. (NEDO)
International Nuclear Information System (INIS)
Welch, G.E.; Dugan, E.T.; Lear, W.E. Jr.; Appelbaum, J.G.
1990-01-01
A gas core nuclear reactor (GCR)/disk magnetohydrodynamic (MHD) generator direct closed Rankine space power system concept is described. The GCR/disk MHD generator marriage facilitates efficient high electric power density system performance at relatively high operating temperatures. The system concept promises high specific power levels, on the order of 1 kW e /kg. An overview of the disk MHD generator component magnetofluiddynamic and plasma physics theoretical modeling is provided. Results from a parametric design analysis of the disk MHD generator are presented and discussed
An approach to verification and validation of MHD codes for fusion applications
Energy Technology Data Exchange (ETDEWEB)
Smolentsev, S., E-mail: sergey@fusion.ucla.edu [University of California, Los Angeles (United States); Badia, S. [Centre Internacional de Mètodes Numèrics en Enginyeria, Barcelona (Spain); Universitat Politècnica de Catalunya – Barcelona Tech (Spain); Bhattacharyay, R. [Institute for Plasma Research, Gandhinagar, Gujarat (India); Bühler, L. [Karlsruhe Institute of Technology (Germany); Chen, L. [University of Chinese Academy of Sciences, Beijing (China); Huang, Q. [Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui (China); Jin, H.-G. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Krasnov, D. [Technische Universität Ilmenau (Germany); Lee, D.-W. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Mas de les Valls, E. [Centre Internacional de Mètodes Numèrics en Enginyeria, Barcelona (Spain); Universitat Politècnica de Catalunya – Barcelona Tech (Spain); Mistrangelo, C. [Karlsruhe Institute of Technology (Germany); Munipalli, R. [HyPerComp, Westlake Village (United States); Ni, M.-J. [University of Chinese Academy of Sciences, Beijing (China); Pashkevich, D. [St. Petersburg State Polytechnical University (Russian Federation); Patel, A. [Universitat Politècnica de Catalunya – Barcelona Tech (Spain); Pulugundla, G. [University of California, Los Angeles (United States); Satyamurthy, P. [Bhabha Atomic Research Center (India); Snegirev, A. [St. Petersburg State Polytechnical University (Russian Federation); Sviridov, V. [Moscow Power Engineering Institute (Russian Federation); Swain, P. [Bhabha Atomic Research Center (India); and others
2015-11-15
Highlights: • Review of status of MHD codes for fusion applications. • Selection of five benchmark problems. • Guidance for verification and validation of MHD codes for fusion applications. - Abstract: We propose a new activity on verification and validation (V&V) of MHD codes presently employed by the fusion community as a predictive capability tool for liquid metal cooling applications, such as liquid metal blankets. The important steps in the development of MHD codes starting from the 1970s are outlined first and then basic MHD codes, which are currently in use by designers of liquid breeder blankets, are reviewed. A benchmark database of five problems has been proposed to cover a wide range of MHD flows from laminar fully developed to turbulent flows, which are of interest for fusion applications: (A) 2D fully developed laminar steady MHD flow, (B) 3D laminar, steady developing MHD flow in a non-uniform magnetic field, (C) quasi-two-dimensional MHD turbulent flow, (D) 3D turbulent MHD flow, and (E) MHD flow with heat transfer (buoyant convection). Finally, we introduce important details of the proposed activities, such as basic V&V rules and schedule. The main goal of the present paper is to help in establishing an efficient V&V framework and to initiate benchmarking among interested parties. The comparison results computed by the codes against analytical solutions and trusted experimental and numerical data as well as code-to-code comparisons will be presented and analyzed in companion paper/papers.
Liquid metal MHD research and development in Israel
International Nuclear Information System (INIS)
Branover, H.
1993-01-01
The study of liquid metal MHD in Israel commenced in 1973. Initially it was concentrated mainly on laminar flows influenced by external magnetic fields. In 1978 a liquid metal MHD energy conversion program was started. This program was developed at the Center for MHD Studies at Ben-Gurion University in Beer-Sheva, with the participation of specialists from the Technion, the Hebrew University of Jerusalem, Israel Atomic Energy Commission, and others. The program was sponsored initially by the Israel Ministry of Energy and Infrastructure, and later by the Ministry of Industry and Trade. Since 1980, Solmecs, a private commercial company has become a major factor in the development of liquid metal MHD in Israel. From the very beginning the program was based on broad international cooperation. A number of overseas institutions and individuals became participants in the program. Through extensive research and evaluation of a number of concepts of liquid metal MHD power generation systems, It was established that the most promising concept, demanding a relatively short period of development, is the gravitational system using heavy metals (lead, lead alloys) as the magneto-hydrodynamic fluid and steam or gases as thermodynamic fluids. This concept was chosen for further development and industrial application, and the program related to such systems was named the Etgar Program. The main directions of research and development activities have been defined as follows: investigations of physical phenomena, development of universal numerical code for parametric studies, optimization and design of the system, material studies, development of engineering components, building and testing of integrated small-scale Etgar type systems, economic evaluation of the system and comparison with conventional technologies, development of moderate scale industrial demonstration plant. At this time 6 items have been fully implemented and activities on the last item were started. (author)
Performance and flow characteristics of MHD seawater thruster
Energy Technology Data Exchange (ETDEWEB)
Doss, E.D.
1990-01-01
The main goal of the research is to investigate the effects of strong magnetic fields on the electrical and flow fields inside MHD thrusters. The results of this study is important in the assessment of the feasibility of MHD seawater propulsion for the Navy. To accomplish this goal a three-dimensional fluid flow computer model has been developed and applied to study the concept of MHD seawater propulsion. The effects of strong magnetic fields on the current and electric fields inside the MHD thruster and their interaction with the flow fields, particularly those in the boundary layers, have been investigated. The results of the three-dimensional computations indicate that the velocity profiles are flatter over the sidewalls of the thruster walls in comparison to the velocity profiles over the electrode walls. These nonuniformities in the flow fields give rise to nonuniform distribution of the skin friction along the walls of the thrusters, where higher values are predicted over the sidewalls relative to those over the electrode walls. Also, a parametric study has been performed using the three-dimensional MHD flow model to analyze the performance of continuous electrode seawater thrusters under different operating parameters. The effects of these parameters on the fluid flow characteristics, and on the thruster efficiency have been investigated. Those parameters include the magnetic field (10--20 T), thruster diameter, surface roughness, flow velocity, and the electric load factor. The results show also that the thruster performance improves with the strength of the magnetic field and thruster diameter, and the efficiency decreases with the flow velocity and surface roughness.
Energy Technology Data Exchange (ETDEWEB)
NONE
1968-09-01
Compiled are the results of studies conducted in fiscal 1967 on MHD (magnetohydrodynamic) power generation. In the test operation and modification of a 1,000kW-class MHD power generator at the Electrical Research Laboratory, a test is conducted using Faraday-type electrodes. It is then found that this configuration results in a maximum output of approximately 700kW, which is less than expected. In the experimental construction at the Hitachi, Ltd., of a machine capable of a long-term operation, an MHD power generator is built for a continuous operation of 100 hours with an maximum output of 2kW, and a 110-hour power generation is successfully achieved with a maximum output of 1.9kW. In the research and development of heat exchangers, tests are conducted for a bulkhead type heat exchanger, heat accumulator type heat exchanger, molten slag type heat exchanger, and a gas/liquid 2-phase flow type heat exchanger. In the study of heat-resisting insulators, materials based on zirconate, magnesia, thoria, zirconia, etc., are tested. In addition, studies are conducted on electrode materials, superconductive electromagnets (small superconductive electromagnets for MHD power generators, turbine type helium liquefiers, superconductive wires for 70-kilogauss electromagnets, etc.), and thermal performance rating. (NEDO)
Energy Technology Data Exchange (ETDEWEB)
NONE
1982-03-01
'Research on MHD generation system' was implemented by its expert committee in the electric joint study group, with the results of fiscal 1981 reported. This year, technological reexamination was conducted for a 2,000 MWt commercial MHD generation plant, with evaluation carried out on the cost performance including the construction and operation cost. In addition, for the purpose of intermediate R and D towards the practicability, examination was also conducted on a system structure, concrete specifications of component element, cost of R and D including operation expenses for example, concerning an 100 MWt class experimental plant and a 500 MWt class plant. In the investigation of the overseas trend, information was summarized in detail on the experimental devices, combustors, generation channels, electrode materials, electrode phenomena, theoretical analyses, seeds, slag, component equipment, instrumental technologies, conceptual designs of generation plant, commercial plant, etc., in Soviet Union, China, Holland, India and EPRI, on the basis of the materials from the 19th MHD symposium held in UTSI and from the coal MHD specialist conference held in Sydney. (NEDO)
Subsonic Constant-Area MHD Generator Experiments with the CNEN Blow-Down Loop Facility
Energy Technology Data Exchange (ETDEWEB)
Bertolini, E.; Gasparotto, M.; Gay, P.; Toschi, R. [Laboratorio Conversione Diretta, CNEN, Frascati (Italy)
1968-11-15
The design of the facility, described at the Salzburg Symposium, was somewhat modified following the results of the commissioning tests; the changes were mainly concerned with the thermal insulation, duct materials and caesium recovery system. The facility went into full operation in March 1967 and since then two series of MHD experiments, a total of twenty-six runs, have been performed. During the MHD runs the facility has been working mostly under the following operating conditions: stagnation temperature 1500 to 1800 Degree-Sign K; stagnation pressure-1 to 3 atm. abs.; mass How 50 to 150 g/sec; seeding 2 to 5 at.%- ; magnetic field 0 to 45 k G; Mach number 0.4 to 0.8; Hall parameter up to 6. The main purpose of the experiments was to study the performance of relatively small generators (cross-section 3 x 5 cm{sup 2}, length 8-20 cm) both when the non-equilibrium ionization is expected to be negligible and when it should be, in a very idealized model, relevant. As a first step, efforts were made to ascertain whether any of the unsatisfactory results reported in Salzburg, both for equilibrium and non-equilibrium generators, stemmed not from the basic functioning principle of an MHD small-scale generator but rather from some inadequacy of the experimental apparatus. Therefore particular attention was paid to: ceasium vaporization and mixing with helium; plasma insulation from ground; electrical insulation from ground and from each other of those electrically conductive parts of the facility which may, during the functioning, come into contact with the plasma; temperature control of the duct; purity level; duct materials; measurement system and control. In the equilibrium regime the Faraday field measured is very close to the ideal value and it reaches 80 V/cm (400 volts between electrodes); the Hall field still remains below the ideal value uB{beta}L (50% at {beta} = 3). The maximum Hall field was about 35 V/cm for a corresponding voltage of 600 V. Preionization
Recent Progress in MHD Stability Calculations of Compact Stellarators
International Nuclear Information System (INIS)
Fu, G.Y.; Ku, L.P.; Redi, M.H.; Kessel, C.; Monticello, D.A.; Reiman, A.; Cooper, W.A.; Nuehrenberg, C.; Sanchez, R.; Ware, A.; Hirshman, S.P.; Spong, D.A.
2000-01-01
A key issue for compact stellarators is the stability of beta-limiting MHD modes, such as external kink modes driven by bootstrap current and pressure gradient. We report here recent progress in MHD stability studies for low-aspect-ratio Quasi-Axisymmetric Stellarators (QAS) and Quasi-Omnigeneous Stellarators (QOS). We find that the N = 0 periodicity-preserving vertical mode is significantly more stable in stellarators than in tokamaks because of the externally generated rotational transform. It is shown that both low-n external kink modes and high-n ballooning modes can be stabilized at high beta by appropriate 3D shaping without a conducting wall. The stabilization mechanism for external kink modes in QAS appears to be an enhancement of local magnetic shear due to 3D shaping. The stabilization of ballooning mode in QOS is related to a shortening of the normal curvature connection length
Nonlinear MHD dynamics of tokamak plasmas on multiple time scales
International Nuclear Information System (INIS)
Kruger, S.E.; Schnack, D.D.; Brennan, D.P.; Gianakon, T.A.; Sovinec, C.R.
2003-01-01
Two types of numerical, nonlinear simulations using the NIMROD code are presented. In the first simulation, we model the disruption occurring in DIII-D discharge 87009 as an ideal MHD instability driven unstable by neutral-beam heating. The mode grows faster than exponential, but on a time scale that is a hybrid of the heating rate and the ideal MHD growth rate as predicted by analytic theory. The second type of simulations, which occur on a much longer time scale, focus on the seeding of tearing modes by sawteeth. Pressure effects play a role both in the exterior region solutions and in the neoclassical drive terms. The results of both simulations are reviewed and their implications for experimental analysis is discussed. (author)
Investigations on application of multigrid method to MHD equilibrium analysis
International Nuclear Information System (INIS)
Ikuno, Soichiro
2000-01-01
The potentiality of application for Multi-grid method to MHD equilibrium analysis is investigated. The nonlinear eigenvalue problem often appears when the MHD equilibria are determined by solving the Grad-Shafranov equation numerically. After linearization of the equation, the problem is solved by use of the iterative method. Although the Red-Black SOR method or Gauss-Seidel method is often used for the solution of the linearized equation, it takes much CPU time to solve the problem. The Multi-grid method is compared with the SOR method for the Poisson Problem. The results of computations show that the CPU time required for the Multi-grid method is about 1000 times as small as that for the SOR method. (author)
Sawtooth oscillations as MHD relaxation process in a plasma
International Nuclear Information System (INIS)
Yoshida, Zensho; Inoue, Nobuyuki; Ogawa, Yuichi
1992-01-01
The sawtooth oscillation in a tokamak plasma is a spontaneous relaxation process accompanying global instabilities which behave to reduce the internal magnetic energy. This phenomenon has a similarity to the MHD relaxation processes in Reversed Field Pinch (RFP) and Ultra Low Q (ULQ) plasmas. The self-stabilizing effect of instabilities with m (poloidal mode number) = 1 results in an increase in the central safety factor q(0). Nonlinear dynamics of m = 1 instabilities has been discussed both for global and local modes. The latter appears when a pitch minimum exists in the plasma, and is relevant to the compound sawtooth oscillation. The MHD relaxation is a restructuring process of the plasma current profile that is competitive with the resistive diffusion. (author)
Design of an Open-Cycle, Vortex MHD Generator
Energy Technology Data Exchange (ETDEWEB)
Thalimer, J. R.; Kurtzrock, R. C.; Simons, W. H.; Bienstock, D. [Pittsburgh Coal Research Center, US Bureau Of Mines, Pittsburgh, PA (United States); Hughes, W. F. [Carnegie-Mellon University, Pittsburgh, PA (United States)
1968-11-15
The US Bureau of Mines has built a vortex MHD generator which combines the combustor-nozzle-duct combination into one integral unit. The vortex MHD generator consists of a cyclone burner, 7.5 in. diameter, 21 in. in length, with the inner wall used as one electrode together with a coaxial centre electrode. Power is obtained by impressing an axial field of 3000 G from an air solenoid magnet. Electrical output is expected to be one kilowatt. For the initial runs natural gas will be burned in oxygen-enriched, preheated air with a subsequent change to coal as a fuel. A theoretical analysis has been completed which predicts the velocity profiles and the electrical output characteristics of the generator. This analysis assumes variations in the radial and axial directions for all variables, steady state inviscid flow, constant electrical conductivity and a small magnetic Reynolds number. (author)
Divergence-free MHD Simulations with the HERACLES Code
Directory of Open Access Journals (Sweden)
Vides J.
2013-12-01
Full Text Available Numerical simulations of the magnetohydrodynamics (MHD equations have played a significant role in plasma research over the years. The need of obtaining physical and stable solutions to these equations has led to the development of several schemes, all requiring to satisfy and preserve the divergence constraint of the magnetic field numerically. In this paper, we aim to show the importance of maintaining this constraint numerically. We investigate in particular the hyperbolic divergence cleaning technique applied to the ideal MHD equations on a collocated grid and compare it to the constrained transport technique that uses a staggered grid to maintain the property. The methods are implemented in the software HERACLES and several numerical tests are presented, where the robustness and accuracy of the different schemes can be directly compared.
Kinetic Modifications to MHD Phenomena in Toroidal Plasmas
International Nuclear Information System (INIS)
Cheng, C.Z.; Gorelenkov, N.N.; Kramer, G.J.; Fredrickson, E.
2004-01-01
Particle kinetic effects involving small spatial and fast temporal scales can strongly affect MHD phenomena and the long time behavior of plasmas. In particular, kinetic effects such as finite ion gyroradii, trapped particle dynamics, and wave-particle resonances have been shown to greatly modify the stability of MHD modes. Here, the kinetic effects of trapped electron dynamics and finite ion gyroradii are shown to have a large stabilizing effect on kinetic ballooning modes in low aspect ratio toroidal plasmas such as NSTX [National Spherical Torus Experiment]. We also present the analysis of Toroidicity-induced Alfven Eigenmodes (TAEs) destabilized by fast neutral-beam injected ions in NSTX experiments and TAE stability in ITER due to alpha-particles and MeV negatively charged neutral beam injected ions
MHD activity triggered by monster sawtooth crashes on Tore Supra
International Nuclear Information System (INIS)
Maget, P; Artaud, J-F; Eriksson, L-G; Huysmans, G; Lazaros, A; Moreau, P; Ottaviani, M; Segui, J-L; Zwingmann, W
2005-01-01
The crash of monster sawteeth in Tore Supra ion cyclotron resonance heated plasmas is observed to trigger long-lived magneto hydrodynamic (MHD) activity, dominated by a (m = 3, n = 2) magnetic perturbation at the edge. This phenomenon is reminiscent of the triggering of neoclassical tearing modes, although in Tore Supra the MHD activity decays and eventually vanishes. It can be explained by the linear destabilization of the (3, 2) mode as the current sheet developed in the non-linear stage of the internal kink relaxation gets closer to q = 3/2. However, the lifetime of the (3, 2) island is longer than the period of linear instability. We find that the neoclassical drive is essential for explaining the observed lifetime and width of the island, although the overall dynamics is controlled by the relaxation of the current profile on a resistive time scale
Ceramic component for M.H.D electrode
International Nuclear Information System (INIS)
Marchant, D.D.; Bates, J.L.
1980-01-01
A ceramic component which exhibits electrical conductivity down to near room temperatures has the formula: Hfsub(x)Insub(y)Asub(z)O 2 where x = 0.1 to 0.4, y = 0.3 to 0.6, z = 0.1 to 0.4 and A is a rare earth or yttrium. The rare earth may be Yb, Tb, Pr or Ce. The component is suitable for use in the fabrication of MHD electrodes or as the current lead-out portion of a composite electrode with other ceramic components. An MHD electrode comprises a cap of a known ceramic, e.g. stabilised zirconium or hafnium oxide or terbium stabilised hafnium, a current lead-out ceramic according to the invention, and a copper frame. (author)
Calculation code NIRVANA for free boundary MHD equilibrium
International Nuclear Information System (INIS)
Ninomiya, Hiromasa; Suzuki, Yasuo; Kameari, Akihisa
1975-03-01
The calculation method and code of solving the free boundary problem for MHD equilibrium has been developed. Usage of the code ''NIRVANA'' is described. The toroidal plasma current density determined as a function of the flux function PSI is substituted by a group of the ring currents, whereby the equation of MHD equilibrium is transformed into an integral equation. Either of the two iterative methods is chosen to solve the integral equation, depending on the assumptions made of the plasma surface points. Calculation of the magnetic field configurations is possible when the plasma surface coincides self-consistently with the magnetic flux including the separatrix points. The code is usable in calculation of the circular or non-circular shell-less Tokamak equilibrium. (auth.)
Characteristics of MHD stability of high beta plasmas in LHD
International Nuclear Information System (INIS)
Sato, M.; Nakajima, N.; Watanabe, K.Y.; Todo, Y.; Suzuki, Y.
2012-11-01
In order to understand characteristics of the MHD stability of high beta plasmas obtained in the LHD experiments, full MHD simulations have been performed for the first time. Since there is a magnetic hill in a plasma peripheral region, the ballooning modes extending into the plasma peripheral region with a chaotic magnetic field are destabilized. However, in the nonlinear phase, the core region comes under the in influence of the instabilities and the central pressure decreases. There is a tendency that modes are suppressed as the beta value and/or magnetic Reynolds number increase, which is consistent with a result that high beta plasmas enter the second stable region of the ideal ballooning modes as beta increases and remaining destabilized ballooning modes are considered to be resistive type. (author)
Studies on the crossed flow type MHD turbines
International Nuclear Information System (INIS)
Hori, Toshihiro; Katsurai, Makoto
1981-01-01
The studies on crossed flow type MHD turbines were performed to improve its characteristics. Two-dimensional models were considered for the analytical studies. To compensate the edge effect of magnetic field, the magnetic field gradient by tapering was considered. An iron-core structure and an air-core structure were investigated. It was found that the ideal characteristics can be obtained when there is the tapered length more than one wave length. Various methods for the improvement of magnetic field were studied in the case of practical crossed flow type MHD turbines. The methods were the adjustment with an iron-core, and the adoption of a curved channel. It can be expected to obtain the internal efficiency of more than 70 percent, when the number of pole-pairs is more than 10 and the radius of curvature of a few times of rotor radius is given to a curved channel. (Kato, T.)
United States Superconducting MHD Magnet Technology Development Program
International Nuclear Information System (INIS)
Dawson, A.M.; Marston, P.G.; Thome, R.J.; Iwasa, Y.; Tarrh, J.M.
1981-01-01
A three-faceted program supported by the U.S. Dep of Energy is described. These facets include basic technology development, technology transfer and construction by industry of magnets for the national MHD program. The program includes the maintenance of a large component test facility; investigation of superconductor stability and structural behavior; measurements of materials' properties at low temperatures; structural design optimization; analytical code development; cryogenic systems and power supply design. The technology transfer program is designed to bring results of technology development and design and construction effort to the entire superconducting magnet community. The magnet procurement program is responsible for developing conceptual designs of magnets needed for the national MHD program, for issuing requests for quotation, selecting vendors and supervising design, construction, installation and test of these systems. 9 refs
Goya - an MHD equilibrium code for toroidal plasmas
International Nuclear Information System (INIS)
Scheffel, J.
1984-09-01
A description of the GOYA free-boundary equilibrium code is given. The non-linear Grad-Shafranov equation of ideal MHD is solved in a toroidal geometry for plasmas with purely poloidal magnetic fields. The code is based on a field line-tracing procedure, making storage of a large amount of information on a grid unnecessary. Usage of the code is demonstrated by computations of equi/libria for the EXTRAP-T1 device. (Author)
MHD pressure drop of imperfect insulation of liquid metal flow
International Nuclear Information System (INIS)
Horiike, H.; Nishiura, R.; Inoue, S.; Miyazaki, K.
2000-01-01
An experiment was performed to study magnetohydrodynamic (MHD) pressure gradient in the case of an imperfect electric insulation coating when using NaK loop. Test channels with uniform defects in their coating were made by painting inner surface with acrylic lacquer insulation. It was found that the exponent to B -- which is 1 for insulated walls, and 2 for conducting ones, was very sensitive to crack fractions lower than 25%. The pressure gradient was found to increase almost linearly with the fraction
MHD Advanced Power Train Phase I, Final Report, Volume 7
Energy Technology Data Exchange (ETDEWEB)
A. R. Jones
1985-08-01
This appendix provides additional data in support of the MHD/Steam Power Plant Analyses reported in report Volume 5. The data is in the form of 3PA/SUMARY computer code printouts. The order of presentation in all four cases is as follows: (1) Overall Performance; (2) Component/Subsystem Information; (3) Plant Cost Accounts Summary; and (4) Plant Costing Details and Cost of Electricity.
Waveguide and loop coupling to fast MHD toroidal eigenmodes
International Nuclear Information System (INIS)
Paoloni, F.J.
1975-12-01
Heating of plasmas by wave techniques requires an effective method of coupling rf energy to the plasma. In cavities the presence of weakly damped eigenmodes will enhance the loading of antennas when the wave frequency equals an eigenmode frequency. This report considers two methods of coupling to fast MHD eigenmodes in a toroidal cavity: one is by a waveguide mounted perpendicular to the vacuum vessel wall; and the other by a loop placed within the cavity
MAIA, Eigenvalues for MHD Equation of Tokamak Plasma Stability Problems
International Nuclear Information System (INIS)
Tanaka, Y.; Azumi, M.; Kurita, G.; Tsunematsu, T.; Takeda, T.
1986-01-01
1 - Description of program or function: This program solves an eigenvalue problem zBx=Ax where A and B are real block tri-diagonal matrices. This eigenvalue problem is derived from a reduced set of linear resistive MHD equations which is often employed to study tokamak plasma stability problem. 2 - Method of solution: Both the determinant and inverse iteration methods are employed. 3 - Restrictions on the complexity of the problem: The eigenvalue z must be real
Intermittency in MHD turbulence and coronal nanoflares modelling
Directory of Open Access Journals (Sweden)
P. Veltri
2005-01-01
Full Text Available High resolution numerical simulations, solar wind data analysis, and measurements at the edges of laboratory plasma devices have allowed for a huge progress in our understanding of MHD turbulence. The high resolution of solar wind measurements has allowed to characterize the intermittency observed at small scales. We are now able to set up a consistent and convincing view of the main properties of MHD turbulence, which in turn constitutes an extremely efficient tool in understanding the behaviour of turbulent plasmas, like those in solar corona, where in situ observations are not available. Using this knowledge a model to describe injection, due to foot-point motions, storage and dissipation of MHD turbulence in coronal loops, is built where we assume strong longitudinal magnetic field, low beta and high aspect ratio, which allows us to use the set of reduced MHD equations (RMHD. The model is based on a shell technique in the wave vector space orthogonal to the strong magnetic field, while the dependence on the longitudinal coordinate is preserved. Numerical simulations show that injected energy is efficiently stored in the loop where a significant level of magnetic and velocity fluctuations is obtained. Nonlinear interactions give rise to an energy cascade towards smaller scales where energy is dissipated in an intermittent fashion. Due to the strong longitudinal magnetic field, dissipative structures propagate along the loop, with the typical speed of the Alfvén waves. The statistical analysis on the intermittent dissipative events compares well with all observed properties of nanoflare emission statistics. Moreover the recent observations of non thermal velocity measurements during flare occurrence are well described by the numerical results of the simulation model. All these results naturally emerge from the model dynamical evolution without any need of an ad-hoc hypothesis.
HPC parallel programming model for gyrokinetic MHD simulation
International Nuclear Information System (INIS)
Naitou, Hiroshi; Yamada, Yusuke; Tokuda, Shinji; Ishii, Yasutomo; Yagi, Masatoshi
2011-01-01
The 3-dimensional gyrokinetic PIC (particle-in-cell) code for MHD simulation, Gpic-MHD, was installed on SR16000 (“Plasma Simulator”), which is a scalar cluster system consisting of 8,192 logical cores. The Gpic-MHD code advances particle and field quantities in time. In order to distribute calculations over large number of logical cores, the total simulation domain in cylindrical geometry was broken up into N DD-r × N DD-z (number of radial decomposition times number of axial decomposition) small domains including approximately the same number of particles. The axial direction was uniformly decomposed, while the radial direction was non-uniformly decomposed. N RP replicas (copies) of each decomposed domain were used (“particle decomposition”). The hybrid parallelization model of multi-threads and multi-processes was employed: threads were parallelized by the auto-parallelization and N DD-r × N DD-z × N RP processes were parallelized by MPI (message-passing interface). The parallelization performance of Gpic-MHD was investigated for the medium size system of N r × N θ × N z = 1025 × 128 × 128 mesh with 4.196 or 8.192 billion particles. The highest speed for the fixed number of logical cores was obtained for two threads, the maximum number of N DD-z , and optimum combination of N DD-r and N RP . The observed optimum speeds demonstrated good scaling up to 8,192 logical cores. (author)
MHD seed recovery and regeneration, Phase II. Final report
Energy Technology Data Exchange (ETDEWEB)
1994-10-01
This final report summarizes the work performed by the Space and Technology Division of the TRW Space and Electronics Group for the U.S. Department of Energy, Pittsburgh Energy Technology Center for the Econoseed process. This process involves the economical recovery and regeneration of potassium seed used in the MHD channel. The contract period of performance extended from 1987 through 1994 and was divided into two phases. The Phase II test results are the subject of this Final Report. However, the Phase I test results are presented in summary form in Section 2.3 of this Final Report. The Econoseed process involves the treatment of the potassium sulfate in spent MHD seed with an aqueous calcium formate solution in a continuously stirred reactor system to solubilize, as potassium formate, the potassium content of the seed and to precipitate and recover the sulfate as calcium sulfate. The slurry product from this reaction is centrifuged to separate the calcium sulfate and insoluble seed constituents from the potassium formate solution. The dilute solids-free potassium formate solution is then concentrated in an evaporator. The concentrated potassium formate product is a liquid which can be recycled as a spray into the MHD channel. Calcium formate is the seed regenerant used in the Econoseed process. Since calcium formate is produced in the United States in relatively small quantities, a new route to the continuous production of large quantities of calcium formate needed to support an MHD power industry was investigated. This route involves the reaction of carbon monoxide gas with lime solids in an aqueous medium.
A nonlinear resistive MHD-code in cylindrical geometry
International Nuclear Information System (INIS)
Jakoby, A.
1987-11-01
A computer code has been developed which solves the full compressible resistive magnetohydrodynamic (MHD) equations in cylindrical geometry. The variables are expanded in Fourier series in the poloidal and axial directions while finite differences are used in the radial direction. The time advance is accomplished by using a semi-implicit predictor-corrector-scheme. Applications to the ideal m=1 ideal kink saturation in the nonlinear regime and the subsequent decay of the singular current layer due to resistivity are presented. (orig.)
Two-dimensional simulation of the MHD stability, (2)
International Nuclear Information System (INIS)
Kurita, Gen-ichi; Amano, Tsuneo.
1977-09-01
Growth rate and eigen-function of the MHD instability of a toroidal plasma were calculated numerically as an initial-boundary value problem. When a conducting shell is away from the plasma, toroidicity hardly influences growth rate of the external kink modes in a slender tokamak, but it stabilizes the modes in a fat tokamak. On the other hand, when the shell is near to the plasma, the unstable external modes are stabilized by both toroidicity and shell effect. (auth.)
Two-dimensional simulation of the MHD stability, (1)
International Nuclear Information System (INIS)
Kurita, Gen-ichi; Amano, Tsuneo.
1976-03-01
The two-dimensional computer code has been prepared to study MHD stability of an axisymmetric toroidal plasma with and without the surrounding vacuum region. It also includes the effect of magnetic surfaces with non-circular cross sections. The linearized equations of motion are solved as an initial value problem. The results by computer simulation are compared with those by the theory for the cylindrical plasma; they are in good agreement. (auth.)
UTSI/CFFF MHD Program Completion and Related Activity
Energy Technology Data Exchange (ETDEWEB)
NONE
1997-04-01
Routine preventive maintenance of the DOE Coal Fired Flow Facility (CFFF) is being performed. Modernization programs, being funded under subcontract from Foster Wheeler Development by the DOE HIPPS Program, are being implemented on the coal processing system, the data acquisition and control system and control room. Environmental restoration actions continued with monitoring of groundwater wells and holding pond effluent. Actions are under way to dispose of spent seed/ash mixtures and excess coal remaining from the MHD POC program.
Azimuthal MHD stirring of metal in vessels with cross-sections of different configuration
Siraev, R. R.; Khripchenko, S. Yu
2017-11-01
Continuous casting of cylindrical ingots from aluminum and preparation of aluminum-based alloys and composites require intensive mixing of liquid metal phase in the crystallization area of the melt. It is evident that the topology of the flow in the liquid phase of an ingot should influence the processes occurring during crystallization. Contemporary continuous casting machines use MHD-stirrers that generate an azimuthal motion in a crystallizer with a warm top of circular cross-section in the presence of rotating magnetic field. The flow of metal in the liquid phase of an ingot is similar to its rotation in a solid state, and transport processes are most intensively carried out in the near near-wall region and near the ingot solidification front, where shear flows are essential. In this work, we consider the possibility of amplifying transport processes in the entire volume of a stirred metal by making the cross-section shape of the warm top of the crystallizer different from a circle. It has been found numerically that the total energy of the flow in a crucible of square cross-section is twice as lower as that in a crucible with circular cross-section at the same inductor current. Turbulent pulsations in the square crucible, as well as in the circular one, are concentrated mainly in the near-wall region. The energy of pulsations in the square crucible also reduces, but the time of stirring of the passive impurity introduced into the volume of the metal is less than in the circular crucible. The effect of MHD stirring on the vertical temperature distribution on the square crucible is higher than in the “round crucible”.
MHD code using multi graphical processing units: SMAUG+
Gyenge, N.; Griffiths, M. K.; Erdélyi, R.
2018-01-01
This paper introduces the Sheffield Magnetohydrodynamics Algorithm Using GPUs (SMAUG+), an advanced numerical code for solving magnetohydrodynamic (MHD) problems, using multi-GPU systems. Multi-GPU systems facilitate the development of accelerated codes and enable us to investigate larger model sizes and/or more detailed computational domain resolutions. This is a significant advancement over the parent single-GPU MHD code, SMAUG (Griffiths et al., 2015). Here, we demonstrate the validity of the SMAUG + code, describe the parallelisation techniques and investigate performance benchmarks. The initial configuration of the Orszag-Tang vortex simulations are distributed among 4, 16, 64 and 100 GPUs. Furthermore, different simulation box resolutions are applied: 1000 × 1000, 2044 × 2044, 4000 × 4000 and 8000 × 8000 . We also tested the code with the Brio-Wu shock tube simulations with model size of 800 employing up to 10 GPUs. Based on the test results, we observed speed ups and slow downs, depending on the granularity and the communication overhead of certain parallel tasks. The main aim of the code development is to provide massively parallel code without the memory limitation of a single GPU. By using our code, the applied model size could be significantly increased. We demonstrate that we are able to successfully compute numerically valid and large 2D MHD problems.
Multimegawatt space nuclear power open-cycle MHD-facility
International Nuclear Information System (INIS)
Pavshuk, V.A.; Panchenko, V.P.
2008-01-01
Paper presents the results of the efforts to calculate the characteristics, the layout and the engineering design of the open cycle space power propulsion on the basis of the high-temperature nuclear reactor for a nuclear rocket engine and the Faraday 20 MW capacity MHD-generator. The IVG-1 heterogeneous channel-vessel reactor ensuring in the course of the experiments hydrogen heating up to 3100 K, up to 5 MPa pressure at the reactor core outlet, up to 5 kg/s flowsheet, up to 220 MW thermal power served as a reactor is considered. One determined the MHD-generator basic parameters, namely: the portion of Cs dope was equal to 20%, the outlet stagnation pressure - 2 MPa, the electric conductivity - ≅30 S/m, the Mach number - ≅0.7, the magnetic field induction - 6 T, the capacity - 20 MW, the specific power removal - ∼4 MJ/kg. Paper describes the design of the MHD-facility with the working fluid momentless discharge and its basic characteristics [ru
MHD magnet technology development program summary, September 1982
Energy Technology Data Exchange (ETDEWEB)
1983-11-01
The program of MHD magnet technology development conducted for the US Department of Energy by the Massachusetts Institute of Technology during the past five years is summarized. The general strategy is explained, the various parts of the program are described and the results are discussed. Subjects covered include component analysis, research and development aimed at improving the technology base, preparation of reference designs for commercial-scale magnets with associated design evaluations, manufacturability studies and cost estimations, the detail design and procurement of MHD test facility magnets involving transfer of technology to industry, investigations of accessory subsystem characteristics and magnet-flow-train interfacing considerations and the establishment of tentative recommendations for design standards, quality assurance procedures and safety procedures. A systematic approach (framework) developed to aid in the selection of the most suitable commercial-scale magnet designs is presented and the program status as of September 1982 is reported. Recommendations are made for future work needed to complete the design evaluation and selection process and to provide a sound technological base for the detail design and construction of commercial-scale MHD magnets. 85 references.
Direct numerical simulation of MHD flow with electrically conducting wall
International Nuclear Information System (INIS)
Satake, S.; Kunugi, T.; Naito, N.; Sagara, A.
2006-01-01
The 2D vortex problem and 3D turbulent channel flow are treated numerically to assess the effect of electrically conducting walls on turbulent MHD flow. As a first approximation, the twin vortex pair is considered as a model of a turbulent eddy near the wall. As the eddy approaches and collides with the wall, a high value electrical potential is induced inside the wall. The Lorentz force, associated with the potential distribution, reduces the velocity gradient in the near-wall region. When considering a fully developed turbulent channel flow, a high electrical conductivity wall was chosen to emphasize the effect of electromagnetic coupling between the wall and the flow. The analysis was performed using DNS. The results are compared with a non-MHD flow and MHD flow in the insulated channel. The mean velocity within the logarithmic region in the case of the electrically conducting wall is slightly higher than that in the non-conducting wall case. Thus, the drag is smaller compared to that in the non-conducting wall case due to a reduction of the Reynolds stress in the near wall region through the Lorentz force. This mechanism is explained via reduction of the production term in the Reynolds shear stress budget
Magnus: A New Resistive MHD Code with Heat Flow Terms
Navarro, Anamaría; Lora-Clavijo, F. D.; González, Guillermo A.
2017-07-01
We present a new magnetohydrodynamic (MHD) code for the simulation of wave propagation in the solar atmosphere, under the effects of electrical resistivity—but not dominant—and heat transference in a uniform 3D grid. The code is based on the finite-volume method combined with the HLLE and HLLC approximate Riemann solvers, which use different slope limiters like MINMOD, MC, and WENO5. In order to control the growth of the divergence of the magnetic field, due to numerical errors, we apply the Flux Constrained Transport method, which is described in detail to understand how the resistive terms are included in the algorithm. In our results, it is verified that this method preserves the divergence of the magnetic fields within the machine round-off error (˜ 1× {10}-12). For the validation of the accuracy and efficiency of the schemes implemented in the code, we present some numerical tests in 1D and 2D for the ideal MHD. Later, we show one test for the resistivity in a magnetic reconnection process and one for the thermal conduction, where the temperature is advected by the magnetic field lines. Moreover, we display two numerical problems associated with the MHD wave propagation. The first one corresponds to a 3D evolution of a vertical velocity pulse at the photosphere-transition-corona region, while the second one consists of a 2D simulation of a transverse velocity pulse in a coronal loop.
MHD magnet technology development program summary, September 1982
International Nuclear Information System (INIS)
1983-11-01
The program of MHD magnet technology development conducted for the US Department of Energy by the Massachusetts Institute of Technology during the past five years is summarized. The general strategy is explained, the various parts of the program are described and the results are discussed. Subjects covered include component analysis, research and development aimed at improving the technology base, preparation of reference designs for commercial-scale magnets with associated design evaluations, manufacturability studies and cost estimations, the detail design and procurement of MHD test facility magnets involving transfer of technology to industry, investigations of accessory subsystem characteristics and magnet-flow-train interfacing considerations and the establishment of tentative recommendations for design standards, quality assurance procedures and safety procedures. A systematic approach (framework) developed to aid in the selection of the most suitable commercial-scale magnet designs is presented and the program status as of September 1982 is reported. Recommendations are made for future work needed to complete the design evaluation and selection process and to provide a sound technological base for the detail design and construction of commercial-scale MHD magnets. 85 references
Synoptic, Global Mhd Model For The Solar Corona
Cohen, Ofer; Sokolov, I. V.; Roussev, I. I.; Gombosi, T. I.
2007-05-01
The common techniques for mimic the solar corona heating and the solar wind acceleration in global MHD models are as follow. 1) Additional terms in the momentum and energy equations derived from the WKB approximation for the Alfv’en wave turbulence; 2) some empirical heat source in the energy equation; 3) a non-uniform distribution of the polytropic index, γ, used in the energy equation. In our model, we choose the latter approach. However, in order to get a more realistic distribution of γ, we use the empirical Wang-Sheeley-Arge (WSA) model to constrain the MHD solution. The WSA model provides the distribution of the asymptotic solar wind speed from the potential field approximation; therefore it also provides the distribution of the kinetic energy. Assuming that far from the Sun the total energy is dominated by the energy of the bulk motion and assuming the conservation of the Bernoulli integral, we can trace the total energy along a magnetic field line to the solar surface. On the surface the gravity is known and the kinetic energy is negligible. Therefore, we can get the surface distribution of γ as a function of the final speed originating from this point. By interpolation γ to spherically uniform value on the source surface, we use this spatial distribution of γ in the energy equation to obtain a self-consistent, steady state MHD solution for the solar corona. We present the model result for different Carrington Rotations.
Coal-fired magnetohydrodynamic (MHD) electric power generation
International Nuclear Information System (INIS)
Sens, P.F.
1992-01-01
Since 1986 Directorate-General XII 'Science, Research and Development' of the Commission of the European Communities has kept a watching brief on the development of coal-fired magnetohydrodynamic (MHD) electric power generation from the 'solid fuels' section of its non-nuclear energy R and D programme. It established, in 1987, the Faraday Working Group (FWG) to assess the development status of coal-fired MHD and to evaluate its potential contribution to the future electricity production in the Community. The FWG expressed as its opinion, at the end of 1987, that in sufficient data were available to justify a final answer to the question about MHD's potential contribution to future electricity production and recommended that studies be undertaken in three areas; (i) the lifetime of the generator, (ii) cost and performance of direct air preheating, (iii) cost and efficiency of seed recovery/reprocessing. These studies were contracted and results were presented in the extended FWG meeting on 15 November 1990, for an audience of about 70 people. The present volume contains the proceedings of this meeting. The introduction describes the reasons for establishing the FWG, its activities and the content of its extended meeting followed by the summary of the discussions and the concluding remarks of this meeting. The main part of the volume consists of the text either of the oral presentations during the meeting or of the final reports resulting from the studies under contract
MHD-flow in slotted channels with conducting walls
International Nuclear Information System (INIS)
Evtushenko, I.A.; Kirillov, I.R.; Reed, C.B.
1994-07-01
A review of experimental results is presented for magnetohydrodynamic (MHD) flow in rectangular channels with conducting walls and high aspect ratios (longer side parallel to the applied magnetic field), which are called slotted channels. The slotted channel concept was conceived at Efremov Institute as a method for reducing MHD pressure drop in liquid metal cooled blanket design. The experiments conducted by the authors were aimed at studying both fully developed MHD-flow, and the effect of a magnetic field on the hydrodynamics of 3-D flows in slotted channels. Tests were carried out on five models of the slotted geometry. A good agreement between test and theoretical results for the pressure drop in slotted channels was demonstrated. Application of a open-quotes one-electrode movable probeclose quotes for velocity measurement permitted measurement of the M-shape velocity profiles in the slotted channels. Suppression of 3-D inertial effects in slotted channels of complex geometry was demonstrated based on potential distribution data
The MHD intermediate shock interaction with an intermediate wave: Are intermediate shocks physical?
International Nuclear Information System (INIS)
Wu, C.C.
1988-01-01
Contrary to the usual belief that MHD intermediate shocks are extraneous, the authors have recently shown by numerical solutions of dissipative MHD equations that intermediate shocks are admissible and can be formed through nonlinear steepening from a continuous wave. In this paper, he clarifies the differences between the conventional view and the results by studying the interaction of an MHD intermediate shock with an intermediate wave. The study reaffirms his results. In addition, the study shows that there exists a larger class of shocklike solutions in the time-dependent dissiaptive MHD equations than are given by the MHD Rankine-Hugoniot relations. it also suggests a mechanism for forming rotational discontinuities through the interaction of an intermediate shock with an intermediate wave. The results are of importance not only to the MHD shock theory but also to studies such as magnetic field reconnection models
Study of MHD stability beta limit in LHD by hierarchy integrated simulation code
International Nuclear Information System (INIS)
Sato, M.; Watanabe, K.Y.; Nakamura, Y.
2008-10-01
The beta limit by the ideal MHD instabilities (so-called 'MHD stability beta limit') for helical plasmas is studied by a hierarchy integrated simulation code. A numerical model for the effect of the MHD instabilities is introduced such that the pressure profile is flattened around the rational surface due to the MHD instabilities. The width of the flattening of the pressure gradient is determined from the width of the eigenmode structure of the MHD instabilities. It is assumed that there is the upper limit of the mode number of the MHD instabilities which directly affect the pressure gradient. The upper limit of the mode number is determined using a recent high beta experiment in the Large Helical Device (LHD). The flattening of the pressure gradient is calculated by the transport module in a hierarchy integrated code. The achievable volume averaged beta value in the LHD is expected to be beyond 6%. (author)
1981-01-01
The reference conceptual design of the magnetohydrodynamic (MHD) Engineering Test Facility (ETF), a prototype 200 MWe coal-fired electric generating plant designed to demonstrate the commercial feasibility of open cycle MHD, is summarized. Main elements of the design, systems, and plant facilities are illustrated. System design descriptions are included for closed cycle cooling water, industrial gas systems, fuel oil, boiler flue gas, coal management, seed management, slag management, plant industrial waste, fire service water, oxidant supply, MHD power ventilating
A study of some recent advances in the concept and design of MHD generators
International Nuclear Information System (INIS)
Vakilian, M.
1976-02-01
Direct conversion of energy and high temperature working fluid making Magnetohydrodynamics (MHD) power plants potentially much more efficient than steam power stations. The study indicates an overall efficiency of 50% to 60%. This compares with most modern fossil-fuel plants at 40% efficiency. Advances in design and construction of experimental and commercial MHD plants developed in various countries are presented. Environmental effects and advantages of the MHD power plants over the more conventional fossil and nuclear plants are discussed
Experimental investigation of MHD effects in a manifold of a downstream circular pipe
International Nuclear Information System (INIS)
Xu Zengyu; Pan Chuanjie; Wei Wenhao; Chen Xiaoqiong; Zhang Yanxu
2001-01-01
The velocity distribution in the mid-plane of the cross section of a main pipe in the region of a junction is investigated. The result confirms that the MHD-flow near the junction is strongly affected by the junction itself. This holds even if the bypass pipe is closed. The MHD pressure drops are also measured, and a three-dimensional (3D) factor of MHD pressure drop due to manifold effects is obtained with theoretical analysis and comparing with experimental data. The factor is directly proportional to Hartmann number Ha. Two dimensional MHD pressure drop is also discussed
MHD repowering of a 250 MWe unit of the TVA Allen Steam Plant
International Nuclear Information System (INIS)
Chapman, J.N.; Attig, R.C.
1992-01-01
In this paper coal fired MHD repowering is considered for the TVA Allen Steam Plant. The performance of the repowered plant is presented. Cost comparisons are made of the cost of repowering with MHD versus the cost of meeting similar standards by installing scrubbers and selective catalytic NO x reduction (SCNR). For repowering of a single 250 MW e unit, the costs favor scrubbing and SCNR. If one considers a single repowering of all three 250 MW e units by a single MHD topping cycle and boiler, MHD repowering is more economical. Environmental emissions from the repowered plant are estimated
Engineering design and development of lead lithium loop for thermo-fluid MHD studies
International Nuclear Information System (INIS)
Kumar, M.; Patel, Anita; Jaiswal, A.; Ranjan, A.; Mohanta, D.; Sahu, S.; Saraswat, A.; Rao, T.S.; Mehta, V.; Bhattacharyay, R.; Rajendra Kumar, E.
2017-01-01
In the frame of the design and development of LLCB TBM, number of R and D activities is in progress in the area of Pb-Li technology development. Molten Pb-Li is used as a tritium breeder and also as a coolant for the internals of the TBM structure. In presence of strong plasma confining toroidal magnetic field, motion of electrically conducting Pb-Li leads to Magneto Hydro Dynamic (MHD) phenomena, as a consequence of which the flow profile of Pb-Li is significantly modified inside the Pb-Li channels of TBM. This causes additional pressure drop inside TBM and affects the heat transfer from internal structure. The detail studies of these MHD effects are of prime importance for successful design of LLCB TBM and its performance evaluation. Although, various numerical MHD codes have been developed, validated in simple flow configuration and are being used to study MHD phenomena in LLCB TBM, experimental validation of these codes in TBM relevant complex flow geometry is yet to be performed. A Pb-Li MHD experimental loop is, therefore, being developed at IPR to perform thermo-fluid MHD experiments in various LLCB TBM relevant flow configuration. MHD experiments are planned with different test sections instrumented with potential pins, thermo couples, etc. under a uniform magnetic field of ∼1.4 T. The obtained experimental data will be analyzed to understand the MHD phenomena in TBM like flow configuration and also for validation of MHD codes. This paper describes the detailed process as well as engineering design of the Pb-Li MHD loop and its major components along with the plan of MHD experiments in various test mock ups. (author)
Energy Technology Data Exchange (ETDEWEB)
NONE
1989-07-28
This report summarizes results of the phase II R and D program of MHD electrical power generation (FY 1976 - 1983), which has been now completed. The phase II R and D efforts were concentrated on development of the durable power generation channels, where the designs and manufacture of the Mark II system were started, and the elementary techniques were simultaneously studied for, e.g., phenomena occurring around the electrodes, seed condensation and its effects on the electrode phenomena, and electrode and insulator materials for the power generation channels. The power generation channel was tested for its durability for a total of 430 hours, after it was incorporated in the Mark II system. The MHD power generation can incorporate direct combustion of coal, and will hold a dominant position in coal-fired power generation, which is expected to grow in the future. For this reason, the basic research schedules were revised in March, 1983, and the Mark II system was operated by firing a mixed fuel of kerosene and finely divided coal in a kerosene combustor, in line with the revised project, to understand the basic power generation characteristics with the combustion gases containing coal slag. (NEDO)
Buttery, Richard
2011-08-01
This annual workshop on MHD Stability Control has been held since 1996 with a focus on understanding and developing control of MHD instabilities for future fusion reactors. The workshop generally covers a wide range of stability topics: from disruptions, to tearing modes, error fields, ELMs, resistive wall modes (RWMs) and ideal MHD. It spans many device types, particularly tokamaks, stellarators and reversed field pinches, to pull out commonalities in the physics and improve understanding. In 2010 the workshop was held on 15-17 November at the University of Wisconsin in Madison and was combined with the annual US-Japan MHD Workshop. The theme was `3D Magnetic Field Effects in MHD Control', with a focus on multidisciplinary sessions exploring issues of plasma response to 3D fields, the manifestation of such fields in the plasma, and how they influence stability. This has been a topic of renewed interest, with utilisation of 3D fields for ELM control now planned in ITER, and a focus on the application of such fields for error field correction, disruption avoidance, and RWM control. Key issues included the physics of the interaction, types of coils and harmonic spectra needed to control instabilities, and subsidiary effects such as braking (or rotating) the plasma. More generally, a wider range of issues were discussed including RWM physics, tearing mode physics, disruption mitigation, ballooning stability, the snowflake divertor concept, and the line tied pinch! A novel innovation to the meeting was a panel discussion session, this year on Neoclassical Toroidal Viscosity, which ran well; more will be tried next year. In this special section of Plasma Physics and Controlled Fusion we present several of the invited and contributed papers from the 2010 workshop, which have been subject to the normal refereeing procedures of the journal. These papers give a sense of the exceptional quality of the presentations at this workshop, all of which may be found at http://fusion.gat.com/conferences/mhd
An MHD heat source based on intermetallic reactions
Energy Technology Data Exchange (ETDEWEB)
Sadjian, H.; Zavitsanos, P. (General Sciences, Inc., Souderton, PA (United States)); Marston, C.H. (Villanova Univ., PA (United States))
1991-05-06
The main objective of this program was the development of an MHD heat source of potential use in Space - Based Multi Megawatt, MHD Power Systems. The approach is based on extension of high temperature chemical/ion release technology developed by the General Sciences, Incorporated (GSI) team and successfully applied in other Space Applications. Solid state reactions have been identified which can deliver energy densities and electrons in excess of those from high energy explosives as well as other conventional fuels. The use of intermetallic reactions can be used to generate hot hydrogen plasma from the reaction, to create a high level of seedant ionization, can be packaged as a cartridge type fuels for discrete pulses. The estimated weight for energizing a (100 MW - 1000 sec) Pulsed MHD Power System can range from 12 to 25 {times} 10{sup 3} kg depending on reaction system and strength of the magnetic field. The program consisted of two major tasks with eight subtasks designed to systematically evaluate these concepts in order to reduce fuel weight requirements. Laboratory measurements on energy release, reaction product identification and levels of ionization were conducted in the first task to screen candidate fuels. The second task addressed the development of a reaction chamber in which conductivity, temperature and pressure were measured. Instrumentation was developed to measure these parameters under high temperature pulsed conditions in addition to computer programs to reduce the raw data. Measurements were conducted at GSI laboratories for fuel weights of up to 120 grams and at the Franklin Research Center* for fuel weights up to 1 kilogram. The results indicate that fuel weight can be scaled using modular packaging. Estimates are presented for fuel weight requirements. 15 refs.
MHD induced fast-ion losses on ASDEX Upgrade
International Nuclear Information System (INIS)
GarcIa-Munoz, M.; Fahrbach, H.-U.; Bobkov, V.; Bruedgam, M.; Guenter, S.; Igochine, V.; Lauber, Ph.; Mantsinen, M.J.; Maraschek, M.; Poli, E.; Sassenberg, K.; Tardini, G.; Zohm, H.; Pinches, S.D.; Gobbin, M.; Marrelli, L.; Martin, P.; Piovesan, P.
2009-01-01
A detailed knowledge of the interplay between MHD instabilities and energetic particles has been gained from direct measurements of fast-ion losses (FILs). Time-resolved energy and pitch angle measurements of FIL caused by neoclassical tearing modes (NTMs) and toroidicity-induced Alfven eigenmodes (TAEs) have been obtained using a scintillator based FIL detector. The study of FIL due to TAEs has revealed the existence of a new core-localized MHD fluctuation, the Sierpes mode. The Sierpes mode is a non-pure Alfvenic fluctuation which appears in the acoustic branch, dominating the transport of fast-ions in ICRF heated discharges. The internal structure of both TAEs and Sierpes mode has been reconstructed by means of highly resolved multichord soft x-ray measurements. A spatial overlapping of their eigenfunctions leads to a FIL coupling, showing the strong influence that a core-localized fast-ion driven MHD instability may have on the fast-ion transport. We have identified the FIL mechanisms due to NTMs as well as due to TAEs. Drift islands formed by fast-ions in particle phase space are responsible for the loss of NBI fast-ions due to NTMs. In ICRF heated plasmas, a resonance condition fulfilled by the characteristic trapped fast-ion orbit frequencies leads to a phase matching between fast-ion orbit and NTM or TAE magnetic fluctuation. The banana tips of a resonant trapped fast-ion bounce radially due to an E x B drift in the TAE case. The NTM radial bounce of the fast-ion banana tips is caused by the radial component of the perturbed magnetic field lines.
Directory of Open Access Journals (Sweden)
Jian Song
2018-04-01
Full Text Available Nuclear electric propulsion (NEP offers unique advantages for the interplanetary exploration. The extremely high conversion efficiency of magnetohydrodynamics (MHD conversion nuclear reactor makes it a highly potential space power source in the future, especially for NEP systems. Research on ultra-high temperature reactor suitable for MHD power conversion is performed in this paper. Cermet is chosen as the reactor fuel after a detailed comparison with the (U,ZrC graphite-based fuel and mixed carbide fuel. A reactor design is carried out as well as the analysis of the reactor physics and thermal-hydraulics. The specific design involves fuel element, reactor core, and radiation shield. Two coolant channel configurations of fuel elements are considered and both of them can meet the demands. The 91 channel configuration is chosen due to its greater heat transfer performance. Besides, preliminary calculation of nuclear criticality safety during launch crash accident is also presented. The calculation results show that the current design can meet the safety requirements well.
MHD simulation of relaxation to a flipped ST configuration
Energy Technology Data Exchange (ETDEWEB)
Kagei, Y [Department of Electrical Engineering and Computer Sciences, Himeji Institute of Technology, Himeji, Hyogo (Japan); Nagata, M [Department of Electrical Engineering and Computer Sciences, Himeji Institute of Technology, Himeji, Hyogo (Japan); Suzuki, Y [Center for Promotion of Computational Science and Engineering, Japan Atomic Energy Research Institute, Taito-ku, Tokyo (Japan); Kishimoto, Y [Naka Fusion Research Establishment, Japan Atomic Energy Research Institute, Naka-machi, Ibaraki (Japan); Hayashi, T [National Institute for Fusion Science, Toki, Gifu (Japan); Uyama, T [Department of Electrical Engineering and Computer Sciences, Himeji Institute of Technology, Himeji, Hyogo (Japan)
2003-02-01
The dynamics of spherical torus (ST) plasmas, when the external toroidal magnetic field is decreased to zero and then increased in the opposite direction, has been investigated using three-dimensional magnetohydrodynamic (MHD) numerical simulations. It has been found that the flipped ST configuration is self-organized after the ST configuration collapses because of the growth of the n = 1 mode in the open flux region and a following magnetic reconnection event. During the transition between these configurations, not only the paramagnetic toroidal field but also the poloidal field reverses polarity spontaneously. (letter to the editor)
Some Fluid Dynamic Effects in Large-Scale MHD Generators
Energy Technology Data Exchange (ETDEWEB)
Hunt, J. C.R. [University of Warwick, Coventry (United Kingdom)
1966-10-15
At the present time we are unable to carry out a complete analysis of the fluid dynamics and electrodynamics of an MHD generator. However, various aspects of the behaviour of an MHD generator may be examined by the use of simplified models, for example: (1) one-dimensional gas dynamics (Louis et al. 1964); (2) the current distribution can be found if the velocity is assumed constant across the duct (Witalis, 1965); (3) the skin friction and heat transfer to the walls can be calculated by boundary layer analysis if the flow is assumed to be laminar (Kerrebrock, 1961), and (4) a complete description of the velocity and current distribution across the duct can be given if the flow is assumed to be uniform, laminar, incompressible and not varying in the flow direction (Hunt and Stewartson, 1965). Taken together, these and other models will enable us to describe most of the effects in an MHD generator. In this paper another simplification is considered in which the electromagnetic forces are assumed to be much larger than the inertial forces. The ratio of these two forces is measured by the parameter, S = aB{sup 2}{sub 0}d/pU, where o is the conductivity, B{sub 0} the magnetic field, d the width of the duct, p the density and U the mean velocity. Thus S >> 1. We also assume that the magnetic Reynolds number is very much less than one. In the largest experimental generators now being built S {approx} 2 . Thus, though the results of this model are not immediately applicable, they should indicate the effects of increasing the magnetic field strength and the size of MHD generators. When S >> 1, one can can consider the duct to be divided into 2 regions: (1) a core region where electromagnetic forces are balanced by the pressure gradient and where inertial as well as viscous forces are negligible, and (2) boundary layers on the walls where again inertial forces are negligible but where the viscous, electromagnetic and pressure forces are of the same order. We show how it is
Variational formalism for kinetic-MHD instabilities in tokamaks
International Nuclear Information System (INIS)
Edery, D.; Garbet, X.; Roubin, J.P.; Samain, A.
1991-07-01
A variational formalism that includes in a consistent way the tokamak plasma fluid response to an electromagnetic field as well as the particle-field resonant interaction effects is presented. The integrability of the unperturbed motion of the particles is used to establish a general functional similar to the classical Lagrangian for the electromagnetic field, which is extremum with respect to the field potentials. This functional is the sum of fluid terms closely related to the classical MHD energy and of resonant terms describing the kinetic effects. The formalism is used to study a critical issue in tokamak confinement, namely the sawteeth stabilization by energetic particles
Electric potential behaviour in segmented Faraday-type MHD generators
International Nuclear Information System (INIS)
James, M.I.; Mittal, M.L.; Gupta, G.P.; Rohatgi, V.K.
1985-01-01
The potential distribution in the transverse cross-section of a segmented Faraday-type MHD generator is studied. The governing elliptic equation, derived with allowance for the finite electrode segmentation effect and nonuniformity of the gas in the channel, is solved numerically using the Alternating Direction Implicit method in the finite difference scheme, instead of the successive over-relaxation method. The computed potential distribution and the potential drops are found to compare well with experimental results. The potential drops at the electrodes are found to increase with increasing current density. (author)
Effects of couple stresses in MHD channel flow
International Nuclear Information System (INIS)
Soundalgekar, V.M.; Aranake, R.N.
1977-01-01
An analysis of fully developed MHD channel flow of an electrically conducting incompressible fluid, taking into account the couple stresses, is carried out. Exact solutions are derived for velocity profiles, current density, skin-friction and coefficient of mass flux. They are influenced by the magnetic field, the loading parameter k, and the non-dimensional parameter (a=b 1 /lambda). Their variations with respect to M, k and a are represented graphically, this is followed by a physical discussion. It is observed that the couple stresses are more effective in the presence of a very weak magnetic field. (Auth.)
Achieving fast reconnection in resistive MHD models via turbulent means
Directory of Open Access Journals (Sweden)
G. Lapenta
2012-04-01
Full Text Available Astrophysical fluids are generally turbulent and this preexisting turbulence must be taken into account for models of magnetic reconnection in astrophysical, solar or heliospheric environments. In addition, reconnection itself induces turbulence which provides an important feedback on the reconnection process. In this paper we discuss both the theoretical model and numerical evidence that magnetic reconnection becomes fast in the approximation of resistive MHD. We consider the relation between the Lazarian and Vishniac turbulent reconnection theory and Lapenta's numerical experiments testifying of the spontaneous onset of turbulent reconnection in systems which are initially laminar.
Development of brazing procedure for refractory metals of MHD channel
International Nuclear Information System (INIS)
Shibalov, M.V.; Belkin, E.Ya.
1983-01-01
A wide range of electric insulation oxidix materials for the channel of MHD-generator is considered. Insulators on the basis of magnesium, aluminium oxides, zirconates have practical value and application. Electromelted magnesium oxide is considered as electric insulation material for the channel, it is widely used for electric insulation in U-02 and U-25 installations at the temperature up to 1900 deg C. Ways of increasing heat resistance and improvement of other properties of magnesian ceramics are disclosed. Investigations into application of non-calcinated oxidic compositions as insulators are conducted
ORMEC: a three-dimensional MHD spectral inverse equilibrium code
International Nuclear Information System (INIS)
Hirshman, S.P.; Hogan, J.T.
1986-02-01
The Oak Ridge Moments Equilibrium Code (ORMEC) is an efficient computer code that has been developed to calculate three-dimensional MHD equilibria using the inverse spectral method. The fixed boundary formulation, which is based on a variational principle for the spectral coefficients (moments) of the cylindrical coordinates R and Z, is described and compared with the finite difference code BETA developed by Bauer, Betancourt, and Garabedian. Calculations for the Heliotron, Wendelstein VIIA, and Advanced Toroidal Facility (ATF) configurations are performed to establish the accuracy and mesh convergence properties for the spectral method. 16 refs., 13 figs
Ideal MHD beta-limits of poloidally asymmetric equilibria
Energy Technology Data Exchange (ETDEWEB)
Todd, A.M.M.; Miller, A.E.; Grimm, R.C.; Okabayashi, M.; Dalhed, H.E. Jr.
1981-05-01
The ideal MHD stability of poloidally asymmetric equilibria, which are typical of a tokamak reactor design with a single-null poloidal divertor is examined. As with symmetric equilibria, stability to non-axisymmetric modes improves with increasing triangularity and ellipticity, and with lower edge safety factor. Pressure profiles optimized with respect to ballooning stability are obtained for an asymmetric shape, resulting in ..beta../sub critical/ approx. = 5.7%. The corresponding value for an equivalent symmetric shape is ..beta../sub critical/ approx. = 6.5%.
Ideal MHD beta-limits of poloidally asymmetric equilibria
International Nuclear Information System (INIS)
Todd, A.M.M.; Miller, A.E.; Grimm, R.C.; Okabayashi, M.; Dalhed, H.E. Jr.
1981-05-01
The ideal MHD stability of poloidally asymmetric equilibria, which are typical of a tokamak reactor design with a single-null poloidal divertor is examined. As with symmetric equilibria, stability to non-axisymmetric modes improves with increasing triangularity and ellipticity, and with lower edge safety factor. Pressure profiles optimized with respect to ballooning stability are obtained for an asymmetric shape, resulting in β/sub critical/ approx. = 5.7%. The corresponding value for an equivalent symmetric shape is β/sub critical/ approx. = 6.5%
Eigenvalues of the simplified ideal MHD ballooning equation
International Nuclear Information System (INIS)
Paris, R.B.; Auby, N.; Dagazian, R.Y.
1986-01-01
The investigation of the spectrum of the simplified differential equation describing the variation of the amplitude of the ideal MHD ballooning instability along magnetic field lines constitutes a multiparameter Schroedinger eigenvalue problem. An exact eigenvalue relation for the discrete part of the spectrum is obtained in terms of the oblate spheroidal functions. The dependence of the eigenvalues lambda on the two free parameters γ 2 and μ 2 of the equation is discussed, together with certain analytical approximations in the limits of small and large γ 2 . A brief review of the principal properties of the spheroidal functions is given in an appendix
Axisymmetric MHD stability of sharp-boundary Tokamaks
International Nuclear Information System (INIS)
Rebhan, E.; Salat, A.
1976-09-01
For a sharp-boundary, constant pressure plasma model of axisymmetric equilibria the MHD stability problem of axisymmetric perturbations is solved by analytic reduction to a one-dimensional problem on the boundary and subsequent numerical treatment, using the energy principle. The stability boundaries are determined for arbitrary aspect ratio, arbitrary βsub(p) and elliptical, triangular and rectangular plasma cross-sections, wall stabilization not being taken into account. It is found that the axisymmetric stability strongly depends on the plasma shape and is almost independent of the safety factor q. (orig.) [de
Magnetic analysis of tokamak plasma with approximate MHD equilibrium solution
International Nuclear Information System (INIS)
Moriyama, Shin-ichi; Hiraki, Naoji
1993-01-01
A magnetic analysis method for determining equilibrium configuration parameters (plasma shape, poloidal beta and internal inductance) on a non-circular tokamak is described. The feature is to utilize an approximate MHD equilibrium solution which explicitly relates the configuration parameters with the magnetic fields picked up by magnetic sensors. So this method is suitable for the real-time analysis performed during a tokamak discharge. A least-squares fitting procedure is added to the analytical algorithm in order to reduce the errors in the magnetic analysis. The validity is investigated through the numerical calculation for a tokamak equilibrium model. (author)
Application of the MHD energy principle to magnetostatic atmospheres
International Nuclear Information System (INIS)
Zweibel, E.G.
1984-11-01
We apply the MHD energy principle to the stability of a magnetized atmosphere which is bounded below by much denser fluid, as is the solar corona. We treat the two fluids as ideal; the approximation which is consistent with the energy principle, and use the dynamical conditions that must hold at a fluid-fluid interface to show that if vertical displacements of the lower boundary are permitted, then the lower atmosphere must be perturbed as well. However, displacements which do not perturb the coronal boundary can be properly treated as isolated perturbations of the corona alone
MHD simulation of a beat frequency heated plasma
International Nuclear Information System (INIS)
Milroy, R.D.; Capjack, C.E.; James, C.R.; McMullin, J.N.
1976-01-01
The heating of a plasma in a solenoid, with a beat frequency harmonic which is excited at a frequency near to that of a Langmuir mode in a plasma, is examined. It is shown that at high temperatures the heating rate is very insensitive to changes in plasma density. The amount of energy that can be coupled to a plasma in a solenoid with this heating scheme is investigated by using a one-dimensional computer code which incorporates an exact solution of the relevant MHD equations. The absorption of energy from a high powered laser is shown to be significantly enhanced with this process. (author)
Cosmic-ray shock acceleration in oblique MHD shocks
Webb, G. M.; Drury, L. OC.; Volk, H. J.
1986-01-01
A one-dimensional, steady-state hydrodynamical model of cosmic-ray acceleration at oblique MHD shocks is presented. Upstream of the shock the incoming thermal plasma is subject to the adverse pressure gradient of the accelerated particles, the J x B force, as well as the thermal gas pressure gradient. The efficiency of the acceleration of cosmic-rays at the shock as a function of the upstream magnetic field obliquity and upstream plasma beta is investigated. Astrophysical applications of the results are briefly discussed.
Coupling to fast MHD eigenmodes in a toroidal cavity
International Nuclear Information System (INIS)
Paoloni, F.J.
1975-05-01
The coupling to fast MHD waves in toroidal-like geometry is calculated when eigenmodes exist in the plasma. The torus is considered to be a resonant cavity into which energy is coupled by a half turn loop. The cavity Q is calculated for the minority heating process, for cyclotron harmonic damping, electron transit-time magnetic pumping, wall loading, and Coulomb collisional damping. The problem of sustaining the eigenmode as the plasma conditions change with time is also discussed. One method that seems to be practical is a feedback scheme that varies the plasma major radius by a small amount as the conditions change. (U.S.)
Equations of state for self-excited MHD generator studies
Energy Technology Data Exchange (ETDEWEB)
Rogers, F.J.; Ross, M.; Haggin, G.L.; Wong, L.K.
1980-02-26
We have constructed a state-of-the-art equation of state (EOS) for argon covering the temperature density range attainable by currently proposed self-excited MHD generators. The EOS for conditions in the flow channel was obtained primarily by a non-ideal plasma code (ACTEX) that is based on a many body activity expansion. For conditions in the driver chamber the EOS was primarily obtained from a fluid code (HDFP) that calculates the fluid properties from perturbation theory based on the insulator interatomic pair potential but including electronic excitations. The results are in agreement with several sets of experimental data in the 0.6 - 91 GPa pressure range.
MHD description of plasma: handbook of plasma physics
International Nuclear Information System (INIS)
Kulsrud, R.M.
1980-10-01
The basic sets of MHD equations for the description of a plasma in various limits are derived and their usefulness and limits of validity are discussed. These limits are: the one fluid collisional plasma, the two fluid collisional plasma, the Chew-Goldberger Low formulation of the guiding center limit of a collisionless plasma and the double-adiabatic limit. Conservation relations are derived from these sets and the mathematics of the concept of flux freezing is given. An example is given illustrating the differences between guiding center theory and double adiabatic theory
Numerical study of spherical Torus MHD equilibrium configuration
International Nuclear Information System (INIS)
Cheng Faying; Dong Jiaqi; Wang Aike
2003-01-01
Tokamak equilibrium code SWEQU has been modified so that it can be used for the MHD equilibrium study of low aspect ratio device. Evolution of plasma configuration in start-up phase and double-null divertor configuration in steady-state phase has been simulated using the modified code. Results show that the new code can be used not only to obtain the equilibrium configuration of spherical Torus in steady-state phase, but also to simulate the evolution of plasma in the start-up phase
Calculation of magnetic field and electromagnetic forces in MHD superconducting magnets
International Nuclear Information System (INIS)
Martinelli, G.; Morini, A.; Moisio, M.F.
1992-01-01
The realization of a superconducting prototype magnet for MHD energy conversion is under development in Italy. Electromechanical industries and University research groups are involved in the project. The paper deals with analytical methods developed at the Department of Electrical Engineering of Padova University for calculating magnetic field and electromagnetic forces in MHD superconducting magnets and utilized in the preliminary design of the prototype
Studies of MHD stability using data mining technique in helical plasmas
International Nuclear Information System (INIS)
Yamamoto, Satoshi; Pretty, David; Blackwell, Boyd
2010-01-01
Data mining techniques, which automatically extract useful knowledge from large datasets, are applied to multichannel magnetic probe signals of several helical plasmas in order to identify and classify MHD instabilities in helical plasmas. This method is useful to find new MHD instabilities as well as previously identified ones. Moreover, registering the results obtained from data mining in a database allows us to investigate the characteristics of MHD instabilities with parameter studies. We introduce the data mining technique consisted of pre-processing, clustering and visualizations using results from helical plasmas in H-1 and Heliotron J. We were successfully able to classify the MHD instabilities using the criterion of phase differences of each magnetic probe and identify them as energetic-ion-driven MHD instabilities using parameter study in Heliotron J plasmas. (author)
Radiation heat transfer within an open-cycle MHD generator channel
Delil, A. A. M.
1983-05-01
Radiation heat transfer in an MHD generator was modeled using the Sparrow and Cess model for radiation in an emitting, absorbing and scattering medium. The resulting general equations can be considerably reduced by introducing simplifying approximations for the channel and MHD gas properties. The simplifications lead to an engineering model, which is very useful for one-dimensional channel flow approximation. The model can estimate thermo-optical MHD gas properties, which can be substituted in the energy equation. The model considers the contribution of solid particles in the MHD gas to radiation heat transfer, considerable in coal-fired closed cycle MHD generators. The modeling is applicable also for other types of flow at elevated temperatures, where radiation heat transfer is an important quantity.
MHD stability analyses of a tokamak plasma by time-dependent codes
International Nuclear Information System (INIS)
Kurita, Gen-ichi
1982-07-01
The MHD properties of a tokamak plasma are investigated by using time evolutional codes. As for the ideal MHD modes we have analyzed the external modes including the positional instability. Linear and nonlinear ideal MHD codes have been developed. Effects of the toroidicity and conducting shell on the external kink mode are studied minutely by the linear code. A new rezoning algorithm is devised and it is successfully applied to express numerically the axisymmetric plasma perturbation in a cylindrical geometry. As for the resistive MHD modes we have developed nonlinear codes on the basis of the reduced set of the resistive MHD equations. By using the codes we have studied the major disruption processes and properties of the low n resistive modes. We have found that the effects of toroidicity and finite poloidal beta are very important. Considering the above conclusion we propose a new scenario of the initiation of the major disruption. (author)
Technical support for open-cycle MHD program. Progress report, July--December 1978
Energy Technology Data Exchange (ETDEWEB)
Doss, E D [ed.
1979-06-01
The support program for open-cycle MHD at Argonne National Laboratory is developing the analytical tools needed to investigate the performance of the major components in the combined cycle MHD/steam power system. The analytical effort is centered on the primary components of the system that are unique to MHD and also on the integration of these analytical representations into a model of the entire power producing system. The present project activities include modeling of the combustor, MHD channel, slag separator, and high-temperature air heater. In addition, these models are combined into a complete system model, which is at present capable of carrying out optimizations of the entire system relative to either thermodynamic efficiency or cost of electrical power. Also, in support of other aspects of the open-cycle program, test plans are developed and facility and program reviews are provided upon request in support of the needs and requirements of the DOE/MHD Division.
Yang, Liping; Zhang, Lei; He, Jiansen; Tu, Chuanyi; Li, Shengtai; Wang, Xin; Wang, Linghua
2018-03-01
Multi-order structure functions in the solar wind are reported to display a monofractal scaling when sampled parallel to the local magnetic field and a multifractal scaling when measured perpendicularly. Whether and to what extent will the scaling anisotropy be weakened by the enhancement of turbulence amplitude relative to the background magnetic strength? In this study, based on two runs of the magnetohydrodynamic (MHD) turbulence simulation with different relative levels of turbulence amplitude, we investigate and compare the scaling of multi-order magnetic structure functions and magnetic probability distribution functions (PDFs) as well as their dependence on the direction of the local field. The numerical results show that for the case of large-amplitude MHD turbulence, the multi-order structure functions display a multifractal scaling at all angles to the local magnetic field, with PDFs deviating significantly from the Gaussian distribution and a flatness larger than 3 at all angles. In contrast, for the case of small-amplitude MHD turbulence, the multi-order structure functions and PDFs have different features in the quasi-parallel and quasi-perpendicular directions: a monofractal scaling and Gaussian-like distribution in the former, and a conversion of a monofractal scaling and Gaussian-like distribution into a multifractal scaling and non-Gaussian tail distribution in the latter. These results hint that when intermittencies are abundant and intense, the multifractal scaling in the structure functions can appear even if it is in the quasi-parallel direction; otherwise, the monofractal scaling in the structure functions remains even if it is in the quasi-perpendicular direction.
Energy Technology Data Exchange (ETDEWEB)
NONE
1981-03-01
'Research on MHD generation system' was implemented by its expert committee in the electric joint study group, with the results of fiscal 1980 reported. This year, a detailed conceptual design was carried out on a coal fired MHD generation system, with points for the technological development concretely examined. In addition, investigation was conducted on the progress of MHD generation technology, development situation of other generation systems, state of energy resources, etc., in various foreign countries. In the conceptual design of the coal fired MHD generation plant, the system structure of a 2,000 MWt class commercial MHD generation plant was explained, as were the conceptual design of the structural elements and proposals for a 500 MWt class demonstration plant and an 100 MWt class experimental plant, for example. In the overseas trend of R and D on MHD generation, investigations were made concerning the U.S., Soviet Union, and China, with details compiled for such items as generation plants, combustors, generation channels, heat resisting materials, superconducting magnets, heat exchangers, seed slags, inverters, boilers and environments, and commercial plants. (NEDO)
MHD Modeling of Conductors at Ultra-High Current Density
International Nuclear Information System (INIS)
ROSENTHAL, STEPHEN E.; DESJARLAIS, MICHAEL P.; SPIELMAN, RICK B.; STYGAR, WILLIAM A.; ASAY, JAMES R.; DOUGLAS, M.R.; HALL, C.A.; FRESE, M.H.; MORSE, R.L.; REISMAN, D.B.
2000-01-01
In conjunction with ongoing high-current experiments on Sandia National Laboratories' Z accelerator, the authors have revisited a problem first described in detail by Heinz Knoepfel. Unlike the 1-Tesla MITLs of pulsed power accelerators used to produce intense particle beams, Z's disc transmission line (downstream of the current addition) is in a 100--1,200 Tesla regime, so its conductors cannot be modeled simply as static infinite conductivity boundaries. Using the MHD code MACH2 they have been investigating the conductor hydrodynamics, characterizing the joule heating, magnetic field diffusion, and material deformation, pressure, and velocity over a range of current densities, current rise-times, and conductor materials. Three purposes of this work are (1) to quantify power flow losses owing to ultra-high magnetic fields, (2) to model the response of VISAR diagnostic samples in various configurations on Z, and (3) to incorporate the most appropriate equation of state and conductivity models into the MHD computations. Certain features are strongly dependent on the details of the conductivity model
Fully developed MHD turbulence near critical magnetic Reynolds number
International Nuclear Information System (INIS)
Leorat, J.; Pouquet, A.; Frisch, U.
1981-01-01
Liquid-sodium-cooled breeder reactors may soon be operating at magnetic Reynolds numbers Rsup(M) where magnetic fields can be self-excited by a dynamo mechanism. Such flows have kinetic Reynolds numbers Rsup(V) of the order of 10 7 and are therefore highly turbulent. The behaviour of MHD turbulence with high Rsup(V) and low magnetic Prandtl numbers is investigated, using the eddy-damped quasi-normal Markovian closure applied to the MHD equations. For simplicity the study is restricted to homogeneous and isotropic turbulence, but includes helicity. A critical magnetic Reynolds number Rsub(c)sup(M) of the order of a few tens (non-helical case) is obtained above which magnetic energy is present. Rsub(c)sup(M) is practically independent of Rsup(V) (in the range 40 to 10 6 ) and can be considerably decreased by the presence of helicity. No attempt is made to obtain quantitative estimates for a breeder reactor, but discuss some of the possible consequences of exceeding Rsub(c)sup(M) such as decreased turbulent heat transport. (author)
SCMS-1, Superconducting Magnet System for an MHD generator
International Nuclear Information System (INIS)
Zenkevich, V.B.; Kirenin, I.A.; Tovma, V.A.
1977-01-01
The research and development effort connected with the building of the superconducting magnet systems for MHD generators at the Institute for High Temperatures of the U.S.S.R. Academy of Sciences included the designing, fabrication and testing of the superconducting magnet system for an MHD generator (SCMS-1), producing a magnetic field up to 4 Tesla in a warm bore tube 300 mm in diameter and 1000 mm long (the nonuniformity of the magnetic field in the warm bore did not exceed +-5%. The superconducting magnet system is described. The design selected consisted of a dipole, saddle-form coil, wound around a tube. The cooling of the coils is of the external type with helium access to each layer of the winding. For winding of the superconducting magnet system a 49-strand cable was used consisting of 42 composition conductors, having a diameter of 0.3 mm each, containing six superconducting strands with a niobium-titanium alloy base (the superconducting strands were 70 microns in diameter), and seven copper conductors of the same diameter as the composite conductors. The cable is made monolithic with high purity indium and insulated with lavsan fiber. The cable diameter with insulation is 3.5 mm
Hypersonic MHD Propulsion System Integration for the Mercury Lightcraft
International Nuclear Information System (INIS)
Myrabo, L.N.; Rosa, R.J.
2004-01-01
Introduced herein are the design, systems integration, and performance analysis of an exotic magnetohydrodynamic (MHD) slipstream accelerator engine for a single-occupant 'Mercury' lightcraft. This ultra-energetic, laser-boosted vehicle is designed to ride a 'tractor beam' into space, transmitted from a future orbital network of satellite solar power stations. The lightcraft's airbreathing combined-cycle engine employs a rotary pulsed detonation thruster mode for lift-off and landing, and an MHD slipstream accelerator mode at hypersonic speeds. The latter engine transforms the transatmospheric acceleration path into a virtual electromagnetic 'mass-driver' channel; the hypersonic momentum exchange process (with the atmosphere) enables engine specific impulses in the range of 6000 to 16,000 seconds, and propellant mass fractions as low as 10%. The single-stage-to-orbit, highly reusable lightcraft can accelerate at 3 Gs into low Earth orbit with its throttle just barely beyond 'idle' power, or virtually 'disappear' at 30 G's and beyond. The objective of this advanced lightcraft design is to lay the technological foundations for a safe, very low cost (e.g., 1000X below chemical rockets) air and space transportation for human life in the mid-21st Century - a system that will be completely 'green' and independent of Earth's limited fossil fuel reserves
MHD analysis of high (βt) disruptions in PBX
International Nuclear Information System (INIS)
Jahns, G.L.; Chance, M.S.; Kaye, S.M.; Manickam, J.; Takahashi, H.; LeBlanc, B.; Morris, A.W.; Reusch, M.; Sesnic, S.
1988-01-01
Princeton Beta Experiment (PBX) discharges run at the lowest q and highest (β t ) always terminated in a hard disruption. The discharges, with (β t ) values of up to 5.5% and q-values down to 2.2, were obtained by employing large current ramps and large gas feed rates during neutral beam injection. Previous work has indicated that the achieved (β t ) values were consistent with the limit imposed by the n=1 ideal external kink with a conducting wall at b/a=2. The authors of the paper investigate further the validity of ideal MHD theory in explaining the low q ψ disruptions. In particular, the characteristics of the pre-disruption MHD activity in these low-q discharges, specifically the time-scale of growth and internal and external mode structures, are compared with those determined from theoretical calculations. The results of these comparisons indicate that non-ideal effects must be considered in order to obtain detailed agreement between theory and experiment. (author). 13 refs, 6 figs
AN MHD AVALANCHE IN A MULTI-THREADED CORONAL LOOP
Energy Technology Data Exchange (ETDEWEB)
Hood, A. W.; Cargill, P. J.; Tam, K. V. [School of Mathematics and Statistics, University of St Andrews, St Andrews, Fife, KY16 9SS (United Kingdom); Browning, P. K., E-mail: awh@st-andrews.ac.uk [School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester, M13 9PL (United Kingdom)
2016-01-20
For the first time, we demonstrate how an MHD avalanche might occur in a multithreaded coronal loop. Considering 23 non-potential magnetic threads within a loop, we use 3D MHD simulations to show that only one thread needs to be unstable in order to start an avalanche even when the others are below marginal stability. This has significant implications for coronal heating in that it provides for energy dissipation with a trigger mechanism. The instability of the unstable thread follows the evolution determined in many earlier investigations. However, once one stable thread is disrupted, it coalesces with a neighboring thread and this process disrupts other nearby threads. Coalescence with these disrupted threads then occurs leading to the disruption of yet more threads as the avalanche develops. Magnetic energy is released in discrete bursts as the surrounding stable threads are disrupted. The volume integrated heating, as a function of time, shows short spikes suggesting that the temporal form of the heating is more like that of nanoflares than of constant heating.
MHD Modeling of Conductors at Ultra-High Current Density
International Nuclear Information System (INIS)
Rosenthal, S.E.; Asay, J.R.; Desjarlais, M.P.; Douglas, M.R.; Frese, M.H.; Hall, C.A.; Morse, R.L.; Reisman, D.; Spielman, R.B.; Stygar, W.A.
1999-01-01
In conjunction with ongoing high-current experiments on Sandia National Laboratories' Z accelerator we have revisited a problem first described in detail by Heinz Knoepfel. MITLs of previous pulsed power accelerators have been in the 1-Tesla regime. Z's disc transmission line (downstream of the current addition) is in a 100-1200 Tesla regime, so its conductors cannot be modeled simply as static infinite conductivity boundaries. Using the MHD code MACH2 we have been investigating conductor hydrodynamics, characterizing the joule heating, magnetic field diffusion, and material deformation, pressure, and velocity over a range of current densities, current rise-times, and conductor materials. Three purposes of this work are ( 1) to quantify power flow losses owing to ultra-high magnetic fields, (2) to model the response of VISAR diagnostic samples in various configurations on Z, and (3) to incorporate the most appropriate equation of state and conductivity models into our MHD computations. Certain features are strongly dependent on the details of the conductivity model. Comparison with measurements on Z will be discussed
Relativistic MHD simulations of stellar core collapse and magnetars
Energy Technology Data Exchange (ETDEWEB)
Font, Jose A; Gabler, Michael [Departamento de AstronomIa y Astrofisica, Universitat de Valencia, 46100 Burjassot (Valencia) (Spain); Cerda-Duran, Pablo; Mueller, Ewald [Max-Planck-Institut fuer Astrophysik, Karl-Schwarzschild-Str. 1, 85741 Garching (Germany); Stergioulas, Nikolaos, E-mail: j.antonio.font@uv.es [Department of Physics, Aristotle University of Thessaloniki, Thessaloniki 54124 (Greece)
2011-02-01
We present results from simulations of magneto-rotational stellar core collapse along with Alfven oscillations in magnetars. These simulations are performed with the CoCoA/CoCoNuT code, which is able to handle ideal MHD flows in dynamical spacetimes in general relativity. Our core collapse simulations highlight the importance of genuine magnetic effects, like the magneto-rotational instability, for the dynamics of the flow. For the modelling of magnetars we use the anelastic approximation to general relativistic MHD, which allows for an effective suppression of fluid modes and an accurate description of Alfven waves. We further compute Alfven oscillation frequencies along individual magnetic field lines with a semi-analytic approach. Our work confirms previous results based on perturbative approaches regarding the existence of two families of quasi-periodic oscillations (QPOs), with harmonics at integer multiples of the fundamental frequency. Additional material is presented in the accompanying contribution by Gabler et al (2010b) in these proceedings.
Sunspot Modeling: From Simplified Models to Radiative MHD Simulations
Directory of Open Access Journals (Sweden)
Rolf Schlichenmaier
2011-09-01
Full Text Available We review our current understanding of sunspots from the scales of their fine structure to their large scale (global structure including the processes of their formation and decay. Recently, sunspot models have undergone a dramatic change. In the past, several aspects of sunspot structure have been addressed by static MHD models with parametrized energy transport. Models of sunspot fine structure have been relying heavily on strong assumptions about flow and field geometry (e.g., flux-tubes, "gaps", convective rolls, which were motivated in part by the observed filamentary structure of penumbrae or the necessity of explaining the substantial energy transport required to maintain the penumbral brightness. However, none of these models could self-consistently explain all aspects of penumbral structure (energy transport, filamentation, Evershed flow. In recent years, 3D radiative MHD simulations have been advanced dramatically to the point at which models of complete sunspots with sufficient resolution to capture sunspot fine structure are feasible. Here overturning convection is the central element responsible for energy transport, filamentation leading to fine-structure and the driving of strong outflows. On the larger scale these models are also in the progress of addressing the subsurface structure of sunspots as well as sunspot formation. With this shift in modeling capabilities and the recent advances in high resolution observations, the future research will be guided by comparing observation and theory.
Kinetic analysis of MHD ballooning modes in tokamaks
International Nuclear Information System (INIS)
Tang, W.M.; Rewoldt, G.; Cheng, C.Z.; Chance, M.S.
1984-10-01
A comprehensive analysis of the stability properties of the appropriate kinetically generalized form of MHD ballooning modes together with the usual trapped-particle drift modes is presented. The calculations are fully electromagnetic and include the complete dynamics associated with compressional ion acoustic waves. Trapped-particle effects along with all forms of collisionless dissipation are taken into account without approximations. The influence of collisions is estimated with a model Krook operator. Results from the application of this analysis to realistic tokamak operating conditions indicate that unstable short-wavelength modes with significant growth rates can extend from β = 0 to value above the upper ideal-MHD-critical-beta associated with the so-called second stability regime. Since the strength of the relevant modes appears to vary gradually with β, these results support a soft beta limit picture involving a continuous (rather than abrupt or hard) modification of anomalous transport already present in low-β-tokamaks. However, at higher beta the increasing dominance of the electromagnetic component of the perturbations indicated by these calculations could also imply significantly different transport scaling properties
Boundary modulation effects on MHD instabilities in Heliotrons
International Nuclear Information System (INIS)
Nakajima, N.; Hudson, S.R.; Hegna, C.C.; Nakamura, Y.
2005-01-01
In three-dimensional configurations, the confinement region is surrounded by the stochastic magnetic field lines related to magnetic islands or separatrix, leading to the fact that the plasma-vacuum boundary is not so definite compared with tokamaks that the various modulations of the plasma-vacuum boundary will be induced around the stochastic region by a large Shafranov shift of the whole plasma, in especially high-β operations. To examine such the modulation effects of the plasma boundary on MHD instabilities, high-β plasmas allowing a large Shafranov shift are considered in the inward-shifted LHD configurations with the vacuum magnetic axis R ax of 3.6m, for which previous theoretical analyses indicate that pressure-driven modes are significantly more unstable compared with experimental observations. It is shown that the boundary modulation due to a free motion of the equilibrium plasma has not only significant stabilizing effects on ideal MHD instabilities, but also characteristics consistent to experimental observations. (author)
RFX: New tools for real-time MHD control
International Nuclear Information System (INIS)
Gnesotto, F.; Luchetta, A.; Marchiori, G.
2005-01-01
RFX has been recently modified to improve its capability of controlling different MHD phenomena by means of fast, feedback controlled amplifiers and distributed radial field inductors. The paper, after summarizing the principal results obtained in the past by means of active control of magnetic fields in RFX, describes the recent modifications to the machine and the improvements to the power supplies and to the magnetic diagnostics. The old thick shell has been replaced by a much thinner shell, whose electromagnetic time constants are much shorter than pulse duration, and a system of 192 radial field coils has been added, covering the whole torus surface. Then the paper describes the models used to design the new real-time control system of RFX and gives some preliminary results obtained, with the same techniques, on the EXTRAP-T2R device. The basic choices about the technologies adopted for the new RFX control system are discussed with reference to the general problem of real-time control of MHD instabilities in magnetic fusion devices. Finally, the paper defines the main objectives of the RFX scientific programme aimed at exploiting these new tools. (author)
Hypersonic MHD Propulsion System Integration for the Mercury Lightcraft
Myrabo, L. N.; Rosa, R. J.
2004-03-01
Introduced herein are the design, systems integration, and performance analysis of an exotic magnetohydrodynamic (MHD) slipstream accelerator engine for a single-occupant ``Mercury'' lightcraft. This ultra-energetic, laser-boosted vehicle is designed to ride a `tractor beam' into space, transmitted from a future orbital network of satellite solar power stations. The lightcraft's airbreathing combined-cycle engine employs a rotary pulsed detonation thruster mode for lift-off & landing, and an MHD slipstream accelerator mode at hypersonic speeds. The latter engine transforms the transatmospheric acceleration path into a virtual electromagnetic `mass-driver' channel; the hypersonic momentum exchange process (with the atmosphere) enables engine specific impulses in the range of 6000 to 16,000 seconds, and propellant mass fractions as low as 10%. The single-stage-to-orbit, highly reusable lightcraft can accelerate at 3 Gs into low Earth orbit with its throttle just barely beyond `idle' power, or virtually `disappear' at 30 G's and beyond. The objective of this advanced lightcraft design is to lay the technological foundations for a safe, very low cost (e.g., 1000X below chemical rockets) air and space transportation for human life in the mid-21st Century - a system that will be completely `green' and independent of Earth's limited fossil fuel reserves.
Nonlinear dynamics of single-helicity neoclassical MHD tearing instabilities
International Nuclear Information System (INIS)
Spong, D.A.; Shaing, K.C.; Carreras, B.A.; Callen, J.D.; Garcia, L.
1988-10-01
Neoclassical magnetohydrodynamic (MHD) effects can significantly alter the nonlinear evolution of resistive tearing instabilities. This is studied numerically by using a flux-surface-averaged set of evolution equations that includes the lowest-order neoclassical MHD effects. The new terms in the equations are fluctuating bootstrap current, neoclassical modification of the resistivity, and neoclassical damping of the vorticity. Single-helicity tearing modes are studied in a cylindrical model over a range of neoclassical viscosities (μ/sub e//ν/sup e/) and values of the Δ' parameter of tearing mode theory. Increasing the neoclassical viscosity leads to increased growth rate and saturated island width as predicted analytically. The larger island width is caused by the fluctuating bootstrap current contribution in Ohm's law. The Δ' parameter no longer solely determines the island width, and finite-width saturated islands may be obtained even when Δ' is negative. The importance of the bootstrap current (/approximately/∂/rho///partial derivative/psi/) in the nonlinear dynamics leads us to examine the sensitivity of the results with respect to different models for the density evolution. 11 refs., 8 figs
MHD stability regimes for steady state and pulsed reactors
International Nuclear Information System (INIS)
Jardin, S.C.; Kessel, C.E.; Pomphrey, N.
1994-02-01
A tokamak reactor will operate at the maximum value of β≡2μ 0 /B 2 that is compatible with MHD stability. This value depends upon the plasma current and pressure profiles, the plasma shape and aspect ratio, and the location of nearby conducting structures. In addition, a steady state reactor will minimize its external current drive requirements and thus achieve its maximum economic benefit with a bootstrap fraction near one, I bs /I p ∼ 1, which constrains the product of the inverse aspect ratio and the plasma poloidal beta to be near unity, ε β p ∼ 1. An inductively driven pulsed reactor has different constraints set by the steady-state Ohm's law which relates the plasma temperature and density profiles to the parallel current density. We present the results obtained during the ARIES I, II/IV, and III and the PULSAR reactor studies where these quantities were optimized subject to different design philosophies. The ARIES-II/IV and ARIES-III designs are both in the second stability regime, but differ in requirements on the form of the profiles at the plasma edge, and in the location of the conducting wall. The relation between these, as well as new attractive MHD regimes not utilized in the ARIES or PULSAR studies is also discussed
Observation of finite-β MHD phenomena in Tokamaks
International Nuclear Information System (INIS)
McGuire, K.M.
1985-01-01
Stable high beta plasmas are required for the tokamak to attain an economical fusion reactor. Recently, intense neutral beam heating experiments in tokamaks have shown new effects on plasma stability and confinement associated with high beta plasmas. The observed spectrum of MHD fluctuations at high beta is clearly dominated by the n = 1 mode when the q = 1 surface is in the plasma. The m/n = 1/1 mode drives other n = 1 modes through toroidal coupling and n > 1 modes through nonlinear coupling. On PDX, with near perpendicular injection, a resonant interaction between the n = 1 internal kink and the trapped fast ions results in loss of beam particles and heating power. Key parameters in the theory are the value of qsub(o) and the injection angle. High frequency broadband magnetic fluctuations have been observed on ISX-B and D-III and a correlation with the deterioration of plasma confinement was reported. During enhanced confinement (H-mode) discharges in divertor plasmas two new edge instabilities were observed, both localized radially near the separatrix. By assembling results from the different tokamak experiments, it is found that the simple theoretical ideal MHD beta limit has not been exceeded
Ideal MHD B limits in the BIG DEE tokamak
International Nuclear Information System (INIS)
Helton, F.J.; Bernard, L.C.; Greene, J.M.
1983-01-01
Using D-D reactions, tokamak reactors become economically attractive when B (the ratio of volume averaged pressure to magnetic pressure) exceeds 5 percent. Ideal MID instabilities are of great concern because they have the potential to limit B below this range and so extensive studies have been done to determine ideal MHD B limits. As B increases with inverse aspect ratio, elongation and triangularity, the Doublet III upgrade machine -- BIG DEE -- is particularly suited to study the possibility of very high B. The authors have done computations to determine ideal MHD B limits for various plasma shapes and elongations in BIG DEE. They have determined that for q at the plasma surface greater than 2, B is limited by the ballooning mode if the wall is reasonably close to the plasma surface (d/a < 1.5 where d and a are the wall and plasma radii respectively). On the other hand, for q at the plasma surface less than 2, the n=1 external kink is unstable even with a wall close by. Thus, relevant values of limiting B can be obtained by assuming that the external kink limits the value of q at the limiter to a value greater than 2 and that the ballooning modes limit B. Under this assumption, a relevant B limit for the BIG DEE would be over 18%. For such an equilibrium, the wall position necessary to stabilize the n=1 and n=2 modes is 2a and the equilibrium is stable for n=3
International Nuclear Information System (INIS)
Saito, Masaki
2001-03-01
Feasibility study of the liquid-metal MHD power generation system combined with the high-density two-phase natural circulation has been performed for the applicability to the simple, autonomic energy conversion system of the liquid-metal cooled fast reactor. The present system has many promising aspects not only in the energy conversion process, but also in safety and economical improvements of the liquid-metal cooled fast reactor. In the previous report, as the first step of the feasibility study, the cycle analyses were performed to examine the effects of the main system parameters on the fundamental characteristics of the system. It was found that the cycle efficiency of the present system is enough competitive with that of the conventional steam turbine system. It was also found that the cycle efficiency depends strongly on the gas-liquid slip ratio in the two-phase flow channel. However, it is very difficult to estimate the gas-liquid slip ratio theoretically, especially in the heavy liquid metal two-phase natural circulation. For example, the effects of MHD load on the two-phase flow characteristics, such as the void fraction and gas-liquid slip ratio are not known well. In the present study, therefore, as the second step of the feasibility study, a series of the experiments were performed to investigate, especially, the effect of MHD load at the single-phase shown-comer flow channel on the characteristics of the two-phase natural circulation. In the first series of the experiments, Woods-metal (Density: 9517 Kg/m 3 ) and nitrogen gas were chosen as the two-phase working fluids. The MHD pressure drop was simulated by the ball valve. The experiments with water and nitrogen gas were also performed to check the effects of the physical properties. From the present experiments, it is found that the average void fraction in the two-phase flow channel is determined by the force balance between the MHD pressure drop, frictional and pressure losses in the tube, and
Observation of MHD fluctuation by ECE on W7-X first experimental campaign
Tsuchiya, Hayato; Hirsch, Matthias; Weir, Gavin; Hofel, Udo; Beurskens, Marc; Masuzaki, Suguru; W7-X Team
2016-10-01
Wendelstein 7-X is an optimized stellarator for ECRH high density steady-state discharges at reactor relevant collisionality regimes. The first experiment (OP1.1) was successfully conducted from Dec.2015. ECE (Electron Cyclotron Emission diagnostic) is one of the main diagnostic during the first experimental campaign. The 2nd harmonic x-mode emission is obtained by outside-antenna and detected by 32-channel heterodyne radiometer. The frequency band is from 126GHz to 162GHz. Radiometers are calibrated by LN2 temperature and room temperature. The absolute calibration error was estimated to be 10%. The electron temperature radial profile obtained by ECE agrees the Thomson scattering and imaging X-ray spectroscopy result. The asymmetric profile is still indicated due to mix of O2-mode. Fluctuations derived from MHD instability are often observed by electron temperature and magnetic fluctuations. The radial mode structure is clearly identified by ECE. It indicates the existence of magnetic island and from its appearance on both sides of the X2 emission spectrum the knowledge on the localization of the ECE channels can be improved by symmetrization.
International Nuclear Information System (INIS)
Reiman, A.; Monticello, D.; Pomphrey, N.
1993-01-01
The three-dimensional MHD equilibrium equation is a mixed elliptic-hyperbolic partial differential equation. Unlike more familiar equations of this sort, the source term in the elliptic part of the equation is dependent on the time-asymptotic solution of the hyperbolic part, because the pressure and the force-free part of the current are constant along magnetic field lines. The equations for the field line trajectories can be put in the form of Hamilton's equations for a one-dimensional time-dependent system. The authors require an accurate solution for the KAM surfaces of this nonintegrable Hamiltonian. They describe a new algorithm they have developed for this purpose, and discuss its relationship to previously developed algorithms for computing KAM surfaces. They also discuss the numerical issues that arise in self-consistently coupling the output of this algorithm to the elliptic piece of the equation to calculate the magnetic field driven by the current. For nominally axisymmetric devices, they describe how the code is used to directly calculate the saturated state of nonaxisymmetric instabilities by following the equilibrium solution through a bifurcation. They argue that this should be the method of choice for evaluating stability to tearing modes in toroidal magnetic confinement devices
Energy Technology Data Exchange (ETDEWEB)
NONE
1983-03-01
'Research on MHD generation system' was implemented by its expert committee in the electric joint study group, with the results of fiscal 1982 reported. This year is the final year of this research; therefore, reexamination was made from the practical standpoint on the R and D of coal fired MHD generation, evaluating the present technological level as well as clarifying the development procedures, with proposals made as to the R and D from now on. The present technological level in the practicability is still in the basic stage, where the essential problem is the development of combustors, air heaters and generation channels in particular. An examination was conducted for the problems, procedures and period of the development for each component equipment, with the results provided as materials for studying the path to the experimental plant of 100 MW heat input. In the method of proceeding with the R and D in the future, it was decided as essential, in order to enter the stage of the experimental plant from the element technology development, that R and D is carried out on the unestablished component technology, making sure that no excessive risk is taken in scaling up to the next stage. (NEDO)
Sub-grid-scale effects on short-wave instability in magnetized hall-MHD plasma
International Nuclear Information System (INIS)
Miura, H.; Nakajima, N.
2010-11-01
Aiming to clarify effects of short-wave modes on nonlinear evolution/saturation of the ballooning instability in the Large Helical Device, fully three-dimensional simulations of the single-fluid MHD and the Hall MHD equations are carried out. A moderate parallel heat conductivity plays an important role both in the two kinds of simulations. In the single-fluid MHD simulations, the parallel heat conduction effectively suppresses short-wave ballooning modes but it turns out that the suppression is insufficient in comparison to an experimental result. In the Hall MHD simulations, the parallel heat conduction triggers a rapid growth of the parallel flow and enhance nonlinear couplings. A comparison between single-fluid and the Hall MHD simulations reveals that the Hall MHD model does not necessarily improve the saturated pressure profile, and that we may need a further extension of the model. We also find by a comparison between two Hall MHD simulations with different numerical resolutions that sub-grid-scales of the Hall term should be modeled to mimic an inverse energy transfer in the wave number space. (author)
A coupled systems code-CFD MHD solver for fusion blanket design
Energy Technology Data Exchange (ETDEWEB)
Wolfendale, Michael J., E-mail: m.wolfendale11@imperial.ac.uk; Bluck, Michael J.
2015-10-15
Highlights: • A coupled systems code-CFD MHD solver for fusion blanket applications is proposed. • Development of a thermal hydraulic systems code with MHD capabilities is detailed. • A code coupling methodology based on the use of TCP socket communications is detailed. • Validation cases are briefly discussed for the systems code and coupled solver. - Abstract: The network of flow channels in a fusion blanket can be modelled using a 1D thermal hydraulic systems code. For more complex components such as junctions and manifolds, the simplifications employed in such codes can become invalid, requiring more detailed analyses. For magnetic confinement reactor blanket designs using a conducting fluid as coolant/breeder, the difficulties in flow modelling are particularly severe due to MHD effects. Blanket analysis is an ideal candidate for the application of a code coupling methodology, with a thermal hydraulic systems code modelling portions of the blanket amenable to 1D analysis, and CFD providing detail where necessary. A systems code, MHD-SYS, has been developed and validated against existing analyses. The code shows good agreement in the prediction of MHD pressure loss and the temperature profile in the fluid and wall regions of the blanket breeding zone. MHD-SYS has been coupled to an MHD solver developed in OpenFOAM and the coupled solver validated for test geometries in preparation for modelling blanket systems.
MHD/gas turbine systems designed for low cooling water requirements
International Nuclear Information System (INIS)
Annen, K.D.; Eustis, R.H.
1983-01-01
The MHD/gas turbine combined-cycle system has been designed specifically for applications where the availability of cooling water is very limited. The base case systems which were studied consist of a coal-fired MHD plant with an air turbine bottoming plant and require no cooling water. In addition to the base case systems, systems were considered which included the addition of a vapor cycle bottoming plant to improve the thermal efficiency. These systems require a small amount of cooling water. The results show that the MHD/gas turbine systems have very good thermal and economic performances. The base case I MHD/gas turbine system (782 MW /SUB e/ ) requires no cooling water, has a heat rate which is 13% higher, and a cost of electricity which is only 7% higher than a comparable MHD/steam system (878 MW /SUB e/ ) having a cooling tower heat load of 720 MW. The case I vapor cycle bottomed systems have thermal and economic performances which approach and even exceed those of the MHD/steam system, while having substantially lower cooling water requirements. Performances of a second-generation MHD/gas turbine system and an oxygen-enriched, early commercial system are also evaluated. An analysis of nitric oxide emissions shows compliance with emission standards
Characteristics of Plasma Probes in an MHD Working Fluid
Energy Technology Data Exchange (ETDEWEB)
Whitman, A. M.; Hsuan, Yeh [Towne School of Civil and Mechanical Engineering, University of Pennsylvania (United States)
1966-10-15
In this paper an attempt is made to formulate a theory of electrostatic probes in a high-pressure plasma in which an external electrical field may be imposed. Such a situation exists in high-pressure arc discharges and in MHD channels. First, it is shown that an adequate theory must include the ionization and recombination phenomena which were ignored in almost all previous theories. Secondly, due to the preferred direction induced by the presence of the electric field, the probe problem is no longer a symmetrical one. The analysis is based on the assumption that the three-body recombination and ionization is the dominant process. In a typical MHD working fluid, say an argon gas seeded with caesium at 2000 Degree-Sign K and one atmosphere of pressure, the penetration length I of ions and electrons, i.e. the distance that an ion or electron diffuses before recombination, is of the order of 10{sup -3} cm. (It is to be noted that ambipolar diffusion prevents the electrons from travelling much faster than the ions. ) We thus have a situation where Script-Small-L /L << 1, d/ Script-Small-L << 1, {lambda}/L <<1, and {lambda}/d >> 1, where L is the characteristic dimension of the probe {lambda} is the mean free path and d the Debye length. Because of the last condition, i. e, d << {lambda}, the space charge region is contained wholly in a ''free-falling'' zone in the immediate neighbourhood of the probe. Since, also, (d/ Script-Small-L ) << 1, the region outside of the ''free-falling'' zone is in a state of ''quasi-neutrality'', i.e. the number densities of electrons and ions are approximately equal. In this latter region, the mechanisms of diffusion and recombination are both important. The two regions must of course be matched at their connecting boundaries. Furthermore, the external boundary of the ''quasi-neutrality'' region must be matched to the discharge field. Using the approximations of the classical boundary layer theory, analytic solutions are obtained in
International Nuclear Information System (INIS)
Zhang, Xiujie; Pan, Chuanjie; Xu, Zengyu
2013-01-01
Highlights: ► 2D MHD code based on a fully developed modeling is developed and validated by Samad analytical results. ► The results of MHD effect of liquid metal through circular pipes at high Hartmann numbers are given. ► M type velocity profile is observed for MHD circular pipe flow at high wall conductance ratio condition. ► Non-uniform wall electrical conductivity leads to high jet velocity in Robert layers. -- Abstract: Magnetohydrodynamics (MHD) laminar flows through circular pipes are studied in this paper by numerical simulation under the conditions of Hartmann numbers from 18 to 10000. The code is developed based on a fully developed modeling and validated by Samad's analytical solution and Chang's asymptotic results. After the code validation, numerical simulation is extended to high Hartmann number for MHD circular pipe flows with conducting walls, and numerical results such as velocity distribution and MHD pressure gradient are obtained. Typical M-type velocity is observed but there is not such a big velocity jet as that of MHD rectangular duct flows even under the conditions of high Hartmann numbers and big wall conductance ratio. The over speed region in Robert layers becomes smaller when Hartmann numbers increase. When Hartmann number is fixed and wall conductance ratios change, the dimensionless velocity is through one point which is in agreement with Samad's results, the locus of maximum value of velocity jet is same and effects of wall conductance ratio only on the maximum value of velocity jet. In case of Robert walls are treated as insulating and Hartmann walls as conducting for circular pipe MHD flows, there is big velocity jet like as MHD rectangular duct flows of Hunt's case 2
International Nuclear Information System (INIS)
Grossman, Y.
1997-10-01
In supersymmetric models with nonvanishing Majorana neutrino masses, the sneutrino and antisneutrino mix. The conditions under which this mixing is experimentally observable are studied, and mass-splitting of the sneutrino mass eigenstates and sneutrino oscillation phenomena are analyzed
Pulsed power sources based on MHD generators (A state-of-art review)
International Nuclear Information System (INIS)
Das, A.K.; Venkatramani, N.; Rohatgi, V.K.
1986-01-01
pulsed Power sources are finding increased applications in powering plasma experiments, CTF devices, investigations of structure of earth's crust or self-contained compact power supplies for military applications. This report reviews the development of magnetohydrodynamic (MHD) power systems for pulsed power applications. The major critical components, which are analysed in detail, include the combustor, high energy fuel development, high field magnet, high power density channel and power conditioning unit. The report concludes that the MHD research has now reached a stage, where it is possible to design and achieve requisite performance from short duration high power compact MHD generators. (author)
International Nuclear Information System (INIS)
Bates, J.L.; Marchant, D.D.
1979-10-01
The objectives of this program are to develop, test, characterize, and evaluate materials for open-cycle, coal-fired MHD power generators. The specific immediate goals emphasize electrode and insulator materials, including: (1) testing and evaluation of the enhanced effects of alkali seed on materials in a dc electric field; (2) development and testing of improved electrodes and insulators with controlled microstructures, compositions and properties; and (3) characterization and evaluation of materials relating to both the US MHD Program and the US-USSR Cooperative Program for MHD power generators. Progress is reported
Energy Technology Data Exchange (ETDEWEB)
Melnikov, I.A., E-mail: corpuskula@gmail.com; Sviridov, E.V.; Sviridov, V.G.; Razuvanov, N.G.
2016-11-15
Highlights: • Local and averaged heat transfer coefficient are measured. • Free convection influence on MHD-flow is investigated. • The region with the free convection effect of MHD-heat transfer is found. • Temperature low-frequency fluctuations of abnormally high amplitude are detected. • Analysis of the MHD-heat transfer experimental data is performed. - Abstract: The article is devoted to the results of experimental investigation of heat transfer for a downward mercury flow in a vertical round tube in the presence of a transverse magnetic with non-uniform heat flux along the tube circumference.
Ion temperature increase during MHD events on the TST-2 spherical tokamak
International Nuclear Information System (INIS)
Ejiri, A.; Shiraiwa, S.; Takase, Y.; Yamada, T.; Nagashima, Y.; Kasahara, H.; Iijima, D.; Kobori, Y.; Nishi, T.; Taniguchi, T.; Aramasu, M.; Ohara, S.; Ushigome, M.; Yamagishi, K.
2003-01-01
Various types of MHD events including internal reconnection events are studied on the TST-2 spherical tokamak. In weak MHD events no positive current spike was observed, but in strong MHD events with positive current spikes, a rapid and significant impurity ion temperature increase was observed. The decrease in the poloidal magnetic energy is the most probable energy source for ion heating. The plasma current shows a stepwise change. The magnitude of this step correlates with the temperature increase and is found to be a good indicator of the strength of each event. (author)
Effects of ageing on the hydraulics of water wells and the influence of non-Darcy flow
Houben, Georg J.; Wachenhausen, Julia; Guevara Morel, Carlos R.
2018-04-01
Well ageing is mostly caused by mechanical and biogeochemical clogging processes, which affect the gravel pack, screen slots and casing. Clogging deposits increase head losses due to a constriction of the hydraulically effective area. For this study, clogging is mimicked by systematically reducing the gravel pack porosity, the screen open area and the nominal inner casing diameter. Groundwater flow velocity strongly increases close to the well, inducing inertial and turbulent flow components. Therefore, gravel pack head losses were calculated using the Forchheimer-Engelund equation, in conjunction with the Kozeny-Carman equation, which relates gravel pack porosity and hydraulic conductivity. Screen losses were assessed using the Orifice equation and turbulent casing losses with the Darcy-Weisbach equation. For the settings chosen here, a dramatic increase of head losses occurs when the clogging has reduced the effective porosity in the gravel pack by 65%, the open area of the screen by ≥98%, and the casing diameter by 50%. Since the latter two conditions are rarely reached in actual wells, the clogging of the gravel pack is the decisive parameter that controls well ageing. Regular monitoring of the well yield is therefore needed, since processes in the gravel pack are difficult to track directly. Unlike the deposits on the casing and in the screen slots, obstructions in the gravel pack are much more difficult to remove.
Onset of Vibrational Convection in a Binary Fluid Saturated Non-Darcy Porous Layer Heated from Above
Directory of Open Access Journals (Sweden)
Saravanan S.
2012-07-01
Full Text Available A linear stability analysis is used to investigate the influence of mechanical vibration on the onset of thermosolutal convection in a horizontal porous layer heated and salted from above. Vibrations are considered with arbitrary amplitude and frequency. The Brinkman extended Darcy model is used to describe the flow and the Oberbeck-Boussinesq approximation is employed. Continued fraction method and Floquet theory are used to determine the convective instability threshold. It is found that the solutal Rayleigh number has the stabilizing effect. The existence of a closed disconnected loop of synchronous mode is predicted in the marginal curve for moderate values of solutal Rayleigh number and vibration amplitude.
Directory of Open Access Journals (Sweden)
T. Hayat
2018-03-01
Full Text Available Here modeling and computations are presented to introduce the novel concept of Darcy-Forchheimer three-dimensional flow of water-based carbon nanotubes with nonlinear thermal radiation and heat generation/absorption. Bidirectional stretching surface induces the flow. Darcy’s law is commonly replace by Forchheimer relation. Xue model is implemented for nonliquid transport mechanism. Nonlinear formulation based upon conservation laws of mass, momentum and energy is first modeled and then solved by optimal homotopy analysis technique. Optimal estimations of auxiliary variables are obtained. Importance of influential variables on the velocity and thermal fields is interpreted graphically. Moreover velocity and temperature gradients are discussed and analyzed. Physical interpretation of influential variables is examined. Keywords: Porous medium, Heat generation/absorption, SWCNTs and MWCNTs, Nonlinear radiation
Hayat, T.; Ullah, Siraj; Khan, M. Ijaz; Alsaedi, A.; Zaigham Zia, Q. M.
2018-03-01
Here modeling and computations are presented to introduce the novel concept of Darcy-Forchheimer three-dimensional flow of water-based carbon nanotubes with nonlinear thermal radiation and heat generation/absorption. Bidirectional stretching surface induces the flow. Darcy's law is commonly replace by Forchheimer relation. Xue model is implemented for nonliquid transport mechanism. Nonlinear formulation based upon conservation laws of mass, momentum and energy is first modeled and then solved by optimal homotopy analysis technique. Optimal estimations of auxiliary variables are obtained. Importance of influential variables on the velocity and thermal fields is interpreted graphically. Moreover velocity and temperature gradients are discussed and analyzed. Physical interpretation of influential variables is examined.
AULISA, EUGENIO
2009-08-01
Motivated by the reservoir engineering concept of the well Productivity Index, we introduced and analyzed a functional, denoted as "diffusive capacity", for the solution of the initial-boundary value problem (IBVP) for a linear parabolic equation.21 This IBVP described laminar (linear) Darcy flow in porous media; the considered boundary conditions corresponded to different regimes of the well production. The diffusive capacities were then computed as steady state invariants of the solutions to the corresponding time-dependent boundary value problem. Here similar features for fast or turbulent nonlinear flows subjected to the Forchheimer equations are analyzed. It is shown that under some hydrodynamic and thermodynamic constraints, there exists a so-called pseudo steady state regime for the Forchheimer flows in porous media. In other words, under some assumptions there exists a steady state invariant over a certain class of solutions to the transient IBVP modeling the Forchheimer flow for slightly compressible fluid. This invariant is the diffusive capacity, which serves as the mathematical representation of the so-called well Productivity Index. The obtained results enable computation of the well Productivity Index by resolving a single steady state boundary value problem for a second-order quasilinear elliptic equation. Analytical and numerical studies highlight some new relations for the well Productivity Index in linear and nonlinear cases. The obtained analytical formulas can be potentially used for the numerical well block model as an analog of Piecemann. © 2009 World Scientific Publishing Company.
AULISA, EUGENIO; IBRAGIMOV, AKIF; VALKO, PETER; WALTON, JAY
2009-01-01
This IBVP described laminar (linear) Darcy flow in porous media; the considered boundary conditions corresponded to different regimes of the well production. The diffusive capacities were then computed as steady state invariants of the solutions
DEFF Research Database (Denmark)
Schjønning, Per; Lamandé, Mathieu; Berisso, Feto Esimo
2013-01-01
Soil productivity and other soil functions are dependent on processes in the untilled subsoil. Undisturbed soil cores were collected at the 0.3- to 0.4-m depth from a heavy clay soil in Finland subjected to a single heavy traffic event by agricultural machinery three decades before sampling....... Untrafficked control plots were used as a reference. Computed tomography (CT) scanning was performed on soil cores at a field-sampled field capacity water content. Gas diffusion and air permeability were measured when the soil cores were drained to −1000 hPa matric potential (air permeability also at −100...... and −300 hPa). The air-filled pore space was measured with an air pycnometer and also calculated from mass balance and CT data. Gas diffusion and air permeability were also measured on a straight model tube and on autoclaved aerated concrete. The compaction treatment had not influenced soil total porosity...
MHD simulations of coronal dark downflows considering thermal conduction
Zurbriggen, E.; Costa, A.; Esquivel, A.; Schneiter, M.; Cécere, M.
2017-10-01
While several scenarios have been proposed to explain supra-arcade downflows (SADs) observed descending through turbulent hot regions, none of them have systematically addressed the consideration of thermal conduction. The SADs are known to be voided cavities. Our model assumes that SADs are triggered by bursty localized reconnection events that produce non-linear waves generating the voided cavity. These subdense cavities are sustained in time because they are hotter than their surrounding medium. Due to the low density and large temperature values of the plasma we expect the thermal conduction to be an important process. Our main aim here is to study if it is possible to generate SADs in the framework of our model considering thermal conduction. We carry on 2D MHD simulations including anisotropic thermal conduction, and find that if the magnetic lines envelope the cavities, they can be isolated from the hot environment and be identified as SADs.
Resistive MHD studies of high-β-tokamak plasmas
International Nuclear Information System (INIS)
Lynch, V.E.; Carreras, B.A.; Hicks, H.R.; Holmes, J.A.; Garcia, L.
1981-01-01
Numerical calculations have been performed to study the MHD activity in high-β tokamaks such as ISX-B. These initial value calculations built on earlier low β techniques, but the β effects create several new numerical issues. These issues are discussed and resolved. In addition to time-stepping modules, our system of computer codes includes equilibrium solvers (used to provide an initial condition) and output modules, such as a magnetic field line follower and an X-ray diagnostic code. The transition from current driven modes at low β to predominantly pressure driven modes at high β is described. The nonlinear studies yield X-ray emissivity plots which are compared with experiment
Characteristics of low frequency MHD fluctuations in the PRETEXT tokamak
International Nuclear Information System (INIS)
Kochanski, T.P.
1981-05-01
The temporal and spectral characteristics of low frequency (< 100KHz) MHD fluctuations, which are commonly associated with disruptions, have been investigated in the PRETEXT tokamak. There exists rigid phase coherence between the internal m = 1, and externally detected m = 2 modes indicative of strong mode coupling. A parametric study of the frequency of the mode, in the saturated state, indicates that the frequency scales with the toroidal magnetic field, and is inversely proportional to the plasma current. The frequency is observed to decrease abruptly as the mode amplitude rapidly increases prior to a plasma disruption. The burst type growth of the m = 2 mode appears to be inextricably linked to the occurrence of the disruptive instability
Effects of couple stresses on MHD Couette flow
International Nuclear Information System (INIS)
Soundalgekar, V.M.; Aranake, R.N.
1978-01-01
An exact analysis of the effects of the couple stresses on the MHD Couette flow of an electrically conducting, viscous incompressible fluid is carried out. Closed form solutions are derived for the velocity, the current density, the skin-friction at the lower plate, the force to move the upper plate, and the coefficient of mass flux for (i) A→infinity, and (ii) 2M/A 1, where a is the couple stress parameter and M is the Hartmann number. These are shown graphically followed by a discussion. During the course of discussion the effects of A are quantitatively compared with those in the ordinary case. It is observed that in the presence of a magnetic field the skin friction is affected by the couple stresses. (Auth.)
On MHD nonlinear stretching flow of Powell–Eyring nanomaterial
Directory of Open Access Journals (Sweden)
Tasawar Hayat
Full Text Available This communication addresses the magnetohydrodynamic (MHD flow of Powell–Eyring nanomaterial bounded by a nonlinear stretching sheet. Novel features regarding thermophoresis and Brownian motion are taken into consideration. Powell–Eyring fluid is electrically conducted subject to non-uniform applied magnetic field. Assumptions of small magnetic Reynolds number and boundary layer approximation are employed in the mathematical development. Zero nanoparticles mass flux condition at the sheet is selected. Adequate transformation yield nonlinear ordinary differential systems. The developed nonlinear systems have been computed through the homotopic approach. Effects of different pertinent parameters on velocity, temperature and concentration fields are studied and analyzed. Further numerical data of skin friction and heat transfer rate is also tabulated and interpreted. Keywords: Powell–Eyring fluid, Magnetohydrodynamics, Nanomaterial, Nonlinear stretching surface
Thought analysis on self-organization theories of MHD plasma
International Nuclear Information System (INIS)
Kondoh, Yoshiomi; Sato, Tetsuya.
1992-08-01
A thought analysis on the self-organization theories of dissipative MHD plasma is presented to lead to three groups of theories that lead to the same relaxed state of ∇ x B = λB, in order to find an essential physical picture embedded in the self-organization phenomena due to nonlinear and dissipative processes. The self-organized relaxed state due to the dissipation by the Ohm loss is shown to be formulated generally as the state such that yields the minimum dissipation rate of global auto-and/or cross-correlations between two quantities in j, B, and A for their own instantaneous values of the global correlations. (author)
Loading factor and inclination parameter of diagonal type MHD generators
International Nuclear Information System (INIS)
Ishikawa, Motoo
1979-01-01
Regarding diagonal type MHD generators is studied the relation between the loading factor and inclination parameter which is required for attaining the maximum power density with a given electrical efficiency on the assumption of infinitely segmented electrodes. The average current density on electrodes is calculated against the Hall parameter, loading factor, and inclination parameter. The diagonal type generator is compared with Faraday type generator regarding the average current density. Decreasing the loading factor from inlet to outlet is appropriate to small size generators but increasing to large size generators. The inclination parameter had better decrease in both generators, being smaller for small generators than for large ones. The average current density on electrodes of diagonal type generators varies less with the loading factor than the Faraday type. In large size generators its value can become smaller compared with that of the Faraday type. (author)
Bifurcated equilibria in two-dimensional MHD with diamagnetic effects
International Nuclear Information System (INIS)
Ottaviani, M.; Tebaldi, C.
1998-12-01
In this work we analyzed the sequence of bifurcated equilibria in two-dimensional reduced magnetohydrodynamics. Diamagnetic effects are studied under the assumption of a constant equilibrium pressure gradient, not altered by the formation of the magnetic island. The formation of an island when the symmetric equilibrium becomes unstable is studied as a function of the tearing mode stability parameter Δ' and of the diamagnetic frequency, by employing fixed-points numerical techniques and an initial value code. At larger values of Δ' a tangent bifurcation takes place, above which no small island solutions exist. This bifurcation persists up to fairly large values of the diamagnetic frequency (of the order of one tenth of the Alfven frequency). The implications of this phenomenology for the intermittent MHD dynamics observed in tokamaks is discussed. (authors)
MHD stability analysis using higher order spline functions
Energy Technology Data Exchange (ETDEWEB)
Ida, Akihiro [Department of Energy Engineering and Science, Graduate School of Engineering, Nagoya University, Nagoya, Aichi (Japan); Todoroki, Jiro; Sanuki, Heiji
1999-04-01
The eigenvalue problem of the linearized magnetohydrodynamic (MHD) equation is formulated by using higher order spline functions as the base functions of Ritz-Galerkin approximation. When the displacement vector normal to the magnetic surface (in the magnetic surface) is interpolated by B-spline functions of degree p{sub 1} (degree p{sub 2}), which is continuously c{sub 1}-th (c{sub 2}-th) differentiable on neighboring finite elements, the sufficient conditions for the good approximation is given by p{sub 1}{>=}p{sub 2}+1, c{sub 1}{<=}c{sub 2}+1, (c{sub 1}{>=}1, p{sub 2}{>=}c{sub 2}{>=}0). The influence of the numerical integration upon the convergence of calculated eigenvalues is discussed. (author)
MHD stability properties of bean-shaped tokamaks
International Nuclear Information System (INIS)
Grimm, R.C.; Chance, M.S.; Todd, A.M.M.
1984-03-01
A study of the MHD stability properties of bean-shaped tokamak plasmas is presented. For ballooning modes, while increased indentation gives larger β stable configurations, the existence and accessibility of the second stable region is sensitive to the pressure and safety factor profiles. The second stable region appears at lower β values for large aspect ratio and moderately high q-values. Finite-Larmor-radius (FLR) kinetic effects can significantly improve the stability properties. For low q (< 1) operation, long wavelength (n approx. 2,3) internal pressure driven modes occur at modest β/sub p/ values and accessibility to higher β operation is unlikely. Indentation modifies the nature of the usually vertical axisymmetric instability, but the mode can be passively stabilized by placing highly conducting plates near to the tips of the plasma bean. At constant q, indentation has a stabilizing effect on tearing modes
Some rigorous results concerning spectral theory for ideal MHD
International Nuclear Information System (INIS)
Laurence, P.
1986-01-01
Spectral theory for linear ideal MHD is laid on a firm foundation by defining appropriate function spaces for the operators associated with both the first- and second-order (in time and space) partial differential operators. Thus, it is rigorously established that a self-adjoint extension of F(xi) exists. It is shown that the operator L associated with the first-order formulation satisfies the conditions of the Hille--Yosida theorem. A foundation is laid thereby within which the domains associated with the first- and second-order formulations can be compared. This allows future work in a rigorous setting that will clarify the differences (in the two formulations) between the structure of the generalized eigenspaces corresponding to the marginal point of the spectrum ω = 0
Some rigorous results concerning spectral theory for ideal MHD
International Nuclear Information System (INIS)
Laurence, P.
1985-05-01
Spectral theory for linear ideal MHD is laid on a firm foundation by defining appropriate function spaces for the operators associated with both the first and second order (in time and space) partial differential operators. Thus, it is rigorously established that a self-adjoint extension of F(xi) exists. It is shown that the operator L associated with the first order formulation satisfies the conditions of the Hille-Yosida theorem. A foundation is laid thereby within which the domains associated with the first and second order formulations can be compared. This allows future work in a rigorous setting that will clarify the differences (in the two formulations) between the structure of the generalized eigenspaces corresponding to the marginal point of the spectrum ω = 0
High pressure gas driven liquid metal MHD homopolar generator
International Nuclear Information System (INIS)
Itoh, Yasuyuki
1988-01-01
A liquid metal MHD homopolar generator is proposed to be used as a high repetition rate pulsed power supply. In the generator, the thermal energy stored in a high pressure gas (He) reservoir is rapidly converted into kinetic energy of a rotating liquid metal (NaK) cylinder which is contracted by a gas driven annular free piston. The rotational kinetic energy is converted into electrical energy by making use of the homopolar generator principle. The conversion efficiency is calculated to be 47% in generating electrical energy of 20 kJ/pulse (1.7 MW peak power) at a repetition rate of 7 Hz. From the viewpoint of energy storage, the high pressure gas reservoir with a charging pressure of 15 MPa is considered to ''electrically'' store the energy at a density of 10 MJ/m 3 . (author)
Alternating-current MHD conduction pump for ferrous metals
International Nuclear Information System (INIS)
Nadezhnikov, N.M.; Krauya, V.M.; Yankop, E.K.
1979-01-01
Results are presented of theoretical and experimental studies pertaining to an ac MHD conduction pump with separate excitation and a C-core magnet structure. Its mathematical model is based on the following assumptions: (1) During complete braking the liquid metal in the channel is stationary; (2) there is no current leakage in the channel beyond the interelectrode region; (3) during operation the longitudinal axis of the pump is in a vertical position; (4) the current density in the electrodes at a distance infinitely far from the active channel segment is uniformly distributed; (5) there are no magnetic leakage fluxes in the model; and (6) the left-hand electrode in the model can be brought out in two different ways, variant I or variant II. 7 references
Tearing mode dynamics and sawtooth oscillation in Hall-MHD
Ma, Zhiwei; Zhang, Wei; Wang, Sheng
2017-10-01
Tearing mode instability is one of the most important dynamic processes in space and laboratory plasmas. Hall effects, resulted from the decoupling of electron and ion motions, could cause the fast development and perturbation structure rotation of the tearing mode and become non-negligible. We independently developed high accuracy nonlinear MHD code (CLT) to study Hall effects on the dynamic evolution of tearing modes with Tokamak geometries. It is found that the rotation frequency of the mode in the electron diamagnetic direction is in a good agreement with analytical prediction. The linear growth rate increases with increase of the ion inertial length, which is contradictory to analytical solution in the slab geometry. We further find that the self-consistently generated rotation largely alters the dynamic behavior of the double tearing mode and the sawtooth oscillation. National Magnetic Confinement Fusion Science Program of China under Grant No. 2013GB104004 and 2013GB111004.
MHD-Vlasov simulation of the toroidal Alfven eigenmode
International Nuclear Information System (INIS)
Todo, Y.; Sato, T.; Watanabe, K.; Watanabe, T.H.; Horiuchi, R.
1994-11-01
A new simulation method has been developed to investigate the excitation and saturation processes of toroidal Alfven eigenmodes (TAE modes). The background plasma is described by a full-MHD fluid model, while the kinetic evolution of energetic alpha particles is followed by the drift kinetic equation. The magnetic fluctuation of n = 2 mode develops and saturates at the level of 1.8x10 -3 of the equilibrium field when the initial beta of alpha particles is 2% at the magnetic axis. After saturation, the TAE mode amplitude shows an oscillatory behavior with a frequency corresponding to the bounce frequency of the alpha particles trapped by the TEA mode. The decrease of the power transfer rate from the alpha particles to the TAE mode, which is due to the trapped particle effect of a finite-amplitude wave, causes the saturation. From the linear growth rate the saturation level can be estimated. (author)
Boundary effects on the MHD dynamo in laboratory plasmas
International Nuclear Information System (INIS)
Ho, Y.L.; Prager, S.C.
1989-07-01
In recent laboratory experiments, a dynamo-like mechanism has been demonstrated in which a portion of the axisymmetric component of the magnetic field is believed to be sustained by 3D spatial fluctuations in the field and flow. With a conducting shell at the plasma surface, past MHD computation shows that sustainment arises from fluctuations which cause magnetic reconnection. If the conducting wall is retracted from the plasma surface, the fluctuations are amplified and the dynamo sustainment is still active for the times studied, but an increased energy input to the plasma is required through the applied electric field. The retraction of the conducting wall enhances the helicity dissipation rate by the intersection of the fields with the resistive surface which bounds the plasma. This enhanced helicity dissipation is balanced by the helicity injection that accompanies the increased applied electric field. 17 refs., 7 figs., 1 tab
MHD equilibrium of toroidal fusion plasma with stationary flows
International Nuclear Information System (INIS)
Galkowski, A.
1994-01-01
Non-linear ideal MHD equilibria in axisymmetric system with flows are examined, both in 1st and 2nd ellipticity regions. Evidence of the bifurcation of solutions is provided and numerical solutions of several problems in a tokamak geometry are given, exhibiting bifurcation phenomena. Relaxation of plasma in the presence of zero-order flows is studied in a realistic toroidal geometry. The field aligned flow allows equilibria with finite pressure gradient but with homogeneous temperature distribution. Numerical calculations have been performed for the 1st and 2nd ellipticity regimes of the extended Grad-Shafranov-Schlueter equation. Numerical technique, alternative to the well-known Grad's ADM methods has been proposed to deal with slow adiabatic evolution of toroidal plasma with flows. The equilibrium problem with prescribed adiabatic constraints may be solved by simultaneous calculations of flux surface geometry and original profile functions. (author). 178 refs, 37 figs, 5 tabs
Generation of sheet currents by high frequency fast MHD waves
Energy Technology Data Exchange (ETDEWEB)
Núñez, Manuel, E-mail: mnjmhd@am.uva.es
2016-07-01
The evolution of fast magnetosonic waves of high frequency propagating into an axisymmetric equilibrium plasma is studied. By using the methods of weakly nonlinear geometrical optics, it is shown that the perturbation travels in the equatorial plane while satisfying a transport equation which enables us to predict the time and location of formation of shock waves. For plasmas of large magnetic Prandtl number, this would result into the creation of sheet currents which may give rise to magnetic reconnection and destruction of the original equilibrium. - Highlights: • Regular solutions of quasilinear hyperbolic systems may evolve into shocks. • The shock location is found for high frequency fast MHD waves. • The result is applied to static axisymmetric equilibria. • The previous process may lead to the formation of sheet currents and destruction of the equilibrium.
Numerical simulation of magnetohydrodynamic (MHD) flow with internal heat generation
International Nuclear Information System (INIS)
Bokade, Vipin; Bhandarkar, U.V.; Bodi, Kowsik
2016-01-01
A strong magnetic field is used to confine the plasma in a fusion reactor. This magnetic field also affects the flow of Lead-Lithium (breeder/coolant) in the breeding blanket. So it is important to study MHD flow of Lead-Lithium (Pb-Li). Open-source toolbox, OpenFOAM, is used to study single phase behaviour of Pb-Li. As the induced magnetic field is very small, Ni et al. electric potential algorithm is employed in OpenFOAM and validated with analytical results. This solver can also solve the temperature field with heat source term. Simulations are carried out in 2D straight channel for various values of Hartmann Number ranging from 100 to 5000 and velocity profile, temperature, current density and pressure drop are studied. (author)
A toroidal plasma MHD equilibrium code 'EQUCIR version 1'
International Nuclear Information System (INIS)
Ninomiya, Hiromasa; Shinya, Kichiro; Kameari, Akihisa.
1980-10-01
A new free-boundary toroidal MHD equilibrium code ''EQUCIR version 1'' has been developed. The central problems approached by this code is as follows: 1) The magnetic flux distribution of a plasma at equilibrium is determined in the given external field. 2) A set of circuit equations between the plasma and the external conductors are constructed. These circuit equations and the Grad-Shafranov equation are solved self-consistently and the time evolutions of plasma equilibria and currents in external conductors are determined at the same time. 3) The currents in the external conductors are determined so that the plasma cross-section and plasma parameters are to be maintained with desired ones. It is shown that this code is very useful for study of the tokamak plasma equilibria, for design of the poloidal coil system and for investigation of experimental results. (author)
Studies of MHD generator performance with oxygen enriched coal combustion
Wormhoudt, J.; Yousefian, V.; Kolb, C. E.; Martinez-Sanchez, M.
1980-07-01
This paper presents calculations made using the Aerodyne PACKAGE (Plasma Analysis, Chemical Kinetics, and Generator Efficiency) computer code which bear on two questions which arise in connection with choices between oxygen enrichment and air preheating to attain the high combustion temperatures needed for open-cycle, coal-fired MHD power generation. The first question is which method produces the highest enthalpy extraction per unit channel length. The second is, in test facilities intended to study tradeoffs between oxygen enrichment and preheated air, can good generator performance be obtained from the same physical channel for different combustor compositions. The answer to the first question is found to depend on what combustor conditions are taken to be comparable. As for the second question, it is found that operation with channel input from off-design combustor conditions can cause serious problems, which can be partially alleviated by changing the channel load factors.
MHD pressure drop in ducts with imperfectly insulating coatings
International Nuclear Information System (INIS)
Malang, S.; Buehler, L.
1994-08-01
Liquid metal cooled blankets in fusion tokamak's are feasible only with electrically insulating coatings at the coolant channel walls. The requirements of such coatings are investigated and a simple analytical model is developed to determine the influence of imperfections in the coatings on the magneto-hydrodynamic pressure drop. This model is compared with the results of a 3D-MHD code based on the core flow approach. Both methods are in good agreement as long as the imperfections do not increase the pressure drop by more than 20%. The analytical model over-estimates the pressure drop for values larger than 20%. The importance of self-healing of coatings in case of cracking or flaking is quantified and an equation for the equilibrium conditions between the generation of imperfection and the healing of such spots is provided
Transverse MHD shock waves in a partly ionized plasma
International Nuclear Information System (INIS)
Mathers, C.D.
1980-01-01
The structure of transverse MHD shock waves in a partly ionized hydrogen plasma is studied using a three-fluid model with collisional transport coefficients. The morphology of the various sublayers in the shock front is analyzed in detail and it is shown that strong shock waves have a characteristic viscous structure. Weak to moderate strength shock waves display a resistive structure in which the enhanced transverse resistivity due to ion-slip plays a significant role, leading to a pronounced peak in the ion temperature profile. Calculated shock structure profiles are also compared with experimental temperature data. Results in the form of tables and figures are presented for shock waves with fast Mach number ranging from 1-10 in hydrogen plasma with initial degree of ionization ranging from 5-100%. (author)
Laboratory Plasma Source as an MHD Model for Astrophysical Jets
Mayo, Robert M.
1997-01-01
The significance of the work described herein lies in the demonstration of Magnetized Coaxial Plasma Gun (MCG) devices like CPS-1 to produce energetic laboratory magneto-flows with embedded magnetic fields that can be used as a simulation tool to study flow interaction dynamic of jet flows, to demonstrate the magnetic acceleration and collimation of flows with primarily toroidal fields, and study cross field transport in turbulent accreting flows. Since plasma produced in MCG devices have magnetic topology and MHD flow regime similarity to stellar and extragalactic jets, we expect that careful investigation of these flows in the laboratory will reveal fundamental physical mechanisms influencing astrophysical flows. Discussion in the next section (sec.2) focuses on recent results describing collimation, leading flow surface interaction layers, and turbulent accretion. The primary objectives for a new three year effort would involve the development and deployment of novel electrostatic, magnetic, and visible plasma diagnostic techniques to measure plasma and flow parameters of the CPS-1 device in the flow chamber downstream of the plasma source to study, (1) mass ejection, morphology, and collimation and stability of energetic outflows, (2) the effects of external magnetization on collimation and stability, (3) the interaction of such flows with background neutral gas, the generation of visible emission in such interaction, and effect of neutral clouds on jet flow dynamics, and (4) the cross magnetic field transport of turbulent accreting flows. The applicability of existing laboratory plasma facilities to the study of stellar and extragalactic plasma should be exploited to elucidate underlying physical mechanisms that cannot be ascertained though astrophysical observation, and provide baseline to a wide variety of proposed models, MHD and otherwise. The work proposed herin represents a continued effort on a novel approach in relating laboratory experiments to
Experimental Evaluation of MHD Generators Operating at High Hall Coefficients
International Nuclear Information System (INIS)
Barthelemy, R.R.; Stephan, B.G.; Cooper, R.F.
1966-01-01
The experimental evaluation of such open-cycle MHD generator operation, particularly at large values of the Hall parameter and Mach number, is scarce. A flexible combustion-driven MHD generator test facility is being constructed to investigate various generator-operating parameters, generator configurations and designs, and component materials. The plasma source is a combustion chamber in which toluene, or another suitable fuel, is burned with gaseous oxygen diluted with nitrogen. Potassium hydroxide seed is injected with the fuel to produce the necessary plasma conductivity. The gas stream is accelerated in a supersonic nozzle and then flows through the channel. The Hall channel is constructed of water-cooled Inconel rings suitably grooved for the zirconia electrode material. The rings are insulated from each other with Teflon spacers which are shielded from the high temperature gas by a layer of alumina refractory. The channel consists of 54 water-cooled rings assembled in three independent sections. Provisions for instrumentation consist of 15 points for static pressure measurement along the nozzle, channel and diffuser; 20 thermocouple measurements; 3 split rings for transverse current measurements; a voltmeter panel for all 54 electrodes; and all necessary fluid and electrical monitoring instruments. The channel is followed by a diffuser in which some of the dynamic pressure of the gas stream is recovered. The magnet is an iron core design with coils wound of hollow conductor to permit of water-cooling for high power operation. The magnet can operate at field strengths of up to 23 kG. Details of the test programme planned for the generator (commissioning at the end of 1966) are given. (author)
Energy Technology Data Exchange (ETDEWEB)
NONE
1978-08-01
This is the summary of results of the research on MHD generation in fiscal 1977. In the experimental studies on MHD generators using a copper/iron magnet, the combustor of the Mark 7 generator was manufactured and installed, as were the supply systems of fuel, oxygen, air, seed, sulfur dioxide, cooling water, etc., respectively of the Mark 7 generator based on the design implemented in the previous year. In the studies on element technologies, various tests were performed, namely, immersion tests by K{sub 2}SO{sub 4} solution for electrode materials; tests of corrosion resistance, thermal shock resistance, and compatibility with electrode materials, for insulation wall materials; and material selection tests, based on a dynamic state, for consumption quantity and distribution, surface temperature and heat flow, measurement of arc spot generating critical current and electrode lowering voltage, etc.. In the research on the MHD generation system, examinations were carried out on the position of MHD generation as a total system, as well as on a system of a practical plant, MHD generation for peak load, superconducting magnet, etc. In addition, examinations were also conducted on the Mark 7 calculation, Mark 8 plan, surveys on overseas trend, etc. (NEDO)
Energy Technology Data Exchange (ETDEWEB)
NONE
1973-08-01
This report covers the MHD power generation research and development project which has been under way for 7 years since fiscal 1966, and contains guidelines to follow in the next 3 years during which studies will continue toward the consummation of the project. Subjected to research and development under this project are the development of superconductive magnets and helium refrigeration/liquefaction equipment, clarification of the power generation characteristics of the 1,000kW-class MHD (magnetohydrodynamic) power generator and of a test machine designed for a long-term operation, etc. Since they contain many basic studies, the efforts are being exerted primarily by the Electrotechnical Laboratory. In the research and development of MHD power generation characteristics, a power generation experiment is conducted through oxygen combustion in a hot wall channel, with the combustor and insulation against the Hall voltage improved. In this test, a maximum output of 1,182kW is achieved under the conditions of a flow rate of 2.9kg/s, a thermal input of 24.6MW, and a flux density of 3.2T. Since there are some problems to solve in connection with the stability of MHD power generation characteristics, durability of the MHD power generation channel, characteristics of heat exchanger system, measures for NOx reduction, etc., some more deliberation is necessary before taking the next research and development step. (NEDO)
International Nuclear Information System (INIS)
Ejiri, Akira; Sakakibara, Satoru; Kawahata, Kazuo.
1995-03-01
A new method 'Signal Based Mixing Analysis', to extract the components which are coherent to a certain reference signal from a noisy signal, has been developed. The method is applied to homodyne microwave reflectometry to reconstruct the radial structure of a magnetohydrodynamic (MHD) mode in heliotron/torsatron Compact Helical System (CHS) [K. Matsuoka et al. Plasma Phys. Control. Nuclear Fusion Research 1988 Vol. 2, IAEA, Vienna 411 (1989)]. In CHS plasmas, MHD fluctuations measured with magnetic probes show bursts, in which the amplitude and frequency quasi-periodically vary. The signal based mixing analysis uses a set of functions which have the same amplitude and the harmonic frequency as those of the magnetic fluctuations. The product (mixing) of the signal of reflectometer and the functions yields the amplitude and phase of the coherent components. When the plasma density gradually increases, the measuring position moves radially outward. Thus, the radial structure of MHD modes can be obtained by this method. The analysis indicates several peaks and nodes inside the resonance surface of the MHD mode. In addition, the structure does not propagate radially during a burst. (author)
Concept for a high performance MHD airbreathing-IEC fusion rocket
International Nuclear Information System (INIS)
Froning, H.D. Jr.; Miley, G.H.; Nadler, J.; Shaban, Y.; Momota, H.; Burton, E.
2001-01-01
Previous studies have shown that Single-State-to-Orbit (SSTO) vehicle propellant can be reduced by Magnets-Hydro-Dynamic (MHD) processes that minimize airbreathing propulsion losses and propellant consumption during atmospheric flight, and additional reduction in SSTO propellant is enabled by Inertial Electrostatic Confinement (IEC) fusion, whose more energetic reactions reduce rocket propellant needs. MHD airbreathing propulsion during an SSTO vehicle's initial atmospheric flight phase and IEC fusion propulsion during its final exo-atmospheric flight phase is therefore being explored. Accomplished work is not yet sufficient for claiming such a vehicle's feasibility. But takeoff and propellant mass for an MHD airbreathing and IEC fusion vehicle could be as much as 25 and 40 percent less than one with ordinary airbreathing and IEC fusion; and as much as 50 and 70 percent less than SSTO takeoff and propellant mass with MHD airbreathing and chemical rocket propulsion
Concept for a high performance MHD airbreathing-IEC fusion rocket
Froning, H. D.; Miley, G. H.; Nadler, J.; Shaban, Y.; Momota, H.; Burton, E.
2001-02-01
Previous studies have shown that Single-State-to-Orbit (SSTO) vehicle propellant can be reduced by Magnets-Hydro-Dynamic (MHD) processes that minimize airbreathing propulsion losses and propellant consumption during atmospheric flight, and additional reduction in SSTO propellant is enabled by Inertial Electrostatic Confinement (IEC) fusion, whose more energetic reactions reduce rocket propellant needs. MHD airbreathing propulsion during an SSTO vehicle's initial atmospheric flight phase and IEC fusion propulsion during its final exo-atmospheric flight phase is therefore being explored. Accomplished work is not yet sufficient for claiming such a vehicle's feasibility. But takeoff and propellant mass for an MHD airbreathing and IEC fusion vehicle could be as much as 25 and 40 percent less than one with ordinary airbreathing and IEC fusion; and as much as 50 and 70 percent less than SSTO takeoff and propellant mass with MHD airbreathing and chemical rocket propulsion. .
Soret and Hall effects on unsteady MHD free convection flow of ...
African Journals Online (AJOL)
International Journal of Engineering, Science and Technology ... effects on unsteady MHD free convection flow of radiating and chemically reactive fluid ... Expressions for shear stress, rate of heat transfer and rate of mass transfer at the plate ...
National Research Council Canada - National Science Library
Tesche, F. M; Barnes, P. R; Meliopoulos, A. P
1992-01-01
.... This environment, known as the magnetohydrodynamic electromagnetic pulse (MHD-EMP , is a very slowly varying electric field induced in the earth's surface, similar to the field induced by a geomagnetic storm...
Decay of MHD-scale Kelvin-Helmholtz vortices mediated by parasitic electron dynamics
International Nuclear Information System (INIS)
Nakamura, T.K.M.; Hayashi, D.; Fujimoto, M.; Shinohara, I.
2004-01-01
We have simulated nonlinear development of MHD-scale Kelvin-Helmholtz (KH) vortices by a two-dimensional two-fluid system including finite electron inertial effects. In the presence of moderate density jump across a shear layer, in striking contrast to MHD results, MHD KH vortices are found to decay by the time one eddy turnover is completed. The decay is mediated by smaller vortices that appear within the parent vortex and stays effective even when the shear layer width is made larger. It is shown that the smaller vortices are basically of MHD nature while the seeding for these is achieved by the electron inertial effect. Application of the results to the magnetotail boundary layer is discussed
Qualification of MHD effects in dual-coolant DEMO blanket and approaches to their modelling
International Nuclear Information System (INIS)
Mas de les Valls, E.; Batet, L.; Medina, V. de; Fradera, J.; Sedano, L.A.
2011-01-01
Design refinements of vertical insulated banana-shaped liquid metal channels are being considered as a progress of conceptual design of dual-coolant liquid metal blankets (DEMO specifications). Among them: (a) optimised channel geometry and (b) improvements on flow channel inserts. Progress of channel conceptual design is conducted in parallel with underlying physics of MHD models in diverse aspects: (1) MHD models, (2) MHD turbulence, (3) LM buoyancy effects, (4) three-dimensional flows, and (5) LM/FCI/wall electrical and thermal coupling; in order to progress on common liquid metal flow characterisation, pressure drop and three-dimensional flows. The analyses are assumed as extension of those previous carried out for the DCLL blankets for new design refinements. At the present stage of the conceptual design progress, a preliminary thermofluid MHD study is of crucial interest for further design improvements and future detailed modelling. The paper overviews the ongoing modelling studies, making model refinements explicit, and anticipates some modelling results.
Recent progress on MHD-induced loss of D-D fusion products in TFTR
International Nuclear Information System (INIS)
Zweben, S.J.; Darrow, D.S.; Budny, R.V.; Cheng, C.Z.; Fredrickson, E.D.; Herrmann, H.; Mynick, H.E.; Schivell, J.
1993-08-01
This paper reviews the recent progress made toward understanding the MHD-induced loss of D-D fusion products which has been seen on TFTR since 1988. These measurements have been made using the ''lost alpha'' diagnostic, which is described briefly. The largest MHD- induced loss occurs with coherent 3/2 or 2/1 MHD activity (kink/tearing modes), which can cause up to ∼3--5 times the first-orbit loss at I∼1.6--1.8 MA, roughly a ∼20--30% global los of D-D fusion products. Modeling of these MHD-induced losses has progressed to the point where the basic loss mechanism can be accounted for qualitatively, but the experimental results can not yet be understood quantitatively. Several alpha loss codes are being developed to improve the quantitative comparison between experiment and theory
Heat transfer to MHD oscillatory dusty fluid flow in a channel filled ...
Indian Academy of Sciences (India)
The flow of fluids through porous media has become ... convection-radiation interaction with heat transfer in boundary layer flow over a flat plate sub- ... Unsteady MHD free convection flow of a compressible fluid past a moving vertical plate in.
Rigo, H. S.; Bercaw, R. W.; Burkhart, J. A.; Mroz, T. S.; Bents, D. J.; Hatch, A. M.
1981-01-01
A description and the design requirements for the 200 MWe (nominal) net output MHD Engineering Test Facility (ETF) Conceptual Design, are presented. Performance requirements for the plant are identified and process conditions are indicated at interface stations between the major systems comprising the plant. Also included are the description, functions, interfaces and requirements for each of these major systems. The lastest information (1980-1981) from the MHD technology program are integrated with elements of a conventional steam electric power generating plant.
Ultrahigh temperature vapor core reactor-MHD system for space nuclear electric power
Maya, Isaac; Anghaie, Samim; Diaz, Nils J.; Dugan, Edward T.
1991-01-01
The conceptual design of a nuclear space power system based on the ultrahigh temperature vapor core reactor with MHD energy conversion is presented. This UF4 fueled gas core cavity reactor operates at 4000 K maximum core temperature and 40 atm. Materials experiments, conducted with UF4 up to 2200 K, demonstrate acceptable compatibility with tungsten-molybdenum-, and carbon-based materials. The supporting nuclear, heat transfer, fluid flow and MHD analysis, and fissioning plasma physics experiments are also discussed.
International Nuclear Information System (INIS)
Legro, J.R.; Abi-Samra, N.C.; Crouse, J.C.; Tesche, F.M.
1985-01-01
This paper summarizes a method to evaluate the possible effects of magnetohydrodynamic-electromagnetic pulse (MHD-EMP) on power systems. This method is based on the approach adapted to study the impact of geomagnetic storms on power systems. The paper highlights the similarities and differences between the two phenomena. Also presented are areas of concern which are anticipated from MHD-EMP on the overall system operation. 12 refs., 1 fig
3-D resistive MHD calculations for tokamak plasmas: beyond the simple reduced set of equations
International Nuclear Information System (INIS)
Carreras, B.A.; Garcia, L.; Hender, T.C.; Hicks, H.R.; Holmes, J.A.; Lynch, V.E.; Masden, B.F.
1983-01-01
Numerical studies of the resistive stability of tokamak plasmas in cylindrical geometry have been performed using: (1) the full set of resistive Magnetohydrodynamic (MHD) equations and (2) an extended version of the reduced set of resistive MHD equations including diamagnetic and electron temperature effects. In particular, the nonlinear interaction of tearing modes of many helicities has been investigated. The numerical results confirm many of the features uncovered previously using the simple reduced equations. (author)
MHD stability calculations of high-β quasi-axisymmetric stellarators
International Nuclear Information System (INIS)
Fu, G.Y.; Ku, L.P.; Pomphrey, N.; Redi, M.H.; Kessel, C.; Monticello, D.A.; Reiman, A.; Hughes, M.; Cooper, W.A.; Nuehrenberg, C.
1999-01-01
The MHD stability of quasi-axisymmetric compact stellarators is investigated. It is shown that bootstrap current driven external kink modes can be stabilized by a combination of edge magnetic shear and appropriate 3D plasma boundary shaping while maintaining good quasi-axisymmetry. The results demonstrate that there exists a new class of stellarators with quasi-axisymmetry, large bootstrap current, high MHD beta limit, and compact size. (author)
MHD Stability Calculations of High-Beta Quasi-Axisymmetric Stellarators
International Nuclear Information System (INIS)
Kessel, C.; Fu, G.Y.; Ku, L.P.; Redi, M.H.; Pomphrey, N.
1999-01-01
The MHD stability of quasi-axisymmetric compact stellarators is investigated. It is shown that bootstrap current driven external kink modes can be stabilized by a combination of edge magnetic shear and appropriate 3D plasma boundary shaping while maintaining good quasi-axisymmetry. The results demonstrate that there exists a new class of stellarators with quasi-axisymmetry, large bootstrap current, high MHD beta limit, and compact size
3D MHD simulations of pellet injection and disruptions in tokamak plasmas
International Nuclear Information System (INIS)
Strauss, H.R.; Park, W.; Belova, E.; Fu, G.Y.; Sugiyama, L.E.
2001-01-01
Nonlinear MHD simulation results of pellet injection show that MHD forces can accelerate large pellets, injected on the high field side of a tokamak, to the plasma center. Magnetic reconnection can produce a reverse shear q profile. Ballooning instability caused by pellets is also reduced by high field side injection. Studies are also reported of the current quench phase of disruptions, which can cause 3D halo currents and runaway electrons. (author)
3D MHD simulations of pellet injection and disruptions in tokamak plasmas
International Nuclear Information System (INIS)
Strauss, H.R.; Park, W.; Belova, E.; Fu, G.Y.; Sugiyama, L.E.
1999-01-01
Nonlinear MHD simulation results of pellet injection show that MHD forces can accelerate large pellets, injected on the high field side of a tokamak, to the plasma center. Magnetic reconnection can produce a reverse shear q profile. Ballooning instability caused by pellets is also reduced by high field side injection. Studies are also reported of the current quench phase of disruptions, which can cause 3D halo currents and runaway electrons. (author)
MHD stability calculations of high-β quasi-axisymmetric stellarators
International Nuclear Information System (INIS)
Fu, G.Y.; Ku, L.P.; Pomphrey, N.; Redi, M.; Kessel, C.; Monticello, D.; Reiman, A.; Hughes, M.; Cooper, W.A.; Nuehrenberg, C.
2001-01-01
The MHD stability of quasi-axisymmetric compact stellarators is investigated. It is shown that bootstrap current driven external kink modes can be stabilized by a combination of edge magnetic shear and appropriate 3D plasma boundary shaping while maintaining good quasi-axisymmetry. The results demonstrate that there exists a new class of stellarators with quasi-axisymmetry, large bootstrap current, high MHD beta limit, and compact size. (author)
Exact solutions for MHD flow of couple stress fluid with heat transfer
Directory of Open Access Journals (Sweden)
Najeeb Alam Khan
2016-01-01
Full Text Available This paper aims at presenting exact solutions for MHD flow of couple stress fluid with heat transfer. The governing partial differential equations (PDEs for an incompressible MHD flow of couple stress fluid are reduced to ordinary differential equations by employing wave parameter. The methodology is implemented for linearizing the flow equations without extra transformation and restrictive assumptions. Comparison is made with the result obtained previously.
Energy Technology Data Exchange (ETDEWEB)
D.S. Darrow; S.S. Medley; A.L. Roquemore; W.W. Heidbrink; A. Alekseyev; F.E. Cecil; J. Egedal; V.Ya. Goloborod' ko; N.N. Gorelenkov; M. Isobe; S. Kaye; M. Miah; F. Paoletti; M.H. Redi; S.N. Reznik; A. Rosenberg; R. White; D. Wyatt; V.A. Yavorskij
2002-10-15
A range of effects may make fast ion confinement in spherical tokamaks worse than in conventional aspect ratio tokamaks. Data from neutron detectors, a neutral particle analyzer, and a fast ion loss diagnostic on the National Spherical Torus Experiment (NSTX) indicate that neutral beam ion confinement is consistent with classical expectations in quiescent plasmas, within the {approx}25% errors of measurement. However, fast ion confinement in NSTX is frequently affected by magnetohydrodynamic (MHD) activity, and the effect of MHD can be quite strong.
Effect of Trapped Energetic Ions on MHD Activity in Spherical Tori
International Nuclear Information System (INIS)
White, R.B.; Kolesnichenko, Ya.I.; Lutsenko, V.V.; Marchenko, V.S.
2002-01-01
It is shown that the increase of beta (the ratio of plasma pressure to the magnetic field pressure) may change the character of the influence of trapped energetic ions on MHD stability in spherical tori. Namely, the energetic ions, which stabilize MHD modes (such as the ideal-kink mode, collisionless tearing mode, and semi-collisional tearing mode) at low beta, have a destabilizing influence at high beta unless the radial distribution of the energetic ions is very peaked
The application of finite element method for mhd viscous flow over a porous stretching sheet
International Nuclear Information System (INIS)
Mahmood, R.; Sajid, M.
2007-01-01
This work is concerned with the magnetohydrodynamic (MHD) viscous flow due to a porous stretching sheet. The similarity solution of the problem is obtained using finite element method. The physical quantities of interest like the fluid velocity and skin friction coefficient is obtained and discussed under the influence of suction parameter and Hartman number. It is evident from the results that MHD can be used to control the boundary layer thickness. (author)
Diagnostics for a coal-fired MHD retrofit of an existing power station
Energy Technology Data Exchange (ETDEWEB)
Cook, R L; Shepard, W S [Mississippi State Univ. (USA). Diagnostic Instrumentation and Analysis Lab.
1990-01-01
MHD flows represent one of the most severe environments encountered by gasdynamic diagnostics. Special state-of-the-art techniques and instrumentation systems are required to monitor and collect data for the MHD components, and these diagnostic systems must operate under very severe environmental and magnetic field conditions. The Diagnostic Instrumentation and Analysis Laboratory (DIAL) at Mississippi State University has developed, and is continuing to develop, advanced optical diagnostic techniques and instrumentation systems to provide nonintrusive, remote real-time measurements and to operate successfully in the industrial-like environment of a large-scale MHD retrofit power station. Such diagnostic instrumentation can provide the information to completely evaluate the performance of individual components, as well as, the entire power plant. It is essential to determine as much detail as possible about the various component operations in an MHD retrofit system so that a commercial plant design can be optimized quickly. This paper discusses the instrumentation systems which DIAL proposed for an MHD retrofit of an existing power station. Instruments which have been making measurements on the U.S. MHD test facilities for several years are presented, along with instruments which will be available within two years. Parameters to be measured along with location and frequency are discussed in detail. These parameters include electron density, electrical conductivity, K-atom density, gas temperature, gas velocity, temperature and velocity profiles, gas composition, and particle size, number, density and distrib00000
Effects of MHD slow shocks propagating along magnetic flux tubes in a dipole magnetic field
Directory of Open Access Journals (Sweden)
N. V. Erkaev
2002-01-01
Full Text Available Variations of the plasma pressure in a magnetic flux tube can produce MHD waves evolving into shocks. In the case of a low plasma beta, plasma pressure pulses in the magnetic flux tube generate MHD slow shocks propagating along the tube. For converging magnetic field lines, such as in a dipole magnetic field, the cross section of the magnetic flux tube decreases enormously with increasing magnetic field strength. In such a case, the propagation of MHD waves along magnetic flux tubes is rather different from that in the case of uniform magnetic fields. In this paper, the propagation of MHD slow shocks is studied numerically using the ideal MHD equations in an approximation suitable for a thin magnetic flux tube with a low plasma beta. The results obtained in the numerical study show that the jumps in the plasma parameters at the MHD slow shock increase greatly while the shock is propagating in the narrowing magnetic flux tube. The results are applied to the case of the interaction between Jupiter and its satellite Io, the latter being considered as a source of plasma pressure pulses.
International Nuclear Information System (INIS)
Lee, Ying-Ming; Simmons, G.A.; Nelson, G.L.
1995-01-01
A National Aeronautics and Space Administration (NASA) funded research study to evaluate the feasibility of using magnetohydrodynamic (MHD) body force accelerators to produce true air simulation for hypersonic propulsion ground testing is discussed in this paper. Testing over the airbreathing portion of a transatmospheric vehicle (TAV) hypersonic flight regime will require high quality air simulation for actual flight conditions behind a bow shock wave (forebody, pre-inlet region) for flight velocities up to Mach 16 and perhaps beyond. Material limits and chemical dissociation at high temperature limit the simulated flight Mach numbers in conventional facilities to less than Mach 12 for continuous and semi-continuous testing and less than Mach 7 for applications requiring true air chemistry. By adding kinetic energy directly to the flow, MHD accelerators avoid the high temperatures and pressures required in the reservoir region of conventional expansion facilities, allowing MHD to produce true flight conditions in flight regimes impossible with conventional facilities. The present study is intended to resolve some of the critical technical issues related to the operation of MHD at high pressure. Funding has been provided only for the first phase of a three to four year feasibility study that would culminate in the demonstration of MHD acceleration under conditions required to produce true flight conditions behind a bow shock wave to flight Mach numbers of 16 or greater. MHD critical issues and a program plan to resolve these are discussed
MHD PbLi experiments in MaPLE loop at UCLA
International Nuclear Information System (INIS)
Courtessole, C.; Smolentsev, S.; Sketchley, T.; Abdou, M.
2016-01-01
Highlights: • The paper overviews the MaPLE facility at UCLA: one-of-a-few PbLi MHD loop in the world. • We present the progress achieved in development and testing of high-temperature PbLi flow diagnostics. • The most important MHD experiments carried out since the first loop operation in 2011 are summarized. - Abstract: Experiments on magnetohydrodynamic (MHD) flows are critical to understanding complex flow phenomena in ducts of liquid metal blankets, in particular those that utilize eutectic alloy lead–lithium as breeder/coolant, such as self-cooled, dual-coolant and helium-cooled lead–lithium blanket concepts. The primary goal of MHD experiments at UCLA using the liquid metal flow facility called MaPLE (Magnetohydrodynamic PbLi Experiment) is to address important MHD effects, heat transfer and flow materials interactions in blanket-relevant conditions. The paper overviews the one-of-a-kind MaPLE loop at UCLA and presents recent experimental activities, including the development and testing of high-temperature PbLi flow diagnostics and experiments that have been performed since the first loop operation in 2011. We also discuss MaPLE upgrades, which need to be done to substantially expand the experimental capabilities towards a new class of MHD flow phenomena that includes buoyancy effects.
MHD PbLi experiments in MaPLE loop at UCLA
Energy Technology Data Exchange (ETDEWEB)
Courtessole, C., E-mail: cyril@fusion.ucla.edu; Smolentsev, S.; Sketchley, T.; Abdou, M.
2016-11-01
Highlights: • The paper overviews the MaPLE facility at UCLA: one-of-a-few PbLi MHD loop in the world. • We present the progress achieved in development and testing of high-temperature PbLi flow diagnostics. • The most important MHD experiments carried out since the first loop operation in 2011 are summarized. - Abstract: Experiments on magnetohydrodynamic (MHD) flows are critical to understanding complex flow phenomena in ducts of liquid metal blankets, in particular those that utilize eutectic alloy lead–lithium as breeder/coolant, such as self-cooled, dual-coolant and helium-cooled lead–lithium blanket concepts. The primary goal of MHD experiments at UCLA using the liquid metal flow facility called MaPLE (Magnetohydrodynamic PbLi Experiment) is to address important MHD effects, heat transfer and flow materials interactions in blanket-relevant conditions. The paper overviews the one-of-a-kind MaPLE loop at UCLA and presents recent experimental activities, including the development and testing of high-temperature PbLi flow diagnostics and experiments that have been performed since the first loop operation in 2011. We also discuss MaPLE upgrades, which need to be done to substantially expand the experimental capabilities towards a new class of MHD flow phenomena that includes buoyancy effects.
Study of MHD problems in liquid metal blankets of fusion reactors
International Nuclear Information System (INIS)
Michael, I.
1984-12-01
This study describes in a concise form the state of knowledge regarding MHD problems to be expected in case of use of liquid metal in the blankets of fusion reactors with magnetic confinement. MHD pressure losses and MHD friction coefficients in the straight channel, in bent sections and in case of variation of the channel cross section play a major role because the high MHD flow resistances call for high pumping powers. Influencing the velocity profile transverse to the main flow direction of the liquid metal by application of an external, strong magnetic field bears consequences on the release and transport of corrosion products in the liquid metal circuit and on the heat transfer. Possibilities of reducing the MHD effects are discussed. However, it becomes obvious that an account of the lack of experimental results there are still major gaps in the knowledge of MHD effects occurring in strong magnetic fields. These gaps can be greatly reduced by implementation of an experimental program as proposed in this report. (orig.) [de
Further validation of liquid metal MHD code for unstructured grid based on OpenFOAM
Energy Technology Data Exchange (ETDEWEB)
Feng, Jingchao; Chen, Hongli, E-mail: hlchen1@ustc.edu.cn; He, Qingyun; Ye, Minyou
2015-11-15
Highlights: • Specific correction scheme has been adopted to revise the calculating result for non-orthogonal meshes. • The developed MHD code based on OpenFOAM platform has been validated by benchmark cases under uniform and non-uniform magnetic field in round and rectangular ducts. • ALEX experimental results have been used to validate the MHD code based on OpenFOAM. - Abstract: In fusion liquid metal blankets, complex geometries involving contractions, expansions, bends, manifolds are very common. The characteristics of liquid metal flow in these geometries are significant. In order to extend the magnetohydrodynamic (MHD) solver developed on OpenFOAM platform to be applied in the complex geometry, the MHD solver based on unstructured meshes has been implemented. The adoption of non-orthogonal correction techniques in the solver makes it possible to process the non-orthogonal meshes in complex geometries. The present paper focused on the validation of the code under critical conditions. An analytical solution benchmark case and two experimental benchmark cases were conducted to validate the code. Benchmark case I is MHD flow in a circular pipe with arbitrary electric conductivity of the walls in a uniform magnetic field. Benchmark cases II and III are experimental cases of 3D laminar steady MHD flow under fringing magnetic field. In all these cases, the numerical results match well with the benchmark cases.
Further validation of liquid metal MHD code for unstructured grid based on OpenFOAM
International Nuclear Information System (INIS)
Feng, Jingchao; Chen, Hongli; He, Qingyun; Ye, Minyou
2015-01-01
Highlights: • Specific correction scheme has been adopted to revise the calculating result for non-orthogonal meshes. • The developed MHD code based on OpenFOAM platform has been validated by benchmark cases under uniform and non-uniform magnetic field in round and rectangular ducts. • ALEX experimental results have been used to validate the MHD code based on OpenFOAM. - Abstract: In fusion liquid metal blankets, complex geometries involving contractions, expansions, bends, manifolds are very common. The characteristics of liquid metal flow in these geometries are significant. In order to extend the magnetohydrodynamic (MHD) solver developed on OpenFOAM platform to be applied in the complex geometry, the MHD solver based on unstructured meshes has been implemented. The adoption of non-orthogonal correction techniques in the solver makes it possible to process the non-orthogonal meshes in complex geometries. The present paper focused on the validation of the code under critical conditions. An analytical solution benchmark case and two experimental benchmark cases were conducted to validate the code. Benchmark case I is MHD flow in a circular pipe with arbitrary electric conductivity of the walls in a uniform magnetic field. Benchmark cases II and III are experimental cases of 3D laminar steady MHD flow under fringing magnetic field. In all these cases, the numerical results match well with the benchmark cases.
Preliminary analysis of 500 MWt MHD power plant with oxygen enrichment
1980-04-01
An MHD Engineering Test Facility design concept is analyzed. A 500 MWt oxygen enriched MHD topping cycle integrated for combined cycle operation with a 400 MWe steam plant is evaluated. The MHD cycle uses Montana Rosebud coal and air enriched to 35 mole percent oxygen preheated to 1100 F. The steam plant is a 2535 psia/1000 F/1000 F reheat recycle that was scaled down from the Gilbert/Commonwealth Reference Fossil Plant design series. Integration is accomplished by blending the steam generated in the MHD heat recovery system with steam generated by the partial firing of the steam plant boiler to provide the total flow requirement of the turbine. The major MHD and steam plant auxiliaries are driven by steam turbines. When the MHD cycle is taken out of service, the steam plant is capable of stand-alone operation at turbine design throttle flow. This operation requires the full firing of the steam plant boiler. A preliminary feasibility assessment is given, and results on the system thermodynamics, construction scheduling, and capital costs are presented.
Multi-scale-nonlinear interactions among macro-MHD mode, micro-turbulence, and zonal flow
International Nuclear Information System (INIS)
Ishizawa, Akihiro; Nakajima, Noriyoshi
2007-01-01
This is the first numerical simulation demonstrating that macro-magnetohydrodynamic (macro-MHD) mode is exited as a result of multi-scale interaction in a quasi-steady equilibrium formed by a balance between zonal flow and micro-turbulence via reduced-two-fluid simulation. Only after obtaining the equilibrium which includes zonal flow and the turbulence caused by kinetic ballooning mode is this simulation of macro-MHD mode, double tearing mode, accomplished. In the quasi-steady equilibrium a macro-fluctuation which has the same helicity as that of double tearing mode is a part of the turbulence until it grows as a macro-MHD mode finally. When the macro-MHD grows it effectively utilize free energy of equilibrium current density gradient because of positive feedback loop between suppression of zonal flow and growth of the macro-fluctuation causing magnetic reconnection. Thus once the macro-MHD grows from the quasi-equilibrium, it does not go back. This simulation is more comparable with experimental observation of growing macro-fluctuation than traditional MHD simulation of linear instabilities in a static equilibrium. (author)
DEFF Research Database (Denmark)
Kandzia, Claudia; Kosonen, Risto; Melikov, Arsen Krikor
In this guidebook most of the known and used in practice methods for achieving mixing air distribution are discussed. Mixing ventilation has been applied to many different spaces providing fresh air and thermal comfort to the occupants. Today, a design engineer can choose from large selection...
Stability analysis of resistive MHD modes via a new numerical matching technique
International Nuclear Information System (INIS)
Furukawa, M.; Tokuda, S.; Zheng, L.-J.
2009-01-01
Full text: Asymptotic matching technique is one of the principal methods for calculating linear stability of resistive magnetohydrodynamics (MHD) modes such as tearing modes. In applying the asymptotic method, the plasma region is divided into two regions: a thin inner layer around the mode-resonant surface and ideal MHD regions except for the layer. If we try to solve this asymptotic matching problem numerically, we meet practical difficulties. Firstly, the inertia-less ideal MHD equation or the Newcomb equation has a regular singular point at the mode-resonant surface, leading to the so-called big and small solutions. Since the big solution is not square-integrable, it needs sophisticated treatment. Even if such a treatment is applied, the matching data or the ratio of small solution to the big one, has been revealed to be sensitive to local MHD equilibrium accuracy and grid structure at the mode-resonant surface by numerical experiments. Secondly, one of the independent solutions in the inner layer, which should be matched onto the ideal MHD solution, is not square-integrable. The response formalism has been adopted to resolve this problem. In the present paper, we propose a new method for computing the linear stability of resistive MHD modes via matching technique, where the plasma region is divided into ideal MHD regions and an inner region with finite width. The matching technique using an inner region with finite width was recently developed for ideal MHD modes in cylindrical geometry, and good performance was shown. Our method extends this idea to resistive MHD modes. In the inner region, the low-beta reduced MHD equations are solved, and the solution is matched onto the solution of the Newcomb equation by using boundary conditions such that the parallel electric field vanishes properly as approaching the computational boundaries. If we use the inner region with finite width, the practical difficulties raised above can be avoided from the beginning. Figure
Time-resolved observation of discrete and continuous MHD dynamo in the reversed-field pinch edge
International Nuclear Information System (INIS)
Ji, H.; Almagri, A.F.; Prager, S.C.; Sarff, J.S.
1994-01-01
We report the first experimental verification of the MHD dynamo in the RFP. A burst of magnetohydrodynamic (MHD) dynamo electric field is observed during the sawtooth crash, followed by an increase in the local parallel current in the MST RFP edge. By measuring each term, the parallel MHD mean-field Ohm's law is observed to hold within experimental error bars both between and during sawtooth crashes
Extended MHD Turbulence and Its Applications to the Solar Wind
Abdelhamid, Hamdi M.; Lingam, Manasvi; Mahajan, Swadesh M.
2016-10-01
Extended MHD is a one-fluid model that incorporates two-fluid effects such as electron inertia and the Hall drift. This model is used to construct fully nonlinear Alfvénic wave solutions, and thereby derive the kinetic and magnetic spectra by resorting to a Kolmogorov-like hypothesis based on the constant cascading rates of the energy and generalized helicities of this model. The magnetic and kinetic spectra are derived in the ideal (k\\lt 1/{λ }I), Hall (1/{λ }I\\lt k\\lt 1/{λ }e), and electron inertia (k\\gt 1/{λ }e) regimes; k is the wavenumber and {λ }s=c/{ω }{ps} is the skin depth of species “s.” In the Hall regime, it is shown that the emergent results are fully consistent with previous numerical and analytical studies, especially in the context of the solar wind. The focus is primarily on the electron inertia regime, where magnetic energy spectra with power-law indexes of -11/3 and -13/3 are always recovered. The latter, in particular, is quite close to recent observational evidence from the solar wind with a potential slope of approximately -4 in this regime. It is thus plausible that these spectra may constitute a part of the (extended) inertial range, as opposed to the standard “dissipation” range paradigm.
Surface and bulk MHD instabilities due to insulator coating imperfections
International Nuclear Information System (INIS)
Xu Zengyu; Reed, C.B.; Pan Chuanjie
2002-01-01
Experiments were performed using copper electrodes inserted into the wall of a perfectly insulated duct to simulate insulator coating flaking or cracking. The results show that surface electric potential U and MHD pressure drop ΔP exhibit a non-monotonic behavior with increasing V 0 , while the magnetic field B 0 is held constant. Additional experiments were also performed keeping all external experimental conditions fixed while measuring the change of U, V 0 , B 0 , and ΔP with increasing time. It was found that while all external experimental conditions were kept constant, the system changed by itself and U, V 0 and ΔP exhibited a non-monotonic behavior with increasing time. The results seem contrary to the law of ΔP∝V 0 B 0 n , but are consistent with conservation of energy, which implies that the change is due to some inherent feature of the system, or possibly instabilities, which may occur due to insulator coating imperfections
Experimental and analytical investigation of an MHD channel window frame
International Nuclear Information System (INIS)
Srinivasan, M.G.; Krajcinovic, D.
1977-01-01
A common design of magnetohydrodynamic (MHD) generator channel emphasizes a series of mutually connected window frames providing the support for electrodes and containing the jet of ionized gases. Structurally, a window frame is a rectangular frame with a cross section in the form of a quadrilateral weakened by one or more holes forming the cooling system. Window frames are joined together to make a beam with a box cross section by means of shear pins. A typical window frame is subjected to a rather severe environment characterized by large pressure and high temperatures. The main sources of stresses and strains would include static and dynamic gas pressures and thermal fields characterized by large gradients across the thickness of frame members. The authors consider only the stresses associated with thermal fields. The actual problem is still a very complex one involving analysis of the heat conduction through the electrode-frame system heated by the gas and cooled by the coolant fluid and determination of stresses (elastic and plastic) in a frame with an irregular cross section. In order to obtain a reasonable qualitative and quantitative insight into the phenomenon, three distinctly different approaches have been used: a large elasto-plastic finite element program was used to determine the stresses in the actual frame, an experiment was performed to establish the stress concentrations around holes needed for the passage of coolant, and a two-bar model was used in order to assess the time dependent behavior of the structure for various loading conditions. (Auth.)
Insulating wall materials for MHD electric power generating channels, 1
International Nuclear Information System (INIS)
Nakamura, Kazuo; Okubo, Tsutomu; Maeda, Minoru
1984-01-01
The various kinds of ceramic specimens were soaked in molten K 2 SO 4 at 1300 0 C for 300 hrs, the changes in porosity, volume and weight before and after the tests (hereafter, referred as the amount of change) were measured and the corrosion resistance was examined from the calculated corrosion velocity. 1) MgO and MgO-Al 2 O 3 System. Reaction products were not found, the amount of change was small, and the electrical resistivity and corrosion resistance were good. 2) MgO-BN, ZrO 2 -BN and MgO-SrZrO 3 -BN System. Of all these systems, BN in the specimens disappeared, and it turned into B 2 O 3 or other boron compounds. This reaction caused the cracking and collapse of the specimens. 3) MgO-Si 3 N 4 and MgAl 2 O 4 -Si 3 N 4 System. The specimens were attacked by molten K 2 SO 4 , resulting in the large amount of change, and the reaction layer was formed on the surface. 4) Al 2 O 3 -AlN-Si 3 N 4 System. Although the specimens were attacked by molten K 2 SO 4 , the dense specimens with about 40 mol % Si 3 N 4 showed a very small amount of change, and the deterioration of electrical resistivity was small. The durability of MHD power generating operation might be improved by further controlling the production process and composition. (author)
Transfer equations for spectral densities of inhomogeneous MHD turbulence
International Nuclear Information System (INIS)
Tu, C.-Y.; Marsch, E.
1990-01-01
On the basis of the dynamic equations governing the evolution of magnetohydrodynamic fluctuations expressed in terms of Elsaesser variables and of their correlation functions derived by Marsch and Tu, a new set of equations is presented describing the evolutions of the energy spectrum e ± and of the residual energy spectra e R and e S of MHD turbulence in an inhomogeneous magnetofluid. The nonlinearities associated with triple correlations in these equations are analysed in detail and evaluated approximately. The resulting energy-transfer functions across wavenumber space are discussed. For e ± they are shown to be approximately energy-conserving if the gradients of the flow speed and density are weak. New cascading functions are heuristically determined by an appropriate dimensional analysis and plausible physical arguments, following the standard phenomenology of fluid turbulence. However, for e R the triple correlations do not correspond to an 'energy' conserving process, but also represent a nonlinear source term for e R . If this source term can be neglected, the spectrum equations are found to be closed. The problem of dealing with the nonlinear source terms remains to be solved in future investigations. (author)
MHD turbulence in the solar wind: evolution and anisotropy
International Nuclear Information System (INIS)
Horbury, T. S.; Forman, M. A.; Oughton, S.
2005-01-01
Spacecraft measurements in the solar wind offer the opportunity to study magnetohydrodynamic turbulence in a collisionless plasma in great detail. We review some of the key results of the study of this medium: the presence of large amplitude Alfven waves propagating predominantly away from the Sun; the existence of an active turbulent cascade; and intermittency similar to that in neutral fluids. The presence of a magnetic field leads to anisotropy of the fluctuations, which are predominantly perpendicular to this direction, as well as anisotropy of the spectrum. Some models suggest that MHD turbulence can evolve to a state with power predominantly in wave vectors either parallel to the magnetic field (slab fluctuations) or approximately perpendicular to it (2D). We present results of a new, wavelet-based analysis of magnetic field fluctuations in the solar wind, and demonstrate that the 2D component has a spectral index near the Kolmogorov value of 5/3, while slab fluctuations have a spectral index near 2. We also estimate the relative power levels in slab and 2D fluctuations, as well as the level of compressive fluctuations. Deviations of the data from the simple slab/2D model suggest the presence of power in intermediate directions and we compare our data with critical balance models. (Author)
Automated Identification of MHD Mode Bifurcation and Locking in Tokamaks
Riquezes, J. D.; Sabbagh, S. A.; Park, Y. S.; Bell, R. E.; Morton, L. A.
2017-10-01
Disruption avoidance is critical in reactor-scale tokamaks such as ITER to maintain steady plasma operation and avoid damage to device components. A key physical event chain that leads to disruptions is the appearance of rotating MHD modes, their slowing by resonant field drag mechanisms, and their locking. An algorithm has been developed that automatically detects bifurcation of the mode toroidal rotation frequency due to loss of torque balance under resonant braking, and mode locking for a set of shots using spectral decomposition. The present research examines data from NSTX, NSTX-U and KSTAR plasmas which differ significantly in aspect ratio (ranging from A = 1.3 - 3.5). The research aims to examine and compare the effectiveness of different algorithms for toroidal mode number discrimination, such as phase matching and singular value decomposition approaches, and to examine potential differences related to machine aspect ratio (e.g. mode eigenfunction shape variation). Simple theoretical models will be compared to the dynamics found. Main goals are to detect or potentially forecast the event chain early during a discharge. This would serve as a cue to engage active mode control or a controlled plasma shutdown. Supported by US DOE Contracts DE-SC0016614 and DE-AC02-09CH11466.
Numerical MHD study for plasmoid instability in uniform resistivity
Shimizu, Tohru; Kondoh, Koji; Zenitani, Seiji
2017-11-01
The plasmoid instability (PI) caused in uniform resistivity is numerically studied with a MHD numerical code of HLLD scheme. It is shown that the PI observed in numerical studies may often include numerical (non-physical) tearing instability caused by the numerical dissipations. By increasing the numerical resolutions, the numerical tearing instability gradually disappears and the physical tearing instability remains. Hence, the convergence of the numerical results is observed. Note that the reconnection rate observed in the numerical tearing instability can be higher than that of the physical tearing instability. On the other hand, regardless of the numerical and physical tearing instabilities, the tearing instability can be classified into symmetric and asymmetric tearing instability. The symmetric tearing instability tends to occur when the thinning of current sheet is stopped by the physical or numerical dissipations, often resulting in the drastic changes in plasmoid chain's structure and its activity. In this paper, by eliminating the numerical tearing instability, we could not specify the critical Lundquist number Sc beyond which PI is fully developed. It suggests that Sc does not exist, at least around S = 105.
Influence of slag-seed interaction on MHD generator performance
International Nuclear Information System (INIS)
Luongo, C.A.; Kruger, C.M.
1984-01-01
An overview of past work in the field of slag/seed interaction is presented. The ideal solution model for the slag and its failure to lead to accurate predictions are discussed. The non-ideal solution model is introduced. Data on potassium vapor pressure over slags taken at the National Bureau of Standards and Montana State University were compiled and compared. Large disagreement between these sources was observed. The shortcomings of the complete thermodynamic equilibrium models led to over predictions in the fraction of seed lost to the slag. A model including non-equilibrium effects is introduced. The heat/mass transfer analogy is invoked to calculate the mass transfer rate of potassium towards the slag. Using typical conditions for a large MHD generator, an integral method is used to evaluate the potassium concentration boundary layer thickness. The calculations are performed with the slag runoff (ash rejection) as a parameter. The increase in boundary layer resistance due to potassium depletion is calculated
Sensitivity of ITER MHD global stability to edge pressure gradients
International Nuclear Information System (INIS)
Hogan, J.T.; Martynov, A.
1994-01-01
In view of the preliminary nature of boundary models for reactor tokamaks, the sensitivity to edge gradients of the global mode MHD stability of the ITER EDA configuration has been examined. The POLAR-2D equilibrium and TORUS stability codes developed by the Keldysh Institute have been used. Transport-related profiles from the PRETOR transport code (developed by the ITER Joint Central Team) and axisymmetric equilibria for these profiles from the TEQ code (L.D. Pearlstein, LLNL) were taken as a starting point for the study. These baseline profiles are found to have quite high global stability limits, in the range g(Troyon) = 4-5. The major focus of this study is to examine global mode stability assuming small variations about the baseline profiles, changing the pressure gradients near the boundary. Such changes can be expected with an improved boundary model. Reduced stability limits are found in such cases, and unstable cases with g = 2-3 are found. Thus, the assumption of ITER stability limits higher than g = 2 must be treated with caution
MHD modeling of coronal loops: the transition region throat
Guarrasi, M.; Reale, F.; Orlando, S.; Mignone, A.; Klimchuk, J. A.
2014-04-01
Context. The expansion of coronal loops in the transition region may considerably influence the diagnostics of the plasma emission measure. The cross-sectional area of the loops is expected to depend on the temperature and pressure, and might be sensitive to the heating rate. Aims: The approach here is to study the area response to slow changes in the coronal heating rate, and check the current interpretation in terms of steady heating models. Methods: We study the area response with a time-dependent 2D magnetohydrodynamic (MHD) loop model, including the description of the expanding magnetic field, coronal heating and losses by thermal conduction, and radiation from optically thin plasma. We run a simulation for a loop 50 Mm long and quasi-statically heated to about 4 MK. Results: We find that the area can change substantially with the quasi-steady heating rate, e.g., by ~40% at 0.5 MK as the loop temperature varies between 1 MK and 4 MK, and, therefore, affects the interpretation of the differential emission measure vs. temperature (DEM(T)) curves. The movie associated to Fig. 4 is available in electronic form at http://www.aanda.org
3D MHD MODELING OF TWISTED CORONAL LOOPS
Energy Technology Data Exchange (ETDEWEB)
Reale, F.; Peres, G. [Dipartimento di Fisica and Chimica, Università di Palermo, Piazza del Parlamento 1, I-90134 Palermo (Italy); Orlando, S. [INAF-Osservatorio Astronomico di Palermo, Piazza del Parlamento 1, I-90134 Palermo (Italy); Guarrasi, M. [CINECA—Interuniversity consortium, via Magnanelli 6/3, I-40033, Casalecchio di Reno, Bologna (Italy); Mignone, A. [Dipartimento di Fisica Generale, Università di Torino, via Pietro Giuria 1, I-10125, Torino (Italy); Hood, A. W.; Priest, E. R., E-mail: fabio.reale@unipa.it [School of Mathematics and Statistics, University of St. Andrews, St. Andrews, KY16 9SS (United Kingdom)
2016-10-10
We perform MHD modeling of a single bright coronal loop to include the interaction with a non-uniform magnetic field. The field is stressed by random footpoint rotation in the central region and its energy is dissipated into heating by growing currents through anomalous magnetic diffusivity that switches on in the corona above a current density threshold. We model an entire single magnetic flux tube in the solar atmosphere extending from the high- β chromosphere to the low- β corona through the steep transition region. The magnetic field expands from the chromosphere to the corona. The maximum resolution is ∼30 km. We obtain an overall evolution typical of loop models and realistic loop emission in the EUV and X-ray bands. The plasma confined in the flux tube is heated to active region temperatures (∼3 MK) after ∼2/3 hr. Upflows from the chromosphere up to ∼100 km s{sup −1} fill the core of the flux tube to densities above 10{sup 9} cm{sup −3}. More heating is released in the low corona than the high corona and is finely structured both in space and time.
Performance of MHD coatings in flowing Li at 700 deg
International Nuclear Information System (INIS)
Pint, B.; Pawel, S.J.; Howell, M.; Moser, J.L.; Garner, G.W.; Santella, M.L.; Tortorelli, P.F.; Di Stefano, J.R.
2007-01-01
Full text of publication follows: A thermal convection loop was constructed from V-4Cr-4Ti tubing and operated in vacuum at a maximum Li temperature of 700 deg. C for ∼1000 h.. Due to slow Li flow (∼1 cm/s) in the loop, the temperature gradient was ∼340 deg. C. Specimens in the hot and cold legs of the loop included V-4Cr-4Ti spacers, tensile specimens (SS-3 type) and coupons coated by physical vapor deposition with yttria and over coated with unalloyed vanadium. Based on prior work, the multi-layer electrically-insulating coatings were developed to reduce the magneto hydrodynamic (MHD) force expected in the first wall of a lithium cooled blanket in a magnetic confinement fusion reactor. Characterization of the specimens after exposure will include: (1) mass change and chemistry change as a function of location in the temperature gradient, (2) the effect of Li exposure on the tensile properties of V-4Cr-4Ti and (3) characterization of the properties and microstructure of the coatings after exposure. Of particular interest will be the coating resistivity after exposure and any degradation of the thin (∼10 μm) vanadium overlayer. Chemistry of the Li before and after the experiment will be compared in order to assess any mass transfer effects. (authors)
Structure of reconnection boundary layers in incompressible MHD
International Nuclear Information System (INIS)
Sonnerup, B.U.Oe.; Wang, D.J.
1987-01-01
The incompressible MHD equations with nonvanishing viscosity and resistivity are simplified by use of the boundary layer approximation to describe the flow and magnetic field in the exit flow regions of magnetic field reconnection configurations when the reconnection rate is small. The conditions are derived under which self-similar solutions exist of the resulting boundary layer equations. For the case of zero viscosity and resistivity, the equations describing such self-similar layers are then solved in terms of quadratures, and the resulting flow and field configurations are described. Symmetric solutions, relevant, for example, to reconnection in the geomagnetic tail, as well as asymmetric solutions, relevant to reconnection at the earth's magnetopause, are found to exist. The nature of the external solutions to which the boundary layer solutions should be matched is discussed briefly, but the actual matching, which is to occur at Alfven-wave characteristic curves in the boundary layer solutions, is not carried out. Finally, it is argued that the solutions obtained may also be used to describe the structure of the intense vortex layers observed to occur at magnetic separatrices in computer simulations and in certain analytical models of the reconnection process
MHD biconvective flow of Powell Eyring nanofluid over stretched surface
Naseem, Faiza; Shafiq, Anum; Zhao, Lifeng; Naseem, Anum
2017-06-01
The present work is focused on behavioral characteristics of gyrotactic microorganisms to describe their role in heat and mass transfer in the presence of magnetohydrodynamic (MHD) forces in Powell-Eyring nanofluids. Implications concerning stretching sheet with respect to velocity, temperature, nanoparticle concentration and motile microorganism density were explored to highlight influential parameters. Aim of utilizing microorganisms was primarily to stabilize the nanoparticle suspension due to bioconvection generated by the combined effects of buoyancy forces and magnetic field. Influence of Newtonian heating was also analyzed by taking into account thermophoretic mechanism and Brownian motion effects to insinuate series solutions mediated by homotopy analysis method (HAM). Mathematical model captured the boundary layer regime that explicitly involved contemporary non linear partial differential equations converted into the ordinary differential equations. To depict nanofluid flow characteristics, pertinent parameters namely bioconvection Lewis number Lb, traditional Lewis number Le, bioconvection Péclet number Pe, buoyancy ratio parameter Nr, bioconvection Rayleigh number Rb, thermophoresis parameter Nt, Hartmann number M, Grashof number Gr, and Eckert number Ec were computed and analyzed. Results revealed evidence of hydromagnetic bioconvection for microorganism which was represented by graphs and tables. Our findings further show a significant effect of Newtonian heating over a stretching plate by examining the coefficient values of skin friction, local Nusselt number and the local density number. Comparison was made between Newtonian fluid and Powell-Eyring fluid on velocity field and temperature field. Results are compared of with contemporary studies and our findings are found in excellent agreement with these studies.
Active MHD control experiments in RFX-mod
International Nuclear Information System (INIS)
Ortolani, Sergio
2006-01-01
The RFX reversed field pinch experiment has been modified (RFX-mod) to address specific issues of active control of MHD instabilities. A thin shell (τ Bv ∼50 ms) has replaced the old thick one (τ Bv ∼500 ms) and 192 (4 poloidal x 48 toroidal) independently powered saddle coils surround the thin shell forming a cage completely covering the torus. This paper reports the results obtained during the first year of operation. The system has been used with various control scenarios including experiments on local radial field cancellation over the entire torus surface to mimic an ideal wall ('virtual shell') and on single and multiple mode feedback control. Successful virtual shell operation has been achieved leading to: a 3-fold increase in pulse length and well controlled 300 ms pulses(∼6 shell times) up to ∼1 MA plasma current; one order of magnitude reduction of the dominant radial field perturbations at the plasma edge and correspondingly 100% increase in global energy confinement time. Robust feedback stabilization of resistive wall modes has been demonstrated in conditions where rotation does not play a role and multiple unstable modes are present
Coal-fired MHD combustor development project: Phase 3D
1985-05-01
This fourth quarterly technical progress report of the Coal-Fired MHD Combustor Development Project (Phase 3D) presents the accomplishments during the period February 1 to April 30, 1985. The scope of work covered by this quarterly report encompasses development work on the 50 MW/sub t/ combustor related to test support at the CDIF, assembly and checkout of first and second stage hardware, second stage design verification testing, designs for a continuous slag rejector and low preheat inlet section, and planning for power train testing. Progress includes the following: assembly and checkout of the second first stage, two second stages, and PEM was completed and the hardware was shipped to CDIF and FETS; integration of first and second stage hardware on the FETS Cell No. 2 test stand was completed, cold flow functional tests were performed, and hot fire checkout testing was initiated; assembly of the continuous slag rejector test set-up was 70% completed; the low preheat air inlet section Preliminary Design Review was held (work on the detail design was initiated and is 85% complete); and the Users' Manual was updated to include material for the second stage and final revisions to the power train test plan were made.
MHD simulation study of compact toroid injection into magnetized plasmas
International Nuclear Information System (INIS)
Suzuki, Yoshio; Kishimoto, Yasuaki
2000-01-01
To understand the fuelling process in a fusion device by a compact toroid (CT) plasmoid injection method, we have carried out MHD numerical simulations where a spheromak-like CT (SCT) is injected into a magnetized target plasma region. So far, we revealed that the penetration depth of the SCT plasma becomes shorter than that estimated from the conducting sphere (CS) model, because in the simulation the Lorentz force of the target magnetic field sequentially decelerates the injected SCT while in the CS model only the magnetic pressure force acts as the deceleration mechanism. In this study, we represent the new theoretical model where the injected SCT is decelerated by both the magnetic pressure force and the magnetic tension force (we call it the non-slipping sphere (NS) model) and investigate in detail the deceleration mechanism of the SCT by comparison with simulation results. As a result, it is found that the decrease of the SCT kinetic energy in the simulation coincides with that in the NS model more than in the CS model. It means that not only the magnetic pressure force but also the magnetic tension force acts as the deceleration mechanism of the SCT. Furthermore, it is revealed that magnetic reconnection between the SCT magnetic field and the target magnetic field plays a role to relax the SCT deceleration. (author)
Power take-off analysis for diagonally connected MHD channels
International Nuclear Information System (INIS)
Pan, Y.C.; Doss, E.D.
1980-01-01
The electrical loading of the power take-off region of diagonally connected MHD channels is investigated by a two-dimensional model. The study examines the loading schemes typical of those proposed for the U-25 and U-25 Bypass channels. The model is applicable for the following four cases: (1) connection with diodes only, (2) connection with diodes and equal resistors, (3) connection with diodes and variable resistances to obtain a given current distribution, and (4) connection with diodes and variable resistors under changing load. The analysis is applicable for the power take-off regions of single or multiple-output systems. The general behaviors of the current and the potential distributions in all four cases are discussed. The analytical results are in good agreement with the experimental data. It is found possible to design the electrical circuit of the channel in the take-off region so as to achieve a fairly even load current output under changing total load current
International Nuclear Information System (INIS)
Shepard, W.S.; Cook, R.L.
1985-04-01
Mississippi State University is developing diagnostic instruments for MHD power train data acquisition and for support of MHD component development test facilities. Microprocessor-controlled optical instruments, initially developed for HRSR support, are being refined, and new systems to measure temperatures and gas-seed-slag stream characteristics are being developed. To further data acquisition and analysis capabilities, the diagnostic systems are being interfaced with MHD Energy Center computers. Additionally, technical support of the diagnostic needs of the national MHD research effort is being provided
International Nuclear Information System (INIS)
Anghaie, S.; Saraph, G.
1995-01-01
A nuclear driven magnetohydrodynamic (MHD) generator system is proposed for the space nuclear applications of few hundreds of megawatts. The MHD generator is coupled to a vapor-droplet core reactor that delivers partially ionized fissioning plasma at temperatures in range of 3,000 to 4,000 K. A detailed MHD model is developed to analyze the basic electrodynamics phenomena and to perform the design analysis of the nuclear driven MHD generator. An incompressible quasi one dimensional model is also developed to perform parametric analyses
Energy Technology Data Exchange (ETDEWEB)
NONE
1984-03-01
Evaluation was conducted concerning R and D on magneto hydrodynamic (MHD) generation, with proposals made for the future R and D. As a result of the experimental operation and studies of the Mark 7 machine for MHD generation, a cold wall type generation channel was found promising in the long-term durability under MHD generation conditions. In addition, R and D was conducted on the exhaust gas control system that fulfilled an environmental standard, seed recovery method, grasp of seed coagulation state, etc. The R and D on element technologies were carried out along with the R and D of the Mark 7 and played a role in the backup of its experiment. MHD generation presents a large number of attractive characteristics, with its development expected in the future. However, it seems too early to immediately move on to the next step. Examinations should be made on such matters as comparisons with various kinds of new power generation systems using coal, trends in foreign countries particularly the U-500 project of the Soviet Union, the ideal system for more efficient development, and possibility of international cooperation. (NEDO)
Energy Technology Data Exchange (ETDEWEB)
NONE
1991-03-01
The pressurized coal partial combustion (PCPC) furnace is surveyed/studied for its incorporation in MHD generation. The technical development of the atmospheric CPC has been basically completed, and the concept is demonstrated using a test system of commercial size. Many techniques developed for the atmospheric CPC are applicable to the PCPC system. These include structures of the CPC furnace walls, and slag handling and simulation techniques. Combination of PFBC with PCPC or IGCC can bring about many merits, e.g., enhanced efficiency and abated NOx emissions for the combined cycle power generation. These topping cycles, therefore, should be developed in the early stage. MHD power generation is one of the concepts that can enhance efficiency. In particular, the techniques for closed cycle MHD generation have notably advanced recently. The PCPC techniques are useful for coal combustors for MHD generation. Full-scale development works for the direct coal combustion gas turbine systems have been just started for the IGCC systems of the next generation, and the PCPC-related techniques are expected to serve as the central techniques for these turbine systems. (NEDO)
Energy Technology Data Exchange (ETDEWEB)
NONE
1982-03-01
'Research on MHD generation system' was implemented by its expert committee in the electric joint study group, with the results of fiscal 1981 reported. This year, technological reexamination was conducted for a 2,000 MWt commercial MHD generation plant, with evaluation carried out on the cost performance including the construction and operation cost. In addition, for the purpose of intermediate R and D towards the practicability, examination was also conducted on a system structure, concrete specifications of component element, cost of R and D including operation expenses for example, concerning an 100 MWt class experimental plant and a 500 MWt class plant. In the investigation of the overseas trend, information was summarized in detail on the experimental devices, combustors, generation channels, electrode materials, electrode phenomena, theoretical analyses, seeds, slag, component equipment, instrumental technologies, conceptual designs of generation plant, commercial plant, etc., in Soviet Union, China, Holland, India and EPRI, on the basis of the materials from the 19th MHD symposium held in UTSI and from the coal MHD specialist conference held in Sydney. (NEDO)
Acceleration of the OpenFOAM-based MHD solver using graphics processing units
International Nuclear Information System (INIS)
He, Qingyun; Chen, Hongli; Feng, Jingchao
2015-01-01
Highlights: • A 3D PISO-MHD was implemented on Kepler-class graphics processing units (GPUs) using CUDA technology. • A consistent and conservative scheme is used in the code which was validated by three basic benchmarks in a rectangular and round ducts. • Parallelized of CPU and GPU acceleration were compared relating to single core CPU in MHD problems and non-MHD problems. • Different preconditions for solving MHD solver were compared and the results showed that AMG method is better for calculations. - Abstract: The pressure-implicit with splitting of operators (PISO) magnetohydrodynamics MHD solver of the couple of Navier–Stokes equations and Maxwell equations was implemented on Kepler-class graphics processing units (GPUs) using the CUDA technology. The solver is developed on open source code OpenFOAM based on consistent and conservative scheme which is suitable for simulating MHD flow under strong magnetic field in fusion liquid metal blanket with structured or unstructured mesh. We verified the validity of the implementation on several standard cases including the benchmark I of Shercliff and Hunt's cases, benchmark II of fully developed circular pipe MHD flow cases and benchmark III of KIT experimental case. Computational performance of the GPU implementation was examined by comparing its double precision run times with those of essentially the same algorithms and meshes. The resulted showed that a GPU (GTX 770) can outperform a server-class 4-core, 8-thread CPU (Intel Core i7-4770k) by a factor of 2 at least.
Acceleration of the OpenFOAM-based MHD solver using graphics processing units
Energy Technology Data Exchange (ETDEWEB)
He, Qingyun; Chen, Hongli, E-mail: hlchen1@ustc.edu.cn; Feng, Jingchao
2015-12-15
Highlights: • A 3D PISO-MHD was implemented on Kepler-class graphics processing units (GPUs) using CUDA technology. • A consistent and conservative scheme is used in the code which was validated by three basic benchmarks in a rectangular and round ducts. • Parallelized of CPU and GPU acceleration were compared relating to single core CPU in MHD problems and non-MHD problems. • Different preconditions for solving MHD solver were compared and the results showed that AMG method is better for calculations. - Abstract: The pressure-implicit with splitting of operators (PISO) magnetohydrodynamics MHD solver of the couple of Navier–Stokes equations and Maxwell equations was implemented on Kepler-class graphics processing units (GPUs) using the CUDA technology. The solver is developed on open source code OpenFOAM based on consistent and conservative scheme which is suitable for simulating MHD flow under strong magnetic field in fusion liquid metal blanket with structured or unstructured mesh. We verified the validity of the implementation on several standard cases including the benchmark I of Shercliff and Hunt's cases, benchmark II of fully developed circular pipe MHD flow cases and benchmark III of KIT experimental case. Computational performance of the GPU implementation was examined by comparing its double precision run times with those of essentially the same algorithms and meshes. The resulted showed that a GPU (GTX 770) can outperform a server-class 4-core, 8-thread CPU (Intel Core i7-4770k) by a factor of 2 at least.
MHD mode evolutions prior to minor and major disruptions in SST-1 plasma
Energy Technology Data Exchange (ETDEWEB)
Dhongde, Jasraj; Pradhan, Subrata, E-mail: pradhan@ipr.res.in; Bhandarkar, Manisha
2017-01-15
Highlights: • Observation of different regimes of MHD phenomena in SST-1 plasma. • MHD mode (m/n = 1/1, m/n = 2/1) evolutions prior to minor and major disruptions in SST-1 plasma. • MHD mode characteristics such as mode frequency, mode number, island width etc. in different regimes. - Abstract: Steady State Superconducting Tokamak (SST-1) is a medium size Tokamak (R{sub 0} = 1.1 m, a = 0.2 m, B{sub T} = 1.5T, Ip ∼ 110 kA) in operation at the Institute for Plasma Research, India. SST-1 uniquely experiments large aspect ratio (∼5.5) plasma in different operation regimes. In these experiments, repeatable characteristic MHD phenomena have been consistently observed. As the large aspect ratio plasma pulse progresses, these MHD phenomena display minor-major disruptions ably indicated in Mirnov oscillations, Mirnov oscillations with saw teeth and locked modes etc. Even though somewhat similar observations have been found in some other machines, these observations are found for the first time in large aspect ratio plasma of SST-1. This paper elaborates the magnetic field perturbations and mode evolutions due to MHD activities from Mirnov coils (poloidal and toroidal), Soft X-ray diagnostics, ECE diagnostics etc. This work further, for the first time reports quantitatively different regimes of MHD phenomena observed in SST-1 plasma, their details of mode evolutions characteristics as well as the subsequently observed minor, major disruptions supported with the physical explanations. This study will help developing disruption mitigation and avoidance scenarios for having better confinement plasma experiments.
Sauer, K.; Dubinin, E.; Baumgärtel, K.
1998-09-01
The characteristic scale of the Martian magnetosheath is less than the pick-up gyroradius of oxygen ions. This leads to admissible differential motion of protons and heavies and a strong coupling between both ion fluids. 2D bi-ion MHD simulations reveal many new interesting features in such Large Larmour Radius systems. The formation of an ion-composition boundary, which separates both plasmas, and structuring of the transition from proton dominated plasma of the solar wind origin to massive planetary plasma are the main features of the interaction. A comprehensive multi-instrument study of Martian plasma environment and the comparison with theoretical modelling initiated in the framework of the Visiting Science Programme of the International Space Science Institute (ISSI) in Bern (Switzerland) gives confirmation that Mars interacts with the solar wind like a comet which has a outgassing rate near to that of Grigg-Skjellerup. The results may also be relevant for small bodies which are surrounded by a neutral gas atmosphere (icy moons, asteroids, Mercury).
Stability of a two-volume MRxMHD model in slab geometry
Tuen, Li Huey
Ideal MHD models are known to be inadequate to describe various physical attributes of a toroidal field with non-continuous symmetry, such as magnetic islands and stochastic regions. Motivated by this omission, a new variational principle MRXMHD was developed; rather than include an infinity of magnetic flux surfaces, MRxMHD has a finite number of flux surfaces, and thus supports partial plasma relaxation. The model comprises of relaxed plasma regions which are separated by nested ideal MHD interfaces (flux surfaces), and can be encased in a perfectly conducting wall. In each region the pressure is constant, but can jump across interfaces. The field and field pitch, or rotational transform, can also jump across the interfaces. Unlike ideal MHD, MRxMHD plasmas can support toroidally non-axisymmetric confined magnetic fields, magnetic islands and stochastic regions. In toroidally non-axisymmetric plasma, the existence of interfaces in MRxMHD is contingent on the irrationality of the rotational transform of flux surfaces. That is, the KAM theorem shows that invariant tori (flux surfaces) continue to exist for sufficiently small perturbations to an integrable system (which describes flux surfaces), provided that the rotational transform is sufficiently irrational. Building upon the MRxMHD stability model, we study the effects of irrationality of the rotational transform at interfaces in MRxMHD on plasma stability. We present an MRxMHD equilibrium model to investigate the effects of magnetic field pitch within the plasma and across the aforementioned flux surfaces within a chosen geometry. In this model, it is found that the 2D system stability conditions are dependent on the interface and resonant surface magnetic field pitch at minimised energy states, and the stability of a system as a function of magnetic field pitch destabilises at particular values of magnetic field pitch. We benchmark the treatment of a two-volume system, along with the calculations for
Analytic MHD Theory for Earth's Bow Shock at Low Mach Numbers
Grabbe, Crockett L.; Cairns, Iver H.
1995-01-01
A previous MHD theory for the density jump at the Earth's bow shock, which assumed the Alfven M(A) and sonic M(s) Mach numbers are both much greater than 1, is reanalyzed and generalized. It is shown that the MHD jump equation can be analytically solved much more directly using perturbation theory, with the ordering determined by M(A) and M(s), and that the first-order perturbation solution is identical to the solution found in the earlier theory. The second-order perturbation solution is calculated, whereas the earlier approach cannot be used to obtain it. The second-order terms generally are important over most of the range of M(A) and M(s) in the solar wind when the angle theta between the normal to the bow shock and magnetic field is not close to 0 deg or 180 deg (the solutions are symmetric about 90 deg). This new perturbation solution is generally accurate under most solar wind conditions at 1 AU, with the exception of low Mach numbers when theta is close to 90 deg. In this exceptional case the new solution does not improve on the first-order solutions obtained earlier, and the predicted density ratio can vary by 10-20% from the exact numerical MHD solutions. For theta approx. = 90 deg another perturbation solution is derived that predicts the density ratio much more accurately. This second solution is typically accurate for quasi-perpendicular conditions. Taken together, these two analytical solutions are generally accurate for the Earth's bow shock, except in the rare circumstance that M(A) is less than or = 2. MHD and gasdynamic simulations have produced empirical models in which the shock's standoff distance a(s) is linearly related to the density jump ratio X at the subsolar point. Using an empirical relationship between a(s) and X obtained from MHD simulations, a(s) values predicted using the MHD solutions for X are compared with the predictions of phenomenological models commonly used for modeling observational data, and with the predictions of a
The effects of imperfect insulator coatings on MHD and heat transfer in rectangular duct
International Nuclear Information System (INIS)
Ying, A.Y.; Gaizer, A.A.
1994-01-01
In self cooled liquid metal blankets, the use of an insulator coating to reduce the flow of the eddy current to the structure leads to a significant reduction in MHD pressure drop. Furthermore, this insulating layer alters the velocity structure by reducing the potential difference between the side wall and boundary layer. The questions which arise are: (1) How the imperfections in the insulator coating affect the velocity profiles and their consequent impacts on heat transfer performance?; and, (2) How much crack can lead to an unacceptable MHD pressure drop? The dynamics of the crack healing in an insulator coating duct is one of the important subjects requiring study. The purpose of this work is to present numerical simulations of fully developed MHD flow and developing heat transfer characteristics in imperfectly insulated ducts, and to quantify the influences of crack locations, sizes and resistivities on 2-D MHD pressure drops. Comparisons of finite element solutions of pressure drops in partially insulated ducts with analytical solutions obtained from a circuit analogy show excellent agreement. In addition, the remarkable side layer velocity profile observed in a laminar MHD flow of a conducting duct gradually diminishes as the resistance of the insulating layer increases. The average side wall Nusselt number drops by a factor of 2 as the duct becomes fully insulated
Directory of Open Access Journals (Sweden)
C. Nabert
2017-05-01
Full Text Available The interaction of the solar wind with a planetary magnetic field causes electrical currents that modify the magnetic field distribution around the planet. We present an approach to estimating the planetary magnetic field from in situ spacecraft data using a magnetohydrodynamic (MHD simulation approach. The method is developed with respect to the upcoming BepiColombo mission to planet Mercury aimed at determining the planet's magnetic field and its interior electrical conductivity distribution. In contrast to the widely used empirical models, global MHD simulations allow the calculation of the strongly time-dependent interaction process of the solar wind with the planet. As a first approach, we use a simple MHD simulation code that includes time-dependent solar wind and magnetic field parameters. The planetary parameters are estimated by minimizing the misfit of spacecraft data and simulation results with a gradient-based optimization. As the calculation of gradients with respect to many parameters is usually very time-consuming, we investigate the application of an adjoint MHD model. This adjoint MHD model is generated by an automatic differentiation tool to compute the gradients efficiently. The computational cost for determining the gradient with an adjoint approach is nearly independent of the number of parameters. Our method is validated by application to THEMIS (Time History of Events and Macroscale Interactions during Substorms magnetosheath data to estimate Earth's dipole moment.
An analysis of plasma ion toroidal rotation during large amplitude MHD activity in JET
International Nuclear Information System (INIS)
Snipes, J.A.; Esch, H.P.L. de; Lazzaro, E.; Stork, D.; Hellermann, M. von; Galvao, R.; Hender, T.C.; Zasche, D.
1989-01-01
A detailed study of plasma ion toroidal rotation in JET during large amplitude MHD activity has revealed a strong viscous force that couples plasma ions to MHD modes. Depending on the MHD modes present, this force can couple across all of the plasma cross section, across only the central region, roughly within the q=1 surface, or across only the outer region outside the q=1.5 surface. The force acts to flatten the ion toroidal rotation frequency profile, measured by the JET active charge exchange spectroscopy diagnostic, across the coupled region of plasma. The frequency of rotation in this region agrees with the MHD oscillation frequency measured by magnetic pick-up coils at the wall. The strength of the force between the ions and modes becomes evident during high power NBI when the mode locks and drags the ion toroidal rotation frequency to zero, within the errors of the measurements. The present theories of plasma rotation either ignore MHD effects entirely, consider only moderate n toroidal field ripple, or low n ripple effects. (author) 7 refs., 3 figs
Implementation of a 3-D nonlinear MHD [magnetohydrodynamics] calculation on the Intel hypercube
International Nuclear Information System (INIS)
Lynch, V.E.; Carreras, B.A.; Drake, J.B.; Hicks, H.R.; Lawkins, W.F.
1987-01-01
The optimization of numerical schemes and increasing computer capabilities in the last ten years have improved the efficiency of 3-D nonlinear resistive MHD calculations by about two to three orders of magnitude. However, we are still very limited in performing these types of calculations. Hypercubes have a large number of processors with only local memory and bidirectional links among neighbors. The Intel Hypercube at Oak Ridge has 64 processors with 0.5 megabytes of memory per processor. The multiplicity of processors opens new possibilities for the treatment of such computations. The constraint on time and resources favored the approach of using the existing RSF code which solves as an initial value problem the reduced set of MHD equations for a periodic cylindrical geometry. This code includes minimal physics and geometry, but contains the basic three dimensionality and nonlinear structure of the equations. The code solves the reduced set of MHD equations by Fourier expansion in two angular coordinates and finite differences in the radial one. Due to the continuing interest in these calculations and the likelihood that future supercomputers will take greater advantage of parallelism, the present study was initiated by the ORNL Exploratory Studies Committee and funded entirely by Laboratory Discretionary Funds. The objectives of the study were: to ascertain the suitability of MHD calculation for parallel computation, to design and implement a parallel algorithm to perform the computations, and to evaluate the hypercube, and in particular, ORNL's Intel iPSC, for use in MHD computations
Evaluation of MHD materials for use in high-temperature fuel cells
Energy Technology Data Exchange (ETDEWEB)
Guidotti, R.
1978-06-15
The MHD and high-temperature fuel cell literature was surveyed for data pertaining to materials properties in order to identify materials used in MHD power generation which also might be suitable for component use in high-temperature fuel cells. Classes of MHD-electrode materials evaluated include carbides, nitrides, silicides, borides, composites, and oxides. Y/sub 2/O/sub 3/-stabilized ZrO/sub 2/ used as a reference point to evaluate materials for use in the solid-oxide fuel cell. Physical and chemical properties such as electrical resistivity, coefficient of thermal expansion, and thermodynamic stability toward oxidation were used to screen candidate materials. A number of the non-oxide ceramic MHD-electrode materials appear promising for use in the solid-electrolyte and molten-carbonate fuel cell as anodes or anode constituents. The MHD-insulator materials appear suitable candidates for electrolyte-support tiles in the molten-carbonate fuel cells. The merits and possible problem areas for these applications are discussed and additional needed areas of research are delineated.
MHD instabilities and their effects on plasma confinement in the large helical device plasmas
International Nuclear Information System (INIS)
Toi, K.
2002-01-01
MHD stability of NBI heated plasmas and impacts of MHD modes on plasma confinement are intensively studied in the Large Helical Device (LHD). Three characteristic MHD instabilities were observed, that is, (1) pressure driven modes excited in the plasma edge, (2) pressure driven mode in the plasma core, and (3) Alfven eigenmodes (AEs) driven by energetic ions. MHD mode excited in the edge region accompanies multiple satellites, and is called Edge Harmonic Modes (EHMs). EHM sometimes has a bursting character. The bursting EHM transiently decreases the stored energy by about 15 percent. In the plasma core region, m=2/n=1 pressure driven mode is typically destabilized. The mode often induces internal collapse in the higher beta regime more than 1 percent. The internal collapse appreciably affects the global confinement. Energetic ion driven AEs are often detected in NBI-heated LHD plasmas. Particular AE with the frequency 8-10 times larger than TAE-frequency was detected in high beta plasmas more than 2 percent. The AE may be related to helicity-induced AE. Excitation of these three types of MHD instabilities and their impacts on plasma confinement are discussed. (author)
MHD activity in the ISX-B tokamak: experimental results and theoretical interpretation
Energy Technology Data Exchange (ETDEWEB)
Carreras, B.A.; Dunlap, J.L.; Bell, J.D.; Charlton, L.A.; Cooper, W.A.; Dory, R.A.; Hender, T.C.; Hicks, H.R.; Holmes, J.A.; Lynch, V.E.
1982-01-01
The observed spectrum of MHD fluctuations in the ISX-B tokamak is clearly dominated by the n=1 mode when the q=1 surface is in the plasma. This fact agrees well with theoretical predictions based on 3-D resistive MHD calculations. They show that the (m=1; n=1) mode is then the dominant instability. It drives other n=1 modes through toroidal coupling and n>1 modes through nonlinear couplings. These theoretically predicted mode structures have been compared in detail with the experimentally measured wave forms (using arrays of soft x-ray detectors). The agreement is excellent. More detailed comparisons between theory and experiment have required careful reconstructions of the ISX-B equilibria. The equilibria so constructed have permitted a precise evaluation of the ideal MHD stability properties of ISX-B. The present results indicate that the high ..beta.. ISX-B equilibria are marginally stable to finite eta ideal MHD modes. The resistive MHD calculations also show that at finite ..beta.. there are unstable resistive pressure driven modes.
A simplified MHD model of capillary Z-Pinch compared with experiments
Energy Technology Data Exchange (ETDEWEB)
Shapolov, A.A.; Kiss, M.; Kukhlevsky, S.V. [Institute of Physics, University of Pecs (Hungary)
2016-11-15
The most accurate models of the capillary Z-pinches used for excitation of soft X-ray lasers and photolithography XUV sources currently are based on the magnetohydrodynamics theory (MHD). The output of MHD-based models greatly depends on details in the mathematical description, such as initial and boundary conditions, approximations of plasma parameters, etc. Small experimental groups who develop soft X-ray/XUV sources often use the simplest Z-pinch models for analysis of their experimental results, despite of these models are inconsistent with the MHD equations. In the present study, keeping only the essential terms in the MHD equations, we obtained a simplified MHD model of cylindrically symmetric capillary Z-pinch. The model gives accurate results compared to experiments with argon plasmas, and provides simple analysis of temporal evolution of main plasma parameters. The results clarify the influence of viscosity, heat flux and approximations of plasma conductivity on the dynamics of capillary Z-pinch plasmas. The model can be useful for researchers, especially experimentalists, who develop the soft X-ray/XUV sources. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Modeling extreme (Carrington-type) space weather events using three-dimensional MHD code simulations
Ngwira, C. M.; Pulkkinen, A. A.; Kuznetsova, M. M.; Glocer, A.
2013-12-01
There is growing concern over possible severe societal consequences related to adverse space weather impacts on man-made technological infrastructure and systems. In the last two decades, significant progress has been made towards the modeling of space weather events. Three-dimensional (3-D) global magnetohydrodynamics (MHD) models have been at the forefront of this transition, and have played a critical role in advancing our understanding of space weather. However, the modeling of extreme space weather events is still a major challenge even for existing global MHD models. In this study, we introduce a specially adapted University of Michigan 3-D global MHD model for simulating extreme space weather events that have a ground footprint comparable (or larger) to the Carrington superstorm. Results are presented for an initial simulation run with ``very extreme'' constructed/idealized solar wind boundary conditions driving the magnetosphere. In particular, we describe the reaction of the magnetosphere-ionosphere system and the associated ground induced geoelectric field to such extreme driving conditions. We also discuss the results and what they might mean for the accuracy of the simulations. The model is further tested using input data for an observed space weather event to verify the MHD model consistence and to draw guidance for future work. This extreme space weather MHD model is designed specifically for practical application to the modeling of extreme geomagnetically induced electric fields, which can drive large currents in earth conductors such as power transmission grids.
International Nuclear Information System (INIS)
Moawad, S. M.; Ibrahim, D. A.
2016-01-01
The equilibrium properties of three-dimensional ideal magnetohydrodynamics (MHD) are investigated. Incompressible and compressible flows are considered. The governing equations are taken in a steady state such that the magnetic field is parallel to the plasma flow. Equations of stationary equilibrium for both of incompressible and compressible MHD flows are derived and described in a mathematical mode. For incompressible MHD flows, Alfvénic and non-Alfvénic flows with constant and variable magnetofluid density are investigated. For Alfvénic incompressible flows, the general three-dimensional solutions are determined with the aid of two potential functions of the velocity field. For non-Alfvénic incompressible flows, the stationary equilibrium equations are reduced to two differential constraints on the potential functions, flow velocity, magnetofluid density, and the static pressure. Some examples which may be of some relevance to axisymmetric confinement systems are presented. For compressible MHD flows, equations of the stationary equilibrium are derived with the aid of a single potential function of the velocity field. The existence of three-dimensional solutions for these MHD flows is investigated. Several classes of three-dimensional exact solutions for several cases of nonlinear equilibrium equations are presented.
Role of MHD activity in LH-assisted discharges in the PBX-M tokamak
International Nuclear Information System (INIS)
Talvard, M.; Bell, R.E.; Bernabei, S.; Kaye, S.; Okabayashi, M.; Sesnic, S.; von Goeler, S.
1995-01-01
A data base for the 1993 run period of PBX-M has been documented (i) to investigate whether it was possible to forecast the development of MHD instabilities often observed in LH assisted discharges and (ii) to detail the origin, the nature and the effects of those instabilities. The deposition radius of the RF current, the plasma internal inductance and the LH power are used to separate MHD active and quiescent regimes prior the MHD onset. 1/1, 2/1, 3/1 global modes driven by the m = 2, n = 1 component are observed in discharges with LHCD. The destabilization is attributed to an increase of the current density gradient within the q = 2 surface. MHD fluctuations reduce the soft x-ray and hard x-ray intensities mainly around the RF current deposition radius. Minor disruptions with large inversion radii and mode locking are analyzed. Pi possible precursor to the MHD is evidenced on the hard x-ray horizontal profiles. A resonance between fast trapped electrons and turbulent waves present in the background plasma is proposed to support the observations
Solar furnace experiments for thermophysical properties studies of rare-earth oxide MHD materials
International Nuclear Information System (INIS)
Coutures, J.P.
1978-01-01
Some high temperature work performed with solar furnaces on rare earth oxides is reviewed. Emphasis is on the thermophysical properties (refractoriness, vaporization behavior) and the nature of solid solution on materials which could be used as electrodes for the MHD process. As new sources of energy are being developed due to the world energy crisis, MHD conversion could be useful. The development of MHD systems requires new efforts to develop and optimize materials properties. These materials must have good mechanical and electrical properties (if possible, pure electronic conduction with good emission). Because of the high temperature in MHD generators, the materials for electrodes must have good refractoriness and also must resist vaporization and corrosion at high temperature (T approx. 2000 0 C). Rare-earth oxides are the basic components for most of the MHD electrode materials and it is important to know their thermophysical properties (solidification point phase transitions, heat of fusion and of phase transition, vapor pressure). Because of the high temperature range and the nature of the atmosphere in which these experiments must be performed, special equipment adapted to solar furnaces was developed
MHD-Stabilization of Axisymmetric Mirror Systems Using Pulsed ECRH
International Nuclear Information System (INIS)
Post, R.F.
2010-01-01
This paper, part of a continuing study of means for the stabilization of MHD interchange modes in axisymmertric mirror-based plasma confinement systems, is aimed at a preliminary look at a technique that would employ a train of plasma pressure pulses produced by ECRH to accomplish the stabilization. The purpose of using sequentially pulsed ECRH rather than continuous-wave ECRH is to facilitate the localization of the heated-electron plasma pulses in regions of the magnetic field with a strong positive field-line curvature, e. g. in the 'expander' region of the mirror magnetic field, outside the outermost mirror, or in other regions of the field with positive field-line curvature. The technique proposed, of the class known as 'dynamic stabilization,' relies on the time-averaged effect of plasma pressure pulses generated in regions of positive field-line curvature to overcome the destabilizing effect of plasma pressure in regions of negative field-line curvature within the confinement region. As will also be discussed in the paper, the plasma pulses, when produced in regions of the confining having a negative gradient, create transient electric potentials of ambipolar origin, an effect that was studied in 1964 in The PLEIDE experiment in France. These electric fields preserve the localization of the hot-electron plasma pulses for a time determined by ion inertia. It is suggested that it may be possible to use this result of pulsed ECRH not only to help to stabilize the plasma but also to help plug mirror losses in a manner similar to that employed in the Tandem Mirror.
3D Solar Null Point Reconnection MHD Simulations
Baumann, G.; Galsgaard, K.; Nordlund, Å.
2013-06-01
Numerical MHD simulations of 3D reconnection events in the solar corona have improved enormously over the last few years, not only in resolution, but also in their complexity, enabling more and more realistic modeling. Various ways to obtain the initial magnetic field, different forms of solar atmospheric models as well as diverse driving speeds and patterns have been employed. This study considers differences between simulations with stratified and non-stratified solar atmospheres, addresses the influence of the driving speed on the plasma flow and energetics, and provides quantitative formulas for mapping electric fields and dissipation levels obtained in numerical simulations to the corresponding solar quantities. The simulations start out from a potential magnetic field containing a null-point, obtained from a Solar and Heliospheric Observatory (SOHO) Michelson Doppler Imager (MDI) magnetogram magnetogram extrapolation approximately 8 hours before a C-class flare was observed. The magnetic field is stressed with a boundary motion pattern similar to - although simpler than - horizontal motions observed by SOHO during the period preceding the flare. The general behavior is nearly independent of the driving speed, and is also very similar in stratified and non-stratified models, provided only that the boundary motions are slow enough. The boundary motions cause a build-up of current sheets, mainly in the fan-plane of the magnetic null-point, but do not result in a flare-like energy release. The additional free energy required for the flare could have been partly present in non-potential form at the initial state, with subsequent additions from magnetic flux emergence or from components of the boundary motion that were not represented by the idealized driving pattern.
Topics on MHD equilibrium and stability in heliotron / torsatron
International Nuclear Information System (INIS)
Ichiguchi, Katsuji; Nakajima, Noriyoshi; Okamoto, Masao.
1996-10-01
Recent topics on the MHD properties with and without bootstrap current in Heliotron / Torsatron configurations are presented. In a currentless equilibrium with a large Shafranov shift, a high-n ballooning mode can be unstable even in the region with positive gradient of the rotational transform. This is because the local shear in the field line bending term can be reduced by the fact that the local enhancement of the poloidal field varies in the radial direction. Since the local curvature of the field lines depends on the label of the magnetic field line, α, in Heliotron / Torsatron, the eigenvalue ω 2 also depends on α. In the Mercier stable region, the level surfaces of ω 2 of unstable modes form spheroids in the (ψ, θ k , α) space, where ψ and θ k are the label of the flux surface and the radial wave number, while they form cylinders in tokamaks. Such high-n modes cannot be related to low-n modes in this case. In the LHD configuration, bootstrap current depends on the collisionality of the plasma. When the beta value is raised by increasing the temperature with the density fixed, the plasma becomes less collisional and the bootstrap current grows in the direction where the rotational transform is increased. On the contrary, when the beta value is raised by increasing the density with the temperature fixed, the plasma becomes more collisional. While a small amount of the current flows in the same direction as in the above sequence at low beta in this case, the direction of the current reverses at high beta equilibrium. This is because the geometrical factor in the expression of the bootstrap current in the plateau regime has opposite signature to that in the 1/ν regime. The latter equilibrium sequence is more stable in the Mercier criterion than the former one. Thus, the beta should be raised by increasing the density rather than the temperature to obtain stable high beta plasma. (author)
MHD waves, reconnection, and plasma transport at the dayside magnetopause
International Nuclear Information System (INIS)
Johnson, J.R.; Cheng, C.Z.
1996-01-01
The magnetic field of the Earth creates a huge cavity in the solar wind known as the magnetosphere. The transition region between the solar wind plasma and magnetosphere plasma is of substantial interest because many magnetospheric processes are governed by the transport of particles, momentum and energy across that boundary. At this boundary, the magnetopause, there is an abrupt decrease in plasma bulk flow, density and pressure, and large increase in temperature and magnetic field. Throughout this region the plasmas is large. Large amplitude compressional waves are nearly always found in the region just outside of the magnetopause. These waves are either intrinsic solar wind fluctuations or they may be global mirror modes which are generated in a localized region of large pressure anisotropy just outside the magnetopause. The substantial background gradients observed at the magnetopause strongly couple the compressional waves with kinetic Alfven waves near the Alfven resonance location, leading to substantial particle transport. Moreover, for a sheared background magnetic field, as is found at times of southward interplanetary magnetic field, the mode converted kinetic Alfven waves can propagate to the location where k parallel = 0 and generate islands in phase space. We present a solution of the kinetic-MHD wave equations for the magnetic field structure based on a realistic steady state profile which includes: a sheared magnetic field; magnetic curvature; and gradients in the background density, pressure and magnetic field. We incorporate wave-particle resonance interactions for electrons and ions to obtain the dissipation. The background magnetic Keld curvature and gradient give rise to drifts which alter the resonance condition for the various particle species (ω - k circ V d - k parallel v parallel ) and reduces the Landau damping of the kinetic Alfven wave, allowing it to propagate to the k parallel = 0 location
Small Scales Structure of MHD Turbulence, Tubes or Ribbons?
Verdini, A.; Grappin, R.; Alexandrova, O.; Lion, S.
2017-12-01
Observations in the solar wind indicate that turbulent eddies change their anisotropy with scales [1]. At large scales eddies are elongated in direction perpendicular to the mean-field axis. This is the result of solar wind expansion that affects both the anisotropy and single-spacecraft measurments [2,3]. At small scales one recovers the anisotropy expected in strong MHD turbulence and constrained by the so-called critical balance: eddies are elongated along the mean-field axis. However, the actual eddy shape is intermediate between tubes and ribbons, preventing us to discriminate between two concurrent theories that predict 2D axysimmetric anisotropy [4] or full 3D anisotropy [5]. We analyse 10 years of WIND data and apply a numerically-derived criterion to select intervals in which solar wind expansion is expected to be negligible. By computing the anisotropy of structure functions with respect to the local mean field we obtain for the first time scaling relations that are in agreement with full 3D anisotropy, i.e. ribbons-like structures. However, we cannot obtain the expected scaling relations for the alignment angle which, according to the theory, is physically responsible for the departure from axisymmetry. In addition, a further change of anisotropy occurs well above the proton scales. We discuss the implication of our findings and how numerical simulations can help interpreting the observed spectral anisotropy. [1] Chen et al., ApJ, 768:120, 2012 [2] Verdini & Grappin, ApJL, 808:L34, 2015 [3] Vech & Chen, ApJL, 832:L16, 2016 [4] Goldreich & Shridar, ApJ, 438:763, 1995 [5] Boldyrev, ApJL, 626:L37, 2005
MHD Effects of a Ferritic Wall on Tokamak Plasmas
Hughes, Paul E.
It has been recognized for some time that the very high fluence of fast (14.1MeV) neutrons produced by deuterium-tritium fusion will represent a major materials challenge for the development of next-generation fusion energy projects such as a fusion component test facility and demonstration fusion power reactor. The best-understood and most promising solutions presently available are a family of low-activation steels originally developed for use in fission reactors, but the ferromagnetic properties of these steels represent a danger to plasma confinement through enhancement of magnetohydrodynamic instabilities and increased susceptibility to error fields. At present, experimental research into the effects of ferromagnetic materials on MHD stability in toroidal geometry has been confined to demonstrating that it is still possible to operate an advanced tokamak in the presence of ferromagnetic components. In order to better quantify the effects of ferromagnetic materials on tokamak plasma stability, a new ferritic wall has been installated in the High Beta Tokamak---Extended Pulse (HBT-EP) device. The development, assembly, installation, and testing of this wall as a modular upgrade is described, and the effect of the wall on machine performance is characterized. Comparative studies of plasma dynamics with the ferritic wall close-fitting against similar plasmas with the ferritic wall retracted demonstrate substantial effects on plasma stability. Resonant magnetic perturbations (RMPs) are applied, demonstrating a 50% increase in n = 1 plasma response amplitude when the ferritic wall is near the plasma. Susceptibility of plasmas to disruption events increases by a factor of 2 or more with the ferritic wall inserted, as disruptions are observed earlier with greater frequency. Growth rates of external kink instabilities are observed to be twice as large in the presence of a close-fitting ferritic wall. Initial studies are made of the influence of mode rotation frequency
Effect of Chemical Reaction on Unsteady MHD Free Convective Two
African Journals Online (AJOL)
Joseph et al.
radiation effects on mixed convection heat and mass transfer over a vertical plate in ... numerically by finite difference method and analytically by perturbation. ... Brinkman equation was used to model the flow in the porous region. The.
Localized MHD activity near transport barriers in JT-60U and TFTR
International Nuclear Information System (INIS)
Manickam, J.
2001-01-01
Localized MHD activity observed in JT-60U and TFTR near transport barriers with their associated large pressure gradients is investigated. Stability analysis of equilibria modeling the experiments supports an identification of this MHD as being due to an ideal MHD n=1 instability. The appearance of the instability depends on the local pressure gradient, local shear in the q profile and the proximity of rational surfaces where q∼m/n and m and n are the poloidal and toroidal mode numbers respectively. The mode width is shown to depend on the local value of q, and is larger when q is smaller. In addition the role of the edge current density in coupling the internal mode to the plasma edge and of the energetic particles which can drive fishbone like modes is investigated. (author)
MHD activity and energy loss during beta saturation and collapse at high beta poloidal in PBX
International Nuclear Information System (INIS)
Kugel, H.W.; Sesnic, S.; Bol, K.
1987-10-01
High-β experiments, in medium to high-q tokamak plasmas, exhibit a temporal β saturation and collapse. This behavior has been attributed to ballooning, ideal kink, or tearing modes. In PBX, a unique diagnostic capability allowed studies of the relation between MHD and energy loss for neutral-beam-heated (<6 MW), mildly indented (10 to 15%), nearly steady I/sub p/ discharges that approached the Troyon-Gruber limit. Under these conditions, correlations between MHD activity and energy losses have shown that the latter can be almost fully accounted for by various long wavelength MHD instabilities and that there is no need to invoke high-n ballooning modes in PBX. 6 refs., 4 figs
International Nuclear Information System (INIS)
Baryshev, Yu.V.; Morozov, V.N.
1988-01-01
It is shown that MHD turbulence can be generated by collisionless shock waves due to anisotropy of the pressure behind the front of the reverse sock at the hot spot of a powerful radio galaxy. The energy density of the MHD turbulence generated behind the shock front is estimated. Analysis of the theoretical studies and experimental data on collisionless shock waves in the solar wind indicates that an important part is played by streams of ions reflected by the shock fronts, the streams generating plasma and MHD turbulence in the region ahead of the front. The extension of these ideas to shock waves in powerful radio galaxies must be made with care because of the great difference between the parameters of the shock waves in the two cases
Ideal MHD Stability Prediction and Required Power for EAST Advanced Scenario
Chen, Junjie; Li, Guoqiang; Qian, Jinping; Liu, Zixi
2012-11-01
The Experimental Advanced Superconducting Tokamak (EAST) is the first fully superconducting tokamak with a D-shaped cross-sectional plasma presently in operation. The ideal magnetohydrodynamic (MHD) stability and required power for the EAST advanced tokamak (AT) scenario with negative central shear and double transport barrier (DTB) are investigated. With the equilibrium code TOQ and stability code GATO, the ideal MHD stability is analyzed. It is shown that a moderate ratio of edge transport barriers' (ETB) height to internal transport barriers' (ITBs) height is beneficial to ideal MHD stability. The normalized beta βN limit is about 2.20 (without wall) and 3.70 (with ideal wall). With the scaling law of energy confinement time, the required heating power for EAST AT scenario is calculated. The total heating power Pt increases as the toroidal magnetic field BT or the normalized beta βN is increased.
Linear MHD stability analysis of post-disruption plasmas in ITER
Energy Technology Data Exchange (ETDEWEB)
Aleynikova, K., E-mail: ksenia.aleynikova@gmail.com [EURATOM Association, Max-Planck-Institut für Plasmaphysik (Germany); Huijsmans, G. T. A. [ITER Organization (France); Aleynikov, P. [EURATOM Association, Max-Planck-Institut für Plasmaphysik (Germany)
2016-05-15
Most of the plasma current can be replaced by a runaway electron (RE) current during plasma disruptions in ITER. In this case the post-disruption plasma current profile is likely to be more peaked than the pre-disruption profile. The MHD activity of such plasma will affect the runaway electron generation and confinement and the dynamics of the plasma position evolution (Vertical Displacement Event), limiting the timeframe for runaway electrons and disruption mitigation. In the present paper, we evaluate the influence of the possible RE seed current parameters on the onset of the MHD instabilities. By varying the RE seed current profile, we search for subsequent plasma evolutions with the highest and the lowest MHD activity. This information can be applied to a development of desirable ITER disruption scenario.
Density profile effects on confinement and MHD stability of currentless NBI plasmas in Heliotron E
International Nuclear Information System (INIS)
Sudo, Shigeru; Zushi, Hideki; Kondo, Katsumi
1993-01-01
Density profile effects on confinement and MHD stability of currentless NBI plasmas in Heliotron E are studied. The peaked density profile produced by pellet injection increases the stored energy by 20-30% compared to the gas puffed plasmas which obey the empirical stellarator/heliotron scaling in a moderate density range. In contrast to confinement, the peaked pressure profile tends to destabilize the plasma. By limiter insertion, MHD instability occurs (seems to locate near ι/2π=1) even in case of low β (β 0 ≤1%, where β 0 is the central β value) plasmas. On the other hand, the mode of m/n=3/2 at ι/2π=2/3, seems to be a key parameter to the major MHD instability in case of high β (β 0 ≥2%) plasmas. (author)
Ideal MHD Stability Prediction and Required Power for EAST Advanced Scenario
International Nuclear Information System (INIS)
Chen Junjie; Li Guoqiang; Qian Jinping; Liu Zixi
2012-01-01
The Experimental Advanced Superconducting Tokamak (EAST) is the first fully superconducting tokamak with a D-shaped cross-sectional plasma presently in operation. The ideal magnetohydrodynamic (MHD) stability and required power for the EAST advanced tokamak (AT) scenario with negative central shear and double transport barrier (DTB) are investigated. With the equilibrium code TOQ and stability code GATO, the ideal MHD stability is analyzed. It is shown that a moderate ratio of edge transport barriers' (ETB) height to internal transport barriers' (ITBs) height is beneficial to ideal MHD stability. The normalized beta β N limit is about 2.20 (without wall) and 3.70 (with ideal wall). With the scaling law of energy confinement time, the required heating power for EAST AT scenario is calculated. The total heating power P t increases as the toroidal magnetic field B T or the normalized beta β N is increased. (magnetically confined plasma)
Simulation of the MHD stabilities of the experiment on HL-2A tokamak by GATO code
International Nuclear Information System (INIS)
Pan Wei; Chen Liaoyuan; Dong Jiaqi; Shen Yong; Zhang Jinhua
2009-01-01
The ideal two-dimensional MHD stabilities code, GATO, has been successfully immigrated to the high-performance computing system of HL-2A and used to the simulation study of the ideal MHD stabilities of the plasmas produced by one of the pellets injection experiments on HL-2A tokamak. The EFIT code was used to reconstruct the equilibrium configures firstly and the GATO was used to compute their MHD stabilities secondly whose source data were obtained by the NO.4050 discharge of the experiments on HL-2A, and finally by analyzing these results the preliminary conclusion was devised that the confinement performance of the plasma was improved because of the stabilization effect of the anti-sheared configures created by the pellets injection. (authors)
Real-time simulation of MHD/steam power plants by digital parallel processors
International Nuclear Information System (INIS)
Johnson, R.M.; Rudberg, D.A.
1981-01-01
Attention is given to a large FORTRAN coded program which simulates the dynamic response of the MHD/steam plant on either a SEL 32/55 or VAX 11/780 computer. The code realizes a detailed first-principle model of the plant. Quite recently, in addition to the VAX 11/780, an AD-10 has been installed for usage as a real-time simulation facility. The parallel processor AD-10 is capable of simulating the MHD/steam plant at several times real-time rates. This is desirable in order to develop rapidly a large data base of varied plant operating conditions. The combined-cycle MHD/steam plant model is discussed, taking into account a number of disadvantages. The disadvantages can be overcome with the aid of an array processor used as an adjunct to the unit processor. The conversion of some computations for real-time simulation is considered