Classical mechanics in non-commutative phase space
International Nuclear Information System (INIS)
Wei Gaofeng; Long Chaoyun; Long Zhengwen; Qin Shuijie
2008-01-01
In this paper the laws of motion of classical particles have been investigated in a non-commutative phase space. The corresponding non-commutative relations contain not only spatial non-commutativity but also momentum non-commutativity. First, new Poisson brackets have been defined in non-commutative phase space. They contain corrections due to the non-commutativity of coordinates and momenta. On the basis of this new Poisson brackets, a new modified second law of Newton has been obtained. For two cases, the free particle and the harmonic oscillator, the equations of motion are derived on basis of the modified second law of Newton and the linear transformation (Phys. Rev. D, 2005, 72: 025010). The consistency between both methods is demonstrated. It is shown that a free particle in commutative space is not a free particle with zero-acceleration in the non-commutative phase space, but it remains a free particle with zero-acceleration in non-commutative space if only the coordinates are non-commutative. (authors)
Non-commutative geometry on quantum phase-space
International Nuclear Information System (INIS)
Reuter, M.
1995-06-01
A non-commutative analogue of the classical differential forms is constructed on the phase-space of an arbitrary quantum system. The non-commutative forms are universal and are related to the quantum mechanical dynamics in the same way as the classical forms are related to classical dynamics. They are constructed by applying the Weyl-Wigner symbol map to the differential envelope of the linear operators on the quantum mechanical Hilbert space. This leads to a representation of the non-commutative forms considered by A. Connes in terms of multiscalar functions on the classical phase-space. In an appropriate coincidence limit they define a quantum deformation of the classical tensor fields and both commutative and non-commutative forms can be studied in a unified framework. We interprete the quantum differential forms in physical terms and comment on possible applications. (orig.)
Non-commutative phase space and its space-time symmetry
International Nuclear Information System (INIS)
Li Kang; Dulat Sayipjamal
2010-01-01
First a description of 2+1 dimensional non-commutative (NC) phase space is presented, and then we find that in this formulation the generalized Bopp's shift has a symmetric representation and one can easily and straightforwardly define the star product on NC phase space. Then we define non-commutative Lorentz transformations both on NC space and NC phase space. We also discuss the Poincare symmetry. Finally we point out that our NC phase space formulation and the NC Lorentz transformations are applicable to any even dimensional NC space and NC phase space. (authors)
Two-dimensional black holes and non-commutative spaces
International Nuclear Information System (INIS)
Sadeghi, J.
2008-01-01
We study the effects of non-commutative spaces on two-dimensional black hole. The event horizon of two-dimensional black hole is obtained in non-commutative space up to second order of perturbative calculations. A lower limit for the non-commutativity parameter is also obtained. The observer in that limit in contrast to commutative case see two horizon
Non-commutative covering spaces and their symmetries
DEFF Research Database (Denmark)
Canlubo, Clarisson
dened and its corresponding Galois theory. Using this and basic concepts from algebraic geometryand spectral theory, we will give a full description of the general structure of non-centralcoverings. Examples of coverings of the rational and irrational non-commutative tori will alsobe studied. Using...... will explain this and relate it to bi-Galois theory.Using the OZ-transform, we will show that non-commutative covering spaces come in pairs.Several categories of covering spaces will be dened and studied. Appealing to Tannaka duality,we will explain how this lead to a notion of an etale fundamental group...
The standard model on non-commutative space-time
International Nuclear Information System (INIS)
Calmet, X.; Jurco, B.; Schupp, P.; Wohlgenannt, M.; Wess, J.
2002-01-01
We consider the standard model on a non-commutative space and expand the action in the non-commutativity parameter θ μν . No new particles are introduced; the structure group is SU(3) x SU(2) x U(1). We derive the leading order action. At zeroth order the action coincides with the ordinary standard model. At leading order in θ μν we find new vertices which are absent in the standard model on commutative space-time. The most striking features are couplings between quarks, gluons and electroweak bosons and many new vertices in the charged and neutral currents. We find that parity is violated in non-commutative QCD. The Higgs mechanism can be applied. QED is not deformed in the minimal version of the NCSM to the order considered. (orig.)
The standard model on non-commutative space-time
Energy Technology Data Exchange (ETDEWEB)
Calmet, X.; Jurco, B.; Schupp, P.; Wohlgenannt, M. [Sektion Physik, Universitaet Muenchen (Germany); Wess, J. [Sektion Physik, Universitaet Muenchen (Germany); Max-Planck-Institut fuer Physik, Muenchen (Germany)
2002-03-01
We consider the standard model on a non-commutative space and expand the action in the non-commutativity parameter {theta}{sup {mu}}{sup {nu}}. No new particles are introduced; the structure group is SU(3) x SU(2) x U(1). We derive the leading order action. At zeroth order the action coincides with the ordinary standard model. At leading order in {theta}{sup {mu}}{sup {nu}} we find new vertices which are absent in the standard model on commutative space-time. The most striking features are couplings between quarks, gluons and electroweak bosons and many new vertices in the charged and neutral currents. We find that parity is violated in non-commutative QCD. The Higgs mechanism can be applied. QED is not deformed in the minimal version of the NCSM to the order considered. (orig.)
Space/time non-commutative field theories and causality
International Nuclear Information System (INIS)
Bozkaya, H.; Fischer, P.; Pitschmann, M.; Schweda, M.; Grosse, H.; Putz, V.; Wulkenhaar, R.
2003-01-01
As argued previously, amplitudes of quantum field theories on non-commutative space and time cannot be computed using naive path integral Feynman rules. One of the proposals is to use the Gell-Mann-Low formula with time-ordering applied before performing the integrations. We point out that the previously given prescription should rather be regarded as an interaction-point time-ordering. Causality is explicitly violated inside the region of interaction. It is nevertheless a consistent procedure, which seems to be related to the interaction picture of quantum mechanics. In this framework we compute the one-loop self-energy for a space/time non-commutative φ 4 theory. Although in all intermediate steps only three-momenta play a role, the final result is manifestly Lorentz covariant and agrees with the naive calculation. Deriving the Feynman rules for general graphs, we show, however, that such a picture holds for tadpole lines only. (orig.)
Newton's second law in a non-commutative space
International Nuclear Information System (INIS)
Romero, Juan M.; Santiago, J.A.; Vergara, J. David
2003-01-01
In this Letter we show that corrections to Newton's second law appear if we assume a symplectic structure consistent with the commutation rules of the non-commutative quantum mechanics. For central field we find that the correction term breaks the rotational symmetry. For the Kepler problem, this term is similar to a Coriolis force
Some consequences of a non-commutative space-time structure
International Nuclear Information System (INIS)
Vilela Mendes, R.
2005-01-01
The existence of a fundamental length (or fundamental time) has been conjectured in many contexts. Here we discuss some consequences of a fundamental constant of this type, which emerges as a consequence of deformation-stability considerations leading to a non-commutative space-time structure. This mathematically well defined structure is sufficiently constrained to allow for unambiguous experimental predictions. In particular we discuss the phase-space volume modifications and their relevance for the calculation of the Greisen-Zatsepin-Kuz'min sphere. The (small) corrections to the spectrum of the Coulomb problem are also computed. (orig.)
On Some Isomorphisms between Bounded Linear Maps and Non-Commutative Lp-Spaces
Directory of Open Access Journals (Sweden)
E. J. Atto
2014-04-01
Full Text Available We define a particular space of bounded linear maps using a Von Neumann algebra and some operator spaces. By this, we prove some isomorphisms, and using interpolation in some particular cases, we get analogue of non-commutative Lp spaces.
Geometry of time-spaces non-commutative algebraic geometry, applied to quantum theory
Landau, Olav Arnfinn
2011-01-01
This is a monograph about non-commutative algebraic geometry, and its application to physics. The main mathematical inputs are the non-commutative deformation theory, moduli theory of representations of associative algebras, a new non-commutative theory o
Unitary quantum physics with time-space non-commutativity
International Nuclear Information System (INIS)
Balachandran, A P; Govindarajan, T R; Martins, A G; Molina, C; Teotonio-Sobrinho, P
2005-01-01
In these lectures 4 quantum physics in noncommutative spacetime is developed. It is based on the work of Doplicher et al. which allows for time-space noncommutativity. In the context of noncommutative quantum mechanics, some important points are explored, such as the formal construction of the theory, symmetries, causality, simultaneity and observables. The dynamics generated by a noncommutative Schroedinger equation is studied. The theory is further extended to certain noncommutative versions of the cylinder, R 3 and R x S 3 . In all these models, only discrete time translations are possible. One striking consequence of quantised time translations is that even though a time independent Hamiltonian is an observable, in scattering processes, it is conserved only modulo 2π/θ, where θ is the noncommutative parameter. Scattering theory is formulated and an approach to quantumfield theory is outlined
Scattering theory of space-time non-commutative abelian gauge field theory
International Nuclear Information System (INIS)
Rim, Chaiho; Yee, Jaehyung
2005-01-01
The unitary S-matrix for space-time non-commutative quantum electrodynamics is constructed using the *-time ordering which is needed in the presence of derivative interactions. Based on this S-matrix, we formulate the perturbation theory and present the Feynman rule. We then apply this perturbation analysis to the Compton scattering process to the lowest order and check the gauge invariance of the scattering amplitude at this order.
Non-commutative and commutative vacua effects in a scalar torsion scenario
Energy Technology Data Exchange (ETDEWEB)
Sheikhahmadi, Haidar, E-mail: h.sh.ahmadi@gmail.com [Department of Physics, Faculty of Science, University of Kurdistan, Sanandaj (Iran, Islamic Republic of); Aghamohammadi, Ali, E-mail: a.aghamohamadi@iausdj.ac.ir [Sanandaj Branch, Islamic Azad University, Sanandaj (Iran, Islamic Republic of); Saaidi, Khaled, E-mail: ksaaidi@uok.ac.ir [Department of Physics, Faculty of Science, University of Kurdistan, Sanandaj (Iran, Islamic Republic of)
2015-10-07
In this work, the effects of non-commutative and commutative vacua on the phase space generated by a scalar field in a scalar torsion scenario are investigated. For both classical and quantum regimes, the commutative and non-commutative cases are compared. To take account the effects of non-commutativity, two well known non-commutative parameters, θ and β, are introduced. It should be emphasized, the effects of β which is related to momentum sector has more key role in comparison to θ which is related to space sector. Also the different boundary conditions and mathematical interpretations of non-commutativity are explored.
Non-commutative and commutative vacua effects in a scalar torsion scenario
International Nuclear Information System (INIS)
Sheikhahmadi, Haidar; Aghamohammadi, Ali; Saaidi, Khaled
2015-01-01
In this work, the effects of non-commutative and commutative vacua on the phase space generated by a scalar field in a scalar torsion scenario are investigated. For both classical and quantum regimes, the commutative and non-commutative cases are compared. To take account the effects of non-commutativity, two well known non-commutative parameters, θ and β, are introduced. It should be emphasized, the effects of β which is related to momentum sector has more key role in comparison to θ which is related to space sector. Also the different boundary conditions and mathematical interpretations of non-commutativity are explored.
Non-commutative and commutative vacua effects in a scalar torsion scenario
Directory of Open Access Journals (Sweden)
Haidar Sheikhahmadi
2015-10-01
Full Text Available In this work, the effects of non-commutative and commutative vacua on the phase space generated by a scalar field in a scalar torsion scenario are investigated. For both classical and quantum regimes, the commutative and non-commutative cases are compared. To take account the effects of non-commutativity, two well known non-commutative parameters, θ and β, are introduced. It should be emphasized, the effects of β which is related to momentum sector has more key role in comparison to θ which is related to space sector. Also the different boundary conditions and mathematical interpretations of non-commutativity are explored.
Jurco, B.; Schraml, S.; Schupp, P.; Wess, J.
2000-11-01
An enveloping algebra-valued gauge field is constructed, its components are functions of the Lie algebra-valued gauge field and can be constructed with the Seiberg-Witten map. This allows the formulation of a dynamics for a finite number of gauge field components on non-commutative spaces.
International Nuclear Information System (INIS)
Jurco, B.; Schraml, S.; Wess, J.; Schupp, P.
2000-01-01
An enveloping algebra-valued gauge field is constructed, its components are functions of the Lie algebra-valued gauge field and can be constructed with the Seiberg-Witten map. This allows the formulation of a dynamics for a finite number of gauge field components on non-commutative spaces. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Jurco, B. [Max-Planck-Institut fuer Mathematik, Bonn (Germany); Schraml, S.; Wess, J. [Max-Planck-Institut fuer Physik, Foehringer Ring 6, 80805 Muenchen (Germany); Sektion Physik, Universitaet Muenchen, Theresienstrasse 37, 80333 Muenchen (Germany); Schupp, P. [Sektion Physik, Universitaet Muenchen, Theresienstrasse 37, 80333 Muenchen (Germany)
2000-11-01
An enveloping algebra-valued gauge field is constructed, its components are functions of the Lie algebra-valued gauge field and can be constructed with the Seiberg-Witten map. This allows the formulation of a dynamics for a finite number of gauge field components on non-commutative spaces. (orig.)
Open branes in space-time non-commutative little string theory
International Nuclear Information System (INIS)
Harmark, T.
2001-01-01
We conjecture the existence of two new non-gravitational six-dimensional string theories, defined as the decoupling limit of NS5-branes in the background of near-critical electrical two- and three-form RR fields. These theories are space-time non-commutative Little String Theories with open branes. The theory with (2,0) supersymmetry has an open membrane in the spectrum and reduces to OM theory at low energies. The theory with (1,1) supersymmetry has an open string in the spectrum and reduces to (5+1)-dimensional NCOS theory for weak NCOS coupling and low energies. The theories are shown to be T-dual with the open membrane being T-dual to the open string. The theories therefore provide a connection between (5+1)-dimensional NCOS theory and OM theory. We study the supergravity duals of these theories and we consider a chain of dualities that shows how the T-duality between the two theories is connected with the S-duality between (4+1)-dimensional NCOS theory and OM theory
Jorgensen, Palle
2017-01-01
The book features new directions in analysis, with an emphasis on Hilbert space, mathematical physics, and stochastic processes. We interpret 'non-commutative analysis' broadly to include representations of non-Abelian groups, and non-Abelian algebras; emphasis on Lie groups and operator algebras (C* algebras and von Neumann algebras.)A second theme is commutative and non-commutative harmonic analysis, spectral theory, operator theory and their applications. The list of topics includes shift invariant spaces, group action in differential geometry, and frame theory (over-complete bases) and their applications to engineering (signal processing and multiplexing), projective multi-resolutions, and free probability algebras.The book serves as an accessible introduction, offering a timeless presentation, attractive and accessible to students, both in mathematics and in neighboring fields.
Non-Commutative Mechanics in Mathematical & in Condensed Matter Physics
Directory of Open Access Journals (Sweden)
Peter A. Horváthy
2006-12-01
Full Text Available Non-commutative structures were introduced, independently and around the same time, in mathematical and in condensed matter physics (see Table 1. Souriau's construction applied to the two-parameter central extension of the planar Galilei group leads to the ''exotic'' particle, which has non-commuting position coordinates. A Berry-phase argument applied to the Bloch electron yields in turn a semiclassical model that has been used to explain the anomalous/spin/optical Hall effects. The non-commutative parameter is momentum-dependent in this case, and can take the form of a monopole in momentum space.
Strong coupling effects in non-commutative spaces from OM theory and supergravity
International Nuclear Information System (INIS)
Russo, J.G.; Sheikh-Jabbari, M.M.
2000-11-01
We show that a four-parameter class of 3+1 dimensional NCOS theories can be obtained by dimensional reduction on a general 2-torus from OM theory. Compactifying two spatial directions of NCOS theory on a 2-torus, we study the transformation properties under the SO(2,2; Z) T-duality group. We then discuss non-perturbative configurations of non-commutative super Yang-Mills theory. In particular, we calculate the tension for magnetic monopoles and (p,q) dyons and exhibit their six-dimensional origin, and construct a supergravity solution representing an instanton in the gauge theory. We also compute the potential for a monopole-antimonopole in the supergravity approximation. (author)
Non-commutative representation for quantum systems on Lie groups
Energy Technology Data Exchange (ETDEWEB)
Raasakka, Matti Tapio
2014-01-27
The topic of this thesis is a new representation for quantum systems on weakly exponential Lie groups in terms of a non-commutative algebra of functions, the associated non-commutative harmonic analysis, and some of its applications to specific physical systems. In the first part of the thesis, after a review of the necessary mathematical background, we introduce a {sup *}-algebra that is interpreted as the quantization of the canonical Poisson structure of the cotangent bundle over a Lie group. From the physics point of view, this represents the algebra of quantum observables of a physical system, whose configuration space is a Lie group. We then show that this quantum algebra can be represented either as operators acting on functions on the group, the usual group representation, or (under suitable conditions) as elements of a completion of the universal enveloping algebra of the Lie group, the algebra representation. We further apply the methods of deformation quantization to obtain a representation of the same algebra in terms of a non-commutative algebra of functions on a Euclidean space, which we call the non-commutative representation of the original quantum algebra. The non-commutative space that arises from the construction may be interpreted as the quantum momentum space of the physical system. We derive the transform between the group representation and the non-commutative representation that generalizes in a natural way the usual Fourier transform, and discuss key properties of this new non-commutative harmonic analysis. Finally, we exhibit the explicit forms of the non-commutative Fourier transform for three elementary Lie groups: R{sup d}, U(1) and SU(2). In the second part of the thesis, we consider application of the non-commutative representation and harmonic analysis to physics. First, we apply the formalism to quantum mechanics of a point particle on a Lie group. We define the dual non-commutative momentum representation, and derive the phase
Non-commutative representation for quantum systems on Lie groups
International Nuclear Information System (INIS)
Raasakka, Matti Tapio
2014-01-01
The topic of this thesis is a new representation for quantum systems on weakly exponential Lie groups in terms of a non-commutative algebra of functions, the associated non-commutative harmonic analysis, and some of its applications to specific physical systems. In the first part of the thesis, after a review of the necessary mathematical background, we introduce a * -algebra that is interpreted as the quantization of the canonical Poisson structure of the cotangent bundle over a Lie group. From the physics point of view, this represents the algebra of quantum observables of a physical system, whose configuration space is a Lie group. We then show that this quantum algebra can be represented either as operators acting on functions on the group, the usual group representation, or (under suitable conditions) as elements of a completion of the universal enveloping algebra of the Lie group, the algebra representation. We further apply the methods of deformation quantization to obtain a representation of the same algebra in terms of a non-commutative algebra of functions on a Euclidean space, which we call the non-commutative representation of the original quantum algebra. The non-commutative space that arises from the construction may be interpreted as the quantum momentum space of the physical system. We derive the transform between the group representation and the non-commutative representation that generalizes in a natural way the usual Fourier transform, and discuss key properties of this new non-commutative harmonic analysis. Finally, we exhibit the explicit forms of the non-commutative Fourier transform for three elementary Lie groups: R d , U(1) and SU(2). In the second part of the thesis, we consider application of the non-commutative representation and harmonic analysis to physics. First, we apply the formalism to quantum mechanics of a point particle on a Lie group. We define the dual non-commutative momentum representation, and derive the phase space path
Non-commutative Nash inequalities
International Nuclear Information System (INIS)
Kastoryano, Michael; Temme, Kristan
2016-01-01
A set of functional inequalities—called Nash inequalities—are introduced and analyzed in the context of quantum Markov process mixing. The basic theory of Nash inequalities is extended to the setting of non-commutative L p spaces, where their relationship to Poincaré and log-Sobolev inequalities is fleshed out. We prove Nash inequalities for a number of unital reversible semigroups
Jurco, B; Jurco, B; Schlieker, M
1995-01-01
In this paper we construct explicitly natural (from the geometrical point of view) Fock space representations (contragradient Verma modules) of the quantized enveloping algebras. In order to do so, we start from the Gauss decomposition of the quantum group and introduce the differential operators on the corresponding q-deformed flag manifold (asuumed as a left comodule for the quantum group) by a projection to it of the right action of the quantized enveloping algebra on the quantum group. Finally, we express the representatives of the elements of the quantized enveloping algebra corresponding to the left-invariant vector fields on the quantum group as first-order differential operators on the q-deformed flag manifold.
Energy Technology Data Exchange (ETDEWEB)
Bhar, Piyali; Rahaman, Farook [Jadavpur University, Department of Mathematics, Kolkata, West Bengal (India)
2014-12-01
In this paper we ask whether the wormhole solutions exist in different dimensional noncommutativity-inspired spacetimes. It is well known that the noncommutativity of the space is an outcome of string theory and it replaced the usual point-like object by a smeared object. Here we have chosen the Lorentzian distribution as the density function in the noncommutativity-inspired spacetime. We have observed that the wormhole solutions exist only in four and five dimensions; however, in higher than five dimensions no wormhole exists. For five dimensional spacetime, we get a wormhole for a restricted region. In the usual four dimensional spacetime, we get a stable wormhole which is asymptotically flat. (orig.)
Non-commutativity in polar coordinates
Energy Technology Data Exchange (ETDEWEB)
Edwards, James P. [Universidad Michoacana de San Nicolas de Hidalgo, Ciudad Universitaria, Instituto de Fisica y Matematicas, Morelia, Michoacan (Mexico)
2017-05-15
We reconsider the fundamental commutation relations for non-commutative R{sup 2} described in polar coordinates with non-commutativity parameter θ. Previous analysis found that the natural transition from Cartesian coordinates to the traditional polar system led to a representation of [r, φ] as an everywhere diverging series. In this article we compute the Borel resummation of this series, showing that it can subsequently be extended throughout parameter space and hence provide an interpretation of this commutator. Our analysis provides a complete solution for arbitrary r and θ that reproduces the earlier calculations at lowest order and benefits from being generally applicable to problems in a two-dimensional non-commutative space. We compare our results to previous literature in the (pseudo-)commuting limit, finding a surprising spatial dependence for the coordinate commutator when θ >> r{sup 2}. Finally, we raise some questions for future study in light of this progress. (orig.)
Non-commutative geometry and supersymmetry 2
International Nuclear Information System (INIS)
Hussain, F.; Thompson, G.
1991-05-01
Following the general construction of supersymmetric models, the model based on the idea of non-commutative geometry is formulated as a Yang-Mills theory of the graded Lie algebra U(2/1) over a graded space-time manifold. 4 refs
Testing Non-commutative QED, Constructing Non-commutative MHD
Guralnik, Z.; Jackiw, R.; Pi, S. Y.; Polychronakos, A. P.
2001-01-01
The effect of non-commutativity on electromagnetic waves violates Lorentz invariance: in the presence of a background magnetic induction field b, the velocity for propagation transverse to b differs from c, while propagation along b is unchanged. In principle, this allows a test by the Michelson-Morley interference method. We also study non-commutativity in another context, by constructing the theory describing a charged fluid in a strong magnetic field, which forces the fluid particles into ...
Minimal length uncertainty and generalized non-commutative geometry
International Nuclear Information System (INIS)
Farmany, A.; Abbasi, S.; Darvishi, M.T.; Khani, F.; Naghipour, A.
2009-01-01
A generalized formulation of non-commutative geometry for the Bargmann-Fock space of quantum field theory is presented. The analysis is related to the symmetry of the simplistic space and a minimal length uncertainty.
Differential Galois obstructions for non-commutative integrability
Energy Technology Data Exchange (ETDEWEB)
Maciejewski, Andrzej J. [Institute of Astronomy, University of Zielona Gora, Podgorna 50, PL-65-246 Zielona Gora (Poland)], E-mail: maciejka@astro.ia.uz.zgora.pl; Przybylska, Maria [Torun Centre for Astronomy, N. Copernicus University, Gagarina 11, PL-87-100 Torun (Poland)], E-mail: mprzyb@astri.uni.torun.pl
2008-08-11
We show that if a holomorphic Hamiltonian system is holomorphically integrable in the non-commutative sense in a neighbourhood of a non-equilibrium phase curve which is located at a regular level of the first integrals, then the identity component of the differential Galois group of the variational equations along the phase curve is Abelian. Thus necessary conditions for the commutative and non-commutative integrability given by the differential Galois approach are the same.
Klein-Gordon oscillators in noncommutative phase space
International Nuclear Information System (INIS)
Wang Jianhua
2008-01-01
We study the Klein-Gordon oscillators in non-commutative (NC) phase space. We find that the Klein-Gordon oscillators in NC space and NC phase-space have a similar behaviour to the dynamics of a particle in commutative space moving in a uniform magnetic field. By solving the Klein-Gordon equation in NC phase space, we obtain the energy levels of the Klein-Gordon oscillators, where the additional terms related to the space-space and momentum-momentum non-commutativity are given explicitly. (authors)
Trace Dynamics and a non-commutative special relativity
International Nuclear Information System (INIS)
Lochan, Kinjalk; Singh, T.P.
2011-01-01
Trace Dynamics is a classical dynamical theory of non-commuting matrices in which cyclic permutation inside a trace is used to define the derivative with respect to an operator. We use the methods of Trace Dynamics to construct a non-commutative special relativity. We define a line-element using the Trace over space-time coordinates which are assumed to be operators. The line-element is shown to be invariant under standard Lorentz transformations, and is used to construct a non-commutative relativistic dynamics. The eventual motivation for constructing such a non-commutative relativity is to relate the statistical thermodynamics of this classical theory to quantum mechanics. -- Highlights: → Classical time is external to quantum mechanics. → This implies need for a formulation of quantum theory without classical time. → A starting point could be a non-commutative special relativity. → Such a relativity is developed here using the theory of Trace Dynamics. → A line-element is defined using the Trace over non-commuting space-time operators.
Late time acceleration in a non-commutative model of modified cosmology
Energy Technology Data Exchange (ETDEWEB)
Malekolkalami, B., E-mail: b.malakolkalami@uok.ac.ir [Department of Physics, University of Kurdistan, Pasdaran St., Sanandaj (Iran, Islamic Republic of); Atazadeh, K., E-mail: atazadeh@azaruniv.ac.ir [Department of Physics, Azarbaijan Shahid Madani University, 53714-161, Tabriz (Iran, Islamic Republic of); Vakili, B., E-mail: b-vakili@iauc.ac.ir [Department of Physics, Central Tehran Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of)
2014-12-12
We investigate the effects of non-commutativity between the position–position, position–momentum and momentum–momentum of a phase space corresponding to a modified cosmological model. We show that the existence of such non-commutativity results in a Moyal Poisson algebra between the phase space variables in which the product law between the functions is of the kind of an α-deformed product. We then transform the variables in such a way that the Poisson brackets between the dynamical variables take the form of a usual Poisson bracket but this time with a noncommutative structure. For a power law expression for the function of the Ricci scalar with which the action of the gravity model is modified, the exact solutions in the commutative and noncommutative cases are presented and compared. In terms of these solutions we address the issue of the late time acceleration in cosmic evolution.
Late time acceleration in a non-commutative model of modified cosmology
International Nuclear Information System (INIS)
Malekolkalami, B.; Atazadeh, K.; Vakili, B.
2014-01-01
We investigate the effects of non-commutativity between the position–position, position–momentum and momentum–momentum of a phase space corresponding to a modified cosmological model. We show that the existence of such non-commutativity results in a Moyal Poisson algebra between the phase space variables in which the product law between the functions is of the kind of an α-deformed product. We then transform the variables in such a way that the Poisson brackets between the dynamical variables take the form of a usual Poisson bracket but this time with a noncommutative structure. For a power law expression for the function of the Ricci scalar with which the action of the gravity model is modified, the exact solutions in the commutative and noncommutative cases are presented and compared. In terms of these solutions we address the issue of the late time acceleration in cosmic evolution
One-loop beta functions for the orientable non-commutative Gross Neveu model TH1"-->
Lakhoua, A.; Vignes-Tourneret, F.; Wallet, J.-C.
2007-11-01
We compute at the one-loop order the β-functions for a renormalisable non-commutative analog of the Gross Neveu model defined on the Moyal plane. The calculation is performed within the so called x-space formalism. We find that this non-commutative field theory exhibits asymptotic freedom for any number of colors. The β-function for the non-commutative counterpart of the Thirring model is found to be non vanishing.
Non-commutative flux representation for loop quantum gravity
Baratin, A.; Dittrich, B.; Oriti, D.; Tambornino, J.
2011-09-01
The Hilbert space of loop quantum gravity is usually described in terms of cylindrical functionals of the gauge connection, the electric fluxes acting as non-commuting derivation operators. It has long been believed that this non-commutativity prevents a dual flux (or triad) representation of loop quantum gravity to exist. We show here, instead, that such a representation can be explicitly defined, by means of a non-commutative Fourier transform defined on the loop gravity state space. In this dual representation, flux operators act by sstarf-multiplication and holonomy operators act by translation. We describe the gauge invariant dual states and discuss their geometrical meaning. Finally, we apply the construction to the simpler case of a U(1) gauge group and compare the resulting flux representation with the triad representation used in loop quantum cosmology.
Investigations on the renormalizability of a non-commutative u(1) gauge theory
International Nuclear Information System (INIS)
Rofner, A.
2009-01-01
When considering very small scales near the Planck-length, or equivalently very high energies (far from being reached by today's particle accelerators), space-time is expected to be quantized. Today, all but one forces governing nature (i.e. gravitation) are described via Quantum Field Theories (short QFTs) and more precisely gauge field theories (GFTs). Their heart is the art of renormalization, which allows to handle the divergences for high internal momenta appearing in the course of the perturbative development of the action in a consistent manner. Over the last years numerous attempts have been made to formulate consistent and renormalizable theories also on non-commutative spaces. Yet, it is the latter that represents a major problem for non-commutative QFTs: generally, the non-commutativity is implemented via the so-called star product, which in the simplest case is given by the Moyal-Weyl product, and which leads to a modification of the interaction terms of the theories by introducing additional phase factors depending on the non-commutative parameter theta. Then, this phase leads to a mixing of high and low energies, which is directly linked to the appearance of a new class of divergences for small momenta. While there exist various traditional renormalization schemes in order to handle uV divergences, their counterparts in the IR sector form a major obstacle in formulating consistent non-commutative QFTs. However, a first way out of this misery could be achieved by Grosse and Wulkenhaar for a scalar model. The idea was to add a suitable term to the action, in their case an oscillator term, leading to a decoupling of the high and low energy sectors. Later, the same philosophy has been followed by Gurau et. al. by adding a 1/p 2 like term to the scalar action. Both models have been shown to be renormalizable, and additionally, the latter model leads to a translation invariant propagator, which implies momentum conservation in all space points. Now, the
Covariant non-commutative space–time
Directory of Open Access Journals (Sweden)
Jonathan J. Heckman
2015-05-01
Full Text Available We introduce a covariant non-commutative deformation of 3+1-dimensional conformal field theory. The deformation introduces a short-distance scale ℓp, and thus breaks scale invariance, but preserves all space–time isometries. The non-commutative algebra is defined on space–times with non-zero constant curvature, i.e. dS4 or AdS4. The construction makes essential use of the representation of CFT tensor operators as polynomials in an auxiliary polarization tensor. The polarization tensor takes active part in the non-commutative algebra, which for dS4 takes the form of so(5,1, while for AdS4 it assembles into so(4,2. The structure of the non-commutative correlation functions hints that the deformed theory contains gravitational interactions and a Regge-like trajectory of higher spin excitations.
Non-commutative tomography and signal processing
International Nuclear Information System (INIS)
Mendes, R Vilela
2015-01-01
Non-commutative tomography is a technique originally developed and extensively used by Professors M A Man’ko and V I Man’ko in quantum mechanics. Because signal processing deals with operators that, in general, do not commute with time, the same technique has a natural extension to this domain. Here, a review is presented of the theory and some applications of non-commutative tomography for time series as well as some new results on signal processing on graphs. (paper)
Notes on qubit phase space and discrete symplectic structures
International Nuclear Information System (INIS)
Livine, Etera R
2010-01-01
We start from Wootter's construction of discrete phase spaces and Wigner functions for qubits and more generally for finite-dimensional Hilbert spaces. We look at this framework from a non-commutative space perspective and we focus on the Moyal product and the differential calculus on these discrete phase spaces. In particular, the qubit phase space provides the simplest example of a four-point non-commutative phase space. We give an explicit expression of the Moyal bracket as a differential operator. We then compare the quantum dynamics encoded by the Moyal bracket to the classical dynamics: we show that the classical Poisson bracket does not satisfy the Jacobi identity thus leaving the Moyal bracket as the only consistent symplectic structure. We finally generalize our analysis to Hilbert spaces of prime dimensions d and their associated d x d phase spaces.
Non-commutative standard model: model building
Chaichian, Masud; Presnajder, P
2003-01-01
A non-commutative version of the usual electro-weak theory is constructed. We discuss how to overcome the two major problems: (1) although we can have non-commutative U(n) (which we denote by U sub * (n)) gauge theory we cannot have non-commutative SU(n) and (2) the charges in non-commutative QED are quantized to just 0,+-1. We show how the latter problem with charge quantization, as well as with the gauge group, can be resolved by taking the U sub * (3) x U sub * (2) x U sub * (1) gauge group and reducing the extra U(1) factors in an appropriate way. Then we proceed with building the non-commutative version of the standard model by specifying the proper representations for the entire particle content of the theory, the gauge bosons, the fermions and Higgs. We also present the full action for the non-commutative standard model (NCSM). In addition, among several peculiar features of our model, we address the inherentCP violation and new neutrino interactions. (orig.)
On the classical dynamics of charges in non-commutative QED
International Nuclear Information System (INIS)
Fatollahi, A.H.; Mohammadzadeh, H.
2004-01-01
Following Wong's approach to formulating the classical dynamics of charged particles in non-Abelian gauge theories, we derive the classical equations of motion of a charged particle in U(1) gauge theory on non-commutative space, the so-called non-commutative QED. In the present use of the procedure, it is observed that the definition of the mechanical momenta should be modified. The derived equations of motion manifest the previous statement about the dipole behavior of the charges in non-commutative space. (orig.)
A non-perturbative study of 4d U(1) non-commutative gauge theory - the fate of one-loop instability
International Nuclear Information System (INIS)
Bietenholz, Wolfgang; Nishimura, Jun; Susaki, Yoshiaki; Volkholz, Jan
2006-01-01
Recent perturbative studies show that in 4d non-commutative spaces, the trivial (classically stable) vacuum of gauge theories becomes unstable at the quantum level, unless one introduces sufficiently many fermionic degrees of freedom. This is due to a negative IR-singular term in the one-loop effective potential, which appears as a result of the UV/IR mixing. We study such a system non-perturbatively in the case of pure U(1) gauge theory in four dimensions, where two directions are non-commutative. Monte Carlo simulations are performed after mapping the regularized theory onto a U(N) lattice gauge theory in d = 2. At intermediate coupling strength, we find a phase in which open Wilson lines acquire non-zero vacuum expectation values, which implies the spontaneous breakdown of translational invariance. In this phase, various physical quantities obey clear scaling behaviors in the continuum limit with a fixed non-commutativity parameter θ, which provides evidence for a possible continuum theory. The extent of the dynamically generated space in the non-commutative directions becomes finite in the above limit, and its dependence on θ is evaluated explicitly. We also study the dispersion relation. In the weak coupling symmetric phase, it involves a negative IR-singular term, which is responsible for the observed phase transition. In the broken phase, it reveals the existence of the Nambu-Goldstone mode associated with the spontaneous symmetry breaking
A non-perturbative study of 4d U(1) non-commutative gauge theory — the fate of one-loop instability
Bietenholz, Wolfgang; Nishimura, Jun; Susaki, Yoshiaki; Volkholz, Jan
2006-10-01
Recent perturbative studies show that in 4d non-commutative spaces, the trivial (classically stable) vacuum of gauge theories becomes unstable at the quantum level, unless one introduces sufficiently many fermionic degrees of freedom. This is due to a negative IR-singular term in the one-loop effective potential, which appears as a result of the UV/IR mixing. We study such a system non-perturbatively in the case of pure U(1) gauge theory in four dimensions, where two directions are non-commutative. Monte Carlo simulations are performed after mapping the regularized theory onto a U(N) lattice gauge theory in d = 2. At intermediate coupling strength, we find a phase in which open Wilson lines acquire non-zero vacuum expectation values, which implies the spontaneous breakdown of translational invariance. In this phase, various physical quantities obey clear scaling behaviors in the continuum limit with a fixed non-commutativity parameter θ, which provides evidence for a possible continuum theory. The extent of the dynamically generated space in the non-commutative directions becomes finite in the above limit, and its dependence on θ is evaluated explicitly. We also study the dispersion relation. In the weak coupling symmetric phase, it involves a negative IR-singular term, which is responsible for the observed phase transition. In the broken phase, it reveals the existence of the Nambu-Goldstone mode associated with the spontaneous symmetry breaking.
Loop calculations for the non-commutative U*(1) gauge field model with oscillator term
International Nuclear Information System (INIS)
Blaschke, Daniel N.; Grosse, Harald; Kronberger, Erwin; Schweda, Manfred; Wohlgenannt, Michael
2010-01-01
Motivated by the success of the non-commutative scalar Grosse-Wulkenhaar model, a non-commutative U * (1) gauge field theory including an oscillator-like term in the action has been put forward in (Blaschke et al. in Europhys. Lett. 79:61002, 2007). The aim of the current work is to analyze whether that action can lead to a fully renormalizable gauge model on non-commutative Euclidean space. In a first step, explicit one-loop graph computations are hence presented, and their results as well as necessary modifications of the action are successively discussed. (orig.)
A new non-commutative representation of the Wiener and Poisson processes
International Nuclear Information System (INIS)
Privault, N.
1996-01-01
Using two different constructions of the chaotic and variational calculus on Poisson space, we show that the Wiener and Poisson processes have a non-commutative representation which is different from the one obtained by transfer of the Fock space creation and annihilation operators. We obtain in this way an extension of the non-commutative It calculus. The associated commutation relations show a link between the geometric and exponential distributions. (author). 11 refs
The shear viscosity of the non-commutative plasma
International Nuclear Information System (INIS)
Landsteiner, Karl; Mas, Javier
2007-01-01
We compute the shear viscosity of the non-commutative N = 4 super Yang-Mills quantum field theory at strong coupling using the dual supergravity background. Special interest derives from the fact that the background presents an intrinsic anisotropy in space through the distinction of commutative and non-commutative directions. Despite this anisotropy the analysis exhibits the ubiquitous result η/s = 1/4π for two different shear channels. In order to derive this result, we show that the boundary energy momentum tensor must couple to the open string metric. As a byproduct we compute the renormalised holographic energy momentum tensor and show that it coincides with one in the commutative theory
Non-topological non-commutativity in string theory
International Nuclear Information System (INIS)
Guttenberg, S.; Herbst, M.; Kreuzer, M.; Rashkov, R.
2008-01-01
Quantization of coordinates leads to the non-commutative product of deformation quantization, but is also at the roots of string theory, for which space-time coordinates become the dynamical fields of a two-dimensional conformal quantum field theory. Appositely, open string diagrams provided the inspiration for Kontsevich's solution of the long-standing problem of quantization of Poisson geometry by virtue of his formality theorem. In the context of D-brane physics non-commutativity is not limited, however, to the topological sector. We show that non-commutative effective actions still make sense when associativity is lost and establish a generalized Connes-Flato-Sternheimer condition through second order in a derivative expansion. The measure in general curved backgrounds is naturally provided by the Born-Infeld action and reduces to the symplectic measure in the topological limit, but remains non-singular even for degenerate Poisson structures. Analogous superspace deformations by RR-fields are also discussed. (Abstract Copyright [2008], Wiley Periodicals, Inc.)
Non-commutative arithmetic circuits with division
Czech Academy of Sciences Publication Activity Database
Hrubeš, Pavel; Wigderson, A.
2015-01-01
Roč. 11, Article 14 (2015), s. 357-393 ISSN 1557-2862 EU Projects: European Commission(XE) 339691 - FEALORA Institutional support: RVO:67985840 Keywords : arithmetic circuits * non-commutative rational function * skew field Subject RIV: BA - General Mathematics http://theoryofcomputing.org/articles/v011a014/
Can non-commutativity resolve the big-bang singularity?
Energy Technology Data Exchange (ETDEWEB)
Maceda, M.; Madore, J. [Laboratoire de Physique Theorique, Universite de Paris-Sud, Batiment 211, 91405, Orsay (France); Manousselis, P. [Department of Engineering Sciences, University of Patras, 26110, Patras (Greece); Physics Department, National Technical University, Zografou Campus, 157 80, Zografou, Athens (Greece); Zoupanos, G. [Physics Department, National Technical University, Zografou Campus, 157 80, Zografou, Athens (Greece); Theory Division, CERN, 1211, Geneva 23 (Switzerland)
2004-08-01
A possible way to resolve the singularities of general relativity is proposed based on the assumption that the description of space-time using commuting coordinates is not valid above a certain fundamental scale. Beyond that scale it is assumed that the space-time has non-commutative structure leading in turn to a resolution of the singularity. As a first attempt towards realizing the above programme a modification of the Kasner metric is constructed which is commutative only at large time scales. At small time scales, near the singularity, the commutation relations among the space coordinates diverge. We interpret this result as meaning that the singularity has been completely delocalized. (orig.)
q-deformed phase-space and its lattice structure
International Nuclear Information System (INIS)
Wess, J.
1998-01-01
Quantum groups lead to an algebraic structure that can be realized on quantum spaces. These are non-commutative spaces that inherit a well-defined mathematical structure from the quantum group symmetry. In turn, such quantum spaces can be interpreted as non-commutative configuration spaces for physical systems. We study the non-commutative Euclidean space that is based on the quantum group SO q (3)
Non-commutative field theory with twistor-like coordinates
International Nuclear Information System (INIS)
Taylor, Tomasz R.
2007-01-01
We consider quantum field theory in four-dimensional Minkowski spacetime, with the position coordinates represented by twistors instead of the usual world-vectors. Upon imposing canonical commutation relations between twistors and dual twistors, quantum theory of fields described by non-holomorphic functions of twistor variables becomes manifestly non-commutative, with Lorentz symmetry broken by a time-like vector. We discuss the free field propagation and its impact on the short- and long-distance behavior of physical amplitudes in perturbation theory. In the ultraviolet limit, quantum field theories in twistor space are generically less divergent than their commutative counterparts. Furthermore, there is no infrared-ultraviolet mixing problem
Non-commutative tools for topological insulators
International Nuclear Information System (INIS)
Prodan, Emil
2010-01-01
This paper reviews several analytic tools for the field of topological insulators, developed with the aid of non-commutative calculus and geometry. The set of tools includes bulk topological invariants defined directly in the thermodynamic limit and in the presence of disorder, whose robustness is shown to have nontrivial physical consequences for the bulk states. The set of tools also includes a general relation between the current of an observable and its edge index, a relation that can be used to investigate the robustness of the edge states against disorder. The paper focuses on the motivations behind creating such tools and on how to use them.
Essay on physics and non-commutative geometry
International Nuclear Information System (INIS)
Connes, A.
1990-01-01
Our aim, in this article, is to try to discover what physics would be like if the space in which it took place was not a set of points, but a non-commutative space. We shall not go very far in this direction, and the consequences of this investigation are for the moment either mathematical or only applied to a commutative space-time. It is clear, however, that a tool as remarkable as the Dixmier trace for analyzing logarithmic divergences should be useful to physicists. Moreover we have been able to show that a small modification of our picture of space-time gives a conceptual explanation of the Higgs fields and of the way they appear in the Weinberg-Salam model. This should allow us to make at the classical level explicit predictions of the Higgs mass: a very crude one is discussed. (author)
An introduction to quantum groups and non-commutative differential calculus
International Nuclear Information System (INIS)
Azcarraga, J.A. de; Rodenas, F.
1995-01-01
An introduction to quantum groups and quantum spaces is presented, and the non-commutative calculus on them is discussed. The case of q-Minkowski space is presented as an illustrative example. A set of useful expressions and formulae are collected in an appendix. 45 refs
Anisotropic harmonic oscillator, non-commutative Landau problem and exotic Newton-Hooke symmetry
International Nuclear Information System (INIS)
Alvarez, Pedro D.; Gomis, Joaquim; Kamimura, Kiyoshi; Plyushchay, Mikhail S.
2008-01-01
We investigate the planar anisotropic harmonic oscillator with explicit rotational symmetry as a particle model with non-commutative coordinates. It includes the exotic Newton-Hooke particle and the non-commutative Landau problem as special, isotropic and maximally anisotropic, cases. The system is described by the same (2+1)-dimensional exotic Newton-Hooke symmetry as in the isotropic case, and develops three different phases depending on the values of the two central charges. The special cases of the exotic Newton-Hooke particle and non-commutative Landau problem are shown to be characterized by additional, so(3) or so(2,1) Lie symmetry, which reflects their peculiar spectral properties
Families of vector-like deformations of relativistic quantum phase spaces, twists and symmetries
Energy Technology Data Exchange (ETDEWEB)
Meljanac, Daniel [Ruder Boskovic Institute, Division of Materials Physics, Zagreb (Croatia); Meljanac, Stjepan; Pikutic, Danijel [Ruder Boskovic Institute, Division of Theoretical Physics, Zagreb (Croatia)
2017-12-15
Families of vector-like deformed relativistic quantum phase spaces and corresponding realizations are analyzed. A method for a general construction of the star product is presented. The corresponding twist, expressed in terms of phase space coordinates, in the Hopf algebroid sense is presented. General linear realizations are considered and corresponding twists, in terms of momenta and Poincare-Weyl generators or gl(n) generators are constructed and R-matrix is discussed. A classification of linear realizations leading to vector-like deformed phase spaces is given. There are three types of spaces: (i) commutative spaces, (ii) κ-Minkowski spaces and (iii) κ-Snyder spaces. The corresponding star products are (i) associative and commutative (but non-local), (ii) associative and non-commutative and (iii) non-associative and non-commutative, respectively. Twisted symmetry algebras are considered. Transposed twists and left-right dual algebras are presented. Finally, some physical applications are discussed. (orig.)
Families of vector-like deformations of relativistic quantum phase spaces, twists and symmetries
International Nuclear Information System (INIS)
Meljanac, Daniel; Meljanac, Stjepan; Pikutic, Danijel
2017-01-01
Families of vector-like deformed relativistic quantum phase spaces and corresponding realizations are analyzed. A method for a general construction of the star product is presented. The corresponding twist, expressed in terms of phase space coordinates, in the Hopf algebroid sense is presented. General linear realizations are considered and corresponding twists, in terms of momenta and Poincare-Weyl generators or gl(n) generators are constructed and R-matrix is discussed. A classification of linear realizations leading to vector-like deformed phase spaces is given. There are three types of spaces: (i) commutative spaces, (ii) κ-Minkowski spaces and (iii) κ-Snyder spaces. The corresponding star products are (i) associative and commutative (but non-local), (ii) associative and non-commutative and (iii) non-associative and non-commutative, respectively. Twisted symmetry algebras are considered. Transposed twists and left-right dual algebras are presented. Finally, some physical applications are discussed. (orig.)
Families of vector-like deformations of relativistic quantum phase spaces, twists and symmetries
Meljanac, Daniel; Meljanac, Stjepan; Pikutić, Danijel
2017-12-01
Families of vector-like deformed relativistic quantum phase spaces and corresponding realizations are analyzed. A method for a general construction of the star product is presented. The corresponding twist, expressed in terms of phase space coordinates, in the Hopf algebroid sense is presented. General linear realizations are considered and corresponding twists, in terms of momenta and Poincaré-Weyl generators or gl(n) generators are constructed and R-matrix is discussed. A classification of linear realizations leading to vector-like deformed phase spaces is given. There are three types of spaces: (i) commutative spaces, (ii) κ -Minkowski spaces and (iii) κ -Snyder spaces. The corresponding star products are (i) associative and commutative (but non-local), (ii) associative and non-commutative and (iii) non-associative and non-commutative, respectively. Twisted symmetry algebras are considered. Transposed twists and left-right dual algebras are presented. Finally, some physical applications are discussed.
On tea, donuts and non-commutative geometry
Directory of Open Access Journals (Sweden)
Igor V. Nikolaev
2018-03-01
Full Text Available As many will agree, it feels good to complement a cup of tea by a donut or two. This sweet relationship is also a guiding principle of non-commutative geometry known as Serre Theorem. We explain the algebra behind this theorem and prove that elliptic curves are complementary to the so-called non-commutative tori.
Linearization of non-commuting operators in the partition function
International Nuclear Information System (INIS)
Ahmed, M.
1983-06-01
A generalization of the Stratonovich-Hubbard scheme for evaluating the grand canonical partition function is given. The scheme involves linearization of products of non-commuting operators using the functional integral method. The non-commutivity of the operators leads to an additional term which can be absorbed in the single-particle Hamiltonian. (author)
Non commutative geometry and super Yang-Mills theory
International Nuclear Information System (INIS)
Bigatti, D.
1999-01-01
We aim to connect the non commutative geometry 'quotient space' viewpoint with the standard super Yang Mills theory approach in the spirit of Connes-Douglas-Schwartz and Douglas-Hull description of application of noncommutative geometry to matrix theory. This will result in a relation between the parameters of a rational foliation of the torus and the dimension of the group U(N). Namely, we will be provided with a prescription which allows to study a noncommutative geometry with rational parameter p/N by means of a U(N) gauge theory on a torus of size Σ/N with the boundary conditions given by a system with p units of magnetic flux. The transition to irrational parameter can be obtained by letting N and p tend to infinity with fixed ratio. The precise meaning of the limiting process will presumably allow better clarification. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)
Introduction to Dubois-Violette's non-commutative differential geometry
International Nuclear Information System (INIS)
Djemai, A.E.F.
1994-07-01
In this work, one presents a detailed review of Dubois-Violette et al. approach to non-commutative differential calculus. The non-commutative differential geometry of matrix algebras and the non-commutative Poisson structures are treated in some details. We also present the analog of the Maxwell's theory and the new models of Yang-Mills-Higgs theories that can be constructed in this framework. In particular, some simple models are compared with the standard model. Finally, we discuss some perspectives and open questions. (author). 32 refs
Computational commutative and non-commutative algebraic geometry
Cojocaru, S; Ufnarovski, V
2005-01-01
This publication gives a good insight in the interplay between commutative and non-commutative algebraic geometry. The theoretical and computational aspects are the central theme in this study. The topic is looked at from different perspectives in over 20 lecture reports. It emphasizes the current trends in commutative and non-commutative algebraic geometry and algebra. The contributors to this publication present the most recent and state-of-the-art progresses which reflect the topic discussed in this publication. Both researchers and graduate students will find this book a good source of information on commutative and non-commutative algebraic geometry.
Vectors and covectors in non-commutative setting
Parfionov, G. N.; Romashev, Yu. A.; Zapatrine, R. R.
1995-01-01
Following the guidelines of classical differential geometry the `building material' for the tensor calculus in non-commutative geometry is suggested. The algebraic account of moduli of vectors and covectors is carried out.
Weinberg-Salam theory in non-commutative geometry
International Nuclear Information System (INIS)
Morita, Katsusada; Okumura, Yoshitaka.
1994-01-01
Ordinary differential calculus on smooth manifold is generalized so as to construct gauge theory coupled to fermions on discrete space M 4 xZ 2 which is an underlying space-time in the non-commutative geometry for the standard model. We can reproduce not only the bosonic sector but also the fermionic sector of the Weinberg-Salam theory without recourse to the Dirac operator at the outset. Treatment of the fermionic sector is based on the generalized spinor one-forms from which the Dirac lagrangian is derived through taking the inner product. Two model constructions are presented using our formalism, both giving the classical mass relation m H = √2m w . The first model leaves the Weinberg angle arbitrary as usual, while the second one predicts sin 2 θ w = 1/4 in the tree level. This prediction is the same as that of Connes but we obtain it from correct hypercharge assignment of 2x2 matrix-valued Higgs field and from vanishing photon mass, thereby dispensing with Connes' 0-trace condition or the equivalent. (author)
Marginal and non-commutative deformations via non-abelian T-duality
Energy Technology Data Exchange (ETDEWEB)
Hoare, Ben [Institut für Theoretische Physik, ETH Zürich,Wolfgang-Pauli-Strasse 27, 8093 Zürich (Switzerland); Thompson, Daniel C. [Theoretische Natuurkunde, Vrije Universiteit Brussel & The International Solvay Institutes, Pleinlaan 2, B-1050 Brussels (Belgium)
2017-02-10
In this short article we develop recent proposals to relate Yang-Baxter sigma-models and non-abelian T-duality. We demonstrate explicitly that the holographic space-times associated to both (multi-parameter)-β-deformations and non-commutative deformations of N=4 super Yang-Mills gauge theory including the RR fluxes can be obtained via the machinery of non-abelian T-duality in Type II supergravity.
Non-commutative solitons and strong-weak duality
Energy Technology Data Exchange (ETDEWEB)
Blas, Harold [Departamento de Matematica - ICET, Universidade Federal de Mato Grosso, Av. Fernando Correa, s/n, Coxipo, 78060-900, Cuiaba - MT (Brazil)]. E-mail: blas@cpd.ufmt.br; Carrion, Hector L. [Instituto de Fisica, Universidade Federal do Rio de Janeiro, Caixa Postal 68528, 21941-972 Rio de Janeiro (Brazil); Rojas, Moises [Centro Brasileiro de Pesquisas Fisicas, Rua Dr. Xavier Sigaud, 150 CEP 22290-180, Rio de Janeiro-RJ (Brazil)
2005-03-01
Some properties of the non-commutative versions of the sine-Gordon model (NCSG) and the corresponding massive Thirring theories (NCMT) are studied. Our method relies on the NC extension of integrable models and the master Lagrangian approach to deal with dual theories. The master lagrangians turn out to be the NC versions of the so-called affine Toda model coupled to matter fields (NCATM) associated to the group GL(2), in which the Toda field belongs to certain representations of either U(1)xU(1) or U(1){sub C} corresponding to the Lechtenfeld et al. (NCSG{sub 1}) or Grisaru-Penati (NCSG{sub 2}) proposals for the NC versions of the sine-Gordon model, respectively. Besides, the relevant NCMT{sub 1,2} models are written for two (four) types of Dirac fields corresponding to the Moyal product extension of one (two) copy(ies) of the ordinary massive Thirring model. The NCATM{sub 1,2} models share the same one-soliton (real Toda field sector of model 2) exact solutions, which are found without expansion in the NC parameter {theta} for the corresponding Toda and matter fields describing the strong-weak phases, respectively. The correspondence NCSG{sub 1} {r_reversible} NCMT{sub 1} is promising since it is expected to hold on the quantum level. (author)
Optimization of polynomials in non-commuting variables
Burgdorf, Sabine; Povh, Janez
2016-01-01
This book presents recent results on positivity and optimization of polynomials in non-commuting variables. Researchers in non-commutative algebraic geometry, control theory, system engineering, optimization, quantum physics and information science will find the unified notation and mixture of algebraic geometry and mathematical programming useful. Theoretical results are matched with algorithmic considerations; several examples and information on how to use NCSOStools open source package to obtain the results provided. Results are presented on detecting the eigenvalue and trace positivity of polynomials in non-commuting variables using Newton chip method and Newton cyclic chip method, relaxations for constrained and unconstrained optimization problems, semidefinite programming formulations of the relaxations and finite convergence of the hierarchies of these relaxations, and the practical efficiency of algorithms.
Modular Theory, Non-Commutative Geometry and Quantum Gravity
Directory of Open Access Journals (Sweden)
Wicharn Lewkeeratiyutkul
2010-08-01
Full Text Available This paper contains the first written exposition of some ideas (announced in a previous survey on an approach to quantum gravity based on Tomita-Takesaki modular theory and A. Connes non-commutative geometry aiming at the reconstruction of spectral geometries from an operational formalism of states and categories of observables in a covariant theory. Care has been taken to provide a coverage of the relevant background on modular theory, its applications in non-commutative geometry and physics and to the detailed discussion of the main foundational issues raised by the proposal.
Manin's quantum spaces and standard quantum mechanics
International Nuclear Information System (INIS)
Floratos, E.G.
1990-01-01
Manin's non-commutative coordinate algebra of quantum groups is shown to be identical, for unitary coordinates, with the conventional operator algebras of quantum mechanics. The deformation parameter q is a pure phase for unitary coordinates. When q is a root of unity. Manin's algebra becomes the matrix algebra of quantum mechanics for a discretized and finite phase space. Implications for quantum groups and the associated non-commutative differential calculus of Wess and Zumino are discussed. (orig.)
The M5-brane and non-commutative open strings
Bergshoeff, E.; Berman, D.S.; Schaar, J.P. van der; Sundell, P.
2001-01-01
The M-theory origin of non-commutative open-string theory is examined by investigating the M-theory 5-brane at near critical field strength. In particular, it is argued that the open-membrane metric provides the appropriate moduli when calculating the duality relations between M and II
On Subgroups of Non-Commutative General Rhotrix Group ...
African Journals Online (AJOL)
This paper considers the pair (GRn(F),o) consisting of the set of all invertible rhotrices of size n over an arbitrary field F; and together with the binary operation of row-column based method for rhotrix multiplication; 'o' , in order to introduce it as the concept of “non commutative general rhotrix group”. We identify a number of ...
Notes on algebraic invariants for non-commutative dynamical systems
Energy Technology Data Exchange (ETDEWEB)
Longo, R [Rome Univ. (Italy). Istituto di Matematica
1979-11-01
We consider an algebraic invariant for non-commutative dynamical systems naturally arising as the spectrum of the modular operator associated to an invariant state, provided certain conditions of mixing type are present. This invariant turns out to be exactly the annihilator of the invariant T of Connes. Further comments are included, in particular on the type of certain algebras of local observables
Limit algebras of differential forms in non-commutative geometry
Indian Academy of Sciences (India)
The holomorphic functional calculus closure of Connes' non- commutative de Rham algebra. ∗. D. (p. 549 of [C]) leads to a couple of operator algebras which are briefly discussed in this section. In §5, which contains the main contributions of the paper, quantized integrals are constructed on ∞A by using Dixmier trace ...
quasi hyperrigidity and weak peak points for non-commutative ...
Indian Academy of Sciences (India)
7
Abstract. In this article, we introduce the notions of weak boundary repre- sentation, quasi hyperrigidity and weak peak points in the non-commutative setting for operator systems in C∗-algebras. An analogue of Saskin's theorem relating quasi hyperrigidity and weak Choquet boundary for particular classes of C∗-algebras is ...
Quantum groups, non-commutative differential geometry and applications
International Nuclear Information System (INIS)
Schupp, P.; California Univ., Berkeley, CA
1993-01-01
The topic of this thesis is the development of a versatile and geometrically motivated differential calculus on non-commutative or quantum spaces, providing powerful but easy-to-use mathematical tools for applications in physics and related sciences. A generalization of unitary time evolution is proposed and studied for a simple 2-level system, leading to non-conservation of microscopic entropy, a phenomenon new to quantum mechanics. A Cartan calculus that combines functions, forms, Lie derivatives and inner derivations along general vector fields into one big algebra is constructed for quantum groups and then extended to quantum planes. The construction of a tangent bundle on a quantum group manifold and an BRST type approach to quantum group gauge theory are given as further examples of applications. The material is organized in two parts: Part I studies vector fields on quantum groups, emphasizing Hopf algebraic structures, but also introducing a ''quantum geometric'' construction. Using a generalized semi-direct product construction we combine the dual Hopf algebras A of functions and U of left-invariant vector fields into one fully bicovariant algebra of differential operators. The pure braid group is introduced as the commutant of Δ(U). It provides invariant maps A → U and thereby bicovariant vector fields, casimirs and metrics. This construction allows the translation of undeformed matrix expressions into their less obvious quantum algebraic counter parts. We study this in detail for quasitriangular Hopf algebras, giving the determinant and orthogonality relation for the ''reflection'' matrix. Part II considers the additional structures of differential forms and finitely generated quantum Lie algebras -- it is devoted to the construction of the Cartan calculus, based on an undeformed Cartan identity
Non-Commutative Orders. A Preliminary Study
International Nuclear Information System (INIS)
Brzezinski, T.
2011-01-01
The first steps towards linearization of partial orders and equivalence relations are described. The definitions of partial orders and equivalence relations (on sets) are formulated in a way that is standard in category theory and that makes the linearization (almost) automatic. The linearization is then achieved by replacing sets by coalgebras and the Cartesian product by the tensor product of vector spaces. As a result, definitions of orders and equivalence relations on coalgebras are proposed. These are illustrated by explicit examples that include relations on coalgebras spanned by grouplike elements (or linearized sets), the diagonal relation, and an order on a three-dimensional non-cocommutative coalgebra. Although relations on coalgebras are defined for vector spaces, all the definitions are formulated in a way that is immediately applicable to other braided monoidal categories. (author)
Non-singular Brans–Dicke collapse in deformed phase space
Energy Technology Data Exchange (ETDEWEB)
Rasouli, S.M.M., E-mail: mrasouli@ubi.pt [Departamento de Física, Universidade da Beira Interior, Rua Marquês d’Avila e Bolama, 6200 Covilhã (Portugal); Centro de Matemática e Aplicações (CMA - UBI), Universidade da Beira Interior, Rua Marquês d’Avila e Bolama, 6200 Covilhã (Portugal); Physics Group, Qazvin Branch, Islamic Azad University, Qazvin (Iran, Islamic Republic of); Ziaie, A.H., E-mail: ah_ziaie@sbu.ac.ir [Department of Physics, Shahid Beheshti University, G. C., Evin, 19839 Tehran (Iran, Islamic Republic of); Department of Physics, Shahid Bahonar University, PO Box 76175, Kerman (Iran, Islamic Republic of); Jalalzadeh, S., E-mail: shahram.jalalzadeh@unila.edu.br [Federal University of Latin-American Integration, Technological Park of Itaipu PO box 2123, Foz do Iguaçu-PR, 85867-670 (Brazil); Moniz, P.V., E-mail: pmoniz@ubi.pt [Departamento de Física, Universidade da Beira Interior, Rua Marquês d’Avila e Bolama, 6200 Covilhã (Portugal); Centro de Matemática e Aplicações (CMA - UBI), Universidade da Beira Interior, Rua Marquês d’Avila e Bolama, 6200 Covilhã (Portugal)
2016-12-15
We study the collapse process of a homogeneous perfect fluid (in FLRW background) with a barotropic equation of state in Brans–Dicke (BD) theory in the presence of phase space deformation effects. Such a deformation is introduced as a particular type of non-commutativity between phase space coordinates. For the commutative case, it has been shown in the literature (Scheel, 1995), that the dust collapse in BD theory leads to the formation of a spacetime singularity which is covered by an event horizon. In comparison to general relativity (GR), the authors concluded that the final state of black holes in BD theory is identical to the GR case but differs from GR during the dynamical evolution of the collapse process. However, the presence of non-commutative effects influences the dynamics of the collapse scenario and consequently a non-singular evolution is developed in the sense that a bounce emerges at a minimum radius, after which an expanding phase begins. Such a behavior is observed for positive values of the BD coupling parameter. For large positive values of the BD coupling parameter, when non-commutative effects are present, the dynamics of collapse process differs from the GR case. Finally, we show that for negative values of the BD coupling parameter, the singularity is replaced by an oscillatory bounce occurring at a finite time, with the frequency of oscillation and amplitude being damped at late times.
Non-singular Brans–Dicke collapse in deformed phase space
International Nuclear Information System (INIS)
Rasouli, S.M.M.; Ziaie, A.H.; Jalalzadeh, S.; Moniz, P.V.
2016-01-01
We study the collapse process of a homogeneous perfect fluid (in FLRW background) with a barotropic equation of state in Brans–Dicke (BD) theory in the presence of phase space deformation effects. Such a deformation is introduced as a particular type of non-commutativity between phase space coordinates. For the commutative case, it has been shown in the literature (Scheel, 1995), that the dust collapse in BD theory leads to the formation of a spacetime singularity which is covered by an event horizon. In comparison to general relativity (GR), the authors concluded that the final state of black holes in BD theory is identical to the GR case but differs from GR during the dynamical evolution of the collapse process. However, the presence of non-commutative effects influences the dynamics of the collapse scenario and consequently a non-singular evolution is developed in the sense that a bounce emerges at a minimum radius, after which an expanding phase begins. Such a behavior is observed for positive values of the BD coupling parameter. For large positive values of the BD coupling parameter, when non-commutative effects are present, the dynamics of collapse process differs from the GR case. Finally, we show that for negative values of the BD coupling parameter, the singularity is replaced by an oscillatory bounce occurring at a finite time, with the frequency of oscillation and amplitude being damped at late times.
Anosov actions on non-commutative algebras
International Nuclear Information System (INIS)
Emch, G.G.; Narnhofer, H.; Thirring, W.; Sewell, G.L.
1994-01-01
We construct an axiomatic framework for a quantum mechanical extension to the theory of Anosov systems, and show that this retains some of the characteristic features of its classical counterpart, e.g. positive Lyapunov exponents, a vectorial K-property, and exponential clustering. We then investigate the effects of quantisation on two prototype examples of Anosov systems, namely the iterations of an automorphism of the torus (the 'Arnold Cat' model) and the free dynamics of a particle on a surface of negative curvature. It emerges that the Anosov property survives quantisation in the case of the former model, but not of the latter one. Finally, we show that the modular dynamics of a relativistic quantum field on the Rindler wedge of Minkowski space is that of an Anosov system. (authors)
Stability of a non-commutative Jackiw-Teitelboim gravity
Energy Technology Data Exchange (ETDEWEB)
Vassilevich, D.V. [Universitaet Leipzig, Institut fuer Theoretische Physik, Postfach 100 920, Leipzig (Germany); St. Petersburg University, V.A. Fock Institute of Physics, St. Petersburg (Russian Federation); Fresneda, R.; Gitman, D.M. [Sao Paulo Univ. (Brazil). Inst. de Fisica
2006-07-15
We start with a non-commutative version of the Jackiw-Teitelboim gravity in two dimensions which has a linear potential for the dilaton fields. We study whether it is possible to deform this model by adding quadratic terms to the potential but preserving the number of gauge symmetries. We find that no such deformation exists (provided one does not twist the gauge symmetries). (orig.)
Semiclassical and quantum motions on the non-commutative plane
International Nuclear Information System (INIS)
Baldiotti, M.C.; Gazeau, J.P.; Gitman, D.M.
2009-01-01
We study the canonical and the coherent state quantizations of a particle moving in a magnetic field on the non-commutative plane. Using a θ-modified action, we perform the canonical quantization and analyze the gauge dependence of the theory. We compare coherent states quantizations obtained through Malkin-Man'ko states and circular squeezed states. The relation between these states and the 'classical' trajectories is investigated, and we present numerical explorations of some semiclassical quantities.
Semiclassical and quantum motions on the non-commutative plane
Energy Technology Data Exchange (ETDEWEB)
Baldiotti, M.C., E-mail: baldiott@fma.if.usp.b [Instituto de Fisica, Universidade de Sao Paulo, Caixa Postal 66318-CEP, 05315-970 Sao Paulo, S.P. (Brazil); Gazeau, J.P., E-mail: gazeau@apc.univ-paris7.f [Instituto de Fisica, Universidade de Sao Paulo, Caixa Postal 66318-CEP, 05315-970 Sao Paulo, S.P. (Brazil); Gitman, D.M., E-mail: gitman@dfn.if.usp.b [Instituto de Fisica, Universidade de Sao Paulo, Caixa Postal 66318-CEP, 05315-970 Sao Paulo, S.P. (Brazil)
2009-10-19
We study the canonical and the coherent state quantizations of a particle moving in a magnetic field on the non-commutative plane. Using a theta-modified action, we perform the canonical quantization and analyze the gauge dependence of the theory. We compare coherent states quantizations obtained through Malkin-Man'ko states and circular squeezed states. The relation between these states and the 'classical' trajectories is investigated, and we present numerical explorations of some semiclassical quantities.
Commutative and Non-commutative Parallelogram Geometry: an Experimental Approach
Bertram, Wolfgang
2013-01-01
By "parallelogram geometry" we mean the elementary, "commutative", geometry corresponding to vector addition, and by "trapezoid geometry" a certain "non-commutative deformation" of the former. This text presents an elementary approach via exercises using dynamical software (such as geogebra), hopefully accessible to a wide mathematical audience, from undergraduate students and high school teachers to researchers, proceeding in three steps: (1) experimental geometry, (2) algebra (linear algebr...
Euler Polynomials and Identities for Non-Commutative Operators
De Angelis, V.; Vignat, C.
2015-01-01
Three kinds of identities involving non-commutating operators and Euler and Bernoulli polynomials are studied. The first identity, as given by Bender and Bettencourt, expresses the nested commutator of the Hamiltonian and momentum operators as the commutator of the momentum and the shifted Euler polynomial of the Hamiltonian. The second one, due to J.-C. Pain, links the commutators and anti-commutators of the monomials of the position and momentum operators. The third appears in a work by Fig...
Non-commutative geometry inspired charged black holes
International Nuclear Information System (INIS)
Ansoldi, Stefano; Nicolini, Piero; Smailagic, Anais; Spallucci, Euro
2007-01-01
We find a new, non-commutative geometry inspired, solution of the coupled Einstein-Maxwell field equations describing a variety of charged, self-gravitating objects, including extremal and non-extremal black holes. The metric smoothly interpolates between de Sitter geometry, at short distance, and Reissner-Nordstrom geometry far away from the origin. Contrary to the ordinary Reissner-Nordstrom spacetime there is no curvature singularity in the origin neither 'naked' nor shielded by horizons. We investigate both Hawking process and pair creation in this new scenario
Quantum mechanics on phase space: The hydrogen atom and its Wigner functions
Campos, P.; Martins, M. G. R.; Fernandes, M. C. B.; Vianna, J. D. M.
2018-03-01
Symplectic quantum mechanics (SQM) considers a non-commutative algebra of functions on a phase space Γ and an associated Hilbert space HΓ, to construct a unitary representation for the Galilei group. From this unitary representation the Schrödinger equation is rewritten in phase space variables and the Wigner function can be derived without the use of the Liouville-von Neumann equation. In this article the Coulomb potential in three dimensions (3D) is resolved completely by using the phase space Schrödinger equation. The Kustaanheimo-Stiefel(KS) transformation is applied and the Coulomb and harmonic oscillator potentials are connected. In this context we determine the energy levels, the amplitude of probability in phase space and correspondent Wigner quasi-distribution functions of the 3D-hydrogen atom described by Schrödinger equation in phase space.
Non-commutative multiple-valued logic algebras
Ciungu, Lavinia Corina
2014-01-01
This monograph provides a self-contained and easy-to-read introduction to non-commutative multiple-valued logic algebras; a subject which has attracted much interest in the past few years because of its impact on information science, artificial intelligence and other subjects. A study of the newest results in the field, the monograph includes treatment of pseudo-BCK algebras, pseudo-hoops, residuated lattices, bounded divisible residuated lattices, pseudo-MTL algebras, pseudo-BL algebras and pseudo-MV algebras. It provides a fresh perspective on new trends in logic and algebras in that algebraic structures can be developed into fuzzy logics which connect quantum mechanics, mathematical logic, probability theory, algebra and soft computing. Written in a clear, concise and direct manner, Non-Commutative Multiple-Valued Logic Algebras will be of interest to masters and PhD students, as well as researchers in mathematical logic and theoretical computer science.
Bootstrapping non-commutative gauge theories from L∞ algebras
Blumenhagen, Ralph; Brunner, Ilka; Kupriyanov, Vladislav; Lüst, Dieter
2018-05-01
Non-commutative gauge theories with a non-constant NC-parameter are investigated. As a novel approach, we propose that such theories should admit an underlying L∞ algebra, that governs not only the action of the symmetries but also the dynamics of the theory. Our approach is well motivated from string theory. We recall that such field theories arise in the context of branes in WZW models and briefly comment on its appearance for integrable deformations of AdS5 sigma models. For the SU(2) WZW model, we show that the earlier proposed matrix valued gauge theory on the fuzzy 2-sphere can be bootstrapped via an L∞ algebra. We then apply this approach to the construction of non-commutative Chern-Simons and Yang-Mills theories on flat and curved backgrounds with non-constant NC-structure. More concretely, up to the second order, we demonstrate how derivative and curvature corrections to the equations of motion can be bootstrapped in an algebraic way from the L∞ algebra. The appearance of a non-trivial A∞ algebra is discussed, as well.
Quantum magnification of classical sub-Planck phase space features
International Nuclear Information System (INIS)
Hensinger, W.K.; Heckenberg, N.; Rubinsztein-Dunlop, H.; Delande, D.
2002-01-01
Full text: To understand the relationship between quantum mechanics and classical physics a crucial question to be answered is how distinct classical dynamical phase space features translate into the quantum picture. This problem becomes even more interesting if these phase space features occupy a much smaller volume than ℎ in a phase space spanned by two non-commuting variables such as position and momentum. The question whether phase space structures in quantum mechanics associated with sub-Planck scales have physical signatures has recently evoked a lot of discussion. Here we will show that sub-Planck classical dynamical phase space structures, for example regions of regular motion, can give rise to states whose phase space representation is of size ℎ or larger. This is illustrated using period-1 regions of regular motion (modes of oscillatory motion of a particle in a modulated well) whose volume is distinctly smaller than Planck's constant. They are magnified in the quantum picture and appear as states whose phase space representation is of size h or larger. Cold atoms provide an ideal test bed to probe such fundamental aspects of quantum and classical dynamics. In the experiment a Bose-Einstein condensate is loaded into a far detuned optical lattice. The lattice depth is modulated resulting in the emergence of regions of regular motion surrounded by chaotic motion in the phase space spanned by position and momentum of the atoms along the standing wave. Sub-Planck scaled phase space features in the classical phase space are magnified and appear as distinct broad peaks in the atomic momentum distribution. The corresponding quantum analysis shows states of size Ti which can be associated with much smaller classical dynamical phase space features. This effect may considered as the dynamical equivalent of the Goldstone and Jaffe theorem which predicts the existence of at least one bound state at a bend in a two or three dimensional spatial potential
Non-commuting variations in mathematics and physics a survey
Preston, Serge
2016-01-01
This text presents and studies the method of so –called noncommuting variations in Variational Calculus. This method was pioneered by Vito Volterra who noticed that the conventional Euler-Lagrange (EL-) equations are not applicable in Non-Holonomic Mechanics and suggested to modify the basic rule used in Variational Calculus. This book presents a survey of Variational Calculus with non-commutative variations and shows that most basic properties of conventional Euler-Lagrange Equations are, with some modifications, preserved for EL-equations with K-twisted (defined by K)-variations. Most of the book can be understood by readers without strong mathematical preparation (some knowledge of Differential Geometry is necessary). In order to make the text more accessible the definitions and several necessary results in Geometry are presented separately in Appendices I and II Furthermore in Appendix III a short presentation of the Noether Theorem describing the relation between the symmetries of the differential equa...
Euler polynomials and identities for non-commutative operators
De Angelis, Valerio; Vignat, Christophe
2015-12-01
Three kinds of identities involving non-commutating operators and Euler and Bernoulli polynomials are studied. The first identity, as given by Bender and Bettencourt [Phys. Rev. D 54(12), 7710-7723 (1996)], expresses the nested commutator of the Hamiltonian and momentum operators as the commutator of the momentum and the shifted Euler polynomial of the Hamiltonian. The second one, by Pain [J. Phys. A: Math. Theor. 46, 035304 (2013)], links the commutators and anti-commutators of the monomials of the position and momentum operators. The third appears in a work by Figuieira de Morisson and Fring [J. Phys. A: Math. Gen. 39, 9269 (2006)] in the context of non-Hermitian Hamiltonian systems. In each case, we provide several proofs and extensions of these identities that highlight the role of Euler and Bernoulli polynomials.
A computational non-commutative geometry program for disordered topological insulators
Prodan, Emil
2017-01-01
This work presents a computational program based on the principles of non-commutative geometry and showcases several applications to topological insulators. Noncommutative geometry has been originally proposed by Jean Bellissard as a theoretical framework for the investigation of homogeneous condensed matter systems. Recently, this approach has been successfully applied to topological insulators, where it facilitated many rigorous results concerning the stability of the topological invariants against disorder. In the first part of the book the notion of a homogeneous material is introduced and the class of disordered crystals defined together with the classification table, which conjectures all topological phases from this class. The manuscript continues with a discussion of electrons’ dynamics in disordered crystals and the theory of topological invariants in the presence of strong disorder is briefly reviewed. It is shown how all this can be captured in the language of noncommutative geometry using the co...
On the development of non-commutative translation-invariant quantum gauge field models
International Nuclear Information System (INIS)
Sedmik, R.I.P.
2009-01-01
Aiming to understand the most fundamental principles of nature one has to approach the highest possible energy scales corresponding to the smallest possible distances - the Planck scale. Historically, three different theoretical fields have been developed to treat the problems appearing in this endeavor: string theory, quantum gravity, and non-commutative (NC) quantum field theory (QFT). The latter was originally motivated by the conjecture that the introduction of uncertainty relations between space-time coordinates introduces a natural energy cutoff, which should render the resulting computations well defined and finite. Despite failing to fulfill this expectation, NC physics is a challenging field of research, which has proved to be a fruitful source for new ideas and methods. Mathematically, non-commutativity is implemented by the so called Weyl quantization, giving rise to a modified product - the Groenewold-Moyal product. It realizes an operator ordering, and allows to work within the well established framework of QFT on non-commutative spaces. The main obstacle of NCQFT is the appearance of singularities being shifted from high to low energies. This effect, being referred to as 'uV/IR mixing', is a direct consequence of the deformation of the product, and inhibits or complicates the direct application of well approved renormalization schemes. In order to remedy this problem, several approaches have been worked out during the past decade which, unfortunately, all have shortcomings such as the breaking of translation invariance or an inappropriate alternation of degrees of freedom. Thence, the resulting theories are either being rendered 'unphysical', or considered a priori to be toy models. Nonetheless, these efforts have helped to analyze the mechanisms leading to uV/IR mixing and finally led to the insight that renormalizability can only be achieved by respecting the inherent connection of long and short distances (scales) of NCQFT in the construction of
Energy Technology Data Exchange (ETDEWEB)
Chao, Alexander Wu; /SLAC
2012-03-01
As accelerator technology advances, the requirements on accelerator beam quality become increasingly demanding. Facing these new demands, the topic of phase space gymnastics is becoming a new focus of accelerator physics R&D. In a phase space gymnastics, the beam's phase space distribution is manipulated and precision tailored to meet the required beam qualities. On the other hand, all realization of such gymnastics will have to obey accelerator physics principles as well as technological limitations. Recent examples of phase space gymnastics include Emittance exchanges, Phase space exchanges, Emittance partitioning, Seeded FELs and Microbunched beams. The emittance related topics of this list are reviewed in this report. The accelerator physics basis, the optics design principles that provide these phase space manipulations, and the possible applications of these gymnastics, are discussed. This fascinating new field promises to be a powerful tool of the future.
Problem of quantifying quantum correlations with non-commutative discord
Majtey, A. P.; Bussandri, D. G.; Osán, T. M.; Lamberti, P. W.; Valdés-Hernández, A.
2017-09-01
In this work we analyze a non-commutativity measure of quantum correlations recently proposed by Guo (Sci Rep 6:25241, 2016). By resorting to a systematic survey of a two-qubit system, we detected an undesirable behavior of such a measure related to its representation-dependence. In the case of pure states, this dependence manifests as a non-satisfactory entanglement measure whenever a representation other than the Schmidt's is used. In order to avoid this basis-dependence feature, we argue that a minimization procedure over the set of all possible representations of the quantum state is required. In the case of pure states, this minimization can be analytically performed and the optimal basis turns out to be that of Schmidt's. In addition, the resulting measure inherits the main properties of Guo's measure and, unlike the latter, it reduces to a legitimate entanglement measure in the case of pure states. Some examples involving general mixed states are also analyzed considering such an optimization. The results show that, in most cases of interest, the use of Guo's measure can result in an overestimation of quantum correlations. However, since Guo's measure has the advantage of being easily computable, it might be used as a qualitative estimator of the presence of quantum correlations.
A non-commutative formula for the isotropic magneto-electric response
International Nuclear Information System (INIS)
Leung, Bryan; Prodan, Emil
2013-01-01
A non-commutative formula for the isotropic magneto-electric response of disordered insulators under magnetic fields is derived using the methods of non-commutative geometry. Our result follows from an explicit evaluation of the Ito derivative with respect to the magnetic field of the non-commutative formula for the electric polarization reported in Schulz-Baldes and Teufel (2012 arXiv:1201.4812v1). The quantization, topological invariance and connection to a second Chern number of the magneto-electric response are discussed in the context of three-dimensional, disordered, time-reversal or inversion symmetric topological insulators. (paper)
Energy Technology Data Exchange (ETDEWEB)
Amini, Nina H. [Stanford University, Edward L. Ginzton Laboratory, Stanford, CA (United States); CNRS, Laboratoire des Signaux et Systemes (L2S) CentraleSupelec, Gif-sur-Yvette (France); Miao, Zibo; Pan, Yu; James, Matthew R. [Australian National University, ARC Centre for Quantum Computation and Communication Technology, Research School of Engineering, Canberra, ACT (Australia); Mabuchi, Hideo [Stanford University, Edward L. Ginzton Laboratory, Stanford, CA (United States)
2015-12-15
The purpose of this paper is to study the problem of generalizing the Belavkin-Kalman filter to the case where the classical measurement signal is replaced by a fully quantum non-commutative output signal. We formulate a least mean squares estimation problem that involves a non-commutative system as the filter processing the non-commutative output signal. We solve this estimation problem within the framework of non-commutative probability. Also, we find the necessary and sufficient conditions which make these non-commutative estimators physically realizable. These conditions are restrictive in practice. (orig.)
Reconstruction of the spontaneously broken gauge theory in non-commutative geometry
International Nuclear Information System (INIS)
Okumura, Y.; Morita, K.
1996-01-01
The scheme previously proposed by the present authors is modified to incorporate the strong interaction by affording the direct product internal symmetry. The authors do not need to prepare the extra discrete space for the colour gauge group responsible for the strong interaction to reconstruct the standard model and the left-right symmetric gauge model (LRSM). The approach based on non-commutative geometry leads us to present many attractive points such as the unified picture of the gauge and Higgs field as the generalized connection on the discrete space M 4 x Z N . This approach leads to unified picture of gauge and Higgs fields as the generalized connection. The standard model needs N=2 discrete space for reconstruction in this formalism. LRSM is still alive as a model with the intermediate symmetry of the spontaneously broken SO(10) grand unified theory (GUT). N=3 discrete space is needed for the reconstruction of LRSM to include two Higgs φ and ξ bosons usual transformed as (2, 2 * , 0) and (1, 3, -2) under SU(2) L x SU(2) R x U(1) Y , respectively. ξ is responsible to make v R Majorana fermion and so well explains the seesaw mechanism. Up and down quarks have different masses through the vacuum expectation value of φ
On θ-commutators and the corresponding non-commuting graphs
Directory of Open Access Journals (Sweden)
Shalchi S.
2017-12-01
Full Text Available The θ-commutators of elements of a group with respect to an automorphism are introduced and their properties are investigated. Also, corresponding to θ-commutators, we define the θ-non-commuting graphs of groups and study their correlations with other notions. Furthermore, we study independent sets in θ-non-commuting graphs, which enable us to evaluate the chromatic number of such graphs.
Non-Commutative Integration, Zeta Functions and the Haar State for SU{sub q}(2)
Energy Technology Data Exchange (ETDEWEB)
Matassa, Marco, E-mail: marco.matassa@gmail.com [SISSA (Italy)
2015-12-15
We study a notion of non-commutative integration, in the spirit of modular spectral triples, for the quantum group SU{sub q}(2). In particular we define the non-commutative integral as the residue at the spectral dimension of a zeta function, which is constructed using a Dirac operator and a weight. We consider the Dirac operator introduced by Kaad and Senior and a family of weights depending on two parameters, which are related to the diagonal automorphisms of SU{sub q}(2). We show that, after fixing one of the parameters, the non-commutative integral coincides with the Haar state of SU{sub q}(2). Moreover we can impose an additional condition on the zeta function, which also fixes the second parameter. For this unique choice the spectral dimension coincides with the classical dimension.
Non-Commutative Integration, Zeta Functions and the Haar State for SUq(2)
International Nuclear Information System (INIS)
Matassa, Marco
2015-01-01
We study a notion of non-commutative integration, in the spirit of modular spectral triples, for the quantum group SU q (2). In particular we define the non-commutative integral as the residue at the spectral dimension of a zeta function, which is constructed using a Dirac operator and a weight. We consider the Dirac operator introduced by Kaad and Senior and a family of weights depending on two parameters, which are related to the diagonal automorphisms of SU q (2). We show that, after fixing one of the parameters, the non-commutative integral coincides with the Haar state of SU q (2). Moreover we can impose an additional condition on the zeta function, which also fixes the second parameter. For this unique choice the spectral dimension coincides with the classical dimension
An algebraic scheme associated with the non-commutative KP hierarchy and some of its extensions
International Nuclear Information System (INIS)
Dimakis, Aristophanes; Mueller-Hoissen, Folkert
2005-01-01
A well-known ansatz ('trace method') for soliton solutions turns the equations of the (non-commutative) KP hierarchy, and those of certain extensions, into families of algebraic sum identities. We develop an algebraic formalism, in particular involving a (mixable) shuffle product, to explore their structure. More precisely, we show that the equations of the non-commutative KP hierarchy and its extension (xncKP) in the case of a Moyal-deformed product, as derived in previous work, correspond to identities in this algebra. Furthermore, the Moyal product is replaced by a more general associative product. This leads to a new even more general extension of the non-commutative KP hierarchy. Relations with Rota-Baxter algebras are established
Area-preserving diffeomorphisms in gauge theory on a non-commutative plane. A lattice study
International Nuclear Information System (INIS)
Bietenholz, W.; Bigarini, A.; INFN, Sezione di Perugia; Humboldt-Universitaet, Berlin; Torrielli, A.
2007-06-01
We consider Yang-Mills theory with the U(1) gauge group on a non-commutative plane. Perturbatively it was observed that the invariance of this theory under area-preserving diffeomorphisms (APDs) breaks down to a rigid subgroup SL(2,R). Here we present explicit results for the APD symmetry breaking at finite gauge coupling and finite non-commutativity. They are based on lattice simulations and measurements of Wilson loops with the same area but with a variety of different shapes. Our results confirm the expected loss of invariance under APDs. Moreover, they strongly suggest that non-perturbatively the SL(2,R) symmetry does not persist either. (orig.)
Some homological properties of skew PBW extensions arising in non-commutative algebraic geometry
Directory of Open Access Journals (Sweden)
Lezama Oswaldo
2017-06-01
Full Text Available In this short paper we study for the skew PBW (Poincar-Birkhoff-Witt extensions some homological properties arising in non-commutative algebraic geometry, namely, Auslander-Gorenstein regularity, Cohen-Macaulayness and strongly noetherianity. Skew PBW extensions include a considerable number of non-commutative rings of polynomial type such that classical PBW extensions, quantum polynomial rings, multiplicative analogue of the Weyl algebra, some Sklyanin algebras, operator algebras, diffusion algebras, quadratic algebras in 3 variables, among many others. Parametrization of the point modules of some examples is also presented.
Gravitational amplitudes in black hole evaporation: the effect of non-commutative geometry
International Nuclear Information System (INIS)
Grezia, Elisabetta Di; Esposito, Giampiero; Miele, Gennaro
2006-01-01
Recent work in the literature has studied the quantum-mechanical decay of a Schwarzschild-like black hole, formed by gravitational collapse, into almost-flat spacetime and weak radiation at a very late time. The relevant quantum amplitudes have been evaluated for bosonic and fermionic fields, showing that no information is lost in collapse to a black hole. On the other hand, recent developments in non-commutative geometry have shown that, in general relativity, the effects of non-commutativity can be taken into account by keeping the standard form of the Einstein tensor on the left-hand side of the field equations and introducing a modified energy-momentum tensor as a source on the right-hand side. The present paper, relying on the recently obtained non-commutativity effect on a static, spherically symmetric metric, considers from a new perspective the quantum amplitudes in black hole evaporation. The general relativity analysis of spin-2 amplitudes is shown to be modified by a multiplicative factor F depending on a constant non-commutativity parameter and on the upper limit R of the radial coordinate. Limiting forms of F are derived which are compatible with the adiabatic approximation here exploited. Approximate formulae for the particle emission rate are also obtained within this framework
A Note on UV/IR Mixing and Non-Commutative Instanton Calculus
Bichl, A A
2003-01-01
We estimate the instanton-induced vacuum energy in non-commutative U(1) Yang-Mills theory in four dimensions. In the dilute gas approximation, it is found to be plagued by infrared divergences, as a result of UV/IR mixing.
Determinants of self-employment among commuters and non-commuters
DEFF Research Database (Denmark)
Backman, M.; Karlsson, C.
2016-01-01
We analyse the determinants of self-employment and focus on the contextual environment. By distinguishing between commuters and non-commuters we are able to analyse the influence from the work and home environment, respectively. Our results indicate a significant difference between non...
Matrix models as non-commutative field theories on R3
International Nuclear Information System (INIS)
Livine, Etera R
2009-01-01
In the context of spin foam models for quantum gravity, group field theories are a useful tool allowing on the one hand a non-perturbative formulation of the partition function and on the other hand admitting an interpretation as generalized matrix models. Focusing on 2d group field theories, we review their explicit relation to matrix models and show their link to a class of non-commutative field theories invariant under a quantum-deformed 3d Poincare symmetry. This provides a simple relation between matrix models and non-commutative geometry. Moreover, we review the derivation of effective 2d group field theories with non-trivial propagators from Boulatov's group field theory for 3d quantum gravity. Besides the fact that this gives a simple and direct derivation of non-commutative field theories for the matter dynamics coupled to (3d) quantum gravity, these effective field theories can be expressed as multi-matrix models with a non-trivial coupling between matrices of different sizes. It should be interesting to analyze this new class of theories, both from the point of view of matrix models as integrable systems and for the study of non-commutative field theories.
The non-commutative and discrete spatial structure of a 3D Wigner quantum oscillator
International Nuclear Information System (INIS)
King, R C; Palev, T D; Stoilova, N I; Jeugt, J Van der
2003-01-01
The properties of a non-canonical 3D Wigner quantum oscillator, whose position and momentum operators generate the Lie superalgebra sl(1|3), are further investigated. Within each state space W(p), p = 1, 2, ..., the energy E q , q = 0, 1, 2, 3, takes no more than four different values. If the oscillator is in a stationary state ψ q element of W(p) then measurements of the non-commuting Cartesian coordinates of the particle are such that their allowed values are consistent with it being found at a finite number of sites, called 'nests'. These lie on a sphere centred on the origin of fixed, finite radius ρ q . The nests themselves are at the vertices of a rectangular parallelepiped. In the typical cases (p > 2) the number of nests is 8 for q = 0 and 3, and varies from 8 to 24, depending on the state, for q = 1 and 2. The number of nests is less in the atypical cases (p = 1, 2), but it is never less than 2. In certain states in W(2) (respectively in W(1)) the oscillator is 'polarized' so that all the nests lie on a plane (respectively on a line). The particle cannot be localized in any one of the available nests alone since the coordinates do not commute. The probabilities of measuring particular values of the coordinates are discussed. The mean trajectories and the standard deviations of the coordinates and momenta are computed, and conclusions are drawn about uncertainty relations
International Nuclear Information System (INIS)
Thierry-Mieg, Jean
2006-01-01
In Yang-Mills theory, the charges of the left and right massless Fermions are independent of each other. We propose a new paradigm where we remove this freedom and densify the algebraic structure of Yang-Mills theory by integrating the scalar Higgs field into a new gauge-chiral 1-form which connects Fermions of opposite chiralities. Using the Bianchi identity, we prove that the corresponding covariant differential is associative if and only if we gauge a Lie-Kac super-algebra. In this model, spontaneous symmetry breakdown naturally occurs along an odd generator of the super-algebra and induces a representation of the Connes-Lott non commutative differential geometry of the 2-point finite space
Non-commutative Chern numbers for generic aperiodic discrete systems
Bourne, Chris; Prodan, Emil
2018-06-01
The search for strong topological phases in generic aperiodic materials and meta-materials is now vigorously pursued by the condensed matter physics community. In this work, we first introduce the concept of patterned resonators as a unifying theoretical framework for topological electronic, photonic, phononic etc (aperiodic) systems. We then discuss, in physical terms, the philosophy behind an operator theoretic analysis used to systematize such systems. A model calculation of the Hall conductance of a 2-dimensional amorphous lattice is given, where we present numerical evidence of its quantization in the mobility gap regime. Motivated by such facts, we then present the main result of our work, which is the extension of the Chern number formulas to Hamiltonians associated to lattices without a canonical labeling of the sites, together with index theorems that assure the quantization and stability of these Chern numbers in the mobility gap regime. Our results cover a broad range of applications, in particular, those involving quasi-crystalline, amorphous as well as synthetic (i.e. algorithmically generated) lattices.
Zeta functions for the spectrum of the non-commutative harmonic oscillators
Ichinose, T
2004-01-01
This paper investigates the spectral zeta function of the non-commutative harmonic oscillator studied in \\cite{PW1, 2}. It is shown, as one of the basic analytic properties, that the spectral zeta function is extended to a meromorphic function in the whole complex plane with a simple pole at $s=1$, and further that it has a zero at all non-positive even integers, i.e. at $s=0$ and at those negative even integers where the Riemann zeta function has the so-called trivial zeros. As a by-product of the study, both the upper and the lower bounds are also given for the first eigenvalue of the non-commutative harmonic oscillator.
(Non-)commutative closed string on T-dual toroidal backgrounds
Andriot, David; Lust, Dieter; Patalong, Peter
2013-01-01
In this paper we investigate the connection between (non-)geometry and (non-)commutativity of the closed string. To this end, we solve the classical string on three T-dual toroidal backgrounds: a torus with H-flux, a twisted torus and a non-geometric background with Q-flux. In all three situations we work under the assumption of a dilute flux and consider quantities to linear order in the flux density. Furthermore, we perform the first steps of a canonical quantization for the twisted torus, to derive commutators of the string expansion modes. We use them as well as T-duality to determine, in the non-geometric background, a commutator of two string coordinates, which turns out to be non-vanishing. We relate this non-commutativity to the closed string boundary conditions, and the non-geometric Q-flux.
Workshop on Non-Associative & Non-Commutative Algebra and Operator Theory
Molina, Mercedes
2016-01-01
Presenting the collaborations of over thirty international experts in the latest developments in pure and applied mathematics, this volume serves as an anthology of research with a common basis in algebra, functional analysis and their applications. Special attention is devoted to non-commutative algebras, non-associative algebras, operator theory and ring and module theory. These themes are relevant in research and development in coding theory, cryptography and quantum mechanics. The topics in this volume were presented at the Workshop on Non-Associative & Non-Commutative Algebra and Operator Theory, held May 23—25, 2014 at Cheikh Anta Diop University in Dakar, Senegal in honor of Professor Amin Kaidi. The workshop was hosted by the university's Laboratory of Algebra, Cryptology, Algebraic Geometry and Applications, in cooperation with the University of Almería and the University of Málaga. Dr. Kaidi's work focuses on non-associative rings and algebras, operator theory and functional analysis, and he...
Constraints on effective Lagrangian of D-branes from non-commutative gauge theory
International Nuclear Information System (INIS)
Okawa, Yuji; Terashima, Seiji
2000-01-01
It was argued that there are two different descriptions of the effective Lagrangian of gauge fields on D-branes by non-commutative gauge theory and by ordinary gauge theory in the presence of a constant B field background. In the case of bosonic string theory, however, it was found in the previous works that the two descriptions are incompatible under the field redefinition which relates the non-commutative gauge field to the ordinary one found by Seiberg and Witten. In this paper we resolve this puzzle to observe the necessity of gauge-invariant but B-dependent correction terms involving metric in the field redefinition which have not been considered before. With the problem resolved, we establish a systematic method under the α' expansion to derive the constraints on the effective Lagrangian imposed by the compatibility of the two descriptions where the form of the field redefinition is not assumed
Non-commutative residue of projections in Boutet de Monvel's calculus
DEFF Research Database (Denmark)
Gaarde, Anders
2007-01-01
Using results by Melo, Nest, Schick, and Schrohe on the K-theory of Boutet de Monvel's calculus of boundary value problems, we show that the non-commutative residue introduced by Fedosov, Golse, Leichtnam, and Schrohe vanishes on projections in the calculus. This partially answers a question raised...... in a recent collaboration with Grubb, namely whether the residue is zero on sectorial projections for boundary value problems: This is confirmed to be true when the sectorial projections is in the calculus....
An anthology of non-local QFT and QFT on non-commutative spacetime
Schroer, Bert
2005-09-01
Ever since the appearance of renormalization theory, there have been several differently motivated attempts at non-localized (in the sense of not generated by pointlike fields) relativistic particle theories, the most recent one being at QFT on non-commutative Minkowski spacetime. The often conceptually uncritical and historically forgetful contemporary approach to these problems calls for a critical review in the light of previous results on this subject.
An anthology of non-local QFT and QFT on non-commutative spacetime
International Nuclear Information System (INIS)
Schroer, Bert
2005-01-01
Ever since the appearance of renormalization theory, there have been several differently motivated attempts at non-localized (in the sense of not generated by pointlike fields) relativistic particle theories, the most recent one being at QFT on non-commutative Minkowski spacetime. The often conceptually uncritical and historically forgetful contemporary approach to these problems calls for a critical review in the light of previous results on this subject
Kohn condition and exotic Newton-Hooke symmetry in the non-commutative Landau problem
International Nuclear Information System (INIS)
Zhang, P.-M.; Horvathy, P.A.
2012-01-01
N “exotic” [alias non-commutative] particles with masses m a , charges e a and non-commutative parameters θ a , moving in a uniform magnetic field B, separate into center-of-mass and internal motions if Kohn's condition e a /m a =const is supplemented with e a θ a =const. Then the center-of-mass behaves as a single exotic particle carrying the total mass and charge of the system, M and e, and a suitably defined non-commutative parameter Θ. For vanishing electric field off the critical case eΘB≠1, the particles perform the usual cyclotronic motion with modified but equal frequency. The system is symmetric under suitable time-dependent translations which span a (4+2)-parameter centrally-extended subgroup of the “exotic” [i.e., two-parameter centrally-extended] Newton–Hooke group. In the critical case B=B c =(eΘ) −1 the system is frozen into a static “crystal” configuration. Adding a constant electric field, all particles perform, collectively, a cyclotronic motion combined with a drift perpendicular to the electric field when eΘB≠1. For B=B c the cyclotronic motion is eliminated and all particles move, collectively, following the Hall law. Our time-dependent symmetries are reduced to the (2+1)-parameter Heisenberg group of centrally-extended translations.
Non-commutative algebra of functions of 4-dimensional quantum Hall droplet
International Nuclear Information System (INIS)
Chen Yixin; Hou Boyu; Hou Boyuan
2002-01-01
We develop the description of non-commutative geometry of the 4-dimensional quantum Hall fluid's theory proposed recently by Zhang and Hu. The non-commutative structure of fuzzy S 4 , which is the base of the bundle S 7 obtained by the second Hopf fibration, i.e., S 7 /S 3 =S 4 , appears naturally in this theory. The fuzzy monopole harmonics, which are the essential elements in the non-commutative algebra of functions on S 4 , are explicitly constructed and their obeying the matrix algebra is obtained. This matrix algebra is associative. We also propose a fusion scheme of the fuzzy monopole harmonics of the coupling system from those of the subsystems, and determine the fusion rule in such fusion scheme. By products, we provide some essential ingredients of the theory of SO(5) angular momentum. In particular, the explicit expression of the coupling coefficients, in the theory of SO(5) angular momentum, are given. We also discuss some possible applications of our results to the 4-dimensional quantum Hall system and the matrix brane construction in M-theory
Quantum computers in phase space
International Nuclear Information System (INIS)
Miquel, Cesar; Paz, Juan Pablo; Saraceno, Marcos
2002-01-01
We represent both the states and the evolution of a quantum computer in phase space using the discrete Wigner function. We study properties of the phase space representation of quantum algorithms: apart from analyzing important examples, such as the Fourier transform and Grover's search, we examine the conditions for the existence of a direct correspondence between quantum and classical evolutions in phase space. Finally, we describe how to measure directly the Wigner function in a given phase-space point by means of a tomographic method that, itself, can be interpreted as a simple quantum algorithm
Non-commutative differential calculus and the axial anomaly in Abelian lattice gauge theories
International Nuclear Information System (INIS)
Fujiwara, Takanori; Suzuki, Hiroshi; Wu, Ke
2000-01-01
The axial anomaly in lattice gauge theories has a topological nature when the Dirac operator satisfies the Ginsparg-Wilson relation. We study the axial anomaly in Abelian gauge theories on an infinite hypercubic lattice by utilizing cohomological arguments. The crucial tool in our approach is the non-commutative differential calculus (NCDC) which makes the Leibniz rule of exterior derivatives valid on the lattice. The topological nature of the 'Chern character' on the lattice becomes manifest in the context of NCDC. Our result provides an algebraic proof of Luescher's theorem for a four-dimensional lattice and its generalization to arbitrary dimensions
Asymptotic behaviour of a non-commutative rational series with a nonnegative linear representation
Directory of Open Access Journals (Sweden)
Philippe Dumas
2007-01-01
Full Text Available We analyse the asymptotic behaviour in the mean of a non-commutative rational series, which originates from differential cryptanalysis, using tools from probability theory, and from analytic number theory. We derive a Fourier representation of a first-order summation function obtained by interpreting this rational series as a non-classical rational sequence via the octal numeration system. The method is applicable to a wide class of sequences rational with respect to a numeration system essentially under the condition that they admit a linear representation with nonnegative coefficients.
The non-commutative topology of two-dimensional dirty superconductors
De Nittis, Giuseppe; Schulz-Baldes, Hermann
2018-01-01
Non-commutative analysis tools have successfully been applied to the integer quantum Hall effect, in particular for a proof of the stability of the Hall conductance in an Anderson localization regime and of the bulk-boundary correspondence. In this work, these techniques are implemented to study two-dimensional dirty superconductors described by Bogoliubov-de Gennes Hamiltonians. After a thorough presentation of the basic framework and the topological invariants, Kubo formulas for the thermal, thermoelectric and spin Hall conductance are analyzed together with the corresponding edge currents.
Quantum mechanics in phase space
DEFF Research Database (Denmark)
Hansen, Frank
1984-01-01
A reformulation of quantum mechanics for a finite system is given using twisted multiplication of functions on phase space and Tomita's theory of generalized Hilbert algebras. Quantization of a classical observable h is achieved when the twisted exponential Exp0(-h) is defined as a tempered....... Generalized Weyl-Wigner maps related to the notion of Hamiltonian weight are studied and used in the formulation of a twisted spectral theory for functions on phase space. Some inequalities for Wigner functions on phase space are proven. A brief discussion of the classical limit obtained through dilations...
Existence of stable wormholes on a non-commutative-geometric background in modified gravity
Energy Technology Data Exchange (ETDEWEB)
Zubair, M.; Mustafa, G. [COMSATS, Institute of Information Technology, Department of Mathematics, Lahore (Pakistan); Waheed, Saira [Prince Mohammad Bin Fahd University, Al Khobar (Saudi Arabia); Abbas, G. [The Islamia University of Bahawalpur, Department of Mathematics, Bahawalpur (Pakistan)
2017-10-15
In this paper, we discuss spherically symmetric wormhole solutions in f(R, T) modified theory of gravity by introducing well-known non-commutative geometry in terms of Gaussian and Lorentzian distributions of string theory. For analytic discussion, we consider an interesting model of f(R, T) gravity defined by f(R, T) = f{sub 1}(R) + λT. By taking two different choices for the function f{sub 1}(R), that is, f{sub 1}(R) = R and f{sub 1}(R) = R + αR{sup 2} + γR{sup n}, we discuss the possible existence of wormhole solutions. In the presence of non-commutative Gaussian and Lorentzian distributions, we get exact and numerical solutions for both these models. By taking appropriate values of the free parameters, we discuss different properties of these wormhole models analytically and graphically. Further, using an equilibrium condition, it is found that these solutions are stable. Also, we discuss the phenomenon of gravitational lensing for the exact wormhole model and it is found that the deflection angle diverges at the wormhole throat. (orig.)
Liao, Y
2003-01-01
A framework was recently proposed for doing perturbation theory on non-commutative (NC) spacetime. It preserves the unitarity of the S matrix and differs from the naive, popular approach already at the lowest order in perturbation when time does not commute with space. In this work, we investigate its phenomenological implications at linear colliders, especially the TESLA at DESY, through the processes of e sup + e sup --> mu sup +mu sup - ,H sup + H sup - ,H sup 0 H sup 0. We find that some NC effects computed previously are now modified and that there are new processes which now exhibit NC effects. Indeed, the first two processes get corrected at tree level as opposed to the null result in the naive approach, while the third one coincides with the naive result only in the low energy limit. The impact of the earth's rotation is incorporated. The NC signals are generally significant when the NC scale is comparable to the collider energy. If this is not the case, the non-trivial azimuthal angle distribution an...
Test of non-commutative QED in the process $e^{+}e^{-} \\to \\gamma \\gamma$ at LEP
Abbiendi, G.; Akesson, P.F.; Alexander, G.; Allison, John; Amaral, P.; Anagnostou, G.; Anderson, K.J.; Arcelli, S.; Asai, S.; Axen, D.; Azuelos, G.; Bailey, I.; Barberio, E.; Barlow, R.J.; Batley, R.J.; Bechtle, P.; Behnke, T.; Bell, Kenneth Watson; Bell, P.J.; Bella, G.; Bellerive, A.; Benelli, G.; Bethke, S.; Biebel, O.; Bloodworth, I.J.; Boeriu, O.; Bock, P.; Bonacorsi, D.; Boutemeur, M.; Braibant, S.; Brigliadori, L.; Brown, Robert M.; Buesser, K.; Burckhart, H.J.; Campana, S.; Carnegie, R.K.; Caron, B.; Carter, A.A.; Carter, J.R.; Chang, C.Y.; Charlton, David G.; Csilling, A.; Cuffiani, M.; Dado, S.; De Roeck, A.; De Wolf, E.A.; Desch, K.; Dienes, B.; Donkers, M.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Duerdoth, I.P.; Elfgren, E.; Etzion, E.; Fabbri, F.; Feld, L.; Ferrari, P.; Fiedler, F.; Fleck, I.; Ford, M.; Frey, A.; Furtjes, A.; Gagnon, P.; Gary, John William; Gaycken, G.; Geich-Gimbel, C.; Giacomelli, G.; Giacomelli, P.; Giunta, Marina; Goldberg, J.; Gross, E.; Grunhaus, J.; Gruwe, M.; Gunther, P.O.; Gupta, A.; Hajdu, C.; Hamann, M.; Hanson, G.G.; Harder, K.; Harel, A.; Harin-Dirac, M.; Hauschild, M.; Hawkes, C.M.; Hawkings, R.; Hemingway, R.J.; Hensel, C.; Herten, G.; Heuer, R.D.; Hill, J.C.; Hoffman, Kara Dion; Homer, R.J.; Horvath, D.; Igo-Kemenes, P.; Ishii, K.; Jeremie, H.; Jovanovic, P.; Junk, T.R.; Kanaya, N.; Kanzaki, J.; Karapetian, G.; Karlen, D.; Kawagoe, K.; Kawamoto, T.; Keeler, R.K.; Kellogg, R.G.; Kennedy, B.W.; Kim, D.H.; Klein, K.; Klier, A.; Kluth, S.; Kobayashi, T.; Kobel, M.; Komamiya, S.; Kormos, Laura L.; Kramer, T.; Kress, T.; Krieger, P.; von Krogh, J.; Kruger, K.; Kuhl, T.; Kupper, M.; Lafferty, G.D.; Landsman, H.; Lanske, D.; Layter, J.G.; Leins, A.; Lellouch, D.; Lettso, J.; Levinson, L.; Lillich, J.; Lloyd, S.L.; Loebinger, F.K.; Lu, J.; Ludwig, J.; Macpherson, A.; Mader, W.; Marcellini, S.; Martin, A.J.; Masetti, G.; Mashimo, T.; Mattig, Peter; McDonald, W.J.; McKenna, J.; McMahon, T.J.; McPherson, R.A.; Meijers, F.; Menges, W.; Merritt, F.S.; Mes, H.; Michelini, A.; Mihara, S.; Mikenberg, G.; Miller, D.J.; Moed, S.; Mohr, W.; Mori, T.; Mutter, A.; Nagai, K.; Nakamura, I.; Neal, H.A.; Nisius, R.; O'Neale, S.W.; Oh, A.; Okpara, A.; Oreglia, M.J.; Orito, S.; Pahl, C.; Pasztor, G.; Pater, J.R.; Patrick, G.N.; Pilcher, J.E.; Pinfold, J.; Plane, David E.; Poli, B.; Polok, J.; Pooth, O.; Przybycien, M.; Quadt, A.; Rabbertz, K.; Rembser, C.; Renkel, P.; Rick, H.; Roney, J.M.; Rosati, S.; Rozen, Y.; Runge, K.; Sachs, K.; Saeki, T.; Sarkisyan, E.K.G.; Schaile, A.D.; Schaile, O.; Scharff-Hansen, P.; Schieck, J.; Schoerner-Sadenius, Thomas; Schroder, Matthias; Schumacher, M.; Schwick, C.; Scott, W.G.; Seuster, R.; Shears, T.G.; Shen, B.C.; Sherwood, P.; Siroli, G.; Skuja, A.; Smith, A.M.; Sobie, R.; Soldner-Rembold, S.; Spano, F.; Stahl, A.; Stephens, K.; Strom, David M.; Strohmer, R.; Tarem, S.; Tasevsky, M.; Taylor, R.J.; Teuscher, R.; Thomson, M.A.; Torrence, E.; Toya, D.; Tran, P.; Tricoli, A.; Trigger, I.; Trocsanyi, Z.; Tsur, E.; Turner-Watson, M.F.; Ueda, I.; Ujvari, B.; Vollmer, C.F.; Vannerem, P.; Vertesi, R.; Verzocchi, M.; Voss, H.; Vossebeld, J.; Waller, D.; Ward, C.P.; Ward, D.R.; Watkins, P.M.; Watson, A.T.; Watson, N.K.; Wells, P.S.; Wengler, T.; Wermes, N.; Wetterling, D.; Wilson, G.W.; Wilson, J.A.; Wolf, G.; Wyatt, T.R.; Yamashita, S.; Zer-Zion, D.; Zivkovic, Lidija
2003-01-01
Non-communicative QED would lead to deviations from the Standard Model depending on a new energy scale $\\Delta_{NC}$ and a unique direction in space defined by two angles $\\eta$ and $\\xi$. Here in this analysis $\\eta$ is defined as the angle between the unique direction and the rotation axis of the earth. The predictions of such a theory for the process $e^{+} e^{-} \\to \\gamma \\gamma$ are evalued for the specific orientation of the OPAL detector and compared to the measurements. Distributions of the polar and azimuthal scattering angles are used to extract limits on the energy scale $\\Delta_{NC}$ depending on the model parameter $\\eta$. At the 95% confidence level $\\Delta_{NC}$ is found to be larger than 141 GeV for all $\\eta$ and $\\xi$. It is shown that the time dependence of the total cross-section could be used to determine the model parameter $\\xi$ if there were a detectable signal. These are the first limits obtained on non-commutative QED from an $e^{+} e^{-}$ collider experiment.
Beam phase space and emittance
International Nuclear Information System (INIS)
Buon, J.
1990-12-01
The classical and elementary results for canonical phase space, the Liouville theorem and the beam emittance are reviewed. Then, the importance of phase portraits to obtain a geometrical description of motion is emphasized, with examples in accelerator physics. Finally, a statistical point of view is used to define beam emittance, to study its law of approximate conservation and to treat two particular examples
Schleich, Wolfgang P.
2001-04-01
Quantum Optics in Phase Space provides a concise introduction to the rapidly moving field of quantum optics from the point of view of phase space. Modern in style and didactically skillful, Quantum Optics in Phase Space prepares students for their own research by presenting detailed derivations, many illustrations and a large set of workable problems at the end of each chapter. Often, the theoretical treatments are accompanied by the corresponding experiments. An exhaustive list of references provides a guide to the literature. Quantum Optics in Phase Space also serves advanced researchers as a comprehensive reference book. Starting with an extensive review of the experiments that define quantum optics and a brief summary of the foundations of quantum mechanics the author Wolfgang P. Schleich illustrates the properties of quantum states with the help of the Wigner phase space distribution function. His description of waves ala WKB connects semi-classical phase space with the Berry phase. These semi-classical techniques provide deeper insight into the timely topics of wave packet dynamics, fractional revivals and the Talbot effect. Whereas the first half of the book deals with mechanical oscillators such as ions in a trap or atoms in a standing wave the second half addresses problems where the quantization of the radiation field is of importance. Such topics extensively discussed include optical interferometry, the atom-field interaction, quantum state preparation and measurement, entanglement, decoherence, the one-atom maser and atom optics in quantized light fields. Quantum Optics in Phase Space presents the subject of quantum optics as transparently as possible. Giving wide-ranging references, it enables students to study and solve problems with modern scientific literature. The result is a remarkably concise yet comprehensive and accessible text- and reference book - an inspiring source of information and insight for students, teachers and researchers alike.
Longitudinal Phase Space Tomography with Space Charge
Hancock, S; Lindroos, M
2000-01-01
Tomography is now a very broad topic with a wealth of algorithms for the reconstruction of both qualitative and quantitative images. In an extension in the domain of particle accelerators, one of the simplest algorithms has been modified to take into account the non-linearity of large-amplitude synchrotron motion. This permits the accurate reconstruction of longitudinal phase space density from one-dimensional bunch profile data. The method is a hybrid one which incorporates particle tracking. Hitherto, a very simple tracking algorithm has been employed because only a brief span of measured profile data is required to build a snapshot of phase space. This is one of the strengths of the method, as tracking for relatively few turns relaxes the precision to which input machine parameters need to be known. The recent addition of longitudinal space charge considerations as an optional refinement of the code is described. Simplicity suggested an approach based on the derivative of bunch shape with the properties of...
Non-commutative cryptography and complexity of group-theoretic problems
Myasnikov, Alexei; Ushakov, Alexander
2011-01-01
This book is about relations between three different areas of mathematics and theoretical computer science: combinatorial group theory, cryptography, and complexity theory. It explores how non-commutative (infinite) groups, which are typically studied in combinatorial group theory, can be used in public-key cryptography. It also shows that there is remarkable feedback from cryptography to combinatorial group theory because some of the problems motivated by cryptography appear to be new to group theory, and they open many interesting research avenues within group theory. In particular, a lot of emphasis in the book is put on studying search problems, as compared to decision problems traditionally studied in combinatorial group theory. Then, complexity theory, notably generic-case complexity of algorithms, is employed for cryptanalysis of various cryptographic protocols based on infinite groups, and the ideas and machinery from the theory of generic-case complexity are used to study asymptotically dominant prop...
Phase space quark counting rule
International Nuclear Information System (INIS)
Wei-gin, C.; Lo, S.
1980-01-01
A simple quark counting rule based on phase space consideration suggested before is used to fit all 39 recent experimental data points on inclusive reactions. Parameter free relations are found to agree with experiments. Excellent detail fits are obtained for 11 inclusive reactions
Quantum Shuttle in Phase Space
DEFF Research Database (Denmark)
Novotny, Tomas; Donarini, Andrea; Jauho, Antti-Pekka
2003-01-01
Abstract: We present a quantum theory of the shuttle instability in electronic transport through a nanostructure with a mechanical degree of freedom. A phase space formulation in terms of the Wigner function allows us to identify a crossover from the tunneling to the shuttling regime, thus...
Relativistic phase space: dimensional recurrences
International Nuclear Information System (INIS)
Delbourgo, R; Roberts, M L
2003-01-01
We derive recurrence relations between phase space expressions in different dimensions by confining some of the coordinates to tori or spheres of radius R and taking the limit as R→∞. These relations take the form of mass integrals, associated with extraneous momenta (relative to the lower dimension), and produce the result in the higher dimension
Beam phase space and emittance
International Nuclear Information System (INIS)
Buon, J.
1992-02-01
The classical and elementary results for canonical phase space, the Liouville theorem and the beam emittance are reviewed. Then, the importance of phase portraits to obtain a geometrical description of motion is emphasized, with examples in accelerator physics. Finally, a statistical point of view is used to define beam emittance, to study its law of approximate conservation, with three particular examples, and to introduce a beam envelope-ellipse and the β-function, emphasing the statistical features of its properties. (author) 14 refs.; 11 figs
International Nuclear Information System (INIS)
Fechner, Susanne
2008-01-01
The von Neumann-representation introduced in this thesis describes each laser pulse in a one-to-one manner as a sum of bandwidth-limited, Gaussian laser pulses centered around different points in phase space. These pulses can be regarded as elementary building blocks from which every single laser pulse can be constructed. The von Neumann-representation combines different useful properties for applications in quantum control. First, it is a one-to-one map between the degrees of freedom of the pulse shaper and the phase-space representation of the corresponding shaped laser pulse. In other words: Every possible choice of pulse shaper parameters corresponds to exactly one von Neumann-representation and vice versa. Moreover, since temporal and spectral structures become immediately sizable, the von Neumann-representation, as well as the Husimi- or the Wigner-representations, allows for an intuitive interpretation of the represented laser pulse. (orig.)
International Nuclear Information System (INIS)
Chetouani, L.; Hammann, T.F.
1987-01-01
The Hamiltonian of the three-dimensional hydrogen atom is reduced, in parabolic coordinates, to the Hamiltonians of two bidimensional harmonic oscillators, by doing several space-time transformations,separating the movement along the three parabolic directions (ξ,eta,phi), and introducing two auxiliary angular variables psi and psi', 0≤psi, psi'≤2π. The Green's function is developed into partial Green's functions, and expressed in terms of two Green's functions that describe the movements along both the ξ and eta axes. Introducing auxiliary Hamiltonians allows one to calculate the Green's function in the configurational space, via the phase-space evolution function of the two-dimensional harmonic oscillator. The auxiliary variables psi and psi' are eliminated by projection. The thus-obtained Green's function, save for a multiplicating factor, coincides with that calculated following the path-integral formalism
Multiparametric quantum symplectic phase space
International Nuclear Information System (INIS)
Parashar, P.; Soni, S.K.
1992-07-01
We formulate a consistent multiparametric differential calculus on the quadratic coordinate algebra of the quantum vector space and use this as a tool to obtain a deformation of the associated symplectic phase space involving n(n-1)/2+1 deformation parameters. A consistent calculus on the relation subspace is also constructed. This is achieved with the help of a restricted ansatz and solving the consistency conditions to directly arrive at the main commutation structures without any reference to the R-matrix. However, the non-standard R-matrices for GL r,qij (n) and Sp r,qij (2n) can be easily read off from the commutation relations involving coordinates and derivatives. (author). 9 refs
Passive longitudinal phase space linearizer
Directory of Open Access Journals (Sweden)
P. Craievich
2010-03-01
Full Text Available We report on the possibility to passively linearize the bunch compression process in electron linacs for the next generation x-ray free electron lasers. This can be done by using the monopole wakefields in a dielectric-lined waveguide. The optimum longitudinal voltage loss over the length of the bunch is calculated in order to compensate both the second-order rf time curvature and the second-order momentum compaction terms. Thus, the longitudinal phase space after the compression process is linearized up to a fourth-order term introduced by the convolution between the bunch and the monopole wake function.
Phase Space Exchange in Thick Wedge Absorbers
Energy Technology Data Exchange (ETDEWEB)
Neuffer, David [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)
2017-01-01
The problem of phase space exchange in wedge absorbers with ionization cooling is discussed. The wedge absorber exchanges transverse and longitudinal phase space by introducing a position-dependent energy loss. In this paper we note that the wedges used with ionization cooling are relatively thick, so that single wedges cause relatively large changes in beam phase space. Calculation methods adapted to such “thick wedge” cases are presented, and beam phase-space transformations through such wedges are discussed.
Miniature Active Space Radiation Dosimeter, Phase II
National Aeronautics and Space Administration — Space Micro will extend our Phase I R&D to develop a family of miniature, active space radiation dosimeters/particle counters, with a focus on biological/manned...
Synthesizing lattice structures in phase space
International Nuclear Information System (INIS)
Guo, Lingzhen; Marthaler, Michael
2016-01-01
In one dimensional systems, it is possible to create periodic structures in phase space through driving, which is called phase space crystals (Guo et al 2013 Phys. Rev. Lett. 111 205303). This is possible even if for particles trapped in a potential without periodicity. In this paper we discuss ultracold atoms in a driven optical lattice, which is a realization of such a phase space crystals. The corresponding lattice structure in phase space is complex and contains rich physics. A phase space lattice differs fundamentally from a lattice in real space, because its coordinate system, i.e., phase space, has a noncommutative geometry, which naturally provides an artificial gauge (magnetic) field. We study the behavior of the quasienergy band structure and investigate the dissipative dynamics. Synthesizing lattice structures in phase space provides a new platform to simulate the condensed matter phenomena and study the intriguing phenomena of driven systems far away from equilibrium. (paper)
The eigenvalue problem in phase space.
Cohen, Leon
2018-06-30
We formulate the standard quantum mechanical eigenvalue problem in quantum phase space. The equation obtained involves the c-function that corresponds to the quantum operator. We use the Wigner distribution for the phase space function. We argue that the phase space eigenvalue equation obtained has, in addition to the proper solutions, improper solutions. That is, solutions for which no wave function exists which could generate the distribution. We discuss the conditions for ascertaining whether a position momentum function is a proper phase space distribution. We call these conditions psi-representability conditions, and show that if these conditions are imposed, one extracts the correct phase space eigenfunctions. We also derive the phase space eigenvalue equation for arbitrary phase space distributions functions. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Nuclear dynamics in phase space
International Nuclear Information System (INIS)
Di Toro, M.
1984-07-01
We present a unified semiclassical picture of nuclear dynamics, from collective states to heavy ion physics, based on a study of the time evolution of the Wigner distribution function. We discuss in particular the mean field dynamics, in this ''quantal'' phase space, which is ruled by the nuclear Vlasov equation. Simple approximate solutions are worked out for rotational and vibrational collective motions. Giant resonances are shown to be quite well described as scaling modes, which are equivalent to a lowest multipole (up to 1sub(max)=2) distortions of the momentum distribution. Applications are shown to heavy ion physics to study giant resonances on high spin states and dynamical collective effects in subthreshold π-production. Several possible extensions and in particular the inclusion of two-body collision terms are finally discussed
Noncommutative phase spaces on Aristotle group
Directory of Open Access Journals (Sweden)
Ancille Ngendakumana
2012-03-01
Full Text Available We realize noncommutative phase spaces as coadjoint orbits of extensions of the Aristotle group in a two dimensional space. Through these constructions the momenta of the phase spaces do not commute due to the presence of a naturally introduced magnetic eld. These cases correspond to the minimal coupling of the momentum with a magnetic potential.
Phase-space quantization of field theory
International Nuclear Information System (INIS)
Curtright, T.; Zachos, C.
1999-01-01
In this lecture, a limited introduction of gauge invariance in phase-space is provided, predicated on canonical transformations in quantum phase-space. Exact characteristic trajectories are also specified for the time-propagating Wigner phase-space distribution function: they are especially simple--indeed, classical--for the quantized simple harmonic oscillator. This serves as the underpinning of the field theoretic Wigner functional formulation introduced. Scalar field theory is thus reformulated in terms of distributions in field phase-space. This is a pedagogical selection from work published and reported at the Yukawa Institute Workshop ''Gauge Theory and Integrable Models'', 26-29 January, 1999
Nonlinear transport of dynamic system phase space
International Nuclear Information System (INIS)
Xie Xi; Xia Jiawen
1993-01-01
The inverse transform of any order solution of the differential equation of general nonlinear dynamic systems is derived, realizing theoretically the nonlinear transport for the phase space of nonlinear dynamic systems. The result is applicable to general nonlinear dynamic systems, with the transport of accelerator beam phase space as a typical example
Impenetrable Barriers in Phase-Space
International Nuclear Information System (INIS)
Wiggins, S.; Wiesenfeld, L.; Jaffe, C.; Uzer, T.
2001-01-01
Dynamical systems theory is used to construct a general phase-space version of transition state theory. Special multidimensional separatrices are found which act as impenetrable barriers in phase-space between reacting and nonreacting trajectories. The elusive momentum-dependent transition state between reactants and products is thereby characterized. A practical algorithm is presented and applied to a strongly coupled Hamiltonian
Diagrammatic methods in phase-space regularization
International Nuclear Information System (INIS)
Bern, Z.; Halpern, M.B.; California Univ., Berkeley
1987-11-01
Using the scalar prototype and gauge theory as the simplest possible examples, diagrammatic methods are developed for the recently proposed phase-space form of continuum regularization. A number of one-loop and all-order applications are given, including general diagrammatic discussions of the nogrowth theorem and the uniqueness of the phase-space stochastic calculus. The approach also generates an alternate derivation of the equivalence of the large-β phase-space regularization to the more conventional coordinate-space regularization. (orig.)
Modeling beams with elements in phase space
International Nuclear Information System (INIS)
Nelson, E.M.
1998-01-01
Conventional particle codes represent beams as a collection of macroparticles. An alternative is to represent the beam as a collection of current carrying elements in phase space. While such a representation has limitations, it may be less noisy than a macroparticle model, and it may provide insights about the transport of space charge dominated beams which would otherwise be difficult to gain from macroparticle simulations. The phase space element model of a beam is described, and progress toward an implementation and difficulties with this implementation are discussed. A simulation of an axisymmetric beam using 1d elements in phase space is demonstrated
T-duality with H-flux. Non-commutativity, T-folds and G x G structure
International Nuclear Information System (INIS)
Grange, P.
2006-09-01
Various approaches to T-duality with NSNS three-form flux are reconciled. Non-commutative torus fibrations are shown to be the open-string version of T-folds. The non-geometric T-dual of a three-torus with uniform flux is embedded into a generalized complex six-torus, and the non-geometry is probed by D0-branes regarded as generalized complex submanifolds. The non-commutativity scale, which is present in these compactifications, is given by a holomorphic Poisson bivector that also encodes the variation of the dimension of the world-volume of D-branes under monodromy. This bivector is shown to exist in SU(3) x SU(3) structure compactifications, which have been proposed as mirrors to NSNS-flux backgrounds. The two SU(3)-invariant spinors are generically not parallel, thereby giving rise to a non-trivial Poisson bivector. Furthermore we show that for non-geometric T-duals, the Poisson bivector may not be decomposable into the tensor product of vectors. (orig.)
Noncommutative Phase Spaces by Coadjoint Orbits Method
Directory of Open Access Journals (Sweden)
Ancille Ngendakumana
2011-12-01
Full Text Available We introduce noncommutative phase spaces by minimal couplings (usual one, dual one and their mixing. We then realize some of them as coadjoint orbits of the anisotropic Newton-Hooke groups in two- and three-dimensional spaces. Through these constructions the positions and the momenta of the phase spaces do not commute due to the presence of a magnetic field and a dual magnetic field.
Phase space diffusion in turbulent plasmas
DEFF Research Database (Denmark)
Pécseli, Hans
1990-01-01
. The second type are particles introduced at a prescribed phase space position at a certain time and which then self-consistently participate in the phase space dynamics of the turbulence. The latter "active" type of particles can be subject to an effective frictional force due to radiation of plasma waves....... In terms of these test particle types, two basically different problems can be formulated. One deals with the diffusion of a particle with respect to its point of release in phase space. Alternatively the relative diffusion between many, or just two, particles can be analyzed. Analytical expressions...
On the phase space representations. 1
International Nuclear Information System (INIS)
Polubarinov, I.V.
1978-01-01
The Dirac representation theory deals usually with the amplitude formalism of the quantum theory. An introduction is given into a theory of some other representations, which are applicable in the density matrix formalism and can naturally be called phase space representations (PSR). They use terms of phase space variables (x and p simultaneously) and give a description, close to the classical phase space description. Definitions and algebraic properties are given in quantum mechanics for such PSRs as the Wigner representation, coherent state representation and others. Completeness relations of a matrix type are used as a starting point. The case of quantum field theory is also outlined
Linear entropy in quantum phase space
International Nuclear Information System (INIS)
Rosales-Zarate, Laura E. C.; Drummond, P. D.
2011-01-01
We calculate the quantum Renyi entropy in a phase-space representation for either fermions or bosons. This can also be used to calculate purity and fidelity, or the entanglement between two systems. We show that it is possible to calculate the entropy from sampled phase-space distributions in normally ordered representations, although this is not possible for all quantum states. We give an example of the use of this method in an exactly soluble thermal case. The quantum entropy cannot be calculated at all using sampling methods in classical symmetric (Wigner) or antinormally ordered (Husimi) phase spaces, due to inner-product divergences. The preferred method is to use generalized Gaussian phase-space methods, which utilize a distribution over stochastic Green's functions. We illustrate this approach by calculating the reduced entropy and entanglement of bosonic or fermionic modes coupled to a time-evolving, non-Markovian reservoir.
Linear entropy in quantum phase space
Energy Technology Data Exchange (ETDEWEB)
Rosales-Zarate, Laura E. C.; Drummond, P. D. [Centre for Atom Optics and Ultrafast Spectroscopy, Swinburne University of Technology, Melbourne 3122 (Australia)
2011-10-15
We calculate the quantum Renyi entropy in a phase-space representation for either fermions or bosons. This can also be used to calculate purity and fidelity, or the entanglement between two systems. We show that it is possible to calculate the entropy from sampled phase-space distributions in normally ordered representations, although this is not possible for all quantum states. We give an example of the use of this method in an exactly soluble thermal case. The quantum entropy cannot be calculated at all using sampling methods in classical symmetric (Wigner) or antinormally ordered (Husimi) phase spaces, due to inner-product divergences. The preferred method is to use generalized Gaussian phase-space methods, which utilize a distribution over stochastic Green's functions. We illustrate this approach by calculating the reduced entropy and entanglement of bosonic or fermionic modes coupled to a time-evolving, non-Markovian reservoir.
RADON reconstruction in longitudinal phase space
International Nuclear Information System (INIS)
Mane, V.; Peggs, S.; Wei, J.
1997-01-01
Longitudinal particle motion in circular accelerators is typically monitoring by one dimensional (1-D) profiles. Adiabatic particle motion in two dimensional (2-D) phase space can be reconstructed with tomographic techniques, using 1-D profiles. A computer program RADON has been developed in C++ to process digitized mountain range data and perform the phase space reconstruction for the AGS, and later for Relativistic Heavy Ion Collider (RHIC)
Bernardara, M.; Tabuada, G.
2016-06-01
Conjectures of Beilinson-Bloch type predict that the low-degree rational Chow groups of intersections of quadrics are one-dimensional. This conjecture was proved by Otwinowska in [20]. By making use of homological projective duality and the recent theory of (Jacobians of) non-commutative motives, we give an alternative proof of this conjecture in the case of a complete intersection of either two quadrics or three odd-dimensional quadrics. Moreover, we prove that in these cases the unique non-trivial algebraic Jacobian is the middle one. As an application, we make use of Vial's work [26], [27] to describe the rational Chow motives of these complete intersections and show that smooth fibrations into such complete intersections over bases S of small dimension satisfy Murre's conjecture (when \\dim (S)≤ 1), Grothendieck's standard conjecture of Lefschetz type (when \\dim (S)≤ 2), and Hodge's conjecture (when \\dim(S)≤ 3).
Ichinose, T
2004-01-01
We study the special values at $s=2$ and $3$ of the spectral zeta function $\\zeta_Q(s)$ of the non-commutative harmonic oscillator $Q(x,D_x)$ introduced in \\cite{PW1, 2}. It is shown that the series defining $\\zeta_Q(s)$ converges absolutely for Re $s>1$ and further the respective values $\\zeta_Q(2)$ and $\\zeta_Q(3)$ are represented essentially by contour integrals of the solutions, respectively, of a singly confluent Heun's ordinary differential equation and of exactly the same but an inhomogeneous equation. As a by-product of these results, we obtain integral representations of the solutions of these equations by rational functions. \\par\
Foundations of phase-space quantum mechanics
International Nuclear Information System (INIS)
Guz, W.
1984-01-01
In the present paper a general concept of a phase-space representation of the ordinary Hilbert-space quantum theory is formulated, and then, by using some elementary facts of functional analysis, several equivalent forms of that concept are analyzed. Several important physical examples are presented in Section 3 of the paper. (author)
Resonance controlled transport in phase space
Leoncini, Xavier; Vasiliev, Alexei; Artemyev, Anton
2018-02-01
We consider the mechanism of controlling particle transport in phase space by means of resonances in an adiabatic setting. Using a model problem describing nonlinear wave-particle interaction, we show that captures into resonances can be used to control transport in momentum space as well as in physical space. We design the model system to provide creation of a narrow peak in the distribution function, thus producing effective cooling of a sub-ensemble of the particles.
On the vacuum states for non-commutative gauge theory TH1"-->
de Goursac, A.; Wallet, J.-C.; Wulkenhaar, R.
2008-07-01
Candidates for renormalizable gauge theory models on Moyal spaces constructed recently have non-trivial vacua. We show that these models support vacuum states that are invariant under both global rotations and symplectic isomorphisms which form a global symmetry group for the action. We compute the explicit expression in position space for these vacuum configurations in two and four dimensions.
Incomplete information and fractal phase space
International Nuclear Information System (INIS)
Wang, Qiuping A.
2004-01-01
The incomplete statistics for complex systems is characterized by a so called incompleteness parameter ω which equals unity when information is completely accessible to our treatment. This paper is devoted to the discussion of the incompleteness of accessible information and of the physical signification of ω on the basis of fractal phase space. ω is shown to be proportional to the fractal dimension of the phase space and can be linked to the phase volume expansion and information growth during the scale refining process
Discrete phase space based on finite fields
International Nuclear Information System (INIS)
Gibbons, Kathleen S.; Hoffman, Matthew J.; Wootters, William K.
2004-01-01
The original Wigner function provides a way of representing in phase space the quantum states of systems with continuous degrees of freedom. Wigner functions have also been developed for discrete quantum systems, one popular version being defined on a 2Nx2N discrete phase space for a system with N orthogonal states. Here we investigate an alternative class of discrete Wigner functions, in which the field of real numbers that labels the axes of continuous phase space is replaced by a finite field having N elements. There exists such a field if and only if N is a power of a prime; so our formulation can be applied directly only to systems for which the state-space dimension takes such a value. Though this condition may seem limiting, we note that any quantum computer based on qubits meets the condition and can thus be accommodated within our scheme. The geometry of our NxN phase space also leads naturally to a method of constructing a complete set of N+1 mutually unbiased bases for the state space
Phase space density representations in fluid dynamics
International Nuclear Information System (INIS)
Ramshaw, J.D.
1989-01-01
Phase space density representations of inviscid fluid dynamics were recently discussed by Abarbanel and Rouhi. Here it is shown that such representations may be simply derived and interpreted by means of the Liouville equation corresponding to the dynamical system of ordinary differential equations that describes fluid particle trajectories. The Hamiltonian and Poisson bracket for the phase space density then emerge as immediate consequences of the corresponding structure of the dynamics. For barotropic fluids, this approach leads by direct construction to the formulation presented by Abarbanel and Rouhi. Extensions of this formulation to inhomogeneous incompressible fluids and to fluids in which the state equation involves an additional transported scalar variable are constructed by augmenting the single-particle dynamics and phase space to include the relevant additional variable
Phase space approach to quantum dynamics
International Nuclear Information System (INIS)
Leboeuf, P.
1991-03-01
The Schroedinger equation for the time propagation of states of a quantised two-dimensional spherical phase space is replaced by the dynamics of a system of N particles lying in phase space. This is done through factorization formulae of analytic function theory arising in coherent-state representation, the 'particles' being the zeros of the quantum state. For linear Hamiltonians, like a spin in a uniform magnetic field, the motion of the particles is classical. However, non-linear terms induce interactions between the particles. Their time propagation is studied and it is shown that, contrary to integrable systems, for chaotic maps they tend to fill, as their classical counterpart, the whole phase space. (author) 13 refs., 3 figs
Phase space diffusion in turbulent plasmas
International Nuclear Information System (INIS)
Pecseli, H.L.
1990-01-01
Turbulent diffusion of charged test particles in electrostatic plasma turbulence is reviewed. Two different types of test particles can be distinguished. First passice particles which are subject to the fluctuating electric fields without themselves contributing to the local space charge. The second type are particles introduced at a prescribed phase space position at a certain time and which then self-consistently participate in the phase space dynamics of the turbulent. The latter ''active'' type of particles can be subjected to an effective frictional force due to radiation of plasma waves. In terms of these test particle types, two basically different problems can be formulated. One deals with the diffusion of a particle with respect to its point of release in phase space. Alternatively the relative diffusion between many, or just two, particles can be analyzed. Analytical expressions for the mean square particle displacements in phase space are discussed. More generally equations for the full probability densities are derived and these are solved analytically in special limits. (orig.)
Identifying Phase Space Boundaries with Voronoi Tessellations
Debnath, Dipsikha; Kilic, Can; Kim, Doojin; Matchev, Konstantin T.; Yang, Yuan-Pao
2016-11-24
Determining the masses of new physics particles appearing in decay chains is an important and longstanding problem in high energy phenomenology. Recently it has been shown that these mass measurements can be improved by utilizing the boundary of the allowed region in the fully differentiable phase space in its full dimensionality. Here we show that the practical challenge of identifying this boundary can be solved using techniques based on the geometric properties of the cells resulting from Voronoi tessellations of the relevant data. The robust detection of such phase space boundaries in the data could also be used to corroborate a new physics discovery based on a cut-and-count analysis.
Grassmann phase space theory for fermions
Energy Technology Data Exchange (ETDEWEB)
Dalton, Bryan J. [Centre for Quantum and Optical Science, Swinburne University of Technology, Melbourne, Victoria, 3122 (Australia); Jeffers, John [Department of Physics, University of Strathclyde, Glasgow, G4 ONG (United Kingdom); Barnett, Stephen M. [School of Physics and Astronomy, University of Glasgow, Glasgow, G12 8QQ (United Kingdom)
2017-06-15
A phase space theory for fermions has been developed using Grassmann phase space variables which can be used in numerical calculations for cold Fermi gases and for large fermion numbers. Numerical calculations are feasible because Grassmann stochastic variables at later times are related linearly to such variables at earlier times via c-number stochastic quantities. A Grassmann field version has been developed making large fermion number applications possible. Applications are shown for few mode and field theory cases. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Géométrie non-commutative, théorie de jauge et renormalisation
De Goursac , Axel
2009-01-01
Thèse effectuée en cotutelle au Département de Mathématique de l'Université de Münster (Allemagne); Nowadays, noncommutative geometry is a growing domain of mathematics, which can appear as a promising framework for modern physics. Quantum field theories on "noncommutative spaces" are indeed much investigated, and suffer from a new type of divergence called the ultraviolet-infrared mixing. However, this problem has recently been solved by H. Grosse and R. Wulkenhaar by adding to the action of...
Freeform aberrations in phase space: an example.
Babington, James
2017-06-01
We consider how optical propagation and aberrations of freeform systems can be formulated in phase space. As an example system, a freeform prism is analyzed and discussed. Symmetry considerations and their group theory descriptions are given some importance. Numerical aberrations are also highlighted and put into the context of the underlying aberration theory.
Phase-space quark counting rule
Energy Technology Data Exchange (ETDEWEB)
Wei-Gin, Chao; Lo, Shui-Yin [Academia Sinica, Beijing (China). Inst. of High Energy Physics
1981-05-21
A simple quark counting rule based on the phase-space consideration suggested before is used to fit all 39 recent experimental data points on inclusive reactions. Parameter-free relations are found to agree with experiments. Excellent detail fits are obtained for 11 inclusive reactions.
Phase space representations for spin23
International Nuclear Information System (INIS)
Polubarinov, I.V.
1991-01-01
General properties of spin matrices and density ones are considered for any spin s. For spin 2 3 phase space representations are constructed. Representations, similar to the Bell one, for the correlator of projections of two spins 2 3 in the singlet state are found. Quantum analogs of the Bell inequality are obtained. 14 refs
Meson phase space density from interferometry
International Nuclear Information System (INIS)
Bertsch, G.F.
1993-01-01
The interferometric analysis of meson correlations a measure of the average phase space density of the mesons in the final state. The quantity is a useful indicator of the statistical properties of the systems, and it can be extracted with a minimum of model assumptions. Values obtained from recent measurements are consistent with the thermal value, but do not rule out superradiance effects
Nonlinear transport of accelerator beam phase space
International Nuclear Information System (INIS)
Xie Xi; Xia Jiawen
1995-01-01
Based on the any order analytical solution of accelerator beam dynamics, the general theory for nonlinear transport of accelerator beam phase space is developed by inverse transformation method. The method is general by itself, and hence can also be applied to the nonlinear transport of various dynamic systems in physics, chemistry and biology
Formation of Ion Phase-Space Vortexes
DEFF Research Database (Denmark)
Pécseli, Hans; Trulsen, J.; Armstrong, R. J.
1984-01-01
The formation of ion phase space vortexes in the ion two stream region behind electrostatic ion acoustic shocks are observed in a laboratory experiment. A detailed analysis demonstrates that the evolution of such vortexes is associated with ion-ion beam instabilities and a nonlinear equation for ...
Quantum mechanics and dynamics in phase space
International Nuclear Information System (INIS)
Zlatev, I.S.
1979-01-01
Attention is paid to formal similarity of quantum mechanics and classical statistical physics. It is supposed that quantum mechanics can be reformulated by means of the quasiprobabilistic distributions (QPD). The procedure of finding a possible dynamics of representative points in a phase space is described. This procedure would lead to an equation of the Liouville type for the given QPD. It is shown that there is always a dynamics for which the phase volume is preserved and there is another dynamics for which the equations of motion are ''canonical''. It follows from the paper that in terms of the QPD the quantum mechanics is analogous to the classical statistical mechanics and it can be interpreted as statistics of phase points, their motion obeying the canonical equations. The difference consists in the fact that in the classical statistical physics constructed is statistics of points in a phase space which depict real, existing, observable states of the system under consideration. In the quantum mechanics constructed is statistics of points in a phase space which correspond to the ''substrate'' of quantum-mechanical objects which have no any physical sense and cannot be observed separately
The Quantum Space Phase Transitions for Particles and Force Fields
Chung D.-Y.; Krasnoholovets V.
2006-01-01
We introduce a phenomenological formalism in which the space structure is treated in terms of attachment space and detachment space. Attachment space attaches to an object, while detachment space detaches from the object. The combination of these spaces results in three quantum space phases: binary partition space, miscible space and binary lattice space. Binary lattice space consists of repetitive units of alternative attachment space and detachment spac...
Phase transitions in de Sitter space
Directory of Open Access Journals (Sweden)
Alexander Vilenkin
1983-10-01
Full Text Available An effective potential in de Sitter space is calculated for a model of two interacting scalar fields in one-loop approximation and in a self-consistent approximation which takes into account an infinite set of diagrams. Various approaches to renormalization in de Sitter space are discussed. The results are applied to analyze the phase transition in the Hawking-Moss version of the inflationary universe scenario. Requiring that inflation is sufficiently large, we derive constraints on the parameters of the model.
Wavelet analysis of the nuclear phase space
Energy Technology Data Exchange (ETDEWEB)
Jouault, B.; Sebille, F.; Mota, V. de la
1997-12-31
The description of transport phenomena in nuclear matter is addressed in a new approach based on the mathematical theory of wavelets and the projection methods of statistical physics. The advantage of this framework is to offer the opportunity to use information concepts common to both the formulation of physical properties and the mathematical description. This paper focuses on two features, the extraction of relevant informations using the geometrical properties of the underlying phase space and the optimization of the theoretical and numerical treatments based on convenient choices of the representation spaces. (author). 34 refs.
Wavelet analysis of the nuclear phase space
International Nuclear Information System (INIS)
Jouault, B.; Sebille, F.; Mota, V. de la.
1997-01-01
The description of transport phenomena in nuclear matter is addressed in a new approach based on the mathematical theory of wavelets and the projection methods of statistical physics. The advantage of this framework is to offer the opportunity to use information concepts common to both the formulation of physical properties and the mathematical description. This paper focuses on two features, the extraction of relevant informations using the geometrical properties of the underlying phase space and the optimization of the theoretical and numerical treatments based on convenient choices of the representation spaces. (author)
The Morse oscillator in position space, momentum space, and phase space
DEFF Research Database (Denmark)
Dahl, Jens Peder; Springborg, Michael
1988-01-01
We present a unified description of the position-space wave functions, the momentum-space wave functions, and the phase-space Wigner functions for the bound states of a Morse oscillator. By comparing with the functions for the harmonic oscillator the effects of anharmonicity are visualized....... Analytical expressions for the wave functions and the phase space functions are given, and it is demonstrated how a numerical problem arising from the summation of an alternating series in evaluating Laguerre functions can be circumvented. The method is applicable also for other problems where Laguerre...... functions are to be calculated. The wave and phase space functions are displayed in a series of curves and contour diagrams. An Appendix discusses the calculation of the modified Bessel functions of real, positive argument and complex order, which is required for calculating the phase space functions...
Quantum algorithms for phase-space tomography
International Nuclear Information System (INIS)
Paz, Juan Pablo; Roncaglia, Augusto Jose; Saraceno, Marcos
2004-01-01
We present efficient circuits that can be used for the phase-space tomography of quantum states. The circuits evaluate individual values or selected averages of the Wigner, Kirkwood, and Husimi distributions. These quantum gate arrays can be programmed by initializing appropriate computational states. The Husimi circuit relies on a subroutine that is also interesting in its own right: the efficient preparation of a coherent state, which is the ground state of the Harper Hamiltonian
Liouville's theorem and phase-space cooling
International Nuclear Information System (INIS)
Mills, R.L.; Sessler, A.M.
1993-01-01
A discussion is presented of Liouville's theorem and its consequences for conservative dynamical systems. A formal proof of Liouville's theorem is given. The Boltzmann equation is derived, and the collisionless Boltzmann equation is shown to be rigorously true for a continuous medium. The Fokker-Planck equation is derived. Discussion is given as to when the various equations are applicable and, in particular, under what circumstances phase space cooling may occur
Periodic orbits and TDHF phase space structure
Energy Technology Data Exchange (ETDEWEB)
Hashimoto, Yukio; Iwasawa, Kazuo [Tsukuba Univ., Ibaraki (Japan). Inst. of Physics; Tsukuma, Hidehiko; Sakata, Fumihiko
1998-03-01
The collective motion of atomic nuclei is closely coupled with the motion of nucleons, therefore, it is nonlinear, and the contents of the motion change largely with the increase of its amplitude. As the framework which describes the collective motion accompanied by the change of internal structure, time-dependent Hurtley Fock (TDHF) method is suitable. At present, the authors try to make the method for studying the large region structure in quantum system by utilizing the features of the TDHF phase space. The studies made so far are briefed. In this report, the correspondence of the large region patterns appearing in the band structure chart of three-level model with the periodic orbit group in the TDHF phase space is described. The Husimi function is made, and it possesses the information on the form of respective corresponding intrinsic state. The method of making the band structure chart is explained. There are three kinds of the tendency in the intrinsic state group. The E-T charts are made for the band structure charts to quantitatively express the large region tendency. The E-T chart and the T{sub r}-T chart are drawn for a selected characteristic orbit group. It became to be known that the large region properties of the quantum intrinsic state group of three-level model can be forecast by examining the properties of the periodic orbit group in the TDHF phase space. (K.I.)
Stochastic inflation: Quantum phase-space approach
International Nuclear Information System (INIS)
Habib, S.
1992-01-01
In this paper a quantum-mechanical phase-space picture is constructed for coarse-grained free quantum fields in an inflationary universe. The appropriate stochastic quantum Liouville equation is derived. Explicit solutions for the phase-space quantum distribution function are found for the cases of power-law and exponential expansions. The expectation values of dynamical variables with respect to these solutions are compared to the corresponding cutoff regularized field-theoretic results (we do not restrict ourselves only to left-angle Φ 2 right-angle). Fair agreement is found provided the coarse-graining scale is kept within certain limits. By focusing on the full phase-space distribution function rather than a reduced distribution it is shown that the thermodynamic interpretation of the stochastic formalism faces several difficulties (e.g., there is no fluctuation-dissipation theorem). The coarse graining does not guarantee an automatic classical limit as quantum correlations turn out to be crucial in order to get results consistent with standard quantum field theory. Therefore, the method does not by itself constitute an explanation of the quantum to classical transition in the early Universe. In particular, we argue that the stochastic equations do not lead to decoherence
Dybalski, Wojciech; Pizzo, Alessandro
2018-02-01
Let $H_{P,\\sigma}$ be the single-electron fiber Hamiltonians of the massless Nelson model at total momentum $P$ and infrared cut-off $\\sigma>0$. We establish detailed regularity properties of the corresponding $n$-particle ground state wave functions $f^n_{P,\\sigma}$ as functions of $P$ and $\\sigma$. In particular, we show that \\[ |\\partial_{P^j}f^{n}_{P,\\sigma}(k_1,\\ldots, k_n)|, \\ \\ |\\partial_{P^j} \\partial_{P^{j'}} f^{n}_{P,\\sigma}(k_1,\\ldots, k_n)| \\leq \\frac{1}{\\sqrt{n!}} \\frac{(c\\lambda_0)^n}{\\sigma^{\\delta_{\\lambda_0}}} \\prod_{i=1}^n\\frac{ \\chi_{[\\sigma,\\kappa)}(k_i)}{|k_i|^{3/2}}, \\] where $c$ is a numerical constant, $\\lambda_0\\mapsto \\delta_{\\lambda_0}$ is a positive function of the maximal admissible coupling constant which satisfies $\\lim_{\\lambda_0\\to 0}\\delta_{\\lambda_0}=0$ and $\\chi_{[\\sigma,\\kappa)}$ is the (approximate) characteristic function of the energy region between the infrared cut-off $\\sigma$ and the ultraviolet cut-off $\\kappa$. While the analysis of the first derivative is relatively straightforward, the second derivative requires a new strategy. By solving a non-commutative recurrence relation we derive a novel formula for $f^n_{P,\\sigma}$ with improved infrared properties. In this representation $\\partial_{P^{j'}}\\partial_{P^{j}}f^n_{P,\\sigma}$ is amenable to sharp estimates obtained by iterative analytic perturbation theory in part II of this series of papers. The bounds stated above are instrumental for scattering theory of two electrons in the Nelson model, as explained in part I of this series.
Equations of motion in phase space
International Nuclear Information System (INIS)
Broucke, R.
1979-01-01
The article gives a general review of methods of constructing equations of motion of a classical dynamical system. The emphasis is however on the linear Lagrangian in phase space and the corresponding form of Pfaff's equations of motion. A detailed examination of the problem of changes of variables in phase space is first given. It is shown that the Linear Lagrangian theory falls very naturally out of the classical quadratic Lagrangian theory; we do this with the use of the well-known Lagrange multiplier method. Another important result is obtained very naturally as a by-product of this analysis. If the most general set of 2n variables (coordinates in phase space) is used, the coefficients of the equations of motion are the Poisson Brackets of these variables. This is therefore the natural way of introducing not only Poisson Brackets in Dynamics formulations but also the associated Lie Algebras and their important properties and consequences. We give then several examples to illustrate the first-order equations of motion and their simplicity in relation to general changes of variables. The first few examples are elementary (the harmonic Oscillator) while the last one concerns the motion of a rigid body about a fixed point. In the next three sections we treat the first-order equations of motion as derived from a Linear differential form, sometimes called Birkhoff's equations. We insist on the generality of the equations and especially on the unity of the space-time concept: the time t and the coordinates are here completely identical variables, without any privilege to t. We give a brief review of Cartan's 2-form and the corresponding equations of motion. As an illustration the standard equations of aircraft flight in a vertical plane are derived from Cartan's exterior differential 2-form. Finally we mention in the last section the differential forms that were proposed by Gallissot for the derivation of equations of motion
Alternating phase focussing including space charge
International Nuclear Information System (INIS)
Cheng, W.H.; Gluckstern, R.L.
1992-01-01
Longitudinal stability can be obtained in a non-relativistic drift tube accelerator by traversing each gap as the rf accelerating field rises. However, the rising accelerating field leads to a transverse defocusing force which is usually overcome by magnetic focussing inside the drift tubes. The radio frequency quadrupole is one way of providing simultaneous longitudinal and transverse focusing without the use of magnets. One can also avoid the use of magnets by traversing alternate gaps between drift tubes as the field is rising and falling, thus providing an alternation of focussing and defocusing forces in both the longitudinal and transverse directions. The stable longitudinal phase space area is quite small, but recent efforts suggest that alternating phase focussing (APF) may permit low velocity acceleration of currents in the 100-300 ma range. This paper presents a study of the parameter space and a test of crude analytic predictions by adapting the code PARMILA, which includes space charge, to APF. 6 refs., 3 figs
Phase space methods for Majorana fermions
Rushin Joseph, Ria; Rosales-Zárate, Laura E. C.; Drummond, Peter D.
2018-06-01
Fermionic phase space representations are a promising method for studying correlated fermion systems. The fermionic Q-function and P-function have been defined using Gaussian operators of fermion annihilation and creation operators. The resulting phase-space of covariance matrices belongs to the symmetry class D, one of the non-standard symmetry classes. This was originally proposed to study mesoscopic normal-metal-superconducting hybrid structures, which is the type of structure that has led to recent experimental observations of Majorana fermions. Under a unitary transformation, it is possible to express these Gaussian operators using real anti-symmetric matrices and Majorana operators, which are much simpler mathematical objects. We derive differential identities involving Majorana fermion operators and an antisymmetric matrix which are relevant to the derivation of the corresponding Fokker–Planck equations on symmetric space. These enable stochastic simulations either in real or imaginary time. This formalism has direct relevance to the study of fermionic systems in which there are Majorana type excitations, and is an alternative to using expansions involving conventional Fermi operators. The approach is illustrated by showing how a linear coupled Hamiltonian as used to study topological excitations can be transformed to Fokker–Planck and stochastic equation form, including dissipation through particle losses.
Coherent and squeezed states in phase space
International Nuclear Information System (INIS)
Jannussis, A.; Bartzis, V.; Vlahos, E.
1990-01-01
In the present paper, the coherent and the squeezed states in phase space have been studied. From the wave functions of the coherent and the squeezed state, their corresponding Wigner distribution functions are calculated. Especially the calculation of the corresponding Wigner functions for the above states permits the determination of the mean values of position and momentum and thus the Heisenberg uncertainty relation. In fact, from the related results, it is concluded that the uncertainty relation of the coherent and associated squeezed states is the same
Born's reciprocity principle in stochastic phase space
International Nuclear Information System (INIS)
Prugovecki, E.
1981-01-01
It is shown that the application of Born's reciprocity principle to relativistic quantum mechanics in stochastic phase space (by the requirement that the proper wave functions of extended particles satisfy the Born-Lande as well as the Klein-Gordon equation) leads to the unique determination of these functions for any given value of their rms radius. The resulting particle propagators display not only Lorentz but also reciprocal invariance. This feature remains true even in the case of mass-zero particles, such as photons, when their localization is achieved by means of extended test particles whose proper wave functions obey the reciprocity principle. (author)
Experimental Observations of Ion Phase-Space Vortices
DEFF Research Database (Denmark)
Pécseli, Hans; Armstrong, R. J.; Trulsen, J.
1981-01-01
Experimental observations of ion phase-space vortices are reported. The ion phase-space vortices form in the region of heated ions behind electrostatic ion acoustic shocks. The results are in qualitative agreement with numerical and analytic studies....
Space Transportation Engine Program (STEP), phase B
1990-01-01
The Space Transportation Engine Program (STEP) Phase 2 effort includes preliminary design and activities plan preparation that will allow smooth and time transition into a Prototype Phase and then into Phases 3, 4, and 5. A Concurrent Engineering approach using Total Quality Management (TQM) techniques, is being applied to define an oxygen-hydrogen engine. The baseline from Phase 1/1' studies was used as a point of departure for trade studies and analyses. Existing STME system models are being enhanced as more detailed module/component characteristics are determined. Preliminary designs for the open expander, closed expander, and gas generator cycles were prepared, and recommendations for cycle selection made at the Design Concept Review (DCR). As a result of July '90 DCR, and information subsequently supplied to the Technical Review Team, a gas generator cycle was selected. Results of the various Advanced Development Programs (ADP's) for the Advanced Launch Systems (ALS) were contributive to this effort. An active vehicle integration effort is supplying the NASA, Air Force, and vehicle contractors with engine parameters and data, and flowing down appropriate vehicle requirements. Engine design and analysis trade studies are being documented in a data base that was developed and is being used to organize information. To date, seventy four trade studies were input to the data base.
Tomographic Measurements of Longitudinal Phase Space Density
Hancock, S; McIntosh, E; Metcalf, M
1999-01-01
Tomography : the reconstruction of a two-dimensional image from a series of its one-dimensional projections is now a very broad topic with a wealth of algorithms for the reconstruction of both qualitative and quantitative images. One of the simplest algorithms has been modified to take into account the non-linearity of large-amplitude synchrotron motion in a particle accelerator. This permits the accurate reconstruction of longitudinal phase space density from one-dimensional bunch profile data. The algorithm was developed in Mathematica TM in order to exploit the extensive built-in functions and graphics. Subsequently, it has been recoded in Fortran 90 with the aim of reducing the execution time by at least a factor of one hundred. The choice of Fortran 90 was governed by the desire ultimately to exploit parallel architectures, but sequential compilation and execution have already largely yielded the required gain in speed. The use of the method to produce longitudinal phase space plots, animated sequences o...
The Quantum Space Phase Transitions for Particles and Force Fields
Directory of Open Access Journals (Sweden)
Chung D.-Y.
2006-07-01
Full Text Available We introduce a phenomenological formalism in which the space structure is treated in terms of attachment space and detachment space. Attachment space attaches to an object, while detachment space detaches from the object. The combination of these spaces results in three quantum space phases: binary partition space, miscible space and binary lattice space. Binary lattice space consists of repetitive units of alternative attachment space and detachment space. In miscible space, attachment space is miscible to detachment space, and there is no separation between attachment space and detachment spaces. In binary partition space, detachment space and attachment space are in two separat continuous regions. The transition from wavefunction to the collapse of wavefuction under interference becomes the quantum space phase transition from binary lattice space to miscible space. At extremely conditions, the gauge boson force field undergoes a quantum space phase transition to a "hedge boson force field", consisting of a "vacuum" core surrounded by a hedge boson shell, like a bubble with boundary.
Phase-space networks of geometrically frustrated systems.
Han, Yilong
2009-11-01
We illustrate a network approach to the phase-space study by using two geometrical frustration models: antiferromagnet on triangular lattice and square ice. Their highly degenerated ground states are mapped as discrete networks such that the quantitative network analysis can be applied to phase-space studies. The resulting phase spaces share some comon features and establish a class of complex networks with unique Gaussian spectral densities. Although phase-space networks are heterogeneously connected, the systems are still ergodic due to the random Poisson processes. This network approach can be generalized to phase spaces of some other complex systems.
Optimal observables and phase-space ambiguities
International Nuclear Information System (INIS)
Nachtmann, O.; Nagel, F.
2005-01-01
Optimal observables are known to lead to minimal statistical errors on parameters for a given normalised event distribution of a physics reaction. Thereby all statistical correlations are taken into account. Therefore, on the one hand they are a useful tool to extract values on a set of parameters from measured data. On the other hand one can calculate the minimal constraints on these parameters achievable by any data-analysis method for the specific reaction. In case the final states can be reconstructed without ambiguities optimal observables have a particularly simple form. We give explicit formulae for the optimal observables for generic reactions in case of ambiguities in the reconstruction of the final state and for general parameterisation of the final-state phase space. (orig.)
Semiclassical scar functions in phase space
International Nuclear Information System (INIS)
Rivas, Alejandro M F
2007-01-01
We develop a semiclassical approximation for the scar function in the Weyl-Wigner representation in the neighborhood of a classically unstable periodic orbit of chaotic two-dimensional systems. The prediction of hyperbolic fringes, asymptotic to the stable and unstable manifolds, is verified computationally for a (linear) cat map, after the theory is adapted to a discrete phase space appropriate to a quantized torus. Characteristic fringe patterns can be distinguished even for quasi-energies where the fixed point is not Bohr-quantized. Also the patterns are highly localized in the neighborhood of the periodic orbit and along its stable and unstable manifolds without any long distance patterns that appear for the case of the spectral Wigner function
Securing Data for Space Communications, Phase I
National Aeronautics and Space Administration — NASA's vision of data exchange between space and ground nodes would involve the space network accessing public infrastructure such as the internet. Hence, advanced...
Space Plastic Recycling System, Phase I
National Aeronautics and Space Administration — Techshot's proposed Space Plastic Recycler (SPR) is an automated closed loop plastic recycling system that allows the automated conversion of disposable ISS...
Phase-space formalism: Operational calculus and solution of evolution equations in phase-space
International Nuclear Information System (INIS)
Dattoli, G.; Torre, A.
1995-05-01
Phase-space formulation of physical problems offers conceptual and practical advantages. A class of evolution type equations, describing the time behaviour of a physical system, using an operational formalism useful to handle time ordering problems has been described. The methods proposed generalize the algebraic ordering techniques developed to deal with the ordinary Schroedinger equation, and how they are taylored suited to treat evolution problems both in classical and quantum dynamics has been studied
Titanium Loop Heat Pipes for Space Nuclear Radiators, Phase I
National Aeronautics and Space Administration — This Small Business Innovation Research Phase I project will develop titanium Loop Heat Pipes (LHPs) that can be used in low-mass space nuclear radiators, such as...
On phase-space representations of quantum mechanics using
Indian Academy of Sciences (India)
space representations of quantum mechanics using Glauber coherent states. DIÓGENES CAMPOS. Research Article Volume 87 Issue 2 August ... Keywords. Phase-space quantum mechanics, coherent states, Husimi function, Wigner function ...
Overview of Phase Space Manipulations of Relativistic Electron Beams
Energy Technology Data Exchange (ETDEWEB)
Xiang, Dao; /SLAC
2012-08-31
Phase space manipulation is a process to rearrange beam's distribution in 6-D phase space. In this paper, we give an overview of the techniques for tailoring beam distribution in 2D, 4D, and 6D phase space to meet the requirements of various applications. These techniques become a new focus of accelerator physics R&D and very likely these advanced concepts will open up new opportunities in advanced accelerators and the science enabled by them.
Overview of Phase Space Manipulations of Relativistic Electron Beams
International Nuclear Information System (INIS)
Xiang, Dao
2012-01-01
Phase space manipulation is a process to rearrange beam's distribution in 6-D phase space. In this paper, we give an overview of the techniques for tailoring beam distribution in 2D, 4D, and 6D phase space to meet the requirements of various applications. These techniques become a new focus of accelerator physics R and D and very likely these advanced concepts will open up new opportunities in advanced accelerators and the science enabled by them.
Phase-space topography characterization of nonlinear ultrasound waveforms.
Dehghan-Niri, Ehsan; Al-Beer, Helem
2018-03-01
Fundamental understanding of ultrasound interaction with material discontinuities having closed interfaces has many engineering applications such as nondestructive evaluation of defects like kissing bonds and cracks in critical structural and mechanical components. In this paper, to analyze the acoustic field nonlinearities due to defects with closed interfaces, the use of a common technique in nonlinear physics, based on a phase-space topography construction of ultrasound waveform, is proposed. The central idea is to complement the "time" and "frequency" domain analyses with the "phase-space" domain analysis of nonlinear ultrasound waveforms. A nonlinear time series method known as pseudo phase-space topography construction is used to construct equivalent phase-space portrait of measured ultrasound waveforms. Several nonlinear models are considered to numerically simulate nonlinear ultrasound waveforms. The phase-space response of the simulated waveforms is shown to provide different topographic information, while the frequency domain shows similar spectral behavior. Thus, model classification can be substantially enhanced in the phase-space domain. Experimental results on high strength aluminum samples show that the phase-space transformation provides a unique detection and classification capabilities. The Poincaré map of the phase-space domain is also used to better understand the nonlinear behavior of ultrasound waveforms. It is shown that the analysis of ultrasound nonlinearities is more convenient and informative in the phase-space domain than in the frequency domain. Copyright © 2017 Elsevier B.V. All rights reserved.
Space Radiation Intelligence System (SPRINTS), Phase I
National Aeronautics and Space Administration — NextGen Federal Systems proposes an innovative SPace Radiation INTelligence System (SPRINTS) which provides an interactive and web-delivered capability that...
Matter fields in curved space-time
International Nuclear Information System (INIS)
Viet, Nguyen Ai; Wali, Kameshwar C.
2000-01-01
We study the geometry of a two-sheeted space-time within the framework of non-commutative geometry. As a prelude to the Standard Model in curved space-time, we present a model of a left- and a right- chiral field living on the two sheeted-space time and construct the action functionals that describe their interactions
Phase-space dynamics of Bianchi IX cosmological models
International Nuclear Information System (INIS)
Soares, I.D.
1985-01-01
The complex phase-space dynamical behaviour of a class of Biachi IX cosmological models is discussed, as the chaotic gravitational collapse due Poincare's homoclinic phenomena, and the n-furcation of periodic orbits and tori in the phase space of the models. Poincare maps which show this behaviour are constructed merically and applications are discussed. (Author) [pt
Kinetic theory in maximal-acceleration invariant phase space
International Nuclear Information System (INIS)
Brandt, H.E.
1989-01-01
A vanishing directional derivative of a scalar field along particle trajectories in maximal acceleration invariant phase space is identical in form to the ordinary covariant Vlasov equation in curved spacetime in the presence of both gravitational and nongravitational forces. A natural foundation is thereby provided for a covariant kinetic theory of particles in maximal-acceleration invariant phase space. (orig.)
The Bohr-Heisenberg correspondence principle viewed from phase space
DEFF Research Database (Denmark)
Dahl, Jens Peder
2002-01-01
Phase-space representations play an increasingly important role in several branches of physics. Here, we review the author's studies of the Bohr-Heisenberg correspondence principle within the Weyl-Wigner phase-space representation. The analysis leads to refined correspondence rules that can...
Microcanonical rates, gap times, and phase space dividing surfaces
Ezra, Gregory S.; Waalkens, Holger; Wiggins, Stephen
2009-01-01
The general approach to classical unimolecular reaction rates due to Thiele is revisited in light of recent advances in the phase space formulation of transition state theory for multidimensional systems. Key concepts, such as the phase space dividing surface separating reactants from products, the
Beam envelope profile of non-centrosymmetric polygonal phase space
International Nuclear Information System (INIS)
Chen Yinbao; Xie Xi
1984-01-01
The general theory of beam envelope profile of non-centrosymmetric polygonal phase space is developed. By means of this theory the beam envelope profile of non-centrosymmetric polygonal phase space can be calculated directly. An example is carried out in detail to show the practical application of the theory
Graphene for Expandable Space Structures, Phase I
National Aeronautics and Space Administration — Graphene's tightly bonded impermeable single atomic layer of carbon offers unrivalled potential for lightweight flexible gas barrier applications. Graphene has been...
Universal Space IP Transparent Proxy, Phase II
National Aeronautics and Space Administration — Communications applications are strategically moving toward Internet Protocol-based architectures and technologies. Despite IP's huge potential, (e.g. cost...
Quantum mechanics in coherent algebras on phase space
International Nuclear Information System (INIS)
Lesche, B.; Seligman, T.H.
1986-01-01
Quantum mechanics is formulated on a quantum mechanical phase space. The algebra of observables and states is represented by an algebra of functions on phase space that fulfills a certain coherence condition, expressing the quantum mechanical superposition principle. The trace operation is an integration over phase space. In the case where the canonical variables independently run from -infinity to +infinity the formalism reduces to the representation of quantum mechanics by Wigner distributions. However, the notion of coherent algebras allows to apply the formalism to spaces for which the Wigner mapping is not known. Quantum mechanics of a particle in a plane in polar coordinates is discussed as an example. (author)
A new type of phase-space path integral
International Nuclear Information System (INIS)
Marinov, M.S.
1991-01-01
Evolution of Wigner's quasi-distribution of a quantum system is represented by means of a path integral in phase space. Instead of the Hamiltonian action, a new functional is present in the integral, and its extrema in the functional space are also given by the classical trajectories. The phase-space paths appear in the integral with real weights, so complex integrals are not necessary. The semiclassical approximation and some applications are discussed briefly. (orig.)
Real-space Berry phases: Skyrmion soccer (invited)
Everschor-Sitte, Karin; Sitte, Matthias
2014-05-01
Berry phases occur when a system adiabatically evolves along a closed curve in parameter space. This tutorial-like article focuses on Berry phases accumulated in real space. In particular, we consider the situation where an electron traverses a smooth magnetic structure, while its magnetic moment adjusts to the local magnetization direction. Mapping the adiabatic physics to an effective problem in terms of emergent fields reveals that certain magnetic textures, skyrmions, are tailormade to study these Berry phase effects.
Real-space Berry phases: Skyrmion soccer (invited)
Energy Technology Data Exchange (ETDEWEB)
Everschor-Sitte, Karin, E-mail: karin@physics.utexas.edu; Sitte, Matthias [The University of Texas at Austin, Department of Physics, 2515 Speedway, Austin, Texas 78712 (United States)
2014-05-07
Berry phases occur when a system adiabatically evolves along a closed curve in parameter space. This tutorial-like article focuses on Berry phases accumulated in real space. In particular, we consider the situation where an electron traverses a smooth magnetic structure, while its magnetic moment adjusts to the local magnetization direction. Mapping the adiabatic physics to an effective problem in terms of emergent fields reveals that certain magnetic textures, skyrmions, are tailormade to study these Berry phase effects.
Real-space Berry phases: Skyrmion soccer (invited)
International Nuclear Information System (INIS)
Everschor-Sitte, Karin; Sitte, Matthias
2014-01-01
Berry phases occur when a system adiabatically evolves along a closed curve in parameter space. This tutorial-like article focuses on Berry phases accumulated in real space. In particular, we consider the situation where an electron traverses a smooth magnetic structure, while its magnetic moment adjusts to the local magnetization direction. Mapping the adiabatic physics to an effective problem in terms of emergent fields reveals that certain magnetic textures, skyrmions, are tailormade to study these Berry phase effects
Modular Actuators for Space Applications, Phase I
National Aeronautics and Space Administration — Rocketstar Robotics is proposing the development of a modern dual drive actuator. Rocketstar has put together numerous modern concepts for modular actuators that...
Deep Space Cryocooler System (DSCS), Phase I
National Aeronautics and Space Administration — As NASA missions continue to extend the horizon beyond near-Earth missions, higher performance systems must evolve to address the challenges of reduced power...
Dimensionally Stable Structural Space Cable, Phase I
National Aeronautics and Space Administration — In response to the need for an affordable exoplanet-analysis science mission, NASA has recently embarked on the ROSES Technology Development for Exoplanet Missions...
Deep Space Cryogenic Power Electronics, Phase I
National Aeronautics and Space Administration — Technology Application, Inc. (TAI) is proposing to demonstrate feasibility of implementing silicon germanium (SiGe) strained-gate technology in the power...
Long Duration Space Shelter Shielding, Phase I
National Aeronautics and Space Administration — Physical Sciences Inc. (PSI) has developed fiber reinforced ceramic composites for radiation shielding that can be used for external walls in long duration manned...
Study on a phase space representation of quantum theory
International Nuclear Information System (INIS)
Ranaivoson, R.T.R; Raoelina Andriambololona; Hanitriarivo, R.; Raboanary, R.
2013-01-01
A study on a method for the establishment of a phase space representation of quantum theory is presented. The approach utilizes the properties of Gaussian distribution, the properties of Hermite polynomials, Fourier analysis and the current formulation of quantum mechanics which is based on the use of Hilbert space and linear operators theory. Phase space representation of quantum states and wave functions in phase space are introduced using properties of a set of functions called harmonic Gaussian functions. Then, new operators called dispersion operators are defined and identified as the operators which admit as eigenstates the basis states of the phase space representation. Generalization of the approach for multidimensional cases is shown. Examples of applications are given.
Phase space model for transmission of light beam
International Nuclear Information System (INIS)
Fu Shinian
1989-01-01
Based on Fermat's principle of ray optics, the Hamiltonian of an optical ray is derived by comparison with classical mechanics. A phase space model of light beam is proposed, assuming that the light beam, regarded as a group of rays, can be described by an ellipse in the μ-phase space. Therefore, the transmission of light beam is represented by the phase space matrix transformation. By means of this non-wave formulation, the same results are obtained as those from wave equation such as Kogelnik's ABCD law. As an example of the application on this model, the matching problem of optical cavity is solved
Wigner Functions for the Bateman System on Noncommutative Phase Space
Heng, Tai-Hua; Lin, Bing-Sheng; Jing, Si-Cong
2010-09-01
We study an important dissipation system, i.e. the Bateman model on noncommutative phase space. Using the method of deformation quantization, we calculate the Exp functions, and then derive the Wigner functions and the corresponding energy spectra.
Wigner Functions for the Bateman System on Noncommutative Phase Space
International Nuclear Information System (INIS)
Tai-Hua, Heng; Bing-Sheng, Lin; Si-Cong, Jing
2010-01-01
We study an important dissipation system, i.e. the Bateman model on noncommutative phase space. Using the method of deformation quantization, we calculate the Exp functions, and then derive the Wigner functions and the corresponding energy spectra
Thermo-Acoustic Convertor for Space Power, Phase II
National Aeronautics and Space Administration — In Phase Sunpower looked at Thermoacoustic Stirling Heat Engines (TASHEs). These ranged from a TASHE which was sized for the heat from a single General Purpose Heat...
Phase space descriptions for simplicial 4D geometries
International Nuclear Information System (INIS)
Dittrich, Bianca; Ryan, James P
2011-01-01
Starting from the canonical phase space for discretized (4D) BF theory, we implement a canonical version of the simplicity constraints and construct phase spaces for simplicial geometries. Our construction allows us to study the connection between different versions of Regge calculus and approaches using connection variables, such as loop quantum gravity. We find that on a fixed triangulation the (gauge invariant) phase space associated with loop quantum gravity is genuinely larger than the one for length and even area Regge calculus. Rather, it corresponds to the phase space of area-angle Regge calculus, as defined in [1] (prior to the imposition of gluing constraints, which ensure the metricity of the triangulation). Finally, we show that for a subclass of triangulations one can construct first-class Hamiltonian and diffeomorphism constraints leading to flat 4D spacetimes.
Wigner distribution, partial coherence, and phase-space optics
Bastiaans, M.J.
2009-01-01
The Wigner distribution is presented as a perfect means to treat partially coherent optical signals and their propagation through first-order optical systems from a radiometric and phase-space optical perspective
The Wigner phase-space description of collision processes
International Nuclear Information System (INIS)
Lee, H.W.
1984-01-01
The paper concerns the Wigner distribution function in collision theory. Wigner phase-space description of collision processes; some general consideration on Wigner trajectories; and examples of Wigner trajectories; are all discussed. (U.K.)
Phase-space distributions and orbital angular momentum
Directory of Open Access Journals (Sweden)
Pasquini B.
2014-06-01
Full Text Available We review the concept of Wigner distributions to describe the phase-space distributions of quarks in the nucleon, emphasizing the information encoded in these functions about the quark orbital angular momentum.
Phase space overpopulation at CERN and possible explanations
International Nuclear Information System (INIS)
Pratt, S.
1998-01-01
By combining information from correlations from Pb+Pb collisions at CERN, one comes to the conclusion that pionic phase space is significantly overpopulated compared to expectations based on chemical equilibrium. A variety of explanations will be addressed. (author)
Path integrals over phase space, their definition and simple properties
International Nuclear Information System (INIS)
Tarski, J.; Technische Univ. Clausthal, Clausthal-Zellerfeld
1981-10-01
Path integrals over phase space are defined in two ways. Some properties of these integrals are established. These properties concern the technique of integration and the quantization rule isup(-I)deltasub(q) p. (author)
Space-Ready Advanced Imaging System, Phase II
National Aeronautics and Space Administration — In this Phase II effort Toyon will increase the state-of-the-art for video/image systems. This will include digital image compression algorithms as well as system...
Joining Silicon Carbide Components for Space Propulsion, Phase I
National Aeronautics and Space Administration — This SBIR Phase I program will identify the joining materials and demonstrate the processes that are suited for construction of advanced ceramic matrix composite...
Simulating Nonlinear Dynamics of Deployable Space Structures, Phase I
National Aeronautics and Space Administration — To support NASA's vital interest in developing much larger solar array structures over the next 20 years, MotionPort LLC's Phase I SBIR project will strengthen...
An extensive phase space for the potential martian biosphere.
Jones, Eriita G; Lineweaver, Charles H; Clarke, Jonathan D
2011-12-01
We present a comprehensive model of martian pressure-temperature (P-T) phase space and compare it with that of Earth. Martian P-T conditions compatible with liquid water extend to a depth of ∼310 km. We use our phase space model of Mars and of terrestrial life to estimate the depths and extent of the water on Mars that is habitable for terrestrial life. We find an extensive overlap between inhabited terrestrial phase space and martian phase space. The lower martian surface temperatures and shallower martian geotherm suggest that, if there is a hot deep biosphere on Mars, it could extend 7 times deeper than the ∼5 km depth of the hot deep terrestrial biosphere in the crust inhabited by hyperthermophilic chemolithotrophs. This corresponds to ∼3.2% of the volume of present-day Mars being potentially habitable for terrestrial-like life.
Explaining Gibbsean phase space to second year students
International Nuclear Information System (INIS)
Vesely, Franz J
2005-01-01
A new approach to teaching introductory statistical physics is presented. We recommend making extensive use of the fact that even systems with a very few degrees of freedom may display chaotic behaviour. This permits a didactic 'bottom-up' approach, starting out with toy systems whose phase space may be depicted on a screen or blackboard, then proceeding to ever higher dimensions in Gibbsean phase space
Wigner function and Schroedinger equation in phase-space representation
International Nuclear Information System (INIS)
Chruscinski, Dariusz; Mlodawski, Krzysztof
2005-01-01
We discuss a family of quasidistributions (s-ordered Wigner functions of Agarwal and Wolf [Phys. Rev. D 2, 2161 (1970); Phys. Rev. D 2, 2187 (1970); Phys. Rev. D 2, 2206 (1970)]) and its connection to the so-called phase space representation of the Schroedinger equation. It turns out that although Wigner functions satisfy the Schroedinger equation in phase space, they have a completely different interpretation
Controlling quantum interference in phase space with amplitude
Xue, Yinghong; Li, Tingyu; Kasai, Katsuyuki; Okada-Shudo, Yoshiko; Watanabe, Masayoshi; Zhang, Yun
2017-01-01
We experimentally show a quantum interference in phase space by interrogating photon number probabilities (n?=?2, 3, and 4) of a displaced squeezed state, which is generated by an optical parametric amplifier and whose displacement is controlled by amplitude of injected coherent light. It is found that the probabilities exhibit oscillations of interference effect depending upon the amplitude of the controlling light field. This phenomenon is attributed to quantum interference in phase space a...
On quantum mechanical phase-space wave functions
DEFF Research Database (Denmark)
Wlodarz, Joachim J.
1994-01-01
An approach to quantum mechanics based on the notion of a phase-space wave function is proposed within the Weyl-Wigner-Moyal representation. It is shown that the Schrodinger equation for the phase-space wave function is equivalent to the quantum Liouville equation for the Wigner distribution...... function. The relationship to the recent results by Torres-Vega and Frederick [J. Chem. Phys. 98, 3103 (1993)] is also discussed....
Group theoretical construction of planar noncommutative phase spaces
Energy Technology Data Exchange (ETDEWEB)
Ngendakumana, Ancille, E-mail: nancille@yahoo.fr; Todjihoundé, Leonard, E-mail: leonardt@imsp.uac.org [Institut de Mathématiques et des Sciences Physiques (IMSP), Porto-Novo (Benin); Nzotungicimpaye, Joachim, E-mail: kimpaye@kie.ac.rw [Kigali Institute of Education (KIE), Kigali (Rwanda)
2014-01-15
Noncommutative phase spaces are generated and classified in the framework of centrally extended anisotropic planar kinematical Lie groups as well as in the framework of noncentrally abelian extended planar absolute time Lie groups. Through these constructions the coordinates of the phase spaces do not commute due to the presence of naturally introduced fields giving rise to minimal couplings. By symplectic realizations methods, physical interpretations of generators coming from the obtained structures are given.
Group theoretical construction of planar noncommutative phase spaces
International Nuclear Information System (INIS)
Ngendakumana, Ancille; Todjihoundé, Leonard; Nzotungicimpaye, Joachim
2014-01-01
Noncommutative phase spaces are generated and classified in the framework of centrally extended anisotropic planar kinematical Lie groups as well as in the framework of noncentrally abelian extended planar absolute time Lie groups. Through these constructions the coordinates of the phase spaces do not commute due to the presence of naturally introduced fields giving rise to minimal couplings. By symplectic realizations methods, physical interpretations of generators coming from the obtained structures are given
Elementary particles and emergent phase space
Zenczykowski, Piotr
2014-01-01
The Standard Model of elementary particles, although very successful, contains various elements that are put in by hand. Understanding their origin requires going beyond the model and searching for ""new physics"". The present book elaborates on one particular proposal concerning such physics. While the original conception is 50 years old, it has not lost its appeal over time. Its basic idea is that space - an arena of events treated in the Standard Model as a classical background - is a concept which emerges from a strictly discrete quantum layer in the limit of large quantum numbers. This bo
About the phase space of SL(3) black holes
Energy Technology Data Exchange (ETDEWEB)
Cabo-Bizet, Alejandro [SISSA and INFN, Via Bonomea 265, 34128 Trieste (Italy); Giraldo-Rivera, V.I. [SISSA and INFN, Via Bonomea 265, 34128 Trieste (Italy); ICTP, Strada Costiera 11, 34014 Trieste (Italy)
2015-03-17
In this note we address some issues of recent interest, related to the asymptotic symmetry algebra of higher spin black holes in sl(3,ℝ)×sl(3,ℝ) Chern Simons (CS) formulation. We compute the fixed time Dirac bracket algebra that acts on two different phase spaces. Both of these spaces contain black holes as zero modes. The result for one of these phase spaces is explicitly shown to be isomorphic to W{sub 3}{sup (2)}×W{sub 3}{sup (2)} in first order perturbations.
Using the Phase Space to Design Complexity
DEFF Research Database (Denmark)
Heinrich, Mary Katherine; Ayres, Phil
2016-01-01
Architecture that is responsive, adaptive, or interactive can contain active architectural elements or robotic sensor-actuator systems. The consideration of architectural robotic elements that utilize distributed control and distributed communication allows for self-organization, emergence...... with materializations left by robot swarms or elements, rather than robots' internal states. We detail a case study examination of design methodology using the formation space concept for assessment and decision-making in the design of active architectural artifacts......., and evolution on site in real-time. The potential complexity of behaviors in such architectural robotic systems requires design methodology able to encompass a range of possible outcomes, rather than a single solution. We present an approach of adopting an aspect of complexity science and applying...
Quantum mechanics in curved space-time and its consequences for the theory on the flat space-time
International Nuclear Information System (INIS)
Tagirov, E.A.
1997-01-01
Thus, the structure is extracted from the initial general-relativistic setting of the quantum theory of the scalar field φ that can be considered as quantum mechanics in V 1,3 in the Schroedinger picture, which includes relativistic corrections not only in the Hamiltonian of the Schroedinger equation but also in the operators of primary observables. In the terms pertaining to these corrections the operators differ from their counterparts resulting from quantization of a classical spinless particle. In general, they do not commute at all and thus the quantum phase space loses the feature that half its coordinates retain a manifold structure, which Biedenharn called 'a miracle of quantization'. This non-commutativity expands up to the exact (in the sense 'non-asymptotic in c -2 ') quantum mechanics of a free motion in the Minkowski space-time if curvilinear coordinates are taken as observables, which are necessary if non-inertial frames of references are considered
Inflationary universe in deformed phase space scenario
Rasouli, S. M. M.; Saba, Nasim; Farhoudi, Mehrdad; Marto, João; Moniz, P. V.
2018-06-01
We consider a noncommutative (NC) inflationary model with a homogeneous scalar field minimally coupled to gravity. The particular NC inflationary setting herein proposed, produces entirely new consequences as summarized in what follows. We first analyze the free field case and subsequently examine the situation where the scalar field is subjected to a polynomial and exponential potentials. We propose to use a canonical deformation between momenta, in a spatially flat Friedmann-Lemaî tre-Robertson-Walker (FLRW) universe, and while the Friedmann equation (Hamiltonian constraint) remains unaffected the Friedmann acceleration equation (and thus the Klein-Gordon equation) is modified by an extra term linear in the NC parameter. This concrete noncommutativity on the momenta allows interesting dynamics that other NC models seem not to allow. Let us be more precise. This extra term behaves as the sole explicit pressure that under the right circumstances implies a period of accelerated expansion of the universe. We find that in the absence of the scalar field potential, and in contrast with the commutative case, in which the scale factor always decelerates, we obtain an inflationary phase for small negative values of the NC parameter. Subsequently, the period of accelerated expansion is smoothly replaced by an appropriate deceleration phase providing an interesting model regarding the graceful exit problem in inflationary models. This last property is present either in the free field case or under the influence of the scalar field potentials considered here. Moreover, in the case of the free scalar field, we show that not only the horizon problem is solved but also there is some resemblance between the evolution equation of the scale factor associated to our model and that for the R2 (Starobinsky) inflationary model. Therefore, our herein NC model not only can be taken as an appropriate scenario to get a successful kinetic inflation, but also is a convenient setting to
Coordinate, Momentum and Dispersion operators in Phase space representation
International Nuclear Information System (INIS)
Rakotoson, H.; Raoelina Andriambololona; Ranaivoson, R.T.R.; Raboanary, R.
2017-07-01
The aim of this paper is to present a study on the representations of coordinate, momentum and dispersion operators in the framework of a phase space representation of quantum mechanics that we have introduced and studied in previous works. We begin in the introduction section with a recall about the concept of representation of operators on wave function spaces. Then, we show that in the case of the phase space representation the coordinate and momentum operators can be represented either with differential operators or with matrices. The explicit expressions of both the differential operators and matrices representations are established. Multidimensional generalization of the obtained results are performed and phase space representation of dispersion operators are given.
Hamiltonian flow over saddles for exploring molecular phase space structures
Farantos, Stavros C.
2018-03-01
Despite using potential energy surfaces, multivariable functions on molecular configuration space, to comprehend chemical dynamics for decades, the real happenings in molecules occur in phase space, in which the states of a classical dynamical system are completely determined by the coordinates and their conjugate momenta. Theoretical and numerical results are presented, employing alanine dipeptide as a model system, to support the view that geometrical structures in phase space dictate the dynamics of molecules, the fingerprints of which are traced by following the Hamiltonian flow above saddles. By properly selecting initial conditions in alanine dipeptide, we have found internally free rotor trajectories the existence of which can only be justified in a phase space perspective. This article is part of the theme issue `Modern theoretical chemistry'.
Source reconstruction using phase space beam summation technique
International Nuclear Information System (INIS)
Graubart, Gideon.
1990-10-01
In this work, the phase-space beam summation technique (PSBS), is applied to back propagation and inverse source problems. The PSBS expresses the field as a superposition of shifted and tilted beams. This phase space spectrum of beams is matched to the source distribution via an amplitude function which expresses the local spectrum of the source function in terms of a local Fourier transform. In this work, the emphasis is on the phase space processing of the data, on the information content of this data and on the back propagation scheme. More work is still required to combine this back propagation approach in a full, multi experiment inverse scattering scheme. It is shown that the phase space distribution of the data, computed via the local spectrum transform, is localized along lines that define the local arrival direction of the wave data. We explore how the choice of the beam width affects the compactification of this distribution, and derive criteria for choosing a window that optimizes this distribution. It should be emphasized that compact distribution implies fewer beams in the back propagation scheme and therefore higher numerical efficiency and better physical insight. Furthermore it is shown how the local information property of the phase space representation can be used to improve the performance of this simple back propagation problem, in particular with regard to axial resolution; the distance to the source can be determined by back propagating only the large angle phase space beams that focus on the source. The information concerning transverse distribution of the source, on the other hand, is contained in the axial phase space region and can therefore be determined by the corresponding back propagating beams. Because of the global nature of the plane waves propagators the conventional plane wave back propagation scheme does not have the same 'focusing' property, and therefore suffers from lack of information localization and axial resolution. The
Quantum de Finetti theorem in phase-space representation
International Nuclear Information System (INIS)
Leverrier, Anthony; Cerf, Nicolas J.
2009-01-01
The quantum versions of de Finetti's theorem derived so far express the convergence of n-partite symmetric states, i.e., states that are invariant under permutations of their n parties, toward probabilistic mixtures of independent and identically distributed (IID) states of the form σ xn . Unfortunately, these theorems only hold in finite-dimensional Hilbert spaces, and their direct generalization to infinite-dimensional Hilbert spaces is known to fail. Here, we address this problem by considering invariance under orthogonal transformations in phase space instead of permutations in state space, which leads to a quantum de Finetti theorem particularly relevant to continuous-variable systems. Specifically, an n-mode bosonic state that is invariant with respect to this continuous symmetry in phase space is proven to converge toward a probabilistic mixture of IID Gaussian states (actually, n identical thermal states).
Phase space treatment of optical beams
International Nuclear Information System (INIS)
Nemes, G.; Teodorescu, I.E.; Nemes, M.
1984-01-01
The lecture reveals the possibility of treating optical beams and systems using the PS concept. In the first part some well-known concepts and results of charged particle optics are applied to optical beam and systems. Attention is paid to the PSE concept as to beina a beam invariant according to Liouville's theorem. In the second part some simple optical sources, their PSE and their transforms through simple optical elements are theoretically presented. An experimental method and a device for PSE measurements are presented in the third part. In the fourth part the main problems of the linear system theory which were applied to electrical circuits in the time (or freo.uency) domain and to optical systems in the bidimensional space of spatial coordinates (or spatial frequencies) are applied to stigmatic optical systems in the bidimensional PS (spatial coordinate, angle). Some examples of applying PS concepts in optics are presented in the fifth part. The lecture is mainly based on original results some of them being previously unpublished. (authors)
Phase space eigenfunctions of multidimensional quadratic Hamiltonians
International Nuclear Information System (INIS)
Dodonov, V.V.; Man'ko, V.I.
1986-01-01
We obtain the explicit expressions for phace space eigenfunctions (PSE),i.e. Weyl's symbols of dyadic operators like vertical stroken> ,vertical strokem>, being the solution of the Schroedinger equation with the Hamiltonian which is a quite arbitrary multidimensional quadratic form of the operators of Cartesian coordinates and conjugated to them momenta with time-dependent coefficients. It is shown that for an arbitrary quadratic Hamiltonian one can always construct the set of completely factorized PSE which are products of N factors, each factor being dependent only on two arguments for nnot=m and on a single argument for n=m. These arguments are nothing but constants of motion of the correspondent classical system. PSE are expressed in terms of the associated Laguerre polynomials in the case of a discrete spectrum and in terms of the Airy functions in the continuous spectrum case. Three examples are considered: a harmonic oscillator with a time-dependent frequency, a charged particle in a nonstationary uniform magnetic field, and a particle in a time-dependent uniform potential field. (orig.)
Intelligent Monte Carlo phase-space division and importance estimation
International Nuclear Information System (INIS)
Booth, T.E.
1989-01-01
Two years ago, a quasi-deterministic method (QD) for obtaining the Monte Carlo importance function was reported. Since then, a number of very complex problems have been solved with the aid of QD. Not only does QD estimate the importance far faster than the (weight window) generator currently in MCNP, QD requires almost no user intervention in contrast to the generator. However, both the generator and QD require the user to divide the phase-space into importance regions. That is, both methods will estimate the importance of a phase-space region, but the user must define the regions. In practice this is tedious and time consuming, and many users are not particularly good at defining sensible importance regions. To make full use of the fat that QD is capable of getting good importance estimates in tens of thousands of phase-space regions relatively easily, some automatic method for dividing the phase space will be useful and perhaps essential. This paper describes recent progress toward an automatic and intelligent phase-space divider
Diffeomorphisms as symplectomorphisms in history phase space: Bosonic string model
International Nuclear Information System (INIS)
Kouletsis, I.; Kuchar, K.V.
2002-01-01
The structure of the history phase space G of a covariant field system and its history group (in the sense of Isham and Linden) is analyzed on an example of a bosonic string. The history space G includes the time map T from the spacetime manifold (the two-sheet) Y to a one-dimensional time manifold T as one of its configuration variables. A canonical history action is posited on G such that its restriction to the configuration history space yields the familiar Polyakov action. The standard Dirac-ADM action is shown to be identical with the canonical history action, the only difference being that the underlying action is expressed in two different coordinate charts on G. The canonical history action encompasses all individual Dirac-ADM actions corresponding to different choices T of foliating Y. The history Poisson brackets of spacetime fields on G induce the ordinary Poisson brackets of spatial fields in the instantaneous phase space G 0 of the Dirac-ADM formalism. The canonical history action is manifestly invariant both under spacetime diffeomorphisms Diff Y and temporal diffeomorphisms Diff T. Both of these diffeomorphisms are explicitly represented by symplectomorphisms on the history phase space G. The resulting classical history phase space formalism is offered as a starting point for projection operator quantization and consistent histories interpretation of the bosonic string model
Phase-space evolution of x-ray coherence in phase-sensitive imaging.
Wu, Xizeng; Liu, Hong
2008-08-01
X-ray coherence evolution in the imaging process plays a key role for x-ray phase-sensitive imaging. In this work we present a phase-space formulation for the phase-sensitive imaging. The theory is reformulated in terms of the cross-spectral density and associated Wigner distribution. The phase-space formulation enables an explicit and quantitative account of partial coherence effects on phase-sensitive imaging. The presented formulas for x-ray spectral density at the detector can be used for performing accurate phase retrieval and optimizing the phase-contrast visibility. The concept of phase-space shearing length derived from this phase-space formulation clarifies the spatial coherence requirement for phase-sensitive imaging with incoherent sources. The theory has been applied to x-ray Talbot interferometric imaging as well. The peak coherence condition derived reveals new insights into three-grating-based Talbot-interferometric imaging and gratings-based x-ray dark-field imaging.
Secondary beam line phase space measurement and modeling at LAMPF
International Nuclear Information System (INIS)
Floyd, R.; Harrison, J.; Macek, R.; Sanders, G.
1979-01-01
Hardware and software have been developed for precision on-line measurement and fitting of secondary beam line phase space parameters. A system consisting of three MWPC planes for measuring particle trajectories, in coincidence with a time-of-flight telescope and a range telescope for particle identification, has been interfaced to a computer. Software has been developed for on-line track reconstruction, application of experimental cuts, and fitting of two-dimensional phase space ellipses for each particle species. The measured distributions have been found to agree well with the predictions of the Monte Carlo program DECAY TURTLE. The fitted phase space ellipses are a useful input to optimization routines, such as TRANSPORT, used to search for superior tunes. Application of this system to the LAMPF Stopped Muon Channel is described
Augmenting Phase Space Quantization to Introduce Additional Physical Effects
Robbins, Matthew P. G.
Quantum mechanics can be done using classical phase space functions and a star product. The state of the system is described by a quasi-probability distribution. A classical system can be quantized in phase space in different ways with different quasi-probability distributions and star products. A transition differential operator relates different phase space quantizations. The objective of this thesis is to introduce additional physical effects into the process of quantization by using the transition operator. As prototypical examples, we first look at the coarse-graining of the Wigner function and the damped simple harmonic oscillator. By generalizing the transition operator and star product to also be functions of the position and momentum, we show that additional physical features beyond damping and coarse-graining can be introduced into a quantum system, including the generalized uncertainty principle of quantum gravity phenomenology, driving forces, and decoherence.
Phase space view of quantum mechanical systems and Fisher information
International Nuclear Information System (INIS)
Nagy, Á.
2016-01-01
Highlights: • Phase-space Fisher information coming from the canonical distribution is derived for the ground state of quantum mechanical systems. • Quantum mechanical phase-space Fisher information contains an extra term due to the position dependence of the temperature. • A complete analogy to the classical case is demonstrated for the linear harmonic oscillator. - Abstract: Pennini and Plastino showed that the form of the Fisher information generated by the canonical distribution function reflects the intrinsic structure of classical mechanics. Now, a quantum mechanical generalization of the Pennini–Plastino theory is presented based on the thermodynamical transcription of the density functional theory. Comparing to the classical case, the phase-space Fisher information contains an extra term due to the position dependence of the temperature. However, for the special case of constant temperature, the expression derived bears resemblance to the classical one. A complete analogy to the classical case is demonstrated for the linear harmonic oscillator.
Phase space view of quantum mechanical systems and Fisher information
Energy Technology Data Exchange (ETDEWEB)
Nagy, Á., E-mail: anagy@madget.atomki.hu
2016-06-17
Highlights: • Phase-space Fisher information coming from the canonical distribution is derived for the ground state of quantum mechanical systems. • Quantum mechanical phase-space Fisher information contains an extra term due to the position dependence of the temperature. • A complete analogy to the classical case is demonstrated for the linear harmonic oscillator. - Abstract: Pennini and Plastino showed that the form of the Fisher information generated by the canonical distribution function reflects the intrinsic structure of classical mechanics. Now, a quantum mechanical generalization of the Pennini–Plastino theory is presented based on the thermodynamical transcription of the density functional theory. Comparing to the classical case, the phase-space Fisher information contains an extra term due to the position dependence of the temperature. However, for the special case of constant temperature, the expression derived bears resemblance to the classical one. A complete analogy to the classical case is demonstrated for the linear harmonic oscillator.
Quantum phase space with a basis of Wannier functions
Fang, Yuan; Wu, Fan; Wu, Biao
2018-02-01
A quantum phase space with Wannier basis is constructed: (i) classical phase space is divided into Planck cells; (ii) a complete set of Wannier functions are constructed with the combination of Kohn’s method and Löwdin method such that each Wannier function is localized at a Planck cell. With these Wannier functions one can map a wave function unitarily onto phase space. Various examples are used to illustrate our method and compare it to Wigner function. The advantage of our method is that it can smooth out the oscillations in wave functions without losing any information and is potentially a better tool in studying quantum-classical correspondence. In addition, we point out that our method can be used for time-frequency analysis of signals.
Grassmann phase space methods for fermions. II. Field theory
Energy Technology Data Exchange (ETDEWEB)
Dalton, B.J., E-mail: bdalton@swin.edu.au [Centre for Quantum and Optical Science, Swinburne University of Technology, Melbourne, Victoria 3122 (Australia); Jeffers, J. [Department of Physics, University of Strathclyde, Glasgow G4ONG (United Kingdom); Barnett, S.M. [School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ (United Kingdom)
2017-02-15
In both quantum optics and cold atom physics, the behaviour of bosonic photons and atoms is often treated using phase space methods, where mode annihilation and creation operators are represented by c-number phase space variables, with the density operator equivalent to a distribution function of these variables. The anti-commutation rules for fermion annihilation, creation operators suggests the possibility of using anti-commuting Grassmann variables to represent these operators. However, in spite of the seminal work by Cahill and Glauber and a few applications, the use of Grassmann phase space methods in quantum-atom optics to treat fermionic systems is rather rare, though fermion coherent states using Grassmann variables are widely used in particle physics. This paper presents a phase space theory for fermion systems based on distribution functionals, which replace the density operator and involve Grassmann fields representing anti-commuting fermion field annihilation, creation operators. It is an extension of a previous phase space theory paper for fermions (Paper I) based on separate modes, in which the density operator is replaced by a distribution function depending on Grassmann phase space variables which represent the mode annihilation and creation operators. This further development of the theory is important for the situation when large numbers of fermions are involved, resulting in too many modes to treat separately. Here Grassmann fields, distribution functionals, functional Fokker–Planck equations and Ito stochastic field equations are involved. Typical applications to a trapped Fermi gas of interacting spin 1/2 fermionic atoms and to multi-component Fermi gases with non-zero range interactions are presented, showing that the Ito stochastic field equations are local in these cases. For the spin 1/2 case we also show how simple solutions can be obtained both for the untrapped case and for an optical lattice trapping potential.
Grassmann phase space methods for fermions. II. Field theory
International Nuclear Information System (INIS)
Dalton, B.J.; Jeffers, J.; Barnett, S.M.
2017-01-01
In both quantum optics and cold atom physics, the behaviour of bosonic photons and atoms is often treated using phase space methods, where mode annihilation and creation operators are represented by c-number phase space variables, with the density operator equivalent to a distribution function of these variables. The anti-commutation rules for fermion annihilation, creation operators suggests the possibility of using anti-commuting Grassmann variables to represent these operators. However, in spite of the seminal work by Cahill and Glauber and a few applications, the use of Grassmann phase space methods in quantum-atom optics to treat fermionic systems is rather rare, though fermion coherent states using Grassmann variables are widely used in particle physics. This paper presents a phase space theory for fermion systems based on distribution functionals, which replace the density operator and involve Grassmann fields representing anti-commuting fermion field annihilation, creation operators. It is an extension of a previous phase space theory paper for fermions (Paper I) based on separate modes, in which the density operator is replaced by a distribution function depending on Grassmann phase space variables which represent the mode annihilation and creation operators. This further development of the theory is important for the situation when large numbers of fermions are involved, resulting in too many modes to treat separately. Here Grassmann fields, distribution functionals, functional Fokker–Planck equations and Ito stochastic field equations are involved. Typical applications to a trapped Fermi gas of interacting spin 1/2 fermionic atoms and to multi-component Fermi gases with non-zero range interactions are presented, showing that the Ito stochastic field equations are local in these cases. For the spin 1/2 case we also show how simple solutions can be obtained both for the untrapped case and for an optical lattice trapping potential.
Quantum phase space points for Wigner functions in finite-dimensional spaces
Luis Aina, Alfredo
2004-01-01
We introduce quantum states associated with single phase space points in the Wigner formalism for finite-dimensional spaces. We consider both continuous and discrete Wigner functions. This analysis provides a procedure for a direct practical observation of the Wigner functions for states and transformations without inversion formulas.
Quantum phase space points for Wigner functions in finite-dimensional spaces
International Nuclear Information System (INIS)
Luis, Alfredo
2004-01-01
We introduce quantum states associated with single phase space points in the Wigner formalism for finite-dimensional spaces. We consider both continuous and discrete Wigner functions. This analysis provides a procedure for a direct practical observation of the Wigner functions for states and transformations without inversion formulas
Multiplexed phase-space imaging for 3D fluorescence microscopy.
Liu, Hsiou-Yuan; Zhong, Jingshan; Waller, Laura
2017-06-26
Optical phase-space functions describe spatial and angular information simultaneously; examples of optical phase-space functions include light fields in ray optics and Wigner functions in wave optics. Measurement of phase-space enables digital refocusing, aberration removal and 3D reconstruction. High-resolution capture of 4D phase-space datasets is, however, challenging. Previous scanning approaches are slow, light inefficient and do not achieve diffraction-limited resolution. Here, we propose a multiplexed method that solves these problems. We use a spatial light modulator (SLM) in the pupil plane of a microscope in order to sequentially pattern multiplexed coded apertures while capturing images in real space. Then, we reconstruct the 3D fluorescence distribution of our sample by solving an inverse problem via regularized least squares with a proximal accelerated gradient descent solver. We experimentally reconstruct a 101 Megavoxel 3D volume (1010×510×500µm with NA 0.4), demonstrating improved acquisition time, light throughput and resolution compared to scanning aperture methods. Our flexible patterning scheme further allows sparsity in the sample to be exploited for reduced data capture.
Incomplete Detection of Nonclassical Phase-Space Distributions
Bohmann, M.; Tiedau, J.; Bartley, T.; Sperling, J.; Silberhorn, C.; Vogel, W.
2018-02-01
We implement the direct sampling of negative phase-space functions via unbalanced homodyne measurement using click-counting detectors. The negativities significantly certify nonclassical light in the high-loss regime using a small number of detectors which cannot resolve individual photons. We apply our method to heralded single-photon states and experimentally demonstrate the most significant certification of nonclassicality for only two detection bins. By contrast, the frequently applied Wigner function fails to directly indicate such quantum characteristics for the quantum efficiencies present in our setup without applying additional reconstruction algorithms. Therefore, we realize a robust and reliable approach to characterize nonclassical light in phase space under realistic conditions.
Neutron guide geometries for homogeneous phase space volume transformation
International Nuclear Information System (INIS)
Stüßer, N.; Bartkowiak, M.; Hofmann, T.
2014-01-01
We extend geometries for recently developed optical guide systems that perform homogeneous phase space volume transformations on neutron beams. These modules allow rotating beam directions and can simultaneously compress or expand the beam cross-section. Guide systems combining these modules offer the possibility to optimize ballistic guides with and without direct view on the source and beam splitters. All systems are designed for monochromatic beams with a given divergence. The case of multispectral beams with wavelength-dependent divergence distributions is addressed as well. - Highlights: • Form invariant volume transformation in phase space. • Geometrical approach. • Ballistic guide, beam splitter, beam bender
Relativistic Hydrogen-Like Atom on a Noncommutative Phase Space
Masum, Huseyin; Dulat, Sayipjamal; Tohti, Mutallip
2017-09-01
The energy levels of hydrogen-like atom on a noncommutative phase space were studied in the framework of relativistic quantum mechanics. The leading order corrections to energy levels 2 S 1/2, 2 P 1/2 and 2 P 3/2 were obtained by using the 𝜃 and the \\bar θ modified Dirac Hamiltonian of hydrogen-like atom on a noncommutative phase space. The degeneracy of the energy levels 2 P 1/2 and 2 P 3/2 were removed completely by 𝜃-correction. And the \\bar θ -correction shifts these energy levels.
Neutron guide geometries for homogeneous phase space volume transformation
Energy Technology Data Exchange (ETDEWEB)
Stüßer, N., E-mail: stuesser@helmholtz-berlin.de; Bartkowiak, M.; Hofmann, T.
2014-06-01
We extend geometries for recently developed optical guide systems that perform homogeneous phase space volume transformations on neutron beams. These modules allow rotating beam directions and can simultaneously compress or expand the beam cross-section. Guide systems combining these modules offer the possibility to optimize ballistic guides with and without direct view on the source and beam splitters. All systems are designed for monochromatic beams with a given divergence. The case of multispectral beams with wavelength-dependent divergence distributions is addressed as well. - Highlights: • Form invariant volume transformation in phase space. • Geometrical approach. • Ballistic guide, beam splitter, beam bender.
Relativistic algebraic spinors and quantum motions in phase space
International Nuclear Information System (INIS)
Holland, P.R.
1986-01-01
Following suggestions of Schonberg and Bohm, we study the tensorial phase space representation of the Dirac and Feynman-Gell-Mann equations in terms of the complex Dirac algebra C 4 , a Jordan-Wigner algebra G 4 , and Wigner transformations. To do this we solve the problem of the conditions under which elements in C 4 generate minimal ideals, and extend this to G 4 . This yields the linear theory of Dirac spin spaces and tensor representations of Dirac spinors, and the spin-1/2 wave equations are represented through fermionic state vectors in a higher space as a set of interconnected tensor relations
Grassmann phase space theory and the Jaynes–Cummings model
International Nuclear Information System (INIS)
Dalton, B.J.; Garraway, B.M.; Jeffers, J.; Barnett, S.M.
2013-01-01
The Jaynes–Cummings model of a two-level atom in a single mode cavity is of fundamental importance both in quantum optics and in quantum physics generally, involving the interaction of two simple quantum systems—one fermionic system (the TLA), the other bosonic (the cavity mode). Depending on the initial conditions a variety of interesting effects occur, ranging from ongoing oscillations of the atomic population difference at the Rabi frequency when the atom is excited and the cavity is in an n-photon Fock state, to collapses and revivals of these oscillations starting with the atom unexcited and the cavity mode in a coherent state. The observation of revivals for Rydberg atoms in a high-Q microwave cavity is key experimental evidence for quantisation of the EM field. Theoretical treatments of the Jaynes–Cummings model based on expanding the state vector in terms of products of atomic and n-photon states and deriving coupled equations for the amplitudes are a well-known and simple method for determining the effects. In quantum optics however, the behaviour of the bosonic quantum EM field is often treated using phase space methods, where the bosonic mode annihilation and creation operators are represented by c-number phase space variables, with the density operator represented by a distribution function of these variables. Fokker–Planck equations for the distribution function are obtained, and either used directly to determine quantities of experimental interest or used to develop c-number Langevin equations for stochastic versions of the phase space variables from which experimental quantities are obtained as stochastic averages. Phase space methods have also been developed to include atomic systems, with the atomic spin operators being represented by c-number phase space variables, and distribution functions involving these variables and those for any bosonic modes being shown to satisfy Fokker–Planck equations from which c-number Langevin equations are
Frame transforms, star products and quantum mechanics on phase space
International Nuclear Information System (INIS)
Aniello, P; Marmo, G; Man'ko, V I
2008-01-01
Using the notions of frame transform and of square integrable projective representation of a locally compact group G, we introduce a class of isometries (tight frame transforms) from the space of Hilbert-Schmidt operators in the carrier Hilbert space of the representation into the space of square integrable functions on the direct product group G x G. These transforms have remarkable properties. In particular, their ranges are reproducing kernel Hilbert spaces endowed with a suitable 'star product' which mimics, at the level of functions, the original product of operators. A 'phase space formulation' of quantum mechanics relying on the frame transforms introduced in the present paper, and the link of these maps with both the Wigner transform and the wavelet transform are discussed
International Nuclear Information System (INIS)
Pons, Josep M
2003-01-01
Relying on known results of the Noether theory of symmetries extended to constrained systems, it is shown that there exists an obstruction that prevents certain tangent-space diffeomorphisms being projectable to phase space, for generally covariant theories. This main result throws new light on the old fact that the algebra of gauge generators in the phase space of general relativity, or other generally covariant theories, only closes as a soft algebra and not as a Lie algebra. The deep relationship between these two issues is clarified. In particular, we see that the second one may be understood as a side effect of the procedure to solve the first. It is explicitly shown how the adoption of specific metric-dependent diffeomorphisms, as a way to achieve projectability, causes the algebra of gauge generators (constraints) in phase space not to be a Lie algebra -with structure constants - but a soft algebra - with structure functions
International Nuclear Information System (INIS)
Henggeler, W.; Boehm, M.
2003-11-01
Both reports - part I by Wolfgang Henggeler and part II by Martin Boehm - serve as a comprehensive basis for the realisation of a PST (phase-space transformation) instrument coupled either to cold or ultra-cold neutrons, respectively. This publication accidentally coincides with the 200 th birthday of the Austrian physicist C.A. Doppler who discovered the principle (i.e., the effect denoted later by his name) giving rise to the phase-space transformation described in the present work. (author)
On phase-space representations of quantum mechanics using ...
Indian Academy of Sciences (India)
2016-07-16
Jul 16, 2016 ... (2016) 87: 27 c Indian Academy of Sciences ..... converted to the language of the phase-space, and in .... as Husimi function, a name given in recognition of the work of .... the equations only differ from each other in the sign.
Deformation quantization: Quantum mechanics lives and works in phase space
Directory of Open Access Journals (Sweden)
Zachos Cosmas K.
2014-01-01
A sampling of such intriguing techniques and methods has already been published in C. K. Zachos, Int Jou Mod Phys A17 297-316 (2002, and T. L. Curtright, D. B. Fairlie, and C. K. Zachos, A Concise Treatise on Quantum Mechanics in Phase Space, (Imperial Press & World Scientific, 2014.
Lattice quantum phase space and Yang-Baxter equation
International Nuclear Information System (INIS)
Djemai, A.E.F.
1995-04-01
In this work, we show that it is possible to construct the quantum group which preserves the quantum symplectic structure introduced in the context of the matrix Hamiltonian formalism. We also study the braiding existing behind the lattice quantum phase space, and present another type of non-trivial solution to the resulting Yang-Baxter equation. (author). 20 refs, 1 fig
Phase-space treatment of the driven quantum harmonic oscillator
Indian Academy of Sciences (India)
A recent phase-space formulation of quantum mechanics in terms of the Glauber coherent states is applied to study the interaction of a one-dimensional harmonic oscillator with an arbitrary time-dependent force. Wave functions of the simultaneous values of position q and momentum p are deduced, which in turn give the ...
Quantum dynamics via a time propagator in Wigner's phase space
DEFF Research Database (Denmark)
Grønager, Michael; Henriksen, Niels Engholm
1995-01-01
We derive an expression for a short-time phase space propagator. We use it in a new propagation scheme and demonstrate that it works for a Morse potential. The propagation scheme is used to propagate classical distributions which do not obey the Heisenberg uncertainty principle. It is shown that ...... as a part of the sampling function. ©1995 American Institute of Physics....
Phase-Space Models of Solitary Electron Hoies
DEFF Research Database (Denmark)
Lynov, Jens-Peter; Michelsen, Poul; Pécseli, Hans
1985-01-01
Two different phase-space models of solitary electron holes are investigated and compared with results from computer simulations of an actual laboratory experiment, carried out in a strongly magnetized, cylindrical plasma column. In the two models, the velocity distribution of the electrons...
Phase space overpopulation at CERN and possible explanations
International Nuclear Information System (INIS)
Pratt, S.
1999-01-01
Complete text of publication follows. By combining information from correlations from Pb+Pb collisions at CERN, one comes to the conclusion that pionic phase space is significantly overpopulated compared to expectations based on chemical equilibrium. A variety of explanations will be addressed. (author)
Quantum Potential and Symmetries in Extended Phase Space
Directory of Open Access Journals (Sweden)
Sadollah Nasiri
2006-06-01
Full Text Available The behavior of the quantum potential is studied for a particle in a linear and a harmonic potential by means of an extended phase space technique. This is done by obtaining an expression for the quantum potential in momentum space representation followed by the generalization of this concept to extended phase space. It is shown that there exists an extended canonical transformation that removes the expression for the quantum potential in the dynamical equation. The situation, mathematically, is similar to disappearance of the centrifugal potential in going from the spherical to the Cartesian coordinates that changes the physical potential to an effective one. The representation where the quantum potential disappears and the modified Hamilton-Jacobi equation reduces to the familiar classical form, is one in which the dynamical equation turns out to be the Wigner equation.
Phase-space exploration in nuclear giant resonance decay
International Nuclear Information System (INIS)
Drozdz, S.; Nishizaki, S.; Wambach, J.; Speth, J.
1995-01-01
The rate of phase-space exploration in the decay of isovector and isoscalar giant quadrupole resonances in 40 Ca is analyzed. The study is based on the time dependence of the survival probability and of the spectrum of generalized entropies evaluated in the space of one-particle--one-hole (1p-1h) and 2p-2h states. Three different cases for the level distribution of 2p-2h background states, corresponding to (a) high degeneracy, (b) classically regular motion, and (c) classically chaotic motion, are studied. In the latter case the isovector excitation evolves almost statistically while the isoscalar excitation remains largely localized, even though it penetrates the whole available phase space
Non-commutative Hardy inequalities
DEFF Research Database (Denmark)
Hansen, Frank
2009-01-01
We extend Hardy's inequality from sequences of non-negative numbers to sequences of positive semi-definite operators if the parameter p satisfies 1 1. Applications to trace functions are given. We introduce the tracial geometric mean...
Review on two-phase flow instabilities in narrow spaces
International Nuclear Information System (INIS)
Tadrist, L.
2007-01-01
Instabilities in two-phase flow have been studied since the 1950s. These phenomena may appear in power generation and heat transfer systems where two-phase flow is involved. Because of thermal management in small size systems, micro-fluidics plays an important role. Typical processes must be considered when the channel hydraulic diameter becomes very small. In this paper, a brief review of two-phase flow instabilities encountered in channels having hydraulic diameters greater than 10 mm are presented. The main instability types are discussed according to the existing experimental results and models. The second part of the paper examines two-phase flow instabilities in narrow spaces. Pool and flow boiling cases are considered. Experiments as well as theoretical models existing in the literature are examined. It was found that several experimental works evidenced these instabilities meanwhile only limited theoretical developments exist in the literature. In the last part of the paper an interpretation of the two-phase flow instabilities linked to narrow spaces are presented. This approach is based on characteristic time scales of the two-phase flow and bubble growth in the capillaries
Independence and totalness of subspaces in phase space methods
Vourdas, A.
2018-04-01
The concepts of independence and totalness of subspaces are introduced in the context of quasi-probability distributions in phase space, for quantum systems with finite-dimensional Hilbert space. It is shown that due to the non-distributivity of the lattice of subspaces, there are various levels of independence, from pairwise independence up to (full) independence. Pairwise totalness, totalness and other intermediate concepts are also introduced, which roughly express that the subspaces overlap strongly among themselves, and they cover the full Hilbert space. A duality between independence and totalness, that involves orthocomplementation (logical NOT operation), is discussed. Another approach to independence is also studied, using Rota's formalism on independent partitions of the Hilbert space. This is used to define informational independence, which is proved to be equivalent to independence. As an application, the pentagram (used in discussions on contextuality) is analysed using these concepts.
Key-space analysis of double random phase encryption technique
Monaghan, David S.; Gopinathan, Unnikrishnan; Naughton, Thomas J.; Sheridan, John T.
2007-09-01
We perform a numerical analysis on the double random phase encryption/decryption technique. The key-space of an encryption technique is the set of possible keys that can be used to encode data using that technique. In the case of a strong encryption scheme, many keys must be tried in any brute-force attack on that technique. Traditionally, designers of optical image encryption systems demonstrate only how a small number of arbitrary keys cannot decrypt a chosen encrypted image in their system. However, this type of demonstration does not discuss the properties of the key-space nor refute the feasibility of an efficient brute-force attack. To clarify these issues we present a key-space analysis of the technique. For a range of problem instances we plot the distribution of decryption errors in the key-space indicating the lack of feasibility of a simple brute-force attack.
From stochastic phase-space evolution to brownian motion in collective space
Energy Technology Data Exchange (ETDEWEB)
Benhassine, B. (Lab. de Physique Nucleaire/ CNRS et Univ. de Nantes, 44 Nantes (France)); Farine, M. (Lab. de Physique Nucleaire/ CNRS et Univ. de Nantes, 44 Nantes (France) Ecole Navale, Lamveoc-Loulmic, 29 Brest-Naval (France)); Hernandez, E.S. (Dept. de Fisica - Facultad de Ciencias Exactas y Naturales, Univ. de Buenos Aires (Argentina)); Idier, D. (Lab. de Physique Nucleaire/ CNRS et Univ. de Nantes, 44 Nantes (France)); Remaud, B. (Lab. de Physique Nucleaire/ CNRS et Univ. de Nantes, 44 Nantes (France)); Sebille, F. (Lab. de Physique Nucleaire/ CNRS et Univ. de Nantes, 44 Nantes (France))
1994-01-24
Within the framework of stochastic transport equations in phase space, we study the dynamics of fluctuations on collective variables in homogeneous fermion systems. The transport coefficients are formally deduced in the relaxation-time approximation and a general method to compute dynamically the dispersions of collective observables is proposed as a set of coupled equations: respectively, the BUU/Landau-Vlasov equation for the average phase-space trajectories and the equations for the averages and dispersions of the observables. Independently, we derive the general covariance matrix of phase-space fluctuations and then by projection, the dispersion on collective variables at equilibrium. Detailed numerical applications of the formalism are given; they show that the dynamics of fluctuations can be extracted from noisy numerical simulations and that the leading parameter for collective fluctuations is the excitation energy, whatever is its degree of thermalization. (orig.)
From stochastic phase-space evolution to brownian motion in collective space
International Nuclear Information System (INIS)
Benhassine, B.; Farine, M.; Hernandez, E.S.; Idier, D.; Remaud, B.; Sebille, F.
1994-01-01
Within the framework of stochastic transport equations in phase space, we study the dynamics of fluctuations on collective variables in homogeneous fermion systems. The transport coefficients are formally deduced in the relaxation-time approximation and a general method to compute dynamically the dispersions of collective observables is proposed as a set of coupled equations: respectively, the BUU/Landau-Vlasov equation for the average phase-space trajectories and the equations for the averages and dispersions of the observables. Independently, we derive the general covariance matrix of phase-space fluctuations and then by projection, the dispersion on collective variables at equilibrium. Detailed numerical applications of the formalism are given; they show that the dynamics of fluctuations can be extracted from noisy numerical simulations and that the leading parameter for collective fluctuations is the excitation energy, whatever is its degree of thermalization. (orig.)
Probabilistic Q-function distributions in fermionic phase-space
International Nuclear Information System (INIS)
Rosales-Zárate, Laura E C; Drummond, P D
2015-01-01
We obtain a positive probability distribution or Q-function for an arbitrary fermionic many-body system. This is different to previous Q-function proposals, which were either restricted to a subspace of the overall Hilbert space, or used Grassmann methods that do not give probabilities. The fermionic Q-function obtained here is constructed using normally ordered Gaussian operators, which include both non-interacting thermal density matrices and BCS states. We prove that the Q-function exists for any density matrix, is real and positive, and has moments that correspond to Fermi operator moments. It is defined on a finite symmetric phase-space equivalent to the space of real, antisymmetric matrices. This has the natural SO(2M) symmetry expected for Majorana fermion operators. We show that there is a physical interpretation of the Q-function: it is the relative probability for observing a given Gaussian density matrix. The distribution has a uniform probability across the space at infinite temperature, while for pure states it has a maximum value on the phase-space boundary. The advantage of probabilistic representations is that they can be used for computational sampling without a sign problem. (fast track communication)
Kinetic solvers with adaptive mesh in phase space
Arslanbekov, Robert R.; Kolobov, Vladimir I.; Frolova, Anna A.
2013-12-01
An adaptive mesh in phase space (AMPS) methodology has been developed for solving multidimensional kinetic equations by the discrete velocity method. A Cartesian mesh for both configuration (r) and velocity (v) spaces is produced using a “tree of trees” (ToT) data structure. The r mesh is automatically generated around embedded boundaries, and is dynamically adapted to local solution properties. The v mesh is created on-the-fly in each r cell. Mappings between neighboring v-space trees is implemented for the advection operator in r space. We have developed algorithms for solving the full Boltzmann and linear Boltzmann equations with AMPS. Several recent innovations were used to calculate the discrete Boltzmann collision integral with dynamically adaptive v mesh: the importance sampling, multipoint projection, and variance reduction methods. We have developed an efficient algorithm for calculating the linear Boltzmann collision integral for elastic and inelastic collisions of hot light particles in a Lorentz gas. Our AMPS technique has been demonstrated for simulations of hypersonic rarefied gas flows, ion and electron kinetics in weakly ionized plasma, radiation and light-particle transport through thin films, and electron streaming in semiconductors. We have shown that AMPS allows minimizing the number of cells in phase space to reduce the computational cost and memory usage for solving challenging kinetic problems.
From stochastic phase space evolution to Brownian motion in collective space
International Nuclear Information System (INIS)
Benhassine, B.; Farine, M.; Hernandez, E.S.; Idier, D.; Remaud, B.; Sebille, F.
1993-01-01
Within the framework of stochastic transport equations in phase space, the dynamics of fluctuations on collective variables in homogeneous fermion systems is studied. The transport coefficients are formally deduced in the relaxation time approximation and a general method to compute dynamically the dispersions of collective observables is proposed as a set of coupled equations. Independently, the general covariance matrix of phase space fluctuations and the dispersion on collective variables at equilibrium are derived. Detailed numerical applications show that dynamics of fluctuations can be extracted from noisy numerical simulations and that the leading parameter for collective fluctuations is the excitation energy whatever is its degree of thermalization. (authors). 16 refs., 12 figs
TRANSVERSE PHASE SPACE PAINTING FOR SNS ACCUMULATOR RING INJECTION.
Energy Technology Data Exchange (ETDEWEB)
BEEBE-WANG,J.; LEE,Y.Y.; RAPARIA,D.; WEI,J.
1999-03-29
The result of investigation and comparison of a series of transverse phase space painting schemes for the injection of SNS accumulator ring [1] is reported. In this computer simulation study, the focus is on the creation of closed orbit bumps that give desired distributions at the target. Space charge effects such as tune shift, emittance growth and beam losses are considered. The results of pseudo end-to-end simulations from the injection to the target through the accumulator ring and Ring to Target Beam Transfer (RTBT) system [2] are presented and discussed.
Identifying phase-space boundaries with Voronoi tessellations
International Nuclear Information System (INIS)
Debnath, Dipsikha; Matchev, Konstantin T.; Gainer, James S.; Kilic, Can; Yang, Yuan-Pao; Kim, Doojin
2016-01-01
Determining the masses of new physics particles appearing in decay chains is an important and longstanding problem in high energy phenomenology. Recently it has been shown that these mass measurements can be improved by utilizing the boundary of the allowed region in the fully differentiable phase space in its full dimensionality. Here we show that the practical challenge of identifying this boundary can be solved using techniques based on the geometric properties of the cells resulting from Voronoi tessellations of the relevant data. The robust detection of such phase-space boundaries in the data could also be used to corroborate a new physics discovery based on a cut-and-count analysis. (orig.)
Identifying phase-space boundaries with Voronoi tessellations
Energy Technology Data Exchange (ETDEWEB)
Debnath, Dipsikha; Matchev, Konstantin T. [University of Florida, Physics Department, Gainesville, FL (United States); Gainer, James S. [University of Hawaii, Department of Physics and Astronomy, Honolulu, HI (United States); Kilic, Can; Yang, Yuan-Pao [The University of Texas at Austin, Theory Group, Department of Physics and Texas Cosmology Center, Austin, TX (United States); Kim, Doojin [University of Florida, Physics Department, Gainesville, FL (United States); CERN, Theory Division, Geneva 23 (Switzerland)
2016-11-15
Determining the masses of new physics particles appearing in decay chains is an important and longstanding problem in high energy phenomenology. Recently it has been shown that these mass measurements can be improved by utilizing the boundary of the allowed region in the fully differentiable phase space in its full dimensionality. Here we show that the practical challenge of identifying this boundary can be solved using techniques based on the geometric properties of the cells resulting from Voronoi tessellations of the relevant data. The robust detection of such phase-space boundaries in the data could also be used to corroborate a new physics discovery based on a cut-and-count analysis. (orig.)
Quantum dynamical time evolutions as stochastic flows on phase space
International Nuclear Information System (INIS)
Combe, P.; Rodriguez, R.; Guerra, F.; Sirigue, M.; Sirigue-Collin, M.
1984-01-01
We are mainly interested in describing the time development of the Wigner functions by means of stochastic processes. In the second section we recall the main properties of the Wigner functions as well as those of their Fourier transform. In the next one we derive the evolution equation of these functions for a class of Hamiltonians and we give a probabilistic expression for the solution of these equations by means of a stochastic flow in phase space which reminds of the classical flows. In the last section we remark that the previously defined flow can be extended to the bounded continuous functions on phase space and that this flow conserves the cone generated by the Wigner functions. (orig./HSI)
Correlation dimension and phase space contraction via extreme value theory
Faranda, Davide; Vaienti, Sandro
2018-04-01
We show how to obtain theoretical and numerical estimates of correlation dimension and phase space contraction by using the extreme value theory. The maxima of suitable observables sampled along the trajectory of a chaotic dynamical system converge asymptotically to classical extreme value laws where: (i) the inverse of the scale parameter gives the correlation dimension and (ii) the extremal index is associated with the rate of phase space contraction for backward iteration, which in dimension 1 and 2, is closely related to the positive Lyapunov exponent and in higher dimensions is related to the metric entropy. We call it the Dynamical Extremal Index. Numerical estimates are straightforward to obtain as they imply just a simple fit to a univariate distribution. Numerical tests range from low dimensional maps, to generalized Henon maps and climate data. The estimates of the indicators are particularly robust even with relatively short time series.
A device for automated phase space measurement of ion beams
International Nuclear Information System (INIS)
Lukas, J.; Priller, A.; Steier, P.
2007-01-01
Equipment for automated phase-space measurements was developed at the VERA Lab. The measurement of the beam's intensity distribution, as well as its relative position with respect to the reference orbit is performed at two locations along the beam line. The device basically consists of moveable slits and a beam profile monitor, which are both coordinated and controlled by an embedded controller. The operating system of the controller is based on Linux with real-time extension. It controls the movement of the slits and records the data synchronized to the movement of the beam profile monitor. The data is sent via TCP/IP to the data acquisition system of VERA where visualization takes place. The duration of one phase space measurement is less than 10 s, which allows for using the device during routine beam tuning
Lin, Chao; Shen, Xueju; Li, Zengyan
2013-07-01
The key space of phase encryption algorithm using discrete random phase mask is investigated by numerical simulation in this paper. Random phase mask with finite and discrete phase levels is considered as the core component in most practical optical encryption architectures. The key space analysis is based on the design criteria of discrete random phase mask. The role of random amplitude mask and random phase mask in optical encryption system is identified from the perspective of confusion and diffusion. The properties of discrete random phase mask in a practical double random phase encoding scheme working in both amplitude encoding (AE) and phase encoding (PE) modes are comparably analyzed. The key space of random phase encryption algorithm is evaluated considering both the encryption quality and the brute-force attack resistibility. A method for enlarging the key space of phase encryption algorithm is also proposed to enhance the security of optical phase encryption techniques.
Torus as phase space: Weyl quantization, dequantization, and Wigner formalism
Energy Technology Data Exchange (ETDEWEB)
Ligabò, Marilena, E-mail: marilena.ligabo@uniba.it [Dipartimento di Matematica, Università di Bari, I-70125 Bari (Italy)
2016-08-15
The Weyl quantization of classical observables on the torus (as phase space) without regularity assumptions is explicitly computed. The equivalence class of symbols yielding the same Weyl operator is characterized. The Heisenberg equation for the dynamics of general quantum observables is written through the Moyal brackets on the torus and the support of the Wigner transform is characterized. Finally, a dequantization procedure is introduced that applies, for instance, to the Pauli matrices. As a result we obtain the corresponding classical symbols.
The Helmholtz Hierarchy: Phase Space Statistics of Cold Dark Matter
Tassev, Svetlin
2010-01-01
We present a new formalism to study large-scale structure in the universe. The result is a hierarchy (which we call the "Helmholtz Hierarchy") of equations describing the phase space statistics of cold dark matter (CDM). The hierarchy features a physical ordering parameter which interpolates between the Zel'dovich approximation and fully-fledged gravitational interactions. The results incorporate the effects of stream crossing. We show that the Helmholtz hierarchy is self-consistent and obeys...
Phase space analysis of some interacting Chaplygin gas models
Energy Technology Data Exchange (ETDEWEB)
Khurshudyan, M. [Academy of Sciences of Armenia, Institute for Physical Research, Ashtarak (Armenia); Tomsk State University of Control Systems and Radioelectronics, Laboratory for Theoretical Cosmology, Tomsk (Russian Federation); Tomsk State Pedagogical University, Department of Theoretical Physics, Tomsk (Russian Federation); Myrzakulov, R. [Eurasian National University, Eurasian International Center for Theoretical Physics, Astana (Kazakhstan)
2017-02-15
In this paper we discuss a phase space analysis of various interacting Chaplygin gas models in general relativity. Linear and nonlinear sign changeable interactions are considered. For each case appropriate late time attractors of field equations are found. The Chaplygin gas is one of the dark fluids actively considered in modern cosmology due to the fact that it is a joint model of dark energy and dark matter. (orig.)
A geometric view on BRST extension of the phase space
International Nuclear Information System (INIS)
Kyuldjiev, A.
1994-11-01
The role of complex polarizations is emphasized as providing coordinate-free approach to creation and annihilation operators needed for particle interpretation. With their help a proposition is made for explanation of BRST extension of the phase space due to fixing to zero the number of particles corresponding to constraint functions. The procedure treats the case when no group action is assumed and does not require any form of supersymmetry. (author). 19 refs
Quantum-deformed geometry on phase-space
International Nuclear Information System (INIS)
Gozzi, E.; Reuter, M.
1992-12-01
In this paper we extend the standard Moyal formalism to the tangent and cotangent bundle of the phase-space of any hamiltonian mechanical system. In this manner we build the quantum analog of the classical hamiltonian vector-field of time evolution and its associated Lie-derivative. We also use this extended Moyal formalism to develop a quantum analog of the Cartan calculus on symplectic manifolds. (orig.)
Braiding transformation, entanglement swapping, and Berry phase in entanglement space
International Nuclear Information System (INIS)
Chen Jingling; Ge Molin; Xue Kang
2007-01-01
We show that braiding transformation is a natural approach to describe quantum entanglement by using the unitary braiding operators to realize entanglement swapping and generate the Greenberger-Horne-Zeilinger states as well as the linear cluster states. A Hamiltonian is constructed from the unitary R i,i+1 (θ,φ) matrix, where φ=ωt is time-dependent while θ is time-independent. This in turn allows us to investigate the Berry phase in the entanglement space
Phase-space treatment of the driven quantum harmonic oscillator
Indian Academy of Sciences (India)
2017-02-22
Feb 22, 2017 ... i.e., ρ(θ,q ,p |q,p,t) is a measure of the interference effects associated ... an oscillating electric field, when the initial state is cho- sen as a .... The conclusive effect is that. A±(q,p,t) ...... wave functions ±(q,p,t) stem from the time depen- dence of ..... define a two-dimensional cell in phase space, which is centred ...
Quantum tomography, phase-space observables and generalized Markov kernels
International Nuclear Information System (INIS)
Pellonpaeae, Juha-Pekka
2009-01-01
We construct a generalized Markov kernel which transforms the observable associated with the homodyne tomography into a covariant phase-space observable with a regular kernel state. Illustrative examples are given in the cases of a 'Schroedinger cat' kernel state and the Cahill-Glauber s-parametrized distributions. Also we consider an example of a kernel state when the generalized Markov kernel cannot be constructed.
Zonal-flow dynamics from a phase-space perspective
Ruiz, D. E.; Parker, J. B.; Shi, E. L.; Dodin, I. Y.
2017-10-01
The wave kinetic equation (WKE) describing drift-wave (DW) turbulence is widely used in the studies of zonal flows (ZFs) emerging from DW turbulence. However, this formulation neglects the exchange of enstrophy between DWs and ZFs and also ignores effects beyond the geometrical-optics (GO) limit. Here we present a new theory that captures both of these effects, while still treating DW quanta (``driftons'') as particles in phase space. In this theory, the drifton dynamics is described by an equation of the Wigner-Moyal type, which is analogous to the phase-space formulation of quantum mechanics. The ``Hamiltonian'' and the ``dissipative'' parts of the DW-ZF interactions are clearly identified. Moreover, this theory can be interpreted as a phase-space representation of the second-order cumulant expansion (CE2). In the GO limit, this formulation features additional terms missing in the traditional WKE that ensure conservation of the total enstrophy of the system, in addition to the total energy, which is the only conserved invariant in previous theories based on the traditional WKE. Numerical simulations are presented to illustrate the importance of these additional terms. Supported by the U.S. DOE through Contract Nos. DE-AC02-09CH11466 and DE-AC52-07NA27344, by the NNSA SSAA Program through DOE Research Grant No. DE-NA0002948, and by the U.S. DOD NDSEG Fellowship through Contract No. 32-CFR-168a.
Incorporating space charge in the transverse phase-space matching and tomography at PITZ
Energy Technology Data Exchange (ETDEWEB)
Kourkafas, Georgios
2015-11-15
The ever-expanding achievements in the field of particle accelerators push their specifications to very demanding levels. The performance of many modern applications depends on their ability to be operated with high bunch charges confined in small volumes. However, the consequence of increased intensity is strong space-charge forces, which perplex the beam manipulation and undermine the beam quality. As a result, reliable methods are needed to control and measure the accelerated particles under these extraordinary conditions. The phase space tomography is a diagnostic technique which can reveal details of the transverse beam parameters for a wide range of intensities and energies, with minimal influence from the machine instabilities, in a quasi non-destructive way. The accuracy of this method relies on the precise knowledge and control of the particle dynamics under the influence of space charge in different stages of the measurement. On the one hand, the matching of the beam to the measurement's design transverse parameters requires a procedure which efficiently compensates the effects of space charge. Depending on the structure of the magnetic lattice, different aspects of these effects prevail, therefore different strategies have to be developed. On the other hand, the impact of the space-charge forces on the phase-space transformations during the data acquisition has to be included in the model which is used for the tomographic reconstruction. The aim of this thesis is to provide and test time-efficient solutions for the incorporation of space charge in the transverse beam matching and phase space tomography.
Incorporating space charge in the transverse phase-space matching and tomography at PITZ
International Nuclear Information System (INIS)
Kourkafas, Georgios
2015-11-01
The ever-expanding achievements in the field of particle accelerators push their specifications to very demanding levels. The performance of many modern applications depends on their ability to be operated with high bunch charges confined in small volumes. However, the consequence of increased intensity is strong space-charge forces, which perplex the beam manipulation and undermine the beam quality. As a result, reliable methods are needed to control and measure the accelerated particles under these extraordinary conditions. The phase space tomography is a diagnostic technique which can reveal details of the transverse beam parameters for a wide range of intensities and energies, with minimal influence from the machine instabilities, in a quasi non-destructive way. The accuracy of this method relies on the precise knowledge and control of the particle dynamics under the influence of space charge in different stages of the measurement. On the one hand, the matching of the beam to the measurement's design transverse parameters requires a procedure which efficiently compensates the effects of space charge. Depending on the structure of the magnetic lattice, different aspects of these effects prevail, therefore different strategies have to be developed. On the other hand, the impact of the space-charge forces on the phase-space transformations during the data acquisition has to be included in the model which is used for the tomographic reconstruction. The aim of this thesis is to provide and test time-efficient solutions for the incorporation of space charge in the transverse beam matching and phase space tomography.
Momentum-space cigar geometry in topological phases
Palumbo, Giandomenico
2018-01-01
In this paper, we stress the importance of momentum-space geometry in the understanding of two-dimensional topological phases of matter. We focus, for simplicity, on the gapped boundary of three-dimensional topological insulators in class AII, which are described by a massive Dirac Hamiltonian and characterized by an half-integer Chern number. The gap is induced by introducing a magnetic perturbation, such as an external Zeeman field or a ferromagnet on the surface. The quantum Bures metric acquires a central role in our discussion and identifies a cigar geometry. We first derive the Chern number from the cigar geometry and we then show that the quantum metric can be seen as a solution of two-dimensional non-Abelian BF theory in momentum space. The gauge connection for this model is associated to the Maxwell algebra, which takes into account the Lorentz symmetries related to the Dirac theory and the momentum-space magnetic translations connected to the magnetic perturbation. The Witten black-hole metric is a solution of this gauge theory and coincides with the Bures metric. This allows us to calculate the corresponding momentum-space entanglement entropy that surprisingly carries information about the real-space conformal field theory describing the defect lines that can be created on the gapped boundary.
States in the Hilbert space formulation and in the phase space formulation of quantum mechanics
International Nuclear Information System (INIS)
Tosiek, J.; Brzykcy, P.
2013-01-01
We consider the problem of testing whether a given matrix in the Hilbert space formulation of quantum mechanics or a function considered in the phase space formulation of quantum theory represents a quantum state. We propose several practical criteria for recognising states in these two versions of quantum physics. After minor modifications, they can be applied to check positivity of any operators acting in a Hilbert space or positivity of any functions from an algebra with a ∗-product of Weyl type. -- Highlights: ► Methods of testing whether a given matrix represents a quantum state. ► The Stratonovich–Weyl correspondence on an arbitrary symplectic manifold. ► Criteria for checking whether a function on a symplectic space is a Wigner function
Linearization of the longitudinal phase space without higher harmonic field
Directory of Open Access Journals (Sweden)
Benno Zeitler
2015-12-01
Full Text Available Accelerator applications like free-electron lasers, time-resolved electron diffraction, and advanced accelerator concepts like plasma acceleration desire bunches of ever shorter longitudinal extent. However, apart from space charge repulsion, the internal bunch structure and its development along the beam line can limit the achievable compression due to nonlinear phase space correlations. In order to improve such a limited longitudinal focus, a correction by properly linearizing the phase space is required. At large scale facilities like Flash at Desy or the European Xfel, a higher harmonic cavity is installed for this purpose. In this paper, another method is described and evaluated: Expanding the beam after the electron source enables a higher order correction of the longitudinal focus by a subsequent accelerating cavity which is operated at the same frequency as the electron gun. The elaboration of this idea presented here is based on a ballistic bunching scheme, but can be extended to bunch compression based on magnetic chicanes. The core of this article is an analytic model describing this approach, which is verified by simulations, predicting possible bunch length below 1 fs at low bunch charge. Minimizing the energy spread down to σ_{E}/E<10^{-5} while keeping the bunch long is another interesting possibility, which finds applications, e.g., in time resolved transmission electron microscopy concepts.
Method of phase space beam dilution utilizing bounded chaos generated by rf phase modulation
Directory of Open Access Journals (Sweden)
Alfonse N. Pham
2015-12-01
Full Text Available This paper explores the physics of chaos in a localized phase-space region produced by rf phase modulation applied to a double rf system. The study can be exploited to produce rapid particle bunch broadening exhibiting longitudinal particle distribution uniformity. Hamiltonian models and particle-tracking simulations are introduced to understand the mechanism and applicability of controlled particle diffusion. When phase modulation is applied to the double rf system, regions of localized chaos are produced through the disruption and overlapping of parametric resonant islands and configured to be bounded by well-behaved invariant tori to prevent particle loss. The condition of chaoticity and the degree of particle dilution can be controlled by the rf parameters. The method has applications in alleviating adverse space-charge effects in high-intensity beams, particle bunch distribution uniformization, and industrial radiation-effects experiments.
A concise treatise on quantum mechanics in phase space
Curtright, Thomas L; Zachos, Cosmas K
2014-01-01
This is a text on quantum mechanics formulated simultaneously in terms of position and momentum, i.e. in phase space. It is written at an introductory level, drawing on the remarkable history of the subject for inspiration and motivation. Wigner functions density -- matrices in a special Weyl representation -- and star products are the cornerstones of the formalism. The resulting framework is a rich source of physical intuition. It has been used to describe transport in quantum optics, structure and dynamics in nuclear physics, chaos, and decoherence in quantum computing. It is also of importance in signal processing and the mathematics of algebraic deformation. A remarkable aspect of its internal logic, pioneered by Groenewold and Moyal, has only emerged in the last quarter-century: it furnishes a third, alternative way to formulate and understand quantum mechanics, independent of the conventional Hilbert space or path integral approaches to the subject. In this logically complete and self-standing formula...
Real space multiple scattering description of alloy phase stability
International Nuclear Information System (INIS)
Turchi, P.E.A.; Sluiter, M.
1992-01-01
This paper presents a brief overview of the advanced methodology which has been recently developed to study phase stability properties of substitutional alloys, including order-disorder phenomena and structural transformations. The approach is based on the real space version of the Generalized Perturbation Method first introduced by Ducastelle and Gautier, within the Korringa-Kohn-Rostoker multiple scattering formulation of the Coherent Potential Approximation. Temperature effects are taken into account with a generalized meanfield approach, namely the Cluster Variation Method. The viability and the predictive power of such a scheme will be illustrated by a few examples, among them: the ground state properties of alloys, in particular the ordering tendencies for a series of equiatomic bcc-based alloys, the computation of alloy phase diagrams with the case of fcc and bcc-based Ni-Al alloys, the calculation of antiphase boundary energies and interfacial energies, and the stability of artificial ordered superlattices
Phase space analysis for anisotropic universe with nonlinear bulk viscosity
Sharif, M.; Mumtaz, Saadia
2018-06-01
In this paper, we discuss phase space analysis of locally rotationally symmetric Bianchi type I universe model by taking a noninteracting mixture of dust like and viscous radiation like fluid whose viscous pressure satisfies a nonlinear version of the Israel-Stewart transport equation. An autonomous system of equations is established by defining normalized dimensionless variables. In order to investigate stability of the system, we evaluate corresponding critical points for different values of the parameters. We also compute power-law scale factor whose behavior indicates different phases of the universe model. It is found that our analysis does not provide a complete immune from fine-tuning because the exponentially expanding solution occurs only for a particular range of parameters. We conclude that stable solutions exist in the presence of nonlinear model for bulk viscosity with different choices of the constant parameter m for anisotropic universe.
The Helmholtz Hierarchy: phase space statistics of cold dark matter
International Nuclear Information System (INIS)
Tassev, Svetlin V.
2011-01-01
We present a new formalism to study large-scale structure in the universe. The result is a hierarchy (which we call the ''Helmholtz Hierarchy'') of equations describing the phase space statistics of cold dark matter (CDM). The hierarchy features a physical ordering parameter which interpolates between the Zel'dovich approximation and fully-fledged gravitational interactions. The results incorporate the effects of stream crossing. We show that the Helmholtz hierarchy is self-consistent and obeys causality to all orders. We present an interpretation of the hierarchy in terms of effective particle trajectories
Visualizing the quantum interaction picture in phase space
International Nuclear Information System (INIS)
Mehmani, Bahar; Aiello, Andrea
2012-01-01
We present a graphical example of the interaction picture-time evolution. Our aim is to help students understand in a didactic manner the simplicity that this picture provides. Visualizing the interaction picture unveils its advantages, which are hidden behind the involved mathematics. Specifically, we show that the time evolution of a driven harmonic oscillator in the interaction picture corresponds to a local transformation of a phase space-reference frame into the one that is co-rotating with the Wigner function. (paper)
On the calculation of soft phase space integral
International Nuclear Information System (INIS)
Zhu, Hua Xing
2015-01-01
The recent discovery of the Higgs boson at the LHC attracts much attention to the precise calculation of its production cross section in quantum chromodynamics. In this work, we discuss the calculation of soft triple-emission phase space integral, which is an essential ingredient in the recently calculated soft-virtual corrections to Higgs boson production at next-to-next-to-next-to-leading order. The main techniques used this calculation are method of differential equation for Feynman integral, and integration of harmonic polylogarithms.
The Simpsons program 6-D phase space tracking with acceleration
Energy Technology Data Exchange (ETDEWEB)
Machida, S.
1993-02-01
A particle tracking code, Simpsons, in 6-D phase space including energy ramping has been developed to model proton synchrotrons and storage rings. We take time as the independent variable to change machine parameters and diagnose beam quality in a quite similar way as real machines, unlike existing tracking codes for synchrotrons which advance a particle element by element. Arbitrary energy ramping and rf voltage curves as a function of time are read as an input file for defining a machine cycle. The code is used to study beam dynamics with time dependent parameters. Some of the examples from simulations of the Superconducting Super Collider (SSC) boosters are shown.
The Simpsons program 6-D phase space tracking with acceleration
Machida, S.
1993-12-01
A particle tracking code, Simpsons, in 6-D phase space including energy ramping has been developed to model proton synchrotrons and storage rings. We take time as the independent variable to change machine parameters and diagnose beam quality in a quite similar way as real machines, unlike existing tracking codes for synchrotrons which advance a particle element by element. Arbitrary energy ramping and rf voltage curves as a function of time are read as an input file for defining a machine cycle. The code is used to study beam dynamics with time dependent parameters. Some of the examples from simulations of the Superconducting Super Collider (SSC) boosters are shown.
The Simpsons program 6-D phase space tracking with acceleration
Energy Technology Data Exchange (ETDEWEB)
Machida, S. (Superconducting Super Collider Laboratory, Dallas, Texas 75237 (United States))
1993-12-25
A particle tracking code, Simpsons, in 6-D phase space including energy ramping has been developed to model proton synchrotrons and storage rings. We take time as the independent variable to change machine parameters and diagnose beam quality in a quite similar way as real machines, unlike existing tracking codes for synchrotrons which advance a particle element by element. Arbitrary energy ramping and rf voltage curves as a function of time are read as an input file for defining a machine cycle. The code is used to study beam dynamics with time dependent parameters. Some of the examples from simulations of the Superconducting Super Collider (SSC) boosters are shown.
The Simpsons program 6-D phase space tracking with acceleration
International Nuclear Information System (INIS)
Machida, S.
1993-01-01
A particle tracking code, Simpsons, in 6-D phase space including energy ramping has been developed to model proton synchrotrons and storage rings. We take time as the independent variable to change machine parameters and diagnose beam quality in a quite similar way as real machines, unlike existing tracking codes for synchrotrons which advance a particle element by element. Arbitrary energy ramping and rf voltage curves as a function of time are read as an input file for defining a machine cycle. The code is used to study beam dynamics with time dependent parameters. Some of the examples from simulations of the Superconducting Super Collider (SSC) boosters are shown
Space Qualified Non-Destructive Evaluation and Structural Health Monitoring Technology, Phase II
National Aeronautics and Space Administration — Encouraged by Phase I accomplishments, the proposed Phase II program will significantly mature and align the development of a Space Qualified Non-Destructive...
National Aeronautics and Space Administration — A Phase II SBIR transition of NanoSonic's high flex HybridSil space suit bladder and glove materials will provide a pivotal funding bridge toward Phase III...
A phase space approach to wave propagation with dispersion.
Ben-Benjamin, Jonathan S; Cohen, Leon; Loughlin, Patrick J
2015-08-01
A phase space approximation method for linear dispersive wave propagation with arbitrary initial conditions is developed. The results expand on a previous approximation in terms of the Wigner distribution of a single mode. In contrast to this previously considered single-mode case, the approximation presented here is for the full wave and is obtained by a different approach. This solution requires one to obtain (i) the initial modal functions from the given initial wave, and (ii) the initial cross-Wigner distribution between different modal functions. The full wave is the sum of modal functions. The approximation is obtained for general linear wave equations by transforming the equations to phase space, and then solving in the new domain. It is shown that each modal function of the wave satisfies a Schrödinger-type equation where the equivalent "Hamiltonian" operator is the dispersion relation corresponding to the mode and where the wavenumber is replaced by the wavenumber operator. Application to the beam equation is considered to illustrate the approach.
An Absolute Phase Space for the Physicality of Matter
International Nuclear Information System (INIS)
Valentine, John S.
2010-01-01
We define an abstract and absolute phase space (''APS'') for sub-quantum intrinsic wave states, in three axes, each mapping directly to a duality having fundamental ontological basis. Many aspects of quantum physics emerge from the interaction algebra and a model deduced from principles of 'unique solvability' and 'identifiable entity', and we reconstruct previously abstract fundamental principles and phenomena from these new foundations. The physical model defines bosons as virtual continuous waves pairs in the APS, and fermions as real self-quantizing snapshots of those waves when simple conditions are met. The abstraction and physical model define a template for the constitution of all fermions, a template for all the standard fundamental bosons and their local interactions, in a common framework and compactified phase space for all forms of real matter and virtual vacuum energy, and a distinct algebra for observables and unobservables. To illustrate our scheme's potential, we provide examples of slit experiment variations (where the model finds theoretical basis for interference only occurring between two final sources), QCD (where we may model most attributes known to QCD, and a new view on entanglement), and we suggest approaches for other varied applications. We believe this is a viable candidate for further exploration as a foundational proposition for physics.
Dynamical tunneling in systems with a mixed phase space
International Nuclear Information System (INIS)
Loeck, Steffen
2010-01-01
Tunneling is one of the most prominent features of quantum mechanics. While the tunneling process in one-dimensional integrable systems is well understood, its quantitative prediction for systems with a mixed phase space is a long-standing open challenge. In such systems regions of regular and chaotic dynamics coexist in phase space, which are classically separated but quantum mechanically coupled by the process of dynamical tunneling. We derive a prediction of dynamical tunneling rates which describe the decay of states localized inside the regular region towards the so-called chaotic sea. This approach uses a fictitious integrable system which mimics the dynamics inside the regular domain and extends it into the chaotic region. Excellent agreement with numerical data is found for kicked systems, billiards, and optical microcavities, if nonlinear resonances are negligible. Semiclassically, however, such nonlinear resonance chains dominate the tunneling process. Hence, we combine our approach with an improved resonance-assisted tunneling theory and derive a unified prediction which is valid from the quantum to the semiclassical regime. We obtain results which show a drastically improved accuracy of several orders of magnitude compared to previous studies. (orig.)
Dynamical tunneling in systems with a mixed phase space
Energy Technology Data Exchange (ETDEWEB)
Loeck, Steffen
2010-04-22
Tunneling is one of the most prominent features of quantum mechanics. While the tunneling process in one-dimensional integrable systems is well understood, its quantitative prediction for systems with a mixed phase space is a long-standing open challenge. In such systems regions of regular and chaotic dynamics coexist in phase space, which are classically separated but quantum mechanically coupled by the process of dynamical tunneling. We derive a prediction of dynamical tunneling rates which describe the decay of states localized inside the regular region towards the so-called chaotic sea. This approach uses a fictitious integrable system which mimics the dynamics inside the regular domain and extends it into the chaotic region. Excellent agreement with numerical data is found for kicked systems, billiards, and optical microcavities, if nonlinear resonances are negligible. Semiclassically, however, such nonlinear resonance chains dominate the tunneling process. Hence, we combine our approach with an improved resonance-assisted tunneling theory and derive a unified prediction which is valid from the quantum to the semiclassical regime. We obtain results which show a drastically improved accuracy of several orders of magnitude compared to previous studies. (orig.)
Tomography of the electron beam transverse phase space at PITZ
Energy Technology Data Exchange (ETDEWEB)
Asova, Galina
2013-09-15
The operation of a Free Elector Laser, FEL, requires high energy, high peak current electron beams with small transverse emittance. In the contemporary FELs, the electron beam is passed through a periodic magnetic structure - an undulator - which modifies the straight beam trajectory into a sinusoidal one, where FEL light is generated at each bend. According to the energy, the transverse emittance and the peak current of the beam and the parameters of the undulator, FEL radiation with wavelength in the range of nano- to micrometers can be generated. Studies and development of FELs are done all over the world. The Free electron LASer in Hamburg, FLASH, and the international European X-ray FEL, XFEL, in Hamburg, Germany, are two leading projects of the Deutsches Elektronen SYnchrotron, DESY. Part of the research program on FELs in DESY is realized in Zeuthen within the project Photo-Injector Test Facility at DESY in Zeuthen, PITZ. PITZ is an international collaboration including Germany, Russia, Italy, France, Bulgaria, Thailand, United Kingdom. The Institute of Nuclear Research and Nuclear Energy, INRNE, at the Bulgarian Academy of Sciences participates from bulgarian side. PITZ studies and optimizes the photo-injectors for FLASH and the XFEL. The research program emphasizes on detailed measurements of the transverse phase-space density distribution. Until 2010 the single slit scan technique has been used to measure the beam transverse distributions. At the end of 2010 a module for tomographic diagnostics has been installed which extends the possibilities of PITZ to measure simultaneously the two transverse planes of a single micropulse with improved signal-to-noise ratio. The difficult conditions of low emittance for high bunch charge and low energy make the operation of the module challenging. This thesis presents the design considerations for the tomography module, a number of reconstruction algorithms and their applicability to limited data sets, the influence
Tomography of the electron beam transverse phase space at PITZ
International Nuclear Information System (INIS)
Asova, Galina
2013-09-01
The operation of a Free Elector Laser, FEL, requires high energy, high peak current electron beams with small transverse emittance. In the contemporary FELs, the electron beam is passed through a periodic magnetic structure - an undulator - which modifies the straight beam trajectory into a sinusoidal one, where FEL light is generated at each bend. According to the energy, the transverse emittance and the peak current of the beam and the parameters of the undulator, FEL radiation with wavelength in the range of nano- to micrometers can be generated. Studies and development of FELs are done all over the world. The Free electron LASer in Hamburg, FLASH, and the international European X-ray FEL, XFEL, in Hamburg, Germany, are two leading projects of the Deutsches Elektronen SYnchrotron, DESY. Part of the research program on FELs in DESY is realized in Zeuthen within the project Photo-Injector Test Facility at DESY in Zeuthen, PITZ. PITZ is an international collaboration including Germany, Russia, Italy, France, Bulgaria, Thailand, United Kingdom. The Institute of Nuclear Research and Nuclear Energy, INRNE, at the Bulgarian Academy of Sciences participates from bulgarian side. PITZ studies and optimizes the photo-injectors for FLASH and the XFEL. The research program emphasizes on detailed measurements of the transverse phase-space density distribution. Until 2010 the single slit scan technique has been used to measure the beam transverse distributions. At the end of 2010 a module for tomographic diagnostics has been installed which extends the possibilities of PITZ to measure simultaneously the two transverse planes of a single micropulse with improved signal-to-noise ratio. The difficult conditions of low emittance for high bunch charge and low energy make the operation of the module challenging. This thesis presents the design considerations for the tomography module, a number of reconstruction algorithms and their applicability to limited data sets, the influence
Torre, Amalia
2005-01-01
Ray, wave and quantum concepts are central to diverse and seemingly incompatible models of light. Each model particularizes a specific ''manifestation'' of light, and then corresponds to adequate physical assumptions and formal approximations, whose domains of applicability are well-established. Accordingly each model comprises its own set of geometric and dynamic postulates with the pertinent mathematical means.At a basic level, the book is a complete introduction to the Wigner optics, which bridges between ray and wave optics, offering the optical phase space as the ambience and the Wigner f
National Aeronautics and Space Administration — In this SBIR Phase 1 we propose to develop a novel microscope by integrating Fourier phase contrast microscopy (FPCM) and epi-fluorescence microscopy. In FPCM, the...
Constraining neutron guide optimizations with phase-space considerations
Energy Technology Data Exchange (ETDEWEB)
Bertelsen, Mads, E-mail: mads.bertelsen@gmail.com; Lefmann, Kim
2016-09-11
We introduce a method named the Minimalist Principle that serves to reduce the parameter space for neutron guide optimization when the required beam divergence is limited. The reduced parameter space will restrict the optimization to guides with a minimal neutron intake that are still theoretically able to deliver the maximal possible performance. The geometrical constraints are derived using phase-space propagation from moderator to guide and from guide to sample, while assuming that the optimized guides will achieve perfect transport of the limited neutron intake. Guide systems optimized using these constraints are shown to provide performance close to guides optimized without any constraints, however the divergence received at the sample is limited to the desired interval, even when the neutron transport is not limited by the supermirrors used in the guide. As the constraints strongly limit the parameter space for the optimizer, two control parameters are introduced that can be used to adjust the selected subspace, effectively balancing between maximizing neutron transport and avoiding background from unnecessary neutrons. One parameter is needed to describe the expected focusing abilities of the guide to be optimized, going from perfectly focusing to no correlation between position and velocity. The second parameter controls neutron intake into the guide, so that one can select exactly how aggressively the background should be limited. We show examples of guides optimized using these constraints which demonstrates the higher signal to noise than conventional optimizations. Furthermore the parameter controlling neutron intake is explored which shows that the simulated optimal neutron intake is close to the analytically predicted, when assuming that the guide is dominated by multiple scattering events.
Mehta, Shalin B.; Sheppard, Colin J. R.
2010-05-01
Various methods that use large illumination aperture (i.e. partially coherent illumination) have been developed for making transparent (i.e. phase) specimens visible. These methods were developed to provide qualitative contrast rather than quantitative measurement-coherent illumination has been relied upon for quantitative phase analysis. Partially coherent illumination has some important advantages over coherent illumination and can be used for measurement of the specimen's phase distribution. However, quantitative analysis and image computation in partially coherent systems have not been explored fully due to the lack of a general, physically insightful and computationally efficient model of image formation. We have developed a phase-space model that satisfies these requirements. In this paper, we employ this model (called the phase-space imager) to elucidate five different partially coherent systems mentioned in the title. We compute images of an optical fiber under these systems and verify some of them with experimental images. These results and simulated images of a general phase profile are used to compare the contrast and the resolution of the imaging systems. We show that, for quantitative phase imaging of a thin specimen with matched illumination, differential phase contrast offers linear transfer of specimen information to the image. We also show that the edge enhancement properties of spiral phase contrast are compromised significantly as the coherence of illumination is reduced. The results demonstrate that the phase-space imager model provides a useful framework for analysis, calibration, and design of partially coherent imaging methods.
Capture into resonance and phase space dynamics in optical centrifuge
Armon, Tsafrir; Friedland, Lazar
2016-05-01
The process of capture of a molecular enesemble into rotational resonance in the optical centrifuge is investigated. The adiabaticity and phase space incompressibility are used to find the resonant capture probability in terms of two dimensionless parameters P1 , 2 characterising the driving strength and the nonlinearity, and related to three characteristic time scales in the problem. The analysis is based on the transformation to action-angle variables and the single resonance approximation, yielding reduction of the three-dimensional rotation problem to one degree of freedom. The analytic results for capture probability are in a good agreement with simulations. The existing experiments satisfy the validity conditions of the theory. This work was supported by the Israel Science Foundation Grant 30/14.
Slowing Quantum Decoherence by Squeezing in Phase Space
Le Jeannic, H.; Cavaillès, A.; Huang, K.; Filip, R.; Laurat, J.
2018-02-01
Non-Gaussian states, and specifically the paradigmatic cat state, are well known to be very sensitive to losses. When propagating through damping channels, these states quickly lose their nonclassical features and the associated negative oscillations of their Wigner function. However, by squeezing the superposition states, the decoherence process can be qualitatively changed and substantially slowed down. Here, as a first example, we experimentally observe the reduced decoherence of squeezed optical coherent-state superpositions through a lossy channel. To quantify the robustness of states, we introduce a combination of a decaying value and a rate of decay of the Wigner function negativity. This work, which uses squeezing as an ancillary Gaussian resource, opens new possibilities to protect and manipulate quantum superpositions in phase space.
Does string fragmentation reveal more than longitudinal phase space?
International Nuclear Information System (INIS)
Schulze, H.J.; Aichelin, J.
1989-01-01
The fragmentation of a color string into hadrons is assumed to be a sequence of binary decays governed by Fermi's golden rule. In each decay step a hadron is produced and a string with lower energy is left. Assuming that the transition matrix element depends on p/sub T/ only the decay is completely determined by the longitudinal phase space and one parameter, the 2 > of the produced hadrons. We find an almost complete agreement with the experimental momentum (longitudinal and transversal) and multiplicity distributions and the number of produced particles. The ''seagull'' shape of 2 >(x) turns out to be completely due to the sphericity analysis. This leaves little room for extracting information of QCD from single-particle-inclusive fragmentation data
ORIGAMI: DELINEATING HALOS USING PHASE-SPACE FOLDS
Energy Technology Data Exchange (ETDEWEB)
Falck, Bridget L.; Neyrinck, Mark C.; Szalay, Alexander S. [Department of Physics and Astronomy, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 (United States)
2012-08-01
We present the ORIGAMI method of identifying structures, particularly halos, in cosmological N-body simulations. Structure formation can be thought of as the folding of an initially flat three-dimensional manifold in six-dimensional phase space. ORIGAMI finds the outer folds that delineate these structures. Halo particles are identified as those that have undergone shell-crossing along three orthogonal axes, providing a dynamical definition of halo regions that is independent of density. ORIGAMI also identifies other morphological structures: particles that have undergone shell-crossing along 2, 1, or 0 orthogonal axes correspond to filaments, walls, and voids, respectively. We compare this method to a standard friends-of-friends halo-finding algorithm and find that ORIGAMI halos are somewhat larger, more diffuse, and less spherical, though the global properties of ORIGAMI halos are in good agreement with other modern halo-finding algorithms.
ORIGAMI: DELINEATING HALOS USING PHASE-SPACE FOLDS
International Nuclear Information System (INIS)
Falck, Bridget L.; Neyrinck, Mark C.; Szalay, Alexander S.
2012-01-01
We present the ORIGAMI method of identifying structures, particularly halos, in cosmological N-body simulations. Structure formation can be thought of as the folding of an initially flat three-dimensional manifold in six-dimensional phase space. ORIGAMI finds the outer folds that delineate these structures. Halo particles are identified as those that have undergone shell-crossing along three orthogonal axes, providing a dynamical definition of halo regions that is independent of density. ORIGAMI also identifies other morphological structures: particles that have undergone shell-crossing along 2, 1, or 0 orthogonal axes correspond to filaments, walls, and voids, respectively. We compare this method to a standard friends-of-friends halo-finding algorithm and find that ORIGAMI halos are somewhat larger, more diffuse, and less spherical, though the global properties of ORIGAMI halos are in good agreement with other modern halo-finding algorithms.
Tailoring phase-space in neutron beam extraction
Energy Technology Data Exchange (ETDEWEB)
Weichselbaumer, S. [Heinz Maier-Leibnitz Zentrum und Physik-Department E21, Technische Universität München, Lichtenbergstr. 1, D-85748 Garching (Germany); Brandl, G. [Heinz Maier-Leibnitz Zentrum und Physik-Department E21, Technische Universität München, Lichtenbergstr. 1, D-85748 Garching (Germany); Physik-Department E21, Technische Universität München, James-Franck-Str. 1, D-85748 Garching (Germany); Georgii, R., E-mail: Robert.Georgii@frm2.tum.de [Heinz Maier-Leibnitz Zentrum und Physik-Department E21, Technische Universität München, Lichtenbergstr. 1, D-85748 Garching (Germany); Physik-Department E21, Technische Universität München, James-Franck-Str. 1, D-85748 Garching (Germany); Stahn, J. [Laboratory for Neutron Scattering, Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); Panzner, T. [Material Science and Simulations, Neutrons and Muons, Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); Böni, P. [Physik-Department E21, Technische Universität München, James-Franck-Str. 1, D-85748 Garching (Germany)
2015-09-01
In view of the trend towards smaller samples and experiments under extreme conditions it is important to deliver small and homogeneous neutron beams to the sample area. For this purpose, elliptic and/or Montel mirrors are ideally suited as the phase space of the neutrons can be defined far away from the sample. Therefore, only the useful neutrons will arrive at the sample position leading to a very low background. We demonstrate the ease of designing neutron transport systems using simple numeric tools, which are verified using Monte-Carlo simulations that allow taking into account effects of gravity and finite beam size. It is shown that a significant part of the brilliance can be transferred from the moderator to the sample. Our results may have a serious impact on the design of instruments at spallation sources such as the European Spallation Source (ESS) in Lund, Sweden.
Nonclassicality indicator for the real phase-space distribution functions
International Nuclear Information System (INIS)
Sadeghi, Parvin; Khademi, Siamak; Nasiri, Sadollah
2010-01-01
Benedict et al. and Kenfack et al. advocated nonclassicality indicators based on the measurement of negativity of the Wigner distribution functions. These indicators have some applications in quantum mechanics and quantum optics. In this paper we define a nonclassicality indicator in terms of the interference in phase space, which is applicable to some real distribution functions including those of Wigner. As a special case one may reproduce the previous results using our indicator for the Wigner distribution functions. This indicator is examined for cases of the Schroedinger cat state and the thermal states and the results are compared with those obtained by previous methods. It seems that the physical behavior of nonclassicality indicators originates in the uncertainty principle. This is shown by an onto correspondence between these indicators and the uncertainty principle.
Nondeterministic noiseless amplification via non-symplectic phase space transformations
International Nuclear Information System (INIS)
Walk, Nathan; Lund, Austin P; Ralph, Timothy C
2013-01-01
We analyse the action of an ideal noiseless linear amplifier operator, g a-hat † a-hat, using the Wigner function phase space representation. In this setting we are able to clarify the gain g for which a physical output is produced when this operator is acted upon inputs other than coherent states. We derive compact closed form expressions for the action of N local amplifiers, with potentially different gains, on arbitrary N-mode Gaussian states and provide several examples of the utility of this formalism for determining important quantities including amplification and the strength and purity of the distilled entanglement, and for optimizing the use of the amplification in quantum information protocols. (paper)
Dynamics of Structures in Configuration Space and Phase Space: An Introductory Tutorial
Diamond, P. H.; Kosuga, Y.; Lesur, M.
2015-12-01
Some basic ideas relevant to the dynamics of phase space and real space structures are presented in a pedagogical fashion. We focus on three paradigmatic examples, namely; G. I. Taylor's structure based re-formulation of Rayleigh's stability criterion and its implications for zonal flow momentum balance relations; Dupree's mechanism for nonlinear current driven ion acoustic instability and its implication for anomalous resistivity; and the dynamics of structures in drift and gyrokinetic turbulence and their relation to zonal flow physics. We briefly survey the extension of mean field theory to calculate evolution in the presence of localized structures for regimes where Kubo number K ≃ 1 rather than K ≪ 1, as is usual for quasilinear theory.
Tensor algebra over Hilbert space: Field theory in classical phase space
International Nuclear Information System (INIS)
Matos Neto, A.; Vianna, J.D.M.
1984-01-01
It is shown using tensor algebras, namely Symmetric and Grassmann algebras over Hilbert Space that it is possible to introduce field operators, associated to the Liouville equation of classical statistical mechanics, which are characterized by commutation (for Symmetric) and anticommutation (for Grassmann) rules. The procedure here presented shows by construction that many-particle classical systems admit an algebraic structure similar to that of quantum field theory. It is considered explicitly the case of n-particle systems interacting with an external potential. A new derivation of Schoenberg's result about the equivalence between his field theory in classical phase space and the usual classical statistical mechanics is obtained as a consequence of the algebraic structure of the theory as introduced by our method. (Author) [pt
Equilibrium phase-space distributions and space charge limits in linacs
International Nuclear Information System (INIS)
Lysenko, W.P.
1977-10-01
Limits on beam current and emittance in proton and heavy ion linear accelerators resulting from space charge forces are calculated. The method involves determining equilibrium distributions in phase space using a continuous focusing, no acceleration, model in two degrees of freedom using the coordinates r and z. A nonlinear Poisson equation must be solved numerically. This procedure is a matching between the longitudinal and transverse directions to minimize the effect of longitudinal-transverse coupling which is believed to be the main problem in emittance growth due to space charge in linacs. Limits on the Clinton P. Anderson Meson Physics Facility (LAMPF) accelerator performance are calculated as an example. The beam physics is described by a few space charge parameters so that accelerators with different physical parameters can be compared in a natural way. The main result of this parameter study is that the requirement of a high-intensity beam is best fulfilled with a low-frequency accelerator whereas the requirement of a high-brightness beam is best fulfilled with a high-frequency accelerator
On the characterization of infinitesimal symmetries of the relativistic phase space
International Nuclear Information System (INIS)
Janyška, Josef; Vitolo, Raffaele
2012-01-01
The phase space of relativistic particle mechanics is defined as the first jet space of motions regarded as time-like one-dimensional submanifolds of spacetime. A Lorentzian metric and an electromagnetic 2-form define naturally a generalized contact structure on the odd-dimensional phase space. In the paper, infinitesimal symmetries of the phase structures are characterized. More precisely, it is proved that all phase infinitesimal symmetries are special Hamiltonian lifts of distinguished conserved quantities on the phase space. It is proved that generators of infinitesimal symmetries constitute a Lie algebra with respect to a special bracket. A momentum map for groups of symmetries of the geometric structures is provided. (paper)
Downlink Fiber Laser Transmitter for Deep Space Communication, Phase II
National Aeronautics and Space Administration — NASA's Space Communications and Navigation (SCaN) roadmap, calls for an integrated network approach to communication and navigation needs for robotic and human space...
Space Facility for Orbital Remote Manufacturing (SPACEFORM), Phase I
National Aeronautics and Space Administration — To address NASA need in continued cost efficient International Space Station (ISS) exploration FOMS Inc. proposes to develop and deploy Space Facility for Orbital...
Phase transition and entropy inequality of noncommutative black holes in a new extended phase space
Energy Technology Data Exchange (ETDEWEB)
Miao, Yan-Gang; Xu, Zhen-Ming, E-mail: miaoyg@nankai.edu.cn, E-mail: xuzhenm@mail.nankai.edu.cn [School of Physics, Nankai University, Tianjin 300071 (China)
2017-03-01
We analyze the thermodynamics of the noncommutative high-dimensional Schwarzschild-Tangherlini AdS black hole with the non-Gaussian smeared matter distribution by regarding a noncommutative parameter as an independent thermodynamic variable named as the noncommutative pressure . In the new extended phase space that includes this noncommutative pressure and its conjugate variable, we reveal that the noncommutative pressure and the original thermodynamic pressure related to the negative cosmological constant make the opposite effects in the phase transition of the noncommutative black hole, i.e. the former dominates the UV regime while the latter does the IR regime, respectively. In addition, by means of the reverse isoperimetric inequality, we indicate that only the black hole with the Gaussian smeared matter distribution holds the maximum entropy for a given thermodynamic volume among the noncommutative black holes with various matter distributions.
International Nuclear Information System (INIS)
Luks, A.; Perinova, V.
1993-01-01
A suitable ordering of phase exponential operators has been compared with the antinormal ordering of the annihilation and creation operators of a single mode optical field. The extended Wigner function for number and phase in the enlarged Hilbert space has been used for the derivation of the Wigner function for number and phase in the original Hilbert space. (orig.)
Live From Space Station Outreach Payload, Phase I
National Aeronautics and Space Administration — The Live from Space Station? Outreach Payload (LFSSOP) is a technologically challenging, exciting opportunity for university students to conduct significant research...
Improved Ionic Liquids as Space Lubricants, Phase I
National Aeronautics and Space Administration — Ionic liquids are candidate lubricant materials. However for application in low temperature space mechanisms their lubrication performance needs to be enhanced. UES...
Miniature Flexible Humidity Sensitive Patches for Space Suits, Phase I
National Aeronautics and Space Administration — Advanced space suit technologies demand improved, simplified, long-life regenerative sensing technologies, including humidity sensors, that exceed the performance of...
Space Weather Action Plan Solar Radio Burst Phase 1 Benchmarks and the Steps to Phase 2
Biesecker, D. A.; White, S. M.; Gopalswamy, N.; Black, C.; Love, J. J.; Pierson, J.
2017-12-01
Solar radio bursts, when at the right frequency and when strong enough, can interfere with radar, communication, and tracking signals. In severe cases, radio bursts can inhibit the successful use of radio communications and disrupt a wide range of systems that are reliant on Position, Navigation, and Timing services on timescales ranging from minutes to hours across wide areas on the dayside of Earth. The White House's Space Weather Action Plan asked for solar radio burst intensity benchmarks for an event occurrence frequency of 1 in 100 years and also a theoretical maximum intensity benchmark. The benchmark team has developed preliminary (phase 1) benchmarks for the VHF (30-300 MHz), UHF (300-3000 MHz), GPS (1176-1602 MHz), F10.7 (2800 MHz), and Microwave (4000-20000) bands. The preliminary benchmarks were derived based on previously published work. Limitations in the published work will be addressed in phase 2 of the benchmark process. In addition, deriving theoretical maxima requires additional work, where it is even possible to, in order to meet the Action Plan objectives. In this presentation, we will present the phase 1 benchmarks, the basis used to derive them, and the limitations of that work. We will also discuss the work that needs to be done to complete the phase 2 benchmarks.
Group-velocity dispersion effects on quantum noise of a fiber optical soliton in phase space
International Nuclear Information System (INIS)
Ju, Heongkyu; Lee, Euncheol
2010-01-01
Group-velocity dispersion (GVD) effects on quantum noise of ultrashort pulsed light are theoretically investigated at the soliton energy level, using Gaussian-weighted pseudo-random distribution of phasors in phase space for the modeling of quantum noise properties including phase noise, photon number noise, and quantum noise shape in phase space. We present the effects of GVD that mixes the different spectral components in time, on the self-phase modulation(SPM)-induced quantum noise properties in phase space such as quadrature squeezing, photon-number noise, and tilting/distortion of quantum noise shape in phase space, for the soliton that propagates a distance of the nonlinear length η NL = 1/( γP 0 ) (P 0 is the pulse peak power and γ is the SPM parameter). The propagation dependence of phase space quantum noise properties for an optical soliton is also provided.
Phase space of modified Gauss-Bonnet gravity
Energy Technology Data Exchange (ETDEWEB)
Carloni, Sante [Universidade de Lisboa-UL, Centro Multidisciplinar de Astrofisica-CENTRA, Instituto Superior Tecnico-IST, Lisbon (Portugal); Mimoso, Jose P. [Instituto de Astrofisica e Ciencias do Espaco, Universidade de Lisboa, Departamento de Fisica, Faculdade de Ciencias, Lisbon (Portugal)
2017-08-15
We investigate the evolution of non-vacuum Friedmann-Lemaitre-Robertson-Walker (FLRW) spacetimes with any spatial curvature in the context of Gauss-Bonnet gravity. The analysis employs a new method which enables us to explore the phase space of any specific theory of this class. We consider several examples, discussing the transition from a decelerating into an acceleration universe within these theories. We also deduce from the dynamical equations some general conditions on the form of the action which guarantee the presence of specific behaviours like the emergence of accelerated expansion. As in f(R) gravity, our analysis shows that there is a set of initial conditions for which these models have a finite time singularity which can be an attractor. The presence of this instability also in the Gauss-Bonnet gravity is to be ascribed to the fourth-order derivative in the field equations, i.e., is the direct consequence of the higher order of the equations. (orig.)
Exploring phase space using smartphone acceleration and rotation sensors simultaneously
International Nuclear Information System (INIS)
Monteiro, Martín; Cabeza, Cecilia; Martí, Arturo C
2014-01-01
A paradigmatic physical system as the physical pendulum is experimentally studied using the acceleration and rotation (gyroscope) sensors available on smartphones and other devices such as iPads and tablets. A smartphone is fixed to the outside of a bicycle wheel whose axis is kept horizontal and fixed. The compound system, wheel plus smartphone, defines a physical pendulum which can rotate, giving full turns in one direction, or oscillate about the equilibrium position (performing either small or large oscillations). Measurements of the radial and tangential acceleration and the angular velocity obtained with smartphone sensors allow a deep insight into the dynamics of the system to be gained. In addition, thanks to the simultaneous use of the acceleration and rotation sensors, trajectories in the phase space are directly obtained. The coherence of the measures obtained with the different sensors and by traditional methods is remarkable. Indeed, due to their low cost and increasing availability, smartphone sensors are valuable tools that can be used in most undergraduate laboratories. (paper)
Exploring phase space using smartphone acceleration and rotation sensors simultaneously
Monteiro, Martín; Cabeza, Cecilia; Martí, Arturo C.
2014-07-01
A paradigmatic physical system as the physical pendulum is experimentally studied using the acceleration and rotation (gyroscope) sensors available on smartphones and other devices such as iPads and tablets. A smartphone is fixed to the outside of a bicycle wheel whose axis is kept horizontal and fixed. The compound system, wheel plus smartphone, defines a physical pendulum which can rotate, giving full turns in one direction, or oscillate about the equilibrium position (performing either small or large oscillations). Measurements of the radial and tangential acceleration and the angular velocity obtained with smartphone sensors allow a deep insight into the dynamics of the system to be gained. In addition, thanks to the simultaneous use of the acceleration and rotation sensors, trajectories in the phase space are directly obtained. The coherence of the measures obtained with the different sensors and by traditional methods is remarkable. Indeed, due to their low cost and increasing availability, smartphone sensors are valuable tools that can be used in most undergraduate laboratories.
Continuum Vlasov Simulation in Four Phase-space Dimensions
Cohen, B. I.; Banks, J. W.; Berger, R. L.; Hittinger, J. A.; Brunner, S.
2010-11-01
In the VALHALLA project, we are developing scalable algorithms for the continuum solution of the Vlasov-Maxwell equations in two spatial and two velocity dimensions. We use fourth-order temporal and spatial discretizations of the conservative form of the equations and a finite-volume representation to enable adaptive mesh refinement and nonlinear oscillation control [1]. The code has been implemented with and without adaptive mesh refinement, and with electromagnetic and electrostatic field solvers. A goal is to study the efficacy of continuum Vlasov simulations in four phase-space dimensions for laser-plasma interactions. We have verified the code in examples such as the two-stream instability, the weak beam-plasma instability, Landau damping, electron plasma waves with electron trapping and nonlinear frequency shifts [2]^ extended from 1D to 2D propagation, and light wave propagation.^ We will report progress on code development, computational methods, and physics applications. This work was performed under the auspices of the U.S. DOE by LLNL under contract no. DE-AC52-07NA27344. This work was funded by the Lab. Dir. Res. and Dev. Prog. at LLNL under project tracking code 08-ERD-031. [1] J.W. Banks and J.A.F. Hittinger, to appear in IEEE Trans. Plas. Sci. (Sept., 2010). [2] G.J. Morales and T.M. O'Neil, Phys. Rev. Lett. 28,417 (1972); R. L. Dewar, Phys. Fluids 15,712 (1972).
Phase Space Dissimilarity Measures for Structural Health Monitoring
Energy Technology Data Exchange (ETDEWEB)
Bubacz, Jacob A [ORNL; Chmielewski, Hana T [ORNL; Pape, Alexander E [ORNL; Depersio, Andrew J [ORNL; Hively, Lee M [ORNL; Abercrombie, Robert K [ORNL; Boone, Shane [ORNL
2011-11-01
A novel method for structural health monitoring (SHM), known as the Phase Space Dissimilarity Measures (PSDM) approach, is proposed and developed. The patented PSDM approach has already been developed and demonstrated for a variety of equipment and biomedical applications. Here, we investigate SHM of bridges via analysis of time serial accelerometer measurements. This work has four aspects. The first is algorithm scalability, which was found to scale linearly from one processing core to four cores. Second, the same data are analyzed to determine how the use of the PSDM approach affects sensor placement. We found that a relatively low-density placement sufficiently captures the dynamics of the structure. Third, the same data are analyzed by unique combinations of accelerometer axes (vertical, longitudinal, and lateral with respect to the bridge) to determine how the choice of axes affects the analysis. The vertical axis is found to provide satisfactory SHM data. Fourth, statistical methods were investigated to validate the PSDM approach for this application, yielding statistically significant results.
Average accelerator simulation Truebeam using phase space in IAEA format
International Nuclear Information System (INIS)
Santana, Emico Ferreira; Milian, Felix Mas; Paixao, Paulo Oliveira; Costa, Raranna Alves da; Velasco, Fermin Garcia
2015-01-01
In this paper is used a computational code of radiation transport simulation based on Monte Carlo technique, in order to model a linear accelerator of treatment by Radiotherapy. This work is the initial step of future proposals which aim to study several treatment of patient by Radiotherapy, employing computational modeling in cooperation with the institutions UESC, IPEN, UFRJ e COI. The Chosen simulation code is GATE/Geant4. The average accelerator is TrueBeam of Varian Company. The geometric modeling was based in technical manuals, and radiation sources on the phase space for photons, provided by manufacturer in the IAEA (International Atomic Energy Agency) format. The simulations were carried out in equal conditions to experimental measurements. Were studied photons beams of 6MV, with 10 per 10 cm of field, focusing on a water phantom. For validation were compared dose curves in depth, lateral profiles in different depths of the simulated results and experimental data. The final modeling of this accelerator will be used in future works involving treatments and real patients. (author)
Simple procedure for phase-space measurement and entanglement validation
Rundle, R. P.; Mills, P. W.; Tilma, Todd; Samson, J. H.; Everitt, M. J.
2017-08-01
It has recently been shown that it is possible to represent the complete quantum state of any system as a phase-space quasiprobability distribution (Wigner function) [Phys. Rev. Lett. 117, 180401 (2016), 10.1103/PhysRevLett.117.180401]. Such functions take the form of expectation values of an observable that has a direct analogy to displaced parity operators. In this work we give a procedure for the measurement of the Wigner function that should be applicable to any quantum system. We have applied our procedure to IBM's Quantum Experience five-qubit quantum processor to demonstrate that we can measure and generate the Wigner functions of two different Bell states as well as the five-qubit Greenberger-Horne-Zeilinger state. Because Wigner functions for spin systems are not unique, we define, compare, and contrast two distinct examples. We show how the use of these Wigner functions leads to an optimal method for quantum state analysis especially in the situation where specific characteristic features are of particular interest (such as for spin Schrödinger cat states). Furthermore we show that this analysis leads to straightforward, and potentially very efficient, entanglement test and state characterization methods.
Polymer Flip Chips with Extreme Temperature Stability in Space, Phase I
National Aeronautics and Space Administration — The objective of the proposed SBIR Phase I program is to develop highly thermally and electrically conductive nanocomposites for space-based flip chips for...
Expanded Operational Temperature Range for Space Rated Li-Ion Batteries, Phase II
National Aeronautics and Space Administration — Quallion's Phase II proposal calls for expanding the nominal operation range of its space rated lithium ion cells, while maintaining their long life capabilities. To...
Multi-A.U. SOLAROSA Concentrator Solar Array for Space Science Missions, Phase II
National Aeronautics and Space Administration — Deployable Space Systems, Inc. (DSS), in partnership with MOLLC will focus the proposed NASA Phase 2 effort on the development and demonstration of our innovative...
National Aeronautics and Space Administration — Deployable Space Systems, Inc. (DSS) will focus the proposed SBIR Phase 2 program on the development and demonstration of an automated robotic manufacturing...
Digital acquisition and wavelength control of seed laser for space-based Lidar applications, Phase I
National Aeronautics and Space Administration — This SBIR Phase I proposes to establish the feasibility of using a space qualifiable Field Programmable Gate Array (FPGA) based digital controller to autonomously...
An Effective Method to Accurately Calculate the Phase Space Factors for β"-β"- Decay
International Nuclear Information System (INIS)
Horoi, Mihai; Neacsu, Andrei
2016-01-01
Accurate calculations of the electron phase space factors are necessary for reliable predictions of double-beta decay rates and for the analysis of the associated electron angular and energy distributions. We present an effective method to calculate these phase space factors that takes into account the distorted Coulomb field of the daughter nucleus, yet it allows one to easily calculate the phase space factors with good accuracy relative to the most exact methods available in the recent literature.
Comparison of phase space dynamics of Kopenhagen and causal interpretations of quantum mechanics
Energy Technology Data Exchange (ETDEWEB)
Tempel, Christoph; Schleich, Wolfgang P. [Institut fuer Quantenphysik, Universitaet Ulm, D-89069 Ulm (Germany)
2013-07-01
Recent publications pursue the attempt to reconstruct Bohm trajectories experimentally utilizing the technique of weak measurements. We study the phase space dynamics of a specific double slit setup in terms of the Bohm de-Broglie formulation of quantum mechanics. We want to compare the results of those Bohmian phase space dynamics to the usual quantum mechanical phase space formulation with the Wigner function as a quasi probability density.
Multifunctional Metal/Polymer Composite Fiber for Space Applications, Phase II
National Aeronautics and Space Administration — In this Small Business Innovation Research Phase II Program, Syscom Technology, Inc. will implement an integrated processing scheme to fabricate a conductive...
Multifunctional Metal/Polymer Composite Fiber for Space Applications, Phase I
National Aeronautics and Space Administration — In this Small Business Innovation Research Phase I Program, Syscom Technology, Inc. (STI) will fabricate a metallized multifunctional composite fiber from a...
In-Space Cryogenic VOST Connect/Disconnect, Phase II
National Aeronautics and Space Administration — Two novel cryogenic couplings will be designed, fabricated and tested. Intended for in-space use at cryogenic propellant depots, the couplings are based on patented...
A Flexible Cognitive Architecture for Space Exploration Agents, Phase I
National Aeronautics and Space Administration — In space operations, carrying out the activities of mission plans by executing procedures often requires close collaboration between ground controllers who have deep...
Multifunctional Metal-Polymer Nanocomposites for Space Applications, Phase I
National Aeronautics and Space Administration — NASA has identified a need for new high performance-to-weight materials capable of protecting critical components from the space environment, mitigating threat of...
SpaceVPX Switch-Controller, Phase I
National Aeronautics and Space Administration — Crossfield Technology proposes a SpaceVPX (VITA 78) Switch-Controller Module implemented in a state-of-the-art Field Programmable Gate Array (FPGA) System on Chip...
Novel Composite Membrane for Space Life Supporting System, Phase I
National Aeronautics and Space Administration — Space life-supporting systems require effective removal of metabolic CO2 from the cabin atmosphere with minimal loss of O2. Conventional techniques, using either...
Advanced Gas Sensing Technology for Space Suits, Phase I
National Aeronautics and Space Administration — Advanced space suits require lightweight, low-power, durable sensors for monitoring critical life support materials. No current compact sensors have the tolerance...
FCAPD Protective Coating for Space Tethers, Phase I
National Aeronautics and Space Administration — Alameda Applied Sciences Corporation (AASC) proposes to demonstrate extended service lifetime of space tethers in the Low Earth Orbit (LEO) environment by using...
High Power Uplink Amplifier for Deep Space Communications, Phase II
National Aeronautics and Space Administration — Critical to the success of delivering on the promise of deep space optical communications is the creation of a stable and reliable high power multichannel optical...
High Power Uplink Amplifier for Deep Space Communications, Phase I
National Aeronautics and Space Administration — Critical to the success of delivering on the promise of deep space optical communications is the creation of a stable and reliable high power multichannel optical...
Space Qualified, Radiation Hardened, Dense Monolithic Flash Memory, Phase I
National Aeronautics and Space Administration — Radiation hardened nonvolatile memories for space is still primarily confined to EEPROM. There is high density effective or cost effective NVM solution available to...
Microwave Materials Processing for Space Applications, Phase I
National Aeronautics and Space Administration — For a space-based fabrication effort to be effective, the weight, power requirements and footprint must be minimized. Because of the unique beam forming properties...
Deployable solar energy generators for deep space cubesats, Phase I
National Aeronautics and Space Administration — Cubesats require highly compact technologies to maximize their effectiveness. As cubesats are expected to be low-cost and, relative to the space industry, mass...
Deep Space Navigation and Timing Architecture and Simulation, Phase I
National Aeronautics and Space Administration — Microcosm will develop a deep space navigation and timing architecture and associated simulation, incorporating state-of-the art radiometric, x-ray pulsar, and laser...
Space Qualified, Radiation Hardened, Dense Monolithic Flash Memory, Phase II
National Aeronautics and Space Administration — Space Micro proposes to build a radiation hardened by design (RHBD) flash memory, using a modified version of our RH-eDRAM Memory Controller to solve all the single...
In-Space Friction Stir Welding Machine, Phase I
National Aeronautics and Space Administration — Longhurst Engineering, PLC, and Vanderbilt University propose an in-space friction stir welding (FSW) machine for joining complex structural aluminum components. The...
High Temperature Electrical Insulation Materials for Space Applications, Phase I
National Aeronautics and Space Administration — NASA's future space science missions cannot be realized without the state of the art high temperature insulation materials of which higher working temperature, high...
Advanced Fire Detector for Space Applications, Phase II
National Aeronautics and Space Administration — New sensor technology is required to face the challenging tasks associated with future space exploration involving missions to the Moon and Mars. The safety and...
Generalised partition functions: inferences on phase space distributions
Directory of Open Access Journals (Sweden)
R. A. Treumann
2016-06-01
Full Text Available It is demonstrated that the statistical mechanical partition function can be used to construct various different forms of phase space distributions. This indicates that its structure is not restricted to the Gibbs–Boltzmann factor prescription which is based on counting statistics. With the widely used replacement of the Boltzmann factor by a generalised Lorentzian (also known as the q-deformed exponential function, where κ = 1∕|q − 1|, with κ, q ∈ R both the kappa-Bose and kappa-Fermi partition functions are obtained in quite a straightforward way, from which the conventional Bose and Fermi distributions follow for κ → ∞. For κ ≠ ∞ these are subject to the restrictions that they can be used only at temperatures far from zero. They thus, as shown earlier, have little value for quantum physics. This is reasonable, because physical κ systems imply strong correlations which are absent at zero temperature where apart from stochastics all dynamical interactions are frozen. In the classical large temperature limit one obtains physically reasonable κ distributions which depend on energy respectively momentum as well as on chemical potential. Looking for other functional dependencies, we examine Bessel functions whether they can be used for obtaining valid distributions. Again and for the same reason, no Fermi and Bose distributions exist in the low temperature limit. However, a classical Bessel–Boltzmann distribution can be constructed which is a Bessel-modified Lorentzian distribution. Whether it makes any physical sense remains an open question. This is not investigated here. The choice of Bessel functions is motivated solely by their convergence properties and not by reference to any physical demands. This result suggests that the Gibbs–Boltzmann partition function is fundamental not only to Gibbs–Boltzmann but also to a large class of generalised Lorentzian distributions as well as to the
1984-01-01
The large space structures technology development missions to be performed on an early manned space station was studied and defined and the resources needed and the design implications to an early space station to carry out these large space structures technology development missions were determined. Emphasis is being placed on more detail in mission designs and space station resource requirements.
Phase space imaging of a beam of charged particles by frictional forces
International Nuclear Information System (INIS)
Daniel, H.
1977-01-01
In the case of frictional forces, defined by always acting opposite to the particle motion, Liouville's theorem does not apply. The effect of such forces on a beam of charged particles is calculated in closed form. Emphasis is given to the phase space imaging by a moderator. Conditions for an increase in phase space density are discussed. (Auth.)
Superconductivity and the existence of Nambu's three-dimensional phase space mechanics
International Nuclear Information System (INIS)
Angulo, R.; Gonzalez-Bernardo, C.A.; Rodriguez-Gomez, J.; Kalnay, A.J.; Perez-M, F.; Tello-Llanos, R.A.
1984-01-01
Nambu proposed a generalization of hamiltonian mechanics such that three-dimensional phase space is allowed. Thanks to a recent paper by Holm and Kupershmidt we are able to show the existence of such three-dimensional phase space systems in superconductivity. (orig.)
Thermo-Acoustic Convertor for Space Power, Phase I
National Aeronautics and Space Administration — Sunpower will introduce thermoacoustic Stirling heat engine (TASHE) technology into its existing Stirling convertor technology to eliminate the moving mechanical...
Battery Diagnostics and Prognostics for Space Applications, Phase I
National Aeronautics and Space Administration — Global Technology Connection, Inc., in collaboration with Georgia Tech (Center for Fuel Cell and Battery Technologies) and our industrial partner, Eagle Pichers,...
Lightweight CNT Shielded Cables for Space Applications, Phase II
National Aeronautics and Space Administration — The effects of electromagnetic interactions in electrical systems are of growing concern due to the increasing susceptibility of system components to electromagnetic...
Silicon Carbide Corrugated Mirrors for Space Telescopes, Phase I
National Aeronautics and Space Administration — Trex Enterprises Corporation (Trex) proposes technology development to manufacture monolithic, lightweight silicon carbide corrugated mirrors (SCCM) suitable for...
Micro tube heat exchangers for Space, Phase I
National Aeronautics and Space Administration — Mezzo fabricates micro tube heat exchangers for a variety of applications, including aerospace, automotive racing, Department of Defense ground vehicles, economizers...
Directory of Open Access Journals (Sweden)
Ivan V. Bazarov
2008-10-01
Full Text Available We present a comparison between space charge calculations and direct measurements of the transverse phase space of space charge dominated electron bunches from a high voltage dc photoemission gun followed by an emittance compensation solenoid magnet. The measurements were performed using a double-slit emittance measurement system over a range of bunch charge and solenoid current values. The data are compared with detailed simulations using the 3D space charge codes GPT and Parmela3D. The initial particle distributions were generated from measured transverse and temporal laser beam profiles at the photocathode. The beam brightness as a function of beam fraction is calculated for the measured phase space maps and found to approach within a factor of 2 the theoretical maximum set by the thermal energy and the accelerating field at the photocathode.
Remarks on the formulation of quantum mechanics on noncommutative phase spaces
International Nuclear Information System (INIS)
Muthukumar, Balasundaram
2007-01-01
We consider the probabilistic description of nonrelativistic, spinless one-particle classical mechanics, and immerse the particle in a deformed noncommutative phase space in which position coordinates do not commute among themselves and also with canonically conjugate momenta. With a postulated normalized distribution function in the quantum domain, the square of the Dirac delta density distribution in the classical case is properly realised in noncommutative phase space and it serves as the quantum condition. With only these inputs, we pull out the entire formalisms of noncommutative quantum mechanics in phase space and in Hilbert space, and elegantly establish the link between classical and quantum formalisms and between Hilbert space and phase space formalisms of noncommutative quantum mechanics. Also, we show that the distribution function in this case possesses 'twisted' Galilean symmetry
Efficient characterization of phase space mapping in axially symmetric optical systems
Barbero, Sergio; Portilla, Javier
2018-01-01
Phase space mapping, typically between an object and image plane, characterizes an optical system within a geometrical optics framework. We propose a novel conceptual frame to characterize the phase mapping in axially symmetric optical systems for arbitrary object locations, not restricted to a specific object plane. The idea is based on decomposing the phase mapping into a set of bivariate equations corresponding to different values of the radial coordinate on a specific object surface (most likely the entrance pupil). These equations are then approximated through bivariate Chebyshev interpolation at Chebyshev nodes, which guarantees uniform convergence. Additionally, we propose the use of a new concept (effective object phase space), defined as the set of points of the phase space at the first optical element (typically the entrance pupil) that are effectively mapped onto the image surface. The effective object phase space provides, by means of an inclusion test, a way to avoid tracing rays that do not reach the image surface.
Modular space station, phase B extension. Program operations plan
1971-01-01
An organized approach is defined for establishing the most significant requirements pertaining to mission operations, information management, and computer program design and development for the modular space station program. The operations plan pertains to the space station and experiment module program elements and to the ground elements required for mission management and mission support operations.
Space Station Freedom - Approaching the critical design phase
Kohrs, Richard H.; Huckins, Earle, III
1992-01-01
The status and future developments of the Space Station Freedom are discussed. To date detailed design drawings are being produced to manufacture SSF hardware. A critical design review (CDR) for the man-tended capability configuration is planned to be performed in 1993 under the SSF program. The main objective of the CDR is to enable the program to make a full commitment to proceed to manufacture parts and assemblies. NASA recently signed a contract with the Russian space company, NPO Energia, to evaluate potential applications of various Russian space hardware for on-going NASA programs.
Transport regimes spanning magnetization-coupling phase space
Baalrud, Scott D.; Daligault, Jérôme
2017-10-01
The manner in which transport properties vary over the entire parameter-space of coupling and magnetization strength is explored. Four regimes are identified based on the relative size of the gyroradius compared to other fundamental length scales: the collision mean free path, Debye length, distance of closest approach, and interparticle spacing. Molecular dynamics simulations of self-diffusion and temperature anisotropy relaxation spanning the parameter space are found to agree well with the predicted boundaries. Comparison with existing theories reveals regimes where they succeed, where they fail, and where no theory has yet been developed.
Integrated Modeling, Analysis, and Verification for Space Missions, Phase I
National Aeronautics and Space Administration — This project will further MBSE technology in fundamental ways by strengthening the link between SysML tools and framework engineering execution environments. Phoenix...
Reservoir Cathode for Electric Space Propulsion, Phase II
National Aeronautics and Space Administration — We propose a hollow reservoir cathode to improve performance in ion and Hall thrusters. We will adapt our existing reservoir cathode technology to this purpose....
Modular, Fault-Tolerant Electronics Supporting Space Exploration, Phase II
National Aeronautics and Space Administration — Modern electronic systems tolerate only as many point failures as there are redundant system copies, using mere macro-scale redundancy. Fault Tolerant Electronics...
Cryocooler With Cold Compressor for Deep Space Applications, Phase I
National Aeronautics and Space Administration — The unique built-in design features of the proposed mini pulse tube cryocooler avoid all thermal expansion issues enabling it to operate within a cold, 150 K...
Integrated Structural Health Sensors for Inflatable Space Habitats, Phase II
National Aeronautics and Space Administration — Luna proposes to continue development of integrated high-definition fiber optic sensors (HD-FOS) and carbon nanotube (CNT)-graphene piezoresistive sensors for...
Fast Neutron Dosimeter for the Space Environment, Phase II
National Aeronautics and Space Administration — Model calculations and risk assessment estimates indicate that secondary neutrons, with energies ranging between 0.5 to >150 MeV, make a significant contribution...
Small Space Platform Enhanced Internet Protocol Stack Device, Phase II
National Aeronautics and Space Administration — Wireless communication of small, nano and micro satellites will play a vital role to NASA mission and marketability of the satellite. The use of an Internet-based...
Extremely High Suction Performance Inducers for Space Propulsion, Phase II
National Aeronautics and Space Administration — The proposed innovation provides a way to design low flow coefficient inducers that have higher cavitation breakdown margin, larger blade angles, thicker more...
Striction-based Power Monitoring in Space Environment, Phase II
National Aeronautics and Space Administration — The program delivers a completely new technology solution to isolation and sensing of power flow (current and voltage). Based on striction materials technology,...
LunarCube for Deep Space Missions, Phase I
National Aeronautics and Space Administration — Busek Co., Inc. and Morehead State University propose to develop a 6U CubeSat capable of reaching a lunar orbit from GEO. The primary objective is to demonstrate...
Space/Flight Operable Miniature Six Axis Transducer, Phase II
National Aeronautics and Space Administration — FUTEK will fully design and manufacture a sensor capable of measuring forces in and about each axis. The unit will measure forces up to 300 Newton's in the principle...
Space-Qualifiable Digital Radar Transceiver, Phase II
National Aeronautics and Space Administration — Historically, radar systems have tended to be either large, complex, power-hungry, purpose-built systems, or extremely simple systems of limited capability. More...
Space-qualifiable Digital Radar Transceiver, Phase I
National Aeronautics and Space Administration — Radar technology offers a very flexible, powerful tool for applications such as object detection, tracking, and characterization, as well as remote sensing, imaging,...
High Performance Arm for an Exploration Space Suit, Phase I
National Aeronautics and Space Administration — Final Frontier Design (FFD) proposes to develop and deliver an advanced pressure garment arm with low torque and high Range of Motion (ROM), and increased...
A Cold Cycle Dilution Refrigerator for Space Applications, Phase I
National Aeronautics and Space Administration — The cold cycle dilution refrigerator is a continuous refrigerator capable of cooling to temperatures below 100 mK that makes use of a novel thermal magnetic pump....
Extremely High Suction Performance Inducers for Space Propulsion, Phase I
National Aeronautics and Space Administration — Advanced pump inducer design technology that uses high inlet diffusion blades, operates at a very low flow coefficient, and employs a cavitation control and...
Advanced Thermal Interface Material Systems for Space Applications, Phase I
National Aeronautics and Space Administration — The ultimate aim of proposed efforts are to develop innovative material and process (M increase thermal cycles before degradation and efforts to ensure ease of...
Flexible Polymer Sensor for Space Suits, Phase I
National Aeronautics and Space Administration — Perception Robotics has developed an innovative new type of compliant tactile sensing solution, a polymeric skin (PolySkinTM) that can be molded into any form...
Propellant Gelation for Green In-Space Propulsion, Phase I
National Aeronautics and Space Administration — Concerns in recent years about the toxicity and safe handling of the storable class of propellants have led to efforts in greener monopropellants and bi-propellants....
Individualized Fatigue Meter for Space Exploration, Phase II
National Aeronautics and Space Administration — To ensure mission success, astronauts must maintain a high level of performance even when work-rest schedules result in chronic sleep restriction and circadian...
Individualized Fatigue Meter for Space Exploration, Phase I
National Aeronautics and Space Administration — To ensure mission success, astronauts must maintain a high level of performance even when work-rest schedules result in chronic sleep restriction and circadian...
Optical Real-Time Space Radiation Monitor, Phase I
National Aeronautics and Space Administration — Real-time dosimetry is needed to provide immediate feedback, so astronauts can minimize their exposure to ionizing radiation during periods of high solar activity....
Advanced Fire Detector for Space Applications, Phase I
National Aeronautics and Space Administration — Reliable and efficient fire detection is a precondition for safe spaceflight. The threat of onboard fire is constant and requires early, fast and unfailing...
Quantum group gauge theory on quantum spaces
International Nuclear Information System (INIS)
Brzezinski, T.; Majid, S.
1993-01-01
We construct quantum group-valued canonical connections on quantum homogeneous spaces, including a q-deformed Dirac monopole on the quantum sphere of Podles quantum differential coming from the 3-D calculus of Woronowicz on SU q (2). The construction is presented within the setting of a general theory of quantum principal bundles with quantum group (Hopf algebra) fiber, associated quantum vector bundles and connection one-forms. Both the base space (spacetime) and the total space are non-commutative algebras (quantum spaces). (orig.)
Li, Xueliang; Geng, Tianwen; Ma, Shuang; Li, Yatian; Gao, Shijie; Wu, Zhiyong
2017-06-01
The performance of coherent free-space optical (CFSO) communication with phase modulation is limited by both phase fluctuations and intensity scintillations induced by atmospheric turbulence. To improve the system performance, one effective way is to use digital phase estimation. In this paper, a CFSO communication system with quadrature phase-shift keying modulation is studied. With consideration of the effects of log-normal amplitude fluctuations and Gauss phase fluctuations, a two-stage Mth power carrier phase estimation (CPE) scheme is proposed. The simulation results show that the phase noise can be suppressed greatly by this scheme, and the system symbol error rate performance with the two-stage Mth power CPE can be three orders lower than that of the single-stage Mth power CPE. Therefore, the two-stage CPE we proposed can contribute to the performance improvements of the CFSO communication system and has determinate guidance sense to its actual application.
Multiplicity distributions in small phase-space domains in central nucleus-nucleus collisions
International Nuclear Information System (INIS)
Baechler, J.; Hoffmann, M.; Runge, K.; Schmoetten, E.; Bartke, J.; Gladysz, E.; Kowalski, M.; Stefanski, P.; Bialkowska, H.; Bock, R.; Brockmann, R.; Sandoval, A.; Buncic, P.; Ferenc, D.; Kadija, K.; Ljubicic, A. Jr.; Vranic, D.; Chase, S.I.; Harris, J.W.; Odyniec, G.; Pugh, H.G.; Rai, G.; Teitelbaum, L.; Tonse, S.; Derado, I.; Eckardt, V.; Gebauer, H.J.; Rauch, W.; Schmitz, N.; Seyboth, P.; Seyerlein, J.; Vesztergombi, G.; Eschke, J.; Heck, W.; Kabana, S.; Kuehmichel, A.; Lahanas, M.; Lee, Y.; Le Vine, M.; Margetis, S.; Renfordt, R.; Roehrich, D.; Rothard, H.; Schmidt, E.; Schneider, I.; Stock, R.; Stroebele, H.; Wenig, S.; Fleischmann, B.; Fuchs, M.; Gazdzicki, M.; Kosiec, J.; Skrzypczak, E.; Keidel, R.; Piper, A.; Puehlhofer, F.; Nappi, E.; Posa, F.; Paic, G.; Panagiotou, A.D.; Petridis, A.; Vassileiadis, G.; Pfenning, J.; Wosiek, B.
1992-10-01
Multiplicity distributions of negatively charged particles have been studied in restricted phase space intervals for central S + S, O + Au and S + Au collisions at 200 GeV/nucleon. It is shown that multiplicity distributions are well described by a negative binomial form irrespectively of the size and dimensionality of phase space domain. A clan structure analysis reveals interesting similarities between complex nuclear collisions and a simple partonic shower. The lognormal distribution agrees reasonably well with the multiplicity data in large domains, but fails in the case of small intervals. No universal scaling function was found to describe the shape of multiplicity distributions in phase space intervals of varying size. (orig.)
International Nuclear Information System (INIS)
Li Qianshu; Lue Liqiang; Wei Gongmin
2004-01-01
This paper discusses the relationship between the Wigner function, along with other related quasiprobability distribution functions, and the probability density distribution function constructed from the wave function of the Schroedinger equation in quantum phase space, as formulated by Torres-Vega and Frederick (TF). At the same time, a general approach in solving the wave function of the Schroedinger equation of TF quantum phase space theory is proposed. The relationship of the wave functions between the TF quantum phase space representation and the coordinate or momentum representation is thus revealed
Tunneling of an energy eigenstate through a parabolic barrier viewed from Wigner phase space
DEFF Research Database (Denmark)
Heim, D.M.; Schleich, W.P.; Alsing, P.M.
2013-01-01
We analyze the tunneling of a particle through a repulsive potential resulting from an inverted harmonic oscillator in the quantum mechanical phase space described by the Wigner function. In particular, we solve the partial differential equations in phase space determining the Wigner function...... of an energy eigenstate of the inverted oscillator. The reflection or transmission coefficients R or T are then given by the total weight of all classical phase-space trajectories corresponding to energies below, or above the top of the barrier given by the Wigner function....
Quantum phase space for an ideal relativistic gas in d spatial dimensions
International Nuclear Information System (INIS)
Hayashi, M.; Vera Mendoza, H.
1992-01-01
We present the closed formula for the d-dimensional invariant phase-space integral for an ideal relativistic gas in an exact integral form. In the particular cases of the nonrelativistic and the extreme relativistic limits the phase-space integrals are calculated analytically. Then we consider the d-dimensional invariant phase space with quantum statistic and derive the cluster decomposition for the grand canonical and canonical partition functions as well as for the microcanonical and grand microcanonical densities of states. As a showcase, we consider the black-body radiation in d dimensions (Author)
Correction of aberrations in beams filling elliptical phase-space areas
International Nuclear Information System (INIS)
Wollnik, H.
1988-01-01
For the optimization of an optical system it is advantageous to amend the system by a virtual object lens so that the calculation always starts from an upright phase-space distribution. Furthermore, in case of a beam filling an elliptical phase-space volume, the most extreme rays of a beam, filling a parallelogram-like phase-space volume, do not exist, so that the corresponding sum of aberrations is smaller. For an optimization thus corresponding attenuation factors should be taken into accout
Space station contamination control study: Internal combustion, phase 1
Ruggeri, Robert T.
1987-01-01
Contamination inside Space Station modules was studied to determine the best methods of controlling contamination. The work was conducted in five tasks that identified existing contamination control requirements, analyzed contamination levels, developed outgassing specification for materials, wrote a contamination control plan, and evaluated current materials of offgassing tests used by NASA. It is concluded that current contamination control methods can be made to function on the Space Station for up to 1000 days, but that current methods are deficient for periods longer than about 1000 days.
DD-Amp for Deep Space Communications, Phase I
National Aeronautics and Space Administration — AlGaN/GaN MMICs on SiC substrates will be utilized to achieve Power Added Efficiencies (PAE) in excess of 60%. These wide band-gap solid-state semiconductors will be...
Transverse emittance and phase space program developed for use at the Fermilab A0 Photoinjector
International Nuclear Information System (INIS)
Thurman-Keup, R.; Johnson, A.S.; Lumpkin, A.H.; Ruan, J.
2011-01-01
The Fermilab A0 Photoinjector is a 16 MeV high intensity, high brightness electron linac developed for advanced accelerator R and D. One of the key parameters for the electron beam is the transverse beam emittance. Here we report on a newly developed MATLAB based GUI program used for transverse emittance measurements using the multi-slit technique. This program combines the image acquisition and post-processing tools for determining the transverse phase space parameters with uncertainties. An integral part of accelerator research is a measurement of the beam phase space. Measurements of the transverse phase space can be accomplished by a variety of methods including multiple screens separated by drift spaces, or by sampling phase space via pepper pots or slits. In any case, the measurement of the phase space parameters, in particular the emittance, can be drastically simplified and sped up by automating the measurement in an intuitive fashion utilizing a graphical interface. At the A0 Photoinjector (A0PI), the control system is DOOCS, which originated at DESY. In addition, there is a library for interfacing to MATLAB, a graphically capable numerical analysis package sold by The Mathworks. It is this graphical package which was chosen as the basis for a graphical phase space measurement system due to its combination of analysis and display capabilities.
An Asymmetrical Space Vector Method for Single Phase Induction Motor
DEFF Research Database (Denmark)
Cui, Yuanhai; Blaabjerg, Frede; Andersen, Gert Karmisholt
2002-01-01
Single phase induction motors are the workhorses in low-power applications in the world, and also the variable speed is necessary. Normally it is achieved either by the mechanical method or by controlling the capacitor connected with the auxiliary winding. Any above method has some drawback which...
Phase space investigation of the lithium amide halides
Energy Technology Data Exchange (ETDEWEB)
Davies, Rosalind A. [Hydrogen Storage Chemistry Group, School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Hydrogen and Fuel Cell Group, School of Chemical Engineering, University of Birmingham, Edgbaston B15 2TT (United Kingdom); Hewett, David R.; Korkiakoski, Emma [Hydrogen Storage Chemistry Group, School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Thompson, Stephen P. [Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0QX (United Kingdom); Anderson, Paul A., E-mail: p.a.anderson@bham.ac.uk [Hydrogen Storage Chemistry Group, School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom)
2015-10-05
Highlights: • The lower limits of halide incorporation in lithium amide have been investigated. • The only amide iodide stoichiometry observed was Li{sub 3}(NH{sub 2}){sub 2}I. • Solid solutions were observed in both the amide chloride and amide bromide systems. • A 46% reduction in chloride content resulted in a new phase: Li{sub 7}(NH{sub 2}){sub 6}Cl. • New low-chloride phase maintained improved H{sub 2} desorption properties of Li{sub 4}(NH{sub 2}){sub 3}Cl. - Abstract: An investigation has been carried out into the lower limits of halide incorporation in lithium amide (LiNH{sub 2}). It was found that the lithium amide iodide Li{sub 3}(NH{sub 2}){sub 2}I was unable to accommodate any variation in stoichiometry. In contrast, some variation in stoichiometry was accommodated in Li{sub 7}(NH{sub 2}){sub 6}Br, as shown by a decrease in unit cell volume when the bromide content was reduced. The amide chloride Li{sub 4}(NH{sub 2}){sub 3}Cl was found to adopt either a rhombohedral or a cubic structure depending on the reaction conditions. Reduction in chloride content generally resulted in a mixture of phases, but a new rhombohedral phase with the stoichiometry Li{sub 7}(NH{sub 2}){sub 6}Cl was observed. In comparison to LiNH{sub 2}, this new low-chloride phase exhibited similar improved hydrogen desorption properties as Li{sub 4}(NH{sub 2}){sub 3}Cl but with a much reduced weight penalty through addition of chloride. Attempts to dope lithium amide with fluoride ions have so far proved unsuccessful.
Mutually unbiased coarse-grained measurements of two or more phase-space variables
Paul, E. C.; Walborn, S. P.; Tasca, D. S.; Rudnicki, Łukasz
2018-05-01
Mutual unbiasedness of the eigenstates of phase-space operators—such as position and momentum, or their standard coarse-grained versions—exists only in the limiting case of infinite squeezing. In Phys. Rev. Lett. 120, 040403 (2018), 10.1103/PhysRevLett.120.040403, it was shown that mutual unbiasedness can be recovered for periodic coarse graining of these two operators. Here we investigate mutual unbiasedness of coarse-grained measurements for more than two phase-space variables. We show that mutual unbiasedness can be recovered between periodic coarse graining of any two nonparallel phase-space operators. We illustrate these results through optics experiments, using the fractional Fourier transform to prepare and measure mutually unbiased phase-space variables. The differences between two and three mutually unbiased measurements is discussed. Our results contribute to bridging the gap between continuous and discrete quantum mechanics, and they could be useful in quantum-information protocols.
A phase-space approach to atmospheric dynamics based on observational data. Theory and applications
International Nuclear Information System (INIS)
Wang Risheng.
1994-01-01
This thesis is an attempt to develop systematically a phase-space approach to the atmospheric dynamics based on the theoretical achievement and application experiences in nonlinear time-series analysis. In particular, it is concerned with the derivation of quantities for describing the geometrical structure of the observed dynamics in phase-space (dimension estimation) and the examination of the observed atmospheric fluctuations in the light of phase-space representation. The thesis is, therefore composed of three major parts, i.e. an general survey of the theory of statistical approaches to dynamic systems, the methodology designed for the present study and specific applications with respect to dimension estimation and to a phase-space analysis of the tropical stratospheric quasi-biennial oscillation. (orig./KW)
Large Format LW Type-II SLS FPAs for Space Applications, Phase I
National Aeronautics and Space Administration — This Phase I SBIR proposes to develop high performance (low dark current, high quantum efficiency, and low NEdT) infrared epitaxy materials based on Type II Strained...
Preliminary results of a test of a longitudinal phase-space monitor
International Nuclear Information System (INIS)
Kikutani, Eiji; Funakoshi, Yoshihiro; Kawamoto, Takashi; Mimashi, Toshihiro
1994-01-01
A prototype of a longitudinal phase-space monitor has been developed in TRISTAN Main Ring at KEK. The principle of the monitor and its basic components are explained. Also a result of a preliminary beam test is given. (author)
Surface behaviour of the phase-space distribution for heavy nuclei
International Nuclear Information System (INIS)
Durand, M.
1987-06-01
A part of the oscillations of the phase space distribution function is shown to be a surface effect. A series expansion for this function is given, which takes partially into account this oscillatory structure
Phase-space diffusion in turbulent plasmas: The random acceleration problem revisited
DEFF Research Database (Denmark)
Pécseli, H.L.; Trulsen, J.
1991-01-01
Phase-space diffusion of test particles in turbulent plasmas is studied by an approach based on a conditional statistical analysis of fluctuating electrostatic fields. Analytical relations between relevant conditional averages and higher-order correlations, , and triple...
Kim, Hwi; Min, Sung-Wook; Lee, Byoungho; Poon, Ting-Chung
2008-07-01
We propose a novel optical sectioning method for optical scanning holography, which is performed in phase space by using Wigner distribution functions together with the fractional Fourier transform. The principle of phase-space optical sectioning for one-dimensional signals, such as slit objects, and two-dimensional signals, such as rectangular objects, is first discussed. Computer simulation results are then presented to substantiate the proposed idea.
International Nuclear Information System (INIS)
Raoelina Andriambololona; Ranaivoson, R.T.R.; Rakotoson, H.; Solofoarisina, W.C.
2015-04-01
We present a study on linear canonical transformation in the framework of a phase space representation of quantum mechanics that we have introduced in our previous work. We begin with a brief recall about the so called phase space representation. We give the definition of linear canonical transformation with the transformation law of coordinate and momentum operators. We establish successively the transformation laws of mean values, dispersions, basis state and wave functions.Then we introduce the concept of isodispersion linear canonical transformation.
Feynman rules and generalized ward identities in phase space functional integral
International Nuclear Information System (INIS)
Li Ziping
1996-01-01
Based on the phase-space generating functional of Green function, the generalized canonical Ward identities are derived. It is point out that one can deduce Feynman rules in tree approximation without carrying out explicit integration over canonical momenta in phase-space generating functional. If one adds a four-dimensional divergence term to a Lagrangian of the field, then, the propagator of the field can be changed
Phase III Simplified Integrated Test (SIT) results - Space Station ECLSS testing
Roberts, Barry C.; Carrasquillo, Robyn L.; Dubiel, Melissa Y.; Ogle, Kathryn Y.; Perry, Jay L.; Whitley, Ken M.
1990-01-01
During 1989, phase III testing of Space Station Freedom Environmental Control and Life Support Systems (ECLSS) began at Marshall Space Flight Center (MSFC) with the Simplified Integrated Test. This test, conducted at the MSFC Core Module Integration Facility (CMIF), was the first time the four baseline air revitalization subsystems were integrated together. This paper details the results and lessons learned from the phase III SIT. Future plans for testing at the MSFC CMIF are also discussed.
Phase space properties of charged fields in theories of local observables
International Nuclear Information System (INIS)
Buchholz, D.; D'Antoni, C.
1994-10-01
Within the setting of algebraic quantum field theory a relation between phase-space properties of observables and charged fields is established. These properties are expressed in terms of compactness and nuclarity conditions which are the basis for the characterization of theories with physically reasonable causal and thermal features. Relevant concepts and results of phase space analysis in algebraic qunatum field theory are reviewed and the underlying ideas are outlined. (orig.)
Hydrogen atom in the phase-space formulation of quantum mechanics
International Nuclear Information System (INIS)
Gracia-Bondia, J.M.
1984-01-01
Using a coordinate transformation which regularizes the classical Kepler problem, we show that the hydrogen-atom case may be analytically solved via the phase-space formulation of nonrelativistic quantum mechanics. The problem is essentially reduced to that of a four-dimensional oscillator whose treatment in the phase-space formulation is developed. Furthermore, the method allows us to calculate the Green's function for the H atom in a surprisingly simple way
Phase 1 space fission propulsion system design considerations
International Nuclear Information System (INIS)
Houts, Mike; Van Dyke, Melissa; Godfroy, Tom; Pedersen, Kevin; Martin, James; Dickens, Ricky; Salvail, Pat; Hrbud, Ivana; Carter, Robert
2002-01-01
Fission technology can enable rapid, affordable access to any point in the solar system. If fission propulsion systems are to be developed to their full potential; however, near-term customers must be identified and initial fission systems successfully developed, launched, and operated. Studies conducted in fiscal year 2001 (IISTP, 2001) show that fission electric propulsion (FEP) systems operating at 80 kWe or above could enhance or enable numerous robotic outer solar system missions of interest. At these power levels it is possible to develop safe, affordable systems that meet mission performance requirements. In selecting the system design to pursue, seven evaluation criteria were identified: safety, reliability, testability, specific mass, cost, schedule, and programmatic risk. A top-level comparison of three potential concepts was performed: an SP-100 based pumped liquid lithium system, a direct gas cooled system, and a heatpipe cooled system. For power levels up to at least 500 kWt (enabling electric power levels of 125-175 kWe, given 25-35% power conversion efficiency) the heatpipe system has advantages related to several criteria and is competitive with respect to all. Hardware-based research and development has further increased confidence in the heatpipe approach. Successful development and utilization of a 'Phase 1' fission electric propulsion system will enable advanced Phase 2 and Phase 3 systems capable of providing rapid, affordable access to any point in the solar system
International Nuclear Information System (INIS)
Garcia-Vela, A.
2002-01-01
A new quantum-type phase-space distribution is proposed in order to sample initial conditions for classical trajectory simulations. The phase-space distribution is obtained as the modulus of a quantum phase-space state of the system, defined as the direct product of the coordinate and momentum representations of the quantum initial state. The distribution is tested by sampling initial conditions which reproduce the initial state of the Ar-HCl cluster prepared by ultraviolet excitation, and by simulating the photodissociation dynamics by classical trajectories. The results are compared with those of a wave packet calculation, and with a classical simulation using an initial phase-space distribution recently suggested. A better agreement is found between the classical and the quantum predictions with the present phase-space distribution, as compared with the previous one. This improvement is attributed to the fact that the phase-space distribution propagated classically in this work resembles more closely the shape of the wave packet propagated quantum mechanically
Analysis of Scalar Field Cosmology with Phase Space Deformations
Directory of Open Access Journals (Sweden)
Sinuhe Perez-Payan
2014-01-01
modifying the symplectic structure of the minisuperspace variables. The effects of the deformation are studied in the “C-frame” and the “NC-frame.” In order to remove the ambiguities of working on different frames, a new principle is introduced. When we impose that both frames should be physically equivalent, we conclude that the only possibility for this model, is to have an effective cosmological constant Λeff≥0. Finally we bound the parameter space for θ and β.
On evolution of small spheres in the phase space of a dynamical system*
Directory of Open Access Journals (Sweden)
Komech Sergei
2012-08-01
Full Text Available We study the connection between the entropy of a dynamical system and the boundary distortion rate of regions in the phase space of the system. Nous étudions la connexion entre l’entropie d’un système dynamique et le taux de distortion au bord dans l’espace des phases du système.
Quantum Riemannian geometry of phase space and nonassociativity
Directory of Open Access Journals (Sweden)
Beggs Edwin J.
2017-04-01
Full Text Available Noncommutative or ‘quantum’ differential geometry has emerged in recent years as a process for quantizing not only a classical space into a noncommutative algebra (as familiar in quantum mechanics but also differential forms, bundles and Riemannian structures at this level. The data for the algebra quantisation is a classical Poisson bracket while the data for quantum differential forms is a Poisson-compatible connection. We give an introduction to our recent result whereby further classical data such as classical bundles, metrics etc. all become quantised in a canonical ‘functorial’ way at least to 1st order in deformation theory. The theory imposes compatibility conditions between the classical Riemannian and Poisson structures as well as new physics such as typical nonassociativity of the differential structure at 2nd order. We develop in detail the case of ℂℙn where the commutation relations have the canonical form [wi, w̄j] = iλδij similar to the proposal of Penrose for quantum twistor space. Our work provides a canonical but ultimately nonassociative differential calculus on this algebra and quantises the metric and Levi-Civita connection at lowest order in λ.
Phased Array Ultrasonic Evaluation of Space Shuttle Main Engine (SSME) Nozzle Weld
James, Steve; Engel, J.; Kimbrough, D.; Suits, M.; Hopson, George (Technical Monitor)
2001-01-01
This viewgraph presentation gives an overview of the phased array ultrasonic evaluation of the Space Shuttle Main Engine (SSME) nozzle weld. Details are given on the nondestructive testing evaluation approach, conventional shear wave and phased array techniques, and an x-ray versus phased array risk analysis. The field set-up was duplicated to the greatest extent possible in the laboratory and the phased array ultrasonic technique was developed and validated prior to weld evaluation. Results are shown for the phased array ultrasonic evaluation and conventional ultrasonic evaluation results.
Space nuclear power plant technology development philosophy for a ground engineering phase
International Nuclear Information System (INIS)
Buden, D.; Trapp, T.J.; Los Alamos National Lab., NM)
1985-01-01
The development of a space qualified nuclear power plant is proceeding from the technical assessment and advancement phase to the ground engineering phase. In this new phase, the selected concept will be matured by the completion of activities needed before protoflight units can be assembled and qualified for first flight applications. This paper addresses a possible philosophy to arrive at the activities to be performed during the ground engineering phase. The philosophy is derived from what we believe a potential user of nuclear power would like to see completed before commitment to a flight development phase. 5 references
Space nuclear power plant technology development philosophy for a ground engineering phase
International Nuclear Information System (INIS)
Buden, D.; Trapp, T.J.
1985-01-01
The development of a space qualified nuclear power plant is proceeding from the Technical Assessment and Advancement Phase to the Ground Engineering Phase. In this new phase, the selected concept will be matured by the completion of activities needed before protoflight units can be assembled and qualified for first flight applications. This paper addresses a possible philosophy to arrive at the activities to be performed during the Ground Engineering Phase. The philosophy is derived from what we believe a potential user of nuclear power would like to see completed before commitment to a flight development phase
International Nuclear Information System (INIS)
Carow-Watamura, U.; Schlieker, M.; Watamura, S.
1991-01-01
We construct a differential calculus on the N-dimensional non-commutative Euclidean space, i.e., the space on which the quantum group SO q (N) is acting. The differential calculus is required to be manifestly covariant under SO q (N) transformations. Using this calculus, we consider the Schroedinger equation corresponding to the harmonic oscillator in the limit of q→1. The solution of it is given by q-deformed functions. (orig.)
Berry phase for spin-1/2 particles moving in a space-time with torsion
International Nuclear Information System (INIS)
Alimohammadi, M.; Shariati, A.
2001-01-01
Berry phase for a spin-1/2 particle moving in a flat space-time with torsion is investigated in the context of the Einstein-Cartan-Dirac model. It is shown that if the torsion is due to a dense polarized background, then there is a Berry phase only if the fermion is massless and its momentum is perpendicular to the direction of the background polarization. The order of magnitude of this Berry phase is discussed in other theoretical frameworks. (orig.)
Berry phase for spin-1/2 particles moving in a space-time with torsion
Energy Technology Data Exchange (ETDEWEB)
Alimohammadi, M. [Dept. of Physics, Tehran Univ. (Iran); Shariati, A. [Inst. for Advanced Studies in Basic Sciences, Zanjan (Iran); Inst. for Studies in Theoretical Physics and Mathematics, Tehran (Iran)
2001-06-01
Berry phase for a spin-1/2 particle moving in a flat space-time with torsion is investigated in the context of the Einstein-Cartan-Dirac model. It is shown that if the torsion is due to a dense polarized background, then there is a Berry phase only if the fermion is massless and its momentum is perpendicular to the direction of the background polarization. The order of magnitude of this Berry phase is discussed in other theoretical frameworks. (orig.)
Energy content of stormtime ring current from phase space mapping simulations
International Nuclear Information System (INIS)
Chen, M.W.; Schulz, M.; Lyons, L.R.
1993-01-01
The authors perform a model study to account for the increase in energy content of the trapped-particle population which occurs during the main phase of major geomagnetic storms. They consider stormtime particle transport in the equatorial region of the magnetosphere. They start with a phase space distribution of the ring current before the storm, created by a steady state transport model. They then use a previously developed guiding center particle simulation to map the stormtime ring current phase space, following Liouville's theorem. This model is able to account for the ten to twenty fold increase in energy content of magnetospheric ions during the storm
International Nuclear Information System (INIS)
Stüßer, N.; Hofmann, T.
2013-01-01
Tapered guides with supermirror coating are frequently used to focus neutron beams on specimens. The divergence distribution in the focused beam is of a great importance for the quality of neutron instrumentation. Using an analytic approach we derive the tapering which is needed to achieve a form invariant phase space transformation of a rectangular phase volume. In addition we consider the effect of beam attenuation by the finite reflectivity of supermirrors. -- Highlights: • Form invariant volume transformation in phase space. • Focusing modules for neutron beams. • Analytical approach. • Attenuation effects in linearly and nonlinearly tapered guides
On the energy-momentum tensor in Moyal space
International Nuclear Information System (INIS)
Balasin, Herbert; Schweda, Manfred; Blaschke, Daniel N.; Gieres, Francois
2015-01-01
We study the properties of the energy-momentum tensor of gauge fields coupled to matter in non-commutative (Moyal) space. In general, the non-commutativity affects the usual conservation law of the tensor as well as its transformation properties (gauge covariance instead of gauge invariance). It is well known that the conservation of the energy-momentum tensor can be achieved by a redefinition involving another star-product. Furthermore, for a pure gauge theory it is always possible to define a gauge invariant energy-momentum tensor by means of a Wilson line. We show that the last two procedures are incompatible with each other if couplings of gauge fields to matter fields (scalars or fermions) are considered: The gauge invariant tensor (constructed via Wilson line) does not allow for a redefinition assuring its conservation, and vice versa the introduction of another star-product does not allow for gauge invariance by means of a Wilson line. (orig.)
Discrete phase space - II: The second quantization of free relativistic wave fields
International Nuclear Information System (INIS)
Das, A.
2010-01-01
The Klein-Gordon equation, the Maxwell equation, and the Dirac equation are presented as partial difference equations in the eight-dimensional covariant discrete phase space. These equations are also furnished as difference-differential equations in the arena of discrete phase space and continuous time. The scalar field and electromagnetic fields are quantized with commutation relations. The spin-1/2 field is quantized with anti-commutation relations. Moreover, the total momentum, energy and charge of these free relativisitic quantized fields in the discrete phase space and continuous time are computed exactly. The results agree completely with those computed from the relativisitic fields defined on the space-time continuum. (author)
Integrability and nonintegrability of quantum systems. II. Dynamics in quantum phase space
Zhang, Wei-Min; Feng, Da Hsuan; Yuan, Jian-Min
1990-12-01
Based on the concepts of integrability and nonintegrability of a quantum system presented in a previous paper [Zhang, Feng, Yuan, and Wang, Phys. Rev. A 40, 438 (1989)], a realization of the dynamics in the quantum phase space is now presented. For a quantum system with dynamical group scrG and in one of its unitary irreducible-representation carrier spaces gerhΛ, the quantum phase space is a 2MΛ-dimensional topological space, where MΛ is the quantum-dynamical degrees of freedom. This quantum phase space is isomorphic to a coset space scrG/scrH via the unitary exponential mapping of the elementary excitation operator subspace of scrg (algebra of scrG), where scrH (⊂scrG) is the maximal stability subgroup of a fixed state in gerhΛ. The phase-space representation of the system is realized on scrG/scrH, and its classical analogy can be obtained naturally. It is also shown that there is consistency between quantum and classical integrability. Finally, a general algorithm for seeking the manifestation of ``quantum chaos'' via the classical analogy is provided. Illustrations of this formulation in several important quantum systems are presented.
Self-dual phase space for (3 +1 )-dimensional lattice Yang-Mills theory
Riello, Aldo
2018-01-01
I propose a self-dual deformation of the classical phase space of lattice Yang-Mills theory, in which both the electric and magnetic fluxes take value in the compact gauge Lie group. A local construction of the deformed phase space requires the machinery of "quasi-Hamiltonian spaces" by Alekseev et al., which is reviewed here. The results is a full-fledged finite-dimensional and gauge-invariant phase space, the self-duality properties of which are largely enhanced in (3 +1 ) spacetime dimensions. This enhancement is due to a correspondence with the moduli space of an auxiliary noncommutative flat connection living on a Riemann surface defined from the lattice itself, which in turn equips the duality between electric and magnetic fluxes with a neat geometrical interpretation in terms of a Heegaard splitting of the space manifold. Finally, I discuss the consequences of the proposed deformation on the quantization of the phase space, its quantum gravitational interpretation, as well as its relevance for the construction of (3 +1 )-dimensional topological field theories with defects.
Solid-solid phase change thermal storage application to space-suit battery pack
Son, Chang H.; Morehouse, Jeffrey H.
1989-01-01
High cell temperatures are seen as the primary safety problem in the Li-BCX space battery. The exothermic heat from the chemical reactions could raise the temperature of the lithium electrode above the melting temperature. Also, high temperature causes the cell efficiency to decrease. Solid-solid phase-change materials were used as a thermal storage medium to lower this battery cell temperature by utilizing their phase-change (latent heat storage) characteristics. Solid-solid phase-change materials focused on in this study are neopentyl glycol and pentaglycerine. Because of their favorable phase-change characteristics, these materials appear appropriate for space-suit battery pack use. The results of testing various materials are reported as thermophysical property values, and the space-suit battery operating temperature is discussed in terms of these property results.
Li, F.; Nie, Z.; Wu, Y. P.; Guo, B.; Zhang, X. H.; Huang, S.; Zhang, J.; Cheng, Z.; Ma, Y.; Fang, Y.; Zhang, C. J.; Wan, Y.; Xu, X. L.; Hua, J. F.; Pai, C. H.; Lu, W.; Mori, W. B.
2018-04-01
We report the transverse phase space diagnostics for electron beams generated through ionization injection in a laser-plasma accelerator. Single-shot measurements of both ultimate emittance and Twiss parameters are achieved by means of permanent magnetic quadrupole. Beams with emittance of μm rad level are obtained in a typical ionization injection scheme, and the dependence on nitrogen concentration and charge density is studied experimentally and confirmed by simulations. A key feature of the transverse phase space, matched beams with Twiss parameter α T ≃ 0, is identified according to the measurement. Numerical simulations that are in qualitative agreement with the experimental results reveal that a sufficient phase mixing induced by an overlong injection length leads to the matched phase space distribution.
EVOLUTION OF DARK MATTER PHASE-SPACE DENSITY DISTRIBUTIONS IN EQUAL-MASS HALO MERGERS
International Nuclear Information System (INIS)
Vass, Ileana M.; Kazanzidis, Stelios; Valluri, Monica; Kravtsov, Andrey V.
2009-01-01
We use dissipationless N-body simulations to investigate the evolution of the true coarse-grained phase-space density distribution f(x, v) in equal-mass mergers between dark matter (DM) halos. The halo models are constructed with various asymptotic power-law indices ρ ∝ r -γ ranging from steep cusps to core-like profiles and we employ the phase-space density estimator 'EnBid' developed by Sharma and Steinmetz to compute f(x, v). The adopted force resolution allows robust phase-space density profile estimates in the inner ∼1% of the virial radii of the simulated systems. We confirm that merger events result in a decrease of the coarse-grained phase-space density in accordance with expectations from Mixing Theorems for collisionless systems. We demonstrate that binary mergers between identical DM halos produce remnants that retain excellent memories of the inner slopes and overall shapes of the phase-space density distribution of their progenitors. The robustness of the phase-space density profiles holds for a range of orbital energies, and a variety of encounter configurations including sequences of several consecutive merger events, designed to mimic hierarchical merging, and collisions occurring at different cosmological epochs. If the progenitor halos are constructed with appreciably different asymptotic power-law indices, we find that the inner slope and overall shape of the phase-space density distribution of the remnant are substantially closer to that of the initial system with the steepest central density cusp. These results explicitly demonstrate that mixing is incomplete in equal-mass mergers between DM halos, as it does not erase memory of the progenitor properties. Our results also confirm the recent analytical predictions of Dehnen regarding the preservation of merging self-gravitating central density cusps.
International Nuclear Information System (INIS)
Afshordi, Niayesh; Mohayaee, Roya; Bertschinger, Edmund
2009-01-01
Most of the mass content of dark matter haloes is expected to be in the form of tidal debris. The density of debris is not constant, but rather can grow due to formation of caustics at the apocenters and pericenters of the orbit, or decay as a result of phase mixing. In the phase space, the debris assemble in a hierarchy that is truncated by the primordial temperature of dark matter. Understanding this phase structure can be of significant importance for the interpretation of many astrophysical observations and, in particular, dark matter detection experiments. With this purpose in mind, we develop a general theoretical framework to describe the hierarchical structure of the phase space of cold dark matter haloes. We do not make any assumption of spherical symmetry and/or smooth and continuous accretion. Instead, working with correlation functions in the action-angle space, we can fully account for the hierarchical structure (predicting a two-point correlation function ∝ΔJ -1.6 in the action space), as well as the primordial discreteness of the phase space. As an application, we estimate the boost to the dark matter annihilation signal due to the structure of the phase space within virial radius: the boost due to the hierarchical tidal debris is of order unity, whereas the primordial discreteness of the phase structure can boost the total annihilation signal by up to an order of magnitude. The latter is dominated by the regions beyond 20% of the virial radius, and is largest for the recently formed haloes with the least degree of phase mixing. Nevertheless, as we argue in a companion paper, the boost due to small gravitationally-bound substructure can dominate this effect at low redshifts.
Afshordi, Niayesh; Mohayaee, Roya; Bertschinger, Edmund
2009-04-01
Most of the mass content of dark matter haloes is expected to be in the form of tidal debris. The density of debris is not constant, but rather can grow due to formation of caustics at the apocenters and pericenters of the orbit, or decay as a result of phase mixing. In the phase space, the debris assemble in a hierarchy that is truncated by the primordial temperature of dark matter. Understanding this phase structure can be of significant importance for the interpretation of many astrophysical observations and, in particular, dark matter detection experiments. With this purpose in mind, we develop a general theoretical framework to describe the hierarchical structure of the phase space of cold dark matter haloes. We do not make any assumption of spherical symmetry and/or smooth and continuous accretion. Instead, working with correlation functions in the action-angle space, we can fully account for the hierarchical structure (predicting a two-point correlation function ∝ΔJ-1.6 in the action space), as well as the primordial discreteness of the phase space. As an application, we estimate the boost to the dark matter annihilation signal due to the structure of the phase space within virial radius: the boost due to the hierarchical tidal debris is of order unity, whereas the primordial discreteness of the phase structure can boost the total annihilation signal by up to an order of magnitude. The latter is dominated by the regions beyond 20% of the virial radius, and is largest for the recently formed haloes with the least degree of phase mixing. Nevertheless, as we argue in a companion paper, the boost due to small gravitationally-bound substructure can dominate this effect at low redshifts.
Phase 1 space fission propulsion system testing and development progress
International Nuclear Information System (INIS)
Van Dyke, Melissa; Houts, Mike; Godfroy, Tom; Dickens, Ricky; Poston, David; Kapernick, Rick; Reid, Bob; Salvail, Pat; Ring, Peter
2002-01-01
Successful development of space fission systems requires an extensive program of affordable and realistic testing. In addition to tests related to design/development of the fission system, realistic testing of the actual flight unit must also be performed. If the system is designed to operate within established radiation damage and fuel burn up limits while simultaneously being designed to allow close simulation of heat from fission using resistance heaters, high confidence in fission system performance and lifetime can be attained through a series of non-nuclear tests. The Safe Affordable Fission Engine (SAFE) test series, whose ultimate goal is the demonstration of a 300 kW flight configuration system, has demonstrated that realistic testing can be performed using non-nuclear methods. This test series, carried out in collaboration with other NASA centers, other government agencies, industry, and universities, successfully completed a testing program with a 30 kWt core. Stirling engine, and ion engine configuration. Additionally, a 100 kWt core is in fabrication and appropriate test facilities are being reconfigured. This paper describes the current SAFE non-nuclear tests, which includes test article descriptions, test results and conclusions, and future test plans
Space reactor electric systems: system integration studies, Phase 1 report
International Nuclear Information System (INIS)
Anderson, R.V.; Bost, D.; Determan, W.R.; Harty, R.B.; Katz, B.; Keshishian, V.; Lillie, A.F.; Thomson, W.B.
1983-01-01
This report presents the results of preliminary space reactor electric system integration studies performed by Rockwell International's Energy Systems Group (ESG). The preliminary studies investigated a broad range of reactor electric system concepts for powers of 25 and 100 KWe. The purpose of the studies was to provide timely system information of suitable accuracy to support ongoing mission planning activities. The preliminary system studies were performed by assembling the five different subsystems that are used in a system: the reactor, the shielding, the primary heat transport, the power conversion-processing, and the heat rejection subsystems. The subsystem data in this report were largely based on Rockwell's recently prepared Subsystem Technology Assessment Report. Nine generic types of reactor subsystems were used in these system studies. Several levels of technology were used for each type of reactor subsystem. Seven generic types of power conversion-processing subsystems were used, and several levels of technology were again used for each type. In addition, various types and levels of technology were used for the shielding, primary heat transport, and heat rejection subsystems. A total of 60 systems were studied
Nano-Particle Scandate Cathode for Space Communications Phase 2, Phase II
National Aeronautics and Space Administration — We propose an improved cathode based on our novel theory of the role of scandium oxide in enhancing emission in tungsten-impregnated cathodes. Recent results have...
Peters, Bruce; Wingo, Dennis; Bower, Mark; Amborski, Robert; Blount, Laura; Daniel, Alan; Hagood, Bob; Handley, James; Hediger, Donald; Jimmerson, Lisa
1990-01-01
The separation of fluid phases in microgravity environments is of importance to environmental control and life support systems (ECLSS) and materials processing in space. A successful fluid phase separation experiment will demonstrate a proof of concept for the separation technique and add to the knowledge base of material behavior. The phase separation experiment will contain a premixed fluid which will be exposed to a microgravity environment. After the phase separation of the compound has occurred, small samples of each of the species will be taken for analysis on the Earth. By correlating the time of separation and the temperature history of the fluid, it will be possible to characterize the process. The experiment has been integrated into space available on a manifested Get Away Special (GAS) experiment, CONCAP 2, part of the Consortium for Materials Complex Autonomous Payload (CAP) Program, scheduled for STS-42. The design and the production of a fluid phase separation experiment for rapid implementation at low cost is presented.
Simultaneous measurement of non-commuting observables
Allahverdyan, A.E.; Balian, R.; Nieuwenhuizen, T.M.
2010-01-01
A dynamical model of a quantum measurement process is introduced, where the tested system S, a spin 1/2, is simultaneously coupled with two apparatuses A and A'. Alone, A would measure the component (s) over cap (z) whereas A' alone would measure (s) over cap (x). The apparatus A simulates an Ising
Multiplication modules over non-commutative rings
International Nuclear Information System (INIS)
Tuganbaev, A A
2003-01-01
It is proved that each submodule of a multiplication module over a regular ring is a multiplicative module. If A is a ring with commutative multiplication of right ideals, then each projective right ideal is a multiplicative module, and a finitely generated A-module M is a multiplicative module if and only if all its localizations with respect to maximal right ideals of A are cyclic modules over the corresponding localizations of A. In addition, several known results on multiplication modules over commutative rings are extended to modules over not necessarily commutative rings
Monte Carlo simulation of a medical linear accelerator for generation of phase spaces
International Nuclear Information System (INIS)
Oliveira, Alex C.H.; Santana, Marcelo G.; Lima, Fernando R.A.; Vieira, Jose W.
2013-01-01
Radiotherapy uses various techniques and equipment for local treatment of cancer. The equipment most often used in radiotherapy to the patient irradiation are linear accelerators (Linacs) which produce beams of X-rays in the range 5-30 MeV. Among the many algorithms developed over recent years for evaluation of dose distributions in radiotherapy planning, the algorithms based on Monte Carlo methods have proven to be very promising in terms of accuracy by providing more realistic results. The MC methods allow simulating the transport of ionizing radiation in complex configurations, such as detectors, Linacs, phantoms, etc. The MC simulations for applications in radiotherapy are divided into two parts. In the first, the simulation of the production of the radiation beam by the Linac is performed and then the phase space is generated. The phase space contains information such as energy, position, direction, etc. og millions of particles (photos, electrons, positrons). In the second part the simulation of the transport of particles (sampled phase space) in certain configurations of irradiation field is performed to assess the dose distribution in the patient (or phantom). The objective of this work is to create a computational model of a 6 MeV Linac using the MC code Geant4 for generation of phase spaces. From the phase space, information was obtained to asses beam quality (photon and electron spectra and two-dimensional distribution of energy) and analyze the physical processes involved in producing the beam. (author)
Temperature and phase-space density of a cold atom cloud in a quadrupole magnetic trap
Energy Technology Data Exchange (ETDEWEB)
Ram, S. P.; Mishra, S. R.; Tiwari, S. K.; Rawat, H. S. [Raja Ramanna Centre for Advanced Technology, Indore (India)
2014-08-15
We present studies on modifications in the temperature, number density and phase-space density when a laser-cooled atom cloud from optical molasses is trapped in a quadrupole magnetic trap. Theoretically, for a given temperature and size of the cloud from the molasses, the phase-space density in the magnetic trap is shown first to increase with increasing magnetic field gradient and then to decrease with it after attaining a maximum value at an optimum value of the magnetic-field gradient. The experimentally-measured variation in the phase-space density in the magnetic trap with changing magnetic field gradient is shown to exhibit a similar trend. However, the experimentally-measured values of the number density and the phase-space density are much lower than the theoretically-predicted values. This is attributed to the experimentally-observed temperature in the magnetic trap being higher than the theoretically-predicted temperature. Nevertheless, these studies can be useful for setting a higher phase-space density in the trap by establishing an optimal value of the field gradient for a quadrupole magnetic trap.
Extremal rotating black holes in the near-horizon limit: Phase space and symmetry algebra
Directory of Open Access Journals (Sweden)
G. Compère
2015-10-01
Full Text Available We construct the NHEG phase space, the classical phase space of Near-Horizon Extremal Geometries with fixed angular momenta and entropy, and with the largest symmetry algebra. We focus on vacuum solutions to d dimensional Einstein gravity. Each element in the phase space is a geometry with SL(2,R×U(1d−3 isometries which has vanishing SL(2,R and constant U(1 charges. We construct an on-shell vanishing symplectic structure, which leads to an infinite set of symplectic symmetries. In four spacetime dimensions, the phase space is unique and the symmetry algebra consists of the familiar Virasoro algebra, while in d>4 dimensions the symmetry algebra, the NHEG algebra, contains infinitely many Virasoro subalgebras. The nontrivial central term of the algebra is proportional to the black hole entropy. The conserved charges are given by the Fourier decomposition of a Liouville-type stress-tensor which depends upon a single periodic function of d−3 angular variables associated with the U(1 isometries. This phase space and in particular its symmetries can serve as a basis for a semiclassical description of extremal rotating black hole microstates.
Evolution of axis ratios from phase space dynamics of triaxial collapse
Nadkarni-Ghosh, Sharvari; Arya, Bhaskar
2018-04-01
We investigate the evolution of axis ratios of triaxial haloes using the phase space description of triaxial collapse. In this formulation, the evolution of the triaxial ellipsoid is described in terms of the dynamics of eigenvalues of three important tensors: the Hessian of the gravitational potential, the tensor of velocity derivatives, and the deformation tensor. The eigenvalues of the deformation tensor are directly related to the parameters that describe triaxiality, namely, the minor-to-major and intermediate-to-major axes ratios (s and q) and the triaxiality parameter T. Using the phase space equations, we evolve the eigenvalues and examine the evolution of the probability distribution function (PDF) of the axes ratios as a function of mass scale and redshift for Gaussian initial conditions. We find that the ellipticity and prolateness increase with decreasing mass scale and decreasing redshift. These trends agree with previous analytic studies but differ from numerical simulations. However, the PDF of the scaled parameter {\\tilde{q}} = (q-s)/(1-s) follows a universal distribution over two decades in mass range and redshifts which is in qualitative agreement with the universality for conditional PDF reported in simulations. We further show using the phase space dynamics that, in fact, {\\tilde{q}} is a phase space invariant and is conserved individually for each halo. These results demonstrate that the phase space analysis is a useful tool that provides a different perspective on the evolution of perturbations and can be applied to more sophisticated models in the future.
Phase-space description of plasma waves. Linear and nonlinear theory
International Nuclear Information System (INIS)
Biro, T.
1992-11-01
We develop an (r,k) phase space description of waves in plasmas by introducing Gaussian window functions to separate short scale oscillations from long scale modulations of the wave fields and variations in the plasma parameters. To obtain a wave equation that unambiguously separates conservative dynamics from dissipation also in an inhomogeneous and time varying background plasma, we first discuss the proper form of the current response function. On the analogy of the particle distribution function f(v,r,t), we introduce a wave density N(k,r,t) on phase space. This function is proven to satisfy a simple continuity equation. Dissipation is also included, and this allows us to describe the damping or growth of wave density' along rays. Problems involving geometric optics of continuous media often appear simpler when viewed in phase space, since the flow of N in phase space is incompressible. Within the phase space representation, we obtain a very general formula for the second order nonlinear current in terms of the vector potential. This formula is a convenient starting point for studies of coherent as well as turbulent nonlinear processes. We derive kinetic equations for weakly inhomogeneous and turbulent plasma, including the effects of inhomogeneous turbulence, wave convection and refraction. (author)
Tomographic reconstruction of transverse phase space from turn-by-turn profile data
Hancock, S; Lindroos, M
1999-01-01
Tomographic methods have the potential for useful application in beam diagnostics. The tomographic reconstruction of transverse phase space density from turn-by-turn profile data has been studied with particular attention to the effects of dispersion and chromaticity. It is shown that the modified Algebraic Reconstruction Technique (ART) that deals successfully with the problem of non-linear motion in the longitudinal plane cannot, in general, be extended to cover the transverse case. Instead, an approach is proposed in which the effect of dispersion is deconvoluted from the measured profiles before the phase space picture is reconstructed using either the modified ART algorithm or the inverse Radon Transform. This requires an accurate knowledge of the momentum distribution of the beam and the modified ART reconstruction of longitudinal phase space density yields just such information. The method has been tested extensively with simulated data.
Miksovsky, J.; Raidl, A.
Time delays phase space reconstruction represents one of useful tools of nonlinear time series analysis, enabling number of applications. Its utilization requires the value of time delay to be known, as well as the value of embedding dimension. There are sev- eral methods how to estimate both these parameters. Typically, time delay is computed first, followed by embedding dimension. Our presented approach is slightly different - we reconstructed phase space for various combinations of mentioned parameters and used it for prediction by means of the nearest neighbours in the phase space. Then some measure of prediction's success was computed (correlation or RMSE, e.g.). The position of its global maximum (minimum) should indicate the suitable combination of time delay and embedding dimension. Several meteorological (particularly clima- tological) time series were used for the computations. We have also created a MS- Windows based program in order to implement this approach - its basic features will be presented as well.