WorldWideScience

Sample records for non-commutative differential geometry

  1. Introduction to Dubois-Violette's non-commutative differential geometry

    International Nuclear Information System (INIS)

    Djemai, A.E.F.

    1994-07-01

    In this work, one presents a detailed review of Dubois-Violette et al. approach to non-commutative differential calculus. The non-commutative differential geometry of matrix algebras and the non-commutative Poisson structures are treated in some details. We also present the analog of the Maxwell's theory and the new models of Yang-Mills-Higgs theories that can be constructed in this framework. In particular, some simple models are compared with the standard model. Finally, we discuss some perspectives and open questions. (author). 32 refs

  2. Quantum groups, non-commutative differential geometry and applications

    International Nuclear Information System (INIS)

    Schupp, P.; California Univ., Berkeley, CA

    1993-01-01

    The topic of this thesis is the development of a versatile and geometrically motivated differential calculus on non-commutative or quantum spaces, providing powerful but easy-to-use mathematical tools for applications in physics and related sciences. A generalization of unitary time evolution is proposed and studied for a simple 2-level system, leading to non-conservation of microscopic entropy, a phenomenon new to quantum mechanics. A Cartan calculus that combines functions, forms, Lie derivatives and inner derivations along general vector fields into one big algebra is constructed for quantum groups and then extended to quantum planes. The construction of a tangent bundle on a quantum group manifold and an BRST type approach to quantum group gauge theory are given as further examples of applications. The material is organized in two parts: Part I studies vector fields on quantum groups, emphasizing Hopf algebraic structures, but also introducing a ''quantum geometric'' construction. Using a generalized semi-direct product construction we combine the dual Hopf algebras A of functions and U of left-invariant vector fields into one fully bicovariant algebra of differential operators. The pure braid group is introduced as the commutant of Δ(U). It provides invariant maps A → U and thereby bicovariant vector fields, casimirs and metrics. This construction allows the translation of undeformed matrix expressions into their less obvious quantum algebraic counter parts. We study this in detail for quasitriangular Hopf algebras, giving the determinant and orthogonality relation for the ''reflection'' matrix. Part II considers the additional structures of differential forms and finitely generated quantum Lie algebras -- it is devoted to the construction of the Cartan calculus, based on an undeformed Cartan identity

  3. Limit algebras of differential forms in non-commutative geometry

    Indian Academy of Sciences (India)

    The holomorphic functional calculus closure of Connes' non- commutative de Rham algebra. ∗. D. (p. 549 of [C]) leads to a couple of operator algebras which are briefly discussed in this section. In §5, which contains the main contributions of the paper, quantized integrals are constructed on ∞A by using Dixmier trace ...

  4. Chiral-Yang-Mills theory, non commutative differential geometry, and the need for a Lie super-algebra

    International Nuclear Information System (INIS)

    Thierry-Mieg, Jean

    2006-01-01

    In Yang-Mills theory, the charges of the left and right massless Fermions are independent of each other. We propose a new paradigm where we remove this freedom and densify the algebraic structure of Yang-Mills theory by integrating the scalar Higgs field into a new gauge-chiral 1-form which connects Fermions of opposite chiralities. Using the Bianchi identity, we prove that the corresponding covariant differential is associative if and only if we gauge a Lie-Kac super-algebra. In this model, spontaneous symmetry breakdown naturally occurs along an odd generator of the super-algebra and induces a representation of the Connes-Lott non commutative differential geometry of the 2-point finite space

  5. Non-commutative geometry and supersymmetry 2

    International Nuclear Information System (INIS)

    Hussain, F.; Thompson, G.

    1991-05-01

    Following the general construction of supersymmetric models, the model based on the idea of non-commutative geometry is formulated as a Yang-Mills theory of the graded Lie algebra U(2/1) over a graded space-time manifold. 4 refs

  6. On Fock Space Representations of quantized Enveloping Algebras related to Non-Commutative Differential Geometry

    CERN Document Server

    Jurco, B; Jurco, B; Schlieker, M

    1995-01-01

    In this paper we construct explicitly natural (from the geometrical point of view) Fock space representations (contragradient Verma modules) of the quantized enveloping algebras. In order to do so, we start from the Gauss decomposition of the quantum group and introduce the differential operators on the corresponding q-deformed flag manifold (asuumed as a left comodule for the quantum group) by a projection to it of the right action of the quantized enveloping algebra on the quantum group. Finally, we express the representatives of the elements of the quantized enveloping algebra corresponding to the left-invariant vector fields on the quantum group as first-order differential operators on the q-deformed flag manifold.

  7. Geometry of time-spaces non-commutative algebraic geometry, applied to quantum theory

    CERN Document Server

    Landau, Olav Arnfinn

    2011-01-01

    This is a monograph about non-commutative algebraic geometry, and its application to physics. The main mathematical inputs are the non-commutative deformation theory, moduli theory of representations of associative algebras, a new non-commutative theory o

  8. On tea, donuts and non-commutative geometry

    Directory of Open Access Journals (Sweden)

    Igor V. Nikolaev

    2018-03-01

    Full Text Available As many will agree, it feels good to complement a cup of tea by a donut or two. This sweet relationship is also a guiding principle of non-commutative geometry known as Serre Theorem. We explain the algebra behind this theorem and prove that elliptic curves are complementary to the so-called non-commutative tori.

  9. Computational commutative and non-commutative algebraic geometry

    CERN Document Server

    Cojocaru, S; Ufnarovski, V

    2005-01-01

    This publication gives a good insight in the interplay between commutative and non-commutative algebraic geometry. The theoretical and computational aspects are the central theme in this study. The topic is looked at from different perspectives in over 20 lecture reports. It emphasizes the current trends in commutative and non-commutative algebraic geometry and algebra. The contributors to this publication present the most recent and state-of-the-art progresses which reflect the topic discussed in this publication. Both researchers and graduate students will find this book a good source of information on commutative and non-commutative algebraic geometry.

  10. Minimal length uncertainty and generalized non-commutative geometry

    International Nuclear Information System (INIS)

    Farmany, A.; Abbasi, S.; Darvishi, M.T.; Khani, F.; Naghipour, A.

    2009-01-01

    A generalized formulation of non-commutative geometry for the Bargmann-Fock space of quantum field theory is presented. The analysis is related to the symmetry of the simplistic space and a minimal length uncertainty.

  11. Non-commutative geometry on quantum phase-space

    International Nuclear Information System (INIS)

    Reuter, M.

    1995-06-01

    A non-commutative analogue of the classical differential forms is constructed on the phase-space of an arbitrary quantum system. The non-commutative forms are universal and are related to the quantum mechanical dynamics in the same way as the classical forms are related to classical dynamics. They are constructed by applying the Weyl-Wigner symbol map to the differential envelope of the linear operators on the quantum mechanical Hilbert space. This leads to a representation of the non-commutative forms considered by A. Connes in terms of multiscalar functions on the classical phase-space. In an appropriate coincidence limit they define a quantum deformation of the classical tensor fields and both commutative and non-commutative forms can be studied in a unified framework. We interprete the quantum differential forms in physical terms and comment on possible applications. (orig.)

  12. Modular Theory, Non-Commutative Geometry and Quantum Gravity

    Directory of Open Access Journals (Sweden)

    Wicharn Lewkeeratiyutkul

    2010-08-01

    Full Text Available This paper contains the first written exposition of some ideas (announced in a previous survey on an approach to quantum gravity based on Tomita-Takesaki modular theory and A. Connes non-commutative geometry aiming at the reconstruction of spectral geometries from an operational formalism of states and categories of observables in a covariant theory. Care has been taken to provide a coverage of the relevant background on modular theory, its applications in non-commutative geometry and physics and to the detailed discussion of the main foundational issues raised by the proposal.

  13. Commutative and Non-commutative Parallelogram Geometry: an Experimental Approach

    OpenAIRE

    Bertram, Wolfgang

    2013-01-01

    By "parallelogram geometry" we mean the elementary, "commutative", geometry corresponding to vector addition, and by "trapezoid geometry" a certain "non-commutative deformation" of the former. This text presents an elementary approach via exercises using dynamical software (such as geogebra), hopefully accessible to a wide mathematical audience, from undergraduate students and high school teachers to researchers, proceeding in three steps: (1) experimental geometry, (2) algebra (linear algebr...

  14. Non-commutative geometry inspired charged black holes

    International Nuclear Information System (INIS)

    Ansoldi, Stefano; Nicolini, Piero; Smailagic, Anais; Spallucci, Euro

    2007-01-01

    We find a new, non-commutative geometry inspired, solution of the coupled Einstein-Maxwell field equations describing a variety of charged, self-gravitating objects, including extremal and non-extremal black holes. The metric smoothly interpolates between de Sitter geometry, at short distance, and Reissner-Nordstrom geometry far away from the origin. Contrary to the ordinary Reissner-Nordstrom spacetime there is no curvature singularity in the origin neither 'naked' nor shielded by horizons. We investigate both Hawking process and pair creation in this new scenario

  15. Weinberg-Salam theory in non-commutative geometry

    International Nuclear Information System (INIS)

    Morita, Katsusada; Okumura, Yoshitaka.

    1994-01-01

    Ordinary differential calculus on smooth manifold is generalized so as to construct gauge theory coupled to fermions on discrete space M 4 xZ 2 which is an underlying space-time in the non-commutative geometry for the standard model. We can reproduce not only the bosonic sector but also the fermionic sector of the Weinberg-Salam theory without recourse to the Dirac operator at the outset. Treatment of the fermionic sector is based on the generalized spinor one-forms from which the Dirac lagrangian is derived through taking the inner product. Two model constructions are presented using our formalism, both giving the classical mass relation m H = √2m w . The first model leaves the Weinberg angle arbitrary as usual, while the second one predicts sin 2 θ w = 1/4 in the tree level. This prediction is the same as that of Connes but we obtain it from correct hypercharge assignment of 2x2 matrix-valued Higgs field and from vanishing photon mass, thereby dispensing with Connes' 0-trace condition or the equivalent. (author)

  16. Differential Galois obstructions for non-commutative integrability

    Energy Technology Data Exchange (ETDEWEB)

    Maciejewski, Andrzej J. [Institute of Astronomy, University of Zielona Gora, Podgorna 50, PL-65-246 Zielona Gora (Poland)], E-mail: maciejka@astro.ia.uz.zgora.pl; Przybylska, Maria [Torun Centre for Astronomy, N. Copernicus University, Gagarina 11, PL-87-100 Torun (Poland)], E-mail: mprzyb@astri.uni.torun.pl

    2008-08-11

    We show that if a holomorphic Hamiltonian system is holomorphically integrable in the non-commutative sense in a neighbourhood of a non-equilibrium phase curve which is located at a regular level of the first integrals, then the identity component of the differential Galois group of the variational equations along the phase curve is Abelian. Thus necessary conditions for the commutative and non-commutative integrability given by the differential Galois approach are the same.

  17. Non commutative geometry and super Yang-Mills theory

    International Nuclear Information System (INIS)

    Bigatti, D.

    1999-01-01

    We aim to connect the non commutative geometry 'quotient space' viewpoint with the standard super Yang Mills theory approach in the spirit of Connes-Douglas-Schwartz and Douglas-Hull description of application of noncommutative geometry to matrix theory. This will result in a relation between the parameters of a rational foliation of the torus and the dimension of the group U(N). Namely, we will be provided with a prescription which allows to study a noncommutative geometry with rational parameter p/N by means of a U(N) gauge theory on a torus of size Σ/N with the boundary conditions given by a system with p units of magnetic flux. The transition to irrational parameter can be obtained by letting N and p tend to infinity with fixed ratio. The precise meaning of the limiting process will presumably allow better clarification. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  18. Essay on physics and non-commutative geometry

    International Nuclear Information System (INIS)

    Connes, A.

    1990-01-01

    Our aim, in this article, is to try to discover what physics would be like if the space in which it took place was not a set of points, but a non-commutative space. We shall not go very far in this direction, and the consequences of this investigation are for the moment either mathematical or only applied to a commutative space-time. It is clear, however, that a tool as remarkable as the Dixmier trace for analyzing logarithmic divergences should be useful to physicists. Moreover we have been able to show that a small modification of our picture of space-time gives a conceptual explanation of the Higgs fields and of the way they appear in the Weinberg-Salam model. This should allow us to make at the classical level explicit predictions of the Higgs mass: a very crude one is discussed. (author)

  19. Some homological properties of skew PBW extensions arising in non-commutative algebraic geometry

    Directory of Open Access Journals (Sweden)

    Lezama Oswaldo

    2017-06-01

    Full Text Available In this short paper we study for the skew PBW (Poincar-Birkhoff-Witt extensions some homological properties arising in non-commutative algebraic geometry, namely, Auslander-Gorenstein regularity, Cohen-Macaulayness and strongly noetherianity. Skew PBW extensions include a considerable number of non-commutative rings of polynomial type such that classical PBW extensions, quantum polynomial rings, multiplicative analogue of the Weyl algebra, some Sklyanin algebras, operator algebras, diffusion algebras, quadratic algebras in 3 variables, among many others. Parametrization of the point modules of some examples is also presented.

  20. Equivalence of two non-commutative geometry approaches

    International Nuclear Information System (INIS)

    Guo Hanying; Wu Ke; Li Jianming.

    1994-10-01

    We show that differential calculus on discrete group Z 2 is equivalent to A. Connes' approach in the case of two discrete points. They are the same theory in terms of different basis and the discrete group Z 2 is the permutation group of two discrete point. (author). 11 refs

  1. Gravitational amplitudes in black hole evaporation: the effect of non-commutative geometry

    International Nuclear Information System (INIS)

    Grezia, Elisabetta Di; Esposito, Giampiero; Miele, Gennaro

    2006-01-01

    Recent work in the literature has studied the quantum-mechanical decay of a Schwarzschild-like black hole, formed by gravitational collapse, into almost-flat spacetime and weak radiation at a very late time. The relevant quantum amplitudes have been evaluated for bosonic and fermionic fields, showing that no information is lost in collapse to a black hole. On the other hand, recent developments in non-commutative geometry have shown that, in general relativity, the effects of non-commutativity can be taken into account by keeping the standard form of the Einstein tensor on the left-hand side of the field equations and introducing a modified energy-momentum tensor as a source on the right-hand side. The present paper, relying on the recently obtained non-commutativity effect on a static, spherically symmetric metric, considers from a new perspective the quantum amplitudes in black hole evaporation. The general relativity analysis of spin-2 amplitudes is shown to be modified by a multiplicative factor F depending on a constant non-commutativity parameter and on the upper limit R of the radial coordinate. Limiting forms of F are derived which are compatible with the adiabatic approximation here exploited. Approximate formulae for the particle emission rate are also obtained within this framework

  2. A computational non-commutative geometry program for disordered topological insulators

    CERN Document Server

    Prodan, Emil

    2017-01-01

    This work presents a computational program based on the principles of non-commutative geometry and showcases several applications to topological insulators. Noncommutative geometry has been originally proposed by Jean Bellissard as a theoretical framework for the investigation of homogeneous condensed matter systems. Recently, this approach has been successfully applied to topological insulators, where it facilitated many rigorous results concerning the stability of the topological invariants against disorder. In the first part of the book the notion of a homogeneous material is introduced and the class of disordered crystals defined together with the classification table, which conjectures all topological phases from this class. The manuscript continues with a discussion of electrons’ dynamics in disordered crystals and the theory of topological invariants in the presence of strong disorder is briefly reviewed. It is shown how all this can be captured in the language of noncommutative geometry using the co...

  3. Non-commutative analysis

    CERN Document Server

    Jorgensen, Palle

    2017-01-01

    The book features new directions in analysis, with an emphasis on Hilbert space, mathematical physics, and stochastic processes. We interpret 'non-commutative analysis' broadly to include representations of non-Abelian groups, and non-Abelian algebras; emphasis on Lie groups and operator algebras (C* algebras and von Neumann algebras.)A second theme is commutative and non-commutative harmonic analysis, spectral theory, operator theory and their applications. The list of topics includes shift invariant spaces, group action in differential geometry, and frame theory (over-complete bases) and their applications to engineering (signal processing and multiplexing), projective multi-resolutions, and free probability algebras.The book serves as an accessible introduction, offering a timeless presentation, attractive and accessible to students, both in mathematics and in neighboring fields.

  4. Reconstruction of the spontaneously broken gauge theory in non-commutative geometry

    International Nuclear Information System (INIS)

    Okumura, Y.; Morita, K.

    1996-01-01

    The scheme previously proposed by the present authors is modified to incorporate the strong interaction by affording the direct product internal symmetry. The authors do not need to prepare the extra discrete space for the colour gauge group responsible for the strong interaction to reconstruct the standard model and the left-right symmetric gauge model (LRSM). The approach based on non-commutative geometry leads us to present many attractive points such as the unified picture of the gauge and Higgs field as the generalized connection on the discrete space M 4 x Z N . This approach leads to unified picture of gauge and Higgs fields as the generalized connection. The standard model needs N=2 discrete space for reconstruction in this formalism. LRSM is still alive as a model with the intermediate symmetry of the spontaneously broken SO(10) grand unified theory (GUT). N=3 discrete space is needed for the reconstruction of LRSM to include two Higgs φ and ξ bosons usual transformed as (2, 2 * , 0) and (1, 3, -2) under SU(2) L x SU(2) R x U(1) Y , respectively. ξ is responsible to make v R Majorana fermion and so well explains the seesaw mechanism. Up and down quarks have different masses through the vacuum expectation value of φ

  5. Vectors and covectors in non-commutative setting

    OpenAIRE

    Parfionov, G. N.; Romashev, Yu. A.; Zapatrine, R. R.

    1995-01-01

    Following the guidelines of classical differential geometry the `building material' for the tensor calculus in non-commutative geometry is suggested. The algebraic account of moduli of vectors and covectors is carried out.

  6. Non-commutative differential calculus and the axial anomaly in Abelian lattice gauge theories

    International Nuclear Information System (INIS)

    Fujiwara, Takanori; Suzuki, Hiroshi; Wu, Ke

    2000-01-01

    The axial anomaly in lattice gauge theories has a topological nature when the Dirac operator satisfies the Ginsparg-Wilson relation. We study the axial anomaly in Abelian gauge theories on an infinite hypercubic lattice by utilizing cohomological arguments. The crucial tool in our approach is the non-commutative differential calculus (NCDC) which makes the Leibniz rule of exterior derivatives valid on the lattice. The topological nature of the 'Chern character' on the lattice becomes manifest in the context of NCDC. Our result provides an algebraic proof of Luescher's theorem for a four-dimensional lattice and its generalization to arbitrary dimensions

  7. An introduction to quantum groups and non-commutative differential calculus

    International Nuclear Information System (INIS)

    Azcarraga, J.A. de; Rodenas, F.

    1995-01-01

    An introduction to quantum groups and quantum spaces is presented, and the non-commutative calculus on them is discussed. The case of q-Minkowski space is presented as an illustrative example. A set of useful expressions and formulae are collected in an appendix. 45 refs

  8. Differential geometry

    CERN Document Server

    Ciarlet, Philippe G

    2007-01-01

    This book gives the basic notions of differential geometry, such as the metric tensor, the Riemann curvature tensor, the fundamental forms of a surface, covariant derivatives, and the fundamental theorem of surface theory in a selfcontained and accessible manner. Although the field is often considered a classical one, it has recently been rejuvenated, thanks to the manifold applications where it plays an essential role. The book presents some important applications to shells, such as the theory of linearly and nonlinearly elastic shells, the implementation of numerical methods for shells, and

  9. Differential Geometry

    CERN Document Server

    Stoker, J J

    2011-01-01

    This classic work is now available in an unabridged paperback edition. Stoker makes this fertile branch of mathematics accessible to the nonspecialist by the use of three different notations: vector algebra and calculus, tensor calculus, and the notation devised by Cartan, which employs invariant differential forms as elements in an algebra due to Grassman, combined with an operation called exterior differentiation. Assumed are a passing acquaintance with linear algebra and the basic elements of analysis.

  10. Testing Non-commutative QED, Constructing Non-commutative MHD

    OpenAIRE

    Guralnik, Z.; Jackiw, R.; Pi, S. Y.; Polychronakos, A. P.

    2001-01-01

    The effect of non-commutativity on electromagnetic waves violates Lorentz invariance: in the presence of a background magnetic induction field b, the velocity for propagation transverse to b differs from c, while propagation along b is unchanged. In principle, this allows a test by the Michelson-Morley interference method. We also study non-commutativity in another context, by constructing the theory describing a charged fluid in a strong magnetic field, which forces the fluid particles into ...

  11. Non-commuting variations in mathematics and physics a survey

    CERN Document Server

    Preston, Serge

    2016-01-01

    This text presents and studies the method of so –called noncommuting variations in Variational Calculus. This method was pioneered by Vito Volterra who noticed that the conventional Euler-Lagrange (EL-) equations are not applicable in Non-Holonomic Mechanics and suggested to modify the basic rule used in Variational Calculus. This book presents a survey of Variational Calculus with non-commutative variations and shows that most basic properties of conventional Euler-Lagrange Equations are, with some modifications, preserved for EL-equations with K-twisted (defined by K)-variations. Most of the book can be understood by readers without strong mathematical preparation (some knowledge of Differential Geometry is necessary). In order to make the text more accessible the definitions and several necessary results in Geometry are presented separately in Appendices I and II Furthermore in Appendix III a short presentation of the Noether Theorem describing the relation between the symmetries of the differential equa...

  12. Non-commutative tools for topological insulators

    International Nuclear Information System (INIS)

    Prodan, Emil

    2010-01-01

    This paper reviews several analytic tools for the field of topological insulators, developed with the aid of non-commutative calculus and geometry. The set of tools includes bulk topological invariants defined directly in the thermodynamic limit and in the presence of disorder, whose robustness is shown to have nontrivial physical consequences for the bulk states. The set of tools also includes a general relation between the current of an observable and its edge index, a relation that can be used to investigate the robustness of the edge states against disorder. The paper focuses on the motivations behind creating such tools and on how to use them.

  13. Optimization of polynomials in non-commuting variables

    CERN Document Server

    Burgdorf, Sabine; Povh, Janez

    2016-01-01

    This book presents recent results on positivity and optimization of polynomials in non-commuting variables. Researchers in non-commutative algebraic geometry, control theory, system engineering, optimization, quantum physics and information science will find the unified notation and mixture of algebraic geometry and mathematical programming useful. Theoretical results are matched with algorithmic considerations; several examples and information on how to use NCSOStools open source package to obtain the results provided. Results are presented on detecting the eigenvalue and trace positivity of polynomials in non-commuting variables using Newton chip method and Newton cyclic chip method, relaxations for constrained and unconstrained optimization problems, semidefinite programming formulations of the relaxations and finite convergence of the hierarchies of these relaxations, and the practical efficiency of algorithms.

  14. Non-commutative Nash inequalities

    International Nuclear Information System (INIS)

    Kastoryano, Michael; Temme, Kristan

    2016-01-01

    A set of functional inequalities—called Nash inequalities—are introduced and analyzed in the context of quantum Markov process mixing. The basic theory of Nash inequalities is extended to the setting of non-commutative L p spaces, where their relationship to Poincaré and log-Sobolev inequalities is fleshed out. We prove Nash inequalities for a number of unital reversible semigroups

  15. Complex differential geometry

    CERN Document Server

    Zheng, Fangyang

    2002-01-01

    The theory of complex manifolds overlaps with several branches of mathematics, including differential geometry, algebraic geometry, several complex variables, global analysis, topology, algebraic number theory, and mathematical physics. Complex manifolds provide a rich class of geometric objects, for example the (common) zero locus of any generic set of complex polynomials is always a complex manifold. Yet complex manifolds behave differently than generic smooth manifolds; they are more coherent and fragile. The rich yet restrictive character of complex manifolds makes them a special and interesting object of study. This book is a self-contained graduate textbook that discusses the differential geometric aspects of complex manifolds. The first part contains standard materials from general topology, differentiable manifolds, and basic Riemannian geometry. The second part discusses complex manifolds and analytic varieties, sheaves and holomorphic vector bundles, and gives a brief account of the surface classifi...

  16. The local index formula in noncommutative geometry

    International Nuclear Information System (INIS)

    Higson, N.

    2003-01-01

    These notes present a partial account of the local index theorem in non-commutative geometry discovered by Alain Connes and Henri Moscovici. It includes Elliptic partial differential operators, cyclic homology theory, Chern characters, homotopy invariants and the index formulas

  17. Covariant non-commutative space–time

    Directory of Open Access Journals (Sweden)

    Jonathan J. Heckman

    2015-05-01

    Full Text Available We introduce a covariant non-commutative deformation of 3+1-dimensional conformal field theory. The deformation introduces a short-distance scale ℓp, and thus breaks scale invariance, but preserves all space–time isometries. The non-commutative algebra is defined on space–times with non-zero constant curvature, i.e. dS4 or AdS4. The construction makes essential use of the representation of CFT tensor operators as polynomials in an auxiliary polarization tensor. The polarization tensor takes active part in the non-commutative algebra, which for dS4 takes the form of so(5,1, while for AdS4 it assembles into so(4,2. The structure of the non-commutative correlation functions hints that the deformed theory contains gravitational interactions and a Regge-like trajectory of higher spin excitations.

  18. A non-commutative formula for the isotropic magneto-electric response

    International Nuclear Information System (INIS)

    Leung, Bryan; Prodan, Emil

    2013-01-01

    A non-commutative formula for the isotropic magneto-electric response of disordered insulators under magnetic fields is derived using the methods of non-commutative geometry. Our result follows from an explicit evaluation of the Ito derivative with respect to the magnetic field of the non-commutative formula for the electric polarization reported in Schulz-Baldes and Teufel (2012 arXiv:1201.4812v1). The quantization, topological invariance and connection to a second Chern number of the magneto-electric response are discussed in the context of three-dimensional, disordered, time-reversal or inversion symmetric topological insulators. (paper)

  19. Non-commutative tomography and signal processing

    International Nuclear Information System (INIS)

    Mendes, R Vilela

    2015-01-01

    Non-commutative tomography is a technique originally developed and extensively used by Professors M A Man’ko and V I Man’ko in quantum mechanics. Because signal processing deals with operators that, in general, do not commute with time, the same technique has a natural extension to this domain. Here, a review is presented of the theory and some applications of non-commutative tomography for time series as well as some new results on signal processing on graphs. (paper)

  20. Non-commutative standard model: model building

    CERN Document Server

    Chaichian, Masud; Presnajder, P

    2003-01-01

    A non-commutative version of the usual electro-weak theory is constructed. We discuss how to overcome the two major problems: (1) although we can have non-commutative U(n) (which we denote by U sub * (n)) gauge theory we cannot have non-commutative SU(n) and (2) the charges in non-commutative QED are quantized to just 0,+-1. We show how the latter problem with charge quantization, as well as with the gauge group, can be resolved by taking the U sub * (3) x U sub * (2) x U sub * (1) gauge group and reducing the extra U(1) factors in an appropriate way. Then we proceed with building the non-commutative version of the standard model by specifying the proper representations for the entire particle content of the theory, the gauge bosons, the fermions and Higgs. We also present the full action for the non-commutative standard model (NCSM). In addition, among several peculiar features of our model, we address the inherentCP violation and new neutrino interactions. (orig.)

  1. Algebra, Geometry and Mathematical Physics Conference

    CERN Document Server

    Paal, Eugen; Silvestrov, Sergei; Stolin, Alexander

    2014-01-01

    This book collects the proceedings of the Algebra, Geometry and Mathematical Physics Conference, held at the University of Haute Alsace, France, October 2011. Organized in the four areas of algebra, geometry, dynamical symmetries and conservation laws and mathematical physics and applications, the book covers deformation theory and quantization; Hom-algebras and n-ary algebraic structures; Hopf algebra, integrable systems and related math structures; jet theory and Weil bundles; Lie theory and applications; non-commutative and Lie algebra and more. The papers explore the interplay between research in contemporary mathematics and physics concerned with generalizations of the main structures of Lie theory aimed at quantization, and discrete and non-commutative extensions of differential calculus and geometry, non-associative structures, actions of groups and semi-groups, non-commutative dynamics, non-commutative geometry and applications in physics and beyond. The book benefits a broad audience of researchers a...

  2. Symposium on Differential Geometry and Differential Equations

    CERN Document Server

    Berger, Marcel; Bryant, Robert

    1987-01-01

    The DD6 Symposium was, like its predecessors DD1 to DD5 both a research symposium and a summer seminar and concentrated on differential geometry. This volume contains a selection of the invited papers and some additional contributions. They cover recent advances and principal trends in current research in differential geometry.

  3. Non-topological non-commutativity in string theory

    International Nuclear Information System (INIS)

    Guttenberg, S.; Herbst, M.; Kreuzer, M.; Rashkov, R.

    2008-01-01

    Quantization of coordinates leads to the non-commutative product of deformation quantization, but is also at the roots of string theory, for which space-time coordinates become the dynamical fields of a two-dimensional conformal quantum field theory. Appositely, open string diagrams provided the inspiration for Kontsevich's solution of the long-standing problem of quantization of Poisson geometry by virtue of his formality theorem. In the context of D-brane physics non-commutativity is not limited, however, to the topological sector. We show that non-commutative effective actions still make sense when associativity is lost and establish a generalized Connes-Flato-Sternheimer condition through second order in a derivative expansion. The measure in general curved backgrounds is naturally provided by the Born-Infeld action and reduces to the symplectic measure in the topological limit, but remains non-singular even for degenerate Poisson structures. Analogous superspace deformations by RR-fields are also discussed. (Abstract Copyright [2008], Wiley Periodicals, Inc.)

  4. Non-commutativity in polar coordinates

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, James P. [Universidad Michoacana de San Nicolas de Hidalgo, Ciudad Universitaria, Instituto de Fisica y Matematicas, Morelia, Michoacan (Mexico)

    2017-05-15

    We reconsider the fundamental commutation relations for non-commutative R{sup 2} described in polar coordinates with non-commutativity parameter θ. Previous analysis found that the natural transition from Cartesian coordinates to the traditional polar system led to a representation of [r, φ] as an everywhere diverging series. In this article we compute the Borel resummation of this series, showing that it can subsequently be extended throughout parameter space and hence provide an interpretation of this commutator. Our analysis provides a complete solution for arbitrary r and θ that reproduces the earlier calculations at lowest order and benefits from being generally applicable to problems in a two-dimensional non-commutative space. We compare our results to previous literature in the (pseudo-)commuting limit, finding a surprising spatial dependence for the coordinate commutator when θ >> r{sup 2}. Finally, we raise some questions for future study in light of this progress. (orig.)

  5. Advances in discrete differential geometry

    CERN Document Server

    2016-01-01

    This is one of the first books on a newly emerging field of discrete differential geometry and an excellent way to access this exciting area. It surveys the fascinating connections between discrete models in differential geometry and complex analysis, integrable systems and applications in computer graphics. The authors take a closer look at discrete models in differential geometry and dynamical systems. Their curves are polygonal, surfaces are made from triangles and quadrilaterals, and time is discrete. Nevertheless, the difference between the corresponding smooth curves, surfaces and classical dynamical systems with continuous time can hardly be seen. This is the paradigm of structure-preserving discretizations. Current advances in this field are stimulated to a large extent by its relevance for computer graphics and mathematical physics. This book is written by specialists working together on a common research project. It is about differential geometry and dynamical systems, smooth and discrete theories, ...

  6. An introduction to differential geometry

    CERN Document Server

    Willmore, T J

    2012-01-01

    This text employs vector methods to explore the classical theory of curves and surfaces. Topics include basic theory of tensor algebra, tensor calculus, calculus of differential forms, and elements of Riemannian geometry. 1959 edition.

  7. Non-commutative arithmetic circuits with division

    Czech Academy of Sciences Publication Activity Database

    Hrubeš, Pavel; Wigderson, A.

    2015-01-01

    Roč. 11, Article 14 (2015), s. 357-393 ISSN 1557-2862 EU Projects: European Commission(XE) 339691 - FEALORA Institutional support: RVO:67985840 Keywords : arithmetic circuits * non-commutative rational function * skew field Subject RIV: BA - General Mathematics http://theoryofcomputing.org/articles/v011a014/

  8. Differential geometry curves, surfaces, manifolds

    CERN Document Server

    Kohnel, Wolfgang

    2002-01-01

    This carefully written book is an introduction to the beautiful ideas and results of differential geometry. The first half covers the geometry of curves and surfaces, which provide much of the motivation and intuition for the general theory. Special topics that are explored include Frenet frames, ruled surfaces, minimal surfaces and the Gauss-Bonnet theorem. The second part is an introduction to the geometry of general manifolds, with particular emphasis on connections and curvature. The final two chapters are insightful examinations of the special cases of spaces of constant curvature and Einstein manifolds. The text is illustrated with many figures and examples. The prerequisites are undergraduate analysis and linear algebra.

  9. Modern differential geometry for physicists

    CERN Document Server

    Isham, C J

    1989-01-01

    These notes are the content of an introductory course on modern, coordinate-free differential geometry which is taken by the first-year theoretical physics PhD students, or by students attending the one-year MSc course "Fundamental Fields and Forces" at Imperial College. The book is concerned entirely with mathematics proper, although the emphasis and detailed topics have been chosen with an eye to the way in which differential geometry is applied these days to modern theoretical physics. This includes not only the traditional area of general relativity but also the theory of Yang-Mills fields

  10. Two-dimensional black holes and non-commutative spaces

    International Nuclear Information System (INIS)

    Sadeghi, J.

    2008-01-01

    We study the effects of non-commutative spaces on two-dimensional black hole. The event horizon of two-dimensional black hole is obtained in non-commutative space up to second order of perturbative calculations. A lower limit for the non-commutativity parameter is also obtained. The observer in that limit in contrast to commutative case see two horizon

  11. Multivariable calculus and differential geometry

    CERN Document Server

    Walschap, Gerard

    2015-01-01

    This text is a modern in-depth study of the subject that includes all the material needed from linear algebra. It then goes on to investigate topics in differential geometry, such as manifolds in Euclidean space, curvature, and the generalization of the fundamental theorem of calculus known as Stokes' theorem.

  12. Discrete differential geometry. Consistency as integrability

    OpenAIRE

    Bobenko, Alexander I.; Suris, Yuri B.

    2005-01-01

    A new field of discrete differential geometry is presently emerging on the border between differential and discrete geometry. Whereas classical differential geometry investigates smooth geometric shapes (such as surfaces), and discrete geometry studies geometric shapes with finite number of elements (such as polyhedra), the discrete differential geometry aims at the development of discrete equivalents of notions and methods of smooth surface theory. Current interest in this field derives not ...

  13. Differential geometry and mathematical physics

    CERN Document Server

    Rudolph, Gerd

    Starting from an undergraduate level, this book systematically develops the basics of • Calculus on manifolds, vector bundles, vector fields and differential forms, • Lie groups and Lie group actions, • Linear symplectic algebra and symplectic geometry, • Hamiltonian systems, symmetries and reduction, integrable systems and Hamilton-Jacobi theory. The topics listed under the first item are relevant for virtually all areas of mathematical physics. The second and third items constitute the link between abstract calculus and the theory of Hamiltonian systems. The last item provides an introduction to various aspects of this theory, including Morse families, the Maslov class and caustics. The book guides the reader from elementary differential geometry to advanced topics in the theory of Hamiltonian systems with the aim of making current research literature accessible. The style is that of a mathematical textbook,with full proofs given in the text or as exercises. The material is illustrated by numerous d...

  14. Differential geometry of group lattices

    International Nuclear Information System (INIS)

    Dimakis, Aristophanes; Mueller-Hoissen, Folkert

    2003-01-01

    In a series of publications we developed ''differential geometry'' on discrete sets based on concepts of noncommutative geometry. In particular, it turned out that first-order differential calculi (over the algebra of functions) on a discrete set are in bijective correspondence with digraph structures where the vertices are given by the elements of the set. A particular class of digraphs are Cayley graphs, also known as group lattices. They are determined by a discrete group G and a finite subset S. There is a distinguished subclass of ''bicovariant'' Cayley graphs with the property ad(S)S subset of S. We explore the properties of differential calculi which arise from Cayley graphs via the above correspondence. The first-order calculi extend to higher orders and then allow us to introduce further differential geometric structures. Furthermore, we explore the properties of ''discrete'' vector fields which describe deterministic flows on group lattices. A Lie derivative with respect to a discrete vector field and an inner product with forms is defined. The Lie-Cartan identity then holds on all forms for a certain subclass of discrete vector fields. We develop elements of gauge theory and construct an analog of the lattice gauge theory (Yang-Mills) action on an arbitrary group lattice. Also linear connections are considered and a simple geometric interpretation of the torsion is established. By taking a quotient with respect to some subgroup of the discrete group, generalized differential calculi associated with so-called Schreier diagrams are obtained

  15. Global affine differential geometry of hypersurfaces

    CERN Document Server

    Li, An-Min; Zhao, Guosong; Hu, Zejun

    2015-01-01

    This book draws a colorful and widespread picture of global affine hypersurface theory up to the most recent state. Moreover, the recent development revealed that affine differential geometry- as differential geometry in general- has an exciting intersection area with other fields of interest, like partial differential equations, global analysis, convex geometry and Riemann surfaces.

  16. Aspects of differential geometry II

    CERN Document Server

    Gilkey, Peter

    2015-01-01

    Differential Geometry is a wide field. We have chosen to concentrate upon certain aspects that are appropriate for an introduction to the subject; we have not attempted an encyclopedic treatment. Book II deals with more advanced material than Book I and is aimed at the graduate level. Chapter 4 deals with additional topics in Riemannian geometry. Properties of real analytic curves given by a single ODE and of surfaces given by a pair of ODEs are studied, and the volume of geodesic balls is treated. An introduction to both holomorphic and Kähler geometry is given. In Chapter 5, the basic properties of de Rham cohomology are discussed, the Hodge Decomposition Theorem, Poincaré duality, and the Künneth formula are proved, and a brief introduction to the theory of characteristic classes is given. In Chapter 6, Lie groups and Lie algebras are dealt with. The exponential map, the classical groups, and geodesics in the context of a bi-invariant metric are discussed. The de Rham cohomology of compact Lie groups an...

  17. Classical mechanics in non-commutative phase space

    International Nuclear Information System (INIS)

    Wei Gaofeng; Long Chaoyun; Long Zhengwen; Qin Shuijie

    2008-01-01

    In this paper the laws of motion of classical particles have been investigated in a non-commutative phase space. The corresponding non-commutative relations contain not only spatial non-commutativity but also momentum non-commutativity. First, new Poisson brackets have been defined in non-commutative phase space. They contain corrections due to the non-commutativity of coordinates and momenta. On the basis of this new Poisson brackets, a new modified second law of Newton has been obtained. For two cases, the free particle and the harmonic oscillator, the equations of motion are derived on basis of the modified second law of Newton and the linear transformation (Phys. Rev. D, 2005, 72: 025010). The consistency between both methods is demonstrated. It is shown that a free particle in commutative space is not a free particle with zero-acceleration in the non-commutative phase space, but it remains a free particle with zero-acceleration in non-commutative space if only the coordinates are non-commutative. (authors)

  18. Differential Geometry Based Multiscale Models

    Science.gov (United States)

    Wei, Guo-Wei

    2010-01-01

    Large chemical and biological systems such as fuel cells, ion channels, molecular motors, and viruses are of great importance to the scientific community and public health. Typically, these complex systems in conjunction with their aquatic environment pose a fabulous challenge to theoretical description, simulation, and prediction. In this work, we propose a differential geometry based multiscale paradigm to model complex macromolecular systems, and to put macroscopic and microscopic descriptions on an equal footing. In our approach, the differential geometry theory of surfaces and geometric measure theory are employed as a natural means to couple the macroscopic continuum mechanical description of the aquatic environment with the microscopic discrete atom-istic description of the macromolecule. Multiscale free energy functionals, or multiscale action functionals are constructed as a unified framework to derive the governing equations for the dynamics of different scales and different descriptions. Two types of aqueous macromolecular complexes, ones that are near equilibrium and others that are far from equilibrium, are considered in our formulations. We show that generalized Navier–Stokes equations for the fluid dynamics, generalized Poisson equations or generalized Poisson–Boltzmann equations for electrostatic interactions, and Newton's equation for the molecular dynamics can be derived by the least action principle. These equations are coupled through the continuum-discrete interface whose dynamics is governed by potential driven geometric flows. Comparison is given to classical descriptions of the fluid and electrostatic interactions without geometric flow based micro-macro interfaces. The detailed balance of forces is emphasized in the present work. We further extend the proposed multiscale paradigm to micro-macro analysis of electrohydrodynamics, electrophoresis, fuel cells, and ion channels. We derive generalized Poisson–Nernst–Planck equations that

  19. Differential geometry based multiscale models.

    Science.gov (United States)

    Wei, Guo-Wei

    2010-08-01

    Large chemical and biological systems such as fuel cells, ion channels, molecular motors, and viruses are of great importance to the scientific community and public health. Typically, these complex systems in conjunction with their aquatic environment pose a fabulous challenge to theoretical description, simulation, and prediction. In this work, we propose a differential geometry based multiscale paradigm to model complex macromolecular systems, and to put macroscopic and microscopic descriptions on an equal footing. In our approach, the differential geometry theory of surfaces and geometric measure theory are employed as a natural means to couple the macroscopic continuum mechanical description of the aquatic environment with the microscopic discrete atomistic description of the macromolecule. Multiscale free energy functionals, or multiscale action functionals are constructed as a unified framework to derive the governing equations for the dynamics of different scales and different descriptions. Two types of aqueous macromolecular complexes, ones that are near equilibrium and others that are far from equilibrium, are considered in our formulations. We show that generalized Navier-Stokes equations for the fluid dynamics, generalized Poisson equations or generalized Poisson-Boltzmann equations for electrostatic interactions, and Newton's equation for the molecular dynamics can be derived by the least action principle. These equations are coupled through the continuum-discrete interface whose dynamics is governed by potential driven geometric flows. Comparison is given to classical descriptions of the fluid and electrostatic interactions without geometric flow based micro-macro interfaces. The detailed balance of forces is emphasized in the present work. We further extend the proposed multiscale paradigm to micro-macro analysis of electrohydrodynamics, electrophoresis, fuel cells, and ion channels. We derive generalized Poisson-Nernst-Planck equations that are

  20. Differential geometry in string models

    International Nuclear Information System (INIS)

    Alvarez, O.

    1986-01-01

    In this article the author reviews the differential geometric approach to the quantization of strings. A seminal paper demonstrates the connection between the trace anomaly and the critical dimension. The role played by the Faddeev-Popov ghosts has been instrumental in much of the subsequent work on the quantization of strings. This paper discusses the differential geometry of two dimensional surfaces and its importance in the quantization of strings. The path integral quantization approach to strings will be carefully analyzed to determine the correct effective measure for string theories. The choice of measure for the path integral is determined by differential geometric considerations. Once the measure is determined, the manifest diffeomorphism invariance of the theory will have to be broken by using the Faddeev-Popov ansatz. The gauge fixed theory is studied in detail with emphasis on the role of conformal and gravitational anomalies. In the analysis, the path integral formulation of the gauge fixed theory requires summing over all the distinct complex structures on the manifold

  1. Foundations of arithmetic differential geometry

    CERN Document Server

    Buium, Alexandru

    2017-01-01

    The aim of this book is to introduce and develop an arithmetic analogue of classical differential geometry. In this new geometry the ring of integers plays the role of a ring of functions on an infinite dimensional manifold. The role of coordinate functions on this manifold is played by the prime numbers. The role of partial derivatives of functions with respect to the coordinates is played by the Fermat quotients of integers with respect to the primes. The role of metrics is played by symmetric matrices with integer coefficients. The role of connections (respectively curvature) attached to metrics is played by certain adelic (respectively global) objects attached to the corresponding matrices. One of the main conclusions of the theory is that the spectrum of the integers is "intrinsically curved"; the study of this curvature is then the main task of the theory. The book follows, and builds upon, a series of recent research papers. A significant part of the material has never been published before.

  2. On organizing principles of discrete differential geometry. Geometry of spheres

    International Nuclear Information System (INIS)

    Bobenko, Alexander I; Suris, Yury B

    2007-01-01

    Discrete differential geometry aims to develop discrete equivalents of the geometric notions and methods of classical differential geometry. This survey contains a discussion of the following two fundamental discretization principles: the transformation group principle (smooth geometric objects and their discretizations are invariant with respect to the same transformation group) and the consistency principle (discretizations of smooth parametrized geometries can be extended to multidimensional consistent nets). The main concrete geometric problem treated here is discretization of curvature-line parametrized surfaces in Lie geometry. Systematic use of the discretization principles leads to a discretization of curvature-line parametrization which unifies circular and conical nets.

  3. Linearization of non-commuting operators in the partition function

    International Nuclear Information System (INIS)

    Ahmed, M.

    1983-06-01

    A generalization of the Stratonovich-Hubbard scheme for evaluating the grand canonical partition function is given. The scheme involves linearization of products of non-commuting operators using the functional integral method. The non-commutivity of the operators leads to an additional term which can be absorbed in the single-particle Hamiltonian. (author)

  4. Matrix models as non-commutative field theories on R3

    International Nuclear Information System (INIS)

    Livine, Etera R

    2009-01-01

    In the context of spin foam models for quantum gravity, group field theories are a useful tool allowing on the one hand a non-perturbative formulation of the partition function and on the other hand admitting an interpretation as generalized matrix models. Focusing on 2d group field theories, we review their explicit relation to matrix models and show their link to a class of non-commutative field theories invariant under a quantum-deformed 3d Poincare symmetry. This provides a simple relation between matrix models and non-commutative geometry. Moreover, we review the derivation of effective 2d group field theories with non-trivial propagators from Boulatov's group field theory for 3d quantum gravity. Besides the fact that this gives a simple and direct derivation of non-commutative field theories for the matter dynamics coupled to (3d) quantum gravity, these effective field theories can be expressed as multi-matrix models with a non-trivial coupling between matrices of different sizes. It should be interesting to analyze this new class of theories, both from the point of view of matrix models as integrable systems and for the study of non-commutative field theories.

  5. ON DIFFERENTIAL EQUATIONS, INTEGRABLE SYSTEMS, AND GEOMETRY

    OpenAIRE

    Enrique Gonzalo Reyes Garcia

    2004-01-01

    ON DIFFERENTIAL EQUATIONS, INTEGRABLE SYSTEMS, AND GEOMETRY Equations in partial derivatives appeared in the 18th century as essential tools for the analytic study of physical models and, later, they proved to be fundamental for the progress of mathematics. For example, fundamental results of modern differential geometry are based on deep theorems on differential equations. Reciprocally, it is possible to study differential equations through geometrical means just like it was done by o...

  6. Canonical differential geometry of string backgrounds

    International Nuclear Information System (INIS)

    Schuller, Frederic P.; Wohlfarth, Mattias N.R.

    2006-01-01

    String backgrounds and D-branes do not possess the structure of Lorentzian manifolds, but that of manifolds with area metric. Area metric geometry is a true generalization of metric geometry, which in particular may accommodate a B-field. While an area metric does not determine a connection, we identify the appropriate differential geometric structure which is of relevance for the minimal surface equation in such a generalized geometry. In particular the notion of a derivative action of areas on areas emerges naturally. Area metric geometry provides new tools in differential geometry, which promise to play a role in the description of gravitational dynamics on D-branes

  7. Non-Commutative Mechanics in Mathematical & in Condensed Matter Physics

    Directory of Open Access Journals (Sweden)

    Peter A. Horváthy

    2006-12-01

    Full Text Available Non-commutative structures were introduced, independently and around the same time, in mathematical and in condensed matter physics (see Table 1. Souriau's construction applied to the two-parameter central extension of the planar Galilei group leads to the ''exotic'' particle, which has non-commuting position coordinates. A Berry-phase argument applied to the Bloch electron yields in turn a semiclassical model that has been used to explain the anomalous/spin/optical Hall effects. The non-commutative parameter is momentum-dependent in this case, and can take the form of a monopole in momentum space.

  8. Trace Dynamics and a non-commutative special relativity

    International Nuclear Information System (INIS)

    Lochan, Kinjalk; Singh, T.P.

    2011-01-01

    Trace Dynamics is a classical dynamical theory of non-commuting matrices in which cyclic permutation inside a trace is used to define the derivative with respect to an operator. We use the methods of Trace Dynamics to construct a non-commutative special relativity. We define a line-element using the Trace over space-time coordinates which are assumed to be operators. The line-element is shown to be invariant under standard Lorentz transformations, and is used to construct a non-commutative relativistic dynamics. The eventual motivation for constructing such a non-commutative relativity is to relate the statistical thermodynamics of this classical theory to quantum mechanics. -- Highlights: → Classical time is external to quantum mechanics. → This implies need for a formulation of quantum theory without classical time. → A starting point could be a non-commutative special relativity. → Such a relativity is developed here using the theory of Trace Dynamics. → A line-element is defined using the Trace over non-commuting space-time operators.

  9. Non-commutative representation for quantum systems on Lie groups

    Energy Technology Data Exchange (ETDEWEB)

    Raasakka, Matti Tapio

    2014-01-27

    The topic of this thesis is a new representation for quantum systems on weakly exponential Lie groups in terms of a non-commutative algebra of functions, the associated non-commutative harmonic analysis, and some of its applications to specific physical systems. In the first part of the thesis, after a review of the necessary mathematical background, we introduce a {sup *}-algebra that is interpreted as the quantization of the canonical Poisson structure of the cotangent bundle over a Lie group. From the physics point of view, this represents the algebra of quantum observables of a physical system, whose configuration space is a Lie group. We then show that this quantum algebra can be represented either as operators acting on functions on the group, the usual group representation, or (under suitable conditions) as elements of a completion of the universal enveloping algebra of the Lie group, the algebra representation. We further apply the methods of deformation quantization to obtain a representation of the same algebra in terms of a non-commutative algebra of functions on a Euclidean space, which we call the non-commutative representation of the original quantum algebra. The non-commutative space that arises from the construction may be interpreted as the quantum momentum space of the physical system. We derive the transform between the group representation and the non-commutative representation that generalizes in a natural way the usual Fourier transform, and discuss key properties of this new non-commutative harmonic analysis. Finally, we exhibit the explicit forms of the non-commutative Fourier transform for three elementary Lie groups: R{sup d}, U(1) and SU(2). In the second part of the thesis, we consider application of the non-commutative representation and harmonic analysis to physics. First, we apply the formalism to quantum mechanics of a point particle on a Lie group. We define the dual non-commutative momentum representation, and derive the phase

  10. Non-commutative representation for quantum systems on Lie groups

    International Nuclear Information System (INIS)

    Raasakka, Matti Tapio

    2014-01-01

    The topic of this thesis is a new representation for quantum systems on weakly exponential Lie groups in terms of a non-commutative algebra of functions, the associated non-commutative harmonic analysis, and some of its applications to specific physical systems. In the first part of the thesis, after a review of the necessary mathematical background, we introduce a * -algebra that is interpreted as the quantization of the canonical Poisson structure of the cotangent bundle over a Lie group. From the physics point of view, this represents the algebra of quantum observables of a physical system, whose configuration space is a Lie group. We then show that this quantum algebra can be represented either as operators acting on functions on the group, the usual group representation, or (under suitable conditions) as elements of a completion of the universal enveloping algebra of the Lie group, the algebra representation. We further apply the methods of deformation quantization to obtain a representation of the same algebra in terms of a non-commutative algebra of functions on a Euclidean space, which we call the non-commutative representation of the original quantum algebra. The non-commutative space that arises from the construction may be interpreted as the quantum momentum space of the physical system. We derive the transform between the group representation and the non-commutative representation that generalizes in a natural way the usual Fourier transform, and discuss key properties of this new non-commutative harmonic analysis. Finally, we exhibit the explicit forms of the non-commutative Fourier transform for three elementary Lie groups: R d , U(1) and SU(2). In the second part of the thesis, we consider application of the non-commutative representation and harmonic analysis to physics. First, we apply the formalism to quantum mechanics of a point particle on a Lie group. We define the dual non-commutative momentum representation, and derive the phase space path

  11. (Non-)commutative closed string on T-dual toroidal backgrounds

    CERN Document Server

    Andriot, David; Lust, Dieter; Patalong, Peter

    2013-01-01

    In this paper we investigate the connection between (non-)geometry and (non-)commutativity of the closed string. To this end, we solve the classical string on three T-dual toroidal backgrounds: a torus with H-flux, a twisted torus and a non-geometric background with Q-flux. In all three situations we work under the assumption of a dilute flux and consider quantities to linear order in the flux density. Furthermore, we perform the first steps of a canonical quantization for the twisted torus, to derive commutators of the string expansion modes. We use them as well as T-duality to determine, in the non-geometric background, a commutator of two string coordinates, which turns out to be non-vanishing. We relate this non-commutativity to the closed string boundary conditions, and the non-geometric Q-flux.

  12. Workshop on Non-Associative & Non-Commutative Algebra and Operator Theory

    CERN Document Server

    Molina, Mercedes

    2016-01-01

    Presenting the collaborations of over thirty international experts in the latest developments in pure and applied mathematics, this volume serves as an anthology of research with a common basis in algebra, functional analysis and their applications. Special attention is devoted to non-commutative algebras, non-associative algebras, operator theory and ring and module theory. These themes are relevant in research and development in coding theory, cryptography and quantum mechanics. The topics in this volume were presented at the Workshop on Non-Associative & Non-Commutative Algebra and Operator Theory, held May 23—25, 2014 at Cheikh Anta Diop University in Dakar, Senegal in honor of Professor Amin Kaidi. The workshop was hosted by the university's Laboratory of Algebra, Cryptology, Algebraic Geometry and Applications, in cooperation with the University of Almería and the University of Málaga. Dr. Kaidi's work focuses on non-associative rings and algebras, operator theory and functional analysis, and he...

  13. Topics in modern differential geometry

    CERN Document Server

    Verstraelen, Leopold

    2017-01-01

    A variety of introductory articles is provided on a wide range of topics, including variational problems on curves and surfaces with anisotropic curvature. Experts in the fields of Riemannian, Lorentzian and contact geometry present state-of-the-art reviews of their topics. The contributions are written on a graduate level and contain extended bibliographies. The ten chapters are the result of various doctoral courses which were held in 2009 and 2010 at universities in Leuven, Serbia, Romania and Spain.

  14. Chiral anomalies and differential geometry

    International Nuclear Information System (INIS)

    Zumino, B.

    1983-10-01

    Some properties of chiral anomalies are described from a geometric point of view. Topics include chiral anomalies and differential forms, transformation properties of the anomalies, identification and use of the anomalies, and normalization of the anomalies. 22 references

  15. Muon 2 measurements and non-commutative geometry of quantum ...

    Indian Academy of Sciences (India)

    Abstract. We discuss a completely quantum mechanical treatment of the measurement of the anomalous magnetic moment of the muon. A beam of muons move in a strong uniform magnetic field and a weak focusing electrostatic field. Errors in the classical beam analysis are exposed. In the Dirac quantum beam analysis, ...

  16. Non commutative geometry methods for group C*-algebras

    International Nuclear Information System (INIS)

    Do Ngoc Diep.

    1996-09-01

    This book is intended to provide a quick introduction to the subject. The exposition is scheduled in the sequence, as possible for more understanding for beginners. The author exposed a K-theoretic approach to study group C * -algebras: started in the elementary part, with one example of description of the structure of C * -algebra of the group of affine transformations of the real straight line, continued then for some special classes of solvable and nilpotent Lie groups. In the second advanced part, he introduced the main tools of the theory. In particular, the conception of multidimensional geometric quantization and the index of group C * -algebras were created and developed. (author). Refs

  17. Non commutative geometry methods for group C{sup *}-algebras

    Energy Technology Data Exchange (ETDEWEB)

    Diep, Do Ngoc

    1996-09-01

    This book is intended to provide a quick introduction to the subject. The exposition is scheduled in the sequence, as possible for more understanding for beginners. The author exposed a K-theoretic approach to study group C{sup *}-algebras: started in the elementary part, with one example of description of the structure of C{sup *}-algebra of the group of affine transformations of the real straight line, continued then for some special classes of solvable and nilpotent Lie groups. In the second advanced part, he introduced the main tools of the theory. In particular, the conception of multidimensional geometric quantization and the index of group C{sup *}-algebras were created and developed. (author). Refs.

  18. Differential geometry and topology of curves

    CERN Document Server

    Animov, Yu

    2001-01-01

    Differential geometry is an actively developing area of modern mathematics. This volume presents a classical approach to the general topics of the geometry of curves, including the theory of curves in n-dimensional Euclidean space. The author investigates problems for special classes of curves and gives the working method used to obtain the conditions for closed polygonal curves. The proof of the Bakel-Werner theorem in conditions of boundedness for curves with periodic curvature and torsion is also presented. This volume also highlights the contributions made by great geometers. past and present, to differential geometry and the topology of curves.

  19. Non-commutative algebra of functions of 4-dimensional quantum Hall droplet

    International Nuclear Information System (INIS)

    Chen Yixin; Hou Boyu; Hou Boyuan

    2002-01-01

    We develop the description of non-commutative geometry of the 4-dimensional quantum Hall fluid's theory proposed recently by Zhang and Hu. The non-commutative structure of fuzzy S 4 , which is the base of the bundle S 7 obtained by the second Hopf fibration, i.e., S 7 /S 3 =S 4 , appears naturally in this theory. The fuzzy monopole harmonics, which are the essential elements in the non-commutative algebra of functions on S 4 , are explicitly constructed and their obeying the matrix algebra is obtained. This matrix algebra is associative. We also propose a fusion scheme of the fuzzy monopole harmonics of the coupling system from those of the subsystems, and determine the fusion rule in such fusion scheme. By products, we provide some essential ingredients of the theory of SO(5) angular momentum. In particular, the explicit expression of the coupling coefficients, in the theory of SO(5) angular momentum, are given. We also discuss some possible applications of our results to the 4-dimensional quantum Hall system and the matrix brane construction in M-theory

  20. The standard model on non-commutative space-time

    International Nuclear Information System (INIS)

    Calmet, X.; Jurco, B.; Schupp, P.; Wohlgenannt, M.; Wess, J.

    2002-01-01

    We consider the standard model on a non-commutative space and expand the action in the non-commutativity parameter θ μν . No new particles are introduced; the structure group is SU(3) x SU(2) x U(1). We derive the leading order action. At zeroth order the action coincides with the ordinary standard model. At leading order in θ μν we find new vertices which are absent in the standard model on commutative space-time. The most striking features are couplings between quarks, gluons and electroweak bosons and many new vertices in the charged and neutral currents. We find that parity is violated in non-commutative QCD. The Higgs mechanism can be applied. QED is not deformed in the minimal version of the NCSM to the order considered. (orig.)

  1. The standard model on non-commutative space-time

    Energy Technology Data Exchange (ETDEWEB)

    Calmet, X.; Jurco, B.; Schupp, P.; Wohlgenannt, M. [Sektion Physik, Universitaet Muenchen (Germany); Wess, J. [Sektion Physik, Universitaet Muenchen (Germany); Max-Planck-Institut fuer Physik, Muenchen (Germany)

    2002-03-01

    We consider the standard model on a non-commutative space and expand the action in the non-commutativity parameter {theta}{sup {mu}}{sup {nu}}. No new particles are introduced; the structure group is SU(3) x SU(2) x U(1). We derive the leading order action. At zeroth order the action coincides with the ordinary standard model. At leading order in {theta}{sup {mu}}{sup {nu}} we find new vertices which are absent in the standard model on commutative space-time. The most striking features are couplings between quarks, gluons and electroweak bosons and many new vertices in the charged and neutral currents. We find that parity is violated in non-commutative QCD. The Higgs mechanism can be applied. QED is not deformed in the minimal version of the NCSM to the order considered. (orig.)

  2. Non-commutative flux representation for loop quantum gravity

    Science.gov (United States)

    Baratin, A.; Dittrich, B.; Oriti, D.; Tambornino, J.

    2011-09-01

    The Hilbert space of loop quantum gravity is usually described in terms of cylindrical functionals of the gauge connection, the electric fluxes acting as non-commuting derivation operators. It has long been believed that this non-commutativity prevents a dual flux (or triad) representation of loop quantum gravity to exist. We show here, instead, that such a representation can be explicitly defined, by means of a non-commutative Fourier transform defined on the loop gravity state space. In this dual representation, flux operators act by sstarf-multiplication and holonomy operators act by translation. We describe the gauge invariant dual states and discuss their geometrical meaning. Finally, we apply the construction to the simpler case of a U(1) gauge group and compare the resulting flux representation with the triad representation used in loop quantum cosmology.

  3. Non-commutative covering spaces and their symmetries

    DEFF Research Database (Denmark)

    Canlubo, Clarisson

    dened and its corresponding Galois theory. Using this and basic concepts from algebraic geometryand spectral theory, we will give a full description of the general structure of non-centralcoverings. Examples of coverings of the rational and irrational non-commutative tori will alsobe studied. Using...... will explain this and relate it to bi-Galois theory.Using the OZ-transform, we will show that non-commutative covering spaces come in pairs.Several categories of covering spaces will be dened and studied. Appealing to Tannaka duality,we will explain how this lead to a notion of an etale fundamental group...

  4. Recent topics in differential and analytic geometry

    CERN Document Server

    Ochiai, T

    1990-01-01

    Advanced Studies in Pure Mathematics, Volume 18-I: Recent Topics in Differential and Analytic Geometry presents the developments in the field of analytical and differential geometry. This book provides some generalities about bounded symmetric domains.Organized into two parts encompassing 12 chapters, this volume begins with an overview of harmonic mappings and holomorphic foliations. This text then discusses the global structures of a compact Kähler manifold that is locally decomposable as an isometric product of Ricci-positive, Ricci-negative, and Ricci-flat parts. Other chapters con

  5. The interplay between differential geometry and differential equations

    CERN Document Server

    Lychagin, V V

    1995-01-01

    This work applies symplectic methods and discusses quantization problems to emphasize the advantage of an algebraic geometry approach to nonlinear differential equations. One common feature in most of the presentations in this book is the systematic use of the geometry of jet spaces.

  6. Differential geometry bundles, connections, metrics and curvature

    CERN Document Server

    Taubes, Clifford Henry

    2011-01-01

    Bundles, connections, metrics and curvature are the 'lingua franca' of modern differential geometry and theoretical physics. This book will supply a graduate student in mathematics or theoretical physics with the fundamentals of these objects. Many of the tools used in differential topology are introduced and the basic results about differentiable manifolds, smooth maps, differential forms, vector fields, Lie groups, and Grassmanians are all presented here. Other material covered includes the basic theorems about geodesics and Jacobi fields, the classification theorem for flat connections, the

  7. The M5-brane and non-commutative open strings

    NARCIS (Netherlands)

    Bergshoeff, E.; Berman, D.S.; Schaar, J.P. van der; Sundell, P.

    2001-01-01

    The M-theory origin of non-commutative open-string theory is examined by investigating the M-theory 5-brane at near critical field strength. In particular, it is argued that the open-membrane metric provides the appropriate moduli when calculating the duality relations between M and II

  8. On Subgroups of Non-Commutative General Rhotrix Group ...

    African Journals Online (AJOL)

    This paper considers the pair (GRn(F),o) consisting of the set of all invertible rhotrices of size n over an arbitrary field F; and together with the binary operation of row-column based method for rhotrix multiplication; 'o' , in order to introduce it as the concept of “non commutative general rhotrix group”. We identify a number of ...

  9. Notes on algebraic invariants for non-commutative dynamical systems

    Energy Technology Data Exchange (ETDEWEB)

    Longo, R [Rome Univ. (Italy). Istituto di Matematica

    1979-11-01

    We consider an algebraic invariant for non-commutative dynamical systems naturally arising as the spectrum of the modular operator associated to an invariant state, provided certain conditions of mixing type are present. This invariant turns out to be exactly the annihilator of the invariant T of Connes. Further comments are included, in particular on the type of certain algebras of local observables

  10. Newton's second law in a non-commutative space

    International Nuclear Information System (INIS)

    Romero, Juan M.; Santiago, J.A.; Vergara, J. David

    2003-01-01

    In this Letter we show that corrections to Newton's second law appear if we assume a symplectic structure consistent with the commutation rules of the non-commutative quantum mechanics. For central field we find that the correction term breaks the rotational symmetry. For the Kepler problem, this term is similar to a Coriolis force

  11. quasi hyperrigidity and weak peak points for non-commutative ...

    Indian Academy of Sciences (India)

    7

    Abstract. In this article, we introduce the notions of weak boundary repre- sentation, quasi hyperrigidity and weak peak points in the non-commutative setting for operator systems in C∗-algebras. An analogue of Saskin's theorem relating quasi hyperrigidity and weak Choquet boundary for particular classes of C∗-algebras is ...

  12. Quantum symplectic geometry. 1. The matrix Hamiltonian formalism

    International Nuclear Information System (INIS)

    Djemai, A.E.F.

    1994-07-01

    The main purpose of this work is to describe the quantum analogue of the usual classical symplectic geometry and then to formulate the quantum mechanics as a (quantum) non-commutative symplectic geometry. In this first part, we define the quantum symplectic structure in the context of the matrix differential geometry by using the discrete Weyl-Schwinger realization of the Heisenberg group. We also discuss the continuous limit and give an expression of the quantum structure constants. (author). 42 refs

  13. Differential geometry connections, curvature, and characteristic classes

    CERN Document Server

    Tu, Loring W

    2017-01-01

    This text presents a graduate-level introduction to differential geometry for mathematics and physics students. The exposition follows the historical development of the concepts of connection and curvature with the goal of explaining the Chern–Weil theory of characteristic classes on a principal bundle. Along the way we encounter some of the high points in the history of differential geometry, for example, Gauss' Theorema Egregium and the Gauss–Bonnet theorem. Exercises throughout the book test the reader’s understanding of the material and sometimes illustrate extensions of the theory. Initially, the prerequisites for the reader include a passing familiarity with manifolds. After the first chapter, it becomes necessary to understand and manipulate differential forms. A knowledge of de Rham cohomology is required for the last third of the text. Prerequisite material is contained in author's text An Introduction to Manifolds, and can be learned in one semester. For the benefit of the reader and to establ...

  14. The shear viscosity of the non-commutative plasma

    International Nuclear Information System (INIS)

    Landsteiner, Karl; Mas, Javier

    2007-01-01

    We compute the shear viscosity of the non-commutative N = 4 super Yang-Mills quantum field theory at strong coupling using the dual supergravity background. Special interest derives from the fact that the background presents an intrinsic anisotropy in space through the distinction of commutative and non-commutative directions. Despite this anisotropy the analysis exhibits the ubiquitous result η/s = 1/4π for two different shear channels. In order to derive this result, we show that the boundary energy momentum tensor must couple to the open string metric. As a byproduct we compute the renormalised holographic energy momentum tensor and show that it coincides with one in the commutative theory

  15. Space/time non-commutative field theories and causality

    International Nuclear Information System (INIS)

    Bozkaya, H.; Fischer, P.; Pitschmann, M.; Schweda, M.; Grosse, H.; Putz, V.; Wulkenhaar, R.

    2003-01-01

    As argued previously, amplitudes of quantum field theories on non-commutative space and time cannot be computed using naive path integral Feynman rules. One of the proposals is to use the Gell-Mann-Low formula with time-ordering applied before performing the integrations. We point out that the previously given prescription should rather be regarded as an interaction-point time-ordering. Causality is explicitly violated inside the region of interaction. It is nevertheless a consistent procedure, which seems to be related to the interaction picture of quantum mechanics. In this framework we compute the one-loop self-energy for a space/time non-commutative φ 4 theory. Although in all intermediate steps only three-momenta play a role, the final result is manifestly Lorentz covariant and agrees with the naive calculation. Deriving the Feynman rules for general graphs, we show, however, that such a picture holds for tadpole lines only. (orig.)

  16. Asymptotic behaviour of a non-commutative rational series with a nonnegative linear representation

    Directory of Open Access Journals (Sweden)

    Philippe Dumas

    2007-01-01

    Full Text Available We analyse the asymptotic behaviour in the mean of a non-commutative rational series, which originates from differential cryptanalysis, using tools from probability theory, and from analytic number theory. We derive a Fourier representation of a first-order summation function obtained by interpreting this rational series as a non-classical rational sequence via the octal numeration system. The method is applicable to a wide class of sequences rational with respect to a numeration system essentially under the condition that they admit a linear representation with nonnegative coefficients.

  17. Stability of a non-commutative Jackiw-Teitelboim gravity

    Energy Technology Data Exchange (ETDEWEB)

    Vassilevich, D.V. [Universitaet Leipzig, Institut fuer Theoretische Physik, Postfach 100 920, Leipzig (Germany); St. Petersburg University, V.A. Fock Institute of Physics, St. Petersburg (Russian Federation); Fresneda, R.; Gitman, D.M. [Sao Paulo Univ. (Brazil). Inst. de Fisica

    2006-07-15

    We start with a non-commutative version of the Jackiw-Teitelboim gravity in two dimensions which has a linear potential for the dilaton fields. We study whether it is possible to deform this model by adding quadratic terms to the potential but preserving the number of gauge symmetries. We find that no such deformation exists (provided one does not twist the gauge symmetries). (orig.)

  18. Semiclassical and quantum motions on the non-commutative plane

    International Nuclear Information System (INIS)

    Baldiotti, M.C.; Gazeau, J.P.; Gitman, D.M.

    2009-01-01

    We study the canonical and the coherent state quantizations of a particle moving in a magnetic field on the non-commutative plane. Using a θ-modified action, we perform the canonical quantization and analyze the gauge dependence of the theory. We compare coherent states quantizations obtained through Malkin-Man'ko states and circular squeezed states. The relation between these states and the 'classical' trajectories is investigated, and we present numerical explorations of some semiclassical quantities.

  19. Semiclassical and quantum motions on the non-commutative plane

    Energy Technology Data Exchange (ETDEWEB)

    Baldiotti, M.C., E-mail: baldiott@fma.if.usp.b [Instituto de Fisica, Universidade de Sao Paulo, Caixa Postal 66318-CEP, 05315-970 Sao Paulo, S.P. (Brazil); Gazeau, J.P., E-mail: gazeau@apc.univ-paris7.f [Instituto de Fisica, Universidade de Sao Paulo, Caixa Postal 66318-CEP, 05315-970 Sao Paulo, S.P. (Brazil); Gitman, D.M., E-mail: gitman@dfn.if.usp.b [Instituto de Fisica, Universidade de Sao Paulo, Caixa Postal 66318-CEP, 05315-970 Sao Paulo, S.P. (Brazil)

    2009-10-19

    We study the canonical and the coherent state quantizations of a particle moving in a magnetic field on the non-commutative plane. Using a theta-modified action, we perform the canonical quantization and analyze the gauge dependence of the theory. We compare coherent states quantizations obtained through Malkin-Man'ko states and circular squeezed states. The relation between these states and the 'classical' trajectories is investigated, and we present numerical explorations of some semiclassical quantities.

  20. Euler Polynomials and Identities for Non-Commutative Operators

    OpenAIRE

    De Angelis, V.; Vignat, C.

    2015-01-01

    Three kinds of identities involving non-commutating operators and Euler and Bernoulli polynomials are studied. The first identity, as given by Bender and Bettencourt, expresses the nested commutator of the Hamiltonian and momentum operators as the commutator of the momentum and the shifted Euler polynomial of the Hamiltonian. The second one, due to J.-C. Pain, links the commutators and anti-commutators of the monomials of the position and momentum operators. The third appears in a work by Fig...

  1. Non-commutative and commutative vacua effects in a scalar torsion scenario

    Energy Technology Data Exchange (ETDEWEB)

    Sheikhahmadi, Haidar, E-mail: h.sh.ahmadi@gmail.com [Department of Physics, Faculty of Science, University of Kurdistan, Sanandaj (Iran, Islamic Republic of); Aghamohammadi, Ali, E-mail: a.aghamohamadi@iausdj.ac.ir [Sanandaj Branch, Islamic Azad University, Sanandaj (Iran, Islamic Republic of); Saaidi, Khaled, E-mail: ksaaidi@uok.ac.ir [Department of Physics, Faculty of Science, University of Kurdistan, Sanandaj (Iran, Islamic Republic of)

    2015-10-07

    In this work, the effects of non-commutative and commutative vacua on the phase space generated by a scalar field in a scalar torsion scenario are investigated. For both classical and quantum regimes, the commutative and non-commutative cases are compared. To take account the effects of non-commutativity, two well known non-commutative parameters, θ and β, are introduced. It should be emphasized, the effects of β which is related to momentum sector has more key role in comparison to θ which is related to space sector. Also the different boundary conditions and mathematical interpretations of non-commutativity are explored.

  2. Non-commutative and commutative vacua effects in a scalar torsion scenario

    International Nuclear Information System (INIS)

    Sheikhahmadi, Haidar; Aghamohammadi, Ali; Saaidi, Khaled

    2015-01-01

    In this work, the effects of non-commutative and commutative vacua on the phase space generated by a scalar field in a scalar torsion scenario are investigated. For both classical and quantum regimes, the commutative and non-commutative cases are compared. To take account the effects of non-commutativity, two well known non-commutative parameters, θ and β, are introduced. It should be emphasized, the effects of β which is related to momentum sector has more key role in comparison to θ which is related to space sector. Also the different boundary conditions and mathematical interpretations of non-commutativity are explored.

  3. Non-commutative and commutative vacua effects in a scalar torsion scenario

    Directory of Open Access Journals (Sweden)

    Haidar Sheikhahmadi

    2015-10-01

    Full Text Available In this work, the effects of non-commutative and commutative vacua on the phase space generated by a scalar field in a scalar torsion scenario are investigated. For both classical and quantum regimes, the commutative and non-commutative cases are compared. To take account the effects of non-commutativity, two well known non-commutative parameters, θ and β, are introduced. It should be emphasized, the effects of β which is related to momentum sector has more key role in comparison to θ which is related to space sector. Also the different boundary conditions and mathematical interpretations of non-commutativity are explored.

  4. Existence of stable wormholes on a non-commutative-geometric background in modified gravity

    Energy Technology Data Exchange (ETDEWEB)

    Zubair, M.; Mustafa, G. [COMSATS, Institute of Information Technology, Department of Mathematics, Lahore (Pakistan); Waheed, Saira [Prince Mohammad Bin Fahd University, Al Khobar (Saudi Arabia); Abbas, G. [The Islamia University of Bahawalpur, Department of Mathematics, Bahawalpur (Pakistan)

    2017-10-15

    In this paper, we discuss spherically symmetric wormhole solutions in f(R, T) modified theory of gravity by introducing well-known non-commutative geometry in terms of Gaussian and Lorentzian distributions of string theory. For analytic discussion, we consider an interesting model of f(R, T) gravity defined by f(R, T) = f{sub 1}(R) + λT. By taking two different choices for the function f{sub 1}(R), that is, f{sub 1}(R) = R and f{sub 1}(R) = R + αR{sup 2} + γR{sup n}, we discuss the possible existence of wormhole solutions. In the presence of non-commutative Gaussian and Lorentzian distributions, we get exact and numerical solutions for both these models. By taking appropriate values of the free parameters, we discuss different properties of these wormhole models analytically and graphically. Further, using an equilibrium condition, it is found that these solutions are stable. Also, we discuss the phenomenon of gravitational lensing for the exact wormhole model and it is found that the deflection angle diverges at the wormhole throat. (orig.)

  5. Introduction to differential geometry for engineers

    CERN Document Server

    Doolin, Brian F

    2013-01-01

    This outstanding guide supplies important mathematical tools for diverse engineering applications, offering engineers the basic concepts and terminology of modern global differential geometry. Suitable for independent study as well as a supplementary text for advanced undergraduate and graduate courses, this volume also constitutes a valuable reference for control, systems, aeronautical, electrical, and mechanical engineers.The treatment's ideas are applied mainly as an introduction to the Lie theory of differential equations and to examine the role of Grassmannians in control systems analysis. Additional topics include the fundamental notions of manifolds, tangent spaces, vector fields, exterior algebra, and Lie algebras. An appendix reviews concepts related to vector calculus, including open and closed sets, compactness, continuity, and derivative.

  6. Can non-commutativity resolve the big-bang singularity?

    Energy Technology Data Exchange (ETDEWEB)

    Maceda, M.; Madore, J. [Laboratoire de Physique Theorique, Universite de Paris-Sud, Batiment 211, 91405, Orsay (France); Manousselis, P. [Department of Engineering Sciences, University of Patras, 26110, Patras (Greece); Physics Department, National Technical University, Zografou Campus, 157 80, Zografou, Athens (Greece); Zoupanos, G. [Physics Department, National Technical University, Zografou Campus, 157 80, Zografou, Athens (Greece); Theory Division, CERN, 1211, Geneva 23 (Switzerland)

    2004-08-01

    A possible way to resolve the singularities of general relativity is proposed based on the assumption that the description of space-time using commuting coordinates is not valid above a certain fundamental scale. Beyond that scale it is assumed that the space-time has non-commutative structure leading in turn to a resolution of the singularity. As a first attempt towards realizing the above programme a modification of the Kasner metric is constructed which is commutative only at large time scales. At small time scales, near the singularity, the commutation relations among the space coordinates diverge. We interpret this result as meaning that the singularity has been completely delocalized. (orig.)

  7. Non-commutative field theory with twistor-like coordinates

    International Nuclear Information System (INIS)

    Taylor, Tomasz R.

    2007-01-01

    We consider quantum field theory in four-dimensional Minkowski spacetime, with the position coordinates represented by twistors instead of the usual world-vectors. Upon imposing canonical commutation relations between twistors and dual twistors, quantum theory of fields described by non-holomorphic functions of twistor variables becomes manifestly non-commutative, with Lorentz symmetry broken by a time-like vector. We discuss the free field propagation and its impact on the short- and long-distance behavior of physical amplitudes in perturbation theory. In the ultraviolet limit, quantum field theories in twistor space are generically less divergent than their commutative counterparts. Furthermore, there is no infrared-ultraviolet mixing problem

  8. Hopf algebras in noncommutative geometry

    International Nuclear Information System (INIS)

    Varilly, Joseph C.

    2001-10-01

    We give an introductory survey to the use of Hopf algebras in several problems of non- commutative geometry. The main example, the Hopf algebra of rooted trees, is a graded, connected Hopf algebra arising from a universal construction. We show its relation to the algebra of transverse differential operators introduced by Connes and Moscovici in order to compute a local index formula in cyclic cohomology, and to the several Hopf algebras defined by Connes and Kreimer to simplify the combinatorics of perturbative renormalization. We explain how characteristic classes for a Hopf module algebra can be obtained from the cyclic cohomology of the Hopf algebra which acts on it. Finally, we discuss the theory of non- commutative spherical manifolds and show how they arise as homogeneous spaces of certain compact quantum groups. (author)

  9. Non-commutative multiple-valued logic algebras

    CERN Document Server

    Ciungu, Lavinia Corina

    2014-01-01

    This monograph provides a self-contained and easy-to-read introduction to non-commutative multiple-valued logic algebras; a subject which has attracted much interest in the past few years because of its impact on information science, artificial intelligence and other subjects.   A study of the newest results in the field, the monograph includes treatment of pseudo-BCK algebras, pseudo-hoops, residuated lattices, bounded divisible residuated lattices, pseudo-MTL algebras, pseudo-BL algebras and pseudo-MV algebras. It provides a fresh perspective on new trends in logic and algebras in that algebraic structures can be developed into fuzzy logics which connect quantum mechanics, mathematical logic, probability theory, algebra and soft computing.   Written in a clear, concise and direct manner, Non-Commutative Multiple-Valued Logic Algebras will be of interest to masters and PhD students, as well as researchers in mathematical logic and theoretical computer science.

  10. Bootstrapping non-commutative gauge theories from L∞ algebras

    Science.gov (United States)

    Blumenhagen, Ralph; Brunner, Ilka; Kupriyanov, Vladislav; Lüst, Dieter

    2018-05-01

    Non-commutative gauge theories with a non-constant NC-parameter are investigated. As a novel approach, we propose that such theories should admit an underlying L∞ algebra, that governs not only the action of the symmetries but also the dynamics of the theory. Our approach is well motivated from string theory. We recall that such field theories arise in the context of branes in WZW models and briefly comment on its appearance for integrable deformations of AdS5 sigma models. For the SU(2) WZW model, we show that the earlier proposed matrix valued gauge theory on the fuzzy 2-sphere can be bootstrapped via an L∞ algebra. We then apply this approach to the construction of non-commutative Chern-Simons and Yang-Mills theories on flat and curved backgrounds with non-constant NC-structure. More concretely, up to the second order, we demonstrate how derivative and curvature corrections to the equations of motion can be bootstrapped in an algebraic way from the L∞ algebra. The appearance of a non-trivial A∞ algebra is discussed, as well.

  11. Differential geometry of curves and surfaces

    CERN Document Server

    Banchoff, Thomas F

    2010-01-01

    Students and professors of an undergraduate course in differential geometry will appreciate the clear exposition and comprehensive exercises in this book that focuses on the geometric properties of curves and surfaces, one- and two-dimensional objects in Euclidean space. The problems generally relate to questions of local properties (the properties observed at a point on the curve or surface) or global properties (the properties of the object as a whole). Some of the more interesting theorems explore relationships between local and global properties. A special feature is the availability of accompanying online interactive java applets coordinated with each section. The applets allow students to investigate and manipulate curves and surfaces to develop intuition and to help analyze geometric phenomena.

  12. Differential geometry of curves and surfaces

    CERN Document Server

    Tapp, Kristopher

    2016-01-01

    This is a textbook on differential geometry well-suited to a variety of courses on this topic. For readers seeking an elementary text, the prerequisites are minimal and include plenty of examples and intermediate steps within proofs, while providing an invitation to more excursive applications and advanced topics. For readers bound for graduate school in math or physics, this is a clear, concise, rigorous development of the topic including the deep global theorems. For the benefit of all readers, the author employs various techniques to render the difficult abstract ideas herein more understandable and engaging. Over 300 color illustrations bring the mathematics to life, instantly clarifying concepts in ways that grayscale could not. Green-boxed definitions and purple-boxed theorems help to visually organize the mathematical content. Color is even used within the text to highlight logical relationships. Applications abound! The study of conformal and equiareal functions is grounded in its application to carto...

  13. One-loop beta functions for the orientable non-commutative Gross Neveu model TH1"-->

    Science.gov (United States)

    Lakhoua, A.; Vignes-Tourneret, F.; Wallet, J.-C.

    2007-11-01

    We compute at the one-loop order the β-functions for a renormalisable non-commutative analog of the Gross Neveu model defined on the Moyal plane. The calculation is performed within the so called x-space formalism. We find that this non-commutative field theory exhibits asymptotic freedom for any number of colors. The β-function for the non-commutative counterpart of the Thirring model is found to be non vanishing.

  14. Differential geometry of groups in string theory

    International Nuclear Information System (INIS)

    Schmidke, W.B. Jr.

    1990-09-01

    Techniques from differential geometry and group theory are applied to two topics from string theory. The first topic studied is quantum groups, with the example of GL (1|1). The quantum group GL q (1|1) is introduced, and an exponential description is derived. The algebra and coproduct are determined using the invariant differential calculus method introduced by Woronowicz and generalized by Wess and Zumino. An invariant calculus is also introduced on the quantum superplane, and a representation of the algebra of GL q (1|1) in terms of the super-plane coordinates is constructed. The second topic follows the approach to string theory introduced by Bowick and Rajeev. Here the ghost contribution to the anomaly of the energy-momentum tensor is calculated as the Ricci curvature of the Kaehler quotient space Diff(S 1 )/S 1 . We discuss general Kaehler quotient spaces and derive an expression for their Ricci curvatures. Application is made to the string and superstring diffeomorphism groups, considering all possible choices of subgroup. The formalism is extended to associated holomorphic vector bundles, where the Ricci curvature corresponds to the anomaly for different ghost sea levels. 26 refs

  15. Euler polynomials and identities for non-commutative operators

    Science.gov (United States)

    De Angelis, Valerio; Vignat, Christophe

    2015-12-01

    Three kinds of identities involving non-commutating operators and Euler and Bernoulli polynomials are studied. The first identity, as given by Bender and Bettencourt [Phys. Rev. D 54(12), 7710-7723 (1996)], expresses the nested commutator of the Hamiltonian and momentum operators as the commutator of the momentum and the shifted Euler polynomial of the Hamiltonian. The second one, by Pain [J. Phys. A: Math. Theor. 46, 035304 (2013)], links the commutators and anti-commutators of the monomials of the position and momentum operators. The third appears in a work by Figuieira de Morisson and Fring [J. Phys. A: Math. Gen. 39, 9269 (2006)] in the context of non-Hermitian Hamiltonian systems. In each case, we provide several proofs and extensions of these identities that highlight the role of Euler and Bernoulli polynomials.

  16. Gravitation, gauge theories and differential geometry

    International Nuclear Information System (INIS)

    Eguchi, T.; Chicago Univ., IL; Chicago Univ., IL; Gilkey, P.B.; California Univ., Los Angeles; Hanson, A.J.

    1980-01-01

    The purpose of this article is to outline various mathematical ideas, methods, and results, primarily from differential geometry and topology, and to show where they can be applied to Yang-Mills gauge theories and Einstein's theory of gravitation.We have several goals in mind. The first is to convey to physicists the bases for many mathematical concepts by using intuitive arguments while avoiding the detailed formality of most textbooks. Although a variety of mathematical theorems will be stated, we will generally give simple examples motivating the results instead of presenting abstract proofs. Another goal is to list a wide variety of mathematical terminology and results in a format which allows easy reference. The reader then has the option of supplementing the descriptions given here by consulting standard mathematical references and articles such as those listed in the bibliography. Finally, we intend this article to serve the dual purpose of acquainting mathematicians with some basic physical concepts which have mathematical ramifications; physical problems have often stimuladed new directions in mathematical thought. (orig./WL)

  17. Non-commutative solitons and strong-weak duality

    Energy Technology Data Exchange (ETDEWEB)

    Blas, Harold [Departamento de Matematica - ICET, Universidade Federal de Mato Grosso, Av. Fernando Correa, s/n, Coxipo, 78060-900, Cuiaba - MT (Brazil)]. E-mail: blas@cpd.ufmt.br; Carrion, Hector L. [Instituto de Fisica, Universidade Federal do Rio de Janeiro, Caixa Postal 68528, 21941-972 Rio de Janeiro (Brazil); Rojas, Moises [Centro Brasileiro de Pesquisas Fisicas, Rua Dr. Xavier Sigaud, 150 CEP 22290-180, Rio de Janeiro-RJ (Brazil)

    2005-03-01

    Some properties of the non-commutative versions of the sine-Gordon model (NCSG) and the corresponding massive Thirring theories (NCMT) are studied. Our method relies on the NC extension of integrable models and the master Lagrangian approach to deal with dual theories. The master lagrangians turn out to be the NC versions of the so-called affine Toda model coupled to matter fields (NCATM) associated to the group GL(2), in which the Toda field belongs to certain representations of either U(1)xU(1) or U(1){sub C} corresponding to the Lechtenfeld et al. (NCSG{sub 1}) or Grisaru-Penati (NCSG{sub 2}) proposals for the NC versions of the sine-Gordon model, respectively. Besides, the relevant NCMT{sub 1,2} models are written for two (four) types of Dirac fields corresponding to the Moyal product extension of one (two) copy(ies) of the ordinary massive Thirring model. The NCATM{sub 1,2} models share the same one-soliton (real Toda field sector of model 2) exact solutions, which are found without expansion in the NC parameter {theta} for the corresponding Toda and matter fields describing the strong-weak phases, respectively. The correspondence NCSG{sub 1} {r_reversible} NCMT{sub 1} is promising since it is expected to hold on the quantum level. (author)

  18. Problem of quantifying quantum correlations with non-commutative discord

    Science.gov (United States)

    Majtey, A. P.; Bussandri, D. G.; Osán, T. M.; Lamberti, P. W.; Valdés-Hernández, A.

    2017-09-01

    In this work we analyze a non-commutativity measure of quantum correlations recently proposed by Guo (Sci Rep 6:25241, 2016). By resorting to a systematic survey of a two-qubit system, we detected an undesirable behavior of such a measure related to its representation-dependence. In the case of pure states, this dependence manifests as a non-satisfactory entanglement measure whenever a representation other than the Schmidt's is used. In order to avoid this basis-dependence feature, we argue that a minimization procedure over the set of all possible representations of the quantum state is required. In the case of pure states, this minimization can be analytically performed and the optimal basis turns out to be that of Schmidt's. In addition, the resulting measure inherits the main properties of Guo's measure and, unlike the latter, it reduces to a legitimate entanglement measure in the case of pure states. Some examples involving general mixed states are also analyzed considering such an optimization. The results show that, in most cases of interest, the use of Guo's measure can result in an overestimation of quantum correlations. However, since Guo's measure has the advantage of being easily computable, it might be used as a qualitative estimator of the presence of quantum correlations.

  19. Manifold Shape : from Differential Geometry to Mathematical Morphology

    NARCIS (Netherlands)

    Roerdink, J.B.T.M.

    1994-01-01

    Much progress has been made in extending Euclidean mathematical morphology to more complex structures such as complete lattices or spaces with a non-commutative symmetry group. Such generalizations are important for practical situations such as translation and rotation invariant pattern recognition

  20. Tensor analysis and elementary differential geometry for physicists and engineers

    CERN Document Server

    Nguyen-Schäfer, Hung

    2017-01-01

    This book comprehensively presents topics, such as Dirac notation, tensor analysis, elementary differential geometry of moving surfaces, and k-differential forms. Additionally, two new chapters of Cartan differential forms and Dirac and tensor notations in quantum mechanics are added to this second edition. The reader is provided with hands-on calculations and worked-out examples at which he will learn how to handle the bra-ket notation, tensors, differential geometry, and differential forms; and to apply them to the physical and engineering world. Many methods and applications are given in CFD, continuum mechanics, electrodynamics in special relativity, cosmology in the Minkowski four-dimensional spacetime, and relativistic and non-relativistic quantum mechanics. Tensors, differential geometry, differential forms, and Dirac notation are very useful advanced mathematical tools in many fields of modern physics and computational engineering. They are involved in special and general relativity physics, quantum m...

  1. Differential and complex geometry origins, abstractions and embeddings

    CERN Document Server

    Wells, Jr , Raymond O

    2017-01-01

    Differential and complex geometry are two central areas of mathematics with a long and intertwined history. This book, the first to provide a unified historical perspective of both subjects, explores their origins and developments from the sixteenth to the twentieth century. Providing a detailed examination of the seminal contributions to differential and complex geometry up to the twentieth century embedding theorems, this monograph includes valuable excerpts from the original documents, including works of Descartes, Fermat, Newton, Euler, Huygens, Gauss, Riemann, Abel, and Nash. Suitable for beginning graduate students interested in differential, algebraic or complex geometry, this book will also appeal to more experienced readers.

  2. On the classical dynamics of charges in non-commutative QED

    International Nuclear Information System (INIS)

    Fatollahi, A.H.; Mohammadzadeh, H.

    2004-01-01

    Following Wong's approach to formulating the classical dynamics of charged particles in non-Abelian gauge theories, we derive the classical equations of motion of a charged particle in U(1) gauge theory on non-commutative space, the so-called non-commutative QED. In the present use of the procedure, it is observed that the definition of the mechanical momenta should be modified. The derived equations of motion manifest the previous statement about the dipole behavior of the charges in non-commutative space. (orig.)

  3. Loop calculations for the non-commutative U*(1) gauge field model with oscillator term

    International Nuclear Information System (INIS)

    Blaschke, Daniel N.; Grosse, Harald; Kronberger, Erwin; Schweda, Manfred; Wohlgenannt, Michael

    2010-01-01

    Motivated by the success of the non-commutative scalar Grosse-Wulkenhaar model, a non-commutative U * (1) gauge field theory including an oscillator-like term in the action has been put forward in (Blaschke et al. in Europhys. Lett. 79:61002, 2007). The aim of the current work is to analyze whether that action can lead to a fully renormalizable gauge model on non-commutative Euclidean space. In a first step, explicit one-loop graph computations are hence presented, and their results as well as necessary modifications of the action are successively discussed. (orig.)

  4. On the generalization of linear least mean squares estimation to quantum systems with non-commutative outputs

    Energy Technology Data Exchange (ETDEWEB)

    Amini, Nina H. [Stanford University, Edward L. Ginzton Laboratory, Stanford, CA (United States); CNRS, Laboratoire des Signaux et Systemes (L2S) CentraleSupelec, Gif-sur-Yvette (France); Miao, Zibo; Pan, Yu; James, Matthew R. [Australian National University, ARC Centre for Quantum Computation and Communication Technology, Research School of Engineering, Canberra, ACT (Australia); Mabuchi, Hideo [Stanford University, Edward L. Ginzton Laboratory, Stanford, CA (United States)

    2015-12-15

    The purpose of this paper is to study the problem of generalizing the Belavkin-Kalman filter to the case where the classical measurement signal is replaced by a fully quantum non-commutative output signal. We formulate a least mean squares estimation problem that involves a non-commutative system as the filter processing the non-commutative output signal. We solve this estimation problem within the framework of non-commutative probability. Also, we find the necessary and sufficient conditions which make these non-commutative estimators physically realizable. These conditions are restrictive in practice. (orig.)

  5. On θ-commutators and the corresponding non-commuting graphs

    Directory of Open Access Journals (Sweden)

    Shalchi S.

    2017-12-01

    Full Text Available The θ-commutators of elements of a group with respect to an automorphism are introduced and their properties are investigated. Also, corresponding to θ-commutators, we define the θ-non-commuting graphs of groups and study their correlations with other notions. Furthermore, we study independent sets in θ-non-commuting graphs, which enable us to evaluate the chromatic number of such graphs.

  6. A new non-commutative representation of the Wiener and Poisson processes

    International Nuclear Information System (INIS)

    Privault, N.

    1996-01-01

    Using two different constructions of the chaotic and variational calculus on Poisson space, we show that the Wiener and Poisson processes have a non-commutative representation which is different from the one obtained by transfer of the Fock space creation and annihilation operators. We obtain in this way an extension of the non-commutative It calculus. The associated commutation relations show a link between the geometric and exponential distributions. (author). 11 refs

  7. ICMS Workshop on Differential Geometry and Continuum Mechanics

    CERN Document Server

    Grinfeld, Michael; Knops, R

    2015-01-01

    This book examines the exciting interface between differential geometry and continuum mechanics, now recognised as being of increasing technological significance. Topics discussed include isometric embeddings in differential geometry and the relation with microstructure in nonlinear elasticity, the use of manifolds in the description of microstructure in continuum mechanics, experimental measurement of microstructure, defects, dislocations, surface energies, and nematic liquid crystals. Compensated compactness in partial differential equations is also treated. The volume is intended for specialists and non-specialists in pure and applied geometry, continuum mechanics, theoretical physics, materials and engineering sciences, and partial differential equations. It will also be of interest to postdoctoral scientists and advanced postgraduate research students. These proceedings include revised written versions of the majority of papers presented by leading experts at the ICMS Edinburgh Workshop on Differential G...

  8. Global Differential Geometry and Global Analysis

    CERN Document Server

    Pinkall, Ulrich; Simon, Udo; Wegner, Berd

    1991-01-01

    All papers appearing in this volume are original research articles and have not been published elsewhere. They meet the requirements that are necessary for publication in a good quality primary journal. E.Belchev, S.Hineva: On the minimal hypersurfaces of a locally symmetric manifold. -N.Blasic, N.Bokan, P.Gilkey: The spectral geometry of the Laplacian and the conformal Laplacian for manifolds with boundary. -J.Bolton, W.M.Oxbury, L.Vrancken, L.M. Woodward: Minimal immersions of RP2 into CPn. -W.Cieslak, A. Miernowski, W.Mozgawa: Isoptics of a strictly convex curve. -F.Dillen, L.Vrancken: Generalized Cayley surfaces. -A.Ferrandez, O.J.Garay, P.Lucas: On a certain class of conformally flat Euclidean hypersurfaces. -P.Gauduchon: Self-dual manifolds with non-negative Ricci operator. -B.Hajduk: On the obstruction group toexistence of Riemannian metrics of positive scalar curvature. -U.Hammenstaedt: Compact manifolds with 1/4-pinched negative curvature. -J.Jost, Xiaowei Peng: The geometry of moduli spaces of stabl...

  9. T-duality with H-flux. Non-commutativity, T-folds and G x G structure

    International Nuclear Information System (INIS)

    Grange, P.

    2006-09-01

    Various approaches to T-duality with NSNS three-form flux are reconciled. Non-commutative torus fibrations are shown to be the open-string version of T-folds. The non-geometric T-dual of a three-torus with uniform flux is embedded into a generalized complex six-torus, and the non-geometry is probed by D0-branes regarded as generalized complex submanifolds. The non-commutativity scale, which is present in these compactifications, is given by a holomorphic Poisson bivector that also encodes the variation of the dimension of the world-volume of D-branes under monodromy. This bivector is shown to exist in SU(3) x SU(3) structure compactifications, which have been proposed as mirrors to NSNS-flux backgrounds. The two SU(3)-invariant spinors are generically not parallel, thereby giving rise to a non-trivial Poisson bivector. Furthermore we show that for non-geometric T-duals, the Poisson bivector may not be decomposable into the tensor product of vectors. (orig.)

  10. Differential geometry on Hopf algebras and quantum groups

    International Nuclear Information System (INIS)

    Watts, P.

    1994-01-01

    The differential geometry on a Hopf algebra is constructed, by using the basic axioms of Hopf algebras and noncommutative differential geometry. The space of generalized derivations on a Hopf algebra of functions is presented via the smash product, and used to define and discuss quantum Lie algebras and their properties. The Cartan calculus of the exterior derivative, Lie derivative, and inner derivation is found for both the universal and general differential calculi of an arbitrary Hopf algebra, and, by restricting to the quasitriangular case and using the numerical R-matrix formalism, the aforementioned structures for quantum groups are determined

  11. Manifold Shape: from Differential Geometry to Mathematical Morphology

    OpenAIRE

    Roerdink, J.B.T.M.

    1994-01-01

    Much progress has been made in extending Euclidean mathematical morphology to more complex structures such as complete lattices or spaces with a non-commutative symmetry group. Such generalizations are important for practical situations such as translation and rotation invariant pattern recognition or shape description of patterns on spherical surfaces. Also in computer vision much use is made of spherical mappings to describe the world as seen by a human or machine observer. Stimulated by th...

  12. Cartan for beginners differential geometry via moving frames and exterior differential systems

    CERN Document Server

    Ivey, Thomas A

    2016-01-01

    Two central aspects of Cartan's approach to differential geometry are the theory of exterior differential systems (EDS) and the method of moving frames. This book presents thorough and modern treatments of both subjects, including their applications to both classic and contemporary problems in geometry. It begins with the classical differential geometry of surfaces and basic Riemannian geometry in the language of moving frames, along with an elementary introduction to exterior differential systems. Key concepts are developed incrementally, with motivating examples leading to definitions, theorems, and proofs. Once the basics of the methods are established, the authors develop applications and advanced topics. One notable application is to complex algebraic geometry, where they expand and update important results from projective differential geometry. As well, the book features an introduction to G-structures and a treatment of the theory of connections. The techniques of EDS are also applied to obtain explici...

  13. Tensor analysis and elementary differential geometry for physicists and engineers

    CERN Document Server

    Nguyen-Schäfer, Hung

    2014-01-01

    Tensors and methods of differential geometry are very useful mathematical tools in many fields of modern physics and computational engineering including relativity physics, electrodynamics, computational fluid dynamics (CFD), continuum mechanics, aero and vibroacoustics, and cybernetics. This book comprehensively presents topics, such as bra-ket notation, tensor analysis, and elementary differential geometry of a moving surface. Moreover, authors intentionally abstain from giving mathematically rigorous definitions and derivations that are however dealt with as precisely as possible. The reader is provided with hands-on calculations and worked-out examples at which he will learn how to handle the bra-ket notation, tensors and differential geometry and to use them in the physical and engineering world. The target audience primarily comprises graduate students in physics and engineering, research scientists, and practicing engineers.

  14. Differential geometry the mathematical works of J. H. C. Whitehead

    CERN Document Server

    James, I M

    1962-01-01

    The Mathematical Works of J. H. C. Whitehead, Volume 1: Differential Geometry contains all of Whitehead's published work on differential geometry, along with some papers on algebras. Most of these were written in the period 1929-1937, but a few later articles are included. The book begins with a list of Whitehead's works, in chronological order of writing as well as a biographical note by M. H. A. Newman and Barbara Whitehead, and a mathematical appreciation by John Milnor. This is followed by separate chapters on topics such as linear connections; a method of obtaining normal representations

  15. Differential forms and the geometry of general relativity

    CERN Document Server

    Dray, Tevian

    2015-01-01

    Differential Forms and the Geometry of General Relativity provides readers with a coherent path to understanding relativity. Requiring little more than calculus and some linear algebra, it helps readers learn just enough differential geometry to grasp the basics of general relativity.The book contains two intertwined but distinct halves. Designed for advanced undergraduate or beginning graduate students in mathematics or physics, most of the text requires little more than familiarity with calculus and linear algebra. The first half presents an introduction to general relativity that describes

  16. FINAL REPORT: GEOMETRY AND ELEMENTARY PARTICLE PHYSICS

    Energy Technology Data Exchange (ETDEWEB)

    Singer, Isadore M.

    2008-03-04

    The effect on mathematics of collaborations between high-energy theoretical physics and modern mathematics has been remarkable. Mirror symmetry has revolutionized enumerative geometry, and Seiberg-Witten invariants have greatly simplified the study of four manifolds. And because of their application to string theory, physicists now need to know cohomology theory, characteristic classes, index theory, K-theory, algebraic geometry, differential geometry, and non-commutative geometry. Much more is coming. We are experiencing a deeper contact between the two sciences, which will stimulate new mathematics essential to the physicists’ quest for the unification of quantum mechanics and relativity. Our grant, supported by the Department of Energy for twelve years, has been instrumental in promoting an effective interaction between geometry and string theory, by supporting the Mathematical Physics seminar, postdoc research, collaborations, graduate students and several research papers.

  17. Final Report: Geometry And Elementary Particle Physics

    International Nuclear Information System (INIS)

    Singer, Isadore M.

    2008-01-01

    The effect on mathematics of collaborations between high-energy theoretical physics and modern mathematics has been remarkable. Mirror symmetry has revolutionized enumerative geometry, and Seiberg-Witten invariants have greatly simplified the study of four manifolds. And because of their application to string theory, physicists now need to know cohomology theory, characteristic classes, index theory, K-theory, algebraic geometry, differential geometry, and non-commutative geometry. Much more is coming. We are experiencing a deeper contact between the two sciences, which will stimulate new mathematics essential to the physicists quest for the unification of quantum mechanics and relativity. Our grant, supported by the Department of Energy for twelve years, has been instrumental in promoting an effective interaction between geometry and string theory, by supporting the Mathematical Physics seminar, postdoc research, collaborations, graduate students and several research papers.

  18. Non-Commutative Integration, Zeta Functions and the Haar State for SU{sub q}(2)

    Energy Technology Data Exchange (ETDEWEB)

    Matassa, Marco, E-mail: marco.matassa@gmail.com [SISSA (Italy)

    2015-12-15

    We study a notion of non-commutative integration, in the spirit of modular spectral triples, for the quantum group SU{sub q}(2). In particular we define the non-commutative integral as the residue at the spectral dimension of a zeta function, which is constructed using a Dirac operator and a weight. We consider the Dirac operator introduced by Kaad and Senior and a family of weights depending on two parameters, which are related to the diagonal automorphisms of SU{sub q}(2). We show that, after fixing one of the parameters, the non-commutative integral coincides with the Haar state of SU{sub q}(2). Moreover we can impose an additional condition on the zeta function, which also fixes the second parameter. For this unique choice the spectral dimension coincides with the classical dimension.

  19. Anisotropic harmonic oscillator, non-commutative Landau problem and exotic Newton-Hooke symmetry

    International Nuclear Information System (INIS)

    Alvarez, Pedro D.; Gomis, Joaquim; Kamimura, Kiyoshi; Plyushchay, Mikhail S.

    2008-01-01

    We investigate the planar anisotropic harmonic oscillator with explicit rotational symmetry as a particle model with non-commutative coordinates. It includes the exotic Newton-Hooke particle and the non-commutative Landau problem as special, isotropic and maximally anisotropic, cases. The system is described by the same (2+1)-dimensional exotic Newton-Hooke symmetry as in the isotropic case, and develops three different phases depending on the values of the two central charges. The special cases of the exotic Newton-Hooke particle and non-commutative Landau problem are shown to be characterized by additional, so(3) or so(2,1) Lie symmetry, which reflects their peculiar spectral properties

  20. Non-Commutative Integration, Zeta Functions and the Haar State for SUq(2)

    International Nuclear Information System (INIS)

    Matassa, Marco

    2015-01-01

    We study a notion of non-commutative integration, in the spirit of modular spectral triples, for the quantum group SU q (2). In particular we define the non-commutative integral as the residue at the spectral dimension of a zeta function, which is constructed using a Dirac operator and a weight. We consider the Dirac operator introduced by Kaad and Senior and a family of weights depending on two parameters, which are related to the diagonal automorphisms of SU q (2). We show that, after fixing one of the parameters, the non-commutative integral coincides with the Haar state of SU q (2). Moreover we can impose an additional condition on the zeta function, which also fixes the second parameter. For this unique choice the spectral dimension coincides with the classical dimension

  1. An algebraic scheme associated with the non-commutative KP hierarchy and some of its extensions

    International Nuclear Information System (INIS)

    Dimakis, Aristophanes; Mueller-Hoissen, Folkert

    2005-01-01

    A well-known ansatz ('trace method') for soliton solutions turns the equations of the (non-commutative) KP hierarchy, and those of certain extensions, into families of algebraic sum identities. We develop an algebraic formalism, in particular involving a (mixable) shuffle product, to explore their structure. More precisely, we show that the equations of the non-commutative KP hierarchy and its extension (xncKP) in the case of a Moyal-deformed product, as derived in previous work, correspond to identities in this algebra. Furthermore, the Moyal product is replaced by a more general associative product. This leads to a new even more general extension of the non-commutative KP hierarchy. Relations with Rota-Baxter algebras are established

  2. Differential geometry techniques for sets of nonlinear partial differential equations

    Science.gov (United States)

    Estabrook, Frank B.

    1990-01-01

    An attempt is made to show that the Cartan theory of partial differential equations can be a useful technique for applied mathematics. Techniques for finding consistent subfamilies of solutions that are generically rich and well-posed and for introducing potentials or other usefully consistent auxiliary fields are introduced. An extended sample calculation involving the Korteweg-de Vries equation is given.

  3. Area-preserving diffeomorphisms in gauge theory on a non-commutative plane. A lattice study

    International Nuclear Information System (INIS)

    Bietenholz, W.; Bigarini, A.; INFN, Sezione di Perugia; Humboldt-Universitaet, Berlin; Torrielli, A.

    2007-06-01

    We consider Yang-Mills theory with the U(1) gauge group on a non-commutative plane. Perturbatively it was observed that the invariance of this theory under area-preserving diffeomorphisms (APDs) breaks down to a rigid subgroup SL(2,R). Here we present explicit results for the APD symmetry breaking at finite gauge coupling and finite non-commutativity. They are based on lattice simulations and measurements of Wilson loops with the same area but with a variety of different shapes. Our results confirm the expected loss of invariance under APDs. Moreover, they strongly suggest that non-perturbatively the SL(2,R) symmetry does not persist either. (orig.)

  4. Non-commutative phase space and its space-time symmetry

    International Nuclear Information System (INIS)

    Li Kang; Dulat Sayipjamal

    2010-01-01

    First a description of 2+1 dimensional non-commutative (NC) phase space is presented, and then we find that in this formulation the generalized Bopp's shift has a symmetric representation and one can easily and straightforwardly define the star product on NC phase space. Then we define non-commutative Lorentz transformations both on NC space and NC phase space. We also discuss the Poincare symmetry. Finally we point out that our NC phase space formulation and the NC Lorentz transformations are applicable to any even dimensional NC space and NC phase space. (authors)

  5. Pseudo-differential operators groups, geometry and applications

    CERN Document Server

    Zhu, Hongmei

    2017-01-01

    This volume consists of papers inspired by the special session on pseudo-differential operators at the 10th ISAAC Congress held at the University of Macau, August 3-8, 2015 and the mini-symposium on pseudo-differential operators in industries and technologies at the 8th ICIAM held at the National Convention Center in Beijing, August 10-14, 2015. The twelve papers included present cutting-edge trends in pseudo-differential operators and applications from the perspectives of Lie groups (Chapters 1-2), geometry (Chapters 3-5) and applications (Chapters 6-12). Many contributions cover applications in probability, differential equations and time-frequency analysis. A focus on the synergies of pseudo-differential operators with applications, especially real-life applications, enhances understanding of the analysis and the usefulness of these operators.

  6. Special values of the spectral zeta function of the non-commutative harmonic oscillator and confluent Heun equations

    CERN Document Server

    Ichinose, T

    2004-01-01

    We study the special values at $s=2$ and $3$ of the spectral zeta function $\\zeta_Q(s)$ of the non-commutative harmonic oscillator $Q(x,D_x)$ introduced in \\cite{PW1, 2}. It is shown that the series defining $\\zeta_Q(s)$ converges absolutely for Re $s>1$ and further the respective values $\\zeta_Q(2)$ and $\\zeta_Q(3)$ are represented essentially by contour integrals of the solutions, respectively, of a singly confluent Heun's ordinary differential equation and of exactly the same but an inhomogeneous equation. As a by-product of these results, we obtain integral representations of the solutions of these equations by rational functions. \\par\

  7. A Note on UV/IR Mixing and Non-Commutative Instanton Calculus

    CERN Document Server

    Bichl, A A

    2003-01-01

    We estimate the instanton-induced vacuum energy in non-commutative U(1) Yang-Mills theory in four dimensions. In the dilute gas approximation, it is found to be plagued by infrared divergences, as a result of UV/IR mixing.

  8. Determinants of self-employment among commuters and non-commuters

    DEFF Research Database (Denmark)

    Backman, M.; Karlsson, C.

    2016-01-01

    We analyse the determinants of self-employment and focus on the contextual environment. By distinguishing between commuters and non-commuters we are able to analyse the influence from the work and home environment, respectively. Our results indicate a significant difference between non...

  9. On Some Isomorphisms between Bounded Linear Maps and Non-Commutative Lp-Spaces

    Directory of Open Access Journals (Sweden)

    E. J. Atto

    2014-04-01

    Full Text Available We define a particular space of bounded linear maps using a Von Neumann algebra and some operator spaces. By this, we prove some isomorphisms, and using interpolation in some particular cases, we get analogue of non-commutative Lp spaces.

  10. Crossed Module Bundle Gerbes; Classification, String Group and Differential Geometry

    OpenAIRE

    Jurco, Branislav

    2005-01-01

    We discuss nonabelian bundle gerbes and their differential geometry using simplicial methods. Associated to any crossed module there is a simplicial group NC, the nerve of the 1-category defined by the crossed module and its geometric realization |NC|. Equivalence classes of principal bundles with structure group |NC| are shown to be one-to-one with stable equivalence classes of what we call crossed module gerbes bundle gerbes. We can also associate to a crossed module a 2-category C'. Then t...

  11. System theory as applied differential geometry. [linear system

    Science.gov (United States)

    Hermann, R.

    1979-01-01

    The invariants of input-output systems under the action of the feedback group was examined. The approach used the theory of Lie groups and concepts of modern differential geometry, and illustrated how the latter provides a basis for the discussion of the analytic structure of systems. Finite dimensional linear systems in a single independent variable are considered. Lessons of more general situations (e.g., distributed parameter and multidimensional systems) which are increasingly encountered as technology advances are presented.

  12. Global differential geometry: An introduction for control engineers

    Science.gov (United States)

    Doolin, B. F.; Martin, C. F.

    1982-01-01

    The basic concepts and terminology of modern global differential geometry are discussed as an introduction to the Lie theory of differential equations and to the role of Grassmannians in control systems analysis. To reach these topics, the fundamental notions of manifolds, tangent spaces, vector fields, and Lie algebras are discussed and exemplified. An appendix reviews such concepts needed for vector calculus as open and closed sets, compactness, continuity, and derivative. Although the content is mathematical, this is not a mathematical treatise but rather a text for engineers to understand geometric and nonlinear control.

  13. Quantum κ-deformed differential geometry and field theory

    Science.gov (United States)

    Mercati, Flavio

    2016-03-01

    I introduce in κ-Minkowski noncommutative spacetime the basic tools of quantum differential geometry, namely bicovariant differential calculus, Lie and inner derivatives, the integral, the Hodge-∗ and the metric. I show the relevance of these tools for field theory with an application to complex scalar field, for which I am able to identify a vector-valued four-form which generalizes the energy-momentum tensor. Its closedness is proved, expressing in a covariant form the conservation of energy-momentum.

  14. Extended differential geometry as a basis for physical field theory

    International Nuclear Information System (INIS)

    Bruce, M.H.

    1984-01-01

    An extension of Riemann differential geometry is considered as a broadened uniform basis for physical field theory. The requirements for such a theory are set and interpreted as a generalized Ricci calculus capable of supporting certain physical affine motions and metric constraints. Both tensor and spinor languages are considered and a variational calculus is formulated within the geometry. The dominant emergent feature is the replacement of ordinary derivatives by generalized differential operators involving the usual Christoffel symbols as well as more general connection parameters. Then the Euler-Lagrange equations with constraints may be regarded as a general differential geometry and an action principle is formulated to give equations of motion in terms of generalized momentum operations. A cononical momentum tensor is employed which yields, by a generalized boundary variations of the action a set of conservation laws. The formulation is then applied to such diverse topics as the generalizing of the Dirac equation, the Lorentz and radiation terms for a charged particle, the relativistic rotator, and considerations on a geometric origin for the the Einstein energy density tensor

  15. Investigations on the renormalizability of a non-commutative u(1) gauge theory

    International Nuclear Information System (INIS)

    Rofner, A.

    2009-01-01

    When considering very small scales near the Planck-length, or equivalently very high energies (far from being reached by today's particle accelerators), space-time is expected to be quantized. Today, all but one forces governing nature (i.e. gravitation) are described via Quantum Field Theories (short QFTs) and more precisely gauge field theories (GFTs). Their heart is the art of renormalization, which allows to handle the divergences for high internal momenta appearing in the course of the perturbative development of the action in a consistent manner. Over the last years numerous attempts have been made to formulate consistent and renormalizable theories also on non-commutative spaces. Yet, it is the latter that represents a major problem for non-commutative QFTs: generally, the non-commutativity is implemented via the so-called star product, which in the simplest case is given by the Moyal-Weyl product, and which leads to a modification of the interaction terms of the theories by introducing additional phase factors depending on the non-commutative parameter theta. Then, this phase leads to a mixing of high and low energies, which is directly linked to the appearance of a new class of divergences for small momenta. While there exist various traditional renormalization schemes in order to handle uV divergences, their counterparts in the IR sector form a major obstacle in formulating consistent non-commutative QFTs. However, a first way out of this misery could be achieved by Grosse and Wulkenhaar for a scalar model. The idea was to add a suitable term to the action, in their case an oscillator term, leading to a decoupling of the high and low energy sectors. Later, the same philosophy has been followed by Gurau et. al. by adding a 1/p 2 like term to the scalar action. Both models have been shown to be renormalizable, and additionally, the latter model leads to a translation invariant propagator, which implies momentum conservation in all space points. Now, the

  16. Lie groups, differential equations, and geometry advances and surveys

    CERN Document Server

    2017-01-01

    This book collects a series of contributions addressing the various contexts in which the theory of Lie groups is applied. A preliminary chapter serves the reader both as a basic reference source and as an ongoing thread that runs through the subsequent chapters. From representation theory and Gerstenhaber algebras to control theory, from differential equations to Finsler geometry and Lepage manifolds, the book introduces young researchers in Mathematics to a wealth of different topics, encouraging a multidisciplinary approach to research. As such, it is suitable for students in doctoral courses, and will also benefit researchers who want to expand their field of interest.

  17. Late time acceleration in a non-commutative model of modified cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Malekolkalami, B., E-mail: b.malakolkalami@uok.ac.ir [Department of Physics, University of Kurdistan, Pasdaran St., Sanandaj (Iran, Islamic Republic of); Atazadeh, K., E-mail: atazadeh@azaruniv.ac.ir [Department of Physics, Azarbaijan Shahid Madani University, 53714-161, Tabriz (Iran, Islamic Republic of); Vakili, B., E-mail: b-vakili@iauc.ac.ir [Department of Physics, Central Tehran Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of)

    2014-12-12

    We investigate the effects of non-commutativity between the position–position, position–momentum and momentum–momentum of a phase space corresponding to a modified cosmological model. We show that the existence of such non-commutativity results in a Moyal Poisson algebra between the phase space variables in which the product law between the functions is of the kind of an α-deformed product. We then transform the variables in such a way that the Poisson brackets between the dynamical variables take the form of a usual Poisson bracket but this time with a noncommutative structure. For a power law expression for the function of the Ricci scalar with which the action of the gravity model is modified, the exact solutions in the commutative and noncommutative cases are presented and compared. In terms of these solutions we address the issue of the late time acceleration in cosmic evolution.

  18. Zeta functions for the spectrum of the non-commutative harmonic oscillators

    CERN Document Server

    Ichinose, T

    2004-01-01

    This paper investigates the spectral zeta function of the non-commutative harmonic oscillator studied in \\cite{PW1, 2}. It is shown, as one of the basic analytic properties, that the spectral zeta function is extended to a meromorphic function in the whole complex plane with a simple pole at $s=1$, and further that it has a zero at all non-positive even integers, i.e. at $s=0$ and at those negative even integers where the Riemann zeta function has the so-called trivial zeros. As a by-product of the study, both the upper and the lower bounds are also given for the first eigenvalue of the non-commutative harmonic oscillator.

  19. Late time acceleration in a non-commutative model of modified cosmology

    International Nuclear Information System (INIS)

    Malekolkalami, B.; Atazadeh, K.; Vakili, B.

    2014-01-01

    We investigate the effects of non-commutativity between the position–position, position–momentum and momentum–momentum of a phase space corresponding to a modified cosmological model. We show that the existence of such non-commutativity results in a Moyal Poisson algebra between the phase space variables in which the product law between the functions is of the kind of an α-deformed product. We then transform the variables in such a way that the Poisson brackets between the dynamical variables take the form of a usual Poisson bracket but this time with a noncommutative structure. For a power law expression for the function of the Ricci scalar with which the action of the gravity model is modified, the exact solutions in the commutative and noncommutative cases are presented and compared. In terms of these solutions we address the issue of the late time acceleration in cosmic evolution

  20. Constraints on effective Lagrangian of D-branes from non-commutative gauge theory

    International Nuclear Information System (INIS)

    Okawa, Yuji; Terashima, Seiji

    2000-01-01

    It was argued that there are two different descriptions of the effective Lagrangian of gauge fields on D-branes by non-commutative gauge theory and by ordinary gauge theory in the presence of a constant B field background. In the case of bosonic string theory, however, it was found in the previous works that the two descriptions are incompatible under the field redefinition which relates the non-commutative gauge field to the ordinary one found by Seiberg and Witten. In this paper we resolve this puzzle to observe the necessity of gauge-invariant but B-dependent correction terms involving metric in the field redefinition which have not been considered before. With the problem resolved, we establish a systematic method under the α' expansion to derive the constraints on the effective Lagrangian imposed by the compatibility of the two descriptions where the form of the field redefinition is not assumed

  1. Non-commutative residue of projections in Boutet de Monvel's calculus

    DEFF Research Database (Denmark)

    Gaarde, Anders

    2007-01-01

    Using results by Melo, Nest, Schick, and Schrohe on the K-theory of Boutet de Monvel's calculus of boundary value problems, we show that the non-commutative residue introduced by Fedosov, Golse, Leichtnam, and Schrohe vanishes on projections in the calculus. This partially answers a question raised...... in a recent collaboration with Grubb, namely whether the residue is zero on sectorial projections for boundary value problems: This is confirmed to be true when the sectorial projections is in the calculus....

  2. Scattering theory of space-time non-commutative abelian gauge field theory

    International Nuclear Information System (INIS)

    Rim, Chaiho; Yee, Jaehyung

    2005-01-01

    The unitary S-matrix for space-time non-commutative quantum electrodynamics is constructed using the *-time ordering which is needed in the presence of derivative interactions. Based on this S-matrix, we formulate the perturbation theory and present the Feynman rule. We then apply this perturbation analysis to the Compton scattering process to the lowest order and check the gauge invariance of the scattering amplitude at this order.

  3. An anthology of non-local QFT and QFT on non-commutative spacetime

    Science.gov (United States)

    Schroer, Bert

    2005-09-01

    Ever since the appearance of renormalization theory, there have been several differently motivated attempts at non-localized (in the sense of not generated by pointlike fields) relativistic particle theories, the most recent one being at QFT on non-commutative Minkowski spacetime. The often conceptually uncritical and historically forgetful contemporary approach to these problems calls for a critical review in the light of previous results on this subject.

  4. An anthology of non-local QFT and QFT on non-commutative spacetime

    International Nuclear Information System (INIS)

    Schroer, Bert

    2005-01-01

    Ever since the appearance of renormalization theory, there have been several differently motivated attempts at non-localized (in the sense of not generated by pointlike fields) relativistic particle theories, the most recent one being at QFT on non-commutative Minkowski spacetime. The often conceptually uncritical and historically forgetful contemporary approach to these problems calls for a critical review in the light of previous results on this subject

  5. Marginal and non-commutative deformations via non-abelian T-duality

    Energy Technology Data Exchange (ETDEWEB)

    Hoare, Ben [Institut für Theoretische Physik, ETH Zürich,Wolfgang-Pauli-Strasse 27, 8093 Zürich (Switzerland); Thompson, Daniel C. [Theoretische Natuurkunde, Vrije Universiteit Brussel & The International Solvay Institutes, Pleinlaan 2, B-1050 Brussels (Belgium)

    2017-02-10

    In this short article we develop recent proposals to relate Yang-Baxter sigma-models and non-abelian T-duality. We demonstrate explicitly that the holographic space-times associated to both (multi-parameter)-β-deformations and non-commutative deformations of N=4 super Yang-Mills gauge theory including the RR fluxes can be obtained via the machinery of non-abelian T-duality in Type II supergravity.

  6. Kohn condition and exotic Newton-Hooke symmetry in the non-commutative Landau problem

    International Nuclear Information System (INIS)

    Zhang, P.-M.; Horvathy, P.A.

    2012-01-01

    N “exotic” [alias non-commutative] particles with masses m a , charges e a and non-commutative parameters θ a , moving in a uniform magnetic field B, separate into center-of-mass and internal motions if Kohn's condition e a /m a =const is supplemented with e a θ a =const. Then the center-of-mass behaves as a single exotic particle carrying the total mass and charge of the system, M and e, and a suitably defined non-commutative parameter Θ. For vanishing electric field off the critical case eΘB≠1, the particles perform the usual cyclotronic motion with modified but equal frequency. The system is symmetric under suitable time-dependent translations which span a (4+2)-parameter centrally-extended subgroup of the “exotic” [i.e., two-parameter centrally-extended] Newton–Hooke group. In the critical case B=B c =(eΘ) −1 the system is frozen into a static “crystal” configuration. Adding a constant electric field, all particles perform, collectively, a cyclotronic motion combined with a drift perpendicular to the electric field when eΘB≠1. For B=B c the cyclotronic motion is eliminated and all particles move, collectively, following the Hall law. Our time-dependent symmetries are reduced to the (2+1)-parameter Heisenberg group of centrally-extended translations.

  7. Differential Geometry Applied to Rings and Möbius Nanostructures

    DEFF Research Database (Denmark)

    Lassen, Benny; Willatzen, Morten; Gravesen, Jens

    2014-01-01

    Nanostructure shape effects have become a topic of increasing interest due to advancements in fabrication technology. In order to pursue novel physics and better devices by tailoring the shape and size of nanostructures, effective analytical and computational tools are indispensable. In this chap......Nanostructure shape effects have become a topic of increasing interest due to advancements in fabrication technology. In order to pursue novel physics and better devices by tailoring the shape and size of nanostructures, effective analytical and computational tools are indispensable....... In this chapter, we present analytical and computational differential geometry methods to examine particle quantum eigenstates and eigenenergies in curved and strained nanostructures. Example studies are carried out for a set of ring structures with different radii and it is shown that eigenstate and eigenenergy...

  8. An application of differential geometry to SSC magnet end winding

    International Nuclear Information System (INIS)

    Cook, J.M.

    1990-04-01

    It is expected that a large fraction of the total cost of the proposed Superconducting Supercollider will be spent on magnets, and, as Leon Lederman has remarked, ''most of the cost of making a magnet is in the ends.'' Among the mechanical problems to be solved there is the construction of an end-configuration for the superconducting cables which will minimize their strain energy. The purpose of this paper is to promote the use of differential geometry in this minimization. The use will be illustrated by a specific application to the winding of dipole ends. The cables are assumed to be clamped so firmly that their strain is not altered by Lorentz stresses. 15 refs

  9. Differential geometry based solvation model II: Lagrangian formulation.

    Science.gov (United States)

    Chen, Zhan; Baker, Nathan A; Wei, G W

    2011-12-01

    Solvation is an elementary process in nature and is of paramount importance to more sophisticated chemical, biological and biomolecular processes. The understanding of solvation is an essential prerequisite for the quantitative description and analysis of biomolecular systems. This work presents a Lagrangian formulation of our differential geometry based solvation models. The Lagrangian representation of biomolecular surfaces has a few utilities/advantages. First, it provides an essential basis for biomolecular visualization, surface electrostatic potential map and visual perception of biomolecules. Additionally, it is consistent with the conventional setting of implicit solvent theories and thus, many existing theoretical algorithms and computational software packages can be directly employed. Finally, the Lagrangian representation does not need to resort to artificially enlarged van der Waals radii as often required by the Eulerian representation in solvation analysis. The main goal of the present work is to analyze the connection, similarity and difference between the Eulerian and Lagrangian formalisms of the solvation model. Such analysis is important to the understanding of the differential geometry based solvation model. The present model extends the scaled particle theory of nonpolar solvation model with a solvent-solute interaction potential. The nonpolar solvation model is completed with a Poisson-Boltzmann (PB) theory based polar solvation model. The differential geometry theory of surfaces is employed to provide a natural description of solvent-solute interfaces. The optimization of the total free energy functional, which encompasses the polar and nonpolar contributions, leads to coupled potential driven geometric flow and PB equations. Due to the development of singularities and nonsmooth manifolds in the Lagrangian representation, the resulting potential-driven geometric flow equation is embedded into the Eulerian representation for the purpose of

  10. Some consequences of a non-commutative space-time structure

    International Nuclear Information System (INIS)

    Vilela Mendes, R.

    2005-01-01

    The existence of a fundamental length (or fundamental time) has been conjectured in many contexts. Here we discuss some consequences of a fundamental constant of this type, which emerges as a consequence of deformation-stability considerations leading to a non-commutative space-time structure. This mathematically well defined structure is sufficiently constrained to allow for unambiguous experimental predictions. In particular we discuss the phase-space volume modifications and their relevance for the calculation of the Greisen-Zatsepin-Kuz'min sphere. The (small) corrections to the spectrum of the Coulomb problem are also computed. (orig.)

  11. The non-commutative topology of two-dimensional dirty superconductors

    Science.gov (United States)

    De Nittis, Giuseppe; Schulz-Baldes, Hermann

    2018-01-01

    Non-commutative analysis tools have successfully been applied to the integer quantum Hall effect, in particular for a proof of the stability of the Hall conductance in an Anderson localization regime and of the bulk-boundary correspondence. In this work, these techniques are implemented to study two-dimensional dirty superconductors described by Bogoliubov-de Gennes Hamiltonians. After a thorough presentation of the basic framework and the topological invariants, Kubo formulas for the thermal, thermoelectric and spin Hall conductance are analyzed together with the corresponding edge currents.

  12. Modern Differential Geometry For Physicists. 2nd Edn

    International Nuclear Information System (INIS)

    Chrusciel, P T

    2006-01-01

    Most of us sometimes have to face a student asking: 'What do I need to get started on this'. (In my case 'this' would typically be a topic in general relativity.) After thinking about it for quite a while, and consulting candidate texts again and again, a few days later I usually end up saying: read this chapter in book I (but without going too much detail), then that chapter in book II (but ignore all those comments), then the first few sections of this review paper (but do not try to work out equations NN to NNN), and then come back to see me. In the unlikely event that the student comes back without changing the topic, there follows quite a bit of explaining on a blackboard over the following weeks. From now on I will say: get acquainted with the material covered by this book. As far as Isham's book is concerned, 'this' in the student's question above can stand for any topic in theoretical physics which touches upon differential geometry (and I can only think of very few which do not). Said plainly: this book contains most of the introductory material necessary to get started in general relativity, or those branches of mathematical physics which require differential geometry. A student who has mastered the notions presented in the book will have a solid basis to continue into specialized topics. I am not aware of any other book which would be as useful as this one in terms of the spectrum of topics covered, stopping at the right place to get sufficient introductory insight. According to the publisher, these lecture notes are the content of an introductory course on differential geometry which is taken by first-year theoretical physics PhD students, or by students attending the one-year MSc course 'Quantum Fields and Fundamental Forces' at Imperial College, London. The volume is divided into six chapters: - An Introduction to Topology; - Differential Manifolds; - Vector Fields and n-Forms; - Lie Groups; - Fibre Bundles; - Connections in a Bundle. It is a sad

  13. Geometries

    CERN Document Server

    Sossinsky, A B

    2012-01-01

    The book is an innovative modern exposition of geometry, or rather, of geometries; it is the first textbook in which Felix Klein's Erlangen Program (the action of transformation groups) is systematically used as the basis for defining various geometries. The course of study presented is dedicated to the proposition that all geometries are created equal--although some, of course, remain more equal than others. The author concentrates on several of the more distinguished and beautiful ones, which include what he terms "toy geometries", the geometries of Platonic bodies, discrete geometries, and classical continuous geometries. The text is based on first-year semester course lectures delivered at the Independent University of Moscow in 2003 and 2006. It is by no means a formal algebraic or analytic treatment of geometric topics, but rather, a highly visual exposition containing upwards of 200 illustrations. The reader is expected to possess a familiarity with elementary Euclidean geometry, albeit those lacking t...

  14. Geometry

    Indian Academy of Sciences (India)

    . In the previous article we looked at the origins of synthetic and analytic geometry. More practical minded people, the builders and navigators, were studying two other aspects of geometry- trigonometry and integral calculus. These are actually ...

  15. Non-commutative cryptography and complexity of group-theoretic problems

    CERN Document Server

    Myasnikov, Alexei; Ushakov, Alexander

    2011-01-01

    This book is about relations between three different areas of mathematics and theoretical computer science: combinatorial group theory, cryptography, and complexity theory. It explores how non-commutative (infinite) groups, which are typically studied in combinatorial group theory, can be used in public-key cryptography. It also shows that there is remarkable feedback from cryptography to combinatorial group theory because some of the problems motivated by cryptography appear to be new to group theory, and they open many interesting research avenues within group theory. In particular, a lot of emphasis in the book is put on studying search problems, as compared to decision problems traditionally studied in combinatorial group theory. Then, complexity theory, notably generic-case complexity of algorithms, is employed for cryptanalysis of various cryptographic protocols based on infinite groups, and the ideas and machinery from the theory of generic-case complexity are used to study asymptotically dominant prop...

  16. On the development of non-commutative translation-invariant quantum gauge field models

    International Nuclear Information System (INIS)

    Sedmik, R.I.P.

    2009-01-01

    Aiming to understand the most fundamental principles of nature one has to approach the highest possible energy scales corresponding to the smallest possible distances - the Planck scale. Historically, three different theoretical fields have been developed to treat the problems appearing in this endeavor: string theory, quantum gravity, and non-commutative (NC) quantum field theory (QFT). The latter was originally motivated by the conjecture that the introduction of uncertainty relations between space-time coordinates introduces a natural energy cutoff, which should render the resulting computations well defined and finite. Despite failing to fulfill this expectation, NC physics is a challenging field of research, which has proved to be a fruitful source for new ideas and methods. Mathematically, non-commutativity is implemented by the so called Weyl quantization, giving rise to a modified product - the Groenewold-Moyal product. It realizes an operator ordering, and allows to work within the well established framework of QFT on non-commutative spaces. The main obstacle of NCQFT is the appearance of singularities being shifted from high to low energies. This effect, being referred to as 'uV/IR mixing', is a direct consequence of the deformation of the product, and inhibits or complicates the direct application of well approved renormalization schemes. In order to remedy this problem, several approaches have been worked out during the past decade which, unfortunately, all have shortcomings such as the breaking of translation invariance or an inappropriate alternation of degrees of freedom. Thence, the resulting theories are either being rendered 'unphysical', or considered a priori to be toy models. Nonetheless, these efforts have helped to analyze the mechanisms leading to uV/IR mixing and finally led to the insight that renormalizability can only be achieved by respecting the inherent connection of long and short distances (scales) of NCQFT in the construction of

  17. Strong coupling effects in non-commutative spaces from OM theory and supergravity

    International Nuclear Information System (INIS)

    Russo, J.G.; Sheikh-Jabbari, M.M.

    2000-11-01

    We show that a four-parameter class of 3+1 dimensional NCOS theories can be obtained by dimensional reduction on a general 2-torus from OM theory. Compactifying two spatial directions of NCOS theory on a 2-torus, we study the transformation properties under the SO(2,2; Z) T-duality group. We then discuss non-perturbative configurations of non-commutative super Yang-Mills theory. In particular, we calculate the tension for magnetic monopoles and (p,q) dyons and exhibit their six-dimensional origin, and construct a supergravity solution representing an instanton in the gauge theory. We also compute the potential for a monopole-antimonopole in the supergravity approximation. (author)

  18. Differential geometry for physicists and mathematicians moving frames and differential forms : from Euclid past Riemann

    CERN Document Server

    Vargas, José G

    2014-01-01

    This is a book that the author wishes had been available to him when he was student. It reflects his interest in knowing (like expert mathematicians) the most relevant mathematics for theoretical physics, but in the style of physicists. This means that one is not facing the study of a collection of definitions, remarks, theorems, corollaries, lemmas, etc. but a narrative - almost like a story being told - that does not impede sophistication and deep results. It covers differential geometry far beyond what general relativists perceive they need to know. And it introduces readers to other areas

  19. Geometry

    CERN Document Server

    Prasolov, V V

    2015-01-01

    This book provides a systematic introduction to various geometries, including Euclidean, affine, projective, spherical, and hyperbolic geometries. Also included is a chapter on infinite-dimensional generalizations of Euclidean and affine geometries. A uniform approach to different geometries, based on Klein's Erlangen Program is suggested, and similarities of various phenomena in all geometries are traced. An important notion of duality of geometric objects is highlighted throughout the book. The authors also include a detailed presentation of the theory of conics and quadrics, including the theory of conics for non-Euclidean geometries. The book contains many beautiful geometric facts and has plenty of problems, most of them with solutions, which nicely supplement the main text. With more than 150 figures illustrating the arguments, the book can be recommended as a textbook for undergraduate and graduate-level courses in geometry.

  20. Enveloping algebra-valued gauge transformations for non-abelian gauge groups on non-commutative spaces

    Science.gov (United States)

    Jurco, B.; Schraml, S.; Schupp, P.; Wess, J.

    2000-11-01

    An enveloping algebra-valued gauge field is constructed, its components are functions of the Lie algebra-valued gauge field and can be constructed with the Seiberg-Witten map. This allows the formulation of a dynamics for a finite number of gauge field components on non-commutative spaces.

  1. Enveloping algebra-valued gauge transformations for non-abelian gauge groups on non-commutative spaces

    International Nuclear Information System (INIS)

    Jurco, B.; Schraml, S.; Wess, J.; Schupp, P.

    2000-01-01

    An enveloping algebra-valued gauge field is constructed, its components are functions of the Lie algebra-valued gauge field and can be constructed with the Seiberg-Witten map. This allows the formulation of a dynamics for a finite number of gauge field components on non-commutative spaces. (orig.)

  2. Enveloping algebra-valued gauge transformations for non-abelian gauge groups on non-commutative spaces

    Energy Technology Data Exchange (ETDEWEB)

    Jurco, B. [Max-Planck-Institut fuer Mathematik, Bonn (Germany); Schraml, S.; Wess, J. [Max-Planck-Institut fuer Physik, Foehringer Ring 6, 80805 Muenchen (Germany); Sektion Physik, Universitaet Muenchen, Theresienstrasse 37, 80333 Muenchen (Germany); Schupp, P. [Sektion Physik, Universitaet Muenchen, Theresienstrasse 37, 80333 Muenchen (Germany)

    2000-11-01

    An enveloping algebra-valued gauge field is constructed, its components are functions of the Lie algebra-valued gauge field and can be constructed with the Seiberg-Witten map. This allows the formulation of a dynamics for a finite number of gauge field components on non-commutative spaces. (orig.)

  3. Some questions of differential geometry in the large

    CERN Document Server

    Shikin, E V

    1996-01-01

    This collection contains articles that present recent results by geometers in Russia and the Ukraine. Papers in the collection deal with various questions related to the structure, symmetries, and embeddings of submanifolds in Euclidean and pseudo-Euclidian spaces. This collection offers a review of the challenges facing specialists in geometry in the large and features current research in the field.

  4. Topics of differential geometry in hamiltonian and lagrangian mechanics and relativity

    International Nuclear Information System (INIS)

    Rodrigues, P.R.

    1982-01-01

    A little introduction to the tensor and exterior algebra just as to the differential geometry is made. Such a geometry is used in order to study the hamiltonian and lagrangian mechanics stressing their geometrical aspects. Some applications are done in relativity theory. (L.C.) [pt

  5. Open branes in space-time non-commutative little string theory

    International Nuclear Information System (INIS)

    Harmark, T.

    2001-01-01

    We conjecture the existence of two new non-gravitational six-dimensional string theories, defined as the decoupling limit of NS5-branes in the background of near-critical electrical two- and three-form RR fields. These theories are space-time non-commutative Little String Theories with open branes. The theory with (2,0) supersymmetry has an open membrane in the spectrum and reduces to OM theory at low energies. The theory with (1,1) supersymmetry has an open string in the spectrum and reduces to (5+1)-dimensional NCOS theory for weak NCOS coupling and low energies. The theories are shown to be T-dual with the open membrane being T-dual to the open string. The theories therefore provide a connection between (5+1)-dimensional NCOS theory and OM theory. We study the supergravity duals of these theories and we consider a chain of dualities that shows how the T-duality between the two theories is connected with the S-duality between (4+1)-dimensional NCOS theory and OM theory

  6. Average methods and their applications in Differential Geometry I

    OpenAIRE

    Vincze, Csaba

    2013-01-01

    In Minkowski geometry the metric features are based on a compact convex body containing the origin in its interior. This body works as a unit ball with its boundary formed by the unit vectors. Using one-homogeneous extension we have a so-called Minkowski functional to measure the lenght of vectors. The half of its square is called the energy function. Under some regularity conditions we can introduce an average Euclidean inner product by integrating the Hessian matrix of the energy function o...

  7. The differential geometry of higher order jets and tangent bundles

    International Nuclear Information System (INIS)

    De Leon, M.; Rodrigues, P.R.

    1985-01-01

    This chapter is devoted to the study of basic geometrical notions required for the development of the main object of the text. Some facts about Jet theory are reviewed. A particular case of Jet manifolds is considered: the tangent bundle of higher order. It is shown that this jet bundle possesses in a canonical way a certain kind of geometric structure, the so called almost tangent structure of higher order, and which is a generalization of the almost tangent geometry of the tangent bundle. Another important fact examined is the extension of the notion of 'spray' to higher order tangent bundles. (Auth.)

  8. Geometry

    CERN Document Server

    Pedoe, Dan

    1988-01-01

    ""A lucid and masterly survey."" - Mathematics Gazette Professor Pedoe is widely known as a fine teacher and a fine geometer. His abilities in both areas are clearly evident in this self-contained, well-written, and lucid introduction to the scope and methods of elementary geometry. It covers the geometry usually included in undergraduate courses in mathematics, except for the theory of convex sets. Based on a course given by the author for several years at the University of Minnesota, the main purpose of the book is to increase geometrical, and therefore mathematical, understanding and to he

  9. Tensor and vector analysis with applications to differential geometry

    CERN Document Server

    Springer, C E

    2012-01-01

    Concise and user-friendly, this college-level text assumes only a knowledge of basic calculus in its elementary and gradual development of tensor theory. The introductory approach bridges the gap between mere manipulation and a genuine understanding of an important aspect of both pure and applied mathematics.Beginning with a consideration of coordinate transformations and mappings, the treatment examines loci in three-space, transformation of coordinates in space and differentiation, tensor algebra and analysis, and vector analysis and algebra. Additional topics include differentiation of vect

  10. Differential geometry and topology with a view to dynamical systems

    CERN Document Server

    Burns, Keith

    2005-01-01

    MANIFOLDSIntroductionReview of topological conceptsSmooth manifoldsSmooth mapsTangent vectors and the tangent bundleTangent vectors as derivationsThe derivative of a smooth mapOrientationImmersions, embeddings and submersionsRegular and critical points and valuesManifolds with boundarySard's theoremTransversalityStabilityExercisesVECTOR FIELDS AND DYNAMICAL SYSTEMSIntroductionVector fieldsSmooth dynamical systemsLie derivative, Lie bracketDiscrete dynamical systemsHyperbolic fixed points and periodic orbitsExercisesRIEMANNIAN METRICSIntroductionRiemannian metricsStandard geometries on surfacesExercisesRIEMANNIAN CONNECTIONS AND GEODESICSIntroductionAffine connectionsRiemannian connectionsGeodesicsThe exponential mapMinimizing properties of geodesicsThe Riemannian distanceExercisesCURVATUREIntroductionThe curvature tensorThe second fundamental formSectional and Ricci curvaturesJacobi fieldsManifolds of constant curvatureConjugate pointsHorizontal and vertical sub-bundlesThe geodesic flowExercisesTENSORS AND DI...

  11. The non-commutative and discrete spatial structure of a 3D Wigner quantum oscillator

    International Nuclear Information System (INIS)

    King, R C; Palev, T D; Stoilova, N I; Jeugt, J Van der

    2003-01-01

    The properties of a non-canonical 3D Wigner quantum oscillator, whose position and momentum operators generate the Lie superalgebra sl(1|3), are further investigated. Within each state space W(p), p = 1, 2, ..., the energy E q , q = 0, 1, 2, 3, takes no more than four different values. If the oscillator is in a stationary state ψ q element of W(p) then measurements of the non-commuting Cartesian coordinates of the particle are such that their allowed values are consistent with it being found at a finite number of sites, called 'nests'. These lie on a sphere centred on the origin of fixed, finite radius ρ q . The nests themselves are at the vertices of a rectangular parallelepiped. In the typical cases (p > 2) the number of nests is 8 for q = 0 and 3, and varies from 8 to 24, depending on the state, for q = 1 and 2. The number of nests is less in the atypical cases (p = 1, 2), but it is never less than 2. In certain states in W(2) (respectively in W(1)) the oscillator is 'polarized' so that all the nests lie on a plane (respectively on a line). The particle cannot be localized in any one of the available nests alone since the coordinates do not commute. The probabilities of measuring particular values of the coordinates are discussed. The mean trajectories and the standard deviations of the coordinates and momenta are computed, and conclusions are drawn about uncertainty relations

  12. Triple differential cross-sections of Ne (2s2) in coplanar to perpendicular plane geometry

    Science.gov (United States)

    Chen, L. Q.; Khajuria, Y.; Chen, X. J.; Xu, K. Z.

    2003-10-01

    The distorted wave Born approximation (DWBA) with the spin averaged static exchange potential has been used to calculate the triple differential cross-sections (TDCSs) for Ne (2s^2) ionization by electron impact in coplanar to perpendicular plane symmetric geometry at 110.5 eV incident electron energy. The present theoretical results at gun angles Psi = 0^circ (coplanar symmetric geometry) and Psi = 90^circ (perpendicular plane geometry) are in satisfactory agreement with the available experimental data. A deep interference minimum appears in the TDCS in the coplanar symmetric geometry and a strong peak at scattering angle xi = 90^circ caused by the single collision mechanism has been observed in the perpendicular plane geometry. The TDCSs at the gun angles Psi = 30^circ, and Psi = 60^circ are predicted.

  13. Non-commutative analytic geometry and a new model for the field theory of closed bosonic strings

    International Nuclear Information System (INIS)

    Awada, M.A.

    1986-07-01

    We propose a new model for the field theory of interacting closed bosonic strings. The key ingredient in our constructions is based on the assumption that the action is written in terms of two independent states rather than one state. The first state is chiral while the second state is antichiral. The new picture of the corresponding vertex operator is not just an overlap ''δ'' functional

  14. Nilpotent algebras of the generalized differential forms and the geometry of superfield theories

    International Nuclear Information System (INIS)

    Zupnik, B.M.

    1991-01-01

    We consider a new algebraic approach in the geometry of supergauge theories and supergravity. An introduction of nilpotent algebras simplifies significantly the analysis of D = 3, 4, N = 1 supergravity constraints. Different terms in the invariant action functionals of SG- and SYM-theories are constructed as the integrals of corresponding generalized differential forms. (orig.)

  15. Theory of liquid crystal elastomers and polymer networks : Connection between neoclassical theory and differential geometry.

    Science.gov (United States)

    Nguyen, Thanh-Son; Selinger, Jonathan V

    2017-09-01

    In liquid crystal elastomers and polymer networks, the orientational order of liquid crystals is coupled with elastic distortions of crosslinked polymers. Previous theoretical research has described these materials through two different approaches: a neoclassical theory based on the liquid crystal director and the deformation gradient tensor, and a geometric elasticity theory based on the difference between the actual metric tensor and a reference metric. Here, we connect those two approaches using a formalism based on differential geometry. Through this connection, we determine how both the director and the geometry respond to a change of temperature.

  16. A Qualitative Comparison between the Proportional Navigation and Differential Geometry Guidance Algorithms

    Directory of Open Access Journals (Sweden)

    Yunes Sh. ALQUDSI

    2018-06-01

    Full Text Available This paper discusses and presents an overview of the proportional navigation (PN guidance law as well as the differential geometry (DG guidance algorithm that are used to develop the intercept course of a certain target. The intent of this study is to illustrate the advantages of the guidance algorithm generated based on the concepts of differential geometry against the well-known PN guidance law. The basic principles behind the both algorithms are mentioned. Moreover, the different versions of the PN approach is briefly clarified to show the essential improvement from one version to the other. The paper terminated with numerous two-dimension simulation figures to give a great value of visual aids, illustrating the significant relations and main features and properties of both algorithms.

  17. The Abel symposium 2008 on differential equations: geometry, symmetries and integrability

    CERN Document Server

    Lychagin, Valentin; Straume, Eldar; Abel symposium 2008; Differential equations; Geometry, symmetries and integrability

    2008-01-01

    The Abel Symposium 2008 focused on the modern theory of differential equations and their applications in geometry, mechanics, and mathematical physics. Following the tradition of Monge, Abel and Lie, the scientific program emphasized the role of algebro-geometric methods, which nowadays permeate all mathematical models in natural and engineering sciences. The ideas of invariance and symmetry are of fundamental importance in the geometric approach to differential equations, with a serious impact coming from the area of integrable systems and field theories. This volume consists of original contributions and broad overview lectures of the participants of the Symposium. The papers in this volume present the modern approach to this classical subject.

  18. Elementary excitations of biomembranes: Differential geometry of undulations in elastic surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Hemmen, J. Leo van [Physik Department, Technical University of Munich, 85747 Garching (Germany)]. E-mail: lvh@tum.de; Leibold, Christian [Physik Department, Technical University of Munich, 85747 Garching (Germany)

    2007-06-15

    Biomembrane undulations are elementary excitations in the elastic surfaces of cells and vesicles. As such they can provide surprising insights into the mechanical processes that shape and stabilize biomembranes. We explain how naturally these undulations can be described by classical differential geometry. In particular, we apply the analytical formalism of differential-geometric calculus to the surfaces generated by a cell membrane and underlying cytoskeleton. After a short derivation of the energy due to a membrane's elasticity, we show how undulations arise as elementary excitations originating from the second derivative of an energy functional. Furthermore, we expound the efficiency of classical differential-geometric formalism to understand the effect of differential operators that characterize processes involved in membrane physics. As an introduction to concepts the paper is self-contained and rarely exceeds calculus level.

  19. Elementary excitations of biomembranes: Differential geometry of undulations in elastic surfaces

    International Nuclear Information System (INIS)

    Hemmen, J. Leo van; Leibold, Christian

    2007-01-01

    Biomembrane undulations are elementary excitations in the elastic surfaces of cells and vesicles. As such they can provide surprising insights into the mechanical processes that shape and stabilize biomembranes. We explain how naturally these undulations can be described by classical differential geometry. In particular, we apply the analytical formalism of differential-geometric calculus to the surfaces generated by a cell membrane and underlying cytoskeleton. After a short derivation of the energy due to a membrane's elasticity, we show how undulations arise as elementary excitations originating from the second derivative of an energy functional. Furthermore, we expound the efficiency of classical differential-geometric formalism to understand the effect of differential operators that characterize processes involved in membrane physics. As an introduction to concepts the paper is self-contained and rarely exceeds calculus level

  20. Riemann-Christoffel Tensor in Differential Geometry of Fractional Order Application to Fractal Space-Time

    Science.gov (United States)

    Jumarie, Guy

    2013-04-01

    By using fractional differences, one recently proposed an alternative to the formulation of fractional differential calculus, of which the main characteristics is a new fractional Taylor series and its companion Rolle's formula which apply to non-differentiable functions. The key is that now we have at hand a differential increment of fractional order which can be manipulated exactly like in the standard Leibniz differential calculus. Briefly the fractional derivative is the quotient of fractional increments. It has been proposed that this calculus can be used to construct a differential geometry on manifold of fractional order. The present paper, on the one hand, refines the framework, and on the other hand, contributes some new results related to arc length of fractional curves, area on fractional differentiable manifold, covariant fractal derivative, Riemann-Christoffel tensor of fractional order, fractional differential equations of fractional geodesic, strip modeling of fractal space time and its relation with Lorentz transformation. The relation with Nottale's fractal space-time theory then appears in quite a natural way.

  1. Chow groups of intersections of quadrics via homological projective duality and (Jacobians of) non-commutative motives

    Science.gov (United States)

    Bernardara, M.; Tabuada, G.

    2016-06-01

    Conjectures of Beilinson-Bloch type predict that the low-degree rational Chow groups of intersections of quadrics are one-dimensional. This conjecture was proved by Otwinowska in [20]. By making use of homological projective duality and the recent theory of (Jacobians of) non-commutative motives, we give an alternative proof of this conjecture in the case of a complete intersection of either two quadrics or three odd-dimensional quadrics. Moreover, we prove that in these cases the unique non-trivial algebraic Jacobian is the middle one. As an application, we make use of Vial's work [26], [27] to describe the rational Chow motives of these complete intersections and show that smooth fibrations into such complete intersections over bases S of small dimension satisfy Murre's conjecture (when \\dim (S)≤ 1), Grothendieck's standard conjecture of Lefschetz type (when \\dim (S)≤ 2), and Hodge's conjecture (when \\dim(S)≤ 3).

  2. Geometry, topology, and string theory

    Energy Technology Data Exchange (ETDEWEB)

    Varadarajan, Uday [Univ. of California, Berkeley, CA (United States)

    2003-01-01

    A variety of scenarios are considered which shed light upon the uses and limitations of classical geometric and topological notions in string theory. The primary focus is on situations in which D-brane or string probes of a given classical space-time see the geometry quite differently than one might naively expect. In particular, situations in which extra dimensions, non-commutative geometries as well as other non-local structures emerge are explored in detail. Further, a preliminary exploration of such issues in Lorentzian space-times with non-trivial causal structures within string theory is initiated.

  3. Geometry, topology, and string theory

    International Nuclear Information System (INIS)

    Varadarajan, Uday

    2003-01-01

    A variety of scenarios are considered which shed light upon the uses and limitations of classical geometric and topological notions in string theory. The primary focus is on situations in which D-brane or string probes of a given classical space-time see the geometry quite differently than one might naively expect. In particular, situations in which extra dimensions, non-commutative geometries as well as other non-local structures emerge are explored in detail. Further, a preliminary exploration of such issues in Lorentzian space-times with non-trivial causal structures within string theory is initiated

  4. On some methods of achieving a continuous and differentiated assessment in Linear Algebra and Analytic and Differential Geometry courses and seminars

    Directory of Open Access Journals (Sweden)

    M. A.P. PURCARU

    2017-12-01

    Full Text Available This paper aims at highlighting some aspects related to assessment as regards its use as a differentiated training strategy for Linear Algebra and Analytic and Differential Geometry courses and seminars. Thus, the following methods of continuous differentiated assessment are analyzed and exemplified: the portfolio, the role play, some interactive methods and practical examinations.

  5. Géométrie non-commutative, théorie de jauge et renormalisation

    OpenAIRE

    De Goursac , Axel

    2009-01-01

    Thèse effectuée en cotutelle au Département de Mathématique de l'Université de Münster (Allemagne); Nowadays, noncommutative geometry is a growing domain of mathematics, which can appear as a promising framework for modern physics. Quantum field theories on "noncommutative spaces" are indeed much investigated, and suffer from a new type of divergence called the ultraviolet-infrared mixing. However, this problem has recently been solved by H. Grosse and R. Wulkenhaar by adding to the action of...

  6. A non-perturbative study of 4d U(1) non-commutative gauge theory - the fate of one-loop instability

    International Nuclear Information System (INIS)

    Bietenholz, Wolfgang; Nishimura, Jun; Susaki, Yoshiaki; Volkholz, Jan

    2006-01-01

    Recent perturbative studies show that in 4d non-commutative spaces, the trivial (classically stable) vacuum of gauge theories becomes unstable at the quantum level, unless one introduces sufficiently many fermionic degrees of freedom. This is due to a negative IR-singular term in the one-loop effective potential, which appears as a result of the UV/IR mixing. We study such a system non-perturbatively in the case of pure U(1) gauge theory in four dimensions, where two directions are non-commutative. Monte Carlo simulations are performed after mapping the regularized theory onto a U(N) lattice gauge theory in d = 2. At intermediate coupling strength, we find a phase in which open Wilson lines acquire non-zero vacuum expectation values, which implies the spontaneous breakdown of translational invariance. In this phase, various physical quantities obey clear scaling behaviors in the continuum limit with a fixed non-commutativity parameter θ, which provides evidence for a possible continuum theory. The extent of the dynamically generated space in the non-commutative directions becomes finite in the above limit, and its dependence on θ is evaluated explicitly. We also study the dispersion relation. In the weak coupling symmetric phase, it involves a negative IR-singular term, which is responsible for the observed phase transition. In the broken phase, it reveals the existence of the Nambu-Goldstone mode associated with the spontaneous symmetry breaking

  7. A non-perturbative study of 4d U(1) non-commutative gauge theory — the fate of one-loop instability

    Science.gov (United States)

    Bietenholz, Wolfgang; Nishimura, Jun; Susaki, Yoshiaki; Volkholz, Jan

    2006-10-01

    Recent perturbative studies show that in 4d non-commutative spaces, the trivial (classically stable) vacuum of gauge theories becomes unstable at the quantum level, unless one introduces sufficiently many fermionic degrees of freedom. This is due to a negative IR-singular term in the one-loop effective potential, which appears as a result of the UV/IR mixing. We study such a system non-perturbatively in the case of pure U(1) gauge theory in four dimensions, where two directions are non-commutative. Monte Carlo simulations are performed after mapping the regularized theory onto a U(N) lattice gauge theory in d = 2. At intermediate coupling strength, we find a phase in which open Wilson lines acquire non-zero vacuum expectation values, which implies the spontaneous breakdown of translational invariance. In this phase, various physical quantities obey clear scaling behaviors in the continuum limit with a fixed non-commutativity parameter θ, which provides evidence for a possible continuum theory. The extent of the dynamically generated space in the non-commutative directions becomes finite in the above limit, and its dependence on θ is evaluated explicitly. We also study the dispersion relation. In the weak coupling symmetric phase, it involves a negative IR-singular term, which is responsible for the observed phase transition. In the broken phase, it reveals the existence of the Nambu-Goldstone mode associated with the spontaneous symmetry breaking.

  8. Nonlocality, no-signalling, and Bellʼs theorem investigated by Weyl conformal differential geometry

    Science.gov (United States)

    De Martini, Francesco; Santamato, Enrico

    2014-12-01

    The principles and methods of conformal quantum geometrodynamics based on Weyl differential geometry are presented. The theory applied to the case of the relativistic single quantum spin-\\frac{1}{2} leads to a novel and unconventional derivation of the Dirac equation. The further extension of the theory to the case of two-spins-\\frac{1}{2} in the EPR entangled state and to the related violation of Bell inequalities leads, by an exact non-relativistic analysis, to an insightful resolution of all paradoxes implied by quantum nonlocality.

  9. Nonlocality, no-signalling, and Bell's theorem investigated by Weyl conformal differential geometry

    International Nuclear Information System (INIS)

    Martini, Francesco De; Santamato, Enrico

    2014-01-01

    The principles and methods of conformal quantum geometrodynamics based on Weyl differential geometry are presented. The theory applied to the case of the relativistic single quantum spin-(1/2) leads to a novel and unconventional derivation of the Dirac equation. The further extension of the theory to the case of two-spins-(1/2) in the EPR entangled state and to the related violation of Bell inequalities leads, by an exact non-relativistic analysis, to an insightful resolution of all paradoxes implied by quantum nonlocality. (paper)

  10. Local differential geometry of null curves in conformally flat space-time

    International Nuclear Information System (INIS)

    Urbantke, H.

    1989-01-01

    The conformally invariant differential geometry of null curves in conformally flat space-times is given, using the six-vector formalism which has generalizations to higher dimensions. This is then paralleled by a twistor description, with a twofold merit: firstly, sometimes the description is easier in twistor terms, sometimes in six-vector terms, which leads to a mutual enlightenment of both; and secondly, the case of null curves in timelike pseudospheres or 2+1 Minkowski space we were only able to treat twistorially, making use of an invariant differential found by Fubini and Cech. The result is the expected one: apart from stated exceptional cases there is a conformally invariant parameter and two conformally invariant curvatures which, when specified in terms of this parameter, serve to characterize the curve up to conformal transformations. 12 refs. (Author)

  11. Quantum groups: Geometry and applications

    International Nuclear Information System (INIS)

    Chu, C.S.

    1996-01-01

    The main theme of this thesis is a study of the geometry of quantum groups and quantum spaces, with the hope that they will be useful for the construction of quantum field theory with quantum group symmetry. The main tool used is the Faddeev-Reshetikhin-Takhtajan description of quantum groups. A few content-rich examples of quantum complex spaces with quantum group symmetry are treated in details. In chapter 1, the author reviews some of the basic concepts and notions for Hopf algebras and other background materials. In chapter 2, he studies the vector fields of quantum groups. A compact realization of these vector fields as pseudodifferential operators acting on the linear quantum spaces is given. In chapter 3, he describes the quantum sphere as a complex quantum manifold by means of a quantum stereographic projection. A covariant calculus is introduced. An interesting property of this calculus is the existence of a one-form realization of the exterior differential operator. The concept of a braided comodule is introduced and a braided algebra of quantum spheres is constructed. In chapter 4, the author considers the more general higher dimensional quantum complex projective spaces and the quantum Grassman manifolds. Differential calculus, integration and braiding can be introduced as in the one dimensional case. Finally, in chapter 5, he studies the framework of quantum principal bundle and construct the q-deformed Dirac monopole as a quantum principal bundle with a quantum sphere as the base and a U(1) with non-commutative calculus as the fiber. The first Chern class can be introduced and integrated to give the monopole charge

  12. Some phenomenological consequences of the time-ordered perturbation theory of QED on non-commutative spacetime

    CERN Document Server

    Liao, Y

    2003-01-01

    A framework was recently proposed for doing perturbation theory on non-commutative (NC) spacetime. It preserves the unitarity of the S matrix and differs from the naive, popular approach already at the lowest order in perturbation when time does not commute with space. In this work, we investigate its phenomenological implications at linear colliders, especially the TESLA at DESY, through the processes of e sup + e sup --> mu sup +mu sup - ,H sup + H sup - ,H sup 0 H sup 0. We find that some NC effects computed previously are now modified and that there are new processes which now exhibit NC effects. Indeed, the first two processes get corrected at tree level as opposed to the null result in the naive approach, while the third one coincides with the naive result only in the low energy limit. The impact of the earth's rotation is incorporated. The NC signals are generally significant when the NC scale is comparable to the collider energy. If this is not the case, the non-trivial azimuthal angle distribution an...

  13. Test of non-commutative QED in the process $e^{+}e^{-} \\to \\gamma \\gamma$ at LEP

    CERN Document Server

    Abbiendi, G.; Akesson, P.F.; Alexander, G.; Allison, John; Amaral, P.; Anagnostou, G.; Anderson, K.J.; Arcelli, S.; Asai, S.; Axen, D.; Azuelos, G.; Bailey, I.; Barberio, E.; Barlow, R.J.; Batley, R.J.; Bechtle, P.; Behnke, T.; Bell, Kenneth Watson; Bell, P.J.; Bella, G.; Bellerive, A.; Benelli, G.; Bethke, S.; Biebel, O.; Bloodworth, I.J.; Boeriu, O.; Bock, P.; Bonacorsi, D.; Boutemeur, M.; Braibant, S.; Brigliadori, L.; Brown, Robert M.; Buesser, K.; Burckhart, H.J.; Campana, S.; Carnegie, R.K.; Caron, B.; Carter, A.A.; Carter, J.R.; Chang, C.Y.; Charlton, David G.; Csilling, A.; Cuffiani, M.; Dado, S.; De Roeck, A.; De Wolf, E.A.; Desch, K.; Dienes, B.; Donkers, M.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Duerdoth, I.P.; Elfgren, E.; Etzion, E.; Fabbri, F.; Feld, L.; Ferrari, P.; Fiedler, F.; Fleck, I.; Ford, M.; Frey, A.; Furtjes, A.; Gagnon, P.; Gary, John William; Gaycken, G.; Geich-Gimbel, C.; Giacomelli, G.; Giacomelli, P.; Giunta, Marina; Goldberg, J.; Gross, E.; Grunhaus, J.; Gruwe, M.; Gunther, P.O.; Gupta, A.; Hajdu, C.; Hamann, M.; Hanson, G.G.; Harder, K.; Harel, A.; Harin-Dirac, M.; Hauschild, M.; Hawkes, C.M.; Hawkings, R.; Hemingway, R.J.; Hensel, C.; Herten, G.; Heuer, R.D.; Hill, J.C.; Hoffman, Kara Dion; Homer, R.J.; Horvath, D.; Igo-Kemenes, P.; Ishii, K.; Jeremie, H.; Jovanovic, P.; Junk, T.R.; Kanaya, N.; Kanzaki, J.; Karapetian, G.; Karlen, D.; Kawagoe, K.; Kawamoto, T.; Keeler, R.K.; Kellogg, R.G.; Kennedy, B.W.; Kim, D.H.; Klein, K.; Klier, A.; Kluth, S.; Kobayashi, T.; Kobel, M.; Komamiya, S.; Kormos, Laura L.; Kramer, T.; Kress, T.; Krieger, P.; von Krogh, J.; Kruger, K.; Kuhl, T.; Kupper, M.; Lafferty, G.D.; Landsman, H.; Lanske, D.; Layter, J.G.; Leins, A.; Lellouch, D.; Lettso, J.; Levinson, L.; Lillich, J.; Lloyd, S.L.; Loebinger, F.K.; Lu, J.; Ludwig, J.; Macpherson, A.; Mader, W.; Marcellini, S.; Martin, A.J.; Masetti, G.; Mashimo, T.; Mattig, Peter; McDonald, W.J.; McKenna, J.; McMahon, T.J.; McPherson, R.A.; Meijers, F.; Menges, W.; Merritt, F.S.; Mes, H.; Michelini, A.; Mihara, S.; Mikenberg, G.; Miller, D.J.; Moed, S.; Mohr, W.; Mori, T.; Mutter, A.; Nagai, K.; Nakamura, I.; Neal, H.A.; Nisius, R.; O'Neale, S.W.; Oh, A.; Okpara, A.; Oreglia, M.J.; Orito, S.; Pahl, C.; Pasztor, G.; Pater, J.R.; Patrick, G.N.; Pilcher, J.E.; Pinfold, J.; Plane, David E.; Poli, B.; Polok, J.; Pooth, O.; Przybycien, M.; Quadt, A.; Rabbertz, K.; Rembser, C.; Renkel, P.; Rick, H.; Roney, J.M.; Rosati, S.; Rozen, Y.; Runge, K.; Sachs, K.; Saeki, T.; Sarkisyan, E.K.G.; Schaile, A.D.; Schaile, O.; Scharff-Hansen, P.; Schieck, J.; Schoerner-Sadenius, Thomas; Schroder, Matthias; Schumacher, M.; Schwick, C.; Scott, W.G.; Seuster, R.; Shears, T.G.; Shen, B.C.; Sherwood, P.; Siroli, G.; Skuja, A.; Smith, A.M.; Sobie, R.; Soldner-Rembold, S.; Spano, F.; Stahl, A.; Stephens, K.; Strom, David M.; Strohmer, R.; Tarem, S.; Tasevsky, M.; Taylor, R.J.; Teuscher, R.; Thomson, M.A.; Torrence, E.; Toya, D.; Tran, P.; Tricoli, A.; Trigger, I.; Trocsanyi, Z.; Tsur, E.; Turner-Watson, M.F.; Ueda, I.; Ujvari, B.; Vollmer, C.F.; Vannerem, P.; Vertesi, R.; Verzocchi, M.; Voss, H.; Vossebeld, J.; Waller, D.; Ward, C.P.; Ward, D.R.; Watkins, P.M.; Watson, A.T.; Watson, N.K.; Wells, P.S.; Wengler, T.; Wermes, N.; Wetterling, D.; Wilson, G.W.; Wilson, J.A.; Wolf, G.; Wyatt, T.R.; Yamashita, S.; Zer-Zion, D.; Zivkovic, Lidija

    2003-01-01

    Non-communicative QED would lead to deviations from the Standard Model depending on a new energy scale $\\Delta_{NC}$ and a unique direction in space defined by two angles $\\eta$ and $\\xi$. Here in this analysis $\\eta$ is defined as the angle between the unique direction and the rotation axis of the earth. The predictions of such a theory for the process $e^{+} e^{-} \\to \\gamma \\gamma$ are evalued for the specific orientation of the OPAL detector and compared to the measurements. Distributions of the polar and azimuthal scattering angles are used to extract limits on the energy scale $\\Delta_{NC}$ depending on the model parameter $\\eta$. At the 95% confidence level $\\Delta_{NC}$ is found to be larger than 141 GeV for all $\\eta$ and $\\xi$. It is shown that the time dependence of the total cross-section could be used to determine the model parameter $\\xi$ if there were a detectable signal. These are the first limits obtained on non-commutative QED from an $e^{+} e^{-}$ collider experiment.

  14. Rapid Fourier space solution of linear partial integro-differential equations in toroidal magnetic confinement geometries

    International Nuclear Information System (INIS)

    McMillan, B.F.; Jolliet, S.; Tran, T.M.; Villard, L.; Bottino, A.; Angelino, P.

    2010-01-01

    Fluctuating quantities in magnetic confinement geometries often inherit a strong anisotropy along the field lines. One technique for describing these structures is the use of a certain set of Fourier components on the tori of nested flux surfaces. We describe an implementation of this approach for solving partial differential equations, like Poisson's equation, where a different set of Fourier components may be chosen on each surface according to the changing safety factor profile. Allowing the resolved components to change to follow the anisotropy significantly reduces the total number of degrees of freedom in the description. This can permit large gains in computational performance. We describe, in particular, how this approach can be applied to rapidly solve the gyrokinetic Poisson equation in a particle code, ORB5 (Jolliet et al. (2007) [5]), with a regular (non-field-aligned) mesh. (authors)

  15. Intercept Algorithm for Maneuvering Targets Based on Differential Geometry and Lyapunov Theory

    Directory of Open Access Journals (Sweden)

    Yunes Sh. ALQUDSI

    2018-03-01

    Full Text Available Nowadays, the homing guidance is utilized in the existed and under development air defense systems (ADS to effectively intercept the targets. The targets became smarter and capable to fly and maneuver professionally and the tendency to design missile with a small warhead became greater, then there is a pressure to produce a more precise and accurate missile guidance system based on intelligent algorithms to ensure effective interception of highly maneuverable targets. The aim of this paper is to present an intelligent guidance algorithm that effectively and precisely intercept the maneuverable and smart targets by virtue of the differential geometry (DG concepts. The intercept geometry and engagement kinematics, in addition to the direct intercept condition are developed and expressed in DG terms. The guidance algorithm is then developed by virtue of DG and Lyapunov theory. The study terminates with 2D engagement simulation with illustrative examples, to demonstrate that, the derived DG guidance algorithm is a generalized guidance approach and the well-known proportional navigation (PN guidance law is a subset of this approach.

  16. Application of stochastic differential geometry to the term structure of interst rates in developed markets

    Energy Technology Data Exchange (ETDEWEB)

    Taranenko, Y.; Barnes, C.

    1996-12-31

    This paper deals with further developments of the new theory that applies stochastic differential geometry (SDG) to dynamics of interest rates. We examine mathematical constraints on the evolution of interest rate volatilities that arise from stochastic differential calculus under assumptions of an arbitrage free evolution of zero coupon bonds and developed markets (i.e., none of the party/factor can drive the whole market). The resulting new theory incorporates the Heath-Jarrow-Morton (HJM) model of interest rates and provides new equations for volatilities which makes the system of equations for interest rates and volatilities complete and self consistent. It results in much smaller amount of volatility data that should be guessed for the SDG model as compared to the HJM model. Limited analysis of the market volatility data suggests that the assumption of the developed market is violated around maturity of two years. Such maturities where the assumptions of the SDG model are violated are suggested to serve as boundaries at which volatilities should be specified independently from the model. Our numerical example with two boundaries (two years and five years) qualitatively resembles the market behavior. Under some conditions solutions of the SDG model become singular that may indicate market crashes. More detail comparison with the data is needed before the theory can be established or refuted.

  17. Coulomb Scattering in the Massless Nelson Model III: Ground State Wave Functions and Non-commutative Recurrence Relations

    Science.gov (United States)

    Dybalski, Wojciech; Pizzo, Alessandro

    2018-02-01

    Let $H_{P,\\sigma}$ be the single-electron fiber Hamiltonians of the massless Nelson model at total momentum $P$ and infrared cut-off $\\sigma>0$. We establish detailed regularity properties of the corresponding $n$-particle ground state wave functions $f^n_{P,\\sigma}$ as functions of $P$ and $\\sigma$. In particular, we show that \\[ |\\partial_{P^j}f^{n}_{P,\\sigma}(k_1,\\ldots, k_n)|, \\ \\ |\\partial_{P^j} \\partial_{P^{j'}} f^{n}_{P,\\sigma}(k_1,\\ldots, k_n)| \\leq \\frac{1}{\\sqrt{n!}} \\frac{(c\\lambda_0)^n}{\\sigma^{\\delta_{\\lambda_0}}} \\prod_{i=1}^n\\frac{ \\chi_{[\\sigma,\\kappa)}(k_i)}{|k_i|^{3/2}}, \\] where $c$ is a numerical constant, $\\lambda_0\\mapsto \\delta_{\\lambda_0}$ is a positive function of the maximal admissible coupling constant which satisfies $\\lim_{\\lambda_0\\to 0}\\delta_{\\lambda_0}=0$ and $\\chi_{[\\sigma,\\kappa)}$ is the (approximate) characteristic function of the energy region between the infrared cut-off $\\sigma$ and the ultraviolet cut-off $\\kappa$. While the analysis of the first derivative is relatively straightforward, the second derivative requires a new strategy. By solving a non-commutative recurrence relation we derive a novel formula for $f^n_{P,\\sigma}$ with improved infrared properties. In this representation $\\partial_{P^{j'}}\\partial_{P^{j}}f^n_{P,\\sigma}$ is amenable to sharp estimates obtained by iterative analytic perturbation theory in part II of this series of papers. The bounds stated above are instrumental for scattering theory of two electrons in the Nelson model, as explained in part I of this series.

  18. Graphic constructions of characteristic diagrams in chemical engineering and the application of differential geometry

    Directory of Open Access Journals (Sweden)

    Pejović Branko B.

    2012-01-01

    Full Text Available Starting from the experimental concentration-time ( cA,t diagram this work gives the construction of the rate of reaction-time (rA,t diagram using the pure graphic method. The diagram was constructed based on the constructed tangents in arbitrary points of the starting diagram by drawing lines parallel to them in the predetermined pole. The evidence of the construction was derived using differential geometry, i.e. the main theorem of differential calculus. Differential properties between the observed values were used in the method. Starting from the analytic relations rA = rA(t and cA = cA(t, which can be very complex (polynomes of the n-th order, and, eliminating time t in order to give a full description of the process, we obtain the analytical relation rA = rA(cA, which is then graphically represented. Hoewever, this elimination of time can also be done graphically, in a relatively simple way. After that, through the use of the integral calculus, it was shown that concentration increase in a time interval is proportional to the (rA,t diagram surface area. Using a similar procedure, further in the paper, it was shown that the time increase is proportional to the (1/rA, cA diagram surface area. In order for the method to be applicable in practice, we have derived relations for appropriate coefficients of proportionality. Verification of the method is illustrated by the two characteristic examples from chemical kinetics at different monotonies of the starting experimental functions.

  19. Ionic diffusion through confined geometries: from Langevin equations to partial differential equations

    International Nuclear Information System (INIS)

    Nadler, Boaz; Schuss, Zeev; Singer, Amit; Eisenberg, R S

    2004-01-01

    Ionic diffusion through and near small domains is of considerable importance in molecular biophysics in applications such as permeation through protein channels and diffusion near the charged active sites of macromolecules. The motion of the ions in these settings depends on the specific nanoscale geometry and charge distribution in and near the domain, so standard continuum type approaches have obvious limitations. The standard machinery of equilibrium statistical mechanics includes microscopic details, but is also not applicable, because these systems are usually not in equilibrium due to concentration gradients and to the presence of an external applied potential, which drive a non-vanishing stationary current through the system. We present a stochastic molecular model for the diffusive motion of interacting particles in an external field of force and a derivation of effective partial differential equations and their boundary conditions that describe the stationary non-equilibrium system. The interactions can include electrostatic, Lennard-Jones and other pairwise forces. The analysis yields a new type of Poisson-Nernst-Planck equations, that involves conditional and unconditional charge densities and potentials. The conditional charge densities are the non-equilibrium analogues of the well studied pair correlation functions of equilibrium statistical physics. Our proposed theory is an extension of equilibrium statistical mechanics of simple fluids to stationary non-equilibrium problems. The proposed system of equations differs from the standard Poisson-Nernst-Planck system in two important aspects. First, the force term depends on conditional densities and thus on the finite size of ions, and second, it contains the dielectric boundary force on a discrete ion near dielectric interfaces. Recently, various authors have shown that both of these terms are important for diffusion through confined geometries in the context of ion channels

  20. Twistor geometry

    NARCIS (Netherlands)

    van den Broek, P.M.

    1984-01-01

    The aim of this paper is to give a detailed exposition of the relation between the geometry of twistor space and the geometry of Minkowski space. The paper has a didactical purpose; no use has been made of differential geometry and cohomology.

  1. Differential geometry of CR-submanifolds of a normal almost para contact manifold

    International Nuclear Information System (INIS)

    Shahid, M.H.

    1992-12-01

    The aim of this paper is to study the geometry of CR-submanifolds of a normal almost para contact manifold. We discuss the integrability conditions of distributions involved in the definition and geometry of leaves of CR-submanifolds, some results on CR-submanifolds with parallel structures and contact CR-product are also given. (author). 10 refs

  2. On some aspects of the geometry of differential equations in physics

    OpenAIRE

    Gràcia, Xavier; Muñoz-Lecanda, Miguel C.; Román-Roy, Narciso

    2004-01-01

    In this review paper, we consider three kinds of systems of differential equations, which are relevant in physics, control theory and other applications in engineering and applied mathematics; namely: Hamilton equations, singular differential equations, and partial differential equations in field theories. The geometric structures underlying these systems are presented and commented. The main results concerning these structures are stated and discussed, as well as their influence on the study...

  3. Complex analysis and geometry

    CERN Document Server

    Silva, Alessandro

    1993-01-01

    The papers in this wide-ranging collection report on the results of investigations from a number of linked disciplines, including complex algebraic geometry, complex analytic geometry of manifolds and spaces, and complex differential geometry.

  4. Ionisation differential cross section measurements for N2 at low incident energy in coplanar and non-coplanar geometries

    International Nuclear Information System (INIS)

    Sakaamini, Ahmad; Murray, Andrew James; Amami, Sadek; Madison, Don; Ning, Chuangang

    2016-01-01

    Ionisation triple differential cross sections have been determined experimentally and theoretically for the neutral molecule N 2 over a range of geometries from coplanar to the perpendicular plane. Data were obtained at incident electron energies ∼10 and ∼20 eV above the ionisation potential of the 3 σ g , 1 π u and 2 σ g states, using both equal and non-equal outgoing electron energies. The data were taken with the incident electron beam in the scattering plane ( ψ = 0°), at 45° to this plane and orthogonal to the plane ( ψ = 90°). The set of nine measured differential cross sections at a given energy were then inter-normalised to each other. The data are compared to new calculations using various distorted wave methods, and differences between theory and experiment are discussed. (paper)

  5. Nonsmooth differential geometry-an approach tailored for spaces with Ricci curvature bounded from below

    CERN Document Server

    Gigli, Nicola

    2018-01-01

    The author discusses in which sense general metric measure spaces possess a first order differential structure. Building on this, spaces with Ricci curvature bounded from below a second order calculus can be developed, permitting the author to define Hessian, covariant/exterior derivatives and Ricci curvature.

  6. Beam geometry, alignment, and wavefront aberration effects on interferometric differential wavefront sensing

    International Nuclear Information System (INIS)

    Yu, Xiangzhi; Gillmer, S R; Ellis, J D

    2015-01-01

    Heterodyne interferometry is a widely accepted methodology with high resolution in many metrology applications. As a functionality enhancement, differential wavefront sensing (DWS) enables simultaneous measurement of displacement, pitch, and yaw using a displacement interferometry system and a single beam incident on a plane mirror target. The angular change is measured using a weighted phase average between symmetrically adjacent quadrant photodiode pairs. In this paper, we present an analytical model to predict the scaling of differential phase signals based on fundamental Gaussian beams. Several numerical models are presented to discuss the effects of physical beam parameters, detector size, system alignment errors, and beam wavefront aberrations on the DWS technique. The results of our modeling predict rotational scaling factors and a usable linear range. Furthermore, experimental results show the analytically predicted scaling factor is in good agreement with empirical calibration. Our three degree-of-freedom interferometer can achieve a resolution of 0.4 nm in displacement and 0.2 μrad in pitch and yaw simultaneously. (paper)

  7. A useful expansion of the exponential of the sum of two non-commuting matrices, one of which is diagonal

    CERN Document Server

    Koch, C T

    2003-01-01

    The matrix exponential plays an important role in solving systems of linear differential equations. We will give a general expansion of the matrix exponential S = exp[lambda(A + B)] as S sub n sub , sub m e suplambda sup b sup sub n delta sub n sub , sub m + SIGMA sub q sub sub = sub sub 1 supinfinity SIGMA sub l sub sub 1 sub sub = sub sub 0 sup N c SIGMA sub l sub sub q sub sub - sub sub 1 sub sub = sub sub 0 sup N a sub n sub , sub l sub sub 1 c a sub l sub sub q sub sub - sub sub 1 sub , sub m C sup ( sup q sup ) sub n sub , sub l sub sub 1 sub , sub . sub . sub . sub , sub l sub sub q sub sub - sub sub 1 sub , sub m (B, lambda) with C sup ( sup q sup ) sub n sub , sub l sub sub 1 sub , sub . sub . sub . sub , sub l sub sub q sub sub - sub sub 1 sub , sub m (B, lambda) being an analytical expression in b sub n , b sub l sub sub 1 , b sub l sub sub 2 , ... b sub l sub sub q sub sub - sub sub 1 , b sub m , and the scalar coefficient lambda. A is a general N x N matrix with elements a sub n sub , sub m and B...

  8. Architectural geometry

    KAUST Repository

    Pottmann, Helmut; Eigensatz, Michael; Vaxman, Amir; Wallner, Johannes

    2014-01-01

    Around 2005 it became apparent in the geometry processing community that freeform architecture contains many problems of a geometric nature to be solved, and many opportunities for optimization which however require geometric understanding. This area of research, which has been called architectural geometry, meanwhile contains a great wealth of individual contributions which are relevant in various fields. For mathematicians, the relation to discrete differential geometry is significant, in particular the integrable system viewpoint. Besides, new application contexts have become available for quite some old-established concepts. Regarding graphics and geometry processing, architectural geometry yields interesting new questions but also new objects, e.g. replacing meshes by other combinatorial arrangements. Numerical optimization plays a major role but in itself would be powerless without geometric understanding. Summing up, architectural geometry has become a rewarding field of study. We here survey the main directions which have been pursued, we show real projects where geometric considerations have played a role, and we outline open problems which we think are significant for the future development of both theory and practice of architectural geometry.

  9. Architectural geometry

    KAUST Repository

    Pottmann, Helmut

    2014-11-26

    Around 2005 it became apparent in the geometry processing community that freeform architecture contains many problems of a geometric nature to be solved, and many opportunities for optimization which however require geometric understanding. This area of research, which has been called architectural geometry, meanwhile contains a great wealth of individual contributions which are relevant in various fields. For mathematicians, the relation to discrete differential geometry is significant, in particular the integrable system viewpoint. Besides, new application contexts have become available for quite some old-established concepts. Regarding graphics and geometry processing, architectural geometry yields interesting new questions but also new objects, e.g. replacing meshes by other combinatorial arrangements. Numerical optimization plays a major role but in itself would be powerless without geometric understanding. Summing up, architectural geometry has become a rewarding field of study. We here survey the main directions which have been pursued, we show real projects where geometric considerations have played a role, and we outline open problems which we think are significant for the future development of both theory and practice of architectural geometry.

  10. Geometry Revealed

    CERN Document Server

    Berger, Marcel

    2010-01-01

    Both classical geometry and modern differential geometry have been active subjects of research throughout the 20th century and lie at the heart of many recent advances in mathematics and physics. The underlying motivating concept for the present book is that it offers readers the elements of a modern geometric culture by means of a whole series of visually appealing unsolved (or recently solved) problems that require the creation of concepts and tools of varying abstraction. Starting with such natural, classical objects as lines, planes, circles, spheres, polygons, polyhedra, curves, surfaces,

  11. Non-commutative Hardy inequalities

    DEFF Research Database (Denmark)

    Hansen, Frank

    2009-01-01

    We extend Hardy's inequality from sequences of non-negative numbers to sequences of positive semi-definite operators if the parameter p satisfies 1 1. Applications to trace functions are given. We introduce the tracial geometric mean...

  12. Spinning geometry = Twisted geometry

    International Nuclear Information System (INIS)

    Freidel, Laurent; Ziprick, Jonathan

    2014-01-01

    It is well known that the SU(2)-gauge invariant phase space of loop gravity can be represented in terms of twisted geometries. These are piecewise-linear-flat geometries obtained by gluing together polyhedra, but the resulting geometries are not continuous across the faces. Here we show that this phase space can also be represented by continuous, piecewise-flat three-geometries called spinning geometries. These are composed of metric-flat three-cells glued together consistently. The geometry of each cell and the manner in which they are glued is compatible with the choice of fluxes and holonomies. We first remark that the fluxes provide each edge with an angular momentum. By studying the piecewise-flat geometries which minimize edge lengths, we show that these angular momenta can be literally interpreted as the spin of the edges: the geometries of all edges are necessarily helices. We also show that the compatibility of the gluing maps with the holonomy data results in the same conclusion. This shows that a spinning geometry represents a way to glue together the three-cells of a twisted geometry to form a continuous geometry which represents a point in the loop gravity phase space. (paper)

  13. The Effect of Teaching Geometry Which is Differentiated Based on the Parallel Curriculum for Gifted/Talented Students on Spatial Ability

    Directory of Open Access Journals (Sweden)

    Basak KOK

    2014-06-01

    Full Text Available The purpose of this research is to evaluate the effects of teaching geometry which is differentiated based on the parallel curriculum for gifted/talented students on spatial ability. For this purpose; two units as “Polygons” and “Geometric Objects” of 5th grade mathematics book has been taken and formed a new differentiated geometry unit. In this study, pretest and posttest designs of experimental model were used. The study was conducted in Istanbul Science and Art Center, which offers differentiated program to those who are gifted and talented students after school, in the city of İstanbul and participants were 30 students being 15 of them are experimental group and the other 15 are control group. Experimental group students were underwent a differentiated program on “Polygons” and “Geometric Objects” whereas the other group continued their normal program without any differentiation. Spatial Ability Test developed by Talented Youth Center of John Hopkins University was used to collect data. Above mentioned test was presented to both groups of the study. Collected data was analyzed by Mann Whitney-U and Wilcoxon Signed Rank Test which is in the statistics program. It is presented as a result of the study that the program prepared for the gifted and talented students raised their spatial thinking ability.

  14. Determination of a basic set of Eigen-functions and of the corresponding norm in the case of the one-velocity integral differential Boltzmann equation in spherical geometry

    International Nuclear Information System (INIS)

    Lafore, P.

    1965-01-01

    The object of the present work is to draw up a basic set of orthogonal eigenfunctions; resolution of the one-velocity integral-differential Boltzmann equation; this in the case of a spherical geometry system. (author) [fr

  15. Chiral topological insulator on Nambu 3-algebraic geometry

    Directory of Open Access Journals (Sweden)

    Kazuki Hasebe

    2014-09-01

    Full Text Available Chiral topological insulator (AIII-class with Landau levels is constructed based on the Nambu 3-algebraic geometry. We clarify the geometric origin of the chiral symmetry of the AIII-class topological insulator in the context of non-commutative geometry of 4D quantum Hall effect. The many-body groundstate wavefunction is explicitly derived as a (l,l,l−1 Laughlin–Halperin type wavefunction with unique K-matrix structure. Fundamental excitation is identified with anyonic string-like object with fractional charge 1/(2(l−12+1. The Hall effect of the chiral topological insulators turns out be a color version of Hall effect, which exhibits a dual property of the Hall and spin-Hall effects.

  16. The geometry of geodesics

    CERN Document Server

    Busemann, Herbert

    2005-01-01

    A comprehensive approach to qualitative problems in intrinsic differential geometry, this text examines Desarguesian spaces, perpendiculars and parallels, covering spaces, the influence of the sign of the curvature on geodesics, more. 1955 edition. Includes 66 figures.

  17. Methods of information geometry

    CERN Document Server

    Amari, Shun-Ichi

    2000-01-01

    Information geometry provides the mathematical sciences with a new framework of analysis. It has emerged from the investigation of the natural differential geometric structure on manifolds of probability distributions, which consists of a Riemannian metric defined by the Fisher information and a one-parameter family of affine connections called the \\alpha-connections. The duality between the \\alpha-connection and the (-\\alpha)-connection together with the metric play an essential role in this geometry. This kind of duality, having emerged from manifolds of probability distributions, is ubiquitous, appearing in a variety of problems which might have no explicit relation to probability theory. Through the duality, it is possible to analyze various fundamental problems in a unified perspective. The first half of this book is devoted to a comprehensive introduction to the mathematical foundation of information geometry, including preliminaries from differential geometry, the geometry of manifolds or probability d...

  18. SOq(N) covariant differential calculus on quantum space and quantum deformation of Schroedinger equation

    International Nuclear Information System (INIS)

    Carow-Watamura, U.; Schlieker, M.; Watamura, S.

    1991-01-01

    We construct a differential calculus on the N-dimensional non-commutative Euclidean space, i.e., the space on which the quantum group SO q (N) is acting. The differential calculus is required to be manifestly covariant under SO q (N) transformations. Using this calculus, we consider the Schroedinger equation corresponding to the harmonic oscillator in the limit of q→1. The solution of it is given by q-deformed functions. (orig.)

  19. Topics in Riemannian geometry

    International Nuclear Information System (INIS)

    Ezin, J.P.

    1988-08-01

    The lectures given at the ''5th Symposium of Mathematics in Abidjan: Differential Geometry and Mechanics'' are presented. They are divided into four chapters: Riemannian metric on a differential manifold, curvature tensor fields on a Riemannian manifold, some classical functionals on Riemannian manifolds and questions. 11 refs

  20. Hyperbolic geometry

    CERN Document Server

    Iversen, Birger

    1992-01-01

    Although it arose from purely theoretical considerations of the underlying axioms of geometry, the work of Einstein and Dirac has demonstrated that hyperbolic geometry is a fundamental aspect of modern physics

  1. Quantization, geometry and noncommutative structures in mathematics and physics

    CERN Document Server

    Morales, Pedro; Ocampo, Hernán; Paycha, Sylvie; Lega, Andrés

    2017-01-01

    This monograph presents various ongoing approaches to the vast topic of quantization, which is the process of forming a quantum mechanical system starting from a classical one, and discusses their numerous fruitful interactions with mathematics. The opening chapter introduces the various forms of quantization and their interactions with each other and with mathematics. A first approach to quantization, called deformation quantization, consists of viewing the Planck constant as a small parameter. This approach provides a deformation of the structure of the algebra of classical observables rather than a radical change in the nature of the observables. When symmetries come into play, deformation quantization needs to be merged with group actions, which is presented in chapter 2, by Simone Gutt. The noncommutativity arising from quantization is the main concern of noncommutative geometry. Allowing for the presence of symmetries requires working with principal fiber bundles in a non-commutative setup, where Hopf a...

  2. Evolution from the coplanar to the perpendicular plane geometry of helium (e,2e) differential cross sections symmetric in scattering angle and energy

    International Nuclear Information System (INIS)

    Murray, A.J.; Read, F.H.

    1993-01-01

    Experimentally determined differential cross sections are presented for the (e,2e) process in helium, in which the two outgoing electrons have the same energy and the same scattering angle with respect to the incident beam. At four incident energies from 20 to 50 eV above the ionization threshold the detection plane defined by the outgoing electrons was varied from being coplanar with the incident beam to being perpendicular to the beam. The differential cross section evolves from a two-peak structure in coplanar geometry to a three-peak structure in the perpendicular plane. At the lowest energy the forward-scattering coplanar peak is smaller than the backscatter peak, in contrast to the results at higher energies. A deep minimum is seen at an intermediate plane angle of 67.5 degree, this minimum being deepest at 40 eV above the ionization threshold. The results are normalized to an absolute scale using previous coplanar measurements as discussed in the text. The spectrometer used to collect these results is fully computer controlled and real-time computer optimized

  3. Geometry and billiards

    CERN Document Server

    Tabachnikov, Serge

    2005-01-01

    Mathematical billiards describe the motion of a mass point in a domain with elastic reflections off the boundary or, equivalently, the behavior of rays of light in a domain with ideally reflecting boundary. From the point of view of differential geometry, the billiard flow is the geodesic flow on a manifold with boundary. This book is devoted to billiards in their relation with differential geometry, classical mechanics, and geometrical optics. The topics covered include variational principles of billiard motion, symplectic geometry of rays of light and integral geometry, existence and nonexistence of caustics, optical properties of conics and quadrics and completely integrable billiards, periodic billiard trajectories, polygonal billiards, mechanisms of chaos in billiard dynamics, and the lesser-known subject of dual (or outer) billiards. The book is based on an advanced undergraduate topics course (but contains more material than can be realistically taught in one semester). Although the minimum prerequisit...

  4. A Lorentzian quantum geometry

    Energy Technology Data Exchange (ETDEWEB)

    Grotz, Andreas

    2011-10-07

    In this thesis, a formulation of a Lorentzian quantum geometry based on the framework of causal fermion systems is proposed. After giving the general definition of causal fermion systems, we deduce space-time as a topological space with an underlying causal structure. Restricting attention to systems of spin dimension two, we derive the objects of our quantum geometry: the spin space, the tangent space endowed with a Lorentzian metric, connection and curvature. In order to get the correspondence to classical differential geometry, we construct examples of causal fermion systems by regularizing Dirac sea configurations in Minkowski space and on a globally hyperbolic Lorentzian manifold. When removing the regularization, the objects of our quantum geometry reduce to the common objects of spin geometry on Lorentzian manifolds, up to higher order curvature corrections.

  5. A Lorentzian quantum geometry

    International Nuclear Information System (INIS)

    Grotz, Andreas

    2011-01-01

    In this thesis, a formulation of a Lorentzian quantum geometry based on the framework of causal fermion systems is proposed. After giving the general definition of causal fermion systems, we deduce space-time as a topological space with an underlying causal structure. Restricting attention to systems of spin dimension two, we derive the objects of our quantum geometry: the spin space, the tangent space endowed with a Lorentzian metric, connection and curvature. In order to get the correspondence to classical differential geometry, we construct examples of causal fermion systems by regularizing Dirac sea configurations in Minkowski space and on a globally hyperbolic Lorentzian manifold. When removing the regularization, the objects of our quantum geometry reduce to the common objects of spin geometry on Lorentzian manifolds, up to higher order curvature corrections.

  6. The multiparametric deformation of GL(n) and the covariant differential calculus on the quantum vector space

    International Nuclear Information System (INIS)

    Schirrmacher, A.

    1991-01-01

    A n(n-1)/2+1 parameter solution of the Yang Baxter equation is presented giving rise to the quantum Group GL x;qij (n). Determinant and inverse are constructed. The group acts covariantly on a quantum vector space of non-commutative coordinates. The associated exterior space can be identified with the differentials exhibiting a multiparameter deformed differential calculus following the construction of Wess and Zumino. (orig.)

  7. Molecular geometry

    CERN Document Server

    Rodger, Alison

    1995-01-01

    Molecular Geometry discusses topics relevant to the arrangement of atoms. The book is comprised of seven chapters that tackle several areas of molecular geometry. Chapter 1 reviews the definition and determination of molecular geometry, while Chapter 2 discusses the unified view of stereochemistry and stereochemical changes. Chapter 3 covers the geometry of molecules of second row atoms, and Chapter 4 deals with the main group elements beyond the second row. The book also talks about the complexes of transition metals and f-block elements, and then covers the organometallic compounds and trans

  8. Current algebra and differential geometry

    International Nuclear Information System (INIS)

    Alekseev, Anton; Strobl, Thomas

    2005-01-01

    We show that symmetries and gauge symmetries of a large class of 2-dimensional sigma models are described by a new type of a current algebra. The currents are labeled by pairs of a vector field and a 1-form on the target space of the sigma model. We compute the current-current commutator and analyse the anomaly cancellation condition, which can be interpreted geometrically in terms of Dirac structures, previously studied in the mathematical literature. Generalized complex structures correspond to decompositions of the current algebra into pairs of anomaly free subalgebras. Sigma models that we can treat with our method include both physical and topological examples, with and without Wess-Zumino type terms. (author)

  9. Optical geometry

    International Nuclear Information System (INIS)

    Robinson, I.; Trautman, A.

    1988-01-01

    The geometry of classical physics is Lorentzian; but weaker geometries are often more appropriate: null geodesics and electromagnetic fields, for example, are well known to be objects of conformal geometry. To deal with a single null congruence, or with the radiative electromagnetic fields associated with it, even less is needed: flag geometry for the first, optical geometry, with which this paper is chiefly concerned, for the second. The authors establish a natural one-to-one correspondence between optical geometries, considered locally, and three-dimensional Cauchy-Riemann structures. A number of Lorentzian geometries are shown to be equivalent from the optical point of view. For example the Goedel universe, the Taub-NUT metric and Hauser's twisting null solution have an optical geometry isomorphic to the one underlying the Robinson congruence in Minkowski space. The authors present general results on the problem of lifting a CR structure to a Lorentz manifold and, in particular, to Minkowski space; and exhibit the relevance of the deviation form to this problem

  10. Lectures on Symplectic Geometry

    CERN Document Server

    Silva, Ana Cannas

    2001-01-01

    The goal of these notes is to provide a fast introduction to symplectic geometry for graduate students with some knowledge of differential geometry, de Rham theory and classical Lie groups. This text addresses symplectomorphisms, local forms, contact manifolds, compatible almost complex structures, Kaehler manifolds, hamiltonian mechanics, moment maps, symplectic reduction and symplectic toric manifolds. It contains guided problems, called homework, designed to complement the exposition or extend the reader's understanding. There are by now excellent references on symplectic geometry, a subset of which is in the bibliography of this book. However, the most efficient introduction to a subject is often a short elementary treatment, and these notes attempt to serve that purpose. This text provides a taste of areas of current research and will prepare the reader to explore recent papers and extensive books on symplectic geometry where the pace is much faster. For this reprint numerous corrections and cl...

  11. Beautiful geometry

    CERN Document Server

    Maor, Eli

    2014-01-01

    If you've ever thought that mathematics and art don't mix, this stunning visual history of geometry will change your mind. As much a work of art as a book about mathematics, Beautiful Geometry presents more than sixty exquisite color plates illustrating a wide range of geometric patterns and theorems, accompanied by brief accounts of the fascinating history and people behind each. With artwork by Swiss artist Eugen Jost and text by acclaimed math historian Eli Maor, this unique celebration of geometry covers numerous subjects, from straightedge-and-compass constructions to intriguing configur

  12. Connes distance function on fuzzy sphere and the connection between geometry and statistics

    International Nuclear Information System (INIS)

    Devi, Yendrembam Chaoba; Chakraborty, Biswajit; Prajapat, Shivraj; Mukhopadhyay, Aritra K.; Scholtz, Frederik G.

    2015-01-01

    An algorithm to compute Connes spectral distance, adaptable to the Hilbert-Schmidt operatorial formulation of non-commutative quantum mechanics, was developed earlier by introducing the appropriate spectral triple and used to compute infinitesimal distances in the Moyal plane, revealing a deep connection between geometry and statistics. In this paper, using the same algorithm, the Connes spectral distance has been calculated in the Hilbert-Schmidt operatorial formulation for the fuzzy sphere whose spatial coordinates satisfy the su(2) algebra. This has been computed for both the discrete and the Perelemov’s SU(2) coherent state. Here also, we get a connection between geometry and statistics which is shown by computing the infinitesimal distance between mixed states on the quantum Hilbert space of a particular fuzzy sphere, indexed by n ∈ ℤ/2

  13. Analytische Geometrie

    Science.gov (United States)

    Kemnitz, Arnfried

    Der Grundgedanke der Analytischen Geometrie besteht darin, dass geometrische Untersuchungen mit rechnerischen Mitteln geführt werden. Geometrische Objekte werden dabei durch Gleichungen beschrieben und mit algebraischen Methoden untersucht.

  14. Algebraic geometry

    CERN Document Server

    Lefschetz, Solomon

    2005-01-01

    An introduction to algebraic geometry and a bridge between its analytical-topological and algebraical aspects, this text for advanced undergraduate students is particularly relevant to those more familiar with analysis than algebra. 1953 edition.

  15. Information geometry

    CERN Document Server

    Ay, Nihat; Lê, Hông Vân; Schwachhöfer, Lorenz

    2017-01-01

    The book provides a comprehensive introduction and a novel mathematical foundation of the field of information geometry with complete proofs and detailed background material on measure theory, Riemannian geometry and Banach space theory. Parametrised measure models are defined as fundamental geometric objects, which can be both finite or infinite dimensional. Based on these models, canonical tensor fields are introduced and further studied, including the Fisher metric and the Amari-Chentsov tensor, and embeddings of statistical manifolds are investigated. This novel foundation then leads to application highlights, such as generalizations and extensions of the classical uniqueness result of Chentsov or the Cramér-Rao inequality. Additionally, several new application fields of information geometry are highlighted, for instance hierarchical and graphical models, complexity theory, population genetics, or Markov Chain Monte Carlo. The book will be of interest to mathematicians who are interested in geometry, inf...

  16. Simultaneous measurement of non-commuting observables

    NARCIS (Netherlands)

    Allahverdyan, A.E.; Balian, R.; Nieuwenhuizen, T.M.

    2010-01-01

    A dynamical model of a quantum measurement process is introduced, where the tested system S, a spin 1/2, is simultaneously coupled with two apparatuses A and A'. Alone, A would measure the component (s) over cap (z) whereas A' alone would measure (s) over cap (x). The apparatus A simulates an Ising

  17. Multiplication modules over non-commutative rings

    International Nuclear Information System (INIS)

    Tuganbaev, A A

    2003-01-01

    It is proved that each submodule of a multiplication module over a regular ring is a multiplicative module. If A is a ring with commutative multiplication of right ideals, then each projective right ideal is a multiplicative module, and a finitely generated A-module M is a multiplicative module if and only if all its localizations with respect to maximal right ideals of A are cyclic modules over the corresponding localizations of A. In addition, several known results on multiplication modules over commutative rings are extended to modules over not necessarily commutative rings

  18. Anosov actions on non-commutative algebras

    International Nuclear Information System (INIS)

    Emch, G.G.; Narnhofer, H.; Thirring, W.; Sewell, G.L.

    1994-01-01

    We construct an axiomatic framework for a quantum mechanical extension to the theory of Anosov systems, and show that this retains some of the characteristic features of its classical counterpart, e.g. positive Lyapunov exponents, a vectorial K-property, and exponential clustering. We then investigate the effects of quantisation on two prototype examples of Anosov systems, namely the iterations of an automorphism of the torus (the 'Arnold Cat' model) and the free dynamics of a particle on a surface of negative curvature. It emerges that the Anosov property survives quantisation in the case of the former model, but not of the latter one. Finally, we show that the modular dynamics of a relativistic quantum field on the Rindler wedge of Minkowski space is that of an Anosov system. (authors)

  19. Non-Commutative Orders. A Preliminary Study

    International Nuclear Information System (INIS)

    Brzezinski, T.

    2011-01-01

    The first steps towards linearization of partial orders and equivalence relations are described. The definitions of partial orders and equivalence relations (on sets) are formulated in a way that is standard in category theory and that makes the linearization (almost) automatic. The linearization is then achieved by replacing sets by coalgebras and the Cartesian product by the tensor product of vector spaces. As a result, definitions of orders and equivalence relations on coalgebras are proposed. These are illustrated by explicit examples that include relations on coalgebras spanned by grouplike elements (or linearized sets), the diagonal relation, and an order on a three-dimensional non-cocommutative coalgebra. Although relations on coalgebras are defined for vector spaces, all the definitions are formulated in a way that is immediately applicable to other braided monoidal categories. (author)

  20. Symplectic geometry and Fourier analysis

    CERN Document Server

    Wallach, Nolan R

    2018-01-01

    Suitable for graduate students in mathematics, this monograph covers differential and symplectic geometry, homogeneous symplectic manifolds, Fourier analysis, metaplectic representation, quantization, Kirillov theory. Includes Appendix on Quantum Mechanics by Robert Hermann. 1977 edition.

  1. Hyperunified field theory and gravitational gauge-geometry duality

    International Nuclear Information System (INIS)

    Wu, Yue-Liang

    2018-01-01

    A hyperunified field theory is built in detail based on the postulates of gauge invariance and coordinate independence along with the conformal scaling symmetry. All elementary particles are merged into a single hyper-spinor field and all basic forces are unified into a fundamental interaction governed by the hyper-spin gauge symmetry SP(1, D h - 1). The dimension D h of hyper-spacetime is conjectured to have a physical origin in correlation with the hyper-spin charge of elementary particles. The hyper-gravifield fiber bundle structure of biframe hyper-spacetime appears naturally with the globally flat Minkowski hyper-spacetime as a base spacetime and the locally flat hyper-gravifield spacetime as a fiber that is viewed as a dynamically emerged hyper-spacetime characterized by a non-commutative geometry. The gravitational origin of gauge symmetry is revealed with the hyper-gravifield that plays an essential role as a Goldstone-like field. The gauge-gravity and gravity-geometry correspondences bring about the gravitational gauge-geometry duality. The basic properties of hyperunified field theory and the issue on the fundamental scale are analyzed within the framework of quantum field theory, which allows us to describe the laws of nature in deriving the gauge gravitational equation with the conserved current and the geometric gravitational equations of Einstein-like type and beyond. (orig.)

  2. Hyperunified field theory and gravitational gauge-geometry duality

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yue-Liang [International Centre for Theoretical Physics Asia-Pacific (ICTP-AP), Beijing (China); Chinese Academy of Sciences, Institute of Theoretical Physics, Beijing (China); University of Chinese Academy of Sciences (UCAS), Beijing (China)

    2018-01-15

    A hyperunified field theory is built in detail based on the postulates of gauge invariance and coordinate independence along with the conformal scaling symmetry. All elementary particles are merged into a single hyper-spinor field and all basic forces are unified into a fundamental interaction governed by the hyper-spin gauge symmetry SP(1, D{sub h} - 1). The dimension D{sub h} of hyper-spacetime is conjectured to have a physical origin in correlation with the hyper-spin charge of elementary particles. The hyper-gravifield fiber bundle structure of biframe hyper-spacetime appears naturally with the globally flat Minkowski hyper-spacetime as a base spacetime and the locally flat hyper-gravifield spacetime as a fiber that is viewed as a dynamically emerged hyper-spacetime characterized by a non-commutative geometry. The gravitational origin of gauge symmetry is revealed with the hyper-gravifield that plays an essential role as a Goldstone-like field. The gauge-gravity and gravity-geometry correspondences bring about the gravitational gauge-geometry duality. The basic properties of hyperunified field theory and the issue on the fundamental scale are analyzed within the framework of quantum field theory, which allows us to describe the laws of nature in deriving the gauge gravitational equation with the conserved current and the geometric gravitational equations of Einstein-like type and beyond. (orig.)

  3. Hyperunified field theory and gravitational gauge-geometry duality

    Science.gov (United States)

    Wu, Yue-Liang

    2018-01-01

    A hyperunified field theory is built in detail based on the postulates of gauge invariance and coordinate independence along with the conformal scaling symmetry. All elementary particles are merged into a single hyper-spinor field and all basic forces are unified into a fundamental interaction governed by the hyper-spin gauge symmetry SP(1, D_h-1). The dimension D_h of hyper-spacetime is conjectured to have a physical origin in correlation with the hyper-spin charge of elementary particles. The hyper-gravifield fiber bundle structure of biframe hyper-spacetime appears naturally with the globally flat Minkowski hyper-spacetime as a base spacetime and the locally flat hyper-gravifield spacetime as a fiber that is viewed as a dynamically emerged hyper-spacetime characterized by a non-commutative geometry. The gravitational origin of gauge symmetry is revealed with the hyper-gravifield that plays an essential role as a Goldstone-like field. The gauge-gravity and gravity-geometry correspondences bring about the gravitational gauge-geometry duality. The basic properties of hyperunified field theory and the issue on the fundamental scale are analyzed within the framework of quantum field theory, which allows us to describe the laws of nature in deriving the gauge gravitational equation with the conserved current and the geometric gravitational equations of Einstein-like type and beyond.

  4. SU-D-BRA-04: Computerized Framework for Marker-Less Localization of Anatomical Feature Points in Range Images Based On Differential Geometry Features for Image-Guided Radiation Therapy

    International Nuclear Information System (INIS)

    Soufi, M; Arimura, H; Toyofuku, F; Nakamura, K; Hirose, T; Umezu, Y; Shioyama, Y

    2016-01-01

    Purpose: To propose a computerized framework for localization of anatomical feature points on the patient surface in infrared-ray based range images by using differential geometry (curvature) features. Methods: The general concept was to reconstruct the patient surface by using a mathematical modeling technique for the computation of differential geometry features that characterize the local shapes of the patient surfaces. A region of interest (ROI) was firstly extracted based on a template matching technique applied on amplitude (grayscale) images. The extracted ROI was preprocessed for reducing temporal and spatial noises by using Kalman and bilateral filters, respectively. Next, a smooth patient surface was reconstructed by using a non-uniform rational basis spline (NURBS) model. Finally, differential geometry features, i.e. the shape index and curvedness features were computed for localizing the anatomical feature points. The proposed framework was trained for optimizing shape index and curvedness thresholds and tested on range images of an anthropomorphic head phantom. The range images were acquired by an infrared ray-based time-of-flight (TOF) camera. The localization accuracy was evaluated by measuring the mean of minimum Euclidean distances (MMED) between reference (ground truth) points and the feature points localized by the proposed framework. The evaluation was performed for points localized on convex regions (e.g. apex of nose) and concave regions (e.g. nasofacial sulcus). Results: The proposed framework has localized anatomical feature points on convex and concave anatomical landmarks with MMEDs of 1.91±0.50 mm and 3.70±0.92 mm, respectively. A statistically significant difference was obtained between the feature points on the convex and concave regions (P<0.001). Conclusion: Our study has shown the feasibility of differential geometry features for localization of anatomical feature points on the patient surface in range images. The proposed

  5. SU-D-BRA-04: Computerized Framework for Marker-Less Localization of Anatomical Feature Points in Range Images Based On Differential Geometry Features for Image-Guided Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Soufi, M; Arimura, H; Toyofuku, F [Kyushu University, Fukuoka, Fukuoka (Japan); Nakamura, K [Hamamatsu University School of Medicine, Hamamatsu, Shizuoka (Japan); Hirose, T; Umezu, Y [Kyushu University Hospital, Fukuoka, Fukuoka (Japan); Shioyama, Y [Saga Heavy Ion Medical Accelerator in Tosu, Tosu, Saga (Japan)

    2016-06-15

    Purpose: To propose a computerized framework for localization of anatomical feature points on the patient surface in infrared-ray based range images by using differential geometry (curvature) features. Methods: The general concept was to reconstruct the patient surface by using a mathematical modeling technique for the computation of differential geometry features that characterize the local shapes of the patient surfaces. A region of interest (ROI) was firstly extracted based on a template matching technique applied on amplitude (grayscale) images. The extracted ROI was preprocessed for reducing temporal and spatial noises by using Kalman and bilateral filters, respectively. Next, a smooth patient surface was reconstructed by using a non-uniform rational basis spline (NURBS) model. Finally, differential geometry features, i.e. the shape index and curvedness features were computed for localizing the anatomical feature points. The proposed framework was trained for optimizing shape index and curvedness thresholds and tested on range images of an anthropomorphic head phantom. The range images were acquired by an infrared ray-based time-of-flight (TOF) camera. The localization accuracy was evaluated by measuring the mean of minimum Euclidean distances (MMED) between reference (ground truth) points and the feature points localized by the proposed framework. The evaluation was performed for points localized on convex regions (e.g. apex of nose) and concave regions (e.g. nasofacial sulcus). Results: The proposed framework has localized anatomical feature points on convex and concave anatomical landmarks with MMEDs of 1.91±0.50 mm and 3.70±0.92 mm, respectively. A statistically significant difference was obtained between the feature points on the convex and concave regions (P<0.001). Conclusion: Our study has shown the feasibility of differential geometry features for localization of anatomical feature points on the patient surface in range images. The proposed

  6. Higher geometry an introduction to advanced methods in analytic geometry

    CERN Document Server

    Woods, Frederick S

    2005-01-01

    For students of mathematics with a sound background in analytic geometry and some knowledge of determinants, this volume has long been among the best available expositions of advanced work on projective and algebraic geometry. Developed from Professor Woods' lectures at the Massachusetts Institute of Technology, it bridges the gap between intermediate studies in the field and highly specialized works.With exceptional thoroughness, it presents the most important general concepts and methods of advanced algebraic geometry (as distinguished from differential geometry). It offers a thorough study

  7. Analytic geometry

    CERN Document Server

    Burdette, A C

    1971-01-01

    Analytic Geometry covers several fundamental aspects of analytic geometry needed for advanced subjects, including calculus.This book is composed of 12 chapters that review the principles, concepts, and analytic proofs of geometric theorems, families of lines, the normal equation of the line, and related matters. Other chapters highlight the application of graphing, foci, directrices, eccentricity, and conic-related topics. The remaining chapters deal with the concept polar and rectangular coordinates, surfaces and curves, and planes.This book will prove useful to undergraduate trigonometric st

  8. Vector geometry

    CERN Document Server

    Robinson, Gilbert de B

    2011-01-01

    This brief undergraduate-level text by a prominent Cambridge-educated mathematician explores the relationship between algebra and geometry. An elementary course in plane geometry is the sole requirement for Gilbert de B. Robinson's text, which is the result of several years of teaching and learning the most effective methods from discussions with students. Topics include lines and planes, determinants and linear equations, matrices, groups and linear transformations, and vectors and vector spaces. Additional subjects range from conics and quadrics to homogeneous coordinates and projective geom

  9. Noncommutative geometry

    CERN Document Server

    Connes, Alain

    1994-01-01

    This English version of the path-breaking French book on this subject gives the definitive treatment of the revolutionary approach to measure theory, geometry, and mathematical physics developed by Alain Connes. Profusely illustrated and invitingly written, this book is ideal for anyone who wants to know what noncommutative geometry is, what it can do, or how it can be used in various areas of mathematics, quantization, and elementary particles and fields.Key Features* First full treatment of the subject and its applications* Written by the pioneer of this field* Broad applications in mathemat

  10. Geometry and Cloaking Devices

    Science.gov (United States)

    Ochiai, T.; Nacher, J. C.

    2011-09-01

    Recently, the application of geometry and conformal mappings to artificial materials (metamaterials) has attracted the attention in various research communities. These materials, characterized by a unique man-made structure, have unusual optical properties, which materials found in nature do not exhibit. By applying the geometry and conformal mappings theory to metamaterial science, it may be possible to realize so-called "Harry Potter cloaking device". Although such a device is still in the science fiction realm, several works have shown that by using such metamaterials it may be possible to control the direction of the electromagnetic field at will. We could then make an object hidden inside of a cloaking device. Here, we will explain how to design invisibility device using differential geometry and conformal mappings.

  11. Projective Geometry

    Indian Academy of Sciences (India)

    mathematicians are trained to use very precise language, and so find it hard to simplify and state .... thing. If you take a plane on which there are two such triangles which enjoy the above ... within this geometry to simplify things if needed.

  12. Geometry -----------~--------------RESONANCE

    Indian Academy of Sciences (India)

    Parallel: A pair of lines in a plane is said to be parallel if they do not meet. Mathematicians were at war ... Subsequently, Poincare, Klein, Beltrami and others refined non-. Euclidean geometry. ... plane divides the plane into two half planes and.

  13. Riemannian geometry

    CERN Document Server

    Petersen, Peter

    2016-01-01

    Intended for a one year course, this text serves as a single source, introducing readers to the important techniques and theorems, while also containing enough background on advanced topics to appeal to those students wishing to specialize in Riemannian geometry. This is one of the few Works to combine both the geometric parts of Riemannian geometry and the analytic aspects of the theory. The book will appeal to a readership that have a basic knowledge of standard manifold theory, including tensors, forms, and Lie groups. Important revisions to the third edition include: a substantial addition of unique and enriching exercises scattered throughout the text; inclusion of an increased number of coordinate calculations of connection and curvature; addition of general formulas for curvature on Lie Groups and submersions; integration of variational calculus into the text allowing for an early treatment of the Sphere theorem using a proof by Berger; incorporation of several recent results about manifolds with posit...

  14. Special geometry

    International Nuclear Information System (INIS)

    Strominger, A.

    1990-01-01

    A special manifold is an allowed target manifold for the vector multiplets of D=4, N=2 supergravity. These manifolds are of interest for string theory because the moduli spaces of Calabi-Yau threefolds and c=9, (2,2) conformal field theories are special. Previous work has given a local, coordinate-dependent characterization of special geometry. A global description of special geometries is given herein, and their properties are studied. A special manifold M of complex dimension n is characterized by the existence of a holomorphic Sp(2n+2,R)xGL(1,C) vector bundle over M with a nowhere-vanishing holomorphic section Ω. The Kaehler potential on M is the logarithm of the Sp(2n+2,R) invariant norm of Ω. (orig.)

  15. Relativistic differential-difference momentum operators and noncommutative differential calculus

    International Nuclear Information System (INIS)

    Mir-Kasimov, R.M.

    2011-01-01

    Full text: (author)The relativistic kinetic momentum operators are introduced in the framework of the Quantum Mechanics in the relativistic configuration space (RCS). These operators correspond to the half of the non-Euclidean distance in the Lobachevsky momentum space. In terms of kinetic momentum operators the relativistic kinetic energy is separated from the total Hamiltonian. The role of the plane wave (wave function of the motion with definite value of momentum and energy) plays the generation function for the matrix elements of the unitary irreps of Lorentz group (generalized Jacobi polynomials). The kinetic momentum operators are the interior derivatives in the framework of the non-commutative differential calculus over the commutative algebra generated by the coordinate functions over the RCS

  16. Complex analysis and CR geometry

    CERN Document Server

    Zampieri, Giuseppe

    2008-01-01

    Cauchy-Riemann (CR) geometry is the study of manifolds equipped with a system of CR-type equations. Compared to the early days when the purpose of CR geometry was to supply tools for the analysis of the existence and regularity of solutions to the \\bar\\partial-Neumann problem, it has rapidly acquired a life of its own and has became an important topic in differential geometry and the study of non-linear partial differential equations. A full understanding of modern CR geometry requires knowledge of various topics such as real/complex differential and symplectic geometry, foliation theory, the geometric theory of PDE's, and microlocal analysis. Nowadays, the subject of CR geometry is very rich in results, and the amount of material required to reach competence is daunting to graduate students who wish to learn it. However, the present book does not aim at introducing all the topics of current interest in CR geometry. Instead, an attempt is made to be friendly to the novice by moving, in a fairly relaxed way, f...

  17. General Geometry and Geometry of Electromagnetism

    OpenAIRE

    Shahverdiyev, Shervgi S.

    2002-01-01

    It is shown that Electromagnetism creates geometry different from Riemannian geometry. General geometry including Riemannian geometry as a special case is constructed. It is proven that the most simplest special case of General Geometry is geometry underlying Electromagnetism. Action for electromagnetic field and Maxwell equations are derived from curvature function of geometry underlying Electromagnetism. And it is shown that equation of motion for a particle interacting with electromagnetic...

  18. First order linear ordinary differential equations in associative algebras

    Directory of Open Access Journals (Sweden)

    Gordon Erlebacher

    2004-01-01

    Full Text Available In this paper, we study the linear differential equation $$ frac{dx}{dt}=sum_{i=1}^n a_i(t x b_i(t + f(t $$ in an associative but non-commutative algebra $mathcal{A}$, where the $b_i(t$ form a set of commuting $mathcal{A}$-valued functions expressed in a time-independent spectral basis consisting of mutually annihilating idempotents and nilpotents. Explicit new closed solutions are derived, and examples are presented to illustrate the theory.

  19. Topology and geometry for physicists

    CERN Document Server

    Nash, Charles

    1983-01-01

    Differential geometry and topology are essential tools for many theoretical physicists, particularly in the study of condensed matter physics, gravity, and particle physics. Written by physicists for physics students, this text introduces geometrical and topological methods in theoretical physics and applied mathematics. It assumes no detailed background in topology or geometry, and it emphasizes physical motivations, enabling students to apply the techniques to their physics formulas and research. ""Thoroughly recommended"" by The Physics Bulletin, this volume's physics applications range fr

  20. GEOMETRY – AN IMPORTANT MEANS OF EDUCATION IN THE CIVILISATION SCOPE

    OpenAIRE

    Liliana TOCARIU, PhD

    2017-01-01

    Geometry (from the Greek: γεωμετρία; geo = earth, metria = measure) is a genuine science, rooted in mathematics, which studies the plane and spatial forms of bodies from the objective or conceptual reality and the nature of the relationship that exists between them. Due to its complexity, geometry is divided into: Euclidian geometry, analytical geometry, descriptive geometry, projective geometry, kinematic geometry, surface and curve differential geometry, axiomatic geometry,...

  1. Aspects of non-geometry in string theory

    International Nuclear Information System (INIS)

    Patalong, Peter

    2013-01-01

    This thesis investigates various manifestations of non-geometry in string theory. It utilises different frameworks to study how non-geometry appears in the target space, how non-geometry and non-geometric fluxes are interconnected, how non-geometry can be captured in effective field theories and how a possible extension of the standard string worldsheet model can accommodate non-geometric setups. The first part provides an example that non-geometry can imply non-commutativity of the closed string coordinate fields. Three T-dual frames are investigated, the three-torus with constant H-flux, the twisted torus and the torus with non-geometric flux Q. Under the assumption of dilute flux, a mode expansion and the canonical quantisation are carried out in the second case up to linear order in the flux parameter. T-duality is then used to relate the commutators of the string expansion modes to the coordinate field commutator in the non-geometric third frame. Non-commutativity is found and related to the non-geometric flux Q and the string winding, it therefore appears as an intrinsically string theoretic feature. The second part investigates non-geometry in the context of ten-dimensional effective field theories, i.e. double field theory and supergravity. A field redefinition is implemented that takes the form of a T-duality transformation, it reveals an alternative set of field variables allowing to define non-geometric fluxes Q and R in higher dimensions. The perspective of double field theory provides a geometric interpretation of those by taking into account a new type of covariant winding derivative. The perspective of the ten-dimensional supergravity allows to investigate the interplay between non-geometric field configurations and non-geometric fluxes. For the three-torus example, a well-defined action can be found, and a simple dimensional reduction makes contact to the known four-dimensional potential. It thus proves the correct uplift of Q and R to higher

  2. Guide to Computational Geometry Processing

    DEFF Research Database (Denmark)

    Bærentzen, Jakob Andreas; Gravesen, Jens; Anton, François

    be processed before it is useful. This Guide to Computational Geometry Processing reviews the algorithms for processing geometric data, with a practical focus on important techniques not covered by traditional courses on computer vision and computer graphics. This is balanced with an introduction...... to the theoretical and mathematical underpinnings of each technique, enabling the reader to not only implement a given method, but also to understand the ideas behind it, its limitations and its advantages. Topics and features: Presents an overview of the underlying mathematical theory, covering vector spaces......, metric space, affine spaces, differential geometry, and finite difference methods for derivatives and differential equations Reviews geometry representations, including polygonal meshes, splines, and subdivision surfaces Examines techniques for computing curvature from polygonal meshes Describes...

  3. Toward the classification of differential calculi on κ-Minkowski space and related field theories

    Energy Technology Data Exchange (ETDEWEB)

    Jurić, Tajron; Meljanac, Stjepan; Pikutić, Danijel [Ruđer Bošković Institute, Theoretical Physics Division,Bijenička c.54, HR-10002 Zagreb (Croatia); Štrajn, Rina [Dipartimento di Matematica e Informatica, Università di Cagliari,viale Merello 92, I-09123 Cagliari (Italy); INFN, Sezione di Cagliari,Cagliari (Italy)

    2015-07-13

    Classification of differential forms on κ-Minkowski space, particularly, the classification of all bicovariant differential calculi of classical dimension is presented. By imposing super-Jacobi identities we derive all possible differential algebras compatible with the κ-Minkowski algebra for time-like, space-like and light-like deformations. Embedding into the super-Heisenberg algebra is constructed using non-commutative (NC) coordinates and one-forms. Particularly, a class of differential calculi with an undeformed exterior derivative and one-forms is considered. Corresponding NC differential calculi are elaborated. Related class of new Drinfeld twists is proposed. It contains twist leading to κ-Poincaré Hopf algebra for light-like deformation. Corresponding super-algebra and deformed super-Hopf algebras, as well as the symmetries of differential algebras are presented and elaborated. Using the NC differential calculus, we analyze NC field theory, modified dispersion relations, and discuss further physical applications.

  4. Partial Differential Equations

    CERN Document Server

    1988-01-01

    The volume contains a selection of papers presented at the 7th Symposium on differential geometry and differential equations (DD7) held at the Nankai Institute of Mathematics, Tianjin, China, in 1986. Most of the contributions are original research papers on topics including elliptic equations, hyperbolic equations, evolution equations, non-linear equations from differential geometry and mechanics, micro-local analysis.

  5. Foliation theory in algebraic geometry

    CERN Document Server

    McKernan, James; Pereira, Jorge

    2016-01-01

    Featuring a blend of original research papers and comprehensive surveys from an international team of leading researchers in the thriving fields of foliation theory, holomorphic foliations, and birational geometry, this book presents the proceedings of the conference "Foliation Theory in Algebraic Geometry," hosted by the Simons Foundation in New York City in September 2013.  Topics covered include: Fano and del Pezzo foliations; the cone theorem and rank one foliations; the structure of symmetric differentials on a smooth complex surface and a local structure theorem for closed symmetric differentials of rank two; an overview of lifting symmetric differentials from varieties with canonical singularities and the applications to the classification of AT bundles on singular varieties; an overview of the powerful theory of the variety of minimal rational tangents introduced by Hwang and Mok; recent examples of varieties which are hyperbolic and yet the Green-Griffiths locus is the whole of X; and a classificati...

  6. Development of differential quadrature based computational scheme in cylindrical geometry and its application to simulate radionuclide leaching from radioactive waste form

    International Nuclear Information System (INIS)

    Pal, T.K.; Bajpai, R.K.; Datta, D.

    2016-01-01

    Differential Quadrature Method (DQM) based computational scheme is developed to solve diffusion equation in cylindrical coordinate. In this scheme, time derivative is approximated using forward difference and the spatial derivatives using polynomial based DQM. This developed scheme is applied to simulate test problem on radionuclide leaching from radioactive waste form. Leach rate is calculated after simulating the leaching process. DQM based results are compared with the analytical solutions and good agreements between the two results are established. The developed tool is used as a numerical tool for computationally intensive calculations, such as regression analysis and correlation analysis etc. Multivariate regression analysis is carried out to establish a linear relationship between leach rate and model parameters e.g., diffusion coefficient, porosity and linear sorption coefficient. Study of correlation analysis carried out in this study shows that diffusion coefficient is positively more correlated with leach rate compared to porosity whereas, K_d is negatively correlated with leach rate. (author)

  7. Non-Riemannian geometry

    CERN Document Server

    Eisenhart, Luther Pfahler

    2005-01-01

    This concise text by a prominent mathematician deals chiefly with manifolds dominated by the geometry of paths. Topics include asymmetric and symmetric connections, the projective geometry of paths, and the geometry of sub-spaces. 1927 edition.

  8. Geometry of the Universe

    International Nuclear Information System (INIS)

    Gurevich, L.Eh.; Gliner, Eh.B.

    1978-01-01

    Problems of investigating the Universe space-time geometry are described on a popular level. Immediate space-time geometries, corresponding to three cosmologic models are considered. Space-time geometry of a closed model is the spherical Riemann geonetry, of an open model - is the Lobachevskij geometry; and of a plane model - is the Euclidean geometry. The Universe real geometry in the contemporary epoch of development is based on the data testifying to the fact that the Universe is infinitely expanding

  9. Determination of differential cross-sections for the natK(p, p0) and 39K(p, α0) reactions in the backscattering geometry

    International Nuclear Information System (INIS)

    Kokkoris, M.; Tsaris, A.; Misaelides, P.; Sokaras, D.; Lagoyannis, A.; Harissopulos, S.; Vlastou, R.; Papadopoulos, C.T.

    2010-01-01

    In the present work, new, differential cross-section values are presented for the nat K(p, p 0 ) reaction in the energy range E lab = 3000-5000 keV (with an energy step of 25 keV) and for detector angles between 140 o and 170 o (with an angular step of 10 o ). A qualitative discussion of the observed cross-section variations through the influence of strong, closely spaced resonances in the p + 39 K system is also presented. Information has also been extracted concerning the 39 K(p,α 0 ) reaction for E lab = 4000-5000 keV in the same angular range. As a result, more than ∼500 data points will soon be available to the scientific community through IBANDL (Ion Beam Analysis Nuclear Data Library - (http://www-nds.iaea.org/ibandl/)) and could thus be incorporated in widely used IBA algorithms (e.g. SIMNRA, WINDF, etc.) for potassium depth profiling at relatively high proton beam energies.

  10. Real algebraic geometry

    CERN Document Server

    Bochnak, Jacek; Roy, Marie-Françoise

    1998-01-01

    This book is a systematic treatment of real algebraic geometry, a subject that has strong interrelation with other areas of mathematics: singularity theory, differential topology, quadratic forms, commutative algebra, model theory, complexity theory etc. The careful and clearly written account covers both basic concepts and up-to-date research topics. It may be used as text for a graduate course. The present edition is a substantially revised and expanded English version of the book "Géometrie algébrique réelle" originally published in French, in 1987, as Volume 12 of ERGEBNISSE. Since the publication of the French version the theory has made advances in several directions. Many of these are included in this English version. Thus the English book may be regarded as a completely new treatment of the subject.

  11. Information geometry near randomness and near independence

    CERN Document Server

    Arwini, Khadiga A

    2008-01-01

    This volume will be useful to practising scientists and students working in the application of statistical models to real materials or to processes with perturbations of a Poisson process, a uniform process, or a state of independence for a bivariate process. We use information geometry to provide a common differential geometric framework for a wide range of illustrative applications including amino acid sequence spacings in protein chains, cryptology studies, clustering of communications and galaxies, cosmological voids, coupled spatial statistics in stochastic fibre networks and stochastic porous media, quantum chaology. Introduction sections are provided to mathematical statistics, differential geometry and the information geometry of spaces of probability density functions.

  12. Electrodynamics and Spacetime Geometry: Foundations

    Science.gov (United States)

    Cabral, Francisco; Lobo, Francisco S. N.

    2017-02-01

    We explore the intimate connection between spacetime geometry and electrodynamics. This link is already implicit in the constitutive relations between the field strengths and excitations, which are an essential part of the axiomatic structure of electromagnetism, clearly formulated via integration theory and differential forms. We review the foundations of classical electromagnetism based on charge and magnetic flux conservation, the Lorentz force and the constitutive relations. These relations introduce the conformal part of the metric and allow the study of electrodynamics for specific spacetime geometries. At the foundational level, we discuss the possibility of generalizing the vacuum constitutive relations, by relaxing the fixed conditions of homogeneity and isotropy, and by assuming that the symmetry properties of the electro-vacuum follow the spacetime isometries. The implications of this extension are briefly discussed in the context of the intimate connection between electromagnetism and the geometry (and causal structure) of spacetime.

  13. Geometry of Quantum States

    International Nuclear Information System (INIS)

    Hook, D W

    2008-01-01

    applications of the geometric approach. The first four chapters contain the standard mathematics required to understand the rest of the material presented: specific areas in colour theory, set theory, probability theory, differential geometry and projective geometry are all covered with an eye to the material that follows. Chapter 5 starts the first real discussion of quantum theory in GQS and serves as an elegant, succinct introduction to the geometry which underlies quantum theory. This may be the most worthwhile chapter for the casual reader who wants to understand the key ideas in this field. Chapter 6 builds on the discussion in Chapter 5, introducing a group theoretic approach to understand coherent states and Chapter 7 describes a geometric tool in the form of an approach to complex projective geometry called 'the stellar representation'. Chapter 8 returns to a more purely quantum mechanical discussion as the authors turn to study the space of density matrices. This chapter completes the discussion which started in Chapter 5. Chapter 9 begins the part of the book concerned with applications of the geometric approach. From this point on the book aims, specifically, to prepare the reader for the material in Chapter 15 beginning with a discussion on the purification of mixed quantum states. In the succeeding chapters a definite choice has been made to present a geometric approach to certain quantum information problems. For example, Chapter 10 contains an extremely well formulated discussion of measurement and positive operator-valued measures with several well illustrated examples and Chapter 11 reopens the discussion of density matrices. Entropy and majorization are again revisited in Chapter 12 in much greater detail than in previous chapters. Chapters 13 and 14 concern themselves with a discussion of various metrics and their relation to the problem of distinguishing between probability distributions and their suitability as probability measures. (book review)

  14. Connections between algebra, combinatorics, and geometry

    CERN Document Server

    Sather-Wagstaff, Sean

    2014-01-01

    Commutative algebra, combinatorics, and algebraic geometry are thriving areas of mathematical research with a rich history of interaction. Connections Between Algebra, Combinatorics, and Geometry contains lecture notes, along with exercises and solutions, from the Workshop on Connections Between Algebra and Geometry held at the University of Regina from May 29-June 1, 2012. It also contains research and survey papers from academics invited to participate in the companion Special Session on Interactions Between Algebraic Geometry and Commutative Algebra, which was part of the CMS Summer Meeting at the University of Regina held June 2–3, 2012, and the meeting Further Connections Between Algebra and Geometry, which was held at the North Dakota State University, February 23, 2013. This volume highlights three mini-courses in the areas of commutative algebra and algebraic geometry: differential graded commutative algebra, secant varieties, and fat points and symbolic powers. It will serve as a useful resou...

  15. Second International workshop Geometry and Symbolic Computation

    CERN Document Server

    Walczak, Paweł; Geometry and its Applications

    2014-01-01

    This volume has been divided into two parts: Geometry and Applications. The geometry portion of the book relates primarily to geometric flows, laminations, integral formulae, geometry of vector fields on Lie groups, and osculation; the articles in the applications portion concern some particular problems of the theory of dynamical systems, including mathematical problems of liquid flows and a study of cycles for non-dynamical systems. This Work is based on the second international workshop entitled "Geometry and Symbolic Computations," held on May 15-18, 2013 at the University of Haifa and is dedicated to modeling (using symbolic calculations) in differential geometry and its applications in fields such as computer science, tomography, and mechanics. It is intended to create a forum for students and researchers in pure and applied geometry to promote discussion of modern state-of-the-art in geometric modeling using symbolic programs such as Maple™ and Mathematica®, as well as presentation of new results. ...

  16. Differential manifolds

    CERN Document Server

    Kosinski, Antoni A

    2007-01-01

    The concepts of differential topology form the center of many mathematical disciplines such as differential geometry and Lie group theory. Differential Manifolds presents to advanced undergraduates and graduate students the systematic study of the topological structure of smooth manifolds. Author Antoni A. Kosinski, Professor Emeritus of Mathematics at Rutgers University, offers an accessible approach to both the h-cobordism theorem and the classification of differential structures on spheres.""How useful it is,"" noted the Bulletin of the American Mathematical Society, ""to have a single, sho

  17. Concepts from tensor analysus and differential geometry

    CERN Document Server

    Thomas, Tracy Y

    1961-01-01

    In this book, we study theoretical and practical aspects of computing methods for mathematical modelling of nonlinear systems. A number of computing techniques are considered, such as methods of operator approximation with any given accuracy; operator interpolation techniques including a non-Lagrange interpolation; methods of system representation subject to constraints associated with concepts of causality, memory and stationarity; methods of system representation with an accuracy that is the best within a given class of models; methods of covariance matrix estimation;methods for low-rank mat

  18. Differential geometry and the calculus of variations

    CERN Document Server

    Hermann, Robert

    1968-01-01

    In this book, we study theoretical and practical aspects of computing methods for mathematical modelling of nonlinear systems. A number of computing techniques are considered, such as methods of operator approximation with any given accuracy; operator interpolation techniques including a non-Lagrange interpolation; methods of system representation subject to constraints associated with concepts of causality, memory and stationarity; methods of system representation with an accuracy that is the best within a given class of models; methods of covariance matrix estimation;methods for low-rank mat

  19. Some problems in differential geometry and topology

    International Nuclear Information System (INIS)

    Donaldson, S K

    2008-01-01

    This does not attempt to be a systematic overview or to present a comprehensive list of problems. We outline some questions in three different areas which seem interesting to the author. Experts will learn little that is new; our goal is to give some picture of the fields for non-specialists. (open problem)

  20. Differential geometry of quasi-Sasakian manifolds

    International Nuclear Information System (INIS)

    Kirichenko, V F; Rustanov, A R

    2002-01-01

    The full system of structure equations of a quasi-Sasakian structure is obtained. The structure of the main tensors on a quasi-Sasakian manifold (the Riemann-Christoffel tensor, the Ricci tensor, and other tensors) is studied on this basis. Interesting characterizations of quasi-Sasakian Einstein manifolds are obtained. Additional symmetry properties of the Riemann-Christoffel tensor are discovered and used for distinguishing a new class of CR 1 quasi-Sasakian manifolds. An exhaustive description of the local structure of manifolds in this class is given. A complete classification (up to the B-transformation of the metric) is obtained for manifolds in this class having additional properties of the isotropy kind

  1. From Riemann to differential geometry and relativity

    CERN Document Server

    Papadopoulos, Athanase; Yamada, Sumio

    2017-01-01

    This book explores the work of Bernhard Riemann and its impact on mathematics, philosophy and physics. It features contributions from a range of fields, historical expositions, and selected research articles that were motivated by Riemann’s ideas and demonstrate their timelessness. The editors are convinced of the tremendous value of going into Riemann’s work in depth, investigating his original ideas, integrating them into a broader perspective, and establishing ties with modern science and philosophy. Accordingly, the contributors to this volume are mathematicians, physicists, philosophers and historians of science. The book offers a unique resource for students and researchers in the fields of mathematics, physics and philosophy, historians of science, and more generally to a wide range of readers interested in the history of ideas.

  2. Geometry and its applications

    CERN Document Server

    Meyer, Walter J

    2006-01-01

    Meyer''s Geometry and Its Applications, Second Edition, combines traditional geometry with current ideas to present a modern approach that is grounded in real-world applications. It balances the deductive approach with discovery learning, and introduces axiomatic, Euclidean geometry, non-Euclidean geometry, and transformational geometry. The text integrates applications and examples throughout and includes historical notes in many chapters. The Second Edition of Geometry and Its Applications is a significant text for any college or university that focuses on geometry''s usefulness in other disciplines. It is especially appropriate for engineering and science majors, as well as future mathematics teachers.* Realistic applications integrated throughout the text, including (but not limited to): - Symmetries of artistic patterns- Physics- Robotics- Computer vision- Computer graphics- Stability of architectural structures- Molecular biology- Medicine- Pattern recognition* Historical notes included in many chapters...

  3. Algebraic geometry in India

    Indian Academy of Sciences (India)

    algebraic geometry but also in related fields like number theory. ... every vector bundle on the affine space is trivial. (equivalently ... les on a compact Riemann surface to unitary rep- ... tial geometry and topology and was generalised in.

  4. Spinorial Geometry and Branes

    International Nuclear Information System (INIS)

    Sloane, Peter

    2007-01-01

    We adapt the spinorial geometry method introduced in [J. Gillard, U. Gran and G. Papadopoulos, 'The spinorial geometry of supersymmetric backgrounds,' Class. Quant. Grav. 22 (2005) 1033 [ (arXiv:hep-th/0410155)

  5. Spinorial Geometry and Branes

    Energy Technology Data Exchange (ETDEWEB)

    Sloane, Peter [Department of Mathematics, King' s College, University of London, Strand, London WC2R 2LS (United Kingdom)

    2007-09-15

    We adapt the spinorial geometry method introduced in [J. Gillard, U. Gran and G. Papadopoulos, 'The spinorial geometry of supersymmetric backgrounds,' Class. Quant. Grav. 22 (2005) 1033 [ (arXiv:hep-th/0410155)

  6. Geometry of surfaces a practical guide for mechanical engineers

    CERN Document Server

    Radzevich, Stephen P

    2012-01-01

    Presents an in-depth analysis of geometry of part surfaces and provides the tools for solving complex engineering problems Geometry of Surfaces: A Practical Guide for Mechanical Engineers is a comprehensive guide to applied geometry of surfaces with focus on practical applications in various areas of mechanical engineering. The book is divided into three parts on Part Surfaces, Geometry of Contact of Part Surfaces and Mapping of the Contacting Part Surfaces. Geometry of Surfaces: A Practical Guide for Mechanical Engineers combines differential geometry and gearing theory and presents new developments in the elementary theory of enveloping surfaces. Written by a leading expert of the field, this book also provides the reader with the tools for solving complex engineering problems in the field of mechanical engineering. Presents an in-depth analysis of geometry of part surfaces Provides tools for solving complex engineering problems in the field of mechanical engineering Combines differential geometry an...

  7. Integrable systems, geometry, and topology

    CERN Document Server

    Terng, Chuu-Lian

    2006-01-01

    The articles in this volume are based on lectures from a program on integrable systems and differential geometry held at Taiwan's National Center for Theoretical Sciences. As is well-known, for many soliton equations, the solutions have interpretations as differential geometric objects, and thereby techniques of soliton equations have been successfully applied to the study of geometric problems. The article by Burstall gives a beautiful exposition on isothermic surfaces and their relations to integrable systems, and the two articles by Guest give an introduction to quantum cohomology, carry out explicit computations of the quantum cohomology of flag manifolds and Hirzebruch surfaces, and give a survey of Givental's quantum differential equations. The article by Heintze, Liu, and Olmos is on the theory of isoparametric submanifolds in an arbitrary Riemannian manifold, which is related to the n-wave equation when the ambient manifold is Euclidean. Mukai-Hidano and Ohnita present a survey on the moduli space of ...

  8. Geometry essentials for dummies

    CERN Document Server

    Ryan, Mark

    2011-01-01

    Just the critical concepts you need to score high in geometry This practical, friendly guide focuses on critical concepts taught in a typical geometry course, from the properties of triangles, parallelograms, circles, and cylinders, to the skills and strategies you need to write geometry proofs. Geometry Essentials For Dummies is perfect for cramming or doing homework, or as a reference for parents helping kids study for exams. Get down to the basics - get a handle on the basics of geometry, from lines, segments, and angles, to vertices, altitudes, and diagonals Conque

  9. Arithmetic noncommutative geometry

    CERN Document Server

    Marcolli, Matilde

    2005-01-01

    Arithmetic noncommutative geometry denotes the use of ideas and tools from the field of noncommutative geometry, to address questions and reinterpret in a new perspective results and constructions from number theory and arithmetic algebraic geometry. This general philosophy is applied to the geometry and arithmetic of modular curves and to the fibers at archimedean places of arithmetic surfaces and varieties. The main reason why noncommutative geometry can be expected to say something about topics of arithmetic interest lies in the fact that it provides the right framework in which the tools of geometry continue to make sense on spaces that are very singular and apparently very far from the world of algebraic varieties. This provides a way of refining the boundary structure of certain classes of spaces that arise in the context of arithmetic geometry, such as moduli spaces (of which modular curves are the simplest case) or arithmetic varieties (completed by suitable "fibers at infinity"), by adding boundaries...

  10. Special metrics and group actions in geometry

    CERN Document Server

    Fino, Anna; Musso, Emilio; Podestà, Fabio; Vezzoni, Luigi

    2017-01-01

    The volume is a follow-up to the INdAM meeting “Special metrics and quaternionic geometry” held in Rome in November 2015. It offers a panoramic view of a selection of cutting-edge topics in differential geometry, including 4-manifolds, quaternionic and octonionic geometry, twistor spaces, harmonic maps, spinors, complex and conformal geometry, homogeneous spaces and nilmanifolds, special geometries in dimensions 5–8, gauge theory, symplectic and toric manifolds, exceptional holonomy and integrable systems. The workshop was held in honor of Simon Salamon, a leading international scholar at the forefront of academic research who has made significant contributions to all these subjects. The articles published here represent a compelling testimony to Salamon’s profound and longstanding impact on the mathematical community. Target readership includes graduate students and researchers working in Riemannian and complex geometry, Lie theory and mathematical physics.

  11. The Geometry Conference

    CERN Document Server

    Bárány, Imre; Vilcu, Costin

    2016-01-01

    This volume presents easy-to-understand yet surprising properties obtained using topological, geometric and graph theoretic tools in the areas covered by the Geometry Conference that took place in Mulhouse, France from September 7–11, 2014 in honour of Tudor Zamfirescu on the occasion of his 70th anniversary. The contributions address subjects in convexity and discrete geometry, in distance geometry or with geometrical flavor in combinatorics, graph theory or non-linear analysis. Written by top experts, these papers highlight the close connections between these fields, as well as ties to other domains of geometry and their reciprocal influence. They offer an overview on recent developments in geometry and its border with discrete mathematics, and provide answers to several open questions. The volume addresses a large audience in mathematics, including researchers and graduate students interested in geometry and geometrical problems.

  12. Geometry of supersymmetric gauge theories

    International Nuclear Information System (INIS)

    Gieres, F.

    1988-01-01

    This monograph gives a detailed and pedagogical account of the geometry of rigid superspace and supersymmetric Yang-Mills theories. While the core of the text is concerned with the classical theory, the quantization and anomaly problem are briefly discussed following a comprehensive introduction to BRS differential algebras and their field theoretical applications. Among the treated topics are invariant forms and vector fields on superspace, the matrix-representation of the super-Poincare group, invariant connections on reductive homogeneous spaces and the supermetric approach. Various aspects of the subject are discussed for the first time in textbook and are consistently presented in a unified geometric formalism

  13. Clustering in Hilbert simplex geometry

    KAUST Repository

    Nielsen, Frank

    2017-04-03

    Clustering categorical distributions in the probability simplex is a fundamental primitive often met in applications dealing with histograms or mixtures of multinomials. Traditionally, the differential-geometric structure of the probability simplex has been used either by (i) setting the Riemannian metric tensor to the Fisher information matrix of the categorical distributions, or (ii) defining the information-geometric structure induced by a smooth dissimilarity measure, called a divergence. In this paper, we introduce a novel computationally-friendly non-Riemannian framework for modeling the probability simplex: Hilbert simplex geometry. We discuss the pros and cons of those three statistical modelings, and compare them experimentally for clustering tasks.

  14. An invitation to noncommutative geometry

    CERN Document Server

    Marcolli, Matilde

    2008-01-01

    This is the first existing volume that collects lectures on this important and fast developing subject in mathematics. The lectures are given by leading experts in the field and the range of topics is kept as broad as possible by including both the algebraic and the differential aspects of noncommutative geometry as well as recent applications to theoretical physics and number theory. Sample Chapter(s). A Walk in the Noncommutative Garden (1,639 KB). Contents: A Walk in the Noncommutative Garden (A Connes & M Marcolli); Renormalization of Noncommutative Quantum Field Theory (H Grosse & R Wulke

  15. Algorithms in Algebraic Geometry

    CERN Document Server

    Dickenstein, Alicia; Sommese, Andrew J

    2008-01-01

    In the last decade, there has been a burgeoning of activity in the design and implementation of algorithms for algebraic geometric computation. Some of these algorithms were originally designed for abstract algebraic geometry, but now are of interest for use in applications and some of these algorithms were originally designed for applications, but now are of interest for use in abstract algebraic geometry. The workshop on Algorithms in Algebraic Geometry that was held in the framework of the IMA Annual Program Year in Applications of Algebraic Geometry by the Institute for Mathematics and Its

  16. Revolutions of Geometry

    CERN Document Server

    O'Leary, Michael

    2010-01-01

    Guides readers through the development of geometry and basic proof writing using a historical approach to the topic. In an effort to fully appreciate the logic and structure of geometric proofs, Revolutions of Geometry places proofs into the context of geometry's history, helping readers to understand that proof writing is crucial to the job of a mathematician. Written for students and educators of mathematics alike, the book guides readers through the rich history and influential works, from ancient times to the present, behind the development of geometry. As a result, readers are successfull

  17. Fundamental concepts of geometry

    CERN Document Server

    Meserve, Bruce E

    1983-01-01

    Demonstrates relationships between different types of geometry. Provides excellent overview of the foundations and historical evolution of geometrical concepts. Exercises (no solutions). Includes 98 illustrations.

  18. Developments in special geometry

    International Nuclear Information System (INIS)

    Mohaupt, Thomas; Vaughan, Owen

    2012-01-01

    We review the special geometry of N = 2 supersymmetric vector and hypermultiplets with emphasis on recent developments and applications. A new formulation of the local c-map based on the Hesse potential and special real coordinates is presented. Other recent developments include the Euclidean version of special geometry, and generalizations of special geometry to non-supersymmetric theories. As applications we discuss the proof that the local r-map and c-map preserve geodesic completeness, and the construction of four- and five-dimensional static solutions through dimensional reduction over time. The shared features of the real, complex and quaternionic version of special geometry are stressed throughout.

  19. Introduction to global variational geometry

    CERN Document Server

    Krupka, Demeter

    2015-01-01

    The book is devoted to recent research in the global variational theory on smooth manifolds. Its main objective is an extension of the classical variational calculus on Euclidean spaces to (topologically nontrivial) finite-dimensional smooth manifolds; to this purpose the methods of global analysis of differential forms are used. Emphasis is placed on the foundations of the theory of variational functionals on fibered manifolds - relevant geometric structures for variational principles in geometry, physical field theory and higher-order fibered mechanics. The book chapters include: - foundations of jet bundles and analysis of differential forms and vector fields on jet bundles, - the theory of higher-order integral variational functionals for sections of a fibred space, the (global) first variational formula in infinitesimal and integral forms- extremal conditions and the discussion of Noether symmetries and generalizations,- the inverse problems of the calculus of variations of Helmholtz type- variational se...

  20. Geometry of multihadron production

    Energy Technology Data Exchange (ETDEWEB)

    Bjorken, J.D.

    1994-10-01

    This summary talk only reviews a small sample of topics featured at this symposium: Introduction; The Geometry and Geography of Phase space; Space-Time Geometry and HBT; Multiplicities, Intermittency, Correlations; Disoriented Chiral Condensate; Deep Inelastic Scattering at HERA; and Other Contributions.

  1. Designs and finite geometries

    CERN Document Server

    1996-01-01

    Designs and Finite Geometries brings together in one place important contributions and up-to-date research results in this important area of mathematics. Designs and Finite Geometries serves as an excellent reference, providing insight into some of the most important research issues in the field.

  2. Geometry of multihadron production

    International Nuclear Information System (INIS)

    Bjorken, J.D.

    1994-10-01

    This summary talk only reviews a small sample of topics featured at this symposium: Introduction; The Geometry and Geography of Phase space; Space-Time Geometry and HBT; Multiplicities, Intermittency, Correlations; Disoriented Chiral Condensate; Deep Inelastic Scattering at HERA; and Other Contributions

  3. The Beauty of Geometry

    Science.gov (United States)

    Morris, Barbara H.

    2004-01-01

    This article describes a geometry project that used the beauty of stained-glass-window designs to teach middle school students about geometric figures and concepts. Three honors prealgebra teachers and a middle school mathematics gifted intervention specialist created a geometry project that covered the curriculum and also assessed students'…

  4. Donaldson invariants in algebraic geometry

    International Nuclear Information System (INIS)

    Goettsche, L.

    2000-01-01

    In these lectures I want to give an introduction to the relation of Donaldson invariants with algebraic geometry: Donaldson invariants are differentiable invariants of smooth compact 4-manifolds X, defined via moduli spaces of anti-self-dual connections. If X is an algebraic surface, then these moduli spaces can for a suitable choice of the metric be identified with moduli spaces of stable vector bundles on X. This can be used to compute Donaldson invariants via methods of algebraic geometry and has led to a lot of activity on moduli spaces of vector bundles and coherent sheaves on algebraic surfaces. We will first recall the definition of the Donaldson invariants via gauge theory. Then we will show the relation between moduli spaces of anti-self-dual connections and moduli spaces of vector bundles on algebraic surfaces, and how this makes it possible to compute Donaldson invariants via algebraic geometry methods. Finally we concentrate on the case that the number b + of positive eigenvalues of the intersection form on the second homology of the 4-manifold is 1. In this case the Donaldson invariants depend on the metric (or in the algebraic geometric case on the polarization) via a system of walls and chambers. We will study the change of the invariants under wall-crossing, and use this in particular to compute the Donaldson invariants of rational algebraic surfaces. (author)

  5. Matrix De Rham Complex and Quantum A-infinity algebras

    Science.gov (United States)

    Barannikov, S.

    2014-04-01

    I establish the relation of the non-commutative BV-formalism with super-invariant matrix integration. In particular, the non-commutative BV-equation, defining the quantum A ∞-algebras, introduced in Barannikov (Modular operads and non-commutative Batalin-Vilkovisky geometry. IMRN, vol. 2007, rnm075. Max Planck Institute for Mathematics 2006-48, 2007), is represented via de Rham differential acting on the supermatrix spaces related with Bernstein-Leites simple associative algebras with odd trace q( N), and gl( N| N). I also show that the matrix Lagrangians from Barannikov (Noncommutative Batalin-Vilkovisky geometry and matrix integrals. Isaac Newton Institute for Mathematical Sciences, Cambridge University, 2006) are represented by equivariantly closed differential forms.

  6. Geometry on the space of geometries

    International Nuclear Information System (INIS)

    Christodoulakis, T.; Zanelli, J.

    1988-06-01

    We discuss the geometric structure of the configuration space of pure gravity. This is an infinite dimensional manifold, M, where each point represents one spatial geometry g ij (x). The metric on M is dictated by geometrodynamics, and from it, the Christoffel symbols and Riemann tensor can be found. A ''free geometry'' tracing a geodesic on the manifold describes the time evolution of space in the strong gravity limit. In a regularization previously introduced by the authors, it is found that M does not have the same dimensionality, D, everywhere, and that D is not a scalar, although it is covariantly constant. In this regularization, it is seen that the path integral measure can be absorbed in a renormalization of the cosmological constant. (author). 19 refs

  7. Geometry and dynamics of integrable systems

    CERN Document Server

    Matveev, Vladimir

    2016-01-01

    Based on lectures given at an advanced course on integrable systems at the Centre de Recerca Matemàtica in Barcelona, these lecture notes address three major aspects of integrable systems: obstructions to integrability from differential Galois theory; the description of singularities of integrable systems on the basis of their relation to bi-Hamiltonian systems; and the generalization of integrable systems to the non-Hamiltonian settings. All three sections were written by top experts in their respective fields. Native to actual problem-solving challenges in mechanics, the topic of integrable systems is currently at the crossroads of several disciplines in pure and applied mathematics, and also has important interactions with physics. The study of integrable systems also actively employs methods from differential geometry. Moreover, it is extremely important in symplectic geometry and Hamiltonian dynamics, and has strong correlations with mathematical physics, Lie theory and algebraic geometry (including mir...

  8. VIII International Meeting on Lorentzian Geometry

    CERN Document Server

    Flores, José; Palomo, Francisco; GeLoMa 2016; Lorentzian geometry and related topics

    2017-01-01

    This volume contains a collection of research papers and useful surveys by experts in the field which provide a representative picture of the current status of this fascinating area. Based on contributions from the VIII International Meeting on Lorentzian Geometry, held at the University of Málaga, Spain, this volume covers topics such as distinguished (maximal, trapped, null, spacelike, constant mean curvature, umbilical...) submanifolds, causal completion of spacetimes, stationary regions and horizons in spacetimes, solitons in semi-Riemannian manifolds, relation between Lorentzian and Finslerian geometries and the oscillator spacetime. In the last decades Lorentzian geometry has experienced a significant impulse, which has transformed it from just a mathematical tool for general relativity to a consolidated branch of differential geometry, interesting in and of itself. Nowadays, this field provides a framework where many different mathematical techniques arise with applications to multiple parts of mathem...

  9. Einstein–Podolski–Rosen paradox, non-commuting operator ...

    Indian Academy of Sciences (India)

    Rosen (EPR) moved on to show that the quantum theory is incomplete .... discuss the notion of entanglement due to Bohm [4] because it is the only surviving issue ..... If this internal time-scales are extremely rapid, then it is meaningless to ...

  10. Unitary quantum physics with time-space non-commutativity

    International Nuclear Information System (INIS)

    Balachandran, A P; Govindarajan, T R; Martins, A G; Molina, C; Teotonio-Sobrinho, P

    2005-01-01

    In these lectures 4 quantum physics in noncommutative spacetime is developed. It is based on the work of Doplicher et al. which allows for time-space noncommutativity. In the context of noncommutative quantum mechanics, some important points are explored, such as the formal construction of the theory, symmetries, causality, simultaneity and observables. The dynamics generated by a noncommutative Schroedinger equation is studied. The theory is further extended to certain noncommutative versions of the cylinder, R 3 and R x S 3 . In all these models, only discrete time translations are possible. One striking consequence of quantised time translations is that even though a time independent Hamiltonian is an observable, in scattering processes, it is conserved only modulo 2π/θ, where θ is the noncommutative parameter. Scattering theory is formulated and an approach to quantumfield theory is outlined

  11. The Urbanik generalized convolutions in the non-commutative ...

    Indian Academy of Sciences (India)

    −sν(dx) < ∞. Now we apply this construction to the Kendall convolution case, starting with the weakly stable measure δ1. Example 1. Let △ be the Kendall convolution, i.e. the generalized convolution with the probability kernel: δ1△δa = (1 − a)δ1 + aπ2 for a ∈ [0, 1] and π2 be the Pareto distribution with the density π2(dx) =.

  12. Quasi-normal modes from non-commutative matrix dynamics

    Science.gov (United States)

    Aprile, Francesco; Sanfilippo, Francesco

    2017-09-01

    We explore similarities between the process of relaxation in the BMN matrix model and the physics of black holes in AdS/CFT. Focusing on Dyson-fluid solutions of the matrix model, we perform numerical simulations of the real time dynamics of the system. By quenching the equilibrium distribution we study quasi-normal oscillations of scalar single trace observables, we isolate the lowest quasi-normal mode, and we determine its frequencies as function of the energy. Considering the BMN matrix model as a truncation of N=4 SYM, we also compute the frequencies of the quasi-normal modes of the dual scalar fields in the AdS5-Schwarzschild background. We compare the results, and we finda surprising similarity.

  13. Non-commutative Chern numbers for generic aperiodic discrete systems

    Science.gov (United States)

    Bourne, Chris; Prodan, Emil

    2018-06-01

    The search for strong topological phases in generic aperiodic materials and meta-materials is now vigorously pursued by the condensed matter physics community. In this work, we first introduce the concept of patterned resonators as a unifying theoretical framework for topological electronic, photonic, phononic etc (aperiodic) systems. We then discuss, in physical terms, the philosophy behind an operator theoretic analysis used to systematize such systems. A model calculation of the Hall conductance of a 2-dimensional amorphous lattice is given, where we present numerical evidence of its quantization in the mobility gap regime. Motivated by such facts, we then present the main result of our work, which is the extension of the Chern number formulas to Hamiltonians associated to lattices without a canonical labeling of the sites, together with index theorems that assure the quantization and stability of these Chern numbers in the mobility gap regime. Our results cover a broad range of applications, in particular, those involving quasi-crystalline, amorphous as well as synthetic (i.e. algorithmically generated) lattices.

  14. Complex and symplectic geometry

    CERN Document Server

    Medori, Costantino; Tomassini, Adriano

    2017-01-01

    This book arises from the INdAM Meeting "Complex and Symplectic Geometry", which was held in Cortona in June 2016. Several leading specialists, including young researchers, in the field of complex and symplectic geometry, present the state of the art of their research on topics such as the cohomology of complex manifolds; analytic techniques in Kähler and non-Kähler geometry; almost-complex and symplectic structures; special structures on complex manifolds; and deformations of complex objects. The work is intended for researchers in these areas.

  15. Non-Euclidean geometry

    CERN Document Server

    Kulczycki, Stefan

    2008-01-01

    This accessible approach features two varieties of proofs: stereometric and planimetric, as well as elementary proofs that employ only the simplest properties of the plane. A short history of geometry precedes a systematic exposition of the principles of non-Euclidean geometry.Starting with fundamental assumptions, the author examines the theorems of Hjelmslev, mapping a plane into a circle, the angle of parallelism and area of a polygon, regular polygons, straight lines and planes in space, and the horosphere. Further development of the theory covers hyperbolic functions, the geometry of suff

  16. Lectures on coarse geometry

    CERN Document Server

    Roe, John

    2003-01-01

    Coarse geometry is the study of spaces (particularly metric spaces) from a 'large scale' point of view, so that two spaces that look the same from a great distance are actually equivalent. This point of view is effective because it is often true that the relevant geometric properties of metric spaces are determined by their coarse geometry. Two examples of important uses of coarse geometry are Gromov's beautiful notion of a hyperbolic group and Mostow's proof of his famous rigidity theorem. The first few chapters of the book provide a general perspective on coarse structures. Even when only metric coarse structures are in view, the abstract framework brings the same simplification as does the passage from epsilons and deltas to open sets when speaking of continuity. The middle section reviews notions of negative curvature and rigidity. Modern interest in large scale geometry derives in large part from Mostow's rigidity theorem and from Gromov's subsequent 'large scale' rendition of the crucial properties of n...

  17. Complex algebraic geometry

    CERN Document Server

    Kollár, János

    1997-01-01

    This volume contains the lectures presented at the third Regional Geometry Institute at Park City in 1993. The lectures provide an introduction to the subject, complex algebraic geometry, making the book suitable as a text for second- and third-year graduate students. The book deals with topics in algebraic geometry where one can reach the level of current research while starting with the basics. Topics covered include the theory of surfaces from the viewpoint of recent higher-dimensional developments, providing an excellent introduction to more advanced topics such as the minimal model program. Also included is an introduction to Hodge theory and intersection homology based on the simple topological ideas of Lefschetz and an overview of the recent interactions between algebraic geometry and theoretical physics, which involve mirror symmetry and string theory.

  18. Geometry and Combinatorics

    DEFF Research Database (Denmark)

    Kokkendorff, Simon Lyngby

    2002-01-01

    The subject of this Ph.D.-thesis is somewhere in between continuous and discrete geometry. Chapter 2 treats the geometry of finite point sets in semi-Riemannian hyperquadrics,using a matrix whose entries are a trigonometric function of relative distances in a given point set. The distance...... to the geometry of a simplex in a semi-Riemannian hyperquadric. In chapter 3 we study which finite metric spaces that are realizable in a hyperbolic space in the limit where curvature goes to -∞. We show that such spaces are the so called leaf spaces, the set of degree 1 vertices of weighted trees. We also...... establish results on the limiting geometry of such an isometrically realized leaf space simplex in hyperbolic space, when curvature goes to -∞. Chapter 4 discusses negative type of metric spaces. We give a measure theoretic treatment of this concept and related invariants. The theory developed...

  19. Introduction to tropical geometry

    CERN Document Server

    Maclagan, Diane

    2015-01-01

    Tropical geometry is a combinatorial shadow of algebraic geometry, offering new polyhedral tools to compute invariants of algebraic varieties. It is based on tropical algebra, where the sum of two numbers is their minimum and the product is their sum. This turns polynomials into piecewise-linear functions, and their zero sets into polyhedral complexes. These tropical varieties retain a surprising amount of information about their classical counterparts. Tropical geometry is a young subject that has undergone a rapid development since the beginning of the 21st century. While establishing itself as an area in its own right, deep connections have been made to many branches of pure and applied mathematics. This book offers a self-contained introduction to tropical geometry, suitable as a course text for beginning graduate students. Proofs are provided for the main results, such as the Fundamental Theorem and the Structure Theorem. Numerous examples and explicit computations illustrate the main concepts. Each of t...

  20. Rudiments of algebraic geometry

    CERN Document Server

    Jenner, WE

    2017-01-01

    Aimed at advanced undergraduate students of mathematics, this concise text covers the basics of algebraic geometry. Topics include affine spaces, projective spaces, rational curves, algebraic sets with group structure, more. 1963 edition.

  1. Implosions and hypertoric geometry

    DEFF Research Database (Denmark)

    Dancer, A.; Kirwan, F.; Swann, A.

    2013-01-01

    The geometry of the universal hyperkahler implosion for SU (n) is explored. In particular, we show that the universal hyperkahler implosion naturally contains a hypertoric variety described in terms of quivers. Furthermore, we discuss a gauge theoretic approach to hyperkahler implosion.......The geometry of the universal hyperkahler implosion for SU (n) is explored. In particular, we show that the universal hyperkahler implosion naturally contains a hypertoric variety described in terms of quivers. Furthermore, we discuss a gauge theoretic approach to hyperkahler implosion....

  2. Intermediate algebra & analytic geometry

    CERN Document Server

    Gondin, William R

    1967-01-01

    Intermediate Algebra & Analytic Geometry Made Simple focuses on the principles, processes, calculations, and methodologies involved in intermediate algebra and analytic geometry. The publication first offers information on linear equations in two unknowns and variables, functions, and graphs. Discussions focus on graphic interpretations, explicit and implicit functions, first quadrant graphs, variables and functions, determinate and indeterminate systems, independent and dependent equations, and defective and redundant systems. The text then examines quadratic equations in one variable, system

  3. d-geometries revisited

    CERN Document Server

    Ceresole, Anna; Gnecchi, Alessandra; Marrani, Alessio

    2013-01-01

    We analyze some properties of the four dimensional supergravity theories which originate from five dimensions upon reduction. They generalize to N>2 extended supersymmetries the d-geometries with cubic prepotentials, familiar from N=2 special K\\"ahler geometry. We emphasize the role of a suitable parametrization of the scalar fields and the corresponding triangular symplectic basis. We also consider applications to the first order flow equations for non-BPS extremal black holes.

  4. CMS geometry through 2020

    International Nuclear Information System (INIS)

    Osborne, I; Brownson, E; Eulisse, G; Jones, C D; Sexton-Kennedy, E; Lange, D J

    2014-01-01

    CMS faces real challenges with upgrade of the CMS detector through 2020 and beyond. One of the challenges, from the software point of view, is managing upgrade simulations with the same software release as the 2013 scenario. We present the CMS geometry description software model, its integration with the CMS event setup and core software. The CMS geometry configuration and selection is implemented in Python. The tools collect the Python configuration fragments into a script used in CMS workflow. This flexible and automated geometry configuration allows choosing either transient or persistent version of the same scenario and specific version of the same scenario. We describe how the geometries are integrated and validated, and how we define and handle different geometry scenarios in simulation and reconstruction. We discuss how to transparently manage multiple incompatible geometries in the same software release. Several examples are shown based on current implementation assuring consistent choice of scenario conditions. The consequences and implications for multiple/different code algorithms are discussed.

  5. Software Geometry in Simulations

    Science.gov (United States)

    Alion, Tyler; Viren, Brett; Junk, Tom

    2015-04-01

    The Long Baseline Neutrino Experiment (LBNE) involves many detectors. The experiment's near detector (ND) facility, may ultimately involve several detectors. The far detector (FD) will be significantly larger than any other Liquid Argon (LAr) detector yet constructed; many prototype detectors are being constructed and studied to motivate a plethora of proposed FD designs. Whether it be a constructed prototype or a proposed ND/FD design, every design must be simulated and analyzed. This presents a considerable challenge to LBNE software experts; each detector geometry must be described to the simulation software in an efficient way which allows for multiple authors to easily collaborate. Furthermore, different geometry versions must be tracked throughout their use. We present a framework called General Geometry Description (GGD), written and developed by LBNE software collaborators for managing software to generate geometries. Though GGD is flexible enough to be used by any experiment working with detectors, we present it's first use in generating Geometry Description Markup Language (GDML) files to interface with LArSoft, a framework of detector simulations, event reconstruction, and data analyses written for all LAr technology users at Fermilab. Brett is the other of the framework discussed here, the General Geometry Description (GGD).

  6. Introduction to combinatorial geometry

    International Nuclear Information System (INIS)

    Gabriel, T.A.; Emmett, M.B.

    1985-01-01

    The combinatorial geometry package as used in many three-dimensional multimedia Monte Carlo radiation transport codes, such as HETC, MORSE, and EGS, is becoming the preferred way to describe simple and complicated systems. Just about any system can be modeled using the package with relatively few input statements. This can be contrasted against the older style geometry packages in which the required input statements could be large even for relatively simple systems. However, with advancements come some difficulties. The users of combinatorial geometry must be able to visualize more, and, in some instances, all of the system at a time. Errors can be introduced into the modeling which, though slight, and at times hard to detect, can have devastating effects on the calculated results. As with all modeling packages, the best way to learn the combinatorial geometry is to use it, first on a simple system then on more complicated systems. The basic technique for the description of the geometry consists of defining the location and shape of the various zones in terms of the intersections and unions of geometric bodies. The geometric bodies which are generally included in most combinatorial geometry packages are: (1) box, (2) right parallelepiped, (3) sphere, (4) right circular cylinder, (5) right elliptic cylinder, (6) ellipsoid, (7) truncated right cone, (8) right angle wedge, and (9) arbitrary polyhedron. The data necessary to describe each of these bodies are given. As can be easily noted, there are some subsets included for simplicity

  7. Noncommutative geometry and fluid dynamics

    International Nuclear Information System (INIS)

    Das, Praloy; Ghosh, Subir

    2016-01-01

    In the present paper we have developed a Non-Commutative (NC) generalization of perfect fluid model from first principles, in a Hamiltonian framework. The noncommutativity is introduced at the Lagrangian (particle) coordinate space brackets and the induced NC fluid bracket algebra for the Eulerian (fluid) field variables is derived. Together with a Hamiltonian this NC algebra generates the generalized fluid dynamics that satisfies exact local conservation laws for mass and energy, thereby maintaining mass and energy conservation. However, nontrivial NC correction terms appear in the charge and energy fluxes. Other non-relativistic spacetime symmetries of the NC fluid are also discussed in detail. This constitutes the study of kinematics and dynamics of NC fluid. In the second part we construct an extension of the Friedmann-Robertson-Walker (FRW) cosmological model based on the NC fluid dynamics presented here. We outline the way in which NC effects generate cosmological perturbations bringing about anisotropy and inhomogeneity in the model. We also derive a NC extended Friedmann equation. (orig.)

  8. Noncommutative geometry and fluid dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Das, Praloy; Ghosh, Subir [Indian Statistical Institute, Physics and Applied Mathematics Unit, Kolkata (India)

    2016-11-15

    In the present paper we have developed a Non-Commutative (NC) generalization of perfect fluid model from first principles, in a Hamiltonian framework. The noncommutativity is introduced at the Lagrangian (particle) coordinate space brackets and the induced NC fluid bracket algebra for the Eulerian (fluid) field variables is derived. Together with a Hamiltonian this NC algebra generates the generalized fluid dynamics that satisfies exact local conservation laws for mass and energy, thereby maintaining mass and energy conservation. However, nontrivial NC correction terms appear in the charge and energy fluxes. Other non-relativistic spacetime symmetries of the NC fluid are also discussed in detail. This constitutes the study of kinematics and dynamics of NC fluid. In the second part we construct an extension of the Friedmann-Robertson-Walker (FRW) cosmological model based on the NC fluid dynamics presented here. We outline the way in which NC effects generate cosmological perturbations bringing about anisotropy and inhomogeneity in the model. We also derive a NC extended Friedmann equation. (orig.)

  9. Weyl geometry and the nonlinear mechanics of distributed point defects

    KAUST Repository

    Yavari, A.; Goriely, A.

    2012-01-01

    The residual stress field of a nonlinear elastic solid with a spherically symmetric distribution of point defects is obtained explicitly using methods from differential geometry. The material manifold of a solid with distributed point defects

  10. A variational solution of transport equation based on spherical geometry

    International Nuclear Information System (INIS)

    Liu Hui; Zhang Ben'ai

    2002-01-01

    A variational method with differential forms gives better precision for numerical solution of transport critical problem based on spherical geometry, and its computation seems simple than other approximate methods

  11. Global aspects of complex geometry

    CERN Document Server

    Catanese, Fabrizio; Huckleberry, Alan T

    2006-01-01

    Present an overview of developments in Complex Geometry. This book covers topics that range from curve and surface theory through special varieties in higher dimensions, moduli theory, Kahler geometry, and group actions to Hodge theory and characteristic p-geometry.

  12. The algebraic approach to space-time geometry

    International Nuclear Information System (INIS)

    Heller, M.; Multarzynski, P.; Sasin, W.

    1989-01-01

    A differential manifold can be defined in terms of smooth real functions carried by it. By rejecting the postulate, in such a definition, demanding the local diffeomorphism of a manifold to the Euclidean space, one obtains the so-called differential space concept. Every subset of R n turns out to be a differential space. Extensive parts of differential geometry on differential spaces, developed by Sikorski, are reviewed and adapted to relativistic purposes. Differential space as a new model of space-time is proposed. The Lorentz structure and Einstein's field equations on differential spaces are discussed. 20 refs. (author)

  13. Sources of hyperbolic geometry

    CERN Document Server

    Stillwell, John

    1996-01-01

    This book presents, for the first time in English, the papers of Beltrami, Klein, and Poincaré that brought hyperbolic geometry into the mainstream of mathematics. A recognition of Beltrami comparable to that given the pioneering works of Bolyai and Lobachevsky seems long overdue-not only because Beltrami rescued hyperbolic geometry from oblivion by proving it to be logically consistent, but because he gave it a concrete meaning (a model) that made hyperbolic geometry part of ordinary mathematics. The models subsequently discovered by Klein and Poincaré brought hyperbolic geometry even further down to earth and paved the way for the current explosion of activity in low-dimensional geometry and topology. By placing the works of these three mathematicians side by side and providing commentaries, this book gives the student, historian, or professional geometer a bird's-eye view of one of the great episodes in mathematics. The unified setting and historical context reveal the insights of Beltrami, Klein, and Po...

  14. Generalizing optical geometry

    International Nuclear Information System (INIS)

    Jonsson, Rickard; Westman, Hans

    2006-01-01

    We show that by employing the standard projected curvature as a measure of spatial curvature, we can make a certain generalization of optical geometry (Abramowicz M A and Lasota J-P 1997 Class. Quantum Grav. A 14 23-30). This generalization applies to any spacetime that admits a hypersurface orthogonal shearfree congruence of worldlines. This is a somewhat larger class of spacetimes than the conformally static spacetimes assumed in standard optical geometry. In the generalized optical geometry, which in the generic case is time dependent, photons move with unit speed along spatial geodesics and the sideways force experienced by a particle following a spatially straight line is independent of the velocity. Also gyroscopes moving along spatial geodesics do not precess (relative to the forward direction). Gyroscopes that follow a curved spatial trajectory precess according to a very simple law of three-rotation. We also present an inertial force formalism in coordinate representation for this generalization. Furthermore, we show that by employing a new sense of spatial curvature (Jonsson R 2006 Class. Quantum Grav. 23 1)) closely connected to Fermat's principle, we can make a more extensive generalization of optical geometry that applies to arbitrary spacetimes. In general this optical geometry will be time dependent, but still geodesic photons move with unit speed and follow lines that are spatially straight in the new sense. Also, the sideways experienced (comoving) force on a test particle following a line that is straight in the new sense will be independent of the velocity

  15. Some Progress in Conformal Geometry

    Directory of Open Access Journals (Sweden)

    Sun-Yung A. Chang

    2007-12-01

    Full Text Available This is a survey paper of our current research on the theory of partial differential equations in conformal geometry. Our intention is to describe some of our current works in a rather brief and expository fashion. We are not giving a comprehensive survey on the subject and references cited here are not intended to be complete. We introduce a bubble tree structure to study the degeneration of a class of Yamabe metrics on Bach flat manifolds satisfying some global conformal bounds on compact manifolds of dimension 4. As applications, we establish a gap theorem, a finiteness theorem for diffeomorphism type for this class, and diameter bound of the $sigma_2$-metrics in a class of conformal 4-manifolds. For conformally compact Einstein metrics we introduce an eigenfunction compactification. As a consequence we obtain some topological constraints in terms of renormalized volumes.

  16. Geometry of isotropic convex bodies

    CERN Document Server

    Brazitikos, Silouanos; Valettas, Petros; Vritsiou, Beatrice-Helen

    2014-01-01

    The study of high-dimensional convex bodies from a geometric and analytic point of view, with an emphasis on the dependence of various parameters on the dimension stands at the intersection of classical convex geometry and the local theory of Banach spaces. It is also closely linked to many other fields, such as probability theory, partial differential equations, Riemannian geometry, harmonic analysis and combinatorics. It is now understood that the convexity assumption forces most of the volume of a high-dimensional convex body to be concentrated in some canonical way and the main question is whether, under some natural normalization, the answer to many fundamental questions should be independent of the dimension. The aim of this book is to introduce a number of well-known questions regarding the distribution of volume in high-dimensional convex bodies, which are exactly of this nature: among them are the slicing problem, the thin shell conjecture and the Kannan-Lov�sz-Simonovits conjecture. This book prov...

  17. Computational synthetic geometry

    CERN Document Server

    Bokowski, Jürgen

    1989-01-01

    Computational synthetic geometry deals with methods for realizing abstract geometric objects in concrete vector spaces. This research monograph considers a large class of problems from convexity and discrete geometry including constructing convex polytopes from simplicial complexes, vector geometries from incidence structures and hyperplane arrangements from oriented matroids. It turns out that algorithms for these constructions exist if and only if arbitrary polynomial equations are decidable with respect to the underlying field. Besides such complexity theorems a variety of symbolic algorithms are discussed, and the methods are applied to obtain new mathematical results on convex polytopes, projective configurations and the combinatorics of Grassmann varieties. Finally algebraic varieties characterizing matroids and oriented matroids are introduced providing a new basis for applying computer algebra methods in this field. The necessary background knowledge is reviewed briefly. The text is accessible to stud...

  18. Discrete and computational geometry

    CERN Document Server

    Devadoss, Satyan L

    2011-01-01

    Discrete geometry is a relatively new development in pure mathematics, while computational geometry is an emerging area in applications-driven computer science. Their intermingling has yielded exciting advances in recent years, yet what has been lacking until now is an undergraduate textbook that bridges the gap between the two. Discrete and Computational Geometry offers a comprehensive yet accessible introduction to this cutting-edge frontier of mathematics and computer science. This book covers traditional topics such as convex hulls, triangulations, and Voronoi diagrams, as well as more recent subjects like pseudotriangulations, curve reconstruction, and locked chains. It also touches on more advanced material, including Dehn invariants, associahedra, quasigeodesics, Morse theory, and the recent resolution of the Poincaré conjecture. Connections to real-world applications are made throughout, and algorithms are presented independently of any programming language. This richly illustrated textbook also fe...

  19. Lectures on discrete geometry

    CERN Document Server

    2002-01-01

    Discrete geometry investigates combinatorial properties of configurations of geometric objects. To a working mathematician or computer scientist, it offers sophisticated results and techniques of great diversity and it is a foundation for fields such as computational geometry or combinatorial optimization. This book is primarily a textbook introduction to various areas of discrete geometry. In each area, it explains several key results and methods, in an accessible and concrete manner. It also contains more advanced material in separate sections and thus it can serve as a collection of surveys in several narrower subfields. The main topics include: basics on convex sets, convex polytopes, and hyperplane arrangements; combinatorial complexity of geometric configurations; intersection patterns and transversals of convex sets; geometric Ramsey-type results; polyhedral combinatorics and high-dimensional convexity; and lastly, embeddings of finite metric spaces into normed spaces. Jiri Matousek is Professor of Com...

  20. Geometry and symmetry

    CERN Document Server

    Yale, Paul B

    2012-01-01

    This book is an introduction to the geometry of Euclidean, affine, and projective spaces with special emphasis on the important groups of symmetries of these spaces. The two major objectives of the text are to introduce the main ideas of affine and projective spaces and to develop facility in handling transformations and groups of transformations. Since there are many good texts on affine and projective planes, the author has concentrated on the n-dimensional cases.Designed to be used in advanced undergraduate mathematics or physics courses, the book focuses on ""practical geometry,"" emphasi

  1. Remarks on Hamiltonian structures in G2-geometry

    International Nuclear Information System (INIS)

    Cho, Hyunjoo; Salur, Sema; Todd, A. J.

    2013-01-01

    In this article, we treat G 2 -geometry as a special case of multisymplectic geometry and make a number of remarks regarding Hamiltonian multivector fields and Hamiltonian differential forms on manifolds with an integrable G 2 -structure; in particular, we discuss existence and make a number of identifications of the spaces of Hamiltonian structures associated to the two multisymplectic structures associated to an integrable G 2 -structure. Along the way, we prove some results in multisymplectic geometry that are generalizations of results from symplectic geometry

  2. Geometry of curves and surfaces with Maple

    CERN Document Server

    Rovenski, Vladimir

    2000-01-01

    This concise text on geometry with computer modeling presents some elementary methods for analytical modeling and visualization of curves and surfaces. The author systematically examines such powerful tools as 2-D and 3-D animation of geometric images, transformations, shadows, and colors, and then further studies more complex problems in differential geometry. Well-illustrated with more than 350 figures---reproducible using Maple programs in the book---the work is devoted to three main areas: curves, surfaces, and polyhedra. Pedagogical benefits can be found in the large number of Maple programs, some of which are analogous to C++ programs, including those for splines and fractals. To avoid tedious typing, readers will be able to download many of the programs from the Birkhauser web site. Aimed at a broad audience of students, instructors of mathematics, computer scientists, and engineers who have knowledge of analytical geometry, i.e., method of coordinates, this text will be an excellent classroom resource...

  3. International conference on Algebraic and Complex Geometry

    CERN Document Server

    Kloosterman, Remke; Schütt, Matthias

    2014-01-01

    Several important aspects of moduli spaces and irreducible holomorphic symplectic manifolds were highlighted at the conference “Algebraic and Complex Geometry” held September 2012 in Hannover, Germany. These two subjects of recent ongoing progress belong to the most spectacular developments in Algebraic and Complex Geometry. Irreducible symplectic manifolds are of interest to algebraic and differential geometers alike, behaving similar to K3 surfaces and abelian varieties in certain ways, but being by far less well-understood. Moduli spaces, on the other hand, have been a rich source of open questions and discoveries for decades and still continue to be a hot topic in itself as well as with its interplay with neighbouring fields such as arithmetic geometry and string theory. Beyond the above focal topics this volume reflects the broad diversity of lectures at the conference and comprises 11 papers on current research from different areas of algebraic and complex geometry sorted in alphabetic order by the ...

  4. Towards relativistic quantum geometry

    Energy Technology Data Exchange (ETDEWEB)

    Ridao, Luis Santiago [Instituto de Investigaciones Físicas de Mar del Plata (IFIMAR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mar del Plata (Argentina); Bellini, Mauricio, E-mail: mbellini@mdp.edu.ar [Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Funes 3350, C.P. 7600, Mar del Plata (Argentina); Instituto de Investigaciones Físicas de Mar del Plata (IFIMAR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mar del Plata (Argentina)

    2015-12-17

    We obtain a gauge-invariant relativistic quantum geometry by using a Weylian-like manifold with a geometric scalar field which provides a gauge-invariant relativistic quantum theory in which the algebra of the Weylian-like field depends on observers. An example for a Reissner–Nordström black-hole is studied.

  5. Multiplicity in difference geometry

    OpenAIRE

    Tomasic, Ivan

    2011-01-01

    We prove a first principle of preservation of multiplicity in difference geometry, paving the way for the development of a more general intersection theory. In particular, the fibres of a \\sigma-finite morphism between difference curves are all of the same size, when counted with correct multiplicities.

  6. Spacetime and Euclidean geometry

    Science.gov (United States)

    Brill, Dieter; Jacobson, Ted

    2006-04-01

    Using only the principle of relativity and Euclidean geometry we show in this pedagogical article that the square of proper time or length in a two-dimensional spacetime diagram is proportional to the Euclidean area of the corresponding causal domain. We use this relation to derive the Minkowski line element by two geometric proofs of the spacetime Pythagoras theorem.

  7. Physics and geometry

    International Nuclear Information System (INIS)

    Konopleva, N.P.

    2009-01-01

    The basic ideas of description methods of physical fields and elementary particle interactions are discussed. One of such ideas is the conception of space-time geometry. In this connection experimental measurement methods are analyzed. It is shown that measure procedures are the origin of geometrical axioms. The connection between space symmetry properties and the conservation laws is considered

  8. Origami, Geometry and Art

    Science.gov (United States)

    Wares, Arsalan; Elstak, Iwan

    2017-01-01

    The purpose of this paper is to describe the mathematics that emanates from the construction of an origami box. We first construct a simple origami box from a rectangular sheet and then discuss some of the mathematical questions that arise in the context of geometry and algebra. The activity can be used as a context for illustrating how algebra…

  9. Gravity is Geometry.

    Science.gov (United States)

    MacKeown, P. K.

    1984-01-01

    Clarifies two concepts of gravity--those of a fictitious force and those of how space and time may have geometry. Reviews the position of Newton's theory of gravity in the context of special relativity and considers why gravity (as distinct from electromagnetics) lends itself to Einstein's revolutionary interpretation. (JN)

  10. Towards a Nano Geometry?

    DEFF Research Database (Denmark)

    Booss-Bavnbek, Bernhelm

    2011-01-01

    This paper applies I.M. Gelfand's distinction between adequate and non-adequate use of mathematical language in different contexts to the newly opened window of model-based measurements of intracellular dynamics. The specifics of geometry and dynamics on the mesoscale of cell physiology are elabo...

  11. Diophantine geometry an introduction

    CERN Document Server

    Hindry, Marc

    2000-01-01

    This is an introduction to diophantine geometry at the advanced graduate level. The book contains a proof of the Mordell conjecture which will make it quite attractive to graduate students and professional mathematicians. In each part of the book, the reader will find numerous exercises.

  12. Sliding vane geometry turbines

    Science.gov (United States)

    Sun, Harold Huimin; Zhang, Jizhong; Hu, Liangjun; Hanna, Dave R

    2014-12-30

    Various systems and methods are described for a variable geometry turbine. In one example, a turbine nozzle comprises a central axis and a nozzle vane. The nozzle vane includes a stationary vane and a sliding vane. The sliding vane is positioned to slide in a direction substantially tangent to an inner circumference of the turbine nozzle and in contact with the stationary vane.

  13. History of analytic geometry

    CERN Document Server

    Boyer, Carl B

    2012-01-01

    Designed as an integrated survey of the development of analytic geometry, this study presents the concepts and contributions from before the Alexandrian Age through the eras of the great French mathematicians Fermat and Descartes, and on through Newton and Euler to the "Golden Age," from 1789 to 1850.

  14. Non-euclidean geometry

    CERN Document Server

    Coxeter, HSM

    1965-01-01

    This textbook introduces non-Euclidean geometry, and the third edition adds a new chapter, including a description of the two families of 'mid-lines' between two given lines and an elementary derivation of the basic formulae of spherical trigonometry and hyperbolic trigonometry, and other new material.

  15. Geometry Euclid and beyond

    CERN Document Server

    Hartshorne, Robin

    2000-01-01

    In recent years, I have been teaching a junior-senior-level course on the classi­ cal geometries. This book has grown out of that teaching experience. I assume only high-school geometry and some abstract algebra. The course begins in Chapter 1 with a critical examination of Euclid's Elements. Students are expected to read concurrently Books I-IV of Euclid's text, which must be obtained sepa­ rately. The remainder of the book is an exploration of questions that arise natu­ rally from this reading, together with their modern answers. To shore up the foundations we use Hilbert's axioms. The Cartesian plane over a field provides an analytic model of the theory, and conversely, we see that one can introduce coordinates into an abstract geometry. The theory of area is analyzed by cutting figures into triangles. The algebra of field extensions provides a method for deciding which geometrical constructions are possible. The investigation of the parallel postulate leads to the various non-Euclidean geometries. And ...

  16. On Theories of Superalgebras of Differentiable Functions

    NARCIS (Netherlands)

    Carchedi, D.J.; Roytenberg, D.

    2013-01-01

    This is the first in a series of papers laying the foundations for a differential graded approach to derived differential geometry (and other geometries in characteristic zero). In this paper, we study theories of supercommutative algebras for which infinitely differentiable functions can be

  17. Geometry and Hamiltonian mechanics on discrete spaces

    International Nuclear Information System (INIS)

    Talasila, V; Clemente-Gallardo, J; Schaft, A J van der

    2004-01-01

    Numerical simulation is often crucial for analysing the behaviour of many complex systems which do not admit analytic solutions. To this end, one either converts a 'smooth' model into a discrete (in space and time) model, or models systems directly at a discrete level. The goal of this paper is to provide a discrete analogue of differential geometry, and to define on these discrete models a formal discrete Hamiltonian structure-in doing so we try to bring together various fundamental concepts from numerical analysis, differential geometry, algebraic geometry, simplicial homology and classical Hamiltonian mechanics. For example, the concept of a twisted derivation is borrowed from algebraic geometry for developing a discrete calculus. The theory is applied to a nonlinear pendulum and we compare the dynamics obtained through a discrete modelling approach with the dynamics obtained via the usual discretization procedures. Also an example of an energy-conserving algorithm on a simple harmonic oscillator is presented, and its effect on the Poisson structure is discussed

  18. The geometry of population genetics

    CERN Document Server

    Akin, Ethan

    1979-01-01

    The differential equations which model the action of selection and recombination are nonlinear equations which are impossible to It is even difficult to describe in general the solve explicitly. Recently, Shahshahani began using qualitative behavior of solutions. differential geometry to study these equations [28]. with this mono­ graph I hope to show that his ideas illuminate many aspects of pop­ ulation genetics. Among these are his proof and clarification of Fisher's Fundamental Theorem of Natural Selection and Kimura's Maximum Principle and also the effect of recombination on entropy. We also discover the relationship between two classic measures of 2 genetic distance: the x measure and the arc-cosine measure. There are two large applications. The first is a precise definition of the biological concept of degree of epistasis which applies to general (i.e. frequency dependent) forms of selection. The second is the unexpected appearance of cycling. We show that cycles can occur in the two-locus-two-allele...

  19. Some geometry and topology

    International Nuclear Information System (INIS)

    Marmo, G.; Morandi, G.

    1995-01-01

    In this lecture some mathematical problems that arise when one deals with low-dimensional field theories, such as homotopy and topological invariants, differential calculus on Lie groups and coset spaces, fiber spaces and parallel transport, differential calculus on fiber bundles, sequences on principal bundles and Chern-Simons terms are discussed

  20. D1/D5 system with B-field, noncommutative geometry and the CFT of the higgs branch

    CERN Document Server

    Dhar, A; Wadia, S R; Yogendran, K P; Dhar, Avinash; Mandal, Gautam; Wadia, Spenta R.

    2000-01-01

    The D1/D5 system is considered in the presence of the NS B field. An explicit supergravity solution in the asymptotically flat and near horizon limits is presented. Explicit mass formulae are presented in both cases. This solution has no D3 source branes and represents a true bound state of the D1/D5 system. We study the motion of a separated D1-brane in the background geometry described above and reproduce the Liouville potential that binds the D1 brane. A gauge theory analysis is also presented in the presence of Fayet-Iliopoulos (FI) parameters which can be identified with the self-dual part of the NS B field. In the case of a single D5-brane and an arbitrary number of D1 branes we can demonstrate the existence of a bound state in the Higgs branch. We also point out the connection of the SCFT on the resolved Sym$_{Q_1Q_5}(\\tilde T^4)$ with recent developments in non-commutative Yang-Mills theory.

  1. Multivariate calculus and geometry

    CERN Document Server

    Dineen, Seán

    2014-01-01

    Multivariate calculus can be understood best by combining geometric insight, intuitive arguments, detailed explanations and mathematical reasoning. This textbook has successfully followed this programme. It additionally provides a solid description of the basic concepts, via familiar examples, which are then tested in technically demanding situations. In this new edition the introductory chapter and two of the chapters on the geometry of surfaces have been revised. Some exercises have been replaced and others provided with expanded solutions. Familiarity with partial derivatives and a course in linear algebra are essential prerequisites for readers of this book. Multivariate Calculus and Geometry is aimed primarily at higher level undergraduates in the mathematical sciences. The inclusion of many practical examples involving problems of several variables will appeal to mathematics, science and engineering students.

  2. Transformational plane geometry

    CERN Document Server

    Umble, Ronald N

    2014-01-01

    Axioms of Euclidean Plane Geometry The Existence and Incidence Postulates The Distance and Ruler Postulates The Plane Separation Postulate The Protractor Postulate The Side-Angle-Side Postulate and the Euclidean Parallel Postulate Theorems of Euclidean Plane Geometry The Exterior Angle Theorem Triangle Congruence Theorems The Alternate Interior Angles Theorem and the Angle Sum Theorem Similar Triangles Introduction to Transformations, Isometries, and Similarities Transformations Isometries and SimilaritiesAppendix: Proof of Surjectivity Translations, Rotations, and Reflections Translations Rotations Reflections Appendix: Geometer's Sketchpad Commands Required by Exploratory Activities Compositions of Translations, Rotations, and Reflections The Three Points Theorem Rotations as Compositions of Two Reflections Translations as Compositions of Two Halfturns or Two Reflections The Angle Addition Theorem Glide Reflections Classification of Isometries The Fundamental Theorem and Congruence Classification of Isometr...

  3. Multilevel geometry optimization

    Science.gov (United States)

    Rodgers, Jocelyn M.; Fast, Patton L.; Truhlar, Donald G.

    2000-02-01

    Geometry optimization has been carried out for three test molecules using six multilevel electronic structure methods, in particular Gaussian-2, Gaussian-3, multicoefficient G2, multicoefficient G3, and two multicoefficient correlation methods based on correlation-consistent basis sets. In the Gaussian-2 and Gaussian-3 methods, various levels are added and subtracted with unit coefficients, whereas the multicoefficient Gaussian-x methods involve noninteger parameters as coefficients. The multilevel optimizations drop the average error in the geometry (averaged over the 18 cases) by a factor of about two when compared to the single most expensive component of a given multilevel calculation, and in all 18 cases the accuracy of the atomization energy for the three test molecules improves; with an average improvement of 16.7 kcal/mol.

  4. Multilevel geometry optimization

    Energy Technology Data Exchange (ETDEWEB)

    Rodgers, Jocelyn M. [Department of Chemistry and Supercomputer Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431 (United States); Fast, Patton L. [Department of Chemistry and Supercomputer Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431 (United States); Truhlar, Donald G. [Department of Chemistry and Supercomputer Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431 (United States)

    2000-02-15

    Geometry optimization has been carried out for three test molecules using six multilevel electronic structure methods, in particular Gaussian-2, Gaussian-3, multicoefficient G2, multicoefficient G3, and two multicoefficient correlation methods based on correlation-consistent basis sets. In the Gaussian-2 and Gaussian-3 methods, various levels are added and subtracted with unit coefficients, whereas the multicoefficient Gaussian-x methods involve noninteger parameters as coefficients. The multilevel optimizations drop the average error in the geometry (averaged over the 18 cases) by a factor of about two when compared to the single most expensive component of a given multilevel calculation, and in all 18 cases the accuracy of the atomization energy for the three test molecules improves; with an average improvement of 16.7 kcal/mol. (c) 2000 American Institute of Physics.

  5. Geometry and Destiny

    OpenAIRE

    Krauss, Lawrence M.; Turner, Michael S.

    1999-01-01

    The recognition that the cosmological constant may be non-zero forces us to re-evaluate standard notions about the connection between geometry and the fate of our Universe. An open Universe can recollapse, and a closed Universe can expand forever. As a corollary, we point out that there is no set of cosmological observations we can perform that will unambiguously allow us to determine what the ultimate destiny of the Universe will be.

  6. Complex geometries in wood

    DEFF Research Database (Denmark)

    Tamke, Martin; Ramsgaard Thomsen, Mette; Riiber Nielsen, Jacob

    2009-01-01

    The versatility of wood constructions and traditional wood joints for the production of non standard elements was in focus of a design based research. Herein we established a seamless process from digital design to fabrication. A first research phase centered on the development of a robust...... parametric model and a generic design language a later explored the possibilities to construct complex shaped geometries with self registering joints on modern wood crafting machines. The research was carried out as collaboration with industrial partners....

  7. Electroweak vacuum geometry

    International Nuclear Information System (INIS)

    Lepora, N.; Kibble, T.

    1999-01-01

    We analyse symmetry breaking in the Weinberg-Salam model paying particular attention to the underlying geometry of the theory. In this context we find two natural metrics upon the vacuum manifold: an isotropic metric associated with the scalar sector, and a squashed metric associated with the gauge sector. Physically, the interplay between these metrics gives rise to many of the non-perturbative features of Weinberg-Salam theory. (author)

  8. W-geometry

    International Nuclear Information System (INIS)

    Hull, C.M.

    1993-01-01

    The geometric structure of theories with gauge fields of spins two and higher should involve a higher spin generalisation of Riemannian geometry. Such geometries are discussed and the case of W ∝ -gravity is analysed in detail. While the gauge group for gravity in d dimensions is the diffeomorphism group of the space-time, the gauge group for a certain W-gravity theory (which is W ∝ -gravity in the case d=2) is the group of symplectic diffeomorphisms of the cotangent bundle of the space-time. Gauge transformations for W-gravity gauge fields are given by requiring the invariance of a generalised line element. Densities exist and can be constructed from the line element (generalising √detg μν ) only if d=1 or d=2, so that only for d=1,2 can actions be constructed. These two cases and the corresponding W-gravity actions are considered in detail. In d=2, the gauge group is effectively only a subgroup of the symplectic diffeomorphisms group. Some of the constraints that arise for d=2 are similar to equations arising in the study of self-dual four-dimensional geometries and can be analysed using twistor methods, allowing contact to be made with other formulations of W-gravity. While the twistor transform for self-dual spaces with one Killing vector reduces to a Legendre transform, that for two Killing vectors gives a generalisation of the Legendre transform. (orig.)

  9. Integral geometry and valuations

    CERN Document Server

    Solanes, Gil

    2014-01-01

    Valuations are finitely additive functionals on the space of convex bodies. Their study has become a central subject in convexity theory, with fundamental applications to integral geometry. In the last years there has been significant progress in the theory of valuations, which in turn has led to important achievements in integral geometry. This book originated from two courses delivered by the authors at the CRM and provides a self-contained introduction to these topics, covering most of the recent advances. The first part, by Semyon Alesker, is devoted to the theory of convex valuations, with emphasis on the latest developments. A special focus is put on the new fundamental structures of the space of valuations discovered after Alesker's irreducibility theorem. Moreover, the author describes the newly developed theory of valuations on manifolds. In the second part, Joseph H. G. Fu gives a modern introduction to integral geometry in the sense of Blaschke and Santaló, based on the notions and tools presented...

  10. CBM RICH geometry optimization

    Energy Technology Data Exchange (ETDEWEB)

    Mahmoud, Tariq; Hoehne, Claudia [II. Physikalisches Institut, Giessen Univ. (Germany); Collaboration: CBM-Collaboration

    2016-07-01

    The Compressed Baryonic Matter (CBM) experiment at the future FAIR complex will investigate the phase diagram of strongly interacting matter at high baryon density and moderate temperatures in A+A collisions from 2-11 AGeV (SIS100) beam energy. The main electron identification detector in the CBM experiment will be a RICH detector with a CO{sub 2} gaseous-radiator, focusing spherical glass mirrors, and MAPMT photo-detectors being placed on a PMT-plane. The RICH detector is located directly behind the CBM dipole magnet. As the final magnet geometry is now available, some changes in the RICH geometry become necessary. In order to guarantee a magnetic field of 1 mT at maximum in the PMT plane for effective operation of the MAPMTs, two measures have to be taken: The PMT plane is moved outwards of the stray field by tilting the mirrors by 10 degrees and shielding boxes have been designed. In this contribution the results of the geometry optimization procedure are presented.

  11. Introducing geometry concept based on history of Islamic geometry

    Science.gov (United States)

    Maarif, S.; Wahyudin; Raditya, A.; Perbowo, K. S.

    2018-01-01

    Geometry is one of the areas of mathematics interesting to discuss. Geometry also has a long history in mathematical developments. Therefore, it is important integrated historical development of geometry in the classroom to increase’ knowledge of how mathematicians earlier finding and constructing a geometric concept. Introduction geometrical concept can be started by introducing the Muslim mathematician who invented these concepts so that students can understand in detail how a concept of geometry can be found. However, the history of mathematics development, especially history of Islamic geometry today is less popular in the world of education in Indonesia. There are several concepts discovered by Muslim mathematicians that should be appreciated by the students in learning geometry. Great ideas of mathematicians Muslim can be used as study materials to supplement religious character values taught by Muslim mathematicians. Additionally, by integrating the history of geometry in teaching geometry are expected to improve motivation and geometrical understanding concept.

  12. Two lectures on D-geometry and noncommutative geometry

    International Nuclear Information System (INIS)

    Douglas, M.R.

    1999-01-01

    This is a write-up of lectures given at the 1998 Spring School at the Abdus Salam ICTP. We give a conceptual introduction to D-geometry, the study of geometry as seen by D-branes in string theory, and to noncommutative geometry as it has appeared in D-brane and Matrix theory physics. (author)

  13. Differential topology

    CERN Document Server

    Margalef-Roig, J

    1992-01-01

    ...there are reasons enough to warrant a coherent treatment of the main body of differential topology in the realm of Banach manifolds, which is at the same time correct and complete. This book fills the gap: whenever possible the manifolds treated are Banach manifolds with corners. Corners add to the complications and the authors have carefully fathomed the validity of all main results at corners. Even in finite dimensions some results at corners are more complete and better thought out here than elsewhere in the literature. The proofs are correct and with all details. I see this book as a reliable monograph of a well-defined subject; the possibility to fall back to it adds to the feeling of security when climbing in the more dangerous realms of infinite dimensional differential geometry. Peter W. Michor

  14. On Degenerate Partial Differential Equations

    OpenAIRE

    Chen, Gui-Qiang G.

    2010-01-01

    Some of recent developments, including recent results, ideas, techniques, and approaches, in the study of degenerate partial differential equations are surveyed and analyzed. Several examples of nonlinear degenerate, even mixed, partial differential equations, are presented, which arise naturally in some longstanding, fundamental problems in fluid mechanics and differential geometry. The solution to these fundamental problems greatly requires a deep understanding of nonlinear degenerate parti...

  15. Functional integration over geometries

    International Nuclear Information System (INIS)

    Mottola, E.

    1995-01-01

    The geometric construction of the functional integral over coset spaces M/G is reviewed. The inner product on the cotangent space of infinitesimal deformations of M defines an invariant distance and volume form, or functional integration measure on the full configuration space. Then, by a simple change of coordinates parameterizing the gauge fiber G, the functional measure on the coset space M/G is deduced. This change of integration variables leads to a Jacobian which is entirely equivalent to the Faddeev--Popov determinant of the more traditional gauge fixed approach in non-abelian gauge theory. If the general construction is applied to the case where G is the group of coordinate reparameterizations of spacetime, the continuum functional integral over geometries, i.e. metrics modulo coordinate reparameterizations may be defined. The invariant functional integration measure is used to derive the trace anomaly and effective action for the conformal part of the metric in two and four dimensional spacetime. In two dimensions this approach generates the Polyakov--Liouville action of closed bosonic non-critical string theory. In four dimensions the corresponding effective action leads to novel conclusions on the importance of quantum effects in gravity in the far infrared, and in particular, a dramatic modification of the classical Einstein theory at cosmological distance scales, signaled first by the quantum instability of classical de Sitter spacetime. Finite volume scaling relations for the functional integral of quantum gravity in two and four dimensions are derived, and comparison with the discretized dynamical triangulation approach to the integration over geometries are discussed. Outstanding unsolved problems in both the continuum definition and the simplicial approach to the functional integral over geometries are highlighted

  16. Kinematic geometry of gearing

    CERN Document Server

    Dooner, David B

    2012-01-01

    Building on the first edition published in 1995 this new edition of Kinematic Geometry of Gearing has been extensively revised and updated with new and original material. This includes the methodology for general tooth forms, radius of torsure', cylinder of osculation, and cylindroid of torsure; the author has also completely reworked the '3 laws of gearing', the first law re-written to better parallel the existing 'Law of Gearing" as pioneered by Leonard Euler, expanded from Euler's original law to encompass non-circular gears and hypoid gears, the 2nd law of gearing describing a unique relat

  17. From geometry to topology

    CERN Document Server

    Flegg, H Graham

    2001-01-01

    This excellent introduction to topology eases first-year math students and general readers into the subject by surveying its concepts in a descriptive and intuitive way, attempting to build a bridge from the familiar concepts of geometry to the formalized study of topology. The first three chapters focus on congruence classes defined by transformations in real Euclidean space. As the number of permitted transformations increases, these classes become larger, and their common topological properties become intuitively clear. Chapters 4-12 give a largely intuitive presentation of selected topics.

  18. Torsional heterotic geometries

    International Nuclear Information System (INIS)

    Becker, Katrin; Sethi, Savdeep

    2009-01-01

    We construct new examples of torsional heterotic backgrounds using duality with orientifold flux compactifications. We explain how duality provides a perturbative solution to the type I/heterotic string Bianchi identity. The choice of connection used in the Bianchi identity plays an important role in the construction. We propose the existence of a much larger landscape of compact torsional geometries using string duality. Finally, we present some quantum exact metrics that correspond to NS5-branes placed on an elliptic space. These metrics describe how torus isometries are broken by NS flux.

  19. Geometrie verstehen: statisch - kinematisch

    Science.gov (United States)

    Kroll, Ekkehard

    Dem Allgemeinen steht begrifflich das Besondere gegenüber. In diesem Sinne sind allgemeine Überlegungen zum Verstehen von Mathematik zu ergänzen durch Untersuchungen hinsichtlich des Verstehens der einzelnen mathematischen Disziplinen, insbesondere der Geometrie. Hier haben viele Schülerinnen und Schüler Probleme. Diese rühren hauptsächlich daher, dass eine fertige geometrische Konstruktion in ihrer statischen Präsentation auf Papier nicht mehr die einzelnen Konstruktionsschritte erkennen lässt; zum Nachvollzug müssen sie daher ergänzend in einer Konstruktionsbeschreibung festgehalten werden.

  20. Elementary algebraic geometry

    CERN Document Server

    Kendig, Keith

    2015-01-01

    Designed to make learning introductory algebraic geometry as easy as possible, this text is intended for advanced undergraduates and graduate students who have taken a one-year course in algebra and are familiar with complex analysis. This newly updated second edition enhances the original treatment's extensive use of concrete examples and exercises with numerous figures that have been specially redrawn in Adobe Illustrator. An introductory chapter that focuses on examples of curves is followed by a more rigorous and careful look at plane curves. Subsequent chapters explore commutative ring th

  1. Local analytic geometry

    CERN Document Server

    Abhyankar, Shreeram Shankar

    1964-01-01

    This book provides, for use in a graduate course or for self-study by graduate students, a well-motivated treatment of several topics, especially the following: (1) algebraic treatment of several complex variables; (2) geometric approach to algebraic geometry via analytic sets; (3) survey of local algebra; (4) survey of sheaf theory. The book has been written in the spirit of Weierstrass. Power series play the dominant role. The treatment, being algebraic, is not restricted to complex numbers, but remains valid over any complete-valued field. This makes it applicable to situations arising from

  2. Geometry of conics

    CERN Document Server

    Akopyan, A V

    2007-01-01

    The book is devoted to the properties of conics (plane curves of second degree) that can be formulated and proved using only elementary geometry. Starting with the well-known optical properties of conics, the authors move to less trivial results, both classical and contemporary. In particular, the chapter on projective properties of conics contains a detailed analysis of the polar correspondence, pencils of conics, and the Poncelet theorem. In the chapter on metric properties of conics the authors discuss, in particular, inscribed conics, normals to conics, and the Poncelet theorem for confoca

  3. Geometry and trigonometry

    CERN Document Server

    2015-01-01

    This stimulating volume offers a broad collection of the principles of geometry and trigonometry and contains colorful diagrams to bring mathematical principles to life. Subjects are enriched by references to famous mathematicians and their ideas, and the stories are presented in a very comprehensible way. Readers investigate the relationships of points, lines, surfaces, and solids. They study construction methods for drawing figures, a wealth of facts about these figures, and above all, methods to prove the facts. They learn about triangle measure for circular motion, sine and cosine, tangent

  4. Geometry I essentials

    CERN Document Server

    REA, The Editors of

    2012-01-01

    REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Geometry I includes methods of proof, points, lines, planes, angles, congruent angles and line segments, triangles, parallelism, quadrilaterals, geometric inequalities, and geometric

  5. Algebra of pseudo-differential operators over C*-algebra

    International Nuclear Information System (INIS)

    Mohammad, N.

    1982-08-01

    Algebras of pseudo-differential operators over C*-algebras are studied for the special case when in Hormander class Ssub(rho,delta)sup(m)(Ω) Ω = Rsup(n); rho = 1, delta = 0, m any real number, and the C*-algebra is infinite dimensional non-commutative. The space B, i.e. the set of A-valued C*-functions in Rsup(n) (or Rsup(n) x Rsup(n)) whose derivatives are all bounded, plays an important role. A denotes C*-algebra. First the operator class Ssub(phi,0)sup(m) is defined, and through it, the class Lsub(1,0)sup(m) of pseudo-differential operators. Then the basic asymptotic expansion theorems concerning adjoint and product of operators of class Ssub(1,0)sup(m) are stated. Finally, proofs are given of L 2 -continuity theorem and the main theorem, which states that algebra of all pseudo-differential operators over C*-algebras is itself C*-algebra

  6. Graded geometry and Poisson reduction

    OpenAIRE

    Cattaneo, A S; Zambon, M

    2009-01-01

    The main result of [2] extends the Marsden-Ratiu reduction theorem [4] in Poisson geometry, and is proven by means of graded geometry. In this note we provide the background material about graded geometry necessary for the proof in [2]. Further, we provide an alternative algebraic proof for the main result. ©2009 American Institute of Physics

  7. Conformal, Riemannian and Lagrangian geometry the 2000 Barrett lectures

    CERN Document Server

    Chang, Sun-Yung A; Grove, Karsten; Yang, Paul C; Freire, Alexandre

    2002-01-01

    Recent developments in topology and analysis have led to the creation of new lines of investigation in differential geometry. The 2000 Barrett Lectures present the background, context and main techniques of three such lines by means of surveys by leading researchers. The first chapter (by Alice Chang and Paul Yang) introduces new classes of conformal geometric invariants, and then applies powerful techniques in nonlinear differential equations to derive results on compactifications of manifolds and on Yamabe-type variational problems for these invariants. This is followed by Karsten Grove's lectures, which focus on the use of isometric group actions and metric geometry techniques to understand new examples and classification results in Riemannian geometry, especially in connection with positive curvature. The chapter written by Jon Wolfson introduces the emerging field of Lagrangian variational problems, which blends in novel ways the structures of symplectic geometry and the techniques of the modern calculus...

  8. Intrinsic geometry of biological surface growth

    CERN Document Server

    Todd, Philip H

    1986-01-01

    1.1 General Introduction The work which comprises this essay formed part of a multidiscip­ linary project investigating the folding of the developing cerebral cortex in the ferret. The project as a whole combined a study, at the histological level, of the cytoarchitectural development concom­ itant with folding and a mathematical study of folding viewed from the perspective of differential geometry. We here concentrate on the differential geometry of brain folding. Histological results which have some significance to the geometry of the cortex are re­ ferred to, but are not discussed in any depth. As with any truly multidisciplinary work, this essay has objectives which lie in each of its constituent disciplines. From a neuroana­ tomical point of view, the work explores the use of the surface geo­ metry of the developing cortex as a parameter for the underlying growth process. Geometrical parameters of particular interest and theoretical importance are surface curvatures. Our experimental portion reports...

  9. Geometry of lattice field theory

    International Nuclear Information System (INIS)

    Honan, T.J.

    1986-01-01

    Using some tools of algebraic topology, a general formalism for lattice field theory is presented. The lattice is taken to be a simplicial complex that is also a manifold and is referred to as a simplicial manifold. The fields on this lattice are cochains, that are called lattice forms to emphasize the connections with differential forms in the continuum. This connection provides a new bridge between lattice and continuum field theory. A metric can be put onto this simplicial manifold by assigning lengths to every link or I-simplex of the lattice. Regge calculus is a way of defining general relativity on this lattice. A geometric discussion of Regge calculus is presented. The Regge action, which is a discrete form of the Hilbert action, is derived from the Hilbert action using distribution valued forms. This is a new derivation that emphasizes the underlying geometry. Kramers-Wannier duality in statistical mechanics is discussed in this general setting. Nonlinear field theories, which include gauge theories and nonlinear sigma models are discussed in the continuum and then are put onto a lattice. The main new result here is the generalization to curved spacetime, which consists of making the theory compatible with Regge calculus

  10. Geometric control theory and sub-Riemannian geometry

    CERN Document Server

    Boscain, Ugo; Gauthier, Jean-Paul; Sarychev, Andrey; Sigalotti, Mario

    2014-01-01

    This volume presents recent advances in the interaction between Geometric Control Theory and sub-Riemannian geometry. On the one hand, Geometric Control Theory used the differential geometric and Lie algebraic language for studying controllability, motion planning, stabilizability and optimality for control systems. The geometric approach turned out to be fruitful in applications to robotics, vision modeling, mathematical physics etc. On the other hand, Riemannian geometry and its generalizations, such as  sub-Riemannian, Finslerian  geometry etc., have been actively adopting methods developed in the scope of geometric control. Application of these methods  has led to important results regarding geometry of sub-Riemannian spaces, regularity of sub-Riemannian distances, properties of the group  of diffeomorphisms of sub-Riemannian manifolds, local geometry and equivalence of distributions and sub-Riemannian structures, regularity of the Hausdorff volume.

  11. Cubical version of combinatorial differential forms

    DEFF Research Database (Denmark)

    Kock, Anders

    2010-01-01

    The theory of combinatorial differential forms is usually presented in simplicial terms. We present here a cubical version; it depends on the possibility of forming affine combinations of mutual neighbour points in a manifold, in the context of synthetic differential geometry.......The theory of combinatorial differential forms is usually presented in simplicial terms. We present here a cubical version; it depends on the possibility of forming affine combinations of mutual neighbour points in a manifold, in the context of synthetic differential geometry....

  12. Nonlinear Methods in Riemannian and Kählerian Geometry

    CERN Document Server

    Jost, Jürgen

    1991-01-01

    In this book, I present an expanded version of the contents of my lectures at a Seminar of the DMV (Deutsche Mathematiker Vereinigung) in Düsseldorf, June, 1986. The title "Nonlinear methods in complex geometry" already indicates a combination of techniques from nonlinear partial differential equations and geometric concepts. In older geometric investigations, usually the local aspects attracted more attention than the global ones as differential geometry in its foundations provides approximations of local phenomena through infinitesimal or differential constructions. Here, all equations are linear. If one wants to consider global aspects, however, usually the presence of curvature Ieads to a nonlinearity in the equations. The simplest case is the one of geodesics which are described by a system of second ordernonlinear ODE; their linearizations are the Jacobi fields. More recently, nonlinear PDE played a more and more pro~inent röle in geometry. Let us Iist some of the most important ones: - harmonic maps ...

  13. Critique of information geometry

    International Nuclear Information System (INIS)

    Skilling, John

    2014-01-01

    As applied to probability, information geometry fails because probability distributions do not form a metric space. Probability theory rests on a compelling foundation of elementary symmetries, which also support information (aka minus entropy, Kullback-Leibler) H(p;q) as the unique measure of divergence from source probability distribution q to destination p. Because the only compatible connective H is from≠to asymmetric, H(p;q)≠H(q;p), there can be no compatible geometrical distance (which would necessarily be from=to symmetric). Hence there is no distance relationship compatible with the structure of probability theory. Metrics g and densities sqrt(det(g)) interpreted as prior probabilities follow from the definition of distance, and must fail likewise. Various metrics and corresponding priors have been proposed, Fisher's being the most popular, but all must behave unacceptably. This is illustrated with simple counter-examples

  14. Geometry from Gauge Theory

    International Nuclear Information System (INIS)

    Correa, Diego H.; Silva, Guillermo A.

    2008-01-01

    We discuss how geometrical and topological aspects of certain (1/2)-BPS type IIB geometries are captured by their dual operators in N = 4 Super Yang-Mills theory. The type IIB solutions are characterized by arbitrary droplet pictures in a plane and we consider, in particular, axially symmetric droplets. The 1-loop anomalous dimension of the dual gauge theory operators probed with single traces is described by some bosonic lattice Hamiltonians. These Hamiltonians are shown to encode the topology of the droplets. In appropriate BMN limits, the Hamiltonians spectrum reproduces the spectrum of near-BPS string excitations propagating along each of the individual edges of the droplet. We also study semiclassical regimes for the Hamiltonians. For droplets having disconnected constituents, the Hamiltonian admits different complimentary semiclassical descriptions, each one replicating the semiclassical description for closed strings extending in each of the constituents

  15. Emergent geometry of membranes

    Energy Technology Data Exchange (ETDEWEB)

    Badyn, Mathias Hudoba de; Karczmarek, Joanna L.; Sabella-Garnier, Philippe; Yeh, Ken Huai-Che [Department of Physics and Astronomy, University of British Columbia,6224 Agricultural Road, Vancouver (Canada)

    2015-11-13

    In work http://dx.doi.org/10.1103/PhysRevD.86.086001, a surface embedded in flat ℝ{sup 3} is associated to any three hermitian matrices. We study this emergent surface when the matrices are large, by constructing coherent states corresponding to points in the emergent geometry. We find the original matrices determine not only shape of the emergent surface, but also a unique Poisson structure. We prove that commutators of matrix operators correspond to Poisson brackets. Through our construction, we can realize arbitrary noncommutative membranes: for example, we examine a round sphere with a non-spherically symmetric Poisson structure. We also give a natural construction for a noncommutative torus embedded in ℝ{sup 3}. Finally, we make remarks about area and find matrix equations for minimal area surfaces.

  16. Plateau's problem an invitation to varifold geometry

    CERN Document Server

    Frederick J Almgren, Jr

    2001-01-01

    There have been many wonderful developments in the theory of minimal surfaces and geometric measure theory in the past 25 to 30 years. Many of the researchers who have produced these excellent results were inspired by this little book--or by Fred Almgren himself. The book is indeed a delightful invitation to the world of variational geometry. A central topic is Plateau's Problem, which is concerned with surfaces that model the behavior of soap films. When trying to resolve the problem, however, one soon finds that smooth surfaces are insufficient: Varifolds are needed. With varifolds, one can obtain geometrically meaningful solutions without having to know in advance all their possible singularities. This new tool makes possible much exciting new analysis and many new results. Plateau's problem and varifolds live in the world of geometric measure theory, where differential geometry and measure theory combine to solve problems which have variational aspects. The author's hope in writing this book was to encour...

  17. Non-Perturbative Quantum Geometry III

    CERN Document Server

    Krefl, Daniel

    2016-08-02

    The Nekrasov-Shatashvili limit of the refined topological string on toric Calabi-Yau manifolds and the resulting quantum geometry is studied from a non-perturbative perspective. The quantum differential and thus the quantum periods exhibit Stockes phenomena over the combined string coupling and quantized Kaehler moduli space. We outline that the underlying formalism of exact quantization is generally applicable to points in moduli space featuring massless hypermultiplets, leading to non-perturbative band splitting. Our prime example is local P1xP1 near a conifold point in moduli space. In particular, we will present numerical evidence that in a Stockes chamber of interest the string based quantum geometry reproduces the non-perturbative corrections for the Nekrasov-Shatashvili limit of 4d supersymmetric SU(2) gauge theory at strong coupling found in the previous part of this series. A preliminary discussion of local P2 near the conifold point in moduli space is also provided.

  18. Geometry through history Euclidean, hyperbolic, and projective geometries

    CERN Document Server

    Dillon, Meighan I

    2018-01-01

    Presented as an engaging discourse, this textbook invites readers to delve into the historical origins and uses of geometry. The narrative traces the influence of Euclid’s system of geometry, as developed in his classic text The Elements, through the Arabic period, the modern era in the West, and up to twentieth century mathematics. Axioms and proof methods used by mathematicians from those periods are explored alongside the problems in Euclidean geometry that lead to their work. Students cultivate skills applicable to much of modern mathematics through sections that integrate concepts like projective and hyperbolic geometry with representative proof-based exercises. For its sophisticated account of ancient to modern geometries, this text assumes only a year of college mathematics as it builds towards its conclusion with algebraic curves and quaternions. Euclid’s work has affected geometry for thousands of years, so this text has something to offer to anyone who wants to broaden their appreciation for the...

  19. Introduction to differentiable manifolds

    CERN Document Server

    Auslander, Louis

    2009-01-01

    The first book to treat manifold theory at an introductory level, this text surveys basic concepts in the modern approach to differential geometry. The first six chapters define and illustrate differentiable manifolds, and the final four chapters investigate the roles of differential structures in a variety of situations.Starting with an introduction to differentiable manifolds and their tangent spaces, the text examines Euclidean spaces, their submanifolds, and abstract manifolds. Succeeding chapters explore the tangent bundle and vector fields and discuss their association with ordinary diff

  20. Comparison between two differential graded algebras in ...

    Indian Academy of Sciences (India)

    76

    A differential calculus on a “space” means the specification of a differential graded algebra (dga), often interpreted as space of forms. In classical geometry the “space” is a manifold and we have the de-Rham dga, whereas in noncommutative geometry a “space” is described by a triple called spectral triple. A spectral triple is ...

  1. Geometry, algebra and applications from mechanics to cryptography

    CERN Document Server

    Encinas, Luis; Gadea, Pedro; María, Mª

    2016-01-01

    This volume collects contributions written by different experts in honor of Prof. Jaime Muñoz Masqué. It covers a wide variety of research topics, from differential geometry to algebra, but particularly focuses on the geometric formulation of variational calculus; geometric mechanics and field theories; symmetries and conservation laws of differential equations, and pseudo-Riemannian geometry of homogeneous spaces. It also discusses algebraic applications to cryptography and number theory. It offers state-of-the-art contributions in the context of current research trends. The final result is a challenging panoramic view of connecting problems that initially appear distant.

  2. Classification of digital affine noncommutative geometries

    Science.gov (United States)

    Majid, Shahn; Pachoł, Anna

    2018-03-01

    It is known that connected translation invariant n-dimensional noncommutative differentials dxi on the algebra k[x1, …, xn] of polynomials in n-variables over a field k are classified by commutative algebras V on the vector space spanned by the coordinates. These data also apply to construct differentials on the Heisenberg algebra "spacetime" with relations [xμ, xν] = λΘμν, where Θ is an antisymmetric matrix, as well as to Lie algebras with pre-Lie algebra structures. We specialise the general theory to the field k =F2 of two elements, in which case translation invariant metrics (i.e., with constant coefficients) are equivalent to making V a Frobenius algebra. We classify all of these and their quantum Levi-Civita bimodule connections for n = 2, 3, with partial results for n = 4. For n = 2, we find 3 inequivalent differential structures admitting 1, 2, and 3 invariant metrics, respectively. For n = 3, we find 6 differential structures admitting 0, 1, 2, 3, 4, 7 invariant metrics, respectively. We give some examples for n = 4 and general n. Surprisingly, not all our geometries for n ≥ 2 have zero quantum Riemann curvature. Quantum gravity is normally seen as a weighted "sum" over all possible metrics but our results are a step towards a deeper approach in which we must also "sum" over differential structures. Over F2 we construct some of our algebras and associated structures by digital gates, opening up the possibility of "digital geometry."

  3. An introduction to incidence geometry

    CERN Document Server

    De Bruyn, Bart

    2016-01-01

    This book gives an introduction to the field of Incidence Geometry by discussing the basic families of point-line geometries and introducing some of the mathematical techniques that are essential for their study. The families of geometries covered in this book include among others the generalized polygons, near polygons, polar spaces, dual polar spaces and designs. Also the various relationships between these geometries are investigated. Ovals and ovoids of projective spaces are studied and some applications to particular geometries will be given. A separate chapter introduces the necessary mathematical tools and techniques from graph theory. This chapter itself can be regarded as a self-contained introduction to strongly regular and distance-regular graphs. This book is essentially self-contained, only assuming the knowledge of basic notions from (linear) algebra and projective and affine geometry. Almost all theorems are accompanied with proofs and a list of exercises with full solutions is given at the end...

  4. Casimir forces and geometry

    International Nuclear Information System (INIS)

    Buescher, R.

    2005-01-01

    Casimir interactions are interactions induced by quantum vacuum fluctuations and thermal fluctuations of the electromagnetic field. Using a path integral quantization for the gauge field, an effective Gaussian action will be derived which is the starting point to compute Casimir forces between macroscopic objects analytically and numerically. No assumptions about the independence of the material and shape dependent contributions to the interaction are made. We study the limit of flat surfaces in further detail and obtain a concise derivation of Lifshitz' theory of molecular forces. For the case of ideally conducting boundaries, the Gaussian action will be calculated explicitly. Both limiting cases are also discussed within the framework of a scalar field quantization approach, which is applicable for translationally invariant geometries. We develop a non-perturbative approach to calculate the Casimir interaction from the Gaussian action for periodically deformed and ideally conducting objects numerically. The obtained results reveal two different scaling regimes for the Casimir force as a function of the distance between the objects, their deformation wavelength and -amplitude. The results confirm that the interaction is non-additive, especially in the presence of strong geometric deformations. Furthermore, the numerical approach is extended to calculate lateral Casimir forces. The results are consistent with the results of the proximity-force approximation for large deformation wavelengths. A qualitatively different behaviour between the normal and lateral force is revealed. We also establish a relation between the boundary induced change of the of the density of states for the scalar Helmholtz equation and the Casimir interaction using the path integral method. For statically deformed boundaries, this relation can be expressed as a novel trace formula, which is formally similar to the so-called Krein-Friedel-Lloyd formula. While the latter formula describes the

  5. Planetary Image Geometry Library

    Science.gov (United States)

    Deen, Robert C.; Pariser, Oleg

    2010-01-01

    The Planetary Image Geometry (PIG) library is a multi-mission library used for projecting images (EDRs, or Experiment Data Records) and managing their geometry for in-situ missions. A collection of models describes cameras and their articulation, allowing application programs such as mosaickers, terrain generators, and pointing correction tools to be written in a multi-mission manner, without any knowledge of parameters specific to the supported missions. Camera model objects allow transformation of image coordinates to and from view vectors in XYZ space. Pointing models, specific to each mission, describe how to orient the camera models based on telemetry or other information. Surface models describe the surface in general terms. Coordinate system objects manage the various coordinate systems involved in most missions. File objects manage access to metadata (labels, including telemetry information) in the input EDRs and RDRs (Reduced Data Records). Label models manage metadata information in output files. Site objects keep track of different locations where the spacecraft might be at a given time. Radiometry models allow correction of radiometry for an image. Mission objects contain basic mission parameters. Pointing adjustment ("nav") files allow pointing to be corrected. The object-oriented structure (C++) makes it easy to subclass just the pieces of the library that are truly mission-specific. Typically, this involves just the pointing model and coordinate systems, and parts of the file model. Once the library was developed (initially for Mars Polar Lander, MPL), adding new missions ranged from two days to a few months, resulting in significant cost savings as compared to rewriting all the application programs for each mission. Currently supported missions include Mars Pathfinder (MPF), MPL, Mars Exploration Rover (MER), Phoenix, and Mars Science Lab (MSL). Applications based on this library create the majority of operational image RDRs for those missions. A

  6. Initiation to global Finslerian geometry

    CERN Document Server

    Akbar-Zadeh, Hassan

    2006-01-01

    After a brief description of the evolution of thinking on Finslerian geometry starting from Riemann, Finsler, Berwald and Elie Cartan, the book gives a clear and precise treatment of this geometry. The first three chapters develop the basic notions and methods, introduced by the author, to reach the global problems in Finslerian Geometry. The next five chapters are independent of each other, and deal with among others the geometry of generalized Einstein manifolds, the classification of Finslerian manifolds of constant sectional curvatures. They also give a treatment of isometric, affine, p

  7. Determination of differential cross-sections for the {sup nat}K(p, p{sub 0}) and {sup 39}K(p, {alpha}{sub 0}) reactions in the backscattering geometry

    Energy Technology Data Exchange (ETDEWEB)

    Kokkoris, M., E-mail: kokkoris@central.ntua.g [Department of Physics, National Technical University of Athens, Zografou Campus, 157 80 Athens (Greece); Tsaris, A. [Department of Physics, National Technical University of Athens, Zografou Campus, 157 80 Athens (Greece); Misaelides, P. [Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki (Greece); Sokaras, D.; Lagoyannis, A.; Harissopulos, S. [Institute of Nuclear Physics, TANDEM Accelerator, N.C.S.R. ' Demokritos' , Aghia Paraskevi, 153 10 Athens (Greece); Vlastou, R.; Papadopoulos, C.T. [Department of Physics, National Technical University of Athens, Zografou Campus, 157 80 Athens (Greece)

    2010-06-15

    In the present work, new, differential cross-section values are presented for the {sup nat}K(p, p{sub 0}) reaction in the energy range E{sub lab} = 3000-5000 keV (with an energy step of 25 keV) and for detector angles between 140{sup o} and 170{sup o} (with an angular step of 10{sup o}). A qualitative discussion of the observed cross-section variations through the influence of strong, closely spaced resonances in the p + {sup 39}K system is also presented. Information has also been extracted concerning the {sup 39}K(p,{alpha}{sub 0}) reaction for E{sub lab} = 4000-5000 keV in the same angular range. As a result, more than {approx}500 data points will soon be available to the scientific community through IBANDL (Ion Beam Analysis Nuclear Data Library - (http://www-nds.iaea.org/ibandl/)) and could thus be incorporated in widely used IBA algorithms (e.g. SIMNRA, WINDF, etc.) for potassium depth profiling at relatively high proton beam energies.

  8. Ostrich eggs geometry

    Directory of Open Access Journals (Sweden)

    Šárka Nedomová

    2013-01-01

    Full Text Available Precise quantification of the profile of egg can provide a powerful tool for the analysis of egg shape for various biological problems. A new approach to the geometry of a Ostrich’s egg profile is presented here using an analysing the egg’s digital photo by edge detection techniques. The obtained points on the eggshell counter are fitted by the Fourier series. The obtained equations describing an egg profile have been used to calculate radii of curvature. The radii of the curvature at the important point of the egg profile (sharp end, blunt end and maximum thickness are independent on the egg shape index. The exact values of the egg surface and the egg volume have been obtained. These quantities are also independent on the egg shape index. These quantities can be successively estimated on the basis of simplified equations which are expressed in terms of the egg length, L¸ and its width, B. The surface area of the eggshells also exhibits good correlation with the egg long circumference length. Some limitations of the most used procedures have been also shown.

  9. Nonperturbative quantum geometries

    International Nuclear Information System (INIS)

    Jacobson, T.; California Univ., Santa Barbara; Smolin, L.; California Univ., Santa Barbara

    1988-01-01

    Using the self-dual representation of quantum general relativity, based on Ashtekar's new phase space variables, we present an infinite dimensional family of quantum states of the gravitational field which are exactly annihilated by the hamiltonian constraint. These states are constructed from Wilson loops for Ashtekar's connection (which is the spatial part of the left handed spin connection). We propose a new regularization procedure which allows us to evaluate the action of the hamiltonian constraint on these states. Infinite linear combinations of these states which are formally annihilated by the diffeomorphism constraints as well are also described. These are explicit examples of physical states of the gravitational field - and for the compact case are exact zero eigenstates of the hamiltonian of quantum general relativity. Several different approaches to constructing diffeomorphism invariant states in the self dual representation are also described. The physical interpretation of the states described here is discussed. However, as we do not yet know the physical inner product, any interpretation is at this stage speculative. Nevertheless, this work suggests that quantum geometry at Planck scales might be much simpler when explored in terms of the parallel transport of left-handed spinors than when explored in terms of the three metric. (orig.)

  10. Matrix Information Geometry

    CERN Document Server

    Bhatia, Rajendra

    2013-01-01

    This book is an outcome of the Indo-French Workshop on Matrix Information Geometries (MIG): Applications in Sensor and Cognitive Systems Engineering, which was held in Ecole Polytechnique and Thales Research and Technology Center, Palaiseau, France, in February 23-25, 2011. The workshop was generously funded by the Indo-French Centre for the Promotion of Advanced Research (IFCPAR).  During the event, 22 renowned invited french or indian speakers gave lectures on their areas of expertise within the field of matrix analysis or processing. From these talks, a total of 17 original contribution or state-of-the-art chapters have been assembled in this volume. All articles were thoroughly peer-reviewed and improved, according to the suggestions of the international referees. The 17 contributions presented  are organized in three parts: (1) State-of-the-art surveys & original matrix theory work, (2) Advanced matrix theory for radar processing, and (3) Matrix-based signal processing applications.  

  11. Nonlinear poisson brackets geometry and quantization

    CERN Document Server

    Karasev, M V

    2012-01-01

    This book deals with two old mathematical problems. The first is the problem of constructing an analog of a Lie group for general nonlinear Poisson brackets. The second is the quantization problem for such brackets in the semiclassical approximation (which is the problem of exact quantization for the simplest classes of brackets). These problems are progressively coming to the fore in the modern theory of differential equations and quantum theory, since the approach based on constructions of algebras and Lie groups seems, in a certain sense, to be exhausted. The authors' main goal is to describe in detail the new objects that appear in the solution of these problems. Many ideas of algebra, modern differential geometry, algebraic topology, and operator theory are synthesized here. The authors prove all statements in detail, thus making the book accessible to graduate students.

  12. The Finsler spacetime framework. Backgrounds for physics beyond metric geometry

    Energy Technology Data Exchange (ETDEWEB)

    Pfeifer, Christian

    2013-11-15

    The fundamental structure on which physics is described is the geometric spacetime background provided by a four dimensional manifold equipped with a Lorentzian metric. Most importantly the spacetime manifold does not only provide the stage for physical field theories but its geometry encodes causality, observers and their measurements and gravity simultaneously. This threefold role of the Lorentzian metric geometry of spacetime is one of the key insides of general relativity. During this thesis we extend the background geometry for physics from the metric framework of general relativity to our Finsler spacetime framework and ensure that the threefold role of the geometry of spacetime in physics is not changed. The geometry of Finsler spacetimes is determined by a function on the tangent bundle and includes metric geometry. In contrast to the standard formulation of Finsler geometry our Finsler spacetime framework overcomes the differentiability and existence problems of the geometric objects in earlier attempts to use Finsler geometry as an extension of Lorentzian metric geometry. The development of our nonmetric geometric framework which encodes causality is one central achievement of this thesis. On the basis of our well-defined Finsler spacetime geometry we are able to derive dynamics for the non-metric Finslerian geometry of spacetime from an action principle, obtained from the Einstein-Hilbert action, for the first time. We can complete the dynamics to a non-metric description of gravity by coupling matter fields, also formulated via an action principle, to the geometry of our Finsler spacetimes. We prove that the combined dynamics of the fields and the geometry are consistent with general relativity. Furthermore we demonstrate how to define observers and their measurements solely through the non-metric spacetime geometry. Physical consequence derived on the basis of our Finsler spacetime are: a possible solution to the fly-by anomaly in the solar system; the

  13. The Finsler spacetime framework. Backgrounds for physics beyond metric geometry

    International Nuclear Information System (INIS)

    Pfeifer, Christian

    2013-11-01

    The fundamental structure on which physics is described is the geometric spacetime background provided by a four dimensional manifold equipped with a Lorentzian metric. Most importantly the spacetime manifold does not only provide the stage for physical field theories but its geometry encodes causality, observers and their measurements and gravity simultaneously. This threefold role of the Lorentzian metric geometry of spacetime is one of the key insides of general relativity. During this thesis we extend the background geometry for physics from the metric framework of general relativity to our Finsler spacetime framework and ensure that the threefold role of the geometry of spacetime in physics is not changed. The geometry of Finsler spacetimes is determined by a function on the tangent bundle and includes metric geometry. In contrast to the standard formulation of Finsler geometry our Finsler spacetime framework overcomes the differentiability and existence problems of the geometric objects in earlier attempts to use Finsler geometry as an extension of Lorentzian metric geometry. The development of our nonmetric geometric framework which encodes causality is one central achievement of this thesis. On the basis of our well-defined Finsler spacetime geometry we are able to derive dynamics for the non-metric Finslerian geometry of spacetime from an action principle, obtained from the Einstein-Hilbert action, for the first time. We can complete the dynamics to a non-metric description of gravity by coupling matter fields, also formulated via an action principle, to the geometry of our Finsler spacetimes. We prove that the combined dynamics of the fields and the geometry are consistent with general relativity. Furthermore we demonstrate how to define observers and their measurements solely through the non-metric spacetime geometry. Physical consequence derived on the basis of our Finsler spacetime are: a possible solution to the fly-by anomaly in the solar system; the

  14. GPS: Geometry, Probability, and Statistics

    Science.gov (United States)

    Field, Mike

    2012-01-01

    It might be said that for most occupations there is now less of a need for mathematics than there was say fifty years ago. But, the author argues, geometry, probability, and statistics constitute essential knowledge for everyone. Maybe not the geometry of Euclid, but certainly geometrical ways of thinking that might enable us to describe the world…

  15. Surrogate Modeling for Geometry Optimization

    DEFF Research Database (Denmark)

    Rojas Larrazabal, Marielba de la Caridad; Abraham, Yonas; Holzwarth, Natalie

    2009-01-01

    A new approach for optimizing the nuclear geometry of an atomic system is described. Instead of the original expensive objective function (energy functional), a small number of simpler surrogates is used.......A new approach for optimizing the nuclear geometry of an atomic system is described. Instead of the original expensive objective function (energy functional), a small number of simpler surrogates is used....

  16. Kaehler geometry and SUSY mechanics

    International Nuclear Information System (INIS)

    Bellucci, Stefano; Nersessian, Armen

    2001-01-01

    We present two examples of SUSY mechanics related with Kaehler geometry. The first system is the N = 4 supersymmetric one-dimensional sigma-model proposed in hep-th/0101065. Another system is the N = 2 SUSY mechanics whose phase space is the external algebra of an arbitrary Kaehler manifold. The relation of these models with antisymplectic geometry is discussed

  17. A prediction for bubbling geometries

    OpenAIRE

    Okuda, Takuya

    2007-01-01

    We study the supersymmetric circular Wilson loops in N=4 Yang-Mills theory. Their vacuum expectation values are computed in the parameter region that admits smooth bubbling geometry duals. The results are a prediction for the supergravity action evaluated on the bubbling geometries for Wilson loops.

  18. Molecular motion in restricted geometries

    Indian Academy of Sciences (India)

    Molecular dynamics in restricted geometries is known to exhibit anomalous behaviour. Diffusion, translational or rotational, of molecules is altered significantly on confinement in restricted geometries. Quasielastic neutron scattering (QENS) offers a unique possibility of studying molecular motion in such systems. Both time ...

  19. KENO-IV/CG, the combinatorial geometry version of the KENO Monte Carlo criticality safety program

    International Nuclear Information System (INIS)

    West, J.T.; Petrie, L.M.; Fraley, S.K.

    1979-09-01

    KENO-IV/CG was developed to merge the simple geometry input description utilized by combinatorial geometry with the repeating lattice feature of the original KENO geometry package. The result is a criticality code with the ability to model a complex system of repeating rectangular lattices inside a complicated three-dimensional geometry system. Furthermore, combinatorial geometry was modified to differentiate between combinatorial zones describing a particular KENO BOX to be repeated in a KENO array and those combinatorial zones describing geometry external to an array. This allows the user to maintain a simple coordinate system without any geometric conflict due to spatial overlap. Several difficult criticality design problems have been solved with the new geometry package in KENO-IV/CG, thus illustrating the power of the code to model difficult geometries with a minimum of effort

  20. Basic algebraic geometry, v.2

    CERN Document Server

    Shafarevich, Igor Rostislavovich

    1994-01-01

    Shafarevich Basic Algebraic Geometry 2 The second edition of Shafarevich's introduction to algebraic geometry is in two volumes. The second volume covers schemes and complex manifolds, generalisations in two different directions of the affine and projective varieties that form the material of the first volume. Two notable additions in this second edition are the section on moduli spaces and representable functors, motivated by a discussion of the Hilbert scheme, and the section on Kähler geometry. The book ends with a historical sketch discussing the origins of algebraic geometry. From the Zentralblatt review of this volume: "... one can only respectfully repeat what has been said about the first part of the book (...): a great textbook, written by one of the leading algebraic geometers and teachers himself, has been reworked and updated. As a result the author's standard textbook on algebraic geometry has become even more important and valuable. Students, teachers, and active researchers using methods of al...

  1. Optical geometry across the horizon

    International Nuclear Information System (INIS)

    Jonsson, Rickard

    2006-01-01

    In a recent paper (Jonsson and Westman 2006 Class. Quantum Grav. 23 61), a generalization of optical geometry, assuming a non-shearing reference congruence, is discussed. Here we illustrate that this formalism can be applied to (a finite four-volume) of any spherically symmetric spacetime. In particular we apply the formalism, using a non-static reference congruence, to do optical geometry across the horizon of a static black hole. While the resulting geometry in principle is time dependent, we can choose the reference congruence in such a manner that an embedding of the geometry always looks the same. Relative to the embedded geometry the reference points are then moving. We discuss the motion of photons, inertial forces and gyroscope precession in this framework

  2. Gauge Theory and Calibrated Geometry for Calabi-Yau 4-folds

    Science.gov (United States)

    Cao, Yalong

    This thesis is devoted to the study of gauge theory and calibrated geometry for Calabi-Yau 4-folds. More specifically, our study is along the following five directions. 1. We develop Donaldson-Thomas type theory on Calabi-Yau 4-folds. Let X be a compact complex Calabi-Yau 4-fold. We define Donaldson-Thomas type deformation invariants (DT4 invariants) by studying moduli spaces of solutions to the Donaldson- Thomas equations on X. We also study sheaves counting problems on local Calabi-Yau 4-folds. We relate DT4 invariants of KY to the Donaldson-Thomas invariants of the associated Fano 3-fold Y. When the Calabi-Yau 4-fold is toric, we adapt the virtual localization formula to define the corresponding equivariant DT4 invariants. We also discuss the non-commutative version of DT4 invariants for quivers with relations. Finally, we compute DT4 invariants for certain Calabi-Yau 4-folds when moduli spaces are smooth and find a DT 4/GW correspondence for X. Examples of wall-crossing phenomenon in DT4 theory are also given. 2. Given a complex 4-fold X with an (Calabi-Yau 3-fold) anti-canonical divisor Y, we study relative Donaldson-Thomas invariants for this pair, which are elements in the Donaldson-Thomas cohomologies of Y. We also discuss gluing formulas which relate relative invariants and DT4 invariants for Calabi-Yau 4-folds. 3. We study orientability issues of moduli spaces from gauge theories on Calabi-Yau manifolds. Our results generalize and strengthen those for Donaldson-Thomas theory on Calabi-Yau manifolds of dimensions 3 and 4. We also prove a corresponding result in the relative situation which is relevant to the gluing formula in DT theory. 4. Motivated by Strominger-Yau-Zaslow's mirror symmetry proposal and Kontsevich's homological mirror symmetry conjecture, we study mirror phenomena (in A-model) of certain results from Donaldson-Thomas theory for Calabi-Yau 4-folds. More precisely, we study calibrated geometry in the sense of Harvey-Lawson and Lagrangian

  3. Surfaces in classical geometries a treatment by moving frames

    CERN Document Server

    Jensen, Gary R; Nicolodi, Lorenzo

    2016-01-01

    Designed for intermediate graduate studies, this text will broaden students' core knowledge of differential geometry providing foundational material to relevant topics in classical differential geometry. The method of moving frames, a natural means for discovering and proving important results, provides the basis of treatment for topics discussed. Its application in many areas helps to connect the various geometries and to uncover many deep relationships, such as the Lawson correspondence. The nearly 300 problems and exercises range from simple applications to open problems. Exercises are embedded in the text as essential parts of the exposition. Problems are collected at the end of each chapter; solutions to select problems are given at the end of the book. Mathematica®, Matlab™, and Xfig are used to illustrate selected concepts and results. The careful selection of results serves to show the reader how to prove the most important theorems in the subject, which may become the foundation of future progress...

  4. Smooth functors vs. differential forms

    NARCIS (Netherlands)

    Schreiber, U.; Waldorf, K.

    2011-01-01

    We establish a relation between smooth 2-functors defined on the path 2-groupoid of a smooth manifold and differential forms on this manifold. This relation can be understood as a part of a dictionary between fundamental notions from category theory and differential geometry. We show that smooth

  5. Expository lectures on topology, geometry, and gauge theories

    International Nuclear Information System (INIS)

    Akyildiz, Y.

    1983-01-01

    The article provides an extremely useful and clear explanation of applications of topology and differential geometry in modern gauge theories. Basic concepts like invariants, manifolds, (co)homology, etc. are explained. The author has prepared this lecture with physicists in mind and the level of mathematical sophistication has been kept to a minimum. (S.J.P.)

  6. An introduction to the geometry of singularities on general relativity

    International Nuclear Information System (INIS)

    Canarutto, D.

    1988-01-01

    The aim of this paper is the introduction of many ideas in differential geometry by adopting an abstract and general framework. Such a clearness permits to obtain a powerful and simple theory of connection on fibred manifolds allowing a clearer understanding and easier handling (C.P.)

  7. The geometry description markup language

    International Nuclear Information System (INIS)

    Chytracek, R.

    2001-01-01

    Currently, a lot of effort is being put on designing complex detectors. A number of simulation and reconstruction frameworks and applications have been developed with the aim to make this job easier. A very important role in this activity is played by the geometry description of the detector apparatus layout and its working environment. However, no real common approach to represent geometry data is available and such data can be found in various forms starting from custom semi-structured text files, source code (C/C++/FORTRAN), to XML and database solutions. The XML (Extensible Markup Language) has proven to provide an interesting approach for describing detector geometries, with several different but incompatible XML-based solutions existing. Therefore, interoperability and geometry data exchange among different frameworks is not possible at present. The author introduces a markup language for geometry descriptions. Its aim is to define a common approach for sharing and exchanging of geometry description data. Its requirements and design have been driven by experience and user feedback from existing projects which have their geometry description in XML

  8. Head First 2D Geometry

    CERN Document Server

    Fallow), Stray

    2009-01-01

    Having trouble with geometry? Do Pi, The Pythagorean Theorem, and angle calculations just make your head spin? Relax. With Head First 2D Geometry, you'll master everything from triangles, quads and polygons to the time-saving secrets of similar and congruent angles -- and it'll be quick, painless, and fun. Through entertaining stories and practical examples from the world around you, this book takes you beyond boring problems. You'll actually use what you learn to make real-life decisions, like using angles and parallel lines to crack a mysterious CSI case. Put geometry to work for you, and

  9. A first course in geometry

    CERN Document Server

    Walsh, Edward T

    2014-01-01

    This introductory text is designed to help undergraduate students develop a solid foundation in geometry. Early chapters progress slowly, cultivating the necessary understanding and self-confidence for the more rapid development that follows. The extensive treatment can be easily adapted to accommodate shorter courses. Starting with the language of mathematics as expressed in the algebra of logic and sets, the text covers geometric sets of points, separation and angles, triangles, parallel lines, similarity, polygons and area, circles, space geometry, and coordinate geometry. Each chapter incl

  10. Geometry and analysis on manifolds in memory of professor Shoshichi Kobayashi

    CERN Document Server

    Mabuchi, Toshiki; Maeda, Yoshiaki; Noguchi, Junjiro; Weinstein, Alan

    2015-01-01

    This volume is dedicated to the memory of Shoshichi Kobayashi, and gathers contributions from distinguished researchers working on topics close to his research areas. The book is organized into three parts, with the first part presenting an overview of Professor Shoshichi Kobayashi’s career. This is followed by two expository course lectures (the second part) on recent topics in extremal Kähler metrics and value distribution theory, which will be helpful for graduate students in mathematics interested in new topics in complex geometry and complex analysis. Lastly, the third part of the volume collects authoritative research papers on differential geometry and complex analysis. Professor Shoshichi Kobayashi was a recognized international leader in the areas of differential and complex geometry. He contributed crucial ideas that are still considered fundamental in these fields. The book will be of interest to researchers in the fields of differential geometry, complex geometry, and several complex variables ...

  11. Hyperbolic Metamaterials with Complex Geometry

    DEFF Research Database (Denmark)

    Lavrinenko, Andrei; Andryieuski, Andrei; Zhukovsky, Sergei

    2016-01-01

    We investigate new geometries of hyperbolic metamaterialssuch as highly corrugated structures, nanoparticle monolayer assemblies, super-structured or vertically arranged multilayersand nanopillars. All structures retain basic propertiesof hyperbolic metamaterials, but have functionality improved...

  12. Differential Calculus on Quantum Spheres

    OpenAIRE

    Welk, Martin

    1998-01-01

    We study covariant differential calculus on the quantum spheres S_q^2N-1. Two classification results for covariant first order differential calculi are proved. As an important step towards a description of the noncommutative geometry of the quantum spheres, a framework of covariant differential calculus is established, including a particular first order calculus obtained by factorization, higher order calculi and a symmetry concept.

  13. Spectral dimension of quantum geometries

    International Nuclear Information System (INIS)

    Calcagni, Gianluca; Oriti, Daniele; Thürigen, Johannes

    2014-01-01

    The spectral dimension is an indicator of geometry and topology of spacetime and a tool to compare the description of quantum geometry in various approaches to quantum gravity. This is possible because it can be defined not only on smooth geometries but also on discrete (e.g., simplicial) ones. In this paper, we consider the spectral dimension of quantum states of spatial geometry defined on combinatorial complexes endowed with additional algebraic data: the kinematical quantum states of loop quantum gravity (LQG). Preliminarily, the effects of topology and discreteness of classical discrete geometries are studied in a systematic manner. We look for states reproducing the spectral dimension of a classical space in the appropriate regime. We also test the hypothesis that in LQG, as in other approaches, there is a scale dependence of the spectral dimension, which runs from the topological dimension at large scales to a smaller one at short distances. While our results do not give any strong support to this hypothesis, we can however pinpoint when the topological dimension is reproduced by LQG quantum states. Overall, by exploring the interplay of combinatorial, topological and geometrical effects, and by considering various kinds of quantum states such as coherent states and their superpositions, we find that the spectral dimension of discrete quantum geometries is more sensitive to the underlying combinatorial structures than to the details of the additional data associated with them. (paper)

  14. The pentagon relation and incidence geometry

    Energy Technology Data Exchange (ETDEWEB)

    Doliwa, Adam, E-mail: doliwa@matman.uwm.edu.pl [Institute of Mathematics, Polish Academy of Sciences, ul. Śniadeckich 8, 00-956 Warszawa (Poland); Sergeev, Sergey M., E-mail: Sergey.Sergeev@canberra.edu.au [Faculty of Information Sciences and Engineering, University of Canberra, Canberra, ACT 2601 (Australia)

    2014-06-01

    We define a map S:D²×D²→D²×D², where D is an arbitrary division ring (skew field), associated with the Veblen configuration, and we show that such a map provides solutions to the functional dynamical pentagon equation. We explain that fact in elementary geometric terms using the symmetry of the Veblen and Desargues configurations. We introduce also another map of a geometric origin with the pentagon property. We show equivalence of these maps with recently introduced Desargues maps which provide geometric interpretation to a non-commutative version of Hirota's discrete Kadomtsev–Petviashvili equation. Finally, we demonstrate that in an appropriate gauge the (commutative version of the) maps preserves a natural Poisson structure—the quasiclassical limit of the Weyl commutation relations. The corresponding quantum reduction is then studied. In particular, we discuss uniqueness of the Weyl relations for the ultra-local reduction of the map. We give then the corresponding solution of the quantum pentagon equation in terms of the non-compact quantum dilogarithm function.

  15. Quantum Hamiltonian differential geometry: how does quantization affect space?

    International Nuclear Information System (INIS)

    Aldrovandi, R.

    1993-01-01

    Quantum phase space is given a description which entirely parallels the usual presentation of Classical Phase Space. A particular Schwinger unitary operator basis, in which the expansion of each operator is its own Weyl expression, is specially convenient for the purpose. The quantum Hamiltonian structure obtains from the classical structure by the conversion of the classical pointwise product of dynamical quantities into the noncommutative star product of Wigner functions. The main qualitative difference in the general structure is that, in the quantum case, the inverse symplectic matrix is not simply antisymmetric. This difference leads to the presence of braiding in the backstage of Quantum Mechanics. (author)

  16. Combinatorial differential geometry and ideal Bianchi-Ricci identities

    Czech Academy of Sciences Publication Activity Database

    Janyška, J.; Markl, Martin

    2011-01-01

    Roč. 11, č. 3 (2011), s. 509-540 ISSN 1615-715X R&D Projects: GA ČR GA201/08/0397 Institutional research plan: CEZ:AV0Z10190503 Keywords : Natural operator * linear connection * reduction theorem Subject RIV: BA - General Mathematics Impact factor: 0.338, year: 2011 http://www.degruyter.com/view/j/advg.2011.11.issue-3/advgeom.2011.017/advgeom.2011.017. xml

  17. Combinatorial differential geometry and ideal Bianchi-Ricci identities

    Czech Academy of Sciences Publication Activity Database

    Janyška, J.; Markl, Martin

    2011-01-01

    Roč. 11, č. 3 (2011), s. 509-540 ISSN 1615-715X R&D Projects: GA ČR GA201/08/0397 Institutional research plan: CEZ:AV0Z10190503 Keywords : Natural operator * linear connection * reduction theorem Subject RIV: BA - General Mathematics Impact factor: 0.338, year: 2011 http://www.degruyter.com/view/j/advg.2011.11.issue-3/advgeom.2011.017/advgeom.2011.017.xml

  18. Covariant differential calculus on the quantum hyperplane

    International Nuclear Information System (INIS)

    Wess, J.

    1991-01-01

    We develop a differential calculus on the quantum hyperplane covariant with respect to the action of the quantum group GL q (n). This is a concrete example of noncommutative differential geometry. We describe the general constraints for a noncommutative differential calculus and verify that the example given here satisfies all these constraints. We also discuss briefly the integration over the quantum plane. (orig.)

  19. Advances in geometry and Lie algebras from supergravity

    CERN Document Server

    Frè, Pietro Giuseppe

    2018-01-01

    This book aims to provide an overview of several topics in advanced Differential Geometry and Lie Group Theory, all of them stemming from mathematical problems in supersymmetric physical theories. It presents a mathematical illustration of the main development in geometry and symmetry theory that occurred under the fertilizing influence of supersymmetry/supergravity. The contents are mainly of mathematical nature, but each topic is introduced by historical information and enriched with motivations from high energy physics, which help the reader in getting a deeper comprehension of the subject. .

  20. Geometry as an aspect of dynamics

    International Nuclear Information System (INIS)

    Videira, A.L.L.; Barros, A.L.R.; Fernandes, N.C.

    1982-07-01

    Contrary to the predominant way of doing physics, it is shown that the geometric structure of a general differentiable space-time manifold can be determined by means of the introduction in that manifold of a minimal set of fundamental dynamical quantities associated to a free particle endowed with the fundamental property of momentum. Thus, general relativistic physics implies a general pseudo-Riemannian geometry, whereas the physics of the special theory of relativity is tied up with Minkowski space-time, and Newtonian dynamics is bound to Newtonian space-time. While in the relativistic instance, the Riemannian character of the manifold is basically fixed by means only of the Hamiltonian state function of the free particle (its kynetic energy), in the latter case, it has to resort, perhaps not unexpectedly, to the two dynamical entities mass and energy, separately. (Author) [pt

  1. Geometry as an aspect of dynamics

    International Nuclear Information System (INIS)

    Videira, A.L.L.; Barros, A.L.R.; Fernandes, N.C.

    1983-12-01

    Contrary to the predominant way of doing physics, it is shown that the geometric structure of a general differentiable space-time manifold can be determined by means of the introduction in that manifold of a minimal set of fundamental dynamical quantities associated to a particle endowed with the fundamental property of covariant momentum. Thus, general relativistic physics implies a general pseudo-Riemannian geometry, whereas the physics of the special theory of relativity is tied up with Minkowski space-time, and Newtonian dynamics is bound to Newtonian space-time. While in the relativistic instance, the Riemannian character of the manifold is basically fixed by means only of the Hamiltonian state function of the particle (its energy), in the latter case, one have to resort, perhaps not unexpectedly, to the two dynamical entities mass energy, separately. (Author) [pt

  2. Gaussian process regression for geometry optimization

    Science.gov (United States)

    Denzel, Alexander; Kästner, Johannes

    2018-03-01

    We implemented a geometry optimizer based on Gaussian process regression (GPR) to find minimum structures on potential energy surfaces. We tested both a two times differentiable form of the Matérn kernel and the squared exponential kernel. The Matérn kernel performs much better. We give a detailed description of the optimization procedures. These include overshooting the step resulting from GPR in order to obtain a higher degree of interpolation vs. extrapolation. In a benchmark against the Limited-memory Broyden-Fletcher-Goldfarb-Shanno optimizer of the DL-FIND library on 26 test systems, we found the new optimizer to generally reduce the number of required optimization steps.

  3. Computational algebraic geometry of epidemic models

    Science.gov (United States)

    Rodríguez Vega, Martín.

    2014-06-01

    Computational Algebraic Geometry is applied to the analysis of various epidemic models for Schistosomiasis and Dengue, both, for the case without control measures and for the case where control measures are applied. The models were analyzed using the mathematical software Maple. Explicitly the analysis is performed using Groebner basis, Hilbert dimension and Hilbert polynomials. These computational tools are included automatically in Maple. Each of these models is represented by a system of ordinary differential equations, and for each model the basic reproductive number (R0) is calculated. The effects of the control measures are observed by the changes in the algebraic structure of R0, the changes in Groebner basis, the changes in Hilbert dimension, and the changes in Hilbert polynomials. It is hoped that the results obtained in this paper become of importance for designing control measures against the epidemic diseases described. For future researches it is proposed the use of algebraic epidemiology to analyze models for airborne and waterborne diseases.

  4. Variable geometry Darrieus wind machine

    Science.gov (United States)

    Pytlinski, J. T.; Serrano, D.

    1983-08-01

    A variable geometry Darrieus wind machine is proposed. The lower attachment of the blades to the rotor can move freely up and down the axle allowing the blades of change shape during rotation. Experimental data for a 17 m. diameter Darrieus rotor and a theoretical model for multiple streamtube performance prediction were used to develop a computer simulation program for studying parameters that affect the machine's performance. This new variable geometry concept is described and interrelated with multiple streamtube theory through aerodynamic parameters. The computer simulation study shows that governor behavior of a Darrieus turbine can not be attained by a standard turbine operating within normally occurring rotational velocity limits. A second generation variable geometry Darrieus wind turbine which uses a telescopic blade is proposed as a potential improvement on the studied concept.

  5. Flux compactifications and generalized geometries

    International Nuclear Information System (INIS)

    Grana, Mariana

    2006-01-01

    Following the lectures given at CERN Winter School 2006, we present a pedagogical overview of flux compactifications and generalized geometries, concentrating on closed string fluxes in type II theories. We start by reviewing the supersymmetric flux configurations with maximally symmetric four-dimensional spaces. We then discuss the no-go theorems (and their evasion) for compactifications with fluxes. We analyse the resulting four-dimensional effective theories for Calabi-Yau and Calabi-Yau orientifold compactifications, concentrating on the flux-induced superpotentials. We discuss the generic mechanism of moduli stabilization and illustrate with two examples: the conifold in IIB and a T 6 /(Z 3 x Z 3 ) torus in IIA. We finish by studying the effective action and flux vacua for generalized geometries in the context of generalized complex geometry

  6. Flux compactifications and generalized geometries

    Energy Technology Data Exchange (ETDEWEB)

    Grana, Mariana [Service de Physique Theorique, CEA/Saclay, 91191 Gif-sur-Yvette Cedex (France)

    2006-11-07

    Following the lectures given at CERN Winter School 2006, we present a pedagogical overview of flux compactifications and generalized geometries, concentrating on closed string fluxes in type II theories. We start by reviewing the supersymmetric flux configurations with maximally symmetric four-dimensional spaces. We then discuss the no-go theorems (and their evasion) for compactifications with fluxes. We analyse the resulting four-dimensional effective theories for Calabi-Yau and Calabi-Yau orientifold compactifications, concentrating on the flux-induced superpotentials. We discuss the generic mechanism of moduli stabilization and illustrate with two examples: the conifold in IIB and a T{sup 6} /(Z{sub 3} x Z{sub 3}) torus in IIA. We finish by studying the effective action and flux vacua for generalized geometries in the context of generalized complex geometry.

  7. Euclidean geometry and its subgeometries

    CERN Document Server

    Specht, Edward John; Calkins, Keith G; Rhoads, Donald H

    2015-01-01

    In this monograph, the authors present a modern development of Euclidean geometry from independent axioms, using up-to-date language and providing detailed proofs. The axioms for incidence, betweenness, and plane separation are close to those of Hilbert. This is the only axiomatic treatment of Euclidean geometry that uses axioms not involving metric notions and that explores congruence and isometries by means of reflection mappings. The authors present thirteen axioms in sequence, proving as many theorems as possible at each stage and, in the process, building up subgeometries, most notably the Pasch and neutral geometries. Standard topics such as the congruence theorems for triangles, embedding the real numbers in a line, and coordinatization of the plane are included, as well as theorems of Pythagoras, Desargues, Pappas, Menelaus, and Ceva. The final chapter covers consistency and independence of axioms, as well as independence of definition properties. There are over 300 exercises; solutions to many of the...

  8. Dayside merging and cusp geometry

    International Nuclear Information System (INIS)

    Crooker, N.U.

    1979-01-01

    Geometrical considerations are presented to show that dayside magnetic merging when constrained to act only where the fields are antiparallel results in lines of merging that converge at the polar cusps. An important consequence of this geometry is that no accelerated flows are predicted across the dayside magnetopause. Acceleration owing to merging acts in opposition to the magnetosheath flow at the merging point and produces the variably directed, slower-than-magnetosheath flows observed in the entry layer. Another consequence of the merging geometry is that much of the time closed field lines constitute the subsolar region of the magnetopause. The manner in which the polar cap convection patterns predicted by the proposed geometry change as the interplanetary field is rotated through 360 0 provides a unifying description of how the observed single circular vortex and the crescent-shaped double vortex patterns mutually evolve under the influence of a single operating principle

  9. DOGBONE GEOMETRY FOR RECIRCULATING ACCELERATORS

    International Nuclear Information System (INIS)

    BERG, J.S.; JOHNSTONE, C.; SUMMERS, D.

    2001-01-01

    Most scenarios for accelerating muons require recirculating acceleration. A racetrack shape for the accelerator requires particles with lower energy in early passes to traverse almost the same length of arc as particles with the highest energy. This extra arc length may lead to excess decays and excess cost. Changing the geometry to a dogbone shape, where there is a single linac and the beam turns completely around at the end of the linac, returning to the same end of the linac from which it exited, addresses this problem. In this design, the arc lengths can be proportional to the particle's momentum. This paper proposes an approximate cost model for a recirculating accelerator, attempts to make cost-optimized designs for both racetrack and dogbone geometries, and demonstrates that the dogbone geometry does appear to be more cost effective

  10. Numerical optimization of laboratory combustor geometry for NO suppression

    International Nuclear Information System (INIS)

    Mazaheri, Karim; Shakeri, Alireza

    2016-01-01

    Highlights: • A five-step kinetics for NO and CO prediction is extracted from GRI-3.0 mechanism. • Accuracy and applicability of this kinetics for numerical optimization were shown. • Optimized geometry for a combustor was determined using the combined process. • NO emission from optimized geometry is found 10.3% lower than the basis geometry. - Abstract: In this article, geometry optimization of a jet stirred reactor (JSR) combustor has been carried out for minimum NO emissions in methane oxidation using a combined numerical algorithm based on computational fluid dynamics (CFD) and differential evolution (DE) optimization. The optimization algorithm is also used to find a fairly accurate reduced mechanism. The combustion kinetics is based on a five-step mechanism with 17 unknowns which is obtained using an optimization DE algorithm for a PSR–PFR reactor based on GRI-3.0 full mechanism. The optimization design variables are the unknowns of the five-step mechanism and the cost function is the concentration difference of pollutants obtained from the 5-step mechanism and the full mechanism. To validate the flow solver and the chemical kinetics, the computed NO at the outlet of the JSR is compared with experiments. To optimize the geometry of a combustor, the JSR combustor geometry is modeled using three parameters (i.e., design variables). An integrated approach using a flow solver and the DE optimization algorithm produces the lowest NO concentrations. Results show that the exhaust NO emission for the optimized geometry is 10.3% lower than the original geometry, while the inlet temperature of the working fluid and the concentration of O_2 are operating constraints. In addition, the concentration of CO pollutant is also much less than the original chamber.

  11. Geometric Transformations in Engineering Geometry

    Directory of Open Access Journals (Sweden)

    I. F. Borovikov

    2015-01-01

    Full Text Available Recently, for business purposes, in view of current trends and world experience in training engineers, research and faculty staff there has been a need to transform traditional courses of descriptive geometry into the course of engineering geometry in which the geometrical transformations have to become its main section. On the basis of critical analysis the paper gives suggestions to improve a presentation technique of this section both in the classroom and in academic literature, extend an application scope of geometrical transformations to solve the position and metric tasks and simulation of surfaces, as well as to design complex engineering configurations, which meet a number of pre-specified conditions.The article offers to make a number of considerable amendments to the terms and definitions used in the existing courses of descriptive geometry. It draws some conclusions and makes the appropriate proposals on feasibility of coordination in teaching the movement transformation in the courses of analytical and descriptive geometry. This will provide interdisciplinary team teaching and allow students to be convinced that a combination of analytical and graphic ways to solve geometric tasks is useful and reasonable.The traditional sections of learning courses need to be added with a theory of projective and bi-rational transformations. In terms of application simplicity and convenience it is enough to consider the central transformations when solving the applied tasks. These transformations contain a beam of sub-invariant (low-invariant straight lines on which the invariant curve induces non-involution and involution projectivities. The expediency of nonlinear transformations application is shown in the article by a specific example of geometric modeling of the interfacing surface "spar-blade".Implementation of these suggestions will contribute to a real transformation of a traditional course of descriptive geometry to the engineering geometry

  12. effect of differentiated instructional strategies on students' retention

    African Journals Online (AJOL)

    PROF EKWUEME

    show that retention ability was significantly higher in the experimental group ... Differentiated instruction, Lecture , Cognitive Achievement ,Retention ability, Geometry. ... thinking. Based on this knowledge, differentiated instruction applies an ...

  13. KEMAJUAN BELAJAR SISWA PADA GEOMETRI TRANSFORMASI MENGGUNAKAN AKTIVITAS REFLEKSI GEOMETRI

    Directory of Open Access Journals (Sweden)

    Irkham Ulil Albab

    2014-10-01

    Full Text Available Abstrak: Penelitian ini bertujuan untuk mendeskripsikan kemajuan belajar siswa pada materi geometri transformasi yang didukung dengan serangkaian aktivitas belajar berdasarkan Pendidikan Matematika Realistik Indonesia. Penelitian didesain melalui tiga tahap, yaitu tahapan perancangan desain awal, pengujian desain melalui pembelajaran awal dan pembelajaran eksperimental, dan tahap analisis retrospektif. Dalam penelitian ini, Hypothetical Learning Trajectory, HLT (HLT berperan penting sebagai desain pembelajaran sekaligus instrumen penelitian. HLT diujikan terhadap 26 siswa kelas VII. Data dikumpulkan dengan teknik wawancara, pengamatan, dan catatan lapangan. Hasil penelitian menunjukkan bahwa desain pembelajaran ini mampu menstimulasi siswa untuk memberikan karakteristik refleksi dan transformasi geometri lainnya secara informal, mengklasifikasikannya dalam transformasi isometri pada level kedua, dan menemukan garis bantuan refleksi pada level yang lebih formal. Selain itu, garis bantuan refleksi digunakan oleh siswa untuk menggambar bayangan refleksi dan pola pencerminan serta memahami bentuk rotasi dan translasi sebagai kombinasi refleksi adalah level tertinggi. Keyword: transformasi geometri, kombinasi refleksi, rotasi, translasi, design research, HLT STUDENTS’ LEARNING PROGRESS ON TRANSFORMATION GEOMETRY USING THE GEOMETRY REFLECTION ACTIVITIES Abstract: This study was aimed at describing the students’ learning progress on transformation geometry supported by a set of learning activities based on Indonesian Realistic Mathematics Education. The study was designed into three stages, that is, the preliminary design stage, the design testing through initial instruction and experiment, and the restrospective analysis stage. In this study, Hypothetical Learning Trajectory (HLT played an important role as an instructional design and a research instrument. HLT was tested to 26 seventh grade students. The data were collected through interviews

  14. Graphical debugging of combinational geometry

    International Nuclear Information System (INIS)

    Burns, T.J.; Smith, M.S.

    1992-01-01

    A graphical debugger for combinatorial geometry being developed at Oak Ridge National Laboratory is described. The prototype debugger consists of two parts: a FORTRAN-based ''view'' generator and a Microsoft Windows application for displaying the geometry. Options and features of both modules are discussed. Examples illustrating the various options available are presented. The potential for utilizing the images produced using the debugger as a visualization tool for the output of the radiation transport codes is discussed as is the future direction of the development

  15. Lectures on Algebraic Geometry I

    CERN Document Server

    Harder, Gunter

    2012-01-01

    This book and the following second volume is an introduction into modern algebraic geometry. In the first volume the methods of homological algebra, theory of sheaves, and sheaf cohomology are developed. These methods are indispensable for modern algebraic geometry, but they are also fundamental for other branches of mathematics and of great interest in their own. In the last chapter of volume I these concepts are applied to the theory of compact Riemann surfaces. In this chapter the author makes clear how influential the ideas of Abel, Riemann and Jacobi were and that many of the modern metho

  16. Combinatorial geometry in the plane

    CERN Document Server

    Hadwiger, Hugo; Klee, Victor

    2014-01-01

    Geared toward advanced undergraduates familiar with analysis and college geometry, this concise book discusses theorems on topics restricted to the plane such as convexity, coverings, and graphs. In addition to helping students cultivate rigorous thought, the text encourages the development of mathematical intuition and clarifies the nature of mathematical research.The two-part treatment begins with specific topics including integral distances, covering problems, point set geometry and convexity, simple paradoxes involving point sets, and pure combinatorics, among other subjects. The second pa

  17. Comparison theorems in Riemannian geometry

    CERN Document Server

    Cheeger, Jeff

    2008-01-01

    The central theme of this book is the interaction between the curvature of a complete Riemannian manifold and its topology and global geometry. The first five chapters are preparatory in nature. They begin with a very concise introduction to Riemannian geometry, followed by an exposition of Toponogov's theorem-the first such treatment in a book in English. Next comes a detailed presentation of homogeneous spaces in which the main goal is to find formulas for their curvature. A quick chapter of Morse theory is followed by one on the injectivity radius. Chapters 6-9 deal with many of the most re

  18. Spatial geometry and special relativity

    DEFF Research Database (Denmark)

    Kneubil, Fabiana Botelho

    2016-01-01

    In this work, it is shown the interplay of relative and absolute entities, which are present in both spatial geometry and special relativity. In order to strengthen the understanding of special relativity, we discuss firstly an instance of geometry and the existence of both frame......-dependent and frame-independent entities. We depart from a subject well known by students, which is the three-dimensional geometric space in order to compare, afterwards, with the treatment of four-dimensional space in the special relativity. The differences and similarities between these two subjects are also...

  19. Stochastic geometry and its applications

    CERN Document Server

    Chiu, Sung Nok; Kendall, Wilfrid S; Mecke, Joseph

    2013-01-01

    An extensive update to a classic text Stochastic geometry and spatial statistics play a fundamental role in many modern branches of physics, materials sciences, engineering, biology and environmental sciences. They offer successful models for the description of random two- and three-dimensional micro and macro structures and statistical methods for their analysis. The previous edition of this book has served as the key reference in its field for over 18 years and is regarded as the best treatment of the subject of stochastic geometry, both as a subject with vital a

  20. Introduction to topology and geometry

    CERN Document Server

    Stahl, Saul

    2014-01-01

    An easily accessible introduction to over three centuries of innovations in geometry Praise for the First Edition ". . . a welcome alternative to compartmentalized treatments bound to the old thinking. This clearly written, well-illustrated book supplies sufficient background to be self-contained." -CHOICE This fully revised new edition offers the most comprehensive coverage of modern geometry currently available at an introductory level. The book strikes a welcome balance between academic rigor and accessibility, providing a complete and cohesive picture of the science with an unparallele

  1. Algebraic geometry and theta functions

    CERN Document Server

    Coble, Arthur B

    1929-01-01

    This book is the result of extending and deepening all questions from algebraic geometry that are connected to the central problem of this book: the determination of the tritangent planes of a space curve of order six and genus four, which the author treated in his Colloquium Lecture in 1928 at Amherst. The first two chapters recall fundamental ideas of algebraic geometry and theta functions in such fashion as will be most helpful in later applications. In order to clearly present the state of the central problem, the author first presents the better-known cases of genus two (Chapter III) and

  2. Open problems in the geometry and analysis of Banach spaces

    CERN Document Server

    Guirao, Antonio J; Zizler, Václav

    2016-01-01

    This is a collection of some easily-formulated problems that remain open in the study of the geometry and analysis of Banach spaces. Assuming the reader has a working familiarity with the basic results of Banach space theory, the authors focus on concepts of basic linear geometry, convexity, approximation, optimization, differentiability, renormings, weak compact generating, Schauder bases and biorthogonal systems, fixed points, topology and nonlinear geometry. The main purpose of this work is to help convince young researchers in Functional Analysis that the theory of Banach spaces is a fertile field of research, full of interesting open problems. Inside the Banach space area, the text should help expose young researchers to the depth and breadth of the work that remains, and to provide the perspective necessary to choose a direction for further study. Some of the problems presented herein are longstanding open problems, some are recent, some are more important and some are only "local" problems. Some would ...

  3. Perception of global facial geometry is modulated through experience

    Directory of Open Access Journals (Sweden)

    Meike Ramon

    2015-03-01

    Full Text Available Identification of personally familiar faces is highly efficient across various viewing conditions. While the presence of robust facial representations stored in memory is considered to aid this process, the mechanisms underlying invariant identification remain unclear. Two experiments tested the hypothesis that facial representations stored in memory are associated with differential perceptual processing of the overall facial geometry. Subjects who were personally familiar or unfamiliar with the identities presented discriminated between stimuli whose overall facial geometry had been manipulated to maintain or alter the original facial configuration (see Barton, Zhao & Keenan, 2003. The results demonstrate that familiarity gives rise to more efficient processing of global facial geometry, and are interpreted in terms of increased holistic processing of facial information that is maintained across viewing distances.

  4. The Idea of Order at Geometry Class.

    Science.gov (United States)

    Rishel, Thomas

    The idea of order in geometry is explored using the experience of assignments given to undergraduates in a college geometry course "From Space to Geometry." Discussed are the definition of geometry, and earth measurement using architecture, art, and common experience. This discussion concludes with a consideration of the question of whether…

  5. Teaching Spatial Geometry in a Virtual World

    DEFF Research Database (Denmark)

    Förster, Klaus-Tycho

    2017-01-01

    Spatial geometry is one of the fundamental mathematical building blocks of any engineering education. However, it is overshadowed by planar geometry in the curriculum between playful early primary education and later analytical geometry, leaving a multi-year gap where spatial geometry is absent...

  6. Analogical Reasoning in Geometry Education

    Science.gov (United States)

    Magdas, Ioana

    2015-01-01

    The analogical reasoning isn't used only in mathematics but also in everyday life. In this article we approach the analogical reasoning in Geometry Education. The novelty of this article is a classification of geometrical analogies by reasoning type and their exemplification. Our classification includes: analogies for understanding and setting a…

  7. Normal forms in Poisson geometry

    NARCIS (Netherlands)

    Marcut, I.T.

    2013-01-01

    The structure of Poisson manifolds is highly nontrivial even locally. The first important result in this direction is Conn's linearization theorem around fixed points. One of the main results of this thesis (Theorem 2) is a normal form theorem in Poisson geometry, which is the Poisson-geometric

  8. Exploring Bundling Theory with Geometry

    Science.gov (United States)

    Eckalbar, John C.

    2006-01-01

    The author shows how instructors might successfully introduce students in principles and intermediate microeconomic theory classes to the topic of bundling (i.e., the selling of two or more goods as a package, rather than separately). It is surprising how much students can learn using only the tools of high school geometry. To be specific, one can…

  9. Stochastic Modelling of River Geometry

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Schaarup-Jensen, K.

    1996-01-01

    Numerical hydrodynamic river models are used in a large number of applications to estimate critical events for rivers. These estimates are subject to a number of uncertainties. In this paper, the problem to evaluate these estimates using probabilistic methods is considered. Stochastic models for ...... for river geometries are formulated and a coupling between hydraulic computational methods and numerical reliability methods is presented....

  10. Matter in toy dynamical geometries

    NARCIS (Netherlands)

    Konopka, T.J.

    2009-01-01

    One of the objectives of theories describing quantum dynamical geometry is to compute expectation values of geometrical observables. The results of such computations can be affected by whether or not matter is taken into account. It is thus important to understand to what extent and to what effect

  11. Let??s teach geometry

    OpenAIRE

    Ca??adas, Mar??a C.; Molina, Marta; Gallardo, Sandra; Mart??nez-Santaolalla, Manuel J.; Pe??as, Mar??a

    2010-01-01

    In this work we present an activity for High School students in which various mathematical concepts of plane and spatial geometry are involved. The final objective of the proposed tasks is constructing a particular polyhedron, the cube, by using a modality of origami called modular origami.

  12. Granular flows in constrained geometries

    Science.gov (United States)

    Murthy, Tejas; Viswanathan, Koushik

    Confined geometries are widespread in granular processing applications. The deformation and flow fields in such a geometry, with non-trivial boundary conditions, determine the resultant mechanical properties of the material (local porosity, density, residual stresses etc.). We present experimental studies of deformation and plastic flow of a prototypical granular medium in different nontrivial geometries- flat-punch compression, Couette-shear flow and a rigid body sliding past a granular half-space. These geometries represent simplified scaled-down versions of common industrial configurations such as compaction and dredging. The corresponding granular flows show a rich variety of flow features, representing the entire gamut of material types, from elastic solids (beam buckling) to fluids (vortex-formation, boundary layers) and even plastically deforming metals (dead material zone, pile-up). The effect of changing particle-level properties (e.g., shape, size, density) on the observed flows is also explicitly demonstrated. Non-smooth contact dynamics particle simulations are shown to reproduce some of the observed flow features quantitatively. These results showcase some central challenges facing continuum-scale constitutive theories for dynamic granular flows.

  13. General Relativity: Geometry Meets Physics

    Science.gov (United States)

    Thomsen, Dietrick E.

    1975-01-01

    Observing the relationship of general relativity and the geometry of space-time, the author questions whether the rest of physics has geometrical explanations. As a partial answer he discusses current research on subatomic particles employing geometric transformations, and cites the existence of geometrical definitions of physical quantities such…

  14. Learners engaging with transformation geometry

    African Journals Online (AJOL)

    participants engaged in investigative semi-structured interviews with the resear- chers. ... Keywords: analysis; conversions; transformation geometry; transformations; treatments .... semiotic systems of representation is not only to designate mathematical objects or to com- municate but also to ... Research design. We believe ...

  15. College geometry a unified development

    CERN Document Server

    Kay, David C

    2011-01-01

    ""The book is a comprehensive textbook on basic geometry. … Key features of the book include numerous figures and many problems, more than half of which come with hints or even complete solutions. Frequent historical comments add to making the reading a pleasant one.""-Michael Joswig, Zentralblatt MATH 1273

  16. Geometry.

    Science.gov (United States)

    Mahaffey, Michael L.

    One of a series of experimental units for children at the preschool level, this booklet deals with geometric concepts. A unit on volume and a unit on linear measurement are covered; for each unit a discussion of mathematical objectives, a list of materials needed, and a sequence of learning activities are provided. Directions are specified for the…

  17. Geometri

    DEFF Research Database (Denmark)

    Byg din egen boomerang, kast den, se den flyve, forstå hvorfor og hvordan den vender tilbage, og grib den. Det handler om opdriften på vingerne når du flyver, men det handler også og allermest om den mærkværdige gyroskop-effekt, du bruger til at holde balancen, når du kører på cykel. Vi vil bruge...

  18. An introduction to Lie groups and the geometry of homogeneous spaces

    CERN Document Server

    Arvanitoyeorgos, Andreas

    2003-01-01

    It is remarkable that so much about Lie groups could be packed into this small book. But after reading it, students will be well-prepared to continue with more advanced, graduate-level topics in differential geometry or the theory of Lie groups. The theory of Lie groups involves many areas of mathematics. In this book, Arvanitoyeorgos outlines enough of the prerequisites to get the reader started. He then chooses a path through this rich and diverse theory that aims for an understanding of the geometry of Lie groups and homogeneous spaces. In this way, he avoids the extra detail needed for a thorough discussion of other topics. Lie groups and homogeneous spaces are especially useful to study in geometry, as they provide excellent examples where quantities (such as curvature) are easier to compute. A good understanding of them provides lasting intuition, especially in differential geometry. The book is suitable for advanced undergraduates, graduate students, and research mathematicians interested in differenti...

  19. Cell-geometry-dependent changes in plasma membrane order direct stem cell signalling and fate

    Science.gov (United States)

    von Erlach, Thomas C.; Bertazzo, Sergio; Wozniak, Michele A.; Horejs, Christine-Maria; Maynard, Stephanie A.; Attwood, Simon; Robinson, Benjamin K.; Autefage, Hélène; Kallepitis, Charalambos; del Río Hernández, Armando; Chen, Christopher S.; Goldoni, Silvia; Stevens, Molly M.

    2018-03-01

    Cell size and shape affect cellular processes such as cell survival, growth and differentiation1-4, thus establishing cell geometry as a fundamental regulator of cell physiology. The contributions of the cytoskeleton, specifically actomyosin tension, to these effects have been described, but the exact biophysical mechanisms that translate changes in cell geometry to changes in cell behaviour remain mostly unresolved. Using a variety of innovative materials techniques, we demonstrate that the nanostructure and lipid assembly within the cell plasma membrane are regulated by cell geometry in a ligand-independent manner. These biophysical changes trigger signalling events involving the serine/threonine kinase Akt/protein kinase B (PKB) that direct cell-geometry-dependent mesenchymal stem cell differentiation. Our study defines a central regulatory role by plasma membrane ordered lipid raft microdomains in modulating stem cell differentiation with potential translational applications.

  20. Braided affine geometry and q-analogs of wave operators

    International Nuclear Information System (INIS)

    Gurevich, Dimitri; Saponov, Pavel

    2009-01-01

    The main goal of this review is to compare different approaches to constructing the geometry associated with a Hecke type braiding (in particular, with that related to the quantum group U q (sl(n))). We place emphasis on the affine braided geometry related to the so-called reflection equation algebra (REA). All objects of such a type of geometry are defined in the spirit of affine algebraic geometry via polynomial relations on generators. We begin by comparing the Poisson counterparts of 'quantum varieties' and describe different approaches to their quantization. Also, we exhibit two approaches to introducing q-analogs of vector bundles and defining the Chern-Connes index for them on quantum spheres. In accordance with the Serre-Swan approach, the q-vector bundles are treated as finitely generated projective modules over the corresponding quantum algebras. Besides, we describe the basic properties of the REA used in this construction and compare different ways of defining q-analogs of partial derivatives and differentials on the REA and algebras close to them. In particular, we present a way of introducing a q-differential calculus via Koszul type complexes. The elements of the q-calculus are applied to defining q-analogs of some relativistic wave operators. (topical review)