WorldWideScience

Sample records for non-climacteric fruit ripening

  1. Non-climacteric ripening and sorbitol homeostasis in plum fruits.

    Science.gov (United States)

    Kim, Ho-Youn; Farcuh, Macarena; Cohen, Yuval; Crisosto, Carlos; Sadka, Avi; Blumwald, Eduardo

    2015-02-01

    During ripening fruits undergo several physiological and biochemical modifications that influence quality-related properties, such as texture, color, aroma and taste. We studied the differences in ethylene and sugar metabolism between two genetically related Japanese plum cultivars with contrasting ripening behaviors. 'Santa Rosa' (SR) behaved as a typical climacteric fruit, while the bud sport mutant 'Sweet Miriam' (SM) displayed a non-climacteric ripening pattern. SM fruit displayed a delayed ripening that lasted 120 days longer than that of the climacteric fruit. At the full-ripe stage, both cultivars reached similar final size and weight but the non-climacteric fruits were firmer than the climacteric fruits. Fully ripe non-climacteric plum fruits, showed an accumulation of sorbitol that was 2.5 times higher than that of climacteric fruits, and the increase in sorbitol were also paralleled to an increase in sucrose catabolism. These changes were highly correlated with decreased activity and expression of NAD(+)-dependent sorbitol dehydrogenase and sorbitol oxidase and increased sorbitol-6-phosphate dehydrogenase activity, suggesting an enhanced sorbitol synthesis in non-climacteric fruits. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  2. The N-glycan processing enzymes α-mannosidase and β-D-N-acetylhexosaminidase are involved in ripening-associated softening in the non-climacteric fruits of capsicum

    Science.gov (United States)

    Ghosh, Sumit; Meli, Vijaykumar S.; Kumar, Anil; Thakur, Archana; Chakraborty, Niranjan; Chakraborty, Subhra; Datta, Asis

    2011-01-01

    Excessive softening of fruits during the ripening process leads to deterioration. This is of significant global importance as softening-mediated deterioration leads to huge postharvest losses. N-glycan processing enzymes are reported to play an important role during climacteric fruit softening: however, to date these enzymes have not been characterized in non-climacteric fruit. Two ripening-specific N-glycan processing enzymes, α-mannosidase (α-Man) and β-D-N-acetylhexosaminidase (β-Hex), have been identified and targeted to enhance the shelf life in non-climacteric fruits such as capsicum (Capsicum annuum). The purification, cloning, and functional characterization of α-Man and β-Hex from capsicum, which belong to glycosyl hydrolase (GH) families 38 and 20, respectively, are described here. α-Man and β-Hex are cell wall glycoproteins that are able to cleave terminal α-mannose and β-D-N-acetylglucosamine residues of N-glycans, respectively. α-Man and β-Hex transcripts as well as enzyme activity increase with the ripening and/or softening of capsicum. The function of α-Man and β-Hex in capsicum softening is investigated through RNA interference (RNAi) in fruits. α-Man and β-Hex RNAi fruits were approximately two times firmer compared with the control and fruit deterioration was delayed by approximately 7 d. It is shown that silencing of α-Man and β-Hex enhances fruit shelf life due to the reduced degradation of N-glycoproteins which resulted in delayed softening. Altogether, the results provide evidence for the involvement of N-glycan processing in non-climacteric fruit softening. In conclusion, genetic engineering of N-glycan processing can be a common strategy in both climacteric and non-climacteric species to reduce the post-harvest crop losses. PMID:21030387

  3. Characterisation of ethylene pathway components in non-climacteric capsicum.

    Science.gov (United States)

    Aizat, Wan M; Able, Jason A; Stangoulis, James C R; Able, Amanda J

    2013-11-28

    Climacteric fruit exhibit high ethylene and respiration levels during ripening but these levels are limited in non-climacteric fruit. Even though capsicum is in the same family as the well-characterised climacteric tomato (Solanaceae), it is non-climacteric and does not ripen normally in response to ethylene or if harvested when mature green. However, ripening progresses normally in capsicum fruit when they are harvested during or after what is called the 'Breaker stage'. Whether ethylene, and components of the ethylene pathway such as 1-aminocyclopropane 1-carboxylate (ACC) oxidase (ACO), ACC synthase (ACS) and the ethylene receptor (ETR), contribute to non-climacteric ripening in capsicum has not been studied in detail. To elucidate the behaviour of ethylene pathway components in capsicum during ripening, further analysis is therefore needed. The effects of ethylene or inhibitors of ethylene perception, such as 1-methylcyclopropene, on capsicum fruit ripening and the ethylene pathway components may also shed some light on the role of ethylene in non-climacteric ripening. The expression of several isoforms of ACO, ACS and ETR were limited during capsicum ripening except one ACO isoform (CaACO4). ACS activity and ACC content were also low in capsicum despite the increase in ACO activity during the onset of ripening. Ethylene did not stimulate capsicum ripening but 1-methylcyclopropene treatment delayed the ripening of Breaker-harvested fruit. Some of the ACO, ACS and ETR isoforms were also differentially expressed upon treatment with ethylene or 1-methylcyclopropene. ACS activity may be the rate limiting step in the ethylene pathway of capsicum which restricts ACC content. The differential expression of several ethylene pathway components during ripening and upon ethylene or 1-methylclopropene treatment suggests that the ethylene pathway may be regulated differently in non-climacteric capsicum compared to the climacteric tomato. Ethylene independent pathways may

  4. Abscisic acid pathway involved in the regulation of watermelon fruit ripening and quality trait evolution

    OpenAIRE

    Wang, Yanping; Guo, Shaogui; Tian, Shouwei; Zhang, Jie; Ren, Yi; Sun, Honghe; Gong, Guoyi; Zhang, Haiying; Xu, Yong

    2017-01-01

    Watermelon (Citrullus lanatus (Thunb.) Matsum. & Nakai) is a non-climacteric fruit. The modern sweet-dessert watermelon is the result of years of cultivation and selection for fruits with desirable qualities. To date, the mechanisms of watermelon fruit ripening, and the role of abscisic acid (ABA) in this process, has not been well understood. We quantified levels of free and conjugated ABA contents in the fruits of cultivated watermelon (97103; C. lanatus subsp. vulgaris), semi-wild germplas...

  5. Microarray analysis of gene expression profiles in ripening pineapple fruits.

    Science.gov (United States)

    Koia, Jonni H; Moyle, Richard L; Botella, Jose R

    2012-12-18

    ripening and non-climacteric fruit ripening in general.

  6. Fruit development and ripening.

    Science.gov (United States)

    Seymour, Graham B; Østergaard, Lars; Chapman, Natalie H; Knapp, Sandra; Martin, Cathie

    2013-01-01

    Fruiting structures in the angiosperms range from completely dry to highly fleshy organs and provide many of our major crop products, including grains. In the model plant Arabidopsis, which has dry fruits, a high-level regulatory network of transcription factors controlling fruit development has been revealed. Studies on rare nonripening mutations in tomato, a model for fleshy fruits, have provided new insights into the networks responsible for the control of ripening. It is apparent that there are strong similarities between dry and fleshy fruits in the molecular circuits governing development and maturation. Translation of information from tomato to other fleshy-fruited species indicates that regulatory networks are conserved across a wide spectrum of angiosperm fruit morphologies. Fruits are an essential part of the human diet, and recent developments in the sequencing of angiosperm genomes have provided the foundation for a step change in crop improvement through the understanding and harnessing of genome-wide genetic and epigenetic variation.

  7. The ambiguous ripening nature of the fig (Ficus carica L.) fruit: a gene-expression study of potential ripening regulators and ethylene-related genes

    Science.gov (United States)

    Freiman, Zohar E.; Rosianskey, Yogev; Dasmohapatra, Rajeswari; Kamara, Itzhak; Flaishman, Moshe A.

    2015-01-01

    The traditional definition of climacteric and non-climacteric fruits has been put into question. A significant example of this paradox is the climacteric fig fruit. Surprisingly, ripening-related ethylene production increases following pre- or postharvest 1-methylcyclopropene (1-MCP) application in an unexpected auto-inhibitory manner. In this study, ethylene production and the expression of potential ripening-regulator, ethylene-synthesis, and signal-transduction genes are characterized in figs ripening on the tree and following preharvest 1-MCP application. Fig ripening-related gene expression was similar to that in tomato and apple during ripening on the tree, but only in the fig inflorescence–drupelet section. Because the pattern in the receptacle is different for most of the genes, the fig drupelets developed inside the syconium are proposed to function as parthenocarpic true fruit, regulating ripening processes for the whole accessory fruit. Transcription of a potential ripening regulator, FcMADS8, increased during ripening on the tree and was inhibited following 1-MCP treatment. Expression patterns of the ethylene-synthesis genes FcACS2, FcACS4, and FcACO3 could be related to the auto-inhibition reaction of ethylene production in 1-MCP-treated fruit. Along with FcMADS8 suppression, gene expression analysis revealed upregulation of FcEBF1, and downregulation of FcEIL3 and several FcERFs by 1-MCP treatment. This corresponded with the high storability of the treated fruit. One FcERF was overexpressed in the 1-MCP-treated fruit, and did not share the increasing pattern of most FcERFs in the tree-ripened fig. This demonstrates the potential of this downstream ethylene-signal-transduction component as an ethylene-synthesis regulator, responsible for the non-climacteric auto-inhibition of ethylene production in fig. PMID:25956879

  8. Comparative genomics reveals candidate carotenoid pathway regulators of ripening watermelon fruit

    Science.gov (United States)

    2013-01-01

    Background Many fruits, including watermelon, are proficient in carotenoid accumulation during ripening. While most genes encoding steps in the carotenoid biosynthetic pathway have been cloned, few transcriptional regulators of these genes have been defined to date. Here we describe the identification of a set of putative carotenoid-related transcription factors resulting from fresh watermelon carotenoid and transcriptome analysis during fruit development and ripening. Our goal is to both clarify the expression profiles of carotenoid pathway genes and to identify candidate regulators and molecular targets for crop improvement. Results Total carotenoids progressively increased during fruit ripening up to ~55 μg g-1 fw in red-ripe fruits. Trans-lycopene was the carotenoid that contributed most to this increase. Many of the genes related to carotenoid metabolism displayed changing expression levels during fruit ripening generating a metabolic flux toward carotenoid synthesis. Constitutive low expression of lycopene cyclase genes resulted in lycopene accumulation. RNA-seq expression profiling of watermelon fruit development yielded a set of transcription factors whose expression was correlated with ripening and carotenoid accumulation. Nineteen putative transcription factor genes from watermelon and homologous to tomato carotenoid-associated genes were identified. Among these, six were differentially expressed in the flesh of both species during fruit development and ripening. Conclusions Taken together the data suggest that, while the regulation of a common set of metabolic genes likely influences carotenoid synthesis and accumulation in watermelon and tomato fruits during development and ripening, specific and limiting regulators may differ between climacteric and non-climacteric fruits, possibly related to their differential susceptibility to and use of ethylene during ripening. PMID:24219562

  9. CHARACTERIZATION OF RIPENING STAGES OF MYRTLE FRUIT

    Directory of Open Access Journals (Sweden)

    DYALLA RIBEIRO DE ARAUJO

    2016-01-01

    Full Text Available ABSTRACT The myrtle (Eugenia gracillima Kiaersk. is a native fruit species in the Chapada of Araripe, state of Pernambuco, Brazil. The fruits are collected from the wild and are consumed fresh or processed as pulp, juice, jelly, liquor or desserts. Myrtle fruit production is of significant socioeconomic value for the region and, therefore, the description of myrtle fruit ripening stages may contribute to the development of its production chain. As a result, the objective of the present study was to evaluate the physical, quality and ripening changes of myrtle fruits at different developmental stages. The fruits were picked at five distinctive stages and evaluated for longitudinal and transverse diameters; fresh, dry and water mass; water contents; soluble solids (SS; titratable acidity (TA; pH; SS/TA ratio; carbohydrates (starch, total, reducing and nonreducing sugars; ascorbic acid; total pectin, soluble pectins and percentage of pectin solubilization; polymeric, oligomeric and dimeric phenolics; total anthocyanins, carotenoids and chlorophyll; and yellow flavonoids. Along fruit ripening processes increases in SS, anthocyanins and carotenoids, in the SS/TA ratio and of percentages of pectin solubilization were determined. On the other hand, decreases in TA and total chlorophyll were observed. The ripening stage at which peel color is completely dark red (ripening stage 4 is most appropriate to harvest myrtle fruits for human consumption.

  10. The role of abscisic acid in regulating cucumber fruit development and ripening and its transcriptional regulation.

    Science.gov (United States)

    Wang, Yanping; Wang, Ya; Ji, Kai; Dai, Shengjie; Hu, Ying; Sun, Liang; Li, Qian; Chen, Pei; Sun, Yufei; Duan, Chaorui; Wu, Yan; Luo, Hao; Zhang, Dian; Guo, Yangdong; Leng, Ping

    2013-03-01

    Cucumber (Cucumis sativus L.), a kind of fruit usually harvested at the immature green stage, belongs to non-climacteric fruit. To investigate the contribution of abscisic acid (ABA) to cucumber fruit development and ripening, variation in ABA level was investigated and a peak in ABA level was found in pulp before fruit get fully ripe. To clarify this point further, exogenous ABA was applied to cucumber fruits at two different development stages. Results showed that ABA application at the turning stage promotes cucumber fruit ripening, while application at the immature green stage had inconspicuous effects. In addition, with the purpose of understanding the transcriptional regulation of ABA, two partial cDNAs of CsNCED1 and CsNCED2 encoding 9-cis-epoxycarotenoid dioxygenase (NCED), a key enzyme in ABA biosynthetic pathway; one partial cDNA of CsCYP707A1 for 8'-hydroxylase, a key enzyme in the oxidative catabolism of ABA and two partial cDNAs of CsBG1 and CsBG2 for β-glucosidase (BG) that hydrolyzes ABA glucose ester (ABA-GE) to release active ABA were cloned from cucumber. The DNA and deduced amino acid sequences of these obtained genes respectively showed high similarities to their homologous genes in other plants. Real-time PCR analysis revealed that ABA content may be regulated by its biosynthesis (CsNCEDs), catabolism (CsCYP707A1) and reactivation genes (CsBGs) at the transcriptional level during cucumber fruit development and ripening, in response to ABA application, dehydration and pollination, among which CsNCED1, CsCYP707A1 and CsBG1 were highly expressed in pulp and may play more important roles in regulating ABA metabolism. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  11. Abscisic acid pathway involved in the regulation of watermelon fruit ripening and quality trait evolution.

    Directory of Open Access Journals (Sweden)

    Yanping Wang

    Full Text Available Watermelon (Citrullus lanatus (Thunb. Matsum. & Nakai is a non-climacteric fruit. The modern sweet-dessert watermelon is the result of years of cultivation and selection for fruits with desirable qualities. To date, the mechanisms of watermelon fruit ripening, and the role of abscisic acid (ABA in this process, has not been well understood. We quantified levels of free and conjugated ABA contents in the fruits of cultivated watermelon (97103; C. lanatus subsp. vulgaris, semi-wild germplasm (PI179878; C. lanatus subsp. mucosospermus, and wild germplasm (PI296341-FR; C. lanatus subsp. lanatus. Results showed that ABA content in the fruits of 97103 and PI179878 increased during fruit development and ripening, but maintained a low steady state in the center flesh of PI296341-FR fruits. ABA levels in fruits were highest in 97103 and lowest in PI296341-FR, but no obvious differences in ABA levels were observed in seeds of these lines. Examination of 31 representative watermelon accessions, including different C. lanatus subspecies and ancestral species, showed a correlation between soluble solids content (SSC and ABA levels in ripening fruits. Furthermore, injection of exogenous ABA or nordihydroguaiaretic acid (NDGA into 97103 fruits promoted or inhibited ripening, respectively. Transcriptomic analyses showed that the expression levels of several genes involved in ABA metabolism and signaling, including Cla009779 (NCED, Cla005404 (NCED, Cla020673 (CYP707A, Cla006655 (UGT and Cla020180 (SnRK2, varied significantly in cultivated and wild watermelon center flesh. Three SNPs (-738, C/A; -1681, C/T; -1832, G/T in the promoter region of Cla020673 (CYP707A and one single SNP (-701, G/A in the promoter of Cla020180 (SnRK2 exhibited a high level of correlation with SSC variation in the 100 tested accessions. Our results not only demonstrate for the first time that ABA is involved in the regulation of watermelon fruit ripening, but also provide insights into

  12. Abscisic acid pathway involved in the regulation of watermelon fruit ripening and quality trait evolution.

    Science.gov (United States)

    Wang, Yanping; Guo, Shaogui; Tian, Shouwei; Zhang, Jie; Ren, Yi; Sun, Honghe; Gong, Guoyi; Zhang, Haiying; Xu, Yong

    2017-01-01

    Watermelon (Citrullus lanatus (Thunb.) Matsum. & Nakai) is a non-climacteric fruit. The modern sweet-dessert watermelon is the result of years of cultivation and selection for fruits with desirable qualities. To date, the mechanisms of watermelon fruit ripening, and the role of abscisic acid (ABA) in this process, has not been well understood. We quantified levels of free and conjugated ABA contents in the fruits of cultivated watermelon (97103; C. lanatus subsp. vulgaris), semi-wild germplasm (PI179878; C. lanatus subsp. mucosospermus), and wild germplasm (PI296341-FR; C. lanatus subsp. lanatus). Results showed that ABA content in the fruits of 97103 and PI179878 increased during fruit development and ripening, but maintained a low steady state in the center flesh of PI296341-FR fruits. ABA levels in fruits were highest in 97103 and lowest in PI296341-FR, but no obvious differences in ABA levels were observed in seeds of these lines. Examination of 31 representative watermelon accessions, including different C. lanatus subspecies and ancestral species, showed a correlation between soluble solids content (SSC) and ABA levels in ripening fruits. Furthermore, injection of exogenous ABA or nordihydroguaiaretic acid (NDGA) into 97103 fruits promoted or inhibited ripening, respectively. Transcriptomic analyses showed that the expression levels of several genes involved in ABA metabolism and signaling, including Cla009779 (NCED), Cla005404 (NCED), Cla020673 (CYP707A), Cla006655 (UGT) and Cla020180 (SnRK2), varied significantly in cultivated and wild watermelon center flesh. Three SNPs (-738, C/A; -1681, C/T; -1832, G/T) in the promoter region of Cla020673 (CYP707A) and one single SNP (-701, G/A) in the promoter of Cla020180 (SnRK2) exhibited a high level of correlation with SSC variation in the 100 tested accessions. Our results not only demonstrate for the first time that ABA is involved in the regulation of watermelon fruit ripening, but also provide insights into the

  13. Peroxidase gene expression during tomato fruit ripening

    International Nuclear Information System (INIS)

    Biggs, M.S.; Flurkey, W.H.; Handa, A.K.

    1987-01-01

    Auxin oxidation has been reported to play a critical role in the initiation of pear fruit ripening and a tomato fruit peroxidase (POD) has been shown to have IAA-oxidase activity. However, little is known about changes in the expression of POD mRNA in tomato fruit development. They are investigating the expression of POD mRNA during tomato fruit maturation. Fruit pericarp tissues from six stages of fruit development and ripening (immature green, mature green, breaker, turning, ripe, and red ripe fruits) were used to extract poly (A) + RNAs. These RNAs were translated in vitro in a rabbit reticulocyte lysate system using L- 35 S-methionine. The 35 S-labeled products were immunoprecipitated with POD antibodies to determine the relative proportions of POD mRNA. High levels of POD mRNA were present in immature green and mature green pericarp, but declined greatly by the turning stage of fruit ripening. In addition, the distribution of POD mRNA on free vs bound polyribosomes will be presented, as well as the presence or absence of POD mRNA in other tomato tissues

  14. The pineapple AcMADS1 promoter confers high level expression in tomato and arabidopsis flowering and fruiting tissues, but AcMADS1 does not complement the tomato LeMADS-RIN (rin) mutant

    Science.gov (United States)

    A previous EST study identified a MADS box transcription factor coding sequence, AcMADS1, that is strongly induced during non-climacteric pineapple fruit ripening. Phylogenetic analyses place the AcMADS1 protein in the same superclade as LeMADS-RIN, a master regulator of fruit ripening upstream of e...

  15. Ethylene-producing bacteria that ripen fruit.

    Science.gov (United States)

    Digiacomo, Fabio; Girelli, Gabriele; Aor, Bruno; Marchioretti, Caterina; Pedrotti, Michele; Perli, Thomas; Tonon, Emil; Valentini, Viola; Avi, Damiano; Ferrentino, Giovanna; Dorigato, Andrea; Torre, Paola; Jousson, Olivier; Mansy, Sheref S; Del Bianco, Cristina

    2014-12-19

    Ethylene is a plant hormone widely used to ripen fruit. However, the synthesis, handling, and storage of ethylene are environmentally harmful and dangerous. We engineered E. coli to produce ethylene through the activity of the ethylene-forming enzyme (EFE) from Pseudomonas syringae. EFE converts a citric acid cycle intermediate, 2-oxoglutarate, to ethylene in a single step. The production of ethylene was placed under the control of arabinose and blue light responsive regulatory systems. The resulting bacteria were capable of accelerating the ripening of tomatoes, kiwifruit, and apples.

  16. Compositional changes during papaya fruit ripening

    International Nuclear Information System (INIS)

    Shattir, A. E.; Abu-Goukh, A.

    2012-01-01

    The objective of this study was to investigate compositional changes during ripening of Baladi, Ekostika I and Ekostika II papaya fruit cultivars at 20±1°C and 85% -90% relative humidity. The fruits of the three cultivars exhibited a typical climacteric pattern of respiration with peak of respiration of 82,92 and 98 mg CO 2 / kg-hr, reached after 10 days in the three cultivars, respectively. Weight loss, total soluble solids (TSS), total sugars and ascorbic acid content progressively increased during ripening of the three papaya cultivars. More increase in TSS and total sugars was observed after the climacteric peak of respiration. Fruit tissue firmness and total phenolic compounds decreased continuously during ripening in the three cultivars. Reducing sugars, total protein and titratable acidity steadily increased to reach a peak, which coincided with climacteric peak of respiration, and subsequently decreased afterwards. The local Baladi cultivar had a lower respiration rate, more firm and less weight loss during ripening, which may indicate a longer shelf life than the other two introduced cultivars. On the other hand, the introduced cultivars were higher in TSS, total and reducing sugars and ascorbic acid content and lower in titratable acidity and phenolic compounds, which may reflect a better eating quality.(Author)

  17. Complex Interplay of Hormonal Signals during Grape Berry Ripening

    Directory of Open Access Journals (Sweden)

    Ana Margarida Fortes

    2015-05-01

    Full Text Available Grape and wine production and quality is extremely dependent on the fruit ripening process. Sensory and nutritional characteristics are important aspects for consumers and their development during fruit ripening involves complex hormonal control. In this review, we explored data already published on grape ripening and compared it with the hormonal regulation of ripening of other climacteric and non-climacteric fruits. The roles of abscisic acid, ethylene, and brassinosteroids as promoters of ripening are discussed, as well as the role of auxins, cytokinins, gibberellins, jasmonates, and polyamines as inhibitors of ripening. In particular, the recently described role of polyamine catabolism in grape ripening is discussed, together with its putative interaction with other hormones. Furthermore, other recent examples of cross-talk among the different hormones are presented, revealing a complex interplay of signals during grape development and ripening.

  18. XTHs from Fragaria vesca: genomic structure and transcriptomic analysis in ripening fruit and other tissues.

    Science.gov (United States)

    Opazo, María Cecilia; Lizana, Rodrigo; Stappung, Yazmina; Davis, Thomas M; Herrera, Raúl; Moya-León, María Alejandra

    2017-11-07

    Fragaria vesca or 'woodland strawberry' has emerged as an attractive model for the study of ripening of non-climacteric fruit. It has several advantages, such as its small genome and its diploidy. The recent availability of the complete sequence of its genome opens the possibility for further analysis and its use as a reference species. Fruit softening is a physiological event and involves many biochemical changes that take place at the final stages of fruit development; among them, the remodeling of cell walls by the action of a set of enzymes. Xyloglucan endotransglycosylase/hydrolase (XTH) is a cell wall-associated enzyme, which is encoded by a multigene family. Its action modifies the structure of xyloglucans, a diverse group of polysaccharides that crosslink with cellulose microfibrills, affecting therefore the functional structure of the cell wall. The aim of this work is to identify the XTH-encoding genes present in F. vesca and to determine its transcription level in ripening fruit. The search resulted in identification of 26 XTH-encoding genes named as FvXTHs. Genetic structure and phylogenetic analyses were performed allowing the classification of FvXTH genes into three phylogenetic groups: 17 in group I/II, 2 in group IIIA and 4 in group IIIB. Two sequences were included into the ancestral group. Through a comparative analysis, characteristic structural protein domains were found in FvXTH protein sequences. In complement, expression analyses of FvXTHs by qPCR were performed in fruit at different developmental and ripening stages, as well as, in other tissues. The results showed a diverse expression pattern of FvXTHs in several tissues, although most of them are highly expressed in roots. Their expression patterns are not related to their respective phylogenetic groups. In addition, most FvXTHs are expressed in ripe fruit, and interestingly, some of them (FvXTH 18 and 20, belonging to phylogenic group I/II, and FvXTH 25 and 26 to group IIIB) display an

  19. PacCYP707A2 negatively regulates cherry fruit ripening while PacCYP707A1 mediates drought tolerance.

    Science.gov (United States)

    Li, Qian; Chen, Pei; Dai, Shengjie; Sun, Yufei; Yuan, Bing; Kai, Wenbin; Pei, Yuelin; He, Suihuan; Liang, Bin; Zhang, Yushu; Leng, Ping

    2015-07-01

    Sweet cherry is a non-climacteric fruit and its ripening is regulated by abscisic acid (ABA) during fruit development. In this study, four cDNAs (PacCYP707A1-4) encoding 8'-hydroxylase, a key enzyme in the oxidative catabolism of ABA, were identified in sweet cherry fruits using tobacco rattle virus-induced gene silencing (VIGS) and particle bombardment approaches. Quantitative real-time PCR confirmed significant down-regulation of target gene transcripts in VIGS-treated cherry fruits. In PacCYP707A2-RNAi-treated fruits, ripening and fruit colouring were promoted relative to control fruits, and both ABA accumulation and PacNCED1 transcript levels were up-regulated by 140%. Silencing of PacCYP707A2 by VIGS significantly altered the transcripts of both ABA-responsive and ripening-related genes, including the ABA metabolism-associated genes NCED and CYP707A, the anthocyanin synthesis genes PacCHS, PacCHI, PacF3H, PacDFR, PacANS, and PacUFGT, the ethylene biosynthesis gene PacACO1, and the transcription factor PacMYBA. The promoter of PacMYBA responded more strongly to PacCYP707A2-RNAi-treated fruits than to PacCYP707A1-RNAi-treated fruits. By contrast, silencing of PacCYP707A1 stimulated a slight increase in fruit colouring and enhanced resistance to dehydration stress compared with control fruits. These results suggest that PacCYP707A2 is a key regulator of ABA catabolism that functions as a negative regulator of fruit ripening, while PacCYP707A1 regulates ABA content in response to dehydration during fruit development. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  20. Cold shock treatment extends shelf life of naturally ripened or ethylene-ripened avocado fruits.

    Science.gov (United States)

    Chen, Jiao; Liu, Xixia; Li, Fenfang; Li, Yixing; Yuan, Debao

    2017-01-01

    Avocado is an important tropical fruit with high commercial value, but has a relatively short storage life. In this study, the effects of cold shock treatment (CST) on shelf life of naturally ripened and ethylene-ripened avocado fruits were investigated. Fruits were immersed in ice water for 30 min, then subjected to natural or ethylene-induced ripening. Fruit color; firmness; respiration rate; ethylene production; and the activities of polygalacturonase (PG), pectin methylesterase (PME), and endo-β-1,4-glucanase were measured. Immersion in ice water for 30 min effectively delayed ripening-associated processes, including peel discoloration, pulp softening, respiration rate, and ethylene production during shelf life. The delay in fruit softening by CST was associated with decreased PG and endo-β-1,4-glucanase activities, but not PME activity. This method could potentially be a useful postharvest technology to extend shelf life of avocado fruits.

  1. Laser photoacoustic system for characterization of climacteric and nonclimacteric fruits in postharvest

    Science.gov (United States)

    Giubileo, G.; Lai, A.; Piccinelli, D.; Puiu, A.

    2005-06-01

    The emission of ethylene from climacteric fruit banana (Musa x paradisiaca L.) and non climacteric fruits lemon (Citrus limon Burm. F.) at different stages of ripening (from a few days after setting to full maturity stage) by the Laser Photoacoustic Spectroscopy System, developed in ENEA Frascati, was measured. A high ethylene production rate from mature banana fruit was found, as expected for climacteric fruit. Significant differences between ethylene emitted by the lemon after setting stage and by the young fruit were observed. Also ethylene emission from lemon fruits at different ripening stages (from light green to turning and full ripe) was detected. Depending on the ripening stage, differences in ethylene emission rates were found, although the emissions were low as expected for non-climacteric fruit.

  2. Residual effects of low oxygen storage of mature green fruit on ripening processes and ester biosynthesis during ripening in bananas

    Science.gov (United States)

    Mature green banana (Musa sapientum L. cv. Cavendish) fruit were stored in 0.5%, 2 %, or 21% O2 for 7 days at 20 °C before ripening was initiated by ethylene. Residual effects of low O2 storage in mature green fruit on ripening and ester biosynthesis in fruit were investigated during ripening period...

  3. Genomic Sequencing of Japanese Plum (Prunus salicina Lindl. Mutants Provides a New Model for Rosaceae Fruit Ripening Studies

    Directory of Open Access Journals (Sweden)

    Angel Fernandez i Marti

    2018-02-01

    Full Text Available It has recently been described that the Japanese plum “Santa Rosa” bud sport series contains variations in ripening pattern: climacteric, suppressed-climacteric and non-climacteric types. This provides an interesting model to study the role of ethylene and other key mechanisms governing fruit ripening, softening and senescence. The aim of the current study was to investigate such differences at the genomic level, using this series of plum bud sports, with special reference to genes involved in ethylene biosynthesis, signal transduction, and sugar metabolism. Genomic DNA, isolated from leaf samples of six Japanese plum cultivars (“Santa Rosa”, “July Santa Rosa”, “Late Santa Rosa”, “Sweet Miriam”, “Roysum”, and “Casselman”, was used to construct paired-end standard Illumina libraries. Sequences were aligned to the Prunus persica genome, and genomic variations (SNPs, INDELS, and CNV's were investigated. Results determined 12 potential candidate genes with significant copy number variation (CNV, being associated with ethylene perception and signal transduction components. Additionally, the Maximum Likelihood (ML phylogenetic tree showed two sorbitol dehydrogenase genes grouping into a distinct clade, indicating that this natural group is well-defined and presents high sequence identity among its members. In contrast, the ethylene group, which includes ACO1, ACS1, ACS4, ACS5, CTR1, ERF1, ERF3, and ethylene-receptor genes, was widely distributed and clustered into 10 different groups. Thus, ACS, ERF, and sorbitol dehydrogenase proteins potentially share a common ancestor for different plant genomes, while the expansion rate may be related to ancestral expansion rather than species-specific events. Based on the distribution of the clades, we suggest that gene function diversification for the ripening pathway occurred prior to family extension. We herein report all the frameshift mutations in genes involved in sugar transport

  4. Genomic Sequencing of Japanese Plum (Prunus salicina Lindl.) Mutants Provides a New Model for Rosaceae Fruit Ripening Studies.

    Science.gov (United States)

    Fernandez I Marti, Angel; Saski, Christopher A; Manganaris, George A; Gasic, Ksenija; Crisosto, Carlos H

    2018-01-01

    It has recently been described that the Japanese plum "Santa Rosa" bud sport series contains variations in ripening pattern: climacteric, suppressed-climacteric and non-climacteric types. This provides an interesting model to study the role of ethylene and other key mechanisms governing fruit ripening, softening and senescence. The aim of the current study was to investigate such differences at the genomic level, using this series of plum bud sports, with special reference to genes involved in ethylene biosynthesis, signal transduction, and sugar metabolism. Genomic DNA, isolated from leaf samples of six Japanese plum cultivars ("Santa Rosa", "July Santa Rosa", "Late Santa Rosa", "Sweet Miriam", "Roysum", and "Casselman"), was used to construct paired-end standard Illumina libraries. Sequences were aligned to the Prunus persica genome, and genomic variations (SNPs, INDELS, and CNV's) were investigated. Results determined 12 potential candidate genes with significant copy number variation (CNV), being associated with ethylene perception and signal transduction components. Additionally, the Maximum Likelihood (ML) phylogenetic tree showed two sorbitol dehydrogenase genes grouping into a distinct clade, indicating that this natural group is well-defined and presents high sequence identity among its members. In contrast, the ethylene group, which includes ACO1, ACS1, ACS4, ACS5, CTR1, ERF1, ERF3, and ethylene-receptor genes, was widely distributed and clustered into 10 different groups. Thus, ACS, ERF, and sorbitol dehydrogenase proteins potentially share a common ancestor for different plant genomes, while the expansion rate may be related to ancestral expansion rather than species-specific events. Based on the distribution of the clades, we suggest that gene function diversification for the ripening pathway occurred prior to family extension. We herein report all the frameshift mutations in genes involved in sugar transport and ethylene biosynthesis detected as well

  5. Metabolism of carotenoids and apocarotenoids during ripening of raspberry fruit

    DEFF Research Database (Denmark)

    Beekwilder, J; van der Meer, IM; Simicb, A

    2008-01-01

    Carotenoids are important lipophilic antioxidants in fruits. Apocarotenoids such as α-ionone and β-ionone, which are breakdown products of carotenoids, are important for the flavor characteristics of raspberry fruit, and have also been suggested to have beneficial effects on human health. Raspberry...... is one of the few fruits where fruit ripening is accompanied by the massive production of apocarotenoids. In this paper, changes in levels of carotenoids and apocarotenoids during raspberry fruit ripening are described. In addition, the isolation and characterization of a gene encoding a carotenoid...... cleavage dioxygenase (CCD), which putatively mediates the degradation of carotenoids to apocarotenoids during raspberry fruit ripening, is reported. Such information helps us to better understand how these compounds are produced in plants and may also enable us to develop novel strategies for improved...

  6. Transcriptome analysis during ripening of table grape berry cv. Thompson Seedless.

    Directory of Open Access Journals (Sweden)

    Iván Balic

    Full Text Available Ripening is one of the key processes associated with the development of major organoleptic characteristics of the fruit. This process has been extensively characterized in climacteric fruit, in contrast with non-climacteric fruit such as grape, where the process is less understood. With the aim of studying changes in gene expression during ripening of non-climacteric fruit, an Illumina based RNA-Seq transcriptome analysis was performed on four developmental stages, between veraison and harvest, on table grapes berries cv Thompson Seedless. Functional analysis showed a transcriptional increase in genes related with degradation processes of chlorophyll, lipids, macromolecules recycling and nucleosomes organization; accompanied by a decrease in genes related with chloroplasts integrity and amino acid synthesis pathways. It was possible to identify several processes described during leaf senescence, particularly close to harvest. Before this point, the results suggest a high transcriptional activity associated with the regulation of gene expression, cytoskeletal organization and cell wall metabolism, which can be related to growth of berries and firmness loss characteristic to this stage of development. This high metabolic activity could be associated with an increase in the transcription of genes related with glycolysis and respiration, unexpected for a non-climacteric fruit ripening.

  7. Transcriptional control of fleshy fruit development and ripening

    NARCIS (Netherlands)

    Karlova, R.B.; Chapman, N.; David, K.; Angenent, G.C.; Seymour, G.B.; Maagd, de R.A.

    2014-01-01

    Fleshy fruits have evolved to be attractive to frugivores in order to enhance seed dispersal, and have become an indispensable part of the human diet. Here we review the recent advances in the understanding of transcriptional regulation of fleshy fruit development and ripening with a focus on

  8. In silico transcriptional regulatory networks involved in tomato fruit ripening

    Directory of Open Access Journals (Sweden)

    Stilianos Arhondakis

    2016-08-01

    Full Text Available ABSTRACTTomato fruit ripening is a complex developmental programme partly mediated by transcriptional regulatory networks. Several transcription factors (TFs which are members of gene families such as MADS-box and ERF were shown to play a significant role in ripening through interconnections into an intricate network. The accumulation of large datasets of expression profiles corresponding to different stages of tomato fruit ripening and the availability of bioinformatics tools for their analysis provide an opportunity to identify TFs which might regulate gene clusters with similar co-expression patterns. We identified two TFs, a SlWRKY22-like and a SlER24 transcriptional activator which were shown to regulate modules by using the LeMoNe algorithm for the analysis of our microarray datasets representing four stages of fruit ripening, breaker, turning, pink and red ripe. The WRKY22-like module comprised a subgroup of six various calcium sensing transcripts with similar to the TF expression patterns according to real time PCR validation. A promoter motif search identified a cis acting element, the W-box, recognized by WRKY TFs that was present in the promoter region of all six calcium sensing genes. Moreover, publicly available microarray datasets of similar ripening stages were also analyzed with LeMoNe resulting in TFs such as SlERF.E1, SlERF.C1, SlERF.B2, SLERF.A2, SlWRKY24, SLWRKY37 and MADS-box/TM29 which might also play an important role in regulation of ripening. These results suggest that the SlWRKY22-like might be involved in the coordinated regulation of expression of the six calcium sensing genes. Conclusively the LeMoNe tool might lead to the identification of putative TF targets for further physiological analysis as regulators of tomato fruit ripening.

  9. A DEMETER-like DNA demethylase governs tomato fruit ripening.

    Science.gov (United States)

    Liu, Ruie; How-Kit, Alexandre; Stammitti, Linda; Teyssier, Emeline; Rolin, Dominique; Mortain-Bertrand, Anne; Halle, Stefanie; Liu, Mingchun; Kong, Junhua; Wu, Chaoqun; Degraeve-Guibault, Charlotte; Chapman, Natalie H; Maucourt, Mickael; Hodgman, T Charlie; Tost, Jörg; Bouzayen, Mondher; Hong, Yiguo; Seymour, Graham B; Giovannoni, James J; Gallusci, Philippe

    2015-08-25

    In plants, genomic DNA methylation which contributes to development and stress responses can be actively removed by DEMETER-like DNA demethylases (DMLs). Indeed, in Arabidopsis DMLs are important for maternal imprinting and endosperm demethylation, but only a few studies demonstrate the developmental roles of active DNA demethylation conclusively in this plant. Here, we show a direct cause and effect relationship between active DNA demethylation mainly mediated by the tomato DML, SlDML2, and fruit ripening- an important developmental process unique to plants. RNAi SlDML2 knockdown results in ripening inhibition via hypermethylation and repression of the expression of genes encoding ripening transcription factors and rate-limiting enzymes of key biochemical processes such as carotenoid synthesis. Our data demonstrate that active DNA demethylation is central to the control of ripening in tomato.

  10. Tomato fruit chromoplasts behave as respiratory bioenergetic organelles during ripening.

    Science.gov (United States)

    Renato, Marta; Pateraki, Irini; Boronat, Albert; Azcón-Bieto, Joaquín

    2014-10-01

    During tomato (Solanum lycopersicum) fruit ripening, chloroplasts differentiate into photosynthetically inactive chromoplasts. It was recently reported that tomato chromoplasts can synthesize ATP through a respiratory process called chromorespiration. Here we show that chromoplast oxygen consumption is stimulated by the electron donors NADH and NADPH and is sensitive to octyl gallate (Ogal), a plastidial terminal oxidase inhibitor. The ATP synthesis rate of isolated chromoplasts was dependent on the supply of NAD(P)H and was fully inhibited by Ogal. It was also inhibited by the proton uncoupler carbonylcyanide m-chlorophenylhydrazone, suggesting the involvement of a chemiosmotic gradient. In addition, ATP synthesis was sensitive to 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone, a cytochrome b6f complex inhibitor. The possible participation of this complex in chromorespiration was supported by the detection of one of its components (cytochrome f) in chromoplasts using immunoblot and immunocytochemical techniques. The observed increased expression of cytochrome c6 during ripening suggests that it could act as electron acceptor of the cytochrome b6f complex in chromorespiration. The effects of Ogal on respiration and ATP levels were also studied in tissue samples. Oxygen uptake of mature green fruit and leaf tissues was not affected by Ogal, but was inhibited increasingly in fruit pericarp throughout ripening (up to 26% in red fruit). Similarly, Ogal caused a significant decrease in ATP content of red fruit pericarp. The number of energized mitochondria, as determined by confocal microscopy, strongly decreased in fruit tissue during ripening. Therefore, the contribution of chromoplasts to total fruit respiration appears to increase in late ripening stages. © 2014 American Society of Plant Biologists. All Rights Reserved.

  11. Compositional changes in banana ( Musa ssp. ) fruits during ripening

    African Journals Online (AJOL)

    overripe banana fruits, respectively. The results showed that the nutritional composition of banana pulp was diversely affected by ripening. Changes in mineral composition varied and were not consistent with the stages of ripeness. Bananas are considered a good source of Mg in the diet, and the data obtained herein ...

  12. Physical, chemical and sensory characteristics of red guava (Psidium guajava) velva at different fruit ripening time

    Science.gov (United States)

    Ishartani, D.; Rahman, F. L. F.; Hartanto, R.; Utami, R.; Khasanah, L. U.

    2018-01-01

    This study purposed to determine the effect of red guava fruit ripening time on the physical (overrun and melting rate), chemical (vitamin C, pH, total dissolved solid) and sensory (color, taste, aroma, texture, and overall compare to control (without ripening) velva) characteristic of red guava velva. Red guava fruits were harvested at 90 days after flowering, ripened and then processed into velva. This research used Completely Randomized Design with fruit ripening time (without ripening, 4 days, and 6 days) as single factor. The research was conducted in triplicate. Chemical and physical characteristic data was analysed using One Way Analysis of Varian whether sensory characteristic data was analyzed using Independent Sample T-test. The result showed that fruit ripening time significantly affected the physical, chemical and sensory characteristic of the velva. Vitamin C, pH, and total solid of the velva were increased as the ripening time prolonged. In other hand, increasing of fruit ripening time decreased the overrun and melting rate of the velva. Red guava velva made from 6 days ripening had better sensory characteristics compared to velva made from red guava fruit without ripening or 4 day ripening. This research conclude that 6 days ripening time gives better chemical, physical and sensory characteristics of the velva compare to 4 days ripening time. Red guava fruits ripened for 6 days were recommended as raw material in velva making.

  13. Histochemistry and morphoanatomy study on guava fruit during ripening

    Directory of Open Access Journals (Sweden)

    José Renato de Abreu

    2012-03-01

    Full Text Available Guava (Psidium guajava L. is a highly perishable fruit due to its intense metabolism during ripening. Information on the enzyme activities that degrade pectic substances, as well as the amount of pectin, is very contradictory and not clearly defined. Thus, this study aimed to monitor the changes occurred in the fruit during ripening through histochemical, physical, and scanning microscopy processes. Guavas were picked at the half-mature stage and stored for 9 days at 22 ± 1 °C and 78 ± 1% RH. The analyses conducted on the day of harvest (0 and each day of storage (1, 2, 3, 4, 5, 6, 7, and 8 days were: firmness and histochemical analyses (ferric chloride, lugol, comassie blue, vanillin hydrochloric, and ruthenium red observed under an optic microscope and a scanning electron microscope. Ruthenium red showed a high amount of pectin in the cell wall on day zero as well as its decrease in the wall during ripening and its accumulation in the central area of the cell. Scanning microscopy showed loss of the cell structure during ripening. Those observations suggest that the pectin is the main polymer responsible for firmness maintenance in the guava fruit.

  14. Compositional and enzymatic changes during Guafa fruit ripening

    Energy Technology Data Exchange (ETDEWEB)

    Bashir, Hind Abdelmonem [Dept. of Horticulture, Faculty of Agriculture, University of Khartoum, Khartoum (Sudan)

    1999-05-01

    Compositional changes in fruit pulp and peel during ripening of white-and pink-fleshed guava fruit types were investigated. Fruit tissue firmeness decreased progressively, in a similar manner,in both Guava types. The white and pink guavas exhibited a typical climacteric pattern of respiration, with climacteric peak at 7.6 kilogram-force (kg-f) flesh firmness in both types. Total soluble solids (TTS) and total sugars increased in pulp and peel of both guava types with decrease in flesh firmness, more increase in total sugars ,which was determined using calorimetric method, was observed after the climacteric peak. Reducing sugars and titratable acidity increased up to the climacteric peak and decreased afterwards. Total protein increased up to the full-ripe stage and then decreased. Ascorbic acid and phenolic compounds decreased continuously during ripening of the two types. The peel showed higher values of ascorbic acid and phenolic compounds compared to the pulp. The white-fleshed guavas had higher levels of TTS, total sugars, reducing sugars, titrable acidity and ascorbic acid content compared to the pink-fleshed fruits. Changes in the activities of the cell wall degrading enzymes, pectinesterase (PE), Polygalacturonase (PG) and cellulose were also studied to find out the reason for tissue softening in guava fruit during handling, transportation and storage.

  15. Compositional and enzymatic changes during Guafa fruit ripening

    International Nuclear Information System (INIS)

    Bashir, Hind Abdelmonem

    1999-05-01

    Compositional changes in fruit pulp and peel during ripening of white-and pink-fleshed guava fruit types were investigated. Fruit tissue firmeness decreased progressively, in a similar manner,in both Guava types. The white and pink guavas exhibited a typical climacteric pattern of respiration, with climacteric peak at 7.6 kilogram-force (kg-f) flesh firmness in both types. Total soluble solids (TTS) and total sugars increased in pulp and peel of both guava types with decrease in flesh firmness, more increase in total sugars ,which was determined using calorimetric method, was observed after the climacteric peak. Reducing sugars and titratable acidity increased up to the climacteric peak and decreased afterwards. Total protein increased up to the full-ripe stage and then decreased. Ascorbic acid and phenolic compounds decreased continuously during ripening of the two types. The peel showed higher values of ascorbic acid and phenolic compounds compared to the pulp. The white-fleshed guavas had higher levels of TTS, total sugars, reducing sugars, titrable acidity and ascorbic acid content compared to the pink-fleshed fruits. Changes in the activities of the cell wall degrading enzymes, pectinesterase (PE), Polygalacturonase (PG) and cellulose were also studied to find out the reason for tissue softening in guava fruit during handling, transportation and storage

  16. Ethylene Control of Fruit Ripening: Revisiting the Complex Network of Transcriptional Regulation1

    Science.gov (United States)

    Chervin, Christian; Bouzayen, Mondher

    2015-01-01

    The plant hormone ethylene plays a key role in climacteric fruit ripening. Studies on components of ethylene signaling have revealed a linear transduction pathway leading to the activation of ethylene response factors. However, the means by which ethylene selects the ripening-related genes and interacts with other signaling pathways to regulate the ripening process are still to be elucidated. Using tomato (Solanum lycopersicum) as a reference species, the present review aims to revisit the mechanisms by which ethylene regulates fruit ripening by taking advantage of new tools available to perform in silico studies at the genome-wide scale, leading to a global view on the expression pattern of ethylene biosynthesis and response genes throughout ripening. Overall, it provides new insights on the transcriptional network by which this hormone coordinates the ripening process and emphasizes the interplay between ethylene and ripening-associated developmental factors and the link between epigenetic regulation and ethylene during fruit ripening. PMID:26511917

  17. Abscisic acid and sucrose regulate tomato and strawberry fruit ripening through the abscisic acid-stress-ripening transcription factor.

    Science.gov (United States)

    Jia, Haifeng; Jiu, Songtao; Zhang, Cheng; Wang, Chen; Tariq, Pervaiz; Liu, Zhongjie; Wang, Baoju; Cui, Liwen; Fang, Jinggui

    2016-10-01

    Although great progress has been made towards understanding the role of abscisic acid (ABA) and sucrose in fruit ripening, the mechanisms underlying the ABA and sucrose signalling pathways remain elusive. In this study, transcription factor ABA-stress-ripening (ASR), which is involved in the transduction of ABA and sucrose signalling pathways, was isolated and analysed in the nonclimacteric fruit, strawberry and the climacteric fruit, tomato. We have identified four ASR isoforms in tomato and one in strawberry. All ASR sequences contained the ABA stress- and ripening-induced proteins and water-deficit stress-induced proteins (ABA/WDS) domain and all ASR transcripts showed increased expression during fruit development. The expression of the ASR gene was influenced not only by sucrose and ABA, but also by jasmonic acid (JA) and indole-3-acetic acid (IAA), and these four factors were correlated with each other during fruit development. ASR bound the hexose transporter (HT) promoter, which contained a sugar box that activated downstream gene expression. Overexpression of the ASR gene promoted fruit softening and ripening, whereas RNA interference delayed fruit ripening, as well as affected fruit physiological changes. Change in ASR gene expression influenced the expression of several ripening-related genes such as CHS, CHI, F3H, DFR, ANS, UFGT, PG, PL, EXP1/2, XET16, Cel1/2 and PME. Taken together, this study may provide new evidence on the important role of ASR in cross-signalling between ABA and sucrose to regulate tomato and strawberry fruit ripening. The findings of this study also provide new insights into the regulatory mechanism underlying fruit development. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  18. Tomato fruit chromoplasts behave as respiratory bioenergetic organelles during ripening

    DEFF Research Database (Denmark)

    Renato, Marta; Pateraki, Irini; Boronat, Albert

    2014-01-01

    During tomato (Solanum lycopersicum) fruit ripening, chloroplasts differentiate into photosynthetically inactive chromoplasts. It was recently reported that tomato chromoplasts can synthesize ATP through a respiratory process called chromorespiration. Here we show that chromoplast oxygen...... consumption is stimulated by the electron donors NADH and NADPH and is sensitive to octyl gallate (Ogal), a plastidial terminal oxidase inhibitor. The ATP synthesis rate of isolated chromoplasts was dependent on the supply of NAD(P)H and was fully inhibited by Ogal. It was also inhibited by the proton...... was supported by the detection of one of its components (cytochrome f) in chromoplasts using immunoblot and immunocytochemical techniques. The observed increased expression of cytochrome c6 during ripening suggests that it could act as electron acceptor of the cytochrome b6 f complex in chromorespiration...

  19. Proteomics in the fruit tree science arena: new insights into fruit defense, development, and ripening.

    Science.gov (United States)

    Molassiotis, Athanassios; Tanou, Georgia; Filippou, Panagiota; Fotopoulos, Vasileios

    2013-06-01

    Fruit tree crops are agricultural commodities of high economic importance, while fruits also represent one of the most vital components of the human diet. Therefore, a great effort has been made to understand the molecular mechanisms covering fundamental biological processes in fruit tree physiology and fruit biology. Thanks to the development of cutting-edge "omics" technologies such as proteomic analysis, scientists now have powerful tools to support traditional fruit tree research. Such proteomic analyses are establishing high-density 2DE reference maps and peptide mass fingerprint databases that can lead fruit science into a new postgenomic research era. Here, an overview of the application of proteomics in key aspects of fruit tree physiology as well as in fruit biology, including defense responses to abiotic and biotic stress factors, is presented. A panoramic view of ripening-related proteins is also discussed, as an example of proteomic application in fruit science.

  20. Decrease in fruit moisture content heralds and might launch the onset of ripening processes.

    Science.gov (United States)

    Frenkel, Chaim; Hartman, Thomas G

    2012-10-01

    It is known that fruit ripening is a genetically programmed event but it is not entirely clear what metabolic cue(s) stimulate the onset of ripening, ethylene action notwithstanding. Here, we examined the conjecture that fruit ripening might be evoked by an autonomously induced decrease in tissue water status. We found decline in water content occurring at the onset of ripening in climacteric and nonclimacteric fruit, suggesting that this phenomenon might be universal. This decline in water content persisted throughout the ripening process in some fruit, whereas in others it reversed during the progression of the ripening process. Applied ethylene also induced a decrease in water content in potato (Solanum tuberosum) tubers. In ethylene-mutant tomato (Solanum lycopersicum) fruit (antisense to1-aminocyclopropane carboxylate synthase), cold-induced decline in water content stimulated onset of ripening processes apparently independently of ethylene action, suggesting cause-and-effect relationship between decreasing water content and onset of ripening. The decline in tissue water content, occurring naturally or induced by ethylene, was strongly correlated with a decrease in hydration (swelling) efficacy of cell wall preparations suggesting that hydration dynamics of cell walls might account for changes in tissue moisture content. Extent of cell wall swelling was, in turn, related to the degree of oxidative cross-linking of wall-bound phenolic acids, suggesting that oxidant-induced wall restructuring might mediate cell wall and, thus, fruit tissue hydration status. We propose that oxidant-induced cell wall remodeling and consequent wall dehydration might evoke stress signaling for the onset of ripening processes. This study suggests that decline in fruit water content is an early event in fruit ripening. This information may be used to gauge fruit maturity for appropriate harvest date and for processing. Control of fruit hydration state might be used to regulate the

  1. Gas exchange in fruits related to skin condition and fruit ripening studied with diode laser spectroscopy.

    Science.gov (United States)

    Huang, Jing; Zhang, Hao; Lin, Huiying; Li, Tianqi; Mei, Liang; Svanberg, Katarina; Svanberg, Sune

    2016-12-01

    The concentration of the biologically active molecular oxygen gas is of crucial importance for fruits in the metabolic respiration, maturation, and ripening processes. In our study, oxygen content and oxygen transport in fruits, exemplified by apples and guavas, were studied noninvasively by gas in scattering media absorption spectroscopy. The technique is based on the fact that free gases typically have 10,000 times narrower absorption features than the bulk material. The technique was demonstrated in studies of the influence of the fruit skin in regulating the internal oxygen balance, by observing the signal response of the internal oxygen gas to a transient change in the ambient gas concentration on peeled and unpeeled fruits. In addition, the gas exchange rate at different ripening stages was also studied in intact guavas.

  2. Gas exchange in fruits related to skin condition and fruit ripening studied with diode laser spectroscopy

    Science.gov (United States)

    Huang, Jing; Zhang, Hao; Lin, Huiying; Li, Tianqi; Mei, Liang; Svanberg, Katarina; Svanberg, Sune

    2016-12-01

    The concentration of the biologically active molecular oxygen gas is of crucial importance for fruits in the metabolic respiration, maturation, and ripening processes. In our study, oxygen content and oxygen transport in fruits, exemplified by apples and guavas, were studied noninvasively by gas in scattering media absorption spectroscopy. The technique is based on the fact that free gases typically have 10,000 times narrower absorption features than the bulk material. The technique was demonstrated in studies of the influence of the fruit skin in regulating the internal oxygen balance, by observing the signal response of the internal oxygen gas to a transient change in the ambient gas concentration on peeled and unpeeled fruits. In addition, the gas exchange rate at different ripening stages was also studied in intact guavas.

  3. Implication of Abscisic Acid on Ripening and Quality in Sweet Cherries: Differential Effects during Pre- and Post-harvest

    Science.gov (United States)

    Tijero, Verónica; Teribia, Natalia; Muñoz, Paula; Munné-Bosch, Sergi

    2016-01-01

    Sweet cherry, a non-climacteric fruit, is usually cold-stored during post-harvest to prevent over-ripening. The aim of the study was to evaluate the role of abscisic acid (ABA) on fruit growth and ripening of this fruit, considering as well its putative implication in over-ripening and effects on quality. We measured the endogenous concentrations of ABA during the ripening of sweet cherries (Prunus avium L. var. Prime Giant) collected from orchard trees and in cherries exposed to 4°C and 23°C during 10 days of post-harvest. Furthermore, we examined to what extent endogenous ABA concentrations were related to quality parameters, such as fruit biomass, anthocyanin accumulation and levels of vitamins C and E. Endogenous concentrations of ABA in fruits increased progressively during fruit growth and ripening on the tree, to decrease later during post-harvest at 23°C. Cold treatment, however, increased ABA levels and led to an inhibition of over-ripening. Furthermore, ABA levels positively correlated with anthocyanin and vitamin E levels during pre-harvest, but not during post-harvest. We conclude that ABA plays a major role in sweet cherry development, stimulating its ripening process and positively influencing quality parameters during pre-harvest. The possible influence of ABA preventing over-ripening in cold-stored sweet cherries is also discussed. PMID:27200070

  4. Comparative transcriptome analysis of two contrasting watermelon genotypes during fruit development and ripening

    OpenAIRE

    Zhu, Qianglong; Gao, Peng; Liu, Shi; Zhu, Zicheng; Amanullah, Sikandar; Davis, Angela R.; Luan, Feishi

    2017-01-01

    Background Watermelon [Citrullus lanatus (Thunb.) Matsum. & Nakai] is an economically important crop with an attractive ripe fruit that has colorful flesh. Fruit ripening is a complex, genetically programmed process. Results In this study, a comparative transcriptome analysis was performed to identify the regulators and pathways that are involved in the fruit ripening of pale-yellow-flesh cultivated watermelon (COS) and red-flesh cultivated watermelon (LSW177). We first identified 797 novel g...

  5. Comparative transcriptome analysis of two contrasting watermelon genotypes during fruit development and ripening.

    Science.gov (United States)

    Zhu, Qianglong; Gao, Peng; Liu, Shi; Zhu, Zicheng; Amanullah, Sikandar; Davis, Angela R; Luan, Feishi

    2017-01-03

    Watermelon [Citrullus lanatus (Thunb.) Matsum. & Nakai] is an economically important crop with an attractive ripe fruit that has colorful flesh. Fruit ripening is a complex, genetically programmed process. In this study, a comparative transcriptome analysis was performed to identify the regulators and pathways that are involved in the fruit ripening of pale-yellow-flesh cultivated watermelon (COS) and red-flesh cultivated watermelon (LSW177). We first identified 797 novel genes to extend the available reference gene set. Second, 3958 genes in COS and 3503 genes in LSW177 showed at least two-fold variation in expression, and a large number of these differentially expressed genes (DEGs) during fruit ripening were related to carotenoid biosynthesis, plant hormone pathways, and sugar and cell wall metabolism. Third, we noted a correlation between ripening-associated transcripts and metabolites and the key function of these metabolic pathways during fruit ripening. The results revealed several ripening-associated actions and provide novel insights into the molecular mechanisms underlying the regulation of watermelon fruit ripening.

  6. Developmental gene regulation during tomato fruit ripening and in-vitro sepal morphogenesis

    Directory of Open Access Journals (Sweden)

    Ishida Betty K

    2003-08-01

    Full Text Available Abstract Background Red ripe tomatoes are the result of numerous physiological changes controlled by hormonal and developmental signals, causing maturation or differentiation of various fruit tissues simultaneously. These physiological changes affect visual, textural, flavor, and aroma characteristics, making the fruit more appealing to potential consumers for seed dispersal. Developmental regulation of tomato fruit ripening has, until recently, been lacking in rigorous investigation. We previously indicated the presence of up-regulated transcription factors in ripening tomato fruit by data mining in TIGR Tomato Gene Index. In our in-vitro system, green tomato sepals cultured at 16 to 22°C turn red and swell like ripening tomato fruit while those at 28°C remain green. Results Here, we have further examined regulation of putative developmental genes possibly involved in tomato fruit ripening and development. Using molecular biological methods, we have determined the relative abundance of various transcripts of genes during in vitro sepal ripening and in tomato fruit pericarp at three stages of development. A number of transcripts show similar expression in fruits to RIN and PSY1, ripening-associated genes, and others show quite different expression. Conclusions Our investigation has resulted in confirmation of some of our previous database mining results and has revealed differences in gene expression that may be important for tomato cultivar variation. We present new and intriguing information on genes that should now be studied in a more focused fashion.

  7. Gr and hp-1 tomato mutants unveil unprecedented interactions between arbuscular mycorrhizal symbiosis and fruit ripening.

    Science.gov (United States)

    Chialva, Matteo; Zouari, Inès; Salvioli, Alessandra; Novero, Mara; Vrebalov, Julia; Giovannoni, James J; Bonfante, Paola

    2016-07-01

    Systemic responses to an arbuscular mycorrhizal fungus reveal opposite phenological patterns in two tomato ripening mutants depending whether ethylene or light reception is involved. The availability of tomato ripening mutants has revealed many aspects of the genetics behind fleshy fruit ripening, plant hormones and light signal reception. Since previous analyses revealed that arbuscular mycorrhizal symbiosis influences tomato berry ripening, we wanted to test the hypothesis that an interplay might occur between root symbiosis and fruit ripening. With this aim, we screened seven tomato mutants affected in the ripening process for their responsiveness to the arbuscular mycorrhizal fungus Funneliformis mosseae. Following their phenological responses we selected two mutants for a deeper analysis: Green ripe (Gr), deficient in fruit ethylene perception and high-pigment-1 (hp-1), displaying enhanced light signal perception throughout the plant. We investigated the putative interactions between ripening processes, mycorrhizal establishment and systemic effects using biochemical and gene expression tools. Our experiments showed that both mutants, notwithstanding a normal mycorrhizal phenotype at root level, exhibit altered arbuscule functionality. Furthermore, in contrast to wild type, mycorrhization did not lead to a higher phosphate concentration in berries of both mutants. These results suggest that the mutations considered interfere with arbuscular mycorrhiza inducing systemic changes in plant phenology and fruits metabolism. We hypothesize a cross talk mechanism between AM and ripening processes that involves genes related to ethylene and light signaling.

  8. A dynamic interplay between phytohormones is required for fruit development, maturation and ripening

    Directory of Open Access Journals (Sweden)

    Peter eMcAtee

    2013-04-01

    Full Text Available Plant species that bear fruit often utilise expansion of an ovary (carpel or accessory tissue as a vehicle for seed dispersal. While the seed(s develop, the tissue(s of the fruit follow a common progression of cell division and cell expansion, promoting growth of the fruit. Once the seed is fully developed, the fruit matures and the surrounding tissue either dries or ripens promoting the dissemination of the seed. As with many developmental processes in plants, plant hormones play an important role in the synchronisation of signals between the developing seed and its surrounding fruit tissue(s, regulating each phase of fruit development. Following pollination, fruit set is achieved through a de-repression of growth and an activation of cell division via the action of auxin and/or cytokinin and/or gibberellin. Following fruit set, growth of the fruit is facilitated through a relatively poorly studied period of cell expansion and endoreduplication that is likely regulated by similar hormones as in fruit set. Once the seeds reach maturity, fruit become ready to undergo ripening and during this period there is a major switch in relative hormone levels of the fruit, involving an overall decrease in auxin, gibberellin and cytokinin and a simultaneous increase in abscisic acid and ethylene. While the role of hormones in fruit set and ripening is well documented, the knowledge of the roles of other hormones during growth, maturation and some individual ripening components is sketchy.

  9. Phosphoproteomic analysis of chromoplasts from sweet orange during fruit ripening.

    Science.gov (United States)

    Zeng, Yunliu; Pan, Zhiyong; Wang, Lun; Ding, Yuduan; Xu, Qiang; Xiao, Shunyuan; Deng, Xiuxin

    2014-02-01

    Like other types of plastids, chromoplasts have essential biosynthetic and metabolic activities which may be regulated via post-translational modifications, such as phosphorylation, of their resident proteins. We here report a proteome-wide mapping of in vivo phosphorylation sites in chromoplast-enriched samples prepared from sweet orange [Citrus sinensis (L.) Osbeck] at different ripening stages by titanium dioxide-based affinity chromatography for phosphoprotein enrichment with LC-MS/MS. A total of 109 plastid-localized phosphoprotein candidates were identified that correspond to 179 unique phosphorylation sites in 135 phosphopeptides. On the basis of Motif-X analysis, two distinct types of phosphorylation sites, one as proline-directed phosphorylation motif and the other as casein kinase II motif, can be generalized from these identified phosphopeptides. While most identified phosphoproteins show high homology to those already identified in plastids, approximately 22% of them are novel based on BLAST search using the public databases PhosPhAt and P(3) DB. A close comparative analysis showed that approximately 50% of the phosphoproteins identified in citrus chromoplasts find obvious counterparts in the chloroplast phosphoproteome, suggesting a rather high-level of conservation in basic metabolic activities in these two types of plastids. Not surprisingly, the phosphoproteome of citrus chromoplasts is also characterized by the lack of phosphoproteins involved in photosynthesis and by the presence of more phosphoproteins implicated in stress/redox responses. This study presents the first comprehensive phosphoproteomic analysis of chromoplasts and may help to understand how phosphorylation regulates differentiation of citrus chromoplasts during fruit ripening. © 2013 Scandinavian Plant Physiology Society.

  10. Dynamic changes in the date palm fruit proteome during development and ripening

    KAUST Repository

    Marondedze, Claudius; Gehring, Christoph A; Thomas, Ludivine

    2014-01-01

    in gel comparative proteomics combined with tandem mass spectrometry were used to study date fruit development and ripening. Total proteins were extracted using a phenol-based protocol. A total of 189 protein spots were differentially regulated (p≤0

  11. Effect of time of harvest, stage of fruit ripening, and post-harvest ...

    African Journals Online (AJOL)

    Seeds were extracted from half of the fruits harvested from each stage immediately after harvest while the other halves were stored at room temperature to ripen to the soft-red stage before seed extraction. Fruit weight in both cultivars decreased with plant age. Fruits harvested at the yellow-ripe stage produced the highest ...

  12. Differential effects of low-temperature inhibition on the propylene induced autocatalysis of ethylene production, respiration and ripening of 'Hayward' kiwifruit

    DEFF Research Database (Denmark)

    Antunes, M. D C; Pateraki, I.; Kanellis, A. K.

    2000-01-01

    production and the respiration rise appeared earlier with increased propylene concentrations. Ripening proceeded immediately after propylene treatment, while ethylene autocatalysis needed a lag period of 24-72 h. The latter event was attributed to the delay found in the induction of 1-aminocyclopropane-1....... It is concluded that kiwifruit stored at 20°C behaves as a typical climacteric fruit, while at 10°C behaves like a non-climacteric fruit. We propose that the main reasons for the inhibition of the propylene induced (autocatalytic) ethylene production in kiwifruit at low temperature (≤ IO°C), are primarily...

  13. Physicochemical quality and antioxidant changes in ‘Leb Mue Nang’ banana fruit during ripening

    Directory of Open Access Journals (Sweden)

    Pannipa Youryon

    2017-02-01

    Full Text Available The physicochemical and antioxidant changes of ‘Kluai Leb Mue Nang’ banana fruit (Musa AA group were investigated during ripening. The visual appearance, peel and pulp color, firmness, total soluble solids concentration (TSS, total acidity (TA and bioactive compounds of the fruit at three stages of ripening (mature green, ripe and overripe were monitored. Changes in both the peel and pulp color, texture, TSS and TA contents during banana ripening were similar to those of other banana fruits. Interestingly, the highest total antioxidants capacity and total phenols concentration were found in the ripe banana fruit. 2,2-Diphenyl-1-picrylhydrazyl radical scavenging activity remained constant and the highest total flavonoids concentration was found in the mature green fruit.

  14. Changes in sugars, acids, and volatiles during ripening of koubo [Cereus peruvianus (L.) Miller] fruits.

    Science.gov (United States)

    Ninio, Racheli; Lewinsohn, Efraim; Mizrahi, Yosef; Sitrit, Yaron

    2003-01-29

    The columnar cactus Cereus peruvianus (L.) Miller, Cactaceae (koubo), is grown commercially in Israel. The unripe fruits are green, and the color changes to violet and then to red when the fruit is fully ripe. The content of soluble sugars was found to increase 5-fold during ripening. Glucose and fructose were the main sugars accumulated in the fruit pulp, and each increased from 0.5 to 5.5 g/100 g fresh weight during ripening. The polysaccharides content decreased during ripening from 1.4 to 0.4 g/100 g fresh weight. The titratable acidity decreased and the pH increased during ripening. The major organic acid found in the fruit was malic acid, which decreased from 0.75 g/100 g fresh weight at the mature green stage to 0.355 g/100 g fresh weight in ripe fruits. Citric, succinic, and oxalic acids were found in concentrations lower than 0.07 g/100 g fresh weight. Prominent accumulation of aroma volatiles occurred toward the end of the ripening process. The main volatile found in the ripe fruit was linalool, reaching concentrations of 1.5-3.5 microg/g fresh weight.

  15. Dynamic changes in the date palm fruit proteome during development and ripening

    KAUST Repository

    Marondedze, Claudius

    2014-08-06

    Date palm (Phoenix dactylifera) is an economically important fruit tree in the Middle East and North Africa and is characterized by large cultivar diversity, making it a good model for studies on fruit development and other important traits. Here in gel comparative proteomics combined with tandem mass spectrometry were used to study date fruit development and ripening. Total proteins were extracted using a phenol-based protocol. A total of 189 protein spots were differentially regulated (p≤0.05). The identified proteins were classified into 14 functional categories. The categories with the most proteins were ‘disease and defense’ (16.5%) and ‘metabolism’ (15.4%). Twenty-nine proteins have not previously been identified in other fleshy fruits and 64 showed contrasting expression patterns in other fruits. Abundance of most proteins with a role in abiotic stress responses increased during ripening with the exception of heat shock proteins. Proteins with a role in anthocyanin biosynthesis, glycolysis, tricarboxylic acid cycle and cell wall degradation were upregulated particularly from the onset of ripening and during ripening. In contrast, expression of pentose phosphate- and photosynthesis-related proteins decreased during fruit maturation. Although date palm is considered a climacteric species, the analysis revealed downregulation of two enzymes involved in ethylene biosynthesis, suggesting an ethylene-independent ripening of ‘Barhi’ fruits. In summary, this proteomics study provides insights into physiological processes during date fruit development and ripening at the systems level and offers a reference proteome for the study of regulatory mechanisms that can inform molecular and biotechnological approaches to further improvements of horticultural traits including fruit quality and yield.

  16. Effects of 1-Methylcyclopropene Treatments on Ripening and Quality of Harvested Sapodilla Fruit

    Directory of Open Access Journals (Sweden)

    Zhong Qiuping

    2006-01-01

    Full Text Available Sapodilla fruits were exposed to the ethylene action inhibitor 1-methylcyclopropene (1-MCP at 0, 40 or 80 nL/L for 24 h at 20 °C. Fruits were then stored at 20 °C and 85−95 % relative humidity and later assessed for quality and ripening characteristics. 1-MCP treatments delayed the increases in the rates of respiration and ethylene production by 6 days. Treatments also delayed by 6 days the increase in polygalacturonase activity. Decreases in ascorbic acid, titratable acidity and chlorophyll content that are normally seen with ripening were delayed. Changes in the content of soluble solids were also slowed compared to untreated fruit. The application of 1-MCP was an effective technology for ripening inhibition and quality maintenance of harvested sapodilla fruit.

  17. Identification of Differentially Expressed Genes Associated with Apple Fruit Ripening and Softening by Suppression Subtractive Hybridization.

    Science.gov (United States)

    Zhang, Zongying; Jiang, Shenghui; Wang, Nan; Li, Min; Ji, Xiaohao; Sun, Shasha; Liu, Jingxuan; Wang, Deyun; Xu, Haifeng; Qi, Sumin; Wu, Shujing; Fei, Zhangjun; Feng, Shouqian; Chen, Xuesen

    2015-01-01

    Apple is one of the most economically important horticultural fruit crops worldwide. It is critical to gain insights into fruit ripening and softening to improve apple fruit quality and extend shelf life. In this study, forward and reverse suppression subtractive hybridization libraries were generated from 'Taishanzaoxia' apple fruits sampled around the ethylene climacteric to isolate ripening- and softening-related genes. A set of 648 unigenes were derived from sequence alignment and cluster assembly of 918 expressed sequence tags. According to gene ontology functional classification, 390 out of 443 unigenes (88%) were assigned to the biological process category, 356 unigenes (80%) were classified in the molecular function category, and 381 unigenes (86%) were allocated to the cellular component category. A total of 26 unigenes differentially expressed during fruit development period were analyzed by quantitative RT-PCR. These genes were involved in cell wall modification, anthocyanin biosynthesis, aroma production, stress response, metabolism, transcription, or were non-annotated. Some genes associated with cell wall modification, anthocyanin biosynthesis and aroma production were up-regulated and significantly correlated with ethylene production, suggesting that fruit texture, coloration and aroma may be regulated by ethylene in 'Taishanzaoxia'. Some of the identified unigenes associated with fruit ripening and softening have not been characterized in public databases. The results contribute to an improved characterization of changes in gene expression during apple fruit ripening and softening.

  18. Altered cell wall disassembly during ripening of Cnr tomato fruit: implications for cell adhesion and fruit softening

    DEFF Research Database (Denmark)

    Orfila, C.; Huisman, M.M.H.; Willats, William George Tycho

    2002-01-01

    The Cnr (Colourless non-ripening) tomato (Lycopersicon esculentum Mill.) mutant has an aberrant fruit-ripening phenotype in which fruit do not soften and have reduced cell adhesion between pericarp cells. Cell walls from Cnr fruit were analysed in order to assess the possible contribution of pectic...... polysaccharides to the non-softening and altered cell adhesion phenotype. Cell wall material (CWM) and solubilised fractions of mature green and red ripe fruit were analysed by chemical, enzymatic and immunochemical techniques. No major differences in CWM sugar composition were detected although differences were...... that was chelator-soluble was 50% less in Cnr cell walls at both the mature green and red ripe stages. Chelator-soluble material from ripe-stage Cnr was more susceptible to endo-polygalacturonase degradation than the corresponding material from wild-type fruit. In addition, cell walls from Cnr fruit contained...

  19. Expression Profiling of Strawberry Allergen Fra a during Fruit Ripening Controlled by Exogenous Auxin.

    Science.gov (United States)

    Ishibashi, Misaki; Yoshikawa, Hiroki; Uno, Yuichi

    2017-06-02

    Strawberry fruit contain the allergenic Fra a proteins, members of the pathogenesis-related 10 protein family that causes oral allergic syndrome symptoms. Fra a proteins are involved in the flavonoid biosynthesis pathway, which might be important for color development in fruits. Auxin is an important plant hormone in strawberry fruit that controls fruit fleshiness and ripening. In this study, we treated strawberry fruits with exogenous auxin or auxin inhibitors at pre- and post-harvest stages, and analyzed Fra a transcriptional and translational expression levels during fruit development by real-time PCR and immunoblotting. Pre-harvest treatment with 1-naphthaleneacetic acid (NAA) alone did not affect Fra a expression, but applied in conjunction with achene removal NAA promoted fruit pigmentation and Fra a protein accumulation. The response was developmental stage-specific: Fra a 1 was highly expressed in immature fruit, whereas Fra a 2 was expressed in young to ripe fruit. In post-harvest treatments, auxin did not contribute to Fra a induction. Auxin inhibitors delayed fruit ripening; as a result, they seemed to influence Fra a 1 expression. Thus, Fra a expression was not directly regulated by auxin, but might be associated with the ripening process and/or external factors in a paralog-specific manner.

  20. Feeding on ripening and over-ripening fruit: interactions between sugar, ethanol and polyphenol contents in a tropical butterfly.

    Science.gov (United States)

    Beaulieu, Michaël; Franke, Kristin; Fischer, Klaus

    2017-09-01

    In ripe fruit, energy mostly derives from sugar, while in over-ripe fruit, it also comes from ethanol. Such ripeness differences may alter the fitness benefits associated with frugivory if animals are unable to degrade ethanol when consuming over-ripe fruit. In the tropical butterfly Bicyclus anynana , we found that females consuming isocaloric solutions mimicking ripe (20% sucrose) and over-ripe fruit (10% sucrose, 7% ethanol) of the palm Astrocaryum standleyanum exhibited higher fecundity than females consuming a solution mimicking unripe fruit (10% sucrose). Moreover, relative to butterflies consuming a solution mimicking unripe fruit, survival was enhanced when butterflies consumed a solution mimicking either ripe fruit supplemented with polyphenols (fruit antioxidant compounds) or over-ripe fruit devoid of polyphenols. This suggests that (1) butterflies have evolved tolerance mechanisms to derive the same reproductive benefits from ethanol and sugar, and (2) polyphenols may regulate the allocation of sugar and ethanol to maintenance mechanisms. However, variation in fitness owing to the composition of feeding solutions was not paralleled by corresponding physiological changes (alcohol dehydrogenase activity, oxidative status) in butterflies. The fitness proxies and physiological parameters that we measured therefore appear to reflect distinct biological pathways. Overall, our results highlight that the energy content of fruit primarily affects the fecundity of B. anynana butterflies, while the effects of fruit consumption on survival are more complex and vary depending on ripening stage and polyphenol presence. The actual underlying physiological mechanisms linking fruit ripeness and fitness components remain to be clarified. © 2017. Published by The Company of Biologists Ltd.

  1. Changes in Cuticular Wax Composition of Two Blueberry Cultivars during Fruit Ripening and Postharvest Cold Storage.

    Science.gov (United States)

    Chu, Wenjing; Gao, Haiyan; Chen, Hangjun; Wu, Weijie; Fang, Xiangjun

    2018-03-21

    Cuticular wax plays an important role for the quality of blueberry fruits. In this study, the cuticular wax composition of two blueberry cultivars, 'Legacy' ( Vaccinium corymbosum) and 'Brightwell' ( Vaccinium ashei), was examined during fruit ripening and postharvest cold storage. The results showed that wax was gradually deposited on the epidermis of blueberry fruits and the content of major wax compounds, except that for diketones, increased significantly during fruit ripening. The total wax content was 2-fold greater in 'Brightwell' blueberries than that in 'Legacy' blueberries during fruit ripening. The total wax content of both cultivars decreased during 30 days of storage at 4 °C, and the variation of cuticular wax composition was cultivar-dependent. The content of diketones decreased significantly in 'Legacy' blueberries, while the content of triterpenoids and aliphatic compounds showed different fold changes in 'Brightwell' blueberries after 30 days of storage at 4 °C. Overall, our study provided a quantitative and qualitative overview of cuticular wax compounds of blueberry fruits during ripening and postharvest cold storage.

  2. Use of homologous and heterologous gene expression profiling tools to characterize transcription dynamics during apple fruit maturation and ripening

    Directory of Open Access Journals (Sweden)

    Sansavini Silviero

    2010-10-01

    Full Text Available Abstract Background Fruit development, maturation and ripening consists of a complex series of biochemical and physiological changes that in climacteric fruits, including apple and tomato, are coordinated by the gaseous hormone ethylene. These changes lead to final fruit quality and understanding of the functional machinery underlying these processes is of both biological and practical importance. To date many reports have been made on the analysis of gene expression in apple. In this study we focused our investigation on the role of ethylene during apple maturation, specifically comparing transcriptomics of normal ripening with changes resulting from application of the hormone receptor competitor 1-Methylcyclopropene. Results To gain insight into the molecular process regulating ripening in apple, and to compare to tomato (model species for ripening studies, we utilized both homologous and heterologous (tomato microarray to profile transcriptome dynamics of genes involved in fruit development and ripening, emphasizing those which are ethylene regulated. The use of both types of microarrays facilitated transcriptome comparison between apple and tomato (for the later using data previously published and available at the TED: tomato expression database and highlighted genes conserved during ripening of both species, which in turn represent a foundation for further comparative genomic studies. The cross-species analysis had the secondary aim of examining the efficiency of heterologous (specifically tomato microarray hybridization for candidate gene identification as related to the ripening process. The resulting transcriptomics data revealed coordinated gene expression during fruit ripening of a subset of ripening-related and ethylene responsive genes, further facilitating the analysis of ethylene response during fruit maturation and ripening. Conclusion Our combined strategy based on microarray hybridization enabled transcriptome characterization

  3. Use of homologous and heterologous gene expression profiling tools to characterize transcription dynamics during apple fruit maturation and ripening.

    Science.gov (United States)

    Costa, Fabrizio; Alba, Rob; Schouten, Henk; Soglio, Valeria; Gianfranceschi, Luca; Serra, Sara; Musacchi, Stefano; Sansavini, Silviero; Costa, Guglielmo; Fei, Zhangjun; Giovannoni, James

    2010-10-25

    Fruit development, maturation and ripening consists of a complex series of biochemical and physiological changes that in climacteric fruits, including apple and tomato, are coordinated by the gaseous hormone ethylene. These changes lead to final fruit quality and understanding of the functional machinery underlying these processes is of both biological and practical importance. To date many reports have been made on the analysis of gene expression in apple. In this study we focused our investigation on the role of ethylene during apple maturation, specifically comparing transcriptomics of normal ripening with changes resulting from application of the hormone receptor competitor 1-methylcyclopropene. To gain insight into the molecular process regulating ripening in apple, and to compare to tomato (model species for ripening studies), we utilized both homologous and heterologous (tomato) microarray to profile transcriptome dynamics of genes involved in fruit development and ripening, emphasizing those which are ethylene regulated.The use of both types of microarrays facilitated transcriptome comparison between apple and tomato (for the later using data previously published and available at the TED: tomato expression database) and highlighted genes conserved during ripening of both species, which in turn represent a foundation for further comparative genomic studies. The cross-species analysis had the secondary aim of examining the efficiency of heterologous (specifically tomato) microarray hybridization for candidate gene identification as related to the ripening process. The resulting transcriptomics data revealed coordinated gene expression during fruit ripening of a subset of ripening-related and ethylene responsive genes, further facilitating the analysis of ethylene response during fruit maturation and ripening. Our combined strategy based on microarray hybridization enabled transcriptome characterization during normal climacteric apple ripening, as well as

  4. Ripening of pepper (Capsicum annuum) fruit is characterized by an enhancement of protein tyrosine nitration.

    Science.gov (United States)

    Chaki, Mounira; Álvarez de Morales, Paz; Ruiz, Carmelo; Begara-Morales, Juan C; Barroso, Juan B; Corpas, Francisco J; Palma, José M

    2015-09-01

    Pepper (Capsicum annuum, Solanaceae) fruits are consumed worldwide and are of great economic importance. In most species ripening is characterized by important visual and metabolic changes, the latter including emission of volatile organic compounds associated with respiration, destruction of chlorophylls, synthesis of new pigments (red/yellow carotenoids plus xanthophylls and anthocyanins), formation of pectins and protein synthesis. The involvement of nitric oxide (NO) in fruit ripening has been established, but more work is needed to detail the metabolic networks involving NO and other reactive nitrogen species (RNS) in the process. It has been reported that RNS can mediate post-translational modifications of proteins, which can modulate physiological processes through mechanisms of cellular signalling. This study therefore examined the potential role of NO in nitration of tyrosine during the ripening of California sweet pepper. The NO content of green and red pepper fruit was determined spectrofluorometrically. Fruits at the breaking point between green and red coloration were incubated in the presence of NO for 1 h and then left to ripen for 3 d. Profiles of nitrated proteins were determined using an antibody against nitro-tyrosine (NO2-Tyr), and profiles of nitrosothiols were determined by confocal laser scanning microscopy. Nitrated proteins were identified by 2-D electrophoresis and MALDI-TOF/TOF analysis. Treatment with NO delayed the ripening of fruit. An enhancement of nitrosothiols and nitroproteins was observed in fruit during ripening, and this was reversed by the addition of exogenous NO gas. Six nitrated proteins were identified and were characterized as being involved in redox, protein, carbohydrate and oxidative metabolism, and in glutamate biosynthesis. Catalase was the most abundant nitrated protein found in both green and red fruit. The RNS profile reported here indicates that ripening of pepper fruit is characterized by an enhancement of S

  5. Chlorophyll metabolism in pollinated vs. parthenocarpic fig fruits throughout development and ripening.

    Science.gov (United States)

    Rosianskey, Yogev; Dahan, Yardena; Yadav, Sharawan; Freiman, Zohar E; Milo-Cochavi, Shira; Kerem, Zohar; Eyal, Yoram; Flaishman, Moshe A

    2016-08-01

    Expression of 13 genes encoding chlorophyll biosynthesis and degradation was evaluated. Chlorophyll degradation was differentially regulated in pollinated and parthenocarpic fig fruits, leading to earlier chlorophyll degradation in parthenocarpic fruits. Varieties of the common fig typically yield a commercial summer crop that requires no pollination, although it can be pollinated. Fig fruit pollination results in larger fruit size, greener skin and darker interior inflorescence color, and slows the ripening process compared to non-pollinated fruits. We evaluated the effect of pollination on chlorophyll content and levels of transcripts encoding enzymes of the chlorophyll metabolism in fruits of the common fig 'Brown Turkey'. We cloned and evaluated the expression of 13 different genes. All 13 genes showed high expression in the fruit skin, inflorescences and leaves, but extremely low expression in roots. Pollination delayed chlorophyll breakdown in the ripening fruit skin and inflorescences. This was correlated with the expression of genes encoding enzymes in the chlorophyll biosynthesis and degradation pathways. Expression of pheophorbide a oxygenase (PAO) was strongly negatively correlated with chlorophyll levels during ripening in pollinated fruits; along with its high expression levels in yellow leaves, this supports a pivotal role for PAO in chlorophyll degradation in figs. Normalizing expression levels of all chlorophyll metabolism genes in the pollinated and parthenocarpic fruit skin and inflorescences showed three synthesis (FcGluTR1, FcGluTR2 and FcCLS1) and three degradation (FcCLH1, FcCLH2 and FcRCCR1) genes with different temporal expression in the pollinated vs. parthenocarpic fruit skin and inflorescences. FcCAO also showed different expressions in the parthenocarpic fruit skin. Thus, chlorophyll degradation is differentially regulated in the pollinated and parthenocarpic fruit skin and inflorescences, leading to earlier and more sustained

  6. Banana ethylene response factors are involved in fruit ripening through their interactions with ethylene biosynthesis genes.

    Science.gov (United States)

    Xiao, Yun-yi; Chen, Jian-ye; Kuang, Jiang-fei; Shan, Wei; Xie, Hui; Jiang, Yue-ming; Lu, Wang-jin

    2013-05-01

    The involvement of ethylene response factor (ERF) transcription factor (TF) in the transcriptional regulation of ethylene biosynthesis genes during fruit ripening remains largely unclear. In this study, 15 ERF genes, designated as MaERF1-MaERF15, were isolated and characterized from banana fruit. These MaERFs were classified into seven of the 12 known ERF families. Subcellular localization showed that MaERF proteins of five different subfamilies preferentially localized to the nucleus. The 15 MaERF genes displayed differential expression patterns and levels in peel and pulp of banana fruit, in association with four different ripening treatments caused by natural, ethylene-induced, 1-methylcyclopropene (1-MCP)-delayed, and combined 1-MCP and ethylene treatments. MaERF9 was upregulated while MaERF11 was downregulated in peel and pulp of banana fruit during ripening or after treatment with ethylene. Furthermore, yeast-one hybrid (Y1H) and transient expression assays showed that the potential repressor MaERF11 bound to MaACS1 and MaACO1 promoters to suppress their activities and that MaERF9 activated MaACO1 promoter activity. Interestingly, protein-protein interaction analysis revealed that MaERF9 and -11 physically interacted with MaACO1. Taken together, these results suggest that MaERFs are involved in banana fruit ripening via transcriptional regulation of or interaction with ethylene biosynthesis genes.

  7. Tomato Fruit Chromoplasts Behave as Respiratory Bioenergetic Organelles during Ripening1[W][OPEN

    Science.gov (United States)

    Renato, Marta; Pateraki, Irini; Boronat, Albert; Azcón-Bieto, Joaquín

    2014-01-01

    During tomato (Solanum lycopersicum) fruit ripening, chloroplasts differentiate into photosynthetically inactive chromoplasts. It was recently reported that tomato chromoplasts can synthesize ATP through a respiratory process called chromorespiration. Here we show that chromoplast oxygen consumption is stimulated by the electron donors NADH and NADPH and is sensitive to octyl gallate (Ogal), a plastidial terminal oxidase inhibitor. The ATP synthesis rate of isolated chromoplasts was dependent on the supply of NAD(P)H and was fully inhibited by Ogal. It was also inhibited by the proton uncoupler carbonylcyanide m-chlorophenylhydrazone, suggesting the involvement of a chemiosmotic gradient. In addition, ATP synthesis was sensitive to 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone, a cytochrome b6f complex inhibitor. The possible participation of this complex in chromorespiration was supported by the detection of one of its components (cytochrome f) in chromoplasts using immunoblot and immunocytochemical techniques. The observed increased expression of cytochrome c6 during ripening suggests that it could act as electron acceptor of the cytochrome b6f complex in chromorespiration. The effects of Ogal on respiration and ATP levels were also studied in tissue samples. Oxygen uptake of mature green fruit and leaf tissues was not affected by Ogal, but was inhibited increasingly in fruit pericarp throughout ripening (up to 26% in red fruit). Similarly, Ogal caused a significant decrease in ATP content of red fruit pericarp. The number of energized mitochondria, as determined by confocal microscopy, strongly decreased in fruit tissue during ripening. Therefore, the contribution of chromoplasts to total fruit respiration appears to increase in late ripening stages. PMID:25125503

  8. The regulatory mechanism of fruit ripening revealed by analyses of direct targets of the tomato MADS-box transcription factor RIPENING INHIBITOR

    Science.gov (United States)

    Fujisawa, Masaki; Ito, Yasuhiro

    2013-01-01

    The developmental process of ripening is unique to fleshy fruits and a key factor in fruit quality. The tomato (Solanum lycopersicum) MADS-box transcription factor RIPENING INHIBITOR (RIN), one of the earliest-acting ripening regulators, is required for broad aspects of ripening, including ethylene-dependent and -independent pathways. However, our knowledge of direct RIN target genes has been limited, considering the broad effects of RIN on ripening. In a recent work published in The Plant Cell, we identified 241 direct RIN target genes by chromatin immunoprecipitation coupled with DNA microarray (ChIP-chip) and transcriptome analysis. Functional classification of the targets revealed that RIN participates in the regulation of many biological processes including well-known ripening processes such as climacteric ethylene production and lycopene accumulation. In addition, we found that ethylene is required for the full expression of RIN and several RIN-targeting transcription factor genes at the ripening stage. Here, based on our recently published findings and additional data, we discuss the ripening processes regulated by RIN and the interplay between RIN and ethylene. PMID:23518588

  9. Ripening and shelf life of 'BRS Caipira' banana fruit stored under room temperature or refrigeration

    Directory of Open Access Journals (Sweden)

    Orjana Santos Lima

    2014-04-01

    Full Text Available BRS Caipira variety, internationally known as 'Yangambi km 5', is an alternative to meet the demand of 'Maçã'-type fruit due to its resistance to Panama disease. This study had the objective of generating information about 'BRS Caipira' fruit ripening and cold storage potential. For the ripening study fruits were stored under room temperature conditions (25±2°C / 58±6% U.R. and assessed for postharvest life evaluation and characterization of seven maturity stages based on peel color: completely green - MS1; green with yellow traces - MS2; more green than yellow - MS3; more yellow than green - MS4; yellow with green tips - MS5; completely yellow - MS6; yellow with brown spots - MS7. For the cold storage potential study, fruits at MS1 were cold stored (14±1°C / 53±2% U.R. for 28 days. Weekly, fruits were transferred to room temperature to ripen until MS6 when were assessed for quality attributes. Ripening of 'BRS Caipira' fruit was characterized as slow between MS1 and MS2 (averaging five days, then fast between MS2 and MS6 (up to four days in average, and undergoing determinant changes between MS6 and MS7: pulp yield reached 80%, titratable acidity reduced by 50% and ratio increased by 78%. Cold storage extended shelf life by up to 19 days as compared with control, without visible symptoms of chilling injury, although tends to reduce soluble solids in ripe fruit. Maximum recommended time for storage of 'BRS Caipira' fruit at 14°C is 21 days, since it allows a few more days under room temperature until fruit reach MS6.

  10. Suppressing Type 2C Protein Phosphatases Alters Fruit Ripening and the Stress Response in Tomato.

    Science.gov (United States)

    Zhang, Yushu; Li, Qian; Jiang, Li; Kai, Wenbin; Liang, Bin; Wang, Juan; Du, Yangwei; Zhai, Xiawan; Wang, Jieling; Zhang, Yingqi; Sun, Yufei; Zhang, Lusheng; Leng, Ping

    2018-01-01

    Although ABA signaling has been widely studied in Arabidopsis, the roles of core ABA signaling components in fruit remain poorly understood. Herein, we characterize SlPP2C1, a group A type 2C protein phosphatase that negatively regulates ABA signaling and fruit ripening in tomato. The SlPP2C1 protein was localized in the cytoplasm close to AtAHG3/AtPP2CA. The SlPP2C1 gene was expressed in all tomato tissues throughout development, particularly in flowers and fruits, and it was up-regulated by dehydration and ABA treatment. SlPP2C1 expression in fruits was increased at 30 d after full bloom and peaked at the B + 1 stage. Suppression of SlPP2C1 expression significantly accelerated fruit ripening which was associated with higher levels of ABA signaling genes that are reported to alter the expression of fruit ripening genes involved in ethylene release and cell wall catabolism. SlPP2C1-RNAi (RNA interference) led to increased endogenous ABA accumulation and advanced release of ethylene in transgenic fruits compared with wild-type (WT) fruits. SlPP2C1-RNAi also resulted in abnormal flowers and obstructed the normal abscission of pedicels. SlPP2C1-RNAi plants were hypersensitized to ABA, and displayed delayed seed germination and primary root growth, and increased resistance to drought stress compared with WT plants. These results demonstrated that SlPP2C1 is a functional component in the ABA signaling pathway which participates in fruit ripening, ABA responses and drought tolerance. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  11. Effect of gamma radiation and some growth regulators on ripening and senescence in mango fruits

    International Nuclear Information System (INIS)

    EL-Kady, S.M.A.

    1982-01-01

    The present investigation was undertaken during the seasons of 1979 and 1980 to study the effect of gamma irradiation, some growth regulators, benlate and 'vaporgard' on ripening and senescence of 'Hindi Be - Sinnara' mango fruits during storage under room conditions and also to determine the optimum treatment for maximum extension in shelf - life

  12. Suicidal tomato cells: programmed cell death in suspension-cultured tomato cells and ripening fruit

    NARCIS (Netherlands)

    Hoeberichts, F.A.

    2002-01-01

    Tomato fruit ripening involves a series of highly organised biochemical, physiological and structural changes that are under strict genetic control. The plant hormone ethylene (C 2 H 4 ), in synergy

  13. Gr and hp-1 tomato mutants unveil unprecedented interactions between arbuscular mycorrhizal symbiosis and fruit ripening

    Science.gov (United States)

    The roots of plants interact with soil mycorrhizal fungi to facilitate soil nutrient acquisition by the plant and carbon transfer to the fungus. Here we use tomato fruit ripening mutations to demonstrate that this root interaction communicates with and supports genetic mechanisms associated with th...

  14. Structural characteristics of polysaccharides from olive fruit cell walls in relation to ripening and processing

    NARCIS (Netherlands)

    Vierhuis, E.

    2002-01-01

    Key words: Olive fruit; olive oil; pectic polysaccharides; xyloglucans; xylans;

    enzyme preparations; phenolic compounds; processing; ripening

    Technical enzyme preparations can be used as processing aids in the olive oil industry to obtain a higher yield

  15. Identification of potential target genes for the tomato fruit-ripening regulator RIN by chromatin immunoprecipitation

    Directory of Open Access Journals (Sweden)

    Nakano Toshitsugu

    2011-01-01

    Full Text Available Abstract Background During ripening, climacteric fruits increase their ethylene level and subsequently undergo various physiological changes, such as softening, pigmentation and development of aroma and flavor. These changes occur simultaneously and are caused by the highly synchronized expression of numerous genes at the onset of ripening. In tomatoes, the MADS-box transcription factor RIN has been regarded as a key regulator responsible for the onset of ripening by acting upstream of both ethylene- and non-ethylene-mediated controls. However, except for LeACS2, direct targets of RIN have not been clarified, and little is known about the transcriptional cascade for ripening. Results Using immunoprecipitated (IPed DNA fragments recovered by chromatin immunoprecipitation (ChIP with anti-RIN antibody from ripening tomato fruit, we analyzed potential binding sites for RIN (CArG-box sites in the promoters of representative ripening-induced genes by quantitative PCR. Results revealed nearly a 5- to 20-fold enrichment of CArG boxes in the promoters of LeACS2, LeACS4, PG, TBG4, LeEXP1, and LeMAN4 and of RIN itself, indicating direct interaction of RIN with their promoters in vivo. Moreover, sequence analysis and genome mapping of 51 cloned IPed DNAs revealed potential RIN binding sites. Quantitative PCR revealed that four of the potential binding sites were enriched 4- to 17-fold in the IPed DNA pools compared with the controls, indicating direct interaction of RIN with these sites in vivo. Near one of the four CArG boxes we found a gene encoding a protein similar to thioredoxin y1. An increase in the transcript level of this gene was observed with ripening in normal fruit but not in the rin mutant, suggesting that RIN possibly induces its expression. Conclusions The presented results suggest that RIN controls fruit softening and ethylene production by the direct transcriptional regulation of cell-wall-modifying genes and ethylene biosynthesis genes

  16. Identification of potential target genes for the tomato fruit-ripening regulator RIN by chromatin immunoprecipitation.

    Science.gov (United States)

    Fujisawa, Masaki; Nakano, Toshitsugu; Ito, Yasuhiro

    2011-01-30

    During ripening, climacteric fruits increase their ethylene level and subsequently undergo various physiological changes, such as softening, pigmentation and development of aroma and flavor. These changes occur simultaneously and are caused by the highly synchronized expression of numerous genes at the onset of ripening. In tomatoes, the MADS-box transcription factor RIN has been regarded as a key regulator responsible for the onset of ripening by acting upstream of both ethylene- and non-ethylene-mediated controls. However, except for LeACS2, direct targets of RIN have not been clarified, and little is known about the transcriptional cascade for ripening. Using immunoprecipitated (IPed) DNA fragments recovered by chromatin immunoprecipitation (ChIP) with anti-RIN antibody from ripening tomato fruit, we analyzed potential binding sites for RIN (CArG-box sites) in the promoters of representative ripening-induced genes by quantitative PCR. Results revealed nearly a 5- to 20-fold enrichment of CArG boxes in the promoters of LeACS2, LeACS4, PG, TBG4, LeEXP1, and LeMAN4 and of RIN itself, indicating direct interaction of RIN with their promoters in vivo. Moreover, sequence analysis and genome mapping of 51 cloned IPed DNAs revealed potential RIN binding sites. Quantitative PCR revealed that four of the potential binding sites were enriched 4- to 17-fold in the IPed DNA pools compared with the controls, indicating direct interaction of RIN with these sites in vivo. Near one of the four CArG boxes we found a gene encoding a protein similar to thioredoxin y1. An increase in the transcript level of this gene was observed with ripening in normal fruit but not in the rin mutant, suggesting that RIN possibly induces its expression. The presented results suggest that RIN controls fruit softening and ethylene production by the direct transcriptional regulation of cell-wall-modifying genes and ethylene biosynthesis genes during ripening. Moreover, the binding of RIN to its own

  17. The Citrus ABA signalosome: identification and transcriptional regulation during sweet orange fruit ripening and leaf dehydration.

    Science.gov (United States)

    Romero, Paco; Lafuente, María T; Rodrigo, María J

    2012-08-01

    The abscisic acid (ABA) signalling core in plants include the cytosolic ABA receptors (PYR/PYL/RCARs), the clade-A type 2C protein phosphatases (PP2CAs), and the subclass III SNF1-related protein kinases 2 (SnRK2s). The aim of this work was to identify these ABA perception system components in sweet orange and to determine the influence of endogenous ABA on their transcriptional regulation during fruit development and ripening, taking advantage of the comparative analysis between a wild-type and a fruit-specific ABA-deficient mutant. Transcriptional changes in the ABA signalosome during leaf dehydration were also studied. Six PYR/PYL/RCAR, five PP2CA, and two subclass III SnRK2 genes, homologous to those of Arabidopsis, were identified in the Citrus genome. The high degree of homology and conserved motifs for protein folding and for functional activity suggested that these Citrus proteins are bona fide core elements of ABA perception in orange. Opposite expression patterns of CsPYL4 and CsPYL5 and ABA accumulation were found during ripening, although there were few differences between varieties. In contrast, changes in expression of CsPP2CA genes during ripening paralleled those of ABA content and agreeed with the relevant differences between wild-type and mutant fruit transcript accumulation. CsSnRK2 gene expression continuously decreased with ripening and no remarkable differences were found between cultivars. Overall, dehydration had a minor effect on CsPYR/PYL/RCAR and CsSnRK2 expression in vegetative tissue, whereas CsABI1, CsAHG1, and CsAHG3 were highly induced by water stress. The global results suggest that responsiveness to ABA changes during citrus fruit ripening, and leaf dehydration was higher in the CsPP2CA gene negative regulators than in the other ABA signalosome components.

  18. Changes in oxidative stress in transgenic RNAi ACO1 tomato fruit during ripening

    Science.gov (United States)

    Eglous, Najat Mohamed; Ali, Zainon Mohd; Hassan, Maizom; Zainal, Zamri

    2013-11-01

    Tomato (Solanum Lycopersicum L.) is the second most cultivated vegetable in the world and widely used as a system for studying the role of ethylene during fruit ripening. Our objective was to study the oxidative stress and antioxidative metabolism during ripening of non transgenic tomato and transgenic line-21 tomato which reduced ethylene. The line-21 of transgenic tomato plants (RNAi ACO1) had lower ethylene production and longer shelf-life more than 32 days as compared to the wild-type fruits which have very short shelf-life. In this study, tomato fruit were divided into five different stages (MG: mature green 5%, B: breaker 25%, T: turning 50%, O: orange75%, RR: red ripe100%). The activity of lipoxygenase (LOX) and lipid peroxidation (MDA) were measured to assess changes in oxidative stress. The LOX activity and MDA content decreased significantly obtaining 2.6-fold and 1.2-fold, respectively, as compared to the wild type fruit. However, superoxide dismutase (SOD) and catalase (CAT) activities were increased to 1.9 and 1.2 folds from the mature green to the fully ripe stage in transgenic tomatoes. Furthermore, the wild type tomato increases 1.3 in SOD and 1.6 in CAT activities. The overall results indicate that the wild type tomato fruit showed a faster rate of ripening, parallel to decline in the rate of enzymatic antioxidative systems as compared to the transgenic line-21 tomato fruit. In addition, the results show that the antioxidant capacity is improved during the ripening process and is accompanied by an increase in the oxidative stress.

  19. Oil accumulation kinetic along ripening in four olive cultivars varying for fruit size

    Directory of Open Access Journals (Sweden)

    Breton Catherine

    2009-01-01

    Full Text Available To determine whether oil accumulation pattern is parallel to drupe olive (Olea europaea L growth and if common climatic parameters may influence oil content we conducted an experiment in rainfed orchards with four olive cultivars, Amygdalolia, Arbequina, Lucques, and Olivière, differing by fruit size at maturity. Fruits were harvested weekly from July to November. They were counted and weighted before being crushed. Fat content was determined on dry matter using a Minispec RMN. Common climatic parameters were recorded. Variance analyses showed stage effects highly significant. Results showed three different patterns for fruit growth. Dry matter accumulated broadly similarly and the weekly rates were positively correlated with fruit size. Oil accumulation is mostly independent of climatic variation and probably depends on genetic programmes for each cultivar. We defined the main steps and events for olive fruit ripening according to recent knowledge on fruit development.

  20. Physiological, molecular and ultrastructural analyses during ripening and over-ripening of banana (Musa spp., AAA group, Cavendish sub-group) fruit suggest characteristics of programmed cell death.

    Science.gov (United States)

    Ramírez-Sánchez, Maricruz; Huber, Donald J; Vallejos, C Eduardo; Kelley, Karen

    2018-01-01

    Programmed cell death (PCD) is a part of plant development that has been studied for petal senescence and vegetative tissue but has not been thoroughly investigated for fleshy fruits. The purpose of this research was to examine ripening and over-ripening in banana fruit to determine if there were processes in common to previously described PCD. Loss of cellular integrity (over 40%) and development of senescence related dark spot (SRDS) occurred after day 8 in banana peel. Nuclease and protease activity in the peel increased during ripening starting from day 2, and decreased during over-ripening. The highest activity was for proteases and nucleases with apparent molecular weights of 86 kDa and 27 kDa, respectively. Images of SRDS showed shrinkage of the upper layers of cells, visually suggesting cell death. Decrease of electron dense areas was evident in TEM micrographs of nuclei. This study shows for the first time that ripening and over-ripening of banana peel share physiological and molecular processes previously described in plant PCD. SRDS could represent a morphotype of PCD that characterizes a structural and biochemical failure in the upper layers of the peel, thereafter spreading to lower and adjacent layers of cells. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  1. Changes in Polyphenols Contents and Antioxidant Capacities of Organically and Conventionally Cultivated Tomato (Solanum lycopersicum L. Fruits during Ripening

    Directory of Open Access Journals (Sweden)

    Dea Anton

    2017-01-01

    Full Text Available Polyphenols of fruits and vegetables form an important part of human dietary compounds. Relatively little is known about accumulation of phenolics during fruits ripening process. The goal of this work was to study the changes in antioxidant activity and in content of 30 polyphenols during ripening of tomato fruits. Five organically and conventionally grown tomato cultivars were investigated at three different ripening stages. Phenolic compounds were extracted with methanol and extracts were analyzed by HPLC-DAD-MS/MS. During ripening, four different changing patterns were observed: (1 high level in green fruits with minimal changes; (2 continuous increase with maximum level in red-ripe fruits; (3 decrease; (4 increase and achieving maximum level at half-ripe stage. Similar change patterns were found for organic and conventional fruits. The accumulation patterns of phenolic compounds were similar in standard-type tomatoes but differed in several cases in cherry-type cultivar. Although contents of some polyphenols decreased during ripening, total phenolics and free radical scavenging activity increased in all studied cultivars and in case of both cultivation modes. The changes in content of phenolic compounds during ripening were greatly influenced by cultivars, but cultivation mode had only minor impact on dynamics in polyphenols contents in tomato fruits.

  2. Use of homologous and heterologous gene expression profiling tools to characterize transcription dynamics during apple fruit maturation and ripening

    NARCIS (Netherlands)

    Costa, F.; Alba, R.; Schouten, H.J.; Soglio, V.; Gianfranceschi, L.; Serra, S.; Musacchi, S.; Sansavini, S.; Costa, G.; Fei, Z.; Giovannoni, J.

    2010-01-01

    Background - Fruit development, maturation and ripening consists of a complex series of biochemical and physiological changes that in climacteric fruits, including apple and tomato, are coordinated by the gaseous hormone ethylene. These changes lead to final fruit quality and understanding of the

  3. Mango (Mangifera indica L.) cv. Kent fruit mesocarp de novo transcriptome assembly identifies gene families important for ripening

    Science.gov (United States)

    Fruit ripening is a physiological and biochemical process genetically programmed to regulate fruit quality parameters like firmness, flavor, odor and color, as well as production of ethylene in climacteric fruit. In this study, a transcriptomic analysis of mango (Mangifera indica L.) mesocarp cv. "K...

  4. Genetic regulation and structural changes during tomato fruit development and ripening

    Directory of Open Access Journals (Sweden)

    Paolo ePesaresi

    2014-04-01

    Full Text Available Fruits are an important evolutionary acquisition of angiosperms, which afford protection for seeds and ensure their optimal dispersal in the environment. Fruits can be divided into dry or fleshy. Dry fruits are the more ancient and provide for mechanical seed dispersal. In contrast, fleshy fruits develop soft tissues in which flavour compounds and pigments accumulate during the ripening process. These serve to attract animals that eat them and disseminate the indigestible seeds. Fruit maturation is accompanied by several striking cytological modifications. In particular, plastids undergo significant structural alterations, including the dedifferentiation of chloroplasts into chromoplasts. Chloroplast biogenesis, their remodeling in response to environmental constraints and their conversion into alternative plastid types are known to require communication between plastids and the nucleus in order to coordinate the expression of their respective genomes. In this review, we discuss the role of plastid modifications in the context of fruit maturation and ripening, and consider the possible involvement of organelle-nucleus crosstalk via retrograde (plastid to nucleus and anterograde (nucleus to plastid signaling in the process.

  5. is regulated during fruit ripening and senescense, and involved

    Indian Academy of Sciences (India)

    discs of pear were dipped in distilled water solutions con- taining 0.002 ... from the fruit of 135 days after full bloom were treated with. 0.1, 0.5, 1, 2 ... treatment, and then stored at −80 .... lighted in black, while similar residues are shown in grey.

  6. Polyamine metabolism in ripening tomato fruit. II. Polyamine metabolism and synthesis in relation to enhanced putrescine content and storage life of alc tomato fruit

    International Nuclear Information System (INIS)

    Rastogi, R.; Davies, P.J.

    1991-01-01

    The fruit of the Alcobaca landrace of tomato (Lycopersicon esculentum Mill.) have prolonged keeping qualities (determined by the allele alc) and contain three times as much putrescine as the standard Rutgers variety (Alc) at the ripe stage. Polyamine metabolism and biosynthesis were compared in fruit from Rutgers and Rutgers-alc-a near isogenic line possessing the allele alc, at four different stages of ripening. The levels of soluble polyamine conjugates as well as wall bound polyamines in the pericarp tissue and jelly were very low or nondetectable in both genotypes. The increase in putrescine content in alc pericarp is not related to normal ripening as it occurred with time and whether or not the fruit ripened. Pericarp discs of both normal and alc fruit showed a decrease in the metabolism of [1,4- 14 C]putrescine and [terminal labeled- 3 H]spermidine with ripening, but there were no significant differences between the two genotypes. The activity of ornithine decarboxylase was similar in the fruit pericarp of the two lines. Arginine decarboxylase activity decreased during ripening in Rutgers but decreased and rose again in Rutgers-alc fruit, and as a result it was significantly higher in alc fruit than in the normal fruit at the ripe stage. The elevated putrescine levels in alc fruit appear, therefore, to be due to an increase in the activity of arginine decarboxylase

  7. Determination of optimum harvest maturity and physico-chemical quality of Rastali banana (Musa AAB Rastali) during fruit ripening.

    Science.gov (United States)

    Kheng, Tee Yei; Ding, Phebe; Abdul Rahman, Nor Aini

    2012-01-15

    A series of physico-chemical quality (peel and pulp colours, pulp firmness, fruit pH, sugars and acids content, respiration rate and ethylene production) were conducted to study the optimum harvest periods (either week 11 or week 12 after emergence of the first hand) of Rastali banana (Musa AAB Rastali) based on the fruit quality during ripening. Rastali banana fruit exhibited a climacteric rise with the peaks of both CO(2) and ethylene production occurring simultaneously at day 3 after ripening was initiated and declined at day 5 when fruits entered the senescence stage. De-greening was observed in both of the harvesting weeks with peel turned from green to yellow, tissue softening, and fruits became more acidic and sweeter as ripening progressed. Sucrose, fructose and glucose were the main sugars found while malic, citric and succinic acids were the main organic acids found in the fruit. Rastali banana harvested at weeks 11 and 12 can be considered as commercial harvest period when the fruits have developed good organoleptic and quality attributes during ripening. However, Rastali banana fruit at more mature stage of harvest maturity taste slightly sweeter and softer with higher ethylene production which also means the fruits may undergo senescence faster than fruit harvested at week 11. Copyright © 2011 Society of Chemical Industry.

  8. Ripening of Pithecellobium dulce (Roxb.) Benth. [Guamúchil] Fruit: Physicochemical, Chemical and Antioxidant Changes.

    Science.gov (United States)

    Wall-Medrano, Abraham; González-Aguilar, Gustavo A; Loarca-Piña, Guadalupe F; López-Díaz, José A; Villegas-Ochoa, Mónica A; Tortoledo-Ortiz, Orlando; Olivas-Aguirre, Francisco J; Ramos-Jiménez, Arnulfo; Robles-Zepeda, Ramón

    2016-12-01

    The fruit of Guamúchil is an excellent source of bioactive compounds for human health although their natural occurrence could be affected by the ripening process. The aim was to evaluate some physicochemical, chemical and antioxidant changes in guamúchil fruit during six ripening stages (I to VI). A defined trend (p ≤ 0.003) was observed for color [°Hue, 109 (light green) to 20 (dark red)], anthocyanins (+571 %), soluble solids (+0.33 o Brix), ash (+16 %), sucrose (-91 %), proanthocyanidins (63 %), ascorbic acid (-52 %) and hydrolysable PC (-21 %). Carotenoids were not detected and chlorogenic acid was the most abundant phenolic compound. Maximal availability of these bioactives per ripening stage (p ≤ 0.03) was as follows: I (protein/ lipids/ sucrose/ proanthocyanidins/ hydrolysable phenolics), II (total sugars/ascorbic acid), III (total phenolics), IV (flavonoids/ chlorogenic acid) and VI (fructose/ glucose/ anthocyanins). Color change was explained by sucrose (β = 0.47) and anthocyanin (β = 0.20) contents (p < 0.001). Radical scavenging capacity (ORAC, DPPH and TEAC) strongly correlated with total PC (r = 0.49-0.65, p ≤ 0.001) but 89 % of ORAC's associated variance was explained by anthocyanin + sucrose + ascorbic acid (p ≤ 0.0001). Guamúchil fruit could be a more convenient source of specific bioactive compounds if harvested at different ripening stages.

  9. Ultrastructural study on dynamics of lipid bodies and plastids during ripening of chili pepper fruits.

    Science.gov (United States)

    Liu, Lin

    2013-03-01

    Dynamics of lipid bodies and plastids in chili pepper fruits during ripening were investigated by means of transmission electron microscopy. Mesocarp of chili pepper fruits consists of collenchyma, normal parenchyma, and huge celled parenchyma. In mature green fruits, plastids contain numerous thylakoids that are well organized into grana in collenchyma, a strikingly huge amount of starch and irregularly organized thylakoids in normal parenchyma, and simple tubes rather than thylakoids in huge celled parenchyma. These morphological features suggest that plastids are chloroplasts in collenchyma, chloroamyloplasts in normal parenchyma, proplastids in huge celled parenchyma. As fruits ripen to red, plastids in all cell types convert to chromoplasts and, concomitantly, lipid bodies accumulate in both cytoplasm and chromoplasts. Cytosolic lipid bodies are lined up in a regular layer adjacent to plasma membrane. The cytosolic lipid body consists of a core surrounded by a membrane. The core is comprised of a more electron-dense central part enclosed by a slightly less electron-dense peripheral layer. Plastidial lipid bodies in collenchyma, normal parenchyma, and endodermis initiate as plastoglobuli, which in turn convert to rod-like structures. Therefore, plastidial lipid bodies are more dynamic than cytosolic lipid bodies. Both cytosolic and plastidial lipid bodies contain rich unsaturated lipids. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Expression profiles of a MhCTR1 gene in relation to banana fruit ripening.

    Science.gov (United States)

    Hu, Huei-Lin; Do, Yi-Yin; Huang, Pung-Ling

    2012-07-01

    The banana (Musa spp.) is a typical climacteric fruit of high economic importance. The development of bananas from maturing to ripening is characterized by increased ethylene production accompanied by a respiration burst. To elucidate the signal transduction pathway involved in the ethylene regulation of banana ripening, a gene homologous to Arabidopsis CTR1 (constitutive triple response 1) was isolated from Musa spp. (Hsien Jin Chiao, AAA group) and designated as MhCTR1. MhCTR1 spans 11.5 kilobases and consists of 15 exons and 14 introns with consensus GT-AG nucleotides situated at their boundaries. MhCTR1 encodes a polypeptide of 805 amino acid residues with a calculated molecular weight of 88.6 kDa. The deduced amino acid sequence of MhCTR1 demonstrates 55%, 56% and 55% homology to AtCTR1, RhCTR1, and LeCTR1, respectively. MhCTR1 is expressed mostly in the mature green pulp and root organs. During fruit development MhCTR1 expression increases just before ethylene production rises. Moreover, MhCTR1 expression was detected mainly in the pulps at ripening stage 3, and correlated with the onset of peel yellowing, while MhCTR1 was constitutively expressed in the peels. MhCTR1 expression could be induced by ethylene treatment (0.01 μL L(-1)), and MhCTR1 expression decreased in both peel and pulp 24 h after treatment. Overall, changes observed in MhCTR1 expression in the pulp closely related to the regulation of the banana ripening process. Copyright © 2012. Published by Elsevier Masson SAS.

  11. Aroma biosynthesis in strawberry: s-adenosylmethionine:furaneol o-methyltransferase activity in ripening fruits.

    Science.gov (United States)

    Lavid, Noa; Schwab, Wilfried; Kafkas, Ebru; Koch-Dean, Margery; Bar, Einat; Larkov, Olga; Ravid, Uzi; Lewinsohn, Efraim

    2002-07-03

    Among the most important volatile compounds in the aroma of strawberries are 2,5-dimethyl-4-hydroxy-3(2H)-furanone (Furaneol) and its methoxy derivative (methoxyfuraneol, mesifuran). Three strawberry varieties, Malach, Tamar, and Yael, were assessed for total volatiles, Furaneol, and methoxyfuraneol. The content of these compounds sharply increased during fruit ripening, with maximum values at the ripe stage. An enzymatic activity that transfers a methyl group from S-adenosylmethionine (SAM) to Furaneol sharply increases during ripening of strawberry fruits. The in vitro generated methoxyfuraneol was identified by radio-TLC and GC-MS. The partially purified enzyme had a native molecular mass of approximately 80 kDa, with optimum activity at pH 8.5 and 37 degrees C. A high apparent K(m) of 5 mM was calculated for Furaneol, whereas this enzyme preparation apparently accepted as substrates other o-dihydroxyphenol derivatives (such as catechol, caffeic acid, and protocatechuic aldehyde) with much higher affinities (K(m) approximately 105, 130, and 20 microM, respectively). A K(m) for SAM was found to be approximately 5 microM, regardless of the acceptor used. Substrates that contained a phenolic group with only one OH group, such as p-coumaric and trans-ferulic acid, as well as trans-anol and coniferyl alcohol, were apparently not accepted by this activity. It is suggested that Furaneol methylation is mediated by an O-methyltransferase activity and that this activity increases during fruit ripening.

  12. Sequestration of auxin by the indole-3-acetic acid-amido synthetase GH3-1 in grape berry (Vitis vinifera L.) and the proposed role of auxin conjugation during ripening.

    Science.gov (United States)

    Böttcher, Christine; Keyzers, Robert A; Boss, Paul K; Davies, Christopher

    2010-08-01

    In fleshy fruit, levels of indole-3-acetic acid (IAA), the most abundant auxin, decline towards the onset of ripening. The application of auxins to immature fruit can delay the ripening processes. However, the mechanisms by which the decrease in endogenous IAA concentrations and the maintenance of low auxin levels in maturing fruit are achieved remain elusive. The transcript of a GH3 gene (GH3-1), encoding for an IAA-amido synthetase which conjugates IAA to amino acids, was detected in grape berries (Vitis vinifera L.). GH3-1 expression increased at the onset of ripening (veraison), suggesting that it might be involved in the establishment and maintenance of low IAA concentrations in ripening berries. Furthermore, this grapevine GH3 gene, responded positively to the combined application of abscisic acid and sucrose and to ethylene, linking it to the control of ripening processes. Levels of IAA-aspartic acid (IAA-Asp), an in vitro product of recombinant GH3-1, rose after veraison and remained high during the following weeks of the ripening phase when levels of free IAA were low. A similar pattern of changes in free IAA and IAA-Asp levels was detected in developing tomatoes (Solanum lycopersicum Mill.), where low concentrations of IAA and an increase in IAA-Asp concentrations coincided with the onset of ripening in this climacteric fruit. Since IAA-Asp might be involved in IAA degradation, the GH3 catalysed formation of this conjugate at, and after, the onset of ripening could represent a common IAA inactivation mechanism in climacteric and non-climacteric fruit which enables ripening.

  13. Cloning and functional analysis of 9-cis-epoxycarotenoid dioxygenase (NCED) genes encoding a key enzyme during abscisic acid biosynthesis from peach and grape fruits.

    Science.gov (United States)

    Zhang, Mei; Leng, Ping; Zhang, Guanglian; Li, Xiangxin

    2009-08-15

    Ripening and senescence are generally controlled by ethylene in climacteric fruits like peaches, and the ripening process of grape, a non-climacteric fruit, may have some relationship to abscisic acid (ABA) function. In order to better understand the role of ABA in ripening and senescence of these two types of fruits, we cloned the 9-cis-epoxycarotenoid dioxygenase (NCED) gene that encodes a key enzyme in ABA biosynthesis from peaches and grapes using an RT-PCR approach. The NCED gene fragments were cloned from peaches (PpNCED1and PpNCED2, each 740bp) and grapes (VVNCED1, 741bp) using degenerate primers designed based on the conserved amino acids sequence of NCEDs in other plants. PpNCED1 showed 78.54% homology with PpNCED2, 74.90% homology with VVNCED1, and both showed high homology to NCEDs from other plants. The expression patterns of PpNCED1 and VVNCED1 were very similar. Both were highly expressed at the beginning of ripening when ABA content becomes high. The maximum ABA preceded ethylene production in peach fruit. ABA in the grape gradually increased from the beginning of ripening and reached the highest level at 20d before the harvest stage. However, ethylene remained at low levels during the entire process of fruit development, including ripening and senescence. ABA content, and ripening and softening of both types of fruits, were promoted or delayed by exogenous ABA or Fluridone (or NDGA) treatment. The roles of ABA and ethylene in the later ripening of fruit are complex. Based on results obtained in this study, we concluded that PpNCED1 and VVNCED1 initiate ABA biosynthesis at the beginning of fruit ripening, and that ABA accumulation might play a key role in the regulation of ripeness and senescence of both peach and grape fruits.

  14. Effect of LED irradiation on the ripening and nutritional quality of postharvest banana fruit.

    Science.gov (United States)

    Huang, Jen-Yi; Xu, Fengying; Zhou, Weibiao

    2018-04-24

    With the ability to tailor wavelengths necessary to the photosynthetically active radiation spectrum of plant pigments, light-emitting diodes (LEDs) offer vast possibilities in horticultural lighting. The influence of LED light irradiation on major postharvest features of banana was investigated. Mature green bananas were treated daily with selected blue (464-474 nm), green (515-525 nm) and red (617-627 nm) LED lights for 8 days, and compared with non-illuminated control. The positive effect of LED lighting on the acceleration of ripening in bananas was greatest for blue, followed by red and green. Under the irradiation of LED lights, faster peel de-greening and flesh softening, and increased ethylene production and respiration rate in bananas were observed during storage. Furthermore, the accumulations of ascorbic acid, total phenols, and total sugars in banana fruit were enhanced by LED light exposure. LED light treatment can induce the ripening of bananas and improve their quality and nutrition potential. These findings might provide new chemical-free strategies to shorten the time to ripen banana after harvest by using LED light source. This article is protected by copyright. All rights reserved.

  15. Rosaceae Fruit Development, Ripening and Post-harvest: An Epigenetic Perspective.

    Science.gov (United States)

    Farinati, Silvia; Rasori, Angela; Varotto, Serena; Bonghi, Claudio

    2017-01-01

    Rosaceae is a family with an extraordinary spectrum of fruit types, including fleshy peach, apple, and strawberry that provide unique contributions to a healthy diet for consumers, and represent an excellent model for studying fruit patterning and development. In recent years, many efforts have been made to unravel regulatory mechanism underlying the hormonal, transcriptomic, proteomic and metabolomic changes occurring during Rosaceae fruit development. More recently, several studies on fleshy (tomato) and dry (Arabidopsis) fruit model have contributed to a better understanding of epigenetic mechanisms underlying important heritable crop traits, such as ripening and stress response. In this context and summing up the results obtained so far, this review aims to collect the available information on epigenetic mechanisms that may provide an additional level in gene transcription regulation, thus influencing and driving the entire Rosaceae fruit developmental process. The whole body of information suggests that Rosaceae fruit could become also a model for studying the epigenetic basis of economically important phenotypes, allowing for their more efficient exploitation in plant breeding.

  16. Water-Stressed Loquat Trees Need More Time and Heat to Ripen Their Fruits

    Directory of Open Access Journals (Sweden)

    Julián Cuevas

    2018-06-01

    Full Text Available To determine if water-stressed trees need more time and heat to mature their fruits, we compared chronological and thermal time from bloom to harvest among control fully-irrigated ‘Algerie’ loquat trees and trees suffering prior-to-bloom deficit irrigation (DI. Heat requirement calculation was performed using the double sine method with a lower threshold temperature of 3 °C. The results show that the greater the blooming advancement achieved by DI, the longer the period to mature the fruits. Such a pattern indicates that the longer duration for bloom-harvest period under DI is due to a displacement of the reproductive phenology to cooler dates. However, some effects of DI on heat requirements for ripening persist, indicating a slower fruit development in some, but not all, DI treatments. The differences in fruit development rate between fully-irrigated and water-stressed trees were established during the phase of rapid fruit growth. The comparison of water stress effects on sink (flower size and seed number and source (leaf number and size, gas exchange and mineral and carbohydrate nutrition of DI treatments seems to indicate that the amount of stored reserves in the leaves to sustain early fruit development is the most plausible reason behind the increase in thermal time between bloom and harvest in water-stressed loquats.

  17. Pectic polysaccharides are attacked by hydroxyl radicals in ripening fruit: evidence from a fluorescent fingerprinting method.

    Science.gov (United States)

    Airianah, Othman B; Vreeburg, Robert A M; Fry, Stephen C

    2016-03-01

    Many fruits soften during ripening, which is important commercially and in rendering the fruit attractive to seed-dispersing animals. Cell-wall polysaccharide hydrolases may contribute to softening, but sometimes appear to be absent. An alternative hypothesis is that hydroxyl radicals ((•)OH) non-enzymically cleave wall polysaccharides. We evaluated this hypothesis by using a new fluorescent labelling procedure to 'fingerprint' (•)OH-attacked polysaccharides. We tagged fruit polysaccharides with 2-(isopropylamino)-acridone (pAMAC) groups to detect (a) any mid-chain glycosulose residues formed in vivo during (•)OH action and (b) the conventional reducing termini. The pAMAC-labelled pectins were digested with Driselase, and the products resolved by high-voltage electrophoresis and high-pressure liquid chromatography. Strawberry, pear, mango, banana, apple, avocado, Arbutus unedo, plum and nectarine pectins all yielded several pAMAC-labelled products. GalA-pAMAC (monomeric galacturonate, labelled with pAMAC at carbon-1) was produced in all species, usually increasing during fruit softening. The six true fruits also gave pAMAC·UA-GalA disaccharides (where pAMAC·UA is an unspecified uronate, labelled at a position other than carbon-1), with yields increasing during softening. Among false fruits, apple and strawberry gave little pAMAC·UA-GalA; pear produced it transiently. GalA-pAMAC arises from pectic reducing termini, formed by any of three proposed chain-cleaving agents ((•)OH, endopolygalacturonase and pectate lyase), any of which could cause its ripening-related increase. In contrast, pAMAC·UA-GalA conjugates are diagnostic of mid-chain oxidation of pectins by (•)OH. The evidence shows that (•)OH radicals do indeed attack fruit cell wall polysaccharides non-enzymically during softening in vivo. This applies much more prominently to drupes and berries (true fruits) than to false fruits (swollen receptacles). (•)OH radical attack on polysaccharides

  18. Mining secreted proteins that function in pepper fruit development and ripening using a yeast secretion trap (YST)

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Je Min, E-mail: jemin@knu.ac.kr [Department of Plant Science, College of Agriculture and Life Sciences, Seoul National University, Seoul (Korea, Republic of); Department of Horticultural Science, Kyungpook National University, Daegu (Korea, Republic of); Lee, Sang-Jik [Biotechnology Institute, Nongwoo Bio Co, Ltd, Yeoju (Korea, Republic of); Department of Plant Biology, Cornell University, Ithaca, NY (United States); Rose, Jocelyn K.C. [Department of Plant Biology, Cornell University, Ithaca, NY (United States); Yeam, Inhwa [Department of Horticulture and Breeding, Andong National University, Andong (Korea, Republic of); Kim, Byung-Dong [Department of Plant Science, College of Agriculture and Life Sciences, Seoul National University, Seoul (Korea, Republic of)

    2014-04-18

    Highlights: • Yeast secretion trap (YST) is a valuable tool for mining secretome. • A total of 80 secreted proteins are newly identified via YST in pepper fruits. • The secreted proteins are differentially regulated during pepper development and ripening. • Transient GFP-fusion assay and in planta secretion trap can effectively validate the secretion of proteins. - Abstract: Plant cells secrete diverse sets of constitutively- and conditionally-expressed proteins under various environmental and developmental states. Secreted protein populations, or secretomes have multiple functions, including defense responses, signaling, metabolic processes, and developmental regulation. To identify genes encoding secreted proteins that function in fruit development and ripening, a yeast secretion trap (YST) screen was employed using pepper (Capsicum annuum) fruit cDNAs. The YST screen revealed 80 pepper fruit-related genes (CaPFRs) encoding secreted proteins including cell wall proteins, several of which have not been previously described. Transient GFP-fusion assay and an in planta secretion trap were used to validate the secretion of proteins encoded by selected YST clones. In addition, RNA gel blot analyses provided further insights into their expression and regulation during fruit development and ripening. Integrating our data, we conclude that the YST provides a valuable functional genomics tool for the identification of substantial numbers of novel secreted plant proteins that are associated with biological processes, including fruit development and ripening.

  19. Mining secreted proteins that function in pepper fruit development and ripening using a yeast secretion trap (YST)

    International Nuclear Information System (INIS)

    Lee, Je Min; Lee, Sang-Jik; Rose, Jocelyn K.C.; Yeam, Inhwa; Kim, Byung-Dong

    2014-01-01

    Highlights: • Yeast secretion trap (YST) is a valuable tool for mining secretome. • A total of 80 secreted proteins are newly identified via YST in pepper fruits. • The secreted proteins are differentially regulated during pepper development and ripening. • Transient GFP-fusion assay and in planta secretion trap can effectively validate the secretion of proteins. - Abstract: Plant cells secrete diverse sets of constitutively- and conditionally-expressed proteins under various environmental and developmental states. Secreted protein populations, or secretomes have multiple functions, including defense responses, signaling, metabolic processes, and developmental regulation. To identify genes encoding secreted proteins that function in fruit development and ripening, a yeast secretion trap (YST) screen was employed using pepper (Capsicum annuum) fruit cDNAs. The YST screen revealed 80 pepper fruit-related genes (CaPFRs) encoding secreted proteins including cell wall proteins, several of which have not been previously described. Transient GFP-fusion assay and an in planta secretion trap were used to validate the secretion of proteins encoded by selected YST clones. In addition, RNA gel blot analyses provided further insights into their expression and regulation during fruit development and ripening. Integrating our data, we conclude that the YST provides a valuable functional genomics tool for the identification of substantial numbers of novel secreted plant proteins that are associated with biological processes, including fruit development and ripening

  20. Metabolomics of dates (Phoenix dactylifera) reveals a highly dynamic ripening process accounting for major variation in fruit composition.

    Science.gov (United States)

    Diboun, Ilhame; Mathew, Sweety; Al-Rayyashi, Maryam; Elrayess, Mohamed; Torres, Maria; Halama, Anna; Méret, Michaël; Mohney, Robert P; Karoly, Edward D; Malek, Joel; Suhre, Karsten

    2015-12-16

    Dates are tropical fruits with appreciable nutritional value. Previous attempts at global metabolic characterization of the date metabolome were constrained by small sample size and limited geographical sampling. In this study, two independent large cohorts of mature dates exhibiting substantial diversity in origin, varieties and fruit processing conditions were measured by metabolomics techniques in order to identify major determinants of the fruit metabolome. Multivariate analysis revealed a first principal component (PC1) significantly associated with the dates' countries of production. The availability of a smaller dataset featuring immature dates from different development stages served to build a model of the ripening process in dates, which helped reveal a strong ripening signature in PC1. Analysis revealed enrichment in the dry type of dates amongst fruits with early ripening profiles at one end of PC1 as oppose to an overrepresentation of the soft type of dates with late ripening profiles at the other end of PC1. Dry dates are typical to the North African region whilst soft dates are more popular in the Gulf region, which partly explains the observed association between PC1 and geography. Analysis of the loading values, expressing metabolite correlation levels with PC1, revealed enrichment patterns of a comprehensive range of metabolite classes along PC1. Three distinct metabolic phases corresponding to known stages of date ripening were observed: An early phase enriched in regulatory hormones, amines and polyamines, energy production, tannins, sucrose and anti-oxidant activity, a second phase with on-going phenylpropanoid secondary metabolism, gene expression and phospholipid metabolism and a late phase with marked sugar dehydration activity and degradation reactions leading to increased volatile synthesis. These data indicate the importance of date ripening as a main driver of variation in the date metabolome responsible for their diverse nutritional and

  1. Fruit ripening in Vitis vinifera: light intensity before and not during ripening determines the concentration of 2-methoxy-3-isobutylpyrazine in Cabernet Sauvignon berries.

    Science.gov (United States)

    Koch, Alfredo; Ebeler, Susan E; Williams, Larry E; Matthews, Mark A

    2012-06-01

    The roles of light and temperature in the accumulation of the vegetal impact compound 2-methoxy-3-isobutylpyrazine (MIBP) in grape (Vitis vinifera L.) berries were determined. Individual clusters were exposed to various light intensities using neutral density shade cloth before ripening, during ripening or throughout the season in three growing seasons. A recently developed method using headspace solid-phase microextraction combined with GC-MS in the selected ion-monitoring mode was employed to measure MIBP in berries. Berry MIBP concentration increased subsequent to berry set, reached a maximum prior to onset of ripening, and then decreased thereafter until harvest. Complete shading of clusters increased the concentration of MIBP more than 100% compared to unshaded controls in 2 out of 3 years. Light increasingly inhibited MIBP concentrations up to 25-50% of ambient light intensities (1500 µmol photons m(-2) s(-1) ). However, only changes in light intensity before ripening had any effect on MIBP accumulation or final MIBP concentration. Analyses of weather data showed that the 1 year in which shading was ineffective was unusually warm, warm early in the season, and had more hot days and higher early season degree days than the other 2 years. In controlled environment experiments, warm growth conditions reduced MIBP concentrations in fruit about as much as light exposure reduced MIBP concentrations in the field experiments. The results indicate that both light and temperature significantly affect MIBP in harvested fruit, but that the light environment during ripening does not significantly affect MIBP concentrations in the berries at harvest. Copyright © Physiologia Plantarum 2012.

  2. Ethephon, an organophosphorous, a Fruit and Vegetable Ripener: Has potential hepatotoxic effects?

    Directory of Open Access Journals (Sweden)

    Pooja Bhadoria

    2018-01-01

    Full Text Available Introduction: In the recent years, ethephon, 2-chloroethylphosphonic acid, is one of the most commonly used plant growth regulators. At present, it is being used on fruits, vegetables, and cereals for promoting pre- and post-harvest ripening. The effect of artificial ripening has become questionable because of various health-related issues. This study was conducted to note the morphology of liver after ethephon administration as it is the site where chemicals undergo first pass metabolism and probably will be affected by ethephon. Materials and Methods: Adult Wistar albino rats were divided into experimental and control groups (10 each. Ethephon was administered at a dose of 200 mg/kg/day by a gavage tube in the experimental rats for 14 days. The animals were sacrificed within 24 h of the last dose; liver was dissected and processed for light microscopy. Hematoxylin and eosin-stained sections were studied using an image-pro express analyzer. The data obtained from control and experimental groups were statistically analyzed. Results: In the experimental rats, the body weight was found to be significantly decreased. The orderly arrangement of hepatocytes was disrupted and was replaced by blood-filled sinusoids. At sites, hepatocytes appeared to be degenerated. Councilman bodies with pyknotic nuclei and inflammatory infiltrations were seen. The population per unit area of the hepatocytes and Kupffer cells was 29.53 ± 10.65 versus 44.18 ± 10.31 and 25.12 ± 4.41versus 13.05 ± 6.5 in experimental and control groups, respectively. The decrease of hepatocytes and increase of Kupffer cells were found to be statistically significant. Conclusions: The observations in the liver are probably indicative of degenerative changes associated with ethephon. Hence, we can conclude that this plant growth regulator, Fruit and Vegetable Ripener, has hepatotoxic potential. General awareness and regarding the use of such plant growth regulators is must to reduce the

  3. Mold-Ripened Soft Cheeses Fortified with Date Palm Fruit Product as Functional Dairy Products.

    Science.gov (United States)

    Al-Otaibi, Mutlag M; Haddadin, Jamal S; Haddadin, Malik S Y

    2016-01-01

    Date fruit based products are gaining popularity among the consumers in almost all date growing countries due to its added nutritional value. Therefore, novel products were developed by combining two types of foods i.e., soft ripened cheeses and date fruit syrups or date powder. This study is the first to report the surface mold-ripened cheese production with date syrup and date powder. Model cheeses were prepared from pasteurized milk inoculated with Streptococcus thermophilus, Penicillium camemberti and Geotrichum candidum. Date syrup-1, date syrup-2, date powder or the date mixture were added at the stage of curdling. Based on the kinetic growth of the microbial groups in all the treatments, there was no change in the growth of these in various date palm product. On the contrary It may be said that addition of the date fruit product supports their growth. After 35 days, the amounts of total poly phenols were 128.3 ± 1.01, 81.8 ± 1.11, 33.5 ± 2.19, 156.23 ± 1.27 mg GAE/100 g in the cheeses support with date syrup-1, date syrup-2, date powder or the date mixture, respectively. Antioxidant activity of date fruits ranged from 80.13 IC50 (date syrup-2) to 82.23 IC50 (date syrup-1). Based on the chemical characteristics and sensory analysis, the study results showed the potential for innovative application of date products for developing new functional dairy products as an ideal medium for the delivery of biological active compounds with beneficial health effects over.

  4. Effect of CRC::etr1-1 transgene expression on ethylene production, sex expression, fruit set and fruit ripening in transgenic melon (Cucumis melo L.).

    Science.gov (United States)

    Switzenberg, Jessica A; Beaudry, Randy M; Grumet, Rebecca

    2015-06-01

    Ethylene is a key factor regulating sex expression in cucurbits. Commercial melons (Cucumis melo L.) are typically andromonoecious, producing male and bisexual flowers. Our prior greenhouse studies of transgenic melon plants expressing the dominant negative ethylene perception mutant gene, etr1-1, under control of the carpel- and nectary-primordia targeted CRAB'S CLAW (CRC) promoter showed increased number and earlier appearance of carpel-bearing flowers. To further investigate this phenomenon which could be potentially useful for earlier fruit production, we observed CRC::etr1-1 plants in the field for sex expression, fruit set, fruit development, and ripening. CRC::etr1-1 melon plants showed increased number of carpel-bearing open flowers on the main stem and earlier onset by 7-10 nodes. Additional phenotypes observed in the greenhouse and field were conversion of approximately 50% of bisexual buds to female, and elongated ovaries and fruits. Earlier and greater fruit set occurred on the transgenic plants. However, CRC::etr1-1 plants had greater abscission of young fruit, and smaller fruit, so that final yield (kg/plot) was equivalent to wild type. Earlier fruit set in line M5 was accompanied by earlier appearance of ripe fruit. Fruit from line M15 frequently did not exhibit external ripening processes of rind color change and abscission, but when cut open, the majority showed a ripe or overripe interior accompanied by elevated internal ethylene. The non-ripening external phenotype in M15 fruit corresponded with elevated etr1-1 transgene expression in the exocarp. These results provide insight into the role of ethylene perception in carpel-bearing flower production, fruit set, and ripening.

  5. The role of FaBG3 in fruit ripening and B. cinerea fungal infection of strawberry.

    Science.gov (United States)

    Li, Qian; Ji, Kai; Sun, Yufei; Luo, Hao; Wang, Hongqing; Leng, Ping

    2013-10-01

    In plants, β-glucosidases (BG) have been implicated in developmental and pathogen defense, and are thought to take part in abscisic acid (ABA) synthesis via hydrolysis of ABA glucose ester to release active ABA; however, there is no genetic evidence for the role of BG genes in ripening and biotic/abiotic stress in fruits. To clarify the role of BG genes in fruit, eight Fa/FvBG genes encoding β-glucosidase were isolated using information from the GenBank strawberry nucleotide database. Of the Fa/FvBG genes examined, expression of FaBG3 was the highest, showing peaks at the mature stage, coincident with the changes observed in ABA content. To verify the role of this gene, we suppressed the expression of FaBG3 via inoculation with Agrobacterium tumefaciens containing tobacco rattle virus carrying a FaBG3 fragment (RNAi). The expression of FaBG3 in FaBG3-RNAi-treated fruit was markedly reduced, and the ABA content was lower than that of the control. FaBG3-RNAi-treated fruit did not exhibit full ripening, and were firmer, had lower sugar content, and were pale compared with the control due to down-regulation of ripening-related genes. FaBG3-RNAi-treated fruit with reduced ABA levels were much more resistant to Botrytis cinerea fungus but were more sensitive to dehydration stress than control fruit. These results indicate that FaBG3 may play key roles in fruit ripening, dehydration stress and B. cinerea fungal infection in strawberries via modulation of ABA homeostasis and transcriptional regulation of ripening-related genes. © 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.

  6. EIN3-like gene expression during fruit ripening of Cavendish banana (Musa acuminata cv. Grande naine).

    Science.gov (United States)

    Mbéguié-A-Mbéguié, Didier; Hubert, Olivier; Fils-Lycaon, Bernard; Chillet, Marc; Baurens, Franc-Christophe

    2008-06-01

    Ethylene signal transduction initiates with ethylene binding at receptor proteins and terminates in a transcription cascade involving the EIN3/EIL transcription factors. Here, we have isolated four cDNAs homologs of the Arabidopsis EIN3/EIN3-like gene, MA-EILs (Musa acuminata ethylene insensitive 3-like) from banana fruit. Sequence comparison with other banana EIL gene already registered in the database led us to conclude that, at this day, at least five different genes namely MA-EIL1, MA-EIL2/AB266318, MA-EIL3/AB266319, MA-EIL4/AB266320 and AB266321 exist in banana. Phylogenetic analyses included all banana EIL genes within a same cluster consisting of rice OsEILs, a monocotyledonous plant as banana. However, MA-EIL1, MA-EIL2/AB266318, MA-EIL4/AB266320 and AB266321 on one side, and MA-EIL3/AB266319 on the other side, belong to two distant subclusters. MA-EIL mRNAs were detected in all examined banana tissues but at lower level in peel than in pulp. According to tissues, MA-EIL genes were differentially regulated by ripening and ethylene in mature green fruit and wounding in old and young leaves. MA-EIL2/AB266318 was the unique ripening- and ethylene-induced gene; MA-EIL1, MA-EIL4/Ab266320 and AB266321 genes were downregulated, while MA-EIL3/AB266319 presented an unusual pattern of expression. Interestingly, a marked change was observed mainly in MA-EIL1 and MA-EIL3/Ab266319 mRNA accumulation concomitantly with changes in ethylene responsiveness of fruit. Upon wounding, the main effect was observed in MA-EIL4/AB266320 and AB266321 mRNA levels, which presented a markedly increase in both young and old leaves, respectively. Data presented in this study suggest the importance of a transcriptionally step control in the regulation of EIL genes during banana fruit ripening.

  7. Effects of reactive oxygen species on cellular wall disassembly of banana fruit during ripening.

    Science.gov (United States)

    Cheng, Guiping; Duan, Xuewu; Shi, John; Lu, Wangjin; Luo, Yunbo; Jiang, Weibo; Jiang, Yueming

    2008-07-15

    Fruit softening is generally attributed to cell wall disassembly. Experiments were conducted to investigate effects of various reactive oxygen species (ROS) on in vitro cellular wall disassembly of harvested banana fruit. The alcohol-extracted insoluble residue (AEIR) was obtained from the pulp tissues of banana fruit at various ripening stages and then used to examine the disassembly of cellular wall polysaccharides in the presence of superoxide anion (O2(-)), hydrogen peroxide (H2O2) or hydroxyl radical (OH) and their scavengers. The presence of OH accelerated significantly disassembly of cellular wall polysaccharides in terms of the increase in contents of total sugars released and uronic acid, and the decrease in molecular mass of soluble polysaccharides, using gel permeation chromatography. However, the treatment with H2O2 or O2(-) showed no significant effect on the disassembly of cellular wall polysaccharides. Furthermore, the degradation of the de-esterified AEIR was more susceptible to OH attack than the esterified AEIR. In addition, the effect of OH could be inhibited in the presence of OH scavenger. This study suggests that disassembly of cellular wall polysaccharides could be initiated by OH as the solublisation of the polysaccharides increased, which, in turn, accelerated fruit softening. Copyright © 2008 Elsevier Ltd. All rights reserved.

  8. Evolutionary recycling of light signaling components in fleshy fruits: new insights on the role of pigments to monitor ripening

    Directory of Open Access Journals (Sweden)

    Briardo eLlorente

    2016-03-01

    Full Text Available Besides an essential source of energy, light provides environmental information to plants. Photosensory pathways are thought to have occurred early in plant evolution, probably at the time of the Archaeplastida ancestor, or perhaps even earlier. Manipulation of individual components of light perception and signaling networks in tomato (Solanum lycopersicum affects the metabolism of ripening fruit at several levels. Most strikingly, recent experiments have shown that some of the molecular mechanisms originally devoted to sense and respond to environmental light cues have been re-adapted during evolution to provide plants with useful information on fruit ripening progression. In particular, the presence of chlorophylls in green fruit can strongly influence the spectral composition of the light filtered through the fruit pericarp. The concomitant changes in light quality can be perceived and transduced by phytochromes and phytochrome-interacting factors, respectively, to regulate gene expression and in turn modulate the production of carotenoids, a family of metabolites that are relevant for the final pigmentation of ripe fruits. We raise the hypothesis that the evolutionary recycling of light-signaling components to finely adjust pigmentation to the actual ripening stage of the fruit may have represented a selective advantage for primeval fleshy-fruited plants even before the extinction of dinosaurs.

  9. Evolutionary Recycling of Light Signaling Components in Fleshy Fruits: New Insights on the Role of Pigments to Monitor Ripening.

    Science.gov (United States)

    Llorente, Briardo; D'Andrea, Lucio; Rodríguez-Concepción, Manuel

    2016-01-01

    Besides an essential source of energy, light provides environmental information to plants. Photosensory pathways are thought to have occurred early in plant evolution, probably at the time of the Archaeplastida ancestor, or perhaps even earlier. Manipulation of individual components of light perception and signaling networks in tomato (Solanum lycopersicum) affects the metabolism of ripening fruit at several levels. Most strikingly, recent experiments have shown that some of the molecular mechanisms originally devoted to sense and respond to environmental light cues have been re-adapted during evolution to provide plants with useful information on fruit ripening progression. In particular, the presence of chlorophylls in green fruit can strongly influence the spectral composition of the light filtered through the fruit pericarp. The concomitant changes in light quality can be perceived and transduced by phytochromes (PHYs) and PHY-interacting factors, respectively, to regulate gene expression and in turn modulate the production of carotenoids, a family of metabolites that are relevant for the final pigmentation of ripe fruits. We raise the hypothesis that the evolutionary recycling of light-signaling components to finely adjust pigmentation to the actual ripening stage of the fruit may have represented a selective advantage for primeval fleshy-fruited plants even before the extinction of dinosaurs.

  10. Isolation of genes differentially expressed during development and ripening of Fragaria chiloensis fruit by suppression subtractive hybridization.

    Science.gov (United States)

    Pimentel, Paula; Salvatierra, Ariel; Moya-León, María Alejandra; Herrera, Raúl

    2010-09-15

    Fragaria chiloensis, the native Chilean strawberry, is noted for its good fruit quality characters. However, it is a highly perishable fruit due to its rapid softening. With the aim to screen for genes differentially expressed during development and ripening of strawberry fruit, the subtractive suppressive hybridization (SSH) methodology was employed. Six libraries were generated contrasting transcripts from four different developmental stages. A set of 1807 genes was isolated and characterized. In our EST collection, approximately 90% of partial cDNAs showed significant similarity to proteins with known or unknown function registered in databases. Among them, proteins related to protein fate were identified in a large green fruit library and protein related with cellular transport, cell wall-related proteins, and transcription regulators were identified in a ripe fruit library. Thirteen genes were analyzed by qRT-PCR during development and ripening of the Chilean strawberry fruit. The information generated in this study provides new clues to aid the understanding of the ripening process in F. chiloensis fruit. Copyright 2010 Elsevier GmbH. All rights reserved.

  11. Carotenoid Profile, Antioxidant Capacity, and Chromoplasts of Pink Guava (Psidium guajava L. Cv. 'Criolla') during Fruit Ripening.

    Science.gov (United States)

    Rojas-Garbanzo, Carolina; Gleichenhagen, Maike; Heller, Annerose; Esquivel, Patricia; Schulze-Kaysers, Nadine; Schieber, Andreas

    2017-05-10

    Pigments of pericarp and pulp of pink guava (Psidium guajava L. cv. 'Criolla') were investigated to elucidate the profile and the accumulation of main carotenoids during four stages of fruit ripening by using HPLC-DAD and APCI-MS/MS analysis. Seventeen carotenoids were identified, and changes in their profile during fruit ripening were observed. The carotenoids all-trans-β-carotene, 15-cis-lycopene, and all-trans-lycopene were present in all ripening stages, but all-trans-lycopene was found to be predominant (from 63% to 92% of total carotenoids) and responsible for the high lipophilic antioxidant capacity determined by spectrophotometric assays. By using light and transmission electron microscopy, the development of chromoplasts in pericarp and pulp was demonstrated. The accumulation of all-trans-lycopene and all-trans-β-carotene coincided with the development of large crystals; the chromoplasts of pink guava belong, therefore, to the crystalline type.

  12. Phenolic acid content and radical scavenging activity of extracts from medlar (Mespilus germanica L.) fruit at different stages of ripening

    Czech Academy of Sciences Publication Activity Database

    Grúz, Jiří; Ayaz, F. A.; Torun, H.; Strnad, Miroslav

    2011-01-01

    Roč. 124, č. 1 (2011), s. 271-277 ISSN 0308-8146 R&D Projects: GA AV ČR KAN200380801 Institutional research plan: CEZ:AV0Z50380511 Keywords : Phenolic acids * HPLC * Mass spectrometry * Fruit * Ripening Subject RIV: EF - Botanics Impact factor: 3.655, year: 2011

  13. Characterization of Musa sp. fruits and plantain banana ripening stages according to their physicochemical attributes.

    Science.gov (United States)

    Valérie Passo Tsamo, Claudine; Andre, Christelle M; Ritter, Christian; Tomekpe, Kodjo; Ngoh Newilah, Gérard; Rogez, Hervé; Larondelle, Yvan

    2014-08-27

    This study aimed at understanding the contribution of the fruit physicochemical parameters to Musa sp. diversity and plantain ripening stages. A discriminant analysis was first performed on a collection of 35 Musa sp. cultivars, organized in six groups based on the consumption mode (dessert or cooking banana) and the genomic constitution. A principal component analysis reinforced by a logistic regression on plantain cultivars was proposed as an analytical approach to describe the plantain ripening stages. The results of the discriminant analysis showed that edible fraction, peel pH, pulp water content, and pulp total phenolics were among the most contributing attributes for the discrimination of the cultivar groups. With mean values ranging from 65.4 to 247.3 mg of gallic acid equivalents/100 g of fresh weight, the pulp total phenolics strongly differed between interspecific and monospecific cultivars within dessert and nonplantain cooking bananas. The results of the logistic regression revealed that the best models according to fitting parameters involved more than one physicochemical attribute. Interestingly, pulp and peel total phenolic contents contributed in the building up of these models.

  14. Metabolic analysis of guava (Psidium guajava L.) fruits at different ripening stages using different data-processing approaches.

    Science.gov (United States)

    Lee, Sarah; Choi, Hyung-Kyoon; Cho, Somi Kim; Kim, Young-Suk

    2010-11-01

    Gas chromatography coupled with time-of-flight mass spectrometry and principal component analysis were used to obtain the metabolite profiles of guava (Psidium guajava) fruits. Results with two types of data-processing software, ChromaTOF and AMDIS, were compared to explain the differences between the samples. There were some differences in score and loading plot patterns of PCA as well as in the composition of the metabolites. However, little difference was observed in the type of metabolites detected and identified using either type of software. Both the flesh and peel of premature and mature white guava fruits were compared for the analysis of the metabolite profiles. Malic acid, aspartic acid, and glucose were the major metabolites distinguishing the different parts of guava fruits in the PCA loading plot. In addition, the metabolic profiles of the fruits revealed significant changes in some metabolites during ripening. The major components contributing to the separation were serine, citric acid, fructose, sucrose, and some unknowns. In particular, sucrose, fructose, serine and citric acid were related to the ripening of guava fruits. Fructose and sucrose were increased whereas citric acid was decreased during guava fruit ripening. Copyright © 2010 Elsevier B.V. All rights reserved.

  15. Molecular characterization of banana NAC transcription factors and their interactions with ethylene signalling component EIL during fruit ripening.

    Science.gov (United States)

    Shan, Wei; Kuang, Jian-fei; Chen, Lei; Xie, Hui; Peng, Huan-huan; Xiao, Yun-yi; Li, Xue-ping; Chen, Wei-xin; He, Quan-guang; Chen, Jian-ye; Lu, Wang-jin

    2012-09-01

    The plant-specific NAC (NAM, ATAF1/2, and CUC2) transcription factors (TFs) play important roles in plant growth, development, and stress responses. However, the precise role of NAC TFs in relation to fruit ripening is poorly understood. In this study, six NAC genes, designated MaNAC1-MaNAC6, were isolated and characterized from banana fruit. Subcellular localization showed that MaNAC1-MaNAC5 proteins localized preferentially to the nucleus, while MaNAC6 was distributed throughout the entire cell. A transactivation assay in yeast demonstrated that MaNAC4 and MaNAC6, as well as their C-terminal regions, possessed trans-activation activity. Gene expression profiles in fruit with four different ripening characteristics, including natural, ethylene-induced, 1-methylcyclopropene (1-MCP)-delayed, and a combination of 1-MCP with ethylene treatment, revealed that the MaNAC genes were differentially expressed in peel and pulp during post-harvest ripening. MaNAC1 and MaNAC2 were apparently upregulated by ethylene in peel and pulp, consistent with the increase in ethylene production. In contrast, MaNAC3 in peel and pulp and MaNAC5 in peel were constitutively expressed, and transcripts of MaNAC4 in peel and pulp and MaNAC6 in peel decreased, while MaNAC5 or MaNAC6 in pulp increased slightly during fruit ripening. Furthermore, the MaNAC2 promoter was activated after ethylene application, further enhancing the involvement of MaNAC2 in fruit ripening. More importantly, yeast two-hybrid and bimolecular fluorescence complementation analyses confirmed that MaNAC1/2 physically interacted with a downstream component of ethylene signalling, ethylene insensitive 3 (EIN3)-like protein, termed MaEIL5, which was downregulated during ripening. Taken together, these results suggest that MaNACs such as MaNAC1/MaNAC2, may be involved in banana fruit ripening via interaction with ethylene signalling components.

  16. Tissue-Specific Transcriptome and Hormonal Regulation of Pollinated and Parthenocarpic Fig (Ficus carica L. Fruit Suggest that Fruit Ripening is Coordinated by the Reproductive Part of the Syconium

    Directory of Open Access Journals (Sweden)

    Yogev Rosianski

    2016-11-01

    Full Text Available In the unconventional climacteric fig (Ficus carica fruit, pollinated and parthenocarpic fruit of the same genotype exhibit different ripening characteristics. Integrative comparative analyses of tissue-specific transcript and of hormone levels during fruit repining from pollinated vs. parthenocarpic fig fruit were employed to unravel the similarities and differences in their regulatory processes during fruit repining. Assembling tissue-specific transcripts into 147,000 transcripts with 53,000 annotated genes provided new insights into the spatial distribution of many classes of regulatory and structural genes, including those related to color, taste and aroma, storage, protein degradation, seeds and embryos, chlorophyll, and hormones. Comparison of the pollinated and parthenocarpic tissues during fruit ripening showed differential gene expression, especially in the fruit inflorescence. The distinct physiological green phase II and ripening phase III differed significantly in their gene-transcript patterns in both pulp and inflorescence tissues. Gas chromatographic analysis of whole fruits enabled the first determination of ripening-related hormone levels from pollinated and non-pollinated figs. Ethylene and auxin both increased during fruit ripening, irrespective of pollination, whereas no production of active gibberellins or cytokinins was found in parthenocarpic or pollinated ripening fruit. Tissue-specific transcriptome revealed apparent different metabolic gene patterns for ethylene, auxin and ABA in pollinated vs. parthenocarpic fruit, mostly in the fruit inflorescence. Our results demonstrate that the production of abscisic acid (ABA, non-active ABA–GE conjugate and non-active indoleacetic acid (IAA–Asp conjugate in pollinated fruits is much higher than in parthenocarpic fruits. We suggest that fruit ripening is coordinated by the reproductive part of the syconium and the differences in ABA production between pollinated and

  17. Identification and characterization of miRNAs in ripening fruit of Lycium barbarum L. using high-throughput sequencing

    Directory of Open Access Journals (Sweden)

    Shaohua eZeng

    2015-09-01

    Full Text Available MicroRNAs (miRNAs are master regulators of gene activity documented to play central roles in fruit ripening in model plant species, yet little is known of their roles in Lycium barbarum L. fruits. In this study, miRNA levels in L. barbarum fruit samples at four developmental stages, were assayed using Illumina HiSeqTM2000. This revealed the presence of 50 novel miRNAs and 38 known miRNAs in L. barbarum fruits. Of the novel miRNAs, 36 were specific to L. barbarum fruits compared with L. chinense. A number of stage-specific miRNAs were identified and GO terms were assigned to 194 unigenes targeted by miRNAs. The majority of GO terms of unigenes targeted by differentially expressed miRNAs are ‘intracellular organelle’, ‘binding’, ‘metabolic process’, ‘pigmentation’, and ‘biological regulation’. Enriched KEGG analysis indicated that nucleotide excision repair and ubiquitin mediated proteolysis were over-represented during the initial stage of ripening, with ABC transporters and sulfur metabolism pathways active during the middle stages and ABC transporters and spliceosome enriched in the final stages of ripening. Several miRNAs and their targets serving as potential regulators in L. barbarum fruit ripening were identified using quantitative reverse transcription polymerase chain reaction. The miRNA-target interactions were predicted for L. barbarum ripening regulators including miR156/157 with LbCNR and LbWRKY8, and miR171 with LbGRAS. Additionally, regulatory interactions potentially controlling fruit quality and nutritional value via sugar and secondary metabolite accumulation were identified. These include miR156 targeting of fructokinase and 1-deoxy-D-xylulose-5-phosphate synthase and miR164 targeting of beta-fructofuranosidase. In sum, valuable information revealed by small RNA sequencing in this study will provide a solid foundation for uncovering the miRNA-mediated mechanism of fruit ripening and quality in this

  18. Changes in alpha-L-arabinofuranosidase activity in peel and pulp of banana (Musa sp.) fruits during ripening and softening.

    Science.gov (United States)

    Zhuang, Jun-Ping; Su, Jing; Li, Xue-Ping; Chen, Wei-Xin

    2007-04-01

    Arabinose is one of the most dynamic cell wall glycosyl residues released during fruit ripening, alpha-L-arabinofuranosidase (alpha-Arab) are major glycosidases that may remove arabinose units from fruit cell wall polysaccharides. To find out whether alpha-Arab plays important roles in banana fruit softening, the enzyme activities in peel and pulp, fruit firmness, respiration rate and ethylene release rate were assayed during banana softening. The results showed that alpha-Arab activities in banana pulp and peel increased slightly at the beginning of storage and reached their maxima when the fruit firmness decreased drastically, alpha-Arab activity increased by more than ten folds in both pulp and peel during ripening and alpha-Arab activities were higher in pulp than in peel. Treatment of banana fruits with ethylene absorbent postponed the time of reaching of its maxima of respiration and ethylene, enhanced the firmness of pup and decreased alpha-Arab activity in the peel and pulp. These results suggest that alpha-Arab induced the decrease of fruit firmness and played an important role in banana fruit softening, and its activity was regulated by ethylene.

  19. Characterization of Changes in Polyphenols, Antioxidant Capacity and Physico-Chemical Parameters during Lowbush Blueberry Fruit Ripening

    Directory of Open Access Journals (Sweden)

    Lara Gibson

    2013-10-01

    Full Text Available Changes in major polyphenols, antioxidant capacity, and selected physico-chemical parameters were examined in lowbush blueberry during fruit ripening. Polyphenols (phenolic acids, flavonols, flavan-3-ols, and anthocyanins, density, soluble solid content, pH, titratable acidity, sugars, organic acids, and antioxidant capacity were determined in fruits of four maturities: green, pink/red, blue, and over-mature. Highest concentrations of flavonols, flavan-3-ols, and phenolic acids were in green fruits: 168 ± 107, 119 ± 29 and 543 ± 91 mg/100 g dry weight (DW respectively. Highest anthocyanin levels were found in blue and over-mature fruits (1011–1060 mg/100 DW. Chlorogenic acid was the most abundant phenolic acid and quercetin-3-O-galactoside the most abundant flavonol in all maturities. Epicatechin was the most abundant flavan-3-ol in green fruits (80 ± 20 mg/100 DW, and catechin was the most abundant in other maturity stages. Increase of glucose and fructose and decrease of organic acids were observed during fruit ripening. Among six organic acids found, quinic acid (1.7–9.5 mg/100 mg DW was the most abundant throughout the fruit ontogeny. Soluble solids, pH, and density increased with maturity while, titratable acidity decreased. These findings can be helpful in optimizing harvest and processing operations in lowbush blueberry fruits.

  20. Identification and expression analysis of four 14-3-3 genes during fruit ripening in banana (Musa acuminata L. AAA group, cv. Brazilian).

    Science.gov (United States)

    Li, Mei-Ying; Xu, Bi-Yu; Liu, Ju-Hua; Yang, Xiao-Liang; Zhang, Jian-Bin; Jia, Cai-Hong; Ren, Li-Cheng; Jin, Zhi-Qiang

    2012-02-01

    To investigate the regulation of 14-3-3 proteins in banana (Musa acuminata L. AAA group, cv. Brazilian) fruit postharvest ripening, four cDNAs encoding 14-3-3 proteins were isolated from banana and designated as Ma-14-3-3a, Ma-14-3-3c, Ma-14-3-3e, and Ma-14-3-3i, respectively. Amino acid sequence alignment showed that the four 14-3-3 proteins shared a highly conserved core structure and variable C-terminal as well as N-terminal regions with 14-3-3 proteins from other plant species. Phylogenetic analysis revealed that the four 14-3-3 genes belong to the non-ε groups. They were differentially and specifically expressed in various tissues. Real-time RT-PCR analysis indicated that these four genes function differentially during banana fruit postharvest ripening. Three genes, Ma-14-3-3a, Ma-14-3-3c, and Ma-14-3-3e, were significantly induced by exogenous ethylene treatment. However, gene function differed in naturally ripened fruits. Ethylene could induce Ma-14-3-3c expression during postharvest ripening, but expression patterns of Ma-14-3-3a and Ma-14-3-3e suggest that these two genes appear to be involved in regulating ethylene biosynthesis during fruit ripening. No obvious relationship emerged between Ma-14-3-3i expression in naturally ripened and 1-MCP (1-methylcyclopropene)-treated fruit groups during fruit ripening. These results indicate that the 14-3-3 proteins might be involved in various regulatory processes of banana fruit ripening. Further studies will mainly focus on revealing the detailed biological mechanisms of these four 14-3-3 genes in regulating banana fruit postharvest ripening.

  1. Ethephon, an organophosphorus, a fruit and vegetable ripener: Has potential hepatotoxic effects.

    Directory of Open Access Journals (Sweden)

    Pooja Bhadoria

    2015-01-01

    Full Text Available Introduction: Ethephon, 2-choloroethylphosphonic acid, has been recognized as one of the most widely used plant growth regulator. Currently it is commonly used on fruits, vegetables, cereals, for promoting pre-harvest and post-harvest ripening and has become one of the major health concerns as we are exposed to this constantly.Rationale: Liver plays an important role in the first pass metabolism of ethephon and its metabolites are known to cause various disturbances in the liver enzymes.Objectives: The present study was conducted to study the effects of ethephon on histomorphology and morphometry of liver of adult wistar albino rats.Material and Methods: Ten experimental rats were administered 200mg/kg bodyweight by oral gavage for fourteen days. Ten Controls were also maintained.  Animals of both groups were sacrificed within twenty four hours of the last dose; liver was dissected and processed for light microscopy. Haematoxylin and eosin stained sections were studied using an image pro-express analyzer. The data obtained from control and experimental groups was tabulated and statistically analyzed.Results: The mean body weight of the experimental rats was found to be decreased significantly (p<0.05. The liver capsule was thickened and infiltrated with inflammatory and red blood cells. The orderly arrangement of hepatocytes was disrupted and was replaced by blood filled large sinusoids. At sites hepatocytes appeared to be degenerated. Councilman bodies with pyknotic nuclei and inflammatory infiltrations were observed. The hepatocyte count per unit area was significantly decreased among experimental rats (29.53±10.65 when compared with control rats (44.18±10.31. However, the kupffer cell count per unit area was significantly higher among experimental rats (25.12 ± 4.41 as compared to control rats (13.05±6.5.Conclusion: The changes observed in the liver suggest that ethephon, which is commonly used a fruit and vegetable ripener possesses a

  2. Expression patterns of cell wall-modifying genes from banana during fruit ripening and in relationship with finger drop

    Science.gov (United States)

    Mbéguié-A-Mbéguié, D.; Hubert, O.; Baurens, F. C.; Matsumoto, T.; Chillet, M.; Fils-Lycaon, B.; Sidibé-Bocs, S.

    2009-01-01

    Few molecular studies have been devoted to the finger drop process that occurs during banana fruit ripening. Recent studies revealed the involvement of changes in the properties of cell wall polysaccharides in the pedicel rupture area. In this study, the expression of cell-wall modifying genes was monitored in peel tissue during post-harvest ripening of Cavendish banana fruit, at median area (control zone) and compared with that in the pedicel rupture area (drop zone). To this end, three pectin methylesterase (PME) and seven xyloglucan endotransglycosylase/hydrolase (XTH) genes were isolated. The accumulation of their mRNAs and those of polygalaturonase, expansin, and pectate lyase genes already isolated from banana were examined. During post-harvest ripening, transcripts of all genes were detected in both zones, but accumulated differentially. MaPME1, MaPG1, and MaXTH4 mRNA levels did not change in either zone. Levels of MaPME3 and MaPG3 mRNAs increased greatly only in the control zone and at the late ripening stages. For other genes, the main molecular changes occurred 1–4 d after ripening induction. MaPME2, MaPEL1, MaPEL2, MaPG4, MaXTH6, MaXTH8, MaXTH9, MaEXP1, MaEXP4, and MaEXP5 accumulated highly in the drop zone, contrary to MaXTH3 and MaXTH5, and MaEXP2 throughout ripening. For MaPG2, MaXET1, and MaXET2 genes, high accumulation in the drop zone was transient. The transcriptional data obtained from all genes examined suggested that finger drop and peel softening involved similar mechanisms. These findings also led to the proposal of a sequence of molecular events leading to finger drop and to suggest some candidates. PMID:19357434

  3. Overexpression of a novel MADS-box gene SlFYFL delays senescence, fruit ripening and abscission in tomato

    Science.gov (United States)

    Xie, Qiaoli; Hu, Zongli; Zhu, Zhiguo; Dong, Tingting; Zhao, Zhiping; Cui, Baolu; Chen, Guoping

    2014-03-01

    MADS-domain proteins are important transcription factors involved in many biological processes of plants. In our study, a tomato MADS-box gene, SlFYFL, was isolated. SlFYFL is expressed in all tissues of tomato and significantly higher in mature leave, fruit of different stages, AZ (abscission zone) and sepal. Delayed leaf senescence and fruit ripening, increased storability and longer sepals were observed in 35S:FYFL tomato. The accumulation of carotenoid was reduced, and ethylene content, ethylene biosynthetic and responsive genes were down-regulated in 35S:FYFL fruits. Abscission zone (AZ) did not form normally and abscission zone development related genes were declined in AZs of 35S:FYFL plants. Yeast two-hybrid assay revealed that SlFYFL protein could interact with SlMADS-RIN, SlMADS1 and SlJOINTLESS, respectively. These results suggest that overexpression of SlFYFL regulate fruit ripening and development of AZ via interactions with the ripening and abscission zone-related MADS box proteins.

  4. 2D-DIGE analysis of mango (Mangifera indica L.) fruit reveals major proteomic changes associated with ripening.

    Science.gov (United States)

    Andrade, Jonathan de Magalhães; Toledo, Tatiana Torres; Nogueira, Silvia Beserra; Cordenunsi, Beatriz Rosana; Lajolo, Franco Maria; do Nascimento, João Roberto Oliveira

    2012-06-18

    A comparative proteomic investigation between the pre-climacteric and climacteric mango fruits (cv. Keitt) was performed to identify protein species with variable abundance during ripening. Proteins were phenol-extracted from fruits, cyanine-dye-labeled, and separated on 2D gels at pH 4-7. Total spot count of about 373 proteins spots was detected in each gel and forty-seven were consistently different between pre-climacteric and climacteric fruits and were subjected to LC-MS/MS analysis. Functional classification revealed that protein species involved in carbon fixation and hormone biosynthesis decreased during ripening, whereas those related to catabolism and the stress-response, including oxidative stress and abiotic and pathogen defense factors, accumulated. In relation to fruit quality, protein species putatively involved in color development and pulp softening were also identified. This study on mango proteomics provides an overview of the biological processes that occur during ripening. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Analysis of papaya cell wall-related genes during fruit ripening indicates a central role of polygalacturonases during pulp softening.

    Directory of Open Access Journals (Sweden)

    João Paulo Fabi

    Full Text Available Papaya (Carica papaya L. is a climacteric fleshy fruit that undergoes dramatic changes during ripening, most noticeably a severe pulp softening. However, little is known regarding the genetics of the cell wall metabolism in papayas. The present work describes the identification and characterization of genes related to pulp softening. We used gene expression profiling to analyze the correlations and co-expression networks of cell wall-related genes, and the results suggest that papaya pulp softening is accomplished by the interactions of multiple glycoside hydrolases. The polygalacturonase cpPG1 appeared to play a central role in the network and was further studied. The transient expression of cpPG1 in papaya results in pulp softening and leaf necrosis in the absence of ethylene action and confirms its role in papaya fruit ripening.

  6. Antibacterial activity of extracted bioactive molecules of Schinus terebinthifolius ripened fruits against some pathogenic bacteria.

    Science.gov (United States)

    Salem, M Z M; El-Hefny, M; Ali, H M; Elansary, H O; Nasser, R A; El-Settawy, A A A; El Shanhorey, N; Ashmawy, N A; Salem, A Z M

    2018-04-27

    The aim of this work is to identify the chemical constituents and the bioactivity of essential oil (EO), acetone extract (ACE) and n-hexane extract (HexE) of S. terebinthifolius ripened fruits using GC-MS. Total phenolic content and antioxidant activity of extracts were determined using the Folin-Ciocalteu and 1,1-diphenyl-2-picryl-hydrazyl (DPPH) assays, respectively. The toxicity against the growth of Acinetobacter baumannii, Bacillus subtilis, Escherichia coli, Micrococcus flavus, Pseudomonas aeruginosa, Sarcina lutea, and Staphylococcus aureus was determined with measuring the inhibition zones (IZs) using the disc diffusion method at the concentrations from 125 to 2000 μg/mL, also, the minimum inhibitory concentrations (MICs) using 96-well micro-plates and ranged from 4 to 2000 μg/mL. The major components in EO were α-pinene (36.9%), and α-phellandrene (32.8%). The major components in ACE were oleic acid (38.7%), α-phellandrene (13.33%), and δ-cadinene (11.1%), while the major methyl esters of fatty acids detected in HexE were oleic (12.8%), and palmitic (10.9%). The EO showed good activity against the growth of Staph. aureus and P. aeruginosa with MIC values of 16 μg/mL and 32 μg/mL, the ACE showed broad activity against the studied bacterial pathogens with MIC values ranged from of 4-128 μg/mL against the studied bacterial isolates, while HexE, however, showed weak antibacterial activity. The IC 50 values of EO, ACE and HexE were 15.11 ± 0.99, 118.16 ± 1.7 and 324.26 ± 2.45 μg/mL, respectively, compared to IC 50 of Tannic acid (23.83 ± 1.9 μg/mL) and butylated hydroxytoluene (BHT, 2.9 ± 0.1 μg/mL). Data suggested that the ripened fruits of S. terebinthifolius have potent antioxidant and antibacterial activities. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Evolutionary Recycling of Light Signaling Components in Fleshy Fruits: New Insights on the Role of Pigments to Monitor Ripening

    OpenAIRE

    Llorente, Briardo; D?Andrea, Lucio; Rodr?guez-Concepci?n, Manuel

    2016-01-01

    Besides an essential source of energy, light provides environmental information to plants. Photosensory pathways are thought to have occurred early in plant evolution, probably at the time of the Archaeplastida ancestor, or perhaps even earlier. Manipulation of individual components of light perception and signaling networks in tomato (Solanum lycopersicum) affects the metabolism of ripening fruit at several levels. Most strikingly, recent experiments have shown that some of the molecular mec...

  8. ‘OMICS’-approach to regulate ripening and enhance fruit shelf-life in banana: an important fruit crop for food security

    Directory of Open Access Journals (Sweden)

    Subhankar Mohanty

    2017-12-01

    In this study, proteins were phenol extracted from different fruit tissues (peel and pulp during different developmental (40, 60, 80 and 90-days after flowering and ripening stages (2, 4, 6, 8, 10 and 12-days after ripening of banana (cv.Grand naine, and resolved using global proteome approach. 2-D gel images were further submitted to powerful image analysis software (Image Master Platinum, Version.7.1 for qualitative and quantitative analysis. Several protein spots showed fold-change (increase and decrease in abundance, and some protein spots are unique to certain developmental and ripening stages, after image analysis.  Further, spots of interest were subjected to both MALDI-TOF/TOF-MS and LC-MS/MS (Q-TOF mass spectrophotometry for protein mass fingerprinting and peptide sequencing, after tryptic digestion of the excised protein spots. In parallel, experiments are in progress to subject the samples for transcriptome (RNAseq. analysis. Based on protein/gene sequence information corresponding genes will be isolated and cloned, and knowledge will be utilized for RNAi constructs preparation to define individual role of identified key proteins/genes in ripening and enhancing fruit shelf-life in banana.

  9. The influence of ripening stage and cultivation system on the total antioxidant activity and total phenolic compounds of yellow passion fruit pulp.

    Science.gov (United States)

    Macoris, Mariana S; De Marchi, Renata; Janzantti, Natália S; Monteiro, Magali

    2012-07-01

    This work aimed to investigate the influence of both ripening stage and cultivation system on the total phenolic compounds (TPC) and total antioxidant activity (TAA) of passion fruit pulp. TPC extraction was optimized using a 2³ central composed design. The variables were fruit pulp volume, methanol volume and extraction solution volume. TPC was determined using the Folin-Ciocalteu reaction, and TAA using the ABTS radical reaction. The conditions to extract TPC were 2 mL passion fruit pulp and 9 mL extraction solution containing 40% methanol:water (v/v). TPC values increased in the passion fruit pulp during ripening for both cultivation systems, ranging from 281.8 to 361.9 mg gallic acid L⁻¹ (P ≤ 0.05) for the organic pulp and from 291.0 to 338.6 mg gallic acid L⁻¹ (P ≤ 0.05) for the conventional pulp. TPC values increased during ripening for both organic and conventional passion fruit. The same was true for TAA values for conventional passion fruit. For organic passion fruit, however, TAA values were highest at the initial ripening stages. These results suggest that antioxidant compounds exert strong influence on the initial ripening stages for organic passion fruit, when TPC still did not reach its maximum level. Copyright © 2012 Society of Chemical Industry.

  10. Evolution of Capsaicinoids in Peter Pepper (Capsicum annuum var. annuum) During Fruit Ripening.

    Science.gov (United States)

    Barbero, Gerardo F; de Aguiar, Ana C; Carrera, Ceferino; Olachea, Ángel; Ferreiro-González, Marta; Martínez, Julian; Palma, Miguel; Barroso, Carmelo G

    2016-08-01

    The evolution of individual and total contents of capsaicinoids present in Peter peppers (Capsicum annuum var. annuum) at different ripening stages has been studied. Plants were grown in a glasshouse and the new peppers were marked in a temporal space of ten days. The extraction of capsaicinoids was performed by ultrasound-assisted extraction with MeOH. The capsaicinoids nordihydrocapsaicin (n-DHC), capsaicin, dihydrocapsaicin, homocapsaicin, and homodihydrocapsaicin were analyzed by ultraperformance liquid chromatography (UHPLC)-fluorescence and identified by UHPLC-Q-ToF-MS. The results indicate that the total capsaicinoids increase in a linear manner from the first point of harvest at ten days (0.283 mg/g FW) up to 90 days, at which point they reach a concentration of 1.301 mg/g FW. The evolution as a percentage of the individual capsaicinoids showed the initial predominance of capsaicin, dihydrocapsaicin, and n-DHC. Dihydrocapsaicin was the major capsaicinoid up to day 50 of maturation. After 50 days, capsaicin became the major capsaicinoid as the concentration of dihydrocapsaicin fell slightly. The time of harvest of Peter pepper based on the total capsaicinoids content should be performed as late as possible. In any case, harvesting should be performed before overripening of the fruit is observed. © 2016 Wiley-VHCA AG, Zürich.

  11. Apple (Malus domestica) MdERF2 negatively affects ethylene biosynthesis during fruit ripening by suppressing MdACS1 transcription.

    Science.gov (United States)

    Li, Tong; Jiang, Zhongyu; Zhang, Lichao; Tan, Dongmei; Wei, Yun; Yuan, Hui; Li, Tianlai; Wang, Aide

    2016-12-01

    Ripening in climacteric fruit requires the gaseous phytohormone ethylene. Although ethylene signaling has been well studied, knowledge of the transcriptional regulation of ethylene biosynthesis is still limited. Here we show that an apple (Malus domestica) ethylene response factor, MdERF2, negatively affects ethylene biosynthesis and fruit ripening by suppressing the transcription of MdACS1, a gene that is critical for biosynthesis of ripening-related ethylene. Expression of MdERF2 was suppressed by ethylene during ripening of apple fruit, and we observed that MdERF2 bound to the promoter of MdACS1 and directly suppressed its transcription. Moreover, MdERF2 suppressed the activity of the promoter of MdERF3, a transcription factor that we found to bind to the MdACS1 promoter, thereby increasing MdACS1 transcription. We determined that the MdERF2 and MdERF3 proteins directly interact, and this interaction suppresses the binding of MdERF3 to the MdACS1 promoter. Moreover, apple fruit with transiently downregulated MdERF2 expression showed higher ethylene production and faster ripening. Our results indicate that MdERF2 negatively affects ethylene biosynthesis and fruit ripening in apple by suppressing the transcription of MdACS1 via multiple mechanisms, thereby acting as an antagonist of positive ripening regulators. Our findings offer a deep understanding of the transcriptional regulation of ethylene biosynthesis during climacteric fruit ripening. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  12. The influence of ionizing radiation on the ripening and storage life of some tropical fruits

    International Nuclear Information System (INIS)

    Kovacs, J.; Tengumnuay, Ch.

    1972-01-01

    The tests extended to the weight loss, changes in the vitamin C content and in the organoleptic properties of fruit irradiated up to 200 krad as well as to the determination of the ripening and rotting indices. Radiation doses had no effect on the vitamin C content. Investigation of papaya. A certain change was observed in the organoleptic properties of the irradiated fruit. For an improved storage life with preserved quality a storage temperature of 18 0 C and irradiation with 50 and 75 krad radiation dose were found to be the most favourable. Investigation of mango. In course of the storage temperature experiments the irradiated and control fruits were stored at 15 0 C, 18 0 and 22 0 C and it was found that a temperature of 18 0 C and a radiation dose of 40 krad will lead to the most favourable organoleptic and storage properties. Investigation of rambutan. Higher radiation doses, e.g. 100 krad, are more favourable from the aspect of extended storage life of rambutan than lower doses. After 8 days storage the weight loss of samples which had been irradiated with 100 krad was 15% less than that of the controls. Radiation doses had no effect on the reducing sugar content of the rambutan samples. A slight decrease in titratable acidity was found in the stored irradiated rambutan samples. The rotting index of the control sample of the Pink rambutan variety was 40% after 10 days and 100% after 16 days, while after 18 days the rotting index of samples irradiated with 50 krad was only 50% and of those irradiated with 60 krad not more than 30%. Longan investigation. The most favourable change in texture was observed on samples irradiated with high doses and then stored. No significant difference was found between the reducing sugar contents and acidity values as function of the storage period. During 15 days storage at 18 0 C the rotting indices reached, in case of low radiation doses, 100%, while samples irradiated with 150 and 200 krad, respectively, and stored for 30

  13. Cloning of an ADP-ribosylation factor gene from banana (Musa acuminata) and its expression patterns in postharvest ripening fruit.

    Science.gov (United States)

    Wang, Yuan; Wu, Jing; Xu, Bi-Yu; Liu, Ju-Hua; Zhang, Jian-Bin; Jia, Cai-Hong; Jin, Zhi-Qiang

    2010-08-15

    A full-length cDNA encoding an ADP-ribosylation factor (ARF) from banana (Musa acuminata) fruit was cloned and named MaArf. It contains an open reading frame encoding a 181-amino-acid polypeptide. Sequence analysis showed that MaArf shared high similarity with ARF of other plant species. The genomic sequence of MaArf was also obtained using polymerase chain reaction (PCR). Sequence analysis showed that MaArf was a split gene containing five exons and four introns in genomic DNA. Reverse-transcriptase PCR was used to analyze the spatial expression of MaArf. The results showed that MaArf was expressed in all the organs examined: root, rhizome, leaf, flower and fruit. Real-time quantitative PCR was used to explore expression patterns of MaArf in postharvest banana. There was differential expression of MaArf associated with ethylene biosynthesis. In naturally ripened banana, expression of MaArf was in accordance with ethylene biosynthesis. However, in 1-methylcyclopropene-treated banana, the expression of MaArf was inhibited and changed little. When treated with ethylene, MaArf expression in banana fruit significantly increased in accordance with ethylene biosynthesis; the peak of MaArf was 3 d after harvest, 11 d earlier than for naturally ripened banana fruits. These results suggest that MaArf is induced by ethylene in regulating postharvest banana ripening. Finally, subcellular localization assays showed the MaArf protein in the cytoplasm. Copyright 2010 Elsevier GmbH. All rights reserved.

  14. Transcript and metabolite analysis in Trincadeira cultivar reveals novel information regarding the dynamics of grape ripening.

    Science.gov (United States)

    Fortes, Ana M; Agudelo-Romero, Patricia; Silva, Marta S; Ali, Kashif; Sousa, Lisete; Maltese, Federica; Choi, Young H; Grimplet, Jerome; Martinez-Zapater, José M; Verpoorte, Robert; Pais, Maria S

    2011-11-02

    results were integrated with transcriptional profiling obtained using genome array to provide new information regarding the network of events leading to grape ripening. Altogether the data obtained provides the most extensive survey obtained so far for gene expression and metabolites accumulated during grape ripening. Moreover, it highlighted information obtained in a poorly known variety exhibiting particular characteristics that may be cultivar specific or dependent upon climatic conditions. Several genes were identified that had not been previously reported in the context of grape ripening namely genes involved in carbohydrate and amino acid metabolisms as well as in growth regulators; metabolism, epigenetic factors and signaling pathways. Some of these genes were annotated as receptors, transcription factors, and kinases and constitute good candidates for functional analysis in order to establish a model for ripening control of a non-climacteric fruit.

  15. The Effect of Methyl Jasmonate Vapour on Some Characteristics of Fruit Ripening, Carotenoids and Tomatine Changes in Tomato (Lycopersicon esculentum Mill.

    Directory of Open Access Journals (Sweden)

    Janusz Czapski

    2013-12-01

    Full Text Available Tomato ripening in normal red-fruited cultivar (Fiorin was delayed by treatment with methyl jasmonate (JA-Me vapour. A visual scoring system for describing tomato ripening was used. Surface of fruits exposed to JA-Me vapour, increased in yellow and decreased in red as determined by HunterLab colour meter. JA-Me significantly altered the firmness of fruits after 21 days storage. Vapour of JA-Me enhanced the level of β-carotene in outer part (peel with 3 mm pericarp tissue of fruit, while it had no effect in peeled fruit pericarp. JA-Me treatment decreased the level of lycopene in outer part and pericarp tissue, however, in outer part lycopene content decreased at a higher rate than in pericarp. Amount of tomatine in fruits treated with JA-Me had enhanced four-fold in outer part and by 62% in peeled fruit pericarp as compared with the control.

  16. Controlled atmosphere pO2 alters ripening dynamics of 1-MCP treated ‘d’Anjou’ pear (Pyrus communis L.) fruit

    Science.gov (United States)

    Ripening and development of physiological disorders and decay were assessed in ‘d’Anjou’ pear fruit following 1-methylcyclopropene (1-MCP) treatment and cold storage in air or controlled atmosphere (CA). Fruit were exposed after harvest to 0 or 12.6 µmol•L-1 1-MCP and then stored at 0.5 oC in air o...

  17. Effects of ionizing radiations on 1-aminocyclo-propane-1-carloxylic acid metabolism in climateric fruits. Analysis of stress response and implication in fruit ripening

    International Nuclear Information System (INIS)

    Larrigaudiere, C.

    1989-12-01

    Ethylene is a plant hormone which regulates many aspects of ripening, senescence and stress response. The results show that irradiation can also be considered as a stress factor. Ethylene production enhancement which follows irradiation is the consequence of ACC synthase activation, and results from a de novo synthesis of the enzyme and in some cases from a very fast (15 mn) translation of already presents mRNAS. In cherry tomatoe fruits the onset of the ripening process occurs earlier. This modification is the consequence of two contradictory effects: - the short term activation of the ACC metabolism. - the ionization impact on genome and the consecutive impairing of transcriptional processes. These two aspects are dependent on the irradiation dose. They bring in cherry tomatoes a synchronization of the ripening process. The stress response towards ionization and CuC12 was also investigated on cell fruit suspensions. Results are dependent on the stress nature, material and physiological cell condition. They confirm the previous observed activation of ACC synthesis, which seems to be a general feature in non senescent systems [fr

  18. The transcriptional regulatory network mediated by banana (Musa acuminata) dehydration-responsive element binding (MaDREB) transcription factors in fruit ripening.

    Science.gov (United States)

    Kuang, Jian-Fei; Chen, Jian-Ye; Liu, Xun-Cheng; Han, Yan-Chao; Xiao, Yun-Yi; Shan, Wei; Tang, Yang; Wu, Ke-Qiang; He, Jun-Xian; Lu, Wang-Jin

    2017-04-01

    Fruit ripening is a complex, genetically programmed process involving the action of critical transcription factors (TFs). Despite the established significance of dehydration-responsive element binding (DREB) TFs in plant abiotic stress responses, the involvement of DREBs in fruit ripening is yet to be determined. Here, we identified four genes encoding ripening-regulated DREB TFs in banana (Musa acuminata), MaDREB1, MaDREB2, MaDREB3, and MaDREB4, and demonstrated that they play regulatory roles in fruit ripening. We showed that MaDREB1-MaDREB4 are nucleus-localized, induced by ethylene and encompass transcriptional activation activities. We performed a genome-wide chromatin immunoprecipitation and high-throughput sequencing (ChIP-Seq) experiment for MaDREB2 and identified 697 genomic regions as potential targets of MaDREB2. MaDREB2 binds to hundreds of loci with diverse functions and its binding sites are distributed in the promoter regions proximal to the transcriptional start site (TSS). Most of the MaDREB2-binding targets contain the conserved (A/G)CC(G/C)AC motif and MaDREB2 appears to directly regulate the expression of a number of genes involved in fruit ripening. In combination with transcriptome profiling (RNA sequencing) data, our results indicate that MaDREB2 may serve as both transcriptional activator and repressor during banana fruit ripening. In conclusion, our study suggests a hierarchical regulatory model of fruit ripening in banana and that the MaDREB TFs may act as transcriptional regulators in the regulatory network. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  19. Avocado fruit maturation and ripening: dynamics of aliphatic acetogenins and lipidomic profiles from mesocarp, idioblasts and seed.

    Science.gov (United States)

    Rodríguez-López, Carlos Eduardo; Hernández-Brenes, Carmen; Treviño, Víctor; Díaz de la Garza, Rocío I

    2017-09-29

    Avocado fruit contains aliphatic acetogenins (oft-acetylated, odd-chain fatty alcohols) with promising bioactivities for both medical and food industries. However, we have scarce knowledge about their metabolism. The present work aimed to study changes in acetogenin profiles from mesocarp, lipid-containing idioblasts, and seeds from 'Hass' cultivar during fruit development, germination, and three harvesting years. An untargeted LC-MS based lipidomic analysis was also conducted to profile the lipidome of avocado fruit in each tissue. The targeted analysis showed that acetogenin profiles and contents remained unchanged in avocado mesocarp during maturation and postharvest ripening, germination, and different harvesting years. However, a shift in the acetogenin profile distribution, accompanied with a sharp increase in concentration, was observed in seed during early maturation. Untargeted lipidomics showed that this shift was accompanied with remodeling of glycerolipids: TAGs and DAGs decreased during fruit growing in seed. Remarkably, the majority of the lipidome in mature seed was composed by acetogenins; we suggest that this tissue is able to synthesize them independently from mesocarp. On the other hand, lipid-containing idioblasts accumulated almost the entire acetogenin pool measured in the whole mesocarp, while only having 4% of the total fatty acids. The lipidome of this cell type changed the most when the fruit was ripening after harvesting, TAGs decreased while odd-chain DAGs increased. Notably, idioblast lipidome was more diverse than that from mesocarp. Evidence shown here suggests that idioblasts are the main site of acetogenin biosynthesis in avocado mesocarp. This work unveiled the prevalence of aliphatic acetogenins in the avocado fruit lipidome and evidenced TAGs as initial donors of the acetogenin backbones in its biosynthesis. It also sets evidence for acetogenins being included in future works aimed at characterizing the avocado seed, as they are

  20. Proteomics of the ripening of blackberry fruits (Rubus sp. grown in México, a first approach

    Directory of Open Access Journals (Sweden)

    2012-09-01

    Full Text Available Blackberry production in Mexico has increased 200 % in the last decade. The main varieties used have been introduced from other countries, and its establishment under the climatic conditions of México has required considerable adaptations to the agronomic management observed in the regions of origin thereof. The essentialchallenge of managing this product is based on the intrinsic characteristics of its soft fruit and its short shelf life, so that knowledge of their maturation process under their growing conditions in Mexico is imperative to achieve and improve handling productivity and fruit quality unto its final destination. The aim of this work was to first address this problem by establishing the conditions of protocols for the analysis of proteins in blackberry fruits during different ripening stages. To accomplish this goal, six stages of fruit ripening were identified for the comercial variety 'Brazos' (considering a range of development from green, small fruits to fruits fully developed and in harvest maturity, a protein extraction was selected and a protein profile was performed by electrophoresis under denaturing conditions. In addition, requirements were established for two-dimensional electrophoresis (2-DE of the extractsobtained by evaluating the conditions of isoelectric focusing and staining methods. According to the results obtained, it was determined to use 400 µg of total protein in IPG strips of 7 cm with a pH range of 3 to 10, using a máximum voltage of 50 000 V, and Coomassie blue staining. A preliminary analysis of the distribution and abundance of the peptides expressed in the six stages of maturation was performed using the KODAK MI software version 4.5, and the results showed that the stage 2 presented the highest number of peptide spots (158, the highest percentage of spots at all stages were observed in a pH range of 5.0 to 6.9 and molecular weight of 30 to 50 kDa. We identified four spots of similar intensity

  1. Constitutive Transcription and Stable RNA Accumulation in Plastids during the Conversion of Chloroplasts to Chromoplasts in Ripening Tomato Fruits 1

    Science.gov (United States)

    Marano, María Rosa; Carrillo, Néstor

    1992-01-01

    The size distribution of plastid transcripts during chromoplast differentiation in ripening tomato (Lycopersicon esculentum L.) fruits was determined using northern blot analysis. Hybridization of total cellular RNA from leaves and fruits with several tobacco chloroplast DNA probes showed distinct transcript patterns in chloroplasts and chromoplasts. We also compared transcriptional rates by probing immobilized DNA fragments of small size (representing about 85% of the plastid genome) with run-on transcripts from tomato plastids. The relative rates of transcription of the various DNA regions were very similar in chloro- and chromoplasts. Parallel determination of the steady-state levels of plastid RNA showed no strict correlation between synthesis rate and RNA accumulation. Differences in the relative abundance of transcripts between chloro- and chromoplasts were not very pronounced and were limited to a small number of genes. The results indicate that the conversion of chloroplasts to chromoplasts at the onset of tomato fruit ripening proceeds with no important variations in the relative transcription rates and with only moderate changes in the relative stability of plastid-encoded transcripts. Images Figure 1 Figure 4 PMID:16653091

  2. Variation in Antioxidant Attributes at Three Ripening Stages of Guava (Psidium guajava L. Fruit from Different Geographical Regions of Pakistan

    Directory of Open Access Journals (Sweden)

    Muhammad Ashraf

    2012-03-01

    Full Text Available The present investigation was carried out to appraise the levels of total phenols and vitamin C as well as antioxidant potential at three different ripening stages (un-ripe, semi-ripe and fully-ripe of guava (Psidium guajava L. fruit collected from three different geographical regions of Pakistan (Islamabad, Faisalabad and Bhakkar. The antioxidant potential of guava fruit extracts was assessed by means of different in-vitro antioxidant assays, namely inhibition of peroxidation in linoleic acid system, reducing power and radical scavenging capability. Overall, fruit at the un-ripe stage (G1 exhibited the highest levels of TPC, TFC, reducing power and DPPH radical scavenging activity, followed by the semi-ripe (G2 and fully-ripe (G3 stages. On the other hand, vitamin C content increased as the fruit maturity progressed, with highest value seen at the fully-ripe stage (G3 followed by the semi-ripe (G2 and un-ripe stage (G1. The concentration of vitamin C in fruits varied as: Faisalabad (136.4–247.9 mg 100 g−1, Islamabad (89.7–149.7 mg 100 g−1 and Bhakkar (73.1–129.5 mg 100 g−1. The results showed that different stages of maturation and geographical locations had profound effects on the antioxidant activity and vitamin C contents of guava fruit.

  3. Variation in antioxidant attributes at three ripening stages of guava (Psidium guajava L.) fruit from different geographical regions of Pakistan.

    Science.gov (United States)

    Gull, Javaria; Sultana, Bushra; Anwar, Farooq; Naseer, Rehana; Ashraf, Muhammad; Ashrafuzzaman, M

    2012-03-14

    The present investigation was carried out to appraise the levels of total phenols and vitamin C as well as antioxidant potential at three different ripening stages (un-ripe, semi-ripe and fully-ripe) of guava (Psidium guajava L.) fruit collected from three different geographical regions of Pakistan (Islamabad, Faisalabad and Bhakkar). The antioxidant potential of guava fruit extracts was assessed by means of different in-vitro antioxidant assays, namely inhibition of peroxidation in linoleic acid system, reducing power and radical scavenging capability. Overall, fruit at the un-ripe stage (G1) exhibited the highest levels of TPC, TFC, reducing power and DPPH radical scavenging activity, followed by the semi-ripe (G2) and fully-ripe (G3) stages. On the other hand, vitamin C content increased as the fruit maturity progressed, with highest value seen at the fully-ripe stage (G3) followed by the semi-ripe (G2) and un-ripe stage (G1). The concentration of vitamin C in fruits varied as: Faisalabad (136.4-247.9 mg 100 g⁻¹), Islamabad (89.7-149.7 mg 100 g⁻¹) and Bhakkar (73.1-129.5 mg 100 g⁻¹). The results showed that different stages of maturation and geographical locations had profound effects on the antioxidant activity and vitamin C contents of guava fruit.

  4. Comparative Transcriptome Analysis of Cultivated and Wild Watermelon during Fruit Development.

    Science.gov (United States)

    Guo, Shaogui; Sun, Honghe; Zhang, Haiying; Liu, Jingan; Ren, Yi; Gong, Guoyi; Jiao, Chen; Zheng, Yi; Yang, Wencai; Fei, Zhangjun; Xu, Yong

    2015-01-01

    Watermelon [Citrullus lanatus (Thunb.) Matsum. & Nakai] is an important vegetable crop world-wide. Watermelon fruit quality is a complex trait determined by various factors such as sugar content, flesh color and flesh texture. Fruit quality and developmental process of cultivated and wild watermelon are highly different. To systematically understand the molecular basis of these differences, we compared transcriptome profiles of fruit tissues of cultivated watermelon 97103 and wild watermelon PI296341-FR. We identified 2,452, 826 and 322 differentially expressed genes in cultivated flesh, cultivated mesocarp and wild flesh, respectively, during fruit development. Gene ontology enrichment analysis of these genes indicated that biological processes and metabolic pathways related to fruit quality such as sweetness and flavor were significantly changed only in the flesh of 97103 during fruit development, while those related to abiotic stress response were changed mainly in the flesh of PI296341-FR. Our comparative transcriptome profiling analysis identified critical genes potentially involved in controlling fruit quality traits including α-galactosidase, invertase, UDP-galactose/glucose pyrophosphorylase and sugar transporter genes involved in the determination of fruit sugar content, phytoene synthase, β-carotene hydroxylase, 9-cis-epoxycarotenoid dioxygenase and carotenoid cleavage dioxygenase genes involved in carotenoid metabolism, and 4-coumarate:coenzyme A ligase, cellulose synthase, pectinesterase, pectinesterase inhibitor, polygalacturonase inhibitor and α-mannosidase genes involved in the regulation of flesh texture. In addition, we found that genes in the ethylene biosynthesis and signaling pathway including ACC oxidase, ethylene receptor and ethylene responsive factor showed highly ripening-associated expression patterns, indicating a possible role of ethylene in fruit development and ripening of watermelon, a non-climacteric fruit. Our analysis provides

  5. Dynamics in the concentrations of health-promoting compounds: lupeol, mangiferin and different phenolic acids during postharvest ripening of mango fruit.

    Science.gov (United States)

    Vithana, Mekhala Dk; Singh, Zora; Johnson, Stuart K

    2018-03-01

    Mango fruit (Mangifera indica L.) is renowned for its pleasant taste and as a rich source of health beneficial compounds. The aim of this study was to investigate the changes in concentrations of health-promoting compounds, namely ascorbic acid, carotenoids, antioxidants, lupeol, mangiferin, total phenols and individual phenolic acids, as well as ethylene production and respiration rates during climacteric ripening in 'Kensington Pride' and 'R2E2' mango fruit. The climacteric ethylene and respiration peaks were noted on the third day of the fruit ripening period. The concentrations of total carotenoids in the pulp, total antioxidants in both pulp and peel, and total phenols of the peel, lupeol and mangiferin were significantly elevated, whereas the concentration of ascorbic acid declined during post-climacteric ripening. Gallic, chlorogenic and vanillic acids were identified as the major phenolic acids in both pulp and peel of 'Kensington Pride' and 'R2E2' mangoes. The concentrations of phenolic acids (gallic, chlorogenic, vanillic, ferulic and caffeic acids) also increased during the post-climacteric phase. The concentrations of all phenolic compounds were several-fold higher in the peel than pulp. Mangoes at post-climacteric ripening phase offer the highest concentrations of health-promoting compounds. Peel, at this stage of fruit ripening, could be exploited as a good source for extraction of these compounds. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  6. A Ser/Thr protein kinase phosphorylates MA-ACS1 (Musa acuminata 1-aminocyclopropane-1-carboxylic acid synthase 1) during banana fruit ripening.

    Science.gov (United States)

    Choudhury, Swarup Roy; Roy, Sujit; Sengupta, Dibyendu N

    2012-08-01

    1-Aminocyclopropane-1-carboxylic acid synthase (ACS) catalyzes the rate-limiting step in ethylene biosynthesis during ripening. ACS isozymes are regulated both transcriptionally and post-translationally. However, in banana, an important climacteric fruit, little is known about post-translational regulation of ACS. Here, we report the post-translational modification of MA-ACS1 (Musa acuminata ACS1), a ripening inducible isozyme in the ACS family, which plays a key role in ethylene biosynthesis during banana fruit ripening. Immunoprecipitation analyses of phospholabeled protein extracts from banana fruit using affinity-purified anti-MA-ACS1 antibody have revealed phosphorylation of MA-ACS1, particularly in ripe fruit tissue. We have identified the induction of a 41-kDa protein kinase activity in pulp at the onset of ripening. The 41-kDa protein kinase has been identified as a putative protein kinase by MALDI-TOF/MS analysis. Biochemical analyses using partially purified protein kinase fraction from banana fruit have identified the protein kinase as a Ser/Thr family of protein kinase and its possible involvement in MA-ACS1 phosphorylation during ripening. In vitro phosphorylation analyses using synthetic peptides and site-directed mutagenized recombinant MA-ACS1 have revealed that serine 476 and 479 residues at the C-terminal region of MA-ACS1 are phosphorylated. Overall, this study provides important novel evidence for in vivo phosphorylation of MA-ACS1 at the molecular level as a possible mechanism of post-translational regulation of this key regulatory protein in ethylene signaling pathway in banana fruit during ripening.

  7. Root treatment with rhizobacteria antagonistic to Phytophthora blight affects anthracnose occurrence, ripening, and yield of pepper fruit in the plastic house and field.

    Science.gov (United States)

    Sang, Mee Kyung; Kim, Jeong Do; Kim, Beom Seok; Kim, Ki Deok

    2011-06-01

    We previously selected rhizobacterial strains CCR04, CCR80, GSE09, ISE13, and ISE14, which were antagonistic to Phytophthora blight of pepper. In this study, we investigated the effects of root treatment of rhizobacteria on anthracnose occurrence, ripening, and yield of pepper fruit in the plastic house and field in 2008 and 2009. We also examined the effects of volatiles produced by the strains on fruit ripening and on mycelial growth and spore development of Colletotrichum acutatum and Phytophthora capsici in the laboratory, identifying the volatile compounds by gas chromatography-mass spectrometry (GC-MS). In the house tests, all strains significantly (P anthracnose incidence on pepper fruit; strains GSE09 and ISE14 consistently produced higher numbers of pepper fruit or increased the fresh weight of red fruit more than the controls in both years. In the field tests, all strains significantly (P anthracnose occurrence on either green or red pepper fruit; strain ISE14 consistently produced higher numbers or increased fresh weights of red fruit more than the controls in both years. In the laboratory tests, volatiles produced by strains GSE09 and ISE13 only stimulated maturation of pepper fruit from green (unripe) to red (ripe) fruit; the volatiles of certain strains inhibited the growth and development of C. acutatum and P. capsici. On the other hand, GC-MS analysis of volatiles of strains GSE09 and ISE13 revealed 17 distinct compounds in both strains, including decane, dodecane, 1,3-di-tert-butylbenzene, tetradecane, 2,4-di-tert-butylphenol, and hexadecane. Among these compounds, 2,4-di-tert-butylphenol only stimulated fruit ripening and inhibited growth and development of the pathogens. Taken together, strains GSE09 and ISE14 effectively reduced anthracnose occurrence and stimulated pepper fruit ripening and yield, possibly via bacterial volatiles. Therefore, these two strains could be potential agents for controlling Phytophthora blight and anthracnose, and for

  8. Molecular characterization and expression studies during melon fruit development and ripening of L-galactono-1,4-lactone dehydrogenase

    DEFF Research Database (Denmark)

    Pateraki, Irene; Sanmartin, Maite; Kalamaki, Mary S.

    2004-01-01

    of a GalLDH full-length cDNA from melon (Cucumis melo L.) are described. Melon genomic DNA Southern analysis indicated that CmGalLDH was encoded by a single gene. CmGalLDH mRNA accumulation was detected in all tissues studied, but differentially expressed during fruit development and seed germination....... It is hypothesized that induction of CmGalLDH gene expression in ripening melon fruit contributes to parallel increases in the AA content and so playing a role in the oxidative ripening process. Higher CmGalLDH message abundance in light-grown seedlings compared with those raised in the dark suggests that Cm......GalLDH expression is regulated by light. Finally, various stresses and growth regulators resulted in no significant change in steady state levels of CmGalLDH mRNA in 20-d-old melon seedlings. To the authors' knowledge, this is the first report of GalLDH transcript induction in seed germination and differential gene...

  9. Translating the “Banana Genome” to Delineate Stress Resistance, Dwarfing, Parthenocarpy and Mechanisms of Fruit Ripening

    Directory of Open Access Journals (Sweden)

    Prasanta K Dash

    2016-10-01

    Full Text Available Evolutionary frozen, genetically sterile and globally iconic fruit Banana entered the genomics era with decoding of structural genome of double haploid Pahang (AA genome constitution genotype of M. acuminata. This wonder crop, as of today, remains untouched by the green revolution and researchers face intrinsic impediments for varietal improvement to enhance its yield. The complex genome of banana was decoded by hybrid sequencing strategies revealed panoply of genes and transcription factors involved in the process of sucrose conversion that imparts sweetness to its fruit. Banana has historically faced the wrath of pandemic bacterial, fungal and viral diseases and multitude of abiotic stresses that has ruined the livelihood of small and marginal farmers’ and destroyed commercial plantations. Decoding of its structural genome has given impetus to a deeper understanding of the repertoire of genes involved in disease resistance, understanding the mechanism of dwarfing to develop an ideal plant type, unravelling the process of parthenocarpy for better fruit quality, and fruit ripening in this climacteric fruit. Injunction of comparative genomics research will usher in to integrate information from its decoded genome and other monocots into field applications in banana related but not limited to yield enhancement, food security, livelihood assurance, and energy sustainability. In this mini review, we discuss pre- and post-genomic discoveries and highlight accomplishments in structural genomics, genetic engineering and forward genetic accomplishments with an aim to target genes and transcription factors for translational research in banana.

  10. Day and night heat stress trigger different transcriptomic responses in green and ripening grapevine (vitis vinifera) fruit.

    Science.gov (United States)

    Rienth, Markus; Torregrosa, Laurent; Luchaire, Nathalie; Chatbanyong, Ratthaphon; Lecourieux, David; Kelly, Mary T; Romieu, Charles

    2014-04-28

    Global climate change will noticeably affect plant vegetative and reproductive development. The recent increase in temperatures has already impacted yields and composition of berries in many grapevine-growing regions. Physiological processes underlying temperature response and tolerance of the grapevine fruit have not been extensively investigated. To date, all studies investigating the molecular regulation of fleshly fruit response to abiotic stress were only conducted during the day, overlooking possible critical night-specific variations. The present study explores the night and day transcriptomic response of grapevine fruit to heat stress at several developmental stages. Short heat stresses (2 h) were applied at day and night to vines bearing clusters sequentially ordered according to the developmental stages along their vertical axes. The recently proposed microvine model (DRCF-Dwarf Rapid Cycling and Continuous Flowering) was grown in climatic chambers in order to circumvent common constraints and biases inevitable in field experiments with perennial macrovines. Post-véraison berry heterogeneity within clusters was avoided by constituting homogenous batches following organic acids and sugars measurements of individual berries. A whole genome transcriptomic approach was subsequently conducted using NimbleGen 090818 Vitis 12X (30 K) microarrays. Present work reveals significant differences in heat stress responsive pathways according to day or night treatment, in particular regarding genes associated with acidity and phenylpropanoid metabolism. Precise distinction of ripening stages led to stage-specific detection of malic acid and anthocyanin-related transcripts modulated by heat stress. Important changes in cell wall modification related processes as well as indications for heat-induced delay of ripening and sugar accumulation were observed at véraison, an effect that was reversed at later stages. This first day - night study on heat stress adaption of the

  11. ESI-LC-MS based-metabolomics data of mangosteen (Garcinia mangostana Linn. fruit pericarp, aril and seed at different ripening stages

    Directory of Open Access Journals (Sweden)

    Siti Farah Mamat

    2018-04-01

    Full Text Available Fruit ripening is a complex phenomenon involving a series of biochemical, physiological and organoleptic changes. Ripening process in mangosteen (Garcinia mangostana Linn. is unique of which the fruit will only ripen properly if harvested during its middle stage (emergence of purple/pink colour but not earlier (green stage. The knowledge on the molecular mechanism and regulation behind this phenomenon is still limited. Hence, electrospray ionization liquid chromatography mass spectrometry (ESI-LC-MS based metabolomics analysis was applied to determine the metabolome of mangosteen ripening. Specifically, mangosteen pericarp, aril and seed were collected at four different ripening stages (stage 0: green, stage 2: yellowish with pink patches, stage 4: brownish red and stage 6: dark purple and subjected to metabolite profiling analysis. The data provided in this article have been deposited to the EMBL-EBI MetaboLights database (DOI: 10.1093/nar/gks1004. PubMed PMID: 23109552 with the identifier MTBLS595. The complete dataset can be accessed here https://www.ebi.ac.uk/metabolights/MTBLS595. Keywords: Ripening, Garcinia mangostana Linn., Metabolomics, ESI-LC-MS

  12. Comparison of tissue deterioration of ripening banana fruit (Musa spp., AAA group, Cavendish subgroup) under chilling and non-chilling temperatures.

    Science.gov (United States)

    Ramírez-Sánchez, Maricruz; Huber, Donald J; Vallejos, Carlos E

    2018-03-08

    In fleshy fruits, induced programmed cell death (PCD) has been observed in heat-treated tomato, and in ethylene-treated and low-temperature exposure in immature cucumber. No other fleshy fruit has been evaluated for chilling-injury-induced PCD, especially mature fruit with full ripening capacity. The purpose of this research was to identify and evaluate the presence of PCD processes during the development of low-temperature-induced physiopathy of banana fruit. Exposure of fruit to 5 °C for 4 days induced degradative processes similar to those occurring during ripening and overripening of non-chilled fruit. Nuclease from banana peel showed activity in both DNA substrates and RNA substrates. No exclusive low-temperature-induced proteases and nucleases were observed. DNA of chilled peel showed earlier signs of degradation and higher levels of DNA tailing during overripening. This study shows that exposure to low temperatures did not induce a pattern of degradative processes that differed from that occurring during ripening and overripening of non-chilled fruit. DNA showed earlier signs of degradation and higher levels of DNA tailing. Nuclease activity analysis showed bifunctionality in both chilled and non-chilled tissue and no chilling-exclusive protease and nuclease. Fleshy fruit might use their available resources on degradative processes and adjust them depending on environmental conditions. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  13. PERUBAHAN KOMPOSISI VOLATIL DAGING BUAH MANGGA "KENSINGTON PRIDE" SELAMA PEMASAKAN [Changes in Volatile Compound Composition of Kensington Pride Mango Pulp During Fruit Ripening

    Directory of Open Access Journals (Sweden)

    Herianus J.D Lalel

    2003-08-01

    Full Text Available Volatile compounds of ‘Kesington Pride’ mango produced from the pulp during fruit ripening were studied using headspace solid-phase microextraction (SPME as a sampling method and gas chromatography with a flame ionisation detector (GC-FID and gas chromatography mass spectrophotometry (GC-MS for analysis. Ethylene production and respiration reached a peak on the second and third day of ripening, respectively. Seventy-eight volatile compounds were identified from the pulp of ‘Kesington Pride’ mango; however, only 73 volatile compounds were present in notable amount. The most abundant group of volatile compounds was monoterpenes, accounting for abaout 44% of the total identified compounds, followed by sesquiterpenes (19%, aldehydes (11%,esters (10% aromatics (8%, alcohol (2%, ketones (2%, alkanes (1% and norisoprenoid (1%. -Terpinolene was the major compound during ripening. Except for -pinene, 3,7-dimethl-1,3,7-octatriene, 4-methl-1 (1-methylethylidene-cyclohexene, p-mentha-1,5,8-triene, aloocimene, the concentration of all other monoterpenes increased for the first six or eight days and decreased afterwards. All sesquiteroenes, p-cymene, p-cymen-9-ol,2-ethyl-1,4-dimethl benzene also increased during ripening and peaked on day four, six or eight of ripening. Ketones, aldehydes alkane and cis-3-hexenol, on the other hand, decreased during ripening. Ethanol, esters and norisoprenoid increased quite sharply at the end of ripening period.

  14. Comparative Transcriptome Analysis Reveals the Influence of Abscisic Acid on the Metabolism of Pigments, Ascorbic Acid and Folic Acid during Strawberry Fruit Ripening.

    Directory of Open Access Journals (Sweden)

    Dongdong Li

    Full Text Available A comprehensive investigation of abscisic acid (ABA biosynthesis and its influence on other important phytochemicals is critical for understanding the versatile roles that ABA plays during strawberry fruit ripening. Using RNA-seq technology, we sampled strawberry fruit in response to ABA or nordihydroguaiaretic acid (NDGA; an ABA biosynthesis blocker treatment during ripening and assessed the expression changes of genes involved in the metabolism of pigments, ascorbic acid (AsA and folic acid in the receptacles. The transcriptome analysis identified a lot of genes differentially expressed in response to ABA or NDGA treatment. In particular, genes in the anthocyanin biosynthesis pathway were actively regulated by ABA, with the exception of the gene encoding cinnamate 4-hydroxylase. Chlorophyll degradation was accelerated by ABA mainly owing to the higher expression of gene encoding pheide a oxygenase. The decrease of β-carotene content was accelerated by ABA treatment and delayed by NDGA. A high negative correlation rate was found between ABA and β-carotene content, indicating the importance of the requirement for ABA synthesis during fruit ripening. In addition, evaluation on the folate biosynthetic pathway indicate that ABA might have minor function in this nutrient's biosynthesis process, however, it might be involved in its homeostasis. Surprisingly, though AsA content accumulated during fruit ripening, expressions of genes involved in its biosynthesis in the receptacles were significantly lower in ABA-treated fruits. This transcriptome analysis expands our understanding of ABA's role in phytochemical metabolism during strawberry fruit ripening and the regulatory mechanisms of ABA on these pathways were discussed. Our study provides a wealth of genetic information in the metabolism pathways and may be helpful for molecular manipulation in the future.

  15. All-in-one: a versatile gas sensor based on fiber enhanced Raman spectroscopy for monitoring postharvest fruit conservation and ripening.

    Science.gov (United States)

    Jochum, Tobias; Rahal, Leila; Suckert, Renè J; Popp, Jürgen; Frosch, Torsten

    2016-03-21

    In today's fruit conservation rooms the ripening of harvested fruit is delayed by precise management of the interior oxygen (O2) and carbon dioxide (CO2) levels. Ethylene (C2H4), a natural plant hormone, is commonly used to trigger fruit ripening shortly before entering the market. Monitoring of these critical process gases, also of the increasingly favored cooling agent ammonia (NH3), is a crucial task in modern postharvest fruit management. The goal of this work was to develop and characterize a gas sensor setup based on fiber enhanced Raman spectroscopy for fast (time resolution of a few minutes) and non-destructive process gas monitoring throughout the complete postharvest production chain encompassing storage and transport in fruit conservation chambers as well as commercial fruit ripening in industrial ripening rooms. Exploiting a micro-structured hollow-core photonic crystal fiber for analyte gas confinement and sensitivity enhancement, the sensor features simultaneous quantification of O2, CO2, NH3 and C2H4 without cross-sensitivity in just one single measurement. Laboratory measurements of typical fruit conservation gas mixtures showed that the sensor is capable of quantifying O2 and CO2 concentration levels with accuracy of 3% or less with respect to reference concentrations. The sensor detected ammonia concentrations, relevant for chemical alarm purposes. Due to the high spectral resolution of the gas sensor, ethylene could be quantified simultaneously with O2 and CO2 in a multi-component mixture. These results indicate that fiber enhanced Raman sensors have a potential to become universally usable on-site gas sensors for controlled atmosphere applications in postharvest fruit management.

  16. The effect of ethylene on transgenic melon ripening and fruit quality ...

    African Journals Online (AJOL)

    In cell wall expression analysis, MPG1 increased when fruits of transgenic melons were exposed to ethylene; showing they are ethylene- dependent. MPG2 decreased ... Ethylene productions in transgenic fruits were reestablished when ethylene was applied, exhibiting the same behavior as transgenic fruits. Antioxidant ...

  17. Changes in the n-alkane composition of avocado pulp oil ( Persea americana, Mill. during fruit ripening

    Directory of Open Access Journals (Sweden)

    Giuffrè, A. M.

    2005-03-01

    Full Text Available The n-alkane composition of Avocado pulp oil (cv. Hass was investigated during fruit ripening. Three samples of fruit were harvested on March 3, 2003, March 18, 2003 and April 2, 2003. Glass gravity column chromatography was employed to separate n-alkanes from other minor components contained in the unsaponifiable fraction. Gas chromatography was used to analyze the eluate. Fourteen compounds were detected ranging from n -C21 to n -C34; mainly n -C24, followed by n -C25 and then by n -C23. Quantities of n -C21, n -C22, n -C23, n -C27 and n -C28 progressively increased during ripening, whereas n -C24, n -C25, n -C26, n -C29, n -C30 and n -C34 decreased from the first harvest date to the third harvest date. While odd-numbered carbon n-alkanes increased (52.38 %, 52.85 % and 53.06 % for the three samples respectively, even-numbered carbon n-alkanes decreased as the fruit ripened (47.62 %, 47.15 % and 46.94 %. The total n-alkane content decreased during ripening, from 25.20 mg/Kg (first harvest date to 16.77 mg/Kg (third harvest date. In order to minimize.Se ha analizado la composición en hidrocarburos lineales saturados del aceite de la pulpa de aguacate (variedad Hass. Tres muestras fueron recolectadas: el 3 de marzo 2003, el 18 de marzo 2003 y el 2 de abril 2003. La separación de los hidrocarburos lineales saturados se realizó mediante fraccionamiento del insaponificable por cromatografía gravimétrica de adsorción en columna y la determinación de los mismos hidrocarburos por cromatografía gaseosa. 14 compuestos fueron detectados del n- C21 al n- C34. El n- C24 fue el mayoritario, seguido del n- C25 y el n- C23. El porcentaje de n- C21, n- C22, n- C23, n- C27 y n- C28, aumentó durante la maduración, mientras que el porcentaje de n- C24, n- C25, n- C26, n- C29, n- C30 y C34 disminuyó desde el 3 de marzo 2003 hasta el 2 de abril 2003. Los hidrocarburos lineales saturados con número impar de átomos de carbono aumentaron (52.38 %, 52

  18. De novo assembly, characterization and functional annotation of pineapple fruit transcriptome through massively parallel sequencing.

    Science.gov (United States)

    Ong, Wen Dee; Voo, Lok-Yung Christopher; Kumar, Vijay Subbiah

    2012-01-01

    Pineapple (Ananas comosus var. comosus), is an important tropical non-climacteric fruit with high commercial potential. Understanding the mechanism and processes underlying fruit ripening would enable scientists to enhance the improvement of quality traits such as, flavor, texture, appearance and fruit sweetness. Although, the pineapple is an important fruit, there is insufficient transcriptomic or genomic information that is available in public databases. Application of high throughput transcriptome sequencing to profile the pineapple fruit transcripts is therefore needed. To facilitate this, we have performed transcriptome sequencing of ripe yellow pineapple fruit flesh using Illumina technology. About 4.7 millions Illumina paired-end reads were generated and assembled using the Velvet de novo assembler. The assembly produced 28,728 unique transcripts with a mean length of approximately 200 bp. Sequence similarity search against non-redundant NCBI database identified a total of 16,932 unique transcripts (58.93%) with significant hits. Out of these, 15,507 unique transcripts were assigned to gene ontology terms. Functional annotation against Kyoto Encyclopedia of Genes and Genomes pathway database identified 13,598 unique transcripts (47.33%) which were mapped to 126 pathways. The assembly revealed many transcripts that were previously unknown. The unique transcripts derived from this work have rapidly increased of the number of the pineapple fruit mRNA transcripts as it is now available in public databases. This information can be further utilized in gene expression, genomics and other functional genomics studies in pineapple.

  19. Mango fruit aroma volatile production following quarantine hot water treatment and subsequent ripening

    Science.gov (United States)

    Mangos are an important tropical fruit crop worldwide that are appreciated for their attractive peel and flesh colors, juicy texture, sweetness, and unique aroma. Mangos exported to the U.S. receive quarantine hot water treatment (QHWT) at 46.1 °C for 65 to 110 min (depending on fruit shape and size...

  20. Characterization of an AGAMOUS-like MADS Box Protein, a Probable Constituent of Flowering and Fruit Ripening Regulatory System in Banana

    Science.gov (United States)

    Roy Choudhury, Swarup; Roy, Sujit; Nag, Anish; Singh, Sanjay Kumar; Sengupta, Dibyendu N.

    2012-01-01

    The MADS-box family of genes has been shown to play a significant role in the development of reproductive organs, including dry and fleshy fruits. In this study, the molecular properties of an AGAMOUS like MADS box transcription factor in banana cultivar Giant governor (Musa sp, AAA group, subgroup Cavendish) has been elucidated. We have detected a CArG-box sequence binding AGAMOUS MADS-box protein in banana flower and fruit nuclear extracts in DNA-protein interaction assays. The protein fraction in the DNA-protein complex was analyzed by mass spectrometry and using this information we have obtained the full length cDNA of the corresponding protein. The deduced protein sequence showed ∼95% amino acid sequence homology with MA-MADS5, a MADS-box protein described previously from banana. We have characterized the domains of the identified AGAMOUS MADS-box protein involved in DNA binding and homodimer formation in vitro using full-length and truncated versions of affinity purified recombinant proteins. Furthermore, in order to gain insight about how DNA bending is achieved by this MADS-box factor, we performed circular permutation and phasing analysis using the wild type recombinant protein. The AGAMOUS MADS-box protein identified in this study has been found to predominantly accumulate in the climacteric fruit pulp and also in female flower ovary. In vivo and in vitro assays have revealed specific binding of the identified AGAMOUS MADS-box protein to CArG-box sequence in the promoters of major ripening genes in banana fruit. Overall, the expression patterns of this MADS-box protein in banana female flower ovary and during various phases of fruit ripening along with the interaction of the protein to the CArG-box sequence in the promoters of major ripening genes lead to interesting assumption about the possible involvement of this AGAMOUS MADS-box factor in banana fruit ripening and floral reproductive organ development. PMID:22984496

  1. Transcriptomic analysis of the late stages of grapevine (Vitis vinifera cv. Cabernet Sauvignon) berry ripening reveals significant induction of ethylene signaling and flavor pathways in the skin.

    Science.gov (United States)

    Cramer, Grant R; Ghan, Ryan; Schlauch, Karen A; Tillett, Richard L; Heymann, Hildegarde; Ferrarini, Alberto; Delledonne, Massimo; Zenoni, Sara; Fasoli, Marianna; Pezzotti, Mario

    2014-12-19

    the ethylene signaling pathway of this nonclimacteric fruit were statistically significant in the late stages of ripening when the production of transcripts for important flavor and aroma compounds were at their highest. Ethylene transcription factors known to play a role in leaf senescence also appear to play a role in fruit senescence. Ethylene may play a bigger role than previously thought in this non-climacteric fruit.

  2. A new tomato NAC (NAM/ATAF1/2/CUC2) transcription factor, SlNAC4, functions as a positive regulator of fruit ripening and carotenoid accumulation.

    Science.gov (United States)

    Zhu, Mingku; Chen, Guoping; Zhou, Shuang; Tu, Yun; Wang, Yi; Dong, Tingting; Hu, Zongli

    2014-01-01

    Fruit ripening in tomato (Solanum lycopersicum) is a complicated development process affected by both endogenous hormonal and genetic regulators and external signals. Although the role of NOR, a member of the NAC domain family, in mediating tomato fruit ripening has been established, its underlying molecular mechanisms remain unclear. To explore further the role of NAC transcription factors in fruit ripening, we characterized a new tomato NAC domain protein, named SlNAC4, which shows high accumulation in sepal and at the onset of fruit ripening. Various stress treatments including wounding, NaCl, dehydration and low temperature significantly increased the expression of SlNAC4. Reduced expression of SlNAC4 by RNA interference (RNAi) in tomato resulted in delayed fruit ripening, suppressed Chl breakdown and decreased ethylene synthesis mediated mainly through reduced expression of ethylene biosynthesis genes of system-2, and reduced carotenoids by alteration of the carotenoid pathway flux. Transgenic tomato fruits also displayed significant down-regulation of multiple ripening-associated genes, indicating that SlNAC4 functions as a positive regulator of fruit ripening by affecting ethylene synthesis and carotenoid accumulation. Moreover, we also noted that SlNAC4 could not be induced by ethylene and may function upstream of the ripening regulator RIN and positively regulate its expression. Yeast two-hybrid assay further revealed that SlNAC4 could interact with both RIN and NOR protein. These results suggested that ethylene-dependent and -independent processes are regulated by SlNAC4 in the fruit ripening regulatory network.

  3. Role of ethylene receptors during senescence and ripening in horticultural crops

    Science.gov (United States)

    Agarwal, Gaurav; Choudhary, Divya; Singh, Virendra P.; Arora, Ajay

    2012-01-01

    The past two decades have been rewarding in terms of deciphering the ethylene signal transduction and functional validation of the ethylene receptor and downstream genes involved in the cascade. Our knowledge of ethylene receptors and its signal transduction pathway provides us a robust platform where we can think of manipulating and regulating ethylene sensitivity by the use of genetic engineering and making transgenic. This review focuses on ethylene perception, receptor mediated regulation of ethylene biosynthesis, role of ethylene receptors in flower senescence, fruit ripening and other effects induced by ethylene. The expression behavior of the receptor and downstream molecules in climacteric and non climacteric crops is also elaborated upon. Possible strategies and recent advances in altering the ethylene sensitivity of plants using ethylene receptor genes in an attempt to modulate the regulation and sensitivity to ethylene have also been discussed. Not only will these transgenic plants be a boon to post-harvest physiology and crop improvement but, it will also help us in discovering the mechanism of regulation of ethylene sensitivity. PMID:22751331

  4. Influence of Fruit Ripening on Color, Organic Acid Contents, Capsaicinoids, Aroma Compounds, and Antioxidant Capacity of Shimatogarashi (Capsicum frutescens).

    Science.gov (United States)

    Manikharda; Takahashi, Makoto; Arakaki, Mika; Yonamine, Kaoru; Hashimoto, Fumio; Takara, Kensaku; Wada, Koji

    2018-01-01

    Shimatogarashi (Capsicum frutescens) is a typical chili pepper domesticated in southern Japan. Important traits of Shimatogarashi peppers, such as color; proportion of organic acids, capsaicinoids, and aromatic compounds; and antioxidant activity in three stages of maturity (green (immature), orange (turning), and red (mature) stages) were characterized. The results indicated that the concentration of organic acids, including ascorbic, citric, and malic acid, increased during ripening. In addition, the amount of capsaicinoids, which are responsible for the pungent taste of chili peppers, increased as the fruit matured to the orange and red stages. The volatile compound profile of Shimatogarashi was dominated by the presence of esters, which mainly contributed to fruity notes. The total amount of volatile compounds analyzed by gas chromatography-headspace solid-phase microextraction (GC-HS-SPME), especially esters, decreased as the fruit changed in color from green to red. This was in contrast to the amount of terpenoids, especially limonene, which increased at the red stage, denoting a change in flavor from fruity to a more citrus-like aroma. Based on the total phenolic content (TPC), the oxygen radical absorbance capacity (ORAC) and the diphenylpicrylhydrazyl (DPPH) free radical method, the antioxidant capacity of Shimatogarashi showed an increase at the mature red stage. However, while the red stage showed higher pungency and antioxidant capacity as well as an attractive color, the results of aromatic compound analysis revealed that the immature green stage had the advantages of having pleasant fruity smell, making it suitable for use in condiments.

  5. Catalase, Peroxidase and Polyphenoloxidase from Pitaya Amarilla (Acanthocereus pitajaya Fruits: Ripening and Senescense

    Directory of Open Access Journals (Sweden)

    Lucía Estrella Baquero Duarte

    2005-07-01

    Full Text Available We evaluate the relation between some symptoms of deterioration and the activity of enzymes entailed with both the browning and the antioxiding system in fruits of yellow pitaya (Acanthocereus pitajaya, harvested in its physiological maturity and stored for 15 days at 24°C and 85% of relative humidity. In the whole fruits, the respiratory intensity and the external colors were evaluated; further, the activity of catalase (CAT, peroxidase (POD and polyphenoloxidase (PPO was studied in the peel of the fruit. The fruit exhibited a climacteric behavior six days after the date of the harvest. The browning of the peel had a direct relation with the activity of POD and PPO. The maximum observed activity of CAT in the climacterium, responds to the proper balance with the high production of H2O2 expected at that moment.

  6. Volatile compounds in medlar fruit (Mespilus germanica L. at two ripening stages

    Directory of Open Access Journals (Sweden)

    Veličković Milovan M.

    2013-01-01

    Full Text Available Medlar is the fruit of Mespilus germanica L. in the family of Rosaceae. The fruit can be eaten only if ‘bletted’ (softened by frost or longer storage. The effect of the maturation stages on the volatile compounds of the medlar fruit was investigated during two different stages. Volatile flavour substances were isolated from the minced pulp of unripe and full ripe medlar fruits by simultaneous steam distillation extraction (SDE with methilen chloride as the extracting solvent. The concentrate was analysed by GC-FID-MS. Hexanoic and hexadecanoic acids were the predominant acids, hexanal and (E-2-hexenal were the predominant aldehydes, (Z-3-hexenol and hexanol were the predominant alcohols, with p-cymene, terpinen-4-ol, and γ-terpiene (the terpenes responsible for the characteristic medlar flavour being also present. The C6 aliphatic compounds, such as hexanal and (E-2-hexenal, were observed as the major volatile constituents in the green stage. In contrast, hexanol and (Z-3-hexenol were the main volatiles in ripe fruits.

  7. Characterization of fruit development and potential health benefits of arrayan (Luma apiculata), a native berry of South America.

    Science.gov (United States)

    Fuentes, Lida; Valdenegro, Mónika; Gómez, María-Graciela; Ayala-Raso, Aníbal; Quiroga, Evelyn; Martínez, Juan-Pablo; Vinet, Raúl; Caballero, Eduardo; Figueroa, Carlos R

    2016-04-01

    The arrayan berry (Luma apiculata) is a native fruit from South America that belongs to the Myrtaceae family. To elucidate and characterize the developmental process and the potential health benefits of this edible fruit, quality and physiological parameters, along with antioxidant capacity, were evaluated during four clearly defined developmental stages of the fruit in two seasons. Fruit firmness slowly decreases during fruit development, whereas the solid soluble content/titratable acidity ratio (SSC/TA) increases significantly in the final stages of development. The measurement of low respiration rates and low ethylene production during growth and ripening suggested that the arrayan berry should be classified as a non-climacteric fruit. Arrayan berries show a significant increase in their antioxidant capacity from small green to black ripe fruit. FRAP and TEAC assays showed high correlations with total polyphenolic content (TPC) during ripening and high antioxidant capacity at all fruit stages, showing greater values in ripe fruit (FRAP: 24 ± 2 and 28 ± 3 μM FeSO4/gFW; TEAC: 18 ± 2 and 20 ± 1 Eq. Trolox/gFW for each season, respectively) than those observed in the blueberry (FRAP: 10 ± 2 and 19 ± 3 μM FeSO4/gFW; TEAC: 10 ± 2 and 17 ± 3). In addition, bioactive assays using ripe fruit extracts show presence of flavonol and anthocyanins, a high ORAC value (62,500 ± 7000 μmol/gDW) and a concentration-dependent vascular protection under high glucose conditions. The results obtained show that these endemic berry fruits have a promising potential as functional food. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Water stress at the end of the pomegranate fruit ripening permits earlier harvesting and improve fruit quality

    NARCIS (Netherlands)

    Galindo Egea, Alejandro; Calín-Sánchez,; Griñán, I.; Rodríguez, P.; Cruz, Zulma N; Girón, I.F.; Corell, M.; Martínez-Font, R.; Moriana, A.; Carbonell-Barrachina, A.A.; Torrecillas, A.; Hernández, F.

    2017-01-01

    Pomegranate (Punica granatum L.) is a drought tolerant crop, which thrives in the face of scarce water resources, this fact underlines the importance of determining the optimum harvest time to improve the quality of pomegranate fruits. This research was focused on the crop responses to drought

  9. Volatile changes in Hawaiian noni fruit, Morinda citrifolia L., during ripening and fermentation

    Science.gov (United States)

    Noni fruit (Morinda citrifolia L., Rubiaceae) have been used in traditional medicine in Polynesia, South and Southeast Asia, India, Australia, and the Caribbean, and are now attracting interest in western medicine. Fermented noni juice has been of particular interest for its demonstrated antitumor ...

  10. Phytosterol conjugation in cold-storage apple fruit is linked to oxidative stress and ripening

    Science.gov (United States)

    Low temperature stress is implicated in a wide-range of apple fruit postharvest necrotic disorders. Previously, untargeted metabolic profiling identified alterations in multiple metabolic processes that precede superficial scald symptom development. Metabolites with free sterol (FS) –like mass spe...

  11. Phytosterol conjugation in cold-stored apple fruit is linked to oxidative stress and ripening

    Science.gov (United States)

    Low temperature stress is implicated in a wide-range of apple fruit postharvest necrotic disorders. Previously, untargeted metabolic profiling identified alterations in multiple metabolic processes that precede superficial scald symptom development. Metabolites with free sterol (FS) –like mass spe...

  12. Optimum yields of dibenzylbutyrolactone-type lignans from Cynareae fruits, during their ripening, germination and enzymatic hydrolysis processes, determined by on-line chromatographic methods.

    Science.gov (United States)

    Szokol-Borsodi, Lilla; Sólyomváry, Anna; Molnár-Perl, Ibolya; Boldizsár, Imre

    2012-01-01

    Dibenzylbutyrolactone-type lignans are the physiologically active constituents of the achene fruits of Cynareae. These lignans occur in glycoside/aglycone forms: in the highest quantity of the arctiin/arctigenin, matairesinoside/matairesinol and tracheloside/trachelogenin pairs found in the fruits of Arctium lappa L., Centaurea scabiosa L. and Cirsium arvense (L.) Scop. To optimise the extraction yield of the arctiin/arctigenin, matairesinoside/matairesinol and tracheloside/trachelogenin glycoside/aglycone pairs, from the fruits of Arctium lappa, Centaurea scabiosa and Cirsium arvense, under the ripening, germination and enzymatic hydrolysis processes of the fruits. Identification and quantification of lignans were performed with on-line gas chromatography-mass spectrometry (GC-MS) and with high performance liquid chromatography (HPLC), both with UV and mass selective detections (HPLC-UV/MS). As novelties to the field it was confirmed that: (i) the unripe fruits provide a high amount of lignans, similar to the ripe fruit; (ii) the fruits of Arctium lappa and Cirsium arvense do have glycosidase activity to hydrolyse their lignan glycosides into free lignans; (iii) the glycosidase of Centaurea scabiosa fruit becomes activated under its germination process only; and (iv) the overwhelming part of the fruits lignan contents (80-94%) in all three species are accumulated in the embryo. The best sources of (i) lignan aglycones are the enzyme-hydrolysed embryos, separating spontaneously during the germination process, and (ii) lignan glycosides are the unripe fruits. Copyright © 2012 John Wiley & Sons, Ltd.

  13. Quantitative changes in proteins responsible for flavonoid and anthocyanin biosynthesis in strawberry fruit at different ripening stages: A targeted quantitative proteomic investigation employing multiple reaction monitoring.

    Science.gov (United States)

    Song, Jun; Du, Lina; Li, Li; Kalt, Wilhelmina; Palmer, Leslie Campbell; Fillmore, Sherry; Zhang, Ying; Zhang, ZhaoQi; Li, XiHong

    2015-06-03

    To better understand the regulation of flavonoid and anthocyanin biosynthesis, a targeted quantitative proteomic investigation employing LC-MS with multiple reaction monitoring was conducted on two strawberry cultivars at three ripening stages. This quantitative proteomic workflow was improved through an OFFGEL electrophoresis to fractionate peptides from total protein digests. A total of 154 peptide transitions from 47 peptides covering 21 proteins and isoforms related to anthocyanin biosynthesis were investigated. The normalized protein abundance, which was measured using isotopically-labeled standards, was significantly changed concurrently with increased anthocyanin content and advanced fruit maturity. The protein abundance of phenylalanine ammonia-lyase; anthocyanidin synthase, chalcone isomerase; flavanone 3-hydroxylase; dihydroflavonol 4-reductase, UDP-glucose:flavonoid-3-O-glucosyltransferase, cytochrome c and cytochrome C oxidase subunit 2, was all significantly increased in fruit of more advanced ripeness. An interaction between cultivar and maturity was also shown with respect to chalcone isomerase. The good correlation between protein abundance and anthocyanin content suggested that a metabolic control point may exist for anthocyanin biosynthesis. This research provides insights into the process of anthocyanin formation in strawberry fruit at the level of protein concentration and reveals possible candidates in the regulation of anthocyanin formation during fruit ripening. To gain insight into the molecular mechanisms contributing to flavonoids and anthocyanin biosynthesis and regulation of strawberry fruit during ripening is challenging due to limited molecular biology tools and established hypothesis. Our targeted proteomic approach employing LC-MS/MS analysis and MRM technique to quantify proteins in relation to flavonoids and anthocyanin biosynthesis and regulation in strawberry fruit during fruit ripening is novel. The identification of peptides

  14. Dynamic changes in proteins during apple (Malus x domestica) fruit ripening and storage

    OpenAIRE

    Shi, Yun; Jiang, Li; Zhang, Li; Kang, Ruoyi; Yu, Zhifang

    2014-01-01

    A proteomic study, using two-dimensional polyacrylamide gel electrophoresis and matrix-assisted laser desorption/ionization time-of-flight/time-of-flight, was conducted in apple fruit (cv. ‘Golden Delicious’) starting at 10 days prior to harvest through 50 days in storage. Total protein was extracted using a phenol/sodium dodecyl sulfate protocol. More than 400 protein spots were detected in each gel and 55 differentially expressed proteins (p

  15. Potential of UVC germicidal irradiation in suppressing crown rot disease, retaining postharvest quality and antioxidant capacity of Musa AAA "Berangan" during fruit ripening.

    Science.gov (United States)

    S Mohamed, Nuratika Tamimi; Ding, Phebe; Kadir, Jugah; M Ghazali, Hasanah

    2017-09-01

    Crown rot caused by fungal pathogen is the most prevalent postharvest disease in banana fruit that results significant economic losses during transportation, storage, and ripening period. Antifungal effects of ultraviolet C (UVC) irradiation at doses varied from 0.01 to 0.30 kJ m -2 were investigated in controlling postharvest crown rot disease, maintenance of fruit quality, and the effects on antioxidant capacity of Berangan banana fruit during ripening days at 25 ± 2°C and 85% RH. Fruits irradiated with 0.30 kJ m -2 exhibited the highest (i.e., 62.51%) reduction in disease severity. However, the application of UVC at all doses caused significant browning damages on fruit peel except the dose of 0.01 kJ m -2 . This dose synergistically reduced 46.25% development of postharvest crown and did not give adverse effects on respiration rate, ethylene production, weight loss, firmness, color changes, soluble solids concentration, titratable acidity, and pH in banana as compared to the other treatments and control. Meanwhile, the dose also enhanced a significant higher level of total phenolic content, FRAP, and DPPH values than in control fruits indicating the beneficial impact of UVC in fruit nutritional quality. The results of scanning electron micrographs confirmed that UVC irradiation retarded the losses of wall compartments, thereby maintained the cell wall integrity in the crown tissue of banana fruit. The results suggest that using 0.01 kJ m -2 UVC irradiation dose as postharvest physical treatment, the crown rot disease has potential to be controlled effectively together with maintaining quality and antioxidant of banana fruit.

  16. Solar ultraviolet radiation is necessary to enhance grapevine fruit ripening transcriptional and phenolic responses.

    Science.gov (United States)

    Carbonell-Bejerano, Pablo; Diago, Maria-Paz; Martínez-Abaigar, Javier; Martínez-Zapater, José M; Tardáguila, Javier; Núñez-Olivera, Encarnación

    2014-07-09

    Ultraviolet (UV) radiation modulates secondary metabolism in the skin of Vitis vinifera L. berries, which affects the final composition of both grapes and wines. The expression of several phenylpropanoid biosynthesis-related genes is regulated by UV radiation in grape berries. However, the complete portion of transcriptome and ripening processes influenced by solar UV radiation in grapes remains unknown. Whole genome arrays were used to identify the berry skin transcriptome modulated by the UV radiation received naturally in a mid-altitude Tempranillo vineyard. UV radiation-blocking and transmitting filters were used to generate the experimental conditions. The expression of 121 genes was significantly altered by solar UV radiation. Functional enrichment analysis of altered transcripts mainly pointed out that secondary metabolism-related transcripts were induced by UV radiation including VvFLS1, VvGT5 and VvGT6 flavonol biosynthetic genes and monoterpenoid biosynthetic genes. Berry skin phenolic composition was also analysed to search for correlation with gene expression changes and UV-increased flavonols accumulation was the most evident impact. Among regulatory genes, novel UV radiation-responsive transcription factors including VvMYB24 and three bHLH, together with known grapevine UV-responsive genes such as VvMYBF1, were identified. A transcriptomic meta-analysis revealed that genes up-regulated by UV radiation in the berry skin were also enriched in homologs of Arabidopsis UVR8 UV-B photoreceptor-dependent UV-B -responsive genes. Indeed, a search of the grapevine reference genomic sequence identified UV-B signalling pathway homologs and among them, VvHY5-1, VvHY5-2 and VvRUP were up-regulated by UV radiation in the berry skin. Results suggest that the UV-B radiation-specific signalling pathway is activated in the skin of grapes grown at mid-altitudes. The biosynthesis and accumulation of secondary metabolites, which are appreciated in winemaking and

  17. Quantification of the gene expression of bell peppers ( Capsicum ...

    African Journals Online (AJOL)

    Fruits can be divided into two groups according to the regulatory mechanisms underlying their ripening process. The two ripening processes are climacteric and non-climacteric process; bell peppers are part of the non-climacteric plant groups. Bell peppers are members of the Solanacaea family. The Solanacaea family is ...

  18. Characterization of carotenoid profiles in goldenberry (Physalis peruviana L.) fruits at various ripening stages and in different plant tissues by HPLC-DAD-APCI-MSn.

    Science.gov (United States)

    Etzbach, Lara; Pfeiffer, Anne; Weber, Fabian; Schieber, Andreas

    2018-04-15

    Carotenoid profiles of goldenberry (Physalis peruviana L.) fruits differing in ripening states and in different fruit fractions (peel, pulp, and calyx of ripe fruits) were investigated by HPLC-DAD-APCI-MS n . Out of the 53 carotenoids detected, 42 were tentatively identified. The carotenoid profile of unripe fruits is dominated by (all-E)-lutein (51%), whereas in ripe fruits, (all-E)-β-carotene (55%) and several carotenoid fatty acid esters, especially lutein esters esterified with myristic and palmitic acid as monoesters or diesters, were found. In overripe fruits, carotenoid conversion products and a higher proportion of carotenoid monoesters to diesters compared to ripe fruits were observed. Overripe fruits showed a significant decrease in total carotenoids of about 31% due to degradation. The observed conversion and degradation processes included epoxidation, isomerization, and deesterification. The peel of ripe goldenberries showed a 2.8 times higher total carotenoid content of 332.00 µg/g dw compared to the pulp. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Identification of candidate genes involved in the sugar metabolism and accumulation during pear fruit post-harvest ripening of 'Red Clapp's Favorite' (Pyrus communis L.) by transcriptome analysis.

    Science.gov (United States)

    Wang, Long; Chen, Yun; Wang, Suke; Xue, Huabai; Su, Yanli; Yang, Jian; Li, Xiugen

    2018-01-01

    Pear ( Pyrus spp.) is a popular fruit that is commercially cultivated in most temperate regions. In fruits, sugar metabolism and accumulation are important factors for fruit organoleptic quality. Post-harvest ripening is a special feature of 'Red Clapp's Favorite'. In this study, transcriptome sequencing based on the Illumina platform generated 23.8 - 35.8 million unigenes of nine cDNA libraries constructed using RNAs from the 'Red Clapp's Favorite' pear variety with different treatments, in which 2629 new genes were discovered, and 2121 of them were annotated. A total of 2146 DEGs, 3650 DEGs, 1830 DEGs from each comparison were assembled. Moreover, the gene expression patterns of 8 unigenes related to sugar metabolism revealed by qPCR. The main constituents of soluble sugars were fructose and glucose after pear fruit post-harvest ripening, and five unigenes involved in sugar metabolism were discovered. Our study not only provides a large-scale assessment of transcriptome resources of 'Red Clapp's Favorite' but also lays the foundation for further research into genes correlated with sugar metabolism.

  20. Studies on the mechanism of ethylene action for fruit ripening, (4)

    International Nuclear Information System (INIS)

    Terai, Hirofumi; Ogata, Kuniyasu

    1977-01-01

    A role of glycolysis for climatic rise was studied, and respiration control mechanism in the glycolysis was examined. Monoiodine acetate was added to a cut piece of banana peel so that effects on respiration might be investigated. Experiments were performed on inhibition of respiration by monoiodine acetate, incorporation of glucose-1- 14 C and glucose-6- 14 C into carbon dioxide gas, measurement of a content of reducing sugar and glycolysis intermediates and measurement of phosphorylase activity, and measurement of respiration change caused by alternation of temperature. Effects of the inhibitant on the ethylene treated section was more increased than that of the reference section. Incorporation of glucose-1- 14 C and glucose-6- 14 C into the carbon dioxide gas in the cut piece of peel showed that the specific gravity of metabolic pathway shifted from the HEM pathway to EMP pathway as the age advanced. A study of substrate content during promotion of respiration with ethylene showed that the reducting sugar content increased independently respiration change in both sarcocarp and peel. Particularly, the content of fructose-1,6-dip changed markedly. The measured content of the intermediates of glycolysis, when the fruit temperature was alternated between 15 0 and 30 0 C, showed different tendency from the content change during promotion of respiration with ethylene. Activity of glycolysis is supposed to be caused by the effect of ethylene on a stage from fructose-6-P to fructose 1,6-diP mainly. (Iwakiri, K.)

  1. Polyamine metabolism in ripening tomato fruit. I. Identification of metabolites of putrescine and spermidine

    International Nuclear Information System (INIS)

    Rastogi, R.; Davies, P.J.

    1990-01-01

    The metabolism of [1,4- 14 C]putrescine and [terminal methylene- 3 H]spermidine was studied in the fruit pericarp (breaker stage) discs of tomato (Lycopersicon esculentum Mill.) cv Rutgers, and the metabolites identified by high performance liquid chromatography and gas chromatography-mass spectrometry. The metabolism of both putrescine and spermidine was relatively slow; in 24 hours about 15% of each amine was metabolized. The 14 C label from putrescine was incorporated into spermidine, γ-aminobutyric acid (GABA), glutamic acid, and a polar fraction eluting with sugars and organic acids. In the presence of gabaculine, a specific inhibitor of GABA:pyruvate transminase, the label going into glutamic acid, sugars and organic acids decreased by 80% while that in GABA increased about twofold, indicating that the transamination reaction is probably a major fate of GABA produced from putrescine in vivo. [ 3 H]Spermidine was catabolized into putrescine and β-alanine. The conversion of putrescine into GABA, and that of spermidine into putrescine, suggests the presence of polyamine oxidizing enzymes in tomato pericarp tissues. The possible pathways of putrescine and spermidine metabolism are discussed

  2. Caracterización de la maduración del fruto de pina nativa (Ananas comosus L. Merrill CV. India Charaeterization of the ripening of pineapple (Ananas comosus L. Merrill ev. India fruit

    Directory of Open Access Journals (Sweden)

    Morales Madelaide

    2001-12-01

    Full Text Available El presente estudio tuvo como propósito caracterizar física, química y fisiológicamente el desarrollo de la maduración del fruto de piña nativa cv. India, conservado en fresco a 20°C. Durante el periodo de maduración del fruto, se encontró que la intensidad respiratoria no tuvo ningún incremento, lo que permitió clasificar al fruto como no climatérico. Este comportamiento estuvo acompañado por perdida de peso, disminución de la consistencia del mesocarpio del fruto, aumento en ácidos orgánicos, acidez, azúcares y disminución en los sólidos solubles y pH. El análisis de calidad mostró el detrimento de las características organolépticas que hacen apetecible el fruto, como son apariencia, sabor, color y aroma.This study was conducted to characterize physical, chemical
    and physiologically the development of maturation of fruit
    native pineapple cv. India, kept fresh at 20°C. During the fruit
    rnaturation, the respiratory intensity did not have any incrcase,
    which allowed to classify the fruit as non climacteric. This
    behavior was accompanied by loss of weight, decrease of
    consistency of edible fruit portion, increase in organic acids,
    acidity and sugars and decrease in soluble solids and pH.
    The quality analysis showed loss of organoleptic
    characteristics that make desirable the fruit, like appearance,
    flavor and color.

  3. Expression Patterns, Activities and Carbohydrate-Metabolizing Regulation of Sucrose Phosphate Synthase, Sucrose Synthase and Neutral Invertase in Pineapple Fruit during Development and Ripening

    Science.gov (United States)

    Zhang, Xiu-Mei; Wang, Wei; Du, Li-Qing; Xie, Jiang-Hui; Yao, Yan-Li; Sun, Guang-Ming

    2012-01-01

    Differences in carbohydrate contents and metabolizing-enzyme activities were monitored in apical, medial, basal and core sections of pineapple (Ananas comosus cv. Comte de paris) during fruit development and ripening. Fructose and glucose of various sections in nearly equal amounts were the predominant sugars in the fruitlets, and had obvious differences until the fruit matured. The large rise of sucrose/hexose was accompanied by dramatic changes in sucrose phosphate synthase (SPS) and sucrose synthase (SuSy) activities. By contrast, neutral invertase (NI) activity may provide a mechanism to increase fruit sink strength by increasing hexose concentrations. Furthermore, two cDNAs of Ac-sps (accession no. GQ996582) and Ac-ni (accession no. GQ996581) were first isolated from pineapple fruits utilizing conserved amino-acid sequences. Homology alignment reveals that the amino acid sequences contain some conserved function domains. Transcription expression analysis of Ac-sps, Ac-susy and Ac-ni also indicated distinct patterns related to sugar accumulation and composition of pineapple fruits. It suggests that differential expressions of multiple gene families are necessary for sugar metabolism in various parts and developmental stages of pineapple fruit. A cycle of sucrose breakdown in the cytosol of sink tissues could be mediated through both Ac-SuSy and Ac-NI, and Ac-NI could be involved in regulating crucial steps by generating sugar signals to the cells in a temporally and spatially restricted fashion. PMID:22949808

  4. An Extended AE-Rich N-Terminal Trunk in Secreted Pineapple Cystatin Enhances Inhibition of Fruit Bromelain and Is Posttranslationally Removed during Ripening1[W][OA

    Science.gov (United States)

    Neuteboom, Leon W.; Matsumoto, Kristie O.; Christopher, David A.

    2009-01-01

    Phytocystatins are potent inhibitors of cysteine proteases and have been shown to participate in senescence, seed and organ biogenesis, and plant defense. However, phytocystatins are generally poor inhibitors of the cysteine protease, bromelain, of pineapple (Ananas comosus). Here, we demonstrated that pineapple cystatin, AcCYS1, inhibited (>95%) stem and fruit bromelain. AcCYS1 is a unique cystatin in that it contains an extended N-terminal trunk (NTT) of 63 residues rich in alanine and glutamate. A signal peptide preceding the NTT is processed in vitro by microsomal membranes giving rise to a 27-kD species. AcCYS1 mRNA was present in roots and leaves but was most abundant in fruit. Using immunofluorescence and immunoelectron microscopy with an AcCYS1-specific antiserum, AcCYS1 was found in the apoplasm. Immunoblot analysis identified a 27-kD protein in fruit, roots, and leaves and a 15-kD species in mature ripe fruit. Ripe fruit extracts proteolytically removed the NTT of 27-kD AcCYS1 in vitro to produce the 15-kD species. Mass spectrometry analysis was used to map the primary cleavage site immediately after a conserved critical glycine-94. The AE-rich NTT was required to inhibit fruit and stem bromelain (>95%), whereas its removal decreased inhibition to 20% (fruit) and 80% (stem) and increased the dissociation equilibrium constant by 1.8-fold as determined by surface plasmon resonance assays. We propose that proteolytic removal of the NTT results in the decrease of the inhibitory potency of AcCYS1 against fruit bromelain during fruit ripening to increase tissue proteolysis, softening, and degradation. PMID:19648229

  5. An extended AE-rich N-terminal trunk in secreted pineapple cystatin enhances inhibition of fruit bromelain and is posttranslationally removed during ripening.

    Science.gov (United States)

    Neuteboom, Leon W; Matsumoto, Kristie O; Christopher, David A

    2009-10-01

    Phytocystatins are potent inhibitors of cysteine proteases and have been shown to participate in senescence, seed and organ biogenesis, and plant defense. However, phytocystatins are generally poor inhibitors of the cysteine protease, bromelain, of pineapple (Ananas comosus). Here, we demonstrated that pineapple cystatin, AcCYS1, inhibited (>95%) stem and fruit bromelain. AcCYS1 is a unique cystatin in that it contains an extended N-terminal trunk (NTT) of 63 residues rich in alanine and glutamate. A signal peptide preceding the NTT is processed in vitro by microsomal membranes giving rise to a 27-kD species. AcCYS1 mRNA was present in roots and leaves but was most abundant in fruit. Using immunofluorescence and immunoelectron microscopy with an AcCYS1-specific antiserum, AcCYS1 was found in the apoplasm. Immunoblot analysis identified a 27-kD protein in fruit, roots, and leaves and a 15-kD species in mature ripe fruit. Ripe fruit extracts proteolytically removed the NTT of 27-kD AcCYS1 in vitro to produce the 15-kD species. Mass spectrometry analysis was used to map the primary cleavage site immediately after a conserved critical glycine-94. The AE-rich NTT was required to inhibit fruit and stem bromelain (>95%), whereas its removal decreased inhibition to 20% (fruit) and 80% (stem) and increased the dissociation equilibrium constant by 1.8-fold as determined by surface plasmon resonance assays. We propose that proteolytic removal of the NTT results in the decrease of the inhibitory potency of AcCYS1 against fruit bromelain during fruit ripening to increase tissue proteolysis, softening, and degradation.

  6. Ripening of fruits of 'Dwarf Prata' banana (Musa acuminata x Musa balbisiana, AAB group)irradiated and treated with calcium carbide

    Energy Technology Data Exchange (ETDEWEB)

    Martineli, Maristella [Instituto de Quimica. Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil); Coneglian, Regina C.C.; Vasconcellos, Marco A.S.; Silva, Eduardo, E-mail: rccconeg@ufrrj.br, E-mail: masv@ufrrj.br [Departamento de Fitotecnia. Instituto de Agronomia. Universidade Federal Rural do Rio de Janeiro (UFRRJ), Seropedica, RJ (Brazil); Vital, Helio C., E-mail: vital@ctex.eb.br [Secao de Defesa Nuclear. Divisao de Defesa Quimica, Biologica e Nuclear. Centro Tecnologico do Exercito (CTEx), Guaratiba, Rio de Janeiro, RJ (Brazil)

    2011-07-01

    The competing effects resulting from the exposure of fruits of 'warf prata' banana (Musa acuminata x Musa balbisiana, AAB group) to gamma radiation and to calcium carbide have been investigated in this work. The fruits were harvested in a pre-climateric stage (green colored though physiologically developed) in the city of Jaiba, state of Minas Gerais, and gamma irradiated with doses of 0.25 or 0.50 kGy in a research irradiating facility at the Brazilian Army Technology Center (CTEx) in the city of Rio de Janeiro. Some samples were also exposed to calcium carbide for 32 hours in order to accelerate ripening. Quantitative estimates of peel color, disease index and fresh mass loss were performed for 9 days while the fruits were kept at an average temperature of 23 deg C. The analyses were performed in the Federal Rural University of Rio de Janeiro, located in the city of Seropedica. The following treatments or combination of processes have been tested: untreated (control); treated only with irradiation with doses of 0.25 kGy or 0.50 kGy; treated with irradiation with doses of 0.25 kGy or 0.50 kGy and then exposed to calcium carbide. The fruits treated solely with irradiation with 0.25 kGy exhibited a better response during the first days of storage, although their initial green coloration vanished with time. In addition, the fungi Colletotrichum musae and Lasidioplodia theobroma were detected in samples submitted to the combination of both processes. In contrast, such fungi were not observed in fruits that had only been exposed to 0.25 kGy and exhibited low disease indices. Also, 1-2 cm lesions were detected on fruits.(author)

  7. Ripening of fruits of 'Dwarf Prata' banana (Musa acuminata x Musa balbisiana, AAB group)irradiated and treated with calcium carbide

    International Nuclear Information System (INIS)

    Martineli, Maristella; Coneglian, Regina C.C.; Vasconcellos, Marco A.S.; Silva, Eduardo; Vital, Helio C.

    2011-01-01

    The competing effects resulting from the exposure of fruits of 'warf prata' banana (Musa acuminata x Musa balbisiana, AAB group) to gamma radiation and to calcium carbide have been investigated in this work. The fruits were harvested in a pre-climateric stage (green colored though physiologically developed) in the city of Jaiba, state of Minas Gerais, and gamma irradiated with doses of 0.25 or 0.50 kGy in a research irradiating facility at the Brazilian Army Technology Center (CTEx) in the city of Rio de Janeiro. Some samples were also exposed to calcium carbide for 32 hours in order to accelerate ripening. Quantitative estimates of peel color, disease index and fresh mass loss were performed for 9 days while the fruits were kept at an average temperature of 23 deg C. The analyses were performed in the Federal Rural University of Rio de Janeiro, located in the city of Seropedica. The following treatments or combination of processes have been tested: untreated (control); treated only with irradiation with doses of 0.25 kGy or 0.50 kGy; treated with irradiation with doses of 0.25 kGy or 0.50 kGy and then exposed to calcium carbide. The fruits treated solely with irradiation with 0.25 kGy exhibited a better response during the first days of storage, although their initial green coloration vanished with time. In addition, the fungi Colletotrichum musae and Lasidioplodia theobroma were detected in samples submitted to the combination of both processes. In contrast, such fungi were not observed in fruits that had only been exposed to 0.25 kGy and exhibited low disease indices. Also, 1-2 cm lesions were detected on fruits.(author)

  8. Radiotracer studies on the formation of 2,5-dimethyl-4-hydroxy-3(2H)-furanone in detached ripening strawberry fruits

    International Nuclear Information System (INIS)

    Roscher, R.; Bringmann, G.; Schreier, P.; Schwab, W.

    1998-01-01

    The transformation of 12 radioactively labeled compounds into 2,5-dimethyl-4-hydroxy-3(2H)-furanone (DMHF), glycosidically bound DMHF, and 2,5-dimethyl-4-methoxy-3(2H)-furanone (DMMF) was investigated in detached ripening strawberry fruits (Fragaria x ananassa) over a 3-day period. Radiochemical analysis of the different fruit parts revealed that major portions of the applied radioactivity (up to 66%) remained in the stems and calyx. Incorporation levels of [2- 14 C]-dihydroxyacetone, D-[1- 3 H]glucose, D-[U- 14 C]-glucose, D-[U- 14 C]glucose 6-phosphate, D-[U- 14 C]fructose, and D-[U- 14 C]fructose 1,6-bisphosphate into the total amount of furanone derivatives were 0.022, 0.032, 0.035, 0.147, 0.202, and 0.289% of the radioactivity entering the fruits, respectively. Minor amounts of radioactivity (0.001%) were detected in the furanone structures after the administration of [1- 14 C]acetate and [3- 14 C]pyruvate. L-[1- 14 C]Fucose, L-[6- 3 H]fucose, L-[1- 3 H]rhamnose, L-[U- 14 C]-threonine, L-[U- 14 C]lactaldehyde, and [2- 14 C]malonic acid were not transformed into DMHF or a derivative thereof. (author)

  9. Ripening pattern of guava cv. Pedro Sato Padrão de amadurecimento de goiaba cv. Pedro Sato

    Directory of Open Access Journals (Sweden)

    José Renato de Abreu

    2012-06-01

    Full Text Available Guava is a fruit with high respiration rates and a very short shelf life. Since information on its respiration pattern is contradictory, the objective was to study the changes occurring in the fruit during ripening and to relate them to the respiration behavior of this fruit. Guavas were picked at the half-ripe stage and stored for 8 days at 22 ± 1 ºC and 78 ± 1% relative humidity. The analyses conducted were: peel and pulp coloration, firmness, total soluble solids (TSS, total titratable acidity (TTA, and ethylene production. According to the results, it was verified that the parameters analyzed apparently do not coincide and are ethylene-independent. There was an accentuated ethylene production during ripening, starting from the 4th day. The ethylene synthesis continued increasing up to the 8th day, when the fruits were already decomposing. It was observed that the firmness decreased sharply in the first three days of ripening, and the skin and pulp color changed during ripening. The TSS, total soluble solids, and the TTA, total titratable acidity, practically did not change during the ripening, even with the increased ethylene production. It can be concluded that guava is a fruit that presents characteristics of climacteric and non-climacteric fruits.A goiaba apresenta altas taxas de respiração e uma vida útil muito curta, e como as informações sobre o padrão respiratório são contraditórias, objetivou-se estudar mudanças ocorridas no fruto durante o amadurecimento e relacioná-las ao comportamento respiratório desses frutos. Foram colhidas goiabas no estádio "de vez" e armazenadas por 8 dias à temperatura ambiente (22 ± 1 ºC e umidade relativa de 78 ± 1%. As análises realizadas foram: coloração da casca e polpa, firmeza, sólidos solúveis totais (SST, acidez total titulável (ATT e produção de etileno. Pelos resultados, verificou-se que todas as variáveis analisadas aparentemente não coincidem e independem da s

  10. Characterization of differential ripening pattern in association with ethylene biosynthesis in the fruits of five naturally occurring banana cultivars and detection of a GCC-box-specific DNA-binding protein.

    Science.gov (United States)

    Choudhury, Swarup Roy; Roy, Sujit; Saha, Progya Paramita; Singh, Sanjay Kumar; Sengupta, Dibyendu N

    2008-07-01

    MA-ACS1 and MA-ACO1 are the two major ripening genes in banana and play crucial role in the regulation of ethylene production during ripening. Here, we report a comparative ripening pattern in five different naturally occurring banana cultivars namely Cavendish (AAA), Rasthali (AAB), Kanthali (AB), Poovan (AAB) and Monthan (ABB), which have distinct genome composition. We found a distinct variation in the climacteric ethylene production and in-vivo ACC oxidase activity level during the ripening stages in the five cultivars. We identified the cDNAs for MA-ACS1 and MA-ACO1 from the five cultivars and studied the transcript accumulation patterns of the two genes, which correlated well with the differential timing in the expression of these two genes during ripening. The GCC-box is one of the ethylene-responsive elements (EREs) found in the promoters of many ethylene-inducible genes. We have identified a GCC-box motif (putative ERE) in the promoters of MA-ACS1 and MA-ACO1 in banana cultivars. DNA-protein interaction studies revealed the presence of a GCC-box-specific DNA-binding activity in the fruit nuclear extract and such DNA-binding activity was enhanced following ethylene treatment. South-Western blotting revealed a 25-kDa nuclear protein that binds specifically to GCC-box DNA in the climacteric banana fruit. Together, these results indicate the probable involvement of the GCC-box motif as the cis-acting ERE in the regulation of MA-ACS1 and MA-ACO1 during ripening in banana fruits via binding of specific ERE-binding protein.

  11. Optothermal transient emission radiometry for studying the changes in epidermal hydration induced during ripening of tomato fruit mutants

    Science.gov (United States)

    Guo, X.; Bicanic, D.; Imhof, R.; Xiao, P.; Harbinson, J.

    2004-10-01

    Optothermal transient emission radiometry (OTTER) was used to determine the mean surface hydration and the hydration profile of three mutants (beefsteak, slicing and salad) of harvested tomatoes (Lycopersicon esculentum) that were kept under ambient conditions for as long as 51 days. Maximal sensitivity of OTTER to water in the samples was achieved by using 2.94 μm and 13.1 μm as excitation and emission wavelengths, respectively. The surface hydration increases rapidly and reaches a constant level during the remaining period. The hydrolysis of pectic substances that occur in tomatoes while ripening might be a possible cause for the observed change in hydration.

  12. Ripening-dependent metabolic changes in the volatiles of pineapple (Ananas comosus (L.) Merr.) fruit: II. Multivariate statistical profiling of pineapple aroma compounds based on comprehensive two-dimensional gas chromatography-mass spectrometry.

    Science.gov (United States)

    Steingass, Christof Björn; Jutzi, Manfred; Müller, Jenny; Carle, Reinhold; Schmarr, Hans-Georg

    2015-03-01

    Ripening-dependent changes of pineapple volatiles were studied in a nontargeted profiling analysis. Volatiles were isolated via headspace solid phase microextraction and analyzed by comprehensive 2D gas chromatography and mass spectrometry (HS-SPME-GC×GC-qMS). Profile patterns presented in the contour plots were evaluated applying image processing techniques and subsequent multivariate statistical data analysis. Statistical methods comprised unsupervised hierarchical cluster analysis (HCA) and principal component analysis (PCA) to classify the samples. Supervised partial least squares discriminant analysis (PLS-DA) and partial least squares (PLS) regression were applied to discriminate different ripening stages and describe the development of volatiles during postharvest storage, respectively. Hereby, substantial chemical markers allowing for class separation were revealed. The workflow permitted the rapid distinction between premature green-ripe pineapples and postharvest-ripened sea-freighted fruits. Volatile profiles of fully ripe air-freighted pineapples were similar to those of green-ripe fruits postharvest ripened for 6 days after simulated sea freight export, after PCA with only two principal components. However, PCA considering also the third principal component allowed differentiation between air-freighted fruits and the four progressing postharvest maturity stages of sea-freighted pineapples.

  13. The size and germination of eggplant seed in relation to fruit maturity at harvest, after-ripening and ethylene application

    Directory of Open Access Journals (Sweden)

    Despoina MAKROGIANNI

    2010-11-01

    Full Text Available In eggplant cultivars Black Beauty, Emi, Long Negro and Tsakoniki cultivated for seed, flower induction and flower weight decreased in the presence of developing fruit on the plant. Harvesting prior to maturity (25-35 days after anthesis, aimed at increasing flower induction and fruit set, resulted in small seeds that failed to germinate or germinated poorly. When these fruit were stored for 20 days at 25±30C before seed extraction, seed size and germination increased indicating seed filling and maturation (‘after-ripening’ within the harvested fruit. In year 1, a single application of ethylene before storage increased the germination of Black Beauty and Long Negro harvested 25-35 days after anthesis, but reduced that of Emi and Tsakoniki. In year 2, ethylene application once before the storage of fruits harvested 35 days after anthesis promoted the germination of Tsakoniki and Emi, and when ethylene was applied three times germination was increased further. The possible applications of early harvest, fruit storage prior to seed extraction and ethylene treatment to eggplant seed production are discussed.

  14. Comparative study of the banana pulp browning process of 'Giant Dwarf' and FHIA-23 during fruit ripening based on image analysis and the polyphenol oxidase and peroxidase biochemical properties.

    Science.gov (United States)

    Escalante-Minakata, Pilar; Ibarra-Junquera, Vrani; Ornelas-Paz, José de Jesús; García-Ibáñez, Victoria; Virgen-Ortíz, José J; González-Potes, Apolinar; Pérez-Martínez, Jaime D; Orozco-Santos, Mario

    2018-01-01

    This work presents a novel method to associate the polyphenol oxidase (PPO) and the peroxidase (POD) activities with the ripening-mediated color changes in banana peel and pulp by computational image analysis. The method was used to follow up the de-greening of peel and browning of homogenized pulp from 'Giant Dwarf' (GD: Musa AAA, subgroup Cavendish) and FHIA-23 (tetraploid hybrid, AAAA) banana cultivars. In both cultivars, the color changes of peel during the ripening process clearly showed four stages, which were used to group the fruit into ripening stages. The PPO and POD were extracted from pulp of fruit at these ripening stages, precipitated, and partially purified by gel filtration chromatography. Moreover, the pulp browning was digitally monitored after homogenization for a span time of up to 120 min. The browning level was higher for GD than FHIA-23 tissues. This fact correlated with an 11.7-fold higher PPO activity in the GD cultivar, as compared with that of FHIA-23. POD activity was 8.1 times higher for GD as compared that that of FHIA-23.

  15. Ripening-dependent metabolic changes in the volatiles of pineapple (Ananas comosus (L.) Merr.) fruit: I. Characterization of pineapple aroma compounds by comprehensive two-dimensional gas chromatography-mass spectrometry.

    Science.gov (United States)

    Steingass, Christof Björn; Carle, Reinhold; Schmarr, Hans-Georg

    2015-03-01

    Qualitative ripening-dependent changes of pineapple volatiles were studied via headspace solid-phase microextraction and analyzed by comprehensive two-dimensional gas chromatography quadrupole mass spectrometry (HS-SPME-GC×GC-qMS). Early green-ripe stage, post-harvest ripened, and green-ripe fruits at the end of their commercial shelf-life were compared to air-freighted pineapples harvested at full maturity. In total, more than 290 volatiles could be identified by mass spectrometry and their linear retention indices. The majority of compounds comprise esters (methyl and ethyl esters of saturated and unsaturated fatty acids, acetates), terpenes, alcohols, aldehydes, 2-ketones, free fatty acids, and miscellaneous γ- and δ-lactones. The structured separation space obtained by GC×GC allowed revealing various homologous series of compound classes as well as clustering of sesquiterpenes. Post-harvest ripening increased the diversity of the volatile profile compared to both early green-ripe maturity stages and on-plant ripened fruits.

  16. Citrus fruit flavor and aroma biosynthesis: isolation, functional characterization, and developmental regulation of Cstps1, a key gene in the production of the sesquiterpene aroma compound valencene.

    Science.gov (United States)

    Sharon-Asa, Liat; Shalit, Moshe; Frydman, Ahuva; Bar, Einat; Holland, Doron; Or, Etti; Lavi, Uri; Lewinsohn, Efraim; Eyal, Yoram

    2003-12-01

    Citrus fruits possess unique aromas rarely found in other fruit species. While fruit flavor is composed of complex combinations of soluble and volatile compounds, several low-abundance sesquiterpenes, such as valencene, nootkatone, alpha-sinensal, and beta-sinensal, stand out in citrus as important flavor and aroma compounds. The profile of terpenoid volatiles in various citrus species and their importance as aroma compounds have been studied in detail, but much is still lacking in our understanding of the physiological, biochemical, and genetic regulation of their production. Here, we report on the isolation, functional expression, and developmental regulation of Cstps1, a sesquiterpene synthase-encoding gene, involved in citrus aroma formation. The recombinant enzyme encoded by Cstps1 was shown to convert farnesyl diphosphate to a single sesquiterpene product identified as valencene by gas chromatography-mass spectrometry (GC-MS). Phylogenetic analysis of plant terpene synthase genes localized Cstps1 to the group of angiosperm sesquiterpene synthases. Within this group, Cstps1 belongs to a subgroup of citrus sesquiterpene synthases. Cstps1 was found to be developmentally regulated: transcript was found to accumulate only towards fruit maturation, corresponding well with the timing of valencene accumulation in fruit. Although citrus fruits are non-climacteric, valencene accumulation and Cstps1 expression were found to be responsive to ethylene, providing further evidence for the role of ethylene in the final stages of citrus fruit ripening. Isolation of the gene encoding valencene synthase provides a tool for an in-depth study of the regulation of aroma compound biosynthesis in citrus and for metabolic engineering for fruit flavor characteristics.

  17. Influence of atmospheric oxygen and ozone on ripening indices of normal (Rin) and ripening inhibited (rin) tomato cultivars

    Energy Technology Data Exchange (ETDEWEB)

    Maguire, Y.P.; Solberg, M.; Haard, N.F.

    1980-01-01

    Ethylene (10 ppm) dependent mediation of normal and mutant (rin) tomato fruit ripening was promoted by 100% oxygen, 3.7 pphm ozone, or their combination. All ripening indices studied (respiration, chlorophyll degradation, carotenoid accumulation, softening, and aroma development) were promoted by oxygen and/or ozone. Ozone also acted independent of ethylene in promoting chlorophyll degradation and aroma development in normal fruit, but did not appreciably affect these quality attributes in mutant fruit. Lycopene accumulation in normal and mutant fruit and aroma formation in normal fruit were promoted to a greater extent by ozone than were other ripening indices. Mutant (rin) fruit contained 27% of the lycopene that was present in normal (Rin) fruit after ripening in O/sub 2/ containing 10ppm ethylene and 3.7 pphm ozone, whereas they contained only 3% of the lycopene in normal fruit after ripening in air containing 10ppm ethylene.

  18. Physical and chemical characteristics of off vine ripened mango ...

    African Journals Online (AJOL)

    The need to develop the best off vine mango ripening technique for both consumption and processing was investigated. Some physical and chemical measurements were performed on mature Green Dodo mangoes before and during a 3-day and 6-day ripening period by smoked pit ripening (SPR), ethylene (fruit ...

  19. Metagenomic and Metatranscriptomic Analyses of Diverse Watermelon Cultivars Reveal the Role of Fruit Associated Microbiome in Carbohydrate Metabolism and Ripening of Mature Fruits

    Directory of Open Access Journals (Sweden)

    Thangasamy Saminathan

    2018-01-01

    Full Text Available The plant microbiome is a key determinant of plant health and productivity, and changes in the plant microbiome can alter the tolerance to biotic and abiotic stresses and the quality of end produce. Little is known about the microbial diversity and its effect on carbohydrate metabolism in ripe fruits. In this study, we aimed to understand the diversity and function of microorganisms in relation to carbohydrate metabolism of ripe watermelon fruits. We used 16S metagenomics and RNAseq metatranscriptomics for analysis of red (PI459074, Congo, and SDRose and yellow fruit-flesh cultivars (PI227202, PI435990, and JBush of geographically and metabolically diverse watermelon cultivars. Metagenomics data showed that Proteobacteria were abundant in SDRose and PI227202, whereas Cyanobacteria were most abundant in Congo and PI4559074. In the case of metatranscriptome data, Proteobacteria was the most abundant in all cultivars. High expression of genes linked to infectious diseases and the expression of peptidoglycan hydrolases associated to pathogenicity of eukaryotic hosts was observed in SDRose, which could have resulted in low microbial diversity in this cultivar. The presence of GH28, associated with polygalacturonase activity in JBush and SDRose could be related to cell wall modifications including de-esterification and depolymerization, and consequent loss of galacturonic acid and neutral sugars. Moreover, based on the KEGG annotation of the expressed genes, nine α-galactosidase genes involved in key processes of galactosyl oligosaccharide metabolism, such as raffinose family were identified and galactose metabolism pathway was reconstructed. Results of this study underline the links between the host and fruit-associated microbiome in carbohydrate metabolism of the ripe fruits. The cultivar difference in watermelon reflects the quantum and diversity of the microbiome, which would benefit watermelon and other plant breeders aiming at the holobiont

  20. Differential transcriptional regulation of banana sucrose phosphate synthase gene in response to ethylene, auxin, wounding, low temperature and different photoperiods during fruit ripening and functional analysis of banana SPS gene promoter.

    Science.gov (United States)

    Roy Choudhury, Swarup; Roy, Sujit; Das, Ranjan; Sengupta, Dibyendu N

    2008-12-01

    Sucrose phosphate synthase (SPS) (EC 2.3.1.14) is the key regulatory component in sucrose formation in banana (Musa acuminata subgroup Cavendish, cv Giant governor) fruit during ripening. This report illustrates differential transcriptional responses of banana SPS gene following ethylene, auxin, wounding, low temperature and different photoperiods during ripening in banana fruit. Whereas ethylene strongly stimulated SPS transcript accumulation, auxin and cold treatment only marginally increased the abundance of SPS mRNA level, while wounding negatively regulated SPS gene expression. Conversely, SPS transcript level was distinctly increased by constant exposure to white light. Protein level, enzymatic activity of SPS and sucrose synthesis were substantially increased by ethylene and increased exposure to white light conditions as compared to other treatments. To further study the transcriptional regulation of SPS in banana fruit, the promoter region of SPS gene was cloned and some cis-acting regulatory elements such as a reverse GCC-box ERE, two ARE motifs (TGTCTC), one LTRE (CCGAA), a GAGA-box (GAGA...) and a GATA-box LRE (GATAAG) were identified along with the TATA and CAAT-box. DNA-protein interaction studies using these cis-elements indicated a highly specific cis-trans interaction in the banana nuclear extract. Furthermore, we specifically studied the light responsive characteristics of GATA-box containing synthetic as well as native banana SPS promoter. Transient expression assays using banana SPS promoter have also indicated the functional importance of the SPS promoter in regulating gene expression. Together, these results provide insights into the transcriptional regulation of banana SPS gene in response to phytohormones and other environmental factors during fruit ripening.

  1. Effect of different ripening conditions on pigments of pepper for paprika production at green stage of maturity.

    Science.gov (United States)

    Kevrešan, Žarko S; Mastilović, Jasna S; Mandić, Anamarija I; Torbica, Aleksandra M

    2013-09-25

    The content and composition of pigments and CIELab color properties in fruits ripened in the field were compared with those obtained in ground paprika produced from green pepper fruits after postharvest ripening for 15 days in a greenhouse under different conditions. Obtained data for pigment content, composition, and esterification rate have shown that the processes of pigment biosynthesis in fruits ripened under greenhouse conditions are different from those occurring in fruits naturally matured in the field: the red/yellow pigment ratio (3:1) in greenhouse-ripened fruits is much higher than in naturally ripened pepper in breaker (1:1) and also in faint red (2:1) ripening stages from the field. Additionally, during the postharvest ripening of green pepper in the greenhouse esterification processes are less expressed than during the ripening of the fruits in the field. Postharvest ripening under natural daylight resulted in higher content of red pigments, followed by higher ASTA value.

  2. RNA-Seq analysis and annotation of a draft blueberry genome assembly identifies candidate genes involved in fruit ripening, biosynthesis of bioactive compounds, and stage-specific alternative splicing.

    Science.gov (United States)

    Gupta, Vikas; Estrada, April D; Blakley, Ivory; Reid, Rob; Patel, Ketan; Meyer, Mason D; Andersen, Stig Uggerhøj; Brown, Allan F; Lila, Mary Ann; Loraine, Ann E

    2015-01-01

    Blueberries are a rich source of antioxidants and other beneficial compounds that can protect against disease. Identifying genes involved in synthesis of bioactive compounds could enable the breeding of berry varieties with enhanced health benefits. Toward this end, we annotated a previously sequenced draft blueberry genome assembly using RNA-Seq data from five stages of berry fruit development and ripening. Genome-guided assembly of RNA-Seq read alignments combined with output from ab initio gene finders produced around 60,000 gene models, of which more than half were similar to proteins from other species, typically the grape Vitis vinifera. Comparison of gene models to the PlantCyc database of metabolic pathway enzymes identified candidate genes involved in synthesis of bioactive compounds, including bixin, an apocarotenoid with potential disease-fighting properties, and defense-related cyanogenic glycosides, which are toxic. Cyanogenic glycoside (CG) biosynthetic enzymes were highly expressed in green fruit, and a candidate CG detoxification enzyme was up-regulated during fruit ripening. Candidate genes for ethylene, anthocyanin, and 400 other biosynthetic pathways were also identified. Homology-based annotation using Blast2GO and InterPro assigned Gene Ontology terms to around 15,000 genes. RNA-Seq expression profiling showed that blueberry growth, maturation, and ripening involve dynamic gene expression changes, including coordinated up- and down-regulation of metabolic pathway enzymes and transcriptional regulators. Analysis of RNA-seq alignments identified developmentally regulated alternative splicing, promoter use, and 3' end formation. We report genome sequence, gene models, functional annotations, and RNA-Seq expression data that provide an important new resource enabling high throughput studies in blueberry.

  3. Pigments analysis on skin tomato fruits during ripening by mean fluorescence techniques; Analisi mediante utilizzo di tecniche di fluorescenza dei pigmenti presenti sulla superficie di bacche di pomodoro durante la maturazione

    Energy Technology Data Exchange (ETDEWEB)

    Lai, A; Fantoni, R [ENEA, Divisione Fisica Applicata, Centro Ricerche Frascati, Rome (Italy)

    2000-07-01

    Different spectroscopic techniques, based on visible fluorescence emission upon excitation in the same spectral region or in the ultraviolet, have been utilized to characterize tomato fruit ripening stages in order to analyze surface pigments which correspond to optimal conditions for fruit harvesting. The main fluorescence spectral features belonging to antochyanin, flavonoids, carotenoids and chlorophyll a after excitation of skin tomato pigments at different laser wavelength have been identified. For tomato ripening stage LIF detection, the {lambda}{sub e}xc266nm was established as the optimal laser wavelength. [Italian] Mediante diverse tecniche spettroscopiche, basate sulla emissione di fluorescenza visibile a seguito di eccitazione nella stessa regione o nell'ultravioletto, e' stato condotto uno studio su bacche di pomodoro a diversi stadi di maturazione Lo scopo del lavoro e' quello di potere attribuire, attraverso l'analisi degli spettri di fluorescenza dei pigmenti superficiali presenti nel frutto, lo stadio ottimale di maturazione al momento della raccolta. I risultati ottenuti hanno permesso di distinguere spettri di fluorescenza attribuiti ai principali gruppi di pigmenti fluorescenti presenti nella superficie esterna del pomodoro: antociani, flavonoidi, carotenoidi e clorofilla a.

  4. Pigments analysis on skin tomato fruits during ripening by mean fluorescence techniques; Analisi mediante utilizzo di tecniche di fluorescenza dei pigmenti presenti sulla superficie di bacche di pomodoro durante la maturazione

    Energy Technology Data Exchange (ETDEWEB)

    Lai, A.; Fantoni, R. [ENEA, Divisione Fisica Applicata, Centro Ricerche Frascati, Rome (Italy)

    2000-07-01

    Different spectroscopic techniques, based on visible fluorescence emission upon excitation in the same spectral region or in the ultraviolet, have been utilized to characterize tomato fruit ripening stages in order to analyze surface pigments which correspond to optimal conditions for fruit harvesting. The main fluorescence spectral features belonging to antochyanin, flavonoids, carotenoids and chlorophyll a after excitation of skin tomato pigments at different laser wavelength have been identified. For tomato ripening stage LIF detection, the {lambda}{sub e}xc266nm was established as the optimal laser wavelength. [Italian] Mediante diverse tecniche spettroscopiche, basate sulla emissione di fluorescenza visibile a seguito di eccitazione nella stessa regione o nell'ultravioletto, e' stato condotto uno studio su bacche di pomodoro a diversi stadi di maturazione Lo scopo del lavoro e' quello di potere attribuire, attraverso l'analisi degli spettri di fluorescenza dei pigmenti superficiali presenti nel frutto, lo stadio ottimale di maturazione al momento della raccolta. I risultati ottenuti hanno permesso di distinguere spettri di fluorescenza attribuiti ai principali gruppi di pigmenti fluorescenti presenti nella superficie esterna del pomodoro: antociani, flavonoidi, carotenoidi e clorofilla a.

  5. Influência dos estádios de maturação na qualidade do suco do maracujá-amarelo Influence of the ripening stages on quality of the yellow passion fruit juice

    Directory of Open Access Journals (Sweden)

    Thais Vianna Silva

    2005-12-01

    Full Text Available Neste trabalho, foi avaliada a influência dos estádios de maturação sobre as características químicas do suco de maracujá-amarelo (Passiflora edulis f. flavicarpa Degener, durante o período que antecedeu a mudança de cor da casca até o período de abscisão dos frutos, quando apresentavam coloração da casca totalmente amarelada. Durante o amadurecimento dos frutos, foi observado aumento progressivo dos parâmetros de Hunter L e b, sendo que a região inferior do fruto apresentou aumento de luminosidade e do amarelecimento mais rapidamente do que a superior. O conteúdo de Sólidos Solúveis Totais (SST aumentou progressivamente, desde a condição de frutos imaturos, com 52 Dias Após Antese (DAA, até os 76 DAA, quando apresentaram cerca de 65% de cor amarela, permanecendo constante após este período. As medidas de acidez titulável e de pH indicaram pequeno acúmulo de ácidos orgânicos até os 60 DAA e, posteriormente, durante o amadurecimento dos frutos de maracujazeiro, ocorreu um consumo parcial desses ácidos, confirmados pela redução da acidez titulável e aumento de pH. Observou-se também, neste período, que a relação SST/AT aumentou progressivamente.This work evaluated the influence of the ripening stages on the chemical characteristics of the yellow passion fruit juice (Passiflora edulis f. flavicarpa Degener., during the period that precedes the peel color change until the period of fruits abscission, when they show the peel totally yellowish. During the ripening of the fruits was observed a progressive increase in the Hunter L and b parameter, in a way that the lower area of the fruit presented higher brightness and yellowing indexes than the upper area. The content of SST showed a progressive increase from an immature condition of the fruits (52 DAA until a ripening stage with 65% of yellowish peel, in 76 DAA, staying constant after this period. The measures of total acidity and pH indicated a small

  6. Identification of genes differentially expressed during ripening of banana.

    Science.gov (United States)

    Manrique-Trujillo, Sandra Mabel; Ramírez-López, Ana Cecilia; Ibarra-Laclette, Enrique; Gómez-Lim, Miguel Angel

    2007-08-01

    The banana (Musa acuminata, subgroup Cavendish 'Grand Nain') is a climacteric fruit of economic importance. A better understanding of the banana ripening process is needed to improve fruit quality and to extend shelf life. Eighty-four up-regulated unigenes were identified by differential screening of a banana fruit cDNA subtraction library at a late ripening stage. The ripening stages in this study were defined according to the peel color index (PCI). Unigene sequences were analyzed with different databases to assign a putative identification. The expression patterns of 36 transcripts confirmed as positive by differential screening were analyzed comparing the PCI 1, PCI 5 and PCI 7 ripening stages. Expression profiles were obtained for unigenes annotated as orcinol O-methyltransferase, putative alcohol dehydrogenase, ubiquitin-protein ligase, chorismate mutase and two unigenes with non-significant matches with any reported sequence. Similar expression profiles were observed in banana pulp and peel. Our results show differential expression of a group of genes involved in processes associated with fruit ripening, such as stress, detoxification, cytoskeleton and biosynthesis of volatile compounds. Some of the identified genes had not been characterized in banana fruit. Besides providing an overview of gene expression programs and metabolic pathways at late stages of banana fruit ripening, this study contributes to increasing the information available on banana fruit ESTs.

  7. Postharvest Ripening and Shelf Life of Mango ( Mangifera indica L ...

    African Journals Online (AJOL)

    Postharvest Ripening and Shelf Life of Mango ( Mangifera indica L.) Fruit as Influenced by ... evaluate the influence of 1-Methylcyclopropene (1-MCP) and polyethylene packaging (PP) on postharvest storage of mango. ... HOW TO USE AJOL.

  8. Natural Variation in Banana Varieties Highlights the Role of Melatonin in Postharvest Ripening and Quality.

    Science.gov (United States)

    Hu, Wei; Yang, Hai; Tie, Weiwei; Yan, Yan; Ding, Zehong; Liu, Yang; Wu, Chunlai; Wang, Jiashui; Reiter, Russel J; Tan, Dun-Xian; Shi, Haitao; Xu, Biyu; Jin, Zhiqiang

    2017-11-22

    This study aimed to investigate the role of melatonin in postharvest ripening and quality in various banana varieties with contrasting ripening periods. During the postharvest life, endogenous melatonin showed similar performance with ethylene in connection to ripening. In comparison to ethylene, melatonin was more correlated with postharvest banana ripening. Exogenous application of melatonin resulted in a delay of postharvest banana ripening. Moreover, this effect is concentration-dependent, with 200 and 500 μM treatments more effective than the 50 μM treatment. Exogenous melatonin also led to elevated endogenous melatonin content, reduced ethylene production through regulation of the expression of MaACO1 and MaACS1, and delayed sharp changes of quality indices. Taken together, this study highlights that melatonin is an indicator for banana fruit ripening in various varieties, and the repression of ethylene biosynthesis and postharvest ripening by melatonin can be used for biological control of postharvest fruit ripening and quality.

  9. Comportamento pós-colheita das características químicas, bioquímicas e físicas de frutos de tomateiros heterozigotos nos locos alcobaça e ripening inhibitort Post-harvest behaviour of chemical, biochemical and physical aspects of tomato fruits heterozygous in alcobaça and ripening inhibitor loci

    Directory of Open Access Journals (Sweden)

    Alcides Militão dos Santos Junior

    2003-08-01

    Full Text Available Os alelos mutantes alc e rin retardam o processo de amadurecimento do tomate (Lycopersicon esculentum Mill., interferindo principalmente na síntese de pigmentos carotenóides e na firmeza dos frutos. Com este trabalho, objetivou-se avaliar e comparar os efeitos dos alelos mutantes alc e rin, em heterozigose (alc+/alc e rin+/rin sobre características químicas, bioquímicas e físicas de frutos de tomateiro em três estádios de maturação. Os alelos alc e rin em heterozigose não exerceram influência marcante sobre o teor de sólidos solúveis totais dos frutos nos estádios de maturação apropriados para o consumo. O genótipo rin+/rinatuou mais intensamente no sentido de reduzir os teores de licopeno e, conseqüentemente, promover maior deficiência na coloração vermelha dos frutos quando comparado ao efeito do genótipo alc+/alc. Nos frutos maduros, a atividade da enzima pectinametilesterase sofreu maior redução pela ação do genótipo rin+/rin. O genótipo alc+/alc foi mais eficiente em reduzir a atividade da poligalacturonase. No estádio breaker, não houve influência dos alelos em heterozigose sobre os teores de celulose, hemicelulose e pectina dos frutos. No estádio intermediário, o genótipo rin+/rin promoveu redução na fração hemicelulose. No estádio maduro, o alelo rin em heterozigose promoveu redução significativa nos teores de celulose e pectina do material da parede celular.The ripening mutants alc and rin delay tomato (Lycopersicon esculentum Mill. ripening and affect synthesis of carotenoids pigments and fruit firmness. This paper reports on the comparative effects of heterozygous alc and rin genotipes (alc+/alc and rin+/rin on chemical, biochemical and physical aspects of tomato fruit during three ripening stages. Neither alc+/alc nor rin+/rin influenced total solids contents in the intermediary or fully ripe stages. The genotype rin+/rin brought about a more marked reduction in lycopene than alc

  10. In vivo NMR spectroscopy of ripening avocado

    International Nuclear Information System (INIS)

    Bennett, A.B.; Smith, G.M.; Nichols, B.

    1987-01-01

    Ripening of avocado fruit is associated with a dramatic increase in respiration. Previous studies have indicated that the increase in respiration is brought about by activation of the glycolytic reaction catalyzing the conversion of fructose-6-phosphate to fructose 1,6-bisphosphate. The authors reinvestigated the proposed role of glycolytic regulation in the respiratory increase using in vivo 31 P nuclear magnetic resonance (NMR) spectroscopy using an external surface coil and analysis of phosphofructokinase (PFK), phosphofructophosphotransferase (PFP), and fructose 2,6-bisphosphate (fru 2,6-P 2 ) levels in ripening avocado fruit. In vivo 31 P NMR spectroscopy revealed large increases in ATP levels accompanying the increase in respiration. Both glycolytic enzymes, PFK and PFP, were present in avocado fruit, with the latter activity being highly stimulated by fru 2,6-P 2 . Fructose 2,6-bisphosphate levels increased approximately 90% at the onset of ripening, indicating that the respiratory increase in ripening avocado may be regulated by the activation of PFP brought about by an increase in fru 2,6-P 2

  11. Physical and chemical changes during ripening of blackberry fruits Mudanças físicas e químicas durante a maturação de frutos de amora preta

    Directory of Open Access Journals (Sweden)

    Ilkay Tosun

    2008-02-01

    Full Text Available Blackberry (Rubus L. is a naturally growing fruit in Anatolia. Consumption of fresh and frozen blackberries has increased in the past few years in Turkey. The aim of this study is to analyze blackberry at three levels of ripeness taking into account some physical and chemical properties (color, dry matter, soluble solids, total sugar, titratable acidity, pH, total phenolics, total anthocyanin, and minerals in order to understand this behavior during the ripening process. Blackberry fruits were harvested at green, red and ripe (mature stages. The determination of fruit maturity was based on fruit surface color. The dry matter, total phenolics and Hunter L, b values decreased but soluble solids, total sugar and total anthocyanins increased with maturity. In the early fruit ripening stages, pH decreased, titratable acidity and Hunter a value increased while in the later stages, pH increased, titratable acidity and Hunter a value decreased considerably. Analysis of variance revealed (P Amora preta (blackberry, Rubus L. é uma fruta que cresce naturalmente na península de Anatolia. O consumo de suas frutas frescas ou congeladas aumentou nos últimos anos na Turquia. Este estudo teve por objetivo analisar amoras pretas colhidas em três níveis de maturação, levando em conta propriedades físicas e químicas das frutas (cor, matéria seca, sólidos solúveis, açúcar total, acidez titulável, pH, fenóis totais, antocianina total e sais minerais para melhor compreender o processo de maturação. As frutas foram colhidas nos estágios verde, vermelho e maduro. A determinação do estágio maduro foi baseada na cor da superfície das frutas. A materia seca, os fenóis totais e os valores de Hunter L, b diminuiram mas os sólidos solúveis, açúcares totais e total de antocianina decresceram em função do nível de maturação. Nos estágios iniciais de maturação, o pH decresceu, a acidez titulável e o valor a de Hunter aumentaram enquanto nos

  12. Fruit irradiation

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    Food spoilage is a common problem when marketing agricultural products. Promising results have already been obtained on a number of food irradiating applications. A process is described in this paper where irradiation of sub-tropical fruits, especially mangoes and papayas, combined with conventional heat treatment results in effective insect and fungal control, delays ripening and greatly improves the quality of fruit at both export and internal markets

  13. Aminoethoxivinilglicina no controle do amadurecimento de frutos de caqui cv. Fuyu Aminoethoxyvinylglycine in the ripening control of persimmon fruits cv. Fuyu

    Directory of Open Access Journals (Sweden)

    Angela Fuentes Fagundes

    2006-04-01

    Full Text Available Objetivou-se avaliar o efeito de aminoethoxivinilglicina (AVG, aplicado na pós-colheita, no amadurecimento de frutos de caqui (Diospyros kaki L. cv. Fuyu, armazenados à temperatura de 0 ± 2 ºC. Os frutos foram imersos durante dois minutos em solução de AVG, na concentração de 0; 415; 830 e 1.200 g ha-1 e dissolvidos em água destilada e adição de espalhante adesivo (óleo vegetal a 0,02% (v/v, secos à temperatura ambiente no barracão e armazenados em câmara fria a 0 ± 2 ºC e 95±2 % UR, e avaliados aos 32 e 52 dias com relação à firmeza, sólidos solúveis, pH da polpa, acidez titulável e injúria por frio. O AVG mostrou-se promissor no uso pós-colheita em caqui, onde os frutos tratados conservaram índices de firmeza linear em função da dose e teores de AT, SS e pH aceitáveis para o 'Fuyu'. Porém os frutos apresentaram translucidez, característica de injúria por frio, indicando a necessidade de novos estudos para se compreender a fisiologia pós-colheita deste fruto.An experiment was carried out to analyze the effect of the application of Aminoethoxyvinylglycine (AVG in post harvest application in persimmon fruits (Diospyros kaki L. cv. Fuyu stored at a temperature of 0 ± 2ºC. The fruits were immersed for two minutes into an AVG solution at a concentration of 0; 415; 830; 1200 g ha-1 and dissolved in distillated water. Then it was added adhesive spreader (vegetable oil 0.02% (v/v, dried at room temperature and stored at 0 ± 2 ºC and 95±2 % humidity. The treatments were evaluated on the 32nd and 52nd days to check the firmness, soluble solids, pH of the pulp, tritable acidity and chilling injury. The AVG may be promising in post harvest use with persimmon fruits, where treated fruits preserved linear levels of firmness in function of the doses and TA, SS and pH levels are acceptable for cv. Fuyu. However, fruits showed translucency, which are characteristics of chilling injury, indicating that new studies are

  14. First attempts of linking modelling, Postharvest behaviour and Melon Genetics

    NARCIS (Netherlands)

    Tijskens, L.M.M.; Santos, Don N.; Obando-Ulloa, J.M.; Moreno, E.; Schouten, R.E.

    2008-01-01

    The onset of climacteric is associated with the end of melon fruit shelf-life. The aim of this research was to develop practical and applicable models of fruit ripening changes (hardness, moisture loss) also able to discriminate between climacteric and non-climacteric behaviour. The decrease in

  15. Comprehensive RNA-Seq Analysis on the Regulation of Tomato Ripening by Exogenous Auxin.

    Directory of Open Access Journals (Sweden)

    Jiayin Li

    Full Text Available Auxin has been shown to modulate the fruit ripening process. However, the molecular mechanisms underlying auxin regulation of fruit ripening are still not clear. Illumina RNA sequencing was performed on mature green cherry tomato fruit 1 and 7 days after auxin treatment, with untreated fruit as a control. The results showed that exogenous auxin maintained system 1 ethylene synthesis and delayed the onset of system 2 ethylene synthesis and the ripening process. At the molecular level, genes associated with stress resistance were significantly up-regulated, but genes related to carotenoid metabolism, cell degradation and energy metabolism were strongly down-regulated by exogenous auxin. Furthermore, genes encoding DNA demethylases were inhibited by auxin, whereas genes encoding cytosine-5 DNA methyltransferases were induced, which contributed to the maintenance of high methylation levels in the nucleus and thus inhibited the ripening process. Additionally, exogenous auxin altered the expression patterns of ethylene and auxin signaling-related genes that were induced or repressed in the normal ripening process, suggesting significant crosstalk between these two hormones during tomato ripening. The present work is the first comprehensive transcriptome analysis of auxin-treated tomato fruit during ripening. Our results provide comprehensive insights into the effects of auxin on the tomato ripening process and the mechanism of crosstalk between auxin and ethylene.

  16. Effect of Stages of Maturity and Ripening Conditions on the Biochemical Characteristics of Tomato

    OpenAIRE

    K. M. Moneruzzaman; A. B.M.S. Hossain; W. Sani; M. Saifuddin

    2008-01-01

    An experiment was carried out to evaluate the biochemical characteristics of tomato in different maturity stages and ripening conditions. Tomato (Lycopersicon esculentum Mill) fruits (cv. Ruma VF) were harvested at the three maturity stages viz., mature green, half ripen and full ripen and stored at three condition control (without covering), straw covering and CaC2 + straw covering. At that time ascorbic acid, pH, titrable acidity, sugar (reducing, non-reducing sugar and total) percent...

  17. Antioxidant Capacity and Total Phenolic Content in Fruit Tissues from Accessions of Capsicum chinense Jacq. (Habanero Pepper at Different Stages of Ripening

    Directory of Open Access Journals (Sweden)

    Lizbeth A. Castro-Concha

    2014-01-01

    Full Text Available In the past few years, there has been a renewed interest in studying a wide variety of food products that show beneficial effects on human health. Capsicum is an important agricultural crop, not only because its economic importance, but also for the nutritional values of its pods, mainly due to the fact that they are an excellent source of antioxidant compounds, and also of specific constituents such as the pungent capsaicinoids localized in the placental tissue. This current study was designed to evaluate the antioxidant capacity and total phenolic contents from fruits tissues of two Capsicum chinense accessions, namely, Chak k’an-iik (orange and MR8H (red, at contrasting maturation stages. Results showed that red immature placental tissue, with a Trolox equivalent antioxidant capacity (TEAC value of 55.59 μmols TE g−1 FW, exhibited the strongest total antioxidant capacity using both the 2,2-diphenyl-1-picrylhydrazyl (DPPH and the CUPRAC methods. Placental tissue also had the highest total phenolic content (27 g GAE 100 g−1 FW. The antioxidant capacity of Capsicum was directly related to the total amount of phenolic compounds detected. In particular, placentas had high levels of capsaicinoids, which might be the principal responsible for their strong antioxidant activities.

  18. Antioxidant Capacity and Total Phenolic Content in Fruit Tissues from Accessions of Capsicum chinense Jacq. (Habanero Pepper) at Different Stages of Ripening

    Science.gov (United States)

    Tuyub-Che, Jemina; Moo-Mukul, Angel; Vazquez-Flota, Felipe A.; Miranda-Ham, Maria L.

    2014-01-01

    In the past few years, there has been a renewed interest in studying a wide variety of food products that show beneficial effects on human health. Capsicum is an important agricultural crop, not only because its economic importance, but also for the nutritional values of its pods, mainly due to the fact that they are an excellent source of antioxidant compounds, and also of specific constituents such as the pungent capsaicinoids localized in the placental tissue. This current study was designed to evaluate the antioxidant capacity and total phenolic contents from fruits tissues of two Capsicum chinense accessions, namely, Chak k'an-iik (orange) and MR8H (red), at contrasting maturation stages. Results showed that red immature placental tissue, with a Trolox equivalent antioxidant capacity (TEAC) value of 55.59 μmols TE g−1 FW, exhibited the strongest total antioxidant capacity using both the 2,2-diphenyl-1-picrylhydrazyl (DPPH) and the CUPRAC methods. Placental tissue also had the highest total phenolic content (27 g GAE 100 g−1 FW). The antioxidant capacity of Capsicum was directly related to the total amount of phenolic compounds detected. In particular, placentas had high levels of capsaicinoids, which might be the principal responsible for their strong antioxidant activities. PMID:24683361

  19. Studies on physico-chemical changes during artificial ripening of banana (Musa sp) variety 'Robusta'.

    Science.gov (United States)

    Kulkarni, Shyamrao Gururao; Kudachikar, V B; Keshava Prakash, M N

    2011-12-01

    Banana (Musa sp var 'Robusta') fruits harvested at 75-80% maturity were dip treated with different concentrations of ethrel (250-1,000 ppm) solution for 5 min. Ethrel at 500 ppm induced uniform ripening without impairing taste and flavour of banana. Untreated control banana fruits remained shriveled, green and failed to ripen evenly even after 8 days of storage. Fruits treated with 500 ppm of ethrel ripened well in 6 days at 20 ± 1 °C. Changes in total soluble solids, acidity, total sugars and total carotenoids showed increasing trends up to 6 days during ripening whereas fruit shear force values, pulp pH and total chlorophyll in peel showed decreasing trends. Sensory quality of ethrel treated banana fruits (fully ripe) were excellent with respect to external colour, taste, flavour and overall quality.

  20. Abscisic Acid Is a Major Regulator of Grape Berry Ripening Onset: New Insights into ABA Signaling Network

    Science.gov (United States)

    Pilati, Stefania; Bagagli, Giorgia; Sonego, Paolo; Moretto, Marco; Brazzale, Daniele; Castorina, Giulia; Simoni, Laura; Tonelli, Chiara; Guella, Graziano; Engelen, Kristof; Galbiati, Massimo; Moser, Claudio

    2017-01-01

    Grapevine is a world-wide cultivated economically relevant crop. The process of berry ripening is non-climacteric and does not rely on the sole ethylene signal. Abscisic acid (ABA) is recognized as an important hormone of ripening inception and color development in ripening berries. In order to elucidate the effect of this signal at the molecular level, pre-véraison berries were treated ex vivo for 20 h with 0.2 mM ABA and berry skin transcriptional modulation was studied by RNA-seq after the treatment and 24 h later, in the absence of exogenous ABA. This study highlighted that a small amount of ABA triggered its own biosynthesis and had a transcriptome-wide effect (1893 modulated genes) characterized by the amplification of the transcriptional response over time. By comparing this dataset with the many studies on ripening collected within the grapevine transcriptomic compendium Vespucci, an extended overlap between ABA- and ripening modulated gene sets was observed (71% of the genes), underpinning the role of this hormone in the regulation of berry ripening. The signaling network of ABA, encompassing ABA metabolism, transport and signaling cascade, has been analyzed in detail and expanded based on knowledge from other species in order to provide an integrated molecular description of this pathway at berry ripening onset. Expression data analysis was combined with in silico promoter analysis to identify candidate target genes of ABA responsive element binding protein 2 (VvABF2), a key upstream transcription factor of the ABA signaling cascade which is up-regulated at véraison and also by ABA treatments. Two transcription factors, VvMYB143 and VvNAC17, and two genes involved in protein degradation, Armadillo-like and Xerico-like genes, were selected for in vivo validation by VvABF2-mediated promoter trans-activation in tobacco. VvNAC17 and Armadillo-like promoters were induced by ABA via VvABF2, while VvMYB143 responded to ABA in a VvABF2-independent manner. This

  1. Metabolomics analysis of postharvest ripening heterogeneity of ‘Hass' avocadoes

    NARCIS (Netherlands)

    Pedreschi, R.; Munoz, P.; Robledo, P.; Becerra, C.; Defilippi, B.G.; Eekelen, van H.D.L.M.; Mumm, R.; Westra, E.H.; Vos, de R.C.H.

    2014-01-01

    The complex physiology of ‘Hass’ avocado renders its postharvest ripening heterogeneous and unpre-dictable. Several approaches have previously been undertaken to broaden our understanding of the causesof this postharvest ripening heterogeneity but without much success. In this study, a fruit biopsy

  2. Ripening of Semiconductor Nanoplatelets.

    Science.gov (United States)

    Ott, Florian D; Riedinger, Andreas; Ochsenbein, David R; Knüsel, Philippe N; Erwin, Steven C; Mazzotti, Marco; Norris, David J

    2017-11-08

    Ostwald ripening describes how the size distribution of colloidal particles evolves with time due to thermodynamic driving forces. Typically, small particles shrink and provide material to larger particles, which leads to size defocusing. Semiconductor nanoplatelets, thin quasi-two-dimensional (2D) particles with thicknesses of only a few atomic layers but larger lateral dimensions, offer a unique system to investigate this phenomenon. Experiments show that the distribution of nanoplatelet thicknesses does not defocus during ripening, but instead jumps sequentially from m to (m + 1) monolayers, allowing precise thickness control. We investigate how this counterintuitive process occurs in CdSe nanoplatelets. We develop a microscopic model that treats the kinetics and thermodynamics of attachment and detachment of monomers as a function of their concentration. We then simulate the growth process from nucleation through ripening. For a given thickness, we observe Ostwald ripening in the lateral direction, but none perpendicular. Thicker populations arise instead from nuclei that capture material from thinner nanoplatelets as they dissolve laterally. Optical experiments that attempt to track the thickness and lateral extent of nanoplatelets during ripening appear consistent with these conclusions. Understanding such effects can lead to better synthetic control, enabling further exploration of quasi-2D nanomaterials.

  3. Biochemical fate of N6 substituted purines (cytokinins) in normal ripening and mutant tomatoes

    International Nuclear Information System (INIS)

    Long, A.R.

    1987-01-01

    The initial rates of disappearance of cytokinins, as determined by high pressure liquid chromatography, for tomatoes which were vacuum infused with benzyladenine and isopentenyladenine were dissimilar between the normal ripening (Ohio CR-6 and Rutgers), ripening inhibited mutant (RIN) and non-ripening mutant (NOR) tomato varieties. Radiolabeled [8- 14 C]Benzyladenine metabolism was followed during a 2 h period utilizing thin layer chromatography and visualization by fluorography. The [8- 14 C]Benzyladenine metabolite patterns were different among the varieties. The [8- 14 C]Benzyladenine metabolite pattern in Ohio CR-6 tomato changed as the fruit ripened

  4. Fruit quality: new insights for biotechnology.

    Science.gov (United States)

    Cruz-Hernández, Andrés; Paredes-López, Octavio

    2012-01-01

    At ripening fruits undergo many changes which include the development of color and aroma and improvements in flavor and texture that make them attractive to potential consumers. Fruits provide an important source of health-related substances, plus minerals and vitamins, and the quality of a fruit is influenced by variety, nutritional status, and environmental conditions during plant growth and fruit development. Ripening is considered to be the main process in fruit development, and all studies had been focused on this process which included physicochemical, biochemical, and molecular analysis. With the development of genomic analysis the strategies to study fruit ripening have been changing and now there are new perspectives and opportunities. The objective of this review is to describe the state of the art in the studies related to fruit ripening with emphasis in molecular studies.

  5. Determining Appropriate Harvesting Date and Storage Life of Kinnow Mandarine Fruits in Jiroft County

    Directory of Open Access Journals (Sweden)

    Seied Mehdi Miri

    2018-02-01

    Full Text Available Introduction. Citrus is one of the most commercially important horticultural crops grown in tropical and sub-tropical regions of the world. They are classified as non-climacteric fruits. Harvesting date and storage can influence citrus fruit quality and shelf life. In Iran, some members of citrus family including sweet orange and mandarin are produced as an export crop, so research on fruit quality and storage life is needed. There is no available scientific literature regarding the effect of harvesting date and storage duration on retaining the postharvest physicochemical properties of Kinnow mandarin under cold storage. The main objective of the present study was to evaluate the effect of harvesting date and storing time on shelf life and quality of Kinnow mandarin fruits under Jiroft weather conditions. Materials and Methods. Investigations were carried out on mandarin (Citrus reticulata cv. Kinnow grafted on sour orange rootstock in an orchard located in Jiroft and Kahnooj Agricultural Research Center, Jiroft, Iran. Fruits were harvested on 6th December, 21th December, 5th January, 20th January and 4th February. After cold storage for 30-90 days at 4-6 °C, the fruit was analyzed for quantitative and qualitative characteristics including weight of fruit, peel, meat, pulp and juice, fruit weight loss, pH, total soluble solids (TSS, titratable acidity (TA and TSS/TA. Experiment was arranged in a split plot based on randomized complete block design (RCBD. Data analysis and similarity coefficient (Pearson's method were performed using SPSS.16 software, and means comparison was performed by using Duncan's multiple range test at 1 and 5% probability levels. Results and Discussion. The results showed that the interaction effect of harvesting date and storage period on the weight of the fruit, meat, pulp and juice and TSS, TA and TSS/TA was significant at 1% probability level. Weight of harvested fruits from 6th December to 5th January was constant

  6. Effects of gamma irradiation and storage temperature on carotenoids and ascorbic acid content of mangoes on ripening

    International Nuclear Information System (INIS)

    Thomas, P.; Janave, M.T.

    1975-01-01

    Synthesis and accumulation of carotenoids in the flesh of Alphonso mangoes on ripening was found to be maximal in fruits stored at tropical ambient temperatures (28 0 to 32 0 C). Gamma irradiation of preclimacteric fruits at 25 krad did not affect the formation of carotenoids. Storage of preclimacteric fruits either irradiated or unirradiated at 7 to 20 0 C for 16 to 43 days caused a substantial reduction in carotenoid formation even when these fruits were subsequently ripened under optimal conditions. Regardless of storage temperature, carotenes always exceeded xanthophylls in the ripe fruits and, in general, irradiated fruits showed higher levels of carotenes in comparison with unirradiated samples. Ascorbic acid loss during ripening was maximum at ambient temperatures while lengthy storage at low temperatures caused a net increase in ascorbic acid levels. Irradiation seemed to accentuate the loss in ascorbic acid during ripening. (author)

  7. Desfolha em videiras americanas e viníferas na fase de pré-maturação dos frutos Defoliation of american and vinifera grapevines in the pre ripening of fruits

    Directory of Open Access Journals (Sweden)

    Rafael Anzanello

    2011-07-01

    2006/2007 harvesting. The experiment was disposed in a randomized block design, with four replications and four plants per plot. The following treatments were tested: T1 (no defoliation, T2 (removal of leaves located in the opposite side of the grapes, T3 (removal of leaves located under the grapes and T4 (removal of leaves located under and in the opposite side of the grapes. The Vitis labrusca received an additional treatment (T5 consisting of leaves removed above the grapes. These treatments were applied during the change of berries color for Concord, Cabernet Sauvignon and Merlot grapes and in the beginning of berries softening for Niagara Branca grape. After the harvesting, the grapevine production, cluster weight, total soluble solids, total titratable acidity and pH were evaluated. It was observed that the defoliation until the grapes height did not influence the quantity and quality of grapes. However, when the defoliation was carried out above the clusters, there was a delay in the maturation of american grapes. This condition shows that is not necessary a selective desfolation until the clusters height on grapevines, when it is realized during the initial fruit ripening phase.

  8. iTRAQ-Based Quantitative Proteomics of Developing and Ripening Muscadine Grape Berry

    Science.gov (United States)

    Kambiranda, Devaiah; Katam, Ramesh; Basha, Sheikh M.; Siebert, Shalom

    2014-01-01

    Grapes are among the widely cultivated fruit crops in the world. Grape berries like other nonclimacteric fruits undergo a complex set of dynamic, physical, physiological, and biochemical changes during ripening. Muscadine grapes are widely cultivated in the southern United States for fresh fruit and wine. To date, changes in the metabolites composition of muscadine grapes have been well documented; however, the molecular changes during berry development and ripening are not fully known. The aim of this study was to investigate changes in the berry proteome during ripening in muscadine grape cv. Noble. Isobaric tags for relative and absolute quantification (iTRAQ) MS/MS was used to detect statistically significant changes in the berry proteome. A total of 674 proteins were detected, and 76 were differentially expressed across four time points in muscadine berry. Proteins obtained were further analyzed to provide information about its potential functions during ripening. Several proteins involved in abiotic and biotic stimuli and sucrose and hexose metabolism were upregulated during berry ripening. Quantitative real-time PCR analysis validated the protein expression results for nine proteins. Identification of vicilin-like antimicrobial peptides indicates additional disease tolerance proteins are present in muscadines for berry protection during ripening. The results provide new information for characterization and understanding muscadine berry proteome and grape ripening. PMID:24251720

  9. Effects of relative humidity on banana fruit drop

    NARCIS (Netherlands)

    Saengpook, C.; Ketsa, S.; Doorn, van W.G.

    2007-01-01

    Commercial ripening of banana fruit occurs at high relative humidity (RH), which prevents browning of damaged skin areas. In experiments with ripening at high RH (94 ± 1%) the individual fruit (fingers) of `Sucrier¿ (Musa acuminata, AA Group) banana exhibited a high rate of drop. The falling off of

  10. Papaya pulp gelling: is it premature ripening or problems of water accumulation in the apoplast?

    Directory of Open Access Journals (Sweden)

    Jurandi Gonçalves de Oliveira

    Full Text Available Gelled aspect in papaya fruit is typically confused with premature ripening. This research reports the characterization of this physiological disorder in the pulp of papaya fruit by measuring electrolyte leakage, Pi content, lipid peroxidation, pulp firmness, mineral contents (Ca, Mg and K - in pulp and seed tissues, and histological analysis of pulp tissue. The results showed that the gelled aspect of the papaya fruit pulp is not associated with tissue premature ripening. Data indicate a reduction of the vacuole water intake as the principal cause of the loss of cellular turgor; while the waterlogged aspect of the tissue may be due to water accumulation in the apoplast.

  11. Investigation into the role of endogenous abscisic acid during ripening of imported avocado cv. Hass.

    Science.gov (United States)

    Meyer, Marjolaine D; Chope, Gemma A; Terry, Leon A

    2017-08-01

    The importance of ethylene in avocado ripening has been extensively studied. In contrast, little is known about the possible role of abscisic acid (ABA). The present work studied the effect of 1-methylcyclopropene (1-MCP) (0.3 μL L -1 ), e+® Ethylene Remover and the combination thereof on the quality of imported avocado cv. Hass fruit stored for 7 days at 12 °C. Ethylene production, respiration, firmness, colour, heptose (C7) sugars and ABA concentrations in mesocarp tissue were measured throughout storage. Treatment with e+® Ethylene Remover reduced ethylene production, respiration rate and physiological ripening compared with controls. Fruit treated with 1-MCP + e+® Ethylene Remover and, to a lesser extent 1-MCP alone, had the lowest ethylene production and respiration rate and hence the best quality. Major sugars measured in mesocarp tissue were mannoheptulose and perseitol, and their content was not correlated with ripening parameters. Mesocarp ABA concentration, as determined by mass spectrometry, increased as fruit ripened and was negatively correlated with fruit firmness. Results suggest a relationship between ABA and ethylene metabolism since blocking ethylene, and to a larger extent blocking and removing ethylene, resulted in lower ABA concentrations. Whether ABA influences avocado fruit ripening needs to be determined in future research. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  12. Quality comparison of hydroponic tomatoes (Lycopersicon esculentum) ripened on and off vine

    Science.gov (United States)

    Arias, R.; Lee, T. C.; Specca, D.; Janes, H.

    2000-01-01

    There is a general belief that the quality of tomatoes ripened on vine is better than tomatoes ripened off the vine, influencing among other parameters, the price of this commodity. We compared the quality of hydroponic tomatoes ripened on and off vine by chemical, physical, and sensory evaluation to find what attributes are affected and to what extent. Lycopene, beta-carotene, total and soluble solids, moisture content, ascorbic acid, acidity, pH, texture, and color were analyzed. Tomatoes ripened on vine had significantly more lycopene, beta-carotene, soluble and total solids, higher a* and lower L*, and were firmer. However, a 100-judge panel rated only the color and overall liking of the vine-ripened tomatoes as more intense than the fruit ripened off vine. Therefore, the chemical and physical differences were mostly not large enough to influence the panelist's perception. The characterization of tomatoes ripened on and off vine may help to guide post-harvest handling and treatment and to improve the quality of tomatoes ripened off vine.

  13. Radiation processing of foods: fruits and vegetables

    International Nuclear Information System (INIS)

    Thomas, Paul

    1990-01-01

    Post-harvest irradiation of fruits and vegetables improves their shelf-life by: (1) delaying ripening and senescence of fruits, (2) controlling fungal diseases, (3) inhibiting sprouting, and (4) disinfestation. Nutritional and quality aspects of irradiated fruits and vegetables are discussed. Commercial prospects are briefly described. (M.G.B.)

  14. How to prevent ripening blockage in 1-MCP-treated 'Conference' pears.

    Science.gov (United States)

    Chiriboga, Maria-Angeles; Schotsmans, Wendy C; Larrigaudière, Christian; Dupille, Eve; Recasens, Inmaculada

    2011-08-15

    Some European pear varieties treated with 1-methylcyclopropene (1-MCP) often remain 'evergreen', meaning that their ripening process is blocked and does not resume after removal from cold storage. In this work this was confirmed also to be the case in 'Conference' pears. To reverse the blockage of ripening 1-MCP treatments combined with external exogenous ethylene were tested. 1-MCP treatment of 'Conference' pears is very effective in delaying ripening and, more specifically, softening. The same 1-MCP concentration in different experimental years caused a different response. The higher dose of 1-MCP (600 nL L⁻¹) always resulted in irreversible blockage of ripening, whereas the behaviour of fruit receiving a lower dose (300 nL L⁻¹) depended on the year, and this did not depend on maturity at harvest or on storage conditions. Simultaneous exposure to 1-MCP and exogenous ethylene significantly affected fruit ripening, allowing significant softening to occur but at a lower rate compared with control fruit. The application of exogenous ethylene and 1-MCP simultaneously after harvest permitted restoration of the ripening process after storage in 'Conference' pears, extending the possibility of marketing and consumption. Copyright © 2011 Society of Chemical Industry.

  15. Crescimento e mudanças físico-químicas durante a maturação de frutos de meloeiro (Cucumis melo var. cantalupensis Naud. híbrido Torreon Growth and physicochemical changes during the ripening of hybrid Torreon muskmelon fruits (Cucumis melo var. cantalupensis Naud.

    Directory of Open Access Journals (Sweden)

    Ricardo Fabiano Hettwer Giehl

    2008-04-01

    days. These fruits were individually assessed for ethylene synthesis, respiration rate, flesh firmness, soluble solids contents, titratable acidity and flesh colour. Fruits exhibited growth until approximately 26-29 DAA, when ripening process initiated. A large rise in ethylene synthesis was observed, reaching 44µL kg-1 h-1 at 34 DAA, which was accompanied by an increase in respiration and a decrease of total titratable acidity and flesh firmness of fruit. In addition, flesh colour of fruit became redder, as fruit ripened. Fruits slipped from vine at about 37 DAA showing mean values of total soluble solids of 10.5°Brix.

  16. Carbohydrate metabolism in ripening banana and its alteration on gamma irradiation in relation to delay in ripening

    International Nuclear Information System (INIS)

    Surendranathan, K.K.; Nair, P.M.

    1980-01-01

    Ripening, of climacteric class of fruits like banana, is accompanied with an upsurge in respiration, indicating a change in metabolism from hexose monophosphate (HMP) shunt pathway to glycolytic pathway. The key enzyme in glycolytic pathway, namely, phosphofructokinase, is activated and this activation paralleled with the increase in respiration rate. The enhancement in the activity of enzymes of glycolytic and Kreb's cycle help the fruit to assimilate energy as ATP produced from the breakdown and oxidation of storage starch. The demand for energy supply is great for the different ripening processes. Gamma irradiation of the fruit at the preclimacteric stage delayed the onset of climacteric to about 7 to 8 days, thereby extending the ripening to 15-20 days. This delay was brought about by the alterations in the metabolism of carbohydrate. There is a predominance of HMP pathway in irradiated banana. This along with the activation of phosphatases like FDPase and F-6-Pase restricted the entrance of sugar phosphate esters to Kreb's cycle for oxidation. The functioning of Kreb's cycle is also affected by the inhibition of succinic dehydrogenase. But activation of glyoxylate shunt pathway helped to maintain the levels of Kreb's cycle intermediates, like citrate and malate, although energy production is reduced. Finally the activation of gluconeogenic pathway helps in channelling the metabolites back to sugars. All these metabolic changes cause a considerable depletion in the production of ATP. (auth.)

  17. Prediction of textural attributes using color values of banana (Musa sapientum) during ripening.

    Science.gov (United States)

    Jaiswal, Pranita; Jha, Shyam Narayan; Kaur, Poonam Preet; Bhardwaj, Rishi; Singh, Ashish Kumar; Wadhawan, Vishakha

    2014-06-01

    Banana is an important sub-tropical fruit in international trade. It undergoes significant textural and color transformations during ripening process, which in turn influence the eating quality of the fruit. In present study, color ('L', 'a' and 'b' value) and textural attributes of bananas (peel, fruit and pulp firmness; pulp toughness; stickiness) were studied simultaneously using Hunter Color Lab and Texture Analyser, respectively, during ripening period of 10 days at ambient atmosphere. There was significant effect of ripening period on all the considered textural characteristics and color properties of bananas except color value 'b'. In general, textural descriptors (peel, fruit and pulp firmness; and pulp toughness) decreased during ripening except stickiness, while color values viz 'a' and 'b' increased with ripening barring 'L' value. Among various textural attributes, peel toughness and pulp firmness showed highest correlation (r) with 'a' value of banana peel. In order to predict textural properties using color values of banana, five types of equations (linear/polynomial/exponential/logarithmic/power) were fitted. Among them, polynomial equation was found to be the best fit (highest coefficient of determination, R(2)) for prediction of texture using color properties for bananas. The pulp firmness, peel toughness and pulp toughness showed R(2) above 0.84 with indicating its potentiality of the fitted equations for prediction of textural profile of bananas non-destructively using 'a' value.

  18. SEPALLATA1/2-suppressed mature apples have low ethylene, high auxin and reduced transcription of ripening-related genes

    Science.gov (United States)

    Schaffer, Robert J.; Ireland, Hilary S.; Ross, John J.; Ling, Toby J.; David, Karine M.

    2012-01-01

    Background and aims Fruit ripening is an important developmental trait in fleshy fruits, making the fruit palatable for seed dispersers. In some fruit species, there is a strong association between auxin concentrations and fruit ripening. We investigated the relationship between auxin concentrations and the onset of ethylene-related ripening in Malus × domestica (apples) at both the hormone and transcriptome levels. Methodology Transgenic apples suppressed for the SEPALLATA1/2 (SEP1/2) class of gene (MADS8/9) that showed severely reduced ripening were compared with untransformed control apples. In each apple type, free indole-3-acetic acid (IAA) concentrations were measured during early ripening. The changes observed in auxin were assessed in light of global changes in gene expression. Principal results It was found that mature MADS8/9-suppressed apples had a higher concentration of free IAA. This was associated with increased expression of the auxin biosynthetic genes in the indole-3-acetamide pathway. Additionally, in the MADS8/9-suppressed apples, there was less expression of the GH3 auxin-conjugating enzymes. A number of genes involved in the auxin-regulated transcription (AUX/IAA and ARF classes of genes) were also observed to change in expression, suggesting a mechanism for signal transduction at the start of ripening. Conclusions The delay in ripening observed in MADS8/9-suppressed apples may be partly due to high auxin concentrations. We propose that, to achieve low auxin associated with fruit maturation, the auxin homeostasis is controlled in a two-pronged manner: (i) by the reduction in biosynthesis and (ii) by an increase in auxin conjugation. This is associated with the change in expression of auxin-signalling genes and the up-regulation of ripening-related genes. PMID:23346344

  19. Influência dos estádios de maturação sobre as características físicas dos frutos de maracujá-amarelo Influence of the ripening stages on the physical characteristics of the yellow passion fruit

    Directory of Open Access Journals (Sweden)

    Thais Vianna-Silva

    2008-01-01

    Full Text Available Este trabalho teve como objetivo avaliar a influência dos estádios de maturação sobre as características físicas dos frutos de maracujazeiro-amarelo para indicação do melhor momento de colheita na região Norte Fluminense. Iniciou-se a colheita aos 52 dias após a antese (DAA, antes das primeiras mudanças de cor da casca serem observadas, prosseguindo-se aos 54, 56, 58, 60, 64, 66, 68, 70, 76, 83 e aos 100 DAA. No último dia de colheita, nos frutos marcados ocorreu abscisão no período da noite. Durante o amadurecimento dos frutos, foi observado aumento progressivo dos parâmetros de Hunter L e b, e na região inferior do fruto ocorreu maior índice de luminosidade e de amarelecimento do que na superior. Houve redução da espessura da casca até o momento do início da mudança de sua cor (64 DAA. Neste período, houve aumento inversamente proporcional de rendimento de suco, atingindo valores superiores a 33%, adequado para a industrialização. Verificou-se tendência de aumento do rendimento de suco para 40% nos frutos com aproximadamente 30% de cor amarela da casca (68 DAA.The objective of this work is to evaluate the influence of maturation stage on physical characteristics of yellow passion fruits, in order to indicate the best moment for harvesting in the Fluminense North area. The samplings were accomplished in 52 days after anthesis (DAA, before the first changes of color of the peel has been observed, following in intervals of 54, 56, 58, 60, 64, 66, 68, 70, 76, 83 and 100 DAA. In the last harvest day the marked fruits had suffered abscission during the night. During fruits ripening occurred a progressive increase of Hunter L and b parameters where the inferior area of the fruit presented higher brightness and yellowing index than the superior. The fruits reduced the thickness of the peel until the moment of the color change (64 DAA, with inversely proportional increase of juice yield in this period, taking values higher

  20. Postharvest biochemical and physiological characterisation of imported avocado fruit

    OpenAIRE

    Donetti, Manuela

    2011-01-01

    Difficulties in controlling and forecasting avocado fruit ripening and the highly perishable nature of the crop once harvested, are the major causes of concern for avocado traders. In particular, the simultaneous presence of many suppliers may account for increased fruit variability during ripening. Avocado is a climacteric fruit with consistent ethylene production after harvest which is also related to high perishability. However, the mechanisms regulating ethylene biosynthesi...

  1. Activation of ethylene-responsive p-hydroxyphenylpyruvate dioxygenase leads to increased tocopherol levels during ripening in mango

    Science.gov (United States)

    Singh, Rajesh K.; Ali, Sharique A.; Nath, Pravendra; Sane, Vidhu A.

    2011-01-01

    Mango is characterized by high tocopherol and carotenoid content during ripening. From a cDNA screen of differentially expressing genes during mango ripening, a full-length p-hydroxyphenylpyruvate dioxygenase (MiHPPD) gene homologue was isolated that encodes a key enzyme in the biosynthesis of tocopherols. The gene encoded a 432-amino-acid protein. Transcript analysis during different stages of ripening revealed that the gene is ripening related and rapidly induced by ethylene. The increase in MiHPPD transcript accumulation was followed by an increase in tocopherol levels during ripening. The ripening-related increase in MiHPPD expression was also seen in response to abscisic acid and to alesser extent to indole-3-acetic acid. The expression of MiHPPD was not restricted to fruits but was also seen in other tissues such as leaves particularly during senescence. The strong ethylene induction of MiHPPD was also seen in young leaves indicating that ethylene induction of MiHPPD is tissue independent. Promoter analysis of MiHPPD gene in tomato discs and leaves of stable transgenic lines of Arabidopsis showed that the cis elements for ripening-related, ethylene-responsive, and senescence-related expression resided within the 1590 nt region upstream of the ATG codon. Functionality of the gene was demonstrated by the ability of the expressed protein in bacteria to convert p-hydroxyphenylpyruvate to homogentisate. These results provide the first evidence for HPPD expression during ripening of a climacteric fruit. PMID:21430290

  2. Interactions between ethylene and auxin are crucial to the control of grape (Vitis vinifera L.) berry ripening.

    Science.gov (United States)

    Böttcher, Christine; Burbidge, Crista A; Boss, Paul K; Davies, Christopher

    2013-12-23

    Fruit development is controlled by plant hormones, but the role of hormone interactions during fruit ripening is poorly understood. Interactions between ethylene and the auxin indole-3-acetic acid (IAA) are likely to be crucial during the ripening process, since both hormones have been shown to be implicated in the control of ripening in a range of different fruit species. Grapevine (Vitis vinifera L.) homologues of the TRYPTOPHAN AMINOTRANSFERASE RELATED (TAR) and YUCCA families, functioning in the only characterized pathway of auxin biosynthesis, were identified and the expression of several TAR genes was shown to be induced by the pre-ripening application of the ethylene-releasing compound Ethrel. The induction of TAR expression was accompanied by increased IAA and IAA-Asp concentrations, indicative of an upregulation of auxin biosynthesis and conjugation. Exposure of ex planta, pre-ripening berries to the ethylene biosynthesis inhibitor aminoethoxyvinylglycine resulted in decreased IAA and IAA-Asp concentrations. The delayed initiation of ripening observed in Ethrel-treated berries might therefore represent an indirect ethylene effect mediated by increased auxin concentrations. During berry development, the expression of three TAR genes and one YUCCA gene was upregulated at the time of ripening initiation and/or during ripening. This increase in auxin biosynthesis gene expression was preceded by high expression levels of the ethylene biosynthesis genes 1-aminocyclopropane-1-carboxylate synthase and 1-aminocyclopropane-1-carboxylate oxidase. In grape berries, members of both gene families involved in the two-step pathway of auxin biosynthesis are expressed, suggesting that IAA is produced through the combined action of TAR and YUCCA proteins in developing berries. The induction of TAR expression by Ethrel applications and the developmental expression patterns of auxin and ethylene biosynthesis genes indicate that elevated concentrations of ethylene prior to the

  3. A role for differential glycoconjugation in the emission of phenylpropanoid volatiles from tomato fruit discovered using a metabolic data fusion approach.

    NARCIS (Netherlands)

    Tikunov, Y.M.; Vos, de C.H.; Gonzalez Paramas, A.M.; Hall, R.D.; Bovy, A.G.

    2010-01-01

    A role for differential glycoconjugation in the emission of phenylpropanoid volatiles from ripening tomato fruit (Solanum lycopersicum) upon fruit tissue disruption has been discovered in this study. Application of a multiinstrumental analytical platform for metabolic profiling of fruits from a

  4. Carotenoid-bearing structures in fruit chromoplasts of Solatium capsicastrum Link.

    OpenAIRE

    Ljubešić, Nikola; Wrischer, Mercedes; Prebeg, Tatjana; Brkić, Dragomir

    2001-01-01

    The fine structure, pigment content and protein profile of chromoplasts in fruit of Solatium capsicastrum were studied during the various stages of ripening. Plastid metamorphosis is synchronized with the disappearance of chlorophylls and intense synthesis of carotenoids. The chloro-chromoplasts observed in the first stages of fruit ripening accumulated large groups of plastoglobules. As the ripening process proceeded, the plastoglobules transformed into small crystalloids and tubules. In red...

  5. Salinity and ripening on/off the plant effects on lycopene synthesis and chlorophyll breakdown in hybrid Raf tomato

    NARCIS (Netherlands)

    Sánchez-González, María J.; Schouten, Rob E.; Tijskens, L.M.M.; Cruz Sánchez-Guerrero, M.; Medrano, Evangelina; Rio-Celestino, del Mercedes; Lorenzo, Pilar

    2016-01-01

    The aim of this study was to describe the physiology of fruit colour in tomato as affected by salinity and ripening on and off the plant. Chlorophyll and lycopene levels were repeatedly measured in ninety Raf tomatoes over a period of eight days using remittance spectroscopy. Fruits were

  6. Effects of gamma irradiation on ripening process of Morn-Thong durian

    International Nuclear Information System (INIS)

    Sudto, T.; Uthairatanakij, A.; Jitareerat, P.; Photchanachai, S.; Vaongcheeree, S.

    2005-09-01

    The effects of gamma irradiation on ripening process of ''Morn-Thong'' durian were studied. Fruits were irradiated with gamma ray at 0, 0.3, 0.6 and 1.0 kGy or dipped Benomyl r at 500 mg/L and then fruit were stored at room temperature. Soluble solids content (SSC), pulp colour (L*, a* and b* values), flesh firmness and weight loss were measured. The results found that irradiation at 0.3 kGy caused higher water loss compared to fruit treated with 0.6, 1.0 kGy, control and Benomyl r dipping, respectively. Fruit irradiated with 0.3 kGy had the highest SSC, indicating the induce of ripening process. However, there was inconsistent in pulp colour

  7. Induction of AGAMOUS gene expression plays a key role in ripening of tomato sepals in vitro.

    Science.gov (United States)

    Ishida, B K; Jenkins, S M; Say, B

    1998-03-01

    In vitro culture of VFNT Cherry tomato sepals (calyx) at 16-21 degrees C results in developmental changes that are similar to those that occur in fruit tissue [10]. Sepals become swollen, red, and succulent, produce ethylene, and have increased levels of polygalacturonase RNA. They also produce many flavor volatiles characteristic of ripe tomato fruit and undergo similar changes in sugar content [11]. We examined the expression of the tomato AGAMOUS gene, TAG1, in ripening, in vitro sepal cultures and other tissues from the plant and found that TAG1 RNA accumulates to higher levels than expected from data from other plants. Contrary to reports on the absence of AGAMOUS in sepals, TAG1 RNA levels in green sepals from greenhouse-grown plants is detectable, its concentration increasing with in vitro ripening to levels that were even higher than in red, ripe fruit. Sepals of fruit on transgenic tomato plants that expressed TAG1 ectopically were induced by low temperature to ripen in vivo, producing lycopene and undergoing cell wall softening as is characteristic of pericarpic tissue. We therefore propose that the induction of elevated TAG1 gene expression plays a key role in developmental changes that result in sepal ripening.

  8. Impact of postharvest ripening strategies on 'Hass' avocado fatty acid profiles

    NARCIS (Netherlands)

    Pedreschi Plasencia, Romina; Hollak, S.; Harkema, H.; Otma, E.; Robledo, P.; Westra, Eelke; Berg-Somhorst, van de Dianne; Ferreyra, R.; Defilippi, B.G.

    2016-01-01

    Persea americana Mill. cv 'Hass' is a subtropical fruit highly appreciated as a rich source of fatty acids mostly of the monounsaturated type. Commonly commercially applied postharvest ripening strategies for the ready to eat market based on high temperature (15 and 20 °C) and external ethylene

  9. Different Preclimacteric Events in Apple Cultivars with Modified Ripening Physiology

    Directory of Open Access Journals (Sweden)

    Vikram Singh

    2017-09-01

    Full Text Available “Anna” is an early season apple cultivar exhibiting a fast softening and juiciness loss during storage, in comparison to two mid-late season cultivars “Galaxy” and “GD.” The poor storage capacity of “Anna” was correlated with high lipid oxidation-related autoluminescence, high respiration and ethylene production rates, associated with high expression of MdACO1, 2, 4, 7, and MdACS1. All cultivars at harvest responded to exogenous ethylene by enhancing ethylene production, typical of system-II. The contribution of pre-climacteric events to the poor storage capacity of “Anna” was examined by comparing respiration and ethylene production rates, response to exogenous ethylene, expression of genes responsible for ethylene biosynthesis and response, and developmental regulators in the three cultivars throughout fruit development. In contrast to the “Galaxy” and “GD,” “Anna” showed higher ethylene production and respiration rates during fruit development, and exhibited auto-stimulatory (system II-like effect in response to exogenous ethylene. The higher ethylene production rate in “Anna” was correlated with higher expression of ethylene biosynthesis genes, MdACS3a MdACO2, 4, and 7 during early fruit development. The expression of negative regulators of ripening (AP2/ERF and ethylene response pathway, (MdETR1,2 and MdCTR1 was lower in “Anna” in comparison to the other two cultivars throughout development and ripening. Similar pattern of gene expression was found for SQUAMOSA promoter binding protein (SBP-box genes, including MdCNR and for MdFUL. Taken together, this study provides new understanding on pre-climacteric events in “Anna” that might affect its ripening behavior and physiology following storage.

  10. Application of irradiated chitosan for fruit preservation

    Energy Technology Data Exchange (ETDEWEB)

    Lan, K.N. [Post-harvest Technology Institute, 4, Ngo Quyen-Ha Noi (Viet Nam); Lam, N.D. [Ha Noi Radiation Center, VAEC, 5T-160, Nghiado, Tuliem, Ha Noi (Viet Nam); Kume, Tamikazu [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    2000-03-01

    Preliminary test of mango (Mangifera indica) preservation by irradiated chitosan coating has been investigated. The coating by using irradiated chitosan in 1.5% solution has extended the shelf life of mango from 7 to 15 days. At the 15th day mango coated by irradiated chitosan has been keeping good color, natural ripening, without spoilage, weight loss 10%, whereas the mango without coating was spoiled completely and the coating of fruit with unirradiated chitosan inhibited the ripening. (author)

  11. Application of irradiated chitosan for fruit preservation

    International Nuclear Information System (INIS)

    Lan, K.N.; Lam, N.D.; Kume, Tamikazu

    2000-01-01

    Preliminary test of mango (Mangifera indica) preservation by irradiated chitosan coating has been investigated. The coating by using irradiated chitosan in 1.5% solution has extended the shelf life of mango from 7 to 15 days. At the 15th day mango coated by irradiated chitosan has been keeping good color, natural ripening, without spoilage, weight loss 10%, whereas the mango without coating was spoiled completely and the coating of fruit with unirradiated chitosan inhibited the ripening. (author)

  12. Isolation and Properties of Intact Chromoplasts from Tomato Fruits

    OpenAIRE

    Norio, Iwatsuki; Ryuichi, Moriyama; Tadashi, Asahi; Laboratory of Biochemistry, Faculty of Agriculture, Nagoya University; Laboratory of Biochemistry, Faculty of Agriculture, Nagoya University; Laboratory of Biochemistry, Faculty of Agriculture, Nagoya University

    1984-01-01

    Intact chromoplasts were isolated from tomato fruits at different ripening stages by Percoll density gradient centrifugation. The isolated chromoplast fractions were contaminated very little by other organelles, although the fraction from fully ripened fruits contained some mitochondria and microbodies. As the transformation of chloroplasts to chromoplasts proceeded, the density of the plastids decreased from 1.096 to 1.075g・cm^ and the decrease was related to a decrease in chlorophyll and an...

  13. Berry flesh and skin ripening features in Vitis vinifera as assessed by transcriptional profiling.

    Directory of Open Access Journals (Sweden)

    Diego Lijavetzky

    Full Text Available BACKGROUND: Ripening of fleshy fruit is a complex developmental process involving the differentiation of tissues with separate functions. During grapevine berry ripening important processes contributing to table and wine grape quality take place, some of them flesh- or skin-specific. In this study, transcriptional profiles throughout flesh and skin ripening were followed during two different seasons in a table grape cultivar 'Muscat Hamburg' to determine tissue-specific as well as common developmental programs. METHODOLOGY/PRINCIPAL FINDINGS: Using an updated GrapeGen Affymetrix GeneChip® annotation based on grapevine 12×v1 gene predictions, 2188 differentially accumulated transcripts between flesh and skin and 2839 transcripts differentially accumulated throughout ripening in the same manner in both tissues were identified. Transcriptional profiles were dominated by changes at the beginning of veraison which affect both pericarp tissues, although frequently delayed or with lower intensity in the skin than in the flesh. Functional enrichment analysis identified the decay on biosynthetic processes, photosynthesis and transport as a major part of the program delayed in the skin. In addition, a higher number of functional categories, including several related to macromolecule transport and phenylpropanoid and lipid biosynthesis, were over-represented in transcripts accumulated to higher levels in the skin. Functional enrichment also indicated auxin, gibberellins and bHLH transcription factors to take part in the regulation of pre-veraison processes in the pericarp, whereas WRKY and C2H2 family transcription factors seems to more specifically participate in the regulation of skin and flesh ripening, respectively. CONCLUSIONS/SIGNIFICANCE: A transcriptomic analysis indicates that a large part of the ripening program is shared by both pericarp tissues despite some components are delayed in the skin. In addition, important tissue differences are

  14. Development of Metal-Organic Framework for Gaseous Plant Hormone Encapsulation To Manage Ripening of Climacteric Produce.

    Science.gov (United States)

    Zhang, Boce; Luo, Yaguang; Kanyuck, Kelsey; Bauchan, Gary; Mowery, Joseph; Zavalij, Peter

    2016-06-29

    Controlled ripening of climacteric fruits, such as bananas and avocados, is a critical step to provide consumers with high-quality products while reducing postharvest losses. Prior to ripening, these fruits can be stored for an extended period of time but are usually not suitable for consumption. However, once ripening is initiated, they undergo irreversible changes that lead to rapid quality loss and decay if not consumed within a short window of time. Therefore, technologies to slow the ripening process after its onset or to stimulate ripening immediately before consumption are in high demand. In this study, we developed a solid porous metal-organic framework (MOF) to encapsulate gaseous ethylene for subsequent release. We evaluated the feasibility of this technology for on-demand stimulated ripening of bananas and avocados. Copper terephthalate (CuTPA) MOF was synthesized via a solvothermal method and loaded with ethylene gas. Its crystalline structure and chemical composition were characterized by X-ray diffraction crystallography, porosity by N2 and ethylene isotherms, and morphology by electron microscopy. The MOF loaded with ethylene (MOF-ethylene) was placed inside sealed containers with preclimacteric bananas and avocados and stored at 16 °C. The headspace gas composition and fruit color and texture were monitored periodically. Results showed that this CuTPA MOF is highly porous, with a total pore volume of 0.39 cm(3)/g. A 50 mg portion of MOF-ethylene can absorb and release up to 654 μL/L of ethylene in a 4 L container. MOF-ethylene significantly accelerated the ripening-related color and firmness changes of treated bananas and avocados. This result suggests that MOF-ethylene technology could be used for postharvest application to stimulate ripening just before the point of consumption.

  15. The role of leaves and fruits in determining the specific cultivar characters of peach fruits

    International Nuclear Information System (INIS)

    Manolov, P.; Petrov, A.

    1982-01-01

    At the Institute of Fruit Growing, Plovdiv, triple buds were grafted on the crowns of 6 year-old peach trees in the following cultivar combinations: 1. Springtime (early8 ripening in the second half of June, white fleshed) on Rio oso gem (late, ripening in the first half of September, yellow fleshed); 2. Fillette (early, ripening in the second half of June, yellow fleshed) on Rio oso gem; 3. Rio oso gem on Springtime; 4. Rio oso gem on Fillette. At the begining of the following growing period the development of the grafted generative organs was fully dependent on assimilates produced by the leaves of the other cultivar. The interrelations between the leaves and the fruits in the various combinations were followed by biometrical and radio-isotopic ( 14 C) methods. Results substantiated the conclusion that the genetic information on the development of the specific cultivar characters such as flavour, arome, skin colour, fruit flesh texture and colour, fruit size and date of ripening was borne by the fruits themselves. The synthetic processes of the leaves during photosynthesis are not directly related with the synthetic processes producing the fruits' organic matter. The basic constructing substances were produced in the leaves and were transported to the fruits, where they were subjected to metabolic transformations in accordance with the biological characteristics of the cultivar and the phase of fruit development

  16. Atraso no amadurecimento de atemoia cv. African Pride após tratamento pós-colheita com 1-metilciclopropeno Delay in ripening of African Pride atemoya fruits after postharvest treatment with 1-methylcyclopropene

    Directory of Open Access Journals (Sweden)

    Maria Auxiliadora Coêlho de Lima

    2010-09-01

    Full Text Available Atemoias cv. African Pride foram colhidas na maturidade fisiológica com o objetivo de avaliar a influência da aplicação de 1-metilciclopropeno (1-MCP sobre a maturação pós-colheita. Foram testados: doses de 1-MCP (0, 100, 200 e 400 nL.L-1; e tempo de armazenamento (0, 8 e 15 dias sob refrigeração, a 14,5 ± 2,0 ºC e 60 ± 6% de UR, seguidos de 2, 4 e 5 dias a 23,8 ± 2,0 ºC e 65 ± 5% UR. O delineamento experimental foi inteiramente casualizado, em fatorial 4x 6 (dose de 1-MCPx tempo de armazenamento e quatro repetições. Apesar da interação estatisticamente significativa entre os fatores sobre a perda de massa, as diferenças entre tratamentos em cada avaliação não foram superiores a 1,3%. Os frutos tratados apresentaram-se mais firmes, com acidez titulável ligeiramente maior e atraso inicial no acúmulo de sólidos solúveis. A redução no conteúdo de pectina somente foi observada a partir do 15º dia, quando já havia ocorrido a maior taxa de amaciamento. A aparência também foi preservada pelo 1-MCP, verificando-se, nos frutos tratados, ausência de manchas e/ou microrganismos até o 17º dia. A dose de 200 nL.L-1 foi a mais eficiente, pois atrasou a perda de firmeza e manteve o teor de pectina ligeiramente maior.Atemoya fruits (cv. African Pride were harvested at physiological maturity stage with the objective of evaluating the influence of 1-methylcyclopropene (1-MCP application on postharvest maturation. The following parameters were analyzed: 1-MCP doses (0, 100, 200 and 400 nL.L-1 and time of storage (0, 8 and 15 days under refrigeration, at 14.5 ± 2.0 ºC and 60 ± 6% RH, followed by 2, 4, and 5 days at 23.8 ± 2.0 ºC and 65 ± 5% RH. The experimental design was completely randomized, in a 4x 5 (dose of 1-MCPx time of storage factorial with four replications. Besides the statistically significant interaction between the factors on weight loss, the differences among the treatments in each evaluation were not

  17. Modelling Chemical Preservation of Plantain Hybrid Fruits

    Directory of Open Access Journals (Sweden)

    Ogueri Nwaiwu

    2017-08-01

    Full Text Available New plantain hybrids plants have been developed but not much has been done on the post-harvest keeping quality of the fruits and how they are affected by microbial colonization. Hence fruits from a tetraploid hybrid PITA 2 (TMPx 548-9 obtained by crossing plantain varieties Obino l’Ewai and Calcutta 4 (AA and two local triploid (AAB plantain landraces Agbagba and Obino l’Ewai were subjected to various concentrations of acetic, sorbic and propionic acid to determine the impact of chemical concentration, chemical type and plantain variety on ripening and weight loss of plantain fruits. Analysis of titratable acidity, moisture content and total soluble solids showed that there were no significant differences between fruits of hybrid and local varieties. The longest time to ripening from harvest (24 days was achieved with fruits of Agbagba treated with 3% propionic acid. However, fruits of PITA 2 hybrid treated with propionic and sorbic acid at 3% showed the longest green life which indicated that the chemicals may work better at higher concentrations. The Obino l’Ewai cultivar had the highest weight loss for all chemical types used. Modelling data obtained showed that plantain variety had the most significant effect on ripening and indicates that ripening of the fruits may depend on the plantain variety. It appears that weight loss of fruits from the plantain hybrid and local cultivars was not affected by the plantain variety, chemical type. The chemicals at higher concentrations may have an effect on ripening of the fruits and will need further investigation.

  18. Cambios en la Actividad Antioxidante en Frutos de Mortiño (Vaccinium meridionale Sw. durante su Desarrollo y Maduración Changes in the Antioxidant Activity in Mortiño Fruits (Vaccinium meridionale Sw. during Development and Ripening

    Directory of Open Access Journals (Sweden)

    Carlos Gaviria Montoya

    2012-06-01

    Full Text Available Resumen. Los frutos de mortiño (Vaccinium meridionale Sw. han atraído el interés de los consumidores debido a su alto contenido de compuestos polifenólicos y actividad antioxidante; sin embargo, no se ha realizado ninguna evaluación sobre los cambios durante su crecimiento y maduración. En este estudio se evaluó la variación en el contenido de fenoles y antocianinas totales y de la actividad antioxidante por las metodologías TEAC-ABTS, TEAC-DPPH, FRAP y ORAC. El fruto de mortiño presentó una curva de desarrollo doble sigmoide con tres estados de desarrollo diferenciables. La actividad antioxidante y el contenido de fenoles totales presentaron los valores máximos los días 17 para ORAC (27.116 TEAC/ 100 g FF y 36 para TEAC-ABTS (16.794 TEAC/ 100 g FF, TEAC-DPPH (5.502 TEAC/ 100 g FF, FRAP (1.289 AEAC/ 100 g FF y fenoles totales (4.804 mg ácido gálico/ 100 g FF. Los valores finales fueron 6.446, 5.688, 1.763 TEAC/ 100 g FF para ORAC, ABTS, DPPH, 375 AEAC/ 100 g FF para FRAP y 1.373 mg ácido gálico/ 100 g FF. El contenido de antocianinas varió desde 4,2 mg eq cianidin-3-glucosido/ 100 g FF hasta 271,9 mg eq cianidin-3-glucosido/ 100 g FF al final de la maduraciónAbstract. The mortiño fruits (Vaccinium meridionale Sw have attracted the interest of consumers due to its high content of polyphenolic compounds and antioxidant activity; however, there has been no assessment of changes during maturation and ripening. In this study, the changes in content of total polyphenols and total anthocyanins, and antioxidant activity were evaluated by TEAC-ABTS, TEAC-DPPH, FRAP and ORAC methods. The mortiño fruit exhibit a double sigmoid growth curve with three differentiable stages of growth. The antioxidant activity and total polyphenols content presented maximum the 17 day for ORAC (27,116 TEAC/ 100 g FW and 36 day for TEAC-ABTS (16,794 TEAC/ 100 g FW, TEAC-DPPH (5,502 TEAC/ 100 g FW, FRAP (1,289 AEAC/ 100 g FW and total polyphenols (4,804 mg

  19. Thap Maeo bananas: Fast ripening and full ethylene perception at low doses.

    Science.gov (United States)

    Saraiva, Lorenzo A; Castelan, Florence P; Gomes, Bruna L; Purgatto, Eduardo; Cordenunsi-Lysenko, Beatriz R

    2018-03-01

    Brazil is a major producer and consumer of various banana types. Thap Maeo is a promising cultivar for the market due to its resistance to Black and Yellow Sigatoka disease. However, a lack of information and postharvest technologies concerning Thap Maeo physiology seems to be a significant problem limiting its expansion in the market. Thus, this study aims to establish Thap Maeo fruit's physical, biochemical, and physiological aspects, defining the best ethylene dosage for treatment considering fruit ripening parameters. Bananas were harvested and monitored during both natural and ethylene-induced ripening processes. Assessments of pulp firmness, peel color and endogenous ethylene production showed different profiles between ethylene-treated and non-treated fruits, whereas the ethylene responses concerning the carbohydrates and hormones profiles, as well as the ethylene receptors expression, were observed in all ethylene-treated fruits, even applying low concentrations of the hormone. It thus indicated the high ethylene-sensitivity of Thap Maeo cultivar. Such postharvest behaviors reverberate in lower ethylene requirements for treatment, which was established at 10μLL -1 . Ethylene-inducible changes in fruit volatile compounds throughout ripening are also discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Altered Middle Lamella Homogalacturonan and Disrupted Deposition of (1¿5)-a -L-Arabinan in the Pericarp of Cnr, a Ripening Mutant of Tomato1

    DEFF Research Database (Denmark)

    Orfila, C.; Seymour, G.B; Willats, William George Tycho

    2001-01-01

    Cnr (colorless non-ripening) is a pleiotropic tomato (Lycopersicon esculentum) fruit ripening mutant with altered tissue properties including weaker cell-to-cell contacts in the pericarp (A.J. Thompson, M. Tor, C.S. Barry, J. Vrebalov, C. Orfila, M.C. Jarvis, J.J. Giovannoni, D. Grierson, G...

  1. Effect of maleic hydrazide and waxing on quality and shelf life of papaya (carica papaya L.) fruits

    International Nuclear Information System (INIS)

    Abu-Goukh, A. A.; Shattir, A. E.

    2012-01-01

    The effect of post harvest treatment of maleic hydrazide (MH) with and with out waxing on the quality and shelf-life of Baladi and Ekostika I papaya fruits at 18 ±1°C and 85%-90% relative humidity was evaluated. Maleic hydrazide at 250 and 500 ppm significantly delayed fruit ripening by two and three days in both papaya cultivars, respectively, compared with untreated fruits. The higher the concentration, the more was the delay in fruit ripening. The results also showed that waxing addition to MH resulted in a delay of two more days in fruit ripening that treatment with MH alone. The effect of MH and waxing treatments in delaying papaya fruits ripening was manifested in retarded respiratory climacteric, reduced weight loss and delayed fruit softening and increase in total soluble solids and ascorbic acid content.(Author)

  2. Testing fruit quality by photoacoustic spectroscopy assay

    International Nuclear Information System (INIS)

    Popa, C; Dumitras, D C; Patachia, M; Banita, S

    2014-01-01

    This study was conducted with the aim of testing the hypothesis that raspberry and strawberry fruits from nonorganic farming release more ethylene gas compounds compared to organic ones. At the same time, the experiments focused on evaluation of the potential and capabilities of the laser photoacoustic spectroscopy (LPAS) method in the assessment of fruit quality related to the effects of nitrogen. Ethylene gas can be harmful and carcinogenic, because it can accelerate the natural ripening process of physiologically mature fruits and makes the fruits more consistent in size. With the advantages of LPAS, we demonstrate that the concentration of ethylene from nonorganic raspberry and strawberry fruits is greater than from organic ones. (paper)

  3. Growth and Ripening of Globe Artichoke Achens

    Directory of Open Access Journals (Sweden)

    Yehuda Basnizki

    2007-12-01

    Full Text Available Under dry summer eastern Mediterranean conditions, the growth and ripening of seeds (from flowering onward can proceed without supply of water. The leaves and capitule bearing stems dry out while the receptacles stay moist and allow seed ripening. The functioning of the various capitule components was examined.

  4. Identification of volatile compound markers during the ripening and senescence of lulo (Solanum quitoense Lam.).

    Science.gov (United States)

    Corpas Iguarán, Eduardo; Taborda Ocampo, Gonzalo; Tapasco Alzate, Omar

    2018-01-01

    Lulo ( Solanum quitoense Lam.) is an exotic fruit cultivated in Colombia. During ripening and senescence, this climactic fruit undergoes biochemical processes that produce the volatiles responsible for its aroma. This study aimed to evaluate the changes in the volatile content during the ripening and senescence of lulo. Analysis of the volatile composition of lulo harvested in each of its five ripening stages and during its senescence time when stored at 18 ± 2 °C was performed using HS-SPME with GC-MS. Throughout ripening, the most notable change was the transformation of alcohols such as (Z)-3-hexen-1-ol and 1-penten-3-ol to afford esters such as (Z)-3-hexenyl acetate and ketones such as 1-penten-3-one. Some acids reacted with alcohols to produce acetate and hexanoate esters, concentrations which increased more than sixfold between stage one and five. Moreover, all the major compounds were C 6 straight chain compounds related to the lipoxygenase pathway. During senescence, majority of compounds were methyl esters, which increased in concentration consistently until day eight. Remarkably, the content of methyl butanoate increased from 0.9% of the total amount of volatiles on day two up to 76.4% on day eight. Some of these volatiles are probably contributors to the "off flavor" during senescence.

  5. Differential feedback regulation of ethylene biosynthesis in pulp and peel tissues of banana fruit.

    Science.gov (United States)

    Inaba, Akitsugu; Liu, Xuejun; Yokotani, Naoki; Yamane, Miki; Lu, Wang-Jin; Nakano, Ryohei; Kubo, Yasutaka

    2007-01-01

    The feedback regulation of ethylene biosynthesis in banana [Musa sp. (AAA group, Cavendish subgroup) cv. Grand Nain] fruit was investigated in an attempt to clarify the opposite effect of 1-methylcyclopropene (1-MCP), an ethylene action inhibitor, before and after the onset of ripening. 1-MCP pre-treatment completely prevented the ripening-induced effect of propylene in pre-climacteric banana fruit, whereas treatment after the onset of ripening stimulated ethylene production. In pre-climacteric fruit, higher concentrations of propylene suppressed ethylene production more strongly, despite their earlier ethylene-inducing effect. Exposure of the fruit ripened by propylene to 1-MCP increased ethylene production concomitantly with an increase in 1-aminocyclopropane-1-carboxylate (ACC) synthase activity and ACC content, and prevented a transient decrease in MA-ACS1 transcripts in the pulp tissues. In contrast, in the peel of ripening fruit, 1-MCP prevented the increase in ethylene production and subsequently the ripening process by reduction of the increase in MA-ACS1 and MA-ACO1 transcripts and of ACC synthase and ACC oxidase activities. These results suggest that ethylene biosynthesis in ripening banana fruit may be controlled negatively in the pulp tissue and positively in the peel tissue. This differential regulation by ethylene in pulp and peel tissues was also observed for MA-PL, MA-Exp, and MA-MADS genes.

  6. Determination of Soursop (Annona muricata L. cv. Elita Fruit Volatiles during Ripening by Electronic Nose and Gas Chromatography Coupled to Mass Spectroscopy / Determinación de Compuestos Volátiles en Frutos de Guanábana (Annona muricata L. cv. Elita, d

    Directory of Open Access Journals (Sweden)

    Carlos Julio Márquez Cardozo

    2013-12-01

    highly perishable tropical fruit commercially grown in Colombia, soursop (Annona muricata L. is currently in need of postharvest handling studies. Thus, the present researchwas conducted to characterize the volatile compounds of soursop cv. Elita during postharvest. For this purpose, fruit ripeness wasevaluated, for one thing, by a volatile compound measuring systemknown as electronic nose (EN, and for another thing, by headspacesolid phase microextraction and gas chromatography massspectrometry (HS-SPME/GC-MS. The profile of volatile substancesin fruits is one of the main indicators of the sensory attributes that  typify the organoleptic quality of these products. The EN constitutesan economical, relatively simple, fast and innovative alternative to determine groups of volatile compounds in whole or fractionatedsamples from fruits of commercial interest. In contrast, and despite its being a highly selective technique, the use of SPME/CG-MS might be limited by its elevated cost. Based on EN assessment, fruit ripening stages were classified as unripe, half ripe, ripe and overripe. The most active EN sensors were numbers 2 sensitiveto nitrogen oxides, 6 (sensitive to methane and 8 (sensitive toalcohols and partially aromatic compounds. HS-SPME/GCMS analysis allowed establishing that during postharvest, the major proportion of volatile compounds corresponded to esters, predominantly Methyl hexanoate. Particularly in overripe fruits, the presence of alcoholic compounds coincides with the EN assessment, which, for its part, detected mainly alcohols and a wide range of aromatic substances. The study contributes to the characterization of postharvest volatiles, which are one of themajor sensory attributes of tropical fruits.

  7. Comparative transcriptome analysis reveals distinct ethylene-independent regulation of ripening in response to low temperature in kiwifruit.

    Science.gov (United States)

    Asiche, William O; Mitalo, Oscar W; Kasahara, Yuka; Tosa, Yasuaki; Mworia, Eric G; Owino, Willis O; Ushijima, Koichiro; Nakano, Ryohei; Yano, Kentaro; Kubo, Yasutaka

    2018-03-21

    Kiwifruit are classified as climacteric since exogenous ethylene (or its analogue propylene) induces rapid ripening accompanied by ethylene production under positive feedback regulation. However, most of the ripening-associated changes (Phase 1 ripening) in kiwifruit during storage and on-vine occur largely in the absence of any detectable ethylene. This ripening behavior is often attributed to basal levels of system I ethylene, although it is suggested to be modulated by low temperature. To elucidate the mechanisms regulating Phase 1 ripening in kiwifruit, a comparative transcriptome analysis using fruit continuously exposed to propylene (at 20 °C), and during storage at 5 °C and 20 °C was conducted. Propylene exposure induced kiwifruit softening, reduction of titratable acidity (TA), increase in soluble solids content (SSC) and ethylene production within 5 days. During storage, softening and reduction of TA occurred faster in fruit at 5 °C compared to 20 °C although no endogenous ethylene production was detected. Transcriptome analysis revealed 3761 ripening-related differentially expressed genes (DEGs), of which 2742 were up-regulated by propylene while 1058 were up-regulated by low temperature. Propylene exclusively up-regulated 2112 DEGs including those associated with ethylene biosynthesis and ripening such as AcACS1, AcACO2, AcPL1, AcXET1, Acβ-GAL, AcAAT, AcERF6 and AcNAC7. Similarly, low temperature exclusively up-regulated 467 DEGS including AcACO3, AcPL2, AcPMEi, AcADH, Acβ-AMY2, AcGA2ox2, AcNAC5 and AcbZIP2 among others. A considerable number of DEGs such as AcPG, AcEXP1, AcXET2, Acβ-AMY1, AcGA2ox1, AcNAC6, AcMADS1 and AcbZIP1 were up-regulated by either propylene or low temperature. Frequent 1-MCP treatments failed to inhibit the accelerated ripening and up-regulation of associated DEGs by low temperature indicating that the changes were independent of ethylene. On-vine kiwifruit ripening proceeded in the absence of any detectable

  8. Quality of pitaya fruit (Hylocereus undatus as influenced by storage temperature and packaging

    Directory of Open Access Journals (Sweden)

    Sérgio Tonetto de Freitas

    2013-08-01

    Full Text Available Pitaya (Hylocereus undatus is an exotic non-climacteric fruit that reaches its best eating quality when harvested ripe, decreasing thereafter during storage. Our objectives were to determine the best combination of storage temperature and use of perforated plastic bags to maintain the postharvest quality of the fruit. Fruits were stored at 5, 7, or 10 ºC with and without a perforated plastic bag for 20 days, followed by five days at 20 ºC without the bag for shelf-life determination. Storage at 5 ºC, followed by 7 ºC maintained better visual appearance of the pitaya fruit after 20 days, by reducing decay incidence and severity, and maintaining greener bracts compared with fruit stored at 10 ºC. Pitaya fruit stored at 5 ºC without a perforated plastic bag showed no decay after storage and shelf-life. In general, higher temperatures and the use of a perforated plastic bag increased decay incidence, as well as decay severity after storage and shelf-life conditions. At all temperatures, fruit stored in a perforated plastic bag had lower weight loss during storage. After shelf-life, weight loss was highest in fruit stored at higher temperatures. Storage of fruits at 5 ºC resulted in minor chilling injury symptoms in the outer flesh tissue, close to the peel. Storage at 5 ºC without a perforated plastic bag was the best condition to maintain the postharvest quality of the pitaya fruit.

  9. Optical properties, ethylene production and softening in mango fruits

    NARCIS (Netherlands)

    Eccher Zerbini, P.C.; Vanoli, M.; Rizzolo, A.; Grassi, M.; Meirelles de Azevedo Pementel, A.; Spinelli, L.; Torricelli, A.

    2015-01-01

    Firmness decay, chlorophyll breakdown and carotenoid accumulation, controlled by ethylene, are major ripening events in mango fruit. Pigment content and tissue structure affect the optical properties of the mesocarp, which can be measured nondestructively in the intact fruit by time-resolved

  10. Mutated clones of sweet orange cv. pera with late ripening obtained through mutation induction

    International Nuclear Information System (INIS)

    Rocha Latado, Rodrigo; Tulmann Neto, Augusto; Ando, Akihiko; Iemma, Antonio Francisco; Pompeu Junior, Jorgino; Figueiredo, Jose Orlando; Pio, Rose Mary; Machado, Marcos Antonio; Namekata, Takao; Ceravolo, Leonardo; Rossi, Antonio Carlos

    2001-01-01

    Sweet orange cv. Pera (Citrus sinensis L. Osbeck) harvested from July to November, is the most important cultivar in growing area and consumption in Brazil. To obtain mutants for many characteristics, one-year-old shoots were irradiated at 40 Gy of gamma-rays and the axillary buds were budded. After two cutting-backs, about 7,580 V3M1 plants were obtained. Total of 127 putative mutants were selected from these plants for further examination. The main purpose of this experiment was to obtain late ripening clones which have good fruit quality. These all plants were divided into 15 groups based on the characteristics and random blocks design with 5 replications, including one control plant in each block, was used. The plants were planted 4 X 7 meters and were grown in field condition without artificial irrigation. Ten fruits from each tree were used in evaluating the fruit characteristics such as contents of soluble solid (TSS), acidity, ratio of juice content and skin color, for four years. The data was analyzed by Dunnett test using SAS program. Six clones (9, 10, 16, 21, 58 and 84) were considered as late ripening mutants because they showed lower level of TSS or less ratio of juice content, comparing with the control, in more than one evaluation. The color of the skin of some mutants indicates that they have later ripening characteristics. Other agronomic characteristics are under evaluation in order to see if these mutants can be released as new cultivars

  11. Influence of gamma radiation on carbohydrates metabolism of ripening papaya (Carica papaya L. cv. Solo)

    International Nuclear Information System (INIS)

    Gomez, M.L.P.A.; Lajolo, F.M.; Cordenunsi, B.R.

    1999-01-01

    Food irradiation is one of the most promising treatments that can be utilized for fruits disinfestation and extension of shelf life. The authors studied the influence of 0,5 kGy of Gamma irradiation on the soluble carbohydrates composition of papaya (Carica papaya L. cv. Solo) fruit, and on sucrose metabolizing enzymes: sucrose synthase (SS), sucrose-phosphate synthase, acid and neutral invertases activities, during ripening. The results demonstrated that ethylene production, total soluble sugars, sucrose content, and sucrose-phosphate synthase and invertases activities were affected by irradiation, but not respiration, glucose and fructose content, and SS activity. (author)

  12. Gamma radiation protects fruit quality in tomato by inhibiting the production of reactive oxygen species (ROS) and ethylene

    International Nuclear Information System (INIS)

    Mahesh Kumar; Sumedha Ahuja; Bhupinder Singh; Anil Dahuja; Raj Kumar

    2014-01-01

    Experiments were conducted to examine the individual and combined effect of two different electromagnetic energies, i.e., gamma ray viz 0.1, 0.5 and 1 kGy and static magnetic field (50 mT for 1 h) and their combination (0.5 kGy + 50 mT) on the shelf life of tomato and evaluates the biochemical attributes that influence the fruit ripening and fruit quality. Magnetic field application either alone or in combination with gamma irradiation was not effective in delaying the ripening process. Gamma ray exposed fruits at 0.5 and 1 kGy showed an extended shelf life due to delayed fruit ripening and reduced lycopene synthesis and ethylene production. Efficient ROS scavenging ability and consequent reduction in oxidative damage in the irradiated treatment may cause favorable biochemical changes to facilitate delayed ripening of the tomato fruits. (author)

  13. A mechanistic modelling approach to understand 1-MCP inhibition of ethylene action and quality changes during ripening of apples.

    Science.gov (United States)

    Gwanpua, Sunny George; Verlinden, Bert E; Hertog, Maarten Latm; Nicolai, Bart M; Geeraerd, Annemie H

    2017-08-01

    1-Methylcyclopropene (1-MCP) inhibits ripening in climacteric fruit by blocking ethylene receptors, preventing ethylene from binding and eliciting its action. The objective of the current study was to use mathematical models to describe 1-MCP inhibition of apple fruit ripening, and to provide a tool for predicting ethylene production, and two important quality indicators of apple fruit, firmness and background colour. A model consisting of coupled differential equations describing 1-MCP inhibition of apple ripening was developed. Data on ethylene production, expression of ethylene receptors, firmness, and background colour during ripening of untreated and 1-MCP treated apples were used to calibrate the model. An overall adjusted R 2 of 95% was obtained. The impact of time from harvest to treatment, and harvest maturity on 1-MCP efficacy was modelled. Different hypotheses on the partial response of 'Jonagold' apple to 1-MCP treatment were tested using the model. The model was validated using an independent dataset. Low 1-MCP blocking efficacy was shown to be the most likely cause of partial response for delayed 1-MCP treatment, and 1-MCP treatment of late-picked apples. Time from harvest to treatment was a more important factor than maturity for 1-MCP efficacy in 'Jonagold' apples. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  14. Antioxidant and enzymatic responses to oxidative stress induced by pre-harvest water supply reduction and ripening on mango (Mangifera indica L. cv. 'Cogshall') in relation to carotenoid content

    OpenAIRE

    Rosalie , Rémy; Joas , Jacques; Deytieux-Belleau , Christelle; Vulcain , Emmanuelle; Payet , Bertrand; Dufossé , Laurent; Léchaudel , Mathieu

    2015-01-01

    International audience; The effects of a reduction in water supply during fruit development and postharvest fruit ripening on the oxidative status and the antioxidant defense system were studied in the mango fruit (Mangifera indica L.) cv. Cogshall. Changes in non-enzymatic (ascorbate) and enzymatic (SOD, CAT, APX, MDHAR, DHAR and GR) antioxidants, as well as oxidative parameters (H 2 O 2 and MDA) and major carotenoids, were measured in unripe and ripe fruits from well-irrigated and non-irrig...

  15. Engineering melon plants with improved fruit shelf life using the TILLING approach.

    Directory of Open Access Journals (Sweden)

    Fatima Dahmani-Mardas

    2010-12-01

    Full Text Available Fruit ripening and softening are key traits that have an effect on food supply, fruit nutritional value and consequently, human health. Since ethylene induces ripening of climacteric fruit, it is one of the main targets to control fruit over ripening that leads to fruit softening and deterioration. The characterization of the ethylene pathway in Arabidopsis and tomato identified key genes that control fruit ripening.To engineer melon fruit with improved shelf-life, we conducted a translational research experiment. We set up a TILLING platform in a monoecious and climacteric melon line, cloned genes that control ethylene production and screened for induced mutations that lead to fruits with enhanced shelf life. Two missense mutations, L124F and G194D, of the ethylene biosynthetic enzyme, ACC oxidase 1, were identified and the mutant plants were characterized with respect to fruit maturation. The L124F mutation is a conservative mutation occurring away from the enzyme active site and thus was predicted to not affect ethylene production and thus fruit ripening. In contrast, G194D modification occurs in a highly conserved amino acid position predicted, by crystallographic analysis, to affect the enzymatic activity. Phenotypic analysis of the G194D mutant fruit showed complete delayed ripening and yellowing with improved shelf life and, as predicted, the L124F mutation did not have an effect.We constructed a mutant collection of 4023 melon M2 families. Based on the TILLING of 11 genes, we calculated the overall mutation rate of one mutation every 573 kb and identified 8 alleles per tilled kilobase. We also identified a TILLING mutant with enhanced fruit shelf life. This work demonstrates the effectiveness of TILLING as a reverse genetics tool to improve crop species. As cucurbits are model species in different areas of plant biology, we anticipate that the developed tool will be widely exploited by the scientific community.

  16. Antioxidant and enzymatic responses to oxidative stress induced by pre-harvest water supply reduction and ripening on mango (Mangifera indica L. cv. 'Cogshall') in relation to carotenoid content.

    Science.gov (United States)

    Rosalie, Rémy; Joas, Jacques; Deytieux-Belleau, Christelle; Vulcain, Emmanuelle; Payet, Bertrand; Dufossé, Laurent; Léchaudel, Mathieu

    2015-07-20

    The effects of a reduction in water supply during fruit development and postharvest fruit ripening on the oxidative status and the antioxidant defense system were studied in the mango fruit (Mangifera indica L.) cv. Cogshall. Changes in non-enzymatic (ascorbate) and enzymatic (SOD, CAT, APX, MDHAR, DHAR and GR) antioxidants, as well as oxidative parameters (H2O2 and MDA) and major carotenoids, were measured in unripe and ripe fruits from well-irrigated and non-irrigated trees. Under non-limiting water supply conditions, ripening induced oxidation as a result of the production of ROS and decreased ascorbate content. Antioxidant enzymatic systems were activated to protect fruit tissues and to regenerate the ascorbate pool. The carotenoid pool, mainly represented by β-carotene and esterified violaxanthine isomers, accumulated naturally during mango ripening. The suppression of irrigation decreased fruit size and induced accumulation of ABA and of its storage form, ABA-GE, in fruit pulp from the earliest harvest. It also increased oxidation, which was observable by the high levels of ascorbate measured at the early stages at harvest, and by the delay in the time it took to reach the pseudo constant carotene-to-xanthophyll ratio in ripe fruits. Nevertheless, differences between the irrigation treatments on the antioxidant system in ripe fruits were not significant, mainly because of the drastic changes in this system during ripening. Copyright © 2015 Elsevier GmbH. All rights reserved.

  17. Fruit development of the diploid kiwifruit, Actinidia chinensis 'Hort16A'

    Directory of Open Access Journals (Sweden)

    Richardson Annette C

    2011-12-01

    Full Text Available Abstract Background With the advent of high throughput genomic tools, it is now possible to undertake detailed molecular studies of individual species outside traditional model organisms. Combined with a good understanding of physiological processes, these tools allow researchers to explore natural diversity, giving a better understanding of biological mechanisms. Here a detailed study of fruit development from anthesis through to fruit senescence is presented for a non-model organism, kiwifruit, Actinidia chinensis ('Hort16A'. Results Consistent with previous studies, it was found that many aspects of fruit morphology, growth and development are similar to those of the model fruit tomato, except for a striking difference in fruit ripening progression. The early stages of fruit ripening occur as the fruit is still growing, and many ripening events are not associated with autocatalytic ethylene production (historically associated with respiratory climacteric. Autocatalytic ethylene is produced late in the ripening process as the fruit begins to senesce. Conclusion By aligning A. chinensis fruit development to a phenological scale, this study provides a reference framework for subsequent physiological and genomic studies, and will allow cross comparison across fruit species, leading to a greater understanding of the diversity of fruits found across the plant kingdom.

  18. From root to fruit: RNA-Seq analysis shows that arbuscular mycorrhizal symbiosis may affect tomato fruit metabolism

    OpenAIRE

    Inès, Zouari; Alessandra, Salvioli; Matteo, Chialva; Mara, Novero; Laura, Miozzi; Gian Carlo, Tenore; Paolo, Bagnaresi; Paola, Bonfante

    2014-01-01

    Background Tomato (Solanum lycopersicum) establishes a beneficial symbiosis with arbuscular mycorrhizal (AM) fungi. The formation of the mycorrhizal association in the roots leads to plant-wide modulation of gene expression. To understand the systemic effect of the fungal symbiosis on the tomato fruit, we used RNA-Seq to perform global transcriptome profiling on Moneymaker tomato fruits at the turning ripening stage. Results Fruits were collected at 55 days after flowering, from plants coloni...

  19. Delayed post-harvest ripening-associated changes in Manilkara zapota L. var. Kalipatti with composite edible coating.

    Science.gov (United States)

    Vishwasrao, Chandrahas; Ananthanarayan, Laxmi

    2017-01-01

    There has been limited research on extending the shelf-life of sapota (Manilkara zapota L. var. Kalipatti) fruit. An edible coating made up of methyl cellulose (MC) and palm oil (PO) was applied to study the extension in shelf-life. Changes in physical and chemical properties of fruit were studied along with peroxidase (POD), polyphenol oxidase (PPO) and pectin methylesterase (PME) activities during post-harvest ripening of sapota. The fruits coated with 15 g L -1 MC and 11.25 g L -1 PO showed significant (P edible coating made up of MC-PO has potential to maintain the quality of sapota fruit. The edible coating extended the shelf-life of sapota fruit by 3 days preserving fruit quality up to 7 days at 24 ± 1 °C and 65 ± 5 %RH. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  20. Color back projection for fruit maturity evaluation

    Science.gov (United States)

    Zhang, Dong; Lee, Dah-Jye; Desai, Alok

    2013-12-01

    In general, fruits and vegetables such as tomatoes and dates are harvested before they fully ripen. After harvesting, they continue to ripen and their color changes. Color is a good indicator of fruit maturity. For example, tomatoes change color from dark green to light green and then pink, light red, and dark red. Assessing tomato maturity helps maximize its shelf life. Color is used to determine the length of time the tomatoes can be transported. Medjool dates change color from green to yellow, and the orange, light red and dark red. Assessing date maturity helps determine the length of drying process to help ripen the dates. Color evaluation is an important step in the processing and inventory control of fruits and vegetables that directly affects profitability. This paper presents an efficient color back projection and image processing technique that is designed specifically for real-time maturity evaluation of fruits. This color processing method requires very simple training procedure to obtain the frequencies of colors that appear in each maturity stage. This color statistics is used to back project colors to predefined color indexes. Fruit maturity is then evaluated by analyzing the reprojected color indexes. This method has been implemented and used for commercial production.

  1. Effect of Biological and Chemical Ripening Agents on the Nutritional ...

    African Journals Online (AJOL)

    Effect of Biological and Chemical Ripening Agents on the Nutritional and Metal Composition of Banana ( Musa spp ) ... Journal Home > Vol 18, No 2 (2014) > ... curcas leaf were used and compared with a control with no ripening agent.

  2. Physicochemical Changes and Antioxidant Activity of Juice, Skin, Pellicle and Seed of Pomegranate (cv. Mollar de Elche at Different Stages of Ripening

    Directory of Open Access Journals (Sweden)

    Elsa C. D. Ramalhosa

    2015-01-01

    Full Text Available In the present work, we investigate how the degree of ripeness (low, low-medium, medium and medium-high affects the physical and compositional changes, as well as antioxidant properties of pomegranate fruit (cv. Mollar de Elche. The skin, pellicle, seed and juice were analysed. The fruit mass increased and the fruit skin became reddish (higher a* and lower h* as the fruit ripening progressed. The lowest concentrations of flavonoids and hydrolysable tannins were recorded in skin and pellicles at medium-high maturity stage, which explains the decrease in the total phenols and reducing power during ripening of pomegranate. On the contrary, the highest concentration of flavonoids (165 mg of quercetin equivalents per 100 mL of juice was determined in the juice at the most advanced ripening stage, concomitant with the highest total phenols (1695 mg of gallic acid equivalents per 100 mL of juice. Higher DPPH scavenging activity and an increase in the reducing power of juice were also observed during ripening. The trend of the above-mentioned properties allowed describing the fruit development and maturity.

  3. Perturbation of polyamine catabolism affects grape ripening of Vitis vinifera cv. Trincadeira.

    Science.gov (United States)

    Agudelo-Romero, Patricia; Ali, Kashif; Choi, Young H; Sousa, Lisete; Verpoorte, Rob; Tiburcio, Antonio F; Fortes, Ana M

    2014-01-01

    Grapes are economically the most important fruit worldwide. However, the complexity of biological events that lead to ripening of nonclimacteric fruits is not fully understood, particularly the role of polyamines' catabolism. The transcriptional and metabolic profilings complemented with biochemical data were studied during ripening of Trincadeira grapes submitted to guazatine treatment, a potent inhibitor of polyamine oxidase activity. The mRNA expression profiles of one time point (EL 38) corresponding to harvest stage was compared between mock and guazatine treatments using Affymetrix GrapeGen(®) genome array. A total of 2113 probesets (1880 unigenes) were differentially expressed between these samples. Quantitative RT-PCR validated microarrays results being carried out for EL 35 (véraison berries), EL 36 (ripe berries) and EL 38 (harvest stage berries). Metabolic profiling using HPLC and (1)H NMR spectroscopy showed increase of putrescine, proline, threonine and 1-O-ethyl-β-glucoside in guazatine treated samples. Genes involved in amino acid, carbohydrate and water transport were down-regulated in guazatine treated samples suggesting that the strong dehydrated phenotype obtained in guazatine treated samples may be due to impaired transport mechanisms. Genes involved in terpenes' metabolism were differentially expressed between guazatine and mock treated samples. Altogether, results support an important role of polyamine catabolism in grape ripening namely in cell expansion and aroma development. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  4. Changes in transcription of cytokinin metabolism and signalling genes in grape (Vitis vinifera L.) berries are associated with the ripening-related increase in isopentenyladenine.

    Science.gov (United States)

    Böttcher, Christine; Burbidge, Crista A; Boss, Paul K; Davies, Christopher

    2015-09-16

    Cytokinins are known to play an important role in fruit set and early fruit growth, but their involvement in later stages of fruit development is less well understood. Recent reports of greatly increased cytokinin concentrations in the flesh of ripening kiwifruit (Actinidia deliciosa (A. Chev.) C.F. Liang & A.R. Ferguson) and grapes (Vitis vinifera L.) have suggested that these hormones are implicated in the control of ripening-related processes. A similar pattern of isopentenyladenine (iP) accumulation was observed in the ripening fruit of several grapevine cultivars, strawberry (Fragaria ananassa Duch.) and tomato (Solanum lycopersicum Mill.), suggesting a common, ripening-related role for this cytokinin. Significant differences in maximal iP concentrations between grapevine cultivars and between fruit species might reflect varying degrees of relevance or functional adaptations of this hormone in the ripening process. Grapevine orthologues of five Arabidopsis (Arabidopsis thaliana L.) gene families involved in cytokinin metabolism and signalling were identified and analysed for their expression in developing grape berries and a range of other grapevine tissues. Members of each gene family were characterised by distinct expression profiles during berry development and in different grapevine organs, suggesting a complex regulation of cellular cytokinin activities throughout the plant. The post-veraison-specific expression of a set of biosynthesis, activation, perception and signalling genes together with a lack of expression of degradation-related genes during the ripening phase were indicative of a local control of berry iP concentrations leading to the observed accumulation of iP in ripening grapes. The transcriptional analysis of grapevine genes involved in cytokinin production, degradation and response has provided a possible explanation for the ripening-associated accumulation of iP in grapes and other fruit. The pre- and post-veraison-specific expression of

  5. The language of cheese-ripening cultures

    DEFF Research Database (Denmark)

    Gori, Klaus; Jespersen, Lene

    2010-01-01

    Microbial interactions are of importance for the establishment and growth of cheese ripening cultures. An interesting aspect of microbial interactions is cell-cell communication, often referred to as quorum sensing; the process in which micro-organisms communicate with signalling molecules and co......-ordinate gene expression in a cell density dependent manner. Little is known about quorum sensing in foods. However, as quorum sensing is expected to be a general phenomenon in micro-organisms, it is likely to be of importance for micro-organisms in foods. An example of a food product where quorum sensing could...... be of importance is surface ripened cheeses. The present review focuses on our findings on quorum sensing systems in cheese ripening cultures. The main focus is on the group of bacterial non-species-specific signalling molecules referred to as autoinducer-2 (AI-2) in smear bacteria as well as alcohol...

  6. Pectins, Hemicelluloses and Celluloses Show Specific Dynamics in the Internal and External Surfaces of Grape Berry Skin During Ripening.

    Science.gov (United States)

    Fasoli, Marianna; Dell'Anna, Rossana; Dal Santo, Silvia; Balestrini, Raffaella; Sanson, Andrea; Pezzotti, Mario; Monti, Francesca; Zenoni, Sara

    2016-06-01

    Grapevine berry skin is a complex structure that contributes to the final size and shape of the fruit and affects its quality traits. The organization of cell wall polysaccharides in situ and their modification during ripening are largely uncharacterized. The polymer structure of Corvina berry skin, its evolution during ripening and related modifying genes were determined by combing mid-infrared micro-spectroscopy and multivariate statistical analysis with transcript profiling and immunohistochemistry. Spectra were acquired in situ using a surface-sensitive technique on internal and external sides of the skin without previous sample pre-treatment, allowing comparison of the related cell wall polymer dynamics. The external surface featured cuticle-related bands; the internal surface showed more adsorbed water. Application of surface-specific normalization revealed the major molecular changes related to hemicelluloses and pectins in the internal surface and to cellulose and pectins in the external surface and that they occur between mid-ripening and full ripening in both sides of the skin. Transcript profiling of cell wall-modifying genes indicated a general suppression of cell wall metabolism during ripening. Genes related to pectin metabolism-a β-galactosidase, a pectin(methyl)esterase and a pectate lyase-and a xyloglucan endotransglucosylase/hydrolase, involved in hemicellulose modification, showed enhanced expression. In agreement with Fourier transform infrared spectroscopy, patterns due to pectin methyl esterification provided new insights into the relationship between pectin modifications and the associated transcript profile during skin ripening. This study proposes an original description of polymer dynamics in grape berries during ripening, highlighting differences between the internal and external sides of the skin. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For

  7. Ripening-Dependent Changes in Antioxidants, Color Attributes, and Antioxidant Activity of Seven Tomato (Solanum lycopersicum L. Cultivars

    Directory of Open Access Journals (Sweden)

    Shiva Ram Bhandari

    2016-01-01

    Full Text Available To evaluate the ripening-dependent changes in phytonutrients, seven commercial cultivars (two general and five cherry of tomatoes were cultivated under greenhouse conditions. Fruits were harvested at breaker, turning, pink, light red, and red stages of each cultivar, and antioxidant contents, color attributes, and antioxidant activities were measured. During ripening process, lycopene content increased from the breaker to red stage, while lutein displayed the reverse accumulation pattern, with higher values during the breaker stage. In contrast, β-carotene showed the highest levels of synthesis in pink and light red stages. Furthermore, flavonoids (quercetin, rutin, naringenin, and luteolin also showed similar ripening-dependent changes, with higher quantities in pink and light red stages. Ascorbic acid showed continuously increasing patterns throughout ripening until the red stage, while the accumulation of total phenolics was cultivar-dependent. These results indicate that each antioxidant compound has a unique pattern of accumulation and degradation during the ripening process. “Unicon” exhibited highest total carotenoid (110.27 mg/100 g, total phenol (297.88 mg GAE/100 g and total flavonoid content (273.33 mg/100 g, and consequently highest antioxidant activity (2552.4 μmol TE/100 g compared to other cultivars. Throughout the ripening processes, total phenolics showed the highest correlation with antioxidant activity, followed by β-carotene and total flavonoids. In conclusion, ripening in tomatoes is accompanied by incremental increases in various antioxidant compounds to some extent, as well as by concomitant increases in antioxidant activity.

  8. Volatile compounds released during ripening in Italian dried sausage

    DEFF Research Database (Denmark)

    Sunesen, Lars Oddershede; Dorigoni, V.; Zanardi, E.

    2001-01-01

    increased during ripening. Pepper compound concentrations peaked in the middle of the ripening period. Lipid oxidation products increased especially towards the end of ripening, in particular, the compounds 2-heptanol, 1-octen-3-ol, 2-heptanone and 2-nonanone. Surface moulds probably caused 4-heptanone...

  9. Temperature and relative humidity influence the ripening descriptors of Camembert-type cheeses throughout ripening.

    Science.gov (United States)

    Leclercq-Perlat, M-N; Sicard, M; Perrot, N; Trelea, I C; Picque, D; Corrieu, G

    2015-02-01

    Ripening descriptors are the main factors that determine consumers' preferences of soft cheeses. Six descriptors were defined to represent the sensory changes in Camembert cheeses: Penicillium camemberti appearance, cheese odor and rind color, creamy underrind thickness and consistency, and core hardness. To evaluate the effects of the main process parameters on these descriptors, Camembert cheeses were ripened under different temperatures (8, 12, and 16°C) and relative humidity (RH; 88, 92, and 98%). The sensory descriptors were highly dependent on the temperature and RH used throughout ripening in a ripening chamber. All sensory descriptor changes could be explained by microorganism growth, pH, carbon substrate metabolism, and cheese moisture, as well as by microbial enzymatic activities. On d 40, at 8°C and 88% RH, all sensory descriptors scored the worst: the cheese was too dry, its odor and its color were similar to those of the unripe cheese, the underrind was driest, and the core was hardest. At 16°C and 98% RH, the odor was strongly ammonia and the color was dark brown, and the creamy underrind represented the entire thickness of the cheese but was completely runny, descriptors indicative of an over ripened cheese. Statistical analysis showed that the best ripening conditions to achieve an optimum balance between cheese sensory qualities and marketability were 13±1°C and 94±1% RH. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  10. The Effect of MethyI Jasmonate on Ethylene Production, ACC Oxidase Activity and Carbon Dioxide Evolution in the Yellowish-Tangerine Tomato Fruits (Lycopersicon esculentum Mill.

    Directory of Open Access Journals (Sweden)

    Janusz Czapski

    2013-12-01

    Full Text Available The yellowish-tangerine tomato (cv. Bursztyn in the green, light yellow and yellow stages of ripening were treated with 0.1% and 1.0% of methyl jasmonate (JA-Me in lanolin paste and kept for several days and then they were evaluated for production of ethylene, ACC oxidase activity and CO2 evolution. Production of endogenous ethylene in mature green fruits was low and increased during ripening. JA-Me stimulated ethylene production and ACC oxidase activity in all investigated stages of fruit ripening. Slices excised from mature green fruits produced highest amount of carbon dioxide as compared to more advanced stages of ripening. JA-Me in O,1 % and 1,0% concentrations increased significantly CO2 evolution in green fruits, while in light yellow and yellow fruits only higher concentration of JA-Me stimulated carbon dioxide production.

  11. Seasonal occurrence of the Mediterranean fruit fly, Ceratitis capitata (Wiedemann, 1824) (Diptera: Tephritidae) in southern Syria

    OpenAIRE

    Mansour Mohammed; Mohamad Fater

    2016-01-01

    Population fluctuations of the Mediterranean fruit fly (medfly), Ceratitis capitata, were investigated between 1999 and 2001 at several locations representing fruit production areas in the southern part of Syria (Damascus Ghota, Zabadani, Sargaiah, Rankus, Orneh and Ain Al-Arab). Medfly adults were monitored weekly all year around using Jackson traps baited with trimedlure dispensers. Larvae were also sampled in Damascus Ghota by collecting fruits from ripe or ripening fruit trees and recordi...

  12. Chitosan Coating: A Postharvest Treatment to Delay Oxidative Stress in Loquat Fruits during Cold Storage

    Directory of Open Access Journals (Sweden)

    Giuseppina Adiletta

    2018-04-01

    Full Text Available Loquat is a non-climacteric fruit consumed fresh for its essential nutrients and phytochemical compounds. In this study, the effects of chitosan coating (1% w/v on changes in the enzymatic antioxidant and membrane damage in three loquat selections (CREAFRC-S18; CREAFRC-S35 and CREAFRC-S36 and three loquat cultivars (Golden Nugget, Algerie and Nespolone rosso di Trabia stored at 7 °C over 21 days were evaluated. Chitosan treatment enhanced the activities of superoxide dismutase, catalase and ascorbate peroxidase. Moreover, this treatment inhibited polyphenol oxidase and guaiacol peroxidase activities, extending the storage life of loquat. Chitosan also preserved membrane integrity by inhibiting lipoxygenase activity and malondialdehyde accumulation. Principal component analysis provided a global view of the responses of both loquat selections and cultivars to the postharvest chitosan coating and storage temperature. These findings suggest that chitosan treatment could be a valid tool for improving the activity of antioxidant enzymes, preserving the enzymatic browning of loquat fruits.

  13. Date fruit: chemical composition, nutritional and medicinal values, products.

    Science.gov (United States)

    Tang, Zhen-Xing; Shi, Lu-E; Aleid, Salah M

    2013-08-15

    Date fruit has served as a staple food in the Arab world for centuries. Worldwide production of date fruit has increased almost threefold over the last 40 years, reaching 7.68 million tons in 2010. Date fruit can provide many essential nutrients and potential health benefits to the consumer. Date fruit goes through four ripening stages named kimri, khalal, rutab and tamer. The main chemical components of date fruit include carbohydrates, dietary fibre, enzymes, protein, fat, minerals, vitamins, phenolic acids and carotenoids. The chemical composition of date fruit varies according to ripening stage, cultivar, growing environment, postharvest conditions, etc. The nutritional and medicinal activities of date fruit are related to its chemical composition. Many studies have shown that date fruit has antioxidant, antimutagenic, anti-inflammatory, gastroprotective, hepatoprotective, nephroprotective, anticancer and immunostimulant activities. Various date fruit-based products such as date syrup, date paste, date juice and their derived products are available. Date by-products can be used as raw materials for the production of value-added products such as organic acids, exopolysaccharides, antibiotics, date-flavoured probiotic-fermented dairy produce, bakery yeasts, etc. In this paper the chemical composition and nutritional and medicinal values of date fruit as well as date fruit-based products are reviewed. © 2013 Society of Chemical Industry.

  14. Physiological age at harvest regulates the variability in postharvest ripening, sensory and nutritional characteristics of mango (Mangifera indica L.) cv. Coghshall due to growing conditions.

    Science.gov (United States)

    Joas, Jacques; Vulcain, Emmanuelle; Desvignes, Claire; Morales, Emeline; Léchaudel, Mathieu

    2012-04-01

    Climacteric fruits are harvested at the green-mature stage and ripen during their marketing cycle. However, growing conditions induce variability into the maturity stage of mangoes at harvest, with an impact on their final quality. Assuming that the physiological age can be correctly evaluated by a criterion based on the variable chlorophyll fluorescence of the skin (F(v)) and that differences in physiological age depend on growing conditions, controlled stress experiments were carried out on mango fruit by manipulating either the leaf/fruit ratio or the light environment. Delays from 9 to 30 days were observed, depending on stress level and harvest stage, to obtain the same F(v) value. For moderate stress, fruit composition after ripening was partially compensated for, with little or no difference in sugar, dry matter, carotenoid and aroma contents. For more pronounced stress, the major metabolites were not particularly affected, but the synthesis capacity of carotenoids and aromas was lower after maturity. The ripening ability of a fruit is acquired on the tree and defines its postharvest changes. Control of the physiological age at harvest can minimise the variability observed under natural conditions and guarantee fruit batches whose postharvest changes will be relatively homogeneous. Copyright © 2011 Society of Chemical Industry.

  15. Isoprenoid, lipid, and protein contents in intact plastids isolated from mesocarp cells of traditional and high-pigment tomato cultivars at different ripening stages.

    Science.gov (United States)

    Lenucci, Marcello S; Serrone, Lucia; De Caroli, Monica; Fraser, Paul D; Bramley, Peter M; Piro, Gabriella; Dalessandro, Giuseppe

    2012-02-22

    This study reports quali-quantitative analyses on isoprenoids, phospholipids, neutral lipids, phytosterols, and proteins in purified plastids isolated from fresh fruits of traditional (Donald and Incas) and high-pigment (Kalvert and HLY-18) tomato cultivars at four ripening stages. In all of the investigated cultivars, lycopene, β-catotene, lutein, and total carotenoids varied significantly during ripening. Chromoplasts of red-ripe tomato fruits of high-pigment cultivars accumulated twice as much as lycopene (307.6 and 319.2 μg/mg of plastid proteins in Kalvert and HLY-18, respectively) than ordinary cultivars (178.6 and 151.7 μg/mg of plastid proteins in Donald and Incas, respectively); differences in chlorophyll and α-tocopherol contents were also evidenced. Phospholipids and phytosterols increased during ripening, whereas triglycerides showed a general decrease. Regardless of the stage of ripening, palmitic acid was the major fatty acid in all cultivars (ranging from 35 to 52% of the total fatty acids), followed by stearic, oleic, linoleic, linolenic, and myristic acids, but their relative percentage was affected by ripening. Most of the bands detected on the SDS-PAGEs of plastid proteins were constantly present during chloroplast-to-chromoplast conversion, some others disappeared, and only one, with a molecular weight of ~41.6 kDa, was found to increase in intensity.

  16. Asynchronous ripening behavior of cactus pear (Opuntia ficus-indica) cultivars with respect to physicochemical and physiological attributes.

    Science.gov (United States)

    Kyriacou, M C; Emmanouilidou, M G; Soteriou, G A

    2016-11-15

    Physicochemical and physiological ripening events in cactus pear (Opuntia ficus-indica) fruit of cultivars 'Ntopia' and 'Hercules' were profiled against skin coloration from mature-green (S1) to over-mature (S5). Fructose and glucose accumulation were linear in 'Ntopia' but peaked near S3 in 'Hercules' synchronously to the appearance of sucrose. Betalains increased steadily in 'Ntopia' (103.2mg/l) but peaked before full skin coloration in 'Hercules' (49.7mg/l); whereas phenolic content remained invariable and ascorbate content peaked near S5 in both 'Ntopia' (108.6μg/g) and 'Hercules' (163.1μg/g). Cell wall material diminished with maturity though textural changes with ripening appeared not related to pectin solubilization but to weakening of glycan bonding and loss of neutral sugars. Fruit firmness rather was correlated to seed weight (r=0.89) and seed-to-pulp ratio (r=0.73). Cultivar differences highlighted in the chronology of ripening events are critical for defining optimum harvest maturity and postharvest handling protocols for premium quality cactus pear fruit. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Novel Protein-Protein Inhibitor Based Approach to Control Plant Ethylene Responses: Synthetic Peptides for Ripening Control

    Directory of Open Access Journals (Sweden)

    Mareike Kessenbrock

    2017-09-01

    Full Text Available Ethylene signaling is decisive for many plant developmental processes. Among these, control of senescence, abscission and fruit ripening are of fundamental relevance for global agriculture. Consequently, detailed knowledge of the signaling network along with the molecular processes of signal perception and transfer are expected to have high impact on future food production and agriculture. Recent advances in ethylene research have demonstrated that signaling of the plant hormone critically depends on the interaction of the ethylene receptor family with the NRAMP-like membrane protein ETHYLENE INSENSITIVE 2 (EIN2 at the ER membrane, phosphorylation-dependent proteolytic processing of ER-localized EIN2 and subsequent translocation of the cleaved EIN2 C-terminal polypeptide (EIN2-CEND to the nucleus. EIN2 nuclear transport, but also interaction with the receptors sensing the ethylene signal, both, depend on a nuclear localization signal (NLS located at the EIN2 C-terminus. Loss of the tight interaction between receptors and EIN2 affects ethylene signaling and impairs plant ethylene responses. Synthetic peptides derived from the NLS sequence interfere with the EIN2–receptor interaction and have utility in controlling plant ethylene responses such as ripening. Here, we report that a synthetic peptide (NOP-1 corresponding to the NLS motif of Arabidopsis EIN2 (aa 1262–1269 efficiently binds to tomato ethylene receptors LeETR4 and NR and delays ripening in the post-harvest phase when applied to the surface of sampled green fruits pre-harvest. In particular, degradation of chlorophylls was delayed by several days, as monitored by optical sensors and confirmed by analytical methods. Similarly, accumulation of β-carotene and lycopene in the fruit pulp after NOP-1 application was delayed, without having impact on the total pigment concentration in the completely ripe fruits. Likewise, the peptide had no negative effects on fruit quality. Our molecular

  18. Physico-Chemical Characteristics of Pollinated and Non Pollinated Date Fruit of District Khairpur, Sindh, Pakistan

    Directory of Open Access Journals (Sweden)

    Wahid Bux Jatoi

    2012-12-01

    Full Text Available Elemental patterns are often used for the classification or identification of date fruit varieties. Five ripening stages of six date varieties were collected and studied from the pre ripening to the post ripening stage. Pollinated and non-pollinated date fruit of the same varieties were compared for their physical and chemical parameters. Physical parameters such as size, mass, colour, moisture, and pH were measured. In case of chemical characteristics the mineral composition of six different varieties of district Khairpur dates palm (Phoenix dactylifera L. fruit (Gorho, Asul Khurmo, Nur Aseel, Ghuray Wari, Toto, and Allah Wari were analysed using Atomic Absorption Spectroscopy (AAS. Generally, size, moisture and mineral content of the pollinated fruit increased up to 3rd and 4th stage then declined.

  19. BEL1-LIKE HOMEODOMAIN 11 regulated chloroplast development and chlorophyll synthesis in tomato fruit

    Science.gov (United States)

    Chloroplast development and chlorophyll content and metabolism in unripe tomato contribute to the growth and development of the fruit, and also the ripe fruit quality, but the mechanism is poorly understood. In this work, seven homeobox-containing transcription factors (TFs) with specific ripening-a...

  20. Accumulation of 137Cs and 40K in aboveground organs of tropical woody fruit plants

    International Nuclear Information System (INIS)

    Anjos, R.M.; Sanches, N.; Macario, K.D.; Rizzotto, M.; Velasco, H.; Valladares, D.L.

    2009-01-01

    Distribution of 40 K and 137 Cs in tissues of the Citrus aurantifolia was measured by gamma spectrometry. A simple theoretical model is also proposed to describe the temporal evolution of 40 K activity concentration in such tropical woody fruit species. This model exhibits close agreement with the 40 K experimental results, in the leaf growing and fruit ripening processes of lemon trees. (author)

  1. Global gene expression analysis of apple fruit development from the floral bud to ripe fruit

    Directory of Open Access Journals (Sweden)

    McArtney Steve

    2008-02-01

    Full Text Available Abstract Background Apple fruit develop over a period of 150 days from anthesis to fully ripe. An array representing approximately 13000 genes (15726 oligonucleotides of 45–55 bases designed from apple ESTs has been used to study gene expression over eight time points during fruit development. This analysis of gene expression lays the groundwork for a molecular understanding of fruit growth and development in apple. Results Using ANOVA analysis of the microarray data, 1955 genes showed significant changes in expression over this time course. Expression of genes is coordinated with four major patterns of expression observed: high in floral buds; high during cell division; high when starch levels and cell expansion rates peak; and high during ripening. Functional analysis associated cell cycle genes with early fruit development and three core cell cycle genes are significantly up-regulated in the early stages of fruit development. Starch metabolic genes were associated with changes in starch levels during fruit development. Comparison with microarrays of ethylene-treated apple fruit identified a group of ethylene induced genes also induced in normal fruit ripening. Comparison with fruit development microarrays in tomato has been used to identify 16 genes for which expression patterns are similar in apple and tomato and these genes may play fundamental roles in fruit development. The early phase of cell division and tissue specification that occurs in the first 35 days after pollination has been associated with up-regulation of a cluster of genes that includes core cell cycle genes. Conclusion Gene expression in apple fruit is coordinated with specific developmental stages. The array results are reproducible and comparisons with experiments in other species has been used to identify genes that may play a fundamental role in fruit development.

  2. Chemical inhibitors of viviparous germination in the fruit of watermelon.

    Science.gov (United States)

    Kobayashi, Yoshiki; Nabeta, Kensuke; Matsuura, Hideyuki

    2010-09-01

    It is well known that the seeds of watermelon [Citrullus lanatus (Thunb.) Matsum and Nakai] have a high potential to germinate when the fruit has ripened. When removed from the mature fruit, the seeds can germinate under appropriate conditions. However, it is unclear why they cannot germinate in the flesh of the fruit. Here, we show that cis-ABA and its β-D-glucopyranosyl ester (ABA-β-GE) accumulate in the flesh of the fruit at levels high enough to inhibit seed germination. This result indicates the existence of chemical factors that inhibit viviparous seed germination of watermelon.

  3. Nanotech extends shelf life of fresh fruit | CRDI - Centre de ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Image. Mango growers in India's Tamil Nadu state. IDRC / Vijay Kutty ... Spraying orchards with a low concentration of the compound slowed fruit ripening ... with it, within 48 hours it's all gone — you can't find even a trace using a microscope.

  4. Temperature effects on peel spotting in "Sucrier banana" fruit

    NARCIS (Netherlands)

    Trakulnaleumsai, C.; Ketsa, S.; Doorn, van W.G.

    2006-01-01

    Banana fruit of the cultivar `Sucrier¿ (Musa acuminata, AA Group) develops peel spotting at a relatively early stage of development (when the peel is about as slightly more yellow than green). Holding ripening bananas at 15 and 18 °C instead of room temperature (26¿27 °C) only temporarily reduced

  5. calcium and iron levels in some fruits and vegetables commonly

    African Journals Online (AJOL)

    usern

    (2.00mgdm-3 ).The moisture contents of the samples analysed revealed that watermelon had the ... INTRODUCTION. Fruit is a ripened seed- bearing part of a plant usually fleshy ... water , poor source of protein and oil but contain reasonable ...

  6. Gene expression in isolated plastids from fruits of capsicum annum

    International Nuclear Information System (INIS)

    Powell, D.S.; Pryke, J.A.

    1987-01-01

    Plastids were obtained from the ripening fruits of Capsicum annum, and incubated in vitro in the presence of [ 35 S]methionine(Met). There was polypeptide synthesis at all stages of pepper tissue studied in both chloroplasts and chromoplasts, dependent on the addition of nuclioside triphosphates and phosphoenolpyruvate and inhibited by D-threo-chloramphenicol. l8. refs. (author)

  7. Ripening for improving the quality of inoculated cheese Rhizopus oryzae

    Directory of Open Access Journals (Sweden)

    ARTINI PANGASTUTI

    2010-01-01

    Full Text Available Estikomah SA, Sutarno, Pangastuti A 2010. Ripening for improving the quality of inoculated cheese Rhizopus oryzae. Nusantara Bioscience 2: 1-6. Cheese is dairy product resulted from fermented milk in which the fermentation process can be done by lactic acid bacteria or fungus. Rhizopus oryzae is able to produce lactic acid, protease and lipase. The ripening process changes the taste and texture. The purpose of this study is ripening to improve the quality of inoculated cheese R. oryzae. In this research the ripening was conducted the concentration variation of temperature (5oC, 10oC, 15oC, and time (7 days, 14 days. The procedure of research consisted of two steps, namely un-ripened cheese preparation followed by ripening cheese preparation. Cheese produced in this study analyzed the value of pH, fat content, protein content, amino acid levels and identification of microbe with ANOVA then followed by DMRT at 5% level of significance. Data results were analyzed with the like’s nonparametric statistical test, followed by Fridman Wilcoxon Signed Rank Test (WSRT at 5% level significance. The results showed that the preferred ripened cheese panelist was at a temperature of 15oC for 14 days. Ripening conditions affect pH, fat content, protein content and do not affect the levels of amino acids that formed ripened cheese. The best quality ripened cheese i.e. at a temperature of 15°C for 14 days, had a pH value of 4.40, the highest protein content of 9.78%, and fat content of 35.02%. The results of identified microbe in un-ripened cheese and ripened cheese include Enterococcus hirae (Enterococcus faecalis, Bacillus subtilis, and Aspergillus sp.

  8. ‘Golden Delicious’ and ‘Honeycrisp’ apple response to controlled atmosphere storage with oxygen set point determined in response to fruit chlorophyll fluorescence

    Science.gov (United States)

    Postharvest management of apple fruit ripening using controlled atmosphere (CA) cold storage can be enhanced as CA oxygen concentration is decreased to close to the anaerobic compensation point (ACP). Monitoring fruit chlorophyll fluorescence is one technology available to assess fruit response to ...

  9. Environmental effects on fruit ripening and average fruit weight for three peach cultivars

    Science.gov (United States)

    Three peach cultivars, ‘Crimson Lady’ (early), ‘Redhaven’ (mid-season) and ‘Cresthaven’ (late), were planted at twelve locations within the USA in 2009. All trees were grafted on ‘Lovell’ rootstock and came from the same nursery. Five trees of each cultivar were planted at a spacing of 6m by 5m at e...

  10. The effect of ultraviolet irradiation on shelf-life and ripening of peaches and apples

    International Nuclear Information System (INIS)

    Lu, J.Y.; Stevens, C.; Khan, V.A.; Kabwe, M.; Wilson, C.L.

    1991-01-01

    ''Loring'' and ''Elberta'' peaches and ''Golden Delicious'' apples were irradiated with UV (254nm) to doses of 0.84 X 10(4) to 40 X 10(4) erg/mm2 then stored. ''Loring'' were stored 10 days and ''Elberta'' 20 days at 12 degrees C. ''Golden Delicious'' were stored 30 days at 20-25 degrees C in a dark room. Fruit were examined and differences in percentage rot and in physical-chemical properties determined. Percentage rot decreased with increasing UV dose. Fruit were firmer, pH and soluble solids lower and acidity higher for UV-treated than for nontreated peaches; pH was lower and acidity and ascorbic acid higher in UV treated than in nontreated apples. Percentage weight loss was less for UV-treated apples. The results indicated that UV treatment not only reduced storage rots but also delayed ripening of peaches and apples

  11. Effect of gamma radiation on the ripening and levels of bioactive amines in bananas cv. Prata

    International Nuclear Information System (INIS)

    Gloria, Maria Beatriz A.; Adão, Regina C.

    2013-01-01

    Green Prata bananas at the full three-quarter stage were exposed to gamma radiation at doses of 0.0 (control), 1.0, 1.5 and 2.0 kGy and stored at 16±1 °C and 85% relative humidity. Samples were collected periodically and analyzed for peel color, pulp-to-peel ratio and levels of starch, soluble sugars and bioactive amines. Degradation of starch and formation of fructose and glucose followed first- and zero-order kinetics, respectively. Higher irradiation doses caused increased inhibitory effect on starch degradation and glucose formation. However, doses of 1.5 and 2.0 kGy caused browning of the peel, making the fruit unacceptable. Irradiation at 1.0 kGy was the most promising dose: it did not affect peel color, the pulp-to-peel ratio or the levels of the amines spermidine, serotonin and putrescine. However, it slowed down starch degradation and the formation and accumulation of fructose and glucose, delaying the ripening of the fruit for 7 days. - Highlights: ► Gamma radiation affected biochemical and quality attributes of banana. ► Degradation of starch correlated negatively with gamma radiation dose. ► Banana irradiation at 1.0 kGy delayed ripening with minimal biochemical changes. ► Serotonin degraded at a faster rate during ripening of irradiated banana compared to control. ► Spermidine levels increased on the first 7 days of storage in irradiated samples

  12. An explanation for the natural de-bittering of Hurma olives during ripening on the tree

    International Nuclear Information System (INIS)

    Susamci, E.; Romero, C.; Tuncay, O.; Brenes, M.

    2017-01-01

    Harvested olives require further processing to make them edible due to their content in the bitter substance oleuropein. However, some olives of the Erkence cultivar naturally de-bitter on the tree giving rise to the so-called Hurma olives. In this study, the evolution of the chemical characteristics of Erkence and Hurma olives harvested from the northeast and southwest area of trees located in the Karaburun Peninsula was assayed. It was confirmed that the oleuropein content in Hurma olives was much lower (< 2000 mg/kg fresh weight) than Erkence, which reached 35.000 mg/kg fresh weight at the beginning of the season. In addition, no free or polymerized anthocyanins were found in Hurma fruit in contrast to ripened Erkence fruit. The concentration of glucose was also lower in Hurma than Erkence olives. These results suggest that the enzymatic oxidation of oleuropein could be responsible for the natural de-bittering of Hurma olives during their ripening on the tree. [es

  13. A photoacoustic technique applied to detection of ethylene emissions in edible coated passion fruit

    International Nuclear Information System (INIS)

    Alves, G V L; Santos, W C dos; Vargas, H; Silva, M G da; Waldman, W R; Oliveira, J G

    2010-01-01

    Photoacoustic spectroscopy was applied to study the physiological behavior of passion fruit when coated with edible films. The results have shown a reduction of the ethylene emission rate. Weight loss monitoring has not shown any significant differences between the coated and uncoated passion fruit. On the other hand, slower color changes of coated samples suggest a slowdown of the ripening process in coated passion fruit.

  14. Quantification of physical properties of dredged sediments during physical ripening

    NARCIS (Netherlands)

    Vermeulen, J.; Dijk, S.G.; Grotenhuis, J.T.C.; Rulkens, W.H.

    2005-01-01

    The soil formation process ripening can be used as a bioremediation technique for dredged sediments that are polluted with organic chemicals. Currently, data are lacking that quantify the effects of physical ripening on parameters that affect aerobic bioremediation. We quantified the effects of

  15. The regulation of MADS-box gene expression during ripening of banana and their regulatory interaction with ethylene.

    Science.gov (United States)

    Elitzur, Tomer; Vrebalov, Julia; Giovannoni, James J; Goldschmidt, Eliezer E; Friedman, Haya

    2010-03-01

    Six MaMADS-box genes have been cloned from the banana fruit cultivar Grand Nain. The similarity of these genes to tomato LeRIN is low and neither MaMADS2 nor MaMADS1 complement the tomato rin mutation. Nevertheless, the expression patterns, specifically in fruit and the induction during ripening and in response to ethylene and 1-MCP, suggest that some of these genes may participate in ripening. MaMADS1, 2, and 3, are highly expressed in fruit only, while the others are expressed in fruit as well as in other organs. Moreover, the suites of MaMADS-box genes and their temporal expression differ in peel and pulp during ripening. In the pulp, the increase in MaMADS2, 3, 4, and 5 expression preceded an increase in ethylene production, but coincides with the CO(2) peak. However, MaMADS1 expression in pulp coincided with ethylene production, but a massive increase in its expression occurred late during ripening, together with a second wave in the expression of MaMADS2, 3, and 4. In the peel, on the other hand, an increase in expression of MaMADS1, 3, and to a lesser degree also of MaMADS4 and 2 coincided with an increase in ethylene production. Except MaMADS3, which was induced by ethylene in pulp and peel, only MaMADS4, and 5 in pulp and MaMADS1 in peel were induced by ethylene. 1-MCP applied at the onset of the increase in ethylene production, increased the levels of MaMADS4 and MaMADS1 in pulp, while it decreased MaMADS1, 3, 4, and 5 in peel, suggesting that MaMADS4 and MaMADS1 are negatively controlled by ethylene at the onset of ethylene production only in pulp. Only MaMADS2 is neither induced by ethylene nor by 1-MCP, and it is expressed mainly in pulp. Our results suggest that two independent ripening programs are employed in pulp and peel which involve the activation of mainly MaMADS2, 4, and 5 and later on also MaMADS1 in pulp, and mainly MaMADS1, and 3 in peel. Hence, our results are consistent with MaMADS2, a SEP3 homologue, acting in the pulp upstream of the

  16. Metabolite and proteome changes during the ripening of Syrah and Cabernet Sauvignon grape varieties cultured in a nontraditional wine region in Brazil.

    Science.gov (United States)

    Fraige, Karina; González-Fernández, Raquel; Carrilho, Emanuel; Jorrín-Novo, Jesús V

    2015-01-15

    Grapevines are an important fruit crop from economic and cultural point of views in many countries, including Brazil, where the practice of vitiviniculture is being developed in different regions. We compared the anthocyanin concentration, the main organic acids and sugars, and the proteome profiles during berry ripening of Syrah and Cabernet Sauvignon grapes from two distinct geographical sources in São Paulo State. The proteome was mapped by two-dimensional gel electrophoresis and differentially abundant proteins during the ripening process were subjected to MALDI-TOF/TOF-MS analysis. An increase in sugar concentration and in anthocyanin content was observed, as well a decrease in the tartaric and malic acid concentration. A total of 128 spots varied with geographical origin, grape variety, and ripening stage, with 108 being identified. The identified proteins resulted in 80 gene products. A multivariate analysis of protein abundance clustered the samples according to grape variety, geographical origin, and stage of ripening, and showed the possibility of using proteomics to characterize three variables: variety, area where grown, and the ripening process. The changes observed during the ripening process corresponded to enzymes involved in sugar and organic acid metabolism. These results are in accordance with the metabolic profile reported for the process. Given the importance of discriminating grapes, thus making the adulteration of wines more difficult, in this paper we showed the possibility of differentiating varieties of grapes, geographical area of cultivation and stage of ripening by combining the results of differentially abundant protein determinations and multivariate analysis. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Over-expression of Gene FaASR Promotes Strawberry Fruit Coloring

    Directory of Open Access Journals (Sweden)

    Liu Zhongjie

    2015-11-01

    Full Text Available Fruit development and ripening is a complicate process. Although much progress has been made on the ripenig process, the molecular mechamism of fruit development is not yet clear. In this study, we used ‘Sweet Charlie’ strawberry as test materials, based on cloning the strawberries ASR homologous gene, we carried out the bioinformatics and temporal expression analysis of FaASR, by manipulating ASR gene expression level in strawberry fruit, we tested the changes of physiological indicators, including sugar, ABA, pigments content, and fruit firmness, as well as phenotypic changes. In addition, we measured the expression changes of some anthocyanin-related gene, such as CHS and UFGT, by which we revealed the regulation mechanisms of ASR gene over strawberry fruit ripening. Strawberry ASR contained a typical domain of ABA/WDS that was related to fruit ripening and stress-resistance, and ASR gene over-expression could promote strawberry fruit coloring, endogenous ABA and sucrose accumulation, fruit softening, and induced the transcription levels of anthocyanin-related genes CHS and UFGT. The present study will further reveal the molecular mechanisms of information transmission in fruit development, and will also play an important foundation for future molecular improvement of strawberries breeding.

  18. Ethylene and 1-MCP affect the postharvest behavior of yellow pitahaya fruits (Selenicereus megalanthus Haw.

    Directory of Open Access Journals (Sweden)

    Yuli Alexandra Deaquiz

    2014-04-01

    Full Text Available The pitahaya or dragon fruit is one of the most representative exotic fruits that Colombia has, with an important, growing international market, but the cultivation and postharvest of this fruit lack sufficient technological support to be more competitive. Therefore, alternatives that provide good-quality products that meet market requirements are very important. Therefore, the objective of this research was to determine the effect of a ripening retardant and ethylene application on the conservation and quality of pitahaya fruits and the possible changes during ripening associated with ethylene, for which a completely randomized design with three treatments was used, corresponding to the application of ethylene (ethephon, 3 mL L-1, 1-methylcyclopropene (1-MCP, 600 mg L-1 and a control, with four replications, for a total of 12 experimental units. The fruits were stored at 18°C with 75% relative humidity. The 1-MCP application significantly decreased the loss of firmness, total soluble solids, loss of fresh mass and respiratory rate. Fruits from the control and ethylene treatment tended toward a climateric respiratory behavior. The total carotenoid content of the fruits was significantly higher in the ethylene application and the control treatment, which was consistent with the color change of the fruits. It can be concluded that the 1-MCP application reduced the ethylene action, slowing the ripening of the dragon fruits.

  19. Effects of shading and ethephon on carbon assimilates distribution partitioning in fruit limb of greenhouse-grown 'Dajiubao' peach

    International Nuclear Information System (INIS)

    Kong Yun; Wang Shaohui; Yao Yuncong; Ma Chengwei

    2007-01-01

    The distribution of carbon assimilates and the relative sink strength were studied by 14 C labeling in one-year-old fruiting limbs of greenhouse-grown 'Dajiubao' peach (Prunus persica L. Batsch), under 60% shading and 600 mg/L Ethephon treatment. After 10d shading treatment prior to pulsing of 14 CO 2 percent of assimilates translocation into fruit decreased significantly from fed shoot during fruit-ripening stage, but this partitioning patterns was not observed during stone-hardening stage, although less carbon allocated to seed within fruit components (mesocarp, endocarp and seed). The relative sink strength of each organ nearly followed the same variation trend as carbon assimilates distribution under shading treatment. Application of Ethephon to the surface of fruits under shading conditions promoted more carbon into fruits during fruit-ripening stage, with increasing their relative skink strength. (authors)

  20. Blackberry (Rubus spp.: influence of ripening and processing on levels of phenolic compounds and antioxidant activity of the 'Brazos' and 'Tupy' varieties grown in Brazil

    Directory of Open Access Journals (Sweden)

    Acácio Antonio Ferreira Zielinski

    2015-04-01

    Full Text Available Fruits from temperate and tropical climates which have high levels of antioxidant compounds are the source of numerous studies concerning the correlation with benefits to human health. The objectives of this study were to quantify the anthocyanins and phenolic compounds and also to measure the antioxidant activity (ferric reducing antioxidant power - FRAP of blackberries from two varieties grown in southern Brazil ('Brazos' and 'Tupy' at three stages of ripening; unripe, semi-ripe, ripe and their products (pulp and fermented products. During fruit ripening it was observed that weight, size, diameter and sugars increase significantly and acidity decreased significantly. The anthocyanin content ranged from 4.19 (semi-ripe 'Tupy' variety to 205.75mg 100g-1 (ripe 'Brazos' variety. The highest levels of phenolic compounds were observed for the unripe fruit of both varieties, while antioxidant activity showed no significant difference during the ripening stages. The studied pulp showed a high content of phenolic compounds (ten times higher than that found in the ripe fruits. The anthocyanin content and antioxidant activity did not show the same increase due to the degradation of anthocyanins caused by the heat treatment that was used. The alcoholic fermented beverage made from blackberries remained stable (total phenolic compounds and antioxidant activity during two years of storage, but the in third year a significant reduction in antioxidant activity was observed. These results can be important for establishing the shelf life of this kind of product made with blackberry

  1. Variation of anthocyanins and other major phenolic compounds throughout the ripening of four Portuguese blueberry (Vaccinium corymbosum L) cultivars.

    Science.gov (United States)

    Silva, Sara; Costa, Eduardo M; Coelho, Marta C; Morais, Rui M; Pintado, Manuela E

    2017-01-01

    Blueberries are widely recognised as one of the richest sources of bioactive compounds, among which are anthocyanins, though the ripeness of berries has been reported as affecting the phytochemical composition of fruits. Therefore, the present work aimed to evaluate the variation of anthocyanins, and other major phenolics, throughout five ripening stages in four blueberry cultivars. The results showed that the antioxidant capacity and anthocyanin content increased during ripening, reaching the highest values when the blueberries are collected from bunches comprised of 75% ripe blueberries. Antagonistically, the amount of phenolic acid decreases, while the quercetin-3-glucoside levels remain stable. Furthermore, Goldtraube blueberries appear to possess, systematically, higher amounts of phenolic compounds than the other cultivars studied. Thus, when seeking the highest yield of anthocyanins, the preferred harvest should occur in bunches that contain ca 75% of ripe blueberries and, considering the cultivars assayed, the Goldtraube cultivar appears to be the richest in phenolic compounds.

  2. Effect of ripening, heat processing, and fat type on the micellarization of pigments from jalapeño peppers.

    Science.gov (United States)

    Victoria-Campos, Claudia I; Ornelas-Paz, José de Jesús; Yahia, Elhadi M; Jiménez-Castro, Jorge A; Cervantes-Paz, Braulio; Ibarra-Junquera, Vrani; Pérez-Martínez, Jaime David; Zamudio-Flores, Paul B; Escalante-Minakata, Pilar

    2013-10-16

    Raw and heat-processed (boiled and grilled) jalapeño peppers at three intermediate ripening stages (brown, 50% red, and 75% red) were digested in vitro without fat and in the presence of soybean oil (SO) or beef tallow (BT), and the micellarization of their lipid soluble pigments (LSP) was measured. The micelles from digestions with brown, 50% red, and 75% red peppers contained up to 27, 35, and 29 different LSP, respectively. Boiling and grilling decreased the micellarization of LSP from brown peppers, whereas the opposite was observed with 75% red peppers. Heat processing did not clearly affect the micellarization of LSP from 50% red fruits. The impact of fat on LSP micellarization was ripening-dependent, but the micellarization of the less polar carotenoids was always increased by SO or BT. This positive effect of fat was higher with SO than with BT.

  3. Respiration climacteric in tomato fruits elucidated by constraint-based modelling.

    Science.gov (United States)

    Colombié, Sophie; Beauvoit, Bertrand; Nazaret, Christine; Bénard, Camille; Vercambre, Gilles; Le Gall, Sophie; Biais, Benoit; Cabasson, Cécile; Maucourt, Mickaël; Bernillon, Stéphane; Moing, Annick; Dieuaide-Noubhani, Martine; Mazat, Jean-Pierre; Gibon, Yves

    2017-03-01

    Tomato is a model organism to study the development of fleshy fruit including ripening initiation. Unfortunately, few studies deal with the brief phase of accelerated ripening associated with the respiration climacteric because of practical problems involved in measuring fruit respiration. Because constraint-based modelling allows predicting accurate metabolic fluxes, we investigated the respiration and energy dissipation of fruit pericarp at the breaker stage using a detailed stoichiometric model of the respiratory pathway, including alternative oxidase and uncoupling proteins. Assuming steady-state, a metabolic dataset was transformed into constraints to solve the model on a daily basis throughout tomato fruit development. We detected a peak of CO 2 released and an excess of energy dissipated at 40 d post anthesis (DPA) just before the onset of ripening coinciding with the respiration climacteric. We demonstrated the unbalanced carbon allocation with the sharp slowdown of accumulation (for syntheses and storage) and the beginning of the degradation of starch and cell wall polysaccharides. Experiments with fruits harvested from plants cultivated under stress conditions confirmed the concept. We conclude that modelling with an accurate metabolic dataset is an efficient tool to bypass the difficulty of measuring fruit respiration and to elucidate the underlying mechanisms of ripening. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  4. Physiology of pepper fruit and the metabolism of antioxidants: chloroplasts, mitochondria and peroxisomes

    Science.gov (United States)

    Palma, José M.; Sevilla, Francisca; Jiménez, Ana; del Río, Luis A.; Corpas, Francisco J.; Álvarez de Morales, Paz; Camejo, Daymi M.

    2015-01-01

    Background and Aims Pepper (Capsicum annuum) contains high levels of antioxidants, such as vitamins A and C and flavonoids. However, information on the role of these beneficial compounds in the physiology of pepper fruit remains scarce. Recent studies have shown that antioxidants in ripe pepper fruit play a key role in responses to temperature changes, and the redox state at the time of harvest affects the nutritional value for human consumption. In this paper, the role of antioxidant metabolism of pepper fruit during ripening and in the response to low temperature is addressed, paying particular attention to ascorbate, NADPH and the superoxide dismutase enzymatic system. The participation of chloroplasts, mitochondria and peroxisomes in the ripening process is also investigated. Scope and Results Important changes occur at a subcellular level during ripening of pepper fruit. Chloroplasts turn into chromoplasts, with drastic conversion of their metabolism, and the role of the ascorbate–glutathione cycle is essential. In mitochondria from red fruits, higher ascorbate peroxidase (APX) and Mn-SOD activities are involved in avoiding the accumulation of reactive oxygen species in these organelles during ripening. Peroxisomes, whose antioxidant capacity at fruit ripening is substantially affected, display an atypical metabolic pattern during this physiological stage. In spite of these differences observed in the antioxidative metabolism of mitochondria and peroxisomes, proteomic analysis of these organelles, carried out by 2-D electrophoresis and MALDI-TOF/TOF and provided here for the first time, reveals no changes between the antioxidant metabolism from immature (green) and ripe (red) fruits. Conclusions Taken together, the results show that investigation of molecular and enzymatic antioxidants from cell compartments, especially chloroplasts, mitochondria and peroxisomes, is a useful tool to study the physiology of pepper fruit, particularly in the context of

  5. Ionizing energy treatment of fruit and vegetables

    International Nuclear Information System (INIS)

    Rigney, C.J.

    1983-01-01

    The potential of ionising energy treatment of fresh fruit and vegetables may be considered within four major use areas. The shelf life of such fruits as bananas, mangoes and pawpaws can be extended by a direct physiological effect on the fruit. This treatment renders the fruit less sensitive to ethylene, a natural senescence-promoting chemical, and retards the onset of the climactric rise in respiration which is associated with fruit ripening. Postharvest decay caused by radio-sensitive organisms can also be controlled by low irradiation treatments, although this is only applicable in cases where the host fruit is less sensitive to the treatment than the decay causing organism. The sprouting of onions and potatoes can be controlled by a single low dose treatment which has a direct effect on the meristematic tissue. By killing insects of quarantine significance the interstate and export marketing of Australian fresh fruit may be expanded, with a consequent expansion of these horticultural industries. Ionising energy treatment of fruit and vegetables is therefore a valuable postharvest tool to improve the quality of fresh produce on local and export markets

  6. Caracterização física e química dos frutos da umbu-cajazeira (Spondias spp em cinco estádios de maturação, da polpa congelada e néctar Physical and chemical characterization on the fruits of umbu-cajazeira (Spondias spp in five ripening stages, frozen pulp and nectar

    Directory of Open Access Journals (Sweden)

    ELIZA DOROTEA POZZOBON DE ALBUQUERQUE LIMA

    2002-08-01

    Full Text Available A umbu-cajazeira, no Brasil, apresenta boas potencialidades de cultivo e perspectivas de comercialização, o que objetivou este trabalho de avaliação da qualidade física e química dos frutos em cinco estádios de maturação classificados de acordo com o grau de cor da casca descritos como: fruto totalmente verde (1FTV, frutos com início de pigmentação (2FIP, frutos parcialmente amarelos (3FPA, frutos totalmente amarelos (4FTA, frutos totalmente amarelo-alaranjados (5FTAA, da polpa congelada e do néctar. As variáveis estudadas foram os atributos físicos: peso, diâmetro longitudinal, diâmetro transversal e rendimento em polpa, e químicos: vitamina C, acidez total titulável sólidos solúveis totais, pH e a relação sólidos solúveis totais/acidez total titulável. Os frutos, no estádio de maturação comercial (4FTA, apresentaram os seguintes valores mé ;dio: rendimento de polpa de 55,75%; pH de 2,08; SST de 11,25 °Brix; ATT de 1,77 g de ácido citrico/100g de polpa; SST/ATT de 6,39 e teor de vitamina C total de 17,75 mg/100g. A polpa congelada e o néctar mantiveram-se em condições estáveis em relaç ;ão ao pH, SST, ATT e SST/ATT, durante 60 dias de armazenamento. Quanto ao teor de vitamina C total, a polpa congelada apresentou um decréscimo signi ficativo, o que não ocorreu com o néctar.In Brazil some tropical fruits present great potential for cultivation and perspective of commercialization, one of them is the "umbu-cajazeira". A research has been developed aiming to measure the physical and chemical quality of the frozen pulp and the nectar obtained from "umbu-cajazeira" fruits, which were classified in distinct maturation stages. The fruits were divided according to shell colour in five groups: fruit completely green (1FCG, fruit starting to change shell's colour (2FSCC, fruit partially yellow (3FPY, fruit totally yellow (4FTY, fruit totaly orange-like yellow. The variables analysed comprised the physical

  7. Effects of Ripening Duration and Rosemary Powder Addition on Salchichon Modified Sausage Quality

    Directory of Open Access Journals (Sweden)

    Jong-Hyun Jung

    2015-05-01

    Full Text Available The ripening durations and ingredients for the Salchichon sausages were modified to increase pork rear leg consumption by Korean consumers. The salchichon, a ripened pork sausage, was produced to evaluate the efficacy of two different ripening durations with and without rosemary powder on salchichon sausage quality, and the treatments were: i 45 days of ripening without rosemary, ii 60 days of ripening without rosemary, iii 45 days of ripening with 0.05% rosemary, and iv 60 days of ripening with 0.05% rosemary. Significant differences were observed in both moisture and fat content for ripening durations, with the highest moisture and least fat content observed in salchichon modified sausage (SMS ripened for 45 days. Ripening duration and rosemary addition appeared to influence water activity (aw of salchichon sausages. The aw of SMS ripened for 45 days was 0.80, whereas the other had aw values <0.80. Lactic acid bacteria were predominant, as Korean traditional fermented red pepper paste was added to sausages; however, the Bacillus cereus population was significantly affected by rosemary powder addition. Chewiness and gumminess decreased significantly due to the addition of rosemary powder compared to SMS without rosemary powder, and both 45 days of ripening and rosemary powder addition influenced the hardness of SMS. In conclusion, ripening duration of SMS for 45 days in the presence of rosemary powder provided superior SMS quality with an economical ripening duration compared to that of ripening with rosemary powder or ripening for 60 days.

  8. Simultaneous transcriptome analysis of Colletotrichum gloeosporioides and tomato fruit pathosystem reveals novel fungal pathogenicity and fruit defense strategies.

    Science.gov (United States)

    Alkan, Noam; Friedlander, Gilgi; Ment, Dana; Prusky, Dov; Fluhr, Robert

    2015-01-01

    The fungus Colletotrichum gloeosporioides breaches the fruit cuticle but remains quiescent until fruit ripening signals a switch to necrotrophy, culminating in devastating anthracnose disease. There is a need to understand the distinct fungal arms strategy and the simultaneous fruit response. Transcriptome analysis of fungal-fruit interactions was carried out concurrently in the appressoria, quiescent and necrotrophic stages. Conidia germinating on unripe fruit cuticle showed stage-specific transcription that was accompanied by massive fruit defense responses. The subsequent quiescent stage showed the development of dendritic-like structures and swollen hyphae within the fruit epidermis. The quiescent fungal transcriptome was characterized by activation of chromatin remodeling genes and unsuspected environmental alkalization. Fruit response was portrayed by continued highly integrated massive up-regulation of defense genes. During cuticle infection of green or ripe fruit, fungi recapitulate the same developmental stages but with differing quiescent time spans. The necrotrophic stage showed a dramatic shift in fungal metabolism and up-regulation of pathogenicity factors. Fruit response to necrotrophy showed activation of the salicylic acid pathway, climaxing in cell death. Transcriptome analysis of C. gloeosporioides infection of fruit reveals its distinct stage-specific lifestyle and the concurrent changing fruit response, deepening our perception of the unfolding fungal-fruit arms and defenses race. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  9. Combined effects of pectic enzymes on the degradation of pectin polysaccharides of banana fruit

    International Nuclear Information System (INIS)

    Jheng, G.; Jiang, Y.; Ghen, Y.; Yang, S.

    2011-01-01

    Pectin polysaccharide is one of the major components of the primary cellular wall in the middle lamella of plant tissues. The degradation of pectin polysaccharide contributes to fruit softening. In this study, water-soluble pectin (WSP) and acid-soluble pectin (ASP) were isolated from pulp tissues of banana fruit at various ripening stages, and combinations of the enzymes such as polygalcturonase (PG), pectin methylesterase (PME) and beta-galactosidase (beta-Gal) were used to investigate the effect on the degradation of WSP and ASP. PG promoted the degradation of pectin polysaccharides, especially in ASP. An enhanced effect of the degradation of WSP and ASP from various ripening banana fruit was observed in the presence of PME. In addition, beta-Gal accelerated slightly the degradation of WSP and ASP in the presence of PG. Overall, PG, PME and beta-Gal can coordinate to promote the degradation of pectin polysaccharides of banana fruit, resulting in fruit softening. (author)

  10. Radiation preservation of foods of plant origin. III. Tropical fruits: bananas, mangoes, and papayas

    International Nuclear Information System (INIS)

    Thomas, P.

    1986-01-01

    The current status of research on the use of ionizing radiation for shelf life improvement and disinfestation of fresh tropical fruits like bananas, mangoes, and papayas are reviewed. The aspects covered are influence of maturity and physiological state of the fruits on delayed ripening and tolerance to radiation; varietal responses; changes in chemical constituents, volatiles, respiration, and ethylene evolution; biochemical mechanisms of delayed ripening and browning of irradiated fruits; and organoleptic quality. The efficacy of the combination of hot water dip and radiation treatments for control of postharvest fungal diseases are considered. The immediate potential of radiation as a quarantine treatment, in place of the currently used chemical fumigants, for disinfestation of fruit flies and mango seed weevil are discussed. Future prospects for irradiation of tropical fruits are discussed in the light of experience gained from studies conducted in different countries.146 references

  11. Technology for production of shelf stable fruit cubes

    International Nuclear Information System (INIS)

    Mishra, B.B.; Jain, M.P.; Sharma, A.

    2009-01-01

    A technology has been developed for the production of intermediate moisture fruit cubes using a combination of osmotic dehydration and infrared drying. Fruits like pineapple, papaya, mango, banana and apple can be successfully converted into intermediate moisture products in the form of fruit cubes using this technology. The fruit cubes can blend very well as natural nutritious supplements with breakfast cereals and in certain food preparations like ice creams, milk shakes, jellies and custards. The product is microbiologically safe for consumption and can be stored at ambient storage condition for more than six months. This technology is an effective alternative for post harvest processing and preservation of ripened fruits. Fruit jam is an additional by-product generated by the process. This technology has been transferred to TT and CD, BARC

  12. Identification of Optimal Reference Genes for Normalization of qPCR Analysis during Pepper Fruit Development

    Directory of Open Access Journals (Sweden)

    Yuan Cheng

    2017-06-01

    Full Text Available Due to its high sensitivity and reproducibility, quantitative real-time PCR (qPCR is practiced as a useful research tool for targeted gene expression analysis. For qPCR operations, the normalization with suitable reference genes (RGs is a crucial step that eventually determines the reliability of the obtained results. Although pepper is considered an ideal model plant for the study of non-climacteric fruit development, at present no specific RG have been developed or validated for the qPCR analyses of pepper fruit. Therefore, this study aimed to identify stably expressed genes for their potential use as RGs in pepper fruit studies. Initially, a total of 35 putative RGs were selected by mining the pepper transcriptome data sets derived from the PGP (Pepper Genome Platform and PGD (Pepper Genome Database. Their expression stabilities were further measured in a set of pepper (Capsicum annuum L. var. 007e fruit samples, which represented four different fruit developmental stages (IM: Immature; MG: Mature green; B: Break; MR: Mature red using the qPCR analysis. Then, based on the qPCR results, three different statistical algorithms, namely geNorm, Normfinder, and boxplot, were chosen to evaluate the expression stabilities of these putative RGs. It should be noted that nine genes were proven to be qualified as RGs during pepper fruit development, namely CaREV05 (CA00g79660; CaREV08 (CA06g02180; CaREV09 (CA06g05650; CaREV16 (Capana12g002666; CaREV21 (Capana10g001439; CaREV23 (Capana05g000680; CaREV26 (Capana01g002973; CaREV27 (Capana11g000123; CaREV31 (Capana04g002411; and CaREV33 (Capana08g001826. Further analysis based on geNorm suggested that the application of the two most stably expressed genes (CaREV05 and CaREV08 would provide optimal transcript normalization in the qPCR experiments. Therefore, a new and comprehensive strategy for the identification of optimal RGs was developed. This strategy allowed for the effective normalization of the q

  13. Ionizing radiation treatment to improve postharvest life and maintain quality of fresh guava fruit

    International Nuclear Information System (INIS)

    Singh, S.P.; Pal, R.K.

    2009-01-01

    We investigated the potential of ionizing radiation for improving physiological responses, quality, and storage time of fresh guava fruit. Ionizing radiation treatment suppressed the respiration and ethylene production rates and thus retarded the process of fruit ripening during storage. Irradiation treatment also retarded the physical and biochemical changes associated with ripening such as firmness, titratable acidity, soluble solids content, and vitamin C during storage, but for doses higher than 0.25 kGy the vitamin C content decreased. The positive effects of ionizing radiation treatment on delayed fruit ripening and other quality attributes diminished during 22 days of storage at 10 deg. C. Thus, a combination of ionizing radiation with low-temperature storage (10 deg. C) did not have much synergistic effect on storage life and quality of guava fruit. In conclusion, ionizing radiation treatment of guava fruit with 0.25 kGy dose increased the postharvest life by 3-4 days, maintained fruit quality, and reduced the decay incidence. The optimal dose (0.25 kGy) for postharvest life extension of guava fruit may be exploited to provide phytosanitary security against many insect pests including fruit flies

  14. A fruit quality gene map of Prunus

    Directory of Open Access Journals (Sweden)

    Bliss Fredrick A

    2009-12-01

    Full Text Available Abstract Background Prunus fruit development, growth, ripening, and senescence includes major biochemical and sensory changes in texture, color, and flavor. The genetic dissection of these complex processes has important applications in crop improvement, to facilitate maximizing and maintaining stone fruit quality from production and processing through to marketing and consumption. Here we present an integrated fruit quality gene map of Prunus containing 133 genes putatively involved in the determination of fruit texture, pigmentation, flavor, and chilling injury resistance. Results A genetic linkage map of 211 markers was constructed for an intraspecific peach (Prunus persica progeny population, Pop-DG, derived from a canning peach cultivar 'Dr. Davis' and a fresh market cultivar 'Georgia Belle'. The Pop-DG map covered 818 cM of the peach genome and included three morphological markers, 11 ripening candidate genes, 13 cold-responsive genes, 21 novel EST-SSRs from the ChillPeach database, 58 previously reported SSRs, 40 RAFs, 23 SRAPs, 14 IMAs, and 28 accessory markers from candidate gene amplification. The Pop-DG map was co-linear with the Prunus reference T × E map, with 39 SSR markers in common to align the maps. A further 158 markers were bin-mapped to the reference map: 59 ripening candidate genes, 50 cold-responsive genes, and 50 novel EST-SSRs from ChillPeach, with deduced locations in Pop-DG via comparative mapping. Several candidate genes and EST-SSRs co-located with previously reported major trait loci and quantitative trait loci for chilling injury symptoms in Pop-DG. Conclusion The candidate gene approach combined with bin-mapping and availability of a community-recognized reference genetic map provides an efficient means of locating genes of interest in a target genome. We highlight the co-localization of fruit quality candidate genes with previously reported fruit quality QTLs. The fruit quality gene map developed here is a

  15. Black leaf streak disease affects starch metabolism in banana fruit.

    Science.gov (United States)

    Saraiva, Lorenzo de Amorim; Castelan, Florence Polegato; Shitakubo, Renata; Hassimotto, Neuza Mariko Aymoto; Purgatto, Eduardo; Chillet, Marc; Cordenunsi, Beatriz Rosana

    2013-06-12

    Black leaf streak disease (BLSD), also known as black sigatoka, represents the main foliar disease in Brazilian banana plantations. In addition to photosynthetic leaf area losses and yield losses, this disease causes an alteration in the pre- and postharvest behavior of the fruit. The aim of this work was to investigate the starch metabolism of fruits during fruit ripening from plants infected with BLSD by evaluating carbohydrate content (i.e., starch, soluble sugars, oligosaccharides, amylose), phenolic compound content, phytohormones, enzymatic activities (i.e., starch phosphorylases, α- and β-amylase), and starch granules. The results indicated that the starch metabolism in banana fruit ripening is affected by BLSD infection. Fruit from infested plots contained unusual amounts of soluble sugars in the green stage and smaller starch granules and showed a different pattern of superficial degradation. Enzymatic activities linked to starch degradation were also altered by the disease. Moreover, the levels of indole-acetic acid and phenolic compounds indicated an advanced fruit physiological age for fruits from infested plots.

  16. Effect of different brine concentrations and ripening period on some ...

    African Journals Online (AJOL)

    Administrator

    2011-09-26

    25240, Erzurum, Turkey. Accepted 25 ... ripened soft cheese that is maturated in brine to develop the desired ... functions, salt exerts a number of important effects on cheese. ..... In: Fox PF (ed) Cheese: chemistry, physics and.

  17. Effect of ripening period on composition of pepino (Solanum ...

    African Journals Online (AJOL)

    USER

    % for raw and ... of glucose and fructose declined during ripening, whereas sucrose showed an increase in ... Solanaceae like tomato, potato, tobacco and pepper ... Abbreviation: NDF, Neutral detergent fiber; ADF, acid detergent fiber;. HPLC,.

  18. Genome-wide identification, phylogeny, and expression analyses of the 14-3-3 family reveal their involvement in the development, ripening and abiotic stress response in banana

    Directory of Open Access Journals (Sweden)

    meiying li

    2016-09-01

    Full Text Available Plant 14-3-3 proteins act as critical components of various cellular signaling processes and play an important role in regulating multiple physiological processes. However, less information is known about the 14-3-3 gene family in banana. In this study, 25 14-3-3 genes were identified from the banana genome. Based on the evolutionary analysis, banana 14-3-3 proteins were clustered into ε and non-ε groups. Conserved motif analysis showed that all identified banana 14-3-3 genes had the typical 14-3-3 motif. The gene structure of banana 14-3-3 genes showed distinct class-specific divergence between the ε group and the non-ε group. Most banana 14-3-3 genes showed strong transcript accumulation changes during fruit development and postharvest ripening in two banana varieties, indicating that they might be involved in regulating fruit development and ripening. Moreover, some 14-3-3 genes also showed great changes after osmotic, cold, and salt treatments in two banana varieties, suggested their potential role in regulating banana response to abiotic stress. Taken together, this systemic analysis reveals the involvement of banana 14-3-3 genes in fruit development, postharvest ripening, and response to abiotic stress and provides useful information for understanding the functions of 14-3-3 genes in banana.

  19. Expression and enzymatic activity of phenylalanine ammonia-lyase and p-coumarate 3-hydroxylase in mango (Mangifera indica 'Ataulfo') during ripening.

    Science.gov (United States)

    Palafox-Carlos, H; Contreras-Vergara, C A; Muhlia-Almazán, A; Islas-Osuna, M A; González-Aguilar, G A

    2014-05-16

    Phenylalanine ammonia lyase (PAL) and p-coumarate 3-hydroxylase (C3H) are key enzymes in the phenylpropanoid pathway. The relative expression of PAL and C3H was evaluated in mango fruit cultivar 'Ataulfo' in four ripening stages (RS1, RS2, RS3, and RS4) by quantitative polymerase chain reaction. In addition, enzyme activity of PAL and C3H was determined in mango fruits during ripening. The PAL levels were downregulated at the RS2 and RS3 stages, while C3H levels were upregulated in fruits only at RS3. The enzyme activity of PAL followed a pattern that was different from that of the PAL expression, thus suggesting regulation at several levels. For C3H, a regulation at the transcriptional level is suggested because a similar pattern was revealed by its activity and transcript level. In this study, the complexity of secondary metabolite biosynthesis regulation is emphasized because PAL and C3H enzymes are involved in the biosynthesis of several secondary metabolites that are active during all mango ripening stages.

  20. Non-Destructive Assessment of Aroma Volatiles from a Climacteric Near-Isogenic Line of Melon Obtained by Headspace Stir-Bar Sorptive Extraction

    Directory of Open Access Journals (Sweden)

    Juan Pablo Fernández-Trujillo

    2013-08-01

    Full Text Available A climacteric aromatic near-isogenic line (NIL of melon (Cucumis melo L. SC3-5-1 contained an introgression of the non-climacteric Korean cultivar “Shongwan Charmi” accession PI 161375 (SC in the genetic background of the non-climacteric cultivar “Piel de Sapo” (PS. The aroma production was monitored during ripening at 21 °C in intact fruit using headspace sorptive bar extraction (HSSE. Bars were composed of polydimethylsiloxane (PDMS and aromas were desorbed and analyzed by gas-chromatography mass-spectrometry. The aromatic profile was composed of 70 aromatic compounds plus 21 alkanes with a predominance of esters, particularly acetate (2-methylbutyl acetate, 2-methylpropyl acetate, hexyl acetate, and phenylmethyl acetate. Some compounds were severely affected by postharvest time. The acetate esters (3-methylbutyl acetate, butan-2-yl acetate and phenylmethyl acetate decreased with ripening and sulfur-derived compounds (S-methyl butanethioate and S-methyl 3-methylbutanethioate increased gradually with ripening. A few compounds increased at the senescence phase (propyl ethanoate. Other compounds such as hexadecanoic acid showed a marked decrease after harvest, some decreasing from a relative maximum at harvest (2-methylpropyl hexanoate; n-hexanoic acid; nonanoic acid.

  1. Ethylene: Response of Fruit Dehiscence to CO(2) and Reduced Pressure.

    Science.gov (United States)

    Lipe, J A; Morgan, P W

    1972-12-01

    These studies were conducted to determine whether ethylene serves as a natural regulator of fruit wall dehiscence, a major visible feature of ripening in some fruits. We employed treatments to inhibit ethylene action or remove ethylene and observed their effect on fruit dehiscence. CO(2) (13%), a competitive inhibitor of ethylene action in many systems, readily delayed dehiscence of detached fruits of cotton (Gossypium hirsutum L.), pecan (Carya illinoensis [Wang.] K. Koch), and okra (Hibiscus esculentus L.). The CO(2) effect was duplicated by placing fruits under reduced pressure (200 millimeters mercury), to promote the escape of ethylene from the tissue. Dehiscence of detached fruits of these species as well as attached cotton fruits was delayed. The delay of dehiscence of cotton and okra by both treatments was achieved with fruit harvested at intervals from shortly after anthesis until shortly before natural dehiscence. Pecan fruits would not dehisce until approximately 1 month before natural dehiscence, and during that time, CO(2) and reduced pressure delayed dehiscence. CO(2) and ethylene were competitive in their effects on cotton fruit dehiscence. All of the results are compatible with a hypothetical role of ethylene as a natural regulator of dehiscence, a dominant aspect of ripening of cotton, pecan, and some other fruits.

  2. Ethylene: Response of Fruit Dehiscence to CO2 and Reduced Pressure 1

    Science.gov (United States)

    Lipe, John A.; Morgan, Page W.

    1972-01-01

    These studies were conducted to determine whether ethylene serves as a natural regulator of fruit wall dehiscence, a major visible feature of ripening in some fruits. We employed treatments to inhibit ethylene action or remove ethylene and observed their effect on fruit dehiscence. CO2 (13%), a competitive inhibitor of ethylene action in many systems, readily delayed dehiscence of detached fruits of cotton (Gossypium hirsutum L.), pecan (Carya illinoensis [Wang.] K. Koch), and okra (Hibiscus esculentus L.). The CO2 effect was duplicated by placing fruits under reduced pressure (200 millimeters mercury), to promote the escape of ethylene from the tissue. Dehiscence of detached fruits of these species as well as attached cotton fruits was delayed. The delay of dehiscence of cotton and okra by both treatments was achieved with fruit harvested at intervals from shortly after anthesis until shortly before natural dehiscence. Pecan fruits would not dehisce until approximately 1 month before natural dehiscence, and during that time, CO2 and reduced pressure delayed dehiscence. CO2 and ethylene were competitive in their effects on cotton fruit dehiscence. All of the results are compatible with a hypothetical role of ethylene as a natural regulator of dehiscence, a dominant aspect of ripening of cotton, pecan, and some other fruits. PMID:16658260

  3. Action threshold for applying insect growth regulators to tomato for management of irregular ripening caused by Bemisia argentifolii (Homoptera: Aleyrodidae).

    Science.gov (United States)

    Schuster, D J

    2002-04-01

    The whitefly Bemisia argentifolii Bellows & Perring is a major pest of tomatoes, causing an irregular ripening disorder characterized externally by incomplete or inhibited reddening of fruit, especially in longitudinal sections, and internally by an increase in the amount of white tissue. Experiments were undertaken during the spring and fall of 1997 and 1998 and the spring of 1999 to develop an action threshold for applying the insect growth regulators (IGRs) buprofezin and pyriproxyfen to manage B. argentifolii and irregular ripening. The IGRs were applied when predetermined thresholds were reached and were compared with a high rate of the systemic insecticide imidacloprid, which was applied at transplanting and provided season-long whitefly control. Only plots treated when the numbers of sessile nymphs (second through fourth instars) reached five per 10 leaflets consistently had both external and internal irregular ripening severity ratings similar to the imidacloprid standard. Results were similar for buprofezin and pyriproxyfen even though the modes of action differ. The five nymphs per 10 leaflets threshold lends itself to field scouting because nymphal counts completed in the field using the unaided eye supplemented with a 10x hand lens were linearly and significantly related to counts completed in the laboratory with a dissecting microscope.

  4. Assessment of quality parameters in grapes during ripening using a miniature fiber-optic near-infrared spectrometer.

    Science.gov (United States)

    Fernández-Novales, Juan; López, María-Isabel; Sánchez, María-Teresa; García-Mesa, José-Antonio; González-Caballero, Virginia

    2009-01-01

    Changes in the chemical properties of wine grapes during ripening were studied using near-infrared (NIR) spectroscopy. A miniature fiber-optic NIR spectrometer system working in transmission mode in the spectral region (700 - 1,060 nm) was evaluated for this purpose. Spectra and analytical data were used to develop partial least square calibration models to quantify changes in the major parameters used to chart ripening in this fruit. NIR spectroscopy provided excellent precision for soluble solid content and for reducing sugars, and good precision for maturity index, while for pH and titratable acidity the miniature NIR spectroscopy instrument proved less accurate. The performance of the instrument in classifying wine grapes by grape type and by irrigation regime was also studied. Percentages of correctly classified samples ranged from 82.7% to 96.2%. The results show that the monitoring of soluble solid content and reducing sugars' changes in wine grape quality parameters during ripening, as well as the classification of grapes, can be performed non-destructively using a miniature fiber-optic NIR spectrometer.

  5. From root to fruit: RNA-Seq analysis shows that arbuscular mycorrhizal symbiosis may affect tomato fruit metabolism.

    Science.gov (United States)

    Zouari, Inès; Salvioli, Alessandra; Chialva, Matteo; Novero, Mara; Miozzi, Laura; Tenore, Gian Carlo; Bagnaresi, Paolo; Bonfante, Paola

    2014-03-21

    Tomato (Solanum lycopersicum) establishes a beneficial symbiosis with arbuscular mycorrhizal (AM) fungi. The formation of the mycorrhizal association in the roots leads to plant-wide modulation of gene expression. To understand the systemic effect of the fungal symbiosis on the tomato fruit, we used RNA-Seq to perform global transcriptome profiling on Moneymaker tomato fruits at the turning ripening stage. Fruits were collected at 55 days after flowering, from plants colonized with Funneliformis mosseae and from control plants, which were fertilized to avoid responses related to nutrient deficiency. Transcriptome analysis identified 712 genes that are differentially expressed in fruits from mycorrhizal and control plants. Gene Ontology (GO) enrichment analysis of these genes showed 81 overrepresented functional GO classes. Up-regulated GO classes include photosynthesis, stress response, transport, amino acid synthesis and carbohydrate metabolism functions, suggesting a general impact of fungal symbiosis on primary metabolisms and, particularly, on mineral nutrition. Down-regulated GO classes include cell wall, metabolism and ethylene response pathways. Quantitative RT-PCR validated the RNA-Seq results for 12 genes out of 14 when tested at three fruit ripening stages, mature green, breaker and turning. Quantification of fruit nutraceutical and mineral contents produced values consistent with the expression changes observed by RNA-Seq analysis. This RNA-Seq profiling produced a novel data set that explores the intersection of mycorrhization and fruit development. We found that the fruits of mycorrhizal plants show two transcriptomic "signatures": genes characteristic of a climacteric fleshy fruit, and genes characteristic of mycorrhizal status, like phosphate and sulphate transporters. Moreover, mycorrhizal plants under low nutrient conditions produce fruits with a nutrient content similar to those from non-mycorrhizal plants under high nutrient conditions

  6. Evolution of fatty acids in medlar (Mespilus germanica L. mesocarp at different stages of ripening

    Directory of Open Access Journals (Sweden)

    Strnad, M.

    2002-09-01

    Full Text Available The fatty acid composition of medlar (Mespilus germanica L. varied significantly among the ripening stages sampled at 157, 172 and 187 DAFs (days after full bloom. Twenty-one different fatty acids were detected in preclimacteric fruit and 17 when the climacteric began. Principal fatty acids, determined in medlar fruit harvested from October (157 and 172 DAFs to November (187 DAF were mainly palmitic acid (16:0, linoleic acid (18:2n-6, and a-linolenic acid (18:3n-3. While the content of saturated fatty acids [palmitic acid (16:0 and stearic acid (18:0] increased, the content of the essential polyunsaturated fatty acids [linoleic acid (18:2n-6 and linolenic acid (18:3n-3] decreased through ripening, in parallel with pulp darkening. The percentage of linoleic acid and a-linolenic acid in ripe, hard fruits was 60.0 and 13.5 % of dry wt at 157 DAF which decreased throughout ripening, remaining at 28.7 and 5.6 % of dry wt, respectively, in the fully softened and darkened pulp. A marked decreases in the double bond index, percentage of unsaturation and the ratio of unsaturation/saturation were also seen throughout the medlar ripening. The contribution of unsaturated fatty acid to the total fatty acid content decreased markedly as the medlar fruit became progressively softer and darkened.La composición en ácidos grasos del níspero (Mespilus germanica L. varió significativamente entre los estados de maduración muestreados a los 157, 172 y 187 DAFs (días después de la floración. Veinte y un ácidos grasos diferentes fueron detectados en el fruto preclimatérico y 17 cuando comenzó el climaterio. Los ácidos grasos principales encontrados en nísperos, recolectados desde Octubre (157 y 172 DAFs hasta Noviembre (187 DAF, fueron principalmente ácido palmítico (16:0, ácido linoléico (18:2n-6, y ácido a-linolénico (18:3n-3. En tanto que el contenido en ácidos grasos saturados (ácido palmítico (16:0 y ácido esteárico (18:0 aumentó, el

  7. The biochemical adaptations of spotted wing drosophila (Diptera: Drosophilidae) to fresh fruits reduced fructose concentrations and glutathione-S transferase activities

    Science.gov (United States)

    Spotted wing drosophila (SWD), Drosophila suzukii, is an invasive and economically damaging pest in Europe and North America, because the females have a serrated ovipositor enabling them to infest ripening almost all small fruits before harvest. Also flies are strongly attracted to fresh fruits rath...

  8. The effect of gamma irradiation on the degree of ripening of mango by comparing the parameter of colour index, texture firmness and pH value

    International Nuclear Information System (INIS)

    Muhammad Hafiz Hanafi

    2012-01-01

    This study was carried out to determine the effect of low dose gamma irradiation on the ripening degree of cv Chokanan mangoes through the comparison of colour index changes, texture firmness and pH value. Harvested mature mango was studied through the storage period for 14 days. Dose level used were 0.00 kGy (control), 0.25 kGy, 0.50 kGy, 0.75 kGy and 1.00 kGy of gamma cell 220. All fruits were wrapped using plastic after irradiated. There was no change in 0 day. However, there are changes in colour index, firmness and pH value of fruits in after 3 days. Dose of 0.75 kGy and 1.00 kGy gave positive effect to storage extension period and rate deceleration compared to 0.00 kGy (control), 0.25 kGy and 0.50 kGy. After 10 days storage, 0.00, 0.25 and 0.50 kGy of fruits became rot which affects quality of organoleptic. Whereas 0.75 and 1.00 kGy still retained organoleptic quality . When the ripening rate of fruit was fast, this would lead to faster of the colour change. The firmness value of fruit became decrease and the value of pH was increase. (author)

  9. Viscoelasticity of Edam cheese during its ripening

    Directory of Open Access Journals (Sweden)

    Šárka Nedomová

    2010-01-01

    Full Text Available Series of the indentation of the ball (10 mm in diameter by the constant speed into blocks of Edam cheese has been conducted. The indentation tests were performed at different speeds (1, 5, 10, 20 and 100 mm/min, and the corresponding force–displacement responses were fitted with an analytical solution to obtain the time-dependent constants and the instantaneous force–displacement response. The measurement has been performed for the cheeses of different stages of their maturity. The dependence of the indentation force on the penetration depth has been evaluated. This dependence can be fitted by a polynom. The indentation force decreases with cheese fat content. It increases with the loading rate. Its value also decreases with the time of the cheese ripening. The recently proposed method for the indenation of the ball into viscoelastic solids has been used for our data analysis. This procedure, which needs the use of the numeric methods, enables to obtain stress relaxation moduli, which describe the viscoelasticity of the tested materials. The obtained moduli describe the stage of the cheese maturity.

  10. Ostwald ripening: an approach with dynamical systems

    Directory of Open Access Journals (Sweden)

    F.S. Lameiras

    1999-07-01

    Full Text Available This approach assumes three functions independently acting on a set of microparticles. The first one, w1, concerns re-distribution of mass to decrease the surface energy. The second one, w2, concerns re-distribution of mass to increase the entropy of the microparticle set. The third one, w3, is a further re-distribution of mass that vanishes a microparticle. Once vanished, its mass is distributed among its neighbors. w1 and w3 release energy, whereas w2 absorbs energy. Part of the energy released should be available to sustain w2. The action frequency of w1, w2, and w3, the amount of mass exchanged in each iteraction, the fraction of released energy available to sustain w2, and the size of a vanishing microparticle can be varied. As the dynamical system formed by w1, w2, and w3 act on an initial microparticle set, it is observed an evolution resembling the Ostwald ripening concerning steady-state size distribution and microparticle growth.

  11. Sugars and organic acids in plum fruit affected by Plum pox virus.

    Science.gov (United States)

    Usenik, Valentina; Marn, Mojca Virscek

    2017-05-01

    Plum pox virus (PPV) causes severe economic losses in stone fruit production, but little is known about its effect on plum fruit composition. In this study, the influence of PPV on sugars and organic acids was evaluated in a susceptible plum (Prunus domestica L.) cultivar. PPV infection significantly affected the content and composition of sugars and organic acids. The composition of necrotic tissue was modified the most. A short-time infected tree yielded fruit with similar sugar composition to fruit from a healthy tree, but the decline of organic acids was faster. Prematurely ripened symptomatic fruit had reduced fruit weight and low sugar content. Infected trees of the studied cultivar produce fruit of inferior quality. Fruits are not suitable for processing, especially when most of them exhibit visual symptoms of PPV infection. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  12. High oxygen levels promote peel spotting in banana fruit

    NARCIS (Netherlands)

    Maneenuam, T.; Ketsa, S.; Doorn, van W.G.

    2007-01-01

    We studied the effect of high oxygen on early peel spotting in `Sucrier¿ bananas held at 25 °C and 90% RH. Fruit first ripened to colour index 3¿4 (about as yellow as green) and were then held in containers with a continuous gas flow of 18 ± 2 kPa (control) or 90 ± 2 kPa oxygen. High oxygen promoted

  13. fruit juice

    African Journals Online (AJOL)

    Femi Olorunniji

    2013-08-31

    Aug 31, 2013 ... The soursop juice without treatment (T1) was used as the control while others in .... The fruits were washed carefully under flowing tap water, peeled, cut .... hygiene, pre and post harvest wounds on processed fruits, and the ...

  14. Hydrogen sulfide alleviates postharvest ripening and senescence of banana by antagonizing the effect of ethylene.

    Directory of Open Access Journals (Sweden)

    Yun Ge

    Full Text Available Accumulating evidence shows that hydrogen sulfide (H2S acts as a multifunctional signaling molecule in plants, whereas the interaction between H2S and ethylene is still unclear. In the present study we investigated the role of H2S in ethylene-promoted banana ripening and senescence by the application of ethylene released from 1.0 g·L-1 ethephon solution or H2S with 1 mM sodium hydrosulfide (NaHS as the donor or in combination. Fumigation with ethylene was found to accelerate banana ripening and H2S treatment effectively alleviated ethylene-induced banana peel yellowing and fruit softening in parallel with decreased activity of polygalacturonase (PG. Ethylene+H2S treatment also delayed the decreases in chlorophyll and total phenolics, and increased the accumulation of flavonoid, whereas decreased the contents of carotenoid, soluble protein in banana peel and reducing sugar in pulp compared with ethylene treatment alone. Besides, ethylene+H2S treatment suppressed the accumulation of superoxide radicals (·O2-, hydrogen peroxide (H2O2 and malondialdehyde (MDA which accumulated highly in ethylene-treated banana peels. Furthermore H2S enhanced total antioxidant capacity in ethylene-treated banana peels with the 2,2'-azobis(3-ethylbenz-thiazoline-6-sulfonic acid (ABTS assay. The result of quantitative real-time PCR showed that the combined treatment of ethylene with H2S down-regulated the expression of ethylene synthesis genes MaACS1, MaACS2 and MaACO1 and pectate lyase MaPL compared with ethylene treatment, while the expression of ethylene receptor genes MaETR, MaERS1 and MaERS2 was enhanced in combination treatment compared with ethylene alone. In all, it can be concluded that H2S alleviates banana fruit ripening and senescence by antagonizing the effect of ethylene through reduction of oxidative stress and inhibition of ethylene signaling pathway.

  15. Hydrogen sulfide alleviates postharvest ripening and senescence of banana by antagonizing the effect of ethylene.

    Science.gov (United States)

    Ge, Yun; Hu, Kang-Di; Wang, Sha-Sha; Hu, Lan-Ying; Chen, Xiao-Yan; Li, Yan-Hong; Yang, Ying; Yang, Feng; Zhang, Hua

    2017-01-01

    Accumulating evidence shows that hydrogen sulfide (H2S) acts as a multifunctional signaling molecule in plants, whereas the interaction between H2S and ethylene is still unclear. In the present study we investigated the role of H2S in ethylene-promoted banana ripening and senescence by the application of ethylene released from 1.0 g·L-1 ethephon solution or H2S with 1 mM sodium hydrosulfide (NaHS) as the donor or in combination. Fumigation with ethylene was found to accelerate banana ripening and H2S treatment effectively alleviated ethylene-induced banana peel yellowing and fruit softening in parallel with decreased activity of polygalacturonase (PG). Ethylene+H2S treatment also delayed the decreases in chlorophyll and total phenolics, and increased the accumulation of flavonoid, whereas decreased the contents of carotenoid, soluble protein in banana peel and reducing sugar in pulp compared with ethylene treatment alone. Besides, ethylene+H2S treatment suppressed the accumulation of superoxide radicals (·O2-), hydrogen peroxide (H2O2) and malondialdehyde (MDA) which accumulated highly in ethylene-treated banana peels. Furthermore H2S enhanced total antioxidant capacity in ethylene-treated banana peels with the 2,2'-azobis(3-ethylbenz-thiazoline-6-sulfonic acid (ABTS) assay. The result of quantitative real-time PCR showed that the combined treatment of ethylene with H2S down-regulated the expression of ethylene synthesis genes MaACS1, MaACS2 and MaACO1 and pectate lyase MaPL compared with ethylene treatment, while the expression of ethylene receptor genes MaETR, MaERS1 and MaERS2 was enhanced in combination treatment compared with ethylene alone. In all, it can be concluded that H2S alleviates banana fruit ripening and senescence by antagonizing the effect of ethylene through reduction of oxidative stress and inhibition of ethylene signaling pathway.

  16. Comparison Of Mineral Content Of Some Ripe And Unripe Fruits In ...

    African Journals Online (AJOL)

    The mineral contents of ripe and unripe banana (Musa sapientum), avocado pear (Pearsea americana), pineapple (Ananas cosmosus) and soursop (Anona muricata), were determined to ascertain the influence of ripening on the localization of minerals in these fruits. High levels of sodium and potassium were obtained in ...

  17. Potential applications of ionizing radiation in postharvest handling of fresh fruits and vegetables

    International Nuclear Information System (INIS)

    Kader, A.A.

    1986-01-01

    The advantages and limitations of potential uses of ionizing radiation of harvested fresh fruits and vegetables are discussed. Potential applications include: sprout inhibition of tuber, bulb, and root vegetables; inhibition of post-harvest growth of asparagus and mushrooms; insect disinfestation; alteration of ripening and senescence in fresh fruits; and post-harvest microorganism disease control. Cost, consumer acceptance, and logistical problems are cited as possible limiting factors. Factors influencing response also are discussed

  18. Effect of tomato post-harvest fungicide treatment and storage conditions on the quality of fruits, and biological value of tomato pulp and concentrated pulp

    Directory of Open Access Journals (Sweden)

    H. Parynow

    2013-12-01

    Full Text Available The influence of storage conditions on the quality of tomato fruits was tested. The rate of ripening was established in normal air, where tomatoes ripen quickly, under controlled atmosphere where they ripen more slowly and under low pressure, where they ripen slowest. The influence of post-harvest benomyl or methylthiophanate treatment on tomato rot, ripening, and biological value were examined. Post-harvest tomato treatment did not reduce fruit rot. The color of fruits and the processed products depended on the fungicide treatment. Concentrated tomato pulp made of fruits treated with methylthiophanate was redder than the others. The fungicide treatment increased or decreased the level of some chemical substances in the fruits in dependence on the applied fungicide, storage conditions and the length of storage, e.g. tomatoes treated with benomyl and stored for 14 days contained the highest level of vitamin C under 0% CO2:3%O2 and tomatoes treated with methylthiophanate contained the highest level of vitamin C under 38 mm Hg. Degradation of vitamin C in pulp was faster than in the concentrated pulp. Tomato pulp made of tomatoes treated with methylthiophanate contained the lowest level of vitamin C.

  19. Expression Study of LeGAPDH, LeACO1, LeACS1A, and LeACS2 in Tomato Fruit (Solanum lycopersicum

    Directory of Open Access Journals (Sweden)

    Pijar Riza Anugerah

    2015-10-01

    Full Text Available Tomato is a climacteric fruit, which is characterized by ripening-related increase of respiration and elevated ethylene synthesis. Ethylene is the key hormone in ripening process of climacteric fruits. The objective of this research is to study the expression of three ethylene synthesis genes: LeACO1, LeACS1A, LeACS2, and a housekeeping gene LeGAPDH in ripening tomato fruit. Specific primers have been designed to amplify complementary DNA fragment of LeGAPDH (143 bp, LeACO1 (240 bp, LeACS1A (169 bp, and LeACS2 (148 bp using polymerase chain reaction. Nucleotide BLAST results of the complementary DNA fragments show high similarity with LeGAPDH (NM_001247874.1, LeACO1 (NM_001247095.1, LeACS1A (NM_001246993.1, LeACS2 (NM_001247249.1, respectively. Expression study showed that LeACO1, LeACS1A, LeACS2, and LeGAPDH genes were expressed in ripening tomato fruit. Isolation methods, reference sequences, and primers used in this study can be used in future experiments to study expression of genes responsible for ethylene synthesis using quantitative polymerase chain reaction and to design better strategy for controlling fruit ripening in agroindustry.

  20. Physicochemical and microbiological evaluation of corrientes artisanal cheese during ripening

    Directory of Open Access Journals (Sweden)

    Olga Myriam Vasek

    2013-03-01

    Full Text Available The aim of this study was to evaluate some physical and chemical parameters (total solids, pH, acidity, fat, acid degree value of fat, salt, protein and nitrogen fractions and their effects on the beneficial (lactic acid bacteria: LAB and undesirable microbial populations (coliforms, Escherichia coli, Staphylococcus aureus, moulds, and yeast during ripening of Artisanal Corrientes Cheese, an Argentinian cow's milk variety, to determine whether a longer ripening period than usual improve its hygienic-sanitary quality. The protein content was much higher than that of other cow's milk cheeses with similar values of fat. The larger peptides showed values three times higher in the 30 day-old cheese than those obtained in the beginning of the process. Staphylococcus aureus and Escherichia coli were detected (3.04 ± 1.48 log10 cfu/g of cheese, 2.21 ± 0.84 log10 MPN/g of cheese even at 15 and 30 days of ripening, respectively. The distribution of three hundred LAB strains classified to the genus level (lactococci:lactobacilli:leuconostocs was maintained during the ripening period. The high number of LAB in rennet may have contributed to the fermentation as a natural whey starter, unknown source of LAB for this specific cheese so far. The physicochemical changes that occur during ripening were not big enough to inhibit the growth of undesirable microorganisms.

  1. Ostwald ripening in two-phase mixtures

    International Nuclear Information System (INIS)

    Voorhees, P.W.

    1982-01-01

    Experimental measurements of the temperature of a rapidly solidified solid-liquid mixture have been made over a range of volume fractions solid 0.23 to 0.95. These experiments demonstrate the viability of measuring the change in interfacial curvature with time via precision thermometry. The experimental measurements also indicate that there is no radical change in interface morphology over a wide range of volume fractions solid. A solution to the multi-particle diffusion problem (MDP) has been constructed through the use of potential theory. The solution to the MDP was used to describe the diffusion field within a coarsening two-phase mixture consisting of dispersed spherical second-phase particles. Since this theory is based upon the MDP, interparticle diffusional interactions are specifically included in the treatment. As a result, the theory yields, for the first time, insights into the influence of the local distribution of curvature on a particle's coarsening rate. The effect of interparticle interactions on the collective behavior of an ensemble of coarsening particles was also investigated. It was found that any arbitrary distribution of particle radii will tend to a specific time independent distribution when the particle radii are scaled by the average particle radius. Furthermore, it was determined that with increasing volume fraction of coarsening phase, these time independent distributions become broader and more symmetric. It was also found that the ripening kinetics, as measured by the growth rate of the average particle size, increases by a factor of five upon increasing the volume fraction of coarsening phase from zero to 0.5

  2. Effects of watertable and fertilizer management on susceptibility of tomato fruit to chilling injury

    International Nuclear Information System (INIS)

    Dodds, G.T.; Trenholm, L.; Madramootoo, C.A.

    1996-01-01

    In a 2-year study (1993-1994), 'New Yorker' tomato (Lycopersicon esculentum Mill.) plants grown in field lysimeters were subjected to four water table depth (WTD) treatments (0.3, 0.6, 0.8, and 1.0 m from the soil surface) factorially combined with 5 potassium/calcium fertilization combinations. Mature-green fruit from four replicates of each treatment were stored at 5C for 21 days, and fruit color was monitored with a tristimulus colorimeter. Fruit were subsequently allowed to ripen at 20C for 10 days, at which time chilling injury was assessed on the basis of delayed ripening and area of lesions. Potassium and calcium applied in the field had no effect on chilling tolerance of the fruit. In the drier year (1993), shallower WTD treatments generally yielded fruit that changed color less during chilling and were more chilling-sensitive based on delayed ripening. In the wetter year, differences in color change and chilling tolerance between WTD, if any, were small. Over both years, lesion area varied with WTD, but not in a consistent manner. Based on these results, we suggest that differences in water availability should be considered when studying tomato fruit chilling

  3. Effects of watertable and fertilizer management on susceptibility of tomato fruit to chilling injury

    Energy Technology Data Exchange (ETDEWEB)

    Dodds, G. T. [McGill University, Sainte Anne-de-Bellevue, Que. (Canada); Trenholm, L.; Madramootoo, C. A.

    1996-05-15

    In a 2-year study (1993-1994), 'New Yorker' tomato (Lycopersicon esculentum Mill.) plants grown in field lysimeters were subjected to four water table depth (WTD) treatments (0.3, 0.6, 0.8, and 1.0 m from the soil surface) factorially combined with 5 potassium/calcium fertilization combinations. Mature-green fruit from four replicates of each treatment were stored at 5C for 21 days, and fruit color was monitored with a tristimulus colorimeter. Fruit were subsequently allowed to ripen at 20C for 10 days, at which time chilling injury was assessed on the basis of delayed ripening and area of lesions. Potassium and calcium applied in the field had no effect on chilling tolerance of the fruit. In the drier year (1993), shallower WTD treatments generally yielded fruit that changed color less during chilling and were more chilling-sensitive based on delayed ripening. In the wetter year, differences in color change and chilling tolerance between WTD, if any, were small. Over both years, lesion area varied with WTD, but not in a consistent manner. Based on these results, we suggest that differences in water availability should be considered when studying tomato fruit chilling.

  4. Critical points and magnitude of impacts on the packing line: effect on ripening and quality of 'Packham's Triumph' pears

    Directory of Open Access Journals (Sweden)

    Josiane Pasini

    2017-06-01

    Full Text Available Pears have a very sensitive epidermis and are prone to signal mechanical blemishes, which result in reduced visual quality and low consumer acceptance. The objective of this work was to identify critical points and the magnitude of impact forces on a packing line at a commercial packinghouse. The effect of injuries on ripening and quality of ´Packham´s Triumph´ pears was also evaluated after cold storage. The packing line was scrutinized on its transfer points, fruit drop heights and cushioning overlays, which allowed to acquire the maximum accelerations on each spot. The maximum acceleration forces were reproduced in the lab with ‘Packham’s Triumph’ pears to evaluate the effects on fruit quality after cold storage. Four critical points were noticed on the packing line: at the transfer from the conveyor belt to the lifting rollers, at the transfer from the lifting rollers to the washing ramp with rotatory brushes, at the entrance to the singulator at the end of the conveyor belt and at the drop from the sizer to the packing stalls. Ripening of ‘Packham’s Triumph’ pears invariably came about during cold storage, and independently of the imposed impacts. The impacts under the circumstances of the test did not affect the quality of ´Packham´s Triumph´ pears kept for up to 120 days at cold storage followed by five days at room temperature.

  5. Tomato transcriptome and mutant analyses suggest a role for plant stress hormones in the interaction between fruit and Botrytis cinerea

    Directory of Open Access Journals (Sweden)

    Barbara eBlanco-Ulate

    2013-05-01

    Full Text Available Fruit-pathogen interactions are a valuable biological system to study the role of plant development in the transition from resistance to susceptibility. In general, unripe fruit are resistant to pathogen infection but become increasingly more susceptible as they ripen. During ripening, fruit undergo significant physiological and biochemical changes that are coordinated by complex regulatory and hormonal signaling networks. The interplay between multiple plant stress hormones in the interaction between plant vegetative tissues and microbial pathogens has been documented extensively, but the relevance of these hormones during infections of fruit is unclear. In this work, we analyzed a transcriptome study of tomato fruit infected with Botrytis cinerea in order to profile the expression of genes for the biosynthesis, modification and signal transduction of ethylene (ET, salicylic acid (SA, jasmonic acid (JA, and abscisic acid (ABA, hormones that may be not only involved in ripening, but also in fruit interactions with pathogens. The changes in relative expression of key genes during infection and assays of susceptibility of fruit with impaired synthesis or perception of these hormones were used to formulate hypotheses regarding the involvement of these regulators in the outcome of the tomato fruit-B. cinerea interaction.

  6. A Process-Based Model of TCA Cycle Functioning to Analyze Citrate Accumulation in Pre- and Post-Harvest Fruits.

    Science.gov (United States)

    Etienne, Audrey; Génard, Michel; Bugaud, Christophe

    2015-01-01

    Citrate is one of the most important organic acids in many fruits and its concentration plays a critical role in organoleptic properties. The regulation of citrate accumulation throughout fruit development, and the origins of the phenotypic variability of the citrate concentration within fruit species remain to be clarified. In the present study, we developed a process-based model of citrate accumulation based on a simplified representation of the TCA cycle to predict citrate concentration in fruit pulp during the pre- and post-harvest stages. Banana fruit was taken as a reference because it has the particularity of having post-harvest ripening, during which citrate concentration undergoes substantial changes. The model was calibrated and validated on the two stages, using data sets from three contrasting cultivars in terms of citrate accumulation, and incorporated different fruit load, potassium supply, and harvest dates. The model predicted the pre and post-harvest dynamics of citrate concentration with fairly good accuracy for the three cultivars. The model suggested major differences in TCA cycle functioning among cultivars during post-harvest ripening of banana, and pointed to a potential role for NAD-malic enzyme and mitochondrial malate carriers in the genotypic variability of citrate concentration. The sensitivity of citrate accumulation to growth parameters and temperature differed among cultivars during post-harvest ripening. Finally, the model can be used as a conceptual basis to study citrate accumulation in fleshy fruits and may be a powerful tool to improve our understanding of fruit acidity.

  7. A Process-Based Model of TCA Cycle Functioning to Analyze Citrate Accumulation in Pre- and Post-Harvest Fruits.

    Directory of Open Access Journals (Sweden)

    Audrey Etienne

    Full Text Available Citrate is one of the most important organic acids in many fruits and its concentration plays a critical role in organoleptic properties. The regulation of citrate accumulation throughout fruit development, and the origins of the phenotypic variability of the citrate concentration within fruit species remain to be clarified. In the present study, we developed a process-based model of citrate accumulation based on a simplified representation of the TCA cycle to predict citrate concentration in fruit pulp during the pre- and post-harvest stages. Banana fruit was taken as a reference because it has the particularity of having post-harvest ripening, during which citrate concentration undergoes substantial changes. The model was calibrated and validated on the two stages, using data sets from three contrasting cultivars in terms of citrate accumulation, and incorporated different fruit load, potassium supply, and harvest dates. The model predicted the pre and post-harvest dynamics of citrate concentration with fairly good accuracy for the three cultivars. The model suggested major differences in TCA cycle functioning among cultivars during post-harvest ripening of banana, and pointed to a potential role for NAD-malic enzyme and mitochondrial malate carriers in the genotypic variability of citrate concentration. The sensitivity of citrate accumulation to growth parameters and temperature differed among cultivars during post-harvest ripening. Finally, the model can be used as a conceptual basis to study citrate accumulation in fleshy fruits and may be a powerful tool to improve our understanding of fruit acidity.

  8. Genetic and biochemical analysis reveals linked QTLs determining natural variation for fruit post-harvest water loss in pepper (Capsicum).

    Science.gov (United States)

    Popovsky-Sarid, Sigal; Borovsky, Yelena; Faigenboim, Adi; Parsons, Eugene P; Lohrey, Gregory T; Alkalai-Tuvia, Sharon; Fallik, Elazar; Jenks, Matthew A; Paran, Ilan

    2017-02-01

    Molecular markers linked to QTLs controlling post-harvest fruit water loss in pepper may be utilized to accelerate breeding for improved shelf life and inhibit over-ripening before harvest. Bell pepper (Capsicum annuum L.) is an important vegetable crop world-wide. However, marketing is limited by the relatively short shelf life of the fruit due to water loss and decay that occur during prolonged storage. Towards breeding pepper with reduced fruit post-harvest water loss (PWL), we studied the genetic, physiological and biochemical basis for natural variation of PWL. We performed quantitative trait locus (QTL) mapping of fruit PWL in multiple generations of an interspecific cross of pepper, which resulted in the identification of two linked QTLs on chromosome 10 that control the trait. We further developed near-isogenic lines (NILs) for characterization of the QTL effects. Transcriptome analysis of the NILs allowed the identification of candidate genes associated with fruit PWL-associated traits such as cuticle biosynthesis, cell wall metabolism and fruit ripening. Significant differences in PWL between the NILs in the immature fruit stage, differentially expressed cuticle-associated genes and differences in the content of specific chemical constituents of the fruit cuticle, indicated a likely influence of cuticle composition on the trait. Reduced PWL in the NILs was associated with delayed over-ripening before harvest, low total soluble solids before storage, and reduced fruit softening after storage. Our study enabled a better understanding of the genetic and biological processes controlling natural variation in fruit PWL in pepper. Furthermore, the genetic materials and molecular markers developed in this study may be utilized to breed peppers with improved shelf life and inhibited over-ripening before harvest.

  9. Structural changes in cell wall pectins during strawberry fruit development.

    Science.gov (United States)

    Paniagua, Candelas; Santiago-Doménech, Nieves; Kirby, Andrew R; Gunning, A Patrick; Morris, Victor J; Quesada, Miguel A; Matas, Antonio J; Mercado, José A

    2017-09-01

    Strawberry (Fragaria × anannasa Duch.) is one of the most important soft fruit. Rapid loss of firmness occurs during the ripening process, resulting in a short shelf life and high economic losses. To get insight into the role of pectin matrix in the softening process, cell walls from strawberry fruit at two developmental stages, unripe-green and ripe-red, were extracted and sequentially fractionated with different solvents to obtain fractions enriched in a specific component. The yield of cell wall material as well as the per fresh weight contents of the different fractions decreased in ripe fruit. The largest reduction was observed in the pectic fractions extracted with a chelating agent (trans-1,2- diaminocyclohexane-N,N,N'N'-tetraacetic acid, CDTA fraction) and those covalently bound to the wall (extracted with Na 2 CO 3 ). Uronic acid content of these two fractions also decreased significantly during ripening, but the amount of soluble pectins extracted with phenol:acetic acid:water (PAW) and water increased in ripe fruit. Fourier transform infrared spectroscopy of the different fractions showed that the degree of esterification decreased in CDTA pectins but increased in soluble fractions at ripen stage. The chromatographic analysis of pectin fractions by gel filtration revealed that CDTA, water and, mainly PAW polyuronides were depolymerised in ripe fruit. By contrast, the size of Na 2 CO 3 pectins was not modified. The nanostructural characteristics of CDTA and Na 2 CO 3 pectins were analysed by atomic force microscopy (AFM). Isolated pectic chains present in the CDTA fractions were significantly longer and more branched in samples from green fruit than those from red fruit. No differences in contour length were observed in Na 2 CO 3 strands between samples of both stages. However, the percentage of branched chains decreased from 19.7% in unripe samples to 3.4% in ripe fruit. The number of pectin aggregates was higher in green fruit samples of both

  10. An ATP synthase harboring an atypical γ-subunit is involved in ATP synthesis in tomato fruit chromoplasts.

    Science.gov (United States)

    Pateraki, Irini; Renato, Marta; Azcón-Bieto, Joaquín; Boronat, Albert

    2013-04-01

    Chromoplasts are non-photosynthetic plastids specialized in the synthesis and accumulation of carotenoids. During fruit ripening, chloroplasts differentiate into photosynthetically inactive chromoplasts in a process characterized by the degradation of the thylakoid membranes, and by the active synthesis and accumulation of carotenoids. This transition renders chromoplasts unable to photochemically synthesize ATP, and therefore these organelles need to obtain the ATP required for anabolic processes through alternative sources. It is widely accepted that the ATP used for biosynthetic processes in non-photosynthetic plastids is imported from the cytosol or is obtained through glycolysis. In this work, however, we show that isolated tomato (Solanum lycopersicum) fruit chromoplasts are able to synthesize ATP de novo through a respiratory pathway using NADPH as an electron donor. We also report the involvement of a plastidial ATP synthase harboring an atypical γ-subunit induced during ripening, which lacks the regulatory dithiol domain present in plant and algae chloroplast γ-subunits. Silencing of this atypical γ-subunit during fruit ripening impairs the capacity of isolated chromoplast to synthesize ATP de novo. We propose that the replacement of the γ-subunit present in tomato leaf and green fruit chloroplasts by the atypical γ-subunit lacking the dithiol domain during fruit ripening reflects evolutionary changes, which allow the operation of chromoplast ATP synthase under the particular physiological conditions found in this organelle. © 2013 The Authors The Plant Journal © 2013 Blackwell Publishing Ltd.

  11. Radiation preservation of subtropical fruits in South Africa

    International Nuclear Information System (INIS)

    Brodrick, H.T.; Thomas, A.C.

    1978-01-01

    Investigations on the radiation treatment of subtropical fruits were conducted over several seasons at the Atomic Energy Board in conjunction with the Citrus and Subtropical Fruit Research Institute, Nelspruit. In the case of mangoes irradiation, in combination with hot-water or heated-fungicide treatment, by controlling fungal and insect attack, makes possible the transport of fruits to Europe by sea and, with the additional advantage od delayed ripening, a marked improvement in national distribution is also achieved. A commercial feasibility study for mango processing is summarized and a pilot-plant operation for mangoes is also described. Promising results have also been obtained with respect to disease control and delayed senescence in papayas, and similar benefits to those described for mangoes can be achieved under local-market and export conditions. In the case of litchis, although work is in an early stage, effective disease control has been obtained with irradiation treatment. With regard to avocados, a greatly reduced dose with a mild heat treatment produced delayed ripening without significant adverse effects, and resulted in a shelf-life extension of several days. The results given in the report show that the irradiation of subtropical fruits holds considerable promise in terms of reduced losses, improved fruit quality, better distribution and large-scale exports. With the possibility of international clearances within the foreseeable future, commercialization of the process should follow in due course. (author)

  12. Kinetic synergistic transitions in the Ostwald ripening processes

    Science.gov (United States)

    Sachkov, I. N.; Turygina, V. F.; Dolganov, A. N.

    2018-01-01

    There is proposed approach to mathematical description of the kinetic transitions in Ostwald ripening processes of volatile substance in nonuniformly heated porous materials. It is based upon the finite element method. There are implemented computer software. The main feature of the software is to calculate evaporation and condensation fluxes on the walls of a nonuniformly heated cylindrical capillary. Kinetic transitions are detected for three modes of volatile substances migration which are different by condensation zones location. There are controlling dimensionless parameters of the kinetic transition which are revealed during research. There is phase diagram of the Ostwald ripening process modes realization.

  13. [Subchronic toxicity testing of mold-ripened cheese].

    Science.gov (United States)

    Schoch, U; Lüthy, J; Schlatter, C

    1984-08-01

    The biological effects of known mycotoxins of Penicillium roqueforti or P. camemberti and other still unknown, but potentially toxic metabolites in mould ripened cheese (commercial samples of Blue- and Camembert cheese) were investigated. High amounts of mycelium (equivalents of 100 kg cheese/man and day) were fed to mice in a subchronic feeding trial. The following parameters were determined: development of body weight, organ weights, hematology, blood plasma enzymes. No signs of adverse effects produced by cheese mycotoxins could be detected after 28 days. No still unknown toxic metabolites could be demonstrated. From these results no health hazard from the consumption of mould ripened cheese, even in high amounts, appears to exist.

  14. The incorporation gene of tomato fruit firmness (Lycopersicon esculentum Mill.

    Directory of Open Access Journals (Sweden)

    Zdravković Jasmina

    2009-01-01

    Full Text Available Tomato fruit firmness is a polygenetic trait and depends on firmness components pericarp thickness, firmness of epidermis and firmness of flash. The accumulation of favourable traits ratio for each component (towards the increase of expression the fruit firmness can be increased. This paper deals with aspects of increasing fruit firmness by increasing firmness of epidermis and thickness of pericarp. By using genotypes with rin (ripening inhibitor gene, we were able to accomplish great firmness of fruits, especially firmness of flash. The expression of these traits cause the asynchronization of maturing process so the fruits do not over mature or soften. Genetic effects have been evaluated by researching the average values of fruit firmness in six diallel parent lines (D-150, S-49, S-35, H-52, Kg-z and SP-109 and progeny (P1, P2, F1, F2, BC1 and BC2 by applying additive dominant model with three and six parameters (Mather and Jinks, 1982. Mean values of fruit firmness for parents and progeny were significantly different. Firmness of fruits is a trait influenced first of all by additive gene since they were found in all researched combinations. Epystatic gene effect was important in inheriting process for all three two-gene interactions. The stabile duplicate type of epystsase was found, which in this case reduces the unfavourable effects of dominant genes of parents with soft fruits. .

  15. Proteome regulation during Olea europaea fruit development.

    Directory of Open Access Journals (Sweden)

    Linda Bianco

    Full Text Available Widespread in the Mediterranean basin, Olea europaea trees are gaining worldwide popularity for the nutritional and cancer-protective properties of the oil, mechanically extracted from ripe fruits. Fruit development is a physiological process with remarkable impact on the modulation of the biosynthesis of compounds affecting the quality of the drupes as well as the final composition of the olive oil. Proteomics offers the possibility to dig deeper into the major changes during fruit development, including the important phase of ripening, and to classify temporal patterns of protein accumulation occurring during these complex physiological processes.In this work, we started monitoring the proteome variations associated with olive fruit development by using comparative proteomics coupled to mass spectrometry. Proteins extracted from drupes at three different developmental stages were separated on 2-DE and subjected to image analysis. 247 protein spots were revealed as differentially accumulated. Proteins were identified from a total of 121 spots and discussed in relation to olive drupe metabolic changes occurring during fruit development. In order to evaluate if changes observed at the protein level were consistent with changes of mRNAs, proteomic data produced in the present work were compared with transcriptomic data elaborated during previous studies.This study identifies a number of proteins responsible for quality traits of cv. Coratina, with particular regard to proteins associated to the metabolism of fatty acids, phenolic and aroma compounds. Proteins involved in fruit photosynthesis have been also identified and their pivotal contribution in oleogenesis has been discussed. To date, this study represents the first characterization of the olive fruit proteome during development, providing new insights into fruit metabolism and oil accumulation process.

  16. Proteome regulation during Olea europaea fruit development.

    Science.gov (United States)

    Bianco, Linda; Alagna, Fiammetta; Baldoni, Luciana; Finnie, Christine; Svensson, Birte; Perrotta, Gaetano

    2013-01-01

    Widespread in the Mediterranean basin, Olea europaea trees are gaining worldwide popularity for the nutritional and cancer-protective properties of the oil, mechanically extracted from ripe fruits. Fruit development is a physiological process with remarkable impact on the modulation of the biosynthesis of compounds affecting the quality of the drupes as well as the final composition of the olive oil. Proteomics offers the possibility to dig deeper into the major changes during fruit development, including the important phase of ripening, and to classify temporal patterns of protein accumulation occurring during these complex physiological processes. In this work, we started monitoring the proteome variations associated with olive fruit development by using comparative proteomics coupled to mass spectrometry. Proteins extracted from drupes at three different developmental stages were separated on 2-DE and subjected to image analysis. 247 protein spots were revealed as differentially accumulated. Proteins were identified from a total of 121 spots and discussed in relation to olive drupe metabolic changes occurring during fruit development. In order to evaluate if changes observed at the protein level were consistent with changes of mRNAs, proteomic data produced in the present work were compared with transcriptomic data elaborated during previous studies. This study identifies a number of proteins responsible for quality traits of cv. Coratina, with particular regard to proteins associated to the metabolism of fatty acids, phenolic and aroma compounds. Proteins involved in fruit photosynthesis have been also identified and their pivotal contribution in oleogenesis has been discussed. To date, this study represents the first characterization of the olive fruit proteome during development, providing new insights into fruit metabolism and oil accumulation process.

  17. Histological and Molecular Characterization of Grape Early Ripening Bud Mutant

    Directory of Open Access Journals (Sweden)

    Da-Long Guo

    2016-01-01

    Full Text Available An early ripening bud mutant was analyzed based on the histological, SSR, and methylation-sensitive amplified polymorphism (MSAP analysis and a layer-specific approach was used to investigate the differentiation between the bud mutant and its parent. The results showed that the thickness of leaf spongy tissue of mutant (MT is larger than that of wild type (WT and the differences are significant. The mean size of cell layer L2 was increased in the mutant and the difference is significant. The genetic background of bud mutant revealed by SSR analysis is highly uniform to its parent; just the variations from VVS2 SSR marker were detected in MT. The total methylation ratio of MT is lower than that of the corresponding WT. The outside methylation ratio in MT is much less than that in WT; the average inner methylation ratio in MT is larger than that in WT. The early ripening bud mutant has certain proportion demethylation in cell layer L2. All the results suggested that cell layer L2 of the early ripening bud mutant has changed from the WT. This study provided the basis for a better understanding of the characteristic features of the early ripening bud mutant in grape.

  18. Is gene transcription involved in seed dry after-ripening?

    Directory of Open Access Journals (Sweden)

    Patrice Meimoun

    Full Text Available Orthodox seeds are living organisms that survive anhydrobiosis and may display dormancy, an inability to germinate at harvest. Seed germination potential can be acquired during a prolonged period of dry storage called after-ripening. The aim of this work was to determine if gene transcription is an underlying regulatory mechanism for dormancy alleviation during after-ripening. To identify changes in gene transcription strictly associated with the acquisition of germination potential but not with storage, we used seed storage at low relative humidity that maintains dormancy as control. Transcriptome profiling was performed using DNA microarray to compare change in gene transcript abundance between dormant (D, after-ripened non-dormant (ND and after-ripened dormant seeds (control, C. Quantitative real-time polymerase chain reaction (qPCR was used to confirm gene expression. Comparison between D and ND showed the differential expression of 115 probesets at cut-off values of two-fold change (p<0.05. Comparisons between both D and C with ND in transcript abundance showed that only 13 transcripts, among 115, could be specific to dormancy alleviation. qPCR confirms the expression pattern of these transcripts but without significant variation between conditions. Here we show that sunflower seed dormancy alleviation in the dry state is not related to regulated changes in gene expression.

  19. Upshot of the ripening time on biological activities, phenol content ...

    African Journals Online (AJOL)

    Anis

    2013-10-02

    Oct 2, 2013 ... ripening time, seed count and ability to reflow (Wessels,. 1988; Pimienta, 1990 .... at 50°C for 120 min, and the absorbance was measured using a model EAR 400 micro .... regenerate the ''active” reduced antioxidant. Iron reducing .... adsorption to cell membranes, interaction with enzymes, substrate and ...

  20. Transcriptional analysis of late ripening stages of grapevine berry

    Science.gov (United States)

    2011-01-01

    Background The composition of grapevine berry at harvest is a major determinant of wine quality. Optimal oenological maturity of berries is characterized by a high sugar/acidity ratio, high anthocyanin content in the skin, and low astringency. However, harvest time is still mostly determined empirically, based on crude biochemical composition and berry tasting. In this context, it is interesting to identify genes that are expressed/repressed specifically at the late stages of ripening and which may be used as indicators of maturity. Results Whole bunches and berries sorted by density were collected in vineyard on Chardonnay (white cultivar) grapevines for two consecutive years at three stages of ripening (7-days before harvest (TH-7), harvest (TH), and 10-days after harvest (TH+10)). Microvinification and sensory analysis indicate that the quality of the wines made from the whole bunches collected at TH-7, TH and TH+10 differed, TH providing the highest quality wines. In parallel, gene expression was studied with Qiagen/Operon microarrays using two types of samples, i.e. whole bunches and berries sorted by density. Only 12 genes were consistently up- or down-regulated in whole bunches and density sorted berries for the two years studied in Chardonnay. 52 genes were differentially expressed between the TH-7 and TH samples. In order to determine whether these genes followed a similar pattern of expression during the late stages of berry ripening in a red cultivar, nine genes were selected for RT-PCR analysis with Cabernet Sauvignon grown under two different temperature regimes affecting the precocity of ripening. The expression profiles and their relationship to ripening were confirmed in Cabernet Sauvignon for seven genes, encoding a carotenoid cleavage dioxygenase, a galactinol synthase, a late embryogenesis abundant protein, a dirigent-like protein, a histidine kinase receptor, a valencene synthase and a putative S-adenosyl-L-methionine:salicylic acid carboxyl

  1. Transcriptional analysis of late ripening stages of grapevine berry

    Directory of Open Access Journals (Sweden)

    Guillaumie Sabine

    2011-11-01

    Full Text Available Abstract Background The composition of grapevine berry at harvest is a major determinant of wine quality. Optimal oenological maturity of berries is characterized by a high sugar/acidity ratio, high anthocyanin content in the skin, and low astringency. However, harvest time is still mostly determined empirically, based on crude biochemical composition and berry tasting. In this context, it is interesting to identify genes that are expressed/repressed specifically at the late stages of ripening and which may be used as indicators of maturity. Results Whole bunches and berries sorted by density were collected in vineyard on Chardonnay (white cultivar grapevines for two consecutive years at three stages of ripening (7-days before harvest (TH-7, harvest (TH, and 10-days after harvest (TH+10. Microvinification and sensory analysis indicate that the quality of the wines made from the whole bunches collected at TH-7, TH and TH+10 differed, TH providing the highest quality wines. In parallel, gene expression was studied with Qiagen/Operon microarrays using two types of samples, i.e. whole bunches and berries sorted by density. Only 12 genes were consistently up- or down-regulated in whole bunches and density sorted berries for the two years studied in Chardonnay. 52 genes were differentially expressed between the TH-7 and TH samples. In order to determine whether these genes followed a similar pattern of expression during the late stages of berry ripening in a red cultivar, nine genes were selected for RT-PCR analysis with Cabernet Sauvignon grown under two different temperature regimes affecting the precocity of ripening. The expression profiles and their relationship to ripening were confirmed in Cabernet Sauvignon for seven genes, encoding a carotenoid cleavage dioxygenase, a galactinol synthase, a late embryogenesis abundant protein, a dirigent-like protein, a histidine kinase receptor, a valencene synthase and a putative S

  2. Detection and viability of Lactococcus lactis throughout cheese ripening.

    Directory of Open Access Journals (Sweden)

    Marianna Ruggirello

    Full Text Available Recent evidences highlighted the presence of Lactococcus lactis during late cheese ripening. For this reason, the role of this microorganism, well known as dairy starter, should be reconsidered throughout cheese manufacturing and ripening. Thus, the main objective of this study was to develop a RT-qPCR protocol for the detection, quantification and determination of the viability of L. lactis in ripened cheese samples by direct analysis of microbial nucleic acids. Standard curves were constructed for the specific quantification of L. lactis in cheese matrices and good results in terms of selectivity, correlation coefficient and efficiency were obtained. Thirty-three ripened cheeses were analyzed and, on the basis of RNA analysis, twelve samples showed 106 to 108 CFU of L. lactis per gram of product, thirteen from 103 to 105 CFU/g, and in eight cheeses, L. lactis was not detected. Traditional plating on M17 medium led to loads ranging from 105 to 109 CFU/g, including the cheese samples where no L. lactis was found by RT-qPCR. From these cheeses, none of the colonies isolated on M17 medium was identified as L. lactis species. These data could be interpreted as a lack of selectivity of M17 medium where colony growth is not always related to lactococcal species. At the same time, the absence or low abundance of L. lactis isolates on M17 medium from cheese where L. lactis was detected by RT-qPCR support the hypothesis that L. lactis starter populations are mainly present in viable but not culturable state during ripening and, for this reason, culture-dependent methods have to be supplemented with direct analysis of cheese.

  3. Detection and Viability of Lactococcus lactis throughout Cheese Ripening

    Science.gov (United States)

    Cocolin, Luca

    2014-01-01

    Recent evidences highlighted the presence of Lactococcus lactis during late cheese ripening. For this reason, the role of this microorganism, well known as dairy starter, should be reconsidered throughout cheese manufacturing and ripening. Thus, the main objective of this study was to develop a RT-qPCR protocol for the detection, quantification and determination of the viability of L. lactis in ripened cheese samples by direct analysis of microbial nucleic acids. Standard curves were constructed for the specific quantification of L. lactis in cheese matrices and good results in terms of selectivity, correlation coefficient and efficiency were obtained. Thirty-three ripened cheeses were analyzed and, on the basis of RNA analysis, twelve samples showed 106 to 108 CFU of L. lactis per gram of product, thirteen from 103 to 105 CFU/g, and in eight cheeses, L. lactis was not detected. Traditional plating on M17 medium led to loads ranging from 105 to 109 CFU/g, including the cheese samples where no L. lactis was found by RT-qPCR. From these cheeses, none of the colonies isolated on M17 medium was identified as L. lactis species. These data could be interpreted as a lack of selectivity of M17 medium where colony growth is not always related to lactococcal species. At the same time, the absence or low abundance of L. lactis isolates on M17 medium from cheese where L. lactis was detected by RT-qPCR support the hypothesis that L. lactis starter populations are mainly present in viable but not culturable state during ripening and, for this reason, culture-dependent methods have to be supplemented with direct analysis of cheese. PMID:25503474

  4. Accumulation of soluble sugars in peel at high temperature leads to stay-green ripe banana fruit.

    Science.gov (United States)

    Yang, Xiaotang; Pang, Xuequn; Xu, Lanying; Fang, Ruiqiu; Huang, Xuemei; Guan, Peijian; Lu, Wangjin; Zhang, Zhaoqi

    2009-01-01

    Bananas (Musa acuminata, AAA group) fail to develop a yellow peel and stay green when ripening at temperatures >24 degrees C. The identification of the mechanisms leading to the development of stay-green ripe bananas has practical value and is helpful in revealing pathways involved in the regulation of chlorophyll (Chl) degradation. In the present study, the Chl degradation pathway was characterized and the progress of ripening and senescence was assessed in banana peel at 30 degrees C versus 20 degrees C, by monitoring relevant gene expression and ripening and senescence parameters. A marked reduction in the expression levels of the genes for Chl b reductase, SGR (Stay-green protein), and pheophorbide a oxygenase was detected for the fruit ripening at 30 degrees C, when compared with fruit at 20 degrees C, indicating that Chl degradation was repressed at 30 degrees C at various steps along the Chl catabolic pathway. The repressed Chl degradation was not due to delayed ripening and senescence, since the fruit at 30 degrees C displayed faster onset of various ripening and senescence symptoms, suggesting that the stay-green ripe bananas are of similar phenotype to type C stay-green mutants. Faster accumulation of high levels of fructose and glucose in the peel at 30 degrees C prompted investigation of the roles of soluble sugars in Chl degradation. In vitro incubation of detached pieces of banana peel showed that the pieces of peel stayed green when incubated with 150 mM glucose or fructose, but turned completely yellow in the absence of sugars or with 150 mM mannitol, at either 20 degrees C or 30 degrees C. The results suggest that accumulation of sugars in the peel induced by a temperature of 30 degrees C may be a major factor regulating Chl degradation independently of fruit senescence.

  5. Identification and antioxidant properties of polyphenols in lotus seed epicarp at different ripening stages.

    Science.gov (United States)

    Liu, Ying; Ma, Shuang-shuang; Ibrahim, S A; Li, Er-hu; Yang, Hong; Huang, Wen

    2015-10-15

    In this study, polyphenols from lotus seed epicarp (PLSE) at three different ripening stages were purified by column chromatography and identified by RP-HPLC and HPLC-ESI-MS(2). The antioxidant activities of PLSE were also investigated. We found that the contents of PLSE at the green ripening stage, half ripening stage and full ripening stage are 13.08%, 10.95% and 6.73% respectively. The levels of catechin, epicatechin, hyperoside, and isoquercitrin in PLSE at the three different ripening stages were different. Moreover, the amounts of catechin and epicatechin decreased, while the contents of hyperoside and isoquercitrin increased as the seed ripened. We found that PLSE at three different ripening stages had good scavenging abilities on DPPH and ABTS(+) radicals. However, the scavenging ability decreased with maturation. Our results may be valuable with regard to the utilization of lotus seed epicarp as a functional food material. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Transcriptome profiling of postharvest strawberry fruit in response to exogenous auxin and abscisic acid.

    Science.gov (United States)

    Chen, Jingxin; Mao, Linchun; Lu, Wenjing; Ying, Tiejin; Luo, Zisheng

    2016-01-01

    Auxin and abscisic acid regulate strawberry fruit ripening and senescence through cross-talk of their signal transduction pathways that further modulate the structural genes related to physico-chemical properties of fruit. The physiological and transcriptomic changes in harvested strawberry fruits in responses to IAA, ABA and their combination were analyzed. Exogenous IAA delayed the ripening process of strawberries after harvest while ABA promoted the postharvest ripening. However, treatment with a combination of IAA and ABA did not slow down nor accelerate the postharvest ripening in the strawberry fruits. At the molecular level, exogenous IAA up regulated the expressions of genes related to IAA signaling, including AUX/IAA, ARF, TOPLESS and genes encoding E3 ubiquitin protein ligase and annexin, and down regulated genes related to pectin depolymerization, cell wall degradation, sucrose and anthocyanin biosyntheses. In contrast, exogenous ABA induced genes related to fruit softening, and genes involved in signaling pathways including SKP1, HSPs, CK2, and SRG1. Comparison of transcriptomes in responses to individual treatments with IAA or ABA or the combination revealed that there were cooperative and antagonistic actions between IAA and ABA in fruit. However, 17% of the differentially expressed unigenes in response to the combination of IAA and ABA were unique and were not found in those unigenes responding to either IAA or ABA alone. The analyses also found that receptor-like kinases and ubiquitin ligases responded to both IAA and ABA, which seemed to play a pivotal role in both hormones' signaling pathways and thus might be the cross-talk points of both hormones.

  7. Use of Early Ripening Cultivars to Avoid Infestation and Mass Trapping to Manage Drosophila suzukii (Diptera: Drosophilidae) in Vaccinium corymbosum (Ericales: Ericaceae).

    Science.gov (United States)

    Hampton, Emily; Koski, Carissa; Barsoian, Olivia; Faubert, Heather; Cowles, Richard S; Alm, Steven R

    2014-10-01

    Use of early ripening highbush blueberry cultivars to avoid infestation and mass trapping were evaluated for managing spotted wing drosophila, Drosophila suzukii (Matsumura). Fourteen highbush blueberry cultivars were sampled for spotted wing drosophila infestation. Most 'Earliblue', 'Bluetta', and 'Collins' fruit were harvested before spotted wing drosophila oviposition commenced, and so escaped injury. Most fruit from 'Bluejay', 'Blueray', and 'Bluehaven' were also harvested before the first week of August, after which spotted wing drosophila activity led to high levels of blueberry infestation. In a separate experiment, damage to cultivars was related to the week in which fruit were harvested, with greater damage to fruit observed as the season progressed. Attractant traps placed within blueberry bushes increased nearby berry infestation by 5%, irrespective of cultivar and harvest date. The significant linear reduction in infestation with increasing distance from the attractant trap suggests that traps are influencing fly behavior to at least 5.5 m. Insecticides applied to the exterior of traps, compared with untreated traps, revealed that only 10-30% of flies visiting traps enter the traps and drown. Low trap efficiency may jeopardize surrounding fruits by increasing local spotted wing drosophila activity. To protect crops, traps for mass trapping should be placed in a perimeter outside fruit fields and insecticides need to be applied to the surface of traps or on nearby fruit to function as an attract-and-kill strategy. © 2014 Entomological Society of America.

  8. Effect of irradiation with black light fluorescent lamp on coloration and hardness of strawberry [Fragaria ananassa] fruits

    International Nuclear Information System (INIS)

    Higashio, H.; Hirono, H.; Sato, F.; Tokuda, S.; Uragami, A.

    2009-01-01

    The effect of irradiation by black light fluorescent lamp on the coloration and hardness of detached strawberry fruits was studied. Only the coloring of fruits (var. Toyonoka) that had started to pigment was accelerated by lamp irradiation. Maintaining the irradiation distance and ambient temperature after treatment was very important to obtain the maximum effect, and the action of lamps was restricted to the irradiated parts. The accelerating effect of a lamp on coloration was observed in all 3 of other varieties examined, and in some varieties, the level of anthocyanin concentration in fruits was greater than that in ripening stage. However, the lamp did not affect the hardness of fruits

  9. Identification of microRNA targets in tomato fruit development using high-throughput sequencing and degradome analysis

    NARCIS (Netherlands)

    Karlova, R.B.; Haarst, van J.C.; Maliepaard, C.A.; Geest, van de H.C.; Bovy, A.G.; Lammers, M.; Angenent, G.C.; Maagd, de R.A.

    2013-01-01

    MicroRNAs (miRNAs) play important roles in plant development through regulation of gene expression by mRNA degradation or translational inhibition. Despite the fact that tomato (Solanum lycopersicum) is the model system for studying fleshy fruit development and ripening, only a few experimentally

  10. Effects of differents gamma radiation doses absorbed for postharvest tomato fruits

    International Nuclear Information System (INIS)

    Silva Abreu, Toneypson da; Jesus, Edgar F.O. de; Soares, Antonio G.

    1997-01-01

    Postharvest tomato fuits Santa Cruz were submitted to prestorage gamma irradiation treatment with different doses range zero (unirradiated fruits) to 1000 Gy. The aim of this study is to evaluate the postharvest quality parameters: Hunter colour values for light transmittance analysis, pH, total titratable acidity, total soluble solids, maximum firmness and maturity stage. The fruits were stored under (25±1) 0 C with (93±3) relative humidity. The results obtained from the different irradiated treatments showed 600 Gy as the best dose to increase the shelf-life of tomato fruits and to decay its ripening. (author). 5 refs., 12 figs., 1 tab

  11. Radiation processing of fruits: application to strawberries and prunes

    International Nuclear Information System (INIS)

    Levillain, M.

    1986-10-01

    Extending the shelf-life of fresh fruit by means of low-dose irradiation (radurization) is not a new idea: experiments in that field started in the early sixties. These experiments have actually proved that, in some cases, irradiation can achieve shelf-life extension, either through a delay in ripening (bananas), or through rot inhibition (soft cherries, apricots, tomatoes, strawberries). Alas, they have also highlighted the intolerance showed by a number of fruits when radurized: irradiation is apt to have them ripen more rapidly (peaches, nectarines) or to soften them too much (pears, table grapes, oranges, apples, plums, grapefruit, melons, honeydew melons). Even in those cases where irradiation results in a benefit, this benefit varies depending on the variety of fruit involved, as can be seen from a deep survey of the irradiation of strawberries. Preservation of dehydrated fruit is a different matter. Prunes, for instance, would be contamined by molds, wasn't it for the addition of sorbic acid during the fabrication process. Ionization of prunes can allow producers to avoid the use of a chemical, and to keep the prunes at a greater degree of humidity [fr

  12. Differences in Flower Transcriptome between Grapevine Clones Are Related to Their Cluster Compactness, Fruitfulness, and Berry Size

    OpenAIRE

    Grimplet, Jérôme; Tello, Javier; Laguna Ullán, Natalia; Ibáñez Marcos, Javier

    2017-01-01

    Grapevine cluster compactness has a clear impact on fruit quality and health status, as clusters with greater compactness are more susceptible to pests and diseases and ripen more asynchronously. Different parameters related to inflorescence and cluster architecture (length, width, branching, etc.), fruitfulness (number of berries, number of seeds) and berry size (length, width) contribute to the final level of compactness. From a collection of 501 clones of cultivar Garnacha Tinta, two compa...

  13. Effect of physico-chemical treatments on ripening behavior and post-harvest quality of Amrapali mango (Mangifera indica L.) during storage.

    Science.gov (United States)

    Singh, Pankaj; Singh, Manoj Kumar; Kumar, Vipin; Kumar, Mukesh; Malik, Sunil

    2012-03-01

    An experiment was done to assess the effect of various physico-chemical treatments on ripening behavior and post harvest quality of mango cv. Amrapali. The experiment was planned under completely randomized design (CRD) with three replications. The treatment units was five fruits per replication. Total 14 treatments were applied. Out of these, ethrel 750 ppm treated fruits showed better results in respect of specific gravity (0.88), moisture loss (8.45%), decay (2.5%), total soluble solids (TSS, 20.7 degrees brix), sugar content (14.39%) and acidity content (0.32) followed by ethrel 500 ppm; specific gravity (0.90), moisture loss (8.82%), decay (3.5%), TSS (20.7 degrees brix), sugar content (13.99%) and acidity content (0.36%). The pedicellate fruits and ethrel+bavistin (750+1000 ppm) were also found to be significantly superior over control in respect of specific gravity (0.88 and 0.86), moisture loss (9.10 and 9.33%), decay (4.0 and 5.33%), TSS (20.1 and 20.4 degrees brix), sugar content (12.70 and 12.80%) and acidity content (0.42 and 0.38%), respectively. Based on results of this study, it can be concluded that ethrel 750 ppm was found to be the most suitable treatment in improving physico-chemical traits i.e. ripening, storage, quality and shelf-life for commercial purpose in mango.

  14. The core regulatory network of the abscisic acid pathway in banana: genome-wide identification and expression analyses during development, ripening, and abiotic stress.

    Science.gov (United States)

    Hu, Wei; Yan, Yan; Shi, Haitao; Liu, Juhua; Miao, Hongxia; Tie, Weiwei; Ding, Zehong; Ding, XuPo; Wu, Chunlai; Liu, Yang; Wang, Jiashui; Xu, Biyu; Jin, Zhiqiang

    2017-08-29

    Abscisic acid (ABA) signaling plays a crucial role in developmental and environmental adaptation processes of plants. However, the PYL-PP2C-SnRK2 families that function as the core components of ABA signaling are not well understood in banana. In the present study, 24 PYL, 87 PP2C, and 11 SnRK2 genes were identified from banana, which was further supported by evolutionary relationships, conserved motif and gene structure analyses. The comprehensive transcriptomic analyses showed that banana PYL-PP2C-SnRK2 genes are involved in tissue development, fruit development and ripening, and response to abiotic stress in two cultivated varieties. Moreover, comparative expression analyses of PYL-PP2C-SnRK2 genes between BaXi Jiao (BX) and Fen Jiao (FJ) revealed that PYL-PP2C-SnRK2-mediated ABA signaling might positively regulate banana fruit ripening and tolerance to cold, salt, and osmotic stresses. Finally, interaction networks and co-expression assays demonstrated that the core components of ABA signaling were more active in FJ than in BX in response to abiotic stress, further supporting the crucial role of the genes in tolerance to abiotic stress in banana. This study provides new insights into the complicated transcriptional control of PYL-PP2C-SnRK2 genes, improves the understanding of PYL-PP2C-SnRK2-mediated ABA signaling in the regulation of fruit development, ripening, and response to abiotic stress, and identifies some candidate genes for genetic improvement of banana.

  15. Effects of modified atmosphere packaging on ripening of 'Douradão' peach related to pectolytic enzymes activities and chilling injury symptoms

    Directory of Open Access Journals (Sweden)

    Ligia Regina Radomille de Santana

    2011-12-01

    Full Text Available The present study evaluated the effects of modified atmosphere packaging on inhibition of the development of chilling injury symptoms in 'Douradão' peach after cold storage and the possible involvement of cell wall enzymes. Fruits were harvested at the middle stadium of ripening, packed in polypropylene trays and placed inside low density polyethylene (LDPE bags (30, 50, 60 and 75 µm of thickness with active modified atmosphere (10 kPa CO2 + 1.5 kPa O2, balance N2. The following treatments were tested: Control: peaches held in nonwrapped trays; MA30: LDPE film - 30 µm; MA50: LDPE film - 50 µm; MA60: LDPE film - 60 µm and MA75: LDPE film - 75 µm. Fruits were kept at 1±1ºC and 90±5% relative humidity (RH for 28 days. After 14, 21 and 28 days, samples were withdrawn from MAP and kept in air at 25±1ºC and 90±5% RH for ripening. On the day of removal and after 4 days, peaches were evaluated for woolliness incidence, pectolytic enzymes activities. The respiratory rate and ethylene synthesis were monitored during 6 days of ripening. The results showed that MA50 and MA60 treatments had positive effect on the inhibition of the development of woolly texture and reduced pectin methylesterase activity on the ripe fruits, keeping good quality of 'Douradão' peach during 28 days of cold storage. The treatments Control, MA30 and MA75 showed higher woolliness incidence and did not present marketable conditions after 14 days of cold storage.

  16. Tomato Fruits Show Wide Phenomic Diversity but Fruit Developmental Genes Show Low Genomic Diversity.

    Directory of Open Access Journals (Sweden)

    Vijee Mohan

    Full Text Available Domestication of tomato has resulted in large diversity in fruit phenotypes. An intensive phenotyping of 127 tomato accessions from 20 countries revealed extensive morphological diversity in fruit traits. The diversity in fruit traits clustered the accessions into nine classes and identified certain promising lines having desirable traits pertaining to total soluble salts (TSS, carotenoids, ripening index, weight and shape. Factor analysis of the morphometric data from Tomato Analyzer showed that the fruit shape is a complex trait shared by several factors. The 100% variance between round and flat fruit shapes was explained by one discriminant function having a canonical correlation of 0.874 by stepwise discriminant analysis. A set of 10 genes (ACS2, COP1, CYC-B, RIN, MSH2, NAC-NOR, PHOT1, PHYA, PHYB and PSY1 involved in various plant developmental processes were screened for SNP polymorphism by EcoTILLING. The genetic diversity in these genes revealed a total of 36 non-synonymous and 18 synonymous changes leading to the identification of 28 haplotypes. The average frequency of polymorphism across the genes was 0.038/Kb. Significant negative Tajima'D statistic in two of the genes, ACS2 and PHOT1 indicated the presence of rare alleles in low frequency. Our study indicates that while there is low polymorphic diversity in the genes regulating plant development, the population shows wider phenotype diversity. Nonetheless, morphological and genetic diversity of the present collection can be further exploited as potential resources in future.

  17. Suppression of 9-cis-epoxycarotenoid dioxygenase, which encodes a key enzyme in abscisic acid biosynthesis, alters fruit texture in transgenic tomato.

    Science.gov (United States)

    Sun, Liang; Sun, Yufei; Zhang, Mei; Wang, Ling; Ren, Jie; Cui, Mengmeng; Wang, Yanping; Ji, Kai; Li, Ping; Li, Qian; Chen, Pei; Dai, Shengjie; Duan, Chaorui; Wu, Yan; Leng, Ping

    2012-01-01

    Cell wall catabolism during fruit ripening is under complex control and is key for fruit quality and shelf life. To examine the role of abscisic acid (ABA) in tomato (Solanum lycopersicum) fruit ripening, we suppressed SlNCED1, which encodes 9-cis-epoxycarotenoid dioxygenase (NCED), a key enzyme in the biosynthesis of ABA. To suppress SlNCED1 specifically in tomato fruits, and thus avoid the pleiotropic phenotypes associated with ABA deficiency, we used an RNA interference construct driven by the fruit-specific E8 promoter. ABA accumulation and SlNCED1 transcript levels in the transgenic fruit were down-regulated to between 20% and 50% of the levels measured in the control fruit. This significant reduction in NCED activity led to a down-regulation in the transcription of genes encoding major cell wall catabolic enzymes, specifically polygalacturonase (SlPG), pectin methyl esterase (SlPME), β-galactosidase precursor mRNA (SlTBG), xyloglucan endotransglycosylase (SlXET), endo-1,4-β-cellulose (SlCels), and expansin (SlExp). This resulted in an increased accumulation of pectin during ripening. In turn, this led to a significant extension of the shelf life to 15 to 29 d compared with a shelf life of only 7 d for the control fruit and an enhancement of fruit firmness at the mature stage by 30% to 45%. In conclusion, ABA affects cell wall catabolism during tomato fruit ripening via down-regulation of the expression of major catabolic genes (SlPG, SlPME, SlTBG, SlXET, SlCels, and SlExp).

  18. Suppression of 9-cis-Epoxycarotenoid Dioxygenase, Which Encodes a Key Enzyme in Abscisic Acid Biosynthesis, Alters Fruit Texture in Transgenic Tomato1[W][OA

    Science.gov (United States)

    Sun, Liang; Sun, Yufei; Zhang, Mei; Wang, Ling; Ren, Jie; Cui, Mengmeng; Wang, Yanping; Ji, Kai; Li, Ping; Li, Qian; Chen, Pei; Dai, Shengjie; Duan, Chaorui; Wu, Yan; Leng, Ping

    2012-01-01

    Cell wall catabolism during fruit ripening is under complex control and is key for fruit quality and shelf life. To examine the role of abscisic acid (ABA) in tomato (Solanum lycopersicum) fruit ripening, we suppressed SlNCED1, which encodes 9-cis-epoxycarotenoid dioxygenase (NCED), a key enzyme in the biosynthesis of ABA. To suppress SlNCED1 specifically in tomato fruits, and thus avoid the pleiotropic phenotypes associated with ABA deficiency, we used an RNA interference construct driven by the fruit-specific E8 promoter. ABA accumulation and SlNCED1 transcript levels in the transgenic fruit were down-regulated to between 20% and 50% of the levels measured in the control fruit. This significant reduction in NCED activity led to a down-regulation in the transcription of genes encoding major cell wall catabolic enzymes, specifically polygalacturonase (SlPG), pectin methyl esterase (SlPME), β-galactosidase precursor mRNA (SlTBG), xyloglucan endotransglycosylase (SlXET), endo-1,4-β-cellulose (SlCels), and expansin (SlExp). This resulted in an increased accumulation of pectin during ripening. In turn, this led to a significant extension of the shelf life to 15 to 29 d compared with a shelf life of only 7 d for the control fruit and an enhancement of fruit firmness at the mature stage by 30% to 45%. In conclusion, ABA affects cell wall catabolism during tomato fruit ripening via down-regulation of the expression of major catabolic genes (SlPG, SlPME, SlTBG, SlXET, SlCels, and SlExp). PMID:22108525

  19. Antioxidant activity and protective effect of banana peel against oxidative hemolysis of human erythrocyte at different stages of ripening.

    Science.gov (United States)

    Sundaram, Shanthy; Anjum, Shadma; Dwivedi, Priyanka; Rai, Gyanendra Kumar

    2011-08-01

    Phytochemicals such as polyphenols and carotenoids are gaining importance because of their contribution to human health and their multiple biological effects such as antioxidant, antimutagenic, anticarcinogenic, and cytoprotective activities and their therapeutic properties. Banana peel is a major by-product in pulp industry and it contains various bioactive compounds like polyphenols, carotenoids, and others. In the present study, effect of ripening, solvent polarity on the content of bioactive compounds of crude banana peel and the protective effect of peel extracts of unripe, ripe, and leaky ripe banana fruit on hydrogen peroxide-induced hemolysis and their antioxidant capacity were investigated. Banana (Musa paradisica) peel at different stages of ripening (unripe, ripe, leaky ripe) were treated with 70% acetone, which were partitioned in order of polarity with water, ethyl acetate, chloroform (CHCl₃), and hexane sequentially. The antioxidant activity of the samples was evaluated by the red cell hemolysis assay, free radical scavenging (1,1-diphenyl-2-picrylhydrazyl free radical elimination) and superoxide dismutase activities. The Folin-Ciocalteu's reagent assay was used to estimate the phenolic content of extracts. The findings of this investigation suggest that the unripe banana peel sample had higher antioxidant potency than ripe and leaky ripe. Further on fractionation, ethyl acetate and water soluble fractions of unripe peel displayed high antioxidant activity than CHCl₃ and hexane fraction, respectively. A positive correlation between free radical scavenging capacity and the content of phenolic compound were found in unripe, ripe, and leaky ripe stages of banana peel.

  20. Ethylene: Role in Fruit Abscission and Dehiscence Processes 12

    Science.gov (United States)

    Lipe, John A.; Morgan, Page W.

    1972-01-01

    Two peaks of ethylene production occur during the development of cotton fruitz (Gossypium hirsutum L.). These periods precede the occurrence of young fruit shedding and mature fruit dehiscence, both of which are abscission phenomena and the latter is generally assumed to be part of the total ripening process. Detailed study of the dehiscence process revealed that ethylene production of individual, attached cotton fruits goes through a rising, cyclic pattern which reaches a maximum prior to dehiscence. With detached pecan fruits (Carya illinoensis [Wang.] K. Koch), ethylene production measured on alternate days rose above 1 microliter per kilogram fresh weight per hour before dehiscence began and reached a peak several days prior to complete dehiscence. Ethylene production by cotton and pecan fruits was measured just prior to dehiscence and then the internal concentration of the gas near the center of the fruit was determined. From these data a ratio of production rate to internal concentration was determined which allowed calculation of the approximate ethylene concentration in the intact fruit prior to dehiscence and selection of appropriate levels to apply to fruits. Ethylene at 10 microliters per liter of air appears to saturate dehiscence of cotton, pecan, and okra (Hibiscus esculentus L.) fruits and the process is completed in 3 to 4 days. In all cases some hastening of dehiscence was observed with as little as 0.1 microliter of exogenous ethylene per liter of air. The time required for response to different levels of ethylene was determined and compared to the time course of ethylene production and dehiscence. We concluded that internal levels of ethylene rose to dehiscence-stimulating levels a sufficience time before dehiscence for the gas to have initiated the process. Since our data and calculations indicate that enough ethylene is made a sufficient time before dehiscence, to account for the process, we propose that ethylene is one of the regulators of

  1. Ethylene: role in fruit abscission and dehiscence processes.

    Science.gov (United States)

    Lipe, J A; Morgan, P W

    1972-12-01

    Two peaks of ethylene production occur during the development of cotton fruitz (Gossypium hirsutum L.). These periods precede the occurrence of young fruit shedding and mature fruit dehiscence, both of which are abscission phenomena and the latter is generally assumed to be part of the total ripening process. Detailed study of the dehiscence process revealed that ethylene production of individual, attached cotton fruits goes through a rising, cyclic pattern which reaches a maximum prior to dehiscence. With detached pecan fruits (Carya illinoensis [Wang.] K. Koch), ethylene production measured on alternate days rose above 1 microliter per kilogram fresh weight per hour before dehiscence began and reached a peak several days prior to complete dehiscence. Ethylene production by cotton and pecan fruits was measured just prior to dehiscence and then the internal concentration of the gas near the center of the fruit was determined. From these data a ratio of production rate to internal concentration was determined which allowed calculation of the approximate ethylene concentration in the intact fruit prior to dehiscence and selection of appropriate levels to apply to fruits. Ethylene at 10 microliters per liter of air appears to saturate dehiscence of cotton, pecan, and okra (Hibiscus esculentus L.) fruits and the process is completed in 3 to 4 days. In all cases some hastening of dehiscence was observed with as little as 0.1 microliter of exogenous ethylene per liter of air. The time required for response to different levels of ethylene was determined and compared to the time course of ethylene production and dehiscence. We concluded that internal levels of ethylene rose to dehiscence-stimulating levels a sufficience time before dehiscence for the gas to have initiated the process. Since our data and calculations indicate that enough ethylene is made a sufficient time before dehiscence, to account for the process, we propose that ethylene is one of the regulators of

  2. Elastic stresses and plastic deformations in 'Santa Clara' tomato fruits caused by package dependent compression

    Directory of Open Access Journals (Sweden)

    PEREIRA ADRIANA VARGAS

    2000-01-01

    Full Text Available The objective of this work was to study the fruit compression behavior aiming to develop new tomato packages. Deformations caused by compression forces were observed inside packages and in individual 'Santa Clara' tomato fruit. The forces applied by a transparent acrylic lever to the fruit surface caused pericarp deformation and the flattened area was proportional to the force magnitude. The deformation was associated to the reduction in the gas volume (Vg, caused by expulsion of the air from the loculus cavity and reduction in the intercellular air volume of the pericarp. As ripening advanced, smaller fractions of the Vg reduced by the compressive force were restored after the stress was relieved. The lack of complete Vg restoration was an indication of permanent plastic deformations of the stressed cells. Vg regeneration (elastic recovery was larger in green fruits than in the red ones. The ratio between the applied force and the flattened area (flattening pressure, which depends on cell turgidity, decreased during ripening. Fruit movements associated with its depth in the container were observed during storage in a transparent glass container (495 x 355 x 220 mm. The downward movement of the fruits was larger in the top layers because these movements seem to be driven by a summation of the deformation of many fruits in all layers.

  3. Ethylene regulates Apple (Malus x domestica) fruit softening through a dose x time-dependent mechanism and through differential sensitivities and dependencies of cell wall-modifying genes.

    Science.gov (United States)

    Ireland, Hilary S; Gunaseelan, Kularajathevan; Muddumage, Ratnasiri; Tacken, Emma J; Putterill, Jo; Johnston, Jason W; Schaffer, Robert J

    2014-05-01

    In fleshy fruit species that have a strong requirement for ethylene to ripen, ethylene is synthesized autocatalytically, producing increasing concentrations as the fruits ripen. Apple fruit with the ACC OXIDASE 1 (ACO1) gene suppressed cannot produce ethylene autocatalytically at ripening. Using these apple lines, an ethylene sensitivity dependency model was previously proposed, with traits such as softening showing a high dependency for ethylene as well as low sensitivity. In this study, it is shown that the molecular control of fruit softening is a complex process, with different cell wall-related genes being independently regulated and exhibiting differential sensitivities to and dependencies on ethylene at the transcriptional level. This regulation is controlled through a dose × time mechanism, which results in a temporal transcriptional response that would allow for progressive cell wall disassembly and thus softening. This research builds on the sensitivity dependency model and shows that ethylene-dependent traits can progress over time to the same degree with lower levels of ethylene. This suggests that a developmental clock measuring cumulative ethylene controls the fruit ripening process.

  4. physico-chemical characteristics of storage-ripened mango

    African Journals Online (AJOL)

    Mgina

    content, concentration of four macro elements (Ca, Mg, K, Na) and seven heavy metals (Al, Cd,. Cu, Fe ... environmental pollution which affect plants and fruits. ... Analysis. The determinations of the different parameters in the fruits were done.

  5. Developmentally regulated sesquiterpene production confers resistance to Colletotrichum gloeosporioides in ripe pepper fruits.

    Directory of Open Access Journals (Sweden)

    Sangkyu Park

    Full Text Available Sesquiterpenoid capsidiol, exhibiting antifungal activity against pathogenic fungus, is accumulated in infected ripe pepper fruits. In this study, we found a negative relation between the capsidiol level and lesion size in fruits infected with Colletotrichum gloeosporioides, depending on the stage of ripening. To understand the developmental regulation of capsidiol biosynthesis, fungal-induced gene expressions in the isoprenoid biosynthetic pathways were examined in unripe and ripe pepper fruits. The sterol biosynthetic pathway was almost shut down in healthy ripe fruits, showing very low expression of hydroxymethyl glutaryl CoA reductase (HMGR and squalene synthase (SS genes. In contrast, genes in the carotenoid pathway were highly expressed in ripe fruits. In the sesquiterpene pathway, 5-epi-aristolochene synthase (EAS, belonging to a sesquiterpene cyclase (STC family, was significantly induced in the ripe fruits upon fungal infection. Immunoblot and enzyme activity analyses showed that the STCs were induced both in the infected unripe and ripe fruits, while capsidiol was synthesized discriminatively in the ripe fruits, implying diverse enzymatic specificity of multiple STCs. Thereby, to divert sterol biosynthesis into sesquiterpene production, infected fruits were pretreated with an SS inhibitor, zaragozic acid (ZA, resulting in increased levels of capsidiol by more than 2-fold in the ripe fruits, with concurrent reduction of phytosterols. Taken together, the present results suggest that the enhanced expression and activity of EAS in the ripe fruits play an important role in capsidiol production, contributing to the incompatibility between the anthracnose fungus and the ripe pepper fruits.

  6. Tocopherols in rose hips (Rosa spp.) during ripening.

    Science.gov (United States)

    Andersson, Staffan C; Olsson, Marie E; Gustavsson, Karl-Erik; Johansson, Eva; Rumpunen, Kimmo

    2012-08-15

    Rose hips are used as a food ingredient and in health products. They are rich in various bioactive compounds such as carotenoids and vitamin C, but data on their vitamin E content (tocopherols and tocotrienols) are limited. In this study, four different species of Rosa were analysed for tocopherol and tocotrienol content during ripening in three different years. Only α- and γ-tocopherol were found in the fleshy parts of the rose hips, and the tocopherol content and vitamin E activity varied depending on date of harvesting, species and year. The amount of vitamin E activity differed between species of Rosa and years, whereas the changes during ripening were relatively small. The choice of species must be considered if tocopherol content is to be optimised when rose hips are used as a food ingredient. Copyright © 2012 Society of Chemical Industry.

  7. Chemical Properties and Characteristics of Cow Milk Yogurt with Different Additional Fruit and Storage Time

    Directory of Open Access Journals (Sweden)

    Putri Dian Wulansari

    2016-05-01

    Full Text Available This research was aimed to evaluate the composition (total solids, water content, fat and protein, qualitative properties (color, aroma, and texture and quantitative properties (free fatty acid and lactic acid of cow milk yogurt with different fruits addition and storage time. Experimental method applied Completely Randomized Design with five treatments namely control, dragon fruit, mango, apple and banana (20% v/v, each with 5 replicates. Qualitative characteristic assessment was conducted on 0, 5, 10 and 15 days of storage. Result showed that fruit addition significantly affected the composition and characteristics, while storage time significantly affected quantitative characteristics of yogurt. Apple and banana increased 13% total solids of plain yogurt, while the highest fat content (4,516% was observed in control yogurt which had the lowest protein content (2,564. The highest free fatty acid  was in control yogurt ripen for 15 days (22,885% while the lowest free fatty acid was in mango yogurt ripen for 10 days (13,915%. Fruit addition in yogurt ripen for 15 days at 5C resulted in a safe consumed product.

  8. Molecular Cloning and Characterization of O-Methyltransferase from Mango Fruit (Mangifera indica cv. Alphonso).

    Science.gov (United States)

    Chidley, Hemangi G; Oak, Pranjali S; Deshpande, Ashish B; Pujari, Keshav H; Giri, Ashok P; Gupta, Vidya S

    2016-05-01

    Flavour of ripe Alphonso mango is invariably dominated by the de novo appearance of lactones and furanones during ripening. Of these, furanones comprising furaneol (4-hydroxy-2,5-dimethyl-3(2H)-furanone) and mesifuran (2,5-dimethyl-4-methoxy-3(2H)-furanone) are of particular importance due to their sweet, fruity caramel-like flavour characters and low odour detection thresholds. We isolated a 1056 bp complete open reading frame of a cDNA encoding S-adenosyl-L-methionine-dependent O-methyltransferase from Alphonso mango. The recombinantly expressed enzyme, MiOMTS showed substrate specificity towards furaneol and protocatechuic aldehyde synthesizing mesifuran and vanillin, respectively, in an in vitro assay reaction. A semi-quantitative PCR analysis showed fruit-specific expression of MiOMTS transcripts. Quantitative real-time PCR displayed ripening-related expression pattern of MiOMTS in both pulp and skin of Alphonso mango. Also, early and significantly enhanced accumulation of its transcripts was detected in pulp and skin of ethylene-treated fruits. Ripening-related and fruit-specific expression profile of MiOMTS and substrate specificity towards furaneol is a suggestive of its involvement in the synthesis of mesifuran in Alphonso mango. Moreover, a significant trigger in the expression of MiOMTS transcripts in ethylene-treated fruits point towards the transcriptional regulation of mesifuran biosynthesis by ethylene.

  9. Effect of different brine concentrations and ripening period on some ...

    African Journals Online (AJOL)

    Cheeses made from pasteurized milk (65°C for 30 min) were ripened in 11, 14 and 17 g 100 ml-1 NaCl for 90 days at 7±1°C. Some physicochemical and biochemical analyses were carried out during storage time. The effects of brine concentrations on total solids, protein, ash, salt, pH, and WSN values were found to be ...

  10. Influence of gamma radiation on carbohydrates metabolism of ripening papaya (Carica papaya L. cv. Solo); Metabolismo de carboidratos durante o amadurecimento do mamao (Carica papaya L. Cv. Solo): influencia da radiacao gama

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, M.L.P.A. [Universidade de Sao Paulo (FCF/USP), SP (Brazil). Fac. de Ciencias Farmaceuticas; Lajolo, F.M.; Cordenunsi, B.R. [Universidade de Sao Paulo (FCF/USP), SP (Brazil). Fac. de Ciencias Farmaceuticas. Dept. de Alimentos e Nutricao Experimental

    1999-05-15

    Food irradiation is one of the most promising treatments that can be utilized for fruits disinfestation and extension of shelf life. The authors studied the influence of 0,5 kGy of Gamma irradiation on the soluble carbohydrates composition of papaya (Carica papaya L. cv. Solo) fruit, and on sucrose metabolizing enzymes: sucrose synthase (SS), sucrose-phosphate synthase, acid and neutral invertases activities, during ripening. The results demonstrated that ethylene production, total soluble sugars, sucrose content, and sucrose-phosphate synthase and invertases activities were affected by irradiation, but not respiration, glucose and fructose content, and SS activity. (author)

  11. Detection of artificially ripened mango using spectrometric analysis

    Science.gov (United States)

    Mithun, B. S.; Mondal, Milton; Vishwakarma, Harsh; Shinde, Sujit; Kimbahune, Sanjay

    2017-05-01

    Hyperspectral sensing has been proven to be useful to determine the quality of food in general. It has also been used to distinguish naturally and artificially ripened mangoes by analyzing the spectral signature. However the focus has been on improving the accuracy of classification after performing dimensionality reduction, optimum feature selection and using suitable learning algorithm on the complete visible and NIR spectrum range data, namely 350nm to 1050nm. In this paper we focus on, (i) the use of low wavelength resolution and low cost multispectral sensor to reliably identify artificially ripened mango by selectively using the spectral information so that classification accuracy is not hampered at the cost of low resolution spectral data and (ii) use of visible spectrum i.e. 390nm to 700 nm data to accurately discriminate artificially ripened mangoes. Our results show that on a low resolution spectral data, the use of logistic regression produces an accuracy of 98.83% and outperforms other methods like classification tree, random forest significantly. And this is achieved by analyzing only 36 spectral reflectance data points instead of the complete 216 data points available in visual and NIR range. Another interesting experimental observation is that we are able to achieve more than 98% classification accuracy by selecting only 15 irradiance values in the visible spectrum. Even the number of data needs to be collected using hyper-spectral or multi-spectral sensor can be reduced by a factor of 24 for classification with high degree of confidence

  12. Victims of agricultural intensification: Mowing date affects Rhinanthus spp. regeneration and fruit ripening

    Czech Academy of Sciences Publication Activity Database

    Blažek, P.; Lepš, Jan

    2015-01-01

    Roč. 211, Dec 15 (2015), s. 10-16 ISSN 0167-8809 Institutional support: RVO:60077344 Keywords : yellow rattle * hemiparasite * agri-environmental schemes Subject RIV: EH - Ecology, Behaviour Impact factor: 3.564, year: 2015 http://www.sciencedirect.com/science/article/pii/S0167880915001553

  13. Expression analysis of banana MaECHI1 during fruit ripening with ...

    African Journals Online (AJOL)

    ajl2

    2012-08-16

    Aug 16, 2012 ... 3d. 4d. 5d. 6d. Days postharvest. R elative Q u an tity b a. 0. 0.2. 0.4. 0.6. 0.8. 1. 1.2. 0d. 4d. 8d. 12d ... fund for Modern Agro-industry Technology Research. System (CARS-32). .... during flower formation. Plant Cell 2:673-684.

  14. Interactions between yeasts and bacteria in the smear surface-ripened cheeses.

    Science.gov (United States)

    Corsetti, A; Rossi, J; Gobbetti, M

    2001-09-19

    In the initial phase of ripening, the microflora of bacterial smear surface-ripened cheeses such as Limburger, Taleggio, Brick, Münster and Saint-Paulin and that of surface mould-ripened cheeses such as Camembert and Brie may be similar, but at the end of the ripening, bacteria such as Brevibacterium spp., Arthrobacter spp., Micrococcus spp., Corynebacterium spp. and moulds such as Penicillium camemberti are, respectively, the dominant microorganisms. Yeasts such as Candida spp., Cryptococcus spp., Debaryomyces spp., Geotrichum candidum, Pichia spp., Rhodotorula spp., Saccharomyces spp. and Yarrowia lipolytica are often and variably isolated from the smear surface-ripened cheeses. Although not dominant within the microorganisms of the smear surface-ripened cheeses, yeasts establish significant interactions with moulds and especially bacteria, including surface bacteria and lactic acid bacteria. Some aspects of the interactions between yeasts and bacteria in such type of cheeses are considered in this paper.

  15. Distribution of phenolic compounds and antioxidant capacity in apples tissues during ripening.

    Science.gov (United States)

    Alberti, Aline; Zielinski, Acácio Antonio Ferreira; Couto, Marcelo; Judacewski, Priscila; Mafra, Luciana Igarashi; Nogueira, Alessandro

    2017-05-01

    The effect of variety and ripening stage on the distribution of phenolic compounds and in vitro antioxidant capacity of Gala, Fuji Suprema and Eva apples were evaluated. Hydroxycinnamic acids, flavonoids, flavanols, flavonols, dihydrochalcones and antioxidant activity (FRAP and DPPH) were assessed in the epicarp, mesocarp and endocarp of three varieties at three ripening stages (unripe, ripe and senescent). The Fuji Suprema variety distinguished by its content of flavonols at senescent stage, while Eva variety distinguished by its content of dihydrochalcones (unripe stage) and anthocyanins (ripe stage). In general, phenolic acids and flavonoids decreased with ripening in the epicarp and endocarp. However, in the mesocarp, the effect of ripening was related with the apple variety. Hierarchical cluster analysis confirmed the influence of ripening in the apple tissue. The evolution of these compounds during ripening occurred irregularly and it was influenced by the variety.

  16. Influence of cultivar and ripening time on bioactive compounds and antioxidant properties in Cape gooseberry (Physalis peruviana L.).

    Science.gov (United States)

    Bravo, Karent; Sepulveda-Ortega, Stella; Lara-Guzman, Oscar; Navas-Arboleda, Alejandro A; Osorio, Edison

    2015-05-01

    Cape gooseberry (Physalis peruviana) is an exotic fruit highly valued for its organoleptic properties and bioactive compounds. Considering that the presence of phenolics and ascorbic acid could contribute to its functional capacity, it is important to investigate the quality parameters, bioactive contents and functional properties with respect to genotype and ripening time. In this study the genotype effect was evaluated in 15 cultivars for two different harvest times. Changes during maturation were recorded in two commercial cultivars within seven levels of maturity. Multivariate statistical analysis suggested that phenolic content and ORAC value were mainly affected by harvest time and that ascorbic acid content and DPPH level were mainly affected by genotype. In addition, acidity, phenolic content, ORAC value and inhibition of LDL oxidation decreased with maturity, but soluble solids content, ascorbic acid content, β-carotene content and DPPH-scavenging activity were higher in mature fruits. The phenolic content, ascorbic acid content and antioxidant properties of Cape gooseberry fruit were strongly affected by cultivar, harvest time and maturity state. Consequently, the harvest time must be scheduled carefully to gain the highest proportion of bioactive compounds according to the specific cultivar and the environment where it is grown. © 2014 Society of Chemical Industry.

  17. Efeitos das condições de amadurecimento sobre a suscetibilidade de bananas 'SH 3640' ao despencamento natural Effects of ripening conditions on susceptibility of 'SH 3640' banana to finger drop

    Directory of Open Access Journals (Sweden)

    Victor Martins Maia

    2004-08-01

    Full Text Available Com o objetivo de verificar os efeitos das condições de amadurecimento sobre o despencamento natural de bananas 'SH 3640', foi instalado um experimento segundo delineamento inteiramente casualizado, com quatro tratamentos: T1 - amadurecimento em temperatura ambiente (24,6 ± 1,7ºC; T2 - pré-condicionamento dos frutos a 5ºC por 6 horas, seguido de amadurecimento em temperatura ambiente; T3 - pré-condicionamento dos frutos a 5ºC por 12 horas, seguido de amadurecimento em temperatura ambiente; T4 - amadurecimento dos frutos em sacos de polietileno de baixa densidade a 18ºC. Foram utilizadas 6 repetições para as observações anatômicas e 4 repetições para as avaliações de resistência ao despencamento, consistência da polpa do fruto maduro e do tempo entre a colheita e o amadurecimento, sendo cada repetição constituída de um fruto. Os frutos dos tratamentos T2 e T4 apresentaram maior resistência ao despencamento natural, o que é justificado pelo aumento da espessura e pela maior deposição de lignina nas paredes celulares. Os frutos do tratamento T4 tiveram o amadurecimento retardado em relação aos demais. Os frutos dos diversos tratamentos não diferiram quanto à consistência da polpa.Aiming to verify the effects of the ripening conditions on the finger drop of bananas 'SH 3640', this experiment was set up on an entirely randomized design, with four treatments: T1 - ripening under environmental temperature (24.6 ± 1.7ºC; T2 - preconditioning of the fruits at 5ºC for 6 hours, following the ripening under environmental temperature; T3 - preconditioning of the fruits at 5ºC for 12 hours, following the ripening under environmental temperature; and T4 - ripening of the fruits in low-density polyethylene bags at 18ºC. Six replicates were used for the anatomical observations, and 4 replicates for evaluating the resistance to finger drop, pulp consistence of the ripe fruit and the number of days from harvest to ripening

  18. Ethylene independent induction of lycopene biosynthesis in tomato fruits by jasmonates

    Science.gov (United States)

    Wei, Jia; Wang, Qiaomei

    2012-01-01

    One of the main characteristics of tomato (Solanum lycopersicum) fruit ripening is a massive accumulation of carotenoids (mainly lycopene), which may contribute to the nutrient quality of tomato fruit and its role in chemoprevention. Previous studies have shown that ethylene (ET) plays a central role in promoting fruit ripening. In this study, the role of jasmonic acid (JA) in controlling lycopene accumulation in tomato fruits was analysed by measuring fruit lycopene content and the expression levels of lycopene biosynthetic genes in JA-deficient mutants (spr2 and def1) and a 35S::prosystemin transgenic line (35S::prosys) with increased JA levels and constitutive JA signalling. The lycopene content was significantly decreased in the fruits of spr2 and def1, but was enhanced in 35S::prosys fruits. Simultaneously, the expression of lycopene biosynthetic genes followed a similar trend. Lycopene synthesis in methyl jasmonate (MeJA) vapour-treated fruits showed an inverted U-shaped dose response, which significantly enhanced the fruit lycopene content and restored lycopene accumulation in spr2 and def1 at a concentration of 0.5 µM. The results indicated that JA plays a positive role in lycopene biosynthesis. In addition, the role of ET in JA-induced lycopene accumulation was also examined. Ethylene production in tomato fruits was depressed in spr2 and def1 while it increased in 35S::prosys. However, the exogenous application of MeJA to Never ripe (Nr), the ET-insensitive mutant, significantly promoted lycopene accumulation, as well as the expression of lycopene biosynthetic genes. Based on these results, it is proposed that JA might function independently of ethylene to promote lycopene biosynthesis in tomato fruits. PMID:22945939

  19. Generation of a predicted protein database from EST data and application to iTRAQ analyses in grape (Vitis vinifera cv. Cabernet Sauvignon) berries at ripening initiation

    Science.gov (United States)

    Lücker, Joost; Laszczak, Mario; Smith, Derek; Lund, Steven T

    2009-01-01

    Background iTRAQ is a proteomics technique that uses isobaric tags for relative and absolute quantitation of tryptic peptides. In proteomics experiments, the detection and high confidence annotation of proteins and the significance of corresponding expression differences can depend on the quality and the species specificity of the tryptic peptide map database used for analysis of the data. For species for which finished genome sequence data are not available, identification of proteins relies on similarity to proteins from other species using comprehensive peptide map databases such as the MSDB. Results We were interested in characterizing ripening initiation ('veraison') in grape berries at the protein level in order to better define the molecular control of this important process for grape growers and wine makers. We developed a bioinformatic pipeline for processing EST data in order to produce a predicted tryptic peptide database specifically targeted to the wine grape cultivar, Vitis vinifera cv. Cabernet Sauvignon, and lacking truncated N- and C-terminal fragments. By searching iTRAQ MS/MS data generated from berry exocarp and mesocarp samples at ripening initiation, we determined that implementation of the custom database afforded a large improvement in high confidence peptide annotation in comparison to the MSDB. We used iTRAQ MS/MS in conjunction with custom peptide db searches to quantitatively characterize several important pathway components for berry ripening previously described at the transcriptional level and confirmed expression patterns for these at the protein level. Conclusion We determined that a predicted peptide database for MS/MS applications can be derived from EST data using advanced clustering and trimming approaches and successfully implemented for quantitative proteome profiling. Quantitative shotgun proteome profiling holds great promise for characterizing biological processes such as fruit ripening initiation and may be further

  20. Generation of a predicted protein database from EST data and application to iTRAQ analyses in grape (Vitis vinifera cv. Cabernet Sauvignon berries at ripening initiation

    Directory of Open Access Journals (Sweden)

    Smith Derek

    2009-01-01

    Full Text Available Abstract Background iTRAQ is a proteomics technique that uses isobaric tags for relative and absolute quantitation of tryptic peptides. In proteomics experiments, the detection and high confidence annotation of proteins and the significance of corresponding expression differences can depend on the quality and the species specificity of the tryptic peptide map database used for analysis of the data. For species for which finished genome sequence data are not available, identification of proteins relies on similarity to proteins from other species using comprehensive peptide map databases such as the MSDB. Results We were interested in characterizing ripening initiation ('veraison' in grape berries at the protein level in order to better define the molecular control of this important process for grape growers and wine makers. We developed a bioinformatic pipeline for processing EST data in order to produce a predicted tryptic peptide database specifically targeted to the wine grape cultivar, Vitis vinifera cv. Cabernet Sauvignon, and lacking truncated N- and C-terminal fragments. By searching iTRAQ MS/MS data generated from berry exocarp and mesocarp samples at ripening initiation, we determined that implementation of the custom database afforded a large improvement in high confidence peptide annotation in comparison to the MSDB. We used iTRAQ MS/MS in conjunction with custom peptide db searches to quantitatively characterize several important pathway components for berry ripening previously described at the transcriptional level and confirmed expression patterns for these at the protein level. Conclusion We determined that a predicted peptide database for MS/MS applications can be derived from EST data using advanced clustering and trimming approaches and successfully implemented for quantitative proteome profiling. Quantitative shotgun proteome profiling holds great promise for characterizing biological processes such as fruit ripening

  1. Availability of Micro-Tom mutant library combined with TILLING in molecular breeding of tomato fruit shelf-life.

    Science.gov (United States)

    Okabe, Yoshihiro; Asamizu, Erika; Ariizumi, Tohru; Shirasawa, Kenta; Tabata, Satoshi; Ezura, Hiroshi

    2012-06-01

    Novel mutant alleles of an ethylene receptor Solanum lycopersicum ETHYLENE RESPONSE1 (SlETR1) gene, Sletr1-1 and Sletr1-2, were isolated from the Micro-Tom mutant library by TILLING in our previous study. They displayed different levels of impaired fruit ripening phenotype, suggesting that these alleles could be a valuable breeding material for improving shelf life of tomato fruit. To conduct practical use of the Sletr1 alleles in tomato breeding, genetic complementation analysis by transformation of genes carrying each allele is required. In this study, we generated and characterized transgenic lines over-expressing Sletr1-1 and Sletr1-2. All transgenic lines displayed ethylene insensitive phenotype and ripening inhibition, indicating that Sletr1-1 and Sletr1-2 associate with the ethylene insensitive phenotype. The level of ethylene sensitivity in the seedling was different between Sletr1-1 and Sletr1-2 transgenic lines, whereas no apparent difference was observed in fruit ripening phenotype. These results suggested that it is difficult to fine-tune the extent of ripening by transgenic approach even if the weaker allele (Sletr1-2) was used. Our present and previous studies indicate that the Micro-Tom mutant library combined with TILLING could be an efficient tool for exploring genetic variations of important agronomic traits in tomato breeding.

  2. Availability of Micro-Tom mutant library combined with TILLING in molecular breeding of tomato fruit shelf-life

    Science.gov (United States)

    Okabe, Yoshihiro; Asamizu, Erika; Ariizumi, Tohru; Shirasawa, Kenta; Tabata, Satoshi; Ezura, Hiroshi

    2012-01-01

    Novel mutant alleles of an ethylene receptor Solanum lycopersicum ETHYLENE RESPONSE1 (SlETR1) gene, Sletr1-1 and Sletr1-2, were isolated from the Micro-Tom mutant library by TILLING in our previous study. They displayed different levels of impaired fruit ripening phenotype, suggesting that these alleles could be a valuable breeding material for improving shelf life of tomato fruit. To conduct practical use of the Sletr1 alleles in tomato breeding, genetic complementation analysis by transformation of genes carrying each allele is required. In this study, we generated and characterized transgenic lines over-expressing Sletr1-1 and Sletr1-2. All transgenic lines displayed ethylene insensitive phenotype and ripening inhibition, indicating that Sletr1-1 and Sletr1-2 associate with the ethylene insensitive phenotype. The level of ethylene sensitivity in the seedling was different between Sletr1-1 and Sletr1-2 transgenic lines, whereas no apparent difference was observed in fruit ripening phenotype. These results suggested that it is difficult to fine-tune the extent of ripening by transgenic approach even if the weaker allele (Sletr1-2) was used. Our present and previous studies indicate that the Micro-Tom mutant library combined with TILLING could be an efficient tool for exploring genetic variations of important agronomic traits in tomato breeding. PMID:23136532

  3. A Simple and Useful Method to Apply Exogenous NO Gas to Plant Systems: Bell Pepper Fruits as a Model.

    Science.gov (United States)

    Palma, José M; Ruiz, Carmelo; Corpas, Francisco J

    2018-01-01

    Nitric oxide (NO) is involved many physiological plant processes, including germination, growth and development of roots, flower setting and development, senescence, and fruit ripening. In the latter physiological process, NO has been reported to play an opposite role to ethylene. Thus, treatment of fruits with NO may lead to delay ripening independently of whether they are climacteric or nonclimacteric. In many cases different methods have been reported to apply NO to plant systems involving sodium nitroprusside, NONOates, DETANO, or GSNO to investigate physiological and molecular consequences. In this chapter a method to treat plant materials with NO is provided using bell pepper fruits as a model. This method is cheap, free of side effects, and easy to apply since it only requires common chemicals and tools available in any biology laboratory.

  4. Saccharides and fructooligosaccharides composition of green and ripe Averrhoa carambola, Blighia sapida and Spondias dulcis fruits.

    Science.gov (United States)

    Benkeblia, Noureddine; Lopez, Mercedes G

    2015-06-01

    The maturation of fruits is characterized by numerous compositional changes during ripening and these changes contribute in their quality attributes. This study aimed to assess the contents of saccharides and potential fructooligosaccharides (FOS) of ackee (Blighia sapida Köenig), carambola (Averrhoa carambola) and June plum (Spondias dulcis), at green and ripe stages. Beside glucose and fructose and lower sucrose content, three short chain fructooligosaccharides were identified in ackee fruit, namely 1-kestose (1(F)-β-d-fructofuranosyl sucrose), nystose (1(F)(1-β-d-fructofuranosyl)2 sucrose) and DP5 (1(F)(1-β-d-fructofuranosyl)3 sucrose), while in carambola and June plum DP5 (1(F)(1-β-d-fructofuranosyl)3 sucrose) was not detected. Ripening stage also affected significantly the contents of these saccharides and sFOS. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Optimum Temperature for Storage of Fruit and Vegetables with Reference to Chilling Injury

    Science.gov (United States)

    Murata, Takao

    Cold storage is an important technique for preserving fresh fruit and vegetables. Deterioration due to ripening, senescence and microbiological disease can be retarded by storage at optimum temperature being slightly above the freezing point of tissues of fruit and vegetables. However, some fruit and vegetables having their origins in tropical or subtropical regions of the world are subject to chilling injury during transportation, storage and wholesale distribution at low temperature above freezing point, because they are usually sensitive to low temperature in the range of 15&digC to 0°C. This review will focus on the recent informations regarding chilling injury of fruit and vegetables, and summarize the optimum temperature for transportation and storage of fruit and vegetables in relation to chilling injury.

  6. Cell wall structures leading to cultivar differences in softening rates develop early during apple (Malus x domestica) fruit growth.

    Science.gov (United States)

    Ng, Jovyn K T; Schröder, Roswitha; Sutherland, Paul W; Hallett, Ian C; Hall, Miriam I; Prakash, Roneel; Smith, Bronwen G; Melton, Laurence D; Johnston, Jason W

    2013-11-19

    There is a paucity of information regarding development of fruit tissue microstructure and changes in the cell walls during fruit growth, and how these developmental processes differ between cultivars with contrasting softening behaviour. In this study we compare two apple cultivars that show different softening rates during fruit development and ripening. We investigate whether these different softening behaviours manifest themselves late during ethylene-induced softening in the ripening phase, or early during fruit expansion and maturation. 'Scifresh' (slow softening) and 'Royal Gala' (rapid softening) apples show differences in cortical microstructure and cell adhesion as early as the cell expansion phase. 'Scifresh' apples showed reduced loss of firmness and greater dry matter accumulation compared with 'Royal Gala' during early fruit development, suggesting differences in resource allocation that influence tissue structural properties. Tricellular junctions in 'Scifresh' were rich in highly-esterified pectin, contributing to stronger cell adhesion and an increased resistance to the development of large airspaces during cell expansion. Consequently, mature fruit of 'Scifresh' showed larger, more angular shaped cells than 'Royal Gala', with less airspaces and denser tissue. Stronger cell adhesion in ripe 'Scifresh' resulted in tissue fracture by cell rupture rather than by cell-to-cell-separation as seen in 'Royal Gala'. CDTA-soluble pectin differed in both cultivars during development, implicating its involvement in cell adhesion. Low pectin methylesterase activity during early stages of fruit development coupled with the lack of immuno-detectable PG was associated with increased cell adhesion in 'Scifresh'. Our results indicate that cell wall structures leading to differences in softening rates of apple fruit develop early during fruit growth and well before the induction of the ripening process.

  7. Fruit specific variability in capsaicinoid accumulation and transcription of structural and regulatory genes in Capsicum fruit.

    Science.gov (United States)

    Keyhaninejad, Neda; Curry, Jeanne; Romero, Joslynn; O'Connell, Mary A

    2014-02-01

    Accumulation of capsaicinoids in the placental tissue of ripening chile (Capsicum spp.) fruit follows the coordinated expression of multiple biosynthetic enzymes producing the substrates for capsaicin synthase. Transcription factors are likely agents to regulate expression of these biosynthetic genes. Placental RNAs from habanero fruit (Capsicum chinense) were screened for expression of candidate transcription factors; with two candidate genes identified, both in the ERF family of transcription factors. Characterization of these transcription factors, Erf and Jerf, in nine chile cultivars with distinct capsaicinoid contents demonstrated a correlation of expression with pungency. Amino acid variants were observed in both ERF and JERF from different chile cultivars; none of these changes involved the DNA binding domains. Little to no transcription of Erf was detected in non-pungent Capsium annuum or C. chinense mutants. This correlation was characterized at an individual fruit level in a set of jalapeño (C. annuum) lines again with distinct and variable capsaicinoid contents. Both Erf and Jerf are expressed early in fruit development, 16-20 days post-anthesis, at times prior to the accumulation of capsaicinoids in the placental tissues. These data support the hypothesis that these two members of the complex ERF family participate in regulation of the pungency phenotype in chile. Copyright © 2013. Published by Elsevier Ireland Ltd.

  8. Prototype simulates remote sensing spectral measurements on fruits and vegetables

    Science.gov (United States)

    Hahn, Federico

    1998-09-01

    A prototype was designed to simulate spectral packinghouse measurements in order to simplify fruit and vegetable damage assessment. A computerized spectrometer is used together with lenses and an externally controlled illumination in order to have a remote sensing simulator. A laser is introduced between the spectrometer and the lenses in order to mark the zone where the measurement is being taken. This facilitates further correlation work and can assure that the physical and remote sensing measurements are taken in the same place. Tomato ripening and mango anthracnose spectral signatures are shown.

  9. Enhanced flux of substrates into polyamine biosynthesis but not ethylene in tomato fruit engineered with yeast S-adenosylmethionine decarboxylase gene

    Science.gov (United States)

    Yi Lasanajak; Rakesh Minocha; Subhash C. Minocha; Ravinder Goyal; Tahira Fatima; Avtar K. Handa; Autar K. Mattoo

    2014-01-01

    S-adenosylmethionine (SAM), a major substrate in 1-C metabolism is a common precursor in the biosynthetic pathways of polyamines and ethylene, two important plant growth regulators, which exhibit opposing developmental effects, especially during fruit ripening. However, the flux of various substrates including SAM into the two competing pathways in...

  10. Nanoscale Molecules Under Thermodynamic Control:" Digestive Ripening" or " Nanomachining"

    Energy Technology Data Exchange (ETDEWEB)

    Klabunde, Kenneth J. [Kansas State Univ., Manhattan, KS (United States)

    2015-06-04

    Overall Research Goals and Specific Objectives: Nanoscale materials are becoming ubiquitous in science and engineering, and are found widely in nature. However, their formation processes and uniquely high chemical reactivities are not understood well, indeed are often mysterious. Over recent years, a number of research teams have described nanoparticle synthesis, and aging, thermal treatment, or etching times have been mentioned. We have used the terms “digestive ripening” and “nanomachining” and have suggested that thermodynamics plays an important part in the size adjustment to monodisperse arrays being formed. Since there is scant theoretical understanding of digestive ripening, the overall goal in our research is to learn what experimental parameters (ligand used, temperature, solvent, time) are most important, how to control nanoparticle size and shape after initial crude nanoparticles have been synthesized, and gain better understanding of the chemical mechanism details. Specific objectives for the past twentynine months since the grant began have been to (1) Secure and train personnel;as of 2011, a postdoc Deepa Jose, female from the Indian Institute of Science in Bangalore, India; Yijun Sun, a second year graduate student, female from China; and Jessica Changstrom, female from the USA, GK12 fellow (program for enhancing teaching ability) are actively carrying out research. (2) Find out what happens to sulfur bound hydrogen of thiol when it interacts with gold nanoparticles. Our findings are discussed in detail later. (3) Determine the effect of particle size, shape, and temperature on dodecyl thiol assited digestive ripening of gold nanoparticles. See our discussions later. (4) To understand in detail the ligand interaction in molecular clusters and nanoparticles (5) Determine the effect of chain length of amines on Au nanoparticle size under digestive ripening conditions (carbon chain length varied from 4-18). (6) Determine the catalytic activity

  11. Regularities in the +H14C assimilate supply of peach fruits at their last development stage within the range of a fruit-bearing branchlet

    International Nuclear Information System (INIS)

    Petrov, A.; Manolov, P.

    1977-01-01

    Studies have been accomplished by means of 14 C and autoradiography on the transport link between individual shoots and Redhaven fruits in their advanced development (about a week before maturity) which have formed within the range of a fruit-bearing branchlet. This confirms the conception of directing the photosynthetic prod%cts mainly to the ripening fruits. The basic regularities of the photoassimilate transport prove to be the same as at an early phase of fruit development. Nevertheless, there are also some new traits of morphological and physiological essence such as relatively a large phloem fibre scope of the fruit-bearing branchlet, creating better possibilities of taking over the transport products of the photosynthesis and enhanced attraction opwer of fruits, conditioning a strengthened linear and additional transversal transport, thus contributing to the rapid growth of fruits in their last development phase. Under the influence of these factors, the independence of individual shoots and fruits along and around a fruit-bearing branchlet is substantially less than at an early development phase. (author)

  12. The formation of fat-derived flavour compounds during the ripening of Gouda-type cheese

    NARCIS (Netherlands)

    Alewijn, M.

    2006-01-01

    Cheese flavour is an important quality attribute, and is mainly formed during cheese ripening. Besides compounds that are formed from protein and carbohydrates, milk fat-derived compounds are essential for cheese flavour. Before, but mainly during ripening, free fatty acids, lactones, ketones,

  13. Activity of autoinducer two (AI-2) in bacteria isolated from surface ripened cheeses

    DEFF Research Database (Denmark)

    Gori, Klaus; Jespersen, Lene

    2007-01-01

    ). Corynebacterium casei, Microbacterium barkeri, Microbacterium gubbeenense and S. equorum subsp. linens (all isolated from the smear of surface ripened cheeses) using the AI-2 bioluminescence assay. This indicates that AI-2 signaling could take place between bacteria found in the smear of surface ripened cheeses....

  14. Local Correlation during Ostwald ripening of two-dimensional islands on Ag(111)

    NARCIS (Netherlands)

    Morgenstern, Karina; Rosenfeld, G.; Comsa, George

    1999-01-01

    Using two-dimensional Ag adatom islands on Ag(111) as a model system, we study the importance of local correlations in diffusion-limited Ostwald ripening. For the coverages studied (0.08, 0.21, and 0.3 ML), we find that the ripening can be surprisingly well described in a nearest neighbour model

  15. Microbial succession of Debaryomyces hansenii strains during the production of Danish surfaced-ripened cheeses

    DEFF Research Database (Denmark)

    Petersen, Karen Mee; Westall, Signe; Jespersen, Lene

    2002-01-01

    to be the dominant yeast species throughout the ripening period, whereas other yeast species such as Trichosporon spp., Rhodotorula spp., and Candida spp. were found in minor concentrations during early stages of cheese ripening. Mitochondrial DNA RFLP was used to show that several strains of D. hansenii were...

  16. Ripening of PAH and TPH polluted sediments : determination and quantification of bioremediation parameters

    NARCIS (Netherlands)

    Vermeulen, J.

    2007-01-01

    In this study, bioremediation parameters were determined and quantified for different clayey dredged sediments. The research described in this thesis increased the insight into the individual processes of physical ripening, biochemical ripening – including PAH and TPH degradation – that result from

  17. Efficacy of irradiation vs thermal methods as quarantine treatments for tropical fruits

    International Nuclear Information System (INIS)

    Moy, J.H.

    1993-01-01

    Ionizing radiation can be effectively applied to fruits and vegetables for several purposes. The most feasible and potentially useful application is probably for disinfestation as a quarantine treatment. All stages of a fruit fly will become sterile upon being irradiated at a minimum dose of 0.15 kGy, the dose level approved by the USDA in January 1989 for treating Hawaiian papayas as a quarantine procedure. Research on irradiation of several tropical fruits such as papayas, mangoes, lychees showed that the chemical, sensory and nutrient qualities of these fruits were well retained at 1.0 kGy, and the fruits would ripen normally or slightly delayed. Irradiation studies have proved the efficacy of the process to disinfest tropical fruits of fruit flies. Market test of irradiated Hawaiian papayas in 1987 showed that consumers preferred irradiated papayas over hot water treated papayas by 11 to 1. Thus the only hurdle to overcome in using irradiation for tropical fruits is to convince the consumers that irradiated fruits are wholesome and safe for human consumption, which has been proven with scientific data obtained during the past three decades, and further proven with the marketing of irradiated fruits in the U.S.A. since early 1992. (author)

  18. Overview of a surface-ripened cheese community functioning by meta-omics analyses.

    Directory of Open Access Journals (Sweden)

    Eric Dugat-Bony

    Full Text Available Cheese ripening is a complex biochemical process driven by microbial communities composed of both eukaryotes and prokaryotes. Surface-ripened cheeses are widely consumed all over the world and are appreciated for their characteristic flavor. Microbial community composition has been studied for a long time on surface-ripened cheeses, but only limited knowledge has been acquired about its in situ metabolic activities. We applied metagenomic, metatranscriptomic and biochemical analyses to an experimental surface-ripened cheese composed of nine microbial species during four weeks of ripening. By combining all of the data, we were able to obtain an overview of the cheese maturation process and to better understand the metabolic activities of the different community members and their possible interactions. Furthermore, differential expression analysis was used to select a set of biomarker genes, providing a valuable tool that can be used to monitor the cheese-making process.

  19. Proteome changes in banana fruit peel tissue in response to ethylene and high-temperature treatments.

    Science.gov (United States)

    Du, Lina; Song, Jun; Forney, Charles; Palmer, Leslie Campbell; Fillmore, Sherry; Zhang, ZhaoQi

    2016-01-01

    Banana (Musa AAA group) is one of the most consumed fruits in the world due to its flavor and nutritional value. As a typical climacteric fruit, banana responds to ethylene treatment, which induces rapid changes of color, flavor (aroma and taste), sweetness and nutritional composition. It has also been reported that ripening bananas at temperatures above 24 °C inhibits chlorophyll breakdown and color formation but increases the rate of senescence. To gain fundamental knowledge about the effects of high temperature and ethylene on banana ripening, a quantitative proteomic study employing multiplex peptide stable isotope dimethyl labeling was conducted. In this study, green (immature) untreated banana fruit were subjected to treatment with 10 μL L(-1) of ethylene for 24 h. After ethylene treatment, treated and untreated fruit were stored at 20 or 30 °C for 24 h. Fruit peel tissues were then sampled after 0 and 1 day of storage, and peel color and chlorophyll fluorescence were evaluated. Quantitative proteomic analysis was conducted on the fruit peels after 1 day of storage. In total, 413 common proteins were identified and quantified from two biological replicates. Among these proteins, 91 changed significantly in response to ethylene and high-temperature treatments. Cluster analysis on these 91 proteins identified 7 groups of changed proteins. Ethylene treatment and storage at 20 °C induced 40 proteins that are correlated with pathogen resistance, cell wall metabolism, ethylene biosynthesis, allergens and ribosomal proteins, and it repressed 36 proteins that are associated with fatty acid and lipid metabolism, redox-oxidative responses, and protein biosynthesis and modification. Ethylene treatment and storage at 30 °C induced 32 proteins, which were mainly similar to those in group 1 but also included 8 proteins in group 3 (identified as chitinase, cinnamyl alcohol dehydrogenase 1, cysteine synthase, villin-2, leucine-transfer RNA ligase, CP47

  20. Acetaldehyde stimulation of net gluconeogenic carbon movement from applied malic acid in tomato fruit pericarp tissue

    International Nuclear Information System (INIS)

    Halinska, A.; Frenkel, C.

    1991-01-01

    Applied acetaldehyde is known to lead to sugar accumulation in fruit including tomatoes (Lycopersicon esculentum) presumably due to stimulation of gluconeogenesis. This conjecture was examined using tomato fruit pericarp discs as a test system and applied l-[U- 14 C]malic acid as the source for gluconeogenic carbon mobilization. Results indicate that malic and perhaps other organic acids are carbon sources for gluconeogenesis occurring normally in ripening tomatoes. The process is stimulated by acetaldehyde apparently by attenuating the fructose-2,6-biphosphate levels. The mode of the acetaldehyde regulation of fructose-2,6-biphosphate metabolism awaits clarification

  1. Tryptophan Levels during Grape Ripening: Effects of Cultural Practices

    Directory of Open Access Journals (Sweden)

    Ana Ruiz-Rodríguez

    2017-06-01

    Full Text Available Some cultural practices that are carried out during the grape ripening period are associated with vine stress, including leaf removal, grape bunch removal, and vegetable cover crops. Additionally, several nitrogen and sulfur supplements have also been used directly on leaves during the last stage of the ripening period. In the work described here, five different cultural practices and the reference were applied in three replicates in the same vineyard. The evolution of tryptophan levels was evaluated from just after grape veraison until the harvest date. In some cases, certain specific treatments were also evaluated after the regular harvest date. The cultural techniques that involved the application of nitrogen led to higher levels of tryptophan at the harvest day when compared to other cultural techniques. It was also found that the application of nitrogen without sulfur had a faster effect on the level of tryptophan. It was established that a period of around 20 days is needed for the grapes to show clear differences in tryptophan levels after the application of nitrogen.

  2. Physiological characteristics and related gene expression of after-ripening on seed dormancy release in rice.

    Science.gov (United States)

    Du, W; Cheng, J; Cheng, Y; Wang, L; He, Y; Wang, Z; Zhang, H

    2015-11-01

    After-ripening is a common method used for dormancy release in rice. In this study, the rice variety Jiucaiqing (Oryza sativa L. subsp. japonica) was used to determine dormancy release following different after-ripening times (1, 2 and 3 months). Germination speed, germination percentage and seedling emergence increased with after-ripening; more than 95% germination and 85% seedling emergence were observed following 1 month of after-ripening within 10 days of imbibition, compared with rice dormancy release. Dormancy release by after-ripening is mainly correlated with a rapid decline in ABA content and increase in IAA content during imbibition. Subsequently, GA(1)/ABA, GA(7)/ABA, GA(12)/ABA, GA(20)/ABA and IAA/ABA ratios significantly increased, while GA(3)/ABA, GA(4)/ABA and GAs/IAA ratio significantly decreased in imbibed seeds following 3 months of after-ripening, thereby altering α-amylase activity during seed germination. Peak α-amylase activity occurred at an earlier germination stage in after-ripened seeds than in freshly harvested seeds. Expression of ABA, GA and IAA metabolism genes and dormancy-related genes was regulated by after-ripening time upon imbibition. Expression of OsCYP707A5, OsGA2ox1, OsGA2ox2, OsGA2ox3, OsILR1, OsGH3-2, qLTG3-1 and OsVP1 increased, while expression of Sdr4 decreased in imbibed seeds following 3 months of after-ripening. Dormancy release through after-ripening might be involved in weakening tissues covering the embryo via qLTG3-1 and decreased ABA signalling and sensitivity via Sdr4 and OsVP1. © 2015 German Botanical Society and The Royal Botanical Society of the Netherlands.

  3. Home cervical ripening with dinoprostone gel in nulliparous women with singleton pregnancies.

    Science.gov (United States)

    Stock, Sarah J; Taylor, Rebecca; Mairs, Rebecca; Azaghdani, Abdulhamid; Hor, Kahyee; Smith, Imogen; Dundas, Kirsty; Kissack, Chris; Norman, Jane E; Denison, Fiona

    2014-08-01

    To evaluate whether home cervical ripening is safe and results in shorter hospital stay. This was a retrospective cohort study of women with singleton pregnancies having induction of labor for postmaturity at a single center between January 2007 and June 2010. Women were offered home cervical ripening with 1 mg dinoprostone gel if they were nulliparous, had uncomplicated singleton pregnancies, and the indication for induction was postmaturity. Nine hundred seven of 1,536 (59.1%) nulliparous women having induction of labor for postmaturity were eligible for home cervical ripening. The median number of hours at home was 11.76 hours (range 0-24.82 hours). There were no cases of birth outside of the hospital, uterine rupture, or significant neonatal morbidity or neonatal death related to home cervical ripening. Eighty-five (5.5%) women who underwent hospital cervical ripening because of maternal preference or social issues formed a hospital cervical ripening comparison group. There was no significant difference in the total number of hours before delivery spent in the hospital between the two groups (26.25; 95% confidence interval [CI] 25.27-27.23 in home cervical ripening group compared with 24.28; 95% CI 22.5-26.0 in the hospital group; P=.26). Clinical outcomes are comparable in nulliparous women who receive a single dose of dinoprostone gel for home cervical ripening compared with those who undergo hospital cervical ripening. However, preadmission home cervical ripening with 1 mg dinoprostone does not decrease the number of hours women spend in the hospital. II.

  4. Proteomics and SSH analyses of ALA-promoted fruit coloration and evidence for the involvement of a MADS-box gene, MdMADS1

    Directory of Open Access Journals (Sweden)

    Xinxin Feng

    2016-11-01

    Full Text Available Skin color is a key quality attribute of fruits and how to improve fruit coloration has long been a major concern. 5-Aminolevulinic acid (ALA, a natural plant growth regulator, can significantly increase anthocyanin accumulation in fruit skin and therefore effectively improve coloration of many fruits, including apple. However, the molecular mechanism how ALA stimulates anthocyanin accumulation in fruit skin remains unknown. Here, we investigated the impact of ALA on apple skin at the protein and mRNA levels. A total of 85 differentially expressed proteins in apple skins between ALA and water treatment (control were identified by complementary gel-based and gel-freeseparation techniques. Most of these differentially expressed proteins were up-regulated by ALA. Function analysis suggested that 87.06% of the ALA-responsive proteins were associated with fruit ripening. To further screen ALA-responsive regulators, we constructed a subtracted cDNA library (tester: ALA treatment; driver: control and obtained 104 differentially expressed unigenes, of which 38 unigenes were indicators for the fruit ripening-related gene. The differentially changed proteins and transcripts did not correspond well at an individual level, but showed similar regulated direction in function at the pathway level. Among the identified fruit ripening-related genes, the expression of MdMADS1, a developmental transcription regulator of fruit ripening, was positively correlated with expression of anthocyanin biosynthetic genes (MdCHS, MdDFR, MdLDOX and MdUFGT in apple skin under ALA treatment. Moreover, overexpression of MdMADS1 enhanced anthocyanin content in transformed apple calli, which was further enhanced by ALA. The anthocyanin content in MdMADS1-silenced calli was less than that in the control with ALA treatment, but higher than that without ALA treatment. These results indicated that MdMADS1 is involved in ALA-induced anthocyanin accumulation. In addition, anthocyanin

  5. Natural Ecosystem Surrounding a Conventional Banana Crop Improves Plant Health and Fruit Quality

    Directory of Open Access Journals (Sweden)

    Florence P. Castelan

    2018-06-01

    Full Text Available Natural ecosystems near agricultural landscapes may provide rich environments for growing crops. However, the effect of a natural ecosystem on crop health and fruit quality is poorly understood. In the present study, it was investigated whether the presence of a natural ecosystem surrounding a crop area influences banana plant health and fruit postharvest behavior. Plants from two conventional banana crop areas with identical planting time and cultural practices were used; the only difference between banana crop areas is that one area was surrounded by a natural forest (Atlantic forest fragment (Near-NF, while the other area was inserted at the center of a conventional banana crop (Distant-NF. Results showed that bananas harvested from Near-NF showed higher greenlife and a more homogeneous profile during ripening compared to fruits harvested from Distant-NF. Differences in quality parameters including greenlife, carbohydrate profile, and pulp firmness between fruits harvested from Near-NF and Distant-NF are explained, at least partly, by differences in the balance of plant growth regulators (indole-3-acetic acid and abscisic acid in bananas during ripening. Furthermore, plants from Near-NF showed a lower severity index of black leaf streak disease (BLSD and higher levels of phenolic compounds in leaves compared to plants from Distant-NF. Together, the results provide additional evidence on how the maintenance of natural ecosystems near conventional crop areas could be a promising tool to improve plant health and fruit quality.

  6. Thyme oil vapour and modified atmosphere packaging reduce anthracnose incidence and maintain fruit quality in avocado.

    Science.gov (United States)

    Sellamuthu, Periyar Selvam; Mafune, Mpho; Sivakumar, Dharini; Soundy, Puffy

    2013-09-01

    Postharvest application of prochloraz fungicide is commercially practiced to control anthracnose, a postharvest disease in avocado. Increasing consumer concern regarding food safety and demand for organically produced fruits make it necessary to search for natural environmentally friendly alternative products and processes for the fruit industry. A combination of modified atmosphere packaging (MAP; ∼8% CO₂, 2% O₂) plus thyme oil (TO) was evaluated on the incidence and severity of anthracnose, physiological disorders (grey pulp, vascular browning), fruit quality parameters (L*, h°, firmness, weight loss) and sensory parameters (taste, texture, flavour and overall acceptance), phenylalanine ammonia-lyase (PAL) enzyme activity, total phenolic compounds, flavonoid contents and antioxidant activity in avocados ('Fuerte' and 'Hass' cultivars) held at 10 °C cold storage for 18 days and thereafter, ripened at 25 °C for 5-10 days. Stand-alone MAP, commercial treatment (prochloraz 0.05%) and untreated (control) fruit were included for comparison. MAP + TO treatment significantly (P anthracnose, grey pulp, vascular browning, weight loss and loss of fruit firmness, and showed acceptable taste, flavour, texture and higher overall acceptance, increased PAL activity, total phenolic compounds, flavonoid contents and antioxidant activity, after ripening at 25 °C followed by cold storage at 10 °C. This investigation recommends MAP + TO combination treatment as a suitable alternative to the currently adopted prochloraz application. © 2013 Society of Chemical Industry.

  7. Characterization and quantification of flavonoids and organic acids over fruit development in American cranberry (Vaccinium macrocarpon) cultivars using HPLC and APCI-MS/MS.

    Science.gov (United States)

    Wang, Yifei; Johnson-Cicalese, Jennifer; Singh, Ajay P; Vorsa, Nicholi

    2017-09-01

    Cranberry flavonoids, including anthocyanins, flavonol glycosides and proanthocyanidins, and organic acids were characterized and quantified by HPLC and LC-MS/MS during fruit development and ripening in eight cranberry cultivars. Anthocyanin biosynthesis initiated at early fruit development and reached highest level in mature fruit, with significant differences between cultivars. Major flavonol glycosides, including the most abundant quercetin-3-galactoside and myricetin-3-galactoside, showed consistent concentrations during the season with moderate fluctuation, and were at similar levels in mature fruits of the eight cultivars. Proanthocyanidins declined during fruit development and then increased slightly in later maturation stages. Levels of various proanthocyanidin oligomers/polymers with different degree-of-polymerization were highly correlated within a cultivar during fruit development. Cultivars with coancestry exhibited similar levels (high/low) of anthocyanins or proanthocyanidins, indicating genetic effects on biosynthesis of such flavonoids. All cultivars showed similar levels of malic and citric acids, and declining levels of quinic acid during fruit development. Benzoic acid was extremely low early in the season and increased sharply during fruit ripening. Levels of quinic and citric acids were significantly different among cultivars in the mature fruit. Concentrations of proanthocyanidins, anthocyanins, quinic acid and benzoic acid have a strong developmental association in developing ovaries. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Evaluation of chemical parameters in soft mold-ripened cheese during ripening by mid-infrared spectroscopy.

    Science.gov (United States)

    Martín-del-Campo, S T; Picque, D; Cosío-Ramírez, R; Corrieu, G

    2007-06-01

    The suitability of mid-infrared spectroscopy (MIR) to follow the evolution throughout ripening of specific physicochemical parameters in Camembert-type cheeses was evaluated. The infrared spectra were obtained directly from raw cheese samples deposited on an attenuated total reflectance crystal. Significant correlations were observed between physicochemical data, pH, acid-soluble nitrogen, nonprotein nitrogen, ammonia (NH4+), lactose, and lactic acid. Dry matter showed significant correlation only with lactose and nonprotein nitrogen. Principal components analysis factorial maps of physicochemical data showed a ripening evolution in 2 steps, from d 1 to d 7 and from d 8 to d 27, similar to that observed previously from infrared spectral data. Partial least squares regressions made it possible to obtain good prediction models for dry matter, acid-soluble nitrogen, nonprotein nitrogen, lactose, lactic acid, and NH4+ values from spectral data of raw cheese. The values of 3 statistical parameters (coefficient of determination, root mean square error of cross validation, and ratio prediction deviation) are satisfactory. Less precise models were obtained for pH.

  9. Vertical stratification of the nutritional value of fruit: macronutrients and condensed tannins.

    Science.gov (United States)

    Houle, Alain; Conklin-Brittain, Nancy L; Wrangham, Richard W

    2014-12-01

    Competing successfully for the best feeding sites is an important behavioral strategy but little is known about how feeding sites vary nutritionally within a fruit tree. To answer this question we tested how the nutritional value of a fruit is influenced by its ripeness and its height within the tree crown. A complementary objective was to assess the nutritional value of the midripe fruit, a food item rarely mentioned in the literature despite being exploited on a daily basis by many frugivores. We measured how the dry weight of pulp, water content, and concentration of macronutrients and condensed tannins varied within the tree crowns of 15 fruit species. Collections occurred early in the fruiting cycle, so as to assess the amount of food in the tree before its exploitation by primates. We found that (1) the upper crown produced fruit densities 4.2 times higher, and a fruit crop 4.8 times larger, than the lower crown of the same tree; (2) considering only midripe and ripe stages, upper-crown fruits contained 28.6% more dry pulp, 21.1% more water, and 13.5% more sugars per dry matter than lower-crown fruits of the same tree; (3) midripe fruits contained 80% of the concentrations of sugars of ripe fruits, making them a sweeter food item than one would expect from the intermediate color of their epidermis; (4) cellulose, hemicellulose, proteins, and ash proportionally decreased in concentration while dry pulp and sugars increased during ripening; and (5) ripe fruits were usually rare in the tree (<0.5% of all fruit available) compared to midripe fruits (3-8%). Overall, upper-crown feeding sites produced a higher density and quality of food than lower-crown sites of the same tree. Our data therefore provide a clear nutritional explanation for why tree-feeding frugivores compete for the highest feeding sites. © 2014 Wiley Periodicals, Inc.

  10. Preoperative ripening of the cervix before operative hysteroscopy.

    Science.gov (United States)

    Al-Fozan, Haya; Firwana, Belal; Al Kadri, Hanan; Hassan, Samar; Tulandi, Togas

    2015-04-23

    Hysteroscopy is an operation in which the gynaecologist examines the uterine cavity using a small telescopic instrument (hysteroscope) inserted via the vagina and the cervix. Almost 50% of hysteroscopic complications are related to difficulty with cervical entry. Potential complications include cervical tears, creation of a false passage, perforation, bleeding, or simply difficulty in entering the internal os (between the cervix and the uterus) with the hysteroscope. These complications may possibly be reduced with adequate preparation of the cervix (cervical ripening) prior to hysteroscopy. Cervical ripening agents include oral or vaginal prostaglandin, which can be synthetic (e.g misoprostol) or natural (e.g. dinoprostone) and vaginal osmotic dilators, which can be naturally occurring (e.g. laminaria) or synthetic. To determine whether preoperative cervical preparation facilitates cervical dilatation and reduces the complications of operative hysteroscopy in women undergoing the procedure for any condition. In August 2014 we searched sources including the Menstrual Disorders and Subfertility Group (MDSG) Trials Register, Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, EMBASE, PsycINFO, CINAHL, ClinicalTrials.gov and reference lists of relevant articles. We searched for published and unpublished studies in any language. Two review authors independently selected randomised controlled trials (RCTs) of cervical ripening agents used before operative hysteroscopy in pre- and postmenopausal women. Cervical ripening agents could be compared to each other, placebo or no treatment. Data extraction and quality assessment were conducted independently by two review authors. The primary review outcomes were effectiveness of cervical dilatation (defined as the proportion of women requiring mechanical cervical dilatation) and intraoperative complications. Secondary outcomes were mean time required to dilate the cervix, preoperative pain, cervical width

  11. FLAVOR BIOGENERATION IN MANGABA (Hancornia speciosa Gomes FRUIT

    Directory of Open Access Journals (Sweden)

    Narenda Narain

    2007-11-01

    Full Text Available Most of the volatile flavoring substances are formed during maturation of fruit when it ripens. In this study, the mangaba (Hancornia speciosa Gomes fruit was harvested at half-ripe and ripe stages of maturity and analyzed for its volatile components. The extracts were obtained from the fruit pulp by using simultaneous distillation and extraction technique. Several extraction parameters such as weight of the pulp, dilution with water, solvent volume and extraction period were standardized to obtain highly characteristic fruit aroma extracts. The extracts were analyzed for the identification of volatile compounds by using a system of high resolution gas chromatograph coupled with mass spectrometer. Eighty-six components were separated out of which 46 compounds were positively identified. The volatile flavoring substances pertaining to classes of esters and terpenes increased from 6.19 to 35.487% and from 7.51 to 10.40%, respectively. The principal volatile compounds present in the pulp of ripe mangaba fruit were isopropyl acetate (19.23%, 3-hexanol (10.74%, linalool (7.38%, ä-limonene (2.43%, 3-pentanol (3.80%, 3-ethyl 2-buten-1-ol (2.53% and furfural (1.52%. Biogeneration of mangaba flavor is mainly characterized due to the presence of compounds pertaining to esters, aldehydes and terpenes.

  12. Preliminary Study on the Effect of Gamma Irradiation on Guava (Psidium Guajava L.) Fruit Quality

    International Nuclear Information System (INIS)

    Elbashir, H.A.

    2007-01-01

    White fleshed guava (Psidium guajava L.) fruits were exposed to three doses of gamma irradiation (0.025, 0.05 and 0.1 kGy) to disinfest the fruit fly infestation. Irradiated fruits were tested for post-harvest qualities. Weight loss increased during the ripening period but the rate was greater in the control fruits. The irradiated fruits showed a gradual decrease in tissue firmness. TSS showed fluctuations, however, those treated with 0.1kGy showed highest TSS on the ninth day compared to control and those treated with lower doses. After the seventh day, most irradiated fruits reached peak titratable acidity values. There was a decrease in ascorbic acid content in the control fruits which was more pronounced than in those irradiated with 0.025 and 0.05kGy, however, no decrease in its content was noticed in fruits irradiated with 0.10kGy in the ninth day compared to the first day which suggests a probable preservation of ascorbic acid by gamma irradiation. No microbial infections or insect infestations were observed on the fruits treated with 0.1kGy.

  13. Evaluation of Appropriate Reference Genes for Gene Expression Normalization during Watermelon Fruit Development.

    Directory of Open Access Journals (Sweden)

    Qiusheng Kong

    Full Text Available Gene expression analysis in watermelon (Citrullus lanatus fruit has drawn considerable attention with the availability of genome sequences to understand the regulatory mechanism of fruit development and to improve its quality. Real-time quantitative reverse-transcription PCR (qRT-PCR is a routine technique for gene expression analysis. However, appropriate reference genes for transcript normalization in watermelon fruits have not been well characterized. The aim of this study was to evaluate the appropriateness of 12 genes for their potential use as reference genes in watermelon fruits. Expression variations of these genes were measured in 48 samples obtained from 12 successive developmental stages of parthenocarpic and fertilized fruits of two watermelon genotypes by using qRT-PCR analysis. Considering the effects of genotype, fruit setting method, and developmental stage, geNorm determined clathrin adaptor complex subunit (ClCAC, β-actin (ClACT, and alpha tubulin 5 (ClTUA5 as the multiple reference genes in watermelon fruit. Furthermore, ClCAC alone or together with SAND family protein (ClSAND was ranked as the single or two best reference genes by NormFinder. By using the top-ranked reference genes to normalize the transcript abundance of phytoene synthase (ClPSY1, a good correlation between lycopene accumulation and ClPSY1 expression pattern was observed in ripening watermelon fruit. These validated reference genes will facilitate the accurate measurement of gene expression in the studies on watermelon fruit biology.

  14. Evaluation of Appropriate Reference Genes for Gene Expression Normalization during Watermelon Fruit Development.

    Science.gov (United States)

    Kong, Qiusheng; Yuan, Jingxian; Gao, Lingyun; Zhao, Liqiang; Cheng, Fei; Huang, Yuan; Bie, Zhilong

    2015-01-01

    Gene expression analysis in watermelon (Citrullus lanatus) fruit has drawn considerable attention with the availability of genome sequences to understand the regulatory mechanism of fruit development and to improve its quality. Real-time quantitative reverse-transcription PCR (qRT-PCR) is a routine technique for gene expression analysis. However, appropriate reference genes for transcript normalization in watermelon fruits have not been well characterized. The aim of this study was to evaluate the appropriateness of 12 genes for their potential use as reference genes in watermelon fruits. Expression variations of these genes were measured in 48 samples obtained from 12 successive developmental stages of parthenocarpic and fertilized fruits of two watermelon genotypes by using qRT-PCR analysis. Considering the effects of genotype, fruit setting method, and developmental stage, geNorm determined clathrin adaptor complex subunit (ClCAC), β-actin (ClACT), and alpha tubulin 5 (ClTUA5) as the multiple reference genes in watermelon fruit. Furthermore, ClCAC alone or together with SAND family protein (ClSAND) was ranked as the single or two best reference genes by NormFinder. By using the top-ranked reference genes to normalize the transcript abundance of phytoene synthase (ClPSY1), a good correlation between lycopene accumulation and ClPSY1 expression pattern was observed in ripening watermelon fruit. These validated reference genes will facilitate the accurate measurement of gene expression in the studies on watermelon fruit biology.

  15. Influence of gamma rays and some pre and post harvest treatments on behavior of some fruits during cold storage

    International Nuclear Information System (INIS)

    Mahmoud, M.M.

    2008-01-01

    Apricot fruits usually harvested relatively mature but hard enough to withstand-post harvest handling through the marketing chain. These fruits have considerably lower edible quality than tree-ripened fruit. Fruit quality can be improved by delaying harvest least until physiological maturation is completed on the tree (Bonghi et al. 1999) Apricots containing 11% soluble solids concentration, or higher are in high demand by consumers, as fruit have developed considerable taste, aroma and handling for long distance markets. (Kader, 1999). These fruit will be highly perishable, so rapid cold storage to the lowest safe temperature and supplementary treatments (Mc Donald et al, 1999) such as irradiation with the recommend doses (Sillano et al, 1994) or pre-storage heat treatments will be necessary to retard ripening (mainly softening) during 1-2 weeks post harvest life necessary for distribution to distant markets (Mc Donald et al 1999). Therefore, one can conclude that spraying Canino apricot and Dessert Red peach trees with calcium chloride at 5% or Soya bean oil at 2% showed beneficial effects as pre harvest treatments where they increased fruit firmness and improved fruit quality and prolonged storage and marketing periods as well as decreasing weight loss and percentage of discarded fruits. In addition, spaying Manfaloti pomegrates trees with CaCl 2 solution at 7.5% or Soya bean oil at 4% gained the same results.As for the post harvest treatments, results indicated that subjecting Canino apricots and Dessert Red peaches to gamma radiation at 0.5 K.Gy and pomegrates to 1.0 K.Gy proved to be the best treatments where they reduced respiration rate and loss in fruit weight and improved fruit quality and prolonged both storage and marketing periods

  16. Simulation of fruit-set and trophic competition and optimization of yield advantages in six Capsicum cultivars using functional-structural plant modelling.

    Science.gov (United States)

    Ma, Y T; Wubs, A M; Mathieu, A; Heuvelink, E; Zhu, J Y; Hu, B G; Cournède, P H; de Reffye, P

    2011-04-01

    and vegetative sink strength on fruit-set and fruit weight. When the source-sink ratio at fruit-set decreased, the number of fruit retained on the plant increased competition for assimilates with vegetative organs. Therefore, total plant and vegetative dry weights decreased, especially for large-fruited cultivars. Optimization study showed that temporal heterogeneity of fruit-set and ripening was predicted to be reduced when fruits were harvested earlier. Furthermore, there was a 20 % increase in the number of extra fruit set.

  17. Analysis of fruit and oil quantity and quality distribution in high-density olive trees in order to improve the mechanical harvesting process

    Energy Technology Data Exchange (ETDEWEB)

    Castillo-Ruiz, F. J.; Jiménez-Jiménez, F.; Blanco-Roldán, G.L.; Sola-Guirado, R. R.; Agüera-Vega, J.; Castro-Garcia, S.

    2015-07-01

    Olive fruit production and oil quality distribution with respect to canopy distribution are important criteria for selection and improvement of mechanical harvesting methods. Tests were performed in a high-density olive orchard (Olea europea L., cv. Arbequina) in southern Spain. Fruit distribution, fruit properties and oil parameters were measured by taken separate samples for each canopy location and tree. Results showed a high percentage of fruits and oil located in the middle-outer and upper canopy, representing more than 60% of total production. The position of these fruits along with their higher weight per fruit, maturity index and polyphenol content make them the target for all mechanical harvesting systems. The fruits from the lower canopy represented close to 30% of fruit and oil production, however, the mechanical harvesting of these fruits is inefficient for mechanical harvesting systems. Whether these fruits cannot be properly harvested, enhance tree training to raise their position is recommended. Fruits located inside the canopy are not a target location for mechanical harvesting systems as they were a small percentage of the total fruit (<10%). Significant differences were found for polyphenol content with respect to canopy height, although this was not the case with acidity. In addition, the ripening index did not influence polyphenol content and acidity values within the canopy. Fruit production, properties and oil quality varied depending on fruit canopy position. Thus harvesting systems may be targeted at maximize harvesting efficiency including an adequate tree training system adapted to the harvesting system. (Author)

  18. Analysis of fruit and oil quantity and quality distribution in high-density olive trees in order to improve the mechanical harvesting process

    Directory of Open Access Journals (Sweden)

    Francisco J. Castillo-Ruiz

    2015-06-01

    Full Text Available Olive fruit production and oil quality distribution with respect to canopy distribution are important criteria for selection and improvement of mechanical harvesting methods. Tests were performed in a high-density olive orchard (Olea europea L., cv. Arbequina in southern Spain. Fruit distribution, fruit properties and oil parameters were measured by taken separate samples for each canopy location and tree. Results showed a high percentage of fruits and oil located in the middle-outer and upper canopy, representing more than 60% of total production. The position of these fruits along with their higher weight per fruit, maturity index and polyphenol content make them the target for all mechanical harvesting systems. The fruits from the lower canopy represented close to 30% of fruit and oil production, however, the mechanical harvesting of these fruits is inefficient for mechanical harvesting systems. Whether these fruits cannot be properly harvested, enhance tree training to raise their position is recommended. Fruits located inside the canopy are not a target location for mechanical harvesting systems as they were a small percentage of the total fruit (<10%. Significant differences were found for polyphenol content with respect to canopy height, although this was not the case with acidity. In addition, the ripening index did not influence polyphenol content and acidity values within the canopy. Fruit production, properties and oil quality varied depending on fruit canopy position. Thus harvesting systems may be targeted at maximize harvesting efficiency including an adequate tree training system adapted to the harvesting system.

  19. Canopy structure and physiology related to rootstock vigour in early-ripening peach cultivar Flordastar

    International Nuclear Information System (INIS)

    Motisi, A.; Grutta, I.; Pernice, F.; Caruso, T.

    2005-01-01

    Canopy architectural and eco-physiological traits were measured on five-year-old early-ripening peach cv Flordastar trees grafted on GF 677 and MrS 2/5 rootstocks. Data are reported both on measurements performed directly on the trees, for branches and twigs characters, and on the fractal dimension (D), estimated by the 'box counting' method taken from digital images of Winter-dormant trees, adopted as an indicator of canopy complexity. Results are discussed in relation to the modification of the canopy microclimate as a consequence of the effects of rootstock on tree architecture and water consumption, the latter measured by using sap flow (HPV) probes. A lower degree of canopy complexity was observed in trees grafted onto MrS 2/5 and this, in turn, was related to a higher degree of aerodynamic contact of the tree with the atmosphere (expressed in terms of leaf boundary conductance) and to a higher solar radiation intensity along the canopy profile. These differences did not affect fruit quality in terms of size, red skin over-colour and soluble solid content. In MrS 2/5, the higher light availability at all levels along canopy profile was related to a moderate water deficit status, even under full-irrigation conditions, as evidenced by the lower stem water potential (below -1.3 MPa) and by a lower transpiration rate (about one-half of the values observed on GF 677). At tree-level, MrS 2/5 had a daily water consumption that, also in relation to the lower leaf area per tree, resulted as low as 25% of the values observed on GF 677. The latter, even carrying a significantly higher leaf area and higher water consumption, never showed apparent symptoms of water deficit [it

  20. Microbiology, biochemistry, and volatile composition of Tulum cheese ripened in goat's skin or plastic bags.

    Science.gov (United States)

    Hayaloglu, A A; Cakmakci, S; Brechany, E Y; Deegan, K C; McSweeney, P L H

    2007-03-01

    Tulum cheeses were manufactured from raw ewe's milk and ripened in goat's skin bags (tulums) or plastic containers to understand the effect of ripening container on the chemical composition, biochemistry, microbiology, and volatile composition of Tulum cheeses during 150 d of ripening. Chemical compositions of the cheeses ripened in tulums were significantly different and the moisture contents decreased rapidly in those cheeses because of the porous structure of the tulum. Higher microbial counts were detected in the cheeses ripened in plastic than in cheeses ripened in tulums. Differences in nitrogenous compounds and total free AA of the cheeses were not significant. Total concentrations of free AA in cheeses increased with age and Glu, Ala, Val, Leu, and Phe were the most abundant AA in the cheeses. Urea-PAGE of pH 4.6-insoluble fractions of the cheeses during ripening showed similar degradation patterns in all cheeses. Peptide profiles by reversed-phase HPLC of pH 4.6- and ethanol-soluble or ethanol-insoluble fractions of the cheeses revealed only minor differences in the concentrations of some peptides among the cheeses; however, age-related changes in peptide concentrations were significantly different among the cheeses. Cheeses were analyzed at 90 d of ripening for volatile compounds by solid-phase microextraction gas chromatography-mass spectrometry. One hundred volatile components were identified, including 11 acids, 16 esters, 12 methyl ketones, 7 aldehydes, 22 alcohols, 7 sulfur compounds, 6 terpenes, and 19 miscellaneous compounds. The main components were short-chain fatty acids, 2-butanone, diacetyl, and primary alcohols. Quantitative differences in several volatile compounds were evident among the cheeses. Cheeses ripened in tulums or plastic had similar aroma patterns, but the concentrations of some components were different.

  1. Fate of Lactococcus lactis starter cultures during late ripening in cheese models.

    Science.gov (United States)

    Ruggirello, Marianna; Cocolin, Luca; Dolci, Paola

    2016-10-01

    The presence of Lactococcus lactis, commonly employed as starter culture, was, recently, highlighted and investigated during late cheese ripening. Thus, the main goal of the present study was to assess the persistence and viability of this microorganism throughout manufacturing and ripening of model cheeses. Eight commercial starters, constituted of L. lactis subsp. lactis and L. lactis subsp. cremoris, were inoculated in pasteurized milk in order to manufacture miniature cheeses, ripened for six months. Samples were analysed at different steps (milk after inoculum, curd after cutting, curd after pressing and draining, cheese immediately after salting and cheese at 7, 15, 30, 60, 90, 120, 150 and 180 days of ripening) and submitted to both culture-dependent (traditional plating on M17) and -independent analysis (reverse transcription-quantitative PCR). On the basis of direct RNA analysis, L. lactis populations were detected in all miniature cheeses up to the sixth month of ripening, confirming the presence of viable cells during the whole ripening process, including late stages. Noteworthy, L. lactis was detected by RT-qPCR in cheese samples also when traditional plating failed to indicate its presence. This discrepancy could be explain with the fact that lactococci, during ripening process, enter in a stressed physiological state (viable not culturable, VNC), which might cause their inability to grow on synthetic medium despite their viability in cheese matrix. Preliminary results obtained by "resuscitation" assays corroborated this hypothesis and 2.5% glucose enrichment was effective to recover L. lactis cells in VNC state. The capability of L. lactis to persist in late ripening, and the presence of VNC cells which are known to shift their catabolism to peptides and amino acids consumption, suggests a possible technological role of this microorganism in cheese ripening with a possible impact on flavour formation. Copyright © 2016 Elsevier Ltd. All rights